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Abstract. With the increasing adoption of the Digital Twin concept in the con-

struction industry in the operations and maintenance phase, researchers and prac-

titioners are increasingly seeking suitable technological solutions for the design 

and construction phases. While it is widely accepted that the required platforms 

hosting the digital twin must be cloud-based to fulfill the requirements of ubiq-

uitous accessibility and centralized consistency, questions regarding the need for 

data schema remain. Some academics argue that a structure-free organization of 

data is suitable for realizing digital twins and the data streams from and to the 

respective platform. Hands-on experience in the BIM2TWIN project supports a 

counter argument, i.e., that structure-free data is insufficient for most use cases 

around AEC Digital Twins. The sheer information complexity of construction 

projects requires well-defined data structures enabling unambiguous and error-

less interpretation. This becomes apparent when reflecting on the well-estab-

lished concept of the data-information-knowledge pyramid describing that raw 

data must be processed into understandable and meaningful high-level infor-

mation for human decision makers, subsequently providing the basis for cross-

project domain knowledge. Based on this observation, we highlight that object-

oriented modeling is a widely recognized information modeling technique that 

facilitates the structuring of complex domain information. We compare it with 

ontology-based model concepts that provide a similar, yet more abstract means 

for information modeling. 
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1 Introduction 

The term Digital Twin gains more and more popularity in the AEC sector. Originally 

coined in the manufacturing industry (Grieves & Vickers 2017, Kritzinger et al. 2018), 

it describes a continuously updated digital representation of a real-world entity. In the 

AEC sector, the physical entity being twinned is usually a built facility, ranging from 

buildings over industrial facilities to bridges and tunnels (Boje et al. 2020, Sacks et al. 

2020, Mafipour et al. 2022).  

While many different interpretations of the quite generic term “Digital Twin” exist, 

most have in common that a) some kind of sensor(s) is applied to capture the current 

condition of the physical entity and update its digital replica correspondingly, and b) 

the digital twin is used to test the expected outcomes of possible control interventions, 

which can then be applied directly to the physical twin.  

Disagreement exists, however, when it comes to the data structures used to represent 

digital twins. While some researchers believe that un-structured or low-structured data 

is sufficient for representing digital twins of built facilities (Aragao & El-Diraby 2019, 

Aragao & El-Diraby 2020, El-Diraby 2021), this paper provides an argumentation that 

a digital twin is a natural evolution of a digital model and as such should be based on 

the well-established principles of object-oriented data modeling. 

To support our argument, we refer to the ongoing research project BIM2TWIN 

which aims to provide comprehensive DT representation of constructions projects com-

bining the process and the product view (Schlenger et al. 2022). We show how a well-

structured data model helps to reduce complexity and allows to perform the high-level 

analysis tasks required for decision making. 

2 The BIM2TWIN project 

The BIM2TWIN project,1 funded by the European Commission in the framework of 

the Horizon programme, aims at developing concepts and technologies for creating and 

maintaining digital twins of construction projects. As such it focuses on providing a 

digital representation of both, the constructed facility as well as the processes that are 

required to erect it. To separate design intent from actual realization, we distinguish as-

designed from as-built in terms of the product description, and as-planned from as-

performed in terms of the process description (Sacks et al. 2020).  

For the as-designed/as-planned process representation we make use of the well-es-

tablished 4D BIM technology, combining sophisticated semantic-geometric models 

with construction schedules on component level. For the as-built and as-performed in-

formation, we compile a parallel object schema with abstractions that can accommodate 

information derived from monitoring technologies, ranging from laser-scan point 

clouds to mobile construction applications. Both aspects are incorporated in the 

BIM2TWIN digital twin platform.  

 
1 https://bim2twin.eu/  
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In order to allow for a continuous update of the digital twin regarding the as-built 

facility and the as-performed processes, data is captured from the site by means of a 

multitude of sensors, including temperature, laser scanners, photo cameras, thermal 

cameras etc. The low-level data is subsequently processed into higher-level infor-

mation, such as geometric deviations, surface qualities, task durations, safety hazards, 

etc., which are finally aggregated into knowledge presented to human decision makers 

as key performance indicators (KPI), related to quality control, schedule delays, safety 

issues etc. More background for the underlying philosophy is provided in Section 3. 

The B2T platform is a core element of the BIM2TWIN project. It is designed to hold 

all the as-designed/as-planned as well as the as-built/as-performed information and pro-

vides coherent access to both end-users as well as services to the Digital Twin (func-

tions as a single source of truth of the Digital Twin). The B2T platform is built upon 

the Thing’In platform provided by project partner Orange2. Thing’In itself is based on 

ArangoDB3 - a multi-model database system supporting three data models (property 

graphs, JSON documents, key/value) with a unified query language AQL. By being 

schema-free, the database itself provides a maximum of flexibility, However, for 

BIM2TWIN, a properly defined data structure (information model) has been specified 

to achieve reliable interoperability. 

In this paper, we discuss the information model that has been designed for the B2T 

platform and implemented using the property graph mechanism. We use it as example 

to illustrate our argumentation for well-defined data structures being required for 

properly handling digital twin representations and enabling decision making. 

3 Data – Information – Knowledge 

The differentiation of data, information and knowledge is a well-established concept in 

computer science (Rowley 2007). Ackoff (198) introduced the DIKW pyramid that 

consist of different layers of abstraction, namely data, information, knowledge and wis-

dom (Fig. 1). In this work, we focus on the three abstractions of data, information and 

knowledge because these are expressed in the B2T platform. 

 
2 https://hellofuture.orange.com/en/thingin-the-things-graph-platform/  
3 https://www.arangodb.com/ 

https://hellofuture.orange.com/en/thingin-the-things-graph-platform/
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Fig. 1. The data-information-knowledge pyramid. 

For these layers we provide the following definitions in the B2T context: 

Data layer. With “Data” we refer to raw data produced by sensors. Typical examples 

in the context of BIM2TWIN include images, measurement time-series, point-clouds 

etc. 

Information layer. “Information” has a direct meaning for the end user. Information 

can either be produced by processing data or manually entered by a human user. A 

typical example in the context of BIM2TWIN is the completion status of a dedicated 

building element. 

Knowledge layer. The knowledge layer provides a higher layer of abstraction by 

aggregating and transforming information. It provides the basis for decision making. In 

the context of BIM2TWIN, this layer allows representation and tracking of Key Per-

formance Indicators (KPI) of the construction project like cycle time, equipment utili-

zation rate, and accident frequency. 

4 Data structures and information modeling – a brief history 

There is a long history of information modeling in computer science. The developments 

were dominated by the database sector for a long time; early approaches included the 

hierarchical model and the network model, however both are limited in terms of ex-

pressive power. This changed in 1970 with Codd’s seminal work on the application of 

formal relational theory onto databases (Codd 1970), which laid the ground for rela-

tional databases, which are still the most widespread type of database in use today. A 

key feature of relational data models is the possibility to connect data records in differ-

ent relations (tables) through primary and foreign keys, which allows one to model 

complex information networks with minimal redundancy. A key aspect in this regard 

is the notion of normalization, which describes a set of rules which, when obeyed, result 

in a clean, redundancy-free database design. 

Although powerful and generic, the relational approach to information modeling has 

limitations (Robie & Bartels 1994, Damesha, 2015). For example, complex data types 

and relationships do not exist as such in the relational model, but have to be mimicked 

by a combination of relations (tables) linked through primary and foreign keys. 
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Especially, when the data to be queried is distributed across multiple tables, a large 

number of join operations is needed, and the statements in the query language SQL 

become long and complex, slowing down the response time significantly. In addition, 

the important concept of class inheritance can hardly be mapped onto the relational 

schemata. These limitations became apparent when another very successful paradigm 

of information modeling became popular in the 1990ies: Object-oriented modeling 

(OOM) (Jacobsen et al. 1992).  

In its core, OOM is based on the concepts of classes that act as templates for concrete 

instances or objects. Classes have attributes and methods and relations to other classes. 

An important concept is inheritance, where a subclass inherits all the attributes of its 

superclass, thus emphasizing modularity and reusability. OO programs essentially in-

stantiate objects of predefined classes, fill their attributes with values and let them in-

teract. Thanks to many features that come along with OO paradigm, such as encapsu-

lation and reusability, OOP has been extremely popular and is implemented in almost 

all major programming languages, including C++, Java, and Python. Based on these 

developments, the concept of model-driven architectures for distributed systems was 

established (Mellor et al. 2002).  

While first employed for programming, the OO paradigm has also soon been adopted 

for more general analysis and design (OOAD) tasks, including the definition of data 

models for data exchange and persistent storage. In this context, the Unified Modeling 

Language (UML) was developed for visual definition of object-oriented data models. 

For the computer-processable form, a number of textual data modeling languages have 

been developed. These include EXPRESS, which has been employed across the large 

product modeling standard STEP (ISO 10303) as well as the AEC-focused data model 

Industry Foundation Classes (IFC) (ISO 16739). Later, XML and XML schema were 

introduced. Although they evolved from a different background (SGML, HTML), they 

ended up with very similar features regarding object-oriented data modeling. In conse-

quence, many data models have been encoded in XML schemata, including IFC (de-

noted ifcXML), but also the GML data models produced by the Open Geospatial Con-

sortium (OGC) (Portele 2012), and many, many more. 

A more recent development is the JavaScript Object Notation (JSON) format origi-

nally used to serialize JavaScript objects, but increasingly adopted across a wide range 

of languages and applications in the context of web development (Peng et al. 2011). In 

comparison with XML, it provides a leaner syntax (improving readability for humans 

and reducing data footprint) and has the advantage of direct support by programming 

languages such as Python without the need for sophisticated parsers. The schema lan-

guage for JSON is JSON schema (Agocs et al. 2018). Again, a number of data models 

have been encoded into JSON schema, including the IFC data model (Afsari et al. 

2017). However, limitations exist, particularly when diverting from a pure tree-like 

structure and using references to existing objects. This however, is very relevant for 

more complex graph-like information structures such as building models. 

In the early 2000s, semantic web technologies were established with ontologies be-

ing the chosen approach towards information modeling. Ontological modeling adopts 

many concepts of object-oriented design while providing an even richer expressive 

power allowing a more fine-grained description of real-world entities (Berners-Lee et 
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al. 2001). Here, the Ontology Web Language (OWL) is used for describing the schema 

level (T Box), while instances are represented by RDF graphs (A Box). SPARQL pro-

vides the query language for retrieving information from both class and instance graphs. 

Semantic web technologies have seen increasing popularity over the last decade, par-

ticularly in the context of the Linked Data (LD) philosophy that respects the heteroge-

neity of the information model landscape while allowing one to flexibly connect corre-

sponding entities across different data models (Bizer et al. 2008). In the AEC context, 

a number of ontologies have been developed and standardized by W3C (Pauwels et al. 

2018). Typically, the semantic extent remains narrower than in conventionally defined 

data models (Pauwels & Roxin, 2017), but also a mapping of the full IFC model onto 

OWL exists (Beetz et al. 2009, Pauwels & Terkaj, 2016). It is also worth mentioning 

that the linked data approach has recently been brought together with the transport for-

mat JSON resulting in JSON-LD and providing significant synergies (Bonduel 2021). 

Graph databases are a more recent innovation. While some graph databases imple-

ment the Semantic Web approach, maintaining RDF graphs with so-called SPARQL 

endpoints as their interface (Buil-Aranda et al. 2013), others implement the concept of 

Property Graphs that allow assignment of attributes directly to individual nodes 

(Junghanns et al. 2016). More recently, semantic-web databases also provide this fea-

ture through the RDF-star extension (Hartig & Champin 2021). Graph databases often 

provide a large degree of flexibility when implementing a schema-free approach where 

instance graphs can be populated with literally any data. This flexibility, however, 

comes at a cost, namely the potential risk of incompatibility with applications relying 

on specific data structures. In consequence, many graph databases now implement a 

“meta-model” that clearly defines the type of nodes their attributes and the potential 

connections between nodes, thus mirroring the concept of a schema. 

In the field of data science and machine learning, a contrary trend is visible: Instead 

of using highly structured data following the principles of OOM, simpler formats are 

often preferred, such as comma-separated-values (CSV) for representing tabular data. 

The background lies in the fact that most neural network architectures are based on 

manipulating and transforming matrix and tensor-like structures. Based on these obser-

vations, some companies4 promote the conversion of object-oriented BIM data into 

these flat data structures for further processing using standard tools of Machine Learn-

ing, Big Data Analytics and Business Intelligence. It must be noted, however, that the 

required de-normalization typically either creates many redundancies or destroys rela-

tionships between data records.  

Such approaches might be suitable for special, rather simple use cases. In the re-

mainder of the paper, however, we will show that for the management of Digital Twin 

information of complex construction projects, well-structured and clearly defined data 

structures are required. 

 
4 E.g. https://opendatabim.io/ 
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5 Information modeling for AEC digital twins 

For the discussion, we clearly distinguish between information models (sometimes also 

referred to as data models) and file formats. When done properly, the information 

model is defined independently of any concrete file or transport formats using modeling 

languages such as UML. OGC, for example, uses the notion of “conceptual models” 

for information models that are defined in an implementation-independent manner on 

the one hand, and provides concrete encodings using different data formats such as 

XML on the other hand. 

5.1 Requirements of digital twin data management 

In this paper we focus on application of digital twins for construction management. The 

digital twin in this sense is a replica of the construction project including the as-per-

formed processes as well as the as-built physical objects.  

The requirements for the DT data management are derived from this purpose and 

include the following aspects: 

- A product breakdown structure – a hierarchy of objects describing the facility 

under construction at various levels of granularity 

o differentiation between as-designed and as-built building information 

- A work breakdown structure – a hierarchy of objects with interdependencies 

describing the construction processes to be performed at various levels of gran-

ularity 

o differentiation between as-planned and as-performed construction pro-

cesses 

o notion of quality of the performed processes 

- A resource breakdown structure -a hierarchy of objects representing construc-

tion resources (equipment, workers, and materials) that serve as input flows for 

the processes 

- A location breakdown structure - a hierarchy of working zone objects that de-

scribe the locations where the processes are executed. 

- linkages among these four breakdown structures that express the way in which 

the project is designed and built and how the processes are planned and exe-

cuted, all at various levels of granularity 

 

From this description, it follows that a graph structure is most suited to modeling the 

data because any given building model and digital twin is an inherently complex net-

work of objects from each of the four structures and the relationships between them. 

Relationships may occur between objects of different levels of granularity, and ad-hoc 

aggregations are needed. The information structure must allow easy access and naviga-

tion in the complex network of connected entities by both human end-users and ma-

chines and algorithms. Most importantly, the information structure must support com-

putation of the Key Performance Indicators that provide the basis for high-level deci-

sion making in the construction project (aka the knowledge layer, see Section 3). 
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5.2 Monolithic models: Industry Foundation Classes 

A more traditional approach towards data modeling is the concept of “monolithic data 

models” which implies the goal of developing an all-encompassing information model 

covering all aspects of a domain. One example is the IFC data model, which is described 

in more detail below. The advantage of this approach is the semantic rigidness and the 

“inner compatibility” that can only be achieved with one data model. The disadvantage, 

however, lies in the big size and high complexity of such data models  

The Industry Foundation Classes (IFC) developed and maintained by build-

ingSMART International (2021) is a well-known and internationally used standard for 

data exchange of construction-related information. The IFC data model implements the 

paradigm of object-oriented modeling, however with a number of particularities, such 

as the usage of objectified relationships, the usage of proxy elements and the inclusion 

of dynamically definable properties. Originally, the IFC schema was directly encoded 

using EXPRESS, while property set templates were kept outside of the schema and 

defined by separated XML documents. 

Recently, bSI changed the development process and now relies on UML for defining 

the information model. It supports multiple serializations, with the most common one 

being the EXPRESS format for the definition of the IFC schema and STEP physical 

files for instantiation. However, mappings from EXPRESS to XML-Schema (ifcXML), 

to OWL (Pauwels and Terkaj, 2016) as well as to JSON (Afsari et al. 2017) have been 

developed, thus opening the richness of the IFC data model to these specific technolog-

ical worlds.  

The IFC data model aims at covering the full range of the built environment, includ-

ing buildings but also infrastructure assets such as road and railways, while considering 

all relevant domains, including architecture, HVAC, electrical etc. This naturally results 

in very big data model with more than 900 classes in the most recent version 4.3. 

While very powerful and comprehensive, the IFC data model is regularly criticized 

for its extent and complexity (Amor et al. 2007). Specific problems arise from the orig-

inal use of EXPRESS as primary modeling language, which has found only little wide-

spread adoption in the open-source developers community.  

Although being a common misunderstanding, the IFC data model is not bound to the 

usage of files for exchanging information. Instead, the underlying STEP standard fore-

sees the data model being used in databases etc. Parts 23, 24, 27 define bindings for the 

programming languages C, C++ and Java, respectively.  

However, when it comes to concrete solutions for web-based data management of 

IFC models, there are a few options that natively support the EXPRESS format, among 

them the Open BIM server and Jotne EDMserver. However, as these are rather bespoke 

implementations they suffer from limited support and use by the wider community. 

Mapping to relational databases is possible, but is plagued by the well-known object-

relational impedance mismatch (Ireland et al. 2009). 

Graph databases on the other hand seem to be a natural option for storing and man-

aging networks of objects as an IFC instance model. Indeed, a commonly proposed 

option is to use “SPARQL endpoints” to manage and query RDF instance graphs 
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following the ifcOWL ontology (Zhang et al. 2018, Krijnen & Beetz 2018, Guo et al. 

2020). 

Another option is the usage of property graph databases. The conversion of the IFC 

model into graph meta-models for management of IFC instances in graph databases is 

hindered by the particularities mentioned above, in particular the notion of objectified 

relationships (Borrmann et al. 2018). Future versions of IFC will aim to overcome these 

deficiencies (van Berlo et al. 2021). 

5.3 Linked Data Approach  

An approach contrary to the IFC approach of a monolithic data model is taken by the 

Linked Data Community following the concepts of the Semantic Web and Ontology 

modeling. Here, typically, much smaller data models are defined that focus on specific 

aspects of the built environment. In this context, the Building Topology Ontology, 

Building Product Ontology and the BRICK ontology have been published (Pauwels et 

al. 2018). A key aspect of this approach is the re-usage of existing ontologies.  

In the context of digital twins for construction management, some relevant ontolo-

gies are Damage Topology Ontology, Digital Construction Ontologies, Building Ele-

ment Ontology (Bonduel 2021)] but also the ifcOWL. 

As discussed before, RDF data is stored in RDF databases which essentially are da-

tabases specialized on RDF data, accessible by means of SPARQL endpoints, providing 

standardized access to the data through the web. 

The linked data approach is very relevant for the concept of digital twins as indeed 

many different aspects have to be covered, which are not available in one comprehen-

sive monolithic data model, but in various ontologies with smaller scopes. A major 

challenge however lies in the correct linking of the individual ontologies and their ob-

jects. Nevertheless, thanks to its expressive power the linked data approach provides 

both flexibility but also rigidness when it comes to the specification of well-defined 

data structures. 

On the data hosting side, ontologies are increasingly supported not only by dedicated 

RDF databases, but also by other graph databases. Although conceptual differences 

exist (Angles et al. 2019), a mapping from RDF graphs onto Property Graphs is possible 

(Angles 2020). A key aspect, however, is not to use the flexibility of graph databases 

in terms of node-specific extensions and particularities, but stick to the concept of sche-

mas (here: ontologies or graph meta-models) as this provides the necessary reliability 

in terms of agreed content for any application accessing the database. 

5.4 Flat data approaches for digital twins 

A few researchers have proposed a flat data approach for digital twins (El-Diraby 2021, 

Koch et al. 2021). In this case the data is represented in a mere tabular structure con-

sisting of a large number of data records. Typically, this kind of bulk data is stored and 

exchanged using the CSV format. The notion of objects does not exist, neither the con-

cept of a data schema describing the meaning of the columns, their data types and units. 

This allows a high degree of flexibility, however at the cost of interoperability, as the 
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correct interpretation of the received data is the responsibility of the human program-

mer. Given the vagueness and imprecision involved, this easily leads to misinterpreta-

tion. 

The flat data approach is appropriate for the data layer of the digital twin, where bulk 

data is (temporally) stored, processed and analyzed to feed the higher information levels 

of the DIKW pyramid. Typical examples are time series of temperature and humidity, 

location protocols of equipment and workers, object detection results of images or even 

raw point clouds (see Fig. 2). 

 

Fig. 2. Weather data (from meteostat.net) as a typical example for flat data which can be repre-

sented by the CSV format.  

However, flat data approaches are not suitable for representing complex information 

of entire construction projects. The simple concept of a data record cannot replace the 

notion of an object having properties and associations with other objects. If an infor-

mation requires a non-basic data type (float, integer, Boolean), a multitude of columns 

is necessary, thus increasing complexity. Unlike the relational model, the flat data ap-

proach typically does not address normalization, leading to frequent redundancies and 

thus inconsistencies.  

This is illustrated by the example shown Fig. 3 where (a) a simplified class diagram 

for representing the as-performed processes is depicted along with (b) an UML instance 

diagram showing the resulting object network when employing OO or graph databases, 

and (c) the corresponding flat data CSV representation. The lack of higher-level con-

cepts in flat data, in particular object associations, results in excessive repetition of data 

that remains unchanged. In the shown example, this refers to action, resource and ma-

terial data that must be repeated for every wall instance. This redundancy results in a 

massive increase in storage footprint and creates the risk of inconsistencies.  

 

time temp dwpt rhum prcp snow wdir wspd wpgt pres tsun coco

2022-02-11 00:00:00 6,4 2,1 74 0 0 200 4,7 11 1023,2 0 4

2022-02-11 01:00:00 6,4 1,5 71 0 0 200 6,5 13 1022,6 0 4

2022-02-11 02:00:00 5,9 2,2 77 0,1 0 200 6,8 14 1022,2 0 8

2022-02-11 03:00:00 6 3 81 0,3 0 230 8,3 18 1021,5 0 7

2022-02-11 04:00:00 5,8 3,3 84 0,4 0 230 9,4 18 1021,1 0 8

2022-02-11 05:00:00 5,5 3,7 88 0,9 0 230 13,7 27 1021,3 0 8

2022-02-11 06:00:00 5,2 3,4 88 0,6 0 240 16,2 33 1021,5 0 8

2022-02-11 07:00:00 4 2,2 88 0,8 0 260 16,9 34 1022,8 0 8

2022-02-11 08:00:00 3,6 2,3 91 0,9 0 300 15,5 33 1024,3 0 8

2022-02-11 09:00:00 3 1,5 90 0,5 0 300 19,4 43 1026,5 0 8

2022-02-11 10:00:00 2,1 0,2 87 0,4 0 300 20,9 41 1029 0 8

2022-02-11 11:00:00 2,7 -0,1 82 0 0 290 17,3 35 1030,1 2 8

2022-02-11 12:00:00 3,3 -2 68 0 0 290 22 40 1030,9 21 4

2022-02-11 13:00:00 3,5 -3,1 62 0 0 270 19,4 41 1030,8 25 3

2022-02-11 14:00:00 4,2 -3,3 58 0 0 270 17,6 33 1030,8 32 4

2022-02-11 15:00:00 4 -4 56 0 0 280 16,6 34 1031,1 2 4

2022-02-11 16:00:00 4 -3,3 59 0 0 290 16,2 36 1031,8 0 4

2022-02-11 17:00:00 3,8 -3,9 57 0 0 300 14,4 29 1032,1 30 1

2022-02-11 18:00:00 3 -3,8 61 0 0 290 12,2 27 1032,8 22 1

2022-02-11 19:00:00 2,8 -3,6 63 0 0 270 8,6 21 1033,6 0 4



11 

 

Fig. 3: The example shows (a) an object-oriented data model, (b) a network of instances as pro-

vided by object-oriented approaches and graph databases, and (c) the same data in a flat-data 

representation using CSV. The red-boxed part resembles repeated data that must be created in 

CSV and results in redundancy and larger data footprint. 

In relational database design, this effect is well known and can be overcome by da-

tabase normalization, resulting in separate tables for Elements, Actions, Resources, and 

Materials in the shown example, to avoid duplication and redundancy (Kent 1983). The 

authors point out that this example is only a small section of a real DT data model, 

which typically has much more classes and associations (see next Section), rendering 

the flat data approach even less suitable. 

Indeed, the complex interlinked nature of the information representing a digital twin 

of construction projects can hardly be reflected by flat tables, but deserves a navigable 

graph structure. It has been shown that graphs, as well as hierarchical aggregation struc-

tures, facilitate the navigation of complex information by both, end-users and applica-

tion programmers.  

6 The BIM2TWIN data model 

For the reasons discussed above, the BIM2TWIN project has decided to use the linked 

data approach for implementing the information layer of the DIKW pyramid. A number 

of existing ontologies for covering specific aspects (such as the building structure) are 

re-used and integrated. At the same time, however, it was necessary to define a core 

ontology that reflects the precise requirements of the Digital Twin of construction pro-

jects as listed in Section 5.1. 
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6.1 Key model characteristics 

As a starting point, the BIM2TWIN Core data model was developed as UML diagrams, 

as shown in Figures 4 and 4. This leaves the model file format agnostic and allows 

various implementation strategies. One of its main characteristics is the separation of 

the project intent (Fig. 4) and the project status, representing the current situation on 

the construction site (Fig. 5). These two sides of the model can be understood as two 

containers that use a set of classes specific to the model side but also classes that both 

have in common. Even though the two sides are visualized separately, there are clear 

connections between them. The intention is to link every node from one side to its cor-

responding node on the other side. This allows direct comparison of the project plan to 

its actual realization and results in precise information about the deviation between 

them. 

The Core data model classes can be grouped into four categories. These are the con-

struction processes, the resources that are their input parameters, the working zones 

where they are executed, and finally, the elements of the building structure, which are 

their output. All four categories are explained in more detail in the following section. 

Processes: The processes are the main aspect of the model and can be found in the 

center of Figures 2 and 3. We differentiate between three different process levels. The 

most general level of the processes is the work package. It holds information about the 

used construction method and can be seen as an aggregation of more detailed processes. 

Every work package consists of multiple activities, representing the individual con-

struction steps that are part of the work package. The activities are broken down even 

further into tasks. While an activity can refer to a construction step applied to a group 

of construction elements, the tasks have one-to-one relations to the elements. Addition-

ally, preconditions can be connected to any processes on any of the three levels. They 

describe the initial requirements to allow a process to be started. Where the as-planned 

processes hold details about long-term averaged performance factors dependent on the 

construction company, the construction method, and the project’s particularities (Hof-

stadler, 2007), the as-performed processes (construction, operation, and action) need 

to support short-term performance evaluation. Fine-grained insight into performance 

variation and process disruption allows the development of timely countermeasures to 

improve the overall construction performance. 

Products:  The building elements are organized according to the spatial structure of 

the building. From high-level to low-level, the construction project is broken down into 

the site, one or multiple buildings, their storeys, and their spaces. Depending on their 

type, the elements, like walls, slabs, and columns, can be associated with any of these 

levels.  Since there are no significant differences between the project intent and status 

regarding the building structure, both model parts use the same set of classes. 
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Fig. 4. UML model of the project intent information (as-designed and as-planned). 
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Fig. 5. UML model of the project status information (as-built and as-performed). 
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Resources: Various types of resources are modeled in the Core data model. They 

describe the input flows of the construction processes, which are essential for successful 

process execution. The included types of resources are the construction workers and 

worker crews representing the labor force, equipment like heavy machinery and small 

tools, materials, and temporary equipment like formwork and guardrails. In Figures 2 

and 3, they can be found on the upper half of the diagram. While the resource classes 

are foreseen to model the resources available on the construction site, the resource as-

signment class is used to specify the amount and time frame during which a resource is 

assigned to a specific process. The resources differ between project intent and project 

status because, during execution, exact location and current activity/ inactivity can be 

monitored. At the same time, this information is not planned ahead of time. 

Zones: Finally, the zones enable modeling of the location breakdown structure of 

the construction project, describing dedicated zones where processes are executed, rep-

resented through a direct link between them. Unlike the zones related to the building 

structure, they do contain geometric information. Zones can be equivalent to, e.g., a 

storey or a space, but a direct relationship is not always given. Overall, the zones are 

an essential indicator of the construction flow because flow can be judged on the occu-

pation rate of worker crew and flow of materials but also on the occupancy of working 

locations (Sacks, 2016). 

6.2 BIM2TWIN Core Ontology 

Based on the UML diagrams above the BIM2TWIN Core Ontology was implemented 

by translating the diagrams into the corresponding ontology classes, object properties, 

and data properties. Additionally, only domains and ranges of object and data properties 

were defined to improve reusability. 

The lightweight BOT ontology is reused in the BIM2TWIN Core ontology for the 

classes related to the building structure. For the data layer of the DIKW-pyramid, 

SOSA/SSN and QUDT are reused to represent sensor data from the construction site 

and their units. The data layer is not shown in the UML diagrams above. The status of 

the BIM2TWIN data model and ontology presented here are the first stable version but 

will be further refined through testing on dedicated pilot projects. Once thoroughly 

tested, the ontology will be published online and freely accessible. 

6.3 BIM2TWIN platform 

To provide access to a large number of applications and services providing and retriev-

ing digital twin data, the described ontology is used as underlying schema of a central 

platform. In the BIM2TWIN project this platform is formed by the commercial product 

Thing’In by Orange, which in turn is based on the property graph database Arango DB. 

The platform allows to upload ontologies in the OWL format and transform its content 

into a graph meta model. By supporting various rule-checking languages like SHACL 

and ShEx, data manipulation requests can be checked for compliance with the used 

ontologies and further ensure the data structure. Instances of the ontology classes are 
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represented by graph nodes with respective properties and edges to related nodes. Ac-

cess to individual nodes is provided through a dedicated REST API. 

7 Conclusion 

In this paper, we have discussed the relevance of well-defined data structures for han-

dling the complexity of digital twin information. We use the notion of the data-infor-

mation-knowledge-wisdom pyramid to clearly distinguish between the different layers 

of abstraction. We show that simplistic approaches such as flat CSV structures can be 

suitable for handling bulk data such as temperature time series, but have clear limita-

tions when it comes to the information level. Here, well-defined data structures are 

required providing clear and unambiguous specifications of the relevant information. 

Object-oriented modeling has been proven to be the gold standard of information mod-

eling for many years now, providing powerful concepts such as encapsulation, inher-

itance and associations.  

These concepts are also very suitable for representing digital twins of construction 

projects, which are dominated by a complex network of objects reflecting processes 

and products on various levels of granularity. We see ontology modeling as a suitable 

implementation of the object-oriented paradigm and presented the core ontology of the 

BIM2TWIN platform to underline this statement. In the project, the ontology is mapped 

to a property graph which is hosted by a dedicated cloud database, allowing fine-

grained access for the distributed digital twin ecosystem.  

With this paper, the authors hope to contribute to the discussion on suitable data 

structures for digital twins. We emphasize that in our view, digital twin technologies 

are a natural evolution of the BIM technologies, as both concepts are based on well-

defined data structures. In this sense, many of the elaborated information models laid 

down in standards such as the Industry Foundation Classes remain absolutely valid and 

provide a solid foundation to build on. At the same time, however, a more flexible 

combination with small-scope ontologies is essential for digital twins, as well as a much 

more fine-grained data access that must replace conventional file-based data exchanges. 
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