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Essays on Empirical Asset Pricing

Abstract

This dissertation examines three research questions on empirical asset pricing. First, I1

study how market news, firm-specific news, and noise diffuse among firms and how they

affect stock returns in global networks. Market and firm-specific news as well as noise, are

estimated through a structural vector auto-regression and the global network is based on

analyst co-coverage. I show that investors show a categorical learning behavior by being

able to differentiate between news and noise and rather processing market wide than

firm-specific news. This underreaction of investors is driven by limited attention to the

diffusing firm-specific news. Second, I compare various machine learning models to predict

the cross-section of emerging market stock returns. I document that allowing for non-

linearities and interactions leads to economically and statistically superior out-of-sample

returns compared to traditional linear models. Furthermore, significant net returns can

be achieved when accounting for transaction costs, short-selling constraints, and limiting

the investment universe to big stocks only. Third, I investigate the anchoring effect as an

explanation for investor underreaction to global firm-specific news. The anchoring effect

refers to the tendency of investors to stick to their initial beliefs about a stock, even when

facing new information. My results provide evidence of investors’ distorted belief updating

process and show that the anchoring of investors induced by the 52-week high impacts

the processing of the firm-specific news. Regression analyses decompose stock returns into

three independent components and reveal that the interaction effect between the firm-

specific news return and the nearness to the 52-week high are related to a significant

risk-adjusted return.

1 In this dissertation, I use the term ”I” in the introduction and conclusion. It does not necessarily refer
to me directly since the second and third essay are based on joint work with my co-authors.



Betreuer: Prof. Dr. Christoph Kaserer Tobias Kalsbach

Aufsätze zu empirischer Kapitalmarktforschung

Kurzfassung

In dieser Dissertation werden drei Forschungsfragen zur empirischen Kapitalmarktforschung

untersucht. Zunächst erforsche ich wie sich Markt- und firmenspezifische Nachrichten

sowie Rauschen unter Unternehmen verbreitet und wie diese die Aktienrenditen in glob-

alen Netzwerken beeinflussen. Die einzelnen Komponenten werden durch eine struk-

turelle Vektor-Autoregression bestimmt, und das globale Netzwerk basiert auf den Ab-

schätzungen von Analysten. Ich zeige, dass Investoren ein kategorisches Lernverhalten

zeigen, da sie zwischen Nachrichten und Rauschen unterscheiden und eher marktweite

als firmenspezifische Nachrichten verarbeiten. Diese Unterreaktion der Anleger ist darauf

zurückzuführen, dass sie den sich verbreitenden firmenspezifischen Nachrichten nur be-

grenzte Aufmerksamkeit schenken. Des Weiteren vergleiche ich verschiedene Modelle des

maschinellen Lernens zur Vorhersage der Aktienrenditen von Schwellenländern. Ich belege,

dass die Berücksichtigung von Nichtlinearitäten und Wechselwirkungen zu wirtschaftlich

und statistisch besseren Renditen führt als bei traditionellen linearen Modellen. Darüber

hinaus können erhebliche Nettorenditen erzielt werden, wenn Transaktionskosten und

Leerverkaufsbeschränkungen berücksichtigt werden und das Anlageuniversum auf große

Aktien beschränkt wird. Drittens untersuche ich den Verankerungseffekt als Erklärung

für die Unterreaktion der Anleger auf globale unternehmensspezifische Nachrichten. Der

Verankerungseffekt bezieht sich auf die Tendenz von Anlegern, an ihren ursprünglichen

Überzeugungen über eine Aktie festzuhalten, selbst wenn sie mit neuen Informationen kon-

frontiert werden. Die Ergebnisse zeigen hierbei, getrieben durch die Nähe zum 52-Wochen-

Hoch, dass Anleger ihre Ansichten über Aktien nicht anpassen, wenn neue Nachrichten

erscheinen. Des Weiteren zerlege ich in einer Regressionsanalysen die Aktienrenditen in

drei unabhängige Komponenten und zeigen, dass lediglich der Interaktionseffekt zwis-

chen den neuen Nachrichten und der Nähe zum 52-Wochen-Hoch mit einer signifikanten

risikobereinigten Rendite verbunden ist.
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0 Introduction

The movement of asset prices is a complex and dynamic process that reflects a wide

range of forward-looking information. Understanding how information is incorporated

into asset prices and the factors influencing information diffusion and mispricing is crucial

for investors, regulators, and policymakers in making informed decisions. It is essential to

ensure that markets function efficiently, investors make informed decisions, and regulators

and policymakers can protect investors and maintain market integrity.

Over the years, researchers have devoted significant attention to understanding how

information is incorporated into asset prices. The efficient market hypothesis asserts

that prices reflect all available information immediately and that any new information is

instantly reflected in asset prices (Fama, 1970). However, this view has been challenged

by studies showing that information diffusion in asset prices can be slow, resulting in

the mispricing of underlying assets (Hong and Stein, 1999). The concept of information

is complex and multifaceted, and it can be of various kinds, come from various sources,

and vary among levels. Information can be public or private, firm-specific or market-

wide, explicit or implicit, and originate at the firm level or among economically linked

firms. Accurately assessing and incorporating information is crucial to making sound

investment decisions and ensuring market efficiency. Different explanations exist for the

slow diffusion of information resulting in the mispricing of the underlying asset. On the

one hand, frictions in the market can prevent arbitrage from fully eliminating mispricing.

These frictions can include transaction costs, liquidity constraints, and other barriers

to the rapid and efficient transfer of assets between buyers and sellers. On the other

hand, behavioral biases can also impact the processing of information and the resulting

mispricing of assets. For instance, limited attention to information arrival or the source of

information, the anchoring on previous prices, and the missing awareness of the interaction

3



Chapter 0. Introduction

between information components can influence how investors process new information.

This dissertation consists of three essays examining empirical asset pricing research

questions. In the first essay, I study the slow diffusion of firm-specific news, market news,

and noise from fundamentally related firms into the focal firms’ stock prices. In the second

essay, I compare various machine learning models to predict the cross-section of emerging

market stock returns. In the third essay, I investigate how the anchoring bias distorts

investors’ belief updating process after the arrival of global firm-specific news.

0.1 Research questions

In each essay, I utilize a specific methodology and data set to examine the respective

research question. I outline the three research questions and designs in the following

subsections.

0.1.1 What Diffuses in Stock Prices? The Roles of News

and Noise in Global Networks

Understanding what drives the diffusion of information among fundamentally linked firms

is crucial to get a better sense of the behavior of investors and how they process infor-

mation. While neoclassic theory states that markets should be informationally efficient

and incorporate all available information about future values, the slow information diffu-

sion among firms presents contrary evidence. A behavioral explanation of this empirical

artifact is that investors have limited access to a scarce cognitive resource—attention—

which limits investors in their information processing capabilities. This results in partial

processing of a firm’s publicly available and relevant information environment leading to

a delayed stock return reaction. This limited attention and, therefore, limited processing

capabilities cause a categorial-learning behavior that lets investors rather digest market

and sector-wide information than firm-specific information.

My sample for the empirical analysis covers the period from January 1992 to December

2021 and is determined by the availability of the international stock market and analyst

coverage data. The underlying sample consists of 42,789 stocks from 49 equity markets. I
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limit myself to countries included in the MSCI Developed or Emerging Markets Index in

the respective year and stocks linked to at least one other stock. For non-U.S. countries,

the stock market data is from Refinitiv Datastream, and the accounting data is retrieved

from Refinitiv Worldscope. In the case of U.S. stocks, data is obtained from the Center

for Research on Security Prices (CRSP) and the Compustat database. Further, I include

analyst-related data from Institutional Brokers’ Estimate System (I/B/E/S) and institu-

tional ownership data from the FactSet Ownership database. The final sample consists of

3,901,237 stock-month observations.

I investigate the relation between the slow diffusion of different information compo-

nents from linked firms and the reaction of the focal firms’ stock prices. I decompose a

firm’s stock return into its firm-specific news, market news, and noise component using a

structural vector auto-regression to determine the different information components. To

estimate the slow information diffusion, I further aggregate the stock information com-

ponents into three different spillover measures. I use portfolio sorts and cross-sectional

regressions to determine which spillover component affects stock returns, how long it takes

till they fully diffuse into a firm’s stock price, and what causes the slow diffusion?

I present robust evidence that firm-specific news is the key driver of information diffusion

across fundamentally linked firms. The cross-sectional return difference between firms

exposed to negative news from linked firms and those exposed to positive news amounts

to approximately 7% per year. For large firms, the firm-specific news diffuses into the

stock price on average within one month, whereas market news is directly incorporated.

When looking at small firms, the noise component and the market news are predictive for

one month, while the firm-specific news takes about three months to be fully incorporated

into the stock price. I further prove that investors underreact to firm-specific news because

of limited attention. The results imply that investors can differentiate between news and

noise and further rather process market than firm-specific news, which is consistent with

categorical learning behavior.
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0.1.2 Machine Learning and the Cross-Section of Emerging

Market Stock Returns

Machine learning algorithms have been available for a long time. However, due to increased

computing power and data availability, decreased data storage costs, and algorithmic

innovations in recent years, machine learning methods have seen increasing popularity in

research fields such as economics, finance, and accounting. This paper compares various

machine learning models to predict the cross-section of emerging market stock returns.

More specifically, I analyze the predictive power of nine algorithms: ordinary least squares

regression and elastic net as examples for traditional linear models; tree-based models

such gradient boosted regression trees and random forest; and neural networks with one

to five layers. Furthermore, I investigate the performance of an ensemble comprising the

five different neural networks and an ensemble of methods that allow for non-linearities

and interactions, i.e., the two tree-based models and the ensemble of neural networks.

The sample comprises data from emerging stock markets as classified by Morgan Stanley

Capital International (MSCI). The accounting data is from Refinitiv Worldscope, and

the stock market data is from Refinitiv Datastream. The sample period starts in July

1995 and ends in December 2021. The result is a comprehensive dataset spanning 15.152

unique stocks from 32 emerging market countries with more than 1.42 million stock-month

observations and the 36 firm-level characteristics falling into categories such as value, past

returns, investment, profitability, intangibles, and trading frictions.

This paper compares various machine learning models to predict the cross-section of

emerging market stock returns. More specifically, I analyze the predictive power of nine

algorithms: ordinary least squares regression and elastic net as examples for traditional

linear models; tree-based models such gradient boosted regression trees and random forest;

and neural networks with one to five layers. Furthermore, I investigate the performance

of an ensemble comprising the five different neural networks and an ensemble of methods

that allow for non-linearities and interactions, i.e., the two tree-based models and the

ensemble of neural networks.

The main findings can be summarized as follows. First, I document that the different

prediction algorithms pick up similar characteristics. However, I observe that tree-based
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methods and neural networks also identify non-linearities and interactions of characteris-

tics. In contrast, linear methods are restricted to linear relationships and do not allow for

interactions among characteristics. Second, return forecasts based on machine learning

models lead to economically and statistically superior out-of-sample long-short returns

compared to traditional linear models. Furthermore, a factor model can only partly ex-

plain these long-short returns, and their alphas remain highly significant. These findings

are robust to several methodological choices and for emerging market subregions. Finally,

I document that machine learning forecasts beat linear models consistently over my sam-

ple period, and I cannot observe a decline in predictability over time. Third, developed

market long-short returns based on machine learning forecasts derived in the same way

as their emerging market counterparts cannot explain emerging market out-of-sample re-

turns. However, models estimated solely on developed markets data also predict emerging

market stock returns. These findings indicate that similar relationships between firm char-

acteristics and future stock returns exist for developed and emerging markets but that the

pricing of these characteristics is not fully integrated between developed and emerging

markets. Fourth, the high returns of the machine learning strategies in emerging markets

do not primarily stem from higher-risk months and do not revert quickly, suggesting that

an underreaction explanation is more likely than a risk-based explanation. Furthermore,

both linear and machine learning models show higher predictability for stocks associated

with higher limits to arbitrage. However, I also document that this effect is less pro-

nounced for machine learning forecasts than for linear regression forecasts, indicating that

the superiority of machine learning models in emerging markets does not stem from limits

to arbitrage. Finally, accounting for transaction costs, short-selling constraints, and limit-

ing my investment universe to big stocks, I document that machine learning-based return

forecasts can lead to significant net outperformance over the market and net alphas, at

least when efficient trading rules are applied.
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0.1.3 Anchoring and Global Underreaction to Firm-Specific

News

Investor underreaction to the arrival of news has been a long-standing topic in the finance

literature. A large body of empirical and theoretical evidence argues that firms’ stock

prices respond slowly due to investors’ behavioral biases. Theoretical literature often

suggests that investors’ limited attention results in underreaction to the news. At the

same time, empirical evidence supports this limited attention hypothesis by showing that

firms’ stock prices respond slowly to the arrival of new information. I aim to test a novel

psychological explanation, the anchoring effect, as an additional explanation for investor

underreaction to global firm-specific news measured through the nearness to the 52-week

high price. The anchoring effect refers to the tendency of investors to stick to their initial

beliefs about a stock, even when facing new information. This psychological barrier can

be enforced when investors use the 52-week high as an anchor when making investment

decisions. For example, investors influenced by the anchoring effect will not fully adjust

their beliefs if the firm experiences the arrival of positive news (negative news) and if the

stock price is close to (far from) the 52-week high, leading to a slow stock price response.

My sample for the empirical analysis covers the period from January 2004 to December

2021 and is determined by the broad availability of firm-specific news data. The under-

lying sample consists of 24,337 stocks from 23 equity markets. I limit myself to countries

included in the MSCI Developed Markets Index in the respective year and stocks experi-

encing a minimum of one firm-specific news event in the previous month. The U.S. and

international equities analyses are based on a global sample comprising stock market data

from Refinitiv Datastream and accounting data from Worldscope. To combine the stock

market data with the firm-specific news, I follow a multi-step procedure to find all corre-

sponding news articles for a corresponding firm on a trading day. Additionally, I include

analyst and institutional ownership data for the stock data. All analyst-related data is

collected from Institutional Brokers’ Estimate System (I/B/E/S), whereas the Institu-

tional ownership data is from the FactSet Ownership database. The final sample consists

of 1,417,250 stock-month observations.

The main objective is to investigate the impact of firm-specific news in conjunction with
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the proximity to the 52-week high on investor behavior. I begin by forming independent,

country-neutrally double-sorted quintile portfolios using the last month’s firm-specific news

return and the nearness to the 52-week high at the previous month-end as sorting criteria.

Afterward, I utilize a return decomposition methodology to disentangle the stock return

predictability into three components. The first component measures the pure firm-specific

news return, the second the pure effect resulting from the stock price nearness to its 52-

week high, and the third component the interaction effect between the firm-specific news

return and the nearness to its 52-week high.

The main findings can be summarized as follows. First, the interaction effect yields an

average Fama-French-Carhart (1997) four-factor alpha of 1.47% (t=4.67). In contrast, the

pure firm-specific news effect and pure 52-week high effect are insignificant, excluding the

interaction effects from the regression results in two positive and significant pure effects.

These results allow me to conclude that the investors’ underreaction to the firm-specific

news is partially explained by the anchoring bias induced by the nearness to the 52-week

high. Second, I investigate the role of a stock’s limits to arbitrage in causing mispricing.

My results provide evidence that the induced underreaction of investors is indeed driven

by firms with high limits to arbitrage. The effect exists among stocks that are smaller

in market capitalization, have lower institutional ownership or analyst coverage, have

higher idiosyncratic volatility, and have higher transaction costs. Third, Restricting the

company-specific news solely to earnings announcement days decreases the risk-adjusted

return of the interaction effect, causing it to lose significance. However, when these days

are excluded, the global four-factor alpha increases to 1.68% (t=5.17) per month. The

interaction effect in the U.S. stock market, which is the most efficient, becomes insignif-

icant when a slower information diffusion process is modeled. Moreover, a positive and

significant risk-adjusted return is observed globally after eliminating macroeconomic an-

nouncements and the predictable component from daily returns. Lastly, I explore how

the nearness to the 52-week high distorts the belief-updating process leading to an under-

reaction. I use analyst recommendation changes as a direct proxy to observe the belief

updating process in financial markets. My results suggest that analysts are indeed in-

fluenced by firm-specific news as they change their recommendations after the arrival of

news. However, the upgrade (downgrade) is less likely if positive (negative) news arrives
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at the firm and the underlying stock price is near (far from) the 52-week high. The find-

ings provide evidence for the hypothesis that the belief updating process is distorted and

influenced by stock prices’ nearness to the 52-week high and the arrival of firm-specific

news.

0.2 Contributions

The three essays of this dissertation contribute to multiple strands of the literature. I

briefly summarize the main contribution of each essay.

In the first essay, I investigate the slow diffusion of firm-specific news, market news,

and noise into the focal firms’ stock prices. The firm-specific news component is the

key driver behind the slow information diffusion around the globe. Firms exposed to

most negative firm-specific news from linked firms earn approximately 7% more per year

than firms exposed to positive firm-specific news. For large firms, the firm-specific news

diffuses into the stock price on average within one month, whereas market news is directly

incorporated. When looking at small firms, the noise component and the market news

are predictive for one month, while firm-specific news takes about three months to diffuse

into the stock price fully. The results imply that investors can differentiate between news

and noise and rather process market than firm-specific news, consistent with categorical

learning behavior. Further, the underreaction to firm-specific news is driven by investors’

limited attention.

The findings contribute to the literature on the role of slow and gradual information dif-

fusion among fundamentally linked firms for asset prices (Moskowitz and Grinblatt, 1999;

Menzly and Ozbas, 2010; Cohen and Lou, 2012; Lee et al., 2019; Parsons, Sabbatucci and

Titman, 2020; Ali and Hirshleifer, 2020). Disentangling firm-specific news, market news,

and noise from each other allows for unveiling the component of the market inefficiency

causing the cross-firm predictability (Burt and Hrdlicka, 2021). Further, I account for the

investors’ categorical learning behavior, which sheds light on the mechanism leading to

the slow information diffusion among fundamentally linked firms (Peng and Xiong, 2006;

Huang, Lin and Xiang, 2021; Huang et al., 2022). Lastly, the global sample contributes

to understanding stock price formation (Jacobs and Müller, 2020).
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In the second essay, I compare various machine learning models to predict the cross-

section of emerging market stock returns. I analyze the predictive power of nine algo-

rithms. The algorithms cover traditional linear models, tree-based models, and neural

networks. Furthermore, I include two ensemble methods that allow for non-linearities

and interactions. I train the algorithms using 36 firm-level characteristics for 32 emerg-

ing market countries from July 1995 to December 2021, while the 20-year out-of-sample

period is from January 2002 to December 2021. I document that return forecasts from

machine learning methods lead to superior out-of-sample returns in emerging markets.

Interestingly, investors already applying such a strategy in developed markets seem to

enjoy potential diversification benefits when applying them also in emerging markets. I

further investigate the source of the predictability and conclude that it rather stems from

mispricing than higher risk. Still, the superiority of machine learning models in emerging

markets does not stem from limits to arbitrage. Finally, significant net returns can be

achieved when accounting for transaction costs, short-selling constraints, and limiting my

investment universe to big stocks only.

This essay contributes to the literature in at least three aspects. I contribute to the

rapidly expanding literature on predicting the cross-section of stock returns with machine

learning methods. To this point, there exists only evidence that more complex machine

learning models are superior to linear models in developed markets (Rasekhschaffe and

Jones, 2019; Freyberger, Neuhierl and Weber, 2020; Gu, Kelly and Xiu, 2020; Tobek and

Hronec, 2020; Drobetz and Otto, 2021). Under the hypothesis that developed markets are

integrated, the same risk factors should apply to these markets. Therefore, similar results

within developed markets are unsurprising, and emerging markets provide an attractive

alternative for out-of-sample tests in independent and new samples. Further, I add to the

literature on the drivers of emerging market stock returns and market integration (Bekaert

and Harvey, 1995; Harvey, 1995). The machine learning models allow me to consider

non-linearities and interactions next to linear relationships. Lastly, I contribute to un-

derstanding the source of return predictability from machine learning forecasts (Avramov,

Cheng and Metzker, 2022; Leung et al., 2021; Cakici et al., 2022a). I provide evidence

that machine learning models show higher predictability for stocks associated with higher

limits to arbitrage. A positive and significant outperformance can be achieved even when
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accounting for transaction costs, short-selling constraints, and limiting the investment

universe to big stocks only.

In the third essay, I examine investor underreaction to global firm-specific news and

seek to test the anchoring effect as an explanation. The anchoring effect refers to the

tendency of investors to cling to their initial beliefs even when facing new information,

as reinforced by their use of the 52-week high as an anchor. The paper tests the central

hypothesis that the anchoring effect distorts the investor’s belief updating process after

the arrival of firm-specific news, resulting in the predictability of future stock returns.

The sample for the empirical analysis covers stocks from developed markets across 23

countries from January 2004 to December 2021. Using a novel return decomposition

methodology allows me to conclude that the investors’ underreaction to the firm-specific

news is partially explained by the anchoring bias induced by the nearness to the 52-week

high. Furthermore, I provide evidence that the stock’s limits to arbitrage are causing the

mispricing and inducing investors’ underreaction. In addition, I show that the anchoring

bias effect on investors’ underreaction over the subsequent month is driven by unscheduled,

firm-specific news. Finally, I show that analysts react to firm-specific news but are less

likely to change their recommendation if the stock price is near the 52-week high.

This study adds to understanding investor underreaction in an international asset pric-

ing context in at least four aspects. First, I contribute to a better understanding investor

underreaction by explicitly using firm-specific news (Jiang, Li and Wang, 2021) instead

of proxying news with economically-linked, past-month firm momentum (Huang, Lin and

Xiang, 2021). I provide insights into investor underreaction by showing that limits to

arbitrage amplify the underreaction potential. Second, I reveal a crucial economic mecha-

nism behind investor underreaction in global equity markets. I rely on the anchoring and

adjustment hypothesis by showing that professional forecasters (Campbell and Sharpe,

2009; Cen, Hilary and Wei, 2013) include the firm-specific news in their recommendation

but are affected by the anchoring bias if the stock is near (far from) the 52-week high and

positive (negative) news arrives. Third, I show that unscheduled, firm-specific news drives

the anchoring bias effect on investors’ underreaction over the subsequent month. Empir-

ical evidence suggests that investors’ underreaction is driven by scheduled news (Birru,

2013; George, Hwang and Li, 2014). My results on the investors’ distorted belief updating
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process provide strong evidence of a longer-dated, monthly investor underreaction to un-

scheduled news, indicating that unscheduled news items require more time to be reflected

within stock prices. Fourth, I contribute to the literature on empirical asset pricing for

global equity markets by using an international sample and extended metrics. Most litera-

ture on news-induced momentum (Chan, 2003; Gutierrez and Kelly, 2008; Hillert, Jacobs

and Müller, 2014; Jiang, Li and Wang, 2021) concentrates solely on the U.S. stock market.

Therefore, I add to the ongoing discussion about the investor underreaction hypothesis

and its economic channels by providing non-U.S. out-of-sample evidence (Hou, Xue and

Zhang, 2018) for the anchoring bias and investor underreaction to firm-specific news.

0.3 Outline

The remainder of this dissertation is structured as follows. In Chapter 1, I analyze the

relation between the slow diffusion of information components from linked firms and the

reaction of the focal firms’ stock prices. In Chapter 2, I compare machine learning models

to predict the cross-section of emerging market stock returns. In Chapter 3, I study how

the anchoring bias distorts investors’ belief updating process, leading to an underreaction

to global firm-specific news. Finally, in Chapter 4, I briefly summarize the main results

and highlight their contributions and implications.
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Abstract

This paper studies how market news, firm-specific news, and noise diffuse among firms and

how they affect stock returns in global networks. Market and firm-specific news as well as

noise, are estimated through a structural vector auto-regression and the global network is

based on analyst co-coverage. I show that investors show a categorical learning behavior

by being able to differentiate between news and noise and rather processing market wide

than firm-specific news. It takes up to 3 months for investors to adjust the prices of stocks

to the information contained in the firm-specific news component. This underreaction of

investors is driven by limited attention to the diffusing firm-specific news.
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Chapter 1. What Diffuses in Stock Prices? The Roles of News and Noise in Global Networks

1.1 Introduction1

Having an understanding of what drives the diffusion of information among fundamentally

linked firms is crucial to get a better sense of the behavior of investors and how they pro-

cess information.2 Recent empirical work mostly focuses on identifying new fundamental

links (Moskowitz and Grinblatt, 1999; Hou, 2007; Cohen and Lou, 2012; Cohen and Frazz-

ini, 2008; Menzly and Ozbas, 2010; Hoberg and Phillips, 2018; Lee et al., 2019; Ali and

Hirshleifer, 2020; Parsons, Sabbatucci and Titman, 2020; Ying, 2020; Lee et al., 2022),

or the psychological explanation of the delayed price response (Huang, Lin and Xiang,

2021; Huang et al., 2022). However, those literature streams fail to identify which type of

information nor how fast the information diffuses (Burt and Hrdlicka, 2021).

While neoclassic theory states that markets should be informational efficient and there-

fore incorporate all available information about future values (Fama, 1970), the slow in-

formation diffusion among firms presents contrary evidence to this theory. A behavioral

explanation of this empirical artifact is that investors have limited access to a scarce cog-

nitive resource—attention (Kahneman, 1973)—which limits investors in their information

processing capabilities (Simon, 1955; Jensen and Heckling, 1995). This results in partial

processing of a firm’s publicly available and relevant information environment leading to

a delayed stock return reaction (Hirshleifer and Teoh, 2003; Hung, Li and Wang, 2015).

This limited attention and, therefore, limited processing capabilities cause a categorial-

learning behavior that lets investors rather digest market and sector-wide information

than firm-specific information (Peng and Xiong, 2006).

This paper investigates the relation between the slow diffusion of different information

components and focal firms’ prices and derives insights on the following questions. Which

return components diffuse among fundamentally linked firms? How long does the diffusion

take place? What causes the slow diffusion? I utilize the return decomposition model of

Brogaard et al. (2022), which allows me to decompose a stock return into firm-specific

news, market news, and a noise component. To model information flow, I rely on the

1 I thank David Blitz, Matthias Hanauer, Christoph Kaserer, Lisa Knauer, Michael Weber, Sebastian
Müller, Cameron Peng, Laurens Swinkels, Milan Vidojevic, Florian Weigert, Steffen Windmüller, and
the conference and seminar participants at the 36th International Conference of the French Finance
Association (AFFI), TUM School of Management, and Robeco for helpful comments.

2 This chapter is based on Kalsbach (2023).
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expertise of analysts (Lee and So, 2017) and use the individual analyst’s firm co-coverage

to identify the link between firms (Ali and Hirshleifer, 2020; Kaustia and Rantala, 2020).

I use portfolio sorts and Fama and MacBeth (1973) regressions to examine which, how,

and why information diffuses into a firm’s stock prices. I present robust evidence that

firm-specific news is the key driver of information diffusion across fundamentally linked

firms. The cross-sectional return difference between firms exposed to negative news from

linked firms and those with exposure to positive news amounts to approximately 7%

per year. For large firms, the firm-specific news diffuses into the stock price on average

within one month, whereas market news is directly incorporated. When looking at small

firms, the noise component and the market news are predictive for one month, while the

firm-specific news takes about 3 months to be fully incorporated into the stock price. I

further provide evidence that investors underreact to firm-specific news because of limited

attention. The results imply that investors can differentiate between news and noise and

further rather process market than firm-specific news, which is consistent with categorical

learning behavior.

The closest paper to my research are Burt and Hrdlicka (2021), Huang, Lin and Xiang

(2021), and Huang et al. (2022). Burt and Hrdlicka (2021) decomposes the diffusing return

into an idiosyncratic and predictable return component. The predictable component is

the driver for long-term, cross-firm predictability, which indicates that slow information

diffusion is not the only source of cross-firm predictability. Huang, Lin and Xiang (2021)

argue that investors do not update their beliefs about a firm due to the anchoring effect

causing an underreaction to the diffusing news. Huang et al. (2022) show that investors

underreact to continuous information while discrete information is quickly absorbed into

price. All three papers focus on a U.S.-only setting, while I use a network of global firms.

This paper contributes to the literature on momentum spillovers originating from funda-

mentally related firms by providing an understanding of the role of news diffusion among

fundamentally linked firms for asset prices. I am the first to study the diffusion of news

among fundamentally linked firms in a large sample covering both developed as well as

emerging markets. The final sample contains 30 years of data on 42,789 firms that are

located in 49 countries. Further, I contribute to the literature by differentiating between

firm-specific news, market news and noise using the return decomposition model of Bro-
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gaard et al. (2022). These individual components allow me to uncover the return compo-

nent causing the cross-firm predictability. To my knowledge, I am the first to combine the

categorical learning behavior by Peng and Xiong (2006) with the diffusion of market news

and firm-specific news among firms and further relate this slow information diffusion to

investors’ underreaction due to limited attention.

The remainder of this work is structured as follows: Section 1.2 reviews related liter-

ature. Section 1.3 describes the underlying return decomposition into firm-specific news,

market news, and noise and the construction of the analyst co-coverage network. Sec-

tion 1.4 introduces the dataset. Section presents evidence from portfolio sorts and cross-

sectional regression and relates the news diffusion to underreaction and limited attention.

Section 1.6 concludes.

1.2 Related literature

1.2.1 Information diffusion in networks

The first strand of literature related to this paper focuses on the slow and gradual infor-

mation diffusion between fundamentally linked firms. The first set of studies focuses on

the slow adjustment of stock prices to industry information (Moskowitz and Grinblatt,

1999; Ramnath, 2002; Hong, Torous and Valkanov, 2007; Hou, 2007; Hoberg and Phillips,

2018). Further, less complex firms adjust their prices faster to this industry-wide infor-

mation (Cohen and Lou, 2012). Other sources of relevant industry information are the

industries connected through the supply chain (Menzly and Ozbas, 2010), and industries

that occur along complementarity networks (Lee et al., 2022). Besides the cross-industry

supply chains, direct firm-to-firm costumer-supplier relationships are crucial when study-

ing how information diffuses (Cohen and Frazzini, 2008). Another way to identify firms

with exposure to new information is the usage of related technologies (Lee et al., 2019),

companies with headquarters located in the same city (Parsons, Sabbatucci and Titman,

2020), and common institutional ownership (Ying, 2020). A network that unifies most

of these information channels is based on analyst co-coverage (Ali and Hirshleifer, 2020),

which I use as the underlying network in this paper to study which news is diffusing among
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firms. In addition to the existing literature, this paper takes a global view on the role

of information diffusion among fundamentally linked firms for asset returns by combin-

ing global individual analyst coverage with international stock market data. This novel

dataset allows me to model the diffusion of information within and across 38 industries as

well as within and across 49 countries.

1.2.2 News decomposition measures

The second strand of literature related to this paper explores the various news decompo-

sition measures proposed in the literature. Prominent news measures are cash-flow and

discount-rate news which can be estimated using different methodologies like the vector

auto-regression (Campbell and Shiller, 1988; Campbell, 1991; Vuolteenaho, 2002), implied

cost of capital (Chen, Da and Zhao, 2013), or direct estimation of the cash-flow news (Eas-

ton and Monahan, 2005; Da and Warachka, 2009; Da, Liu and Schaumburg, 2014). An

alternative measure decomposes the return into market-wide news and firm-specific news

using regressions of stock returns on market return (Roll, 1988; Morck, Yeung and Yu,

2000). Another measure differentiates return into the news- and non-news-driven com-

ponents Jiang, Li and Wang (2021). Brogaard et al. (2022) propose an alternative that

allows distinguishing between market news, firm-specific news, and noise. While Brogaard

et al. (2022) tries to understand better the roles of information and noise for the focal firm

itself, I add to this literature by testing the diffusion of market news, firm-specific news,

and noise in an empirical asset pricing context. I provide evidence that firm-specific news

is the actual return component that diffuses slowly among fundamentally linked firms.

1.2.3 Underreaction and limited attention

The third strand focuses on the growing literature on investors’ limited attention. Tradi-

tional asset pricing models often fail to explain the existence of certain profitable trading

strategies. These strategies often arise due to the recognition of information caused by

limited attention. Investors cannot fully process all information driven by the scarcity of

attention (Kahneman, 1973). Therefore investors avoid stocks they are unfamiliar with

(Merton, 1987). Processing the information signals of a stock is not a binary decision, as
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investors neglect publicly available accounting information in the case the expected cost

of processing outweighs the expected benefits (Hirshleifer and Teoh, 2003). Further, in-

vestor neglect information of the latest earning release (Hirshleifer, Lim and Teoh, 2011).

Due to their limited attention, investors further show a categorical learning behavior which

makes them prone to process market- and sector-wide than firm-specific information (Peng

and Xiong, 2006). Broad empirical literature also provides evidence on investors’ limited

attention. This behavioral bias influences investors’ trading behavior as they trade on

market-wide attention-grabbing events (Yuan, 2015), whereas only individual investors

are impacted by these events (Barber and Odean, 2008). On the other hand, institutional

investors can process complex information faster (Cohen and Frazzini, 2008). There exists

a variety of proxies that model the attention of investors, including trading volume and

down market periods (Hou, Xiong and Peng, 2009), media attention (Drake, Guest and

Twedt, 2014; Twedt, 2016), past return patterns (Huang et al., 2022), Fridays (DellaV-

igna and Polle, 2009), non-trading hours (Francis, Pagach and Stephan, 1992), analyst

coverage (Hong, Torous and Valkanov, 2007), and many more. Due to limited attention,

investors are not able to fully process the complex information environment (Chen, Da

and Zhao, 2013), resulting in the situation that complex relations between firms might

be overlooked (Kovacs, 2016). I contribute to this literature by providing empirical evi-

dence on the categorical-learning behavior and by testing investors’ limited attention when

firm-specific news diffuses.

1.3 Empirical measurement

1.3.1 News and noise

The stock price of a firm is driven by various components. The measure of Brogaard et al.

(2022) explicitly differentiates between market-wide information, firm-specific information,

and a noise component. It differs from other proposed measures in the literature by not

requiring data that varies on annual frequency (Campbell and Shiller, 1988; Campbell,

1991; Vuolteenaho, 2002), using biased analyst estimates (Easton and Monahan, 2005;

Da and Warachka, 2009; Da, Liu and Schaumburg, 2014; Chen, Da and Zhao, 2013),
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leaving out the noise component (Roll, 1988; Morck, Yeung and Yu, 2000), or relying on

third-party data (Jiang, Li and Wang, 2021).

In the first step, Brogaard et al. (2022) divide the stock return into the discount rate

(µ), new information about the stock’s fundamentals which follow a random walk (wt),

and a pricing error (∆st).3 The new information is then further categorized in market-

wide information (θrmεrm,t), firm-specific private information revealed through trading

(θxεx,t), and firm-specific public information not captured by trading (θrεr,t) as described

in Equation (1.1).

rt = µ + wt + ∆st

wt = θrmεrm,t + θxεx,t + θrεr,t

(1.1)

To estimate the individual components of Equation (1.1), a structural vector auto-

regression (VAR) with five lags to allow for a full week of serial correlation and lagged

effects is applied in Equation (1.2).4 It includes an individual regression for the market

return (rm,t), the signed dollar volume of trading in the given stock (xt )5, and the stock

return (rt). I estimate the VAR on a monthly rolling base requiring a minimum of 20 daily

observations while the stock needs to trade in the last 12 months.

rm,t = a0 +
5∑

l=1
a1,lrm,t−l +

5∑
l=1

a2,lxt−l +
5∑

l=1
a3,lrt−l + εrm,t

xt = b0 +
5∑

l=1
b1,lrm,t−l +

5∑
l=1

b2,lxt−l +
5∑

l=1
b3,lrt−l + εx,t

rt = c0 +
5∑

l=1
c1,lrm,t−l +

5∑
l=1

c2,lxt−l +
5∑

l=1
c3,lrt−l + εr,t

(1.2)

Next, the permanent long-run effects (θrm , θx, θr) have to be estimated.6 They are
3 Note: The drift in the efficient price (µ) is a constant in this model. New information about a stock is

unpredictable; therefore, it holds Et−1[wt] = 0.
4 According to Brogaard et al. (2022), the lag structure of the VAR accounts for short-term momentum

as well as reversals, persistence in order flow, first-order serial correlation in market returns due to
non-synchronous trading and delayed stock-price reactions to market-wide information.

5 Following Pástor and Stambaugh (2003), this proxy has minimal data requirements, whereby positive
values indicate a net buying and negative values a net selling behavior.

6 θrm is estimated through the unit shock of εrm,t = 1, θx follows by unit shock εx,t = 1, and θr is derived
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inferred from the cumulative impulse response function of the returns (rt) at t = 15 using

the respective unit shock. This is equal to Brogaard et al. (2022) and allows the return to

stabilize after the arrival of a shock.

To derive the firm-specific, the market information and the noise component, I aggregate

the individual daily residuum in the structural VAR (εt) and the respective long-run

effects (θ) of the last month using the model as outlined in Equation (1.3). The return

attributable to the noise component equals the realized return that is not attributable to

either information or the discount rate.

FSt = ((
∏
d∈t

1 + (θxεx,d) +
∏
d∈t

1 + (θrεr,d)) − 1) × 100

Mktt = ((
∏
d∈t

1 + (θrmεrm,d)) − 1) × 100

Noiset = ((
∏
d∈t

1 + (rd − a0 − θxεx,d − θrεr,d − θrmεrm,d)) − 1) × 100

(1.3)

I do not differentiate between private and public firm-specific information as Peng and

Xiong (2006) do not include such differentiation in their model.

1.3.2 Fundamentally linked firms

A growing body of empirical literature explores the gradual diffusion of information be-

tween fundamentally linked firms. Ali and Hirshleifer (2020) provide evidence that a

network based on analyst co-coverage is superior to previous studies using supply-chain

relationships (Cohen and Frazzini, 2008; Menzly and Ozbas, 2010), industry affiliation

(Moskowitz and Grinblatt, 1999; Hoberg and Phillips, 2018; Cohen and Lou, 2012), tech-

nology expertise (Lee et al., 2019), or geographic location (Parsons, Sabbatucci and Tit-

man, 2020) to model the link between firms. Ali and Hirshleifer (2020) specify two firms

as fundamentally linked if an analyst has issued an earnings estimate on either firm within

the last twelve months. They define the fundamentally linked firms’ spillover (rF L) on the

focal firm as the weighted returns of the linked firms (J) by the number of unique analysts

by setting εr,t = 1.
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with an estimate (nj) as described in Equation (1.4).

rF L = 1∑J
j=1 nj

J∑
j=1

nj × rj (1.4)

The authors show that fundamentally linked firms can predict future returns as analysts

and investors react with delay to new information. There are two reasons why this defini-

tion of fundamentally linked firms is a good proxy for information spillover. First, analysts

gather firm environment-related information such as firm-specific news, information about

competitors, or customer-supplier relationships to form earning-per-share estimates. Es-

timates from the same analyst can cover firms from the same information environment

(Lee and So, 2017; Kaustia and Rantala, 2020) with a high probability; hence there is

an information spillover. Second, the two firms become more fundamentally linked when

more analysts provide estimates for both firms (Ali and Hirshleifer, 2020).

To account for the different return components defined by Brogaard et al. (2022), I

decompose the return from fundamentally linked firms’ spillover into its firm-specific news

(FSF L), market news (MktF L) and noise (NoiseF L) components, using the same method-

ology.

1.4 Data and descriptive statistics

1.4.1 Stock data and controls

The data I analyze in this paper is collected from various sources. The main sample con-

sists of 42,789 stocks for 49 equity markets, covering the period from January 1992 to

December 2021. Countries are only part of the sample in years in which they are included

in the MSCI Developed or Emerging Markets Index.7 The sample covers the following

countries: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, Czechia,

Denmark, Egypt, Finland, France, Germany, Greece, Hong Kong, India, Indonesia, Ire-

land, Israel, Italy, Japan, Jordan, Korea, Kuwait, Malaysia, Mexico, Morocco, Nether-

lands, New Zealand, Norway, Pakistan, Philippines, Poland, Portugal, Russia, Saudi Ara-

bia, Singapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Taiwan, Thailand,
7 See https://www.msci.com/market-classification for details.
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Turkey, UAE, United Kingdom, and the United States.

For non-U.S. countries, the accounting data is retrieved from Refinitiv Worldscope, and

the stock market data is from Refinitiv Datastream. I apply several static and dynamic

screens to ensure that the sample comprises exclusively common stocks and provides the

highest data quality. First, stocks are identified using Refinitiv Datastream constituent

lists, particularly Refinitiv Worldscope lists, research lists, and - to eliminate survivorship

bias - dead lists. Second, following Ince and Porter (2006), Griffin, Kelly and Nardari

(2010), Schmidt et al. (2017), and Hanauer (2020), non-common equity stocks are elimi-

nated through generic and country-specific static screens. Furthermore, several dynamic

screens are applied to stock returns and prices to exclude erroneous and illiquid observa-

tions. Appendix A provides a detailed description of the utilized constituent lists and the

associated static and dynamic screens.

The U.S. stock market data comes from the Center for Research on Security Prices

(CRSP), whereas accounting data is retrieved from Compustat. I include all common

equity stocks traded on NYSE, NYSE MKT (formerly: AMEX), or NASDAQ. I exclude

all stocks with a CRSP share code (SHRCD) different than 10 or 11. 8

Additionally, I include analyst and institutional ownership data for the stock data. All

analyst related data is collected from Institutional Brokers’ Estimate System (I/B/E/S).

To identify fundamentally linked firms, I use the unadjusted detail file from I/B/E/S,

which contains all estimates a permanently identified analyst made from January 1991 to

December 2021. For analyst coverage, I utilize the unadjusted analyst consensus earnings

estimates.9 Institutional ownership data is from the FactSet Ownership database (formerly

LionShares).

Furthermore, I require stocks to have market capitalization data for the previous month

and valid news and noise spillover. Finally, a country is only part of the final sample in

those months for which at least 30 stock-month observations are available after filters.10

I end up with a total of 3,901,237 stock-month observations. Table 1.1 shows the country

descriptive statistics for the stocks in the final sample.

8 For a more detailed description of the share codes, see https://wrds-www.wharton.upenn.edu/
data-dictionary/form metadata/crsp a stock msf identifyinginformation/shrcd/.

9 The earnings forecasts are based on the I/B/E/S unadjusted files, as they are not affected by share splits
after their publication date, which could distort the results (Diether, Malloy and Scherbina, 2002).

10 I thereby ensure that each portfolio contains more than five stocks on average.
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Table 1.1
Summary statistics by country

The table presents summary statistics for the 49 countries of our global stock sample. Panel A shows
the global summuary, Panel B covers all developed markets whereas Panel C covers all emerging markets.
Column 1 reports the country names, and Columns 2, 3, 4, and 5 report the total, minimum, mean, and
maximum number of firms per country. Columns 6 and 7 state the average mean and median size per
country-month. Column 8 shows the average total size per country-month and column 9 reports these
values in percentage of the respective total across countries. Size is measured as market capitalization
in million USD. The last columns report the actual start date in which each country is included in our
sample. The sample consists all stocks for the period between January 1992 and December 2021, with
minium one analyst co-covering the stocks, and minimum 30 valid country-month observations.

Number of firms Size

Total Min Mean Max Mean Median Total %

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Panel A: Global

Global 42789 4613 10831 13829 3024 455 35041841 100.0

Panel B: Developed Markets

Australia 1507 62 324 508 1870 267 685524 1.79
Austria 134 30 40 67 1937 1074 73960 0.18
Belgium 173 43 72 95 3167 537 234240 0.57
Canada 2085 169 463 706 1736 237 896202 2.42
Denmark 210 36 68 105 2891 766 168228 0.40
Finland 227 30 90 129 2045 329 187960 0.44
France 1092 177 333 417 4012 338 1400390 4.06
Germany 1015 119 289 421 3585 302 1065504 3.19
Hong Kong 593 61 174 328 4032 957 712381 1.90
Ireland 52 30 31 34 1737 188 55113 0.02
Israel 85 30 36 53 2947 1127 107253 0.06
Italy 527 31 153 212 2951 472 465782 1.33
Japan 4248 367 1297 2255 2684 690 3317449 11.05
Netherlands 243 56 91 144 4341 783 348111 1.07
New Zealand 150 30 51 71 743 302 40380 0.08
Norway 390 30 100 147 1469 224 162807 0.37
Portugal 76 30 33 39 1378 387 45942 0.05
Singapore 583 45 123 209 1767 342 209707 0.62
Spain 239 76 92 111 5298 1244 482634 1.42
Sweden 700 38 182 341 1683 236 336640 0.90
Switzerland 297 76 136 164 5973 787 863168 2.33
United Kingdom 3034 379 750 985 2819 258 2173528 7.13
United States 12367 2596 3282 4457 4907 617 15241280 45.50

DM 17660 1812 4810 6080 2730 390 13770672 86.88
Continued on next page
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Table 1.1 continued

Number of firms Size

Total Min Mean Max Mean Median Total %

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Panel C: Emerging Markets

Argentina 57 30 33 43 793 220 26393 0.02
Brazil 188 30 95 116 4319 1403 398128 0.40
Chile 122 30 41 60 2611 1301 102754 0.21
China 3131 35 1058 1902 2945 1095 3524168 4.04
Czechia 54 30 39 44 257 68 10050 0.00
Egypt 97 30 45 61 972 473 40903 0.04
Greece 264 30 81 155 863 300 63437 0.17
India 1611 34 389 775 1753 396 857295 1.60
Indonesia 327 30 83 138 1639 494 159232 0.37
Jordan 201 40 104 156 272 41 26356 0.01
Korea 1857 59 326 688 1806 473 526332 1.27
Kuwait 32 30 30 30 2399 913 71980 0.00
Malaysia 842 67 213 306 927 233 205270 0.64
Mexico 154 31 51 69 3245 1338 170212 0.38
Morocco 81 30 42 63 1318 414 54924 0.05
Pakistan 112 30 48 68 686 340 33579 0.03
Philippines 152 30 51 72 1761 915 98685 0.19
Poland 371 30 91 186 1063 261 98793 0.16
Russia 149 32 61 80 8378 1815 505952 0.39
Saudi Arabia 118 30 74 89 7169 1826 545645 0.39
South Africa 416 43 110 190 2377 884 258570 0.75
Sri Lanka 77 30 42 54 241 134 10086 0.00
Taiwan 1376 43 344 739 1539 410 537575 1.20
Thailand 620 37 150 224 1031 281 175937 0.41
Turkey 291 32 91 196 1211 373 110395 0.28
UAE 62 30 35 41 4155 1533 147613 0.12

EM 12762 178 2739 5460 1690 463 6029888 13.12

Besides the different spillover variables, I construct a set of controls according to stan-

dard definitions in the literature. I use balance-sheet data from December in year t − 1

for the stock returns from July of year t to June of year t + 1 as in Fama and French

(1993). Following Lewellen and Nagel (2006), I calculate beta (Beta) as the sum of the

regression coefficients of daily excess returns on the local market excess return and one

lag of the local market excess return for the past 12 months. I require at least 126 obser-

vations for valid beta estimates, as in Welch (2020). Size (MVln) is a stock’s log market

capitalization at the end of the previous month and measured in USD, as in Fama and

French (1992). Book-to-market (BM) is the ratio of the book value of equity to the mar-

ket value of equity, following Rosenberg, Reid and Lanstein (1985) and Davis, Fama and
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French (2000). I define the book value of equity as common equity plus deferred taxes. If

no deferred taxes are given, the book value of equity equals common equity. The market

value of equity is as of December t − 1. Momentum (MOM) is the cumulative return

from month t − 12 to t − 2 as in Fama and French (1996). Short-term reversal (STREV )

is the lagged one-month return as in Jegadeesh (1990). Analyst coverage (ANA) is the

number of sell-side analysts forecasting annual firm earnings in each month t − 1 as in

Hong, Torous and Valkanov (2007). I calculate illiquidity (ILLIQ) according to Amihud

(2002). It is defined as the arithmetic mean for the past month of the absolute daily

return divided by the product of the end-of-day stock price and the daily trading volume.

Institutional ownership (OWNER) denotes the fraction of firm shares outstanding owned

by institutional investors end of the previous month as in Hirshleifer, Hsu and Li (2013).

To derive the risk-adjusted returns, I calculate the following six-factor returns: mar-

ket (RMRF ), size (SMB), value (HML), momentum (WML), and liquidity (LIQ). I

closely follow Fama and French (2017), Carhart (1997), Pástor and Stambaugh (2003),

and Jensen, Kelly and Pedersen (2021). In the case of the market, I define the market

factor as the value-weighted returns of all available stocks in excess of the risk-free rate.

For the remaining factors, I first assign stocks into different size groups (micro, small,

and large) separately for each country and month following Fama and French (2008, 2012,

2017). Large stocks are the biggest stocks that account for 90% of a country’s aggregated

market capitalization. Small stocks are defined as those stocks that comprise the next

7% of aggregated market capitalization (so that big and small stocks together account for

97% of the aggregated market size of a country). Microcaps comprise the remaining 3%.

Next, for each factor’s underlying characteristic, I sort each stock into its tercile using the

country-specific 30% and 70% percentile breakpoints based on large stocks in that country.

The underlying characteristics for each factor are MV for size, BM for value, MOM for

momentum, and ILLIQ for liquidity. Besides the size factor, each factor return is then

defined as the average of the big-high-tercile and small-high-tercile minus the average of

the big-low-tercile and small-low-tercile. In the case of the size factor, I subtract the

average of the three value terciles of the large stocks from the average of the respective

small stocks. For each of the corresponding portfolios, I define the portfolio return as the

value-weighted return using the market capitalization of each stock.
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1.4.2 Descriptive statistics

Table 1.2 reports the time-series averages of the number of observations, the minimum,

25th percentile, mean, median, 75th percentile, maximum, and standard deviation in the

cross-section.

In Panel A, I report the descriptive statistics of the three main variables of interest,

firms-specific and market news, and the noise component. The three key explanatory

variables all display a negative minimum and a positive maximum, pointing towards both

positive and negative spillovers for each information source. The average firm-specific

news return is -1.02, and the median is -0.90, indicating, on average, a negative firm-

specific news spillover. In the case of market news, the mean and median are close to

each other, with positive values of 1.54 and 1.52, respectively. Similar to the firm-specific

news, the average noise spillover is also negative but less pronounced, with a value of -0.24

and a median of -0.20. Panel B summarizes the stock-level characteristics of focal firms,

which I later use as controls. The average beta is close to 1, with a mean of 0.96 and a

median of 0.92. The median log market capitalization is 6.00, which is equal to a median

market capitalization of 403 million U.S. dollars. The average book-to-market ratio is

0.75, indicating that the sample is rather composed of overvalued firms. On average, 6.29

analysts issue a firm’s earnings per share forecast, with a minimum of 0 analysts. This

indicates that some of the stocks are not covered over the full period of 12 months which

are used to construct the network. In Panel C, I display the three variables which are

used as limited-attention proxies. As institutional ownership data is only available as of

April 2000 and March 2020, I limit the sample in this panel to this period. In this period,

on average, 5.76 analysts covered a firm, the average firm size is 3.3 billion U.S. dollars

and 22.12% of a firm a held by institutional investors. The last Panel, Panel D, includes

statistics on the analyst co-coverage network. By construction, at least one analyst is

co-covering two firms, while on average, 7.56 analysts are linking two firms. On the other

hand, one firm has, on average, 58.53 direct peers, reaching up to 201.05 peers.
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Table 1.2
Descriptive statistics

This table reports the descriptive statistics of our main variables, controls, and the global network. The
panels reports the time-series average of the cross-sectional mean, standard deviation, and quantiles of each
variable. Panel A describes the news and noise spillover variables. Panel B summarizes the stock-level
characteristics of focal firms. In Panel C, different proxies for investors’ limited attention are presented.
Panel D covers general statistics on the co-coverage network. In the case of Panel A, Panel B and Panel D,
the sample consists of all stocks for the period between January 1992 and December 2021, with a minimum
of one analyst co-covering the stocks, and a minimum of 30 valid country-month observations. For Panel
C the sample starts in April 2000 and ends in March 2020 due to the availability of ownership data. F SF L

is the weighted average VAR-based firm-specific news in the previous month of stocks that are connected
through shared analyst coverage. MktF L is the weighted average VAR-based market news in the previous
month of stocks that are connected through shared analyst coverage. NoiseF L is the weighted average
VAR-based noise in the previous month of stocks that are connected through shared analyst coverage.
Beta is the sum of the regression coefficients of daily excess returns on the local market excess return and
one lag of the local market excess return for the past 12 months. MVln is the log of the product of the
closing price and the number of shares outstanding. BM is the book-to-market ratio in June of year t,
which is computed as the ratio of the book value of common equity in fiscal year t − 1 to the market value
of equity in December of year t − 1. MOM is the cumulative return from month xt − 12 to month t − 1
for a given month t. ST REV is the short-term reversal of the focal firm for a given month t. ANA is the
analyst coverage, which is the number of sell-side analysts forecasting annual firm earnings in each month
t. ILLIQ is the illiquidity measure of Amihud (2002), which is the average daily ratio of the absolute stock
return to the dollar trading volume in month t. RET F L

t+h is the monthly contemporaneous returns from
stocks that are connected through shared analyst coverage at time t + h. MV is the product of the closing
price and the number of shares outstanding. OW NER are the holdings by all institutional investors as a
fraction of the market capitalization. N is the average number of co-covering analysts per stock releasing
an EPS forecast in the last 12 months. C is the average number of firms that are connected through shared
analyst coverage per stock.

N Mean Std Min P25 P50 P75 Max

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Panel A: Main Variables

F SF L 10836.77 -1.02 3.96 -10.95 -3.38 -0.90 1.42 8.35
MktF L 10836.77 1.54 1.40 -1.46 0.61 1.52 2.43 4.76
NoiseF L 10836.77 -0.24 0.67 -2.06 -0.60 -0.20 0.17 1.28

Panel B: Control Variables

Beta 10836.77 0.96 0.50 -0.03 0.64 0.92 1.23 2.48
MVln 10836.77 6.08 1.85 2.09 4.79 6.00 7.27 10.65
BM 10836.77 0.75 1.63 -0.16 0.32 0.57 0.95 3.74
MOM 10836.77 15.21 84.41 -72.03 -17.42 5.26 32.40 231.72
ST REV 10836.77 1.05 14.14 -30.34 -6.02 0.18 6.78 44.13
ANA 10836.77 6.29 6.77 0.00 1.34 3.70 8.82 29.87
ILLIQ 10836.77 2.17 176.08 0.00 0.00 0.00 0.03 6.58
RET F L 10836.77 1.01 6.10 -13.24 -2.40 0.88 4.09 17.93

Panel C: Limited-attention Variables

ANA 11880.07 5.76 6.49 0.00 1.01 3.16 8.12 28.81
MV 11880.07 3299.66 14312.05 8.45 142.11 493.39 1723.01 51543.57
OW NER 11880.07 15.01 22.12 0.00 0.10 5.82 19.34 96.80

Panel D: Spillover Variables

N 10836.77 7.56 7.99 1.00 2.00 4.68 10.32 36.86
C 10836.77 58.53 45.81 1.91 22.71 47.31 83.36 201.05
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1.5 Empirical results

Without further specifying which news component is diffusing among stocks that are fun-

damentally linked, Ali and Hirshleifer (2020) provide evidence that investors are sluggish

in impounding news, measured as return, from peers in the network. I hypothesize that

the different types of news and noise have different diffusion patterns. The noise compo-

nent should not be predictive if investors can differentiate between information and noise.

Further, if investors tend to process market rather than firm-specific information follow-

ing the limited attention model of Peng and Xiong (2006), they tend to underreact to the

firm-specific information, which leads to cross-firm predictability. I make use of the return

decomposition model of Brogaard et al. (2022) to test this hypothesis, whereby I predict

future stock returns using two approaches commonly used in the asset-pricing literature:

portfolio sorts and the Fama and MacBeth (1973) regression.

1.5.1 Diffusion of news and noise

1.5.1.1 Portfolio sorts

Portfolio tests provide a way of using cross-sectional data to test asset pricing predictions.

At the beginning of each month t different portfolio strategies are implemented, I sort

each firm into country-neutral quintiles based on their individual firm-specific news, mar-

ket news, and noise components from fundamentally linked firms. The first quintile (’Low’)

contains all firms with the lowest country-specific spillover measure, while the last quin-

tile (’High’) encompasses firms with the highest spillover from analyst co-covered firms.

To analyze which return measures are positively associated with future stock returns, I

compare the returns of two extreme portfolios by combining them with a short position

in the ’Low’ quintile and a long position in the ’High’ quintile. Afterwards, I regress the

return differential on different asset pricing models. All of the presented t-statistics are

adjusted for serial auto-correlation using Newey and West (1987) standard errors with 12

lags following Huang, Lin and Xiang (2021) and Huang et al. (2022).

The columns ’Low’, two till four, and ’High’ of Table 1.3 report the excess returns over

the risk-free rate of the equal-weighted, Panel A, and value-weighted, Panel B, portfolios

sorted on firm-specific news, market news, and noise, respectively. The last column shows
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the difference in return between the fifth and the first portfolio.

Table 1.3
Portfolio sorts

This table reports the performance of the stock portfolios sorted by the firm-specific and market news as
well as the noise spillover from analyst co-covered stocks. At the beginning of each month the stocks are
sorted into 5 country-neutral portfolios. In Panel A reports the equal-weighted and Panel B the value-
weighted monthly excess of each the of portfolios and the long minus short portfolio. All standard-errors are
adjusted using Newey and West (1987). The sample consists of all stocks for the period between January
1992 and December 2021, with a minimum of one analyst co-covering the stocks, and a minimum of 30 valid
country-month observations. F SF L is the weighted average VAR-based firm-specific news in the previous
month of stocks that are connected through shared analyst coverage. MktF L is the weighted average VAR-
based market news in the previous month of stocks that are connected through shared analyst coverage.
NoiseF L is the weighted average VAR-based noise in the previous month of stocks that are connected
through shared analyst coverage.

Low 2 3 4 High High-Low

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel A: Equal-Weighted

F SF L 0.225 0.648 0.873 1.067 1.333 1.108
(0.63) (2.12) (2.97) (3.64) (4.30) (6.84)

MktF L 0.642 0.766 0.814 0.883 0.944 0.303
(1.93) (2.50) (2.67) (2.87) (2.67) (1.77)

NoiseF L 0.817 0.788 0.806 0.786 0.733 -0.084
(2.45) (2.56) (2.73) (2.69) (2.33) (-0.94)

Panel B: Value-Weighted

F SF L 0.225 0.524 0.704 0.734 0.798 0.574
(0.75) (2.11) (3.01) (3.20) (3.02) (3.42)

MktF L 0.399 0.559 0.620 0.776 0.615 0.216
(1.40) (2.26) (2.52) (3.25) (2.29) (1.07)

NoiseF L 0.519 0.640 0.641 0.689 0.504 -0.015
(1.76) (2.57) (2.67) (2.98) (1.89) (-0.10)

The univariate sorts show that the relation between the different news measures and the

portfolio returns increases monotonically across the portfolios in most cases. In the case

of the equal-weighted portfolios, the firm-specific news spillover yields an average monthly

excess return of 0.225% (t=0.63) in the lowest portfolio and increases to 1.333% (t=4.30)

in the highest portfolio. For market news, the portfolio containing stocks with the lowest

market news spillover, the excess return is 0.642% (t=1.93), monotonically increasing to

0.944% (t=2.67). The excess return of the lowest portfolio sorted on the peers’ noise

component is 0.817% (t=2.45) and decreases to 0.7433% (t=2.33) in a non-monotonical

way. The value-weighted portfolios in Panel B yield a similar but less clear pattern in

terms of monotonicity. When sorting on the firm-specific news spillover, the portfolios’
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excess return increases from 0.225% (t=0.75) in the ’Low’ to 0.798% (t=3.02) in the ’High’

portfolio. Value-weighting changes the return pattern of the market news portfolios. The

results do not reveal a continuous monotonous increase as the average monthly excess

return decreases from the fourth portfolio with 0.776% (t=3.25) to 0.615% (t=2.29) in the

’High’ portfolio. Value-weighting noise-based portfolios results in a reverse smile return

function, starting with 0.519% (t=1.76), increasing to 0.689% (t=2.98), and ending with

the lowest monthly excess return among the five portfolios of 0.504% (t=1.89).

In the last column of Table 1.3, I test the hypothesis that the different return components

can predict the cross-section of returns by forming a hypothetical portfolio strategy that

goes short in the lowest quintile and long in the highest quintile. Only the long-short

positions in the firm-specific news spillover exhibit significant positive excess returns for

both the equal-weighted and the value-weighted portfolios. The equal-weighted portfolio

shows a monthly excess return of 1.108% (t=6.84), whereas the value-weighted portfolio

yields half the magnitude in excess returns, summing up to 0.574% (t=3.42). Therefore,

both firm-specific news long-short portfolios survive the proposed t-statistics hurdle rate of

3.0 proposed by Harvey, Liu and Zhu (2016). Neither the noise component nor the market-

news portfolio yield significant returns. This is consistent with the view that investors are

aware of the respective information contained in the market news and noise portfolio, but

they do not trade on the firms-specific news. Further, the difference in effect size and

statistical significance when using the value-weighted portfolios points towards that the

firm-specific news diffusion effect is stronger among small stocks.

Next, I perform time-series regressions to risk-adjust the different news portfolios’

monthly excess returns with well-known asset pricing factor models. In Table 1.4, I first

solely include the market risk premium as in the capital asset pricing model by Sharpe

(1966) (CAPM). For the second factor model, I include the two additional factors, size

and value, as proposed by Fama and French (1993) (FF3). Next, as in Carhart (1997), I

augment the previous factor model with the momentum factor (FF4). Lastly, I addition-

ally add the liquidity (LIQ) factor by Pástor and Stambaugh (2003) (FF4 + LIQ) to the

time-series regression. The first two rows of Panel A and Panel B show the risk-adjusted

return of the firm-specific news spillover portfolio remains significant when different asset

pricing factor models are employed. Due to the significance levels of the market news
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and noise portfolios in Table 1.3, I concentrate my main analysis in Table 1.4 on the

firm-specific news spillover. 11

In both Panel A, presenting the equal-weighted results, and Panel B, containing the

value-weighted results, the risk-adjusted returns are significant, independent of the un-

derlying factor model. In the case of equal-weighting the long-short portfolio and em-

ploying the four-factor model augmented with liquidity, the risk-adjusted return is 1.067%

(t=7.71), while the value-weighted portfolio approach results in a monthly risk-adjusted

return of 0.558% (t=3.56). The different weighting methodologies indicate that rather

small firms are driving the slow firm-specific news diffusion. This pattern is stable among

the other three-factor models which yield similar risk-adjusted returns. By further investi-

gating the long and short sides of the equal- and value-weighted portfolios, I observe that

both sides contribute towards the portfolio strategy’s performance. While the low firm-

specific news portfolio yields statistically negative alphas (underperformance), the long

side yields statistically positive alphas (overperformance). I further analyze if the port-

folio strategy is exposed to certain risk factors. For brevity reasons, I stick to the most

comprehensive factor model as presented in columns 10 to 12. Both the equal-weighted

as well as the value-weighted portfolios load significantly on the market, indicating that

the portfolios are not well diversified concerning market risk. For the equal-weighting

approach, I can further identify a positive relation between the firm-specific portfolio and

two risk factors, value and momentum. In the case of value-weighting, none of the other

risk factors yield significant exposure.

11 For completeness, I attach the risk-adjusted results of the two other return components in Table A. 8
and Table A. 9, yielding similar results as in Table 1.3.
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Next, I investigate the long-run effect of the different spillover portfolios. To analyze the

long-run buy-and-hold returns, I follow the methodology of Smajlbegovic (2019). First, I

identify the stocks used for constructing the different long-short portfolios, and afterward,

I calculate their equal and value-weighted excess returns in the subsequent months t + k,

where k ∈ {0, ..., 24}. Then, I run a time-series regression for each holding period month

k on the four-factor model augmented with liquidity. The corresponding intercept of the

regression is then the alpha of the buy-and-hold strategy k months after the portfolio

formation. Lastly, I add up these intercepts, which results in the cumulative alpha in

month k - the variable of interest.

Figure 1.1 presents the equal-weighted (Panel A) and the value-weighted (Panel B)

cumulative five-factor alpha over a holding period of 24 months.

The graphical representation in Panel A reveals that only the firm-specific news portfolio

does not revert in the long run. I can identify a strong increase in the risk-adjusted return

in the first 6 months after portfolio construction, yielding an alpha of 2.065%. In the

subsequent 18 months, the alpha slightly increases to 2.970%. Both the market news

as well as the noise component do not yield any positive long-term risk-adjusted return.

Looking at the value-weighted results as presented in Panel b, only the firm-specific news

portfolio yields a positive long-term risk-adjusted return. Comparing the pattern of the

individual news and noise portfolios reveals that the news measure of Ali and Hirshleifer

(2020) is only similar to the firm-specific news in the first two months. Afterward, the

news measure of Ali and Hirshleifer (2020) rather correlates with the market news and

the noise component.

1.5.1.2 Cross-sectional regressions

A common way to test return predictability is the Fama and MacBeth (1973) procedure.

The regression method is frequently used to control for time effects as it accounts for

dependence in the time dimension (Petersen, 2009) and other potential drivers that could

affect the return predictability.

For each month, I run a cross-sectional regression including all stock with news and
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Figure 1.1
Long-horizon performance of news and noise spillover

This figure shows the average cumulative risk-adjusted return of the different spillover long-short portfolios.
Panel A shows equal-weighted risk-adjusted returns while Panel B shows value-weighted risk-adjusted
returns. First, I obtain the return of the portfolio formed at the end of month t for month t+k, where k
∈ {1, ..., 24}. Second, I run a time-series regression with the full five-factor model, including MKT RF ,
SMB, HML, UMD, and LIQ (Fama and French, 1993; Carhart, 1997; Pástor and Stambaugh, 2003)
for the corresponding months. The regression intercept is defined as the average risk-adjusted portfolio
return for the long–short portfolio at month t + k. In the final step, I compute the average holding period
(cumulative) risk-adjusted return for the next k months since formation as the sum over the previous k
months.
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noise spillover and with future monthly excess returns as the dependent variable:

RETi,t+h = at+h + λF SFSF L
i,t−1 + λMktMktF L

i,t−1 + λNoiseNoiseF L
i,t−1 + λcC + ϵi,t+h, (1.5)

where FSF L
i,t−1, MktF L

i,t−1, and NoiseF L
i,t−1 are the firm.specific news, market news, and

noise spillover components of the previous month, and C represents the vector of control

variables. The reported regression coefficients are determined by calculating the time-series

averages. Further, the corresponding t-statistics are adjusted using the Newey and West

(1987) procedure with 12 lags. In Table 1.5, I report the regression results for different

setups. In columns 1-3, I regress on the next month’s excess return (h=0), whereas the

dependent variable in columns 4-5 and 6-7 is the second (h=1) or third (h=2) month after

the spillover, respectively.

For the results presented in column 1, I only include FSF L
i,t−1, MktF L

i,t−1, and NoiseF L
i,t−1

as well as industry and country dummies as independent variables. The industry dummies

are included to mitigate concerns that the diffusion of industry news documented by Hou

(2007) explains the news and noise spillover. Additionally, country dummies are included

to ensure that specific countries do not drive the results. Similar to the portfolio results,

also in the most simple setup without any further controls, only the firm-specific news

from peers is positive and significant, yielding a regression coefficient of 0.121 (t=9.76).

The market news and the noise spillover do not yield a statistically significant coefficient.

I include a standard set of controls for the second specification as presented in column

2. The controls are focal stocks’ beta, log market capitalization, book-to-market ratio,

momentum, short-term reversal, the number of analyst forecasts in the consensus of the

current fiscal year, and the Amihud illiquidity measure. Including this set of controls

allows me to measure the spillover effects more precisely, resulting in a small increase

of the λF S to 0.129 (t=10.57). I further document that the regression coefficient of the

market news stays positive and additionally turns significant, yielding a λMkt of 0.117

(t=2.65). Besides the market beta, all other controls yield significant coefficients with the

expected direction. This is in line with previous findings in the literature, which document

that the market beta has only marginal predictive power for returns.

Following Burt and Hrdlicka (2021), I add the contemporaneous return of the funda-

37



Chapter 1. What Diffuses in Stock Prices? The Roles of News and Noise in Global Networks

Table 1.5
Peers news and noise and stock returns

This table reports the estimated regression coefficients and Newey-West t-statistics (in parentheses) from
Fama-MacBeth cross-sectional regressions predicting one-month ahead excess stock returns. The sample
consists of all stocks for the period between January 1992 and December 2021, with a minimum of one
analyst co-covering the stocks, and a minimum of 30 valid country-month observations. F SF L is the
weighted average VAR-based firm-specific news in the previous month of stocks that are connected through
shared analyst coverage. MktF L is the weighted average VAR-based market news in the previous month of
stocks that are connected through shared analyst coverage. NoiseF L is the weighted average VAR-based
noise in the previous month of stocks that are connected through shared analyst coverage. Beta is the sum
of the regression coefficients of daily excess returns on the local market excess return and one lag of the
local market excess return for the past 12 months. MVln is the log of the product of the closing price and
the number of shares outstanding. BM is the book-to-market ratio in June of year t, which is computed as
the ratio of the book value of common equity in fiscal year t − 1 to the market value of equity in December
of year t − 1. MOM is the cumulative return from month t − 12 to month t − 1 for a given month t.
ST REV is the short-term reversal of the focal firm for a given month t. ANA is the analyst coverage,
which is the number of sell-side analysts forecasting annual firm earnings in each month t. ILLIQ is the
illiquidity measure of Amihud (2002), which is the average daily ratio of the absolute stock return to the
dollar trading volume in month t. RET F L

t+h is the monthly contemporaneous returns from stocks that are
connected through shared analyst coverage at time t + h.

Ri,t Ri,t+1 Ri,t+2

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 )

F SF L 0.121 0.129 0.089 0.046 0.027 0.035 0.011
(9.76) (10.57) (12.18) (6.36) (5.76) (4.53) (2.77)

MktF L 0.073 0.117 0.081 0.038 0.020 0.021 -0.005
(1.07) (2.65) (4.09) (0.85) (0.73) (0.39) (-0.17)

NoiseF L -0.015 0.044 0.091 0.057 0.027 0.019 -0.002
(-0.39) (1.48) (4.73) (1.86) (1.32) (0.50) (-0.06)

RET F L
t+h 0.536 0.538 0.536

(47.12) (47.29) (46.20)
Beta -0.206 -0.186 -0.235 -0.213 -0.182 -0.177

(-1.24) (-1.22) (-1.47) (-1.50) (-1.21) (-1.31)
MVln -0.122 -0.119 -0.071 -0.070 -0.055 -0.056

(-2.38) (-2.78) (-1.46) (-1.77) (-1.14) (-1.43)
BM 0.276 0.266 0.266 0.257 0.277 0.264

(4.80) (5.69) (4.84) (5.84) (4.93) (5.91)
MOM 0.007 0.006 0.006 0.005 0.004 0.003

(3.10) (2.98) (2.78) (2.70) (1.75) (1.66)
ST REV -0.029 -0.032 0.004 0.004 0.014 0.013

(-6.19) (-6.56) (1.49) (1.19) (6.19) (6.27)
ANA 0.027 0.026 0.019 0.018 0.017 0.016

(4.57) (4.99) (3.45) (3.81) (3.27) (3.65)
ILLIQ -0.084 -0.082 0.043 0.043 0.072 0.075

(-3.27) (-3.20) (1.47) (1.62) (2.32) (2.64)

FF-38 Yes Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 14.51 16.50 18.67 16.09 18.28 15.94 18.12
Avg. Obs 10837 10837 10837 10805 10804 10769 10769
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mentally linked stocks in column 3 to the regression setup. This proxy for the common

momentum component helps to isolate the actual delay in information diffusion from the

different spillover components. By including the contemporaneous return, the coefficients

of the two news components of the spillover decrease by about 31% to 0.089 (t=12.18) in

the case of the firm-specific news. The respective coefficients of the market news spillover

decrease to 0.081 (t=4.09). Adding this proxy to the specification nearly doubles the

magnitude of the noise coefficient to 0.091 (t=4.73) and turns the λNoise significant.

In columns 4 and 5, I test if the different news and noise components are still diffusing

even two months after they initially occurred. The difference between columns 4 and 5

is that I further control for the common momentum components. In both setups, the

λMkt and λNoise lose their predictive power. The coefficients amount to 0.038 (t=0.85)

and 0.057 (t=1.86) in column 4 and 0.020 (t=0.73) and 0.027 (t=1.32) when including the

contemporaneous return. In the case of firm-specific news, the coefficient stays positive

and significant in both specifications. Comparing the coefficient in both specifications, I

document a decrease from 0.046 (t=6.36) to 0.027 (t=5.76) when including the contem-

poraneous return.

In the last two columns, 6 and 7, I regress the news and noise components on the three-

month ahead monthly excess return. Similar to the two-month-ahead return, both market

news and noise are insignificant. While in column 6, the firm-specific news component

takes a value of 0.035 (t=4.35), and it decreases to 0.011 (t=2.77) in column 7, not passing

the proposed t-statistics hurdle rate of 3.0 by Harvey, Liu and Zhu (2016).

These results are partially in line with the categorical learning behavior and the inat-

tention of investors as proposed by Peng and Xiong (2006). At the one-month horizon,

both market and firm-specific news are positive and significant, indicating that investors

do not directly process both components, resulting in delayed information diffusion. At

the two-month horizon, in line with the model of Peng and Xiong (2006), the market

news turns insignificant, proving that investors tend to process more market news than

firm-specific news. By controlling for the delay in information diffusion at the three-month

horizon, the firm-specific news turns insignificant, indicating that all information from the

peers is fully diffused in the focal firms’ stock price.

Hou, Xue and Zhang (2018) advocates for the use of weighed-least squares by using the
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market capitalization of each stock as the weight to estimate the regression coefficients.

This helps in controlling for the different behavior of small stocks compared to large stocks,

as the high number of small firms would be the driver of the coefficient estimates. To

further investigate the different diffusion patterns among small and large stocks, I estimate

two sets of regressions, one for large capitalization stocks and one for small capitalization

stocks. The results are presented in Table 1.6. Panel A covers the regression results of

the large stocks sample, and Panel B of the small stocks. These sample splits by size

additionally proxy for investor’s attention (Hirshleifer and Teoh, 2003) and allows me to

investigate further the information processing model of Peng and Xiong (2006). If investors

tend to process more market than firm-specific information and if they have to decide on

which firms they spend processing capabilities on, I expect different behaviors among the

two samples. An investor should first spend his capabilities on large firms, which in the

first place would allow him to differentiate between news and noise and further directly

process the diffusing market news. If the investor then has remaining capabilities left, he

will subsequently spend his attention on the small stocks.

In columns 1 and 2, I regress the linked firm news and noise components on the next

month’s return. I can already identify different diffusion patterns among the two samples

in these two columns. While for the large stocks, only the firm-specific news is relevant

when including the contemporaneous return, in the case of small stocks, also the market

news diffuses into the stock price. This is in line with the mechanism proposed above.

In the second month, after the news occurred, as reported in columns 3 and 4, the firm-

specific news coefficient of the large stocks sample also lost its predictive power, indicating

that investors now also have processed this type of news. In the case of small stocks,

only the firm-specific news is still predictive, indicating that the firm-specific news is not

yet fully diffused. The last two columns, 5 and 6, of Table 1.6 report the coefficients

three months after the different news arrived at the peer stock. In this regression setting,

all news and noise coefficients of the large stock sample are still insignificant, while the

firm-specific news is still diffusing into the stock price of the small stocks.

These results underline that, on the one hand, investors process different news com-

ponents differently, and on the other hand, this diffusion process varies among stocks to

which investors pay attention.
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Table 1.6
Peers news and noise diffusion by size

This table reports the estimated regression coefficients and Newey-West t-statistics (in parentheses) from
Fama-MacBeth cross-sectional regressions predicting one-month, two-month, and three-month ahead excess
stock returns. Panel A estimates the coefficients for large stocks whereas Panel B focuses on small stocks. I
follow Fama and French (2012, 2017) to calculate the country specific breakpoints. Large stocks are defined
as the largest stocks which together account for 90% of a country’s aggregated market capitalization. Small
stocks are defined as those stocks that comprise the remaining 10% of aggregated market capitalization.
The sample consists of all stocks for the period between January 1992 and December 2021, with a minimum
of one analyst co-covering the stocks, and a minimum of 30 valid country-month observations. F SF L is
the weighted average VAR-based firm-specific news in the previous month of stocks that are connected
through shared analyst coverage. MktF L is the weighted average VAR-based market news in the previous
month of stocks that are connected through shared analyst coverage. NoiseF L is the weighted average
VAR-based noise in the previous month of stocks that are connected through shared analyst coverage.
RET F L

t+h is the monthly contemporaneous returns from stocks that are connected through shared analyst
coverage at time t + h.

Ri,t Ri,t+1 Ri,t+2

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel A: Large Stocks

F SF L 0.099 0.055 0.030 0.010 0.026 -0.011
(8.18) (8.32) (3.10) (1.51) (2.64) (-1.84)

MktF L 0.129 0.061 0.023 -0.032 -0.018 -0.063
(2.31) (1.79) (0.42) (-0.77) (-0.31) (-1.78)

NoiseF L 0.028 0.071 0.043 0.007 0.034 0.001
(0.51) (2.06) (0.82) (0.21) (0.60) (0.02)

RET F L
t+h 0.747 0.746 0.745

(62.30) (64.01) (65.85)

Controls Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 27.14 31.83 26.80 31.48 26.70 31.36
Avg. Obs 4135 4135 4127 4127 4117 4117

Panel B: Small Stocks

F SF L 0.136 0.103 0.054 0.037 0.041 0.023
(11.11) (12.51) (7.21) (7.20) (4.77) (4.22)

MktF L 0.103 0.078 0.026 0.022 0.039 0.020
(2.46) (3.40) (0.59) (0.76) (0.68) (0.53)

NoiseF L 0.065 0.103 0.066 0.045 0.012 -0.004
(1.81) (3.53) (1.66) (1.39) (0.32) (-0.12)

RET F L
t+h 0.405 0.408 0.406

(40.96) (39.85) (37.68)

Controls Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 13.58 14.76 13.11 14.30 12.91 14.09
Avg. Obs 6702 6702 6678 6678 6652 6652
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1.5.1.3 Robustness

I run a series of robustness tests as presented in Table 1.7 to examine the consistency of

the relation between news and noise diffusion and stock returns. First, I exclude all stocks

with a price below the country’s 10th percentile following Landis and Skouras (2021) to

ensure that the results are not driven by small illiquid stocks. Second, I limit the sample

period to the time between April 2000 and March 2020. On the hand, this period is in

line with the limited attention sample period and on the other hand, allows to evaluate if

investor behavior has changed over time, e.g. if they process different return components

faster. Third, the sample is limited to focal firms from the United States, similar to the

sample of Ali and Hirshleifer (2020). Lastly, I apply the method of Kaustia and Rantala

(2020) to account for random connections between stocks.12

In Panel A, I report the coefficients of the one-month and two-month-ahead returns.

Excluding the smallest and most illiquid stocks from the global sample has the largest im-

plications of all robustness checks on the noise coefficients. While in column 3 of Table 1.5,

the noise component turned significant by including the peers’ contemporaneous returns,

the λNoise now stays insignificant, indicating that the noise component only diffuses into

the stock price of rather small stocks. The market and firm-specific news coefficients are

similar to the baseline setup and robust to the price filter. Shortening the sample period to

the period between April 2000 and March 2020 reduces the magnitude of coefficients. One

reason for this could be that the spillover has become less important in recent years, or

investors pay more attention to it. Nevertheless for both return horizons, the λF S , λMkt,

and λNoise are significant for the same setups as in Table 1.5. Next, I explicitly limit the

sample to stocks from the United States. Without including the contemporaneous returns,

only the firm-specific news stay significant. Similar to the previous robustness test, this

could be again driven by two different reasons. First, the market news is not important

when predicting the future return of a U.S. stock. The second and the more likely reason is

that investors in the U.S are aware of the market news, and therefore, they directly diffuse

into the focal firms’ stock price. Lastly, I apply the methodology of Kaustia and Rantala

(2020). In doing so, I can account for randomness in the links between firms and further

12 Kaustia and Rantala (2020) state that unrelated firms may have common analysts just by chance because
of analysts who cover several industries or groups of unrelated firm.
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Table 1.7
Robustness tests

This table reports the estimated regression coefficients and Newey-West t-statistics (in parentheses) from
Fama-MacBeth cross-sectional regressions predicting one-month ahead excess stock returns. Robustness
checks include: ( 1 ), ( 2 ), prices above the countries 25th percentile following Landis and Skouras (2021).
( 3 ), ( 4 ), sample period between April 2000 and ends in March 2020. ( 5 ), ( 6 ), only stocks from
the U.S. ( 7 ), ( 8 ), reduced spillover sample following Kaustia and Rantala (2020). The sample consists
of all stocks for the period between January 1992 and December 2021, with a minimum of one analyst
co-covering the stocks, and a minimum of 30 valid country-month observations. F SF L is the weighted
average VAR-based firm-specific news in the previous month of stocks that are connected through shared
analyst coverage. MktF L is the weighted average VAR-based market news in the previous month of stocks
that are connected through shared analyst coverage. NoiseF L is the weighted average VAR-based noise in
the previous month of stocks that are connected through shared analyst coverage. RET F L

t+h is the monthly
contemporaneous returns from stocks that are connected through shared analyst coverage at time t + h.

PRC Apr 00 - Mar 20 U.S. −C

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Panel A: Ri,t

F SF L 0.123 0.080 0.099 0.074 0.165 0.112 0.074 0.072
(9.46) (10.60) (9.62) (10.49) (8.06) (8.57) (9.58) (11.05)

MktF L 0.152 0.114 0.116 0.058 0.089 0.050 0.081 0.079
(3.37) (4.29) (2.11) (2.59) (1.19) (1.12) (3.12) (4.65)

NoiseF L -0.041 0.018 0.029 0.089 0.093 0.139 0.024 0.048
(-1.20) (0.80) (0.83) (3.98) (1.11) (2.35) (1.28) (3.04)

RET F L
t+h 0.578 0.532 0.551 0.395

(53.37) (49.36) (38.24) (58.56)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes No No Yes Yes
Adj. R2 (%) 18.89 21.50 15.89 18.07 9.01 10.66 19.22 22.53
Avg. Obs 9042 9042 11880 11880 3282 3282 6313 6313

Panel B: Ri,t+1

F SF L 0.048 0.025 0.037 0.019 0.068 0.041 0.021 0.015
(5.74) (4.88) (4.56) (4.57) (5.03) (4.80) (5.11) (4.50)

MktF L 0.045 0.027 -0.028 -0.007 -0.001 -0.020 0.010 0.009
(0.97) (0.95) (-0.55) (-0.28) (-0.01) (-0.44) (0.37) (0.44)

NoiseF L 0.063 0.028 0.049 0.021 0.016 -0.012 0.038 0.023
(2.16) (1.20) (1.26) (0.88) (0.16) (-0.18) (2.21) (1.90)

RET F L
t+h 0.568 0.534 0.552 0.393

(55.88) (52.09) (37.40) (56.50)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes No No Yes Yes
Adj. R2 (%) 18.11 20.78 15.56 17.75 8.50 10.18 18.79 22.09
Avg. Obs 9018 9018 11845 11845 3264 3264 6299 6297
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confirm that the baseline results are not driven by stocks that are randomly co-covered by

the analysts. Indeed, the results as presented in columns 7 and 8, yield similar coefficients

as in column 2 and 3 of Table 1.5.

Panel B includes the regression results of the different robustness measures on the two-

month ahead returns. It underlines the robustness of the results of Table 1.5. Only the

diffusing firm-specific news yields a positive and significant coefficient in every setting.

Overall the robustness tests indicate that the previously reported results are not driven

by illiquid stocks, the selected sample period, the underlying countries, or the links between

the firms themselves.

1.5.2 Underreaction and limited attention

The current literature on the news diffusion from fundamentally linked firms poses that

investors underreact due to limited attention (Cohen and Frazzini, 2008; Lee et al., 2019;

Ali and Hirshleifer, 2020). In this section, I will test the firm-specific and market news as

well as the noise component regarding this behavior.

Cohen and Frazzini (2008) propose a setup to test whether the focal firms underreact

or overreact to the diffusing news. Similar to the approach presented in Table 1.3, I form

long-short country-neutral calendar-time portfolios based on the diffusing news and noise

component in month t − 1. RETt−1 represents the return of the focal firm in the same

month in which the shock arrived at the peers in month t − 1, and RETt,t+h is the focal

firm cumulative return over the subsequent h months. In the last row of each panel, I

report the underreaction coefficient (URCt−1,t+h), which is a measure of the focal firms’

initial price response to a given shock as a fraction of the subsequent cumulative return.

As in Cohen and Frazzini (2008), I define URCt−1,t+h as:

URCt−1,t+h = RETt−1
RETt−1 + RETt,t+h

. (1.6)

If the market reacts efficiently to the news, the underreaction coefficient would equal one.

If the focal firms underreact to the shock, the fraction is larger than zero and smaller than

one. On the other hand, a value larger than one indicates that the focal firm overreacts

to the shock. In Table 1.8, I report the value-weighted underreaction coefficients and the
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corresponding portfolio returns. 13 To be not biased by the holding periods, I vary the

time frame of the holding periods between 3, 6, and 9 months. Based on the previous

results, I first test in Panel A of Table 1.8 the full sample and afterward in Panel B all

large stocks and Panel C all small stocks on the existence of underreaction.

The results in Table 1.8 indicate that the focal firm is underreacting to the arrival of

firm-specific news. In Panel A, the underreaction coefficient for a holding period of six

months is 0.818 (t=2.90), which is equal to an underreaction to firm-specific news from

linked firms by roughly 18.2%. The coefficient drops even further by limiting the sample

to small stocks. Depending on the holding period, the underreaction coefficient varies

between 0.785 (t=6.28) and 0.674 (t=5.29). In the case of market news, I cannot identify

the underreaction behavior of the focal firm, whereas, in the case of the noise component,

only small stocks tend to underreact, yielding a coefficient between 0.557 (t=7.66) and

0.843 (t=4.68).

Lastly, I test if this underreaction is driven by the limited attention of investors. Prior

literature mentions three different measures for investor attention. For example, Cohen

and Frazzini (2008), Menzly and Ozbas (2010), Hirshleifer, Hsu and Li (2013), and Jiang,

Qian and Yao (2016) use analyst stock coverage, firm size, and institutional ownership

as a proxy for investor attention for an underlying stock. Due to data availability of

institutional ownership data, the sample period starts in April 2000 and ends in March

2020. If the diffusion of firm-specific news is related to limited attention, I should be

able to measure a more substantial effect for firms that attract less investor attention

(Lee et al., 2019). To test this hypothesis, I interact the firm-specific news with different

dummy variables, which proxy if the underlying stock is exposed to limited attention. The

dummy variable takes the value of one if the underlying stock characteristic is above the

cross-sectional median, and zero otherwise. In the first three regression specifications, I use

analyst coverage (ANA), size (MV ), and institutional ownership (OWNER) as limited

attention proxies. In the fourth regression specification, I construct a composite measure

that is equal to one if the cross-sectional average of the other dummies is larger than

0.5. In case of the existence of limited investor attention, I expect a negative sign on the

different interaction terms and, therefore, a lower predictive power of the underlying news

13 In Appendix A. 9, I report the results when equal-weighting the portfolios.
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Table 1.8
Underreaction coefficients

This table shows returns on the firm-specific and market news as well as noise spillover portfolio and the
corresponding underreaction coefficients. At the beginning of every month, stocks are ranked in ascending
order based on the corresponding spillover at the end of the previous month. At the beginning of each
month the stocks are sorted into 5 country-neutral portfolios. All stocks are value-weighted within a given
portfolio, and the portfolios are rebalanced every calendar month to maintain value weights Panel A bases
the analysis on all stocks, Panel B focuses on large stocks whereas Panel c focuses on small stocks. I follow
Fama and French (2012, 2017) to calculate the country specific breakpoints. Large stocks are defined as
the largest stocks which together account for 90% of a country’s aggregated market capitalization. Small
stocks are defined as those stocks that comprise the remaining 10% of aggregated market capitalization.
Each panel reports the average cumulative returns on the long–short portfolio formed on the respective
spillover in month t. RETt is the focal firm stock return in month t. RETt+1,t+h is the cumulative return
over the subsequent h, for h ∈ {3, 6, 9}, months. URC (underreaction coefficient) is defined as the fraction
of total returns from month t to month t+h that occurs in month t (URC = RETt/(RETt + RETt+1,t+h)).
t-statistics are shown below the coefficient estimates. In the case of URC the t-statistics represent the
distance of the coefficient from one, which is the case of no underreaction. The sample consists of all stocks
for the period between January 1992 and December 2021, with a minimum of one analyst co-covering the
stocks, and a minimum of 30 valid country-month observations. F SF L is the weighted average VAR-based
firm-specific news in the previous month of stocks that are connected through shared analyst coverage.
MktF L is the weighted average VAR-based market news in the previous month of stocks that are connected
through shared analyst coverage. NoiseF L is the weighted average VAR-based noise in the previous month
of stocks that are connected through shared analyst coverage.

F SF L MktF L NoiseF L

h = 3 h = 6 h = 9 h = 3 h = 6 h = 9 h = 3 h = 6 h = 9

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 )

Panel A: All Stocks

RETt 6.866 6.862 6.859 2.590 2.612 2.633 0.465 0.459 0.472
(46.88) (46.53) (46.21) (15.35) (15.41) (15.44) (3.59) (3.52) (3.60)

RETt+1,t+h 1.074 1.530 1.649 0.291 0.072 0.059 0.017 -0.035 -0.266
(4.62) (4.79) (4.23) (0.98) (0.17) (0.11) (0.09) (-0.13) (-0.81)

URC 0.865 0.818 0.806 0.899 0.973 0.978 0.964 1.083 2.300
(2.82) (2.90) (3.02) (1.59) (0.39) (0.34) (0.59) (1.76) (31.84)

Panel B: Large Stocks

RETt 6.760 6.755 6.752 2.566 2.592 2.613 0.443 0.437 0.451
(46.29) (45.94) (45.64) (15.16) (15.28) (15.31) (3.33) (3.27) (3.36)

RETt+1,t+h 0.965 1.430 1.503 0.295 0.049 0.011 0.045 -0.053 -0.346
(4.09) (4.33) (3.77) (1.00) (0.11) (0.02) (0.22) (-0.20) (-1.01)

URC 0.875 0.825 0.818 0.897 0.982 0.996 0.908 1.137 4.290
(2.37) (2.30) (2.62) (1.78) (0.27) (0.06) (1.57) (3.05) (74.99)

Panel C: Small Stocks

RETt 7.436 7.434 7.426 2.810 2.844 2.867 0.290 0.271 0.271
(44.80) (44.45) (44.12) (13.59) (13.71) (13.74) (2.31) (2.15) (2.14)

RETt+1,t+h 2.033 2.805 3.587 0.172 -0.095 0.012 0.231 0.201 0.051
(8.45) (8.36) (8.30) (0.46) (-0.19) (0.02) (1.17) (0.73) (0.15)

URC 0.785 0.726 0.674 0.942 1.034 0.996 0.557 0.575 0.843
(6.28) (5.41) (5.29) (1.09) (0.66) (0.08) (7.66) (9.06) (4.68)
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components. Specifically, the level of investor attention rises if the focal firm is covered

by many analysts, is big, or has a high share of institutional ownership which should lead

to accelerated news incorporation and, therefore, lower predictive power. In Table 1.9, I

present the results of the test for limited investor attention on the diffusion of firm-specific

news.14

Table 1.9
Limited attention

This table reports the estimated regression coefficients and Newey-West t-statistics (in parentheses) from
Fama-MacBeth cross-sectional regressions predicting one-month ahead excess stock returns with limited
attention proxies. I interact the firm-specific news spillover with limited attention dummies. The indicator
variables that take the value of one if the underlying variable is above the median in the cross-section, and
zero otherwise. The sample consists of all stocks for the period between April 2000 and ends in March
2020 , with a minimum of one analyst co-covering the stocks, and a minimum of 30 valid country-month
observations. F SF L is the weighted average VAR-based firm-specific news in the previous month of stocks
that are connected through shared analyst coverage. MktF L is the weighted average VAR-based market
news in the previous month of stocks that are connected through shared analyst coverage. NoiseF L is
the weighted average VAR-based noise in the previous month of stocks that are connected through shared
analyst coverage. RET F L

t+h is the monthly contemporaneous returns from stocks that are connected through
shared analyst coverage at time t+h. ANA is the analyst coverage, which is the number of sell-side analysts
forecasting annual firm earnings in each month t. MV is the product of the closing price and the number
of shares outstanding. OW NER are the holdings by all institutional investors as a fraction of the market
capitalization. COMP is equal to 1 if cross-sectional average of the dummies of ANA, MV , and OW NER
is larger than 0.5.

ANA MV OW NER COMP

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

LA × F SF L -0.051 -0.042 -0.085 -0.070 -0.006 -0.004 -0.061 -0.051
(-3.86) (-3.93) (-7.28) (-7.39) (-0.59) (-0.47) (-4.33) (-4.35)

F SF L 0.116 0.088 0.133 0.101 0.102 0.076 0.122 0.093
(12.57) (13.66) (12.76) (14.82) (10.60) (10.61) (13.14) (14.57)

MktF L 0.115 0.058 0.115 0.057 0.115 0.057 0.111 0.054
(2.09) (2.57) (2.13) (2.56) (2.12) (2.57) (2.05) (2.38)

NoiseF L 0.031 0.090 0.019 0.080 0.028 0.088 0.009 0.072
(0.86) (4.00) (0.52) (3.62) (0.79) (3.85) (0.24) (3.21)

LA 0.177 0.163 -0.098 -0.105 -0.050 -0.063 0.056 0.031
(2.82) (2.81) (-0.83) (-1.01) (-1.42) (-1.84) (0.48) (0.30)

RET F L
t+h 0.531 0.533 0.531 0.537

(49.45) (49.39) (49.31) (50.00)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 15.93 18.09 15.85 18.03 15.94 18.10 15.74 17.96
Avg. Obs 11880 11880 11880 11880 11880 11880 11880 11880

Columns 1 and 2 include analyst coverage as the first limited attention proxy. In
14 In Appendix A. 10, I report the results when interacting the limited attention proxies with each return

component individually.
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both specifications, with and without the contemporaneous returns, the coefficient of the

interaction effect is negative and significant, amounting to -0.051 (t=-3.86) and -0.042

(t=-3.93), respectively. The next pair of results in columns 3 and 4 use the firms’ market

capitalization as a proxy for investors’ limited attention. Similar to the first two regression

specifications is the interaction coefficient negative and significant. The coefficient without

controlling for common momentum equals -0.085 (t=-7.28) and is reduced to -0.070 (t=-

7.39) when including the contemporaneous return. By using institutional ownership as

a proxy, in columns 5 and 6, the coefficient is negative but not statistically significant.

This is in line with the findings of Cohen and Frazzini (2008), which provide evidence that

institutional investors can process diffusing information faster. In the last two columns,

7 and 8, I use the composite measure as a proxy for limited attention. The interaction

coefficient of these two last specifications amounts to -0.061 (t=-4.33) and -0.051 (t=-4.35).

Overall, the regressions on limited attention indicate that investors cannot process firm-

specific news directly. The documented underreaction is therefore driven by the limited

attention of investors, which leads to slow information diffusion.
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1.6 Conclusion

There exists a well-documented effect that investors underreact to information that dif-

fuses among fundamentally linked firms. Understanding what drives this slow diffusion of

information helps better understand investors’ behavior. This paper studies which type of

news or noise is slowly diffusing into the firm’s stock price leading to an investors’ under-

reaction and with which time lag the information is incorporated into the stock price. I

estimate the different return components using a structural vector auto-regression, which

allows me to decompose a stock’s return into firm-specific news, market news, and a noise

component. To model fundamental links between firms, I rely on the characteristic of

analysts to cover stocks that are connected to each other.

For a global sample that consists of 42,789 stocks for 49 equity markets and spans 30

years, I present robust evidence that firm-specific news is the driver of slow information

diffusion. The cross-sectional return difference between firms exposed to negative news

from linked firms and those exposed to positive news amounts to approximately 7% per

year. Further, it takes up to three months for an investor to incorporate the diffusing firm-

specific news. Another finding of this paper is that investors can differentiate between noise

and news and tend to process first market-wide news and afterward firm-specific news.

This underreaction to the arrival of news is caused by the investors’ limited attention to

firm-specific news.

Overall, my results imply that investors are not fully limited in attention. They show

a strong categorial learning behavior that enables them to incorporate at least partially

relevant information diffusing among fundamentally linked firms.
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This paper compares various machine learning models to predict the cross-section of emerg-

ing market stock returns. We document that allowing for non-linearities and interactions

leads to economically and statistically superior out-of-sample returns compared to tra-

ditional linear models. Although we find that both linear and machine learning models

show higher predictability for stocks associated with higher limits to arbitrage, we also

show that this effect is less pronounced for non-linear models. Furthermore, significant net

returns can be achieved when accounting for transaction costs, short-selling constraints,

and limiting our investment universe to big stocks only.
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2.1 Introduction1

Machine learning algorithms have been available for a long time.2 However, due to in-

creased computing power and data availability, decreased data storage costs, and algo-

rithmic innovations in recent years (cf., Rasekhschaffe and Jones, 2019), machine learning

methods see increasing popularity in research fields such as economics, finance, and ac-

counting.3

This paper compares various machine learning models to predict the cross-section of

emerging market stock returns. More specifically, we analyze the predictive power of nine

algorithms: ordinary least squares regression and elastic net as examples for traditional

linear models; tree-based models such as gradient-boosted regression trees and random

forest; and neural networks with one to five layers. Furthermore, we investigate the

performance of an ensemble comprising the five different neural networks and an ensemble

of methods that allow for non-linearities and interactions, i.e., the two tree-based models

and the ensemble of neural networks. In the remainder of the paper, we often use the

term ‘machine learning’ only for the two tree-based methods, the neural networks, and

the two ensembles. Our data set contains stocks from 32 emerging market countries and

the 36 firm-level characteristics from Kelly, Pruitt and Su (2019) and Windmüller (2022)

falling into categories such as value, past returns, investment, profitability, intangibles, and

trading frictions. The data sample covers the sample period from July 1995 to December
1 We thank David Blitz, Nicole Branger, Clint Howard, Christoph Kaserer, Tim Kroencke, Markus Leip-

pold, Tizian Otto, Steffen Windmüller, and seminar participants at the Munich Finance Day 2022, TUM
School of Management, and Robeco for their helpful comments and suggestions. Any remaining errors
are our own.
Disclosures: Hanauer is also employed by Robeco. The views expressed in this paper are those of the
authors and not necessarily shared by Robeco.

2 This chapter is based on Hanauer and Kalsbach (2022).
3 For instance, machine learning methods are applied to predict stock returns in Moritz and Zimmer-

mann (2016), Rasekhschaffe and Jones (2019), Freyberger, Neuhierl and Weber (2020), Gu, Kelly and
Xiu (2020), Tobek and Hronec (2020), Chen, Pelger and Zhu (2021), Drobetz and Otto (2021), Leip-
pold, Wang and Zhou (2022), Azevedo et al. (2022), Cakici et al. (2022a), and Rubesam (2022), stock
market betas in Drobetz et al. (2021), country stock returns in Cakici and Zaremba (2022), industry
stock returns in Rapach et al. (2019), option returns in Bali et al. (2022a), corporate bond returns
in Kaufmann, Messow and Vogt (2021) and Bali et al. (2022b), the equity premium in Rossi (2018),
Treasury bond returns in Bianchi, Büchner and Tamoni (2021) and Bianchi et al. (2021), commodity
returns in Struck and Cheng (2020), short-term bitcoin returns in Jaquart, Dann and Weinhardt (2021),
cryptocurrency returns in Cakici et al. (2022b), (changes) in future company profitability in Anand
et al. (2019), Van Binsbergen, Han and Lopez-Lira (2020) and Chen et al. (2022), peer-implied market
capitalizations in Hanauer, Kononova and Rapp (2022), mutual fund selection in Kaniel et al. (2022),
hedge fund selection in Wu et al. (2021), mortgage risk in Sadhwani, Giesecke and Sirignano (2021), or
corporate directors in Erel et al. (2021).
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2021, while our 20-year out-of-sample period is from January 2002 to December 2021.

Our main findings can be summarized as follows. First, we document that the different

prediction algorithms pick up similar characteristics. However, we observe that tree-based

methods and neural networks also identify non-linearities and interactions of characteris-

tics. In contrast, linear methods are restricted to linear relationships and do not allow for

interactions among characteristics.

Second, return forecasts based on machine learning models lead to economically and

statistically superior out-of-sample long-short returns compared to traditional linear mod-

els. Furthermore, the Fama and French (2018) six-factor model can only partly explain

these long-short returns, and their alphas remain highly significant. These findings are

robust to several methodological choices and for emerging market subregions. Finally, we

document that machine learning forecasts beat linear models consistently over our sample

period, and we cannot observe a decline in predictability over time.

Third, developed market long-short returns based on machine learning forecasts derived

in the same way as their emerging market counterparts cannot explain emerging market

out-of-sample returns. However, models estimated solely on developed markets data also

predict emerging market stock returns. These findings indicate that similar relationships

between firm characteristics and future stock returns exist for developed and emerging

markets but that the pricing of these characteristics is not fully integrated between devel-

oped and emerging markets.

Fourth, the high returns of the machine learning strategies in emerging markets do

not primarily stem from higher-risk months and do not revert quickly, suggesting that an

underreaction explanation is more likely than a risk-based explanation. Furthermore, both

linear and machine learning models show higher predictability for stocks associated with

higher limits to arbitrage. However, we also document that this effect is less pronounced

for machine learning forecasts than for linear regression forecasts, indicating that the

superiority of machine learning models in emerging markets does not stem from limits to

arbitrage.

Finally, accounting for transaction costs, short-selling constraints, and limiting our in-

vestment universe to big stocks only, we document that machine learning-based return

forecasts can lead to significant net outperformance over the market and net alphas, at
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least when efficient trading rules are applied.

This paper contributes to the literature in at least three aspects. First, we contribute

to the rapidly expanding literature on predicting the cross-section of stock returns with

machine learning methods. Rasekhschaffe and Jones (2019), Freyberger, Neuhierl and We-

ber (2020), and Gu, Kelly and Xiu (2020) document that more complex machine learning

models are superior to linear models for the U.S. Tobek and Hronec (2020) and Drobetz

and Otto (2021) find similar evidence for developed markets and Europe, respectively.

However, none of the studies mentioned above investigates emerging markets. Emerg-

ing markets are important as they account for around 58% of the global gross domestic

product (GDP), which is forecasted to rise to 61% by 2026.4 Furthermore, the same risk

factors should apply to these markets under the hypothesis that developed markets are

integrated. Therefore, similar results within developed markets are not surprising, and

emerging markets provide an attractive alternative for out-of-sample tests in terms of

independent and new samples.

Two contemporaneously written papers, Azevedo et al. (2022) and Cakici et al. (2022a),

also include emerging markets in their analysis next to developed markets. While Azevedo

et al. (2022) also find that most machine learning models outperform a linear combina-

tion of anomalies, their results do not discriminate between emerging and other markets.

Therefore, their results are mainly driven by developed markets. In contrast to our study,

Cakici et al. (2022a) do not find superior forecasts for machine learning models compared

to linear models. A potential reason for this difference might be that they train their mod-

els for each country separately while we train our models on a pooled sample of countries.

However, more data might be necessary for more complex models to robustly identify

non-linearities and interactions in the data.5 We provide some supportive evidence for

this claim by documenting that models trained on emerging market subregions underper-

form models trained on the pooled sample of emerging market subregions and that the

performance loss is more pronounced for machine learning models and smaller subregions.

4 See, IMF, World Economic Outlook database, April 2022, https://www.imf.org/en/Publications/WEO/
weo-database/2022/April.

5 While a linear model asks for a single parameter for each predictor, in the case of non-linear models, the
number of parameters to estimate rapidly expands even with a moderate number of predictors (cf., Gu,
Kelly and Xiu, 2020; Hanauer, Kononova and Rapp, 2022). As such, pooling data across countries will
arguably improve the observations-to-parameters ratio.
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Finally, Leippold, Wang and Zhou (2022) show that machine learning models dominate

linear models for Chinese A-shares. In contrast, our sample purposely excludes Chinese

A-shares to represent an international investor’s investable emerging market universe: for

the majority of our sample period, the China A-share market was only accessible to local

investors and only gradually opened up to international investors (cf., Jansen, Swinkels

and Zhou, 2021).

Second, we add to the literature on the drivers of emerging market stock returns.

Bekaert and Harvey (1995) and Harvey (1995) were among the first to investigate emerging

market country returns and their market integration. Early studies on the cross-section

of emerging market stocks, such as Rouwenhorst (1999), van der Hart, Slagter and van

Dijk (2003), van der Hart, de Zwart and van Dijk (2005), Griffin, Kelly and Nardari

(2010), Cakici, Fabozzi and Tan (2013), and Hanauer and Linhart (2015) mainly focus

on size, value, and momentum. Later studies such as Zaremba and Czapkiewicz (2017)

and Hanauer and Lauterbach (2019) also investigate firm characteristics belonging to cat-

egories such as profitability, investment, intangibles, and trading frictions. Our study

includes characteristics from all these groups, but machine learning models can also take

non-linearities and interactions into account next to linear relationships.

Finally, our paper also contributes to the understanding of the source of return pre-

dictability from machine learning forecasts. Avramov, Cheng and Metzker (2022) show

that return forecasts from deep learning models for the U.S. extract their profitability

mainly from difficult-to-arbitrage stocks and during high limits-to-arbitrage market states.

The authors also argue that the performance of machine learning forecasts further deterio-

rates when microcaps are excluded and when reasonable transaction costs are considered.

Similarly, Leung et al. (2021) find that the economic gains of a gradient boosting ma-

chine model for developed market stocks tend to be more limited and critically dependent

on the ability to take risk and implement trades efficiently. Furthermore, Cakici et al.

(2022a) document that machine learning strategies work best for small stocks, as well as

in countries with many listed firms and high idiosyncratic risk. In our paper, we follow

Hou, Xue and Zhang (2018) and exclude microcaps from our analysis. While we also find

that both linear and machine learning models show higher predictability for stocks associ-

ated with higher limits to arbitrage, we also document that this effect is less pronounced
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for machine learning models. Furthermore, we also provide evidence that a positive and

significant outperformance and six-factor alpha can be achieved even when accounting for

transaction costs, short-selling constraints, and limiting the investment universe to big

stocks only.

The remainder of the paper is structured as follows: Section 2.2 describes the data

sources, sample composition, and utilized firm-level characteristics. Section 2.3 outlines

our methodology for predicting returns with machine learning algorithms, portfolio con-

struction, and benchmark models. Section 2.4 presents evidence of the superiority of more

complex machine learning models, while Section 2.5 strives to understand the source of

this superiority better. We provide our conclusions in Section 2.6.

2.2 Data

2.2.1 Stock market data

Our sample comprises data from emerging stock markets as classified by Morgan Stanley

Capital International (MSCI). The accounting data is from Refinitiv Worldscope, and the

stock market data is from Refinitiv Datastream. The sample period starts in July 1990 and

ends in December 2021. Countries are included in the sample only in those years in which

they are part of the MSCI Emerging Markets Index.6 Furthermore, countries are only

part of the final sample in those months for which at least 10 stock-month observations are

available after applying screens. The following 32 countries meet these criteria: Argentina,

Brazil, Chile, China, Colombia, Czechia, Egypt, Greece, Hungary, India, Indonesia, Israel,

Jordan, Korea, Kuwait, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, Poland,

Portugal, Qatar, Russia, Saudi Arabia, South Africa, Sri Lanka, Taiwan, Thailand, Turkey,

and the UAE.7

We apply several static and dynamic screens to ensure that our sample comprises exclu-

sively of common stocks and provides the highest data quality. First, we identify stocks

using Refinitiv Datastream constituent lists, particularly Refinitiv Worldscope lists, re-

6 See https://www.msci.com/market-classification for details.
7 The Chinese sample includes only non ”A”-shares to proxy the investment universe for an international

investor, as the China A-share market was only accessible to local investors for the majority of our
sample period (cf., Jansen, Swinkels and Zhou, 2021).
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search lists, and dead lists (to eliminate survivorship bias). Following Ince and Porter

(2006), Griffin, Kelly and Nardari (2010), Schmidt et al. (2019), and Hanauer (2020), we

eliminate non-common equity stocks through generic and country-specific static screens.

Furthermore, we apply several dynamic screens to stock returns and prices to exclude

erroneous and illiquid observations. Appendix B provides a detailed description of the

constituent lists and the associated static and dynamic screens. Furthermore, we require

stocks to have market capitalization data for the previous month.

We follow the size group methodology of Fama and French (2008, 2012, 2017) and

Hanauer and Lauterbach (2019) and assign stocks into three size groups (micro, small,

and big) for each country and month. Big stocks are the largest stocks, which together

account for 90% of a country’s aggregated market capitalization. Small stocks comprise the

next 7% of aggregated market capitalization (so that big and small stocks together account

for 97% of the aggregated market size of a country). Microcaps comprise the remaining

3%.8 Although micro stocks represent only 3% of the total market capitalization of our

emerging market universe, they account for 67% of the number of stocks, which is similar

to the proportion reported in Fama and French (2008) and Hanauer (2020) for the U.S. and

developed markets, respectively. To prevent our results from being driven by microcaps,

we follow Hou, Xue and Zhang (2018) and Hanauer and Lauterbach (2019) and exclude

them. Finally, we cap the market capitalization of each stock within each month by its

99% percentile to avoid our results being driven by erroneous data and a few mega-caps.

We calculate returns from the total return index in USD. Following Jacobs (2016) and

Hanauer and Lauterbach (2019), we winsorize all returns each month within a country at

0.1% and 99.9% to eliminate potential errors. To calculate the excess returns, we obtain

the risk-free rate from Kenneth R. French’s homepage.9

The result is a comprehensive dataset spanning 15.152 unique stocks and more than

1.42 million stock-month observations. Table 2.1 depicts the descriptive statistics for the

final sample.

8 To distinguish between these size groups, Fama and French (2008) use the 20th and 50th percentiles of
end-of-June market cap on NYSE stocks as size breakpoints for the U.S. market, which on average are
bigger than AMEX or NASDAQ stocks. However, these breakpoints are applied to all (NYSE, AMEX,
and NASDAQ) stocks. For international markets, Fama and French (2012, 2017) propose to calculate
breakpoints based on aggregated market capitalization, as we do.

9 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 2.1
Summary statistics by country

The table presents summary statistics for the 32 countries of our sample. Columns (1), (2), (3), and
(4) report the total, minimum, mean, and maximum number of firms per country. Columns (5) and (6)
state the average mean and median size per country-month. Column (7) shows the average total size per
country-month and column (8) reports these values in percentage of the respective total across countries.
Size is measured as market capitalization in million USD. The last two columns, Column (9) and Column
(10), report the actual beginning and ending dates during which each country is included in our sample.

Number of firms Size Date

Total Min Mean Max Mean Median Total % Start End

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Argentina 96 11 30 45 832 376 25467 1.12 91-05 21-12
Brazil 289 17 65 154 3121 1500 247409 4.08 94-09 21-12
Chile 201 53 74 102 1740 826 125716 4.26 90-07 21-12
China 28 10 16 24 2772 1292 45063 0.10 16-05 21-12
Colombia 50 14 19 25 2791 2178 53710 0.95 94-07 21-12
Czechia 89 10 36 77 662 234 13541 0.24 97-07 05-08
Egypt 199 51 81 123 577 213 46194 0.59 01-07 21-12
Greece 334 37 90 224 471 178 39442 1.56 90-07 21-12
Hungary 41 10 12 22 1921 486 22053 0.44 97-07 21-12
India 2238 356 593 893 1242 334 788478 13.09 94-07 21-12
Indonesia 649 35 150 296 1019 324 181003 4.50 90-07 21-12
Israel 634 173 245 331 270 60 62659 1.31 95-07 10-06
Jordan 161 10 98 119 328 70 32467 0.08 06-04 09-06
Korea 2972 394 803 1343 622 134 572232 12.87 92-07 21-12
Kuwait 81 73 75 78 1504 396 113350 0.02 21-07 21-12
Malaysia 1173 177 389 534 641 154 242228 9.97 90-07 21-12
Mexico 181 25 54 70 2692 1316 156068 4.92 90-07 21-12
Morocco 57 24 31 37 1323 658 42758 0.41 01-07 14-06
Pakistan 362 73 139 205 190 68 28089 0.50 94-07 21-12
Peru 103 17 28 40 1100 643 31521 0.61 94-07 21-12
Philippines 270 23 80 113 1087 433 101378 2.70 90-07 21-12
Poland 591 26 135 232 653 143 100667 1.74 95-07 21-12
Portugal 99 35 51 60 394 155 18182 0.84 90-07 98-06
Qatar 32 25 27 29 4969 2880 134437 0.42 14-07 21-12
Russia 232 10 54 102 4711 1958 285849 3.77 98-07 21-12
Saudi Arabia 89 34 52 84 8189 4936 398893 0.36 19-07 21-12
South Africa 517 80 131 240 2445 1101 274534 6.31 95-07 21-12
Sri Lanka 150 88 98 105 15 7 1530 0.03 94-07 01-06
Taiwan 1912 339 743 978 772 223 596406 11.36 97-07 21-12
Thailand 823 133 237 387 728 188 194393 6.48 90-07 21-12
Turkey 430 50 134 237 862 243 125222 3.77 90-07 21-12
UAE 69 33 43 49 4703 1653 201327 0.61 14-07 21-12

Global 15152 594 3763 5690 901 209 3909693 100.00 90-07 21-12
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2.2.2 Firm-level characteristics

The 36 firm-level characteristics in this study are analogous to those in Kelly, Pruitt and

Su (2019) and Windmüller (2022) and constructed using data from Refinitiv Datastream

and Worldscope. Appendix B outlines the detailed construction of the characteristics.

We follow Windmüller (2022) and substitute the daily bid-ask spreads with the daily

version of Amihud (2002) illiquidity as a proxy for trading frictions. As shown by Fong,

Holden and Trzcinka (2017), the Amihud (2002) illiquidity measure increases the number

of observations in the cross-section and is the best daily cost-per-dollar-volume proxy for

international data.

The 36 characteristics are: assets-to-market (A2ME), total assets (AT), sales-to-assets

(ATO), book-to-market (BEME), market beta (Beta), cash-and-short-term-investment-to-

assets (C), capital turnover (CTO), capital intensity (D2A), leverage (Debt2P), ratio of

change in property, plants, and equipment to change in total assets (DPI2A), earnings-to-

price (E2P), fixed costs-to-sales (FC2Y), cash flow-to-book (FreeCF), idiosyncratic volatility

(Idiovol), investment (INV), market capitalization (LME), turnover (LTurnover), net op-

erating assets (NOA), operating accruals (OA), operating leverage (OL), price relative to its

52-week high (P2P52WH), price-to-cost margin (PCM), profit margin (PM), gross profitability

(Prof), Tobin’s Q (Q), momentum (r12−2), intermediate momentum (r12−7), short-term

reversal (r2−1), long-term reversal (r36−13), return on net operating assets (RNA), return

on assets (ROA), return on equity (ROE), sales-to-price (S2P), the ratio of sales and gen-

eral administrative costs to sales (SGA2S), unexplained volume (SUV), and Amihud (2002)

illiquidity (Illiqu).

Moreover, in a robustness check, we add the following four characteristics that have

been shown to be strong return predictors for emerging markets (Hanauer and Lauterbach,

2019): monthly updated book-to-market (BEMEm, Asness and Frazzini, 2013), composite

equity issuance (CEI, Daniel and Titman, 2006), cash flow-to-price (CF2P, Lakonishok,

Shleifer and Vishny, 1994), and gross profitability-to-assets (GP2A, Novy-Marx, 2013).

We do not exclude financial firms but set the following characteristics as missing as they

are not meaningfully defined for financials: ATO, C, D2A, DPI2A, FC2Y, FreeCF, CF2P, GP2A,

OA, PCM, PM, Prof, RNA, SGA2S, and NOA.

Following Freyberger, Neuhierl and Weber (2020), Gu, Kelly and Xiu (2020), and Leip-
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pold, Wang and Zhou (2022), we rank all stock characteristics cross-sectionally for each

month and country into the [-1,1] interval to limit the effect of outliers. These country-

based ranks aim to address the impact of different accounting standards across countries,

particularly in the earlier part of the sample period, and thus account for cross-country

differences in characteristics. In case of missing characteristics, we replace them with a 0

to ensure broad cross-sectional coverage. Balance sheet data from the fiscal year ending in

calendar year t-1 is used from end-of-June in year t to end-of-May in year t+1 to predict

stock returns from July in year t to end-of-June in year t+1.

2.3 Methodology

2.3.1 Return prediction using machine learning

Rasekhschaffe and Jones (2019) stress that domain knowledge is essential to structure the

forecasting problem in a way that increases the signal-to-noise ratio. As we are interested

in the cross-section of stock returns and rank stocks in portfolio sorts later in a country-

neutral manner, we aim to forecast the outperformance of a stock relative to its country

market return. Therefore, we define the abnormal return of a stock i, i = 1, ..., N in month

t, t = 1, ..., T in the country c, c = 1, ..., C as

rabn
i,t,c = ri,t,c − Mktt,c, (2.1)

where ri,t,c is the return of stock i in month t of country c and Mktt,c is the value-weighted

market return in month t of country c.

Following Gu, Kelly and Xiu (2020), we employ a general additive prediction model to

describe the one-month-ahead abnormal return of a stock rabn
i,t+1,c, which can be written as

rabn
i,t+1,c = Et[rabn

i,t+1,c|xi,t] + ϵi,t+1,c, (2.2)

where Et[rabn
i,t+1,c|xi,t] is the conditional expected abnormal return of stock i in month

t for month t + 1 given a vector of stock-specific p characteristics known at month t,

xi,t ∈ Rp, and ϵi,t+1,c is the prediction error term. Our objective is to estimate the
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expected abnormal return by using an unknown function f∗, f∗ : Rp → R, which estimates

the expected returns independently of any other information besides the vector of p stock-

specific characteristics available in month t:

Et[rabn
i,t+1,c|xi,t] = f∗(xi,t). (2.3)

In the case of supervised machine learning, the unknown function f∗(x) is approximated

by some function f(x, θ, ρ), which is parameterized by a vector of coefficients θ and a

set of hyperparameters ρ. While θ is directly derived from the underlying training data

with respect to ρ and a specific loss function L, ρ itself depends on the user input but is

optimized concerning L based on available data. The exact functional form of f depends

on the family and can be either linear or non-linear, parametric or non-parametric.

For this paper, we build on Rasekhschaffe and Jones (2019), Gu, Kelly and Xiu (2020),

Tobek and Hronec (2020), Drobetz and Otto (2021), and Leippold, Wang and Zhou (2022)

to select a representative amount of machine learning models from the finance literature.

We analyze the predictive power of nine different algorithms: ordinary least squares (OLS)

regression, elastic net (ENet), gradient-boosted regression trees (GBRT ), random forest

(RF ), and neural networks with one to five layers (NN1, NN2, NN3, NN4, NN5). We also

investigate the performance of an ensemble of the five different neural networks (NN1−5)

and the average combination of the more advanced machine learning methods (ENS):

GBRT , RF , and NN1−5. We provide a more detailed description of the models in Ap-

pendix B.

Besides the model selection, we also follow the standard approach in the literature (Gu,

Kelly and Xiu, 2020; Leippold, Wang and Zhou, 2022) for selecting the hyperparameter

range, the training of the models, and the performance evaluation. One of the most

crucial things when estimating the different machine learning models is to avoid data

leakage. This happens when information exceeding the training dataset is used to create

the model. Therefore, we divide our data into three disjoint periods, which always maintain

the temporal ordering: the training, validation, and testing samples. We first estimate the

models for a range of hyperparameters based on the training data. Next, we determine

the respective loss of each hyperparameter set and model in the validation sample. The
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optimal hyperparameter set minimizes the individual model’s respective loss function.

Afterward, we retrain the model with the optimal hyperparameter set on the combined

training and validation data. Next, the models are used to predict the monthly returns

for the test dataset. We describe an example of this procedure for the first two years

in our sample: we first estimate the models for a range of hyperparameters based on

the training data from July 1990 to December 1995. Afterward, we determine the best

hyperparameters through the validation sample from January 1996 to December 2001.

Finally, the model is retrained with the optimal hyperparameter using the data from July

1990 to December 2001 and evaluated in the testing sample using data from January 2002

to December 2002. To test our models from January 2003 to December 2003, we extend

the training sample by one year (July 1990 to December 1996) and roll the validation

sample forward by one year (January 1997 to December 2002). This procedure ensures

that no future information is leaked from a previous period. Since machine learning models

are computationally intensive, we retrain them only once at the end of every year but do

the prediction every month using the latest model and data. Appendix B summarizes the

hyperparameter tuning schemes for each model.

2.3.2 Machine learning portfolios

We mainly rely on portfolio performance analysis to evaluate the predictive performance

of the different machine learning models. For a given machine learning model, we follow

the following approach: At the end of each month t, we predict the next month’s abnormal

return (r̂abn
i,t,c), which we use for sorting stock into quintiles. To avoid that small stocks

or certain countries dominate our results, we estimate the quintile breakpoints for each

country separately based on big stocks as recommended in Hou, Xue and Zhang (2018)

and applied in Hanauer and Lauterbach (2019). Furthermore, the machine-learning-based

signals should not only contain information on the return predictability in equal-weighted

sorts, which may be driven by smaller stocks, but also in value-weighted sorts, which are

dominated by larger stocks. Finally, we construct a zero-net investment portfolio (long-

short) that goes long in the highest quintile portfolio and short in the lowest quintile

portfolio. We reassign and rebalance all portfolios at the end of each month.
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2.3.3 Benchmark factor models

To benchmark the results of the different machine learning portfolio sorts, we consider

the Fama and French (2018) six-factor model, i.e., the Fama and French (2015) five-factor

model with a cash-based profitability factor and augmented with the Carhart (1997) mo-

mentum factor. The corresponding six factors are market (RMRF ), size (SMB, small

minus big), value (HML, high minus low), profitability (RMW , robust minus weak), in-

vestment (CMA, conservative minus aggressive), and momentum (WML, winners minus

losers). These factors are based on the same stock sample as the machine learning portfo-

lios, i.e., we also exclude microcaps. Furthermore, we use regional versions of the factors

for studying emerging market regions. Appendix B provides a detailed description of how

the factors are constructed.

2.4 Empirical results

This section presents evidence on the application of various machine learning models in

emerging markets. We begin by analyzing the out-of-sample R2
OOS of individual stock re-

turns. Subsequently, we evaluate the importance of different characteristics, the sensitivity

of the predicted returns to various characteristics, and the sensitivity to the interaction

effects of different characteristics. Next, we employ portfolio sorts to assess the economic

gains of using different machine learning models. Finally, we investigate the impact of

various methodological changes and the robustness of our findings in emerging market

subregions.

2.4.1 Prediction performance

Table 2.2 presents the out-of-sample R2
OOS for our set of machine learning models, which

measures the predictive power on the individual stock level. In Panel B, we show the Newey

and West (1987) adjusted Diebold and Mariano (1995) test statistics to compare the out-

of-sample stock-level prediction performance between each machine learning model. We
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measure the pooled out-of-sample R2
OOS in Panel A as:

R2
OOS = 1 −

∑T
t

∑N
i (rabn

i,t,c − r̂abn
i,t,c)2∑T

t

∑N
i (rabn

i,t,c)2
. (2.4)

Table 2.2
Monthly out-of-sample stock-level prediction performance

This table summarizes the monthly out-of-sample stock-level prediction performance using OLS (OLS),
elastic net (ENet), random forest (RF ), gradient boosted regression trees (GBRT ), neural networks with
1 to 5 layers (NN1–NN5), an ensemble of the different neural networks (NN1−5), and an ensemble of the
different non-linear machine learning algorithms (ENS). Panel A reports the monthly R2

OOS statistics
for the full sample and within subsamples that include only large stocks or small stocks. Panel B reports
pairwise Newey and West (1987) adjusted Diebold-Mariano test statistics comparing the out-of-sample
stock-level prediction performance among each machine learning model. Positive numbers indicate the
column model outperforms the row model. Bold font indicates the difference is significant at 1% level or
better for individual tests, and an asterisk indicates significance at the 1% level for 10-way comparisons
via our conservative Bonferroni adjustment. The out-of-sample period is from January 2002 to December
2021.

OLS ENet RF GBRT NN1 NN2 NN3 NN4 NN5 NN1−5 ENS

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) (10) (11)

Panel A: Percentage R2
OOS

Full Sample 0.29 0.18 0.40 0.52 0.49 0.53 0.53 0.55 0.54 0.60 0.60
Large firms 0.12 -0.01 0.25 0.30 0.19 0.24 0.27 0.31 0.31 0.34 0.38
Small firms 0.40 0.29 0.49 0.66 0.67 0.70 0.68 0.70 0.68 0.75 0.73

Panel B: Between-model comparison of predictive performance

OLS -2.13 3.45* 6.35* 5.57* 5.42* 5.64* 6.05* 6.65* 7.34* 8.25*
ENet 4.53* 6.50* 5.91* 6.08* 6.29* 7.21* 7.01* 7.68* 8.19*
RF 6.80* 2.96 3.96* 4.38* 5.27* 4.57* 6.59* 12.65*
GBRT -0.72 0.71 0.68 1.74 1.00 3.49* 7.59*
NN1 2.51 2.12 3.24 2.85 9.19* 4.38*
NN2 -0.23 1.69 0.25 6.01* 2.37
NN3 1.82 0.39 5.86* 2.82
NN4 -1.42 3.12 1.45
NN5 5.30* 2.60
NN1−5 -0.45

The first row in Panel A of Table 2.2 reports the R2
OOS of the full sample. The OLS

yields a benchmark R2
OOS of 0.29%, which all other models improve except for the ENet

(R2
OOS of 0.18%). Since the ENet shrinks certain coefficients towards zero but does not

consider interactions or non-linearities, it seems that this regularization does not increase

the predictability. The RF and GBRT are superior to the OLS, producing fits of 0.40%

and 0.52%, respectively. Only the NN1 underperforms the GBRT but outperforms all

other linear and non-parametric models and yields a R2
OOS of 0.49%. The NN2 to NN5
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show R2
OOS between 0.53% and 0.55%, with the NN4 performing the best. Creating an

ensemble of neural networks (NN1−5) and an ensemble of the non-linear machine learning

models (ENS) produces fits for both models of 0.60%.

A closer look at the second and third rows in Panel A of Table 2.2 reveals an interesting

pattern: in all the cases, the predictive performance is better for small firms than for large

firms. The ensemble of neural networks (NN1−5) and the ensemble of non-linear machine

learning models (ENS) yield a R2
OOS of 0.34% and 0.38% for large firms and 0.75% and

0.73% for small firms, respectively.

Whereas Panel A measures the individual predictive performance of the different ma-

chine learning models, Panel B assesses the statistical significance of differences among

the models using the Newey and West (1987) adjusted Diebold and Mariano (1995) test

statistics (DMkj) comparing a column model (k) versus a row model (j). We compute

the Newey-West adjusted Diebold-Mariano test statistics as:

MSFEm
t = 1

Nt

Nt∑
i=1

(rabn
i,t,c − r̂abn

i,t,c,m)2

dkj,t = MSFEk
t − MSFEj

t

d̄kj = 1
T

t=1∑
T

dkj,t

DMkj = d̄kj

σ̂dkj ,NW (4)
,

(2.5)

where σ̂dkj ,NW (4) is the Newey and West (1987) standard error of dkj,t with four lags. The

Diebold-Mariano test statistic is normally distributed with a mean of 0 and a standard

deviation of 1 (N (0, 1)) with the null hypothesis that there exists no difference between

the models, which allows us to map the magnitudes of the test statistic to p-values. Bold

numbers indicate a significant difference between the models at the 1% level (DM ≥ 2.60).

An asterisk indicates statistical significance at the 1% level for 10-way comparisons via

the conservative Bonferroni adjustment, which increases the critical value to 3.33.

Except for the ENet, all machine learning models outperform the OLS and exceed

the Bonferroni adjusted critical value of 3.33. The comparison between the RF and

all other non-linear models yields a similar result, with the GBRT and all other neural
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networks, except NN1, outperforming the RF . For the GBRT , only the two machine-

learning ensembles significantly improve prediction performance, as evidenced by a DM

statistic of 3.49 and 7.59, respectively. The different neural networks with one to five

layers do not differ much in their prediction performance. In the case of the NN1, the

neural networks with four and five layers are superior. The two best-performing machine

learning models are the two ensembles. While the ensemble of neural networks (NN1−5)

significantly outperforms all other machine learning models, the ensemble of the trees and

neural networks (ENS) exhibits statistically significant outperformance when compared

to the OLS, ENet, RF , GBRT , NN1, NN3, and NN5.

2.4.2 Characteristics importance and marginal relationships

Next, we examine the importance of individual characteristics in predicting abnormal

returns and the model-implied marginal impact of individual characteristics on expected

abnormal returns.

We determine the importance of each characteristic for each model by measuring the

average reduction in R2
oos by setting each value of the particular characteristic to zero and

keeping the remaining model estimates fixed. Figure 2.1 visualizes the sum over the cross-

sectional ranked characteristics for the different machine learning models.10 A darker color

in the figure indicates higher importance of the characteristic for the individual model,

while a lighter color indicates lower importance for the R2
oos.

The most influential characteristics are similar among the different machine learning

models, with turnover (LTurnover), idiosyncratic volatility (Idiovol), price relative to its

52-week high (P2P52WH), Amihud (2002) illiquidity (Illiqu), total assets (AT ), mar-

ket capitalization (LME), and market beta (Beta) from the trading frictions category;

momentum (r12−2), short-term reversal (r2−1), and intermediate momentum (r12−7) from

the past returns category; and assets-to-market (A2ME), Tobin’s Q (Q), book-to-market

(BEME), and leverage (Debt2P ) from the value category all being among the top 15

characteristics. However, characteristics from the profitability and intangibles categories,

except for return on asset (ROA), are not present among the top 15.

10 In addition, we present the most influential characteristics per model and the corresponding normalized
importance in Figure B. 1 in the appendix.
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Figure 2.1
Characteristic importance by model

This figure shows the ranked characteristic importance for the variables in each model. Characteristic
importance is an average over all training samples and importance within each model is normalized to sum
to one.
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Figure 2.2 visualizes the marginal impact of individual characteristics on expected ab-

normal returns for the OLS, ENet, RF , GBRT , and NN1−5. We predict the returns for

each model and characteristic by iterating over the (-1,1) interval and holding all other

characteristics fixed at zero. We do this for each time period and model individually and

calculate the average predicted return among the different machine learning models. We

select short-term reversal (r2−1), idiosyncratic volatility (Idiovol), turnover (LTurnover),

and operating leverage (OL) as examples to visualize how the different machine learning

models associate the underlying characteristic with the expected abnormal returns.

Figure 2.2
Marginal association between expected returns and characteristics

The figure shows the sensitivity of expected returns (vertical axis) to the four following individual char-
acteristics (holding all other covariates fixed at their median values): short-term reversal (r2−1, top-left),
idiosyncratic volatility (Idiovol, top-right), turnover(LT urnover, bottom-left), and operating leverage
(OL, bottom-right).
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Inspecting the relationships in Figure 2.2, we observe that all methods identify the well-

known negative relationship between expected returns with short-term reversal (r2−1,

top-left) or idiosyncratic volatility (Idiovol, top-right). While the two linear models are,

per definition, restricted to linear relationships, we see that tree-based methods and neu-
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ral networks identify more pronounced short-term reversal patterns in the extremes.11

Similarly, these methods detect a relatively flat relationship for low and medium levels

of idiosyncratic volatility (Idiovol) but an increasingly negative relationship for high id-

iosyncratic volatility, echoing the empirical results in Ang et al. (2006). The differences

are even more pronounced for turnover (LTurnover, bottom-left). While both OLS and

ENet find a positive slope, the two tree-based models, RF and GBRT , and the neural

network ensemble, NN1−5, identify an inverted U-shape pattern: extreme positive and

negative values of LTurnover are associated with lower expected return than the middle

region in the interval, echoing the pattern documented in Freyberger, Neuhierl and Weber

(2020). Such differences in marginal relationships can partly explain the divergence in the

performance of linear and non-linear methods. However, we also observe that all methods

agree on a nearly zero relationship between operating leverage (OL, bottom-right) and

expected returns.

A significant advantage of the tree-based models and the different neural networks is that

they can model complex interactions among the various characteristics. In Figure 2.3, we

illustrate how the NN1−5 can model complex interactions between characteristics. Specif-

ically, we show the sensitivity of the expected returns to pairwise interaction effects for

Amihud (2002) illiquidity (Illiqu) and idiosyncratic volatility (Idiovol) with short-term

reversal (r2−1) and market capitalization (LME) by varying both pairs of characteristics

while holding the other predictors fixed. We choose Illiqu and Idiovol as they are promi-

nent hard-to-value proxies (cf., Kumar, 2009) and r2−1 and LME as they are two main

control characteristics in the asset pricing literature.

The upper-left figure illustrates that the difference between high and low previous month

returns is the most substantial for very illiquid stocks (purple line). In contrast, the lines

remain mostly parallel for other values of Illiqu. This finding is consistent with the em-

pirical observation for the interaction between short-term reversal with turnover reported

in Medhat and Schmeling (2022). The upper-right figure depicts the interactions between

a stock’s market capitalization and the Amihud (2002) illiquidity measure. For liquid

firms (blue and orange line), the expected return increases with market capitalization.

11 This finding is consistent with the empirical pattern for short-term reversal deciles that can be found on
Kenneth R. French’s homepage.
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Figure 2.3
Expected returns and characteristic interactions (NN1−5)

The figure shows the sensitivity of the expected returns (vertical axis) to interactions effects for four
selected combinations in model NN1−5 (holding all other characteristics fixed at their median values of
0): Amihud (2002) illiquidity (Illiqu) and short-term reversal (r2−1) (top-left), Amihud (2002) illiquidity
and market capitalization (LME) (top-right), idiosyncratic volatility (Idiovol) and short-term reversal
(bottom-left), and idiosyncratic volatility and market capitalization (bottom-right).
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In contrast, the relationship is reversed for illiquid firms (red and purple line), imply-

ing that expected returns decrease for larger firms. The bottom-left figure reveals that

the short-term reversal effect is most pronounced and S-shaped for risky stocks (purple

line). In contrast, the reversal effect is concave for less risky stocks (blue and orange line),

yielding significantly lower returns when the prior month’s returns are high. Finally, the

bottom-right figure indicates that no strong interaction effects exist between Idiovol and

LME.

2.4.3 Portfolio performance

Following our analysis of the predictive ability of the different machine learning methods

for individual stock returns, we will now proceed with a general overview of the profitability

of machine learning signal-based portfolios.
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Table 2.3 displays the results of our analysis on equal- and value-weighted country-

neutral quintile portfolio sorts using big-stock breakpoints. In Panel A and Panel D,

we report the predicted monthly returns for the long-short quintile (Pred), the average

monthly return for the long-short quintile (Avg), Newey and West (1987) adjusted t-

statistics with four lags (t-stat), monthly standard deviations (SD), and Sharpe ratios

(SR). Panel B and Panel E show the alphas (α), corresponding Newey and West (1987)

adjusted t-statistics with four lags (t-statα), and R2 with respect to the Fama and French

(2018) six-factor model:

rp,t,ML − rf,t = α + β1RMRFt + β2SMBt + β3HMLt

+ β4RMWt + β5CMAt + β6WMLt + ϵt.
(2.6)

We additionally provide detailed results on every quintile in Table B. 1 in the appendix.12

Panel C and Panel F describe the maximum drawdowns (Max DD), the most negative

monthly return (Max 1M Loss), and the average monthly percentage change in hold-

ings (TO) of different machine learning-based long-short portfolios. We define maximum

drawdowns as

Max DD = max
0≤t1≤t2≤T

(Yt1 − Yt2), (2.7)

where Yt is the cumulative log return from date 0 through t. The strategy’s average

monthly turnover is defined as

TO = 1
T

T∑
t=1

(
Nt∑
i=1

∣∣∣∣∣wi,t+1 − wi,t(1 + ri,t+1)
1 +∑Nt

j=1 wj,trj,t+1

∣∣∣∣∣
)

, (2.8)

where wi,t is the weight of stock i in the portfolio at time t.

We start by analyzing the equal-weighted long-minus-short quintile returns in Panel A

of Table 2.3. All machine learning models yield positive and highly significant long-short

returns. The order is similar to the monthly out-of-sample stock-level prediction perfor-

12 We also include the performance of a strategy that uses the equal-weighted (1/N) average of all stan-
dardized characteristics (µsign(c)) in this table. Thereby, characteristics are sorted in such a way that
higher values correspond to higher expected returns. The performance of this simple linear combination
is slightly worse (similar) than that of the other two linear strategies for equal-weighted (value-weighted)
portfolios.

70



Chapter 2. Machine Learning and the Cross-Section of Emerging Market Stock Returns

Table 2.3
Drawdowns, turnover, and risk-adjusted performance of machine learning portfolios

This table reports the out-of-sample performance of the different machine learning long-short portfolios.
Stocks are sorted into country-neutral quintiles portfolios based on their predicted returns for the next
month. The sorting breakpoints are based on big stocks only, which are in the top 90% of a country’s
aggregated market capitalization. Panel A (Panel D) summarizes the quintile sort results from equal-
weighting (value-weighting) and provides the predicted monthly returns for the long-short quintile (Pred),
the average monthly returns of the long-short quintile (Avg), Newey and West (1987) adjusted t-statistics
with 4 lags (t-stat), their standard deviations (SD), and annualized Sharpe ratios (SR), respectively. Panel
B (Panel E) reports the average Fama and French (2018) six-factor model alphas (αF F 6), corresponding
Newey and West (1987) adjusted t-statistics with 4 lags (t-statα), and corresponding R2 using equal-
weighting (value-weighting). Panel C (Panel F) describes the maximum drawdowns (Max DD), the most
negative monthly return (Max 1M Loss), and the average monthly turnover in % of the equal-weighted
(value-weighted) long-short portfolio. The sample period is from January 2002 to December 2021.

OLS ENet RF GBRT NN1 NN2 NN3 NN4 NN5 NN1−5 ENS

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) (10) (11)

Panel A: Quntile sorts performance - Equal-weighted

Pred 1.93 1.97 1.50 1.80 2.61 2.60 2.41 2.29 2.25 2.30 1.71
Avg 1.38 1.20 1.60 1.82 1.89 1.91 1.84 1.86 1.85 1.88 1.86
t-stat 7.82 6.83 9.33 11.57 14.01 15.75 14.81 13.82 13.50 13.50 11.79
SD 2.04 2.12 2.04 1.88 1.68 1.58 1.60 1.66 1.69 1.72 1.87
SR 2.34 1.96 2.71 3.35 3.91 4.21 4.00 3.89 3.78 3.79 3.44

Panel B: Risk-adjusted performance - Equal-weighted

αF F 6 0.97 0.83 1.19 1.40 1.47 1.55 1.49 1.48 1.44 1.46 1.43
t-statα 8.02 6.94 14.10 15.65 15.67 19.02 16.93 16.72 15.79 15.81 15.66
R2 62.42 55.79 59.81 60.89 53.21 48.65 52.70 54.66 56.15 55.67 58.17

Panel C: Drawdowns and turnover - Equal-weighted

Max DD (%) 26.35 26.23 21.69 18.84 16.70 13.45 16.00 16.07 17.61 17.82 19.04
Max 1M loss (%) 13.97 12.96 10.53 10.70 9.37 7.65 10.20 10.17 10.25 10.75 10.68
Turnover (%) 89.27 96.38 89.61 97.39 101.87 102.02 100.80 99.21 99.50 99.72 95.77

Panel D: Quntile sorts performance - Value-weighted

Pred 1.85 1.89 1.39 1.61 2.30 2.21 2.04 1.94 1.93 1.97 1.52
Avg 0.84 0.73 0.99 1.06 1.04 1.12 1.12 1.20 1.17 1.21 1.21
t-stat 4.64 4.01 5.28 6.14 7.00 9.47 7.91 8.35 8.17 8.55 7.04
SD 2.22 2.36 2.32 2.17 1.95 1.75 2.01 1.97 1.87 1.98 2.20
SR 1.31 1.07 1.48 1.69 1.85 2.23 1.93 2.11 2.17 2.12 1.91

Panel E: Risk-adjusted performance - Value-weighted

αF F 6 0.28 0.27 0.47 0.57 0.57 0.71 0.66 0.73 0.71 0.72 0.67
t-statα 2.72 2.28 5.24 6.73 4.83 9.16 6.55 7.76 8.21 8.26 8.29
R2 68.25 56.39 67.61 68.50 52.97 48.50 51.79 58.50 59.39 56.86 67.17

Panel F: Drawdowns and turnover - Value-weighted

Max DD (%) 30.49 31.45 31.07 26.54 23.63 15.44 23.19 21.81 20.81 20.36 25.28
Max 1M loss (%) 16.60 17.82 14.46 14.73 16.45 9.58 17.36 15.90 12.83 14.81 14.81
Turnover (%) 91.28 97.18 90.46 101.10 103.81 106.35 106.02 104.35 104.43 101.46 96.85
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mance in Table 2.2. The linear methods OLS and ENet yield a monthly return of 1.38%

(t-stat 7.82) and 1.20% (t-stat 6.83), respectively. However, the tree-based methods RF

and GBRT exhibit even higher long-short returns of 1.60% (t-stat 9.33) and 1.80% (t-stat

11.57), which themselves are outperformed by the neural networks with returns between

1.84% (NN3) and 1.91% (NN2) and t-statistics between 13.82 (NN4) and 15.75 (NN2).

The ensemble of the different neural networks (NN1−5) yields a similar performance as

NN5, and the ensemble of the tree-based methods and neural networks has a performance

similar to the GBRT .

The risk-adjusted performance displayed in Panel B leads to the same order as the raw

long-short returns. However, the increase in the six-factor alpha for the machine learning

models compared to the linear models is even more pronounced as the six-factor model has

less explanatory power. Furthermore, Panel C reveals that the neural network portfolios

exhibit a smaller maximum drawdown and maximum one-month loss than the linear and

tree-based models. The maximum drawdown (worst one-month return) in the case of the

ensemble of neural networks is 17.82% (10.75%), whereas this number is 26.35% (13.97%)

for the OLS. The superior performance of the machine learning models comes at the

cost of a somewhat higher turnover. However, compared to the performance gains, this

turnover increase from 89.27% for OLS to values between 89.61% for RF and 102.02 for

NN2 is relatively small.

Turning to the results for value-weighted portfolios in Panels D to E of Table 2.3 reveals

identical qualitative conclusions, but the return spreads, t-statistics, and Sharpe ratios are

substantially lower. Although the return forecasts derived from linear models already lead

to economically and statistically significant long-short mean returns and six-factor alphas,

the tree-based methods and neural networks do even better. Again, the neural network

with two layers exhibits the highest t-statistics and Sharpe ratios while suffering from

the mildest drawdowns. Comparing the ensemble of machine learning methods (ENS)

with the linear OLS regressions shows performance gains of roughly 50% for the raw

quintile returns and even higher for the risk-adjusted performance. In sum, allowing for

non-linearities and interactions also leads to economically superior out-of-sample returns

compared to traditional linear models, as summarized in Figure 2.4.

Figure 2.5 illustrates the results of Table 2.3 by plotting the equal-weighted and value-
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Figure 2.4
Long-horizon performance of machine learning forecasts

This figure shows the Fama and French (2018) six-factor models alphas for various machine learning
long-short portfolios. Stocks are sorted into country-neutral and value-weighted quintiles based on their
predicted returns for the next month. The sorting breakpoints are based on big stocks only, which are in
the top 90% of a country’s aggregated market capitalization. The sample period is from January 2002 to
December 2021.
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weighted cumulative performance of selected long-short strategies. We additionally in-

clude the cumulative performance for the long and short sides for select strategies in

Appendix B. 2. Notably, the performance of our strategies does not predominantly stem

from the short side, which would raise investability concerns due to shorting frictions.

Using a value-weighted portfolio strategy, RF initially dominates the other methods,

while the outperformance of GBRT and NN1−5 mainly stems from the period after 2009.

As the ENS comprises all three methods, we observe a rather consistent outperformance

versus OLS that is not driven by a particular period. In the case of equal-weighted

portfolios, there are only small differences between the portfolio returns of GBRT , NN1−5,

and ENS till 2021. As for the value-weighted portfolios, the machine learning methods

outperform the linear approaches consistently over time. The model with the lowest

cumulative return is the ENet, whereby the underperformance versus the OLS is mainly

driven by the first years of the sample period. Besides a sharp drawdown in 2009, there
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Figure 2.5
Cumulative return of machine learning portfolios

The figure shows the cumulative log returns of long-short quintile portfolios sorted on the out-of-sample
machine learning return forecasts. Panel A shows equal-weighted returns, while Panel B shows value-
weighted returns. The sample period is from January 2002 to December 2021.
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are no other notable downturns for all approaches. The drawdown in 2009 probably stems

from the models’ exposure to momentum that exhibited a momentum crash at that time

(Daniel and Moskowitz, 2016; ?). The recent global shock due to the COVID-19 pandemic

in early 2020 did not lead to a significant portfolio-level downturn.

2.4.4 Robustness

To check the robustness of the results presented above, we will investigate (i) the impact of

various methodological changes and (ii) the robustness within emerging market subregions.

Table 2.4 summarizes the robustness tests for methodological changes. We include var-

ious performance indicators for our equal-weighted and value-weighted machine learning

portfolio strategies. However, we will only compare the performance of the benchmark

OLS model to the ENS model. We select the ENS to be not driven by a look-ahead

bias regarding the model selection and its portfolio performance. Besides the individual

long-short return and the six-factor model of the two machine learning models, we include

the results of the following two regressions in the last two rows of each panel:

rLS,t,ENS = α + βOLSrLS,t,OLS + ϵt,

rLS,t,OLS = α + βENSrLS,t,ENS + ϵt.
(2.9)

A positive and significant alpha indicates that the returns of the strategy on the right-hand

side cannot fully explain the portfolio returns on the left-hand side.

The first two rows in Panel A show again our baseline result for OLS and ENS, as

previously shown in Table 2.3. In addition, the last two rows of Panel A demonstrate

that the ENS long-short portfolio spans the OLS long-short portfolio for both equal- and

value-weighted portfolios, but the OLS portfolios cannot span ENS portfolios.

In Panel B, we construct our long-short trading strategy using decile instead of quintile

sorts. By focusing on more extreme predicted abnormal returns and due to the monotonic

increase among the portfolios, the equal-weighted and value-weighted long-short returns

of the OLS increase to 1.84% (t-stat 10.09) and 1.18% (t-stat 5.91), whereas the Fama and

French (2018) six-factor alpha increases to 1.41% (t-stat 11.30) and 0.55% (t-stat 4.66).

The ENS shows an increase in the return to 2.50% (t-stat 13.93) and 1.66% (t-stat 8.12)
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Table 2.4
Robustness

This table reports robustness tests for the out-of-sample performance of equal- and value-weighted long-short port-
folios. All stocks are sorted into country-neutral quintile portfolios based on their predicted returns for the next
month. We investigate predictions from a linear OLS model and an ensemble (ENS) of non-linear machine learn-
ing models (RF , GBRT , and NN1−5). The sorting breakpoints are based on big stocks only, which are in the
top 90% of a country’s aggregated market capitalization. Panel A summarizes the baseline results as presented in
Table 2.3. Panel B reports results on using decile sorts. Panel C uses an extended feature set following Hanauer
and Lauterbach (2019). Panel D applies a feature selection before training the machine learning algorithms. Panel
E uses predictions stemming from machine learning algorithms only trained on developed market data. Panel F
excludes the high-turnover characteristics Idiovol, LTurnover, r2−1, SUV, Illiqu from the feature set. Panel G
shows the results for models trained on emerging market subregions. The first two rows of each panel provide the
average monthly returns of the long-short quintile (Avg), corresponding t-statistics (t), the average Fama and French
(2018) six-factor alphas (α), corresponding t-statistics (tα), and R2. The next two rows show spanning alphas (α),
corresponding t-statistics (tα), and R2 when regressing the long-short ENS returns on OLS returns and vice versa.
All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4 lags. The sample period
is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel A: Baseline

OLS 1.38 7.82 0.97 8.02 62.42 0.84 4.64 0.28 2.72 68.25
ENS 1.86 11.79 1.43 15.66 58.17 1.21 7.04 0.67 8.29 67.17
ENS ∼ OLS 0.73 9.01 80.28 0.49 7.83 74.66
OLS ∼ ENS -0.44 -2.10 80.28 -0.22 -1.50 74.66

Panel B: Decile sorts

OLS 1.84 10.09 1.41 11.30 52.39 1.18 5.91 0.55 4.66 62.37
ENS 2.50 13.93 2.02 18.31 54.16 1.66 8.12 1.10 10.30 57.37
ENS ∼ OLS 1.01 7.10 71.88 0.78 6.00 56.06
OLS ∼ ENS -0.38 -2.76 71.88 -0.07 -0.36 56.06

Panel C: Extended feature set

OLS 1.51 9.51 1.14 11.05 52.93 0.87 5.22 0.36 3.17 55.86
ENS 1.96 13.14 1.57 19.57 56.22 1.22 6.80 0.71 7.55 63.06
ENS ∼ OLS 0.69 9.72 80.98 0.45 5.37 73.16
OLS ∼ ENS -0.38 -2.43 80.98 -0.13 -1.26 73.16

Panel D: Feature selection

OLS 1.36 8.03 0.97 8.94 61.23 0.82 4.51 0.28 2.61 65.34
ENS 1.83 12.31 1.43 17.52 58.83 1.23 7.36 0.73 8.71 63.59
ENS ∼ OLS 0.75 8.96 80.53 0.60 9.09 69.83
OLS ∼ ENS -0.50 -2.34 80.53 -0.29 -1.60 69.83

Panel E: Trained on developed markets

OLS 1.29 6.71 0.93 6.76 62.40 0.89 4.67 0.38 3.37 68.17
ENS 1.67 10.55 1.23 10.12 59.97 1.20 6.64 0.62 5.31 61.15
ENS ∼ OLS 0.72 6.99 79.14 0.43 4.75 74.18
OLS ∼ ENS -0.50 -3.84 79.14 -0.15 -1.20 74.18

Panel F: Excluding short-term feature set

OLS 1.36 7.12 0.89 8.85 63.66 0.77 4.25 0.24 3.37 74.39
ENS 1.59 9.13 1.17 11.62 59.27 1.00 5.56 0.46 5.91 70.92
ENS ∼ OLS 0.45 7.31 88.62 0.32 3.93 82.31
OLS ∼ ENS -0.32 -4.99 88.62 -0.16 -2.18 82.31

Panel G: Subregional training

OLS 1.09 6.29 0.77 6.23 53.92 0.78 4.42 0.29 2.57 56.92
ENS 1.35 8.88 0.97 9.75 57.22 0.97 5.95 0.44 4.59 58.10
ENS ∼ OLS 0.49 7.78 77.56 0.28 4.46 75.77
OLS ∼ ENS -0.23 -1.76 77.56 -0.06 -0.51 75.77
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as well as in the risk-adjusted return to 2.02% (t-stat 18.31) and 1.10% (t-stat 10.30).

Therefore, both OLS and ENS show stronger results when using decile sorts. Still, the

increase in returns of the ENS is higher than the OLS, resulting in a larger α when

regressing the ENS on the OLS compared to Panel A.

The feature set for the robustness test presented in Panel C includes the additional pre-

dictive characteristics described in Hanauer and Lauterbach (2019). The OLS particularly

benefits from this extended feature set. The average equal-weighted and value-weighted

long-short return increase by 9% and 4%, while only the equal-weighted return of ENS

increases by 5%. In the case of the value-weighted risk-adjusted return, the OLS alpha

increases by 28% and the ENS alpha increases by 6%.

Reducing the number of characteristics by applying a lasso regression, i.e., feature selec-

tion, before training the machine learning models reduces the equal-weighted and value-

weighted long-short returns as well as the equal-weighted risk-adjusted returns of both

machine learning models. Still, it increases the value-weighted alpha of the ensemble, as

presented in Panel D.

In Panel E, we utilize machine learning models, which were never trained on emerging

market stock returns; instead, the models are trained on developed markets (as defined by

MSCI).13 Although the models were solely trained on developed markets, we surprisingly

do not observe a big performance loss but actually very similar returns. Furthermore,

models that allow for non-linearities and interactions (ENS) still significantly outperform

linear models (OLS). This indicates that machine learning models can create significant

results even if they are evaluated on data from a totally different region.

For the robustness test in Panel F, we exclude the high-turnover characteristics, namely,

Idiovol, LTurnover, r2−1, SUV, Illiqu, from the feature set. While the risk-adjusted

returns of the OLS decrease by 8% and 15%, the ensemble is even more affected as the

alphas are reduced by 19% and 31%. This indicates that these high-turnover features

are relatively more important for more complex methods. However, even after excluding

these characteristics, the long-short portfolios based on the ENS can span the long-short

13 For the construction of the developed market sample, we follow the same procedure as for the emerging
market sample. I.e., we use country-specific constituent lists, apply static and dynamic screens as
outlined in Appendix B, compute the same set of features as for emerging markets, and estimate the
machine learning models in the same way as for emerging markets.
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portfolios constructed based on the OLS, while the converse is not the case.

In Panel G, we do not train our models on a pooled sample of all countries but separately

for each of the following subregions: Central and Latin America (Americas); Asia; and

Europe, Middle East, and Africa (EMEA). On the one hand, this allows the models to

capture potential region-specific effects. On the other hand, each model is now trained

on fewer data, which might be a drawback, especially for identifying non-linearities and

interactions. We document that subregional training leads to inferior return forecasts

than training models on pooled data from all subregions. This finding indicates that

region-specific effects play a minor role compared to more data for out-of-sample returns.

Furthermore, we find that the performance decay is more pronounced for the machine

learning ensemble (ENS), i.e., indicating that more data is better for robustly identifying

non-linearities and interactions.14 Nevertheless, the OLS long-short portfolios cannot

span the ENS long-short portfolio, but the ENS spans the OLS.

Finally, we assess if the superior performance of the machine learning return forecasts

is robust across emerging market regions in Table 2.5. Therefore, we divide the countries

of our full sample into three regions: Central and Latin America (Americas); Asia; and

Europe, Middle East, and Africa (EMEA).

Overall, the results are robust for the different sub-regions Americas, Asia, and EMEA.

Both OLS and ENS yield positive and significant long-short returns and alphas for both

weighting schemes, but ENS exhibit higher returns and t-statistics. Furthermore, sig-

nificant and positive alphas remain in the spanning regression of ENS on OLS for all

sub-regions, but no positive spanning alphas remain when regressing OLS on ENS. Com-

paring the results across sub-regions, we find the strongest results for Asia and EMEA

and a bit weaker but still highly significant results for Americas.

14 Table B. 8 in the Appendix shows that the performance decline is most pronounced for the smaller
regions Americas and EMEA while smaller for Asia. Furthermore, we compare the performance of
models trained on pooled data with those trained solely on local country data. We restrict this analysis
to stocks from the seven countries (Chile, Indonesia, Mexico, Malaysia, Philippines, Thailand, and
Turkey) that are in our sample throughout the entire sample period. The results of this analysis are
presented in Table B. 9. Consistent with our findings for models trained on subregional data, models
trained on individual country data underperform global models.
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Table 2.5
Regional performance

This table reports the out-of-sample performance of equal- and value-weighted long-short portfolios for
emerging market subregions. All stocks are sorted into country-neutral quintile portfolios based on their
predicted returns for the next month. We investigate predictions from a linear OLS model and an ensemble
(ENS) of non-linear machine learning models (RF , GBRT , and NN1−5). The sorting breakpoints are
based on big stocks only, which are in the top 90% of the country’s aggregated market capitalization. Panel
A summarizes the baseline results as presented in Table 2.3, and Panel B shows the result for all countries
being part of emerging Americas, Panel C combines all emerging Asian countries, and Panel D reports
results for emerging countries from Europe, the Middle East, and Africa. The first two rows of each panel
provide the average monthly returns of the long-short quintile (Avg), corresponding t-statistics (t), the
average Fama and French (2018) six-factor alphas (α), corresponding t-statistics (tα), and R2. The next
two rows show spanning alphas (α), corresponding t-statistic (tα), and R2 when regressing the long-short
ENS returns on OLS returns and vice versa. All t-statistics are calculated using Newey and West (1987)
adjusted standard errors with 4 lags. The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel A: Emerging Markets

OLS 1.38 7.82 0.97 8.02 62.42 0.84 4.64 0.28 2.72 68.25
ENS 1.86 11.79 1.43 15.66 58.17 1.21 7.04 0.67 8.29 67.17
ENS ∼ OLS 0.73 9.01 80.28 0.49 7.83 74.66
OLS ∼ ENS -0.44 -2.10 80.28 -0.22 -1.50 74.66

Panel B: Americas

OLS 0.70 2.73 0.51 2.56 39.51 0.75 2.83 0.37 1.70 39.83
ENS 0.88 4.06 0.69 3.90 25.45 0.85 3.20 0.57 2.73 33.47
ENS ∼ OLS 0.45 3.45 46.98 0.33 1.95 48.58
OLS ∼ ENS 0.03 0.15 46.98 0.16 0.82 48.58

Panel C: Asia

OLS 1.46 7.59 1.13 9.34 61.82 0.84 3.95 0.37 2.93 66.71
ENS 1.98 11.18 1.63 17.32 60.28 1.34 7.02 0.87 8.81 67.14
ENS ∼ OLS 0.74 7.97 79.70 0.62 6.85 75.00
OLS ∼ ENS -0.40 -1.83 79.70 -0.33 -1.64 75.00

Panel D: Europe, the Middle East and Africa

OLS 1.12 6.46 0.96 6.23 18.96 0.82 4.00 0.37 2.00 26.18
ENS 1.57 10.27 1.32 9.33 16.23 1.13 5.54 0.59 3.38 29.44
ENS ∼ OLS 0.83 7.42 51.63 0.57 4.21 46.30
OLS ∼ ENS -0.11 -0.58 51.63 0.05 0.38 46.30
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2.5 Understanding the sources of return

predictability

The results so far provide evidence that return forecasts based on machine learning models

lead to economically and statistically superior out-of-sample long-short returns compared

to traditional linear models. To further understand the source of return predictability, we

first investigate the performance of the two models in higher- versus lower-risk months.

Second, we explore to what extent developed markets’ long-short returns can explain

emerging markets’ long-short returns. Third, we turn to the time-series properties of the

long-short machine learning portfolios over the next 36 months after portfolio formation.

Fourth, we link the profitability of the machine learning models to several proxies for

limits to arbitrage. Finally, we investigate the performance of an investment strategy that

considers real-life investment frictions such as short-selling restrictions and transaction

costs.

2.5.1 Performance in higher-risk versus lower-risk months

The profitability of return forecasts based on machine learning models may reflect risks

not captured by the standard risk factors we control so far. Hence, we examine the

performance of OLS and ENS forecasts during higher- versus lower-risk months. As

proxies for risk, we apply whether (i) emerging markets as a whole go up or down, (ii)

the rate on long-term U.S. government bonds is going up or down, (iii) the TED spread

is below or above its median value, and (iv) the time-varying risk aversion index (RAbex)

proposed by Bekaert, Engstrom and Xu (2022) is below or above its median value.15

Splitting the sample period into up and down markets is done, for example, by Chan,

Karceski and Lakonishok (1998), van der Hart, de Zwart and van Dijk (2005), or Asness,

Frazzini and Pedersen (2019). The change in the U.S. government bond rate as a proxy for

risk is motivated by the substantial financial instability experienced by emerging markets

during the ‘taper tantrum’ in 2013 when U.S. yields surprisingly surged (cf., Estrada, Park

15 The TED spread is defined as the difference between the LIBOR rate and the 3-month U.S. T-bill rate.
The 10-year constant maturity U.S. Treasury rate (item DGS10) and the TED spread (item TEDRATE)
are from the FRED database of the Federal Reserve Bank of St. Louis, and the time-varying risk aversion
index RAbex is from Nancy Xu’s website: https://www.nancyxu.net/risk-aversion-index.
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and Ramayandi, 2016). According to Frazzini and Pedersen (2014), the TED spread is a

gauge of funding conditions. Lastly, Bianchi, Büchner and Tamoni (2021) employ RAbex

to investigate the link between time-varying risk aversion and excess bond returns.
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Chapter 2. Machine Learning and the Cross-Section of Emerging Market Stock Returns

Table 2.6 summarizes the top-bottom quintile returns for OLS and ENS for the dif-

ferent subsamples. For both equal- and value-weighted portfolios, we observe that the

performance is somewhat higher in down-market months and months with rising bond

yields. However, we also document higher returns when the TED spread is low, i.e., when

funding conditions are better and in months with below-median risk aversion. Never-

theless, the quintile spreads are statistically significant and positive for all subsamples,

prediction models, and weighting schemes. Furthermore, the difference between the sub-

samples is less pronounced for ENS than for OLS, and significant and positive alphas

remain in the spanning regression of ENS on OLS. At the same time, the converse is not

the case. This evidence suggests that the superiority of machine learning models compared

to linear models in our sample does not stem solely from higher-risk months, at least for

the definitions considered here.

2.5.2 Market integration

The robustness tests in Table 2.4 reveal an interesting finding: models trained solely on

developed markets data perform similarly to models trained on emerging markets data in

predicting emerging market stock returns. This result suggests that the pricing between

developed and emerging markets could be more integrated, as indicated by the results for

value and momentum returns in Cakici, Fabozzi and Tan (2013) and Hanauer and Linhart

(2015). If developed and emerging markets are integrated, the developed market machine

learning long-short portfolio returns would be able to explain the machine learning long-

short portfolio returns for emerging markets, i.e., resulting in an insignificant α in the

following regression for the global and regional emerging market samples:

rLS,RegionEM ,t,ENS = α + β1rLS,GlobalDev ,t,ENS + ϵt. (2.10)

However, the results in Table 2.7 reveal that this is not the case. All alphas remain highly

statistically significant for both the equal- and value-weighted portfolios. For the equal-

weighted factor, Asia has the highest alpha of 1.47% (t-stat 8.66), followed by EMEA with

1.24% (t-stat 7.39). The value-weighted factor construction yields the highest alpha for

Asia with 0.98% (t-stat 4.92), followed by EMEA with an alpha of 0.87% (t-stat 4.36).
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Furthermore, the developed market long-short portfolio returns can only explain between

10% and 33% of the variation in emerging market long-short portfolio returns, which

corresponds to correlations between 32% and 57%.16

Table 2.7
Market integration

This table reports summary statistics for regressions of emerging market regions’ long-short returns on
developed market’s long-short returns. The long-short returns are based on ensemble (ENS) return
forecasts of non-linear machine learning models (RF , GBRT , and NN1−5) and are separately estimated
for emerging and developed markets. All stocks are sorted into country-neutral quintile portfolios based on
their predicted returns for the next month. The sorting breakpoints are based on big stocks only, which are
in the top 90% of a country’s aggregated market capitalization. Panel A (Panel B) summarizes the results of
equal-weighting (value-weighting) of the prediction-sorted portfolios based on the different regional subsets.
Each Panel provides the average monthly return of the long-short quintile (Avg), the alphas (α), betas (β),
their corresponding t-statistics, and R2 with respect to the developed market ensemble machine-learning
factor. All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4 lags.
The sample period is from January 2002 to December 2021.

Avg t α tα β tβ R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 )

Panel A: Equal-weighted

GlobalEM 1.86 11.79 1.39 9.24 0.50 7.01 32.34
AMEEM 0.88 4.06 0.35 1.73 0.56 5.57 19.44
ASIAEM 1.98 11.18 1.47 8.66 0.55 6.71 28.42
EMEAEM 1.57 10.27 1.24 7.39 0.36 4.64 12.78

Panel B: Value-weighted

GlobalEM 1.21 7.04 0.89 5.73 0.49 4.95 28.17
AMEEM 0.85 3.20 0.53 2.30 0.49 3.68 14.37
ASIAEM 1.34 7.02 0.98 4.92 0.54 3.95 22.47
EMEAEM 1.13 5.54 0.87 4.36 0.40 4.55 10.73

Our interpretation of these results is that, although similar relationships between firm

characteristics and future stock returns exist in both developed and emerging markets,

the pricing of these characteristics is still not fully integrated. Furthermore, our results

suggest that investors already applying machine learning strategies in developed markets

may benefit from potential diversification benefits when applying such a strategy also in

16 For the construction of the developed market sample, we follow the same procedure as for the emerging
market sample. I.e., we use country-specific constituent lists, apply static and dynamic screens as
outlined in Appendix B, compute the same set of features as for emerging markets, and estimate the
machine learning models in the same way as for emerging markets, but now on developed market
data. Furthermore, we report descriptive statistics of the developed market long-short machine learning
portfolio in Table B. 10 of the appendix. The returns for the different developed market strategies are
roughly half compared to their emerging market counterparts. However, we also document that models
that allow for non-linearities and interactions (ENS) also significantly outperform linear models (OLS)
in developed markets.
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emerging markets.

2.5.3 Performance for longer holding periods

Is the profitability of the machine learning forecasts the result of temporary or permanent

price changes? We analyze the long-run buy-and-hold returns following the methodology

in Smajlbegovic (2019) and ? to answer this question. First, we identify stocks used for

constructing the long-short machine learning portfolios and calculate their value-weighted

raw monthly returns for each month t + k, where k ∈ {1, ..., 36}. Second, we run a time-

series regression of the the six-factor model for each holding period month k of the machine

learning long-short factor. The corresponding average six-factor alpha for month k is the

intercept (ak) of the following regression:

rt+k,ML − rf,t+k = αk +
|f |∑
i

βi,kfi,t+k + ϵt+k, (2.11)

where rt+k,ML − rf,t+k is the raw long-short return in month t + k of stocks used for

construction of the long-short machine learning factor in month t and fi,t+k indicates the

individual factor returns of the six-factor model in month t + k: RMRFt+k, SMBt+k,

HMLt+k, RMWt+k, CMAt+k, and WMLt+k. The intercept of the regression (αk) is the

alpha of the buy-and-hold strategy k months after portfolio formation, which is used to

form the cumulative alpha in month k denoted as ACRk:

ACRk =
k∑

t=1
αt. (2.12)

Figure 2.6 illustrates the value-weighted cumulative six-factor alpha of both OLS and

ENS over a 36-month holding period. The figure reveals that both OLS and ENS can

predict long-term returns and that their performance does not revert quickly. Together

with the fact that standard risk factors cannot explain the performance of the strategies

and the consistent performance over calendar time, we conclude that an underreaction

explanation is more likely than an overreaction explanation. We further document that

the superior performance of ENS compared to OLS is mainly driven by the first six

months. Later both lines show a relatively parallel trend. This observation is unsurprising
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as the models are trained on one-month ahead returns and not longer periods.

Figure 2.6
Fama and French (2018) six-factor model alphas

This figure shows the average cumulative risk-adjusted return of the different machine learning long-short
portfolios. First, we obtain the return of the portfolio formed at the end of month t for month t+k, where
k ∈ {1, ..., 36}. Second, we run a time-series regression with the Fama and French (2018) six-factor model
for the corresponding months. The regression intercept is defined as the average risk-adjusted portfolio
return for the long–short portfolio at month t + k. In the final step, we compute the average holding period
(cumulative) risk-adjusted return for the next k months since formation as the sum over the previous k
months.
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2.5.4 Limits to arbitrage

Our results thus far suggest that the high returns of the machine learning strategies in

emerging markets cannot be explained by standard risk factors such as the factors of the

Fama and French (2018) six-factor model and are consistent over time. Furthermore, the

high returns do not primarily stem from higher-risk months and do not revert quickly.

Therefore, a simple question arises: Why do investors not arbitrage away these abnormal

returns? If limits to arbitrage hinder investors from doing that, we would expect that the

predictability of the machine learning forecasts is concentrated in stocks with the highest

limits to arbitrage.

To test whether the predictability of machine learning methods arises, at least in part,
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from such frictions, we interact the predicted returns of the machine learning models with

different proxies for limits to arbitrage within a Fama and MacBeth (1973) regression.

We additionally include both parts of the interaction term as controls as well as country

dummies to account for any country effect yielding the following regression framework:

ri,t+1 − rf,t+1 = α + β1MLi,t + β2LTAi,t + β3MLi,t × LTAi,t + β4Xi + ϵi,t+1, (2.13)

where LTAi,t denotes the cross-sectional and country-neutral standardized variable mea-

suring the limits to arbitrage of stock i while MLi,t is the predicted return based on the

underlying machine learning model.

The coefficient β3 is most relevant for this analysis as it indicates if the predictability

of the different machine learning models is increasing with higher limits to arbitrage.

We include three different variables that are closely related to limits to arbitrage and

commonly used in the literature: size as a measure of information ambiguity (Zhang,

2006), idiosyncratic volatility as a proxy for arbitrage risk (Pontiff, 2006; Stambaugh,

Yu and Yuan, 2015), and Amihud (2002) illiquidity as a potential proxy for transaction

costs. If limits to arbitrage are important for the persistence of mispricing, we expect that

predictability is the strongest for smaller stocks with high idiosyncratic volatility and low

liquidity. Therefore, we additionally include the average of these three variables.

The results of this analysis are reported in Table 2.8. We first examine firm size’s role

in predicting future returns. Most small firms are less diversified and less fundamental

information is available. In the case of fixed information acquisition costs, small firms are

less attractive. The results in Columns (1) and (2) underline this hypothesis. The smaller

the stock, the higher the return predictability for both methods.

The coefficient β3 is most relevant for this analysis as it indicates if the predictability

of the different machine learning models is increasing with higher limits to arbitrage. We

include three commonly used variables that are closely related to limits to arbitrage: size

as a measure of information ambiguity (Zhang, 2006), idiosyncratic volatility as a proxy

for arbitrage risk (Pontiff, 2006; Stambaugh, Yu and Yuan, 2015), and Amihud (2002)

illiquidity as a potential proxy for transaction costs. If limits to arbitrage are important

for the persistence of mispricing, we expect that predictability is the strongest for smaller
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stocks with high idiosyncratic volatility and low liquidity. Therefore, we additionally

include the average of these three variables (COMBO).17

The results of this analysis are reported in Table 2.8. We first examine firm size’s role

in predicting future returns. Most small firms are less diversified and less fundamental

information is available. In the case of fixed information acquisition costs, small firms are

less attractive. The results in Columns (1) and (2) support this hypothesis. The smaller

the stock, the higher the return predictability for both methods.

Table 2.8
Limits to abitrage

This table reports the results of a Fama and MacBeth (1973) regression of next month’s returns on
machine learning return forecasts (ML), proxies for limits to arbitrage, and their interaction term. Each
month, we conduct cross-sectional regressions of excess stock returns in month t + 1 on firms’ ML return
forecasts, limits-to-arbitrage scores, and their interaction terms, all from the end of the previous month
t. The proxies for limits to arbitrage are: -1 × market capitalization (SIZE), idiosyncratic volatility
(IV OL), Amihud illiquidity (ILLIQ), and a combination of the different proxies. All proxies for limits
to arbitrage are ranked into the [-1,1] interval for each month and country. The t-statistics in parentheses
are the corresponding Newey and West (1987) adjusted t-statistics with 4 lags. The sample period is from
January 2002 to December 2021.

SIZE IV OL ILLIQ COMBO

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

OLS 0.72 0.72 0.74 0.74
(9.43) (9.16) (9.55) (9.27)

ENS 1.11 1.13 1.15 1.13
(13.81) (14.31) (14.58) (12.88)

LT A × ML 0.27 0.19 0.48 0.21 0.01 -0.06 0.52 0.27
(5.36) (3.27) (9.65) (3.85) (0.23) (-0.90) (7.36) (2.80)

LT A 0.15 0.12 0.06 0.12 0.21 0.19 0.27 0.26
(2.42) (1.93) (0.68) (1.45) (2.78) (2.48) (3.06) (2.94)

Country Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 15.00 15.22 15.10 15.30 15.10 15.34 15.01 15.23
Avg. Obs 4419 4419 4419 4419 4419 4419 4419 4419

In the second specification, we study how arbitrage risk affects the link between ma-

17 We also report the average size, idiosyncratic volatility, illiquidity, and limit to arbitrage combination
scores of the OLS and ENS portfolios in Table B. 11 of the appendix. All proxies for limits to arbitrage
are ranked into the [-1,1] interval for each month and country, where higher values indicate higher limits
to arbitrage. We find relatively similar exposures for OLS and ENS portfolios. The most pronounced
differences are as follows: First, the short leg of the OLS strategy invests on average in below-average
market capitalization stocks, while the short leg of the ENS strategy invests in above-average market
capitalization stocks. Second, the long leg of the OLS strategy invests on average in stocks with above-
average liquidity, while the long leg of the ENS strategy does this to a lower extent. In combination,
this leads to a below-average exposure to limits of arbitrage for the long leg of the OLS strategy, while
the long leg of the ENS strategy has only a slightly below-average exposure.
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chine learning-based prediction and future stock returns. According to Pontiff (2006),

arbitrageurs prefer to hold fewer stocks with higher idiosyncratic stock return volatility.

Columns (3) and (4) provide empirical evidence that stocks with higher IV OL exhibit

larger predictable returns than less volatile stocks.

Next, we test how stock illiquidity relates to our previous findings. The intuition behind

this proxy is based on the tradeability of the stock. The more illiquid the stock, the slower

and more costly it should be to trade on the market. However, we are not able to provide

empirical evidence that the return predictability of the machine learning models is driven

by transaction costs.

Finally, we combine all three limits-to-arbitrage proxies to measure their mutual influ-

ence on the effect of future return predictability. Columns (7) and (8) provide evidence that

stocks associated with more substantial limits-to-arbitrage characteristics exhibit stronger

predictability independent of the underlying machine learning model.

However, we also find that the higher predictability for stocks with higher limits of

arbitrage is less pronounced for the machine learning ensemble ENS than for the linear

OLS regression, indicating the superiority of machine learning models in emerging markets

does not stem from limits to arbitrage.

2.5.5 Further investment frictions

A common feature of the results presented above is that they are based on theoretical “zero-

investment” long-short portfolio returns. However, it is questionable whether these returns

can be realized in practice, as short-selling constraints may prevent the implementation

of long-short strategies, and transaction costs may erode the strategy’s profits. These

constraints are particularly relevant for emerging markets (see, e.g., Roon, Nijman and

Werker, 2001). Therefore, in this subsection, we limit ourselves to long-only portfolios of

big stocks (i.e., also remove small stocks) and consider reasonable transaction costs. To

estimate transaction costs, we compute the efficient discrete generalized estimator (EDGE)

of the bid-ask spread for each stock and month, recently proposed by Ardia, Guidotti and

Kroencke (2022). These bid-ask spread estimates vary considerably across time and stocks

(cf., Figure B. 3 in the appendix) and therefore provide a more sophisticated estimate than

the flat 100 basis points per single-trip used in van der Hart, Slagter and van Dijk (2003)
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and Hanauer and Lauterbach (2019).18 The transaction cost per single-trip is one-half of

the estimated bid-ask spread, and we define the transaction cost of portfolio L as:

T-CostL,t =

NL,t−1∪t∑
i=1

∣∣∣∣∣∣wi,t − wi,t−1(1 + ri,t)
1 +∑NL,t

j=1 wj,t−1rj,t

∣∣∣∣∣∣× Si,t

2

 , (2.14)

where wi,t is the weight of stock i at the end of month t, ri,t is the total return of stock i in

month t, and Si,t is the estimated bid-ask spread. Furthermore, the net portfolio returns

are defined as:

rL,t,net,ML = rL,t,gross,ML − T-CostL,t. (2.15)

In the final step, we calculate the Fama and French (2018) six-factor model alpha return

as:

rL,t,net,ML − rf,t = αnet +
|f |∑
i

βifi,t,net + ϵt, (2.16)

where fi,t,net is the risk factor return after transaction cost.

Furthermore, we also consider trading cost mitigation rules following Novy-Marx and

Velikov (2016) and Blitz et al. (2022), which are common among practitioners. Such

buy/hold strategies consist of the stocks that currently belong to the top X% plus the

stocks selected in previous months that are still among the top Y% of stocks. In Ta-

ble 2.9, we compare the quintile long-only strategy (20%/20%) with the transaction-cost-

mitigation strategy buying the top 10% and holding them in our portfolio as long as they

belong to the top 30% (10%/30%).

Table 2.9 reports the strategies’ average gross excess over the market, their turnover and

transaction costs, as well as the resulting net outperformance.19 Limiting the investment

universe to long-only portfolios of big stocks, we still see positive and significant gross

18 Table B. 8 in the appendix also provides the results for transaction cost estimates of 100 basis points
per single-trip.

19 Our market portfolio is a reasonable proxy for the MSCI Emerging Market Index, a popular reference
index for passive investment strategies. The mean return and standard deviation for the two time-series
are 1.04% and 5.88%, and 1.00% and 5.99%, respectively. Furthermore, the correlation of the two time-
series is 0.97. The small differences in the returns of our market portfolio and the MSCI Emerging
Market Index may be due to MSCI’s use of free float-adjusted market capitalization weighting and the
inclusion of Chinese A-shares since 2018.
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Table 2.9
Further investment frictions

This table reports the performance of different buy/hold long-only strategies before and after transaction-
cost. The investment universe is limited to big stocks. We investigate predictions from a linear OLS model
and an ensemble (ENS) of non-linear machine learning models (RF , GBRT , and NN1−5). Every month
the portfolio consists of the stocks that currently exhibit the highest X% forecasted returns per country
plus those selected in previous months whose forecasted returns have not deteriorated beyond the top
Y%. The first number in the column row names represents X, while the second represents Y. We report
the strategies’ gross returns in excess of the market, average turnover, transaction costs, net returns in
excess of the market, and net Fama and French (2018) six-factor models alphas. We estimate one-way
transaction costs as one-half of a stock’s bid-ask spread, estimated as in Ardia, Guidotti and Kroencke
(2022). All t-statistics are Newey and West (1987) adjusted with 4 lags. Panel A summarizes results from
equal-weighting, while Panel B shows results from value-weighting. The sample period is from January
2002 to December 2021.

OLS ENS

20%/20% 10%/30% 20%/20% 10%/30%

( 1 ) ( 2 ) ( 3 ) ( 4 )

Panel A: Equal-weighted

re
gross − Mkt 0.49 0.46 0.78 0.79

(5.46) (5.33) (8.07) (7.42)
TO (in %) 44.29 24.86 45.20 27.53
T-cost (in %) 0.31 0.18 0.32 0.20
re

net − Mkt 0.19 0.28 0.46 0.59
(2.11) (3.30) (4.88) (5.63)

αF F 6
net 0.29 0.39 0.55 0.67

(4.91) (6.19) (7.66) (8.28)

Panel B: Value-weighted

re
gross − Mkt 0.32 0.32 0.47 0.48

(3.39) (3.47) (4.88) (4.66)
TO (in %) 44.48 22.16 45.51 23.40
T-cost (in %) 0.25 0.13 0.26 0.14
re

net − Mkt 0.07 0.19 0.21 0.34
(0.75) (2.08) (2.20) (3.31)

αF F 6
net 0.06 0.17 0.22 0.34

(1.26) (3.15) (3.91) (5.18)

outperformance for the top quintile portfolio (20%/20%) for both OLS and ENS and

both weighting schemes. We observe similar gross outperformance when switching to the

transaction cost mitigation strategies (10%/30%). However, the turnover and transactions

are reduced by roughly 40%. This reduction in transaction costs substantially positively

affects the net performance. For the equal-weighted strategies in Panel A, the net out-

performance for OLS increases from 0.19% (t-stat 2.11) to 0.28% (t-stat 3.30). The net

outperformance for ENS of 0.46% (t-stat 4.88) is also significant for the standard top
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quintile approach but also increases to 0.59% (t-stat 5.63) when applying a more efficient

portfolio construction. Value-weighting the returns in Panel B leads to more challeng-

ing results. In this setup, the top OLS quintile yields only an insignificant net return

of 0.07% (t-stat 0.75). Applying the trading-cost mitigation strategy increases the net

returns to 0.19% (t-stat 2.08) for OLS and even to 0.34% (t-stat 3.31) for ENS. Similar

results can be derived by comparing the Fama and French (2018) net alphas for which the

turnover-reducing strategy for ENS exhibits again the highest net alpha of 0.34 (t-stat

5.18).20 Therefore, we conclude that machine learning-based return forecasts can lead to

significant net outperformance and net alphas, at least when efficient trading rules are

applied.

2.6 Conclusion

This paper compares the out-of-sample predictive power of various machine learning mod-

els for a broad sample of 32 emerging market countries and a 20-year out-of-sample pe-

riod. More specifically, we use both linear and more complex algorithms that allow for

non-linearities and interactions.

We document that the different prediction algorithms identify similar characteristics.

However, we also observe that tree-based methods and neural networks identify non-

linearities and interactions of characteristics. Furthermore, return forecasts based on

machine learning models lead to economically and statistically superior out-of-sample

long-short returns compared to traditional linear models. This finding is robust to several

methodological choices and for emerging market subregions.

We also find that developed market long-short returns based on machine learning fore-

casts derived in the same way as their emerging market counterparts cannot explain emerg-

ing market out-of-sample returns. However, models estimated solely on developed markets

data can also predict emerging market stock returns. This finding indicates that similar

relationships between firm characteristics and future stock returns exist for developed

and emerging markets but that the pricing of these characteristics is not fully integrated

20 When applying the more conservative transaction cost estimates of 100 basis points per single-trip, only
the machine learning ensemble in combination with transaction cost mitigation exhibits significant net
returns and alphas of 0.23% and 0.25%, respectively.
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between developed and emerging markets.

Furthermore, we also document that the high returns of the machine learning strategies

in emerging do not primarily stem from higher-risk months and do not revert quickly,

suggesting that an underreaction explanation is more likely than a risk-based explana-

tion. Although both linear and machine learning models show higher predictability for

stocks associated with higher limits to arbitrage, we also document that this effect is less

pronounced for machine learning forecasts than for linear regression forecasts. This find-

ing indicates that the superiority of machine learning models in emerging markets does

not stem from limits to arbitrage. Finally, accounting for transaction costs, short-selling

constraints, and limiting our investment universe to big stocks only, we document that

machine learning-based return forecasts can lead to significant net outperformance over

the market and net alphas, at least when efficient trading rules are applied.
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3 Anchoring and Global Underreaction

to Firm-Specific News

Abstract

This paper investigates the anchoring effect as an explanation for investor underreaction

to global firm-specific news. The anchoring effect refers to the tendency of investors to

stick to their initial beliefs about a stock, even when facing new information. The paper

adopts a novel high-frequency methodology to identify news events and covers stocks from

23 developed countries from January 2004 to December 2021. Our results provide evidence

of investors’ distorted belief updating process and show that the anchoring of investors

induced by the 52-week high impacts the processing of the firm-specific news. Regression

analyses decompose stock returns into three independent components and reveal that the

interaction effect between the firm-specific news return and the nearness to the 52-week

high are related to a significant risk-adjusted return.
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3.1 Introduction1

Investor underreaction to the arrival of news has been a long-standing topic in the finance

literature. A large body of empirical and theoretical evidence argues that firms’ stock

prices respond slowly due to investors’ behavioral biases. Theoretical literature often

suggests that investors’ limited attention results in underreaction to the arrival of news.2

At the same time, empirical evidence supports this limited attention hypothesis by showing

that firms’ stock prices respond slowly to the arrival of new information.3 This paper aims

to test a novel psychological explanation, the anchoring effect, as an additional explanation

for investor underreaction to global firm-specific news measured through the nearness to

the 52-week high price.4 The anchoring effect, as introduced by Tversky and Kahneman

(1974), refers to the tendency of investors to stick to their initial beliefs about a stock, even

when facing new information, as suggested by Coibion and Gorodnichenko (2015). This

psychological barrier can be enforced when investors use the 52-week high as an anchor

when making investment decisions. For example, investors influenced by the anchoring

effect will not fully adjust their beliefs if the firm experiences the arrival of positive news

(negative news) and if the stock price is close to (far from) the 52-week high, leading to

a slow stock price response. Following this, our central hypothesis is closely related to

the main argument of the anchoring bias literature, namely that investors do not fully

incorporate the new information into their beliefs due to the anchoring effect resulting in

the predictability of future stock returns (George and Hwang, 2004; Hong, Jordan and

Liu, 2015; Huang, Lin and Xiang, 2021) and earnings surprises (Birru, 2013).

1 We thank Matthias Hanauer, Christoph Kaserer, Lisa Knauer, and Laurens Swinkels for their helpful
comments and suggestions. Any remaining errors are our own.

2 Several behavioral theories that focus on investors’ underreaction to public news have been proposed
(Daniel, Hirshleifer and Subrahmanyam, 1998; Hong and Stein, 1999; Hirshleifer, Lim and Teoh, 2011;
Peng and Xiong, 2006).

3 Investors limited attention causes an underreact to different information types. The first type is the
release of earnings information (cf., Ben-Rephael, Da and Israelsen, 2017). The second type covers
general news from peer economically linked firms (cf., Ali and Hirshleifer, 2020). The last type covers
the underreaction to news-driven returns (cf., Jiang, Li and Wang, 2021).

4 The nearness of the firm’s stock price or market to its 52-week high comes with a change in investor
trading behavior (cf., Huddart, Lang and Yetman, 2009). The 52-week is often associated with two dif-
ferent investor biases. The disposition bias causes the sale (buying) of stocks trading at a historical high
(low) (Heath, Huddart and Lang, 1999; Poteshman and Serbin, 2003). The second bias the nearness to
the 52-week high is associated with is the anchoring bias. This bias leads to the investor’s underreaction
to news (cf., Huang, Lin and Xiang, 2021), and helps to explain the stocks momentum anomaly (cf.,
Hung, Lin and Yang, 2022).
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We adopt the high-frequency methodology of Jiang, Li and Wang (2021) to identify all

unscheduled and scheduled news events, which allows us to estimate monthly firm-specific

news returns. The sample for the empirical analysis is limited to stocks from the developed

markets covering 23 global countries from January 2004 to December 2021. We restrict the

sample to this period and markets due to the increase in global news coverage starting in

2004 and the technical requirement of the portfolio sort analysis of having a firm-specific

news event in the previous month. We begin by forming independent, country-neutrally

double-sorted quintile portfolios using the last month’s firm-specific news return (FN) and

the nearness to the 52-week high (NEAR) at the previous month-end as sorting criteria.

The firm-specific news return and the nearness to the 52-week high yield positive and

significant risk-adjusted returns, providing out-of-sample evidence for additional countries

and an extended sample period. Next, we follow a portfolio strategy utilizing the anchoring

bias in combination with the arrival of firm-specific news. The long (short) leg of the

strategy incorporates stocks near (far from) their 52-week high and experiencing extremely

positive (negative) firm-specific news. The short leg of the strategy yields a monthly

average Fama-French-Carhart (1997) four-factor alpha of -0.30% (t=-2.37), whereas the

long side earns an alpha of 1.14% (t=9.60). The combined long-short strategy returns an

alpha of 1.44% (t=9.37), which provides the first evidence of the investors’ distorted belief

updating process. It is important to denote that the portfolio with bad news but a near

52-week high as well as the portfolio with very good news but far from the 52-week high

both do not yield any significant returns, further underlining our hypothesis that investors

only underreact to good (bad) news if the stock price is near (far from) its 52-week high.

To further analyze how the anchoring of investors induced by the 52-week high impacts

the processing of the firm-specific news, we follow the innovative decomposition method-

ology by George, Hwang and Li (2014). We perform a similar Fama and MacBeth (1973)

cross-sectional regression analysis to decompose the returns of the double-sorted portfolios

into three independent components. The first component captures the interaction effect

between the firm-specific news return and the nearness to the 52-week high and measures

the degree to which the 52-week high effect causes the underreaction to the firm-specific

news. The second component focuses solely on the pure firm-specific news effect, and the

last part yields the return attributable to the pure nearness to the 52-week high effect.
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The interaction effect yields an average Fama-French-Carhart (1997) four-factor alpha of

1.47% (t=4.67). In contrast, the pure firm-specific news effect and pure 52-week high effect

are insignificant, earning a risk-adjusted return of -0.13% (t=-0.66) and 0.10% (t=0.61),

respectively. Excluding the interaction effects from the regression results in two positive

and significant pure effects with an alpha of 0.68% (t=10.20) in the case of the pure firm-

specific news and an alpha of 0.55% (t=3.88) in the case of the pure 52-week high. These

results allow us to conclude that the investors’ underreaction to the firm-specific news is

partially explained by the anchoring bias induced by the nearness to the 52-week high.

Next, we investigate the role of a stock’s limits to arbitrage in causing mispricing. Our

results provide evidence that firms indeed drive the induced underreaction of investors with

high limits to arbitrage. The effect exists among stocks that are smaller in market capital-

ization, have lower institutional ownership or analyst coverage, have higher idiosyncratic

volatility, and have higher transaction costs.

In several robustness tests, we underline the persistence of our results. By applying

different factor models, the risk-adjusted returns of the interaction effect, the pure firm-

specific news effect, and the 52-week high effect do not change. Additionally, we provide

results on six variations of our firm-specific news measure. By limiting the firm-specific

news to earnings announcement days, we find that the risk-adjusted return of the interac-

tion effect is reduced and loses its significance, yielding a global alpha of 1.21% (t=1.60)

per month. These results are robust across U.S. and non-U.S. firms, indicating that in-

vestors quickly incorporate scheduled news into the stock prices. By excluding earnings

announcement days, we find that the global four-factor alpha increases to 1.68% (t=5.17)

per month. By modeling a slower information diffusion process, the interaction effect in

the most efficient stock market, the U.S., becomes insignificant, yielding a monthly return

of 0.52% (t=1.19) per month. Further exclusion of macroeconomic announcements and

the predictable component from daily returns resulted in a global risk-adjusted return of

interaction effect of 1.38% (t=3.86) and 1.32% (t=4.30), respectively. In the last robust-

ness test, we tackle the concern that the 52-week high is just a replacement of the stock’s

momentum (MOM). Thus, we replace the nearness to the 52-week high with momentum

and run a placebo test. In this case, the risk-adjusted return in the Fama-French-Carhart

(1997) model is negative and insignificant. The pure firm-specific news and momentum
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effects are positive and significant, independent of including or excluding the interaction

effect. This provides evidence that the 52-week high is not just another sort on momen-

tum and that the nearness to the 52-week high proxies the investor’s underreaction to

firm-specific news.

Lastly, we explore how the nearness to the 52-week high distorts the belief-updating

process leading to an underreaction. We use analyst recommendation changes as a direct

proxy to observe the belief updating process in financial markets. Our results suggest that

analysts are indeed influenced by firm-specific news as they change their recommendations

after the arrival of news. However, the upgrade (downgrade) is less likely if positive

(negative) news arrives at the firm and the underlying stock price is near (far from) the

52-week high. The findings provide evidence for the hypothesis that the belief updating

process is distorted and influenced by stock prices’ nearness to the 52-week high and the

arrival of firm-specific news.

This study adds to understanding investor underreaction in at least four aspects in an

international asset pricing context.

First, we contribute to a better understanding of investor underreaction by explicitly

using firm-specific news as the cause. Using the novel high-frequency approach introduced

in Jiang, Li and Wang (2021), we show that investors not only underreact to focal firm

news in the U.S. but also in non-U.S. equity markets. In contrast to Huang, Lin and Xiang

(2021), who investigate investor underreaction by proxying news with economically-linked,

past-month firm momentum, our news measure utilizes firm-specific news of the focal firm.

We provide insights into investor underreaction by showing that limits to arbitrage amplify

the underreaction potential, i.e., investor underreaction increases with higher limits to

arbitrage.

Second, our paper reveals a crucial economic mechanism behind investor underreaction

in global equity markets. We show that the underreaction to firm-specific news disappears

when controlling for its interaction with investors’ anchoring bias. Prior theoretical studies

suggest that investors’ underreaction to new information, such as earnings news, can be

attributed to different psychological biases (Barberis, Shleifer and Vishny, 1998; Daniel,

Hirshleifer and Subrahmanyam, 1998) and limits to arbitrage (Shleifer and Vishny, 1997).

Empirically, the mispricing caused by the anchoring bias can be partially explained by
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the firms’ exposure to limits to arbitrage (Byun, Goh and Kim, 2020). We explore the

economic mechanism causing the underreaction. We, therefore, rely on the anchoring and

adjustment hypothesis by showing that professional forecasters (Campbell and Sharpe,

2009; Cen, Hilary and Wei, 2013) include the firm-specific news in their recommendation

but are affected by the anchoring bias if the stock is near (far from) the 52-week high and

positive (negative) news arrives.

Third, we show that unscheduled, firm-specific news drives the anchoring bias effect on

investors’ underreaction over the subsequent month. Empirical evidence so far suggested

that limits to arbitrage are an important driving force behind investors’ underreaction to

new information on the earnings announcement date (Hung, Li and Wang, 2015). More-

over, Birru (2013) and George, Hwang and Li (2014) find that investors’ underreaction is

driven by scheduled news, respectively, earnings announcements when quantified by price

changes over the subsequent days. In contrast, we consider all news releases over the

previous month to measure their pricing impact within the current month. Our results on

the investors’ distorted belief updating process provide strong evidence on a longer-dated,

monthly investor underreaction to unscheduled news, indicating that unscheduled news

items require more time to be reflected within stock prices.

Fourth, we contribute to the literature on empirical asset pricing for global equity mar-

kets by using an international sample and extended metrics. According to Karolyi (2016),

most of today’s published studies in top finance journals focused on the United States. In

this regard, most literature on news-induced momentum (Chan, 2003; Gutierrez and Kelly,

2008; Hillert, Jacobs and Müller, 2014; Jiang, Li and Wang, 2021) concentrates solely on

the U.S. stock market. Therefore, we add to the ongoing discussion about the investor

underreaction hypothesis and its economic channels by providing non-U.S. out-of-sample

evidence (Hou, Xue and Zhang, 2018) for the anchoring bias and investor underreaction

to firm-specific news.

The remainder of the paper is structured as follows: Section 3.2 defines the main vari-

ables and the return decomposition methodology, which allows us to derive the interaction

effect and the two pure effects of the firm-specific news and 52-week high. Section 3.3 in-

troduces the global dataset. Section 3.4 presents the empirical results on the anchoring

effect and the underreaction to firm-specific news. Section 3.5 concludes.
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3.2 Empirical Strategy

In this section, we present our empirical strategy for measuring how the nearness to the

52-week high distorts the belief-updating process of an investor after the arrival of firm-

specific news and explains investor underreaction. In the first subsection, we present

the underlying methodology to construct the two required signals, firm-specific news and

the nearness to the 52-week high. The second subsection focuses on the decomposition

methodology, which allows us to differentiate between the pure effect of firm-specific news,

the pure effect of the nearness to the 52-week high, and their interaction effect.

3.2.1 Firm-specific news and nearness to the 52-week high

This paper adapts the high-frequency decomposition methodology by Jiang, Li and Wang

(2021) to identify scheduled and unscheduled firm-specific news.5 We then relate the

investor underreaction to firm-specific news to investors’ distorted belief updating process,

similar to George and Hwang (2004), Birru (2013), and Huang, Lin and Xiang (2021). This

distortion is driven by the psychological barrier imposed by the nearness to the 52-week

high price. If the current stock price is near the 52-week high and positive firm-specific

news arrives at the firm or the price is far from the 52-week high, and negative firm-specific

news arrives, investors are not willing to update their beliefs about the firm’s fundamentals

due to the anchoring effect.

Our measure of firm-specific news combines daily stock returns with firm-specific news

events to decompose daily stock returns into news-driven and non-news-driven returns

based on market reactions to firm-specific news releases.6 To calculate the daily firm-

specific news returns, we rely on the regular trading hours of the individual stock exchanges

a stock is traded on. If the news is released within regular trading hours of day t, the news
5 The method of Jiang, Li and Wang (2021) has several advantages over other low-frequency news types.

One regularly used news type differentiates between cash-flow news and discount-rate news estimated
through vector auto-regression (Campbell and Shiller, 1988; Campbell, 1991; Vuolteenaho, 2002), implied
cost of capital (Chen, Da and Zhao, 2013), and analyst estimations (Easton and Monahan, 2005; Da
and Warachka, 2009; Da, Liu and Schaumburg, 2014). Other regression-based news types differentiate
between market-wide and firm-specific news (Roll, 1988; Morck, Yeung and Yu, 2000) and additionally
noise (Brogaard et al., 2022).

6 In the study of Jiang, Li and Wang (2021), the authors use high-frequency, intraday data for U.S. stocks.
Due to global data non-availability, we are restricted to daily stock returns. However, within robustness
tests, Jiang, Li and Wang (2021) show that their high-frequency-based results hold when using daily
instead of intraday data to identify firm-specific news returns.
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return equals the respective daily return. For news occurring after the closing of a stock’s

main stock market (i.e., an overnight release), at the weekend, or on a holiday, the news is

incorporated into the return of the next trading day t + 1. If no firm-specific news occurs,

we declare the return of this day as non-news. We further aggregate the daily firm-specific

news returns to a monthly level, similar to the intraday news aggregation to a daily level

in Jiang, Li and Wang (2021). Suppose there are M trading days per month. Let fni,t,n

be the mth daily news-driven return for stock i in month t, where m = 1,2,...,M , we can

compute the monthly firm-specific focal news return (FNi,t) as follows:

FNi,t = (
M∏

m=1
1 + fni,t,m) − 1 × 100 (3.1)

To determine the impact of the psychological barrier and the distortion in the belief

updating, we need to derive the stock’s nearness to the 52-week high. We, therefore,

follow George and Hwang (2004) and Windmüller (2022) and define:

NEARi,t = UPi,t

max
0≤d≤52

UPi,t−d
, (3.2)

where UPi,t is the unadjusted stock price of stock i at end of the previous week t.

3.2.2 Decomposition methodology

To shed light on the distortion in the belief-updating process, we follow the methodology

proposed by George, Hwang and Li (2014) and Huang, Lin and Xiang (2021). Therefore,

we first sort all stocks that experienced a firm-specific news arrival based on their nearness

to the 52-week high and their firm-specific news return into two independent country-

neutral quintile portfolios. Afterward, we utilize two different Fama and MacBeth (1973)

regressions to decompose the returns of the double-sorted portfolios. In the first regression,

we run a monthly stock-level Fama and MacBeth (1973) regression to estimate the two

pure effects of firm-specific news and the nearness to the 52-week high as well as the

interaction effect of both across the 5x5 = 25 portfolios. The regression model is specified
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as follows:

Ri,t+1 = b0 + b1FN5
i,t + b2FN4

i,t + b3FN2
i,t + b4FN1

i,t + b5NEAR5
i,t + b6NEAR1

i,t−1

+ b7FN5
i,t × NEAR5

i,t + b8FN4
i,t × NEAR5

i,t + b9FN2
i,t × NEAR5

i,t

+ b10FN1
i,t × NEAR5

i,t + b11FN5
i,t × NEAR1

i,t + b12FN4
i,t × NEAR1

i,t

+ b13FN2
i,t × NEAR1

i,t + b14FN1
i,t × NEAR1

i,t + ϵ,

(3.3)

where Ri,t+1 is the stock return of firm i in the next month t + 1, and right-hand-side

variables are dummies indicating the quintile ranking of firm i at the end of the month t

for FN and NEAR. In the second regression, we exclude the interaction effect from the

model, leaving us only with the estimation of the two pure effects of firm-specific news

and the nearness to the 52-week high:

Ri,t+1 = b0 + b1FN5
i,t + b2FN4

i,t + b3FN2
i,t + b4FN1

i,t + b5NEAR5
i,t + b6NEAR1

i,t−1 + ϵ

(3.4)

In Table 3.1, we describe the methodology by George, Hwang and Li (2014), and Huang,

Lin and Xiang (2021) on how the individual average portfolio return in each of the 5 × 5

portfolios sorted by the firm-specific news return and the nearness to the 52-week high is

decomposed by the regression parameters and the return components. The lowest nearness

to the 52-week high (firm-specific news return) quintile is defined as NEAR1 (FN1), while

the highest nearness to the 52-week high (firm-specific news return) quintile is specified

as NEAR5 (FN5). Similar to Huang, Lin and Xiang (2021), we merge the NEAR2,

NEAR3, and NEAR4 quintiles into one group (referred to as NEAR2 ∼ 4 in Table 3.1)

since it is assumed that the nearness to the 52-week high only exists in the two most

extreme NEAR portfolios.
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In Panel A and Panel B of Table 3.1, we present how the different estimated parameters

of Equation 3.3 and Equation 3.4 can be combined to derive the respective average portfolio

return in each of the portfolios. We further show how the respective portfolio return

can be decomposed into four different return components in Panel C and D. The return

components are the benchmark return (µ), the returns associated with the 52-week high

(H), the returns attributable to the firm-specific news (N), and the returns associated

with the interaction between the firm-specific news and nearness of the stock price to

the 52-week high (I). The first return component reflects the benchmark portfolio. It is

the average return of the stocks in the portfolio with neither extreme firm-specific news

returns nor an extreme nearness to the 52-week high. The second return component is

solely driven by the stock’s nearness to the 52-week high, regardless of the firm-specific

news return ranking. Sorting the stocks into quintiles based on their nearness to the 52-

week high results in a return component common among the stocks in the same portfolio.

Stocks that are far (f) away from the 52-week high are denoted as Hf and are expected

to have a negative return, while stocks that are near (n) the 52-week high are denoted as

Hn and are expected to have a positive return. To derive the pure 52-week high effect, we

build a long-short strategy that relies solely on the return predictability of the nearness

to the 52-week high. We, therefore, define the pure 52-week high effect as:

Pure 52-week High Effect =Hn − Hf = b5 − b6. (3.5)

The third return component is solely driven by the firm-specific news return, regardless

of the firm-specific news return ranking. Sorting the stocks into quintiles based on their

firm-specific news return results in a common return component among the stocks in

the same portfolio. Following Jiang, Li and Wang (2021), do positive firm-specific news

returns predict higher future stock returns, and therefore the firm-specific news component

increases from the FN1 to the FN5 quintile. Stocks with extremely bad (bb) firm-specific

news returns are denoted as Nbb and bad (b) firm-specific news returns are denoted as

Nb, whereas good (g) firm-specific news return are denoted as Ng and extremely good

(gg) firm-specific news return are denoted as Ngg. While extremely bad firm-specific news

returns are associated with negative news momentum and therefore expected to have
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negative returns in the future, are the extremely good firm-specific news return related

to positive future returns. To derive the pure firm-specific news return effect, we build a

long-short strategy that relies solely on the return predictability of the firm-specific news

return. Depending on the assumption that the 52-week high effect moderates the market

underreaction to firm-specific news or not, we define pure firm-specific news as:

Pure Firm-specific News Effect =Ngg − Nbb = (b1 + b11) − (b4 + b10), and (3.6)

= b1 − b4. (3.7)

The fourth and last return component is associated with having, on the one hand, good

firm-specific news about the firm and a stock price near the 52-week high and, on the

other hand, experiencing bad firm-specific news while having a stock price that is far from

the 52-week high. While the underreaction to the firm-specific news due to the nearness

to the 52-week high could also be driven by the less extreme quintiles (e.g., the FN2 and

FN4 quintile) but with a smaller magnitude, we focus our analysis on the most extreme

FN and NEAR quintiles. Stocks with extremely bad firm-specific news returns far from

the 52-week high are denoted as Ibb,f , whereas stocks with extremely good firm-specific

news returns near the 52-week high are represented as Igg,n. Hence, the interaction effect

is defined as:

Interaction Effect =Igg,n − Ibb,f = (b7 − b11) − (b14 − b10) (3.8)

If investors don’t show any issues with their belief updating process after the arrival of

good (bad) firm-specific news while having a stock price that is near (far) its 52-week

high, the interaction effect’s long-short strategy will not yield any additional significant

return component. This would point towards the hypothesis that the portfolio returns are

entirely attributable to the pure firm-specific news effect and the pure 52-week high effect.

On the other hand, if the return of the interaction effect long-short strategy is positive

and significant, this would induce that investors are not willing to update their beliefs and

hence are underreacting to the good (bad) news if the stock price is near (far from) its

52-week high.

Finally, the time-series average of the pure firm-specific news effect, the pure 52-week
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high impact, and the interaction effect are computed. The alphas are calculated by re-

gressing the return components on different asset pricing models to further account for

risk factors.7 To account for serial auto-correlation, we adjust the t-statistics using Newey

and West (1987) standard errors with 12 lags.

3.3 Data and descriptive statistics

This section describes the data sources used to create the data sets for our empirical

analyses and the sample selection procedure. Afterward, we summarize the characteristics

of the underlying data set.

3.3.1 Data

To extract firm-specific news of a firm, we use the RavenPack news database similar to

Jiang, Li and Wang (2021). This database structures all relevant information on news

articles from thousands of providers, including Dow Jones Newswires, the Wall Street

Journal, and MarketWatch, Barron’s, into machine-readable measures.8 We rely on a

comprehensive global sample from the most relevant sources from different news providers

and their archives for our analysis.9 To rank a firm-specific news story about a given firm,

we use two relevance scores provided by RavenPack, which range between 0 and 100, and

the novelty score, which ranges from 0 to 365 days. The first score is entity relevance

and captures how strongly the underlying news refers to a specific company. A value

of 0 (100) means that the company is only mentioned passively (actively). The second

score relates to the event relevance and indicates where the underlying event is mentioned

7 To benchmark the results of the portfolio sorts, we consider various factor models compromised of
the following factors: market (RMRF ), size (SMB), value (HML), profitability (RMW ), investment
(CMA), momentum (W ML), and liquidity (LIQ). Appendix C provides a detailed description of the
factor construction.

8 Recent studies using this data set comprise Jiang and Sun (2014), Kelley and Tetlock (2017), Ke, Kelly
and Xiu (2020), and Jiang, Li and Wang (2021).

9 We use every news provider, namely Alliance News, Benzinga Pro, Dow Jones Newswires, Dow Jones
Third Party, EDGAR SEC Filings, The Fly, FX Street News and FX Street Economic Calendar, Lexis-
Nexis News and Social Media, MT Newswires, and Factset Transcripts. In a subsequent step, we filter
out certain unreliable sources for each news provider by relying on the source rank. The highest source
rank is 1, classified as ’Fully accountable, reputable and balanced,’ followed by rank 2, described as
’Official, reliable and honest.’ and rank 3, classified as ’Acknowledged, formal, and credible.’ To include
only the most reliable sources, we filter out every source ranked below 2.
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the first time. A value greater or equal to 90 suggest that the event is prominently

placed in the title or headline within a news feed. Last, we filter the news on its event

novelty score. The measure indicates how new the information contained in the event

is compared to previous news. This score specifies how many days have passed since the

same event for the given entity was published. For our final sample, we require news stories

to have an entity relevance score of 100, an event relevance of 90, and a minimum event

novelty score of 1. These filters guarantee that our news sample covers only economically

or fundamentally relevant, non-repeated, and, therefore, undisclosed information about

a company. We include only firm-specific news, i.e., mergers and acquisitions, analyst

ratings, assets, bankruptcy, credit, credit ratings, dividends, earnings, equity actions, labor

issues, product services, and revenue from 29 newsgroups. Applying these filters does not

introduce any look-ahead bias, as RavenPack assesses all news articles within milliseconds

of receipt and immediately sends the resulting data to the users. All information is thus

available at the time of news release.

The U.S. and international equities analyses are based on a global sample compris-

ing stock market data from Refinitiv Datastream and accounting data from Worldscope.

Several static and dynamic screens are applied to ensure that our sample comprises exclu-

sively of common stocks and provides the highest data quality. First, stocks are identified

using Refinitiv Datastream constituent lists, particularly Worldscope lists, research lists,

and — to eliminate survivorship bias — dead lists. Following Ince and Porter (2006),

Griffin, Kelly and Nardari (2010), and Schmidt et al. (2017), non-common equity stocks

are eliminated through generic and country-specific static screens. Furthermore, several

dynamic screens are applied to stock returns and prices to exclude erroneous and illiquid

observations. Appendix C. 3 and C. 4 provide a detailed description of the static and dy-

namic screens. Finally, stocks must have a market capitalization greater than zero for the

previous month, positive book equity, and a return. We limit our-self to countries that are

constituents of the MSCI Developed Markets Index in the respective year.10 To calculate

excess returns, we obtain the risk-free rate from Kenneth R. French’s homepage.11

To combine the stock market data with the firm-specific news, we follow a multi-step

10 See https://www.msci.com/market-classification for details.
11 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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procedure to match all corresponding news articles of a corresponding firm to a trading

day. In the first step, we determine a firm’s Datastream identifier, which corresponds to

the RavenPack entity identifier, using the provided ISIN and firm name. In the second

step, we map the opening hours of the underlying stock exchange to the merged dataset.

Lastly, we allocate the identified firm-specific news based on the opening hours of the

respective trading day.

Additionally, we include analyst and institutional ownership data for the stock data. All

analyst-related data is collected from Institutional Brokers’ Estimate System (I/B/E/S),

whereas the Institutional ownership data is from the FactSet Ownership database (for-

merly LionShares). We merge the I/B/E/S data to our stock sample using the provided

I/B/E/S ticker and the FactSet data using the provided ISIN of the firm.

In Table 3.2, we summarize our sample selection procedure, allowing us to assess whether

investors update their beliefs about a stock after the arrival of firm-specific news between

January 2004 and December 2021. After applying the different static and dynamic

Table 3.2
Sample selection

This table presents the sample selection process for U.S. and Ex-U.S. firms. Columns (1) and (2) cover
the number of stock-month observations for the firms located in the U.S. and Ex-U.S. Columns (3) and
(4) cover the unique stocks, and column (5) the number of unique countries.

Observation Firm Country

U.S Ex-U.S. U.S Ex-U.S. Global

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

... after static and dynamic screens 2157734 6438126 18818 52295 53

... from developed markets 2157734 3290151 18818 27378 24

... with daily stock return 2040066 3270483 18593 27275 24

... with firm-specific news after debut 744563 2597811 6306 18825 23

... with firm-specific news in previous month 549547 965680 6284 18555 23

... with minimum price 539091 891575 6254 18135 23

... with at least 25 stocks per country-month 539091 878159 6254 18083 23

Sample 539091 878159 6254 18083 23

screens, the original sample covers 8.60 million stock-month observations based on 71.113

unique stocks from 53 countries. Due to data availability and quality, we focus our anal-

ysis on developed markets reducing the main sample to 24 unique countries. We limit

the sample to stocks with daily returns in the previous month to compute the daily news
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returns. This reduces the sample to 5.31 million stock-month observations. After map-

ping the firm-specific news events on the daily returns and applying the monthly news

aggregation methodology, we end up with 3.34 million stock-month observations, of which

22.3% are from the United States, and 77.7% are from 23 other countries. To analyze

investor behavior after the arrival of firm-specific news, we further require the arrival of

firm-specific news during the last month. This leads us to a sample size of 1.52 million ob-

servations covering 23 countries. To ensure that small and illiquid stocks do not drive our

results, we exclude stocks with a market capitalization below its country’s 10% quantile

each month, in line with Landis and Skouras (2021). We end up with 1.43 million obser-

vations. We require a minimum of 25 stocks for each country-month combination to limit

the role of idiosyncratic stock price movements and to ensure a minimum level of stock

market coverage within each portfolio.Our final sample includes 1.42 million stock-month

observations representing 24.337 unique stocks and 23 countries.

3.3.2 Descriptive statistics

Table 3.3 provides the summary statistics by country, averaged over time. We provide

detailed summary statistics of the developed market countries such as Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Israel, Italy, Japan,

Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland,

United Kingdom, and the United States.

Table 3.3
Summary statistics by country

The table presents summary statistics for each of the 22 countries of our sample. Columns (1), (2), (3), and
(4) report the total, minimum, mean, and maximum number of firms per country. Columns (5) and (6)
state the average mean and median size per country month. Column (7) shows the average total size per
country month and column (8) reports these values in percentage of the respective total across countries.
The last two columns (9) and (10) report the actual beginning and ending dates during which each country
is included in my sample. Size is measured as market capitalization in million USD. The sample period
starts in January 2004 and ends in December 2021.

Number of firms Size Date

Total Min Mean Max Mean Median % Start End

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 )

Australia 2057 78 233 596 3353 396 2.63 04-01 21-12
Austria 74 25 31 42 2571 1498 0.09 04-06 21-12

Continued on next page
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Table 3.2 continued

Number of firms Size Date

Total Min Mean Max Mean Median % Start End

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 )

Belgium 146 25 41 72 5566 864 0.68 04-01 21-12
Canada 3270 348 752 1100 1414 64 3.90 04-01 21-12
Denmark 211 25 49 107 4667 739 0.58 04-03 21-12
Finland 172 25 58 93 3055 574 0.63 04-01 21-12
France 834 90 184 307 7227 770 4.73 04-01 21-12
Germany 844 84 193 335 6257 681 4.17 04-01 21-12
Hong Kong 680 50 132 287 4283 720 1.95 04-01 21-12
Israel 162 25 41 70 2333 656 0.11 10-07 21-12
Italy 444 29 93 196 3437 940 1.07 04-01 21-12
Japan 4503 336 1325 2673 2899 279 11.55 04-01 21-12
Netherlands 147 25 39 69 7798 2187 0.94 04-01 21-12
New Zealand 134 25 34 48 1228 513 0.04 04-03 21-12
Norway 298 26 70 136 2902 383 0.66 04-03 21-12
Portugal 44 26 27 30 2050 408 0.00 06-04 16-06
Singapore 668 31 102 249 2331 365 0.79 04-01 21-12
Spain 241 25 53 99 7843 2303 1.41 04-01 21-12
Sweden 521 37 114 276 2655 378 1.01 04-01 21-12
Switzerland 258 33 68 123 8201 1712 1.95 04-01 21-12
United Kingdom 2128 351 519 721 3435 253 6.90 04-01 21-12
United States 6254 1904 2495 3027 6221 897 54.09 04-01 21-12

Global 24337 4054 6561 8948 4295 424 100.00 04-01 21-12

On average, we can identify 6.561 stocks per month with a market size of 4.3 billion

USD that experience a firm-specific news arrival. The largest market in terms of the

number of stocks as well as the market size is the United States, with an average of

2,495 stocks per month and a market size that represent 54.09% of the total market size.

The second largest market is Japan, with a maximum of 2,673 stocks per month and

coverage of 11.55% of the total market size. While the U.S. market is the largest country

in terms of total market size due to its high number of stocks, it is topped with regards

to the median size of companies within a country by Austria, Italy, Netherlands, Spain,

and Switzerland. We select January 2004 as the start of the sample period due to the

broad coverage of firm-specific news events. But several countries like Austria, Denmark,

Israel, New Zealand, Norway, and Portugal join the sample at a later stage. In Table 3.4,

we depict the descriptive statistics of the main variables for our final sample. Since our

interest is in the behavior of investors after the arrival of firm-specific news in combination

with the nearness to the 52-week high, we determine the time-series average of the mean,
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standard deviation, and quantile breakpoints of the cross-section of the two main variables.

We additionally include the share of trading days of observations with a minimum of one

firm-specific news story in the month the firm-specific news arrives at the firm. NEAR

Table 3.4
Variable descriptives

The table reports the time-series average of the cross-sectional mean, standard deviation, and quantiles of
each variable for the sample of firm-month observations from January 2004 to December 2021. NEAR is
the ratio of the unadjusted stock price at the end of the previous month to the past 52-weeks high, as in
George and Hwang (2004). F N is the previous monthly firm-specific news from the firm that is based on
decomposed daily returns and the RavenPack news database, as in Jiang, Li and Wang (2021). F N% is
the average share of news days of the firm in the previous month.

N Mean Std Min P1 P25 P50 P75 P99 Max

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

NEAR 6561.34 0.77 0.19 0.18 0.26 0.67 0.82 0.91 1.00 1.00
F N 6561.34 0.81 9.31 -20.47 -15.55 -2.37 0.18 3.14 20.95 29.44
F N% 6561.34 0.11 0.09 0.05 0.05 0.05 0.09 0.14 0.39 0.48

has a mean of 0.77 and a standard deviation of 0.19, indicating that most firms have stock

prices close to the 52-week high. The distribution of NEAR is close to symmetric, with

a median of 0.82 and a minimum and maximum of 0.18 and 1.00, respectively. FN , the

monthly firm-specific news-driven return, has a mean of 0.81 and a standard deviation of

9.31, indicating significant variation in the firm-specific news return. The distribution of

FN is positively skewed, with a median of 0.18 and a minimum and maximum of -20.47

and 29.44, respectively. FN% has a mean of 0.11 and a standard deviation of 0.09. This

implies that if a firm is experiencing a firm-specific news arrival in the month, it is, on

average, in the news on two days. The distribution of FN% is also positively skewed, as

the median of 0.09 and a range from 0.05 to 0.48 indicate.

3.4 Empirical Results

The main objective of this research is to investigate the impact of firm-specific news in

conjunction with the proximity to the 52-week high on investor behavior. To achieve this,

we utilize firm-specific news returns as the foundation of our analysis. Our methodology

involves sorting the firms independently, first by their news returns and then by their

proximity to the 52-week high. To verify the validity of the independent double-sort
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technique, we demonstrate the lack of correlation between the two sorting variables. We

then analyze the cross-sectional return patterns among the double-sorted portfolios and

examine how the return predictability of news returns is affected by the firm’s proximity

to the 52-week high.

3.4.1 Portfolio characteristics

We create double-sorted portfolios by categorizing stocks into country-neutral quintile

portfolios based on their firm-specific news returns (FN) and proximity to their 52-week

high (NEAR) at the previous month-end. This process results in 25 portfolios which

are held for one month. In Panels A and B of Table 3.5, we report the average firm-

specific news return and the respective average nearness to the 52-week high by each

of the 25 portfolios. In both Panels, NEAR1 represents the lowest quintile of NEAR,

while NEAR5 represents the highest quintile of NEAR. Analogously, FN1 represents

the lowest quintile of FN , and FN5 represents the highest quintile of FN . In Panel C

of Table 3.5, the correlation between the two main variables is shown. We identify a

smaller variation within the FN1 quintile among the five NEAR quintiles in the case of

firm-specific news returns. The average news return increases from -9.09% in NEAR1 to

-5.21% in NEAR5. For the other four quintiles (FN2, FN3, FN4, FN5), the average

firm-specific news return does not vary much within the respective FN portfolio and

among the different NEAR portfolios. In the case of the highest FN quintile, the average

FN in the NEAR1 portfolio is 12.03%, whereas the average FN in the NEAR5 portfolio

is 11.90%. In Panel B, we identify a very similar pattern. Within the lowest NEAR

quintile, the average nearness to the 52-week high varies between 0.58 and 0.57 among

the five FN quintiles. Among the higher NEAR portfolios, the average nearness to the

52-week high increases to 0.74 in the case of the NEAR2 portfolio, 0.83 (NEAR3), and

0.90 (NEAR4). In the highest NEAR portfolio, the average value varies between 0.96

for the FN1 and 0.97 for the FN5 portfolio. The correlation statistic in Panel C further

reduces the concern that sorting by NEAR could also be a sort by FN .

In the next step, we analyze the return patterns across the 25 portfolios sorted by the

firm-specific news returns and the nearness to the 52-week high. We calculate each portfo-

lio’s average risk-adjusted monthly equal-weighted returns and report them in Table 3.6.
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Table 3.5
Portfolio characteristics

This table reports the characteristics of the firm portfolios sorted by their firm-specific news return (F N)
and their nearness to the 52-week high (NEAR). F N is the previous monthly firm-specific news return
from the firm that is based on decomposed daily returns and the RavenPack news database, as in Jiang,
Li and Wang (2021). NEAR is the ratio of the unadjusted stock price at the end of the previous month
to the past 52-weeks high, as in George and Hwang (2004). To form the double-sorting portfolios, in each
month, the firms are independently sorted into 5 × 5 country-neutral portfolios based on the F N in the
previous month and NEAR at the previous month-end. The portfolios are held for one month. Panels A
and B report the average F N and NEAR (sorting variables) for each portfolio, respectively. Mean F N
in Panel A is shown in percent. Panel C reports the average correlation between NEAR and F N each
month. The sample period is from January 2004 to December 2021.

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

Panel A: mean F N

F N1 F N2 F N3 F N4 F N5
NEAR1 -9.09 -1.65 0.28 2.57 12.03
NEAR2 -7.37 -1.64 0.28 2.53 11.09
NEAR3 -6.34 -1.61 0.29 2.49 10.57
NEAR4 -5.51 -1.57 0.30 2.49 10.32
NEAR5 -5.21 -1.46 0.32 2.52 11.90

Panel B: mean NEAR

F N1 F N2 F N3 F N4 F N5
NEAR1 0.57 0.58 0.58 0.58 0.57
NEAR2 0.74 0.74 0.74 0.74 0.74
NEAR3 0.83 0.83 0.83 0.83 0.83
NEAR4 0.90 0.90 0.90 0.90 0.90
NEAR5 0.96 0.97 0.97 0.97 0.97

Panel C: Correlation between F N and NEAR

F N P RC

F N 100.00 12.90
NEAR 12.90 100.00

Panel A reports the excess return; Panel B reports the CAPM alpha, Panel C focuses

on the Fama and French (1993) three-factor alpha (FF3), and Panel D uses the Carhart

(1997) four-factor model (FFC4) as underlying.
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Table 3.6
Portfolio returns

This table reports the performance of the firm portfolios sorted by firm-specific news return (F N) and
nearness to the 52-week high (NEAR). To form the double-sorting portfolios, each month, the firms are
independently sorted into 5×5 country-neutral portfolios based on F N and NEAR. Additionally, we utilize
the country-neutral quintile breakpoints to replicate the equal-weighted portfolio returns of the original
(Orig.) studies (George and Hwang, 2004; Jiang, Li and Wang, 2021). The equal-weighted portfolios
are held for one month and rebalanced every month. This table reports the average monthly excess and
risk-adjusted returns of the portfolios. Panel A shows the excess returns. Risk-adjusted returns in Panels
A, B, and C are the intercept estimates from the time-series regressions of the monthly excess portfolio
returns on market excess return (CAPM), Fama and French (1993) three factors (FF3), and Carhart
(1997) four factors (FFC4), respectively. We report the portfolio holding period returns from January
2004 to December 2021. We compute the original firm-specific news returns and nearness to the 52-week
high strategy as follows. In each month, we sort the firms into quintiles based on their previous month’s
firm-specific news returns or their nearness to the 52-week high. We long firms in the highest quintile
and short firms in the lowest quintile and hold the portfolios for one month. We track the equal-weighted
portfolio returns in the holding period. Alphas in this table are reported in percent. All standard errors
are adjusted using Newey and West (1987). t-statistics are in parentheses.

Orig. F N1 F N2 F N3 F N4 F N5 F N5 − 1

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 )

Panel A: Excess Return

Orig. 0.86 1.03 1.12 1.12 1.50 0.64
(2.89) (3.83) (4.20) (3.97) (4.88) (14.33)

NEAR1 1.01 0.71 1.04 1.28 0.97 1.07 0.35
(2.78) (1.42) (2.21) (2.49) (2.00) (2.01) (3.08)

NEAR2 1.00 0.56 0.92 1.07 1.04 1.39 0.84
(3.16) (1.30) (2.28) (2.57) (2.40) (2.88) (6.21)

NEAR3 1.08 0.88 1.02 1.05 1.00 1.46 0.58
(3.91) (2.25) (2.83) (3.03) (2.68) (3.39) (5.83)

NEAR4 1.24 1.03 1.09 1.16 1.28 1.65 0.62
(4.91) (2.93) (3.25) (3.74) (3.79) (4.12) (5.82)

NEAR5 1.31 1.13 1.09 1.07 1.29 1.95 0.82
(5.59) (2.83) (3.48) (3.71) (4.22) (5.53) (6.19)

NEAR5 − 1 0.29 0.42 0.04 -0.21 0.32 0.89 1.24
(3.01) (1.87) (0.18) (-0.69) (1.27) (3.35) (5.20)

Panel B: CAPM alpha

Orig. -0.04 0.20 0.34 0.27 0.60 0.64
(-0.41) (2.30) (3.34) (2.92) (4.96) (14.15)

NEAR1 -0.04 -0.36 -0.00 0.27 -0.08 -0.03 0.33
(-0.25) (-1.80) (-0.01) (1.13) (-0.35) (-0.12) (3.10)

NEAR2 0.05 -0.42 -0.01 0.17 0.10 0.42 0.83
(0.47) (-3.02) (-0.04) (1.11) (0.62) (1.95) (6.34)

NEAR3 0.24 -0.00 0.22 0.27 0.16 0.56 0.56
(2.70) (-0.01) (1.86) (2.27) (1.49) (3.63) (5.94)

NEAR4 0.48 0.24 0.34 0.48 0.52 0.81 0.57
(6.06) (2.04) (3.59) (4.73) (5.14) (5.58) (5.86)

NEAR5 0.63 0.34 0.44 0.49 0.64 1.23 0.89
(6.99) (1.98) (3.30) (4.34) (6.28) (8.51) (6.86)

Continued on next page
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Table 3.5 continued

Orig. F N1 F N2 F N3 F N4 F N5 F N5 − 1

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 )

NEAR5 − 1 0.66 0.70 0.44 0.22 0.71 1.25 1.59
(8.72) (3.55) (2.28) (0.95) (3.47) (6.10) (8.30)

Panel C: FF3 alpha

Orig. -0.03 0.22 0.36 0.29 0.61 0.64
(-0.37) (3.77) (5.12) (4.75) (6.64) (14.08)

NEAR1 -0.02 -0.34 0.03 0.30 -0.05 -0.02 0.32
(-0.16) (-2.61) (0.19) (1.71) (-0.33) (-0.10) (3.02)

NEAR2 0.08 -0.39 0.02 0.20 0.14 0.43 0.82
(1.14) (-4.35) (0.24) (1.82) (1.40) (2.75) (6.47)

NEAR3 0.27 0.01 0.25 0.30 0.19 0.59 0.58
(4.37) (0.14) (3.00) (3.90) (2.45) (4.71) (5.98)

NEAR4 0.49 0.25 0.36 0.50 0.54 0.82 0.57
(8.24) (2.53) (4.63) (6.37) (6.96) (6.81) (5.98)

NEAR5 0.63 0.34 0.45 0.50 0.65 1.23 0.89
(8.05) (2.19) (3.85) (5.15) (7.24) (9.58) (6.78)

NEAR5 − 1 0.65 0.68 0.42 0.20 0.70 1.24 1.57
(9.82) (3.80) (2.41) (1.04) (4.15) (6.67) (8.96)

Panel D: FFC4 alpha

Orig. -0.05 0.21 0.36 0.28 0.58 0.63
(-0.70) (3.50) (4.96) (4.47) (6.36) (13.74)

NEAR1 0.02 -0.30 0.06 0.34 -0.01 0.02 0.32
(0.21) (-2.37) (0.44) (1.99) (-0.04) (0.10) (2.93)

NEAR2 0.09 -0.39 0.04 0.24 0.16 0.41 0.80
(1.29) (-4.36) (0.44) (2.15) (1.53) (2.63) (6.54)

NEAR3 0.25 -0.01 0.24 0.29 0.18 0.54 0.55
(4.08) (-0.07) (2.87) (3.77) (2.37) (4.35) (5.66)

NEAR4 0.45 0.20 0.32 0.47 0.49 0.77 0.57
(8.01) (2.10) (4.32) (6.30) (6.59) (6.42) (5.80)

NEAR5 0.56 0.25 0.38 0.44 0.57 1.14 0.89
(7.93) (1.65) (3.26) (4.99) (6.91) (9.60) (6.83)

NEAR5 − 1 0.53 0.55 0.32 0.10 0.57 1.12 1.44
(8.82) (3.42) (1.92) (0.56) (4.16) (6.79) (9.37)

We will focus our discussion of Table 3.6 on Panel D, respectively the FFC4 alpha, be-

cause the other risk-adjusted results are comparable. We first investigate the risk-adjusted

portfolio returns of the two original settings (Orig.) following George and Hwang (2004)

and Jiang, Li and Wang (2021). The risk-adjusted portfolio returns increase monotonically

from -0.05% (t=-0.70) in the lowest FN to 0.58% (t=6.36) in the highest FN portfolio.

A long-short portfolio results in a significant monthly alpha of 0.63% (t=13.74). For the

original nearness to the 52-week portfolios, the alpha in the lowest portfolio (NEAR1) is
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equal to 0.02% (t=0.21) and increases to 0.56% (t=7.93) in the NEAR5 portfolio. A long-

short strategy using the nearness to the 52-week high returns a monthly alpha of 0.53%

(t=8.82). Similar to the empirical results of George, Hwang and Li (2014) and Huang,

Lin and Xiang (2021), we also discover that the risk-adjusted portfolio return increases

within the respective news portfolio when the NEAR portfolio ranking increases. In the

case of the lowest FN portfolio with an average alpha of -0.05% (t=-0.70), the NEAR1

portfolio earns a monthly alpha of -0.30% (t=-2.37), which increases to 0.25% (t=1.65) for

the NEAR5 delivering a long-short return of 0.55% (t=3.42). Moving to the portfolios

with high firm-specific news (FN5) in the previous month. The firms which are far from

the 52-week high (NEAR1) earn a monthly risk-adjusted alpha of 0.02% (t=0.10), which

increases to 1.14% (t=9.60) for firms close to their 52-week high (NEAR5). A long-short

portfolio strategy that builds on investors’ underreaction due to their belief updating bias

earns a monthly risk-adjusted alpha of 1.44% (t=9.37). In the case of the long position,

investors do not update their beliefs after the arrival of very good news due to the nearness

of the stock to the 52-week high. For the short position, investors are unwilling to update

their beliefs after the arrival of very negative news as the stock price is already far-away

from its 52-week high. This suggests that very positive stock returns are only predicted

by very positive firm-specific news. We find a similar pattern when the stock prices are

close to their 52-week high. Low stock returns are predicted by very negative firm-specific

news returns when the stock prices are far from their 52-week high.

3.4.2 Baseline return decomposition results

Next, we apply the return decomposition methodology described in Section 3.2.2 to dis-

entangle the portfolio returns into the pure effect of the nearness to the 52-week high,

the pure firm-specific news effect and their interaction effect and report the results in

Table 3.7. In Panel A of Table 3.7, we follow Equation 3.3 and include the interaction

effects, whereas, in Panel B, we follow Equation 3.4 and exclude the interaction effects.

If the interaction effect is positive and significant, this indicates that a large part of the

portfolio formed on the firm-specific news return is driven by having a stock price close or

far from the 52-week high. The interaction effect in Panel A of Table 3.7 is positive and

significant, independent of which factor model is used to calculate the risk-adjusted return
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Table 3.7
Return decomposition results

This table reports the estimates of the monthly averages for the pure firm-specific news return effect,
the pure 52-week high effect, and the interaction effect in the firm-specific news setting. The return
decomposition methodology is described in 3.2.2, and the specifications of the return decomposition are
shown in Table 3.1 and based on the Equation 3.3 and Equation 3.4. The pure firm-specific news effect
is computed as Ngg − Nbb, where Ngg (Nbb) is the return associated with having extremely good (bad)
firm-specific news regardless of the nearness to the 52-week high. The pure 52-week high effect is computed
as Hn − Hf , where Hn (Hf ) is the return attributable to having stock prices near (far from) the 52-week
high regardless of news about the customer firms. The interaction effect is computed as Igg,n −Ibb,f , where
Igg,n (Ibb,f ) is the return associated with having both very good (very bad) firm-specific news and stock
prices near (far from) the 52-week high. Panel A reports return decomposition in which interaction effects
are included. Panel B reports return decomposition in which interaction effects are excluded. Average
monthly CAP M alpha, F F 3 alpha, and F F C4 alpha are the intercepts from time-series regressions of
monthly estimates of each effect (e.g., the pure firm-specific news return effect) on market excess returns,
Fama and French (1993) three factors, and Carhart (1997) four factors, respectively. The sample period
is from January 2004 to December 2021. Alphas in this table are reported in percent. All standard errors
are adjusted using Newey and West (1987). t-statistics are in parentheses.

Alpha

CAPM FF3 FFC4

( 1 ) ( 2 ) ( 3 )

Panel A: Interaction effect included

Interaction 1.51 1.51 1.47
(4.90) (4.83) (4.67)

Pure Firm-specific News -0.14 -0.15 -0.13
(-0.75) (-0.78) (-0.66)

Pure 52-week High 0.22 0.20 0.10
(1.01) (1.10) (0.61)

Panel B: Interaction effect excluded

Pure Firm-specific News 0.70 0.69 0.68
(10.54) (10.49) (10.20)

Pure 52-week High 0.68 0.66 0.55
(3.42) (3.93) (3.88)

component. In column (1), the interaction effect generates an CAPM alpha of 1.51%

(t=4.90) per month. By using the Fama and French (1993) three-factor model in column

(2), the risk-adjusted return is also equal to 1.34% (t=4.52) per month, and by addition-

ally including the momentum factor by Carhart (1997) in column (3), the monthly alpha

is reduced to 1.47% (t=4.67) per month. In the three previously mentioned setups, the

return component driven by the pure firm-specific news effect is negative but insignificant.

In the case of the CAPM , the risk-adjusted alpha is -0.14% (t=-0.75) per month; for the

FF3, the alpha amounts to -0.15% (t=-0.78) per month, and in the case of FFC4 the

alpha is equal to -0.13% (t=-0.66).
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The pure firm-specific news effect turns positive and significant by excluding the inter-

action effect in Panel B. In column (1), the effect amounts to 0.70% (t=10.54) per month;

in column (2), the effect is very similar by using FF3 as a factor model resulting in an

alpha of 0.69% (t=10.49) per month. In column (3), the risk-adjusted return of the pure

firm-specific news component amounts to 0.68% (t=10.20) per month when regressing the

monthly returns on the Carhart (1997) four-factor model.

The comparison of Panels A and B indicates that positive (negative) firm-specific news

results predict high (low) future returns for a company only when the stock prices are close

to (far from) the 52-week high. These findings suggest that the nearness to the 52-week

high causes investors to react inadequately to firm-specific news, significantly contributing

to the firm-specific news phenomenon.

3.4.3 Results by information environment

Our results suggest that investors cannot update their beliefs about the fair value of a

stock after the arrival of good (bad) firm-specific news if the stock price is near (far from)

its 52-week high resulting in the mispricing of the stock. Prior studies suggest that in-

vestors’ underreaction to new information, like earnings news, as well as the anchoring

bias, can be partially attributed to the firms’ exposure to limits to arbitrage (Shleifer

and Vishny, 1997; Hung, Li and Wang, 2015; Byun, Goh and Kim, 2020). We, therefore,

split in Table 3.8 our primary analysis in chapter 3.4.2 into two different sub-samples.

Panel A covers all stocks with high exposure to limits to arbitrage, while Panel B con-

tains the stock with low limits to arbitrage. We include five different variables that are

closely related to limits to arbitrage and are commonly used in the literature (Lam and

Wei, 2011). The first two proxies are the stock market capitalization (Size) and analyst

coverage (Coverage), which are a measure of information uncertainty (Hong, Torous and

Valkanov, 2007; Gleason and Lee, 2003; Zhang, 2006). The third proxy is the share of

institutional ownership (IO), indicating low short-sale constraints (Nagel, 2005), and the

fourth proxy measures through idiosyncratic volatility (Risk) potential arbitrage costs

(Pontiff, 1996; Wurgler and Zhuravskaya, 2002; Mashruwala, Rajgopal and Shevlin, 2006;

Pontiff, 2006; Duan, Hu and McLean, 2010; McLean, 2010; Stambaugh, Yu and Yuan,

2015). The last individual variable is the efficient discrete generalized estimator (TC) as
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a proxy for potential transaction costs (Ardia, Guidotti and Kroencke, 2022).12 Similar

to Smajlbegovic (2019), we add the limits to arbitrage index (LTA) using a linear com-

bination of the ranks of negative market capitalization, negative institutional ownership,

negative analysts coverage, idiosyncratic volatility, and transaction costs.

To be able to investigate how the limits to arbitrage affect the three return components,

we sort the stocks each month into three country-neutral portfolios based on the underlying

limits to arbitrage proxy. Next, due to the reduced number of stocks in each portfolio,

we return the decomposition methodology described in Appendix C using 3 × 3 country-

neutral portfolio sorts. The results in Table 3.8 provide further empirical evidence on

the belief updating process of investors. The mispricing effect of investors not being able

to update their beliefs about a stock after the arrival of good (bad) firm-specific news and

in the case the stock is near (far from) its 52-week high is partially driven by exposure

of the stocks to high limits to arbitrage. Each of the six subsamples yields a similar

pattern that only the interaction effect in Panel A covering the stocks with high limits

to arbitrage is positive and significant. Splitting the sample by size yields an interaction

effect for small stocks of 0.96% (t=2.53) per month, whereas large stocks have a monthly

alpha of only 0.16% (t=1.02). Using institutional ownership as the underlying splitting

criterion to proxy for the information environment, the alpha of low IO stocks is 0.78%

(t=2.27) per month, and of high IO stocks, it is equal to 0.07% (t=0.38). In the case of

low analyst coverage, the monthly risk-adjusted return of the interaction effect is 0.87%

(t=2.40), whereas, for stocks with high coverage, the alpha is 0.14% (t=0.51). Dividing

the sample by idiosyncratic volatility yields a monthly FF4C alpha of 0.60% (t=1.67) for

high-risk stocks and 0.24% (t=1.09) for low-risk stocks. The sample split by transaction

costs results in a monthly risk-adjusted return of 1.06% (t=3.31) for stocks with high

transaction costs and a risk-adjusted return of -0.05% (t=-0.28) per month for stocks with

low transaction costs. The linear combination of size, institutional ownership, analyst

coverage, risk, and transaction cost underlines the previous results by yielding a monthly

alpha of 0.67% (t=2.14) for high limits to arbitrage stocks. In contrast, the low limits to

arbitrage stocks are associated with a FF4C alpha of 0.00% (t=0.02).

12 Ardia, Guidotti and Kroencke (2022) show in their paper that the efficient discrete generalized estimator
(EDGE) is superior to other proxies for transaction costs estimators from Roll (1988), Corwin and Schultz
(2012), as well as Abdi and Ranaldo (2017) or the Amihud (2002) illiquidity measure.
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Table 3.8
Return decomposition results: subsamples by information environment.

This table reports the results of the return decomposition in subsamples classified by the firms’ information
environment. The subsamples are generated as follows. Each month firms are sorted equally into country-
neutral tercile portfolios based on the underlying firm characteristic available in the previous month. Panel
A covers firms in the high limits to arbitrage tercile, whereas Panel B covers firms in the low limits to
arbitrage tercile. In column (1), firms are sorted into groups based on market capitalization. In column
(2), firms are sorted into groups based on institutional ownership. Institutional ownership is the holdings
by all institutional investors as a fraction of the market capitalization. Firms not covered by FactSet are
assumed to have zero institutional ownership. In column (3), firms are sorted into groups based on analyst
coverage. Analyst coverage is the number of distinct analysts who make fiscal year one earnings forecasts.
Firms not covered by I/B/E/S are assumed to have zero analyst coverage. In column (4), firms are sorted
into groups based on idiosyncratic volatility. we define idiosyncratic volatility as the standard deviation
of the residuals from a regression of excess returns on a local Fama and French (1993) three-factor model.
We use one month of daily data and require at least fifteen non-missing observations. In column (5),
firms are sorted into groups based on transaction cost. To estimate transaction cost, we compute for each
stock and month, the efficient discrete generalized estimator (EDGE) of the bid-ask spread proposed by
Ardia, Guidotti and Kroencke (2022). In column (6), firms are sorted into groups based on the ranked
average among the five information environment variables. Within each subsample, we sort the firms into
country-neutral 3 × 3 portfolios based on F N and NEAR and conduct a return decomposition using the
methodology described in Appendix B. The sample period is from January 2004 to December 2021. FFC4
Alpha in this table is reported in percent. All standard errors are adjusted using Newey and West (1987).
t-statistics are in parentheses.

FF4C Alpha

Size IO Coverage Risk TC LTA

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel A: High limits to abitrage

Small Low Low High High High

Interaction 0.96 0.78 0.87 0.60 1.06 0.67
(2.53) (2.27) (2.40) (1.67) (3.31) (2.14)

Pure Firm-Specific News 0.47 0.18 0.05 0.48 0.29 0.53
(1.79) (0.71) (0.22) (2.29) (1.34) (2.32)

Pure 52-week High 0.22 0.23 0.37 0.52 0.08 0.26
(1.06) (1.19) (1.94) (2.75) (0.36) (1.26)

Panel B: Low limits to arbitrage

Large High High Low Low Low

Interaction 0.16 0.07 0.14 0.24 -0.05 0.00
(1.02) (0.38) (0.51) (1.09) (-0.28) (0.02)

Pure Firm-Specific News 0.05 0.21 -0.08 -0.00 0.35 0.08
(0.50) (1.90) (-0.42) (-0.03) (2.24) (0.85)

Pure 52-week High 0.29 0.15 0.08 -0.07 0.36 0.11
(2.63) (1.11) (0.65) (-0.54) (3.86) (1.07)
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3.4.4 Robustness checks

Next, we perform various robustness checks and additional tests to support the findings

of the return decomposition. First, we provide further evidence of investor behavior in

an out-of-sample application. Second, we use a variety of factor models. Third, we use

different definitions of firm-specific news. The last robustness test focuses on a placebo

test using the return decomposition based on MOM .

Table 3.9 splits the sample into two sub-samples. The first sub-sample focuses on the

return decomposition in the U.S. and is similar to the analysis in George, Hwang and Li

(2014), Huang, Lin and Xiang (2021), and Jiang, Li and Wang (2021). The second sub-

sample focuses on a true out-of-sample analysis by excluding the U.S. Even after focusing

Table 3.9
Return decomposition results: U.S vs Ex-U.S.

This table reports the results of the return decomposition, including the interaction effects based on
different country subsamples. Panel A, reports the results of firms located within the U.S., and Panel B
of firms located outside of the U.S. Within each subsample, we sort the firms into country-neutral 5 × 5
portfolios based on F N and P RC and conduct a return decomposition using the methodology described
in Appendix B. Average monthly FFC4 Alpha are the intercepts from time-series regressions of monthly
estimates of each effect (e.g., the pure firm-specific news return effect) on the Carhart (1997) four factors.
The sample period is from January 2004 to December 2021. FFC4 Alpha in this table is reported in
percent. All standard errors are adjusted using Newey and West (1987). t-statistics are in parentheses.

FF4C Alpha

U.S. Ex-U.S.

( 1 ) ( 2 ) ( 3 ) ( 4 )

Interaction 0.61 1.87
(2.53) (4.16)

Pure Firm-Specific News 0.11 0.54 -0.23 0.78
(0.64) (5.54) (-0.83) (11.19)

Pure 52-week High 0.13 0.31 0.14 0.71
(0.70) (1.66) (0.63) (4.82)

the return decomposition on the most efficient and mature market, the interaction effect

in column (1) remains positive and statistically significant, yielding a risk-adjusted return

of 0.61% (t=2.53) per month. Further, excluding the interaction term from the Fama and

MacBeth (1973) in column (2) yields positive and statistically significant pure effects. The

results of the out-of-sample test in column (3) and column (4) underline the robustness

of our results. By comparing the four-factor alpha of the interaction term in column (3)

to column (1), we can identify an increase of 1.26 percentage points to 1.87% (t=4.16)
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per month. The exclusion of the interaction effect in column (4) still yields positive and

significant pure effects.

In Table 3.10, we use a variety of factor models to determine whether the employed factor

drives the risk-adjusted returns of the interaction term. More specifically, we extend the

Fama and French (1993) three-factor model with the profitability and investment factor as

proposed by Fama and French (2015), resulting in the proposed five-factor model (FF5).

Further, similar to the model by Carhart (1997), we add momentum to the five-factor

model (FF5C). To control for liquidity constraints, we employ the four-factor model

proposed by Pástor and Stambaugh (2003) by adding the liquidity factor to the Fama and

French (1993) three-factor model (PS). Next, we combine the five-factor model by Fama

and French (2015) with the liquidity factor resulting in a six-factor model (FF5 + LIQ).

The last model augments the FF5 with the momentum and liquidity factor resulting in a

seven-factor model (FF5C + LIQ). In column (1) of Table 3.10, the risk-adjusted return

Table 3.10
Return decomposition results: other risk-adjustment methods.

This table reports the return decomposition results using various risk-adjustment methods. In the FF5
column, risk-adjusted returns are estimated from time-series regressions of monthly return components
(effects) on Fama and French (2015) five factors. In the FF5C column, we augment FF5 factors with the
momentum factor (UMD) by Carhart (1997) in the time-series regression. In the PS column, risk-adjusted
returns are estimated from time-series regressions of monthly return components (effects) on Pástor and
Stambaugh (2003) four factors. In the FF5+LIQ column, we augment FF5 factors with the liquidity
(LIQ) factor by Pástor and Stambaugh (2003) in the time-series regression. In the FF5C+LIQ column, we
augment FF5 factors with the liquidity (LIQ) factor by Pástor and Stambaugh (2003) and the momentum
factor (UMD) by Carhart (1997) in the time-series regression. The sample period is from January 2004
to December 2021. Alphas in this table are reported in percent. All standard errors are adjusted using
Newey and West (1987). t-statistics are in parentheses.

Alpha

FF5 FF5C PS FF5+LIQ FF5C+LIQ

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

Interaction 1.61 1.55 1.53 1.64 1.58
(5.30) (5.11) (4.79) (5.28) (5.11)

Pure Firm-Specific News -0.17 -0.13 -0.17 -0.21 -0.17
(-0.83) (-0.66) (-0.85) (-0.99) (-0.82)

Pure 52-week High 0.02 -0.13 0.23 0.05 -0.10
(0.09) (-0.72) (1.21) (0.24) (-0.53)

of the interaction effect slightly increases to 1.61% (t=5.30) per month compared to the

three-factor model in Table 3.7 by adding profitability and investment factor to the factor
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model. A similar effect can be identified when adding the two additional factors to the

Carhart (1997) four-factor model resulting in a monthly alpha of 1.55% (t=5.11). Adding

the liquidity factor to the three-factor and five-factor model in column (3) and column (4)

yields a monthly risk-adjusted return of 1.53% (t=4.79) and 1.64% (t=5.28), respectively.

After controlling for the largest factor model in column (5), the interaction effect remains

positive, economically, and statistically significant.

For our third robustness check in Table 3.11, we add several variations of the previously

defined measure of firm-specific news for three samples. The first sample in Panel A uses

the entire sample, Panel B focuses on the firms located in the U.S., and Panel C limits

the sample to all firms outside of the U.S. The first two alternative measures are related

to earnings announcement days (EAD), as these scheduled news events are well-known

and followed by investors. To identify these earnings announcement days, we rely on

the methodology of Engelberg, McLean and Pontiff (2018) by identifying the earnings

announcement day as the day with the highest volume within a three-day window around

the reported announcement day. To be as precise as possible about the impact of EADs,

we define two measures that deviate slightly from our firm-specific news measure. The

first measure only includes days with an earnings announcement as a firm-specific news

day, while all other days are classified as non-firm-specific news days. The second measure

investigates the incremental value of the underlying firm-specific news provider, as we

exclude all EADs from the firm-specific news days. The third measure tries to model a

slower information diffusion of firm-specific news. If a firm-specific news event occurred

on the day t, we additionally classify the next day t + 1 as a firm-specific news day.

For the next measure, we classify additional events as firm-specific. 13 We exclude the

days from the firm-specific news measure on which relevant macroeconomic information

is released to exclude the possibility that our results are driven by macroeconomic news.

To identify all relevant macro-economic news, we follow Savor and Wilson (2013) by

using only the macro announcements that have statistically and economically significant

impacts on an individual country’s market risk premium.14 For the last measure, we follow

13 These events are ’partnerships,’ ’indexes,’ ’marketing,’ ’regulatory,’ ’permits,’ ’exploration,’ ’commodity-
prices,’ ’industrial-accidents,’ ’business-operations,’ ’credit-default-swap,’ ’privacy,’ and ’ownership.’

14 Due to the availability we limit our analysis to the following countries: Australia, Canada, France, Ger-
many, Italy, Japan, Netherlands, Norway, New Zealand, Spain, Sweden, Switzerland, United Kingdom,
and the United States.
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Burt and Hrdlicka (2021) to extract the idiosyncratic news part from daily returns. To

decompose the returns into a predictable and unpredictable (idiosyncratic) component, we

use an asset pricing model derived from the daily returns of the last 12 months (t − 1 till

t−12) and the factor realizations at time t. The estimated parameters enable us to derive

the predictable component (ϵt), equal to the daily return minus the non-idiosyncratic

component. In the final step, we differentiate between idiosyncratic firm-specific and non-

firm-specific news returns. For the last measure, we follow Burt and Hrdlicka (2021) to

extract the idiosyncratic news part from daily returns. Limiting the firm-specific news

to the earnings announcement days in column (1) reduces the risk-adjusted return of the

interaction effect, loses its significance, and yields an alpha of 1.21% (t=1.60) per month.

These results are robust by limiting the sample to only firms located in the U.S. or outside

of the U.S. This indicates that investors are paying a lot of attention to these earnings

announcement days. Therefore, the news component diffuses very fast into the stock price.

A less likely alternative explanation could be that the anchoring effect is not persistent

these days, contrary to the results of George, Hwang and Li (2014). Excluding the earnings

announcement days from the firm-specific news return estimation in column (2) increases

the four-factor alpha to 1.68% (t=5.17) per month. In column (3), we model a slower

information diffusion, resulting in a lower global monthly risk-adjusted return of 1.33%

(t=4.90). Limiting the sample to the most efficient stock market, the U.S., the interaction

effect even becomes insignificant, yielding an alpha of 0.52% (t=1.19) per month. Including

more events in the firm-specific news detection in column (4) further decreases the monthly

four-factor alpha to 1.22% (t=3.58). We can identify a similar pattern as in column (3), in

which the stocks from outside the U.S. yield a positive and significant alpha. In contrast,

the alpha of the U.S. sample is insignificant. This underlines the importance of the event

selection by Jiang, Li and Wang (2021). Column (5) excludes all the days important

macroeconomic announcements are released. The risk-adjusted return of the interaction

effect is unaffected by this correction, yielding a global monthly alpha of 1.38% (t=3.86).

Similar to column (5), we try to measure the firm-specific news component more exactly

by excluding the predictable part from the daily return in column (6). By aggregating the

daily idiosyncratic and firm-specific returns, the global risk-adjusted return of interaction

effect amounts to 1.32% (t=4.30).
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Table 3.11
Return decomposition results: robustness measures.

This table reports the return decomposition results using different firm-specific news measures. Panel A
covers all firms with firm-specific news, Panel B covers firms from the U.S., and Panel C excludes all U.S.
firms. In the EAD column, only earnings announcement dates are used to identify firm-specific news. We
follow Engelberg, McLean and Pontiff (2018) by identifying the earnings announcement day as the day with
the highest volume within a the three-day window around the reported announcement day in I/B/E/S. In
the −EAD column, we exclude all earnings announcement dates from the firm-specific news measure. In
the t, t+1 column, we model a slower information diffusion by tagging the next day after news occurrence as
a firm-specific news day. In the +Events column, we add further essential events to the firm-specific news
measure. Additional events include: partnerships, indexes, marketing, regulatory, permits, exploration,
commodity-prices, industrial-accidents, business-operations, credit-default-swap, privacy, ownership. In
the −Macro column, we exclude macro-news days. We follow Savor and Wilson (2013) by excluding
macro announcement days that have statistically and economically significant impacts on an individual
country’s market risk premium. In the ϵ column, we extract the idiosyncratic news part from daily returns.
We follow Burt and Hrdlicka (2021) by decomposing the daily return into a predictable and idiosyncratic
component using the data and asset pricing model from the previous twelve month (t-2 till t-13). Average
monthly FFC4 Alpha are the intercepts from time-series regressions of monthly estimates of each effect
(e.g., the pure firm-specific news return effect) on the Carhart (1997) four factors. The sample period is
from January 2004 to December 2021. FFC4 alpha in this table is reported in percent. All standard errors
are adjusted using Newey and West (1987). t-statistics are in parentheses.

FF4C Alpha

EAD −EAD t, t + 1 +Events −Macro ϵ

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel A: Global

Interaction 1.21 1.68 1.33 1.22 1.38 1.32
(1.60) (5.17) (4.90) (3.58) (3.86) (4.30)

Pure Firm-Specific News 0.14 -0.37 -0.23 0.02 -0.08 -0.15
(0.25) (-2.03) (-1.51) (0.10) (-0.45) (-0.77)

Pure 52-week High 0.03 0.05 0.21 0.17 0.25 0.11
(0.16) (0.24) (1.31) (0.95) (1.47) (0.65)

Panel B: U.S.

Interaction -0.29 0.72 0.52 0.11 0.73 0.87
(-0.30) (2.21) (1.19) (0.30) (2.65) (2.89)

Pure Firm-Specific News 0.84 -0.10 0.01 0.37 0.07 -0.12
(1.26) (-0.43) (0.05) (1.27) (0.33) (-0.55)

Pure 52-week High 0.46 0.14 0.22 0.27 0.13 0.02
(1.51) (0.73) (1.04) (1.33) (0.58) (0.10)

Panel C: Ex-U.S.

Interaction 1.72 2.21 1.74 1.83 1.81 1.54
(1.86) (4.92) (6.87) (3.98) (3.12) (3.96)

Pure Firm-Specific News -0.07 -0.48 -0.36 -0.17 -0.11 -0.19
(-0.10) (-1.96) (-2.20) (-0.61) (-0.32) (-0.75)

Pure 52-week High -0.04 0.03 0.26 0.17 0.34 0.20
(-0.15) (0.14) (1.51) (0.72) (1.42) (0.92)
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Similar to Huang, Lin and Xiang (2021), our findings may be driven by the momentum

effect instead of nearness to the 52-week high since MOM , and NEAR are potentially

positively correlated. To rule out this possibility, we address this concern by performing a

placebo return decomposition based on MOM instead of NEAR in Table 3.12. Indepen-

Table 3.12
Return decomposition results: placebo test.

This table reports the estimates of the monthly averages for the pure firm-specific news return effect, the
pure momentum effect, and the interaction effect. The return decomposition methodology is described
in 3.2.2, and the specifications of the return decomposition are shown in Table 3.1 and based on the
Equation 3.3 and Equation 3.4, where we replace NEAR with MOM . The pure firm-specific news effect
is computed as Ngg −Nbb, where Ngg (Nbb) is the return associated with having extremely good (bad) firm-
specific news regardless of the stock’s momentum. The pure momentum effect is computed as Hn − Hf ,
where Hn (Hf ) is the return attributable to having high (low) stock momentum regardless of firm-specific
news about the firms. The interaction effect is computed as Igg,n − Ibb,f , where Igg,n (Ibb,f ) is the return
associated with both very good (very bad) firm-specific news and high (low) momentum. Average monthly
CAP M alpha, F F 3 alpha, and F F C4 alpha are the intercepts from time-series regressions of monthly
estimates of each effect (e.g., the pure firm-specific news return effect) on market excess returns, Fama
and French (1993) three factors, and Carhart (1997) four factors, respectively. The sample period is from
January 2004 to December 2021. Alphas in this table are reported in percent. All standard errors are
adjusted using Newey and West (1987). t-statistics are in parentheses.

Alpha

CAPM FF3 FFC4

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Interaction -0.12 -0.15 -0.19
(-0.42) (-0.49) (-0.62)

Pure Firm-Specific News 0.83 0.81 0.83 0.80 0.82 0.77
(4.72) (11.51) (4.79) (11.04) (4.70) (11.10)

Pure Momentum 0.73 0.68 0.66 0.60 0.46 0.39
(4.14) (4.38) (4.45) (3.94) (4.62) (4.79)

dent of the underlying factor model is the risk-adjusted return of interaction effect between

the firm-specific news and the momentum effect negative and not significant. In column

(5), we use the four-factor model as underlying to estimate the alpha of the interaction

effect, which amounts to -0.19% (t=-0.62) per month. In contrast, the pure firm-specific

news and momentum effects stay significant, yielding a monthly risk-adjusted return of

0.82% (t=4.70) and 0.46% (t=4.62), respectively. Excluding the interaction effect from

the regression in column (6) results in a monthly alpha of 0.77% (t=11.10) and 0.39%

(t=4.79), when including only the pure firm-specific news effect and the pure momentum

effect. This placebo test highlights the uniqueness of the nearness to the 52-week high in

explaining the underreaction to the arrival of firm-specific news.
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3.4.5 Analysis of the economic mechanism

In this section, we further investigate the economic mechanism behind the distortion of the

belief updating process by combining analyst recommendations revisions and the arrival

of firm-specific news. Similar to Huang, Lin and Xiang (2021), we examine analysts’

recommendation changes as they provide a direct proxy to observe the belief-updating

process of essential information intermediaries in financial markets (Campbell and Sharpe,

2009; Cen, Hilary and Wei, 2013). We perform two types of regressions to examine the

impact of the nearness to the 52-week high on analyst reactions to the arrival of firm-

specific news. The first set of regressions uses an ordered logit, whereas the other set uses

an ordinary least squares regression. Each of the regressions uses a binary indicator if the

analyst changed his recommendation after the arrival of firm-specific news, the associated

firm-specific news return, the nearness to the 52-week high, an interaction of both, as well

as several controls resulting in the following equation:

RecChangei,j = β1FNi,j + β2NEARi,j + β3FNi,j × NEARi,j + β1cC + ϵi,j , (3.9)

where RecChangei,j is recommendation revision event j of firm i. Based on the different

Panels in Table 3.13, the revision event can take different values. In Panel A, the recom-

mendation revision event is defined as RecChange. It takes a value of one if the analyst

revised his stock recommendation upwards, zero if it is unchanged, and minus one in the

case of a downgrade. In Panel B, we regress the independent variables on the dummy

Upgrade, which equals one for a positive revision and otherwise zero. In Panel C, the

dummy Downgrade is defined as one in the case of a negative revision and otherwise zero.

The regression includes three fundamental variables to understand further analysts’ dis-

torted belief updating process. The first variable, FN , is the cumulative firm-specific news

return in the 21 trading days before the day of the recommendation change event. The

second variable, NEAR, is the nearness to the 52-week high at the end of the trading day

before the recommendation change, and the last variable, FN ×NEAR, is the interaction

term between FN and NEAR. We include similar control variables as in Huang, Lin and

Xiang (2021), determined at the previous month-end before the analyst revision events.

The controls cover analyst-based variables like the number of earnings forecast revisions,

128



Chapter 3. Anchoring and Global Underreaction to Firm-Specific News

analyst dispersion, analyst coverage, and standardized unexpected earnings, and further

firm-specific controls like firm size, book-to-market ratio, asset growth, and accruals, as

well as return-driven controls such as momentum, short-term reversal, and idiosyncratic

volatility. We further include industry, year, and country fixed effects in the regression

and cluster the standard errors by each firm.

Table 3.13
Analyst recommendation revision.

This table reports the predictive effects of firm-specific news returns, nearness to the 52-week high, and
their interaction on the direction of subsequent analyst recommendation revisions. The analysis is con-
ducted using analyst recommendation revisions on firms with firm-specific news from January 2004 to
December 2021. In columns (1–3) of Panel A, we estimate an ordered logit regression model as in Eq.
(1), where the dependent the variable takes a value of one when the analyst recommendation revision on
a firm is an upgrade, zero when the revision is a reiteration and a negative one when the revision is a
downgrade. The independent variable F N is the cumulative firm-specific news returns in the 21 trading
days before the recommendation revision days. NEAR is the nearness to the 52-week high of the firm
on the trading day before the announcement days. F N × NEAR is the interaction term between F N
and NEAR. The control variables are supplier firm characteristics, including analyst dispersion, analyst
coverage, standardized unexpected earnings (SUE), market capitalization, book-to-market ratio, past 12-
month cumulative returns, idiosyncratic volatility, asset growth, and accruals as of the month-end before
the recommendation announcement date. Fama-French 48-industry, year, month, and country fixed effects
are included in the regressions. In columns (4–6), we re-perform the above regressions in OLS regressions.
Z-statistics in parentheses of columns (1–3) or t-statistics in parentheses of columns (4–6) are computed
based on standard errors clustered by firm. In Panel B, the dependent variable is replaced by Upgrade,
which is a dummy variable that equals one if the revision is an upgrade and zeroes otherwise. In Panel
C, the dependent variable is replaced by Downgrade, which is a dummy variable that equals one if the
revision is a downgrade and zeroes otherwise. In Panels B and C, we estimate logit regression models in
columns (1–3) and OLS regression models in columns (4–6).

Ordered Logit OLS

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel A: RecChange as the dependent variable

F N 0.010 0.030 0.036 0.005 0.013 0.016
(21.66) (22.16) (23.77) (21.46) (21.93) (23.58)

NEAR -0.079 -0.229 -0.064 -0.091
(-5.74) (-11.14) (-8.98) (-8.47)

F N × NEAR -0.029 -0.029 -0.013 -0.013
(-15.13) (-13.70) (-14.47) (-13.25)

Controls No No Yes No No Yes
Industry FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs 684678 684678 545959 684678 684678 545959
Pseudo/Adj. R2 0.001 0.001 0.004 0.004 0.004 0.011

Continued on next page
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Table 3.13 continued

Ordered Logit OLS

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Panel B: Upgrade as the dependent variable

F N 0.009 0.018 0.024 0.002 0.004 0.005
(19.16) (12.95) (15.46) (18.75) (12.87) (15.47)

NEAR -0.142 -0.319 -0.050 -0.068
(-9.40) (-13.63) (-12.80) (-11.55)

F N × NEAR -0.011 -0.012 -0.002 -0.003
(-5.86) (-5.44) (-5.48) (-5.33)

Controls No No Yes No No Yes
Industry FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs 684678 684678 545959 684678 684678 545959
Pseudo/Adj. R2 0.001 0.001 0.006 0.007 0.008 0.013

Panel C: Downgrade as the dependent variable

F N -0.011 -0.039 -0.044 -0.003 -0.009 -0.010
(-21.59) (-27.28) (-27.88) (-21.68) (-27.42) (-28.05)

NEAR 0.027 0.146 0.014 0.023
(1.69) (6.33) (3.43) (3.91)

F N × NEAR 0.043 0.042 0.010 0.010
(21.22) (19.05) (20.95) (18.98)

Controls No No Yes No No Yes
Industry FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs 684678 684678 545959 684678 684678 545959
Pseudo/Adj. R2 0.001 0.002 0.007 0.004 0.005 0.011

We will focus our discussion of Table 3.13 on columns (1) to (3) of each Panel. Starting

with Panel A, the results in column (1) suggest that analysts are more inclined to change

their recommendations on a stock in the direction of the firm-specific news event, as ev-

idenced by the positive and significant FN coefficient. This indicates that analysts pay

attention to the news and incorporate them into their recommendations. The negative and

significant coefficients of the two interaction terms in column (2) and column (3) further

indicate that analysts are less likely to upgrade (downgrade) the stock recommendation in

response to positive (negative) firm-specific news when the stock price is near (far from)

the 52-week high. The results of Panel B and Panel C of Table 3.13 underline our results

by replacing the recommendation change with the two dummy variables Upgrade and

Downgarde. In the case of Panel B, the coefficient of the firm-specific news return is still

positive and significant, and the interaction term is negative and significant. These coeffi-
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cients provide evidence that analysts upgrade their recommendations as soon as positive

news arrives at the firm, while they are less likely to do this if the stock price is near

its 52-week high. For Panel C, the results are the same as the coefficients are flipped.

The negative and significant coefficient of the firm-specific news indicates that if negative

firm-specific news arrives, analysts tend to downgrade their recommendations, but due to

the positive and significant coefficient on the interaction term are less likely to do this if

the stock price is far away from its 52-week high. The results in columns (4) to column (6)

of Panel A, B, and C are robust to replacing the ordered logit regression with an ordinary

least squares regression. These results provide evidence for our main hypothesis that the

distortion of the belief updating process causes an underreaction influenced by the stock

prices’ nearness to the 52-week high and the arrival of firm-specific news.

3.5 Conclusion

The paper examines investor underreaction to firm-specific news in global equity markets

and tests the anchoring effect as an economic mechanism. The anchoring effect refers to the

tendency of investors to cling to their initial beliefs even when facing new information, as

reinforced by their use of the 52-week high as an anchor. The paper investigates the central

hypothesis that the anchoring effect distorts the investor’s belief updating process after

the arrival of firm-specific news, resulting in the predictability of future stock returns. The

sample for the empirical analysis covers stocks from developed markets across 23 countries

from January 2004 to December 2021.

A return decomposition methodology allows us to disentangle the stock return pre-

dictability into three components. The first component measures the pure firm-specific

news return, the second the pure effect resulting from the stock price nearness to its 52-

week high, and the third component the interaction effect between the firm-specific news

return and the nearness to its 52-week high. By including all three effects, the interaction

effect is positive and significant. In contrast, the pure firm-specific news return turns in-

significant compared to the configuration in which only the two pure effects are included in

the regression. Our results show that the investors’ underreaction to the firm-specific news

is at least partially explained by the anchoring bias induced by the nearness to the 52-week
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high. We also explore how the nearness to the 52-week high distorts the belief-updating

process by utilizing analyst recommendation changes, leading to an underreaction. Ana-

lysts react to firm-specific news but are less likely to change their recommendation if the

stock price is near the 52-week high. Finally, we show that unscheduled, firm-specific news

drives the anchoring bias effect on investors’ underreaction over the subsequent month.

This contrasts previous studies, claiming that investors underreact to scheduled news,

such as earnings announcements, over the subsequent days. Our study indicates that

investors tend to underreact to unscheduled firm-specific news due to the psychological

barrier created by the 52-week high in global equity markets. This offers a fresh per-

spective on investor underreaction, often attributed solely to investor inattention in the

existing literature.

The insights in this paper give rise to future research in at least three dimensions. First,

while this study investigates the general underreaction to firm-specific news, one potential

avenue for further research could be to explore which news categories are causing the

underreaction or by investigating macroeconomic news. Second, while this study focuses

on stocks, it could be extended by investigating investors’ underreaction within corporate

bonds. Third, instead of using the nearness in terms of price, the news decay over time

could play another critical role in explaining the underreaction.
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4 Conclusion

Empirical and theoretical evidence exists that asset prices are not solely driven by their sys-

tematic risk compared to the market but rather by a large number of factors. The release

of new information and the diffusion among markets and firms helps explain the variation

in asset prices. Further, previous empirical asset pricing research focuses prominently on

linear models, but research on machine learning methods that help model non-linearities

is comparatively sparse.

The three essays in this dissertation aim to fill this gap and explore research questions

on empirical asset pricing in global stock markets. In the first essay, I study the slow

diffusion of firm-specific news, market news, and noise from fundamentally related firms

into the focal firms’ stock prices. In the second essay, I compare various machine learning

models to predict the cross-section of emerging market stock returns. In the third essay,

I test the anchoring effect on investor underreaction to global firm-specific news. In this

chapter, I briefly summarize the main results of each essay and highlight the contributions

and implications.

In the first essay, I study how firm-specific news, market news, and the noise of funda-

mentally linked firms diffuse into the stock prices of firms in a global network. Firm-specific

news, market news, and noise are estimated at the stock-level using a structural vector

auto-regression on daily data. To model fundamental links between firms, I rely on the

characteristic of analysts to cover stocks that are connected.

For a global sample that consists of 42,789 stocks for 49 equity markets and spans 30

years, I present robust evidence that firm-specific news is the driver of slow information

diffusion. The cross-sectional return difference between firms exposed to negative news

from linked firms and those exposed to positive news amounts to approximately 7% per

year. Further, it takes up to three months for an investor to incorporate the diffusing firm-
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specific news. Another finding of this paper is that investors can differentiate between noise

and news and tend to process first market-wide news and afterward firm-specific news.

This underreaction to the arrival of news is caused by the investors’ limited attention to

firm-specific news.

Overall, the results imply that investors are not fully limited in attention. They show

a strong categorial learning behavior that enables them to incorporate at least partially

relevant information diffusing among fundamentally linked firms.

The first essay contributes to the literature on momentum spillovers originating from

fundamentally related firms by providing an understanding of the role of news diffusion

among fundamentally linked firms for asset prices. I am the first to study the diffusion

of news among fundamentally linked firms in a large sample covering both developed and

emerging markets. Further, I contribute to the literature by differentiating between firm-

specific news, market news and noise using the return decomposition model of Brogaard

et al. (2022). These individual components allow me to uncover the return component

causing the cross-firm predictability. To my knowledge, I am the first to combine the

categorical learning behavior by Peng and Xiong (2006) with the diffusion of market news

and firm-specific news among firms and further relate this slow information diffusion to

investors’ underreaction due to limited attention.

In the second essay, I compare various machine learning models to predict the cross-

section of emerging market stock returns from 32 emerging market countries between

January 2002 to December 2021. More specifically, I analyze the predictive power of nine

algorithms: ordinary least squares regression and elastic net as examples for traditional

linear models; tree-based models such gradient boosted regression trees and random forest;

and neural networks with one to five layers. Furthermore, we investigate the performance

of an ensemble comprising the five different neural networks and an ensemble of methods

that allow for non-linearities and interactions, i.e., the two tree-based models and the

ensemble of neural networks.

I document that return forecasts from machine learning methods lead to superior out-

of-sample returns in emerging markets. Interestingly, investors already applying such a

strategy in developed markets seem to enjoy potential diversification benefits when apply-

ing them also in emerging markets. I further investigate the source of the predictability
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and conclude that it rather stems from mispricing than higher risk. Still, the superiority

of machine learning models in emerging markets does not stem from limits to arbitrage.

Finally, significant net returns can be achieved when accounting for transaction costs,

short-selling constraints, and limiting our investment universe to big stocks only.

Altogether, the findings of the second essay suggest that predicting the cross-section

of emerging market stock returns and allowing for non-linearities and interactions leads

to economically and statistically superior out-of-sample returns compared to traditional

linear models.

The second essay contributes to the literature in at least three aspects. It contributes

to the rapidly expanding literature on predicting the cross-section of stock returns with

machine learning methods. There is only evidence that more complex machine learning

models are superior to linear models in developed markets (Rasekhschaffe and Jones, 2019;

Freyberger, Neuhierl and Weber, 2020; Gu, Kelly and Xiu, 2020; Tobek and Hronec, 2020;

Drobetz and Otto, 2021). Under the hypothesis that developed markets are integrated,

the same risk factors should apply to these markets. Therefore, similar results within de-

veloped markets are unsurprising, and emerging markets provide an attractive alternative

for out-of-sample tests in independent and new samples. Further, it adds to the literature

on the drivers of emerging market stock returns and market integration (Bekaert and Har-

vey, 1995; Harvey, 1995). The machine learning models allow taking non-linearities and

interactions into account next to linear relationships. Lastly, it contributes to the under-

standing of the source of return predictability from machine learning forecasts (Avramov,

Cheng and Metzker, 2022; Leung et al., 2021; Cakici et al., 2022a). It provides evidence

that machine learning models show higher predictability for stocks associated with higher

limits to arbitrage. A positive and significant outperformance can be achieved even when

accounting for transaction costs, short-selling constraints, and limiting the investment

universe to big stocks only.

In the third essay, I investigate the impact of firm-specific news in conjunction with

the proximity to the 52-week high on investor behavior. I utilize a return decomposition

methodology to disentangle the stock return predictability into three components. The

first component measures the pure firm-specific news return, the second the pure effect

resulting from the stock price nearness to its 52-week high, and the third component the
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interaction effect between the firm-specific news return and the nearness to its 52-week

high.

My sample includes 1.42 million stock-month observations representing 24.337 unique

stocks and 23 countries. This allows me to conclude that the investors’ underreaction to

the firm-specific news is partially explained by the anchoring bias induced by the nearness

to the 52-week high. The interaction effect yields an average Fama-French-Carhart (1997)

four-factor alpha of 1.47% (t=4.67), whereas the two pure effects are insignificant. Further,

my results provide evidence that firms drive the induced underreaction of investors with

high limits to arbitrage and unscheduled firm-specific news. Lastly, I provide evidence that

analysts react to firm-specific news but are less likely to change their recommendation if

the stock price is near the 52-week high.

The third essay indicates that investors tend to underreact to firm-specific news due to

the psychological barrier created by the 52-week high. This offers a fresh perspective on the

market underreaction, often attributed to investor inattention in the existing literature.

This study adds to understanding investor underreaction in at least four aspects in

an international asset pricing context. First, we contribute to a better understanding of

investor underreaction by explicitly using firm-specific news (Jiang, Li and Wang, 2021)

instead of proxying news with economically-linked, past-month firm momentum (Huang,

Lin and Xiang, 2021). I provide insights into investor underreaction by showing that lim-

its to arbitrage amplify the underreaction potential. Second, our paper reveals a crucial

economic mechanism behind investor underreaction in global equity markets. I rely on

the anchoring and adjustment hypothesis by showing that professional forecasters (Camp-

bell and Sharpe, 2009; Cen, Hilary and Wei, 2013) include the firm-specific news in their

recommendation but are affected by the anchoring bias if the stock is near (far from)

the 52-week high and positive (negative) news arrives. Third, I show that unscheduled,

firm-specific news drives the anchoring bias effect on investors’ underreaction over the

subsequent month. Empirical evidence so far suggests that investors’ underreaction is

driven by scheduled news (Birru, 2013; George, Hwang and Li, 2014). My results on

the investors’ distorted belief updating process provide strong evidence of a longer-dated,

monthly investor underreaction to unscheduled news, indicating that unscheduled news

items require more time to be reflected within stock prices. Fourth, I contribute to the
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literature on empirical asset pricing for global equity markets by using an international

sample and extended metrics. Most literature on news-induced momentum (Chan, 2003;

Gutierrez and Kelly, 2008; Hillert, Jacobs and Müller, 2014; Jiang, Li and Wang, 2021)

concentrates solely on the U.S. stock market. Therefore, I add to the ongoing discus-

sion about the investor underreaction hypothesis and its economic channels by providing

non-U.S. out-of-sample evidence (Hou, Xue and Zhang, 2018) for the anchoring bias and

investor underreaction to firm-specific news.

To conclude, the three essays in this dissertation examine research questions on empirical

asset pricing in global stock markets. The findings motivate several avenues for future

research.

The first essay sheds light on investors’ underreaction to the arrival of firm-specific

news from fundamentally linked firms. Given that investors are limited in their attention,

it seems relevant to investigate further the actual behavior of private and institutional

investors after the arrival of firm-specific news.

The second essay suggests that machine learning models help better to predict the cross-

section of emerging market stock returns. Due to the increasing number of anomalies with

explanatory power and the importance of macroeconomic predictors, it is relevant to

analyze the inclusion of these features within the different machine learning models to

further improve the model performance.

The third essay provides empirical evidence on how the anchoring effect distorts the

investor’s belief updating process after the arrival of firm-specific news. Future research

could investigate the specific news categories and timing that cause underreaction to firm-

specific news across multiple asset classes and explore the role of time perspective in

explaining underreaction.
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Datastream sample definition

Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope

lists, and (3) dead lists. By using dead lists, we ensure that any survivorship bias is

obviated. For each country, we use the union of all available lists and eliminate any

duplicates. As a result, one list remains for each country to be used in the subsequent

static filter process. Table A. 1 and Table A. 2 provide an overview of the constituent lists

for developed and emerging markets that are used in this study.
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Table A. 1
Constituent lists developed markets

The table contains the research lists, Worldscope lists and dead lists of developed markets countries in my
sample.

Country List Country List Country List

Australia DEADAU Hong Kong DEADHK Spain DEADES
FAUALL FHKALL WSCOPEES
WSCOPEAU WSCOPEHK FESALL

Austria WSCOPEOE Ireland WSCOPEIR FSPDOM
DEADAT FIEALL FSPNQ
FATALL DEADIE Sweden WSCOPESD
FOSTDCT Israel DEADIL FSEALL
FOSTOM WSCOPEIS FXSTOALL

Belgium FBEALL FILALL DEADSE
WSCOPEBG Italy FITALL Switzerland WSCOPESW
DEADBE DEADIT FCHALLP

Canada DEADCA1 WSCOPEIT DEADCH
... Japan WSCOPEJP United Kingdom DEADGB
DEADCA6 FJPALL ...
WSCOPECN FJPCONS DEADGB7
FXTSEALL FTOKYO FGBALL
FCAALL FXTKSALL WSCOPEUK

Denmark FDKALL DEADJP United States WSUS1
WSCOPEDK Netherlands DEADNL ...
DEADDK FNLALL WSUS26

Finland FFIALL WSCOPENL FUSALL1
WSCOPEFN New WSCOPENZ ...
DEADFI Zealand FNZALL FUSALL7

France DEADFR DEADNZ FUSALLA
WSCOPEFR Norway DEADNO ...
FFRALL FNOALL FUSALLZ

Germany DEADDE1 WSCOPENW DEADUS1
... Portugal WSCOPEPT ...
DEADDE9 FPTALL DEADUS12
FGKURS DEADPT
FDEALLP Singapore DEADSG
WSCOPEBD FSGALL

FXSESM
WSCOPESG
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Table A. 2
Constituent lists emerging markets

The table contains the research lists, Worldscope lists and dead lists of emerging markets countries in my
sample.

Country List Country List Country List

Argentina DEADAR Jordan DEADJO Russia DEADRU
FARALL FJOALL FRUSXALL
WSCOPEAR WSCOPEJO WSCOPERS

Brazil DEADBR Korea DEADKR Saudi Arabia DEADSA
FBRALL FKRALL FSAALL
WSCOPEBR WSCOPEKO WSCOPESI

Chile DEADCL Kuwait DEADKW South Africa DEADZA
FCLALL FKWALL FZAALL
WSCOPECL WSCOPEKW WSCOPESA

China DEADCN Malaysia DEADMY Sri Lanka DEADLK
FCNALL FACE FLKALL
WSCOPECH FMYALL WSCOPECY

Czechia DEADCZ WSCOPEMY Taiwan DEADTW
FCZALL Mexico DEADMX FROCOALL
WSCOPECZ FMXALL FTWALL

Egypt DEADEG WSCOPEMX WSCOPETA
FEGALL Morocco DEADMA Thailand DEADTH
WSCOPEEY FMAALL FTHALL

Greece DEADGR WSCOPEMC WSCOPETH
FGRALL Pakistan DEADPK Turkey DEADTR
WSCOPEGR FPKALL FTRALL

India DEADIN WSCOPEPK WSCOPETK
FINALL Philippines DEADPH UAE DEADAE
FINCONS FPHALL FAEALL
FXBOMALL WSCOPEPH FXADSALL
FXNSEALL Poland DEADPL FXDFMALL
WSCOPEIN FPLALL WSCOPEAE

Indonesia DEADID FPOLCM
FIDALL WSCOPEPO
WSCOPEID

Static screens

I restrict the sample to common equity stocks by applying several static screens, as shown

in Table A. 3. Screens (1) to (7) are straightforward to apply and common in the literature.
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Table A. 3
Static screens
The table displays the static screens applied in our study, mainly following Ince and Porter (2006), Schmidt
et al. (2017) and Griffin, Kelly and Nardari (2010). Column 3 lists the Datastream items involved (on the
left of the equals sign) and the values which we set them to in the filter process (to the right of the equals
sign). Column 4 indicates the source of the screens.

Nr. Description Datastream item(s) in-
volved

Source

(1) For firms with more than one
security, only the one with the
biggest market capitalization
and liquidity is used.

MAJOR = Y Schmidt et al. (2017)

(2) The type of security must be
equity.

TYPE = EQ Ince and Porter (2006)

(3) Only the primary quotations
of a security are analyzed.

ISINID = P Fong, Holden and
Trzcinka (2017)

(4) Firms are located in the re-
spective domestic country.

GEOGN = country
shortcut

Ince and Porter (2006)

(5) Securities are listed in the re-
spective domestic country.

GEOLN = country
shortcut

Griffin, Kelly and Nar-
dari (2010)

(6) Securities whose quoted cur-
rency is different to the one
of the associated country are
disregarded.a

PCUR = currency
shortcut of the country

Griffin, Kelly and Nar-
dari (2010)

(7) Securities whose ISIN country
code is different to the one
of the associated country are
disregarded.b

GGISN = country
shortcut

Annaert, Ceuster and
Verstegen (2013)

(8) Securities whose name fields
indicate non-common stock
affiliation are disregarded.

NAME, ENAME,
ECNAME

Ince and Porter (2006),
Campbell, Cowan and
Salotti (2010), Griffin,
Kelly and Nardari
(2010) and Karolyi, Lee
and van Dijk (2012)

a In this filter rule, the respective pre-euro currencies are also accepted for countries within
the euro-zone. Moreover, in Russia ‘USD’ is accepted as currency, in addition to ‘RUB’.

b In Hong Kong, ISIN country codes equal to ‘BM’ or ‘KY’ and in the Czech Republic
ISIN country codes equal to ‘CS’ are also accepted.
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Screen (8) relates to, among others, to work by the following: Ince and Porter (2006),

Campbell, Cowan and Salotti (2010), Griffin, Kelly and Nardari (2010), Karolyi, Lee and

van Dijk (2012). The authors provide generic filter rules to exclude non-common equity

securities from Refinitiv Datastream. we apply the identified keywords and match them

with the security names provided by Datastream. A security is excluded from the sample

in the event that a keyword coincides with part of the security name. The following three

Datastream items store security names and are applied to the keyword filters: ‘NAME’,

‘ENAME’, and ‘ECNAME’. Table A. 4 gives an overview of the keywords used.

Table A. 4
Generic keyword deletions
The table reports generic keywords searched for in the names of all stocks of all countries. If a harmful
keyword is detected as part of the name of a stock, the respective stock is removed from the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI, DUPLICATE,
XSQ, XETa

Depository receipts ADR, GDR
Preferred stock PF, ’PF’, PFD, PREF, PREFERRED, PRF
Warrants WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
Debt %, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
Unit trusts .IT, .ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,

TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST UNITS,
UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT

ETFs AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
Expired securities EXPD, EXPIRED, EXPIRY, EXPY
Miscellaneous (mainly taken
from Ince and Porter (2006))

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HI.YIELD, HIGH INCOME, IDX,
INC.&GROWTH, INC.&GW, INDEX, LP, MIPS, MITS, MITT,
MPS, NIKKEI, NOTE, OPCVM, ORTF, PARTNER, PERQS,
PFC, PFCL, PINES, PRTF, PTNS, PTSHP, QUIBS, QUIDS,
RATE, RCPTS, REAL EST, RECEIPTS, REIT, RESPT,
RETUR, RIGHTS, RST, RTN.INC, RTS, SBVTG, SCORE,
SPDR, STRYPES, TOPRS, UTS, VCT, VTG.SAS, XXXXX,
YIELD, YLD

In addition, Griffin, Kelly and Nardari (2010) introduce specific keywords for individual

countries. The keywords are thus applied to the security names of single countries only.

For example, German security names are parsed to contain the word ‘GENUSSSCHEINE’,

which declares the security to be a non-common equity. In Table A. 5, we give an overview

of country-specific keyword deletions conducted in our study.
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Table A. 5
Country-specific keyword deletions
The table reports country-specific keywords searched for in the names of all stocks of the respective
countries. If a harmful keyword is detected as part of the name of a stock, the respective stock is removed
from the sample.

Country Keywords

Australia PART PAID, RTS DEF, DEF SETT, CDI
Austria PC, PARTICIPATION CERTIFICATE, GENUSSSCHEINE,

GENUSSCHEINE
Belgium VVPR, CONVERSION, STRIP
Brazil PN, PNA, PNB, PNC, PND, PNE, PNF, PNG, RCSA, RCTB
Canada EXCHANGEABLE, SPLIT, SPLITSHARE, VTG\\., SBVTG\\.,

VOTING, SUB VTG, SERIES
Denmark \\)CSE\\)
Finland USE
France ADP, CI, SICAV, \\)SICAV\\), SICAV-
Germany GENUSSCHEINE
Greece PR
Indonesia FB DEAD, FOREIGN BOARD
Israel P1, 1, 5
Italy RNC, RP, PRIVILEGIES
Korea 1P
Malaysia ’A’
Mexico ’L’, ’C’
Netherlands CERTIFICATE, CERTIFICATES, CERTIFICATES\\), CERT,

CERTS, STK\\.
New Zealand RTS, RIGHTS
Philippines PDR
South Africa N’, OPTS\\., CPF\\., CUMULATIVE PREFERENCE
Sweden CONVERTED INTO, USE, CONVERTED-, CONVERTED - SEE
Switzerland CONVERTED INTO, CONVERSION, CONVERSION SEE
United Kingdom PAID, CONVERSION TO, NON VOTING, CONVERSION ’A’

Dynamic screens

For the securities remaining from the static screens above, we obtained return and market

capitalization data from Datastream and accounting data from Worldscope. Several dy-

namic screens that are common in the literature were installed in order to account for data

errors, mainly within return characteristics. The dynamic screens are shown in Table A. 6.
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Table A. 6
Dynamic screens
The table displays the dynamic screens applied to the data in our study, following Ince and Porter (2006),
Griffin, Kelly and Nardari (2010), Jacobs (2016) and Schmidt et al. (2017). Column 3 lists the respective
Datastream items. Column 4 refers to the source of the screens.

Nr. Description Datastream
item(s) involved

Source

(1) We delete the zero returns at
the end of the return time-series
that exist because in the case of
a delisting, Datastream displays
stale prices from the date of delist-
ing until the end of the respective
time-series. We also delete the as-
sociated market capitalizations.

RI, MV Ince and Porter (2006)

(2) We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

RI, MV, UP The screen originally
stems from Schmidt
et al. (2017), however
we employ it on unad-
justed price.

(3) We delete monthly (daily) returns
and the associated market capi-
talizations if returns exceed 990%
(200%).

RI, MV Griffin, Kelly and Nar-
dari (2010); Schmidt
et al. (2017)

(4) We delete monthly returns and the
associated market capitalizations
in the case of strong return rever-
sals, defined as (1+rt−1)(1+rt)−
1 < 0.5 given that either rt−1 or
rt ≥ 3.0.

RI, MV Ince and Porter (2006)

(5) We delete daily returns and the as-
sociated market capitalizations in
the case of strong return reversals,
defined as (1 + rt−1)(1 + rt) − 1 <
0.2 with rt−1 or rt ≥ 1.0.

RI, MV Griffin, Kelly and Nar-
dari (2010); Jacobs
(2016)
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Table A. 9
Underreaction coefficients

This table shows returns on the firm-specific and market news as well as noise spillover portfolio and the
corresponding underreaction coefficients. At the beginning of every month, stocks are ranked in ascending
order based on the corresponding spillover at the end of the previous month. At the beginning of each
month the stocks are sorted into 5 country-neutral portfolios. All stocks are equal-weighted within a given
portfolio, and the portfolios are rebalanced every calendar month to maintain value weights Panel A bases
the analysis on all stocks, Panel B focuses on large stocks whereas Panel c focuses on small stocks. I follow
Fama and French (2012, 2017) to calculate the country specific breakpoints. Large stocks are defined as
the largest stocks which together account for 90% of a country’s aggregated market capitalization. Small
stocks are defined as those stocks that comprise the remaining 10% of aggregated market capitalization.
Each panel reports the average cumulative returns on the long–short portfolio formed on the respective
spillover in month t. RETt is the focal firm stock return in month t. RETt+1,t+h is the cumulative return
over the subsequent h, for h ∈ {3, 6, 9}, months. URC (underreaction coefficient) is defined as the fraction
of total returns from month t to month t+h that occurs in month t (URC = RETt/(RETt + RETt+1,t+h)).
t-statistics are shown below the coefficient estimates. In the case of URC the t-statistics represent the
distance of the coefficient from one, which is the case of no underreaction. The sample consists of all stocks
for the period between January 1992 and December 2021, with a minimum of one analyst co-covering the
stocks, and a minimum of 30 valid country-month observations. F SF L is the weighted average VAR-based
firm-specific news in the previous month of stocks that are connected through shared analyst coverage.
MktF L is the weighted average VAR-based market news in the previous month of stocks that are connected
through shared analyst coverage. NoiseF L is the weighted average VAR-based noise in the previous month
of stocks that are connected through shared analyst coverage.

F SF L MktF L NoiseF L

h = 3 h = 6 h = 9 h = 3 h = 6 h = 9 h = 3 h = 6 h = 9

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 )

Panel A: All Stocks

RETt 6.866 6.862 6.859 2.590 2.612 2.633 0.465 0.459 0.472
(46.88) (46.53) (46.21) (15.35) (15.41) (15.44) (3.59) (3.52) (3.60)

RETt+1,t+h 1.074 1.530 1.649 0.291 0.072 0.059 0.017 -0.035 -0.266
(4.62) (4.79) (4.23) (0.98) (0.17) (0.11) (0.09) (-0.13) (-0.81)

URC 0.865 0.818 0.806 0.899 0.973 0.978 0.964 1.083 2.300
(2.82) (2.90) (3.02) (1.59) (0.39) (0.34) (0.59) (1.76) (31.84)

Panel B: Large Stocks

RETt 6.760 6.755 6.752 2.566 2.592 2.613 0.443 0.437 0.451
(46.29) (45.94) (45.64) (15.16) (15.28) (15.31) (3.33) (3.27) (3.36)

RETt+1,t+h 0.965 1.430 1.503 0.295 0.049 0.011 0.045 -0.053 -0.346
(4.09) (4.33) (3.77) (1.00) (0.11) (0.02) (0.22) (-0.20) (-1.01)

URC 0.875 0.825 0.818 0.897 0.982 0.996 0.908 1.137 4.290
(2.37) (2.30) (2.62) (1.78) (0.27) (0.06) (1.57) (3.05) (74.99)

Panel C: Small Stocks

RETt 7.436 7.434 7.426 2.810 2.844 2.867 0.290 0.271 0.271
(44.80) (44.45) (44.12) (13.59) (13.71) (13.74) (2.31) (2.15) (2.14)

RETt+1,t+h 2.033 2.805 3.587 0.172 -0.095 0.012 0.231 0.201 0.051
(8.45) (8.36) (8.30) (0.46) (-0.19) (0.02) (1.17) (0.73) (0.15)

URC 0.785 0.726 0.674 0.942 1.034 0.996 0.557 0.575 0.843
(6.28) (5.41) (5.29) (1.09) (0.66) (0.08) (7.66) (9.06) (4.68)
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Table A. 10
Limited attention

This table reports the estimated regression coefficients and Newey-West t-statistics (in parentheses) from
Fama-MacBeth cross-sectional regressions predicting one-month ahead excess stock returns with limited
attention proxies. I interact the firm-specific and market news as well as noise spillover individually with
limited attention dummies. The indicator variables that take the value of one if the underlying variable is
above the median in the cross-section, and zero otherwise. The sample consists of all stocks for the period
between April 2000 and ends in March 2020 , with a minimum of one analyst co-covering the stocks, and a
minimum of 30 valid country-month observations. F SF L is the weighted average VAR-based firm-specific
news in the previous month of stocks that are connected through shared analyst coverage. MktF L is the
weighted average VAR-based market news in the previous month of stocks that are connected through
shared analyst coverage. NoiseF L is the weighted average VAR-based noise in the previous month of
stocks that are connected through shared analyst coverage. RET F L

t+h is the monthly contemporaneous
returns from stocks that are connected through shared analyst coverage at time t + h. ANA is the analyst
coverage, which is the number of sell-side analysts forecasting annual firm earnings in each month t. MV
is the product of the closing price and the number of shares outstanding. OW NER are the holdings by
all institutional investors as a fraction of the market capitalization. COMP is equal to 1 if cross-sectional
average of the dummies of ANA, MV , and OW NER is larger than 0.5.

ANA MV OW NER COMP

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

LA × F SF L -0.049 -0.041 -0.086 -0.073 -0.005 -0.003 -0.061 -0.051
(-3.64) (-3.82) (-7.20) (-7.53) (-0.53) (-0.38) (-4.23) (-4.34)

LA × MktF L -0.080 -0.101 -0.103 -0.114 -0.017 -0.022 -0.101 -0.112
(-1.55) (-2.12) (-2.06) (-2.64) (-0.49) (-0.75) (-1.91) (-2.26)

LA×NoiseF L -0.102 -0.094 -0.044 -0.052 0.050 0.055 -0.072 -0.072
(-1.65) (-1.90) (-0.59) (-0.85) (1.11) (1.46) (-1.31) (-1.54)

F SF L 0.116 0.088 0.134 0.103 0.102 0.076 0.123 0.094
(13.16) (14.02) (13.37) (15.13) (10.53) (10.41) (13.76) (14.85)

MktF L 0.143 0.092 0.159 0.104 0.125 0.068 0.149 0.093
(2.76) (3.72) (2.68) (3.70) (2.43) (3.10) (2.75) (3.48)

NoiseF L 0.060 0.117 0.034 0.098 0.010 0.068 0.033 0.096
(1.82) (5.09) (0.80) (3.10) (0.26) (2.67) (0.84) (3.59)

LA 0.200 0.183 0.105 0.097 -0.168 -0.175 0.126 0.097
(1.92) (1.97) (0.78) (0.80) (-1.90) (-2.36) (0.95) (0.87)

RET F L
t+h 0.528 0.530 0.530 0.534

(49.04) (48.96) (49.50) (49.56)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
FF-38 Yes Yes Yes Yes Yes Yes Yes Yes
Country Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 16.00 18.13 15.95 18.10 15.97 18.12 15.82 18.02
Avg. Obs 11880 11880 11880 11880 11880 11880 11880 11880
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Datastream sample definition

Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope

lists, and (3) dead lists. By using dead lists, we ensure that any survivorship bias is

obviated. For each country, we use the union of all available lists and eliminate any

duplicates. As a result, one list remains for each country to be used in the subsequent

static filter process. Table A. 1 provides an overview of the constituent lists for emerging

markets that are used in our study.

Static screens

We restrict our sample to common equity stocks by applying several static screens, as

shown in Table A. 2. Screens (1) to (7) are straightforward to apply and common in the

literature.

Screen (8) relates to, among others, to work by the following: Ince and Porter (2006),

Campbell, Cowan and Salotti (2010), Griffin, Kelly and Nardari (2010), Karolyi, Lee and

van Dijk (2012). The authors provide generic filter rules to exclude non-common equity

securities from Refinitiv Datastream. We apply the identified keywords and match them

with the security names provided by Datastream. A security is excluded from the sample

in the event that a keyword coincides with part of the security name. The following three

Datastream items store security names and are applied to the keyword filters: ‘NAME’,

‘ENAME’, and ‘ECNAME’. Table A. 3 gives an overview of the keywords used.

In addition, Griffin, Kelly and Nardari (2010) introduce specific keywords for individual

countries. The keywords are thus applied to the security names of single countries only.
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Table B. 1
Constituent lists emerging markets

The table contains the research lists, Worldscope lists and dead lists of emerging markets countries in our
sample.

Country List Country List Country List

Argentina DEADAR Israel DEADIL Portugal WSCOPEPT
FARALL WSCOPEIS FPTALL
WSCOPEAR FILALL DEADPT

Brazil DEADBR Jordan DEADJO Qatar DEADQA
FBRALL FJOALL FQAALL
WSCOPEBR WSCOPEJO WSCOPEQA

Chile DEADCL Korea DEADKR Russia DEADRU
FCLALL FKRALL FRUSXALL
WSCOPECL WSCOPEKO WSCOPERS

China DEADCN Kuwait DEADKW Saudi Arabia DEADSA
FCNALL FKWALL FSAALL
WSCOPECH WSCOPEKW WSCOPESI

Colombia DEADCO Malaysia DEADMY South Africa DEADZA
FCOALL FACE FZAALL
WSCOPECB FMYALL WSCOPESA

Czechia DEADCZ WSCOPEMY Sri Lanka DEADLK
FCZALL Mexico DEADMX FLKALL
WSCOPECZ FMXALL WSCOPECY

Egypt DEADEG WSCOPEMX Taiwan DEADTW
FEGALL Morocco DEADMA FROCOALL
WSCOPEEY FMAALL FTWALL

Greece DEADGR WSCOPEMC WSCOPETA
FGRALL Pakistan DEADPK Thailand DEADTH
WSCOPEGR FPKALL FTHALL

Hungary DEADHU WSCOPEPK WSCOPETH
FHUALL Peru DEADPE Turkey DEADTR
WSCOPEHN FPEALL FTRALL

India DEADIN WSCOPEPE WSCOPETK
FINALL Philippines DEADPH UAE DEADAE
FINCONS FPHALL FAEALL
FXBOMALL WSCOPEPH FXADSALL
FXNSEALL Poland DEADPL FXDFMALL
WSCOPEIN FPLALL WSCOPEAE

Indonesia DEADID FPOLCM
FIDALL WSCOPEPO
WSCOPEID
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For example, German security names are parsed to contain the word ‘GENUSSSCHEINE’,

which declares the security to be a non-common equity. In Table A. 4, we give an overview

of country-specific keyword deletions conducted in our study.

Dynamic screens

For the securities remaining from the static screens above, we obtained return and market

capitalization data from Datastream and accounting data from Worldscope. Several dy-

namic screens that are common in the literature were installed in order to account for data

errors, mainly within return characteristics. The dynamic screens are shown in Table A. 5.
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Table B. 2
Static screens
The table displays the static screens applied in our study, mainly following Ince and Porter (2006), Schmidt
et al. (2017) and Griffin, Kelly and Nardari (2010). Column 3 lists the Datastream items involved (on the
left of the equals sign) and the values which we set them to in the filter process (to the right of the equals
sign). Column 4 indicates the source of the screens.

Nr. Description Datastream item(s) in-
volved

Source

(1) For firms with more than one
security, only the one with the
biggest market capitalization
and liquidity is used.

MAJOR = Y Schmidt et al. (2017)

(2) The type of security must be
equity.

TYPE = EQ Ince and Porter (2006)

(3) Only the primary quotations
of a security are analyzed.

ISINID = P Fong, Holden and
Trzcinka (2017)

(4) Firms are located in the re-
spective domestic country.

GEOGN = country
shortcut

Ince and Porter (2006)

(5) Securities are listed in the re-
spective domestic country.

GEOLN = country
shortcut

Griffin, Kelly and Nar-
dari (2010)

(6) Securities whose quoted cur-
rency is different to the one
of the associated country are
disregarded.a

PCUR = currency
shortcut of the country

Griffin, Kelly and Nar-
dari (2010)

(7) Securities whose ISIN country
code is different to the one
of the associated country are
disregarded.b

GGISN = country
shortcut

Annaert, Ceuster and
Verstegen (2013)

(8) Securities whose name fields
indicate non-common stock
affiliation are disregarded.

NAME, ENAME,
ECNAME

Ince and Porter (2006),
Campbell, Cowan and
Salotti (2010), Griffin,
Kelly and Nardari
(2010) and Karolyi, Lee
and van Dijk (2012)

a In this filter rule, the respective pre-euro currencies are also accepted for countries within
the euro-zone. Moreover, in Russia ‘USD’ is accepted as currency, in addition to ‘RUB’.

b In Hong Kong, ISIN country codes equal to ‘BM’ or ‘KY’ and in the Czech Republic
ISIN country codes equal to ‘CS’ are also accepted.
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Table B. 3
Generic keyword deletions
The table reports generic keywords searched for in the names of all stocks of all countries. If a harmful
keyword is detected as part of the name of a stock, the respective stock is removed from the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI, DUPLICATE,
XSQ, XETa

Depository receipts ADR, GDR
Preferred stock PF, ’PF’, PFD, PREF, PREFERRED, PRF
Warrants WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
Debt %, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
Unit trusts .IT, .ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,

TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST UNITS,
UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT

ETFs AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
Expired securities EXPD, EXPIRED, EXPIRY, EXPY
Miscellaneous (mainly taken
from Ince and Porter (2006))

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HI.YIELD, HIGH INCOME, IDX,
INC.&GROWTH, INC.&GW, INDEX, LP, MIPS, MITS, MITT,
MPS, NIKKEI, NOTE, OPCVM, ORTF, PARTNER, PERQS,
PFC, PFCL, PINES, PRTF, PTNS, PTSHP, QUIBS, QUIDS,
RATE, RCPTS, REAL EST, RECEIPTS, REIT, RESPT,
RETUR, RIGHTS, RST, RTN.INC, RTS, SBVTG, SCORE,
SPDR, STRYPES, TOPRS, UTS, VCT, VTG.SAS, XXXXX,
YIELD, YLD

Table B. 4
Country-specific keyword deletions
The table reports country-specific keywords searched for in the names of all stocks of the respective
countries. If a harmful keyword is detected as part of the name of a stock, the respective stock is removed
from the sample.

Country Keywords

Brazil PN, PNA, PNB, PNC, PND, PNE, PNF, PNG, RCSA, RCTB
Greece PR
Indonesia FB DEAD, FOREIGN BOARD
Israel P1, 1, 5
Korea 1P
Mexico ’L’, ’C’
Peru INVERSION, INVN, INV
Philippines PDR
South Africa N’, OPTS\\., CPF\\., CUMULATIVE PREFERENCE
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Table B. 5
Dynamic screens
The table displays the dynamic screens applied to the data in our study, following Ince and Porter (2006),
Griffin, Kelly and Nardari (2010), Jacobs (2016) and Schmidt et al. (2017). Column 3 lists the respective
Datastream items. Column 4 refers to the source of the screens.

Nr. Description Datastream
item(s) involved

Source

(1) We delete the zero returns at
the end of the return time-series
that exist because in the case of
a delisting, Datastream displays
stale prices from the date of delist-
ing until the end of the respective
time-series. We also delete the as-
sociated market capitalizations.

RI, MV Ince and Porter (2006)

(2) We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

RI, MV, UP The screen originally
stems from Schmidt
et al. (2017), however
we employ it on unad-
justed price.

(3) We delete monthly (daily) returns
and the associated market capi-
talizations if returns exceed 990%
(200%).

RI, MV Griffin, Kelly and Nar-
dari (2010); Schmidt
et al. (2017)

(4) We delete monthly returns and the
associated market capitalizations
in the case of strong return rever-
sals, defined as (1+rt−1)(1+rt)−
1 < 0.5 given that either rt−1 or
rt ≥ 3.0.

RI, MV Ince and Porter (2006)

(5) We delete daily returns and the as-
sociated market capitalizations in
the case of strong return reversals,
defined as (1 + rt−1)(1 + rt) − 1 <
0.2 with rt−1 or rt ≥ 1.0.

RI, MV Griffin, Kelly and Nar-
dari (2010); Jacobs
(2016)

(6) We delete observations of stocks
that show non-zero price changes
in less than 50% of the traded
months in the previous 12 months.

RI, MV Griffin, Hirschey and
Kelly (2011)

(7) We delete observations of stocks in
the lowest 3% of a country’s aggre-
gated market capitalization.

MV Hanauer and Lauter-
bach (2019)
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Characteristics definition

This section outlines the construction of characteristic variables that we use in the paper.

For each characteristic, we give the respective Datastream and Worldscope items in paren-

theses, the category (past returns, investment, profitability, intangibles, value, or trading

frictions) and frequency (monthly vs. yearly), plus the relevant reference. As described

in Section 2.2, we use balance-sheet data from December in year t-1 for the stock returns

from July of year t to June of year t + 1 as in Fama and French (1993).

A2ME (assets-to-market), Value, Yearly Assets-to-market cap is the ratio of total as-

sets (WC02999) to market capitalization as at December t-1, as in Bhandari (1988).

AT (total assets), Trading Frictions, Yearly Total assets measured in USD (WC02999)

as in Gandhi and Lustig (2015).

ATO (sales-to-assets), Profitability, Yearly As in Soliman (2008), we calculate net sales

(WC01001) over lagged net operating assets. Net operating assets are defined following

Hirshleifer et al. (2004) and are explained in the construction of NOA.

BEME (book-to-market), Value, Yearly Book-to-market is the ratio of book value of

equity to market value of equity. We define the book value of equity as common equity

(WC03501) plus deferred taxes (WC03263). If no deferred taxes are given, the book value

of equity equals common equity (WC03501). The market value of equity is as of December

t-1. See Rosenberg, Reid and Lanstein (1985) and Davis, Fama and French (2000).

BEMEm (monthly updated book-to-market), Value, Monthly Monthly updated book-

to-market is the ratio of book value of equity to the most recent market value of equity.

Book value of equity is defined as for BEME. The most recent market value of equity is

of the end of month t to predict returns of month t+1 as in Asness (2011).
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Beta (market beta), Trading Frictions, Monthly Following Lewellen and Nagel (2006),

we calculate beta daily as the sum of the regression coefficients of daily excess returns on

the local market excess return and one lag of the local market excess return for the past 12

months. We require at least 126 observations for valid beta estimates, as in Welch (2020).

C (cash-and-short-term-investment-to-assets), Value, Yearly The ratio of cash and

short-term investments (WC02001) to total assets (WC02999), as in Palazzo (2012).

CbOPtA (cash-based operating profits-to-asset), Profitability, Yearly As in Ball et al.

(2016), cash-based operating profits-to-asset is operating profits converted to a cash basis

divided by total assets (WC02999). Following Ball et al. (2015), operating profits is net

sales or revenues (WC01001) minus cost of goods sold (WC01501) minus selling, general,

and administrative expenses (WC01101), excluding research and development expense

(WC01201). The cash-based adjustment is the year-on-year change in deferred income

(WC03262), plus change in accounts payable (WC03040), plus change in accrued expenses

(WC03054 + WC03069), minus change in accounts receivable (WC02051), minus change

in inventory (WC02101), minus prepaid expenses (WC02140), all divided by total assets.

All changes are set to zero if missing.

CEI (composite equity issuance), Intangibles, Monthly Similar to Daniel and Titman

(2006), we define composite equity issuance as the growth rate in the market capitalization

not attributable to the total stock return R: log(MCt−1/MCt−13)−R(t−13,t−1). To predict

the returns of month t, R(t−13,t−1) is the cumulative log return (calculated via the total

return index, Datastream item RI) from month t − 13 to month t − 1 and MCt−1 is the

market capitalization (Datastream item MV) from the end of month t − 1.

CF2P (cash flow-to-price), Value, Yearly Cash flow to price is the ratio of net cash

flow from operating activities (WC04860) to the market capitalization as at December t-1,

as in Lakonishok, Shleifer and Vishny (1994).

CTO (capital turnover), Profitability, Yearly We define capital turnover as the ratio

of net sales (WC01001) to lagged total assets (WC02999), as in Haugen and Baker (1996).
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D2A (capital intensity), Intangibles, Yearly Capital intensity is the ratio of deprecia-

tion and amortization (WC01151) over total assets (WC02999), as in Gorodnichenko and

Weber (2016).

Debt2P (leverage), Value, Yearly Following Litzenberger and Ramaswamy (1979), debt

to price is the ratio of total assets (WC02999) minus common equity (WC03501) to the

market capitalization as of December t-1.

DPI2A (ratio of change in property, plants & equipment to total assets), Investment,

Yearly Following Lyandres, Sun and Zhang (2007), we define the changes in PP&E and

inventory as the annual change in gross property, plant, and equipment (WC02301) plus

the annual change in inventory (WC02101) over lagged total assets (WC02999).

E2P (earnings-to-price), Value, Yearly Earnings to price is the ratio of income before

extraordinary items (WC01551) to the market capitalization as at December t-1, as in

Basu (1983).

FC2Y (fixed costs-to-sales), Profitability, Yearly As in Gorodnichenko and Weber

(2016), fixed costs to sales is the sum of selling, general and administrative expenditures

(WC01101) and research and development expenses (WC01201) over net sales (WC01001).

FreeCF (cash flow-to-book), Value, Yearly Following Hou, Karolyi and Kho (2011),

we define cash flow to book as free cash flow to book value of equity. Free cash flow

is calculated as net income (WC01551) plus depreciation and amortization (WC01151)

minus changes in working capital minus capital expenditure (WC04601). The book value

of equity is defined in the construction of BEME.

GP2A (gross profits-to-assets), Profitability, Yearly Gross profits-to-assets is net sales

(WC01001) minus costs of goods sold (WC01051) divided by total assets (WC02999), as

in Novy-Marx (2013).

Idiovol (idiosyncratic volatility with respect to the Fama and French (1993) three-

factor model), Trading Frictions, Monthly As in Ang et al. (2006), we define idiosyn-
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cratic volatility as the standard deviation of the residuals from a regression of excess

returns on a local Fama and French (1993) three-factor model. We use one month of daily

data and require at least fifteen non-missing observations.

INV (investment), Investment, Yearly Investment is the percentage year-to-year growth

rate of total assets (WC02999) following Cooper, Gulen and Schill (2008).

LME (market capitalization), Trading Frictions, Monthly Size is a stock’s market

capitalization at the end of the previous month and measured in USD, as in Fama and

French (1992).

LTurnover (turnover), Trading Frictions, Monthly Turnover is a stock’s trading volume

(VO) divided by its shares outstanding (NOSH) during the last month, as in Datar, Y.

Naik and Radcliffe (1998).

NOA (net operating assets), Investment, Yearly Following Hirshleifer et al. (2004),

net operating assets are defined as the difference between operating assets and operating

liabilities, scaled by lagged total assets. Operating assets are total assets (WC02999)

minus cash and short-term investments (WC02001). Operating liabilities are total assets

(WC02999), minus total debt (WC03255), minus minority interest (WC03426), minus

preferred stock and common equity (WC03995).

OA (operating accruals), Intangibles, Yearly Following Sloan (1996), operating accru-

als are calculated as changes in working capital minus depreciation (WC01151) scaled

by lagged total assets (WC02999). Changes in operating working capital are changes in

current assets (WC02201) minus changes in cash and short-term investments (WC02001)

minus changes in current liabilities (WC03101), plus changes in debt in current liabilities

(WC03051) plus changes in income taxes payable (WC03063).

OL (operating leverage), Intangibles, Yearly We define operating leverage as the sum of

costs of goods sold (WC01051) and selling, general, and administrative expenses (WC01101)

over total assets (WC02999), as in Novy-Marx (2010).
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P2P52WH (price relative to its 52-week high), Trading Frictions, Monthly Rel to

high price is the ratio of the unadjusted stock price (UP) at the end of the previous

calendar month to the past 52-weeks high, as in George and Hwang (2004).

PCM (price-to-cost margin), Profitability, Yearly As in Gorodnichenko and Weber

(2016) and D’Acunto et al. (2018), the price-to-cost margin is net sales (WC01001) minus

costs of goods sold (WC01051), divided by net sales (WC01001).

PM (profit margin), Profitability, Yearly As in Soliman (2008), we calculate the profit

margin as operating income after depreciation or EBIT (WC18191) over sales (WC01001).

Prof (gross profitability), Profitability, Yearly Profitability is net sales (WC01001)

minus costs of goods sold (WC01051) divided by the book value of equity, following Ball

et al. (2015). The book value of equity is defined in the construction of BEME.

Q (Tobin’s Q), Value, Yearly As in Freyberger, Neuhierl and Weber (2020), we define

Tobin’s Q as total assets (WC02999) plus the market capitalization as of December t-1

minus cash and short-term investments (WC02001) and minus deferred taxes (WC03263),

scaled by total assets (WC02999).

r12-2 (momentum), Past Returns, Monthly Momentum is the cumulative return from

month t-12 to t-2 as in Fama and French (1996).

r12-7 (intermediate momentum), Past Returns, Monthly Intermediate momentum is

the cumulative return from t-12 to t-7 as in Novy-Marx (2012).

r2-1 (short-term reversal), Past Returns, Monthly Short-term reversal is the lagged

one-month return as in Jegadeesh (1990).

r36-13 (long-term reversal), Past Returns, Monthly Long-term reversal is the cumula-

tive return from t-36 to t-13 as in De Bondt and Thaler (1985).
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RNA (return on net operating assets), Profitability, Yearly As in Soliman (2008),

we calculate the return on net operating assets as the ratio of operating income after

depreciation or EBIT (WC18191) to lagged net operating assets. Net operating assets are

defined following Hirshleifer et al. (2004) and explained in the construction of NOA.

ROA (return on assets), Profitability, Yearly Following Balakrishnan, Bartov and Fau-

rel (2010), return-on-assets is the ratio of earnings before extraordinary items (WC01551)

to lagged total assets (WC02999).

ROE (return on equity), Profitability, Yearly Following Haugen and Baker (1996),

return-on-equity are earnings before extraordinary items (WC01551) to lagged book eq-

uity. The book value of equity is defined in the construction of BEME.

S2P (sales-to-price), Value, Yearly Following Lewellen (2015), sales-to-price is the ratio

of net sales (WC01001) to the market capitalization as of December t-1.

SGA2S (sales and general administrative costs to sales), Intangibles, Yearly As in

Freyberger, Neuhierl and Weber (2020), we define SG&A to sales as the ratio of selling,

general and administrative expenses (WC01101) to net sales (WC01001).

Illiqu (Amihud (2002) illiquidity), Trading Frictions, Monthly We calculate illiquidity

according to Amihud (2002) as the arithmetic mean of the following ratio for the past

month: the daily absolute return divided by the product of the end-of-day stock price

(UP) and the daily trading volume (VO).

SUV (unexplained volume), Trading Frictions, Monthly Following Garfinkel (2009),

standard unexplained volume is the difference between actual volume and predicted vol-

ume in the previous month. Predicted volume comes from a regression of daily volume on

a constant and the absolute values of positive and negative returns. We use two months

of data to estimate the model parameters (data from t-2 and t-1) and estimate the pre-

dicted volume using data from the previous month (t-1). I require at least fifteen daily

observations in the previous month. Unexplained volume is standardized by the standard
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deviation of the residuals from the regression.

Methodology

Simple linear regression

The least complex method in our analysis and most widely used in the context of em-

pirical asset pricing is the simple linear regression model estimated via the ordinary least

squares (OLS) method. We will use it as a benchmark to compare the more complex

machine learning models to it. In the case of the simple linear regression, the conditional

expectations f∗(x) can be modeled using the following linear model:

f(xi,t,c, θ) = θT xi,t,c, (B.1)

where θ, θT = (θ1, θ2, ..., θp) ∈ Rp, is the column vector of coefficients that can be estimated

with OLS by minimizing the loss function:

LMSE(θ) = 1
NT

N∑
i=1

T∑
t=1

(rabn
i,t+1,c − f(xi,t,c, θ)2, (B.2)

which is also known as the Mean Squared Error (MSE). The OLS has the big advantage

that it does not require any hyperparameter input from the user. Further, by minimizing

the loss function LMSE a unique analytical solution can be extracted, which is easy to

interpret as the coefficients, θ directly describe how a change in the stock characteristics

affects the expected return. Additionally, if the number of observations in the underlying

dataset is larger than the number of coefficients that need to be estimated, the OLS yields

an efficient and unbiased estimator according to Wooldridge (2001). But if the number of

characteristics approaches the number of observations in the dataset, the OLS has issues

distinguishing between signal and noise. While the signal is the portion we can understand,

model, and predict, noise consists of the unpredictable component of price movements. In

the case of a small sample or a large number of characteristics, the OLS starts with over-

fitting the coefficients to noise rather than extracting the signal. This is of particular

importance in the field of asset pricing, which empirically relies on a low signal-to-noise
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ratio. This overfitting yields a higher in-sample performance but a poor out-of-sample

performance. Further, multicollinearity between the different characteristics can lead to

a fallacious interpretation of test statistics as well as misleading coefficients. Lastly, the

OLS does not model or evaluate any non-linearities of the characteristics nor any potential

interactions between them. Any non-linearity would have to be imputed by the user.

Regularized regression

To avoid overfitting in the case of empirical asset pricing, the user could increase the train-

ing sample, reduce the number of characteristics used to predict future returns, or utilize

regularized regression techniques that identify which characteristics are informative and

omits those that are not. Classical regularized regression techniques are ridge regression,

lasso regression, or elastic net. To limit the number of machine learning methods, we

concentrate on the elastic net, which is a combination of ridge and lasso regression. While

the different regularized regression models have the same linear functional form as the

simple linear regression, they differ with respect to the loss function by adding a penalty

term (ϕENet(θ, λ, α)) to it:

LENet(θ, λ, α) = LMSE(θ) + ϕENet(θ, λ, α). (B.3)

This penalty term reduces the model’s in-sample performance and increases its out-of-

sample stability by shrinking the coefficients of noisy characteristics, improving the signal-

to-noise ratio. The penalty function of the elastic net is defined as:

ϕENet(θ, λ, α) = (1 − α)λ
P∑

j=1
| θj | +1

2αλ
P∑

j=1
θ2

j , (B.4)

where λ, λ ∈ R+ defines the magnitude of shrinkage and α, α ∈ {0, ..., 1} which determines

the relative weight between the two penalty components of the ridge and lasso regression.

In the case of λ = 0 the regularized regression models yield a simple linear regression model.

The coefficients are shrunk towards zero by setting λ > 0. As these two hyperparameters

have to be set by the user, we utilize our validation sample to find the optimal in-sample

λ and α in the first run. We determine the optimal θ in the second run using the full
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training and validation sample.

Tree-based regression

Tree-based models represent the first non-parametric regression model as their structure

is decided by the training data. For our return prediction, we will utilize two tree-based

methods: the random forest, as well as the gradient boosted regression tree. Compared to

the linear methods, one advantage of these tree methods is that the user does not have to

manually add any potential non-linearities or interactions to the data as the tree methods

build these by construction.

Regression trees follow the idea of sequentially partitioning the underlying data into

groups that behave similarly to each other based on a selected characteristic with regard

to the future return. By sequentially separating the data, the tree ”grows” and new

”branches” are created each time the data is split into new groups. The tree can grow to a

depth of D based on the user input. At each new branch, the characteristic is picked that

causes the biggest separation in the data based on an optimized cut-off value.1 As soon as

the data can not be split into subgroups or the depth D is reached, a ”leave” is created. In

asset pricing, the tree yields a return that is clustered by the underlying characteristics.

The following equation describes a tree with a depth of D and K leaves:

f(xi,t,c, θ, D, K) =
K∑

k=1
θk1{xi,t,c∈Ck(D)}

θk = 1
Nk

∑
xi,t,c∈Ck(D)

rabn
i,t+1,c,

(B.5)

where D is the depth of the tree measured as the maximum number of separations following

the longest branch, Ck(D) indicates the k-th separation of the characteristics, θk is average

abnormal return within the partition, and 1{xi,t,c∈Ck(D)} indicates if xi,t,c is part of Ck(D).

Following this methodology, a tree of depth D can capture up to D − 1 interactions. To

avoid overfitting, the tree must be regularized. We follow two different approaches in our

analysis.

The first regularization approach uses bootstrap aggregation, or “bagging,” developed

1 In our case, for each separation, the characteristic is selected that minimizes the MSE.
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by Breiman (2001). In this approach, each of the T trees starts with a share of B boot-

strap samples from the data and fits an individual regression tree to the bootstrapped

data. Afterward, the forecasts from the individual trees are averaged. This reduces the

variation in the prediction and stabilizes the prediction performance. In the case of the

random forest, the trees additionally use random subsets R of characteristics to grow the

branches. This reduces the impact of certain dominant return characteristics and creates

de-correlated trees.

The second regularization approach is ”boosting.” It starts by training a weak and

shallow regression tree on the full training data. In the next step, a second regression tree

with the same depth D is trained on the residuals of the first tree. The prediction of these

two trees is then averaged while the contribution of the second tree is shrunken by a factor

LR (learning rate), LR ∈ (0, 1) to avoid the model overfitting the residuals. At each new

step b, till the model reaches a total of B trees, a new shallow tree is fitted to the residual,

which is based on the b − 1-th model and added to it with a shrinkage weight of LR.

Both regression trees share the two main hyperparameters: the number of trees in the

forest T , T ∈ Z+ and the maximum depth D, D ∈ Z+. While the random forest addition-

ally requires the share of the bootstrapped samples B, 0 > B ≤ 1, the gradient boosted

regression tree requires a certain learning rate LR, 0 > B ≤ 1. These hyperparameters

are optimized through the validation step. Additionally, we can provide the share R,

0 > R ≤ 1, of randomly selected characteristics that are used in each tree of the random

forest.

Neural networks

Neural networks are another highly flexible but opposed to the regression trees, a paramet-

ric model. While these models can have various forms, we focus on the standard structure

of a feed-forward neural network. A feed-forward neural network consists of an ”input”

layer of input characteristics and the intercept, at least one ”hidden” layer compromising

activation functions, and an ”output” layer that aggregates the outcome of the last hidden

layer into a return prediction.

A feedforward neural network consists of several subsequent layers l, l = 0, 1, ..., L, one

input layer (l = 0), L − 1 hidden layers (l = 1, 2, ..., L − 1) and one output layer l = L.
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Each layer l contains nl nodes. In the case of the input layer, the number of nodes is equal

to the number of characteristics, including an intercept, while the output layer contains

due to the regression setting one node. In the case of the hidden layer, we consider an

architecture of up to five hidden layers while the first hidden layer contains 32 nodes and

each additional hidden layer divides the number of nodes by two compared to the previous

layer following the geometric pyramid rule according to Masters (1993). This results in

the following number of nodes per layer:

n0 = p + 1,

n1 = 32,

nl = nl−1

2 ∀l ∈ {2, ..., L − 1},

nL = 1.

(B.6)

Each of the nodes in the hidden layer contains an activation function. In our case we

follow Gu, Kelly and Xiu (2020) and Leippold, Wang and Zhou (2022) and choose the

rectified linear unit defined as:

ReLU(x) = max(0, x), (B.7)

As in De Nard, Hediger and Leippold (2022), we adopt the Adam optimization algorithm

(Kingma and Ba, 2014), early stopping, batch normalization (Ioffe and Szegedy, 2015),

ten ensembles with individual seeds (Hansen and Salamon, 1990; Dietterich, 2000) and

dropout (Srivastava et al., 2014) when training our models.

Hyperparameters

We will use the following hyperparameters based on the hyperparameter range in Gu,

Kelly and Xiu (2020), Tobek and Hronec (2020), Drobetz and Otto (2021), and Leippold,

Wang and Zhou (2022):

• Elastic net

– λ: [1 × 10−5, 2 × 10−5, ..., 1 × 10−2]

– α: [0, 0.01, ..., 1]
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• Random forest

– R: [0.01, 0.02, ..., 1]

– B: 1

– T : [100, 102, ..., 600]

– D: [1, 2, ..., 8]

• Gradient-boosted regression tree

– LR: [0.01, 0.02, ..., 0.1]

– T : [50, 52, ..., 500]

– D: [1, 2, ..., 8]

• Neural networks

– l1: [0.00001, ..., 0.001]

– LR: [0.001, 0.1]

– Batch Size: 10000

– Epochs: 100

Factor construction

This section outlines the construction of the factors of the Fama and French (2018) six-

factor model, using the same stock sample as for the machine learning portfolios described

in Section 2.2.1.

The market factor, RMRF, is the value-weighted return of all stocks minus the risk-free

rate. The remaining factors are constructed using a 2 x 3 sorting approach commonly

employed for international markets (Fama and French, 2012, 2017). The portfolio break-

points for the value, profitability, investment, and momentum factors are the 30% and 70%

percentiles of the underlying characteristic of the big-stock sample per country. In the case

of the value factor, we use the book-to-market ratio to form Growth (G), Neutral (N), and

Value (V ) portfolios. For profitability, we use cash-based operating profitability to sort

the stocks into the extreme portfolios Weak (W ) and Robust (R). We use asset growth
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for the investment factor, which yields Conservative (C) and Aggressive (A) portfolios.

For the momentum factor, we sort stocks into the Winner (W ) and Loser (L) portfolios

based on a stock’s momentum. Finally, we classify stocks into the two size groups big (B)

and small (S) as described in Section 2.2.1. The final factor calculation is based on the

intersection of the different portfolios, while the portfolio returns are value-weighted,

SMB = (SV + SN + SG)/3 − (BV + BN + BG)/3,

HML = (BV + SV )/2 − (BG + SG)/2,

RMW = (BR + SR)/2 − (BW + SW )/2,

CMA = (BC + SC)/2 − (BA + SA)/2,

WML = (BW + SW )/2 − (BL + SL)/2.

(B.8)

Table B. 6 presents summary statistics for the monthly factor returns.

Table B. 6
Summary statistics for the factors of the Fama and French (2018) six-factor model

This table presents the average monthly return, standard deviation, and corresponding t-statistic for
the following set of factors: the market (RMRF ), size (SMB, small minus big), value (HML, high
minus low), profitability (RMW , robust minus weak based on cash-based operating profitability),
investment (CMA, conservative minus aggressive), and momentum (W ML, winners minus losers).
The t-statistics are Newey-West adjusted with 4 lags. The sample period for the analysis is January
2002 to December 2021.

RMRF SMB HML CMA RMW W ML

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

mean 0.94 -0.0 0.52 0.07 0.49 0.79
std. dev. 5.88 1.36 1.89 2.24 2.65 4.16
t-stat 2.05 -0.05 3.40 0.38 2.45 2.54
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Figures

Figure B. 1
Variable importance by model

This figure shows the importance for Individual characteristics in each model. Characteristics importance
is an average over all training samples. Variable importance within each model is normalized to sum to
one.
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Figure B. 2
Cumulative return of machine learning portfolios

The figure shows the cumulative log returns in excess of the market of portfolios sorted on out-of-sample
machine learning return forecasts. The solid and dashed lines represent long (top quintile) and short
(bottom quintile) portfolios, respectively. In Panel A equal-weighted cumulative log returns are shown
while in Panel B the long and short portfolios are value-weighted. The sample period is from January 2002
to December 2021.
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Figure B. 3
Estimated bid-ask spreads based on the EDGE estimator

This figure shows the cross-sectional distribution of estimated bid-ask spreads for big stocks in emerging
markets. Thereby, big stocks are defined as the biggest stocks, which together account for 90% of a
country’s aggregated market capitalization. For each stock and month, we compute the efficient discrete
generalized estimator (EDGE) of the bid-ask spread, proposed in Ardia, Guidotti and Kroencke (2022).
The estimators are based on daily prices using a monthly estimation window. Following Novy-Marx and
Velikov (2016), we replace zero estimates with the non-zero estimate of the stock of the same country with
the shortest Euclidean distance in size and characteristic volatility rank space. The sample period is from
January 2002 to December 2021.
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Tables

Table B. 7
Detail performance of the machine learning portfolios

This table reports the out-of-sample performance of the different machine learning quintile portfolios.
Stocks are sorted into country-neutral quintiles based on their predicted returns for the next month. The
sorting breakpoints are based on big stocks only, which are in the top 90% of a country’s aggregated
market capitalization. Each Panel provides the predicted monthly returns (Pred), the average monthly
excess returns (Avg), corresponding t-statistics (t), the Fama and French (2018) six-factor model alpha
(α), and corresponding t-statistics. All t-statistics are calculated using Newey and West (1987) adjusted
standard errors with 4 lags. The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel A: OLS

Low (L) -1.07 0.26 0.50 -0.39 -3.43 -0.99 0.43 0.83 -0.23 -3.40
2 -0.38 0.90 1.85 0.11 1.16 -0.37 0.82 1.70 -0.00 -0.05
3 0.00 1.15 2.51 0.26 3.08 0.01 0.95 2.09 0.09 2.55
4 0.36 1.34 3.03 0.41 4.91 0.37 1.13 2.55 0.17 3.45
High (H) 0.86 1.64 3.73 0.58 6.39 0.87 1.25 2.82 0.06 1.05

H-L 1.93 1.38 7.76 0.97 8.02 1.85 0.83 4.57 0.28 2.72

Panel B: ENet

Low (L) -1.07 0.34 0.65 -0.33 -3.05 -0.99 0.51 0.98 -0.18 -2.33
2 -0.37 0.92 1.86 0.12 1.32 -0.36 0.81 1.70 0.02 0.32
3 0.02 1.16 2.48 0.27 3.19 0.03 0.96 2.06 0.09 1.95
4 0.39 1.32 2.97 0.38 4.52 0.40 1.09 2.43 0.11 2.21
High (H) 0.90 1.53 3.61 0.50 4.99 0.91 1.23 2.86 0.09 1.56

H-L 1.97 1.20 6.79 0.83 6.94 1.90 0.72 3.95 0.27 2.28

Panel C: RF

Low (L) -0.79 0.18 0.35 -0.47 -4.05 -0.69 0.34 0.66 -0.30 -4.37
2 -0.21 0.82 1.74 0.07 0.81 -0.21 0.86 1.82 0.09 1.77
3 0.09 1.12 2.41 0.23 2.62 0.09 0.94 2.06 0.03 0.61
4 0.37 1.35 2.92 0.40 5.16 0.37 1.15 2.51 0.09 1.45
High (H) 0.71 1.78 3.96 0.72 8.34 0.70 1.32 2.99 0.17 3.38

H-L 1.50 1.60 9.29 1.19 14.10 1.39 0.99 5.24 0.47 5.24

Panel D: GBRT

Low (L) -0.87 0.04 0.08 -0.59 -5.24 -0.74 0.30 0.58 -0.38 -5.57
2 -0.18 0.87 1.82 0.11 1.21 -0.17 0.81 1.71 0.09 1.68
3 0.13 1.13 2.42 0.25 3.25 0.13 0.94 2.04 0.03 0.73
4 0.43 1.36 2.98 0.39 4.76 0.42 1.12 2.47 0.11 1.62
High (H) 0.93 1.86 4.12 0.81 8.77 0.86 1.35 3.09 0.19 4.06

H-L 1.80 1.82 11.49 1.40 15.65 1.61 1.05 6.06 0.57 6.73
Continued on next page
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Table B. 6 continued

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel E: NN1

Low (L) -1.27 0.03 0.06 -0.62 -5.23 -1.05 0.41 0.81 -0.26 -2.74
2 -0.28 0.80 1.71 0.04 0.54 -0.26 0.76 1.68 -0.01 -0.28
3 0.16 1.07 2.31 0.21 2.60 0.16 0.94 2.08 0.05 1.15
4 0.58 1.34 2.93 0.40 4.92 0.57 1.07 2.35 0.05 0.78
High (H) 1.34 1.91 4.09 0.86 8.93 1.25 1.45 3.09 0.30 5.86

H-L 2.61 1.88 13.92 1.47 15.67 2.30 1.04 6.94 0.57 4.83

Panel F: NN2

Low (L) -1.27 -0.01 -0.03 -0.68 -6.33 -1.01 0.37 0.74 -0.35 -5.42
2 -0.23 0.82 1.74 0.06 0.70 -0.21 0.80 1.72 0.03 0.52
3 0.17 1.01 2.18 0.16 2.10 0.18 0.93 2.08 0.03 0.65
4 0.56 1.35 3.06 0.42 4.76 0.55 1.08 2.42 0.06 0.87
High (H) 1.32 1.90 3.99 0.86 8.87 1.21 1.49 3.08 0.36 6.84

H-L 2.60 1.91 15.67 1.55 19.02 2.21 1.11 9.40 0.71 9.16

Panel G: NN3

Low (L) -1.20 0.02 0.05 -0.66 -5.87 -0.94 0.38 0.74 -0.35 -4.59
2 -0.18 0.82 1.75 0.06 0.74 -0.16 0.73 1.60 -0.01 -0.34
3 0.17 1.08 2.32 0.24 3.47 0.17 0.97 2.17 0.09 2.29
4 0.51 1.31 2.92 0.39 4.42 0.50 1.08 2.36 0.06 1.13
High (H) 1.22 1.86 3.99 0.83 8.34 1.11 1.49 3.17 0.32 5.34

H-L 2.41 1.84 14.72 1.49 16.93 2.04 1.12 7.85 0.66 6.55

Panel H: NN4

Low (L) -1.14 0.04 0.07 -0.63 -5.57 -0.90 0.32 0.62 -0.38 -5.18
2 -0.17 0.79 1.67 0.03 0.34 -0.14 0.73 1.59 -0.02 -0.50
3 0.16 1.09 2.37 0.26 3.34 0.17 0.95 2.14 0.08 1.87
4 0.48 1.31 2.91 0.35 4.39 0.47 1.11 2.43 0.05 0.81
High (H) 1.15 1.89 4.07 0.86 8.26 1.04 1.52 3.25 0.35 6.35

H-L 2.29 1.86 13.75 1.48 16.72 1.94 1.20 8.30 0.73 7.76

Panel I: NN5

Low (L) -1.12 0.04 0.08 -0.62 -5.43 -0.90 0.36 0.68 -0.37 -4.83
2 -0.17 0.82 1.74 0.04 0.46 -0.15 0.71 1.56 0.01 0.29
3 0.18 1.10 2.37 0.27 3.68 0.18 0.91 1.97 0.02 0.50
4 0.50 1.32 2.96 0.38 4.59 0.49 1.13 2.54 0.08 1.47
High (H) 1.14 1.88 4.04 0.82 8.38 1.04 1.52 3.26 0.34 7.61

H-L 2.26 1.84 13.42 1.44 15.79 1.93 1.17 8.11 0.71 8.21
Continued on next page
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Table B. 6 continued

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel J: NN1−5

Low (L) -1.13 0.03 0.06 -0.62 -5.41 -0.91 0.34 0.65 -0.36 -4.82
2 -0.19 0.77 1.65 -0.00 -0.00 -0.16 0.73 1.62 0.02 0.42
3 0.17 1.10 2.38 0.27 3.57 0.17 0.95 2.10 0.06 1.35
4 0.51 1.31 2.92 0.39 4.50 0.50 1.07 2.39 0.03 0.54
High (H) 1.17 1.90 4.05 0.84 8.70 1.07 1.54 3.22 0.36 7.02

H-L 2.30 1.87 13.42 1.46 15.81 1.97 1.21 8.48 0.72 8.26

Panel K: ENS

Low (L) -0.85 0.02 0.04 -0.61 -5.32 -0.71 0.24 0.47 -0.42 -5.89
2 -0.17 0.85 1.78 0.09 0.99 -0.16 0.80 1.71 0.09 1.85
3 0.13 1.13 2.46 0.29 3.44 0.13 0.90 1.98 0.01 0.29
4 0.41 1.38 3.02 0.40 5.17 0.41 1.15 2.59 0.12 1.95
High (H) 0.87 1.88 4.12 0.82 9.02 0.81 1.45 3.17 0.25 5.82

H-L 1.71 1.86 11.73 1.43 15.66 1.52 1.20 6.97 0.67 8.29

Panel L: µsign(c)

Low (L) -0.20 0.22 0.42 -0.41 -3.16 -0.19 0.48 0.93 -0.22 -3.42
2 -0.08 0.79 1.57 0.00 0.02 -0.08 0.90 1.84 0.10 2.10
3 -0.01 1.05 2.20 0.18 2.19 -0.01 0.96 2.10 0.08 1.75
4 0.06 1.25 2.77 0.32 3.72 0.06 1.08 2.45 0.05 1.06
High (H) 0.15 1.56 3.67 0.57 7.27 0.15 1.24 2.91 0.11 2.18

H-L 0.35 1.34 6.48 0.98 7.26 0.34 0.77 4.16 0.32 3.32
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Table B. 8
Robustness - Models trained on subregional data

This table reports the out-of-sample performance of equal-weighted and value-weighted long-short port-
folios sorted on forecasts derived from models trained on subregional data. All stocks are sorted into
country-neutral portfolios based on their predicted returns for the next month. The sorting breakpoints
are based on big stocks only, which are in the top 90% of the country’s aggregated market capitalization.
Panel A shows the results pooled emerging markets, Panel B for all countries being part of emerging Amer-
icas, Panel C combines all emerging Asian countries, and Panel D reports results for emerging countries
from Europe, the Middle East, and Africa. The first two rows of each panel provide the average monthly
return of the long-short quintile (Avg), corresponding t-statistics (t), the average Fama and French (2018)
six-factor alpha (α), corresponding t-statistics (tα), and R2. The next two rows show spanning alpha (α),
corresponding t-statistic (tα), and R2 when regressing the long-short ENS returns on OLS returns and
vice versa. All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4
lags. The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

Panel A: Emerging Markets

OLS 1.09 6.29 0.77 6.23 53.92 0.78 4.42 0.29 2.57 56.92
ENS 1.35 8.88 0.97 9.75 57.22 0.97 5.95 0.44 4.59 58.10
ENS ∼ OLS 0.49 7.78 77.56 0.28 4.46 75.77
OLS ∼ ENS -0.23 -1.76 77.56 -0.06 -0.51 75.77

Panel B: Americas

OLS 0.76 3.23 0.36 1.82 46.02 0.60 2.67 0.04 0.22 49.64
ENS 0.70 3.37 0.41 2.52 36.93 0.64 3.12 0.20 1.14 35.55
ENS ∼ OLS 0.19 1.56 56.53 0.22 1.66 49.56
OLS ∼ ENS 0.17 1.02 56.53 0.14 0.83 49.56

Panel C: Asia

OLS 1.43 7.73 1.12 9.62 60.08 0.81 4.03 0.41 3.22 63.14
ENS 1.95 11.16 1.61 17.97 60.73 1.27 6.62 0.83 8.24 67.10
ENS ∼ OLS 0.65 8.64 83.54 0.52 5.07 71.55
OLS ∼ ENS -0.36 -2.10 83.54 -0.17 -1.11 71.55

Panel D: Europe, the Middle East and Africa

OLS 1.06 5.97 0.91 5.67 19.35 0.92 4.43 0.47 2.39 26.25
ENS 1.39 8.11 1.06 6.59 20.58 0.99 4.75 0.34 1.97 37.32
ENS ∼ OLS 0.61 5.47 56.62 0.25 2.01 59.45
OLS ∼ ENS -0.01 -0.06 56.62 0.19 1.45 59.45
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Table B. 9
Robustness - Models trained on pooled versus individual countries

This table reports the out-of-sample performance of value-weighted long-short portfolios sorted on local and
pooled model forecasts. Local model forecasts are based on machine learning models trained separately for
each country on local country data. In contrast, the pooled model forecasts are from our baseline machine
learning models trained on pooled emerging market data. Both local and pooled strategies include only
stocks from the following seven countries that are in our sample throughout the entire sample period:
Chile, Indonesia, Mexico, Malaysia, Philippines, Thailand, and Turkey. All stocks are sorted into country-
neutral quintile portfolios based on predicted returns for the next month. The sorting breakpoints are based
on big stocks only. The first two rows of each panel provide the average monthly excess returns (Avg),
corresponding t-statistics (t), the average Fama and French (2018) six-factor alphas (α), corresponding
t-statistics (tα), and R2. The next two rows show spanning alphas (α), corresponding t-statistics (tα),
and R2 when regressing the long-short local returns on pooled returns and vice versa. All t-statistics are
calculated using Newey and West (1987) adjusted standard errors with 4 lags. The sample period is from
January 2002 to December 2021.

OLS ENS

Avg t α tα R2 Avg t α tα R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

local 0.61 3.68 0.41 2.83 17.13 0.92 5.93 0.63 4.70 23.16
pooled 0.80 4.37 0.41 2.26 34.41 1.18 6.67 0.81 5.66 27.08
local ∼ pooled 0.17 1.42 38.67 0.25 1.83 40.26
pooled ∼ local 0.37 2.15 38.67 0.53 3.15 40.26

Table B. 10
Performance of machine learning portfolios for developed markets

This table reports the out-of-sample performance of long-short portfolios in developed markets. Stocks are
sorted into country-neutral quintile portfolios based on the predicted returns from machine learning models
trained with developed market data. The sorting breakpoints are based on big stocks only. The first two
rows of each panel provide the average monthly returns of the long-short quintiles (Avg), corresponding t-
statistics (t), the average Fama and French (2018) six-factor alphas (α), corresponding t-statistics (tα), and
R2. The next two rows show spanning alphas (α), corresponding t-statistics (tα), and R2 when regressing
the long-short ENS returns on OLS returns and vice versa. All t-statistics are calculated using Newey and
West (1987) adjusted standard errors with 4 lags. The sample period is from January 2002 to December
2021.

Equal-Weighted Value-Weighted

Avg t α tα R2 Avg t α tα R2

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 )

OLS 0.68 2.83 0.42 2.32 55.74 0.43 1.85 0.12 0.74 53.00
ENS 0.93 4.76 0.65 4.15 51.69 0.66 3.22 0.32 2.04 48.20
ENS ∼ OLS 0.42 5.82 89.49 0.31 4.01 84.55
OLS ∼ ENS -0.43 -5.45 89.49 -0.26 -3.21 84.55
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Table B. 11
Limits to arbitrage: Summary statistics

This table reports the summary statistics of limits-to-arbitrage proxies of different machine learning quintile
portfolios. All stocks are sorted into country-neutral quintile portfolios based on their predicted returns
for the next month. The sorting breakpoints are based on big stocks only, which are in the top 90% of the
country’s aggregated market capitalization. We compute for each quintile portfolio the average monthly
value of each of three proxies for limits to arbitrage: -1 × market capitalization (SIZE), idiosyncratic
volatility (IV OL), Amihud illiquidity (ILLIQ), and a combination of the different proxies (COMBO).
All proxies for limits to arbitrage are ranked into the [-1,1] interval for each month and country and higher
values indicate higher limits to arbitrage. Afterward, we report the time-series average. The sample period
is from January 2002 to December 2021.

SIZE IV OL ILLIQ COMBO

OLS ENS OLS ENS OLS ENS OLS ENS

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Low (L) 0.10 -0.11 0.03 0.02 0.33 0.33 0.15 0.15
2 0.01 0.06 -0.02 -0.03 0.11 -0.06 0.03 -0.05
3 -0.03 0.10 -0.03 -0.05 -0.04 -0.14 -0.03 -0.10
4 -0.06 0.09 -0.03 -0.03 -0.17 -0.18 -0.09 -0.10
High (H) -0.05 -0.04 0.03 0.04 -0.36 -0.13 -0.13 -0.02
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Table B. 12
Further investment frictions

This table reports the performance of different buy/hold long-only strategies before and after transaction
costs. The investment universe is limited to big stocks. We investigate predictions from a linear OLS
model and an ensemble (ENS) of non-linear machine learning models (RF , GBRT , and NN1−5). Every
month the portfolio consists of the stocks that currently exhibit the highest X% forecasted returns per
country plus those selected in previous months whose forecasted returns have not deteriorated beyond the
top Y%. The first number in the column row names represents X, while the second represents Y. We
report the strategies’ gross returns in excess of the market, average two-way turnover, transaction costs,
net returns in excess of the market, and net Fama and French (2018) six-factor models alphas. We assume
one-way transaction costs of 100 basis points. All t-statistics are Newey and West (1987) adjusted with 4
lags. Panel A summarizes results from equal-weighting while Panel B shows results from value-weighting.
The sample period is from January 2002 to December 2021.

OLS ENS

20%/20% 10%/30% 20%/20% 10%/30%

( 1 ) ( 2 ) ( 3 ) ( 4 )

Panel A: Equal-weighted

re
gross − Mkt 0.47 0.44 0.78 0.78

(5.31) (5.07) (7.88) (7.37)
TO (in %) 44.14 24.68 45.13 27.38
T-cost (in %) 0.44 0.25 0.45 0.27
re

net − Mkt 0.03 0.19 0.33 0.51
(0.37) (2.26) (3.35) (4.82)

αF F 6
net 0.17 0.33 0.43 0.62

(2.77) (5.17) (5.84) (7.35)

Panel B: Value-weighted

re
gross − Mkt 0.27 0.29 0.45 0.46

(2.99) (3.13) (4.67) (4.53)
TO (in %) 44.09 21.86 45.46 23.28
T-cost (in %) 0.44 0.22 0.45 0.23
re

net − Mkt -0.17 0.07 -0.01 0.23
(-1.88) (0.74) (-0.08) (2.26)

αF F 6
net -0.16 0.06 0.02 0.25

(-3.27) (1.14) (0.36) (3.72)
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Decomposition methodology of the 3 × 3

In the case of a reduced number of stocks, we sort all stocks which experienced a firm-

specific news arrival based on their nearness to the 52-week high and their firm-specific

news return into two independent country-neutral tercile portfolios. Similar to the main

decomposition methodology, we utilize two different Fama and MacBeth (1973) regressions

to decompose the returns of the double-sorted portfolios into the two pure effects of firm-

specific news and the nearness to the 52-week high as well as the interaction effect of both

across the nine portfolios. The regression model, including the interactions, is specified as

follows:

Ri,t+1 = b0 + b1FN3
i,t + b2FN1

i,t + b3NEAR3
i,t + b4NEAR1

i,t−1

+ b5FN3
i,t × NEAR3

i,t + b6FN1
i,t × NEAR3

i,t

+ b7FN3
i,t × NEAR1

i,t + b8FN1
i,t × NEAR1

i,t + ϵ,

(C.1)

where Ri,t+1 is the stock return of firm i in the next month t + 1, and right-hand-side

variables are dummies indicating the tercile ranking of firm i at the end of the month t

for FN and NEAR. In the second regression, we exclude the interaction effect from the

model:

Ri,t+1 = b0 + b1FN3
i,t + b2FN1

i,t + b3NEAR3
i,t + b4NEAR1

i,t−1 + ϵ (C.2)

In Table C. 1, we describe how the individual average portfolio return in each of the 3 × 3

portfolios sorted by the firm-specific news return and the nearness to the 52-week high is

decomposed by using the regression parameters and the return components. The lowest
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nearness to the 52-week high (firm-specific news return) tercile is defined as NEAR1

(FN1), while the highest nearness to the 52-week high (firm-specific news return) tercile

is specified as NEAR3 (FN3).

Table C. 1
Specification of return decomposition 3 × 3

This table describes the specification of the return decomposition as in George, Hwang and Li (2014) and
Huang, Lin and Xiang (2021) by regression parameter and return component for the double-sorted firm
portfolios by firm-specific news returns (F N) and nearness to the 52-week high (NEAR). To form the
double-sorting portfolios we sort each month all firms which experienced firm-specific news arrival into
independent and country-neutral 3 × 3 portfolios based on F N in the previous month and NEAR at the
previous month-end. Each cell represents a group of stocks with a particular NEAR and F N ranking. In
Panel A (Panel B), we show how the respective portfolio return can be decomposed using the regression
parameters from the monthly stock-level Fama and MacBeth (1973) regression as specified in Equation C.1
(Equation C.2). In Panel C (Panel D), we show how the respective portfolio return can be decomposed into
different return components. The return components can be disentangled into the benchmark return (µ),
the returns associated with the 52-week high (H), the returns attributable to the firm-specific news (N),
and the returns associated with the interaction between the firm-specific news and nearness of the stock
price to the 52-week high (I). µ reflects the average return of stocks in the portfolio with neither extreme
firm-specific news returns nor an extreme nearness to the 52-week high. H reflects the returns associated
with being near (n), middle (m), or far (f) from the 52-week high, regardless of the F N ranking. N reflects
the returns associated with having good (g) or bad (b) firm-specific news about the firms, regardless of the
NEAR ranking. I reflects the returns associated with having both good (bad) firm-specific news about
the firm and stock prices near (far from) the 52-week high.

F N1 F N2 F N3

( 1 ) ( 2 ) ( 3 )

Panel A: Decomposition by regression parameter including the interactions effect

NEAR1 b0 + b2 + b4 b0 + b4 b0 + b1 + b4 + b7

NEAR2 b0 + b2 b0 b0 + b1

NEAR3 b0 + b2 + b3 + b6 b0 + b3 b0 + b1 + b3 + b5

Panel B: Decomposition by regression parameter excluding the interactions effect

NEAR1 b0 + b2 + b4 b0 + b4 b0 + b1 + b4

NEAR2 b0 + b2 b0 b0 + b1

NEAR3 b0 + b2 + b3 b0 + b3 b0 + b1 + b3

Panel C: Decomposition by return component including the interactions effect

NEAR1 µ + Hf + Nb + Ib,f µ + Hf µ + Hf + Ng

NEAR2 µ + Nb + Ib,m µ µ + Ng + Ig,m

NEAR3 µ + Hn + Nb µ + Hn µ + Hn + Ng + Ig,n

Panel D: Decomposition by return component excluding the interactions effect

NEAR1 µ + Hf + Nb µ + Hf µ + Hf + Ng

NEAR2 µ + Nb µ µ + Ng

NEAR3 µ + Hn + Nb µ + Hn µ + Hn + Ng

In Panel A and Panel B of Table C. 1, we present how the different estimated parameters

of Equation C.1 and Equation C.2 can be combined to derive the respective average
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portfolio return in each of the portfolios. In Panel C and Panel D, we further show how

the respective portfolio return can be decomposed into four different return components.

The return components are the benchmark return (µ), the returns associated with the

52-week high (H), the returns attributable to the firm-specific news (N), and the returns

associated with the interaction between the firm-specific news and nearness of the stock

price to the 52-week high (I). The first return component reflects the benchmark portfolio.

It is the average return of the stocks in the portfolio with neither extreme firm-specific

news returns nor an extreme nearness to the 52-week high. The second return component

is solely driven by the stocks nearness to the 52-week high, regardless of the firm-specific

news return ranking. Sorting the stocks into terciles based on their nearness to the 52-

week high results in a return component which is common among the stocks in the same

portfolio. Stocks that are far (f) away from the 52-week high are denoted as Hf and are

expected to have a negative return, while stocks that are near (n) the 52-week high are

denoted as Hn and are expected to have a positive return. To derive the pure 52-week

high effect, we build a long-short strategy that relies solely on the return predictability of

the nearness to the 52-week high. We, therefore, define the pure 52-week high effect as:

Pure 52-week High Effect =Hn − Hf = b3 − b4. (C.3)

The third return component is solely driven by the firm-specific news return, regardless

of the firm-specific news return ranking. Sorting the stocks into terciles based on their

firm-specific news return results in a return component that is common among the stocks

in the same portfolio. Similiar to Jiang, Li and Wang (2021), do positive firm-specific news

returns predict higher future stock returns, and therefore the firm-specific news component

increases from the FN1 tercile to the FN3 tercile. Stocks with bad (b) firm-specific news

returns are denoted as Nb, whereas good (g) firm-specific news return are denoted as

Ng. While bad firm-specific news returns are associated with negative news momentum

and therefore expected to have negative returns in the future, are the good firm-specific

news return associated with positive future returns. To derive the pure firm-specific news

return effect we build a long-short strategy that relies solely on the return predictability

of the firm-specific news return. Depending on the assumption that the 52-week high
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effect moderates the market underreaction to firm-specific news or not we define pure

firm-specific news as:

Pure Firm-Specific News Effect =Ng − Nb = (b1 + b5) − (b2 + b10), and (C.4)

= b1 − b4. (C.5)

The fourth and last return component is associated with having, on the one hand, good

firm-specific news about the firm and a stock price near the 52-week high and, on the

other hand, experiencing bad firm-specific news while having a stock price that is far from

the 52-week high. While the underreaction to the firm-specific news due to the nearness

to the 52-week high could also be driven by the less extreme quintiles (e.g., the FN2 and

FN4 quintile) but with a smaller magnitude, we focus our analysis on the most extreme

FN and NEAR quintiles. Stocks with extremely bad firm-specific news returns which

are far from the 52-week high are denoted as Ib,f whereas stocks with extremely good

firm-specific news returns that are near the 52-week high are denoted as Ig,n. Hence, the

interaction effect is defined as:

Interaction Effect =Ig,n − Ib,f = (b7 − b11) − (b14 − b10) (C.6)

If investors had a non-distorted belief updating process after the arrival of good (bad) firm-

specific news while having a stock price that is near (far) its 52-week high, the interaction

effect’s long-short strategy would not yield a significant coefficient. In this case, the

portfolio returns could still be fully attributable to the single components of the interaction,

namely the pure firm-specific news effect and the pure 52-week high effect. On the other

hand, if the coefficient of the interaction effect for the long-short strategy is positive and

significant, one potential implication is that investors are not willing to update their beliefs

and hence are underreacting to the good (bad) news if the stock price is near (far from)

its 52-week high.
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Datastream sample definition

Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope

lists, and (3) dead lists. By using dead lists, we ensure that any survivorship bias is

obviated. For each country, we use the union of all available lists and eliminate any

duplicates. As a result, one list remains for each country to be used in the subsequent

static filter process. Table C. 2 provides an overview of the constituent lists for developed

markets that are used in this study.

Static screens

I restrict the sample to common equity stocks by applying several static screens, as shown

in Table C. 3. Screens (1) to (7) are straightforward to apply and common in the literature.

Screen (8) relates to, among others, to work by the following: Ince and Porter (2006),

Campbell, Cowan and Salotti (2010), Griffin, Kelly and Nardari (2010), Karolyi, Lee and

van Dijk (2012). The authors provide generic filter rules to exclude non-common equity

securities from Refinitiv Datastream. we apply the identified keywords and match them

with the security names provided by Datastream. A security is excluded from the sample

in the event that a keyword coincides with part of the security name. The following three

Datastream items store security names and are applied to the keyword filters: ‘NAME’,

‘ENAME’, and ‘ECNAME’. Table C. 4 gives an overview of the keywords used.

In addition, Griffin, Kelly and Nardari (2010) introduce specific keywords for individual

countries. The keywords are thus applied to the security names of single countries only.

For example, German security names are parsed to contain the word ‘GENUSSSCHEINE’,

which declares the security to be a non-common equity. In Table C. 5, we give an overview

of country-specific keyword deletions conducted in our study.

Dynamic screens

For the securities remaining from the static screens above, we obtained return and market

capitalization data from Datastream and accounting data from Worldscope. Several dy-

namic screens that are common in the literature were installed in order to account for data
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Table C. 2
Constituent lists developed markets

The table contains the research lists, Worldscope lists and dead lists of developed markets countries in my
sample.

Country List Country List Country List

Australia DEADAU Hong Kong DEADHK Spain DEADES
FAUALL FHKALL WSCOPEES
WSCOPEAU WSCOPEHK FESALL

Austria WSCOPEOE Ireland WSCOPEIR FSPDOM
DEADAT FIEALL FSPNQ
FATALL DEADIE Sweden WSCOPESD
FOSTDCT Israel DEADIL FSEALL
FOSTOM WSCOPEIS FXSTOALL

Belgium FBEALL FILALL DEADSE
WSCOPEBG Italy FITALL Switzerland WSCOPESW
DEADBE DEADIT FCHALLP

Canada DEADCA1 WSCOPEIT DEADCH
... Japan WSCOPEJP United Kingdom DEADGB
DEADCA6 FJPALL ...
WSCOPECN FJPCONS DEADGB7
FXTSEALL FTOKYO FGBALL
FCAALL FXTKSALL WSCOPEUK

Denmark FDKALL DEADJP United States WSUS1
WSCOPEDK Netherlands DEADNL ...
DEADDK FNLALL WSUS26

Finland FFIALL WSCOPENL FUSALL1
WSCOPEFN New

Zealand
WSCOPENZ ...

DEADFI FNZALL FUSALL7
France DEADFR DEADNZ FUSALLA

WSCOPEFR Norway DEADNO ...
FFRALL FNOALL FUSALLZ

Germany DEADDE1 WSCOPENW DEADUS1
... Portugal WSCOPEPT ...
DEADDE9 FPTALL DEADUS12
FGKURS DEADPT
FDEALLP Singapore DEADSG
WSCOPEBD FSGALL

FXSESM
WSCOPESG
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errors, mainly within return characteristics. The dynamic screens are shown in Table C. 6.
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Table C. 3
Static screens
The table displays the static screens applied in our study, mainly following Ince and Porter (2006), Schmidt
et al. (2017) and Griffin, Kelly and Nardari (2010). Column 3 lists the Datastream items involved (on the
left of the equals sign) and the values which we set them to in the filter process (to the right of the equals
sign). Column 4 indicates the source of the screens.

Nr. Description Datastream item(s) in-
volved

Source

(1) For firms with more than one
security, only the one with the
biggest market capitalization
and liquidity is used.

MAJOR = Y Schmidt et al. (2017)

(2) The type of security must be
equity.

TYPE = EQ Ince and Porter (2006)

(3) Only the primary quotations
of a security are analyzed.

ISINID = P Fong, Holden and
Trzcinka (2017)

(4) Firms are located in the re-
spective domestic country.

GEOGN = country
shortcut

Ince and Porter (2006)

(5) Securities are listed in the re-
spective domestic country.

GEOLN = country
shortcut

Griffin, Kelly and Nar-
dari (2010)

(6) Securities whose quoted cur-
rency is different to the one
of the associated country are
disregarded.a

PCUR = currency
shortcut of the country

Griffin, Kelly and Nar-
dari (2010)

(7) Securities whose ISIN country
code is different to the one
of the associated country are
disregarded.b

GGISN = country
shortcut

Annaert, Ceuster and
Verstegen (2013)

(8) Securities whose name fields
indicate non-common stock
affiliation are disregarded.

NAME, ENAME,
ECNAME

Ince and Porter (2006),
Campbell, Cowan and
Salotti (2010), Griffin,
Kelly and Nardari
(2010) and Karolyi, Lee
and van Dijk (2012)

a In this filter rule, the respective pre-euro currencies are also accepted for countries within
the euro-zone. Moreover, in Russia ‘USD’ is accepted as currency, in addition to ‘RUB’.

b In Hong Kong, ISIN country codes equal to ‘BM’ or ‘KY’ and in the Czech Republic
ISIN country codes equal to ‘CS’ are also accepted.
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Table C. 4
Generic keyword deletions
The table reports generic keywords searched for in the names of all stocks of all countries. If a harmful
keyword is detected as part of the name of a stock, the respective stock is removed from the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI, DUPLICATE,
XSQ, XETa

Depository receipts ADR, GDR
Preferred stock PF, ’PF’, PFD, PREF, PREFERRED, PRF
Warrants WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
Debt %, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
Unit trusts .IT, .ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,

TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST UNITS,
UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT

ETFs AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
Expired securities EXPD, EXPIRED, EXPIRY, EXPY
Miscellaneous (mainly taken
from Ince and Porter (2006))

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HI.YIELD, HIGH INCOME, IDX,
INC.&GROWTH, INC.&GW, INDEX, LP, MIPS, MITS, MITT,
MPS, NIKKEI, NOTE, OPCVM, ORTF, PARTNER, PERQS,
PFC, PFCL, PINES, PRTF, PTNS, PTSHP, QUIBS, QUIDS,
RATE, RCPTS, REAL EST, RECEIPTS, REIT, RESPT,
RETUR, RIGHTS, RST, RTN.INC, RTS, SBVTG, SCORE,
SPDR, STRYPES, TOPRS, UTS, VCT, VTG.SAS, XXXXX,
YIELD, YLD

Table C. 5
Country-specific keyword deletions
The table reports country-specific keywords searched for in the names of all stocks of the respective
countries. If a harmful keyword is detected as part of the name of a stock, the respective stock is removed
from the sample.

Country Keywords

Australia PART PAID, RTS DEF, DEF SETT, CDI
Austria PC, PARTICIPATION CERTIFICATE, GENUSSSCHEINE,

GENUSSCHEINE
Belgium VVPR, CONVERSION, STRIP
Canada EXCHANGEABLE, SPLIT, SPLITSHARE, VTG\\., SBVTG\\.,

VOTING, SUB VTG, SERIES
Denmark \\)CSE\\)
Finland USE
France ADP, CI, SICAV, \\)SICAV\\), SICAV-
Germany GENUSSCHEINE
Israel P1, 1, 5
Italy RNC, RP, PRIVILEGIES
Netherlands CERTIFICATE, CERTIFICATES, CERTIFICATES\\), CERT,

CERTS, STK\\.
New Zealand RTS, RIGHTS
Sweden CONVERTED INTO, USE, CONVERTED-, CONVERTED - SEE
Switzerland CONVERTED INTO, CONVERSION, CONVERSION SEE
United Kingdom PAID, CONVERSION TO, NON VOTING, CONVERSION ’A’
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Table C. 6
Dynamic screens
The table displays the dynamic screens applied to the data in our study, following Ince and Porter (2006),
Griffin, Kelly and Nardari (2010), Jacobs (2016) and Schmidt et al. (2017). Column 3 lists the respective
Datastream items. Column 4 refers to the source of the screens.

Nr. Description Datastream
item(s) involved

Source

(1) We delete the zero returns at
the end of the return time-series
that exist because in the case of
a delisting, Datastream displays
stale prices from the date of delist-
ing until the end of the respective
time-series. We also delete the as-
sociated market capitalizations.

RI, MV Ince and Porter (2006)

(2) We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

RI, MV, UP The screen originally
stems from Schmidt
et al. (2017), however
we employ it on unad-
justed price.

(3) We delete monthly (daily) returns
and the associated market capi-
talizations if returns exceed 990%
(200%).

RI, MV Griffin, Kelly and Nar-
dari (2010); Schmidt
et al. (2017)

(4) We delete monthly returns and the
associated market capitalizations
in the case of strong return rever-
sals, defined as (1+rt−1)(1+rt)−
1 < 0.5 given that either rt−1 or
rt ≥ 3.0.

RI, MV Ince and Porter (2006)

(5) We delete daily returns and the as-
sociated market capitalizations in
the case of strong return reversals,
defined as (1 + rt−1)(1 + rt) − 1 <
0.2 with rt−1 or rt ≥ 1.0.

RI, MV Griffin, Kelly and Nar-
dari (2010); Jacobs
(2016)

189



Appendix C. Chapter 3

Factor construction

We calculate the market factor as the value-weighted returns of all available stocks in excess

of the risk-free rate. For the factors value, profitability, investment, and momentum, we

estimate the portfolio breakpoints using the country-specific 30% and 70% percentile of

the underlying characteristic using only the big-stock sample. In the case of the value

stocks, we use the book-to-market ratio to categorize the stocks as Growth (G), Neutral

(N), and Value (V ). For profitability, we use the cash-based profitability as an underlying

characteristic which enables us to sort the stocks into the extreme portfolios Weak (W )

and Robust (R). In the case of the investment factor, we base the sorting on the stock’s

asset growth, which yields a Conservative (C) and Aggressive (A) portfolio. The next

factor is based on the stock’s momentum and sorts the stocks into the Winner (W ) and

Loser (L) portfolios. The last factor is based on the stock’s Amihud (2002) illiquidity

and sorts the stocks into the liquid (AL) and illiquid (AI) portfolios. We follow the size

group methodology of Fama and French (2008, 2012, 2017) and assign stocks into three

size groups (micro, small, and big) separately for each country and month. Big stocks are

defined as the biggest stocks, which together account for 90% of a country’s aggregated

market capitalization. Small stocks are defined as those stocks that comprise the next

7% of aggregated market capitalization (so that big and small stocks together account for

97% of the aggregated market size of a country). Microcaps comprise the remaining 3%.1

The final factor calculation is based on the intersection of the different portfolios, while

1 To distinguish between these size groups, Fama and French (2008) use the 20th and 50th percentiles of
end-of-June market cap on NYSE stocks as size breakpoints for the U.S. market, which on average are
bigger than AMEX or NASDAQ stocks. However, these breakpoints are applied to all (NYSE, AMEX,
and NASDAQ) stocks. For international markets, Fama and French (2012, 2017) propose to calculate
breakpoints based on aggregated market capitalization, as we do.
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the portfolio returns are value-weighted,

SMB = (SV + SN + SG)/3 − (BV + BN + BG)/3,

HML = (BV + SV )/2 − (BG + SG)/2,

RMW = (BR + SR)/2 − (BW + SW )/2,

CMA = (BC + SC)/2 − (BA + SA)/2,

MOM = (BW + SW )/2 − (BL + SL)/2,

LIQ = (BAL + SAL)/2 − (BAI + SAI)/2.

(C.7)
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