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Abstract 
This paper introduces Text2Form3D, a machine-learning-based design framework to explore the 
embedded descriptive representation of structural forms. Text2Form3D relies on a deep neural network 
algorithm that joins word embeddings, a natural language processing (NLP) technique, with the 
Combinatorial Equilibrium Modeling (CEM), a form-finding method based on graphic statics. 
Text2Form3D is trained with a dataset containing structural design options generated via the CEM and 
labeled with vocabularies acquired from architectural and structural competition reports. For the 
labeling process, an unsupervised clustering algorithm Self Organizing Maps (SOM) is used to cluster 
the machine-generated design options by quantitative criteria. The clusters are then labeled by designers 
using descriptive text. After training, Text2From3D can autonomously generate new structural solutions 
in static equilibrium from a user-defined descriptive query. The generated structural solutions can be 
further evaluated by various quantitative and qualitative criteria to constrain the design space towards a 
solution that fits the designer's preferences. 

Keywords: machine learning, deep neural networks, natural language processing, combinatorial equilibrium 
modeling, structural design, form finding.  

1. Introduction 

1.1 Structural design and artificial intelligence 
Artificial intelligence (AI) is challenging the role of human designers by creating end-to-end generators 
capable of producing infinite solutions. AI can provide fast predictive answers, handle a large amount 
of data, and calculate quicker than human designers. Still, its computational power cannot substitute the 
critical thinking that designers engage in the creative process of design. Researchers in computational 
generative design have long sought methods to elevate a computer from a drafting tool to an intelligent 
agent capable of creating designs autonomously (e.g., [1][2]). Currently, many research projects focus 
on developing machines that automatically generate design solutions without any assistance from human 
designers (e.g., [3][4][5]). These machines can systematically search within the design space defined by 
the user's input and produce near-optimal solutions for many well-defined problems with specific design 
objectives and given constraints, such as minimum use of materials for load path optimization (e.g., 
[6][7]). The use of massive crowdsourced online datasets has recently pushed this schema further where 
realistic images can be automatically generated from pure text inputs (e.g., [9][10]). Table 1 shows a 
summary of the state-of-the-art on AI and generative algorithms.  
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Table 1. State-of-the-art research in the field of generative architectural and structural design supported by 
artificial intelligence 

Reference Field Model Control Features Algorithms 

Nauata et al. [3] floor plan design graph to image (room 
segmentation masks) 

bubble diagram 
+ layout image 

Generative 
Adversarial 
Networks 
(GANs) 

Chang et al. [4] building 3D layout 
design 

graph to voxels bubble diagram 
+ layout 3D image 

GANs 

Chaillou [5] floor plan design image to image layout contour image 
+ layout image 

GANs 

Wolf D. Prix & 
Partner [8] 

architectural 
rendering 

image to image plain color rendering of 
3D geometries 

GANs 

Ramesh et al. [9] language modeling 
and generative AI 

text to image descriptive text Variational 
autoencoders + 
Transformers 

Oppenlaender 
[10] 

language modeling 
and generative AI 

text to image descriptive text + 
random noise input 

Diffusion model 
+ Contrastive 

Language-
Image 

Pretraining 
(CLIP) 

Tseranidis et al. 
[11] 

truss design design parameters to 
multiple engineering 

performances 

input parameters of a 
truss generator 

 + a fixed topology 

Multiple 
supervised 
learning 

algorithms 
+ evolutionary 
optimization 

Fuhrimann et al. 
[12] 

shell design form clusters to CEM 
inputs 

node coordinates of 
structural forms 

SOM + CEM 

Bertagna  et al. 
[13] 

building envelope 
design 

solar radiation 
simulation to CEM 

inputs 

geometric, structural, 
and sun-shading 

parameters 

SOM + CEM + 
Ladybug 

Saldana Ochoa et 
al. [14] 

structural design user preferences to 
CEM inputs 

binary labels by user + 
high-order statistics of 

structural forms 

SOM + CEM 

Harding [15] generative design user selection of form 
clusters 

input parameters of 
form generators 

SOM 
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It can be argued that these approaches are still in the early stage for architectural and structural design 
applications as the proposed overall workflows are not always able to grasp the complexity of forms 
inherited from the creative nature of the design process. In fact, several aspects such as user-specific 
qualitative preferences, and perceptions of spaces and structures, cannot always be adequately 
formulated as well-defined design objectives. As a result, designers still lack appropriate tools to tackle 
architectural and structural design comprehensively. 

1.2 Objective 
This article focuses on structural design – a discipline at the interface between architecture and structural 
engineering – as a case study to test the use of AI to assist the human designer within the design process. 
The present study builds upon the interaction between human and artificial intelligence, with the 
machine being able to process semantic requests related to structural forms that go beyond the sole 
quantitative aspects of structural engineering. The study proposes a shift from a conventional, 
deterministic form-finding process (i.e., generation of forms that are structurally optimized for given 
boundary conditions) to an open, creative process in which text inputs from the designer are translated 
to spatial structures in static equilibrium. 

The main outcome of this study is the development of Text2Form3D, a machine-learning-based design 
framework to explore the semantic representation of structural design forms. Text2Form3D combines a 
Natural Language Processing (NLP) algorithm [16][17], which translates text into numerical features, 
with the Combinatorial Equilibrium Modeling (CEM) form-finding algorithm [18][19], which generates 
structural forms from topological and metric inputs. The connection between NLP and CEM enables 
Text2Form3D to suggest possible design parameters based on the input texts specified by the designer, 
thus allowing the designer to explore the design space of solutions produced by the CEM semantically.   

2. Method overview 
Figure 1 shows the pipeline of Text2Form3D. In the first step, the CEM algorithm generates a dataset 
of various structural forms with randomly initialized design parameters. The CEM is an equilibrium-
based form-finding algorithm based on vector-based 3D graphic statics [18][19] that constructs the 
equilibrium form of a structure (CEM output) sequentially from a given topology of the structure and 
associated metric properties (CEM input). The dataset contains both the design parameters (CEM input) 
and the generated forms (CEM outputs). 

 

Figure 1. The workflow of Text2Form3D. User's operations are colored in light gray to differentiate from the 
computational process. 

The generated forms are clustered in the second step using Self-Organizing Maps (SOM) [20]. The 
numerical feature vector to train the SOM is based on user-defined quantitative criteria, such as their 
formal metric characteristics in terms of edge lengths and node positions [12][14]. 
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In the third step, the designer uses the trained SOM to label several thousands of design options using 
adjectives acquired from architectural and structural competition reports. These labels are additional 
information manually assigned to the generated structural forms to create data to train a machine 
learning algorithm.  

After labeling the forms, in the fourth step, the adjectives are processed using word embedding 
techniques [16][17] to convert them to numerical vectors (i.e. embedding vectors) of several hundreds 
of dimensions. The embedding vectors make adjectives comparable in terms of their semantic meanings. 
The semantic similarity of adjectives can be obtained by their Euclidean distances to the corresponding 
embedding vectors. 

In the fifth step, a deep neural network is trained using the weight values of the labels as the input and 
the design parameters of CEM of the structural forms as the output. The trained neural network can then 
generate the CEM design parameters from any input texts based on the Euclidean distances between the 
embedding vectors of the input texts and the adjectives from the labels. 

3. Generation of the structural forms 
The above design workflow was tested in a design experiment to generate towers. The generation of the 
structural forms through the CEM relied on a user-defined fixed topology, i.e., all the generated forms 
have the same number of nodes and edges (Figure 2). In our experiment, the topology has a 4×4 grid on 
a 10-floor tower, corresponding to 176 nodes and 400 edges. For each generated form, the metric 
parameters (i.e., the lengths of trail edges and the internal force magnitudes of deviation edges) were 
randomly initialized within fixed user-defined ranges. The position of nodes in the generated form was 
constrained by several control planes, which kept the nodes of each floor on the same level. The vertical 
position of the control planes was determined by floor heights randomly sampled from a list of user-
defined values. Based on this setup, a dataset of 87,728 towers was created. Figure 2 shows the topology 
diagrams (i.e., node-edge relations) and the form diagrams (i.e., the generated structural forms in static 
equilibrium) of two different combinations of input metric parameters. 

 

Figure 2. Different combinations of input metric parameters produce structural forms in equilibrium with 
different geometries. 

4. Form clustering and text labeling 
To label the generated forms one by one using texts would take an enormous amount of human labor. 
Therefore, the experiment relied on a clustering labeling strategy to save time and improve the labeling 
consistency. The assumption is that similar text labels can represent forms within the same cluster. 

4.1 Self-Organizing Map 
A SOM was trained to cluster the generated forms to support the labeling process based on the geometric 
characteristic of the forms. The input of the SOM was 192-dimensional vectors computed from the 
nodes' x-y positions of the structural forms using Discrete Fourier Transform (DFT). The process was 

Topology Diagram Form Diagram Topology Diagram Form Diagram

trail edge
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implemented by first computing the DFT on the x and y coordinates of each trail path of the structural 
form and then concatenating the results to a single vector. DFT extracts the spatial patterns of the nodes 
from their x-y positions, allowing to compare the structural forms based on their geometric similarities. 
Unlike methods for extracting geometric features such as raw node coordinates [12] and high-order 
statistics [13][14], DFT finds a compromise between the computational efficiency and the representation 
of geometric details. Figure 3 shows the trained SOM, consisting of a grid of 20×20 cells. 

 

 

Figure 3. A trained SOM based on a grid of 20×20 cells. Each cell is represented by its best-matching geometry. 
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4.2 Rapid labeling using the form SOM 

To support the labeling process, several common words used to describe architectural projects were 
identified by crawling jury commentaries of architectural competitions [21]. The crawling process 
specifically focused on architectural projects that included the keyword "tower" to match the database 
for this experiment, resulting in more than 200 commentaries. These commentaries were pre-processed 
by 1) lower-casing and de-accenting all the words; 2) removing stop words; 3) selecting all adjectives; 
and 4) deleting those adjectives that appeared less than three times, leading to 105 commonly used 
adjectives. These adjectives were finally manually filtered to erase redundancy, resulting in 68 
meaningful adjectives from which the text labels used in this experiment were created. Figure 4 shows 
a pie chart representing these adjectives and their relative frequency. 

 

Figure 4. A pie chart of the selected adjectives (right) derived from commentary texts of architectural jury 
reports using text processing methods (left). 

The labeling process was implemented by assigning tags to cells on the SOM grid, with each tag being 
defined by one of the selected adjectives and a normal distribution (Figure 5). The association of the 
tags to the grid cells could be controlled by adjusting the parameters (i.e., the sigma and weight values) 
related to the normal distribution, while the same tag could be assigned to different regions of the SOM. 
After assigning all necessary tags on the SOM, the labels of each grid cell of the SOM were generated 
as the association values between the cell and the selected adjective. Let a denote a tag, c a grid cell of 
the SOM, and k an adjective, the association value wk,c is computed as 

 𝑤𝑤𝑘𝑘,𝑐𝑐 =
∑ 𝐺𝐺(𝑎𝑎)(‖𝑝𝑝(𝑎𝑎)−𝑝𝑝(𝑐𝑐)‖)𝑎𝑎∈𝐴𝐴(𝑘𝑘)

∑ 𝐺𝐺(𝑎𝑎)(‖𝑝𝑝(𝑎𝑎)−𝑝𝑝(𝑐𝑐)‖)𝑎𝑎∈𝐴𝐴
 (1) 

where A represents all tags, A(k) is the set of tags that are associated with the same adjective k, p is a 
function that returns the spatial location of a tag a or a grid cell c, and G(a) is the gaussian function of 
the normal distribution associated with a. 

After labeling the SOM, the text labels of all structural forms were estimated using the Euclidean 
distances between each form to all the grid cells of the SOM. Let s denote a structural form, vs and vc 
the weight vectors associated with the structural form s and the grid cell c. The text label of a given 
structural form can be obtained as the association value wk,s between adjective k and structural form s, 
which is computed as 

 𝑤𝑤𝑘𝑘,𝑠𝑠 = ∑ ‖𝑣𝑣𝑠𝑠−𝑣𝑣𝑐𝑐‖−𝑎𝑎𝑤𝑤𝑘𝑘,𝑐𝑐𝑐𝑐
∑ ‖𝑣𝑣𝑠𝑠−𝑣𝑣𝑐𝑐‖−𝑎𝑎𝑐𝑐

 (2) 

where a is a user specified scalar that was set to 8 in our experiments. 
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Figure 5. The user interface of the text-based labeling process, where each adjective is associated with a 
Gaussian distribution shown by the circles representing the 10% and 90% percentiles. 

5. Regeneration of the design parameters 
The generated labels represent the association values between structure forms and the selected adjectives. 
Therefore, the text label of each structural form can be represented as a vector that consists of the 
association values to all adjectives K={k1, k2, …, kn}. This vector is denoted as 

 𝑤𝑤𝑠𝑠 = �𝑤𝑤𝑘𝑘1𝑠𝑠, … ,𝑤𝑤𝑘𝑘𝑛𝑛𝑠𝑠� (3) 

As the selection of adjectives varies and solely depends on the designer's personal preferences, we 
consider the adjectives as the anchor points that convert input texts to association values that are 
comparable to the generated labels. We used word embedding for this process so that Text2Form3D 
could also process arbitrary words that are not included in the adjectives labeled by the designer. 

5.1 Text vector using word embedding 
Word embedding converts each word to an embedding vector of a few hundred dimensions that 
represents the semantic meaning of the words and makes two words comparable. The embedding vectors 
allow the designer to use any word rather than the limited selected adjectives for the regeneration process. 
To convert a text input of arbitrary words to a vector comparable to the form-adjective association value 
wk,s, we interpreted wk,s as the frequency of adjective k showing up in the text label corresponding to the 
structural form s. Let T denote the input text, which consists of {t1, …, tm} words; the text vector of an 
arbitrary text input can be computed as 

 𝑤𝑤𝑇𝑇 = 1
|𝑇𝑇|
∑ 𝑤𝑤(𝑡𝑡)𝑡𝑡∈𝑇𝑇  (4) 

where w(t) is the association vector of arbitrary word t with all adjectives K={k1, k2, …, kn}. This vector 
is computed as 

 𝑤𝑤(𝑡𝑡)𝑖𝑖 = ‖𝐸𝐸(𝑘𝑘𝑖𝑖)−𝐸𝐸(𝑡𝑡)‖−𝑎𝑎

∑ �𝐸𝐸�𝑘𝑘𝑗𝑗�−𝐸𝐸(𝑡𝑡)�−𝑎𝑎𝑗𝑗
 for 𝑖𝑖 = 1, … ,𝑛𝑛 (5) 
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where a is a user-specified scalar, and E is the word embedding model. In our experiment, we set a=8 
and used the GloVe300 model of Wolfram Mathematica [22] for E. 

5.2 Regeneration using artificial neural networks 
The artificial neural network Text2Form3D was used in this step to regenerate structural forms by 
predicting the CEM parameters (i.e., the design inputs) from the text labels. The input data of the neural 
network consisted of the text vector ws and a normally distributed random vector. The output data 
contain the CEM parameter θs of the structural form, which include the information of node positions, 
edge lengths of trail edges, and force magnitudes of deviation edges. This network was trained using the 
generative adversarial network (GAN) method, which uses a discriminator network attached to the 
generative network to differentiate the predicted CEM parameters from real CEM parameters. The 
discriminator network substitutes the conventional loss function and fits the network to the data 
distribution of the structural form dataset. After training, the discriminator network was discarded, and 
the generative network was used for form regeneration. Figure 6 shows the structure of the generative 
network of Text2Form3D. 

For the regeneration of 3D structural forms, the text vector wT was first obtained from an input text of 
the designer. The text vector was then fed to the generative network to obtain the corresponding CEM 
parameters θT. As the input data of the generative network consisted of both the text vector and the 
normally distributed random vector, the designer could generate multiple results by feeding random 
vectors created from a different random seed. Finally, the produced CEM parameters were provided to 
the CEM algorithm to obtain the structural forms as the final output. 

 

Figure 6. The generative network which predicts the design parameters of CEM method from input texts. 

6. Results and discussion 
Figure 7 shows four groups of 3D structural forms generated using different input adjectives following 
the proposed pipeline. Each group clearly shows the geometric characteristics that can be differentiated 
from other groups, which means that Test2Form3D successfully captured the semantic information of 
the input adjectives and encoded them to the output geometries. For each group, the generated forms 
follow the same tendency of geometric features while still exhibiting a great variety regarding the 
geometric details. This result suggests that the normally distributed random vector serves as an effective 
method to explore the formal variants of the same semantic inputs. Figure 8 shows four samples selected 
from each group and their corresponding text input. 
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Figure 7. Generated structural forms using the designer-specified input words. 
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Figure 8. Renders of four samples selected among the generated forms. 

The proposed workflow demonstrates the effectiveness of the interplay between human designers and 
AI in designing structural forms through descriptive text and quantitative parameters as inputs. However, 
despite the promising results shown above, there are still limitations that require further investigations 
in future work. An immediate next step is to overcome the current restriction of having a predefined 
topology for structural forms. This would allow applying the proposed approach to other types of 
structural forms and structural design algorithms. Furthermore, the labeling process shown above relies 
on the assumption that similar forms have similar semantic interpretations. This assumption needs to be 
validated by experiments testing different labeling strategies. 

7. Conclusions 
The presented study focused on exploring and generating 3D structural forms through a text-based AI 
engine coupled with computational graphic statics. The project proposes a workflow in which the 
structural forms are generated based on static equilibrium and the designer's semantic interpretation of 
3D geometries. Such workflow emphasizes the interplay between designers and AI where the generative 
algorithm can adapt to the personal preferences of designers and act as a suggestion engine for the 
semantic interpretation of structural forms. This approach shows the potential of AI not only in solving 
well-defined problems but also in tackling those weakly-defined tasks that are inherited from the 
creative nature of design. Finally, an alternative understanding of AI’s role within the design process is 
presented, by proposing a shift from the conventional input-to-output process (i.e., image to image or 
text to image) to a translation of text into spatial geometries (i.e., text to 3D structural forms). 
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Abstract

This paper introduces Text2Form3D, a machine-learning-based design framework to explore the embedded descriptive representation of structural forms. Text2Form3D relies on a deep neural network algorithm that joins word embeddings, a natural language processing (NLP) technique, with the Combinatorial Equilibrium Modeling (CEM), a form-finding method based on graphic statics. Text2Form3D is trained with a dataset containing structural design options generated via the CEM and labeled with vocabularies acquired from architectural and structural competition reports. For the labeling process, an unsupervised clustering algorithm Self Organizing Maps (SOM) is used to cluster the machine-generated design options by quantitative criteria. The clusters are then labeled by designers using descriptive text. After training, Text2From3D can autonomously generate new structural solutions in static equilibrium from a user-defined descriptive query. The generated structural solutions can be further evaluated by various quantitative and qualitative criteria to constrain the design space towards a solution that fits the designer's preferences.

Keywords: machine learning, deep neural networks, natural language processing, combinatorial equilibrium modeling, structural design, form finding. 

1. Introduction

[bookmark: _heading=h.36dsgcyxs4kd]1.1 Structural design and artificial intelligence

Artificial intelligence (AI) is challenging the role of human designers by creating end-to-end generators capable of producing infinite solutions. AI can provide fast predictive answers, handle a large amount of data, and calculate quicker than human designers. Still, its computational power cannot substitute the critical thinking that designers engage in the creative process of design. Researchers in computational generative design have long sought methods to elevate a computer from a drafting tool to an intelligent agent capable of creating designs autonomously (e.g., [1][2]). Currently, many research projects focus on developing machines that automatically generate design solutions without any assistance from human designers (e.g., [3][4][5]). These machines can systematically search within the design space defined by the user's input and produce near-optimal solutions for many well-defined problems with specific design objectives and given constraints, such as minimum use of materials for load path optimization (e.g., [6][7]). The use of massive crowdsourced online datasets has recently pushed this schema further where realistic images can be automatically generated from pure text inputs (e.g., [9][10]). Table 1 shows a summary of the state-of-the-art on AI and generative algorithms. 

Table 1. State-of-the-art research in the field of generative architectural and structural design supported by artificial intelligence

		Reference

		Field

		Model

		Control Features

		Algorithms



		Nauata et al. [3]

		floor plan design

		graph to image (room segmentation masks)

		bubble diagram
+ layout image

		Generative Adversarial Networks (GANs)



		Chang et al. [4]

		building 3D layout design

		graph to voxels

		bubble diagram
+ layout 3D image

		GANs



		Chaillou [5]

		floor plan design

		image to image

		layout contour image
+ layout image

		GANs



		Wolf D. Prix & Partner [8]

		architectural rendering

		image to image

		plain color rendering of 3D geometries

		GANs



		Ramesh et al. [9]

		language modeling and generative AI

		text to image

		descriptive text

		Variational autoencoders + Transformers



		Oppenlaender [10]

		language modeling and generative AI

		text to image

		descriptive text + random noise input

		Diffusion model + Contrastive Language-Image Pretraining (CLIP)



		Tseranidis et al. [11]

		truss design

		design parameters to multiple engineering performances

		input parameters of a truss generator
 + a fixed topology

		Multiple supervised learning algorithms
+ evolutionary optimization



		Fuhrimann et al. [12]

		shell design

		form clusters to CEM inputs

		node coordinates of structural forms

		SOM + CEM



		Bertagna  et al. [13]

		building envelope design

		solar radiation simulation to CEM inputs

		geometric, structural, and sun-shading parameters

		SOM + CEM + Ladybug



		Saldana Ochoa et al. [14]

		structural design

		user preferences to CEM inputs

		binary labels by user + high-order statistics of structural forms

		SOM + CEM



		Harding [15]

		generative design

		user selection of form clusters

		input parameters of form generators

		SOM







It can be argued that these approaches are still in the early stage for architectural and structural design applications as the proposed overall workflows are not always able to grasp the complexity of forms inherited from the creative nature of the design process. In fact, several aspects such as user-specific qualitative preferences, and perceptions of spaces and structures, cannot always be adequately formulated as well-defined design objectives. As a result, designers still lack appropriate tools to tackle architectural and structural design comprehensively.

[bookmark: _heading=h.bucpvt8oi553]1.2 Objective

This article focuses on structural design – a discipline at the interface between architecture and structural engineering – as a case study to test the use of AI to assist the human designer within the design process. The present study builds upon the interaction between human and artificial intelligence, with the machine being able to process semantic requests related to structural forms that go beyond the sole quantitative aspects of structural engineering. The study proposes a shift from a conventional, deterministic form-finding process (i.e., generation of forms that are structurally optimized for given boundary conditions) to an open, creative process in which text inputs from the designer are translated to spatial structures in static equilibrium.

The main outcome of this study is the development of Text2Form3D, a machine-learning-based design framework to explore the semantic representation of structural design forms. Text2Form3D combines a Natural Language Processing (NLP) algorithm [16][17], which translates text into numerical features, with the Combinatorial Equilibrium Modeling (CEM) form-finding algorithm [18][19], which generates structural forms from topological and metric inputs. The connection between NLP and CEM enables Text2Form3D to suggest possible design parameters based on the input texts specified by the designer, thus allowing the designer to explore the design space of solutions produced by the CEM semantically.  

2. Method overview

Figure 1 shows the pipeline of Text2Form3D. In the first step, the CEM algorithm generates a dataset of various structural forms with randomly initialized design parameters. The CEM is an equilibrium-based form-finding algorithm based on vector-based 3D graphic statics [18][19] that constructs the equilibrium form of a structure (CEM output) sequentially from a given topology of the structure and associated metric properties (CEM input). The dataset contains both the design parameters (CEM input) and the generated forms (CEM outputs).

[image: ]

Figure 1. The workflow of Text2Form3D. User's operations are colored in light gray to differentiate from the computational process.

The generated forms are clustered in the second step using Self-Organizing Maps (SOM) [20]. The numerical feature vector to train the SOM is based on user-defined quantitative criteria, such as their formal metric characteristics in terms of edge lengths and node positions [12][14].

In the third step, the designer uses the trained SOM to label several thousands of design options using adjectives acquired from architectural and structural competition reports. These labels are additional information manually assigned to the generated structural forms to create data to train a machine learning algorithm. 

After labeling the forms, in the fourth step, the adjectives are processed using word embedding techniques [16][17] to convert them to numerical vectors (i.e. embedding vectors) of several hundreds of dimensions. The embedding vectors make adjectives comparable in terms of their semantic meanings. The semantic similarity of adjectives can be obtained by their Euclidean distances to the corresponding embedding vectors.

In the fifth step, a deep neural network is trained using the weight values of the labels as the input and the design parameters of CEM of the structural forms as the output. The trained neural network can then generate the CEM design parameters from any input texts based on the Euclidean distances between the embedding vectors of the input texts and the adjectives from the labels.

[bookmark: _heading=h.2caamcli0hvz]3. Generation of the structural forms

The above design workflow was tested in a design experiment to generate towers. The generation of the structural forms through the CEM relied on a user-defined fixed topology, i.e., all the generated forms have the same number of nodes and edges (Figure 2). In our experiment, the topology has a 4×4 grid on a 10-floor tower, corresponding to 176 nodes and 400 edges. For each generated form, the metric parameters (i.e., the lengths of trail edges and the internal force magnitudes of deviation edges) were randomly initialized within fixed user-defined ranges. The position of nodes in the generated form was constrained by several control planes, which kept the nodes of each floor on the same level. The vertical position of the control planes was determined by floor heights randomly sampled from a list of user-defined values. Based on this setup, a dataset of 87,728 towers was created. Figure 2 shows the topology diagrams (i.e., node-edge relations) and the form diagrams (i.e., the generated structural forms in static equilibrium) of two different combinations of input metric parameters.

[image: ]

Figure 2. Different combinations of input metric parameters produce structural forms in equilibrium with different geometries.

4. Form clustering and text labeling

To label the generated forms one by one using texts would take an enormous amount of human labor. Therefore, the experiment relied on a clustering labeling strategy to save time and improve the labeling consistency. The assumption is that similar text labels can represent forms within the same cluster.

4.1 Self-Organizing Map

A SOM was trained to cluster the generated forms to support the labeling process based on the geometric characteristic of the forms. The input of the SOM was 192-dimensional vectors computed from the nodes' x-y positions of the structural forms using Discrete Fourier Transform (DFT). The process was implemented by first computing the DFT on the x and y coordinates of each trail path of the structural form and then concatenating the results to a single vector. DFT extracts the spatial patterns of the nodes from their x-y positions, allowing to compare the structural forms based on their geometric similarities. Unlike methods for extracting geometric features such as raw node coordinates [12] and high-order statistics [13][14], DFT finds a compromise between the computational efficiency and the representation of geometric details. Figure 3 shows the trained SOM, consisting of a grid of 20×20 cells.



[image: ]

Figure 3. A trained SOM based on a grid of 20×20 cells. Each cell is represented by its best-matching geometry.



4.2 Rapid labeling using the form SOM

To support the labeling process, several common words used to describe architectural projects were identified by crawling jury commentaries of architectural competitions [21]. The crawling process specifically focused on architectural projects that included the keyword "tower" to match the database for this experiment, resulting in more than 200 commentaries. These commentaries were pre-processed by 1) lower-casing and de-accenting all the words; 2) removing stop words; 3) selecting all adjectives; and 4) deleting those adjectives that appeared less than three times, leading to 105 commonly used adjectives. These adjectives were finally manually filtered to erase redundancy, resulting in 68 meaningful adjectives from which the text labels used in this experiment were created. Figure 4 shows a pie chart representing these adjectives and their relative frequency.
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Figure 4. A pie chart of the selected adjectives (right) derived from commentary texts of architectural jury reports using text processing methods (left).

The labeling process was implemented by assigning tags to cells on the SOM grid, with each tag being defined by one of the selected adjectives and a normal distribution (Figure 5). The association of the tags to the grid cells could be controlled by adjusting the parameters (i.e., the sigma and weight values) related to the normal distribution, while the same tag could be assigned to different regions of the SOM. After assigning all necessary tags on the SOM, the labels of each grid cell of the SOM were generated as the association values between the cell and the selected adjective. Let a denote a tag, c a grid cell of the SOM, and k an adjective, the association value wk,c is computed as

		(1)

where A represents all tags, A(k) is the set of tags that are associated with the same adjective k, p is a function that returns the spatial location of a tag a or a grid cell c, and G(a) is the gaussian function of the normal distribution associated with a.

After labeling the SOM, the text labels of all structural forms were estimated using the Euclidean distances between each form to all the grid cells of the SOM. Let s denote a structural form, vs and vc the weight vectors associated with the structural form s and the grid cell c. The text label of a given structural form can be obtained as the association value wk,s between adjective k and structural form s, which is computed as

		(2)

where a is a user specified scalar that was set to 8 in our experiments.
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Figure 5. The user interface of the text-based labeling process, where each adjective is associated with a Gaussian distribution shown by the circles representing the 10% and 90% percentiles.

5. Regeneration of the design parameters

The generated labels represent the association values between structure forms and the selected adjectives. Therefore, the text label of each structural form can be represented as a vector that consists of the association values to all adjectives K={k1, k2, …, kn}. This vector is denoted as

		(3)

As the selection of adjectives varies and solely depends on the designer's personal preferences, we consider the adjectives as the anchor points that convert input texts to association values that are comparable to the generated labels. We used word embedding for this process so that Text2Form3D could also process arbitrary words that are not included in the adjectives labeled by the designer.

5.1 Text vector using word embedding

Word embedding converts each word to an embedding vector of a few hundred dimensions that represents the semantic meaning of the words and makes two words comparable. The embedding vectors allow the designer to use any word rather than the limited selected adjectives for the regeneration process. To convert a text input of arbitrary words to a vector comparable to the form-adjective association value wk,s, we interpreted wk,s as the frequency of adjective k showing up in the text label corresponding to the structural form s. Let T denote the input text, which consists of {t1, …, tm} words; the text vector of an arbitrary text input can be computed as

		(4)

where w(t) is the association vector of arbitrary word t with all adjectives K={k1, k2, …, kn}. This vector is computed as

		(5)

where a is a user-specified scalar, and E is the word embedding model. In our experiment, we set a=8 and used the GloVe300 model of Wolfram Mathematica [22] for E.

5.2 Regeneration using artificial neural networks

The artificial neural network Text2Form3D was used in this step to regenerate structural forms by predicting the CEM parameters (i.e., the design inputs) from the text labels. The input data of the neural network consisted of the text vector ws and a normally distributed random vector. The output data contain the CEM parameter θs of the structural form, which include the information of node positions, edge lengths of trail edges, and force magnitudes of deviation edges. This network was trained using the generative adversarial network (GAN) method, which uses a discriminator network attached to the generative network to differentiate the predicted CEM parameters from real CEM parameters. The discriminator network substitutes the conventional loss function and fits the network to the data distribution of the structural form dataset. After training, the discriminator network was discarded, and the generative network was used for form regeneration. Figure 6 shows the structure of the generative network of Text2Form3D.

For the regeneration of 3D structural forms, the text vector wT was first obtained from an input text of the designer. The text vector was then fed to the generative network to obtain the corresponding CEM parameters θT. As the input data of the generative network consisted of both the text vector and the normally distributed random vector, the designer could generate multiple results by feeding random vectors created from a different random seed. Finally, the produced CEM parameters were provided to the CEM algorithm to obtain the structural forms as the final output.

[image: ]

Figure 6. The generative network which predicts the design parameters of CEM method from input texts.

6. Results and discussion

Figure 7 shows four groups of 3D structural forms generated using different input adjectives following the proposed pipeline. Each group clearly shows the geometric characteristics that can be differentiated from other groups, which means that Test2Form3D successfully captured the semantic information of the input adjectives and encoded them to the output geometries. For each group, the generated forms follow the same tendency of geometric features while still exhibiting a great variety regarding the geometric details. This result suggests that the normally distributed random vector serves as an effective method to explore the formal variants of the same semantic inputs. Figure 8 shows four samples selected from each group and their corresponding text input.
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Figure 7. Generated structural forms using the designer-specified input words.
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Figure 8. Renders of four samples selected among the generated forms.

The proposed workflow demonstrates the effectiveness of the interplay between human designers and AI in designing structural forms through descriptive text and quantitative parameters as inputs. However, despite the promising results shown above, there are still limitations that require further investigations in future work. An immediate next step is to overcome the current restriction of having a predefined topology for structural forms. This would allow applying the proposed approach to other types of structural forms and structural design algorithms. Furthermore, the labeling process shown above relies on the assumption that similar forms have similar semantic interpretations. This assumption needs to be validated by experiments testing different labeling strategies.

7. Conclusions

The presented study focused on exploring and generating 3D structural forms through a text-based AI engine coupled with computational graphic statics. The project proposes a workflow in which the structural forms are generated based on static equilibrium and the designer's semantic interpretation of 3D geometries. Such workflow emphasizes the interplay between designers and AI where the generative algorithm can adapt to the personal preferences of designers and act as a suggestion engine for the semantic interpretation of structural forms. This approach shows the potential of AI not only in solving well-defined problems but also in tackling those weakly-defined tasks that are inherited from the creative nature of design. Finally, an alternative understanding of AI’s role within the design process is presented, by proposing a shift from the conventional input-to-output process (i.e., image to image or text to image) to a translation of text into spatial geometries (i.e., text to 3D structural forms).
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