
Technische Universität München

TUM School of Computation, Information and Technology

Doctoral Thesis

Managing Dynamic Workloads
in Relational Database Systems

Christian Michael Winter





Technische Universität München

TUM School of Computation, Information and Technology

Managing Dynamic Workloads
in Relational Database Systems

Christian Michael Winter

Vollständiger Abdruck der von der TUMSchool of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademi-
schen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Alexander Pretschner

Prüfer*innen der Dissertation:
1. Prof. Alfons Kemper, Ph.D.
2. Prof. Dr. Thomas Neumann
3. Prof. Dr. Maximilian E. Schüle

Die Dissertation wurde am 06.03.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Tech-
nology am 25.09.2023 angenommen.





Abstract

The last decade has seen drastic changes in the data analytics land-
scape. For one, the perpetual growth of data has made it infeasible to
materialize all data for processing. Instead, dedicated stream processing
engines focus on processing vast amounts of data in a single pass without
materializing the whole data set. Further, there has been a shift in the
deployment of data analytics platforms from on-premise deployments to
a cloud environment. These challenges threaten the leading position of
relational database management systems in data analytics.

This thesis re-engineers several core components of database systems
to overcome these challenges. In the first part, we devise three techniques
for in-database stream processing. We demonstrate how streams can be
analyzed in database systems as ring-buffered relations or using specialized
materialized views. Further, we design a process to sample streams for later
analysis efficiently. The second part of this thesis architects a technique
allowing running queries to be suspended and migrated in dynamic cloud
environments.





Zusammenfassung

Im letzten Jahrzehnt hat sich die Datenanalyselandschaft drastisch
verändert. Zum einen ist es aufgrund des ständigen Datenwachstums
nicht mehr möglich, alle Daten für die Verarbeitung zu materialisieren.
Stattdessen konzentrieren sich spezielle Stream-Processing-Engines auf
die Verarbeitung großer Datenmengen in einem einzigen Durchgang, ohne
den gesamten Datensatz zu materialisieren. Darüber hinaus hat sich die
Einsatzumgebung von Datenanalyseplattformen von lokalen Systemen
zu Cloud-Umgebungen verlagert. Diese Herausforderungen bedrohen die
führende Position von relationalen Datenbankmanagementsystemen in
der Datenanalyse.

In dieser Arbeit werden mehrere Kernkomponenten von Datenbank-
systemen überarbeitet, um diese Herausforderungen zu bewältigen. Im
ersten Teil entwickeln wir drei Techniken für die datenbankinterne Stream-
verarbeitung. Wir zeigen, wie Datenströme in Datenbanksystemen als
ringgepufferte Relationen oder mit Hilfe spezialisierter materialisierter
Sichten analysiert werden können. Außerdem entwerfen wir einen Pro-
zess, mit dem effizient Stichproben von Datenströmen für eine spätere
Analyse genommen werden können. Im zweiten Teil dieser Arbeit wird
eine Technik entwickelt, mit der laufende Abfragen in dynamischen Cloud-
Umgebungen angehalten und migriert werden können.





To all my mentors, in academia and in life.
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CHAPTER 1
Introduction

Excerpts of this chapter have been published in [168, 170, 171].

For many years, on-premise relational database management systems have
formed the sole backbone of the data analytics pipeline. From their inception
over 50 years ago [34] to today, relational database systems have continuously
evolved, constantly adapting to new hardware and workload trends. This evolu-
tion has allowed them to take advantage of many-core architectures [24, 62, 72,
82, 99], the growth of main memory capacity into the terabytes [42, 50, 79, 82,
125], and the availability of new storage mediums, such as flash storage [13, 56,
71, 100, 118, 162, 187]. Today, they remain at the forefront of data analytics and
enjoy widespread success in many industries [13, 39, 68, 111, 158, 163].

However, recent years have seen the emergence of dynamic workloads
and environments that traditional database management systems were not
designed for. In particular, ephemeral data in the form of data streams [16, 148]
and dynamic cloud environments [146, 183] are incompatible with the query
execution model of current database systems. Consequently, it is unclear if
and how relational database systems must be modified to efficiently handle
these emerging trends. In this thesis, we address this question and devise four
techniques that leverage the superior analytical capabilities of relational database
systems and their optimizations for modern hardware to analyze ephemeral
data in dynamic environments efficiently.

1.1 Challenges of Dynamic Workloads
Traditionally, relational database systems could rely on durable data and static
deployment environments for analytical tasks and have optimized heavily for
these circumstances. However, the assumptions that database systems have
made no longer hold for cloud-based data analytics on ephemeral data streams.
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To overcome the challenges arising from these new circumstances without
sacrificing performance or reliability, it is important to understand their charac-
teristics, which we discuss in this section.

1.1.1 Data Streams
The first major challenge we discuss stems from the growth in volume, veracity,
and velocity of the data relevant for analysis generated by a wide range of
sources, such as log streams of IoT and sensor data [36, 84], as well as the
telecommunication [27, 85] and financial industry [30]. This growth has led to
changes in how data is analyzed. Instead of fully materializing all data before
analysis, as is required for database systems, it is increasingly processed in
a streaming fashion in a single pass. Further, the desired time-to-insight has
shrunken massively. While in the past, analytics were performed on nightly-
or even weekly-updated data warehouses, users increasingly look for real-time
insights into their data. Consequently, data needs to be analyzed in a real-time
fashion.

Dedicated systems, often called stream processing engines (SPEs), have been
developed to perform real-time analyses on data streams [3, 29, 31, 67, 115, 123,
154, 179, 181]. SPEs have evolved into capable analytical systems, allowing
for both stateful [29, 31, 114, 123, 153, 179] and transactional [5, 25, 64, 110,
184] stream processing. However, while these systems provide all the required
functionality to deal with data streams efficiently, they often lack the ability
to manage and modify historic data internally to combine them with stream
insights. Further, they are often unable to leverage the full potential of modern
hardware [180]. Relational database systems, on the other hand, offer extensive
functionality to manage and analyze historic data optimized for the underlying
hardware. In turn, it is infeasible, or often even impossible, for current database
systems to perform analytics over streamed data without fully materializing
all input data. An ideal system should address this challenge by leveraging the
performance of the database system’s analytical query engine for data stream
analytics without materializing the entire stream for processing.

1.1.2 Cloud-Based Data Analytics
The second challenge we investigate in this thesis is the gradual shift from
on-premise deployments to a cloud setting for the data analytics pipeline. While
the flexibility offered by cloud architectures offers benefits for customers and
developers alike, allowing for easy scaling and pay-as-you-use server provision-
ing, leveraging the full potential of this architecture requires a redesign of many
database components. A critical step in utilizing this new-gained flexibility is the
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shift from a shared-nothing architecture, as implemented by the initial version
of AWS Redshift [68], to a storage-separated architecture [39], where storage for
relations can be scaled independent of the resources for query evaluation. The
benefits of independently-scalable storage have led to the widespread adoption
of this architecture in industry [28, 39, 157, 165]. Recently, even dominant
shared-nothing database systems such as Redshift have shifted to this flexible
architecture [13].

Decoupling storage and compute allows systems to quickly add and remove
compute resources without copying durable data, such as database relations.
However, more is needed to provide flexibility for individual queries. Even
though new workers can access storage easily, the current state of a query
still resides at the compute nodes. While cloud providers offer a wide range of
worker machines, finding the right worker for a task remains challenging [102].
Without flexibility for running queries, methods to find the right worker for
a task rely on speculative execution and have to restart the task in case of an
adverse selection [10]. Not only end users but also service providers can benefit
from flexibility for individual queries. For example, service providers often
over-subscribe tenants to machines to achieve maximum resource utilization in
a cluster [91]. When service providers cannot rely on elastic execution models
to move queries between servers, this can lead to the cancellation of running
queries when the resources required by all subscribed tenants exceed amachine’s
physical resources.

Separating state from compute in addition to storage, as proposed by the
POLARIS systems [7], overcomes these issues by allowing to add, remove, and
replace workers during runtime. However, this comes at a performance cost, as
all states must be synchronized over the network. Ideally, this performance cost
is only incurred when necessary, e.g., in case of changes to the worker pool by
keeping the query state at the workers when not.

1.2 Contributions
The contributions made by this thesis can be split into two categories, each
addressing one of the challenges outlined in Section 1.1. Before discussing
our contributions, Chapter 2 provides the necessary background on the Umbra
database system, which we extend with our techniques. Following, we discuss
three techniques for in-database stream processing in Chapters 3 to 5. Each
approach offers a different trade-off between ease of integration and analytical
capabilities. Finally, Chapter 6 presents a technique to better leverage the
flexibility of cloud environments by allowing to suspend and migrate queries
on demand.
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Relation-Based Stream Processing
Relations form the foundation for data management and processing in relational
database systems. Naturally, this makes relations a prime candidate for integrat-
ing streams into database systems. In addition, database systems often support
multiple relation types optimizing for different hardware and environments,
such as dedicated in-memory and disk-based relations. For these relations,
databases provide physical data independence, hiding the nature of the relation
from upstream operators.

In Chapter 3, we describe a novel ring-buffered relation utilizing this physical
data independence to provide in-database stream processing without materializ-
ing the entire stream or necessitating changes to other database components
and functionality. This relation enables to combine finite or session-windowed
streams with durable database relations in a single query. A relation-based
integration further allows access to the full analytical capabilities of database
systems and a fully SQL-based interface. We demonstrate the feasibility of our
approach by integrating a stream relation into the Umbra database system and
evaluate its performance in end-to-end benchmarks.

Continuous-View-Based Stream Processing
While relation-based stream processing provides excellent ease of integration
for existing systems as it builds on the existing query model, it is limited in
the streaming model it can support. For unbounded streams, relying on this
query model is infeasible, as results are only available after all inputs have
been fully processed. Consequently, enabling complex and stateful analytics
for unbounded streams and queries involving multiple streams requires a less
holistic view of query processing. Database systems already implement concepts
similar to our desired query processing semantics of accessing current results
for queries over dynamic inputs in the form of materialized views.

In Chapter 4, we propose a new type of materialized view that provides
extensive capabilities for unbounded stream analytics within relational database
systems, called continuous view. The key component of continuous views is a
novel maintenance strategy, splitting the maintenance work between inserts
and queries. By performing only the initial parts of a query for arriving tuples,
we can sustain the insert rates necessary for high-velocity data processing. In
turn, the resulting initial state reduces the views’ memory footprint and aids
view refreshes, allowing for low query latency and high view refresh rates. Our
view-based approach to stream processing allows the database system to support
stateful and long-running queries over multiple streams and durable relations.
To demonstrate the practicality of this strategy, we integrate continuous views
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into the Umbra database system. We show that split maintenance can outper-
form even dedicated stream processing engines on analytical workloads, all
while still offering similar insert rates. Compared to modern materialized view
maintenance approaches, such as deferred and incremental view maintenance,
that often need to materialize expensive deltas, we achieve up to an order of
magnitude higher insert throughput.

Communication-Optimal Sampling
The two strategies outlined above offer an excellent range of real-time stream
processing capabilities. However, for some workloads, it is also desirable to
perform analytics at a later time. Given the high volume of data streams, it
is undesirable to materialize them for this purpose. Therefore, such analyzes
are often performed on reduced versions of the streams, either in the form
of query results as generated by the views of Chapter 4 or on representative
samples. Reservoir sampling is an excellent choice for drawing samples from
unbounded data such as streams, as it generates a fixed-size uniform random
sample independent of the input cardinality. However, the collection of reservoir
samples itself can already be a bottleneck when sampling from high-velocity
data.

In Chapter 5, we introduce a technique that fully parallelizes reservoir
sampling for many-core architectures. Our approach relies on the efficient
combination of thread-local samples taken over chunks of the input without
necessitating communication during the sampling phase and with minimal
communication when merging. We show how our efficient merge guarantees
uniform random samples while allowing data to be distributed over worker
threads arbitrarily. Our analysis of this approach within the Umbra database
system demonstrates linear scaling along the available threads and the ability
to sustain high-velocity workloads.

On-Demand State Separation
Cloud providers offer unprecedented flexibility for application developers by
enabling them to add and remove instances on demand from a large pool of
workers, paying only for usage duration. One way to leverage this flexibility
for database systems is to abstract away from worker machines using state-
separated architectures and instead plan with abstract compute, state, and
storage resources for queries. However, these architectures cause overhead
when synchronizing state externally, degrading query performance. On the
other hand, solutions without state-separated architectures resort to query
restarts in the event of changes to the worker pool, negating progress made.
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In Chapter 6, we propose a technique to suspend queries and migrate them
between workers through on-demand state separation. By introducing state
separation only when required, we retain maximum flexibility and performance
while keeping already achieved progress in case of changes to the worker ma-
chines. To derive the requirements for state separation, we first analyze the
query state of medium-sized workloads on the example of TPC-DS SF100. Us-
ing this, we analyze the cost and describe the constraints necessary for state
separation on such a workload. Furthermore, we describe the design and im-
plementation of on-demand state separation in the Umbra database system.
Finally, using this implementation, we show the feasibility of our approach
on the TPC-DS benchmark and give a detailed analysis of the cost of query
migration and state separation.



CHAPTER 2
The Umbra Database System

Excerpts of this chapter have been published in [168, 170]

All contributions in this thesis were made in the framework of the Umbra
database system [118]. Building upon the ideas of its predecessor HyPer [82],
Umbra makes several improvements geared towards a more robust, adaptable,
and flexible processing model. Most notably, Umbra no longer relies on a purely
in-memory data representation and scales to workloads beyond main memory
capacity [100]. While many of the improvements employed by Umbra are
beyond the scope of this thesis, we want to briefly highlight the key differences
to HyPer and describe the two components crucial to and modified by our
contributions: the execution model and query state management.

2.1 System Overview
We base our overview on the path of a SQL statement through Umbra’s ar-
chitecture, as shown in Figure 2.1. All SQL statements received by Umbra are
first passed to the query compiler. The SQL parser transforms the received
statement into an abstract syntax tree (AST) representation of the query using
PostgreSQL-compatible grammar, which serves as a basis for Umbra’s optimizer.
In turn, the optimizer converts this AST into a physical query plan by employing
several optimizer passes. For these passes, the optimizer has, e.g., access to
gathered statistics and derived cardinality estimates [20, 21, 57] managed by
the database runtime for join reordering [120] and a wide range of specialized
physical operator and relation implementations [17, 45, 51, 55, 89, 128, 129,
134, 135, 142, 168]. Like HyPer, Umbra generates code for the resulting query
plan [117]. However, instead of generating a monolithic piece of code, Umbra’s
execution plan comprises multiple steps. For each step, the code generator
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Figure 2.1: Overview of Umbra’s architecture. Query compiler and execution
engine show sub-components relevant to our contributions.

creates a static single-assignment [38, 130] intermediate representation called
UmbraIR [83].

Steps represent an individual state in a conceptual state machine managing
the execution. For execution, the UmbraIR corresponding to the current state is
adaptively lowered to an executable form in one of the UmbraIR backends. These
backends either directly interpret the UmbraIR code [88], emit x86 machine
code [83], or compile it using the LLVM framework. Backends can be switched
dynamically for running queries, enabling a low latency query startup and
switching to more optimized executables as they become available [88]. During
execution, backends can access complex functionality [26, 170] and allocate
memory [46] via function calls to the database runtime.

2.2 Execution Model
As outlined in the previous subsection, Umbra’s execution model is based on a
state machine representation of a query. Each state machine’s state corresponds
to a logical part of the query plan, which we call step. To avoid ambiguity with
the query state of analytical queries, we refer to the state-machine states as steps
throughout this thesis. Relying on multiple steps instead of a code monolith
allows for higher flexibility for the scheduler and the query’s control flow.

First, steps form natural scheduling units because they are self-contained.
This property allows the scheduler to reassign workers and suspend queries at
step granularity without requiring extensive task preemption measures. Fur-
thermore, in combination with the task-based interface of the scheduler [166],
we can dynamically inject tasks in between steps, which we employ for both the
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Figure 2.2: UmbraIR steps for an exemplifying query plan.

maintenance strategy of our view-based stream processing in Chapter 4 and the
query live migration in Chapter 6. Finally, steps can also directly influence the
control flow of the query plan, as the next step to be executed is determined by
the return value of the previous step. This flexibility allows us to reorder or skip
steps for execution, which we utilize for our maintenance strategy in Chapter 4.

All but two steps, the global setup 1 and cleanup 8 , are associated with a
pipeline. Pipelines comprise multiple operators that form a contiguous path in
the query plan wherein a tuple does not have to be materialized for processing.
For example, there are two pipelines in the plan of Figure 2.2. One comprises a
scan of the Item relation and the join, materializing all tuples as the join’s build
side. The second pipeline comprises three operators, a scan of the Part relation,
the join, and a result operator reporting all tuples to the user. We refer to the
pipeline sink wherein tuples are materialized as the pipeline breaker. Operators,
such as the join in Figure 2.2, can act as pipeline breakers for one pipeline and as
intermediate operators for another. Further, pipeline breakers can be the source
of multiple pipelines due to common subtree elimination optimizations. Each
pipeline comprises up to four logical steps, local initialization, thread-local exe-
cution, a merge phase, and local cleanup. In regular queries, with the exception
of recursive ones, each step is traversed once, one after the other. However, not
all steps are required for all pipelines. Also, some steps, like the thread-local
join in Figure 2.2, are executed multiple times for different parts of the input,
but we still consider them one logical step. To better illustrate the role of steps
in queries, we reference the steps of the query in Figure 2.2 in our description.

Global Initialization. Before starting per-pipeline processing, we set up all
data structures to share results between pipelines. These include result buffers
and hash tables for aggregation and joins. There is only one global initialization
step per query, which is always executed as the first step ( 1 ).
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Local Initialization. In the first step of each pipeline, we initialize all data
structures relevant for in-pipeline processing. This initialization includes setting
up temporary tuple buffers, simple data structures such as hash maps, and
helpers for complex operators. In our example, this includes steps 2 and 6 to
set up the structures needed for join porcessing.

Thread-Local Execution. During the execution phase, the actual tuple pro-
cessing is performed. Processing can include, e.g., scanning tuples from disk or
buffers, applying filters and functions, aggregation, and joins. Umbra employs
morsel-driven parallelism [99] and, therefore, this step is run in parallel, process-
ing a single morsel for each invocation. The results are stored in thread-local
buffers or directly reported for the topmost pipeline. Step 3 , e.g., stores the
corresponding inputs in a local hash table to be later merged into a global join
hash table. Step 7 probes the resulting hash table in parallel and reports the
resulting join tuples directly without using a local buffer.

Merge. After thread-local processing is complete, the results are combined
and made available for the following pipeline through shared storage regions.
Examples of this step are merging the individual runs of the merge-sort for a
sorting operator or combining local buffers and hash tables. In our example, this
happens in step 4 . Since pipeline 2 directly reports the final result, merging
local results is unnecessary.

Local Cleanup. Finally, the auxiliary data structures used for intra-pipeline
processing are cleaned up, and the memory used is freed ( 5 ).

Global Cleanup. After the query returns all results to the user, or if the query
is canceled, we clean up all data structures initialized in the global initialization.
This step is always executed, even if the query encounters errors, to free up all
memory associated with a query ( 8 ).

2.3 Query State Management
We distinguish two categories of state for queries in Umbra, global and local
state. The former is used for inter-pipeline communication and is available for
the entire duration of a query. The latter, on the other hand, is only valid for
one pipeline at a time. Each thread works on its thread-local copy of the local
state to avoid contention between workers in the parallel execution phase of
a pipeline. Both the global and the local state are of a fixed size, determined
statically from the operator tree at query compile time. Consequently, Umbra
requires a third memory region that materializes variable-size data accessible
to both the local and global state for data generated during execution, such as
the individual tuples. Separating a query’s state into multiple state and storage
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Figure 2.3: Overview of Umbra’s query state management. Local state and
associated structures in the memory region only exist during the local processing
phase of the corresponding pipeline.

regions has several advantages. For one, it allows the allocation of the global and
local state memory once at compile-time, re-using the local state memory for
all pipelines. Further, a shared variable-size memory region allows a copy-free
move of tuples from local to global state in the merge phase.

We show the use of the different storage areas for the exemplifying query
of Figure 2.2 in Figure 2.3. While we need to keep thread-local copies of the
metadata and index structures required for scans and the join, one can see that
tuples are not copied at any point. During the merge phase, we can simply
re-link tuple chains from thread-local hash tables to the hash table residing in
the global state using pointers. Thread-local copies of the hash table can, thus,
be destructed after the merge phase is complete, freeing the used memory and
local state for the next pipeline.





CHAPTER 3
Relation-Based Stream Processing

Excerpts of this chapter have been published in [170].

As outlined in Chapter 1, there is an ever-increasing need for just-in-time
analyses combining real-time data in the form of streams with information held
in databases, such as user, customer, or billing data. Several solutions integrating
durable data in stream processing engines (SPEs) have been proposed, either
loading read-only data into the stream processing engine from local sources such
as CSV files or offering interfaces to external databases [29, 31, 87, 179]. However,
the reverse direction of integrating stream processing into relational databases
has yet to receive much attention. While modern SPEs are capable tools for
many workloads, they lack the functionality to manage historic data internally.
We argue that the unmatched capabilities and performance of relational database
systems for managing and analyzing relational data make them the ideal solution
for processing durable relations and data streams.

In this chapter, we devise a technique to integrate streams into database
systems through a specialized streaming relation. By relying on a ring-buffered
specialization of regular database relations, we can utilize the database system’s
full type and query support and gain access to a wide range of pre-built function-
ality and operators, such as efficient joins and string operations. Our approach
relies on regular SQL to interact with streams, necessitating no changes to the
database grammar. Thus, streams can be used with all tools commonly used
for database access, such as object-relation mapping (ORM) libraries available
for many programming languages. Furthermore, the SQL-based interface al-
lows users to easily express queries incorporating streams and regular tables.
We demonstrate the applicability of our approach by implementing it in the
state-of-the-art database system Umbra [118].

We outline the relation-based integration on an exemplifying workload,
which we use as a running example throughout this chapter: Consider a micro-
blogging service where users can share and like simple text posts. For reporting,
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Figure 3.1: Schema for the microblogging workload of the running example.

with user_impact as (
select uid, avg(score) as score
from posts
group by uid

)
select u.username, u.contact_info,

u.rate, i.score
from users u, user_impact i
where u.id = i.uid and i.score >= 1000 and

u.region = 'DE'
order by u.rate / i.score

(a) SQL

Γ 

σ

⇞

Posts

σ

⨝

Users

(b) Queryplan

Figure 3.2: Exemplifying analytical query combining a stream and durable
relations.

such a service might be interested in finding influential posters in a given region,
e.g., users who achieved an average of at least 1’000 likes per post in the last
month for promotional campaigns. Figure 3.2 depicts the corresponding query,
with the schema shown in Figure 3.1. In many cases, business data, such as the
contact info and payment details for paid bloggers, will be stored separately
from the service data, such as posts. In the past, it was necessary to either find
influential posters in the service database or materialize posts in the business
database. The first option is undesirable as it involves analytical queries in a
system likely optimized for simple lookup and update operations. In contrast, the
second option would unnecessarily bloat the analytical database. On the other
hand, our approach allows us to stream the last month’s posts into the analytical
database without materializing them, requiring no analytical functionality from
the service database. This chapter covers the following key points:

• We describe the integration of stream processing in database systems as a
specialized in-memory ring-buffered relation.

• We discuss the streaming model achieved by our integration.
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Figure 3.3: Overview of common stream windowing semantics.

• We evaluate our streaming relation against dedicated stream processing
engines, focusing on end-to-end query and insert performance on a TPC-
H-based workload.

The remainder of this chapter is structured as follows: In Section 3.1, we discuss
background and related work in stream processing. Following, we discuss our
approach to in-database stream processing in Section 3.2, which we evaluate in
Section 3.3. Finally, we summarize the findings of this chapter in Section 3.4.

3.1 Background
Over the years, stream processing has evolved into a diverse area of research,
spanning a wide variety of data stream models optimized for different applica-
tions. In this section, we outline the model underlying our work and discuss
relevant related work in the intersection between stream processing and rela-
tional database systems.

3.1.1 StreamModel
While data stream models differ in many aspects, we focus on the two main
categories most relevant to our work: windowing semantics and state manage-
ment. Windowing semantics determines which subset of the stream qualifies for
query evaluation at any given moment. Among the most common windowing
semantics are sliding, tumbling, session, and unbounded windows, as shown
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in Figure 3.3. The first two semantics are further subdivided into time- and
tuple-based metrics. Tumbling and sliding windows define a fixed window size
l, either in terms of the number of tuples or in a duration t. While tumbling
windows always advance by the full window size, sliding windows advance
by a set length s, which can result in overlapping windows. Session windows
are separated from one another by periods of inactivity where no tuple arrives.
Finally, unbounded windows consider the entire stream for a query and are,
thus, unsuitable for infinite streams.

The window semantic closest to regular relation processing is the unbounded
window. However, this would mean that queries over infinite streams will never
report a result as database queries only advance to the next step, i.e., operator,
once an input is fully depleted. Therefore, we instead follow the session window
semantics, which is still close to relation scan semantics, and assume a scan as
depleted when no new stream tuples have arrived for the specified inactivity
duration. Note that sliding and tumbling windows can still be achieved on top
of this session window using the SQL WINDOW operator.

The second category, state management, determines where and how systems
manage the state of streaming queries. This state mainly comprises intermediate
query results, such as aggregates, but also includes routing andmeta information,
e.g., for worker and checkpoint management. In their survey, To et al. [153]
identify four different state models for stream processing. Of those, we most
closely follow the operator view of Fernandez et al. [53] wherein query progress
and state are materialized within operators. However, due to Umbras pipeline-
based query execution model, query state only occurs at pipeline breakers, not
at all individual operators. Further, distributing tuples to workers is handled
through morsel-driven parallelism [99] in our approach. Therefore, routing
decisions for tuples are made by downstream operators pulling new morsels,
not actively and push-based by upstream operators.

3.1.2 Related Work
Our approach overlaps with two primary research areas in data analytics: rela-
tional database systems and stream processing. Both have seen vast amounts
of research, and we, therefore, focus our discussion of related work on their
intersection.

Durable data in streamprocessing engines. Recent years have seen increased
demand for analytics combining historic and streamed data. Consequently,
stream processing engines such as Apache Flink [29] and Apache Spark [179]
enable the use of historic data in analytical queries over data streams. However,
they do not support managing historic data internally and instead rely on
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external sources. These external sources can be file formats like Parquet and
CSV or database systems through connectors such as JDBC.

While stream processing engines do not offer capabilities for managing
historic data, modern SPEs manage state for long-running and complex queries
internally [114, 123, 153]. To prevent conflicts between multiple queries on
a shared state, some SPEs rely on transaction semantics commonly used by
database systems [25, 64, 184]. TSpoon [5] extends Apache Flink [29] with a
transaction model, thereby enabling a queryable state for data stream analytics
at configurable isolation levels. In addition, Meehan et al. [110] build upon
the OLTP database system H-Store [79] and utilize H-Store’s transactional
processing model for data streams, enabling the ACID-compliant execution of
streaming and transactional database queries in a single system.

In-database stream processing. Combining streams and relational data in
a single system has been proposed in the context of data warehouse architec-
tures [116, 167]. However, these architectures rely on two separate engines for
internal relational query and stream processing. Some works propose a unified
SQL-based query language to express queries over both streams and durable
relations easily [18, 77]. Past research integrating stream processing and durable
data in a single engine often rely on materialized views [69, 141] to realize
continuous queries [16, 106, 148]. DBToaster [87, 122] implements higher-order
incremental view maintenance in a standalone engine to enable high insert and
query throughput for views combining both static and dynamic data. In addition,
PipelineDB [124] supports stream processing in the full-fledged database system
PostgreSQL using dedicated streaming views.

3.2 Approach
Having defined the theoretical streaming model of our ring-buffer-based in-
database stream processing, we can describe its design and implementation.
The core difference between our in-database stream processing to processing
relational data is that streamed data is not fully and permanently materialized
within the database at the start of a query. For regular queries, the data that
a query is working on is determined by its transaction. Each transaction has
a single state of the database that it will evaluate all queries on. To achieve
this, all data must be fully materialized at the start of a query, and any parallel
changes must be handled transparently. Streams, on the other hand, are not
transactional. Stream entries are ephemeral and are only cached in the database
for a short time. Queries, therefore, cannot rely on the availability of all stream
elements for query evaluation. Furthermore, queries involving streams have to
handle stream arrivals during a query. In this chapter, we will only deal with
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queries over bounded streams and discuss queries for infinite streams in later
chapters.

3.2.1 Interface
We want to rely purely on regular SQL grammar to interact with data streams.
However, we must also ensure the database can infer which relations to treat
as a stream and which to persist. For this, we follow a syntax similar to that of
PipelineDB [124] and create streams as foreign tables with a reserved server
name stream. For our example stream posts, this will result in the SQL statement:

create foreign table posts (
uid integer,
username varchar,
score integer,
content varchar

) server stream

Following the creation of this foreign table, all operations can be kept oblivi-
ous to the streaming nature of the relation. Inserts, therefore, can use regular
SQL insert semantics, e.g.,

insert into posts values (
12, 'Chris', 9153,
'It's great to process streams in a database system!'

)

to insert the tuple displayed in Figure 3.4.

3.2.2 Caching Layer
Before discussing inserts and queries to data streams, we must establish how
streaming data is stored within the database. Conceptually, ephemeral streams
do not need to be materialized outside of queries and instead can be processed
fully and directly on arrival. However, it is beneficial to cache chunks of the
stream before processing. For one, a cache can compensate load spikes in the
input stream where inserts occur too frequently for queries to keep up. Using
a cache can help alleviate such short spikes by accepting tuples to be scanned
by queries later on. Furthermore, a cache allows for morsel-wise processing
of queries scanning the stream, eliminating expensive input synchronization
operations for individual tuples.

For our approach, we implement a caching layer based on a ring buffer. Our
buffer has two main components, displayed in Figure 3.4. The first component,
the tuple buffer, stores fixed-size tuple data. This data includes all fixed-size
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Figure 3.4: Overview of the caching layer consisting of a ring buffer for fixed
size tuple parts and two string buffers used in alternation.

columns, such as integer, numeric, and floating-point values, as well as metadata
for variable-sized types, such as strings. In our example posts stream of Figure 3.1,
these are the values for the integer columns uid and score and the metadata for
the string columns username and content. The number of tuples to be held in this
buffer can be configured to fit the expected load. By only storing metadata for
variable-sized data and not the data itself [118], we ensure that all tuples have
the same size, allowing us to easily re-use slots without checking for overlaps
with still valid data.

The data for variable-sized types are instead stored in resizable buffers
pointed at by the metadata. In the exemplifying tuple in Figure 3.4, one can see
the two different storage formats for strings used by Umbra. Both formats first
store the 4 byte length of the string. Short strings up to a length of 12 characters,
such as this username, are stored inline in the remaining 12 bytes, requiring no
additional buffer storage. For longer strings, here for the content, we store a 4
byte prefix and an offset into a separate storage region. For streams, this region
is one of the string buffers. The prefix helps quickly answer some comparisons
and filter predicates without loading the full string. Note that Umbra picks the
string format for each individual string value, meaning a longer username for
another tuple might be stored externally.

In contrast to the fixed-size tuple data, we cannot overwrite a single ring
buffer for strings. When inserting a string at slot 𝑛 in the ring buffer longer
than the string of the tuple previously cached at slot 𝑛, it would at least partially
overwrite the string data of the tuple still held in slot 𝑛 + 1. This tuple is,
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Algorithm 3.1 Stream caching layer insert processing

1: function processInsert(Tuple t)
2: tid ← writeTid .fetchAdd(1)
3: bufferSlot ← tid mod bufferSize
4: odd ← ⌊tid/bufferSize⌋ mod 2
5: stringBuffer ← stringBuffers[odd]
6: if slot = 0 then
7: stringBuffer .clear()
8: for value ∈ tuple do
9: if value.isString() then

10: if stringLength(value) > 12 then
11: buffer .storeExternalString(slot , stringBuffer .store(value))
12: else
13: buffer .storeStringInPlace(slot , value)
14: else
15: buffer .store(slot , value)
16: /* Delay scan visibility until all previous tuples are visible */
17: while validTuples < tid - 1 do
18: wait()
19: validTuples ← tid

however, still accessible through the cache. To prevent overwriting still valid
and accessible tuples, we alternate between two string buffers for different runs
through the ring buffer, using one buffer for even and one for uneven runs.
Alternating between buffers guarantees that string offsets are valid at least until
the tuple is overwritten in the tuple buffer while still avoiding unnecessary
allocations.

3.2.3 Insert Processing
Having outlined the layout of our caching layer, we can describe the insert
process for stream tuples. While tuple-at-a-time inserts are also possible, we
optimize for bulk inserts from an external streaming broker like Kafka [96] or
SQL insert statements, e.g., reading from CSV files. The process is outlined
in Algorithm 3.1 conceptually for a single tuple. In our implementation, we
perform such inserts at morsel-granularity instead, collecting inserted tuples
thread-locally before merging them into the relation in bulk for performance
reasons. For each insert, we acquire a tuple identifier for the new tuple (Line 2).
This id determines the ring buffer slot to store the tuple in. Furthermore, it
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determines the string buffer to be used for external strings. Before writing the
first slot of the ring buffer, we additionally mark the corresponding string buffer
for cleanup (Line 7). Note that while there are no longer any direct references
into the string buffer from the ring buffer, we still do not free the memory
region to not interfere with queries still processing buffer entries that were just
overwritten. Instead, the last scan to finish on this string buffer will free the
associated memory when it is completed. We will discuss string buffer memory
management when discussing queries in Section 3.2.4.

Following, we write the tuple data into the ring buffer slot. For strings, we
decide between the two storage layouts outlined in Section 3.2.2 based on the
string length. All other values are stored in-place in the ring buffer. Finally,
we mark the tuple as valid to make it visible for scans (Line 19). To prevent
partially-written cache entries of parallel inserts from being accessible for scans,
we only mark new tuples as visible once all previous tuples are visible.

3.2.4 Query Processing
Through our specialized relation, the only operator in a query plan aware of
an input’s streaming nature is the table scan. All other operators can be kept
oblivious about the nature of their input. While this integration is minimally
invasive, it requires a careful design of the scan operator. Scans of regular
relations rely on table metadata to determine the range of tuples to scan at
query planning time which further determines the boundaries for the scan at
execution time. For streams, however, we cannot rely on the scan boundaries to
be known as tuples will still arrive during the query execution. Even cardinality
estimates for query optimization can be unreliable as past stream behavior
does not necessarily reflect future behavior. Therefore, we need to adapt query
processing in two areas to handle streams efficiently: query planning and scan
operator design.

Query Planning

For query planning, especially for join ordering, database systems rely on cardi-
nality estimates for scans and filter predicates. These estimates are sourced from
statistics maintained by inserts and updates to the relation. We cannot assume
that previous statistics are available and reliable for streams. However, we still
want the optimizer to produce an optimized query plan, especially to reduce
materialized intermediate result sizes in the case of high-volume data streams.
We assume streams are of the largest cardinality and, therefore, want to only
materialize them if necessary. While the optimized query plan of Figure 3.2b
only materializes the aggregated scores per user, an unoptimized plan without
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Algorithm 3.2 Stream scan operator morsel picking

1: function selectScanRange
2: morsel ← {}
3: while now() − lastPick.load() < timeout do
4: position ← validTuples.load()
5: limit ← lastScanned .load()
6: loop
7: if position ≤ limit then
8: updateLimit()
9: break

10: lastPick.exchange(now())
11: if pickRange(morsel, position, limit) then
12: return morsel
13: return ScanDone

statistics might first join the users and posts relations, potentially materializing
the posts stream in the join hash table. To avoid this, we hint to the optimizer
that streams will always comprise the most data, thus ordering them to the
probe side of joins.

Scan Operator

In contrast to scan operators for durable relation, our stream scan operator has
to mask two things: unknown input bounds and ephemerality of tuples. As
we, apart from the scan, entirely rely on existing database operators for query
processing, we also have to adhere to the execution model of the database system.
In our system Umbra, this is the producer-consumer model [117]. Generally,
database execution models will process an operator, or, in our case, a pipeline,
entirely before starting working on the next. Consequently, they cannot handle
late arrivals of tuples. Therefore, we must determine when a stream has been
fully processed at the scan before signaling that query processing can move to
the next task. There are two different possibilities to achieve this: Sending a
dedicated end-of-stream tuple or message signaling that the input is depleted or
detecting input depletion from metadata, such as arrival rate. We focus on the
latter option, which is most consistent with our approach of handling streams
transparently using an SQL interface.

For simplicity, we rely on session window semantics to achieve this, advanc-
ing to the next step of query processing when no new tuples have arrived for a
predefined timeout. For our integration into Umbra, we integrate this session
window semantic into the morsel selection [99] where range-based metrics
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Figure 3.5: Overview of the four phases of the stream scan operator. Locating
the desired range in the ring buffer 1 , copying the range to the scan-local
buffer 2 , checking for potential conflicts 3 and reporting the tuples to the
downstream operator 4 .

reside for regular scans. Algorithm 3.2 outlines the resulting strategy. Before
obtaining a scan range, we check the timeout condition (Line 3). If no thread
detected new arrivals during this timeout, we continue with the next query pro-
cessing task as we consider the stream input depleted. Following, we fetch the
latest range information and check if tuples are available for processing (Line 7).
If not, we return to the timeout check of line 3. Once tuples are available, we
update the timeout condition (Line 10) and try to pick a morsel. Note that the
unchecked change to the timeout condition can lead to a slight imprecision for
the timeout, as it might lead to the loss of a more recent timestamp. However,
we deem this acceptable as it allows us to reduce synchronization overhead.

We still must mask the second property of streams, their ephemerality. The
ephemeral nature of streaming data does not impact the range selection outlined
above, which is performed entirely on tuple ids. However, once the scan tries
to access the corresponding values in the tuple buffer, we must ensure that the
scan can never encounter values overwritten by concurrent inserts. This is
especially important for string values with externally stored data, such as the
content value of Figure 3.4, where trying to access an invalid value could lead to
a segmentation fault. Figure 3.5 depicts our scan strategy.

First ( 1 ), we find the selected range in the buffer based on the tuple ids
and prevent the deletion of the corresponding string region through reference
counting. Following ( 2 ), we copy all fixed-size tuple data in the range into
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a separate buffer residing in the scan operator. After copying all tuples in the
range, we check to see if concurrent writes have overwritten any tuples that we
have scanned ( 3 ). In case of an overlap, we cannot guarantee that all tuples
in the scan buffer are the desired tuples and, thus, have to abort the scan. If all
scanned tuples are still valid, we report them to the downstream operator of
the pipeline 4 . At this stage, the first downstream operator materializing the
tuples relocates the out-of-place content for strings into query memory, thereby
protecting them from deletion and preventing segmentation faults in case of
concurrent inserts. After all tuples of the scan range were processed by the
downstream operators of the scan’s pipeline, we release our reference to the
relation’s string buffer, freeing the corresponding memory region if we held the
last reference.

3.3 Evaluation
Having outlined our relation-based approach to in-database stream processing,
we evaluate its performance against two popular dedicated stream processing
engines, Apache Flink [29] and Apache Spark [179]. We focus our evaluation
on data ingestion rates, scalability, and performance on a mix of simple stream
aggregation and complex analytical queries.

3.3.1 Setup

We perform all experiments in this section on a server equipped with 256 GB
DDR3 main memory and an Intel Xeon E5-2660 v2 CPU with 28 physical cores.
All data for the experiments is stored on a Samsung 970evo NVME SSD. Results
reported in this section are based on the geometric mean of 5 runs taken after 2
warmup runs.
Workload. We base our experiments on the TPC-H benchmark [2] at scale
factor 100. To transform TPC-H to a stream analytics workload, we consider the
largest relation by far, lineitem, to be a stream. All other relations are considered
durable and materialized at the start of a query. Consequently, we only include
queries with exactly one scan of the lineitem relation in our experiments. Due
to issues with Flink, we had to remove queries 5 and 8 from our benchmark. We
do not print the query result in any of the systems.
Flink. We implement a standalone Apache Flink executable based on Flink
version 1.6.1 and express all relations using the batch table API based on external
CSV data. Further, we allow Flink’s optimizer to re-order joins for query pro-
cessing using the TABLE_OPTIMIZER_JOIN_REORDER_ENABLED flag. We submit
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Figure 3.6: Scalability of stream insert processing for all three systems, normal-
ized to each system’s single-threaded performance.

all queries to Flink using its SQL interface. All intermediate results that Flink
requires for processing are located in an in-memory file system.
Spark. We implement our TPC-H-based workload in Spark version 3.3.2. All
queries are expressed using the Spark SQL API on external CSV data frames.
Jobs are submitted to a local standalone spark cluster using spark-submit.
Umbra. We implement a streaming relation in Umbra as outlined in the previous
section. Further, we create all relations except for lineitem as durable relations
in Umbra. Lineitem is created as a stream using the interface described in
Section 3.2.1. We subtract the session window timeout from Umbra’s query
runtimes as the system is idle during this period. Both Flink and Spark are run
in non-windowed configuration and are, thus, not introducing similar delays.

3.3.2 Stream Ingestion
As a first experiment, we examine the data ingestion rate offered by the three
systems. For this, we fully insert the lineitem relation once into each system. As
Spark and Flink rely on pull-based semantics for efficient analytical queries and
do not offer full support for push-based inserts, we express inserts to them as
SELECT COUNT(*) FROM lineitem queries. For Umbra, we use the bulk insert
command COPY lineitem FROM CSV.
Scalability. First, we compare the scalability of the systems. Scalability is
crucial for data stream processing, as the volume of streams can only be handled
efficiently on many-core machines and in clusters. Figure 3.6 depicts the scala-
bility along the number of threads for each system, normalized to the respective
single-threaded performance. One can see that all systems scale well to the
available physical cores. However, once the systems reach simultaneous multi-
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Figure 3.7: Insert throughput for processing the lineitem stream in Umbra, Flink
and Spark in million tuples per second.

threading (SMT), scalability reduces as threads compete for the same physical
resources. While Flink and Umbra scale almost identically, Spark manages to
outperform them in this regard consistently.
Insert Throughput. In addition to scalability, we investigate the insert through-
put for all approaches. Figure 3.7 shows the insert performance in millions of
tuples per second along the number of insert threads. While Spark offered
the best scale-up of all systems, it is consistently outperformed by both Flink
and Umbra when considering the achieved insert throughput. Overall, Flink
offers the best insert performance, outperforming Umbra by a factor of 1.9 for
32 threads. This advantage can be attributed to the slight difference in the
semantics of our insert queries. Our approach has to fully process all columns
to materialize them in the ring buffer. In contrast, Flink can only count the
number of rows without parsing them entirely. While we expect this advantage
to disappear for more complex queries where multiple columns must be parsed,
it is very beneficial for such simple workloads.

3.3.3 Query Performance

Having analyzed the data ingestion capabilities of all approaches, we now focus
on their analytical capabilities. For this, we run a combined workload of the
twelve TPC-H queries selected for our benchmark, running each query once.
As Umbra has to process inserts and queries in parallel, we require at least
two threads per run. For Umbra, the specified number of threads is the total
number available to the system, which must be shared between query and insert
processing. We concurrently schedule two queries in Umbra, one inserting
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Figure 3.9: Relative speed-up of Umbra over Flink and Spark for analytical query
processing along the number of worker threads.

the lineitem stream from CSV and another evaluating the TPC-H query on the
inserted stream.
Query Scalability. We first investigate the scalability of the three systems and
show the results in Figure 3.8. Scalability is reported over the geometric mean
of all queries. Again, all systems scale well to the number of physical cores,
with Umbra and Spark scaling slightly better than Flink. Umbra demonstrates
the best overall scalability, outperforming Spark once the approaches employ
simultaneous multithreading.
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Figure 3.10: Overhead of queries to data ingestion for Flink, Spark and Umbra
along increasing thread count.

Relative Query Performance. Focusing on query performance, we examine
the relative performance of Spark and Flink compared to Umbra. Figure 3.9
depicts the resulting speed-up of Umbra for an increasing number of threads.
Even though Umbra has to split the available workers between insert and query
processing queries, it consistently outperforms both Flink and Spark, indepen-
dent of the number of available worker threads. Furthermore, we see that the
advantage Flink had when ingesting data into the system does not transfer to
query analytics, where multiple columns have to be parsed. Furthermore, we
can see the trends from the query scale-up: The relative speed-up of Umbra over
Spark stays constant until SMT is reached, whereas Flink’s relative performance
degrades with increasing thread count.

Overhead over Stream Ingestion. Finally, we want to investigate the over-
head that queries introduce in the system on top of the work for data inges-
tion. Figure 3.10 shows the relative overhead that evaluating our TPC-H-based
benchmark creates for each system. The overhead of Spark is nearly constant.
However, we see two contrary developments for Flink and Umbra. While the
overhead of Umbra decreases with increasing thread count, Flink’s queries scale
worse than its inserts. The drastically higher overhead for Flink confirms our
assumption of Section 3.3.2 and indicates that Flink heavily optimizes for the
count (*) query that we used to emulate inserts. For Umbra, we expect the
observed overhead as threads are divided between queries and inserts. However,
more fine-grained scheduling could further reduce the overhead.
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3.3.4 Discussion
All three systems demonstrate excellent scalability for both insert and query
processing, which is necessary to analyze large-volume data streams on modern
hardware and in cluster settings efficiently. While Umbra consistently outper-
forms dedicated stream processing engines for complex analytical queries, Flink
demonstrates an advantage for simple stream aggregations such as count star.
This performance advantage can be expected, as Umbra has to fully parse tuples
to store them in the ring buffer for analysis. However, it also indicates the need
for full on-arrival processing of such queries, which we investigate in the next
chapter of this thesis. Once queries require filter predicates and aggregates on
individual columns or access to durable relations, the advantages of using a
database system for stream processing become amply clear. In addition, the
overhead of insert processing can, in theory, be amortized by attaching multi-
ple concurrent queries to a single data stream. However, this requires careful
scheduling to avoid starving either insert or query threads.

3.4 Summary
In this chapter, we design a technique for relation-based stream processing
in relational database systems. Relying on a ring-buffered relation for stream
processing provides high ease of integration for existing database systems,
enabling database systems to handle stream-enrichment queries combining
transient with durable data. To demonstrate the applicability of this relation,
we integrate it into the code-generating Umbra database system.

Using the implementation within Umbra, we show the performance of our
streaming relation in a number of end-to-end benchmarks against dedicated
stream-processing engines. Our approach consistently outperforms dedicated
stream processing engines on analytical streaming workloads while requiring
only minimal changes to the database system’s execution model.





CHAPTER 4
Continuous-View-Based Stream

Processing
Excerpts of this chapter have been published in [170].

With contributions from Tobias Schmidt.

Relation-based stream processing, as outlined in the previous chapter, is an
excellent solution for stream enrichment in database systems. However, while a
relation-based stream integration offers a high ease of integration, its applica-
tions are limited to single finite streams with session-window semantics, lacking
functionality for more complex analytical workloads. One way databases sup-
port long-running queries over multiple inputs is through materialized views.
These views abstract from the changes to the database contents, such as inserts,
through maintenance strategies, either directly propagating changes for newly
arriving tuples or updating the materialized query result on demand in a de-
ferred fashion. These properties make materialized views a great conceptual fit
for complex stream analytics in database systems.

Consequently, we propose a new type of view, which we call continuous
view, for the emerging workload of complex analytics of high-velocity data.
These views are split for maintenance between inserts and queries, as outlined
in Figure 4.1. By splitting the maintenance work, we achieve the insert rates
required for real-time stream processing, while simultaneously supporting fast
analytical queries. We integrate continuous views into our newly developed
Umbra database system [118]. Continuous views exploit Umbra’s state-machine-
based approach to query execution to split the query efficiently for maintenance.
Inserts perform the first logical steps for each arriving tuple, i.e., the necessary
calculations for the first logical query pipeline (red). Only at times when the
result of the view query is required are the remaining processing steps for the
changes performed (purple).
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Figure 4.1: Exemplifying split of a continuous view query plan for maintenance.
Parts that are evaluated for each insert are marked with a grey arrow. Parts
with a white arrow are evaluated for each query to the view. The framed part is
evaluated once at view creation time.

In contrast, specialized systems for high-velocity data, often called Stream
Processing Engines (SPEs), do not offer functionality to internally manage and
modify historic data. Besides, many state-of-the-art SPEs such as Flink [29],
Spark [179], and Storm [154] fail to properly utilize the underlying modern
hardware, as shown by Zeuch et al. [180].

Modern view maintenance strategies such as higher-order incremental view
maintenance (IVM) [87], on the other hand, are optimized for query-heavy
workloads. While they offer high view refresh rates to better cope with high-
velocity data, they refresh views on each insert and thereby optimize the query
performance. By always having the current state of the view available, they
trade insert for query performance. However, we argue that these constant full
refreshes are not required for many insert-heavy streaming use cases. We will
support this argument by using a small contrived example of an Industry 4.0
manufacturing plant, which we will also use as a running example throughout
this chapter:

Example: Consider a modern just-in-time car manufacturing plant that aims at
keeping parts stored for as little time as possible. Parts are delivered to work-
stations just when they are needed for production. To avoid costly production
halts, a car company might monitor the resupply needs with a query such as
shown in Figure 4.2. Usage and resupply of parts at workstations are tracked
automatically using the stream relations part_usage and part_restock for which
exemplifying entries can be found in Figure 4.3. The query reports those work-
stations where parts are running low, indicating problems in the supply chain.
It is sufficient to check the current query result each second, or even only a few
times per minute, to detect problems in time. Inserts, on the other hand, happen
regularly, continuously, and with high velocity and can easily reach the tens or
even hundreds of thousands per second.
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with used as (
select part, station, count(*)
from part_usage
group by part, station

),
restocked as (
select part, station, count(*)
from part_restock
group by part, station

)
select r.part, s.location, s.supplier
from station s, used u, restocked r
where s.id = u.station and

u.station = r.station and
u.part = r.part and
r.count - u.count < 5

Figure 4.2: Continuous query monitoring part supply on workstations within a
manufacturing plant.
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Figure 4.3: Exemplifying part_usage, part_restock and station relations. station
is considered a static table, part_usage and part_restock are streams.

Traditional view maintenance algorithms would update the at times expensive
deltas for each tuple and refresh the view fully, even when the current result
is not required. SPEs, on the other hand, are able to monitor the difference in
parts for high insert rates. However, they lack the functionality to automatically
combine the result with the necessary information held in databases without
any additional overhead. In our example, SPEs would miss details about the
station and the supplier in charge which are crucial for the query.

Our integration allows the user to access continuous views in regular data-
base queries, and the underlying continuous queries have access to the database
state just like regular views. Further, continuous views can be created using
standard SQL. Umbra uses data-centric processing and the producer-consumer
model [117] for compilation. Using the same concept for our continuous views,
we keep the overhead of stream inserts low to compete with SPEs while simulta-



34 CHAPTER 4. CONTINUOUS-VIEW-BASED STREAM PROCESSING

neously eliminating the need for a full stream or table scan at query time. In the
categories defined by Babu et al. [16], continuous views are result-materializing
queries with updates and deletes. While some research has been conducted
on IVM maintained stream views in database systems [176], and continuous
views also exist in open-source projects [124], we are not aware of other work
proposing specialized view maintenance strategies for high-velocity stream
workloads. In this chapter, we address the following key points:

• We present a novel strategy for view maintenance, especially for views
on stream inputs, that divides the work between inserts and queries. Our
approach can support extensive analytical queries on streams without having
to materialize the full stream input.

• We integrate stream processing using continuous views into our general-
purpose database system Umbra [118], using the query optimizer as well as
specialized code generation to fully utilize the underlying hardware.

• We describe how continuous views are created from regular SQL statements
using only standard operators, thus allowing easy integration into existing
systems.

• We demonstrate the capabilities of our system using the AIM benchmark [27],
comparing it to state-of-the-art SPEs. We evaluate the performance limits
using microbenchmarks and offer a comparison to the scale-up SPE Trill [31]
and a database engine implementing higher-order IVM, DBToaster [87], on
TPC-H.

The rest of this chapter is structured as follows: In Section 4.1 we give a brief
overview of the Umbra system developed by our group, focusing on the aspects
relevant for this work. Afterward, we describe our novel split maintenance
strategy for continuous views in Section 4.2. Section 4.3 shows the capabilities
of our approach against state-of-the-art baselines and on a microbenchmark. In
Section 4.4, we discuss relevant related work before summarizing in Section 4.5.

4.1 Background
As stated in the introduction of this chapter, the continuous views are integrated
into our Umbra database system [118] and exploit some of its concepts to achieve
fast and split view maintenance. While these concepts are outside the scope of
this chapter, we briefly describe them in this section to help the reader better
understand our approach. We provide a more detailed description of the relevant
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Figure 4.4: Pipelines and corresponding logical steps for the query of Figure 4.2,
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Table 4.1: Steps of the exemplifying query of Figure 4.4, categorized into the
step categories defined in Section 2.2.

Category Steps

Global Initialization 1
Local Initialization 2 , 6 , 10 , 14 , 18
Thread-Local Execution 3 , 7 , 11 , 15 , 19
Merge 4 , 8 , 12 , 16
Local Cleanup 5 , 9 , 13 , 17
Global Cleanup 2

components in Chapter 2. Like its predecessor HyPer [117], Umbra compiles
query plans into machine code. However, in contrast to HyPer, Umbra does
not produce a code monolith and instead relies on multiple code fragments to
represent a query as a conceptual state machine. Each state of the state machine
corresponds to a code fragment. Transitions switch between code fragments
and, thus, between different phases of query execution.

We refer to the states and their associated code fragments as steps. These
steps form the building blocks we use for our split maintenance strategy. All but
two steps of a query correspond to a pipeline, a connected path in the logical
query plan wherein a tuple does not have to be materialized between operators.
An example of such a path can be seen between the scan of part_usage and the
grouping in pipeline 2 of Figure 4.4. Pipeline 2 comprises the logical steps for
evaluating the used CTE of Figure 4.2, a simple aggregating group by. Umbra
splits these steps into even finer-grained steps and might execute them in a
slightly different order. To better illustrate the role of the steps in the execution
of the query in Figure 4.2, we show the individual steps for all pipelines in
Figure 4.4 and their categories in Table 4.1.

During execution, steps have access to two categories of query state: local
and global state. Local state is used for intra-pipeline communication and
state-keeping within steps and is not shared between pipelines. It is, however,
possible for multiple steps of the same pipeline to access the same local state.
Consequently, pipeline steps must be executed in the pre-defined order. Each
worker thread has its own copy of the local state, avoiding contention between
workers. The local state is designed to be inherently thread-local. In contrast to
the state model for regular queries outlined in Section 2.3, we do not re-use the
memory for local state for different pipelines and instead allocate memory for
each local state. Keeping the local states of all pipelines separate allows us to
have multiple active pipelines per query, which we utilize for our maintenance
strategy. The global state is used to share information between pipelines, and
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all threads working on a query have access to the same instance of the global
state. Therefore, modification of the global state within parallel steps, e.g., when
merging thread-local hash tables, requires data-dependent synchronization.

4.2 Approach
Traditional approaches to materialized view maintenance fully process tuples.
In deferred maintenance, all tuples are either buffered in memory or stored
on disk. When the view result is requested, the database will reevaluate the
query from scratch, requiring it to scan the materialized relation. All tuples,
therefore, need to be materialized and kept accessible at a moment’s notice.
This is problematic for unbounded high-velocity data streams, which are often
desired to be processed in an exactly-once non-materializing fashion.

For our system, a full materialization of the streamwould eithermeanwriting
it to disk, or keeping it in memory. The first option would increase the disk IO
tremendously, affecting other disk operations for other queries. Keeping the
tuples in memory, on the other hand, reduces the memory available for query
processing. Both could dampen the overall system performance, which means
that we therefore have to rely on the inserter to handle the tuple.

Other approaches processing new tuples at insert time, like eager and in-
cremental view maintenance, also avoid the high storage cost of stream data.
However, they propagate the full change immediately. This is not trivial at the
high frequency required for stream processing, and most systems require hand-
written queries to handle the updates. Even modern high-velocity approaches
tackling this problem without manual user input, like DBToaster, require spe-
cialized operators with support of deletes and updates at any part of the query.
This makes it hard to integrate this approach into an existing database system
efficiently. For example, DBToaster only exists as a stand-alone solution or as
an external library, not fully integrated into a database system.

4.2.1 Split Maintenance Strategy
Our approach can be seen as a combination of eager and deferred view main-
tenance, providing the best of both worlds. To keep the introduced overhead
low, we propose processing inserts only as far as needed. In general, this means
we want to process the input until the point where it has to be materialized
for the first time, that is, the first pipeline breaker. This allows us to perform
initial processing steps at insert time while reducing the memory consumption
compared to deferred maintenance. Using pipeline breakers as a natural storage
point also allows for easy integration. Tuples are never invalidated at pipeline
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breakers, e.g., join build sides. After materialization in pipeline breakers, the
remainder of the query is oblivious to the nature of the input. Therefore, we do
not require specialized operators that support removing or updating tuples at
any given time, as is needed for incremental view maintenance.

Further, in contrast to deferred view maintenance, we never need to mate-
rialize the full stream inputs. This greatly reduces the storage cost of stream
processing. In the used CTE of Figure 4.2 in pipeline 2 of Figure 4.4, e.g., we
would insert the tuple into the hash table of the grouping operator and update
the aggregate accordingly. While in this simple query the overhead of updating
the result tuple is negligible, this is not the case for more complex queries.

Consider, e.g., the query plan for the full query displayed in Figure 4.4. The
query still is rather simple; however, fully processing new tuples in this query is
not. Inserts into pipeline 2 would trigger a recalculation of the join in pipeline
5. Since we do not inherently support updates in and deletes from join build
sides in our system, the other event stream would have to be fully reprocessed.
This basically requires us to run steps 7 to 19 for every insert if we process
all tuples fully. Once the tuple is materialized within the first pipeline breaker,
finalizing query processing when the query result is required is possible by
running the remaining steps for the other pipelines. We will use the query in
Figure 4.4 as a running example throughout this chapter, assuming stations to
be a regular database table.

This approach benefits from Umbra’s novel state machine approach to query
processing wherein we can stop and delay processing after any of the steps
enumerated in Figure 4.4, and even run multiple input pipelines independent
from one another. We use the remainder of this section to outline the supported
queries, the different phases of the maintenance, and the integration into regular
database query processing.

4.2.2 Supported Queries
Similar to SPEs, our system restricts the queries it supports to protect the user
from undesired side effects, such as state explosion and ambiguous query results.
In the following section, we describe the rules for queries in Umbra. Moreover,
we offer an overview of the supported queries in other systems.

Umbra

For Umbra, Figure 4.5 visualizes and summarizes the most important rules that
we motivate in the following section.
Input Pipelines. We require the first pipeline breaker of every stream input
to be a grouping operator, as shown in the first row of Figure 4.5. This reduces



4.2. APPROACH 39

Infeasible

St
re

am
-S

tr
ea

m
St

re
am

-R
el

at
io

n

Supported

⨝
SR

Γ

⨝
SR

Γ

⨝
SS

Unaggregated stream in output All streams are aggregated

Unaggregated stream-stream join Join of aggregated streams

Γ

⨝

S

Γ

S

Figure 4.5: Supported and infeasible queries for continuous views. Streams
are marked S and regular relations R. Pipelines containing streams are dashed.
Subtrees containing no streams are not restricted.

the risk of state explosion compared to allowing arbitrary pipeline breakers.
Most pipeline breakers, like sorting or join build-sides, would still materialize at
least parts of the stream leading to memory shortages that would impact the
performance of the system. As the grouping itself is mostly oblivious about
its input, it is still possible to query the entire stream by grouping for a key if
this is desired by the user. This would, however, lead to the entire stream being
materialized.

Transactions. For us, streams are inherently not transactional. Keeping streams
in a transaction would mean that once an analytical query is started within
another transaction, newly arriving stream tuples would not qualify for this
query. The user, however, will always expect to see the current state of the
stream, independently of the current transaction. We still want to isolate the
continuous view from changes to regular tables. This isolation is necessary
to guarantee that previously reported join results are not invalidated by later
arriving tuples. Consider, e.g., a join as in the first row of Figure 4.5. Removing a
row from the relation on the left-hand side would mean that results reported for
that tuple as join partner are no longer valid. This would lead to ambiguous and
even inconclusive results for the user, which we want to prevent. To achieve this
isolation without requiring transaction handling, a continuous view reads all
committed changes at creation time and uses exactly this state of the database
throughout its lifetime. This isolation furthermore allows us to run pipelines
not involving streams only once and keeping the results cached. In essence, this
means views read the committed state of all relations once at creation time [119].
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Joins. Streams are often problematic for joins, and most SPEs, therefore, restrict
joins in some way. Joins of unbounded streams without windowing can lead to
a state explosion as both sides would need to be fully materialized to ensure join
correctness. While there are viable solutions for this problem in many SPEs, in
the form of windowed joins, we want to allow queries spanning entire streams.

We plan to enable windowed processing based on algorithms for persisted
data [101] in a future version. Since even non-blocking joins like the XJoin [155]
are not designed to handle unbounded inputs, we ensure that streams are on the
probe side if only one input depends on a stream. This way, we never have to
materialize the stream and can simply probe the pre-calculated build side. For
stream-stream joins we utilize the restrictions mentioned above, forcing streams
to be grouped. We further extend this restriction and require both inputs of a
stream-stream join to be grouped as seen on the bottom of Figure 4.5. When
joining only previously grouped streams, we can ensure that we do not report
join results that would later be invalidated by new tuples arriving on either
side, again preventing inconclusive results in the view. We do not restrict joins
between regular tables.

Other Approaches

To better illustrate how the rules motivated above compare to existing systems,
Table 4.2 provides an overview of natively supported features of similar stream
processing approaches. We group the approaches into specialized SPEs and
stream processing in the context of databases. The table is based on features
described in the documentation of the specified version. While some of the
described systems have additional restrictions and features, we believe the table
provides a good overview of those most important.

One can see that Umbra offers an extensive functionality, especially for
joins, second only to DBToaster. Further, there is a notable difference in the
focus of the systems. While the SPEs focus on windowed queries with limited
join options, the in-database approaches offer only basic or manual windowing.
However, they support more complex queries and even manage historic data
internally. Umbra’s restriction of joins only applies to ungrouped streams and
can be bypassed, e.g., by grouping for a key. On the downside, this will likely
lead to a performance decrease. Information in streams has to be condensed for
analysis, and grouping is a common way to achieve that. Therefore, we argue
that requiring the grouping of streams does not gravely limit the applicability
of our approach. Queries without grouping or aggregation, i.e., map-like or
filtering queries popular for SPEs, are also possible within Umbra through the
relation-based stream processing technique outlined in Chapter 3.
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Table 4.2: Comparison of stream processing approaches. Dashes indicate the system’s documentation either directly states
a feature is not supported, or it does not contain enough information to indicate support.

Stream Processing Engines In-Database Stream Processing

Aspect Flink
[29]

Spark
Structured

[179]

Storm
Trident
[154]

Trill
[31]

Saber
[90]

PipelineDB
[124]

DBToaster
[87]

Umbra

Version 1.10 3.0.0 2.2.0 2019.9.25.1 7be036c 1.0.0 2.3 -
Stream Deletes
and Updates

- - - - - - Yes -

Early Results Limited Limited Windowed Yes Windowed Yes Yes Yes

Historic Data External
External
read-only

External
read-only

External
read-only

-
Internal
w/ Postgres

External
read-only

Internal

Scale-Up Yes Yes - Yes Yes Limited - Yes
Scale-Out Yes Yes Yes - - - - -
Aggregates Extensive Basic Extensive Extensive Basic Extensive Basic Extensive

Windowing
Built-in
support

Built-in
support

Built-in
support

Built-in
support

Built-in
support

Built-in
support

Using
GROUP BY

Using
GROUP BY

Stream-
Joins

Equi Yes Yes∗ Batchwise Yes Windowed Yes‡ Yes Yes‡§

Theta - Yes∗ - - Windowed Yes‡ Yes Yes‡§

Outer Equi Windowed∗† Batchwise† Yes† - Yes†‡ - Yes†‡§

Semi Yes - - - - Yes†‡ Yes Yes†‡§

Anti Limited - - Yes† - Limited†‡ Yes Yes†‡§

∗Only unaggregated streams †Single direction ‡No stream-stream joins §Restricted only for ungrouped streams
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4.2.3 Query Planning
Like all other tables and views, continuous views are created using the regular
SQL interface. This means we have to enforce the aforementioned restrictions
in the semantic analysis of the statement and reshape the query plan according
to our needs. As a first step, we translate the query representing our continuous
view into an unoptimized logical query plan. Performing a depth-first traversal
of the query plan, we remember for each operator whether its input contains a
stream, and if so, whether there is a grouping in between. Given this mapping
we modify the query plan in a second traversal, taking steps for three operator
types:
Group By. We again keep track of groupings, but this time we remember if
there is a grouping higher up in the tree. Each time we encounter a stream input
we ensure that its parents contain a grouping, thus verifying we do not store
ungrouped streams.
Order By with Limit. Contrary to stream inputs, we ensure that the parents of
sorting operators do not include a grouping. As we require stream inputs to be
grouped somewhere, we know that there is a grouping below. By doing so, we
avoid sorting ungrouped streams. Sorting operators without a LIMIT clause are
simply dropped per the SQL standard. As Umbra, like many other systems, does
not guarantee tuples to be processed in scan order, scanning the materialized
result at query time will anyway lose the order. Therefore, if a sorted result is
desired, it has to be requested when querying the materialized view.
Join. Joins require the most intrusive modification of the query plan. These
depend on the order and stream containment of the join inputs. We say an input
pipeline contains a stream if there is a stream input somewhere upstream of the
pipeline. If no input contains a stream, we leave the join unmodified. When both
inputs have a stream, we ensure that both streams have a grouping operator
between the join and the stream input using the pre-calculated containment
map.

In cases where only one input contains a stream, we try to modify the query
plan to have the stream on the probe side of the join, independent of grouping.
This allows us to later pre-calculate the build side and rerun the join for changed
input with little overhead. While this is easy for simple uncorrelated joins
independent of the join type, switching the input is not always possible. For
correlated joins, e.g., only some cases can be unnested in a way that supports
switching the inputs. When switching is not possible, we again simply reject
the view.

As the query of our running example is too simple to show all these modi-
fications, we show them in a more complex plan in Figure 4.6. As a first step,
the order by without a limit is removed ( 1 ). Afterward, we modify both joins
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Figure 4.6: Modifications performed on a query plan prior to compilation.
Streams are marked S and regular relations R. Pipelines containing streams
are dashed. Red color marks the currently modified operator. Removing unused
sort 1 , moving streams to the probe side of joins ( 2 and 3 ) top down, and
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Figure 4.7: Generated callbacks for initialization, insert handling, and query
evaluation for the running example. Colors, steps and step numbers are consis-
tent with the query plan shown in Figure 4.4. n denotes a new step required
for rebind.

to have the streams on the probe side ( 2 and 3 ). Note that in 3 , the join
is modified even though there is no direct stream input, only one upstream
through the other join. After enforcing the aforementioned restrictions, we
optimize the query plan using Umbra’s optimizer, ensuring the restrictions are
not violated by optimizations.

4.2.4 Code Generation
After adapting the logical query plan for a continuous view, we look at the code
generation for the identified phases of maintenance. As outlined in Figure 4.1,
we distinguish three different tasks: The view initialization, handling stream
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inserts, and query evaluation. Each of these tasks consists of individual steps of
pipelines, like those described in Figure 4.4. In general, each pipeline of a query
plan is mapped to exactly one of these tasks. In the following sections, we will
refer to the pipelines as follows:
Static Pipeline: A pipeline that has no stream input, either directly or through
one of its child pipelines (pipeline 1 in our example). These pipelines’ steps are
handled by the view initialization.
Stream Pipeline: A pipeline that directly processes a stream input (pipelines 2
and 4).
Upper Pipeline: A pipeline that has an indirect stream input, used for query
evaluation (pipelines 3 and 5).

To better illustrate the generated callbacks discussed within this section, we
summarize the steps involved in Figure 4.7.

Initialization

After having established the fundamental logical components of each pipeline,
we describe which steps have to be run at view initialization, i.e., at view cre-
ation time. Based on a query plan modified according to the rules described
in Section 4.2.3, we can prepare the view. The initialization consists of two
main tasks: (1) processing static pipelines, and (2) preparing all stream pipelines
for inserts. Below, we describe these steps in theory and using our running
example.
(1) As discussed before, we do not want changes to the view’s table inputs to be
propagated to the view. Therefore, we can calculate the results for all pipelines
affected only by non-stream inputs exactly once. By doing this at view creation
time, we immediately gain independence from the underlying database tables
as we cache the results in memory. As a first step, we generate the code for the
global setup 1 . In the following step, we handle all steps of static pipelines. One
can easily see that static pipelines always form subtrees in the views query plan,
with the root being the operator where the pipeline intersects with a stream or
upper pipeline (pipeline 1). Each of these subtrees is handled as it would be in
regular query processing, in a left-to-right bottom-up fashion. For our example,
this means generating code for steps 2 to 5 .
(2) In addition to executing static pipelines, we also initialize all stream pipelines.
Delaying pipeline initialization to the insert callbacks would drastically increase
the insert time for a few tuples. For regular queries, Umbra ensures that there is
exactly one worker thread accessing a local state instance. Currently, we cannot
keep this strict worker-to-state mapping for performance reasons, and therefore
have to be aware of possible race conditions. Consider, for example, a second
insert callback arriving at a pipeline that is currently being initialized. At this
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point, an insert might be performed for a not fully allocated hash table, resulting
in a lost tuple, or worse, a corrupt memory access. In our example we have two
stream pipelines, pipelines 2 and 4, and therefore generate code for steps 6

and 14 .

Insert Handling

Handling inserts is the most performance-critical part of the view’s maintenance,
as this part is performed for every single tuple upon arrival. Therefore, we want
this step to execute as little code as possible by only running the thread-local
execution. We modify the local execution code slightly to process single tuples
instead of morsels. This way, we can later call this step in a callback fashion for
each inserted tuple. However, as inserts in Umbra are processed morsel-wise,
this will still lead to morsel-wise processing of updates for larger inserts. The
callback will then be triggered for each tuple within the morsel. These callbacks
are generated for each stream pipeline independently. As we have two stream
inputs for our example in Figure 4.4, we also generate two callbacks consisting
of steps 7 and 15 respectively.

Query Evaluation

Finally, we need to generate the code to combine the cached static pipelines
and the dynamic stream pipelines to obtain the query result. This step is again
composed of two main parts: (1) processing all upper pipelines, and (2) resetting
the view’s internal state to be ready for the next query.
(1) As a first step, we want to execute the merge phase of all stream pipelines.
This makes all locally held results available for the upper pipelines using the
global state. Additionally, we reset the stream pipelines by running the local
cleanup and initialization. This way we make the local state available for new
inserts as fast as possible. For our running example this translates to steps 8 ,
9 , and 6 , as well as 16 , 17 , and 14 , in that order. After these steps have
been completed, we can run all upper pipelines as if they were a separate query.
In our running example, this includes pipelines 3 and 5, and therefore, steps
10 to 13 , as well as 18 and 19 . Finally, we generate code to store the view’s
query result, similar to a materialized view. For one thing, this allows us to
compare different versions of the view with one another. Furthermore, slightly
outdated versions of the view can then be read without having to run the query
evaluation if requested.
(2) After materializing the view’s current result, we have to reset the internal
state. We cannot, however, clean up and reinitialize the global state as we did
for the local state. The global state still holds all cached results for static and
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Algorithm 4.3 Continuous view insert handling

1: function processInsert(ContinuousView v, Queue q, Mutex m, Tuple t)
2: if 𝑚.lock() successful then
3: if 𝑡2 ← 𝑞.dequeue sucessful then
4: /* execute matching insert callback of Figure 4.7 */
5: processTuple(𝑡)
6: v .hasNewInput ← true
7: 𝑚.unlock()
8: else
9: 𝑞.dequeue(𝑡)

stream pipelines, which would be lost at a full reset. For our example, we would
want to avoid rebuilding the build side of the join between pipelines 1 and 5.
Most operators already provide some functionality for such a reset in the form
of an operator rebind, normally used for recursive queries. We can safely rebind
all operators that exclusively belong to upper pipelines, i.e., all except those that
are top-level operators of stream pipelines and static pipeline trees. Further, we
reset all join operators that have a stream pipeline on the build side, e.g., the
join between pipelines 3 and 5 ( n in Figure 4.7).

Resetting states is necessary to prevent tuples from being processed multiple
times for the same query: In between queries, all tuples are held in local hash-
tables, such as the grouping of the used CTE of our example. If we do not clear
the local hash table after a query, the tuples would be included in both the local
and global state at the same time. The next query would then again merge the
local state into the global state and, thereby, include the tuples twice.

4.2.5 Runtime Integration & Optimizations

Now that we have the required code fragments to handle continuous view main-
tenance, we have to integrate them into our database runtime. The initialization
is executed once at view creation time. Next, the view is prepared to handle
inserts through the aforementioned callbacks. We register the callbacks with
each stream input. From there on out, each insert into the stream triggers the
callback and handles the local processing of the tuple. Queries to the view work
in a similar fashion: Each query triggers the materialization callback and writes
the results to a temporary table. Materializing the results is necessary to have a
consistent state of the view within a query, e.g., for self-joins. This materialized
result is scanned for the actual query processing of the database as if it were a
regular table.
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The described integration is limited in twoways: First, local processing is not
thread-safe as multithreaded operations on the same instance of the local state
were not intended for Umbra. Without controlled access to the local processing,
i.e., through a lock, we could experience race conditions for some operators.
Second, query processing resets the local state of all stream pipelines. Hence,
querying requires an exclusive lock to prevent inserts during query processing.
This lock, however, can be released as soon as the local states have been reset.
Preliminary experiments showed that acquiring the lock is often costlier than
the insert itself, and delays to inserts are mainly introduced by queries. To
reduce these delays, we introduce a lock-free queue in front of the local state.
Newly arriving tuples are buffered in this queue when either a query or another
insert is blocking the local state.
Insert Handling. Algorithm 4.3 describes the modified insert handling: We
again first try to obtain the lock for the view. If another thread holds the lock,
we enqueue the tuple in the buffer queue and retry for the next tuple to be
inserted. As there can be arbitrarily large gaps between queries, the queue
could grow indefinitely when we empty it only at query-time. Therefore, we
need to empty the queue between queries. As we do not want to integrate
a dedicated background worker within our system, which would introduce
scheduling overhead, the queue is emptied by inserts. Once an insert has
acquired the lock, it additionally dequeues tuples from the queue and processes
them. While dequeuing a single tuple proved sufficient in our experiments,
dequeuing multiple tuples or the whole queue is possible as well.
Query Evaluation. We consider all previously inserted tuples for queries.
Therefore, we empty the queue whenever a query arrives. To prevent race
conditions from inserts, we redirect all tuples to the queue until the local states
of stream pipelines have been reset. If no tuples have arrived since the last
materialization, the processing is skipped, and the last materialized result is
used instead.

4.2.6 SQL Interface
After having described the inner workings of our continuous views, we briefly
show how they are created using the SQL interface of our database system. To
minimize the necessary changes in the SQL dialect all required operations can
be performed using regular statements.
Creating Streams. As a first step, the user needs to create the streams that will
be evaluated in a continuous view. Streams can be created as foreign tables:

CREATE FOREIGN TABLE stream_name (…)
SERVER stream
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We restrict the keyword stream for all foreign tables so that no server named
stream can be created.
Creating Continuous Views. After the required streams have been created,
users can create continuous views using simple CREATE VIEW statements:

CREATE VIEW continuous_view_name AS query

During the semantic analysis of the query, we check whether any of the
queried relations is a stream. If so, we automatically create a continuous view,
else we create a regular view. All modifications and checks described in Sec-
tions 4.2.2 and 4.2.3 are only performed for continuous views.
Inserting Data. Inserts can be expressed as regular INSERT statements, and
streams can be copied from CSV using COPY:

INSERT INTO stream_name {VALUES (…)| query}

COPY stream_name FROM 'filename' CSV

query can be an arbitrary SQL query that does not contain the stream itself.
It is possible to attach new continuous views and queries to streams that are
currently fed with data, but those only see tuples arriving after their creation.

4.2.7 Updates
Up until this point, we only discussed inserts into streams, not changes to
the static tables involved. Both updates and deletes to tables exclusively used
in upper pipelines, like stations, can be realized at any time. To incorporate
changes to these tables, we simply reevaluate all static pipelines affected. For
our running example, this means rerunning all steps in the initialization callback
that correspond to pipeline 1 ( 2 to 5 ) and replacing the build side of the top-
most join with the new stations. The next time the view is queried, all stream
tuples are then evaluated using the changed tables, guaranteeing consistent
results for every materialized state.

Changes to static tables and subtrees joined directly with stream pipelines
(e.g., top right of Figure 4.5) are not supported. In order to support changes to
such tables, we would have to either (a) keep all stream tuples materialized to
reevaluate the join correctly, or (b) join stream tuples with the state of tables at
arrival time. Case (a) would lead to extensive memory consumption and high
refresh times, which is exactly what we aim to avoid with our continuous views.
While case (b) is used in some systems, like PipelineDB, we refrain from using
this approach. The results of the view query would otherwise be dependent on
the processing order of stream events and table updates, leading to inconclusive
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and inconsistent results. Like many other SPEs (c.f. Table 4.2), we consider
streams to be append-only. Therefore, we do not support deletes or updates of
stream tuples.

4.2.8 Fault Tolerance
While it is not the focus of this chapter, we want to briefly address fault tolerance.
For continuous views, we can utilize the integration into Umbra, and the fact
that we use the SQL interface to interact with the database. This way, we
have access to Umbra’s logging mechanism and can replay not fully processed
tuples in case of an error. However, replaying the full stream in case of an
error can lead to a considerable delay during recovery. To reduce the number of
tuples to be replayed, we can combine this with checkpoints which are common
in SPEs for recovery, e.g., in Flink. Here, we can utilize our custom memory
management and the separation of global and local state. Global state is only
modified during materialization and, therefore, captures a consistent state of all
operators between queries. We can take regular snapshots of the global state as
checkpoints and restore the last snapshot in case of a failure. This way, only
tuples that arrived since the last materialization have to be replayed.

Another aspect we want to mention is how our strategy can deal with a
high load. Many SPEs utilize publish-subscribe-like asynchronous interfaces to
accept data, allowing them to delay processing in case of a high load without
influencing the inserter. The interface of our continuous views, on the other
hand, is SQL-based and, therefore, synchronous. We offer some load balancing
in the form of the lock-free queue described in Section 4.2.5. The queue can help
overcome short spikes, but, for a prolonged high load, it can grow indefinitely.
This can lead to a decrease in the overall system performance. As we do not
consider load shedding, which would mean losing information, Umbra should
not be used in a completely standalone fashion when an extremely high load is
expected for a long time. Instead, we envision it integrated into an ETL scenario
with an external data collection engine, as described by Meehan et al. [109].

4.2.9 Portability
While our described implementation of continuous views is optimized for Um-
bra’s execution engine, our approach is in no way limited to Umbra. Continuous
views, as described above, can be realized in many database systems using stored
procedures, auxiliary tables, and materialized views, albeit less optimized than
our fully integrated approach. To demonstrate the feasibility of such an inte-
gration, we implemented continuous views in PostgreSQL using its procedural
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languages.1 Our implementation parses view queries and generates SQL state-
ments for keeping continuous views up-to-date. When inserting new tuples,
designated insert functions update the aggregates instead of materializing the
stream.

As in Umbra, we distinguish between static, stream, and upper pipelines.
Static pipelines are evaluated and cached during initialization. For stream
pipelines, we generate insert functions that incrementally update the previ-
ous results in an auxiliary table. A single view combines all upper pipelines
and makes the query result available to users on refresh. In contrast to ea-
ger maintenance, the update logic for our continuous views can be generated
automatically.

4.3 Evaluation
First, we evaluate our approach for multiple parallel streaming queries using
the AIM benchmark, comparing it to an SPE and to an in-database solution.
To show real-world performance, we use full query round-trip times on the
AIM benchmark. To highlight the raw analytical performance, we further
evaluate it against competitors on a TPC-H workload modified for streaming in
Umbra and in PostgreSQL on isolated queries. Subsequently, we study internals
of our maintenance strategy, such as the load balancing capabilities or the
memory consumption, using microbenchmarks. We will refer to continuous
views within Umbra as Umbra throughout this section. All systems, approaches,
and experiments in this section are run on a machine equipped with an Intel
Xeon E5-2660 v2 CPU (2.20 GHz) and 256 GB DDR3 RAM.

4.3.1 AIM Benchmark
The AIM telecommunication workload, as described in [27], has been previously
used to evaluate the performance of modern database systems against SPEs
and specialized solutions [85]. We want to extend this evaluation with the
comparison of stream processing in databases, in the form of our continuous
views, with SPEs. As a second approach to stream processing using continuous
views, we choose the open-source PostgreSQL extension PipelineDB [124].

In the AIM Benchmark, calls for a number of customers are tracked as
marketing information. On these calls, analytical queries are run to make offers
or suggest different plans to certain customers. In contrast to [85], we do
not want to store all possible aggregates for ad-hoc queries and instead only
aggregate what is necessary for the AIM queries specified in [27]. Table 4.3

1Available at: https://github.com/tum-db/pg-cv

https://github.com/tum-db/pg-cv
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Table 4.3: Continuous view AIM queries, slightly simplified for readability. 𝛼 ∈
[0, 2], 𝛽 ∈ [2, 5], 𝛾 ∈ [2, 10], 𝛿 ∈ [20, 150], 𝑡 ∈ SubscriptionTypes, 𝑐𝑎𝑡 ∈ Categories,
𝑣 ∈ CellValueTypes

In evaluation: 𝛼 = 2, 𝛽 = 2, 𝛾 = 4, 𝛿 = 25, 𝑡 = 2, 𝑐𝑎𝑡 = 1, 𝑣 = 2

Q1 SELECT avg(t_duration) FROM (
SELECT sum(duration) AS t_duration FROM events
WHERE week = current_week() GROUP BY entity_id
HAVING count(local_calls) > 𝛼 )

Q2 SELECT max(max_cost) FROM (
SELECT max(cost) AS max_cost FROM events
WHERE week = current_week() GROUP BY entity_id
HAVING count(*) > 𝛽 )

Q3 SELECT sum(t_cost) / sum(t_duration) AS cost_ratio
FROM (
SELECT sum(cost) AS t_cost, sum(duration) AS t_duration,
count(*) AS num_calls FROM events

WHERE week = current_week() GROUP BY entity_id
) GROUP BY num_calls LIMIT 100

Q4 SELECT city_zip, avg(num_calls), sum(duration_calls)
FROM (
SELECT entity_id, count(*) AS num_calls,
sum(duration) AS duration_calls FROM events

WHERE NOT long_distance AND week = current_week()
GROUP BY entity_id
HAVING count(*) > 𝛾 AND sum(duration) > 𝛿

) e, customers c WHERE e.entity_id = c.id GROUP BY city_zip

Q5 SELECT c.region_id, sum(long_distance_cost)
AS cost_long, sum(local_cost) AS cost_local

FROM events e, customers c
WHERE e.entity_id = c.id AND week = current_week() AND
c.type = 𝑡 AND c.category = 𝑐𝑎𝑡 GROUP BY c.region_id

Q7 SELECT sum(cost) / sum(duration)
FROM events e, customers c WHERE e.entity_id = c.id AND
week = current_week() AND c.value_type = 𝑣
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shows the AIM queries modified for use as a continuous view. As we cannot
express the original query 6 as a single view we omitted it from all experiments.
Furthermore, as neither PipelineDB nor our continuous views support changing
view queries at runtime, we select one value by random for each query parameter
(𝛼, 𝛽, … ) from the range specified in Table 4.3.

Configuration

Both the client and the server run on the same machine and, to recreate the setup
of [85], the client generates events using one thread and queries using another
thread. For the experiments, we vary the number of threads of the server. When
speaking of number of threads in the remainder of this section, we always mean
the number of server threads. The number of client threads remains untouched.
The database is initialized with 10M customers unless stated otherwise. We
implement the approaches as follows:
Flink. To represent classical SPEs, we use Apache Flink [29]. As the internal
state of Flink can only be accessed by point lookups, and to recreate the setup
of [85] as closely as possible, we implement a custom operator for the workload.
Our custom operator keeps track of the required aggregates per customer (e.g.,
number of local calls this week), and queries are run exclusively on these ag-
gregates. While Flink can handle all individual queries on its own, we use the
custom operator to process all queries at once. The operator further allows us to
share aggregates between queries. All experiments are performed on Flink 1.9.2.
PipelineDB. We use the latest available version of PipelineDB (short PDB),
1.0.0, and integrate it into PostgreSQL 11.1, both in default configuration. We
slightly adapt the queries in Table 4.3 to fit the syntax of PipelineDB. PipelineDB
requires at least 18 worker threads, thus we cannot limit the total number of
threads. Instead, we vary the number of threads per query (max_parallel_work-
ers_per_gather ). In our experiments PipelineDB inserts timed out occasionally,
but this did not limit the reported query throughput. However, because of this,
we consider the numbers reported for PipelineDB to be an upper bound.
Umbra. For Umbra we create the continuous views as specified in Table 4.3.
The number of threads maps to Umbra’s worker threads. In addition, we run a
single thread that handles all connections to the database and is not involved in
query processing.

Unless stated otherwise, all experiments for both Umbra and PipelineDB are
measured using the pqxx library to connect to the systems. Events are generated
inside the database. Throughput averages are calculated over three minutes of
execution based on full query round-trip times.
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Figure 4.8: Concurrent throughput of queries and inserts with increasing number
of threads.

Experiments

Concurrent Access. First, we look at the overall performance of the systems
under concurrent write and read accesses with an increasing number of threads.
Each query in Table 4.3 is executed with equal probability, and inserts are
performed at 10K and 50K events per second respectively. We report the results
in Figure 4.8. Flink scales nicely with an increasing number of threads but
keeps behind both PipelineDB and Umbra. For PipelineDB we expected to see
little scale-up as most of the maintenance is handled by background workers,
which we could not limit to the given thread counts. However, the throughput
is still very unstable, most likely attributable to the aforementioned problems
with inserts. For 50K inserts per second PipelineDB performance degrades with
increasing thread count. This is likely caused by interference between insert
and query threads.

Since Umbra can handle most of the queries’ workload single-threaded, we
do not notice a scale-up beyond three threads. Despite not utilizing all threads,
we are still able to outperform the competitors consistently, in parts by over
an order of magnitude. For higher insert rates, initial scaling is better, since
the inserts take more time, and thus parallel execution of queries has a larger
impact.
Insert Throughput. As the goal of our continuous views is to handle insert-
heavy workloads, we further investigate the isolated insert throughput without



54 CHAPTER 4. CONTINUOUS-VIEW-BASED STREAM PROCESSING

104

105

106

1 2 3 4 5 6 7 8 9 10

Number of Threads

Ev
en

ts
/s

[l
og

]

Flink

PipelineDB

Umbra

Figure 4.9: Isolated insert throughput with increasing number of threads.

concurrent queries. While we do not issue queries, we still create the corre-
sponding views for Umbra and PipelineDB and track all required aggregates for
Flink. For both Flink and Umbra, we report the throughput under full load. For
PipelineDB, we report the highest measured throughput. The results are shown
in Figure 4.9, again for an increasing thread count. PipelineDB’s throughput
peaks at around 50K events per second consistently, which seems to be the limit
of the non-scaling background workers. Both Flink and Umbra scale well with
an increasing thread count for up to 5 threads. Flink does not scale beyond 5
threads. This can be expected as Flink is optimized for scale-out, not for multiple
concurrent queries on a single node. However, Flink still offers the highest insert
rates. Umbra scales better for higher thread counts and achieves insert rates of
more than 1.5M events per second.
Query Throughput. For the final AIM experiment, we look at the isolated
read throughput for individual queries. To report actual query results, we
initialize the aggregates with random values for Flink and 10K random events
for both PipelineDB and Umbra. We report the average query throughput for all
individual queries, exemplifying for two threads, in Table 4.4. As the reported
query throughput is for full query round-trips for both PipelineDB and Umbra,
we only see a slight difference for most queries. The majority of the time is
spent in parsing and sending the query, not in execution. Still, Umbra is able
to outperform PipelineDB consistently throughout all queries. As Flink does
not materialize full query results, it needs to calculate parts of the query on
the fly, thus staying behind for all queries. When increasing the number of
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Table 4.4: Average query throughput in queries per second without concurrent
writes

SF 1 SF10
Umbra PDB Flink Umbra PDB Flink

Q1 10748 6725 40 11161 208 4
Q2 10761 7274 46 11171 991 4
Q3 10677 6123 19 11061 100 2
Q4 10710 125 17 11074 124 2
Q5 10501 6987 13 10835 10619 1
Q7 10709 7957 26 11169 9582 2

customers to 100M (SF=10), we can see the advantages of result caching for
Umbra and PipelineDB. While Flink degrades linearly, PipelineDB’s throughput
stays constant for queries not grouping by customer, and Umbra’s throughput
stays constant for all queries.

4.3.2 TPC-H Benchmark
After evaluating our strategy on a concurrent streaming benchmark, we compare
it to modern view maintenance using DBToaster [87], and the scale-up SPE
Trill [31], on a more analytical workload based on TPC-H. We configure all
systems to treat lineitem as a stream and all other relations to be static. For
our experiments, we choose queries 1, 3, and 6, where most of the work of
our approach happens at insert time. For these queries, all systems should act
similarly. Further, we choose query 15 as a grouped stream-stream join and
query 20 to represent queries where the majority of analytical evaluation is
performed on a grouped stream. As neither Trill nor DBToaster support order
by or limit in their streaming API, we remove all order by and limit clauses
from the queries. We rewrite queries for our competitors to fit their syntax and
feature set where necessary.

Configuration

We configure and implement our competitors as follows:
DBToaster. We use DBToaster v2.32 and allow it to handle streams as append-
only using the IGNORE-DELETES flag. Further, we distinguish two versions for
our experiments: The query-optimized DBTQ performing full refreshes, and

2https://dbtoaster.github.io/download.html

https://dbtoaster.github.io/download.html
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Figure 4.10: Insert throughput against TPC-H baselines for scale factors 1 and
10.

the insert-optimized DBTI. DBTI is allowed to perform only partial refreshes at
insert time (EXPRESSIVE-TLQS flag).
Trill. We use Trill v2019.9.25.13 and implement all queries using the LINQ-style
interface. We only operate on cached inputs for both streams and tables and
pre-calculate all joins and subtrees not involving lineitem. Both tables and
streams are configured to have an infinite lifetime to keep them in the same
join-window. We optimized join order and execution hints to the best of our
knowledge.
Flink. We implement the queries in Flink 1.9.2 using the BatchTables API and
the SQL interface.
UmbraD. We implement deferred maintenance in Umbra based on full query
evaluation at refresh.

As the semantics of concurrent queries is quite different for all approaches,
we focus on insert throughput of streams and view refresh times. For all experi-
ments, we report the average of 10 runs after performing 3 warm-up runs.

Experiments

Insert Throughput. We compare the insert throughput of all systems when
inserting the lineitem table once. As the DBToaster release currently only offers
a single-threaded execution, we measure all systems using one thread. To obtain

3https://www.nuget.org/packages/Trill/

https://www.nuget.org/packages/Trill/
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Figure 4.11: Scale-up of Trill, Flink, and Umbra views relative to single-threaded
performance.

comparable results, we hold data in a cached stream buffer for Trill. For both
DBToaster and Umbra, we only measure processing time without input parsing.
We cannot easily recreate this processing-time-only setup in Flink, therefore we
exclude it from this experiment. To even the scores, we add the cost of a single
view refresh to all systems that do not provide the result immediately. As the
runtime for query 15 in DBTQ exceeded reasonable limits for the full table, we
report throughput based on a 1000-element sample.

The throughput, displayed in Figure 4.10, is largely independent of the scale
factor with minor fluctuation, e.g., at Q6. Overall, Umbra and Trill offer the
highest throughput, with a slight advantage for Umbra. Both stay ahead of both
DBT variants independent of query and scale factor. UmbraD stays ahead of
DBToaster for most queries and can even outperform Trill for Q1. For the simple
queries Q1 to Q6, both DBT approaches perform similarly. However, partial
refreshes pay off for DBTI for Q15 and Q20.
Scalability. To investigate the scalability of our approach, we repeat the insert
experiment above for scale factor 10 with multiple threads. Figure 4.11 reports
the average scaling relative to single-threaded performance for each system
based on full query execution times. Flink and both Umbra variants scale nicely,
Flink even shows near-perfect scaling for Q6.

However, we see little improvement for Trill. We found that, while simple
queries like Q6 scale in Trill, for complex queries, the majority of work still
happens single-threadedly, and we see negative scale-up. We attribute this to
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Figure 4.12: Comparison of continuous views with traditional views in Post-
greSQL on TPC-H. Queries consist of refreshing and fetching the result.

the complex nature of the queries and the introduced scheduling overhead in
multi-threaded execution.
Traditional View Maintenance. Finally, we want to look at the trade-off
space between traditional view maintenance and continuous views on a com-
mon runtime. We implement continuous views in PostgreSQL, as described in
Section 4.2.9. Further, we manually implement eager and batchwise incremental
views for the TPC-H queries and include PostgreSQL’s deferred views. Incre-
mental views buffer 10K tuples before propagating changes. Neither eager nor
continuous views store any input tuples. We again insert all tuples of lineitem
for scale factor 1. As we measure query round-trip times, we insert chunks of
1K tuples to reduce overhead.

Figure 4.12 reports the insert and query throughput of the approaches. For
inserts, continuous views are fastest overall, except for Q1, due to the high
contention on few groups. The lower throughput for deferred maintenance
for Q20 is caused by an index, which we need to maintain to keep the refresh
from timing out. For simple queries, like Q1 to Q3, continuous and eager
views behave the same conceptually, as all processing occurs at insert time.
The measured difference in query throughput is only caused by the current
PostgreSQL implementation of continuous views, wherein we needlessly copy
the result from the stream pipeline view to the result view for simple queries.
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As expected, the eager and incremental approaches offer the highest query
throughput. Nevertheless, even on PostgreSQL, continuous views can offer up
to a hundred refreshes per second without the need of hand optimizing views,
as is the case for eager views, while still offering higher insert throughput on
average.

4.3.3 Microbenchmarks
Finally, we want to study our approach’s internal behavior, which is not directly
visible in end-to-end query benchmarks. For this, we conduct three microbench-
marks, focusing on the memory footprint, the load balancing technique outlined
in Section 4.2.5, and the overhead of maintaining multiple views in parallel.

Memory Usage

For the first experiment, we will focus on the memory requirements of a contin-
uous view during its lifetime. In contrast to regular queries, continuous views
have an unlimited lifetime. Therefore, we must ensure they are memory efficient
and only perform required memory allocations.
Configuration. We create four views, each grouping by a key of the input
and calculating one, two, four, or six aggregates over the remaining columns,
respectively. Inserting one million tuples into the stream, we record the current
memory usage per view every 100 inserts. To only measure the overhead of
tuples, not our queuing mechanism, we run the experiment in a single-threaded
configuration.
Experiment. The results are displayed in Figure 4.13. At the top of the figure,
we show the overall memory consumption throughout the insertion of all 1M
tuples. One can see a sharp growth in memory usage on the left-hand side that
flattens and does not further change for more than 50K elements. This memory
footprint is what we aimed for, an initial growth as aggregates are created and
no further changes once an aggregate for the key already exists in the grouping
hash table. Further, we see the expected higher memory usage for queries with
more aggregates, scaling with the number of aggregates.

When focusing only on the first 50K tuples at the bottom of the figure, we
see that memory usage grows similarly for all views. The slight differences
stem from our optimized memory allocation, allocating space for whole morsels
instead of single tuples. As inserts are created randomly, the growth continues
after 10K elements but slows as new keys are seen less frequently. We see no
further growth at 35K inserted keys, indicating that each key was encountered
once.
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Figure 4.13: Memory consumption of continuous views over time for a varying
number of aggregates. The top displays the consumption over 1M inserts. The
bottom focuses on the first 50K elements.

Load Balancing Queue

Having outlined the memory consumption of views in a single-threaded setup,
we want to focus on the feasibility of our load balancing for parallel view mainte-
nance. To alleviate load spikes, our queue should not grow unlimitedly, as high
memory consumption for the queue could decrease the overall performance.
Inserts into this queue happen whenever (a) a query locks the view for material-
ization or (b) there is a concurrent insert blocking the view. As queries empty
the queue in case (a), it can never grow endlessly when concurrent queries are
triggered. Therefore, we consider case (b) and an insert-only workload, which
could trigger an unbounded queue growth.
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Figure 4.14: Queue length of a single continuous view with varying number of
threads.

Configuration. For this experiment, we create a workload of one stream.
Tuples of this stream comprise six integer values between 1 and 10,000. Views
group by a single key and calculate the sum of one column. We use a single
view bundling all inserts to achieve the maximum load on the queue.
Experiment. We display the results of this experiment in Figure 4.14. Queue
length is reported after every 100 inserts. The average queue length for ten
threads grows slightly after the initial spike. This growth could indicate the need
for active maintenance for even higher thread counts. However, one can see
that it drops to near zero consistently throughout the experiment, even though
the experiment represents the worst case for queue growth. For fewer threads,
we only see a small initial spike at around 10K to 50K tuples, with queue length
scaling with thread count. Overall the queue works as intended, accepting
tuples in the beginning when the load is high due to hash table groups being
created. Once all groups have been created, the buffered tuples are processed,
and processing threads empty the queue.

Parallel Views

As the final experiment, we look at the overhead introduced when attaching
multiple views to a stream.
Configuration. For this experiment, we measure the average throughput
when inserting 10M tuples in a stream with 1, 2, 4, or 8 views attached without
concurrent queries. Each view groups by one key and calculates the sum of
another column. We repeat this experiment for 1 to 10 threads to further
investigate the scale-out.
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Figure 4.15: Isolated insert throughput for a varying number of attached views.
Scale out is shown for an increasing number of threads on the x-axis.

Experiment. The results of this experiment are shown in Figure 4.15. Overall
we see the two expected effects: It is cheaper to attach fewer views, and a higher
thread count results in higher throughput. Besides, we see other interesting
influences. Inserts to a single view do not scale to more than seven workers,
while we see a continuous increase for eight parallel views. We attribute this to
the high contention on the single view, where all threads compete to access the
insert callback. When comparing the scale-out of all numbers of views, we see
that the more views are attached, the better the scale-out. Further, the overhead
of attaching an additional view is not strictly linear. This non-linear scaling,
again, can be attributed to lower contention of inserts for multiple views as
fewer threads will compete for inserts on the same view.

4.4 Related Work
To the best of our knowledge, we are the first system to implement analytical
views for high-velocity data with a specialized maintenance strategy. There is,
however, extensive previous work on materialized view maintenance, stream
processing, and continuous query evaluation. We will use this section to sum-
marize those most relevant to our work.

4.4.1 ViewMaintenance
Managing materialized query results in the form of materialized views is a
well-studied problem [69, 141]. Our continuous views can be thought of as
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materialized views specialized for streaming data, where full refreshes are only
performed at query time. Materializing parts of queries has been previously
suggested by Mistry et al. [112] in the context of multi-view optimizations.
They share common parts of queries between multiple views for more efficient
maintenance. The concept of reusing partial results has been extended to regular
query processing [93, 186].

Delaying the maintenance task has been previously described in the form
of both deferred maintenance [35] and lazy evaluation [185]. In contrast to
our approach, these systems need to have access to the changes to the base
table, either in the form of deltas or of auxiliary tables. Storing only changes
required for maintenance is known as incremental view maintenance [22, 66,
176]. We apply similar techniques for stream pipelines where incremental deltas
are held in local states and materialization in the global state. Incremental view
maintenance has been further optimized using hierarchical deltas by Koch et
al. [87]. In contrast to our insert-optimized approach, they optimize for query
throughput, mostly triggering full refreshes for every insert.

4.4.2 Stream Processing
Stream processing is a broad area of data processing, spanning both dedicated
systems and traditional databases. We will focus on recent work and analytical
systems.

Modern Stream Processing. There is a wide range of recent work in dedicated
stream processing engines, recently surveyed by Zeuch et al. [180], but most
systems are optimized for stateless or simple stateful queries. To increase perfor-
mance, Grulich et al. [67] also utilize query compilation for stream processing.
Incremental updates, which we use for data streams, are utilized by SPEs as
well [3, 31, 115, 179]. To support aggregating queries in stream processing more
efficiently, some work proposes sharing state between long-running queries [63,
97]. As many SPEs do not support complex analytical workloads, dedicated
solutions for more stateful queries on data streams have been developed [27, 31,
53, 70, 138].

While we know of no other work implementing stream views with special-
ized maintenance for database systems, using views to speed up simple analytical
queries over streams [60, 176], as well as materializing continuous query re-
sults [12] has been previously suggested. For analytical streaming systems,
custom query languages are common, as shown in recent surveys [74, 94]. Our
approach allows for stream processing using regular SQL statements. Finally,
accessing historic stream data with new queries, as is possible by querying our
continuous views, has been described by Chandrasekaran et al. [32].
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Stream Processing in Databases. Apart from dedicated and stand-alone
solutions for stream processing, recent work has focused on integrating data
streams in relational database systems and data warehouses [116, 167]. Jain et
al. propose a streaming SQL standard [77], an idea that has been further refined
by Begoli et al. [18] to allow a single standard and simplify the usage of both
tables and streams in SQL statements. Meehan et al. [110] describe how stream
processing and OLTP transactions with isolation guarantees can be combined
in a single system. Others have made a case for a greater need for in-database
processing of signal streams [121].

There have also been some open-source extensions to databases that allow
for stream processing within the database [124]. Most work for high-velocity
data processing focuses on the previously described maintenance of material-
ized views. Nikolic et al. [122] further extend higher-order incremental view
maintenance to batches and distributed environments, which are common in
streaming systems, e.g., in Spark [179]. They further outline the advantages
of pre-filtering and aggregation in these batches for incremental maintenance,
which we extend to join processing. We apply this to the whole stream instead
of batches in our stream pipelines. Our work continues all these efforts by
describing an insert-optimized stream view completely expressible with regular
SQL statements.

Continuous Query Evaluation. Finally, our work touches upon continuous
queries. While continuous views are not full continuous queries, the underlying
concept of updating the query result for arriving tuples and reporting interme-
diate results is similar. Continuous query evaluation [16, 106, 148] focuses on
keeping track of changes to an underlying query like we do within the views.

In contrast to our approach, the goal is to alert users whenever the query
matches defined triggers. There has been somework onwhole systems dedicated
to such monitoring and change detection [4, 30, 84]. While we currently do not
support triggers, those could be realized by periodic queries to the continuous
views.

4.5 Summary
In this chapter, we introduce continuous views, a new type of materialized
views optimized for high-velocity streaming data. To maintain these views, we
introduce a novel split maintenance strategy, performing parts of the query
at insert time and finalizing query processing when results are required. We
demonstrate the feasibility of our approach by integrating these views into our
state-of-the-art database system Umbra, using the compiling query execution
engine as well as the query optimizer for fast and low-overheadmaintenance. We
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explain how this integration allows users to access stream results in analytical
workloads and durable state for queries on streams efficiently.

To demonstrate the capability of our views’ split maintenance strategy, we
compare it to modern stream processing engines, as well as view maintenance
strategies in both Umbra and PostgreSQL. Our approach outperforms the former
on analytical workloads and the latter on insert throughput, often by order of
magnitude, creating an ideal fusion of analytical query processing and high-
velocity data.





CHAPTER 5
Communication-Optimal Parallel

Reservoir Sampling
Excerpts of this chapter have been published in [171].

With contributions from Moritz Sichert and Altan Birler.

So far, this thesis has presented two strategies for full end-to-end stream analytics
within a relational database system. However, end-to-end analytics on live data
is not the only streaming workload that relational database systems face. With
the widespread deployment of cheap connected sensors and the increased use of
off-premise systems, there is an ever-growing need to analyze the log and data
streams generated by these sensors and systems remotely. Due to this data’s
high volume and high velocity, analyzing all generated entries and values is
often infeasible.

Therefore, many analyses are performed on a reduced version of the data.
Some applications rely on aggregates over windows or subsets of the data, e.g.,
monitoring average temperature readings in a given area in continuous queries.
Others, e.g., for analyzing log streams, apply highly selective filters to reduce the
input cardinality, showing only relevant error messages and surrounding entries.
However, for some applications, representative and unfiltered data points are
desirable for later analytics. For such workloads, sampling is employed to reduce
the data stream to a manageable size for analytics systems.

By drawing a uniform sample from a stream of data points, each point of
the stream has an equal probability of being part of the resulting sample, and
thus the result is representative of the entire stream. Sampling is utilized in
a wide range of applications, e.g., for workload statistics [21, 105], machine
learning [133, 135, 136], and big data [107]. While some sampling algorithms
take a variable-sized subset of the input, e.g., selecting 𝑥% of the arriving tuples
at random, their resulting sample size can still be infeasible for analyzing high-
velocity unbounded data streams. Therefore, we will focus on those algorithms
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that produce a fixed-sized sample independent of the input size, i.e., reservoir
sampling.

While reservoir sampling produces a uniform random sample in a single pass
over the input in 𝒪(𝑛(1 + log(𝑁/𝑛))) [103], the sheer volume of data can lead
to bottlenecks during the sampling phase. In the past, the growth in data could
be compensated by the performance improvements of new hardware. However,
with Moore’s law coming to its end, a single core can often no longer keep up.
Therefore, many solutions for stream processing and analysis, such as dedicated
stream processing engines [29, 179, 181] and in-database stream-processing
approaches [170], have focused on processing incoming streams in a parallel
and distributed manner.

In this chapter, we describe a mechanism allowing fully parallel reservoir
sampling without communication between sampling threads. By keeping thread-
local samples over chunks of the input, we can construct a complete sample
of size 𝑛 in parallel from 𝑝 worker samples using only 2𝑝 + 𝑛 messages in an
efficient k-way merge. The low message overhead is especially beneficial in
distributed environments, where communication takes place using comparably
slow and expensive network connections.

Further, we describe an 𝒪(𝑝 + 𝑛 log(𝑝)) merge strategy optimized for small
sample sizes and show that it can guarantee uniform random samples, inde-
pendent of how input elements are assigned to workers. By constraining all
communication to our merge stage, our approach can scale almost linearly in
many-core machines. Implementing our approach within the code-generating
Umbra database system [118], we demonstrate that our approach is applicable
in real-world systems. Using this implementation, we evaluate our novel merge
strategy against a merge strategy based on a hypergeometric distribution in
many-core applications for different sample sizes, showing that our proposed
merge is beneficial for small sample sizes. Overall, our communication optimal
reservoir sampling can scale linearly along the number of available workers
and sustain a sampling throughput of more than 300 million tuples per second
per thread, independent of the distribution used in the merge. In summary, this
chapter addresses the following key points:

• We describe a communication-optimal parallel merge process.

• We device a novel merge strategy optimized for small reservoir sizes.

• We evaluate the performance of our technqiues within the Umbra database
system [118].

The remainder of the chapter is structured as follows: We introduce relevant
concepts and algorithms to our approach in Section 5.1 and discuss related
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work. In Section 5.2, we present the design and implementation of both of
our techniques and prove the correctness of our novel merge strategy. To
demonstrate our approach’s applicability and performance, we evaluate its
scalability and throughput in Section 5.3 before summarizing in Section 5.4.

5.1 Background and Related Work
Approximate results are often deemed acceptable to gain instant query response
times for analytics over large volumes of data. Simple random samples of
fixed size are a reliable tool to reduce the costs of computing approximate
statistics [131]. We will argue why this tool is particularly interesting and
discuss related work in constructing such samples.

When using a random sample, a small random subset of the data is picked
and processed instead of the entire data, significantly improving query re-
sponse times. Other statistical tools, such as histograms [37] and distinct count
sketches [57], are useful for approximate statistics. However, they are inflexible
as the filters that they can evaluate are limited. A histogram can only evaluate
simple predicates, such as one (or few) dimensional ranges. Samples, on the
other hand, can evaluate arbitrary predicates, as they are smaller representatives
of the entire data set. In the absence of complex filters, histograms can provide
useful upper bounds, while samples can only provide probabilistic estimates.
However, with large enough samples, the variance of the estimates a sample
provides is relatively low and can be relied upon. Additionally, with complex
filters, a histogram’s upper bounds can be too high to be useful, as it can only
consider simple range predicates.

There are many ways to pick a random sample. For computing unbiased
statistics, simple random samples without replacement are a good fit as every
subset of the data is selected with equal probability. Tillé [150] describes the
theoretical background of simple random sampling and computation of statistics
from a simple random sample. Ting [151] provides efficient implementations for
a range of algorithms for sampling without replacement. We focus on samples
of fixed size. In contrast to Bernoulli sampling, where every tuple is picked with
independent probability 𝜃, fixed-size samples do not grow alongside the input
data size. One might assume a larger sample would be a better fit for a larger
data set. This is true for predicates whose selectivity decrease with increasing
data set size, such as filters for fixed timespan on a data set that grows over
time. However, for predicates of constant selectivity, the size of the data set has
little to no effect on the quality of the sample. We will try to build a simplified
intuition as to why and refer the reader to the detailed theoretical analysis by
Moerkotte and Hertzschuch [113] for further details.
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Given a sample of size 𝑛, a data set of size𝑁 = 𝜌𝑛, and a predicate of constant
selectivity 𝜎, we want to estimate the number of matches 𝐾 = 𝜎𝑁 = 𝜎𝑛𝜌 where
𝜌 is the ratio of the size of the data set to the size of the sample. This task is
common in cardinality estimation within database systems [73]. As a strategy,
we evaluate the predicate on the sample and count the number of matches 𝑘,
which is a random variable from the hypergeometric distribution𝐻𝐺(𝜌𝑛, 𝜎𝜌𝑛, 𝑛).
We use the simple estimator �̂� = 𝑘𝜌 as our estimate of 𝐾 = 𝜎𝑛𝜌. As a simple
cost metric, we define the expected relative mean squared error of our estimate
as:

rMSE = E [(�̂� − 𝐾
𝐾

)
2

] = E [(
𝑘𝜌 − 𝜎𝑛𝜌

𝜎𝑛𝜌
)
2

] = 1
𝜎𝑛

Var [𝑘] = 1 − 𝜎
𝜎

𝜌 − 1
𝜌𝑛 − 1

≈ 1 − 𝜎
𝜎

1
𝑛

(5.1)

Assuming 𝜌 is relatively large, it disappears from our error estimate, implying
that the relative size of the sample has little to no effect on the accuracy of this
estimate. On the contrary, the predicate’s selectivity and the sample’s absolute
size directly influence the error. An intuitive explanation of this result is that
we can assume that the data set from which we are sampling is itself a random
sample drawn from an infinite distribution. Resampling from this intermediate
sample simply means that we construct a smaller sample of the original data
set. The size of the intermediate sample has only a small effect on the final
sample’s contents. So, given requirements on the error and information on the
selectivity of predicates, it makes sense to pick a fixed sample size rather than
having sample sizes adapt to the data set size as adapting the size of a sample is
a costly operation requiring that the sample be rebuilt.

The optimal way to compute a simple random sample depends on various
factors. Our proposed approach focuses on concurrently sampling from many
parallel data streams in environments where communication costs are high
(we are optimal in the number of communications), and memory usage is not
a limiting factor. Due to these assumptions, our approach is flexible and an
excellent fit for distributed environments.

There are simpler algorithms for when the size of the data set is known
beforehand: The draw-by-draw procedure iterates over the sample and picks
tuples one by one with potentially high costs from random accesses into the
data [150]. The sequential selection-rejection method described by Fan et al. [49]
instead iterates over the data to produce the sample. Vitter [159, 160] further
improves the selection rejection method by computing skip lengths; rather than
iterating over the data one tuple at a time, one can probabilistically generate the
number of tuples to skip before the next tuple is selected, significantly reducing
the number of random number generations. This approach is parallelized by
Sanders et al. [132] by distributing the task of random sampling among different
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workers. Chickering et al. [33] describe merging parallel reservoir samples
using a hypergeometric distribution, which we utilize for larger sample sizes,
and offer proof that the resulting sample is still uniformly random. However,
they send all local samples to a centralized coordinator for the merge, leading
to communication overhead.

Tomaintain a sample of size 𝑛 in a single pass over a data stream, a set of more
than 𝑛 values, the so-called reservoir, needs to be processed to guarantee a simple
random sample at any point during processing. All procedures maintaining
a simple random sample in a single pass over a data stream are variants of
the reservoir sampling algorithm defined by Vitter [161]. Reservoir sampling
iterates over input tuples and selects them for the sample with a probability
proportional to the number of tuples seen so far. Vitter [161] improves on this by
probabilistically generating skips, a contiguous amount of tuples not contained
in the sample, thus reducing the costs for generating random numbers from
𝒪(𝑁 ) to 𝒪(𝑛(1 + log(𝑁/𝑛))). Li [103] improves on the approach by Vitter by
proposing a simpler distribution to generate skips.

These sequential approaches only support sampling data from a single stream.
Hübschle-Schneider and Sanders [75] also parallelize reservoir sampling by inde-
pendently collecting multiple reservoirs and merging them afterward. However,
their approach needs to maintain a distributed priority queue, which incurs addi-
tional communication costs but potentially reduces the sizes of their independent
samples. For situations where memory is scarce, Tirthapura and Woodruff [152]
maintain a single sample at a central coordinator. Their approach has optimal
communication complexity for the centralized sample setting. Birler et al. [21]
reduce the communication costs of Tirthapura and Woodruff’s approach by
accepting temporary imperfections in the central sample that are eventually
corrected.

Our approach, in contrast, is communication optimal among all possible
distributed reservoir sampling algorithms. For this property, we accept a slight
increase in per-stream memory consumption, which is acceptable in analytical
workloads as our local samples are fixed-sized and small compared to all the
other data the streams need to maintain.

The performance characteristics of the various approaches can be analyzed
by looking at communication costs, total processing costs, and total memory
use. These three metrics are influenced by the utilized sampling approach, the
sample size, the data size, and the number of workers. Shared-sample-based
approaches [21, 152] benefit from low memory use and total processing costs.
Thus, they are well applicable to low communication cost environments, such
as a single machine with a single CPU socket. However, in settings with high
communication costs, such as manycore machines with multiple sockets or
distributed networks, distributed sampling approaches [75] are beneficial as
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they sacrifice memory and some computation to cut down on inter-worker
communication.

These trade-offs are necessary as Tirthapura and Woodruff [152] prove that
communication costs may not be optimal when only one shared sample ex-
ists. In our approach, where we focus on minimizing communication costs,
we must maintain a full sample per worker. Otherwise, we must incur addi-
tional communication or provide weaker guarantees, such as a probability of
failure [132].

5.2 Approach
Having outlined the background in sampling, we can describe our merge-based
parallel reservoir sampling technique and the novel post-sampling merge strat-
egy optimized for small sample sizes. Our approach aims to draw a sample of 𝑛
tuples uniformly random in parallel from an input of 𝑁 tuples using 𝑝 workers.
Each worker 𝑖 draws a thread-local reservoir sample of size 𝑛 out of the 𝑁𝑖 tuples
assigned to it, denoted as 𝑠𝑖,1… 𝑠𝑖,𝑛, using algorithm 𝐿 [103]. This sample is
merged into a global sample on demand.

We assume no prior knowledge about the workload, only the reservoir
size 𝑛 has to be known, and we materialize only tuples selected for a local
reservoir. Throughout this section, we will assume a work-stealing, morsel-
based [99] distribution of input chunks to workers, as this is the parallelization
strategy of our system Umbra. However, our approach is applicable to any input
distribution strategy. This chapter describes two techniques. First, we detail
the communication-optimal merge process, which improves upon prior work
independent of the reservoir size and merge strategy used. Subsequently, we
discuss our novel merge strategy optimized for small reservoir sizes.

5.2.1 Communication-Optimal Process
Our approach consists of two phases, the sampling and the merge phase, as
shown in Figure 5.1. In the sampling phase 1 , all threads create local reservoirs
of size 𝑛 over chunks of the input. While sampling, workers fetch arriving
chunks independently from one another, ensuring that each chunk is assigned
to exactly one worker. Reservoir sampling guarantees that all local samples are
uniformly random at any point, with each tuple having a probability of 𝑛

𝑁𝑖
to

be contained in the corresponding thread-local sample. To generate the whole
sample, each worker first reports the cardinality of all chunks it processed, 𝑁𝑖,
to a coordinator 2 .
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Figure 5.1: Overview of the sampling process with three workers consisting of
1 thread-local sampling, 2 the transfer of local cardinalities, 3 determining
thread shares in the global sample, and 4 the transfer of the resulting sample
tuples.

This coordinator can be an external worker or one of the sampling workers.
First, the coordinator determines the share in tuples that each thread-local
sample has in the global sample using either the hypergeometric distribution,
or the proposed merge strategy outlined in detail below. Then, the coordinator
notifies each thread of the number of tuples it has to choose for the global sample
3 , which in turn selects the desired amount uniformly at random from their
sample and reports it to the global sample 4 . In contrast to prior work [33]
sharing all local samples with the coordinator in 𝑝𝑛 messages, our approach
needs at most 2𝑝+𝑛messages: 2 per worker to communicate the local cardinality
and the number of tuples to contribute to the global sample, and 𝑛 to send the
selected tuples.

5.2.2 Merge Strategy for Small Reservoirs

Conceptually, our approach for small reservoirs relies on iteratively evaluating
and updating a categorical distribution over all threads for each position of
the final sample to determine which thread to select for this reservoir slot. In
contrast to strategies based on the hypergeometric distribution, the categorical
distribution has to be evaluated per sample slot and not per thread. While this
is too costly for large sample sizes, it avoids the computationally expensive
hypergeometric distribution. Each thread 𝑖 is selected with a probability of 𝑁𝑖

𝑁
for the first slot. As we sample without replacement, we decrease the cardinality
of the selected thread 𝑁𝑖 and the global cardinality 𝑁 by 1 for the next draw.

All threads 𝑗 with 𝑗 ≠ 𝑖 have the probability
𝑁𝑗

𝑁−1 of being selected for the next
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Algorithm 5.4 Calculating per-thread share of global sample

1: function calculateThreadShare(localCardinalities[])
2: globalCardinality ← sum(localCardinalities)
3: fenwickTree ← FenwickTree::build(localCardinalities)
4: samplesPerThread ← []
5: slot ← 0
6: while slot < sampleSize and globalCardinality > 0 do
7: selTuple ← pickRandom(0, globalCardinality − 1))
8: selThread ← fenwickTree.rank(selTuple)
9: samplesPerThread[selThread] ← samplesPerThread[selThread] + 1

10: fenwickTree.add(selTuple, −1)
11: globalCardinality ← globalCardinality − 1
12: slot ← slot + 1
13: return samplesPerThread

reservoir slot, the selected thread has a probability of 𝑁𝑖−1
𝑁−1 . We repeat this until

we have selected the source for all 𝑛 spaces in the sample, decreasing 𝑁 and 𝑁𝑖
for the selected 𝑖 at every draw. Note that while conceptually drawing slot by
slot, we do not care about the order of the sample or the actual slot to select
from. This allows us to only track the number of tuples per thread.

Algorithm 5.4 shows our implementation. In the first step, we calculate the
global cardinality from the thread-local information and build a Fenwick tree
over the local cardinalities (Line 3). Fenwick trees, as described in [52], allow
efficient operations over prefix sums while requiring only linear space. Building
a Fenwick tree is possible in linear time, whereas rank and update operations
have logarithmic runtime. Following the setup, we can pick the shares for each
thread. For this, we first generate a random integer 𝑟 ∈ [0, 𝑁 ) (Line 7). From
this value, we pick the corresponding thread by using the prefix-sums stored
in the Fenwick tree. For 𝑟 ∈ [0, 𝑁1), we pick thread 1, for 𝑟 ∈ [𝑁1, 𝑁2), thread 2,
and so forth. Mapping 𝑟 to a thread this way is possible in 𝒪(log(𝑝)) using the
rank operation of the Fenwick tree (Line 8). Then, we update the cardinality of
the selected thread and the global cardinality (Lines 10 and 11) for the next draw
from the updated categorical distribution. We repeat the draw and distribution
update until we have either selected every tuple or filled every slot in the final
sample. Our algorithm does not require floating point arithmetic, allowing a
fast and exact evaluation. The Fenwick tree construction dominates the setup
step with a runtime of 𝒪(𝑝). The loop of Line 6 is evaluated 𝑛 times, requiring
𝒪(log(𝑝)) to update the Fenwick tree, resulting in an overall runtime complexity
of 𝒪(𝑝 + 𝑛 log(𝑝)).
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5.2.3 Proof
To show that the merge strategy outlined above does not change the resulting
samples’ probability, we show that it selects tuples from local reservoirs equal
to the hypergeometric distribution. For this, we will use the probability mass
function 𝑃(𝑋 = 𝑘) where 𝑋 denotes the number of tuples selected from thread
𝑖. For our proof, we use the fact that the positions for which 𝑖 is selected are
irrelevant. Consider first the case where all 𝑘 selections of 𝑖 happen in the first 𝑘
draws, followed by 𝑛 − 𝑘 draws of 𝑗 ≠ 𝑖. This results in the probability

𝑃(first 𝑘 from 𝑖) =
𝑁𝑖
𝑁

×
𝑁𝑖 − 1
𝑁 − 1

× ⋯ ×
𝑁𝑖 − 𝑘 + 1
𝑁 − 𝑘 + 1

×
𝑁 − 𝑁𝑖
𝑁 − 𝑘

×
𝑁 − 𝑁𝑖 − 1
𝑁 − 𝑘 − 1

× ⋯ ×
𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1

𝑁 − 𝑛 + 1
(5.2)

=
𝑁𝑖 × (𝑁𝑖 − 1) × ⋯ × (𝑁𝑖 − 𝑘 + 1) × (𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × ⋯ × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)

𝑁 × (𝑁 − 1) × ⋯ × (𝑁 − 𝑛 + 1)
. (5.3)

It is clear that, through the commutative property of the product, the draws for
𝑖, 𝑁𝑖 to 𝑁𝑖 − 𝑘 + 1, can be moved to any of the draws 𝑁 to 𝑁 − 𝑛 + 1 without
changing the resulting probability. For the full 𝑃(𝑋 = 𝑘), we additionally need
to select the 𝑘 positions for our 𝑖 draws, resulting in the probability

𝑃(𝑋 = 𝑘) =
𝑁𝑖 × (𝑁𝑖 − 1) × ⋯ × (𝑁𝑖 − 𝑘 + 1) × (𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × ⋯ × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)

𝑁 × (𝑁 − 1) × ⋯ × (𝑁 − 𝑛 + 1)
× (

𝑛
𝑘
). (5.4)

Using (𝑛𝑘) =
𝑛!

𝑘!(𝑛−𝑘)! and 𝑥 × (𝑥 − 1) × ⋯ × (𝑥 − 𝑚 + 1) = 𝑥!
(𝑥−𝑚)! we get

𝑃(𝑋 = 𝑘) =
(𝑁𝑖 × (𝑁𝑖 − 1) × ⋯ × (𝑁𝑖 − 𝑘 + 1)) × ((𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × ⋯ × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1))

𝑁 × (𝑁 − 1) × ⋯ × (𝑁 − 𝑛 + 1)
× (

𝑛
𝑘
) (5.5)

=
𝑁𝑖!

(𝑁𝑖 − 𝑘)!
×
(𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × ⋯ × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)

𝑁 × (𝑁 − 1) × ⋯ × (𝑁 − 𝑛 + 1)
× (

𝑛
𝑘
) (5.6)

=
𝑁𝑖!

(𝑁𝑖 − 𝑘)!
×

(𝑁 − 𝑁𝑖)!
(𝑁 − 𝑁𝑖 − 𝑛 + 𝑘)!

× 1
𝑁 × (𝑁 − 1) × ⋯ × (𝑁 − 𝑛 + 1)

× (
𝑛
𝑘
) (5.7)

=
𝑁𝑖!

(𝑁𝑖 − 𝑘)!
×

(𝑁 − 𝑁𝑖)!
(𝑁 − 𝑁𝑖 − 𝑛 + 𝑘)!

×
(𝑁 − 𝑛)!

𝑁 !
× (

𝑛
𝑘
) (5.8)

=
𝑁𝑖!

(𝑁𝑖 − 𝑘)!
×

(𝑁 − 𝑁𝑖)!
(𝑁 − 𝑁𝑖 − 𝑛 + 𝑘)!

×
(𝑁 − 𝑛)!

𝑁 !
× 𝑛!
𝑘!(𝑛 − 𝑘)!

(5.9)

=
𝑁𝑖!

𝑘!(𝑁𝑖 − 𝑘)!
×

(𝑁 − 𝑁𝑖)!
(𝑁 − 𝑁𝑖 − (𝑛 − 𝑘))! × (𝑛 − 𝑘)!

×
(𝑁 − 𝑛)!𝑛!

𝑁 !
(5.10)

= (
𝑁𝑖

𝑘
) × (

𝑁 − 𝑁𝑖

𝑛 − 𝑘
) × 1

(𝑁𝑛)
(5.11)

=
(𝑁𝑖
𝑘 ) × (

𝑁−𝑁𝑖
𝑛−𝑘 )

(𝑁𝑛)
(5.12)

which is the probability mass function of the hypergeometric distribution.

5.3 Evaluation
Having outlined the implementation of our fully parallel communication-optimal
reservoir sampling approach, we demonstrate its performance, focussing on
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Figure 5.2: Total sampling throughput with an increasing number of threads:
Our communication-optimal sampling approach scales nearly linearly to more
than 30 billion tuples per second.

scalability and the impact of our proposed merge strategy for small sample
sizes. The experiments are conducted using an implementation within Umbra
on a server equipped with 2 AMD EPYC™ 7713 CPUs with 64 cores each and 1
TiB of main memory. To reduce the impact of IO bottlenecks, we generate all
data using the PostgreSQL-derived generate_series1 command. All results
reported are based on averages over 9 runs, each sampling 𝑁 = 100 billion
records.

5.3.1 Scalability and Performance

In the first experiment, we investigate the scalability of our approach. As we
require no communication between threads during the sampling phase, we
expect the sampling phase to scale perfectly along the thread count. Addition-
ally, the runtime of the merge phase is independent of the input size, so we
expect it to amortize for large data sets. We measure the total throughput of
our implementation with different reservoir sizes and an increasing number
of threads and report the results in Figure 5.2. As expected, the throughput
of processed tuples scales nearly linearly with the number of threads. For a
reservoir size of 1, our implementation can process up to 35 billion tuples per
second when using all 128 physical cores. The experiment samples 8 B integers,
so in total, our system processes up to 280GB of data per second.

1https://www.postgresql.org/docs/current/functions-srf.html

https://www.postgresql.org/docs/current/functions-srf.html
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Figure 5.3: Speedup of our merge strategy based on a categorical distribution
over using a hypergeometric distribution: For sample sizes below 1000, our
approach achieves up to 91% speedup independent of the number of threads.

Our approach requires each thread to collect a full-size local sample. For this
reason, the memory usage of sampling increases linearly with the number of
threads. Therefore, we expect higher sampling overhead and lower throughput
for increasing sample sizes. However, the results show that the overhead is
manageable even for larger sample sizes. For example, even when collecting a
sample of size 10000, our implementation can still process over 30 billion tuples
per second.

5.3.2 Merge Strategy Comparison
Our approach requires communication between threads only in the merge
phase. We want to show that our merge strategy, which employs a categorical
distribution, can be more efficient than a hypergeometric distribution while
producing equivalent results. To evaluate our strategy, we compare the runtime
of the merge phase for both distributions. Figure 5.3 shows the relative speedup
of our merge strategy with varying numbers of threads and sample sizes. Note
that the merge phase itself always runs single-threaded on a coordinator node.
The number of threads in the figure refers to the number of locally collected
samples to be merged.

For sample sizes up to 750, our approach consistently outperforms using the
hypergeometric-distribution-based merge. The main reason for the efficiency
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of our merge strategy is that it uses no floating-point operations. However,
we need to perform two operations on the Fenwick tree for every element in
the sample, while the merge phase using a hypergeometric distribution only
generates one value from the distribution for every thread, independent of
the sample size. Therefore, our merge strategy is inefficient for larger sample
sizes. The experiment further shows that our approach’s speedup is generally
independent of the number of threads: Our strategy consistently achieves similar
speedup across all sample sizes, even for several hundred threads.

5.4 Summary
In this chapter, we introduce a new communication-optimal parallel reservoir
sampling technique, requiring only 2𝑝 + 𝑛 messages for environments with 𝑝
workers and a sample size of 𝑛. Our technique relies on an efficient merge of
thread-local reservoir samples, each taken over arbitrarily distributed chunks of
the input. In addition, we describe a novel merge strategy optimized for small
sample sizes and provide proof that this strategy is statistically equal to the hy-
pergeometric distribution. Finally, with our implementation of communication-
optimal parallel reservoir sampling in the Umbra database system, we evaluate
its overall performance, and both merge strategies. Achieving more than 370
million samples per thread, we show a near-linear scale-up to 128 workers and a
clear advantage of our optimized merge for samples smaller than 1000 tuples.



CHAPTER 6
On-Demand State Separation

Excerpts of this chapter have been published in [168].

The high flexibility and cost-efficiency of cloud databases, such as Snowflake
[39] and Amazon Redshift [68], are attracting an increasing range of customers.
While these systems offer solutions for petabytes of data and optimize for
scalability, they also attract smaller customers and workloads. These workloads
do not require the full elasticity offered and can often be handled by one or a few
machines. However, finding the optimal instance to provide cost optimality is
still not trivial [102]. To understand the challenges of cloud data warehousing for
smaller workloads, one needs to look at the dominant warehouse architectures
and their characteristics outlined in Figure 6.1.

First, there is the classic shared-nothing architecture prominent in on-
premise deployments and used in the initial version of Amazon Redshift [68]. In
this architecture, both storage and compute are co-located on a worker. While
this offers the best performance, it cannot scale resources independently. Second,
there are storage separated architectures, such as Snowflake [39]. These allow
compute and storage to be scaled separately. Keeping the working state of a
query at the compute node still achieves excellent performance. However, this
does not permit elasticity and fault tolerance for individual queries. Third, state-
separated architectures, like Microsoft POLARIS [7], fully decouple state and
compute. The high flexibility and elasticity of state separation come at the cost
of network overhead when syncing the state between tasks. This overhead is
acceptable when data has to be shuffled between workers after each task. Finally,
modular systems, like Apache Spark [179], do not follow a specific architecture
fully but can be configured similarly to one or more architectures. For Spark,
e.g., state separation can be achieved by strategically placing checkpoints in the
query plan [139, 173]. We argue that, due to network transfer costs, stateless
architectures are not profitable for smaller workloads. Nevertheless, there is a
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Figure 6.1: Classification of cloud data warehouse architectures by performance
and flexibility. Flexibility here is the ability to adapt to changes in the execution
environment and provide scalability for processing. Performance is defined by
query throughput and latency.

growing need for higher flexibility for such workloads: Ambati et al. [10] pro-
pose speculatively executing queries to find the best query-to-worker matching,
losing all progress achieved when the worker has to be changed. In addition,
Garefalakis et al. [59] have described the need for suspendable tasks to provide
low latency for time-sensitive tasks when resources are limited.

In this chapter, we propose on-demand state separation to provide the desired
flexibility of stateless architectures without incurring the performance cost.
This way, we can utilize the full performance of storage-separated architectures
for local queries, while still allowing for query migration and elasticity with
minimal overhead when necessary. To achieve this, we run the query as if it
were only storage-separated. When the need for state separation arises, we
cache all relevant intermediate results over the network and continue the query
on these on the target worker. This query migration can be beneficial in a
number of settings. It allows the utilization of more powerful or cheaper servers
that become available in a cluster for already running queries. Furthermore, it
enables load balancing between servers in multi-tenancy settings, as well as the
utilization of spot instances for query processing. Queries can be started on
such instances and migrated when the spot instance expires, which has been
proposed for VM instances [140, 145, 175] and using predefined checkpoints [139,
173] in Apache Spark. Contrary to those solutions, we only need to migrate the
current working state of a query and do not require a priori knowledge about
the workload. This chapter covers the following key points:

• We provide an analysis of the query states occurring in mid-sized cloud
workloads on the exemplifying workload of all queries of the TPC-DS
benchmark [1] at a scale factor of 100. This dataset of roughly 100GB
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represents a medium-sized workload, which can be reasonably executed
on a single server. To the best of our knowledge, we are the first to
describe query states in a state-separated architecture.

• We describe the constraints for the deployment environment necessary
for (on-demand) state-separated architectures on such workloads.

• We show the design and implementation of on-demand state separation in
an OLAP database system using the code-generating DBMS Umbra [118].

• We evaluate the performance and overhead of on-demand state separation
for various use cases.

The remainder of the chapter is structured as follows: Section 6.1 defines
the goal of on-demand state separation and the relevant concepts. Then, we
analyze the state of OLAP workloads based on TPC-DS in Section 6.2. Sec-
tion 6.3 describes the design and implementation of on-demand state separation,
which we evaluate in Section 6.4. We discuss related work in Section 6.5 before
summarizing in Section 6.6.

6.1 Problem Definition
Before describing our novel approach to on-demand state separation, we first
need to formalize the problem statement, as well as the requirements that queries
and systems have to fulfill to support our approach. The goal of on-demand
state separation is to provide flexibility for traditional relational databases in
cloud settings. To achieve this flexibility, we utilize state separation [7].

Definition 1. State Separation: State separation is the process of decoupling the
working state and progress of a query from the machine executing it.

A state-separated query can, thus, be resumed on any machine, even if the
new machine’s configuration differs from the old one. Changing the executing
server at runtime has been employed in the past, e.g., in multi-engine environ-
ments [6, 143]. These systems focus on migration between different engines at
pre-planned points in the query plan for performance. In contrast, we aim for
flexibility by migrating on demand without prior planning.

Goal. On-demand state separation achieves state separation retroactively with
minimized progress loss and minimized query state without hampering the perfor-
mance of local execution.
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with customer_revenue as (
select customer.id, sum(orders.price)
from customers, orders
where customers.id = orders.customer_id
group by customer.id

)
select c.name, c.adress, c.birthday
from customer c, customer_revenue r
where c.id = r.id and r.revenue >= 0.9 *

(select max(revenue) from customer_revenue)

CustomerCustomer

Result

TempScanTempScan Orders

Γid, sum(price)

materialized result

Γmax(revenue) ⨝id = customer_id

⨝0.9 * max <= revenue

⨝id = id

15

4

3 26

Figure 6.2: Exemplifying SQL OLAP query (top) and corresponding query plan
(bottom) with pipelines. Pipelines continuing through an n-ary operator are
marked bold and color-coded. Circled pipeline IDs also denote execution order.

6.1.1 Background
Having defined the goal of on-demand state separation, we need to discuss
the requirements a database system has to fulfill to support it, as well as the
properties of relational queries we use for our approach. For this, we will use the
exemplifying query in Figure 6.2 and its query plan, which serves as a running
example throughout this chapter. First, we find high-grossing customers using
the common table expression customer_revenue. Then, we reconnect these
customers to the customer table to extract all information required to send them
birthday cards.

Query Properties

Our approach is based on relational queries following a query plan such as the
one displayed in Figure 6.2. Plans consist of operators, such as joins, aggrega-
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tions, and filters. These operators can be grouped into two categories, blocking
and filtering operators. Blocking operators, such as the id, sum aggregation,
materialize all tuples before reporting the result. Filtering operators, on the other
hand, do not materialize tuples. Operators can exist as a filtering and a blocking
operator simultaneously. The id = customer_id join, e.g., will materialize all
tuples from the customer relation but only filter tuples from the orders relation
without materializing them. We call all paths in the query plan in which a tuple
is not materialized, i.e., between two blocking operators, pipelines.

Each pipeline is executed exactly once for all tuples of its input. Nevertheless,
the result of a pipeline may be used multiple times. The result of pipeline 2
in Figure 6.2, for example, is scanned twice, namely in pipelines 3 and 6 .
Furthermore, a pipeline fully depends on all of its inputs. Before pipeline 6 can
start, pipelines 2 , 4 , and 5 must finish their execution. These dependencies
result in the execution order denoted by the pipeline IDs in Figure 6.2.

System Requirements

A system has to fulfill three main requirements to support on-demand state
separation, which we will discuss below. As we have implemented our approach
within the Umbra database system [118], we give a brief overview of how Umbra
adheres to these requirements.

Plan-Based Execution. In our approach, we process queries using relational
operators and pipelines. Therefore, we also require the system to process queries
based on relational operators. Query plans are the default execution model
for relational databases. Therefore, most existing database systems adhere to
this requirement. Furthermore, the system must support the serialization and
deserialization of plans for execution, either through dedicated formats or by
emitting SQL. Umbra, e.g., uses a pipeline-based execution model, which we
describe in Section 2.2. In this model, the query is split into pipelines, which
in turn are translated into code and compiled for execution. Umbra further
supports the export and import of query plans to and from JSON format, which
we use to share queries between instances.

Query Progress Information. As one goal is to preserve already achieved
query progress, systems have to offer insights into the progress of running
queries. This progress information is already part of query execution in inter-
preting systems, such as MonetDB [23]. Compiling systems, such as Umbra,
which convert queries to machine code, require active progress-keeping. In
Umbra, it is not the entire query but its individual pipelines that are converted
to machine code. This pipeline-based conversion allows us to keep track of the
query progress at pipeline granularity.
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Accessible Intermediate Results. Finally, our approach requires access to the
intermediate results held for a query as they materialize the progress achieved.
While interpreting engines access these results directly for query processing,
compiling engines typically only access them through generated code. For state
separation, however, compiling systems need to maintain information on these
intermediate results outside of generated code as well. Umbra, for example,
manages the state for queries in two different regions, thread-local and global
state, which we describe in Section 2.3. The former is used for intra-pipeline
processing and is thus not relevant to our approach. The global state, on the
other hand, holds all data shared between pipelines, such as materialized results,
and allows us to access them from the database. We will discuss the access in
detail in Section 6.3.4.

6.1.2 State Model
After describing the goal and system model for state separation, we can define
what state is relevant for extraction. As we discussed in Section 6.1.1, the
intermediate results of a query materialize its progress. Thus, we only have to
focus on these results. This allows us to remove all database-wide information,
like indices, from our consideration, as this information is available to all nodes
in a cluster in a uniform fashion.

Intermediate results are commonly materialized in blocking operators, i.e.,
at the end of pipelines. Vectorized systems such as MonetDB [23] materialize
results in every operator. In our example in Figure 6.2, the results are, e.g., mate-
rialized in the join hash table after pipeline 1 and the aggregates after pipeline
3 . Further, we abstract from the physical representation of the result, such as
hash tables. This physical representation can vary greatly between systems and
even between different instances of the same system. For example, even switch-
ing from a hash join to a blockwise-nested-loop-based join implementation for
the same query and system will change the materialization of the results, even
though the results will be identical. Therefore, we only consider tuples in the
materialized results, not their surrounding index structures. Finally, we only
consider results that are still required for query processing. After pipeline 2
has finished, the join hash table produced by pipeline 1 is no longer required
and thus not considered part of the state. The results of pipeline 2 , in turn,
will be used by both pipelines 3 and 6 . It is, therefore, part of the query state
until both have finished. To summarize, we define query state as follows:

Definition 2. Query State: The query state comprises all tuples materialized
within the blocking operators of finished pipelines connecting to not yet finished
pipelines.
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We will assume this definition when speaking of state in the remainder of
this chapter. After pipelines 1 to 4 are finished in Figure 6.2, for example, the
query state would contain all tuples in the id, sum(price) aggregation, as well as
all tuples in the max ≤ revenue join hash table.

6.2 State Analysis
Having defined what constitutes the state of a query, we can now analyze the
state of typical OLAP workloads. We base this analysis on the well-known
TPC-DS OLAP benchmark [1], which models a warehouse for a decision support
system. To represent medium-sized workloads, we choose scale factor 100
(SF100), which roughly equals 100GB of data. We analyze the state of each of the
103 TPC-DS queries after every pipeline in query plans generated by the Umbra
database system [118]. TPC-DS distributes queries uniformly. Therefore, we
include all queries and variants once in our analysis. As the state is comprised
of only required tuples and columns in SQL-defined data types, the state size
only depends on the query plan and join order, and not on the system used.

6.2.1 State Size Distribution
As the first analysis, we look at the distribution of state sizes occurring through-
out all queries. For this, we measure the size of tuples stored after each pipeline
and the number of blocking operators materializing these tuples. Figure 6.3
displays the results. One can see that the vast majority of states comprise few
operators with less than ten megabytes of data. While most states are small,
several states are larger than five gigabytes. Forty-six states exceed one gigabyte
in size, while 626 are smaller than 1MB. Overall, 30% of states contain a single
blocking operator with less than 1MB of data, and 86% of states do not exceed
100MB. Even though the median state size is only 133KB, the mean state size
is 265MB. While 90% of states comprise fewer than five operators, up to 15
operators are involved for some queries.

All intermediate results of a query are relevant for state-separating architec-
tures as the state has to be synchronized after every task. Therefore, we also
look at the sum of intermediate result sizes occurring for each query. Figure 6.4
depicts the distribution of average and total state size per query. One can see
that the total state size far outweighs the average. Compared to the mean size
of a single state, the mean of all states is 2.6GB, and thus, 10× larger. This sum
of state sizes is an upper bound for the state of a query, as it can contain the
same pipeline result multiple times. For our example in Figure 6.2, the result
of pipeline 2 is part of all states starting from pipeline 3 . However, entirely
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Figure 6.3: Distribution of state sizes occurring within TPC-DS SF100 by the
number of blocking operators involved.
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Figure 6.5: Distribution of state sizes occurring within TPC-DS SF100 by query
progress.

excluding these duplicates would be inaccurate as well, as they have to be trans-
ferred to workers multiple times. E.g., the result of pipeline 2 is required by
workers for pipelines 3 and 6 .

6.2.2 Influence of Query Progress
Given the overall state distribution, we want to analyze further if and how the
state distribution relates to query progress. Therefore, we must first define
query progress for our model. As we are only interested in the states occurring
after pipelines, we define the progress metric based on pipelines only:

Definition 3. Query progress = # of finished pipelines
# of total pipelines

While this does not account for the runtime of individual pipelines, it con-
siders the task-based scheduling of cloud jobs. The distribution of state sizes
along this query progress for all TPC-DS queries is shown in Figure 6.5. While
large states seem to occur less frequently close to the start and end of queries,
the overall distribution shows no significant trends. Both large and small states
can occur during every phase of query execution. However, this distribution
could be skewed by a few queries with a large state. Figure 6.6 displays the
distribution of state size normalized to the maximum state size for each query
to account for this skew. One can see that the trend partly revealed in Figure 6.5
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Figure 6.6: Evolution of relative state size during queries. State size is relative
to the maximum state size reached for a query.

is more apparent here. On average, the state size grows until around 40% of
pipelines are completed and plateaus until around 70%. From there on, the state
continuously shrinks. The structure of query plans can explain this. In the
beginning, queries collect a lot of data, e.g., in join build sides. In Figure 6.2, e.g.,
the first two states include only a single pipeline result. From there on, at least
two results are part of the state: at least one join build side and the state of the
probe pipeline. After pipeline 5 , the state is maximal with three materialized
pipelines results ( 2 , 4 , and 5 ).

6.2.3 Discussion
In this section, we have shown the overall distribution and trends in the query
state of all TPC-DS queries. However, we have not discussed the implications
of state separation arising from this data. Overall, the state sizes in Figure 6.3
are promising for state separation. Assuming a 10Gbit/s network connection
between servers, a round trip for the mean state size takes only 424ms. Still, a
complete round trip after every state can add up quickly. In the worst case, up
to 9.1GB must be transmitted for a single state, resulting in a 14.6 second round
trip. For these large states, transfer time alone can already exceed the execution
time of local queries, making re-execution in case of failure more profitable than
state separation.

When considering all states occurring for queries (cf. Figure 6.4), the po-
tential network overhead increases further. Examining the sum of state sizes,
the mean of 2.6GB and a maximum of 162.8GB lead to a 4.2 and 261 second
round trip, respectively. Nevertheless, given that 86% of single states can be
transferred to other workers in less than 160ms, state separation of single states
can be profitable for the vast majority of queries.
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Evaluating the distribution of state sizes during individual queries in Fig-
ure 6.6 shows that state separation is best early on or close to the end of a query.
However, as the relative cost of a restart increases with query runtime, migrating
the larger states occurring between 25% and 75% progress might still pay off.

6.3 On-Demand State Separation
The advantages of state separation are well known for cloud environments.
Being able to add and remove workers and handle worker crashes offers the
flexibility desired by customers. However, synchronizing the state over the net-
work can be expensive, especially for single-worker queries. It is not necessary
for those to shuffle state to workers between tasks, and thus, every network
transfer is overhead in query execution. As shown in Section 6.2, sending every
state over the network instead of only one can make a 10× difference on average.
Furthermore, our approach can optimize for local execution, generating no exe-
cution overhead when no state separation is required. While on-demand state
separation and migration solutions exist based on virtual machines (VMs), these
treat the VM as a blackbox. Therefore, they either have to restart tasks [175] or
migrate the entire VMs memory state [140, 145], which is bound to be much
larger than just the query state. Approaches that use extensive knowledge about
the inner state of queries [139, 173] rely on pre-defined checkpoints. These must
be defined before a task starts and cannot be created retroactively on demand.

To achieve a minimal migration state without the need for less flexible
checkpoints, we propose scanning and extracting the currently materialized
query state, as defined by Definition 2. As this state is part of the execution
process, it is accessible at any time without prior preparation. In the remainder
of this section, we will describe the high-level design of our approach and the
prototypical implementation within the Umbra system using the exemplifying
use case of query migration:

Definition 4. Query Migration. Query migration is the process of moving the
processing of a query q from an executing server A to a server B without losing the
progress achieved for q on A.

6.3.1 Deployment Environment
The deployment environment is of great importance to enable on-demand state
separation, especially in the presence of transient compute resources. We show
a possible server configuration in Figure 6.7. In order to keep the state held
in finished pipelines when a worker fails or is taken away, it has to be kept in
a durable, external location. Therefore, when state separation is required, all
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Figure 6.7: Server cluster for on-demand state separation and query migration.
State is only shared via a network cache, query plans can be migrated peer
to peer. Exemplifying data flow for a migration from server A to server B is
highlighted in blue.

tuples that are part of the state must be cached externally. As state sizes can
reach gigabytes (cf. Section 6.2), all workers (e.g., servers A and B) must access
the cache through high-bandwidth connections.

Furthermore, the workers have to communicate to transfer the accompany-
ing query plan. In our current setup, this is realized by peer-to-peer connections
between workers. A peer-to-peer setup is the most lightweight option for co-
ordination, requiring few messages and no additional servers. It is, thus, ideal
for small and stable deployments. However, it is also possible to handle these
transfers using a dedicated coordinator in larger deployments. While this adds
communication overhead and requires an additional server, it offers greater
flexibility. For example, a coordinator can monitor the running instances to
detect migration needs and deal with servers joining and leaving the cluster.
While Figure 6.7 only focuses on those servers and components relevant for state
separation and query migration, real deployments will also include additional
servers for the cache and storage servers required for storage separation.

There are additional constraints for caches. For one, the workload is different
from traditional key-value store workloads. In contrast to those, our data is
ephemeral. For query migration, the state is written and read exactly once, often
directly after each other. Once the data is read, it is no longer required and,
thus, discarded. Furthermore, the state sizes can pose a problem. Many cloud
key-value stores limit the maximum value size. The popular key-value database
Redis, e.g., has a limit of 512MB [127] for individual values. However, the state
analysis shows that the state size can reach gigabytes easily. For our workload,
we require high throughput and low latency under high write and read loads for
large value sizes. We found the system closest to our requirements to be Apache
Crail [144], as it is optimized for ephemeral data and has no limit on value size.
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Figure 6.8: Dependency graph between all pipelines of the query plan of Fig-
ure 6.2. Transitive dependencies are irrelevant for state selection.

6.3.2 Process Overview
Having defined the deployment environment, we can describe the outline of
our on-demand state separation process. We will use the query migration
use case of Definition 4, as it is the most involved. Other possible use cases
for state separation, such as deferring execution to prioritize other queries or
snapshotting, can be realized with the functionality utilized for query migration.
For example, consider the migration of the query in Figure 6.2 from server A to
server B in Figure 6.7.

First, the need for migration is detected and reported to the server (1).
Migration can be triggered by several events, e.g., the indication by the cloud
provider that a transient compute resource is being taken away soon or the
availability of a faster or cheaper spot instance. Then, the current state of a
query according to Definition 2 has to be identified at server A and extracted
from structures such as hash tables. Server A then transfers the extracted state
to the external cache (2). On server A, the query plan is then adapted to continue
from the current state and transferred to the receiving server B (3). Server B
then compiles the received query plan and continues the execution. Whenever a
partial result from the state has to be scanned for the first time, it is fetched from
the cache and kept locally (4). Snapshots can be realized by periodically sending
the current state and the adapted query plan to the cache. Deferring queries is a
special case of snapshotting, as the worker does not need to change. Therefore,
the state and modified query plan can also be kept locally, thus saving the cost
of network transfer. We will use the remainder of this section to describe the
steps above in detail.

6.3.3 State Selection
Once a server has been notified of a desired state separation, the execution of the
current query is halted. Then, we identify all operators that are part of the state.
For this, we track the current query progress in the form of finished pipelines
throughout query execution. Further, to prune all pipeline results no longer
required for execution, we calculate all direct dependencies between pipelines.
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Algorithm 6.5 Selecting blocking operators contained in a state

1: function SelectStateOperators(finishedPipelines, dependencies)
2: dependents ← invert(dependencies)
3: stateOperators ← ∅
4: for 𝑝 ∈ finishedPipelines do
5: anyUnfinished ← false
6: for dep ∈ dependents[𝑝] do
7: if dep ∉ finishedPipelines then
8: anyUnfinished ← true
9: if anyUnfinished then

10: append(stateOperators, p.blockingOperator)
11: return stateOperators

Definition 5. Direct pipeline dependency: A pipeline 𝐴 directly depends on
a pipeline 𝐵 if pipeline 𝐴 directly requires the result of pipeline 𝐵 for execution.

In Figure 6.2, e.g., pipeline 3 depends on pipeline 2 , but not on pipeline
1 . Figure 6.8 depicts dependencies of all pipelines of our example. One can see
that the dependencies form a DAG. However, it is still possible that a pipeline is
another pipeline’s direct and transitive dependency. Given these dependencies,
we can now select those finished pipelines still part of the state. The algorithm
for this is shown in Algorithm 6.5. First, we invert the dependency mapping
to get all dependents for a pipeline (line 2). Then, we iterate over all finished
pipelines, identifying those that are part of the state (line 4). If all dependents of
a pipeline are finished, the pipeline’s materialized result is no longer required
and, therefore, no longer considered part of the state (lines 6 - 8). Finally, we
collect all blocking operators of finished pipelines with at least one dependent
for state extraction (line 10).

Directly after pipeline 4 finished executing in our running example, the
finished pipelines contain pipelines 1 , 2 , 3 , and 4 . Of those, state selection
discards 1 and 3 as all their dependents ( 2 and 4 , respectively) are already
finished. We remember the blocking operators for state extraction for the two
remaining pipelines, namely, the grouped aggregation id, sum(price) and the
max ≤ revenue join.

6.3.4 State Extraction
Having found all operators containing state, we have to extract the individual
tuples that comprise this state. While a closer mapping to the current state
would be to migrate tuples within index structures, such as hash tables, we
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Figure 6.9: Query migration artifacts of the query in Figure 6.2 when migrating
after pipeline 5. Bottom: Subtree to be extracted as state and held in the cache.
Mid: State extraction queries to be run on the migration source. Top: Modified
plan to continue execution on the target server.

extract state as defined in Definition 2. State held in operators is optimized
for efficient local processing, e.g., by keeping it in pointer-referenced storage
and hash tables. This configuration differs between operators and is hard to
serialize for network transfer. Furthermore, optimal state structures might differ
between servers. Migrating only tuples allows the target system to re-create
this per-operator state in a configuration optimized for the local deployment
as if it resided in a table. We first want to highlight the high-level process
of this tuple-based state extraction before giving a detailed description of the
implementation within our system. In general, we have to distinguish between
two different kinds of blocking operators.

The first type is operators that only appear as blocking operators within
a query, which we call scan-optimized operators. This category comprises
unary blocking operators, such as aggregations, sorting, set operations, and
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potential specialized operators such as K-Means, window functions, or sampling.
These operators are the easiest to extract tuples from, as they already offer
functionality to scan all tuples. Such operators are always sources of pipelines
using their results. Therefore, they produce all tuples when scanned, allowing
us to re-use this scan functionality. In many systems, operators can be scanned
repeatably to optimize queries, like the id, sum(price) aggregation in Figure 6.2.
Functionality for repeated scans further enables state extraction for snapshots
without interfering with query execution.

The second type of operator is those with more complex access patterns,
such as joins, which appear as a blocking and as a filtering operator. Hash joins,
e.g., are optimized for point accesses on the join predicate and often do not offer
functionality for full scans. Fortunately, there are only a few operator types in
this category. This category only contains different join implementations with
non-linear access optimizations in our system. Nevertheless, joins frequently
occur in queries and should be considered for query migration. While these
operators are not optimized for full scans, their internal structures often still
support such scans. Blockwise-nested-loop joins, e.g., materialize their build-
side fully without additional indices, making scans easy. Most index structures,
such as hash tables and trees, can be scanned efficiently, allowing us to support
the migration of all operators currently implemented within our system.

In the following, we will describe the implementation of query migration for
both scan-optimized and index-optimized operators. As the implementation of
operators varies heavily between systems, we will limit the implementation to
the Umbra [118] system. We outline the requirements and possibility for state
extraction in other systems in Section 6.1.1.

Implementation

To best utilize existing infrastructure within the database, we implement the
extraction process as a regular query. All tuples arematerializedwithin operators
during execution, often nested in a complex operator state. Extracting this state
with a query allows us to re-use existing logic and access paths. Furthermore, this
allows us to access all optimizations and features of in-database query execution,
such as specialized code generation [117] and morsel-driven parallelism [99].
Especially for scan-optimized operators, the state extraction can be realized
almost entirely with existing code and logic, allowing easy integration into an
existing system.

The extraction query plans differ for scan- and index-optimized operators,
which we will describe below. Once we have generated this plan, the remaining
steps are identical: The query plan is compiled and given access to the state of
the query to be migrated or snapshotted. In contrast to regular queries, our state
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extraction queries do not report the result to the user. Instead, the resulting
tuples, i.e., the query state, are collected in a compact format and sent to the
cache. Our approach schedules all extraction queries for immediate execution
and exclusively to prevent modifications to the state before the extraction is
complete.

Scan-Optimized Operators

State from scan-optimized operators can be extracted using only the extracted
operator’s logic. For this, we duplicate the existing operator into a new query
plan and link the copy to the state of the operator selected for extraction. An
example of such an extraction plan for a scan-optimized operator can be seen
in Figure 6.9 for the id, sum(price) aggregation. We can again use the fact that
scans of an operator’s state are non-destructive and reference the state of the
existing operator, avoiding a costly copy of the whole operator state.

Index-Optimized Operators

Index-optimized operators require a more in-depth analysis of the state to ex-
tract tuples. While it would be possible to generate extraction plans using only
existing query logic, e.g., by modifying joins to run against a single tuple that
joins with all build-side tuples, we opted to implement dedicated extraction
operators instead. Using dedicated operators, we can often bypass the opera-
tor’s access paths and directly access the data for a scan. This more efficient
access strategy comes at the cost of implementing extraction logic for all index-
optimized operators. However, as stated above, there are only a few operators in
this category that often occur. As all these extraction operators follow a similar
pattern, we will not detail the implementation for every operator. Instead, we
will describe the high-level implementation based on a hash join.

Consider, e.g., the id=id join extraction in the top left corner of Figure 6.9.
In it, we need to extract all tuples stored in the build-side hash table of the
hash join. All operator states are well-defined within Umbra, as outlined in
Section 2.3. Therefore, we can locate the hash table from the operator state
and make it accessible to our build-side-scan operator. This scan operator then
loops over all buckets, extracting all key-value pairs stored within to recreate
the tuples. All other specialized extraction operators in our system follow this
pattern of accessing the structure holding tuples in the operator’s state to be
extracted. Again, this scan is non-destructive, and therefore, we do not have to
copy the hash table to extract tuples.
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Algorithm 6.6 Modifying the query plan to use the extracted state

1: function ModifyPlan(stateOperators)
2: opsToExtract ← ∅
3: for op ∈ sortPreOrder(stateOperators) do
4: if isIndexOptimized(op) then
5: toReplace ← op.buildSide
6: replaceIn ← op
7: else
8: toReplace ← op
9: replaceIn ← op.parents

10: migratedTable ← buildTable(toReplace.types)
11: for location ∈ replaceIn do
12: if location.isValid() then
13: location.replace(toReplace,migratedTable)
14: append(opsToExtract , op)
15: return opsToExtract

6.3.5 Plan Modification
In the final step on the source server, we need to adapt the query plan to
incorporate the cached state instead of the subtrees it represents. To achieve
this, we modify a copy of the existing query plan. Algorithm 6.6 displays the
pseudo-code for this query plan modification. For every operator in the state,
we again have to differentiate whether it is scan- or index-optimized in the
current query plan. Index-optimized operators are not the blocking operator
of the final pipeline passing through them. Therefore, we cannot replace them
entirely with the tuples contained in their state. Instead, we mark the build-
side child for migration in the operator itself (line 5). For simplicity, we only
consider binary operators with one build side in Algorithm 6.6. The procedure
for n-ary operators is orthogonal, replacing all finished pipelines ending at the
state operator with the corresponding state. In Figure 6.9, this can be seen for
the id = id and max ≤ revenue joins. Our approach replaces only the build side
subtrees and not the entire joins in the modified plan.

Scan-optimized operators can only be part of the state operators if all their
inputs are finished. Therefore, we can replace the entire operator with the
state held within (line 8) without losing progress. However, in contrast to
index-optimized operators, it is possible that we need to replace the operator
in multiple places as scan-optimized operators can be scanned multiple times
within the same query. The id, sum aggregation of Figure 6.2, e.g., is scanned
twice. Therefore, a migration after pipeline 2 needs to replace it in both parent
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pipelines 3 and 6 . One can see that this can lead to conflicting replacements:
For example, in the migration displayed in Figure 6.9, the id, sum aggregation
is part of the state, and thus, replaced in both parents. However, one parent is
further replaced in themax≤ revenue join’s build side. For such cases, we always
want to ensure only the topmost replacement takes place, as it preserves the
most progress. To achieve this, we perform replacements top-down by sorting
the state operators (line 3) and always check whether the replacement location is
still valid, i.e., contained in the query plan (line 12). This way, replacements will
always be optimal, as the topmost operator is considered first. Replacements
in the lower part of the tree will either be performed later on or will not occur
if the location is no longer valid. To prevent needless network transfers, we
only extract state from operators that are part of the final query plan, i.e., all
operators part of a valid replacement (line 14).

6.3.6 Query Migration and Continuation
Once we extracted all tuples that are part of the state and have generated a
query plan utilizing this state, the query can be sent to the desired target. In the
scenario outlined above, migrating a query from server A to server B, neither
the state nor the query are initially available at the destination server. In the
first step, server A sends the modified query plan to server B and then aborts
the local execution. In turn, the query plan is compiled and executed on server
B. Whenever the execution reaches the first scan of a migrated table, the table
is fetched in parallel from the network cache and held locally for potential
subsequent scans. In the case of a migration, the cache can discard each stored
value after the first read.

Pausing a query works orthogonally without the need for network transfers.
Instead of caching the query plan and state externally, our approach would
materialize them in the memory or persistent storage of the worker. Once both
are materialized, we abort the query locally to free all working memory for
the prioritized query. When the prioritized query finishes, we load the plan
from disk and continue its execution. Finally, snapshots register both the state
and query plan with the cache. Once all data is cached externally, execution
continues on the local server.

6.3.7 Applications
So far, we have focused on migrating queries between servers. Migration alone
already offers several benefits. It can save cost by utilizing cheap spot instances
without risk and improve performance by changing to better-suited instances at
runtime. However, we understand on-demand state separation as a toolkit that
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can also be applied in other scenarios. First, as already discussed in the previous
subsection, our approach allows users to suspend queries cheaply to prioritize
latency-sensitive tasks when compute resources are limited. The snapshotting
mechanism of Section 6.3.6 can be used to deal with worker failures, which we
have not discussed so far. In the after-the-fact query migration use case, we rely
on prior notice to migrate, which is unavailable in the case of crashes. In order
to avoid restarts, this mechanism can be used to create periodic snapshots of a
query. In case of a failure, we assign the latest snapshot of the query plan to
a new worker, which again fetches migrated tables on demand and continues
execution. Furthermore, applications of our approach are not restricted to single-
worker queries alone. The extracted state caches independent subtrees of a
query, as can be seen in Figure 6.9. Thus, these subtrees could be executed
in parallel on different workers and combined using the steps outlined in this
section, effectively enabling scale-out for existing systems.

While they are the focus of our work, possible applications of on-demand
state separation are not limited to distributed settings. Materializing tuples with
information about their corresponding subtree (cf. Figure 6.9) can be used to
share and re-use intermediate results with other queries [76, 137]. Further, our
approach can be used to re-plan queries in the event of network delays [11, 156]
or cardinality misestimation in the optimizer [15, 108].

6.4 Evaluation
Our evaluation is twofold. In the first part, we provide an in-depth analysis of
the amount and sources of the overhead of on-demand state separation on query
processing in a series of microbenchmarks. In the second part, we demonstrate
the feasibility of our approach for typical cloud use cases. We conduct all
experiments in this section using our approach within the Umbra database
system [118].

6.4.1 Setup

To emulate a cloud environment, we run all experiments in this section in a
cluster of 4 nodes. Each node is equipped with an Intel Xeon CPU E5-2660 v2
(2.20GHz) and 256GB of DDR3 RAM. The nodes connect to the cluster through
a Mellanox ConnectX–3 VPI network interface card (up to 56Gbit/s FDR Infini-
band) via a Mellanox SX6005 switch. While an RDMA Infiniband configuration
would be most performant, many cloud providers rely on Ethernet connections
between servers. For this reason, our implementation uses the TCP network
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stack as well, and we configure our cluster to run on IP-over-Infiniband (IPoIB)
instead of full-fledged Infiniband to emulate a more typical cloud setup.

Two nodes act as source and target servers for query migration, which is the
main focus of this evaluation. Each server runs an Umbra instance on a local
copy of the TPC-DS SF100 database held in an in-memory file system. This way,
we guarantee equal access to the base data, simulating storage separation. The
two remaining nodes form the Apache Crail-based network cache [144], with
one acting as a namenode and one acting as a datanode. While Crail offers an
optimized RDMA-based mode, we again opt for a TCP-based infrastructure to
better simulate a typical cloud setup.

6.4.2 Microbenchmarks

On-demand state separation comprises many individual steps, as outlined in
Section 6.3. Before demonstrating the feasibility through end-to-end bench-
marks, we first want to analyze the sources of the introduced overhead in these
steps. The two main categories in our analysis are network and execution
overhead. The first arises from the topology of the cluster setup and external
components, such as network caches, which we cannot directly influence. Over-
head stemming from our approach is mainly execution-based, that is, analyzing
and extracting the state locally and continuing execution on the remote server.

Configuration. For all experiments in this section, we report overheads based
on an average of 5 runs. To provide a detailed analysis, we measure the individ-
ual runtime of all sub-steps of migrating after every pipeline occurring in the
103 TPC-DS queries. Further, we perform full migrations and configure both
the source and target server to run an identical configuration of Umbra, thus
minimizing any configuration influence on runtime. However, we still detected
runtime variance in preliminary experiments for local-only and migrating runs,
even with identical configurations. Thus, we report overheads as a percentage
of the runtime of an entire migration.

Execution Overhead. In the first microbenchmark, we want to highlight the
overhead caused by our approach. Multiple factors comprise this overhead: On
the source server, this includes state selection (Section 6.3.3), plan modification
(Section 6.3.5), and compiling state extraction queries, as well as running the
extraction up to, but excluding, network transfer (Section 6.3.4). Further, the
execution overhead includes parsing and compiling the received query plan on
the target server. We compare the overhead generated solely by our approach
for two server configurations. Once Umbra is allowed to use up to four worker
threads, once up to eight. Figure 6.10 shows the resulting overheads.
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Figure 6.10: Execution overhead by state size when migrating TPC-DS queries.

One can see that there is a trend along with the state size for both con-
figurations. When migrating larger states, the overhead grows as well. We
expect this increase, as all tuples must be scanned at least once for extraction
when materializing them for network transfer. Furthermore, there is no appar-
ent difference between four and eight threads in terms of overhead, indicating
that our parallel extraction scales as well as Umbra’s query execution frame-
work. This scaling further shows the benefits of utilizing extraction queries
in our approach, through which we gain access to parallelism and scheduling
optimizations already present in the database.

For both configurations, one can see several outliers for small state sizes.
These are primarily from small and fast queries with execution times in millisec-
onds, where execution does not fully amortize the cost of compiling extraction
queries. Nevertheless, on average less than 11% of overall query runtime is spent
processing state extraction and migration, independent of server configuration
and state size. For states smaller than 50MB, which make up 83% of all states, the
mean overhead does not exceed 1.9% independent of the server configuration.

Network Overhead. Having analyzed the processing overhead caused directly
by our approach, we want to analyze the overhead caused by the necessary
network transfers. While this overhead does not stem from our approach directly,
and we thus cannot influence it within our system, it is crucial to understand the
overall cost of on-demand state separation. The network overhead measured
here is the time required to send and receive the extracted state to and from the



6.4. EVALUATION 101

0%

20%

40%

60%

< 1MB

1MB - 10M
B

10M
B - 50M

B

50M
B - 100

MB

100M
B - 500

MB

500M
B - 1G

B
1GB

- 5G
B

5GB
- 10G

B

State Size

N
et
w
or

k-
Ba

se
d
O
ve

rh
ea

d

# Threads

4

8

Figure 6.11: Network overhead by state size when migrating TPC-DS queries.

cache. Again, we compare the overhead for migrations between two instances
with an equal number of worker threads and display the resulting overhead for
all migrations in Figure 6.11.

Overall, the network overhead again clearly grows with the state size mi-
grated. We expect this growth, as network bandwidth is limited and slower
than local processing of tuples within a query. However, this overhead is less
linear than we have seen for local processing, reaching an average of 45% for
states between five and ten gigabytes when using eight worker threads. Fur-
thermore, in contrast to the execution-based overhead, one can see that there
is a noticeable difference between the configurations. The network transfer is
not limited by the compute resources available but by the network bandwidth
and latency. Even though network overhead exceeds processing overhead for
most state sizes in both configurations, the mean overhead for states smaller
than 50MB does not exceed 11% of query runtime.

6.4.3 Query Migration
Given the individual overheads from the microbenchmarks, we investigate how
this translates into the cost of end-to-end query migrations compared to local
execution. In addition to migrating between identically configured servers,
we further investigate the advantage of fixing an adverse query-to-worker
matching by migrating to a more powerful server. Furthermore, we highlight
the advantage of our on-demand separation by comparing it to full-fledged state
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separation, where the state separation of Section 6.3 is performed after every
pipeline.

Configuration. To capture the total cost of migration, we base all experiments
in this section on end-to-end query runtime. Query runtime includes every
step of query processing, from receiving the SQL query to fully reporting the
result, either locally or, in the case of migration, on the remote server. We
again migrate all 103 TPC-DS queries and report the average of five runs while
re-using the server configurations from Section 6.4.2. Unless stated otherwise,
all experiments in this subsection report the relative runtime difference between
migrating a query and local-only execution on the source server. We show all
states < 50MB as a single group for better visibility as they behaved almost
identically in all experiments. To better highlight trends, we round query
progress to the nearest 10% and report averages within this interval throughout
this subsection.

Symmetric Migration. In the first two experiments, we focus on the overall
cost of migration. For this, we migrate between identical instances of Umbra for
configurations with four and eight worker threads. This experiment simulates
a transient worker being taken away and replaced by another at any part of
the query. The results are displayed left and center in Figure 6.12. We again
compare the results for different state sizes. One can see that states smaller than
1GB behave similarly, independent of server configurations. However, there is a
significant difference between the two configurations, even for smaller states.
We attribute this to the differences in network overhead, which we already
identified in Figure 6.11. In addition to the state size, the migration point also
influences the overhead. One can see that migrating between 30% and 80% of
query progress is slightly more expensive than at the beginning and end of a
query, even when state sizes are similar. We found that states in the middle of a
query comprise more operators on average, leading to an increased overhead
for compiling and managing state extraction even when the resulting state is of
a similar size.

Most query migrations cause less than 25% overhead, making migrating
queries more profitable than restarts right from early on. On average, migrating
states smaller than 1GB causes 9.3% overhead when using four worker threads
and 16.4% when using eight. However, it seems that migrating states larger
than 5GB is seldom profitable, especially for the eight-thread configuration. The
explosion in overhead for states between one and five gigabytes is caused by
only two queries that are no longer compensated for by other states for progress
>50%.

It is evident that the migration of large states is rarely profitable and will be
outperformed by restarts. However, this does not mean that on-demand state
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separation cannot be profitable for queries with large states. Because state scans
are non-destructive, it is possible to extract older, potentially smaller states at
the cost of some progress loss. This way, restarts are only required if a query
does not have any small states.

Migrating to Better Instance. On-demand state separation can not only be
utilized to migrate between identical instances. It further allows using more
powerful instances when they become available, e.g., through spot instances
or servers finishing their current query. Utilizing such instances promises the
potential to speed up query processing. To investigate the benefits of migrating
running queries to faster servers, we migrate from an Umbra instance with four
worker threads to one with eight workers. The results, displayed on the right in
Figure 6.12, show that utilizing a faster instance can speed up query processing
in many cases, especially for smaller state sizes. As expected, migrating early
will lead to the biggest speedup in processing because the faster compute can
be used the longest. However, there are instances where migration pays off in
every execution phase. Even when 90% of the query is completed, some small
states’ migrations are still beneficial. Migration is not the only possibility to
leverage faster workers. In addition, one needs to consider restarting queries on
the new worker.

Ideally, restarting on a worker with twice the compute power will speed
up query processing by a factor of two as well. On-demand state separation
can outperform such query restarts for many queries in our experiments. On
average, migration outperforms restarts once a query reaches 30% progress.
When a query has progressed more than 50% on the source server, migration is
67.5% faster when compared to a restart on the destination. Again, larger states
are not profitable for on-demand state separation, and query restarts would
outperform them throughout the experiment.

On-Demand vs Full State Separation. Having analyzed the cost of on-demand
state separation for migrations, we want to compare it to full state separation.
Full separation extracts state and synchronizes it with a cache after every pipeline.
We compare the average cost of on-demand state separation with the cumu-
lative cost that state separation after every pipeline will have incurred so far.
For both approaches, state separation is performed in Umbra as outlined in
Section 6.3. While this leads to a larger state than necessary (cf. Section 6.2.1),
and approaches with full state separation could optimize for smaller states, the
overall trends will prevail. The results of each blocking operator still have to be
transferred at least once. In contrast to the previous experiments, the runtime
overhead no longer includes a full migration, which would disproportionately
affect full state separation. Instead, the overhead comprises the work required
to extract the state at the migration source only.
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Figure 6.13: Extraction-caused runtime overhead for full and on-demand state
separation for TPC-DS.
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Figure 6.14: Size of state transferred to the cache for full and on-demand state
separation for TPC-DS.

Figure 6.13 shows the resulting overheads in runtime. The execution time
overhead shows the advantage of on-demand separation. While the overhead
grows for full migration with query progress, the overhead of a single migra-
tion is almost constant throughout. A full migration causes more than 100%
overhead for eight threads, whereas the overhead of on-demand separation
never exceeds 10%. The influence of the number of worker threads identified in
Figure 6.12 prevails for both on-demand and full state separation, even when
only considering the overhead at the source. The more powerful the servers,
the higher the overhead of state separation.

Following, we analyze the space required to cache the state of a query,
displayed in Figure 6.14. As state size is independent of the number of worker
threads involved, we do not distinguish worker configurations. The advantages
of on-demand separation are again amply clear. While the average on-demand
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Figure 6.15: Migration latency when executing multiple queries in parallel.

migration never transfers more than 503MB of data, the average cumulative sum
of states transferred to the cache in the last progress interval (95-100%) exceeds
14GB. The discrepancy to the mean sum of 2.6GB identified in Section 6.2.1 is
caused by the per-interval mean. Queries comprised of more pipelines create
more data for the mean, thus leading to an over-representation of longer queries.
These queries further accumulate more state, leading to a 5× higher mean.
Nevertheless, even when considering the mean of 2.6GB, on-demand state
separation requires at least 5× less space in the cache throughout a query on
average.

In environments where sudden worker failures are common, the increased
cost of full state separation may pay off. However, we argue that the benefits of
after-the-fact on-demand separation will outweigh the risk of losing progress in
most deployments.

Migration Latency. Finally, we want to demonstrate the capabilities of our
approach in real-world applications. We investigate an exemplifying use case of
vacating a spot instance running multiple queries, e.g., when the cloud provider
indicates that they will take it away soon. It is critical to react quickly to a
migration request in this scenario. Therefore, we will investigate the migration
latency, the time from the notification until the current server is fully vacated,
and all progress is held externally. While we here migrate all running queries,
it is, of course, also possible to extract only a few queries for load balancing in
multi-tenant scenarios [98]. We investigate the latency by running randomly-
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selected queries in parallel in a loop and triggering migration after a randomly
selected duration between 10 and 30 seconds. The migration latency reported
is the time from triggering the migration until every query’s state and plan
are sent to the cache and target server, respectively. Furthermore, to not lose
progress, all in-flight tasks, i.e., pipelines, are finished before migrating, which
is also included in the latency.

Figure 6.15 shows the migration latency for 4 and 8 worker threads for 100
runs per thread and query count combination. We removed 19 outliers for better
visibility. Of course, one can see that there is linear growth with an increasing
number of parallel queries. However, the gap between 4 and 8 threads shrinks
for more queries. This shrinkage is again attributable to the network limitation
already identified in Figure 6.11. Furthermore, as we optimize for keeping all
progress, the latency includes finishing the current task. It could be further
reduced if faster migration is valued over progress kept. On average, even with
this additional delay, it takes less than 2.6 seconds to vacate a server, allowing
us to react quickly to changes in dynamic environments.

6.5 Related Work
As more data moves to the cloud, ample research has focused on optimizing
data processing for this distributed and flexible environment. This section
will provide an overview of the research most essential and relevant to our
on-demand state separation approach.

Cloud-Optimized Database Architectures. Cloud-optimized databases, such
as Snowflake [39], Google BigQuery [8, 111], and Amazon Redshift [68] optimize
for massive parallelism for queries on ever-growing data. Some surveys [146,
183] investigate the challenges and opportunities for databases in cloud environ-
ments. Analogous to cloud-optimized databases, we strive to increase flexibility
for analytical queries in the cloud. In some systems, this flexibility is enabled
through disaggregated storage [28, 39, 44, 126, 157, 165, 182]. Dremel [111],
e.g., employs storage disaggregation, as well as memory disaggregation through
a shuffle layer, for flexiblity and scalability. We see storage disaggregation as
one pillar of flexibility in our approach. To further improve the performance of
storage-separated systems, Yang et al. propose a combination of caching and
pushing compute to storage to reduce network cost [174]. We also minimize
network overhead by migrating a minimal query state. In addition, modern big
data systems [92, 149, 179] offer flexibility by directly accessing tables stored in
remote storage [9, 54].

Building on the ideas of storage-separated architectures, Aguilar-Saborit et
al. [7] describe the state-separating POLARIS system. In addition to storage, they
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further keep the query state externally, thereby enabling intra-query worker
changes. We build upon this idea for our approach. However, we keep state
externally only when necessary, thus reducing network overhead. Keeping state
in the form of intermediate results externally for transient compute resources
has also been proposed for Apache Spark [173, 175]. To materialize intermediate
results, Stuedi et al. [86, 144] propose a data store optimized for temporary data
in distributed settings.

Adaptive Query Processing. Ample research has been conducted on modify-
ing query execution during runtime in the context of adaptive query processing
[14, 41, 65]. While this area focuses on adapting the query plan at runtime,
and we currently do not modify execution order when migrating, we still share
similar ideas. For example, Xing et al. [172] discuss migrating processing on the
fly for load balancing in streaming engines. Orthogonal to our work in case of
migration, some works have focused on keeping progress in the case of plan
changes in ETL MapReduce [80] and traditional database systems. Keeping
progress has been described using artificially introduced operators [15] and
unary blocking operators [108] for database systems. These works re-use inter-
mediate results on the same system and do not consider network transfer. To
mitigate network dealys, Urhan et al. [11, 156] propose query scrambling.

Instance Migration in Cloud Environments. Many cloud providers offer
transient compute resources to customers to increase resource utilization within
their datacenters. Often, such transient workers, e.g., spot instances in Amazon
AWS, are cheaper than reserved instances. Therefore, utilizing such transient
resources has been the focus of recent research. Kraska et al. [95] analyze
deployment strategies for fault tolerance mechanisms, such as query restarts and
checkpoints. These checkpoints often comprise the entire VM and application
state [81, 140, 164, 177, 178]. In contrast, we optimize for a small, system-specific
query state that can be extracted at any time. Other systems also optimize for
a minimized state [19, 139, 173] but rely on pre-defined checkpoints. Yan et
al. [173] propose adaptive fine-grained checkpointing for Apache Spark based
on recomputation cost and failure probability. Kaulakiene et al. [81] propose
migrating tasks to cheaper or more powerful instances using VM snapshots to
optimize the cost and runtime of jobs in a cloud setting. We have identified such
migrations as a primary use case for our on-demand state separation approach
and optimized specifically for the migration of database workloads. While
our work focuses on analytical workloads, migrating between servers is also
interesting for transactional workloads [40, 48].

Migration of Intermediate Results. The presented idea to migrate partial
query results is inspired by past work in multi-engine environments. These
so-called polystores span a combination of stream processing, big data, and
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database systems [43, 58, 61, 78, 104], some surveyed by Tan et al. [147]. While
we only consider migrating to other instances of the same engine and optimize
for flexibility in our work, works on multi-engine environments focus on a range
of optimization criteria. For example, Agrawal et al. [6] optimize performance
by selecting a combination of execution engines for a single task and migrating
intermediate results between these engines. Simitsis et al. [143] describe an
optimizer for data workflows comprising multiple engines, taking both the
execution and data shipping cost into account. Focussing specifically on data
migration, Dziedzic et al. [47] discuss challenges and solutions for sharing results
between engines. While we discuss our approach in the context of flexibility, it
can also be used to optimize for different metrics.

6.6 Summary
In this chapter, we present a novel on-demand state separation approach for data
processing in the cloud. In contrast to existing state-separating architectures,
our approach can establish state separation after-the-fact, e.g., when migrating
between workers. This way, our approach only incurs the overhead of syncing
state externally when necessary. To motivate our approach, we provided an
extensive analysis of query state occurring within the TPC-DS benchmark,
showing that on-demand extraction can reduce the transferred state by an order
of magnitude. Our approach exploits existing access paths to extract state with
specialized extraction queries, allowing state extraction with minimal code and
runtime overhead while utilizing all features of modern query engines.

We demonstrate the feasibility of our approach using an implementation of
on-demand state separation in the Umbra database system. The experimental
analysis shows that our approach can outperform full state separation and query
restarts in many scenarios. Our in-depth cost analysis demonstrates that the
majority of overhead stems from network overhead. With the roll-out of more
powerful network infrastructure in the future, we expect our approach to be
beneficial in even more use cases.





CHAPTER 7
Conclusions and Future Work

Recent changes in the workload and landscape of data analytics have brought
forward unprecedented challenges and opportunities for relational database
systems. In this thesis, we devised four strategies allowing relational database
systems to conquer the challenges of ephemeral data and dynamic workloads.

First, we engineered a ring-buffered streaming relation that enables stream
enrichment queries, which can be easily integrated into existing systems. Fur-
ther, we demonstrated its performance against two dedicated stream processing
engines, consistently outperforming them on analytical workloads.

Following this, we devised a new type of materialized view called continuous
view to support complex queries over streamed and durable inputs in relational
database systems. Our novel split strategy to maintain continuous views divides
the maintenance work between inserts and queries. Integrating these views
into the Umbra database system, we highlighted their performance for several
analytical workloads. Our experiments showed that our views are not only
competitive against dedicated stream processing engines but often outperform
them by order of magnitude.

In addition, we outlined a communication-optimal process to sample large
volumes of data, such as streams, in parallel for later analysis. Our process
necessitates no communication between workers in the sampling phase and
minimizes communication when merging local samples. Further, we described a
new merge strategy optimized for small sample sizes. We highlighted the ability
of our process to keep up with even the highest-velocity inputs in a range of
experiments, showing a near-linear scale-up to more than one hundred worker
threads.

Finally, to fully leverage the opportunities of flexible cloud architectures,
we devised a novel cloud data warehousing architecture based on on-demand
state separation. Our approach relies on a storage-separated architecture to
leverage the flexibility of independently scalable relations for all workloads.
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We demonstrated how state can be extracted from running queries on demand
when additional flexibility is required, incurring no performance penalty when
not. We extensively studied the state occurring in TPC-DS queries to highlight
the applicability of on-demand state separation and showed that such state
separation can be performed quickly with little overhead, outperforming query
restarts in many scenarios.

While the four techniques introduced in this thesis solve many challenges
of dynamic workloads, we are convinced that future work can extend their ap-
plicability to even more use cases. One compelling concept for our in-database
stream processing approaches is transactionality. So far, all our strategies con-
sider streams non-transactional and decouple stream processing from the trans-
actional semantics of database systems. While this is the desired behavior for
finite queries such as those supported by our relation-based stream processing, it
can lead to outdated results for infinite queries in continuous views. Streams are
not the only source of change in relational database systems. Inserts, updates,
and deletes to relations can influence the outcome of queries combining both
streams and durable relations as well. We already use the state management of
Umbra to extract the state of running queries. Using even finer-grained access,
exchanging the state of a running query would also be possible, enabling us to
propagate changes to base tables into continuous views. Such state change prop-
agations could be performed periodically or on-demand, ensuring a frequently
fresh state for all tables involved in continuous queries.

We see the largest potential for our techniques in future research on novel
cloud data warehousing architectures. The concepts and methods of modular
query processing we used for on-demand state separation and split maintenance
in this thesis could enable a range of flexible execution models. The state
extraction for independent subtrees can, e.g., also be used to distribute these
subtrees to multiple workers to execute them in parallel. An extracted state can
not only be used to continue processing the same query on another server. It
could also be used to share the results of subtrees with other queries on the same
machine, avoiding unnecessary recalculation of intermediate results. Deploying
networks with bandwidth above 400 Gbit/s, as was recently announced for AWS,
would allow sharing of intermediate results not only with queries on the same
machine but in the entire data center efficiently. We are excited to see how
the techniques presented in this work can help address the current and future
challenges of processing dynamic workloads.
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