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Abstract—Competitive demand for network resources has only
increased during the emergence of 5G next generation cellular
technology. As video streaming accounts for an overwhelming
percentage of this demand, the importance of considering the
often-neglected Quality of Experience (QoE) metric is essential
to ensure network resources are allocated in the most effective
manner. Generalized network throughput metrics are insufficient
in capturing the full human experience as increased data rates
do not necessarily translate to improvements in user utility.
Our study compares the efficacy of existing network alloca-
tion algorithms and proposes new approaches to 5G network
resource allocation schemes using a more inclusive snapshot of
user demand. We provide recommendations on which approach
provides the highest QoE performance and suggestions for future
network-side improvements. We further propose a QoE-driven
network resource allocation (QENA) algorithm that shows a
20% improvement in overall average QoE across a large set
of heterogeneous users.

Index Terms—5G, resource allocation, video streaming, net-
work scheduling.

I. INTRODUCTION

Mobile video streaming through applications such as
YouTube, Netflix, Hulu, and Amazon Prime has increased
greatly over the past decade, while video streaming as a whole
is expected to generate over 82% of total cellular traffic past
2022 [1]. Consequentially, the resource demands on cellular
networks from users streaming video data far outweighs the
demands in e-mails and browsing.

Many 5G network scheduling and resource allocation al-
gorithms proposed in recent years focus primarily on users’
received throughput rate. Both an emphasis on overall through-
put [2], [3] and consistency [4] have been explored. Consid-
eration of queue size when prioritizing demand has further
improved user satisfaction over a given time horizon. Yet
many approaches fail to mitigate penalties for users with poor
channel conditions.

Most of these attempts limit their scope of evaluation to
a single quantifiable variable. Prior research [5] has shown
the importance of considering the full Quality of Experience
(QoE) as a qualitative expression of the network resources re-
ceived by each individual user. Limiting our understanding of
a highly variable human experience with a purely quantitative
approach restricts our capacity to reallocate resources for an
overall improved utility experience.

In this paper, we first compare the efficacy of existing
classes of network resource allocation algorithms in achieving
high QoE values. We then seek to consider the full “snapshot”
of each individual user in our proposed resource allocation
algorithms in order to balance overall network throughput
with aggregate QoE metrics. To elaborate, we consider current
channel conditions, prior allocated resources, existing buffer
status, and remaining video download length in our inputs.

Our results show the effectiveness of our algorithm in
managing the tradeoffs between overall throughput and QoE
over realistic wireless networks in which users have varying
channel quality and experience competition for network re-
sources. We compare our algorithm with existing allocation
schemes to show significantly higher QoE when modeling real
wireless traces.

Our contributions are as follows. First, we establish the
motivation behind QoE metrics. Second, we categorize and
define a large spread of resource allocation schemes into four
specific classes. Next, we adapt these methods for imple-
mentation in video streaming on mobile devices using 5G
cellular networks. Finally, compare overall QoE performance
of existing algorithms and establish the effectiveness of an
improved algorithmic approach.

The remainder of this paper is organized as follows. In
Section II we introduce the video streaming model, the back-
ground behind QoE, and the user download policy. Founda-
tions for understanding different network resource allocation
policies are provided. Section III is comprised of simulation
parameters for the subsequent results comparing QoE perfor-
mance across various network resource allocation algorithms.
We provide a discussion of related work in Section IV along
with conclusions in Section V.

II. PROBLEM FORMULATION

A. Video Streaming

We consider a system in which users stream videos stored
on a remote server over shared wireless links. The users buffer
a portion of the video before starting playout. The client may
provide a very large buffer that can store the entire video,
in which case the video may be downloaded as fast as the
network and server can support while the user is playing the
video out on their device. One drawback with this approach



TABLE I: Summary of Methods for Network Resource Allocation, Type 1

Algorithm Class Generalized Objective Algorithm 1 parameter ξu(t)

Opportunistic u∗(t) = argmaxu∈U Ru(t) θu(t)

Back Pressure u∗(t) = argmaxu∈U Ru(t)Qu(t) θu(t) ·
(

1
ρui(t)

)

TABLE II: Summary of Methods for Network Resource Allocation, Type 2

Algorithm Class Allocated Resource Blocks Algorithm Implementation

Consistent Rate Bu(t) = Ψmax/Ru(t) for u ∈ U Algorithm 2

Equal Share Bu(t) = M/N for u ∈ U Algorithm 3

QENA Bu(t) = M ·
(

qui(t)/ρui(t)∑
v qvi(t)/ρvi(t)

)
for u ∈ U Algorithm 3

is that a user may not watch the entire video in which case
the resources used to download the video, including device
energy and network capacity, are wasted. Therefore in our
system clients buffer a portion of the video for playout, and
fetch further segments to buffer as the playout is progressing.

The clients run the DASH-inspired online bitrate selection
algorithm (OBA) that attempts to maximize their QoE [5].
QoE is a function of the resolution of the video playout, how
often and by how much the resolution changes, and how many
re-buffering events take place. For a high QoE it is best to
play out high resolution videos with no outages or transitions
to lower resolutions. However, this is not always possible
when considering network conditions or energy constraints of
mobile devices. Lower resolution video frames require less
data transfer and can therefore be transferred in less time;
this may be necessary if network rates are low or connectivity
is intermittent and the video buffer on a client is emptying.
Receiving video at a lower rate and rendering lower resolution
videos on a mobile device may also be required to save device
energy.

In our system the video server has a file reserve with a set of
resolutions for each video segment, typically ranging between
144p and 1080p or above for mobile devices. The resolution
of the video downloaded to the users is governed by what the
algorithm requests and what the network can deliver. A user
will request a resolution based on the size of their screen and
the energy they wish to expend on downloading and playing
the video. This requested resolution may be adjusted by the
client depending on the status of the playout buffer and the
available transfer rates from the network.

Our work seeks to provide comparison of network-side re-
source allocation policies for 5G video streaming applications
and demonstrate which approach provides the best overall QoE
across users.

B. QoE Expression

QoE is quantified using a 5-level rating scale, and model
values are taken from experimental data [5], [6]. We use the
standard QoE formulation as follows1:

QoE =
∑
u,i

(
Ωui − Itranui

)
(1)

where Itranui = frebuff
ui · Irebuff + f bitrate

ui · Ibitrate,

and Ωuj being the MOS5 mean opinion score corresponding
to the resolution selected by user u to download segment i, and
Itranui is the MOS5 impact from data transmission preventing
the user from experiencing the full QoE value. Specifically,
the transmission impact Itranui is a function of the frequency of
rebuffering and bitrate decrease for each downloaded segment,
and their respective impacts. Prior research [7] has determined
that a 3.0 Mbps decrease in resolution has the same impact
on a viewer’s quality as 1 s of rebuffering. Hence, we set
Irebuffui = Ibitrateui and scale the bitrate “frequency” changes
f bitrate
ui by 3 Mbps. Full expressions include frebuff

ui =
(τui−ρui)+

ρui
and f bitrate

ui =
(vu(i−1)−vui)

+

3.0 Mbps . Observe τui is the

1The impact of vibration, Ivibui , has been removed from the QoE equation
to restrict the scope of evaluation.



time required by user u to download2 semgnet i, vui is the
corresponding selected bitrate and ρui is the buffer state at the
beginning of download segment i. Note that Irebuff = Ibitrate

= 0.742 have been empirically set from prior work [7] [9].
We provide a list of relevant parameters and their associated
definitions in Table III.

Intuitively, we observe that the quantitative expression for
QoE is a function of (a) the given video resolution, (b)
rebuffering penalties and (c) resolution decrease penalties.

C. User Rate Request

OBR, a recently developed algorithm for context-aware
and energy-aware video streaming on smartphones, provides
a QoE-focused approach to a DASH-inspired video segment
download policy [5]. The algorithm outputs a desired bitrate
resolution at which to download subsequent video segments
associated with a requested rate from the network. The OBR
algorithm provides improved performance beyond the current
YouTube algorithm and closely approaches optimal selection.
Equivalent energy consumption parameters for 5G implemen-
tation are taken from existing experimental data [10].

D. Network Resource Allocation

We define 5G network resource allocation as the division
of a set number of physical resource blocks (PRB) amongst
requesting users. Consider the throughput rate Θu(t) for user
u at time t denoted by

Θu(t) = Ru(t) ·Bu(t)

given the per-resource-block-rate Ru(t) and the network allo-
cated resource blocks Bu(t) to individual u at time t.

For all algorithms, we first assume all users receive their
requested rate if there are sufficient resources to meet the
user requests. In cases in which not all user requests can
be fulfilled, the algorithms activate to assign resources. The
following classes are demonstrative of a spread of various
network resource allocation algorithms. A summary of
network resource allocation classes is provided in Tables I
and II.

1) Algorithm Classes, Type 1: Opportunistic and Back
Pressure inspired algorithms are classified as Type 1 and
summarized in Table I. Type 1 algorithms are considered
ranked user algorithms, meaning they allocate the full
requested rate to users who are prioritized by the algorithm.
One downside to Type 1 algorithms is that low-priority
users are completely neglected. Algorithm 1 encompasses
the resource allocation policy for both the generalized
Opportunistic and Back Pressure algorithms.

Opportunistic: The Opportunistic algorithm class seeks to
maximize the total sum of rates experienced by all individual
users [2], [3] and is associated with MaxRate policies. The
algorithm solely intakes a user’s requested rate and estimated

2We assume τui includes promotion, concurrent playout, and rebuffering
periods [8].

TABLE III: Algorithm Parameters

Variable Definition

U
Set of active streaming

users inside a given cell

Ωuj

Mean QoE opinion score at bitrate

selected by user u for segment i

assuming full segment playout

Itranuij

Transmission impact on QoE

for user u during download of

segment i given resolution j

frebuff
uij Frequency of rebuffering given u, i, j

Irebuff Rebuffering impact on QoE

f bitrate
uij Frequency of bitrate changes given u, i, j

Ibitrate Bitrate impact on QoE

Ru(t) Throughput received by user u at time t

Qu(t) Queue size of user u at time t

Ψmax Maximum achievable consistent rate [4]

vuij
Bitrate selected by user u for segment i

download given resolution index j

ρui
Buffer status of user u at the beginning

of downloading segment i

τui
Total time required by user u

to download segment i

N
Total number users requesting

network resources

M Resource blocks in a given network cell

Bu(t) Resource blocks allocated to user u at time t

θu(t)
Per-resource-block-rate achievable

by user u at time t

rui

Throughput rate requested from

the network by user u while

downloading segment i

qui

Remaining video needing to be

downloaded by user u while

downloading segment i, in seconds



channel conditions while ignoring the full user context, such
as relevant buffer status and remaining download queue As
a result, users may be starved of resources as a penalty for
poor channel conditions.

Back Pressure: Also referenced as the MaxWeight
policy [2], [11], [12], the Back Pressure approach has
the benefit of prioritizing resources towards low-buffer or
high-queue individuals. Users are ranked in allocation order
by their queue size demand scaled by their current estimated
channel conditions. Downsides from this method primarily
emerge from continuing to penalize users with poor channel
conditions.

2) Algorithm Classes, Type 2: Consistent Rate, Equal
Share based, and QENA algorithms are classified as Type 2
and summarized in Table II. Type 2 algorithms are fractional
sharing algorithms, meaning that all users are allocated
resource blocks proportional to a given criteria. While no user
is neglected, some users may receive fewer resources than
requested. Algorithm 2 is associated with the Consistent Rate
formulation and Algorithm 3 denotes the allocation policy for
both Equal Share and the proposed QENA algorithms.

Consistent Rate: In an attempt to provide mobile device
users with a consistent rate using 5G network allocation
parameters, prior work by Mehmeti has derived the maximum
achievable consistent rate Ψmax for such scenarios [4]. This
maximum rate Ψmax is a function of the overall user outage
probability meaning, as a result, many network resources
become underutilized in highly volatile network conditions.

Equal Share: Inspired by Round Robin scheduling
policies [13], [14], the desire to allocate the same number of
resource blocks to each user provides a fairness benefit as
the achieved rate is directly propositional to each individual’s
per-block-rate [8].

Proposed QENA Algorithm [8]: The objective for Quality
of Experience Driven Network Resource Allocation (QENA)
involves allocating resource blocks inversely proportional
to the length of each user’s current buffer status. The
QENA algorithm seeks to balance prioritization of low-
buffer individuals without egregious poor channel condition
penalization. While back pressure grants the full requested
rate to users with low-buffer priority, QENA will sacrifice
some of the requested resource blocks in order to ensure
users with poor channel conditions are not fully neglected.

Algorithm 1 Resource Allocation Algorithm: ξu(t)

for t = 1, . . . , T , do
Rank users according to the ξu(t) parameter value given
in Table I.
Allocate the number of resource blocks required to achieve
the requested throughput rate, starting at the highest ξu(t)
and in descending order.
Stop allocation once resource blocks are no longer avail-
able.

end

Algorithm 2 Consistency Algorithm
for t = 1, . . . , T , do

Calculate Xn(t,Ψ
max) =

∑
u

Ψmax

MRu(t)
.

if Xn(t,Ψ
max) ≤ 1 then

Allocate resource blocks to each active user as Ψmax

Ru(t)
for u ∈ U .

else
Distribute resource blocks equally across all actively
requesting users.

end
end

Algorithm 3 Generalized Resource Allocation
for t = 1, . . . , T , do

if
∑

u
ru(t)
θu(t)

> M then
Allocate resource blocks to each active user using the
expression for Bu(t) given in Table II corresponding
to the desired allocation method.

else
Allocate the number of resource blocks required to
achieve the requested throughput rate as
Bu(t) =

ru(t)
θu(t)

.
end

end

III. RESULTS

In this section we outline the simulation parameters and
discuss the associated QoE results for the various network
resource allocation classes.

A. Simulation Parameters

We set 21 users per cell, 7 with “good” channel condi-
tions, 7 with “moderate” channel conditions, and and 7 with
“poor” channel conditions. We assume a 5G network channel
bandwidth of 100 MHz (frequency range 410 MHz - 7125
MHz) available for video streaming, equivalent to 273 physical
resource blocks (PRB) with a subcarrier spacing (SCS) of
30 kHz [15]. We consider a range of channel conditions
ranging from 0.45 Mbps/block to 8 Mbps/block. We choose
the standard 15 CQI index levels for 5G and arbitrarily set a
CQI of 1 as a per-resource-block-rate of 0.45 Mbps/block and
a CQI of 15 as an 8 Mbps/block for simplicity. While these



TABLE IV: Method comparison with average values across five iterations for a single cell of ten users with an hour long video
stream

Resource

Allocation

Method

Channel

Conditions

Normalized

User QoE

Segments With

Resolution

Decreases

Segments

With

Rebuffering

Resource

Starved

Users

Opportunistic Good Users 0.966 9.0% 1.9% 1.7%

Moderate Users 0.910 17.1% 5.7% 2.3%

Poor Users 0.738 14.3% 2.4% 2.5%

AVERAGE 0.871 13.5% 3.3% 2.1%

Back Pressure Good Users 1.000 11.4% 2.9% 2.5%

Moderate Users 0.909 18.1% 5.7% 2.7%

Poor Users 0.738 14.3% 2.4% 3.0%

AVERAGE 0.883 14.6% 3.7% 2.7%

Consistent Rate Good Users 0.796 4.8% 0.5% 0.0%

Moderate Users 0.781 8.1% 2.4% 0.0%

Poor Users 0.612 8.6% 1.9% 0.0%

AVERAGE 0.729 7.1% 1.6% 0.0%

Equal Share Good Users 0.961 10.5% 2.9% 0.0%

Moderate Users 0.857 15.7% 3.8% 0.0%

Poor Users 0.778 11.9% 2.4% 0.0%

AVERAGE 0.865 12.7% 3.0% 0.0%

QENA Good Users 0.995 9.0% 1.4% 0.0%

Moderate Users 0.937 17.1% 3.8% 0.0%

Poor Users 0.775 11.4% 1.0% 0.0%

AVERAGE 0.903 12.5% 2.1% 0.0%

values would be dependent on the proprietary mapping of any
specific service provider, they are merely representative of a
range of conditions users might experience in 5G.

We define “high” channel quality as CQIs ranging uniformly
between 8 through 15 (explicitly, 2.5 - 8 Mbps/block), with
our simulation average of 5 Mbps/block. “Low” channel
quality encompasses CQIs between 1 through 8 (0.45 - 2.5
Mbps/block), averaging around 1.21 Mbps/block. Block-rate
conditions are set to fluctuate on the order of 100 ms. The
exchange between good and bad states is modeled using a
two-state Markov chain.

Primarily “good” users have a probability of remaining in
the high state as qhigh = 140/141, with an expected residency
time of 14 s, and a probability of remaining in a low state as

qlow = 60/61, with an expected residency time of 6 s. Similarly,
“poor” users have a probability of remaining in the high state
as qhigh = 60/61, with an expected residency time of 6 s, and
a probability of remaining in a low state as qlow = 140/141,
with an expected residency time of 14 s.

“Moderate” users fluctuate between “high” and “low” chan-
nel conditions, each with an expected residency time of 10 s
where qhigh = qlow = 100/101. Reported RSRP values range
from -140 dBm to -44 dBm. While not directly correlated, we
set the signal strength for users with CQI of 1 to RSRP =
-120 dBm and users with CQI of 15 to RSRP = -50 dBm
for simplicity. The remaining RSRP values are obtained by
interpolating between these two anchors.



B. Algorithm Performance

In this section, we provide a critical analysis of the QoE
performance results encapsulated in Table IV. We provide
average value comparisons across five iterations for a single
cell of twenty-one users with a simulated hour-long video
stream. Users request sequential two-second video clip
segments from the video server individually at one of six
resolution options (144p, 240p, 360p, 480p, 720p, or 1080p).
The average user QoE output is normalized to the method
user subset with the highest quality rating. The segments
with resolution decreases and segments with rebufferings
are reported as a percentage of the affected video segments
over the total number of downloaded segments. Starved
users are represented by the average percentage of users who
are denied any resource blocks, whether during playout or
rebuffering.

Opportunistic: While seeking to be throughput optimal,
the opportunistic inspired resource allocation approach
experiences QoE disadvantages stemming from a lack of
resources allocated to poor network channel condition users
in the face of competition. While good and moderate users
are consistently provided for, poor users have some of the
highest rates of resolution decreases and rebuffering due to
a lack of allocated resource blocks. All users, regardless of
good, moderate, or poor channel conditions, are prone to
neglect and experience resource starvation.

Back Pressure: While the back pressure inspired algorithm
outperforms opportunistic allocation as expected, the high
level of rebufferings and resolution fluctuations provide severe
penalties to this approach. While back pressure is successful at
targeting low-buffer individuals in need of network resources,
the over-zealous approach tends to penalize higher-buffer
individuals over time. Scaling this effect might reduce these
penalties, but would require an unrealistic future knowledge
of channel conditions to perfectly optimize the expression.
While good channel condition users have the highest overall
average QoE, the back pressure inspired algorithm sacrifices
overall quality through QoE penalties from rebuffering and
resolution decreases. This approach further exhibits the
highest rates of resource starvation.

Consistent Rate: The consistent rate allocation scheme
under-performs as a consequence of the under-utilization of
network resources for the sake of throughput stability [4].
However, this method provides the lowest average numbers
of resolution fluctuations and rebufferings, which for specific
users may be much preferred to experiencing the video stream
at unnecessarily high resolutions given the accompanying
volatility. In this method, no user is completely neglected in
the division of network resources.

Equal Share: The more straightforward of the resource
allocation algorithms, this equal share inspired approach

to network resource allocation is surprisingly effective in
comparison. Equal share provides the benefit of ensuring
all users have a nonzero resource block allocation with
the individual’s channel conditions accounting for the
differences in experienced utility. The user subset QoE ratings
are relatively proportional to aggregate channel conditions,
despite moderate users experiencing the higher QoE penalties.

Proposed QENA Algorithm: Providing the best of both
worlds, the proposed QENA algorithm successfully ensures
no user is neglected in the division of physical resource
blocks across users. Furthermore, the higher video resolutions
received are not as severely penalized by the given rebuffer-
ings and resolution fluctuations. Moderate users are the most
successful across the given methods and low-end users are
not egregiously penalized or starved for their poor channel
conditions.

C. Discussion

Opportunistic, Back Pressure and Equal Share provide a
provide a similar average QoE; however, each is accompanied
by a set of tradeoffs. Both Opportunistic and Back Pressure
have the largest percentage of resource starved users at 2.1%
and 2.7% respectively. Furthermore, Back Pressure has the
highest percentage of segments with resolution decreases at
14.6%. While QENA does not provide the highest QoE for
primarily “good” channel condition users (0.961), the benefits
averaged across a large range of channel conditions, given a
noramlized user QoE of 0.903, is higher than Back Pressure,
with a normalized user QoE of 0.883, despite Back Pressure
outperforming for primarily “good” users (1.000). Consistent
Rate has the lowest percentage of resolution decreases (7.1%)
and rebufferings (1.6%), yet downloads video segments sys-
tematically at lower resolutions than the other four methods
providing the lowest normalized user QoE at 0.729. In com-
paring these five network resource allocation methods, these
results demonstrate that QENA provides the best mitigation of
QoE-related tradeoffs.

IV. RELATED WORK

The quantitative expression for quality of experience (QoE)
in video streaming is a function of (a) the given video
resolution, (b) rebuffering penalties and (c) resolution decrease
penalties [8], [5], [6], [7], [9]. Existing network resource
allocation classes ignore one or more of these essential com-
ponents.

Surveys on network resource allocation for both 5G and
LTE [13], [2] discuss opportunistic, back pressure, consistent-
rate, fairness-based, and round robin algorithm classes. Op-
portunistic [2], [3], equal share [13], [14], and consistency [4]
algorithms provide adequate performance while policies incor-
porating queue or buffer state, such as back pressure [2], [11],
[12], are often more effective at meeting long-term user de-
mand for service satisfaction. However, note that opportunistic
and back pressure algorithms are faulty in that users with poor
channel conditions are still penalized and therefore frequently



starved for resources. Consistent rate algorithms often leave
network resources underutilized. Equal share approaches fur-
ther lack the adaptability required the long term QoE benefits.

In this paper, we introduce the QENA algorithm where the
throughput rate is a function of channel conditions and buffer
status for video streaming applications.

V. CONCLUSION

Various network resource allocation schemes are evaluated
and discussed in the context of overall user QoE for video
streaming scenarios. Our results show the effectiveness of our
QENA algorithm in managing the tradeoffs between overall
throughput and QoE over realistic wireless networks in which
users have varying channel quality and experience competition
for network resources. Our contribution with the QENA net-
work resource allocation algorithm provide alternatives which
address all three necessary components of the standard QoE
metric.
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