
Technische Universität München

TUM School of Computation, Information and Technology

Building an HTAP Database System for
Modern Hardware

Michael Johannes Freitag

Technische Universität München

TUM School of Computation, Information and Technology

Building an HTAP Database System for
Modern Hardware

Michael Johannes Freitag

Vollständiger Abdruck der von der TUM School of Computation, Informati-
on and Technology der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Harald Räcke

Prüfer*innen der Dissertation:
1. Prof. Dr. Thomas Neumann
2. Prof. Dr. Hannes Mühleisen
3. Prof. Alfons Kemper, Ph.D.

Die Dissertation wurde am 03.03.2023 bei der Technischen Universität Mün-
chen eingereicht und durch die TUM School of Computation, Information and
Technology am 07.08.2023 angenommen.

Abstract

Over roughly the past decade, we have observed a divergence of
relational database system design into two competing species. On the
one hand, there are pure in-memory systems that offer unprecedented
performance, but do not handle large data sets well. On the other hand,
traditional disk-based systems do scale to data sets much larger than main
memory transparently and gracefully, but due to a variety of factors they
exhibit suboptimal performance even if all data fits into main memory. We
argue that this dichotomy has become obsolete, as recent hardware trends
have made it feasible and in fact necessary to move towards a novel type of
memory-optimized disk-based architecture which unifies the performance
of an in-memory system with the scalability of a disk-based system.

This thesis focuses on the unique challenges faced by such a sys-
tem, and develops a comprehensive architectural blueprint for a high-
performance flash-based HTAP database system that meets these objec-
tives. In particular, we devise novel approaches for low-overhead buffer
management, decentralized write-ahead logging, and lightweight multi-
version concurrency control. Furthermore, we present an optimized access
path implementation that coordinates these components during query and
transaction processing. Together, these techniques enable excellent per-
formance in memory-resident workloads, while still allowing the system
to transparently support much larger data set sizes. Finally, we discuss
two additional approaches that improve the robustness of cardinality
estimation and join processing in relational database systems.

Zusammenfassung

Im Laufe des letzten Jahrzehnts haben sich relationale Datenbanksyste-
me in zwei gegensätzliche Richtungen entwickelt. Zum Einen entstanden
reine Hauptspeicherdatenbanksysteme, die eine beispiellose Leistungsfä-
higkeit bieten, aber Probleme haben, große Datenmengen zu verarbeiten.
Zum Anderen existieren weiterhin traditionelle plattenbasierte Systeme,
die zwar transparent auf Datenmengen weit jenseits der Hauptspeicherka-
pazität skalieren, aufgrund einer Vielzahl von Faktoren aber selbst dann
nur suboptimale Leistung erbringen, wenn alle Daten in den Hauptspei-
cher passen. Wir argumentieren, dass diese Dichotomie im Angesicht
jüngster Entwicklungen auf Hardwareseite obsolet geworden ist, da es
nun sowohl möglich als auch notwendig ist, die Leistungsfähigkeit eines
Hauptspeicherdatenbanksystems mit der Skalierbarkeit eines plattenba-
sierten Systems zu verbinden.

Diese Dissertation konzentriert sich auf die besonderen Herausfor-
derungen, denen ein solches System gegenübersteht. Davon ausgehend
präsentiert sie einen detaillierten Architekturentwurf für ein leistungsfä-
higes plattenbasiertes HTAP-Datenbanksystem, welches die obigen An-
forderungen erfüllt. Insbesondere entwickeln wir neuartige Ansätze für
effiziente Pufferverwaltung, dezentralisiertes Write-Ahead Logging, und
leichtgewichtige Multiversions-Transaktionskontrolle. Darüber hinaus
stellen wir eine optimierte Zugriffspfadimplementierung vor, die diese
Komponenten koordiniert. Diese Techniken ermöglichen sowohl hervorra-
gende Leistung für speicherresidente Workloads, erlauben es dem System
aber gleichzeitig, auch viel größere Datenmengen transparent zu verar-
beiten. Schließlich werden zwei zusätzliche Verfahren untersucht, die
die Robustheit der Kardinalitätsschätzung und der Join-Verarbeitung in
relationalen Datenbanksystemen verbessern.

Acknowledgments

I would not have been able to finish this dissertation without continued support
from many people. I would especially like to thank my doctoral advisor Prof. Dr.
Thomas Neumann, and the members of my thesis committee Prof. Dr. Hannes
Mühleisen, Prof. Alfons Kemper, Ph.D., and Prof. Dr. Harald Räcke. Furthermore,
special thanks go to my family, my friends, and my colleagues, who helped me
in more ways than I could possibly list here.

Preface

Excerpts of this thesis have been published in advance.

Chapter 2 has previously been published in:
Thomas Neumann and Michael Freitag. “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR. www.cidrdb.org, 2020

Chapter 5 has previously been published in:
Michael Freitag, Alfons Kemper, and Thomas Neumann. “Memory-
Optimized Multi-Version Concurrency Control for Disk-Based Database
Systems”. In: Proc. VLDB Endow. 15.11 (2022), pp. 2797–2810

Chapter 6 has previously been published in:
Michael Freitag and Thomas Neumann. “Every Row Counts: Combining
Sketches and Sampling for Accurate Group-By Result Estimates”. In: CIDR.
www.cidrdb.org, 2019

Chapter 7 has previously been published in:
Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. “Adopting Worst-Case Optimal Joins in Relational
Database Systems”. In: Proc. VLDB Endow. 13.11 (2020), pp. 1891–1904

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. Combining Worst-Case Optimal and Traditional Binary
Join Processing. Tech. rep. TUM-I2082. Technische Universität München,
2020. url: https://mediatum.ub.tum.de/1545314

During his doctoral studies, the author also contributed to the following related
work that is not part of this thesis.

Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas
Neumann, and Alfons Kemper. “Estimating Filtered Group-By Queries is
Hard: Deep Learning to the Rescue”. In: AIDB@VLDB. 2019

Alice Rey, Michael Freitag, and Thomas Neumann. “Seamless Integra-
tion of Parquet Files into Data Processing”. In: BTW. Gesellschaft für
Informatik, Bonn, 2023

https://mediatum.ub.tum.de/1545314

Contents

Acknowledgments ix

Preface xi

1 Introduction 1
1.1 Memory-Optimized Disk-Based Systems 1

1.1.1 Design Challenges . 2
1.1.2 The Umbra System . 4

1.2 Contributions . 6

2 Low-Overhead Buffer Management 11
2.1 Buffer Manager Architecture . 13

2.1.1 Buffer Pool Memory Management 14
2.1.2 Pointer Swizzling . 16
2.1.3 Page Latching . 18
2.1.4 Page Replacement . 21
2.1.5 Implementation Details 24

2.2 Query Compilation . 31
2.2.1 Modular Execution Engine 32
2.2.2 String Handling . 37

2.3 Experiments . 39
2.3.1 Setup . 39
2.3.2 Results . 40

2.4 Related Work . 43
2.5 Summary . 45

3 Scalable Decentralized Logging 47
3.1 Background . 50

3.1.1 ARIES . 50
3.1.2 Decentralized Logging 51

3.2 Scalable Decentralized Logging 52

xiv CONTENTS

3.2.1 Logging Protocol . 53
3.2.2 Transaction Commit . 57
3.2.3 Transaction Abort . 58
3.2.4 Recovery . 59
3.2.5 System Transactions . 62
3.2.6 Checkpointing . 63

3.3 Implementation Details . 64
3.3.1 Ringbuffer Implementation 64
3.3.2 Log Record Lifecycle . 65
3.3.3 Oversize Log Records . 66
3.3.4 Log Writer Implementation 67

3.4 Experiments . 68
3.4.1 Setup . 68
3.4.2 Results . 68

3.5 Related Work . 70
3.6 Summary . 71

4 Database Tables and Indexes 73
4.1 Fundamental B+-Tree Design . 75

4.1.1 Page Headers . 78
4.1.2 Traversal Algorithm . 78
4.1.3 Logical Modifications . 83
4.1.4 Structural Modifications 85
4.1.5 Maintenance . 86
4.1.6 Partitioning . 88

4.2 Tables . 89
4.2.1 Page Layout . 90
4.2.2 Scans & Point Lookups 91
4.2.3 Insert . 92
4.2.4 Delete & Update . 94

4.3 Indexes . 94
4.3.1 Page Layout . 94
4.3.2 Lookup . 95
4.3.3 Insert & Delete . 96
4.3.4 Constraint Checking . 98

4.4 Auxiliary Data Structures . 100
4.4.1 Root Page Directory . 100
4.4.2 Free Page Inventory . 101

4.5 Experiments . 103
4.5.1 Setup . 103
4.5.2 System Comparison . 104

CONTENTS xv

4.5.3 Scalability Beyond Main Memory 105
4.6 Related Work . 107
4.7 Summary . 108

5 Memory-Optimized Multi-Version Concurrency Control 109
5.1 Foundations . 111
5.2 In-Memory Version Maintenance 113

5.2.1 Version Maintenance . 115
5.2.2 Garbage Collection . 117
5.2.3 Recovery . 119
5.2.4 Implementation Details 120

5.3 Out-of-Memory Version Maintenance 120
5.3.1 Versioning Protocol . 121
5.3.2 Synchronization . 123
5.3.3 Detecting Bulk Operations 124
5.3.4 Garbage Collection . 124

5.4 Further Considerations . 125
5.4.1 Scalability to Multi-Socket Systems 125
5.4.2 Serializability Validation 125

5.5 Experiments . 126
5.5.1 Setup . 126
5.5.2 System Comparison . 127
5.5.3 Detailed Evaluation . 130

5.6 Related Work . 135
5.7 Summary . 136

6 Accurate Group-By Result Estimates 137
6.1 Sketching Individual Columns 140

6.1.1 Traditional HyperLogLog Sketches 140
6.1.2 Updateable HyperLogLog Sketches 141

6.2 Multi-Column Estimates . 143
6.2.1 Background . 144
6.2.2 Improved Estimation Bounds 146
6.2.3 Sketch-Corrected Estimators 151

6.3 Computing Frequencies . 154
6.4 Experiments . 156

6.4.1 Counting HyperLogLog Sketches 156
6.4.2 Multi-Column Estimators 160
6.4.3 Frequency Vector Computation 165

6.5 Related Work . 167
6.6 Summary . 168

xvi CONTENTS

7 Adopting Worst-Case Optimal Joins 171
7.1 Background . 173

7.1.1 Worst-Case Optimal Join Algorithms 174
7.1.2 Implementation Challenges 177

7.2 Multi-Way Hash Trie Joins . 178
7.2.1 Outline . 178
7.2.2 Join Algorithm Description 180
7.2.3 Implementation Details 185
7.2.4 Further Considerations 189

7.3 Optimizing Hybrid Query Plans 189
7.4 Experiments . 192

7.4.1 Setup . 192
7.4.2 End-To-End Benchmarks 193
7.4.3 Detailed Evaluation . 198
7.4.4 Microbenchmarks . 201

7.5 Related Work . 206
7.6 Summary . 208

8 Conclusions and Future Work 209

Bibliography 211

A Proofs for Chapter 6 237

B Proofs for Chapter 7 245

List of Figures

1.1 High-level system architecture of Umbra. 5

2.1 Illustration of memory management within the buffer pool. 14
2.2 Example of pointer swizzling within a buffer-managed B+-tree. . . . 16
2.3 Illustration of a swizzled and an unswizzled swip. 17
2.4 Overview of the basic page replacement strategy employed by our

buffer manager. 22
2.5 Illustration of execution steps within a compiled query plan. 33
2.6 Illustration of query state management in our approach. 35
2.7 Query pipelines and the corresponding generated functions for a

simple group-by query. 36
2.8 Structure of the 16-byte string headers in our system. 38
2.9 In-memory throughput in relation to the number of worker threads. 41
2.10 Out-of-memory throughput in relation to the number of worker

threads. 42

3.1 Overview of our decentralized logging approach. 49
3.2 Illustration of the GSN protocol proposed by Wang and Johnson. . . 51
3.3 Illustration of the flush epoch protocol employed by the log writer

thread. 56
3.4 Illustration of optimistic rollback from a thread-local ringbuffer. . . 59
3.5 Example of the logging protocol for atomic system transactions. . . 63
3.6 Implementation of a log record ringbuffer. 65
3.7 Log writer throughput and latency in relation to the number of

worker threads. 69

4.1 Illustration of fence keys in a B+-tree. 78
4.2 High-level illustration of logical modifications on a B+-tree leaf node

under multi-version concurrency control. 84
4.3 Illustration of a partitioned table or index. 88
4.4 Memory layout of B+-tree nodes in a database table. 90
4.5 Illustration of leaf allocations in database tables. 93
4.6 Memory layout of an index leaf node. 95

xviii LIST OF FIGURES

4.7 Illustration of index page splits during sequential insert runs. 97
4.8 Illustration of the secondary indexes created for constraint checking. 98
4.9 Structure of the free page inventory. 102
4.10 Relative speedup of Umbra over its competitor systems in case the

entire working set fits into main memory. 104
4.11 Query throughput on TPC-H at scale factor 100, measured with

progressively smaller buffer pool sizes. 106

5.1 Illustration of decentralized version maintenance in an in-memory
system. 112

5.2 Overview of in-memory version maintenance within our proposed
MVCC approach. 115

5.3 Illustration of garbage collection within our proposedMVCC approach. 117
5.4 Transaction lists used for garbage collection. 118
5.5 Illustration of virtual versions created by bulk operations. 122
5.6 OLTP throughput in relation to the number of client threads. 128
5.7 Umbra performance metrics sampled over time in 100ms intervals. 132

6.1 Multiplicative estimation error of the existing sampling-based ap-
proaches GEE and AE in comparison to a 64 byte HyperLogLog
sketch. 138

6.2 Illustration of the internal state of a counting HLL sketch. 143
6.3 Example of a sample being drawn from a table with an unspecified

number of columns. 145
6.4 Scatter plot of the true number of singletons in relation to the num-

ber of singletons observed in a random sample. 147
6.5 Illustration of the value distribution in a table with two columns

from which a sample is drawn. 151
6.6 Example of recursively partitioning several columns at a time. . . . 156
6.7 Illustration of the workload used to evaluate the estimation accuracy

of counting HLL sketches. 158
6.8 Mean ratio error of counting and traditional HLL sketches. 159
6.9 Distribution of the ratio error incurred by the estimators on synthetic

data. 162
6.10 Distribution of the ratio error incurred by the estimators on real-

world data. 163
6.11 CPU time required to compute frequency vectors. 166

7.1 Illustration of a worst-case optimal join on the triangle query 𝑄Δ. . 174
7.2 Illustration of a hash trie. 179
7.3 Memory layout of a hash trie. 185

LIST OF FIGURES xix

7.4 Structure of tagged child node pointers in a hash trie. 186
7.5 Illustration of singleton pruning in a hash trie. 186
7.6 Illustration of lazy child expansion in a hash trie. 187
7.7 Illustration of the proposed join tree refinement algorithm. 191
7.8 Relative slowdown of different systems in comparison to binary join

plans within Umbra on TPC-H and JOB. 194
7.9 Histogram of the relative slowdown of different systems in com-

parison to binary join plans within Umbra on JOB without filter
predicates. 195

7.10 Absolute query runtime on a synthetic query. 199
7.11 Absolute runtime of the 3-clique query on increasingly larger ran-

dom subsets of the Twitter data set. 202

A.1 Qualitative behavior of the function 𝑔 and its derivative 𝑔′ used in
the proof of Lemma A.1. 238

List of Tables

5.1 Breakdown of the impact that various components of the proposed
approach have on the overall performance of Umbra. 131

5.2 Time and version memory required to populate the initial TPC-H
database at scale factor 10. 133

5.3 Multi-threaded query throughput on TPC-H at scale factor 10. . . . 134

6.1 Selected notation used throughout Section 6.2. 144
6.2 CPU time required to sketch all values of a table with 10 million

rows and 10 columns. 157
6.3 Ratio error incurred by counting HLL sketches, aggregated across

all experiments. 158
6.4 Characteristics of the data sets used to evaluate the proposed multi-

column estimation approach. 160
6.5 Mean and 99th percentile of the ratio error incurred by the estima-

tors on synthetic data. 162
6.6 Mean and 99th percentile of the ratio error incurred by the estima-

tors on real-world data. 163
6.7 Mean and percentiles of the absolute frequency vector computation

time. 165

7.1 The trie iterator interface used in the probe phase of our hash trie
join algorithm. 183

7.2 Key statistics of the graph datasets used in our experiments. 192
7.3 Absolute runtime in seconds of the graph pattern queries on the

small network data sets. 196
7.4 Absolute runtime in seconds of the 3-clique query on the large

network data sets. 198
7.5 Breakdown of the decisions made by the hybrid query optimizer on

each benchmark. 200
7.6 Ablation tests using the 3-clique query on random subsets of the

Twitter data. 203

xxii LIST OF TABLES

7.7 Comparison of the absolute runtime of the 3-clique query when
using string keys instead of integer keys. 204

7.8 Comparison of the build and probe times in seconds required for
the 3-clique query. 205

List of Algorithms

2.1 Pseudocode for dereferencing a swip stored in global memory or on
a pessimistically latched page. 26

2.2 Pseudocode for loading a disk-resident page into the buffer pool. . . 27
2.3 Pseudocode for dereferencing a swip stored on an optimistically

latched page. 28

4.1 Pseudocode of the basic optimistic latch coupling algorithm for
B+-tree traversal. 80

4.2 Pseudocode of the full B+-tree traversal algorithm. 82

6.1 Pseudocode for insertion into a traditional HLL sketch. 140
6.2 Pseudocode for insertion into a counting HLL sketch. 142
6.3 Pseudocode for recursively computing the frequency vector on a

sample. 154

7.1 Pseudocode of the generic worst-case optimal join algorithm. 175
7.2 Pseudocode for the build phase of the proposed hash trie join algorithm. 181
7.3 Pseudocode for the probe phase of the proposed hash trie join algo-

rithm. 182
7.4 Pseudocode for heuristically refining binary join trees. 190

CHAPTER 1
Introduction

Excerpts of this chapter have been published in [71, 74, 75, 195].

Relational database management systems can be found at the heart of mission-
critical application infrastructure across a wide range of industries [16, 27, 103,
253]. This constitutes a testament to the enduring success of the relational
data model underlying the design of these systems [47]. One of the greatest
strengths of the relational data model is that it provides users with a clean and
intuitive conceptual interface to the database contents that is independent from
the internals of a specific database system implementation. More specifically,
users typically interact with the database contents by means of a declarative
query language such as SQL, which provides systems with substantial flexibility
as to how precisely they store and retrieve data. As a result, relational database
management systems are free to continuously adapt and optimize their internal
data structures and algorithms as requirements and hardware evolve, without
affecting the external interface on which their users depend. In the following
chapter, we provide an overview of several recent developments that make it
necessary to adjust the architecture of currently prevailing relational databases.
This discussion serves as the foundation for the remainder of this thesis, in
which we develop a novel type of relational database system that addresses
these challenges.

1.1 Memory-Optimized Disk-Based Systems
Hardware trends have greatly influenced the design of database systems over
time. Historically, the vast majority of data was stored on rotating disks and
only a small fraction thereof could be kept memory-resident in a buffer pool.
Consequently, the performance of these systems was mostly limited by the

2 CHAPTER 1. INTRODUCTION

comparatively poor IO performance of rotating disks, and a large number of
optimizations were developed to address this issue [30, 44, 86, 244]. In recent
years this perspective has shifted drastically, since modern database servers
routinely have access to several terabytes of main memory.

This led to the development of pure in-memory database systems which
achieve unprecedented performance by sidestepping the inefficiencies associated
with out-of-memory processing entirely [54, 65, 129]. However, most in-memory
systems do not handle large data sets well and simply cease operation when they
run out of memory [54, 101, 129, 251]. As in-memory databases were conceived,
it was assumed that main memory sizes would rise in accord with the amount
of data in need of processing for the foreseeable future [124, 129, 210]. In reality,
however, affordable main memory sizes have increased only marginally since
then, effectively reaching a plateau of at most a few terabytes [159, 195]. In
view of this development, serious concerns have been raised about the viability
of pure main memory systems and we currently observe a renewed interest in
disk-based databases [172, 195].

1.1.1 Design Challenges
Unfortunately, many of the design decisions made by traditional disk-based
database systems have since become obsolete, mainly due to several profound
differences betweenmodern hardware platforms, and the hardware platforms for
which these traditional systems were originally designed. In fact, past research
has demonstrated that in order to fully exploit the capabilities of such modern
hardware, it is required to redesign the majority of components of a typical
disk-based database system [37, 74, 99, 101, 159, 160, 195, 257]. The result of this
process is a novel type of memory-optimized disk-based system which offers
excellent performance as long as the working set fits into main memory, while
scaling transparently and gracefully to the out-of-memory case. Of course, such a
system will usually fall short of a pure in-memory system in terms of maximum
attainable raw performance, but this is offset by its far superior robustness.
Moreover, many of the innovations pioneered by in-memory systems are not
limited to that type of system architecture, and can be adopted within a disk-
based system in order to minimize this performance gap [74]. In the following,
we briefly outline some major observations that are relevant to the development
of such a memory-optimized disk-based system.

Main memory is plentiful but finite. As outlined above, a modern database
system can expect to have access to a vast amount of main memory that is
frequently large enough to accommodate the entire active working set of a given
workload. We argue that this development fundamentally shifts the core design

1.1. MEMORY-OPTIMIZED DISK-BASED SYSTEMS 3

objective of a disk-based system. Instead of preserving main memory at all costs
and optimizing heavily for out-of-memory processing, a memory-optimized
disk-based system should optimize primarily for the case that most data fits into
main memory. Consequently, the assumption that IO bandwidth and latency
are the major factors limiting performance no longer holds, and it becomes
much more important to eliminate unnecessary CPU overhead [99, 245]. Unlike
a pure in-memory system, however, we cannot assume main memory to be
unlimited and a robust mechanism that allows the system to scale gracefully
beyond main memory is required. In this regard, buffer management remains an
attractive choice due to its flexibility [159], but traditional implementations of
this scheme are known to be one of the major bottlenecks in memory-resident
workloads [99].

Flash storage offers excellent bandwidth and latency. Even if the system needs
to resort to out-of-memory processing, flash storage devices have made several
quantum leaps in recent years and now offer outstanding IO bandwidth and
latency, orders of magnitude better than the previously used rotating disks. A
single commodity solid-state drive (SSD) attached through the NVMe inter-
face can already achieve more than 5GB/s of read and write bandwidth at a
fraction of the cost of the same amount of main memory, all while providing
excellent access latencies around 100 µs [97]. Moreover, multiple such drives
can be combined in a single machine in order to further multiply the available
bandwidth [97]. However, a careful implementation is required to actually
utilize these capabilities. For example, solid-state drives can only achieve their
maximum IO bandwidth when they receive a sustained number of IO requests in
parallel. In order to retain decent performance when scaling beyond main mem-
ory, a memory-optimized disk-based system thus needs to explicitly account for
the peculiarities of flash-based storage.

Multi-core CPUs allow for massive parallelism. In principle, the high parallelism
required to saturate flash storage devices can easily be achieved on modern
multi-core CPUs. As the clock rate of current CPUs cannot easily be increased
any further, manufacturers instead put an ever-increasing number of separate
processing cores in their CPUs [256]. For instance, some high-end server CPUs
already contain close to 100 physical cores. However, this development poses
a great challenge for traditional disk-based systems that were often designed
before the mainstream adoption of multi-core CPUs. They often rely on cen-
tralized data structures that become major sources of contention on modern
hardware since they require global synchronization [99, 101, 159]. Notable exam-
ples of problematic data structures are the page translation table of a traditional

4 CHAPTER 1. INTRODUCTION

buffer manager, or the centralized write-ahead log employed by ARIES [103,
187]. In contrast, a memory-optimized disk-based system should rely as much
as possible on decentralized data structures that do not require explicit global
synchronization [38].

Demand for hybrid transactional and analytical processing is growing. Histori-
cally, database applications were rather strictly separated into either analytical
or transactional processing workloads that were often served by separate special-
ized systems [36, 76, 129]. However, maintaining and synchronizing data across
multiple services introduces substantial unnecessary overhead and does not
allow for real-time analytics, presenting a strong incentive in favor of systems
that support hybrid transactional and analytical processing (HTAP) [211, 216].
In the context of in-memory databases various innovative approaches have
been explored that enable high-performance in HTAP workloads [129, 197], yet
comparatively few advances have been made in traditional disk-based systems
due to their restrictive design [74, 175]. Furthermore, highly complex analytical
workloads that push the limits of traditional relational query processing are
becoming increasingly prevalent [182, 247]. Here, a promising approach for a
memory-optimized disk-based system is to exploit the large amount of available
main memory and adopt some of the techniques that were originally developed
for in-memory systems [74].

1.1.2 The Umbra System
In this thesis, we present a detailed architectural blueprint for a general-purpose
relational database management system that addresses the challenges outlined
above. In contrast to previous studies that mostly focused on some individual
components of a traditional disk-based system in isolation, this thesis takes a
holistic view and integrates all proposed techniques in a single working system.
This gives us the unique opportunity to validate that the proposed system
architecture is actually viable in practice, and allows us to provide additional
insights into essential implementation details that only become relevant in
the context of a larger system. Furthermore, this approach allows for a fair
comparison of benchmark results between our system and existing relational
database systems [219].

Specifically, all techniques presented in this thesis have been implemented
and evaluated within the disk-based relational database management system
Umbra, whose design closely follows the memory-optimized disk-based architec-
ture sketched above [195]. Umbra is a fully functional general-purpose database,
and is actively used as the basis for state-of-the-art research on modern high-
performance databases. Together with many further independent innovations

1.1. MEMORY-OPTIMIZED DISK-BASED SYSTEMS 5

PostgreSQL-Compatible Server

�uery Compiler Storage Engine

Execution Engine Compilation Backends

Access Paths

Parsing and Authorization

�uery Optimizer

Code Generator

Generated
Umbra IR

SQL or
UmbraScript �uery

Results

Scheduler

Morsel-Driven Parallelization

Function
Calls

State Machine Execution Model Virtual Machine

LLVM

Direct to x86

Catalog

Logging
Bu�er

Management
Concurrency

Control

Statistics

Adaptive
Lowering

Metadata
�ueries

Figure 1.1: High-level system architecture of Umbra.

employed by the system, the components presented in this thesis have allowed
Umbra to repeatedly demonstrate best-of-breed performance across a wide range
of different workloads [74, 182, 195, 247, 264]. In the following, we provide a
brief overview of its internal design, and highlight key components that are
relevant to our subsequent discussion (cf. Figure 1.1).

Users communicate with Umbra through the PostgreSQLmessaging protocol,
i.e. they can employ established tools like the interactive psql command-line
interface or the libpq programming library for this purpose [95]. Through this
communication channel, they can either issue individual ad-hoc SQL statements
to the system, or implement more complex transaction logic in user-defined
functions using the SQL-based imperative programming language UmbraScript
that we implemented as part of this thesis. In either case, we subsequently
generate an optimized physical operator tree through a series of parsing and
optimization steps [68, 186, 196, 198]. Like its spiritual predecessor HyPer,
Umbra relies on a compiling query execution engine in order to eliminate
any interpretation overhead and extract all available performance from the
underlying hardware [194]. For this purpose, we transform the optimized
physical operator tree into an efficient data-centric program that is initially
represented in a custom intermediate representation designed to minimize
code generation latency [131]. The execution engine later adaptively chooses a
suitable compilation backend to actually evaluate these programs, at which point

6 CHAPTER 1. INTRODUCTION

the intermediate representation is lowered to an executable format such as x86
machine code [142]. Internally, the generated programs adhere to a well-defined
control-flow structure that conceptually subdivides query processing into a
number of smaller steps, which can be individually submitted to the scheduler
as part of the morsel-driven parallelization scheme employed by Umbra [157,
195, 255].

The generated query code can interact with the logical database contents
managed by the storage engine by calling API functions that are exposed by the
access path implementations [131]. From a high-level point of view, the storage
engine is comprised of a number of conceptually well-known components that
have internally been redesigned and tuned for modern hardware. In order to
support data sets larger than main memory, Umbra relies on a low-overhead
buffer manager that supports variable-size pages [195]. For durability, we
employ a highly scalable decentralized variant of classical ARIES-style write-
ahead logging [101, 187]. Finally, transaction isolation is provided by means
of an efficient multi-version concurrency control algorithm that exploits the
large amount of main memory available in today’s database servers [74]. These
individual components are orchestrated by the access paths, which internally
rely on a tailored B+-tree implementation to represent tables and secondary
indexes [30, 85]. Finally, the storage engine maintains some supplementary
metadata information that is essential for query optimization and compilation,
such as the system catalog and statistics about the individual tables [35, 68, 75].

1.2 Contributions
The contributions made by this thesis can roughly be divided into two parts. In
the first part, we primarily focus on the storage engine of a memory-optimized
disk-based system, and propose several techniques that allow it to fully exploit
the capabilities of modern hardware (cf. Chapters 2 to 5). In the second part
of the thesis, we shift our focus towards improving the robustness of query
optimization and processing in complex analytical workloads, which is espe-
cially relevant in disk-based database management systems where the impact
of suboptimal plans may be amplified by an excessive amount of redundant IO
(cf. Chapters 6 and 7). Finally, we discuss throughout this thesis how the pro-
posed techniques can be integrated seamlessly with a compiling query execution
engine in order to further improve performance.

Low-Overhead Buffer Management. The defining characteristic of disk-based
database management systems is their ability to transparently and gracefully
handle data sets beyond the capacity of main memory. For this purpose, they

1.2. CONTRIBUTIONS 7

typically organize all data on fixed-size pages and rely on a buffer manager to
minimize the number of IO operations. However, past research has demonstrated
that a traditional buffer manager is a major source of overhead in a disk-based
system, mostly due to excessive global synchronization. While alternative
decentralized buffer manager architectures have been proposed to address these
issues, they still rely on fixed-size pages and thus require complex mechanisms
to handle large objects such as compression dictionaries.

In Chapter 2, we introduce a novel approach that combines previous ad-
vances in low-overhead buffer management with variable-size pages. This
allows the system to store large objects natively where necessary, such that
operations on these objects can be implemented in the same way and with the
same performance as in an in-memory system. Furthermore, we present a flexi-
ble code generation approach and a corresponding execution model that provide
functionality essential for seamlessly integrating a compiling query execution
engine with a disk-based system. We conduct a range of microbenchmarks
demonstrating that the proposed architecture introduces little overhead in com-
parison to a pure in-memory system when the working set is memory-resident,
while scaling gracefully beyond main memory capacity. Note that we of course
also perform extensive end-to-end benchmarks, but for coherency decide to
defer them until the remaining relevant components of the proposed storage
engine have been introduced.

Scalable Decentralized Logging. Similar to buffer management, ARIES-style
write-ahead logging has been omnipresentwithin disk-based relational databases
for decades. It remains the mechanism of choice to provide durability and
recoverability in the presence of system failures, since it is highly flexible and
offers a wide range of useful features. Unfortunately though, traditional ARIES
relies on a single centralized log and consequently suffers from substantial
contention on modern multi-core CPUs. Many in-memory systems rely on more
lightweight approaches that achieve better scalability, but sacrifice some features
of ARIES that are desirable within a disk-based system, e.g. transaction footprints
larger than main memory. In contrast, recently proposed decentralized logging
schemes both eliminate contention and retain the core features of traditional
ARIES. However, they depend on specialized hardware that is not commonly
available.

For this reason, we develop a novel decentralized logging approach for ordi-
nary flash storage in Chapter 3. Like traditional ARIES, our approach efficiently
supports out-of-memory processing, fuzzy checkpointing, index recovery and
space management, as well as recovery from media failures. By assigning a
separate log to each individual worker thread and employing a suitable log

8 CHAPTER 1. INTRODUCTION

record sequencing protocol, it achieves excellent scalability and is able to utilize
the high bandwidth offered by modern solid-state drives. Furthermore, our
proposed implementation has the unique capability to atomically publish mul-
tiple log records, which allows us to guarantee that some system transactions
will never roll back. We perform an experimental evaluation of our logging
framework on several microbenchmarks, which verify that its performance is
only limited by the capabilities of the underlying storage device.

Tailored Access Path Implementations. As outlined above, the access path imple-
mentations serve as an internal interface to the storage engine and coordinate
its constituent components. The vast majority of systems that rely on a buffer
manager employ B+-trees for this purpose, and a plethora of research has been
published about this seminal data structure. Our envisioned system architecture
builds on this foundation and represents both database tables and secondary
indexes as B+-trees. However, even though most of the techniques involved in
our implementation are conceptually well-known, integrating them within a
memory-optimized storage engine requires numerous crucial adaptations.

Therefore, we present a detailed end-to-end description of our tailored
access paths in Chapter 4, and highlight key design decisions that enable high
performance on both read-heavy and write-heavy workloads. We perform the
first end-to-end benchmarks on a number of analytical workloads in this chapter,
which demonstrate that our storage engine outperforms traditional disk-based
systems by up to two orders of magnitude and achieves performance close to
an in-memory system when the working set fits into main memory. At the
same time, it gracefully transitions to robust out-of-memory processing once
the working set size exceeds the buffer pool capacity.

Memory-Optimized Multi-Version Concurrency Control. Naturally, a proper rela-
tional databasemanagement systemmust offer well-defined transaction isolation
semantics. Multi-version concurrency control is a particularly attractive ap-
proach in this regard, since it allows readers to proceed unimpeded by concurrent
writers and thus inherently provides good scalability on HTAP workloads. How-
ever, most recent work on high-performance multi-version concurrency control
implementations has focused on in-memory systems and makes simplifying
assumptions that are not directly applicable within a disk-based system.

In Chapter 5, we present a generic technique that allows many of these
innovations to be adopted within a memory-optimized disk-based system. Our
approach exploits that the vast majority of versioning information can easily be
maintained entirely in-memory without ever being persisted to stable storage,
which minimizes the overhead of concurrency control. Large write transactions

1.2. CONTRIBUTIONS 9

for which this is not possible are extremely rare, and handled transparently by
a lightweight fallback mechanism. Completing the experimental evaluation of
our storage engine, we perform benchmarks on several transactional workloads
and show that the proposed approach achieves transaction throughput up to an
order of magnitude higher than competing disk-based systems.

Accurate Group-By Result Estimates. All database management systems funda-
mentally require efficient execution plans for high performance, and suboptimal
plans can easily affect query execution times by large factors. Finding such
plans is the core responsibility of the query optimizer, which relies heavily on
accurate cardinality estimates to guide its search. One particularly difficult
problem is estimating the result size of a group-by operator, or, in general, the
number of distinct combinations of a set of attributes. In contrast to estimating
the selectivity of simple filter predicates, for instance, the resulting number of
groups cannot be predicted reliably without examining the complete input. As
a consequence, most existing systems have poor estimates for the number of
distinct groups.

We address this problem in Chapter 6 and present a novel estimation frame-
work that combines sketched information over entire individual columns with
random sampling to correct for correlation bias between attributes. This combi-
nation can estimate group counts for individual columns nearly perfectly, and
for arbitrary column combinations with high accuracy. Extensive experiments
show that these excellent results hold for both synthetic and real-world data sets.
We demonstrate how this mechanism can be integrated into existing systems
with low overhead, and how estimation time can be kept negligible by means of
an efficient algorithm for sample scans.

Adopting Worst-Case Optimal Joins. From a theoretical point of view, worst-
case optimal join algorithms are attractive to further improve the robustness of
relational database systems, as they offer asymptotically better runtime than
binary joins on certain types of queries. In particular, they avoid enumerating
large intermediate results by processing multiple input relations in a single
multi-way join. However, existing implementations incur a sizable overhead in
practice, primarily since they rely on suitable ordered index structures on their
input. Systems that support worst-case optimal joins often focus on a specific
problem domain, such as read-only graph analytic queries, where extensive
precomputation allows them to mask these costs.

In Chapter 7, we present a comprehensive implementation approach for
worst-case optimal joins that is practical within general-purpose relational
database management systems supporting both hybrid transactional and ana-

10 CHAPTER 1. INTRODUCTION

lytical workloads. The key component of our approach is a novel hash-based
worst-case optimal join algorithm that relies only on data structures that can be
built efficiently during query execution. Furthermore, we implement a hybrid
query optimizer that intelligently and transparently combines both binary and
multi-way joins within the same query plan. We demonstrate that our approach
far outperforms existing systems when worst-case optimal joins are beneficial
while sacrificing no performance when they are not.

CHAPTER 2
Low-Overhead Buffer Management

Excerpts of this chapter have been published in [195].

One of the key features that make disk-based databases attractive in practice
is their ability to transparently manage data sets far larger than the amount of
available main memory (cf. Chapter 1). For this purpose the persistent database
state is canonically stored on fixed-size pages which are cached in a suitable way
by the buffer manager [103]. This approach greatly simplifies the remainder of
the system, since the complexities of IO buffering are hidden behind a centralized
interface. Moreover, the buffer manager has complete knowledge of all page
accesses which allows it to employ an intelligent page replacement strategy that
minimizes the number of expensive IO operations.

While these properties are highly desirable in any system, previous research
has shown that a traditionally designed buffer manager becomes a major perfor-
mance bottleneck on modern hardware [99, 159]. This is caused primarily by an
excessive number of latch acquisitions during regular operation, which leads to
severe contention under high parallelism. For example, buffer managers typi-
cally employ a centralized hash table for the purpose of translating logical page
identifiers to physical pointers. This hash table is protected by a global latch
that has to be acquired whenever a worker thread needs to resolve a logical page
identifier. Furthermore, fine-grained latches are required in order to synchronize
concurrent operations on the same page, which is especially problematic for
frequently accessed pages such as the root node of a B+-tree. Finally, even
seemingly small inefficiencies, e.g. in the replacement strategy implementation,
can have a noticeable impact when the entire working set fits into main memory
and performance is not constrained by limited IO bandwidth [159].

Pure in-memory systems avoid these problems by forgoing buffer manage-
ment entirely which both eliminates overhead and further simplifies the code.

12 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

Nevertheless, many in-memory systems have added some form of fallback sup-
port for extremely large data sets in view of declining main memory growth
rates. Compared to a buffer manager, however, these approaches suffer from
various drawbacks that lead to a suboptimal system design [159]. For instance,
secondary indexes are commonly required to remain memory-resident which
constitutes a major limitation [52, 77, 159, 239]. For this reason, Leis et al.
proposed the LeanStore storage manager that overcomes the inefficiencies of
a traditional buffer manager while retaining its core benefits [159]. Its decen-
tralized architecture is carefully designed to minimize overhead and contention,
resulting in nearly the same performance as a pure in-memory system when the
working set fits into main memory. At the same time, its functionality remains
fundamentally unchanged from a traditional buffer manager, i.e. LeanStore pro-
vides a simple interface for accessing data stored on fixed-size pages that are
transparently swapped to disk as required.

Based on these encouraging results, we propose a novel buffer manager for
memory-optimized disk-based systems which combines low-overhead buffering
with variable-size pages [195]. Both traditional buffer managers and LeanStore
rely on fixed-size pages since this simplifies the buffer manager implementation
itself. However, it comes at the cost of substantially increased complexity
throughout the remainder of the system. For example, large strings or lookup
tables for dictionary compression often cannot easily be stored in a single fixed-
size page, and both complex and expensive mechanisms are thus required all
over the database system in order to handle large objects. We argue that it is
much better to use a buffer manager with variable-size pages, which allows for
storing large objects natively and contiguously if needed. Such a design leads to
a more complex buffer manager, but it greatly simplifies the rest of the system.
If we can rely upon the fact that a dictionary is stored contiguously in memory,
decompression is just as simple and fast as in an in-memory system. In contrast,
a system with fixed-size pages either needs to re-assemble and thus copy the
dictionary in memory, or has to use a complex and expensive lookup logic.

Of course, there are substantial technical reasons why previous systems have
preferred fixed-size pages, primarily regarding fragmentation issues. However,
we show in this chapter how these problems can be eliminated by exploiting
the dynamic mapping between virtual addresses and physical memory provided
by the operating system. Furthermore, we provide a detailed discussion of
further adaptations that were necessary in order to seamlessly integrate the
proposed buffer manager into a general-purpose compiling DBMS like Umbra.
In summary, this chapter discusses the following key points:

• A novel buffer manager architecture that supports variable-size pages and
introduces only minimal overhead.

2.1. BUFFER MANAGER ARCHITECTURE 13

• A highly flexible query compilation framework that can be integrated
cleanly with a disk-based database system.

• Full integration and evaluation of the proposed techniques within the
memory-optimized disk-based database system Umbra.

The remainder of this chapter is laid out as follows. We outline the proposed
buffer manager architecture Section 2.1. Subsequently, we discuss our query
compilation framework in Section 2.2, and present experiments in Section 2.3.
Related work is reviewed in Section 2.4, and a summary of the chapter is provided
in Section 2.5.

2.1 Buffer Manager Architecture
As outlined above, the fundamental concept of buffer management offers many
attractive benefits to a memory-optimized disk-based system, but traditional
designs fail to fully exploit the capabilities of modern hardware. Although
the LeanStore storage manager developed by Leis et al. provides solutions for
many of the underlying issues and achieves excellent performance, it still relies
on fixed-size pages and thus requires expensive mechanisms to handle large
objects [159]. In the following, we address this problem and propose a novel
buffer manager architecture which builds upon the general ideas of LeanStore
but additionally supports variable-size pages.

Database pages in our design are conceptually organized in multiple size
classes, where a size class contains all pages of a given size. Size class 0 contains
the smallest pages, the size of which is configurable but needs to be a multiple of
the system page size. In our implementation, we choose 64 KiB as the smallest
available page size, which we have experimentally determined to provide a good
balance between OLAP and OLTP performance. Subsequent size classes contain
pages of exponentially growing size, i.e. pages in size class 𝑖+1 are twice as large
as those in size class 𝑖 (cf. Figure 2.1). Pages can theoretically be as large as the
entire buffer pool, although in practice even the largest pages are much smaller
than this theoretical limit. Our buffer manager maintains a single buffer pool
with a configurable size, into which pages from any size class can be loaded.
Crucially, it is not required that the amount of buffer pool memory is configured
individually per page size class as it is necessary in previous systems that support
variable-size pages [234]. For this reason, the external interface of the proposed
buffer manager does not differ significantly from a traditional implementation.
That is, the buffer manager exposes functions which cause a specific page to be
pinned in memory, loading it from disk if required, and functions that cause a
page to be unpinned, allowing it to be subsequently evicted from memory.

14 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

Bu�er Frames Pages

Size Class 0

512 KiB

256 KiB

128 KiB

64 KiB

128 KiB 128 KiB 128 KiB

256 KiB

64 KiB

Size Class 1

Size Class 2

Size Class 3

inactive bu�er frame

active bu�er frame

inactive page (no physical memory mapping)

active page (mapped to physical memory)
reserved virtual memory

64 KiB 64 KiB 64 KiB 64 KiB 64 KiB 64 KiB

Figure 2.1: Illustration of the buffer manager, assuming a buffer pool size of
512KiB and a minimum page size of 64 KiB. The buffer manager supports ex-
ponentially growing page sizes which are organized into size classes. For each
size class, a virtual memory region the size of the entire buffer pool is reserved,
and buffer frames correspond to fixed addresses within this memory region.

In the remainder of this section, we provide a detailed description of the indi-
vidual components and techniques that contribute to the proposed architecture.
Specifically, we discuss our memory management approach that avoids external
fragmentation in the buffer pool in Section 2.1.1, and our implementation of
pointer swizzling for decentralized address translation in Section 2.1.2. Subse-
quently, we introduce a low-overhead page latching protocol in Section 2.1.3,
review the page replacement strategy employed by our system in Section 2.1.4,
and finally present essential implementation details in Section 2.1.5.

2.1.1 Buffer Pool Memory Management
The major challenge in implementing a buffer manager that supports multiple
page sizes within a single buffer pool is external fragmentation in this buffer
pool. Fortunately, we can avoid this problem by exploiting the flexible mapping
between virtual addresses and physical memory provided by the operating
system. The operating system kernel maintains a page table to transparently
translate the virtual addresses that are used by user-space processes to physical
addresses within the actual memory. This not only allows contiguous blocks of
virtual memory to be physically fragmented, but also enables virtual memory
to be allocated independently of physical memory. That is, an application can
reserve a block of virtual memory for which the kernel does not immediately
create a mapping to physical memory within the page table.

2.1. BUFFER MANAGER ARCHITECTURE 15

These particular properties of virtual memory management are exploited
within our buffer manager to completely avoid any external fragmentation
within the buffer pool. In particular, the buffer manager uses the mmap system
call to allocate a separate block of virtual memory for each page size class, where
each one of these memory regions is large enough to theoretically accommodate
the entire buffer pool. We configure the mmap call to create a private anony-
mous mapping which causes it to simply reserve a contiguous range of virtual
addresses which do not yet consume any physical memory (cf. Figure 2.1). Sub-
sequently, each of these virtual memory regions is partitioned into page-sized
chunks, and one buffer frame containing a pointer to the respective virtual
address is created for each chunk. These pointers identify the virtual addresses
at which page data can be stored in memory and remain static for the entire
lifetime of the buffer manager. Since page sizes are fixed within a given size
class and a separate virtual address range is reserved for each size class, no
fragmentation of the virtual address space associated with a size class occurs.
Of course, the physical memory that is used to store the page data associated
with an active buffer frame may still be fragmented.

When a buffer frame becomes active, the buffer manager simply reads the
corresponding page data from disk into memory. This data is stored at the
virtual memory address associated with the buffer frame, at which point the
operating system creates an actual mapping from these virtual addresses to
physical memory (cf. Figure 2.1). If a previously active buffer frame becomes
inactive due to eviction from the buffer pool, we first write any changes to
the page data back to disk if necessary, and subsequently allow the kernel
to immediately reuse the associated physical memory. On Linux, this can be
achieved by passing the MADV_DONTNEED flag to the madvise system call. This
step is critical to ensure that the physical memory consumption of the buffer
pool does not exceed the configured buffer pool size, as several times more
virtual memory is allocated internally (cf. Figure 2.1). As the memory mappings
used in the buffer manager are not backed by any actual files (see above), the
madvise call incurs virtually no overhead. Moreover, we can avoid the madvise
call entirely if the buffer frame is immediately reused for loading another page.

The buffer frames themselves reside in main memory at all time. Besides a
pointer to the associated chunk of virtual memory, they contain a small number
of additional fields that are required by the buffermanager and other components
of the system. For clarity, we introduce these fields as needed when discussing
the respective aspects of our buffer manager. Overall, however, the buffer frames
are many orders of magnitude smaller than even the smallest size class, and
consume only an insignificant amount of memory. For example, in our reference
implementation within Umbra the size of a buffer frame is 96 bytes. Since page
sizes increase exponentially in our design, we need to maintain only twice as

16 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

key key

key key key key key key

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

le
af

 p
ag

e

Memory-Resident Page

Disk-Resident PageUnswizzled Swip (Logical Page Identi�er)

Swizzled Swip (Bu�er Frame Pointer)

Figure 2.2: Example of pointer swizzling within a buffer-managed B+-tree. Page
references are implemented through swips, which contain either a pointer to
a buffer frame in case the referenced page is memory-resident, or a logical
page identifier in case it is disk-resident. The buffer manager updates a swip
whenever the state of the referenced page changes.

many buffer frames as a traditional buffer manager which would only maintain
buffer frames for size class 0 (cf. Figure 2.1).

2.1.2 Pointer Swizzling
The buffer pool memory management approach outlined above allows the
buffer manager to fully utilize the benefits of variable-size pages, with minimal
runtime overhead and implementation complexity. However, variable-size pages
alone do not resolve all the shortcomings of a traditional buffer manager in a
modern database system [159]. Since pages are serialized to disk, they need
to be referenced through logical page identifiers (PIDs) in the general case.
However, centralized approaches which rely on a global hash table to map
PIDs to actual memory addresses in the buffer manager can quickly become
a major performance bottleneck in modern many-core systems [99]. This is
primarily caused by global synchronization which is necessary to protect this
data structure against concurrent accesses. Furthermore, each page access
requires a nontrivial hash table probe in this design even if the page is already
resident in the buffer pool. This overhead can become noticeable if most of the
working set fits into main memory and performance is consequently not limited
by IO bandwidth.

2.1. BUFFER MANAGER ARCHITECTURE 17

swizzled

unswizzled

pointer 0

page identi�er size class

1 bit

1 bit63 bit

57 bit 6 bit

1

Figure 2.3: Illustration of a swizzled (top) and unswizzled (bottom) swip. A
swizzled swip stores a pointer to a memory-resident page, the lowest bit of
which will be zero due to the mandatory 8-byte alignment of pointers. In an
unswizzled swip this bit is fixed to one, while the remaining bits store the page
identifier and the size class of a page residing on disk.

In contrast, our buffer manager follows the design proposed for LeanStore
and relies on pointer swizzling as a low-overhead decentralized technique for
page address translation [91, 159]. In this approach, references to both memory-
resident and disk-resident pages are implemented through swips, which encode
all information that is required to locate and access pages (cf. Figure 2.2). A
swip is a single 64-bit integer which contains either a virtual memory address,
in case the referenced page resides in memory, or a 64-bit PID if it currently
resides on disk. A swip is said to be swizzled if it references a memory-resident
page, and unswizzled otherwise. We use pointer tagging to distinguish between
these two options, and thus only a single additional conditional statement is
required to access a memory-resident page. Specifically, in a swizzled swip the
lowest bit is guaranteed to be zero due to the mandatory 8-byte alignment of
virtual memory addresses, whereas we fix this bit to one in unswizzled swips. In
addition to the tagging bit, an unswizzled swip stores both the size class of the
corresponding page (6 bits), and its actual page number (57 bits). This way, the
buffer manager requires no additional information besides an unswizzled swip
to locate the corresponding page on disk and load it into memory (cf. Figure 2.3).

Typically, most swips in the system will be stored on database pages them-
selves, for example as the child pointers in the inner nodes of a B+-tree. On the
other hand, some swips such as references to B+-tree root nodes may reside out-
side of any buffer-managed data structures (cf. Figure 2.2). The buffer manager
is responsible for maintaining the state of a swip to reflect the state of the refer-
enced page in all of these cases. This requirement leads to some fundamental
constraints on the design of both the buffer manager and the remaining system.
Most importantly, if multiple swips were allowed to point to the same page, all
of them would have to be updated by the buffer manager when the state of that
page changes. This is particularly problematic when loading a page into the
buffer pool, at which point there is no easy way for the buffer manager to locate
all incoming swips that reside on other pages already loaded within the buffer

18 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

pool. Therefore, each database page is referenced by precisely one owning swip
in our system [159]. This swip has to be passed to the buffer manager when
loading a page anyway, and can thus be updated easily. Specifically, we store
the logical page identifier and a back-reference to the owning swip within the
respective buffer frame.

We never evict pages which contain swizzled swips since this would lead
to problems when loading such a page back into the buffer pool, similar to the
situation that would arise from supporting multiple incoming swips per page. If
the page replacement strategy does select a page which does contain swizzled
swips, we instead select one of its child pages for eviction, recursively repeating
this process if necessary. In conjunction, these properties of our buffer manager
require all buffer-managed data structures to be implemented as some form
of tree. Without this restriction, page eviction could result in an excessively
large number of page accesses and stall the system for a long time. For example,
trying to evict the head of a singly-linked list of pages could potentially iterate
over the entire linked list to find a page that can be evicted. Relying on tree-like
data structures limits the maximum number of iterations required during page
eviction to be logarithmic in the total number of pages within the data structure,
which effectively avoids any noticeable overhead due to the extremely high
fanout in typical data structures such as B+-trees. Furthermore, page eviction is
naturally biased towards the leaf pages of these trees which is desirable since
inner pages are accessed much more frequently.

2.1.3 Page Latching
Frequent latch acquisitions for pessimistic thread synchronization within the
buffer-managed data structures quickly becomes another point of severe con-
tention on modern multi-core processors [37, 159, 160]. Any pessimistic latching
scheme requires atomic writes to shared memory, even when acquiring an un-
contended non-exclusive latch [37]. This invalidates the corresponding cache
line, and as a result performance is limited by the latency of the cache-coherence
protocol [51]. Pessimistic latching of the root nodes of B+-trees, for instance, is
particularly prone to contention since they are accessed during virtually every
lookup or update operation.

For this reason we rely on optimistic latching to synchronize most concurrent
accesses to the same page, which vastly reduces overhead in comparison to
pessimistic latching [159]. Optimistic latching conceptually validates after the
fact that any data read in a critical section has not changed in the meantime,
instead of proactively preventing any changes to that data [37]. If validation
fails, the respective operation is simply retried. Crucially, this protocol does not
require any writes to shared memory, eliminating the aforementioned perfor-

2.1. BUFFER MANAGER ARCHITECTURE 19

mance problems. Pessimistic latching is of course still desirable in cases where
stronger synchronization guarantees than those provided by optimistic latching
are required, or when modifying page data in any way.

Consequently, we adopt the hybrid latches proposed by Boettcher et al. in
order to synchronize page accesses within our system [37]. In contrast to other
techniques that address the overhead of pessimistic synchronization, such as
entirely latch-free data structures, hybrid latches provide a simple interface and
require comparatively few adjustments to the data structures relying on them [37,
163]. Specifically, each buffer frame contains a hybrid latch that can be acquired
either in optimistic mode, or in one of the pessimistic shared and exclusive
modes. A swizzled pointer allows worker threads to directly access a buffer
frame without consulting the buffer manager, which also entails that they can
immediately interact with the corresponding hybrid latch in order to synchronize
access to the buffer frame. These synchronization primitives are both used
internally by the buffer manager, and exposed to the remainder of the system in
order to synchronize any buffer-managed data structures. A particularly useful
technique to this end is optimistic latch coupling which allows traversing tree-
like data structures without any pessimistic latch acquisitions [160]. Note that
thread synchronization as discussed in this section is orthogonal to transaction
concurrency control which has to be implemented on top of these data structures
(cf. Chapter 5).

In the original publication on the topic [195], our buffer manager relied on
a different latch implementation providing the same fundamental primitives,
which we termed “versioned latches”. Subsequently, Boettcher at al. proposed
hybrid latches as a more robust implementation of the same functionality, and
we provide a brief overview thereof in the following. A hybrid latch in our
system combines a traditional pessimistic read-write mutex with an additional
64-bit version counter for validation of optimistic reads [37]. The pessimistic
latching modes supported by the hybrid latch are internally simply forwarded
to the read-write mutex. That is, at most one thread at a time is allowed to
acquire a hybrid latch in exclusive mode. For example, any modification of a
page, such as inserting data, requires an exclusive latch in order to avoid data
races. After the modification is complete, we first increment the version counter
and subsequently release the exclusive latch on the read-write mutex. It is
essential that the version is updated first, since optimistic readers could miss
updates otherwise. If the corresponding page was not changed while the latch
was held, the version counter does not have to be incremented when releasing
the latch. This avoids unnecessarily invalidating concurrent optimistic reads.
Alternatively, multiple threads can acquire a latch simultaneously in shared
mode, provided that it is not currently locked in exclusive mode by another
thread. No modifications of a page are allowed while holding a shared latch,

20 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

but read operations are guaranteed to succeed. Both pessimistic latching modes
effectively pin the associated page in the buffer manager, preventing it from
being evicted (cf. Sections 2.1.4 and 2.1.5).

Finally, a latch that is unlocked or locked in shared mode can be acquired by
any number of threads in optimistic mode. This is achieved by simply reading the
value of the version counter at the time of latch acquisition, i.e. no modification
of the latch itself is required and thus no contention is induced. Like in shared
mode, only read accesses to a page are allowed while holding an optimistic
latch. However, these read accesses are allowed to fail, since another thread
could acquire an exclusive latch and modify the page concurrently. Therefore,
all optimistic accesses have to be validated when an optimistic latch is released.
If the version counter changed since the acquisition of the latch, a concurrent
modification of the page occurred and the read operations have to be restarted.
Likewise, validation fails if the latch is locked in exclusive mode at the time of
validation. Optimistic latching eliminates contention on the latches themselves
if there are many concurrent read accesses [37].

Special care has to be taken when accessing optimistically latched pages,
since the page content can change arbitrarily. This is especially relevant when
reading data such as offset values which are used to compute the addresses of
subsequent memory accesses. The classical slotted page layout, for example,
generates such an access pattern since slots only store the offset of their payload.
Here, it is generally required to validate the optimistic read of the offset before
any further computations in order to avoid out-of-bounds reads. Note that
it is even legal for a page to be evicted while the page content is being read
optimistically. This is possible since the virtual memory region reserved for a
buffer frame always remains valid (see above), and read accesses to a memory
region that was marked with the MADV_DONTNEED flag simply result in zero bytes.
No additional physical memory is allocated in this case, as all such accesses are
mapped to the same zero page. This property of our buffer manager greatly
simplifies the implementation of page eviction. Whereas LeanStore requires an
epoch-based mechanism to ensure that pages are not evicted while they can
still be accessed optimistically, page eviction can proceed immediately in our
approach [159].

Our buffer manager further differs from LeanStore in that we support pes-
simistic latches in addition to optimistic latches for readers [159]. This allows
the compiling query execution engine in our proposed system architecture to
remain largely oblivious of the buffer manager during scans which greatly sim-
plifies its implementation. Specifically, we acquire a shared latch whenever a
page is read by a compiled query which prevents its eviction from the buffer
pool. If we only supported optimistic latching for readers, every operator in a
pipeline would have to include additional validation logic in case a page was

2.1. BUFFER MANAGER ARCHITECTURE 21

evicted while being processed. Furthermore, this avoids frequent validation
failures in read-heavy OLAP queries in case other queries write to the same
relation.

2.1.4 Page Replacement
One of the strongest advantages of a buffer manager is its ability to enforce
an intelligent global page replacement strategy across all buffer-managed data
structures within the database. Due to their direct impact on the overall system
performance, a wide variety of such replacement strategies have been explored
in previous research on traditional buffer managers [103, 159, 205]. However,
these approaches typically incur a substantial overhead since they need to
update tracking information during every page access [159]. Moreover, they
may even require global synchronization which could become yet another severe
scalability bottleneck. For example, variations of the popular Least Recently
Used (LRU) strategy usually update a linked list or priority queue of buffer
frames whenever a page is accessed, which requires such synchronization [205].

Therefore, Leis et al. propose a novel replacement strategy which identifies
infrequently accessed pages, i.e. eviction candidates, in a decentralized way [159].
Under memory pressure, the buffer manager keeps a small fraction of the buffer
pool in a cooling list by speculatively unswizzling random page references.
Some of these pages could of course still be hot and may be referenced again
shortly, in which case they are simply removed from the cooling list. Provided
that the cooling list is sized appropriately, its tail will contain pages that we
can safely evict since they are comparably cold [159]. The key benefit of this
approach is that no tracking information needs to be updated when accessing a
memory-resident page through a swizzled swip, since this does not affect the
composition of the buffer pool. The replacement strategy data structures are
modified only when the buffer manager has to perform IO anyway, which is
orders of magnitude more expensive. This approach has been demonstrated to
be both robust and performant, for which reason we adopt it our proposed buffer
manager [101, 159]. While our design draws on the general ideas proposed by
LeanStore, we describe several key extensions in order to account for variable-
size pages and hybrid workloads.

Buffer frames in our system can be either free, cooling, or hot, with a well
defined set of possible transitions between these states (cf. Figure 2.4). The
high-level objective of the page replacement strategy is to maintain the effective
amount of buffer pool memory in these three states close to a configurable target
distribution. For this purpose, we track the amount of buffer pool memory 𝑛𝑐𝑜𝑜𝑙𝑖𝑛𝑔
and 𝑛ℎ𝑜𝑡 corresponding to cooling and hot buffer frames, respectively. Note that
these values are counted globally across all size classes so we can ensure that

22 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

Local Free List (Size Class 0)

...

Global Cooling List

Global Hot List

Sw
iz

zl
e

Pa
ge

U
nsw

izzle Page
EvictPage

Lookup Array

Linked List

Linked List

Lookup Hash Table

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

PID 0 PID 1 PID 2 PID 3

0 1 2 3 4 5

Local Free List (Size Class i)

Linked List bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

bu�er
frame

Lo
ad

 P
ag

e

Figure 2.4: Overview of the basic page replacement strategy employed by our
buffer manager. A configurable subset of the buffer pool is kept in a cooling list
by unswizzling random pages from the hot list. If a page in the cooling list is
accessed it can simply move back to the hot list without any IO. This way, the
tail of the cooling list will contain mostly cold pages that can be evicted to make
room in the buffer pool.

the total memory consumption 𝑛𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + 𝑛ℎ𝑜𝑡 of the buffer manager remains
below the configured buffer pool size 𝑛𝑡𝑜𝑡𝑎𝑙 (cf. Section 2.1.1). A free buffer frame
becomes hot when it is allocated to load a previously evicted page into memory.
Similarly, a cooling buffer frame transitions to the hot state when it is referenced
again before being evicted. Finally, hot pages are moved to the cooling list if
the fraction of hot pages 𝑝ℎ𝑜𝑡 = 𝑛ℎ𝑜𝑡/𝑛𝑡𝑜𝑡𝑎𝑙 exceeds a certain threshold (90 % in
our implementation), and cooling pages are evicted and thus become free when
the amount of free memory 𝑛𝑓 𝑟𝑒𝑒 = (𝑛𝑡𝑜𝑡𝑎𝑙 − 𝑛ℎ𝑜𝑡 − 𝑛𝑐𝑜𝑜𝑙𝑖𝑛𝑔) is below a certain
threshold (1 % in our implementation).

The page replacement strategy is executed cooperatively by worker threads
that interact with the buffer manager to allocate a new page or dereference an
unswizzled swip. No additional overhead is incurred when accessing a page
through a swizzled swip, in which case the buffer manager is bypassed entirely
(cf. Section 2.1.2). It would also be possible to run the page replacement strategy
in a background thread, but this increases implementation complexity and could
lead to worker threads outrunning this background thread [101, 159]. In order
to implement the page replacement strategy, the buffer manager internally

2.1. BUFFER MANAGER ARCHITECTURE 23

maintains some auxiliary data structures (cf. Figure 2.4). Free buffer frames
are stored in a separate free list per size class so that allocation requests can
be served quickly. The cooling list is shared by all size classes and internally
consists of a FIFO queue where cooling buffer frames are initially inserted at
the front of the queue, and eviction candidates are selected from the tail of the
queue. Additionally, buffer frames in the cooling list are indexed by their logical
page identifier in an additional hash table, so that we can quickly locate buffer
frames that are accessed again before being evicted. Finally, pointers to the
hot buffer frames from all size classes are stored in a common hot list, which is
implemented as an array allowing us to efficiently select random buffer frames
for unswizzling.

Each invocation of the page replacement strategy performs a small number
of operations aimed at restoring the target composition of the buffer pool. If
the fraction of hot pages 𝑝ℎ𝑜𝑡 is above the configured threshold, a set number
of pages are unswizzled and moved to the cooling list. This is achieved by
repeatedly selecting a random buffer frame from the hot list that is not currently
latched in any way and unswizzling the incoming swip. Similarly, if the amount
of free memory 𝑛𝑓 𝑟𝑒𝑒 is below the configured threshold we evict some cooling
pages. For this purpose, we iterate over a set number of buffer frames starting
from the tail of the cooling list. Clean buffer frames are evicted immediately,
while dirty buffer frames are enqueued to be written back to disk asynchronously.
They become clean once these writes complete, and can thus be evicted in a
subsequent invocation of the page replacement strategy.

Upon receiving a request to swizzle a given page, the buffer manager first
checks whether that page happens to be stored in a buffer frame in the cooling
list since it was only recently unswizzled. If this is the case, no IO is required
and the buffer frame is simply moved from the cooling list back to the hot list. If
necessary, we subsequently invoke the page replacement strategy to unswizzle
some other hot pages. No pages need to be evicted since moving a buffer frame
between the cooling and hot lists affects only 𝑝ℎ𝑜𝑡. If the page to be swizzled
is not contained in the cooling list, we extract a buffer frame from the free list
of the respective size class and move it to the hot list. We then enqueue an
asynchronous IO request to load the respective page data from storage, and
invoke the full page replacement strategy while the worker thread is waiting
for the IO request to complete. Usually, we can immediately allocate a buffer
frame here since we make sure to retain a small amount of free memory at all
times. This may not be possible when loading a page from one of the larger size
classes, in which case we need to unswizzle and evict some pages first.

The page replacement strategy as outlined thus far essentially imitates the
behavior of the LRU scheme without the requirement to track information on
every page access. Unfortunately, this also entails that our approach inher-

24 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

its most of the drawbacks of LRU, in particular when dealing with full table
scans originating from OLAP workloads [244]. Heavyweight analytical queries
generally examine a large amount of data with little locality in their access
patterns. Without any adjustments to our replacement strategy, such queries
would pollute the entire buffer pool and potentially force the eviction of many
pages that are accessed by workloads with much higher locality of reference.
Since this is clearly undesirable, we propose a straightforward extension to our
approach which addresses this problem. It allows worker threads to indicate to
the buffer manager that a given page should be prioritized for eviction when
they do not expect to access it again in the near future.

Worker threads can communicate this information to the buffer manager
by passing an eviction hint flag when they dereference a swip. This flag is
simply ignored when the swip is already swizzled and the buffer manager is thus
bypassed, which naturally prevents pages that have already been loaded into the
buffer pool through some other access path from being incorrectly prioritized for
eviction. When the buffer manager swizzles a page for which the eviction hint
flag is set, it puts the respective buffer frame into an additional FIFO queue that
is shared across all size classes. This queue is inspected before the cooling list if
the page replacement strategy decides that it needs to evict a page. Specifically,
the buffer manager repeatedly extracts the oldest entry from the eviction hint
queue until it finds a clean page that can be evicted immediately. Dirty pages are
ignored here, since they have recently been accessed by a transactional query and
should thus be subject to the regular replacement strategy. Overall, our extension
approximates the Toss Immediately replacement strategy recommended for full
table scans by Stonebraker [244], while still taking into account that some pages
should not be evicted since they are used by other concurrent queries.

2.1.5 Implementation Details
In the following, we conclude our discussion of the buffer manager by providing
a brief overview of some implementation details that are essential for correctness
and performance.

Internal Synchronization

One of the principal objectives of the proposed buffer manager architecture is
to minimize contention by carefully eliminating global synchronization from
hot code paths. Nevertheless, the buffer manager is accessed concurrently from
multiple worker threads and its internal data structures need to be protected from
data races. We rely on a single latch for this purpose which greatly simplifies
the implementation of the buffer manager. It is important to recall that pointer

2.1. BUFFER MANAGER ARCHITECTURE 25

swizzling ensures that worker threads only enter the buffer manager on the cold
path where IO operations are likely required. Thus, global synchronization in
this particular case does not lead to excessive contention [159].

Several subtle synchronization issues arise from the decentralized nature of
the pointer swizzling approach. More specifically, worker threads may attempt
to concurrently dereference the same swip, in which case we have to make sure
that the corresponding page is loaded into the buffer manager exactly once [159].
Moreover, the location of a swip itself can change, for example during structural
operations within a B+-tree such as an inner page split. Finally, the buffer
manager can decide to unswizzle arbitrary pages as part of its page replacement
strategy, which also requires updating the incoming swip. All of these operations
can occur concurrently, and need to be protected against data races. We address
this challenge by allowing each swip to be latched individually. Recall that a
swip is just a 64-bit integer, so we can atomically replace its value with a marker
value that does not represent any valid swip in order to latch it (264 − 1 in our
implementation). This allows the above operations to be implemented safely,
but in order to guarantee correctness and avoid deadlocks careful coordination is
required between the three different categories of latches in our buffer manager,
i.e. page latches, swip latches, and the central buffer manager latch.

Dereferencing a swip is by far the most involved process. For now, let us
assume that the swip to be dereferenced is either stored in memory, or on a page
that is itself latched pessimistically. This ensures that the values we read from
the corresponding 8-byte memory region actually represent a swip, which is
not guaranteed when reading from an optimistically latched page. Furthermore,
it guarantees that the identity of the referenced page remains unchanged while
we are dereferencing the swip. It is still possible that the physical value of the
swip changes concurrently, in case another thread also dereferences the same
swip or the buffer manager evicts the referenced page. The pseudocode for the
respective algorithm is displayed in Algorithm 2.1. To begin the dereference
operation, we first read the current value of the swip atomically (line 4). If
the swip is currently swizzled we can enter the hot code path and attempt to
directly access the page, bypassing the buffer manager (lines 6–10). If the swip
is currently latched by another thread we simply block until it is unlatched
and restart the process (line 12). Finally, if the swip is currently unswizzled we
atomically latch it ourselves (line 13) and subsequently enter the cold code path
through the buffer manager (lines 18–24).

The swizzled swip encountered on the hot code path represents a pointer to
a buffer frame (cf. Section 2.1.2). Therefore, we can immediately acquire a latch
on that buffer frame in the requested mode, potentially blocking until the latch
becomes available (line 8). Although this is highly unlikely, the page we are
trying to access may concurrently be evicted by the buffer manager before we

26 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

1 PageLatch dereference(BufferManager* bm, Swip* swip, LatchMode mode) {
2 uint64_t current;
3 while (true) {
4 current = swip->atomic_read();

6 if (BufferFrame* frame = get_frame_pointer(current)) {
7 // Fast path, the swip is swizzled.
8 PageLatch result = frame->acquire_latch(mode);
9 if (current == swip->atomic_read())

10 return result;
11 } else if (current == LATCHED_SWIP_MARKER) {
12 swip->wait_until_notified();
13 } else if (swip->atomic_cas(current, LATCHED_SWIP_MARKER)) {
14 break;
15 }
16 }

18 // Slow path, enter the buffer manager. Will return an exclusive latch.
19 PageLatch result = load_page(bm, get_page_identifier(current));

21 swip->atomic_store(result.make_frame_pointer());
22 swip->notify_waiting();

24 return result.convert(mode);
25 }

Algorithm 2.1: Pseudocode for dereferencing a swip stored in global memory or
on a pessimistically latched page.

are able to latch the buffer frame. We can detect this by atomically reading the
current value of the swip again after acquiring the latch, and validating that it
still represents a swizzled swip pointing to the same buffer frame (line 9). Note
that we do not have to guard against A-B-A problems here, since the identity of
the page that is referenced by the swip cannot change concurrently (see above).
Hence, if validation succeeds we have latched the correct buffer frame and thus
completed dereferencing the swip. Otherwise, we simply restart the process
from the beginning.

When we enter the cold code path in Algorithm 2.1 we have made sure that
the swip is currently unswizzled, and that it cannot change concurrently in any
way since we have latched it. Other threads attempting to dereference the same
swip will thus block as outlined above. At this point we can safely request the
buffer manager to load the page referenced by the swip into a suitable buffer
frame (line 19). As outlined in further detail below, the buffer manager will
internally perform the necessary operations and eventually return an exclusive

2.1. BUFFER MANAGER ARCHITECTURE 27

1 PageLatch load_page(BufferManager* bm, PID pid) {
2 BufferManagerLatch guard = bm->acquire_internal_latch();

4 if (BufferFrame* frame = bm->extract_cooling_frame(pid))
5 return frame->acquire_latch(EXCLUSIVE_MODE);

7 BufferFrame* frame = bm->allocate_free_frame();
8 PageLatch result = frame->acquire_latch(EXCLUSIVE_MODE);

10 guard.release(); // Release buffer manager latch before doing IO

12 bm->read_page(frame, pid);

14 return result;
15 }

Algorithm 2.2: Pseudocode for loading a disk-resident page into the buffer pool.
We have to make sure in advance that the page is not yet memory-resident and
that only one thread attempts to load it in the buffer manager (cf. Algorithm 2.1).

latch on the respective buffer frame. Subsequently, we can both unlatch and
swizzle the swip by atomically replacing its current marker value with a pointer
to that buffer frame (line 21). Finally, we wake up any threads that may be
waiting for the swip to be unlocked (line 22), and downgrade the exclusive latch
the requested mode (line 24).

Within the buffer manager itself, we broadly follow the algorithm displayed
in Algorithm 2.2 in order to load a page into the buffer pool. First of all, we
have to acquire the internal buffer manager latch in order to protect the page
replacement data structures from concurrent modification by multiple threads
attempting to load different pages (line 2). As outlined in Section 2.1.4, we
then either extract the corresponding buffer frame from the cooling list if the
page has not yet been evicted (lines 4–5), or we allocate an unused buffer frame
into which the page is subsequently loaded (lines 7–14). In either case we first
acquire an exclusive latch on the buffer frame before releasing the internal buffer
manager latch. It is essential to do this while we still hold the internal buffer
manager latch, in order to prevent the buffer frame from immediately being
selected for speculative unswizzling before we have finished loading the page.
Note that this latch acquisition will never block, since neither a buffer frame
in the cooling list nor a free buffer frame can be accessed from outside of the
buffer manager.

Dereferencing a swip is also possible when the page containing the swip is
only latched optimistically (cf. Algorithm 2.3). This is extremely useful since it

28 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

1 OptimisticPageLatch try_dereference(Swip* swip, OptimisticPageLatch outer) {
2 uint64_t current = swip->atomic_read();
3 BufferFrame* frame = get_frame_pointer(current);

5 // Validate that we have actually read a buffer frame pointer
6 if (!frame || !outer.validate())
7 return {};

9 OptimisticPageLatch result = frame->acquire_latch(OPTIMISTIC_MODE);

11 // Validate that we have read the correct swip
12 if ((current != swip->atomic_read()) || !outer.validate())
13 return {};

15 return result;
16 }

Algorithm 2.3: Pseudocode for dereferencing a swip stored on an optimistically
latched page. As we cannot reliably update the swip in this case, dereferencing
fails if the swip is not swizzled and we have to retry with a pessimistic latch on
the outer page (cf. Algorithm 2.1).

allows us to implement optimistic latch coupling as the main synchronization
protocol for traversing our buffer-managed data structures [160]. Here, we first
atomically read the value of the swip and subsequently validate the optimistic
latch on the containing page (lines 2–6). This verifies that the page did not
change concurrently, and we have actually read the value of a swip as opposed
to some other data. From this point on, we proceed similarly to the hot code path
outlined above. That is, we check that the swip is currently swizzled, acquire an
optimistic latch on the corresponding buffer frame, and finally validate that the
buffer frame still contains the page referenced by the swip (lines 9–12). If this
fails or the swip is currently latched or unswizzled, the operation aborts and we
have to retry dereferencing the swip with a pessimistic latch on the containing
page. It is impossible to directly swizzle a swip on an optimistically latched
page, since the page could change concurrently and we thus cannot update the
value of the swip reliably. However, this does not constitute a major limitation
since the pages containing swips, for example the inner pages of a B+-tree, are
typically both memory-resident and relatively static.

Worker threads can also freely move a swip between different pages or
between pages and memory, provided that we hold exclusive latches on all
pages involved. For this purpose, we have to update both the value of the source
and target swip, and the back-reference to the swip within the corresponding
buffer frame in case the swip is currently swizzled. Due to the latter requirement,

2.1. BUFFER MANAGER ARCHITECTURE 29

we cannot simply exchange the values of the source and target swips atomically,
and instead have to fall back to latching in order to synchronize properly with
the buffer manager. Specifically, we first latch the source swip followed by
the target swip, potentially blocking in both cases until this is possible. We
only allow moving a valid swip to a previously unoccupied region of memory
representing the null swip, i.e. all threads acquire these latches in a consistent
order and no deadlocks are possible. Once both swips are latched, we update the
value of the target swip and set the value of the source swip to null. If necessary,
we also change the back-reference within the corresponding buffer frame to
point to the new location of the incoming swip.

As discussed in Section 2.1.4, the buffer manager may decide to move a
random buffer frame from the hot list to the cooling list, for which purpose it
has to unswizzle the incoming swip. Note that the thread invoking the page
replacement strategy has already acquired the internal buffer manager latch. It
first tries to acquire an exclusive latch on the selected buffer frame, in order to
synchronize with other threads currently accessing the same buffer frame. We
do not block on this latch, however, and simply select another random buffer
frame if we cannot acquire it. This is desirable anyway, since we do not want to
unswizzle pages that are evidently still hot. Subsequently, the incoming swip
is latched to prevent it from being moved concurrently. We still have to verify
that the back-reference is correct after latching the swip, as it is possible that
the swip was moved after we read the back-reference but before we were able
to latch it. Finally, we can unswizzle the incoming swip and proceed to move
the buffer frame into the cooling list.

Recovery

Our system fundamentally relies on ARIES-style write-ahead logging to ensure
durability [187]. In the following, we briefly discuss some implications of
this design decision on the proposed buffer manage architecture. The logging
subsystem itself is introduced in detail in Chapter 3.

Overall, ARIES seamlessly supports the varying page sizes employed by
the proposed buffer manager. However, some care has to be taken in order to
ensure recoverability when reusing disk space. In particular, we cannot store
multiple smaller pages in disk space that was previously occupied by a single
large page. Consider, for example, a 128KiB database file which is currently
entirely occupied by a single 128 KiB page. We now load this page into memory,
delete it, and create two new 64KiB pages that reuse the disk space in the
database file. If the system crashes, it is possible that we only manage to write
the corresponding log records to disk, but not the actual new page data. During
recovery, ARIES would then at some point attempt to read the log sequence

30 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

number of the second 64 KiB page from the database file, although it has never
been written to disk. Thus, it would actually read some data of the deleted
128KiB page and incorrectly interpret it as a log sequence number. In order
to avoid such problems, the free space inventory data structure presented in
Chapter 4 ensures that disk space is only reused for pages of the same size.

Dirty PageWriter

As outlined in Section 2.1.4, the buffer manager enqueues dirty pages back
to written back to disk asynchronously before they can be evicted from the
buffer pool. Likewise, the checkpointer regularly writes out dirty pages without
evicting them in order to bound recovery time (cf. Chapter 3). In order to coor-
dinate write activity between these two components, we introduce a dedicated
page writer thread to which dirty buffer frames can be submitted. The page
writer aggregates multiple such requests, and asynchronously flushes them to
disk using the io_uring interface. We choose a default batch size of 4MiB
in our implementation based on preliminary experiments on several NVMe
SSDs. Funneling all write requests to a centralized component is advantageous
since it allows us to exert bidirectional backpressure on both the buffer manager
and the checkpointer, ensuring that neither component outruns the other by
monopolizing all the available write bandwidth.

Each buffer frame contains an atomic flag that indicates whether it is dirty.
This flag is set whenever we release an exclusive latch after modifying a page.
Furthermore, a buffer frame contains another atomic flag that indicates whether
it is currently enqueued with the dirty page writer, so we do not enqueue the
same buffer frame twice. The buffer manager and checkpointer can atomically
read the dirty flag without latching a buffer frame in order to decide whether they
should submit it to the dirty page writer in the first place, which avoids a large
number of superfluous latch acquisitions on clean buffer frames. Subsequently,
the dirty page writer briefly acquires an exclusive latch on the buffer frame
and validates that it is still dirty and not yet enqueued. It then copies the page
data to a staging buffer, clears the dirty flag, and sets the enqueued flag before
releasing the latch again [101]. It is essential to immediately clear the dirty flag
while the buffer frame is still latched, so that we do not miss any subsequent
modifications applied to the page. Eventually, the write-ahead log is flushed
as far as required and the pages in the staging buffer are written to disk, after
which the enqueued flag can be cleared again. Of course, for correctness the
buffer manager must not evict pages which are marked as clean but queued for
writeback. Such pages are simply skipped when the buffer manager iterates
over the cooling list to find eviction candidates (cf. Section 2.1.4). Similar to
other established disk-based systems, we prevent torn writes to the page file

2.2. QUERY COMPILATION 31

by first writing to a dedicated double-write buffer before updating the page file
itself [8].

Copying the page data to a staging buffer might seem to add unnecessary
overhead, but it actually minimizes the impact of the page writer on the per-
formance of the system. It allows us to immediately unlatch the buffer frame
before the actual write completes, which is especially important in case of the
checkpointer that would otherwise block access to a large fraction of the buffer
pool for a long time (cf. Chapter 3). Furthermore, it allows dirty buffer frames in
the cooling list to migrate back to the hot list and even be modified regardless
of whether they have been enqueued for writeback. Finally, copying the page
data is required anyway in case of the checkpointer, since pages may contain
swizzled pointers that have to be replaced by their logical page identifiers before
the page can be written to disk [101]. Note that this does not lift the restriction
introduced in Section 2.1.2 which prevents us from evicting pages containing
swizzled pointers – the checkpointer never evicts pages.

2.2 Query Compilation
As outlined in Chapter 1, all components presented in this thesis have been
implemented within the general-purpose Umbra database management system.
To this effect, we highlight below how a compiling query execution engine can
be adapted in order to account for the presence of a buffer manager within the
system. From a high-level point of view, Umbra follows the query execution
strategy pioneered by its spiritual predecessor Hyper: Logical query plans are
lowered to efficient parallel machine code, which is then executed to obtain
the query result [131, 194]. Overall, this code generation framework is highly
generic and mostly agnostic of the precise system characteristics, since it can be
used to generate arbitrary code.

The first key exception in this regard concerns the interplay between the
structure of the generated code and the execution engine that drives its evalua-
tion. HyPer, for example, essentially generates and compiles a single monolithic
function that is invoked in order to execute a query [142, 194]. This approach
proved to be inflexible though, in particular since it prevents us from properly
suspending queries which is a desirable feature within a disk-based system
where the scheduler should be able to react to the observed IO load. Therefore,
we propose a much more flexible approach in which we generate query code in
modular execution steps that conceptually comprise a state machine orchestrated
by the execution engine (cf. Section 2.2.1).

A further challenge arises when the generated code needs to access variable-
length attributes that are stored in a buffer-managed data structure. For per-

32 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

formance reasons, we generally prefer reading the payload of such attributes
directly from the corresponding database page instead of materializing it in heap
memory, but this is only feasible while the page is latched pessimistically and
can thus not be evicted from the buffer pool. In Section 2.2.2, we present how
variable-length attributes are represented by our system, and introduce a suit-
able taxonomy of storage classes that allows our query compilation framework
to avoid or at least delay materializing such attributes whenever possible.

2.2.1 Modular Execution Engine
Let us expand on the brief motivation in favor of a modular execution engine
given above. Modern database systems frequently implement their own sched-
uler to distribute work over a pool of worker threads, since this allows for
the integration of additional domain knowledge not available to the operating
system scheduler [255]. For instance, both HyPer and Umbra follow this ap-
proach and employ a morsel-driven query parallelization framework on top of
the scheduler [157, 255]. In order to support anything beyond the most basic
FIFO scheduling policy within this architecture, we fundamentally need to be
able to preempt execution of a given query. However, this becomes problematic
if our generated query code consists of a single monolithic function. Since this
function is typically invoked on a worker thread, suspending the query entails
that we block this thread, preventing it from doing any useful work until the
suspended query is finished.

One possible solution would be to have the query compilation framework
generate coroutines instead of regular functions [180]. While support for true
coroutines has recently been standardized in C++20, their implementation within
the major compilers is currently still in an early stage, and using them introduces
considerable additional code complexity. In contrast, our proposed approach
provides a clean and simple abstraction that greatly simplifies both code genera-
tion and the execution engine. It provides the same capabilities as coroutines
by modeling the process of query execution as a state machine, where separate
generated functions are called in each state. Crucially, these functions perform
only a limited amount of work before returning control to the scheduler, which
means that queries can easily be suspended at essentially arbitrary points in time.
In the morsel-based parallelization scheme employed by Umbra, for instance,
most of these functions process a single morsel which typically only takes a few
milliseconds [255].

At its core, the proposed query compilation framework is based on a generic
execution model that is not necessarily restricted to query execution in a re-
lational database system. As outlined above, the generated program logic is
broken up into a number of execution steps which comprise the states of a finite

2.2. QUERY COMPILATION 33

Multi-Threaded
Execution Step

Single-Threaded
Execution Step

Start

End

Step Function

Job �ueue Setup

Job �ueue Cleanup

Step Function

Single-Threaded
Execution Step

Step Function

Figure 2.5: Illustration of single-threaded and multi-threaded execution steps
within the finite state machine that corresponds to a compiled query in our
system. Single-threaded execution steps consist of a single generated step
function that is executed on one worker thread. Multi-threaded execution steps
contain auxiliary generated functions that create and destroy a job queue, and
the main step function is executed in parallel until the job queue is exhausted.

state machine (cf. Figure 2.5). Each execution step is associated with precisely
one step function in the generated code which can perform arbitrary computa-
tions, but additional auxiliary functions may be required for specific purposes.
The state transitions between execution steps are determined at runtime by
the generated code itself, which allows us to easily implement data-dependent
control-flow logic across execution steps. The engine that evaluates these gen-
erated state machines is implemented implicitly by means of the task-based
interface provided by the scheduler. Specifically, each execution step runs within
one or more scheduler tasks, and simply submits another task corresponding
to the next execution step when it finishes. A state machine as a whole is thus
evaluated synchronously, and no parallelism is supported across execution steps.
However, our framework allows the code within any given execution step to be
either single-threaded or parallelized in a morsel-driven way [157].

A single-threaded execution step consists only of the main step function,
which is executed in a single scheduler task and determines the appropriate
state transition. Multi-threaded execution steps require two auxiliary generated

34 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

functions to prepare and finalize parallel execution of the main step function,
respectively. Here, the initial scheduler task for the execution step merely
invokes the first of these generated helper functions in order to prepare a
suitable job queue containing a number of morsels, where each morsel defines a
unit of work that can be processed in parallel by the main step function. The
scheduler then distributes the morsels in this job queue over multiple tasks that
run in parallel, each of which invokes the main step function on the respective
morsel. Finally, once the job queue is drained the second generated helper
function is invoked in order to tear down the job queue and compute the next
state transition.

Naturally, the generated code may need to maintain some query state across
execution steps, such as materialized tuples, hash tables, or other data structures.
In theory, we could certainly allow the generated code to directly allocate heap
memory at runtime through calls to malloc and free or similar. While this
does offer maximum flexibility, it makes reasoning about the lifetime of such
allocations exceedingly difficult and vastly increases the complexity of the gen-
erated code. In particular, our framework is explicitly designed to eliminate the
global call stack of a monolithic generated function, but this also entails that we
cannot rely on commonly used techniques for automatic memory management
within the generated code, such as smart pointers.

For this reason, we introduce a more tailored query state management ap-
proach which allows the execution engine to perform all dynamic memory
management on behalf of the generated code. On a high level, our framework
exclusively allows static allocations for query state that should persist across
execution steps, i.e. both the allocation size and the corresponding initialization
and cleanup code have to be specified at code generation time. This query state
has a well-defined lifetime at runtime, where the execution engine performs
the necessary memory allocations and invokes the generated initialization or
cleanup code at the appropriate time. While we impose no fundamental restric-
tions on its precise nature, in practice we almost exclusively store objects of
C++ classes within the query state. In this case, the allocation size simply corre-
sponds to the size of the C++ class, the initialization code calls its constructor,
and the cleanup code calls its destructor. During the lifetime of this object, the
generated code can then call any of its member functions, allowing very flexible
interactions between C++ code and generated code [131].

More specifically, we distinguish between global and local query state alloca-
tions with slightly different semantics and lifetimes (cf. Figure 2.6). Global query
state is shared between all worker threads and remains valid during the entire
query execution. That is, the corresponding initialization code is invoked before
the first execution step, and the cleanup code runs after the last execution step
has terminated, allowing global query state to be accessed from anywhere within

2.2. QUERY COMPILATION 35

Global StateLocal State

Parallel
Scope

Parallel
Scope

initialize global state

initialize local state 2

cleanup local state 2

cleanup global state

Start

End

Execution Step Execution Step...

initialize local state 1

cleanup local state 1

Execution Step Execution Step...

Figure 2.6: Illustration of query state management in our approach. Global query
state remains valid during the entire query execution, and is shared between all
worker threads. In contrast, each thread receives a thread-local copy of the local
query state, which is valid only within a given parallel scope that may span
multiple execution steps. In both cases, we generate code for initialization and
cleanup of the individual state allocations, which is invoked at the appropriate
time by the execution engine.

the generated code. In contrast, local query state is only valid within a specific
parallel scope that may encompass multiple execution steps, during which a
separate thread-local copy of the local query state is allocated for each indi-
vidual worker thread. Within a parallel scope, multi-threaded execution steps
can only access their own thread-local copy of the local query state, whereas
single-threaded execution steps can access all copies of the local query state.
We require that control flow between execution steps enters and exits a parallel
scope through exactly one path, at which time the execution engine invokes the
corresponding initialization and cleanup code on each thread-local copy of the
local query state.

In practical terms, the generated query code within our system consists of
precisely one parallel scope per query pipeline [157]. This leads to a straightfor-
ward programming model within the generated code, wherein data structures
that communicate information between separate query pipelines are stored in
the global query state, e.g. the hash table built for a group-by operator. Local

36 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

�uery Pipelines Execution Steps & State Maintenance

supplier

Γs_nationkey,count(*)

result
Pi

pe
lin

e
1

Pi
pe

lin
e

2

initialize global hash table

initialize local preaggregation tables

scan and preaggregate supplier table

initialize local network bu�ers

scan and transmit global hash table

cleanup local network bu�ers

cleanup local preaggregation tables

merge local preaggregation tables

resize global hash table

destroy global hash table

Figure 2.7: Query pipelines and the corresponding generated functions for a
simple group-by query in our system. State maintenance functions are drawn
without any border, single-threaded execution steps are marked with a black
border, and multi-threaded execution steps are drawn as stacked boxes. The
query state maintenance functions are invoked automatically by our execution
engine and are not part of the conceptual state machine formed by the execution
steps.

query state can be leveraged within a given query pipeline in order to reduce the
synchronization overhead that would be incurred by directly accessing global
query state from multiple threads. In case of the group-by operator, for example,
we could build thread-local hash tables in a preaggregation phase and subse-
quently merge them into the global hash table [68]. Let us further illustrate this
by means of the following query on the well-known TPC-H schema [3].

SELECT count(*)
FROM supplier
GROUP BY s_nationkey

The logical execution plan of this query consists of two query pipelines,
where the first pipeline scans the supplier table and performs the GROUP BY
operation, and the second pipeline scans the groups and sends the query output
over the network to the client (cf. Figure 2.7). Omitting some implementation-
specific details for clarity, the global query state broadly consists of the global
hash table required for the group-by operation, while the local query state con-
tains preaggregation hash tables in the first pipeline, and network send buffers
in the second pipeline. As outlined above, the generated code corresponding to
the query pipelines is further disassembled into smaller execution steps in our

2.2. QUERY COMPILATION 37

framework. Specifically, we generate three relevant execution steps in the first
pipeline. First, we scan the tuples in the supplier table in parallel and insert
them into the thread-local preaggregation tables. Second, a single worker thread
examines all of these local tables and resizes the global hash table appropriately.
Finally, we merge the thread-local preaggregation tables into the global hash
table in parallel. In the second pipeline, a single execution step scans the global
hash table in parallel and materializes result tuples in the thread-local network
buffers, flushing them occasionally as they become full. As illustrated in Fig-
ure 2.7, query state maintenance is performed automatically by our execution
engine at the appropriate time.

The actual implementation of this mechanism within Umbra includes some
straightforward optimizations. First of all, we avoid generating a large number of
separate functions performing only little work, in order to reduce the scheduling
overhead incurred by the execution engine. For example, our implementation
guarantees that a multi-threaded execution step is always preceded and suc-
ceeded by a single-threaded execution step, which means that we can merge the
generated code required to create and finalize the corresponding job queue with
the step functions of these execution steps (cf. Figure 2.5). Likewise, we can
frequently merge subsequent single-threaded execution steps, for instance when
transitioning from one parallel scope to the next. While the execution plans
generated by Umbra are multi-threaded by default, the optimizer can decide to
transparently coalesce the entire query code into one single-threaded execu-
tion step. Most OLTP workloads, for instance, do not benefit from intra-query
parallelization since each transaction touches only a handful of tuples [74].

For ease of exposition, we describe above that the local query state is ini-
tialized eagerly when the execution step control flow enters a parallel scope.
However, this can lead to an excessive amount of redundant work if the sched-
uler decides to assign fewer worker threads than available to a given query,
which is especially relevant on modern server CPUs with hundreds of individual
cores. For this reason, our implementation in fact lazily initializes the thread-
local query state when a worker thread is actually assigned to a multi-threaded
execution step. We ensure that only initialized thread-local copies of the local
query state are accessible from single-threaded execution steps, making this
optimization fully transparent in the generated code.

2.2.2 String Handling
Variable-length attributes such as strings give rise to several additional chal-
lenges that need to be addressed within a general-purpose system. Most fun-
damentally, it is generally undesirable to store variable-length data inline with
fixed-length data, for instance on database pages or when materializing tuples

38 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

short string

long string

length string data

length pre�x o�set or pointer

4 bytes 4 bytes 8 bytes

Figure 2.8: Structure of the 16-byte string headers in our system. Short strings
with 12 or fewer characters are inlined within the header, while longer strings
are stored out-of-line.

in query memory, since this prohibits constant-time random access to individual
tuples or attributes. The standard solution to this problem separates strings
into a fixed-length header that contains an indirection to the variable-length
payload, leading to the well-known slotted page layout [85].

We follow this approach in our system and always store string attributes in
two separate parts, a 16-byte header containing metadata, and a variable-size
body containing the actual string data. The header is treated like any other
fixed-size attribute, i.e. it is simply stored inline with the remaining attributes
of a tuple regardless of whether the tuple resides on a database page or in query
memory. As discussed in further detail in Chapter 4, our buffer-managed data
structures generally store the fixed-length attributes at the start of a database
page, and the actual variable-length payload towards the end of the page. Since
our buffer manager supports multiple page sizes, we do not have to split long
strings across several pages. In case of stringsmaterialized within querymemory,
the payload is usually stored in a separate location within query memory.

Depending on the string length, the string header representation will differ
slightly (cf. Figure 2.8). The first four bytes of the header always contain the
length of the string, i.e. string length is limited to 232 − 1 in our system. Short
strings that contain 12 or fewer characters are stored directly within the remain-
ing 12 bytes of the string header, thus avoiding an expensive pointer indirection.
Longer strings are stored out-of-line, and the header will contain either a pointer
to their storage location, or an offset from a known location. Generally, strings
that are stored on database pages are addressed by offsets from the page start,
and other strings are addressed by pointer. In case of long strings, the remaining
four bytes of the header are used to store the first four characters of the string,
allowing us to short-circuit some comparisons that would have to access the
variable-length payload otherwise.

As opposed to a pure in-memory system, a disk-based system like Umbra
cannot guarantee that database pages are retained in memory during the entire
query execution time. Therefore, strings that are stored out-of-line require
some special care, as the offsets or pointers stored in their header may become
invalid if the corresponding page is evicted. For this purpose, we introduce

2.3. EXPERIMENTS 39

three storage classes for out-of-line strings, namely persistent, transient, and
temporary storage. The storage class is encoded within two bits of the offset or
pointer value stored in the string header.

References to a string with persistent storage, e.g. query constants, remain
valid during the entire uptime of the database. References to a string with
transient storage duration are valid while the current unit of work is being
processed, but will eventually become invalid. Unlike persistent strings, tran-
sient strings need to be copied if they are materialized during query execution.
Any string that originates from a relation, for example, has transient storage
as the corresponding page could be evicted from memory. Finally, strings that
are actually created during query execution, e.g. by the UPPER function, have
temporary storage duration. While temporary strings can be kept alive as long
as required, they have to be garbage collected once their lifetime ends.

2.3 Experiments
In the following, we present a preliminary evaluation of the proposed buffer
manager architecture as it is implemented within the Umbra system [195]. Of
course, we also conduct thorough end-to-end experiments covering all tech-
niques presented in this chapter, including the proposed query compilation
framework, but this requires further essential components that are only in-
troduced in the subsequent chapters. Therefore, we defer the presentation of
end-to-end OLAP benchmarks until after our B+-tree implementation has been
discussed in Chapter 4. Our end-to-end OLTP benchmarks additionally depend
on the logging and concurrency control subsystems (cf. Chapters 3 and 5), and
are thus deferred to Chapter 5.

2.3.1 Setup
In order to evaluate our buffer manager in isolation, we perform experiments
on a synthetic microbenchmark that is linked into the database engine and
directly interacts with the buffer manager. Specifically, we allocate a fixed
number of database pages that are referenced through swips stored within a
memory-resident array. We then simulate an OLAP-like workload by partition-
ing this array uniformly over the given number of worker threads, each of which
repeatedly iterates over the swips in its partition. For each swip, threads acquire
a shared latch, sequentially read all data on the page in blocks of 64 bytes, and
immediately release that latch again with an eviction hint before accessing the
next swip. This closely resembles the real-world access pattern that is generated
by a large parallelized table scan in Umbra.

40 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

Furthermore, we also simulate an OLTP-like workload by distributing swips
over a fixed number of partitions and assigning a distinct home partition to
each worker thread. Swips are then picked uniformly at random from either
the partition assigned to the thread (90 % probability), or uniformly at random
from the entire set of swips (10 % probability), which simulates the high spatial
locality typically found in OLTP applications. Subsequently, a write operation
is performed in 90% of the cases, i.e. we acquire an exclusive latch, change
a randomly selected block of 64 bytes on the page to some random data, and
mark the buffer frame as dirty so that the respective pages have to be written to
disk before they can be evicted from the buffer pool. In the remaining 10% of
cases, we perform a read operation where we acquire a shared latch and read a
randomly selected block of 64 bytes. Note that we do not write any log records
even when the page data is changed.

Experiments are run on a server system containing 1 TB of RAM and two
AMD EPYC 7713 CPU with 64 physical and 128 logical cores each, running
at a base frequency of 2.0 GHz. For durable storage, the system is equipped
with eight 2 TB Samsung PM9A3 enterprise NVMe SSDs that are placed in a
RAID 0 configuration. During our preliminary investigation, we found that
communication latency with these SSDs differs considerably between the two
CPU sockets, for which reason we exclusively run our experiments on the socket
that is physically closer to the SSDs. Investigating suitable strategies to address
such NUMA effects in IO-heavy workloads remains an interesting problem for
future work. We employ direct IO in our experiments, bypassing any potential
OS caches that could distort our results.

2.3.2 Results
We first study the behavior of the buffer manager on in-memory workloads
where the entire working set fits into main memory. For this purpose, we
choose a buffer pool size of 256GiB and allocate 128GiB of page data (221 pages).
For the OLTP-like workload, the number of partitions is chosen to be 2 048,
resulting in 64MiB of page data (210 pages) per partition. Each benchmark run
is allowed to warm up for 60 seconds such that the system can settle into steady-
state operation, after which performance metrics are collected over another 60
seconds. Throughput results in relation to the number of worker threads are
shown in Figure 2.9.

For the OLAP-like workload, we observe that a single thread can already
sustain a throughput of roughly 300 thousand page accesses per second, cor-
responding to a scan throughput of 18.4 GiB of page data per second. These
numbers increase quickly up to 16 threads, after which they remain stable at
approximately 2.3 million page accesses per second, equivalent to a scan through-

2.3. EXPERIMENTS 41

1 16 32 48 64 80 96 112 128

number of threads

0.0

0.5

1.0

1.5

2.0

2.5
th
ro
u
g
h
p
u
t
[⋅1

06
p
a
g
e
s
/s
]

page access

(a) Results on the synthetic OLAP-like workload.

1 16 32 48 64 80 96 112 128

number of threads

0

50

100

150

200

250

th
ro
u
g
h
p
u
t
[⋅1

06
p
a
g
e
s
/s
]

page access

(b) Results on the synthetic OLTP-like workload.

Figure 2.9: Page access throughput (𝑦-axis) in relation to the number of worker
threads (𝑥-axis) in case the entire working set fits into main memory.

put of 138.7 GiB per second. At this point, we are approaching the maximum
available memory bandwidth of 190.7 GiB per second, demonstrating that our
buffer manager can indeed achieve true in-memory performance if the working
set fits into main memory. These findings are corroborated by the OLTP-like
workload, where throughput scales linearly from 7.2 million page accesses per
second with 1 thread to 212.4 million page accesses per second with 128 threads.
Since the OLTP-like workload only reads or writes a small amount of data per
page access, throughput in this case is limited by the page latching protocol
instead of memory bandwidth. Nevertheless, our design exhibits minimal over-
head even though we only use the pessimistic latching modes in this synthetic
benchmark. Real-world data structures built on top of the buffer manager can
reduce this overhead even further by exploiting the optimistic latching mode
offered by our approach (cf. Chapter 4).

Subsequently, we run the same experiments as above with a restricted
buffer pool size of 64GiB, in order to simulate an out-of-memory scenario
(cf. Figure 2.10). As expected, the main performance bottleneck in this case

42 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

1 16 32 48 64 80 96 112 128

number of threads

0

50

100

150

200

250
th
ro
u
g
h
p
u
t
[⋅1

03
p
a
g
e
s
/s
]

0

2

4

6

8

10

th
ro
u
g
h
p
u
t
[G
B
/s
]

page access page read

(a) Results on the synthetic OLAP-like workload.

1 16 32 48 64 80 96 112 128

number of threads

0

0.2

0.4

0.6

0.8

1.0

th
ro
u
g
h
p
u
t
[⋅1

06
p
a
g
e
s
/s
]

0

2

4

6

8

10

th
ro
u
g
h
p
u
t
[G

B
/s
]

page access page read page write

(b) Results on the synthetic OLTP-like workload.

Figure 2.10: IO and page access throughput (𝑦-axis) in relation to the number
of worker threads (𝑥-axis) in case the working set size exceeds the buffer pool
capacity.

is IO throughput regardless of the specific workload type. For the OLAP-like
workload, our buffer manager reads 0.6 GiB of page data per second with 1
thread, which increases to 7.0 GiB per second with 32 threads. Subsequently,
read performance degrades slightly to 6.6 GiB per second with 128 threads. The
amount of page data scanned by the worker threads is approximately twice the
amount of data read from disk in this case, which matches the fact that half
of the working set fits into main memory. Note that this benchmark achieves
decent performance, but does not saturate the full read bandwidth of about
40GiB per second that would theoretically be available within the benchmark
system. This is due to the fact that a large number of parallel IO requests must
be sustained in order to reach this throughput, but pages are currently loaded
synchronously in our implementation (cf. Section 2.1.5). Nevertheless, the buffer
manager itself already performs IO asynchronously anyway, and we plan to
extend its interface to allow asynchronous page loading in future work.

In case of the OLTP-like workload, performance evolves similarly, starting

2.4. RELATED WORK 43

at a read throughput of 0.5 GiB per second and a write throughput of 0.7 GiB
per second with 1 thread. Note that the reported write throughput includes
writes to the double-write buffer. Performance reaches a maximum between
16 and 112 threads, where it remains stable at around 2.4GiB per second of
read throughput and 4.8 GiB per second of write throughput. At 128 threads,
performance degrades noticeably, which we suspect is due to reduced CPU time
available to the dirty page writer thread and the kernel threads used internally
by the io_uring subsystem. These numbers correspond to 170 thousand page
accesses per second with 1 threads, roughly 800 thousand page accesses per sec-
ond with 16 to 112 threads, and 540 thousand page accesses per second with 128
threads. Overall, these results demonstrate the robustness of our page eviction
strategy, since the benchmark is extremely write-heavy and continuously dirties
a substantial fraction of the buffer pool. In terms of page access throughput,
a less demanding workload can easily achieve much higher performance (cf.
Chapter 5). For instance, TPC-C contains no partition-crossing writes which
greatly reduces the number of dirty pages within the buffer pool [1]. Similar to
the OLAP-like workload, we cannot saturate the theoretically available write
bandwidth of about 20GiB/s. However, this is caused by the inherently complex
implementation of page file writes, which involves several expensive filesystem
operations in order to guarantee durability of these writes (cf. Section 2.1.5).
Without additional hardware support to prevent torn or lost writes, it is unlikely
that database applications can provide full durability and utilize the full write
bandwidth offered by modern flash storage at the same time.

2.4 RelatedWork
Buffer management has traditionally been one of the defining characteristics of
disk-based databases, since it provides an elegant and straightforward mecha-
nism to manage data sets far larger than main memory [103]. Unfortunately,
it has also been shown that the buffer manager often constitutes one of the
most severe performance bottlenecks in these systems, especially if the entire
working set is memory-resident [99]. In contrast, pure in-memory database
systems do not require a buffer manager and thus avoid this overhead entirely.
In order to support data sets larger than main memory capacity, a variety of
approaches have been devised that allow these systems to evict cold data to a
stable storage medium such as disk or SSD [176].

However, many of these techniques suffer from drawbacks that are un-
desirable within a general-purpose HTAP system. For instance, appropriate
secondary indexes are crucial for both analytical and transactional performance,
and can easily make up half of the entire database size [276]. Nevertheless,

44 CHAPTER 2. LOW-OVERHEAD BUFFER MANAGEMENT

they frequently have to remain entirely memory-resident, as is the case for
anti-caching [52, 275], the native store extension for SAP HANA [239, 240],
or the hardware-assisted access tracking mechanism proposed for the HyPer
system [77]. Other common problems include high overhead, e.g. in case of
the Siberia project [12, 58, 167] and the LLAMA storage manager [168, 169], or
requirements for specialized hardware [140]. Relying on the OS page cache for
swapping appears to be a flexible and practical solution at first glance [243],
but has in fact been shown to exhibit poor performance for typical database
workloads [49, 67, 91]. Log-structured merge trees have been widely adopted
in write-optimized key-value stores [206], but generally achieve suboptimal
performance in mixed read-write workloads [249].

As outlined in detail above, the proposed buffer manager architecture shares
many basic properties with the LeanStore storage engine [159]. Pointer swiz-
zling was originally proposed for object databases [127, 262], and later adapted
to relational database architectures in order to reduce the page address trans-
lation overhead [91, 118, 159]. Scalable and robust page-level synchronization
primitives are essential for good scalability and have thus been studied exten-
sively. While it is possible to rely on pessimistic latching approaches for this
purpose [159, 179], optimistic latches achieve better performance since they
avoid frequent cache invalidation [37, 41, 178], especially in conjunction with
optimistic latch coupling [160, 163, 260]. Task-based parallelism constitutes an
interesting alternative to the prevalent thread-based programming model, but
would require a fundamentally different system design [191].

As opposed to virtually all existing buffer managers, our approach supports
variable-size pages to reduce the complexity of handling large data objects. To
the best of our knowledge, the only other buffermanagerwith variable-size pages
was developed for the ADABAS system [234]. However, it is much less flexible
as it only supports two different page sizes that are maintained in separate pools
with a predetermined size. An intriguing opportunity for further optimization
is to view the write-ahead log as the central durable storage location for the
database, as exemplified by the FineLine system [230] and Amazon Aurora [253].
While this generally entails that more data has to be read from disk when a
page is requested, the number of much more complex and expensive writes
is reduced dramatically. This technique could be integrated with our buffer
manager, replacing the current dirty page writer implementation while retaining
the core benefits of our approach.

Finally, our query compilation approach relies on the produce-consume
model first proposed for the HyPer system [194]. However, queries are com-
piled to a single monolithic function in HyPer, which complicates fine-grained
scheduling decisions. In contrast, our modular approach allows query execution
to be suspended at essentially arbitrary points in time similar to coroutines [180],

2.5. SUMMARY 45

and provides a flexible execution model that has allowed advanced query pro-
cessing techniques to be integrated into our system [263, 264]. The Amazon
Redshift data warehouse also relies on code generation, and compiles each query
pipeline into an individual binary [19]. While little detailed information is avail-
able about the associated execution model, it likely constitutes a middle-ground
between the monolithic approach taken by HyPer, and the modular approach
proposed for our system.

2.5 Summary
In this chapter, we presented a novel low-overhead buffer manager architecture
for memory-optimized disk-based database systems. As opposed to previous
buffer managers that rely exclusively on a fixed page size, our approach exploits
the virtual memory subsystem to transparently support variable-size pages
which greatly simplifies the implementation of complex buffer-managed data
structures. In addition, we employ pointer swizzling and an optimistic latching
scheme to completely eliminate the scalability problems incurred by traditional
buffer managers. Finally, we discussed a modular query compilation approach
which allows seamless integration of a compiling query engine into such a
buffer-managed system. Our preliminary experiments demonstrate that the
proposed architecture can indeed achieve true in-memory performance if the
working set fits into main memory, while scaling gracefully to data sets far
exceeding the capacity of the buffer pool. The techniques presented in this
chapter form the core of the high-performance Umbra database system upon
which most of the remaining components discussed in this thesis are built.

CHAPTER 3
Scalable Decentralized Logging

Durability of committed transactions and the ability to recover from system
failures are essential features of any general-purpose DBMS. In traditional
disk-based systems, ARIES-style write-ahead logging has been adopted as the
standard technique to achieve these objectives [187]. ARIES is both simple
to implement and extremely flexible, supporting among others data sets and
transaction footprints larger than main memory, low-overhead fuzzy check-
points, media recovery, and fast recovery from repeated failures. However, it
is also quite heavyweight, as it relies on a single centralized log which quickly
becomes a scalability bottleneck on modern multi-core CPUs [99, 101, 120, 257].
While various approaches have been proposed that reduce contention on this
centralized log [119, 122, 136], they do not completely eliminate synchronization
and will therefore still scale suboptimally [101].

This overhead is greatly reduced in main memory databases, which usually
rely on lightweight logging techniques that exploit unique characteristics of
the in-memory setting and sacrifice some properties of full ARIES [54, 152, 251,
281]. In particular, in-memory systems do not need to partition data into pages
and inherently employ a no-steal policy, i.e. no uncommitted changes can be
written to disk. This allows them to rely exclusively on logical redo-logging
which is much cheaper than the combination of physiological redo-logging
and logical undo-logging typically employed by disk-based systems [130, 251].
However, such optimizations are generally not applicable to disk-based systems.
For this reason, decentralized logging approaches have been proposed which
retain the flexibility and key features of ARIES while eliminating its scalability
problems [101, 257]. Here, each worker thread owns a separate log to which
it can write without acquiring any global locks. In comparison to centralized
ARIES, this requires a more sophisticated protocol for sequencing log records,

48 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

such as the distributed clock mechanism proposed by Wang and Johnson [257].
As previous work has demonstrated excellent performance for decentralized
logging in disk-based systems [101], we adopt this technique in our proposed
system architecture.

However, while optimizations for centralized logging have been studied
extensively in the literature, comparatively little attention has been devoted to
decentralized logging thus far [33, 101, 257]. As a result, the current state of the
art still exhibits restrictions that are prohibitive within the general-purpose disk-
based system architecture proposed in this thesis. Most importantly, existing
decentralized approaches are designed specifically for logging on specialized
persistent memory hardware. This entails that only the CPU caches have to
be flushed in order to force the log to stable storage, e.g. when a transaction
commits or a page is evicted from the buffer pool, which simplifies the system
design considerably. Due to its extremely low write latency in comparison
to SSDs, persistent memory appeared to be the ideal storage device for write-
ahead logging. Unfortunately, production of all persistent memory devices was
recently discontinued by Intel, the main supplier for this kind of hardware [113].
Thus, a practical decentralized logging implementation will have to log directly
to fast SSDs for the foreseeable future. Furthermore, existing approaches only
support single-threaded transactions natively, which simplifies bookkeeping but
requires a specialized treatment of large transactions that should be executed
multi-threaded [101, 257]. This is feasible within a system optimized purely for
OLTP performance, but undesirable when the system should also seamlessly
support OLAP workloads involving large ETL pipelines that could benefit from
intra-query parallelization.

In the following, we thus present a novel decentralized logging scheme
that satisfies the additional requirements laid out above. Fundamentally, our
approach provides the same interface and guarantees as traditional ARIES to
the remainder of the system, while eliminating the scalability bottleneck of
centralized logging. As shown in Figure 3.1, each worker thread in our system
owns a separate, comparatively small thread-local ringbuffer in which it can
stage log records without any pessimistic synchronization. A single dedicated
log writer thread periodically polls all of these ringbuffers, and asynchronously
flushes any pending log records to stable storage. In contrast to previous ap-
proaches where each log partition is flushed to stable storage individually [101],
our design offers several key advantages. First of all, it allows us to quickly
determine whether a given log record has reached stable storage with only
minimal bookkeeping, which is essential for both transaction commit and page
eviction. Moreover, it leads to large sequential writes regardless of the number
of worker threads, which is necessary even on modern SSDs to optimally utilize
the available write bandwidth. Finally, it dramatically reduces the number of

49

Thread-Local
Ringbu�er

Stage New
Log Records

Serialize Log
Records to SSD

Poll Published
Log Records

Stage New
Log Records

Thread-Local
Ringbu�er

Persistent Segment File

Worker Thread Worker Thread

Log Writer Thread

Figure 3.1: Overview of our decentralized logging approach. Worker threads
stage log records within a thread-local ringbuffer. A dedicated log writer thread
periodically polls all ringbuffers for published log records, and flushes them to
SSD.

expensive fdatasync() synchronization calls that are necessary to guarantee
durability of the log in the absence of persistent memory.

We have fully integrated the proposed logging framework into Umbra, where
it works together with the buffer manager presented in the previous chapter
to provide a highly scalable foundation on which our durable buffer-managed
data structures are built (cf. Chapter 4). This allows us to identify and describe
a number of essential additional techniques required for seamless integration,
contributing to the holistic blueprint of a memory-optimized disk-based system
established in this thesis. Most notably, we introduce a highly optimized version
of system transactions for performing structural operations outside of user
transactions [83], and describe our implementation of continuous checkpointing
that serves to bound recovery time [101]. As we demonstrate in our experimental
evaluation, the proposed logging framework achieves excellent performance and
scalability with minimal overhead, while supporting all workloads encountered
within a general-purpose database system.

In summary, this chapter covers the following key points:

• A novel decentralized approach that enables highly scalable ARIES-style
write-ahead logging on fast SSDs. It requires no specialized hardware, and
seamlessly supports both single-threaded and multi-threaded transactions.

50 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

• A detailed account of additional techniques and implementation details
that are required in order to successfully adopt the proposed approach
within a real-world system.

• Full integration and evaluation of the proposed techniques within the
memory-optimized disk-based database system Umbra.

The remainder of this chapter is structured as follows. We first present some
relevant background on traditional and decentralized logging in Section 3.1,
before introducing the main components of our approach in Section 3.2. Subse-
quently, essential implementation details are presented in Section 3.3, and our
experimental evaluation can be found in Section 3.4. Finally, we review related
work in Section 3.5, and summarize the chapter in Section 3.6.

3.1 Background
Before presenting our approach, we give a brief overview of both traditional
ARIES and more recent decentralized logging approaches.

3.1.1 ARIES
Traditional ARIES-style logging records all actions that change recoverable
objects in a single centralized log [187]. As records are appended to the log, they
are assigned a unique and monotonically increasing log sequence number (LSN)
that represents their logical address within the sequential log. Implementations
typically allow pages containing uncommitted changes to be updated in-place
on stable storage (steal), and transactions to commit before all their changes
have reached stable storage (no-force). This requires the log to contain both redo
and undo information, which can be achieved through physiological logging.
That is, each log record contains a physical page identifier but stores a logical
description of any changes to this page. Database pages store the LSN of the
most recent log record describing a change to that page.

During recovery from failure, the system first executes a redo pass in which
it repeats history by reapplying all log records that encode changes not yet
present on the associated database pages. Whether or not a log record needs to
be redone can easily be determined by comparing the LSN of the log record with
the LSN stored on the page. In addition, physiological logging allows the redo
pass to be parallelized across different pages. Subsequently, the undo pass is
performed in which the changes of any uncommitted transactions at the time of
failure are reverted, returning the system to a consistent state. For this purpose,
each log record stores the LSN of the previous log record emitted by the same
transaction. In order to rollback a transaction this chain is traversed starting

3.1. BACKGROUND 51

P1 initial state

P2 initial state

T1 writes P2

T1 writes P1

T1 commits

T1 begins

T2 begins

T2 writes P1

T2 writes P2

T2 commits

GSN 2 GSN 0

GSN 0GSN 3

GSN 4GSN 6

GSN 7

GSN 8

GSN 7

GSN 5

Figure 3.2: Illustration of the GSN protocol proposed byWang and Johnson [257].
Transactions and pages both maintain a GSN counter that is synchronized and
incremented when writing to a page, establishing a total order over log records
within any given transaction or page. In the depicted example, two transactions
T1 and T2 (green color) write to two pages P1 and P2 (blue color). Solid arrows
indicate the relevant ordering constraints between events.

at the most recent log record, and the inverse of the logical changes encoded
in each log record is applied to the database. These operations are themselves
logged in compensation log records, which additionally store the LSN of the
reverted log record. This allows the system to skip already reverted log records
during recovery from repeated failure [187].

3.1.2 Decentralized Logging
ARIES as outlined above suffers from major scalability problems on modern
multi-core CPUs, since each worker thread needs to acquire a global latch on
the centralized log in order to write log records. The natural solution offered
by decentralized logging approaches is to assign a separate log to each worker
thread, to which the latter can then write without any explicit synchroniza-
tion. Unfortunately, this entails that log records cannot easily be assigned a
globally unique LSN and consequently there is no inherent total order on the
log records. This constitutes a major challenge during recovery as changes to
a single database page may be recorded in multiple logs. Since records from
different logs are unordered, the system is unable to determine the correct order
in which to apply them to database pages during the redo pass. Similar problems
arise during undo recovery if multi-threaded transactions are supported.

In order to resolve this issue, Wang and Johnson introduce the concept of

52 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

generalized sequence numbers (GSNs) that act as timestamps in a Lamport logical
clock, establishing a partial order between distributed log records where neces-
sary [147, 257]. Specifically, both database pages and log records permanently
store a GSN, while transactions and the thread-local logs maintain a GSN at
runtime. Whenever a transaction accesses a page, its local clock is synchronized
by setting the transaction GSN to

𝐺𝑆𝑁𝑡𝑥𝑛 ∶= max(𝐺𝑆𝑁𝑡𝑥𝑛, 𝐺𝑆𝑁𝑝𝑎𝑔𝑒).

If the transaction later writes a log record that modifies this page, its GSN is
computed as

𝐺𝑆𝑁𝑟𝑒𝑐𝑜𝑟𝑑 ∶= max(𝐺𝑆𝑁𝑡𝑥𝑛, 𝐺𝑆𝑁𝑝𝑎𝑔𝑒, 𝐺𝑆𝑁𝑙𝑜𝑔) + 1,

and subsequently the GSNs of the page, transaction, and log are set to this new
value. Log record GSNs are thus totally ordered within any one page, log, or
transaction which is sufficient for correct recovery [257]. Consider, for example,
the scenario depicted in Figure 3.2 where two transactions write to two database
pages. Here, the GSN protocol ensures that writes to the same page receive
monotonically increasing GSNs in the order that they are applied, but does
not necessarily impose any ordering constraints on writes to distinct pages.
However, a GSN neither identifies from which log a particular record originates,
nor does it directly correspond to a logical address like an LSN. Therefore, it
is no longer possible to physically link log records of the same transaction for
expedited rollback processing, and an alternative approach such as maintaining
an in-memory undo buffer is required [101, 257].

3.2 Scalable Decentralized Logging
As motivated above, we pursue two key objectives in the design of the proposed
decentralized logging approach. First of all, we eliminate contention on a
centralized log by allowing each individual worker thread to stage log records
within its own thread-local ringbuffer. A careful latch-free implementation
allowsworker threads to construct log records directlywithin ringbuffermemory
without acquiring any latches, which incurs virtually no overhead. Second, we
optimize logging performance for fast SSDs by employing a centralized logwriter
that periodically flushes all pending log records to a single sequentially growing
log, resulting in an access pattern favorable on such devices (cf. Figure 3.1).

In contrast to other implementations which flush each thread-local log
to stable storage independently [101, 257], our approach can provide strong
guarantees about the order in which log records become stable. Specifically, we

3.2. SCALABLE DECENTRALIZED LOGGING 53

ensure that all data written to disk within a single iteration of the log writer
becomes available for recovery atomically, i.e. all of the corresponding log
records are processed during recovery from system failure, or none of them
are. This reduces the number of dependencies between individual log records
that we need to track, and thus allows us to develop a less intrusive variant of
the distributed GSN protocol for sequencing log records [257]. On this basis,
we propose a tailored logging protocol which exposes this unique invariant to
other components in our system, where it can be exploited to greatly simplify
some operations. We provide a detailed description of our logging framework
in Section 3.2.1, and discuss how we account for the resulting peculiarities of
distributed logging during transaction processing and database recovery in
Sections 3.2.2 to 3.2.4.

As a result of the strong guarantees provided by our logging subsystem,
we can transparently support arbitrarily complex system transactions that are
guaranteed to be applied atomically [83]. This is extremely useful since it
allows us to implement virtually all physical modifications that do not affect the
logical database contents as redo-only operations, even if they affect multiple
database pages. This applies, for instance, to page splits or merges in our B+-tree
implementation. Section 3.2.5 describes in detail how system transactions are
supported within our proposed logging framework, while Chapter 4 illustrates
how they are utilized as a primitive in the remainder of our system. Finally, we
adopt the continuous checkpointing approach proposed by Haubenschild et al.
to bound recovery time in our system [101], and provide a brief overview of
some necessary adaptations thereof in Section 3.2.6.

3.2.1 Logging Protocol
From an external point of view, our proposed logging framework closely repli-
cates the well-known interface of traditional ARIES-style write-ahead log-
ging [187]. That is, worker threads publish a suitable log record whenever
they modify the durable database state in any way, and this record has to be
written to stable storage before we can acknowledge the respective change to
be persistent. We usually employ a steal/no-force policy throughout our system,
which means that log records have to contain both redo and undo information (cf.
Section 3.1). Internally, however, our framework is highly decentralized in order
to eliminate any scalability bottlenecks arising from global synchronization.

As illustrated in Figure 3.1, every worker thread in our system owns a sepa-
rate comparatively small thread-local ringbuffer for publishing log records. The
ringbuffers are regularly polled by a centralized log writer, which is responsible
for actually flushing published log records to stable storage. Since the ringbuffers
essentially act as a single-producer single-consumer queue, a careful latch-free

54 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

implementation allows them to simultaneously serve as a buffer in which log
records can be constructed, and as the communication channel between the
worker threads and the log writer (cf. Section 3.3.1). As a result, publishing a
log record incurs virtually no overhead in the worker threads, since they do not
need to copy log record data multiple times and no pessimistic synchronization
is required. Of course, worker threads may need to wait for memory to become
available in the ringbuffer, but this is desirable since it allows the log writer to
exert backpressure on the worker threads if necessary.

The centralized log writer consists of a single thread that is responsible for
flushing published log records to stable storage. We logically produce a single
sequentially growing log file that is physically partitioned into roughly equal-
size segment files in order to facilitate recovery and checkpointing. The log
writer thread regularly executes an iteration in which it retrieves all currently
published log records from the thread-local ringbuffers and asynchronously
writes them to stable storage. Once all of the corresponding IO operations have
completed, it returns the associated ringbuffer memory to the worker threads
and atomically updates the main metadata file to record the new tail of the log.
A crucial consequence of this procedure is that all log records written in a single
iteration of the log writer thread become stable atomically, since they are not
visible to recovery before the main metadata file is updated (cf. Section 3.3.4).

Similar to some approaches that attempt to optimize centralized ARIES-style
logging, we do not allow worker threads to actively force their thread-local
logs to persistent storage [122]. Instead, our design relies exclusively on the
centralized log writer to regularly poll the thread-local ringbuffers and persist
the respective log records. If necessary, worker threads can passively wait for
log records to become stable, for instance when processing a transaction commit
or when writing dirty pages to disk. In other words, we effectively extend the
well-known group commit optimization to all instances where log records need
to be flushed in our system [103]. Even though it slightly increases flush latency
within the individual worker threads, this design decision is pivotal in achieving
good scalability and acceptable logging performance on comparatively slow
storage devices such as SSDs. Our central log writer inherently batches multiple
small log records into larger sequential write operations, and thus dramatically
reduces the number of expensive fdatasync() calls that are required to ensure
that these writes are persistent.

The high-level design characteristics outlined above are reflected in the
specific logging protocol employed by our system, which deviates from the
original decentralized logging protocol introduced in Section 3.1. In particular,
GSN counters in the original approach serve two mostly independent purposes.
First, their core function is to establish an appropriate partial order over the
log records that is sufficient for correct recovery while eliminating unnecessary

3.2. SCALABLE DECENTRALIZED LOGGING 55

dependencies that could impede scalability during forward processing. Second,
they are also utilized within the thread-local logs in order to track the point up
to which the log records have been flushed to persistent storage. However, this
increases the complexity of the underlying logging protocol since it needs to
ensure that GSNs are totally ordered within any given log for this purpose [257].
Such fine-grained tracking is not required in our approach where we never
flush the thread-local logs individually. Therefore, we cleanly separate these
two essentially unrelated concerns in our approach and propose a separate
mechanism for reasoning about the persistence of log records in the following.
We exclusively employ GSNs to ensure proper sequencing of log records during
recovery, which allows us to eliminate some of the superfluous complexity from
the original protocol and thus further reduce its overhead.

More specifically, our framework relies on an epoch-based approach in
order to accurately track the state of published log records in the system. This
technique naturally lends itself to our architecture where a centralized log writer
regularly flushes all pending log records to stable storage [251]. From a high-
level point of view, we associate a monotonically increasing flush epoch number
with each iteration of the log writer thread. Whenever a worker thread publishes
a log record, it retrieves the next flush epoch of the log writer thread and assigns
it to the log record. This flush epoch is initially marked as unstable, until the
log writer thread forces all pending log records to disk in its next iteration and
marks the corresponding flush epoch as stable. If we need to ensure that a given
log record has reached persistent storage, we can simply block until the stable
flush epoch reported by the log writer thread has advanced sufficiently far.

This mechanism can easily be implemented by maintaining two monoton-
ically increasing atomic counters within the log writer (cf. Figure 3.3). One
counter identifies the next unstable flush epoch 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, starting at 1, while the
second counter identifies the currently stable flush epoch 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒, with initial
value 0. At the start of each iteration, the log writer thread first advances the
unstable flush epoch counter 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 (cf. Figure 3.3a). Subsequently it retrieves
all published log records from the thread-local ringbuffers (cf. Figure 3.3b), and
advances the stable flush epoch counter 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 after these have been written
successfully to disk (cf. Figure 3.3c). Worker threads read the value of the unsta-
ble flush epoch counter 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 after publishing log records to the log writer.
This way, it is guaranteed that all log records associated with a given flush
epoch number 𝑓 𝑒 have reached stable storage once the log writer reports that
𝑓 𝑒 ≤ 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒, which constitutes the central invariant of our logging protocol.
Note that flush epochs can be slightly fuzzy in the sense that a log record could
have reached stable storage in an earlier flush epoch than indicated by the
system, if it was published after the log writer increased 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 but before
it retrieved the pending log records. For example, the log record associated

56 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

Ringbu�erRingbu�er

3

1 2 2

3 3

Segment File

feunstable = 4, festable = 2

(a) State immediately after
the log writer has started an
iteration and incremented
𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒. Log records in the
ringbuffers are associated
with the current value of
𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 at the time they are
published.

Ringbu�erRingbu�er

3

1 2 2

3 3 4

Segment File

feunstable = 4, festable = 2

(b) State during an iteration
of the log writer. All log
records that were already
published after 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
was incremented are
flushed. Log records that
are published subsequently
are part of the next flush
epoch.

Ringbu�erRingbu�er

3

4

1 2 2 3 3

4

Segment File

feunstable = 4, festable = 3

(c) State after an iteration
of the log writer. 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒
has been incremented sig-
naling that log records with
this flush epoch number
are now stable. The corre-
sponding ringbuffer mem-
ory has beenmade available
for writing again.

Figure 3.3: Illustration of the flush epoch protocol employed by the log writer
thread. Log records that are in the process of being written are marked by
a lighter background. The protocol ensures that all log records with a flush
epoch 𝑓 𝑒 ≤ 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 have reached stable storage, and that all log records in the
ringbuffers have a flush epoch 𝑓 𝑒 > 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒.

with flush epoch 4 in Figure 3.3b could also be flushed to disk in that iteration
of the log writer. However, this does clearly not affect correctness since the
above invariant still applies in this case. A further convenient property of our
approach is that it provides strong guarantees about the order in which log
records can become stable. Specifically, if two log records 𝐴 and 𝐵 are associated
with flush epochs 𝑓 𝑒𝐴 and 𝑓 𝑒𝐵 where 𝑓 𝑒𝐴 ≤ 𝑓 𝑒𝐵, then 𝐴 will become stable
either before or simultaneously with 𝐵.

As outlined above, we rely on GSN counters for the sole purpose of es-
tablishing a partial order over log records that is sufficient for recovery. This
allows us to employ a streamlined version of the GSN protocol proposed by
Wang and Johnson for sequencing log records within our system [257]. Note
that we initially restrict our discussion to single-threaded transactions in the
following, and subsequently present a straightforward extension of our GSN
protocol to multi-threaded transactions. First of all, we do not rely on the GSN
counters to track whether log records are persistent, for which reason they do
not need to impose an order on log records within any given thread-local log.
Furthermore, the original protocol tracks read-write dependencies between the
actions described by log records which is unnecessary in our system [257]. As
a result, we can omit some of the clock synchronization steps present in the

3.2. SCALABLE DECENTRALIZED LOGGING 57

original protocol.
Concretely, only transactions and database pages need to store GSNs in

our system. No clock synchronization is required when accessing a page with-
out modifying it. When a transaction does modify a page, the GSN of the
corresponding log record is computed as

𝐺𝑆𝑁𝑟𝑒𝑐𝑜𝑟𝑑 ∶= max(𝐺𝑆𝑁𝑡𝑥𝑛, 𝐺𝑆𝑁𝑝𝑎𝑔𝑒) + 1, (3.1)

which also becomes the new GSN of the transaction and page (cf. Figure 3.2). In
addition, the flush epoch associated with the log record is stored in the buffer
frame of the page, allowing the dirty page writer to determine whether the asso-
ciated log records are stable before writing dirty pages to disk (cf. Section 2.1.5).

Due to the lightweight GSN protocol employed by our system, no substantial
adjustments are required to allow multiple worker threads to contribute to a
single write transaction. For the purpose of log record sequencing we can treat
worker threads mostly like independent transactions, i.e. they maintain their
own thread-local 𝐺𝑆𝑁𝑡𝑥𝑛 counter that is updated according to Equation (3.1)
when writing to a page. Since log records generated by different worker threads
may be assigned the same GSN in our protocol, we have to additionally mark
them with a unique identifier for the worker thread that generated them. This
is essential for transaction rollback, where we need to link compensation log
records to a specific regular log record. In theory, it would also be possible to
employ a single 𝐺𝑆𝑁𝑡𝑥𝑛 per transaction that is shared by all worker threads, but
this could develop into a scalability bottleneck since it requires atomic writes to
shared memory [37].

3.2.2 Transaction Commit
Transaction commit is initiated by a single thread after all thread-local work is
complete. This thread first computes the maximum 𝐺𝑆𝑁𝑚𝑎𝑥 among the thread-
local GSN counters and publishes the transaction commit record with GSN

𝐺𝑆𝑁𝑐𝑜𝑚𝑚𝑖𝑡 ∶= 𝐺𝑆𝑁𝑚𝑎𝑥 + 1.

Since the commit record is by design the last log record published by any
transaction, its flush epoch will necessarily be greater than or equal to the flush
epoch of any previous log record written by the same transaction. Therefore,
all transaction log records are stable once the commit record has become stable,
regardless of how many worker threads were involved in generating them. As
discussed in the previous section our system always employs group commit since
we cannot actively flush the thread-local logs, i.e. the committing thread simply
waits for the commit record to become stable. The polling frequency of the log

58 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

writer thread is chosen to roughly match the latency of a single fdatasync()
call, ensuring a good balance between commit latency and polling overhead.
For high-throughput scenarios that allow for relaxed commit semantics, our
system additionally supports asynchronous commit. Here, we immediately
return control to the committing thread, which is notified once the commit
record has become stable.

3.2.3 Transaction Abort

As outlined in Section 3.1, traditional ARIES implementations usually link log
records of the same transaction through their LSNs. These directly correspond
to the logical addresses of log records within the single centralized log, allowing
the log record chain to be traversed in reverse order for transaction rollback.
This is no longer possible in a decentralized setting such as in our approach. At
the time a log record is published by a worker thread, it is not yet known to
which logical address this record will eventually be written.

Therefore, transaction rollback has to resort to scanning all potentially
relevant log records in the general case. We remember the position of the tail of
the persisted log at the time of transaction begin which constitutes the starting
point of this scan in case of a rollback. Like transaction commits, rollbacks are
initiated by a single thread after all thread-local work is complete. This thread
first waits until all log records of the current transaction have reached stable
storage. Subsequently, it scans the persisted log from the position of the tail at
the time of transaction begin up to the current tail and extracts all log records
written by the current transaction. These log records are sorted by GSN and
traversed in reverse order of application, the logical inverse of each log record
is applied, and a corresponding compensation log record is written. Similar to
traditional ARIES, this compensation log record stores the GSN and the worker
thread identifier of the reverted log record, so that recovery can skip already
reverted log records [187].

While this approach is obviously quite inefficient as it has to read log records
from disk, it is nevertheless essential to support it as a fallback mechanism.
This ensures that the system supports transaction footprints larger than main
memory which is one of the major selling points of ARIES-style logging. How-
ever, most transactions encountered in OLTP workloads are much smaller than
this threshold, and we can provide an optimized implementation of transaction
rollback for these cases. Wang and Johnson propose to maintain a private undo
buffer for each transaction into which the relevant log records are copied [257].
While this does allow for extremely cheap transaction rollbacks, it also intro-
duces the non-negligible overhead of copying log records during the forward

3.2. SCALABLE DECENTRALIZED LOGGING 59

free memory

potentially relevant data

Ringbu�er

(a) No potentially relevant data has been
overwritten.

free memory

potentially relevant data

Ringbu�er

(b) Some potentially relevant data has al-
ready been overwritten.

Figure 3.4: Illustration of optimistic rollback from a thread-local ringbuffer.
Worker threads remember which data within the ringbuffer is potentially rel-
evant for rollback. If none of this data has been overwritten at the time of
rollback, we can read log records from the ringbuffer instead of from disk.

processing phase of every transaction. Since transaction rollbacks are generally
rare, we propose an alternative approach that avoids this overhead.

In particular, we exploit that even after the log writer thread has flushed all
pending log records to stable storage, the corresponding memory in the thread-
local ringbuffers is not immediately overwritten. In fact, the vast majority of
OLTP transactions has a memory footprint several orders of magnitude smaller
than the size of our ringbuffers, making it likely that all their log records still
exist in memory at the time of rollback. This allows us to optimistically attempt
to read the transaction log records from the ringbuffers instead of from disk.
For this purpose, each worker thread contributing to a transaction registers the
current writer offset within its ringbuffer with the transaction before writing the
first log record. If rollback is requested, we can then easily check whether any
log record has been overwritten by comparing this value with the current writer
offset (cf. Figure 3.4). Subsequently, the relevant part of the ringbuffer memory
is scanned and the log records written by the current transaction are copied to
a local buffer. Since this happens without any synchronization whatsoever, it
is possible that this memory is concurrently overwritten. Therefore, we have
to take appropriate measures to avoid out-of-bounds memory accesses while
reading, and validate for a second time that no memory has been overwritten
after copying all log records. From this point on, we can proceed analogously
to the fallback implementation by sorting and reverting log records. If the
optimistic approach fails at any point, we switch back to reading log records
from disk.

3.2.4 Recovery
Conceptually, recovery within our proposed approach closely follows the al-
gorithm developed for traditional ARIES [187]. That is, we first perform an
analysis pass in which the entire log is scanned and essential information for

60 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

the remainder of recovery is collected. Subsequently, history is repeated by
unconditionally redoing all logged changes that are missing from the database
pages, before finally undoing the changes of any uncommitted transactions.
While straightforward from this high-level point of view, some care has to be
taken to properly handle the peculiarities of distributed logging during recovery.

Recall that the log writer thread flushes all pending log records to a single log
on stable storage in each iteration. As the log records of any one transaction or
database page can reside in different thread-local ringbuffers, the order in which
they are written to the log on disk and in which they are thus encountered during
recovery is nondeterministic [257]. For example, it is possible that the commit
record is read before any other log record of the corresponding transaction.
Therefore, our analysis pass performs a single scan of the log during which
two supplementary index structures are built, one of which partitions the log
records by database page, and the other of which partitions the log records by
transaction and worker thread identifier. Entries in the transaction table are
initially marked as loser transactions, meaning that they will need to be rolled
back during the undo pass [187]. When a transaction commit or abort record
is encountered, we mark the corresponding entry in the transaction table as a
non-loser, but retain it in case further log records of the same transaction are
encountered afterwards. Only after all log records have been scanned can we
safely erase non-loser transactions from the transaction table.

The redo pass then processes all database pages for which log records were
found during the analysis pass. For a given page, the log records are sorted by
GSN and all changes that are not present on the database page, i.e. for which
𝐺𝑆𝑁𝑝𝑎𝑔𝑒 < 𝐺𝑆𝑁𝑟𝑒𝑐𝑜𝑟𝑑, are applied in this order. Afterwards, the log writer thread
is started, as we might already write new log records during the following
undo pass. Unlike transaction aborts during forward processing, recovery may
encounter compensation log records during the undo pass in case a transaction
was partially rolled back before system failure. For this reason, we have to sort
log records by GSN locally for each worker thread that contributed to a loser
transaction. For a given worker thread, the compensation log record with the
greatest GSN then contains the GSN of the earliest regular log record written
by this worker thread that has already been reverted during the partial rollback.
All later log records can be ignored, and the remaining log records are logically
reverted following the same procedure as regular transaction aborts. All of
the three recovery passes can be parallelized in order to minimize recovery
time [187]. The analysis pass can easily be distributed to multiple threads
by first locally partitioning distinct log segments in parallel, before merging
the resulting local indexes. During the subsequent redo pass, we can process
distinct pages in parallel since we rely on physical redo. Finally, distinct loser
transactions can be processed in parallel during the undo pass since our system

3.2. SCALABLE DECENTRALIZED LOGGING 61

employs a multi-version concurrency control algorithm that prevents read-write
or write-write dependencies between uncommitted transactions (cf. Chapter 5).

Within a general-purpose database system, an efficient implementation of
physiological redo logging needs to address the additional challenge that the
physical layout of database pages and log records is often dependent on database
schema information. For example, as outlined in Chapter 4, relations in Umbra
usually organize tuples on a single database page in a PAX layout [11, 195].
Thus, a tuple does not simply correspond to a contiguous memory region within
a page, and detailed schema information about the individual attributes of the
relation is required for almost all operations that modify the physical or logical
contents of a page. While this information is readily available during forward
processing, this is not the case during recovery where the database schema itself
may have to be recovered. Furthermore, modifications of the schema through
DDL statements may lead to log records that depend on information about
outdated versions of a logical schema object. Without further adaptations to
the logging and recovery protocol, this effectively precludes true physiological
logging in most cases, since each log record has to replicate physical information
such as attribute offsets in order to ensure database recoverability. This is of
course far from optimal, as it adds a substantial amount of entirely redundant
overhead to every single log record.

Within our proposed system, we avoid these issues by ensuring that all
potentially required schema information is already available during the redo pass,
allowing log records to depend on this information without replicating it. This
is feasible since the multi-version concurrency control algorithm employed by
our system allows us to retain old versions of a schema object without affecting
correctness (cf. Chapter 5). Specifically, we always update schema information
out-of-place, i.e. DDL statements such as ALTER create a new physical version
of the schema object and logically delete the current version. During recovery,
we identify all log records modifying the schema in the analysis pass, and redo
these changes entirely before moving on to the database pages. Since we never
modify schema objects in-place, all of their versions are fully recovered and can
safely be referenced from log records. Garbage collection of logically deleted
schema objects is still possible in this approach, however it must be delayed
sufficiently long to ensure that recovery is possible. Once the logical deletion
of a schema object has become globally visible to all transactions within the
system, the physical database pages associated with this schema object can be
reclaimed, e.g. by inserting them into a free page inventory. This will of course
generate additional log records which may also depend on information about
the schema object and which require redo in case of a crash. Eventually though,
all of these log records will have been truncated by the checkpointer, at which
point it is safe to reclaim the physical schema object.

62 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

3.2.5 System Transactions

Our proposed logging approach relies on single-threaded system transactions
for any operation that only modifies the physical representation of the database
without changing its logical contents [83]. For example, a user transaction
inserting a record into a B+-tree might trigger a page split which should persist
even if the user transaction eventually aborts. This page split is performed
within a nested system transaction in the same worker thread, and the user
transaction proceeds after this system transaction has been committed. Our
logging protocol will implicitly make sure that the system transaction commit
record reaches stable storage before the user transaction commit record (if
any). Thus there is no need to wait for the system transaction commit record
to become stable before resuming the user transaction. System transactions
generally write log records just like user transactions, and can be rolled back if
necessary during recovery from a system failure [83, 257].

However, system transactions need to support rollback primarily because
it is possible that they are interrupted by a system failure. Most system trans-
actions will exclusively consist of operations that never require undo during
regular forward processing. In order to avoid the overhead of logging undo
information in these cases, Graefe proposes to fuse such log records with the
commit record of the system transaction [83]. This eliminates the possibility of
failure between database modification and system transaction commit, allowing
fused log records to omit any undo information. Unfortunately, this technique
leads to substantially increased implementation complexity, as log records now
potentially refer to multiple database pages. Addressing this issue, we build
upon the capabilities offered by our proposed logging framework and imple-
ment a flexible technique that transparently supports atomic redo-only system
transactions consisting of arbitrarily many regular single-page log records. This
allows the log records for structural updates to entirely omit undo information
without requiring any further adaptations.

Initially, a system transaction behaves like a regular user transactionmeaning
that log records need to contain undo information and nested system transactions
can be started (cf. Figure 3.5a). At some point prior to commit, they can transition
to a specialized atomic phase which restricts the number of legal operations.
Specifically, nested transactions can no longer be started, and the latches on
database pages that are modified in this phase cannot be released until after the
system transaction commits. Since we execute system transactions on a single
thread, all log records written during the atomic phase, including the commit
record, end up as one contiguous chunk within the associated thread-local
ringbuffer. Instead of publishing each log record individually to the log writer,
this entire chunk is published atomically once the system transaction commits

3.2. SCALABLE DECENTRALIZED LOGGING 63

atomic phase

Ringbu�er

Op 1 Op 2 Op 3 Commit

(a) Log records of a system transaction just
before commit. The final log records of the
system transaction have been staged but
not yet published.

atomic phase

Ringbu�er

Op 2 Op 3 Commit

(b) Log records of a system transaction af-
ter commit. The final log records of the
system transaction have been published
atomically. Previous log records may have
been flushed already.

Figure 3.5: Example of the logging protocol for atomic system transactions. The
log record describing operation 1 was written outside of the atomic phase and
requires undo information. The remaining log records were staged together
with the commit record (a) and are published atomically (b).

(cf. Figure 3.5b). This logically fuses all records within the chunk, as they become
part of a single flush epoch and are thus written to stable storage atomically.
After commit, this flush epoch number is written to the buffer frames of the
updated database pages, and the corresponding latches can be released. This
way, we ensure that no pages containing uncommitted changes of the system
transaction can be evicted to disk before it commits, effectively enforcing a
no-steal policy for atomic system transactions.

3.2.6 Checkpointing
Recovery time in a system relying on write-ahead logging is determined for
the most part by the amount of log data that has to be analyzed and replayed.
Systems therefore employ checkpointing to ensure that the persistent state of
the database is kept recent enough so that irrelevant log records can be truncated
regularly. Conceptually, checkpointing requires that dirty pages are flushed to
disk at an appropriate rate which ideally depends on the log volume that is being
produced at a given point in time. This is a challenging problem in practice
since the checkpointer has to make sure that the flush rate is sufficiently high
while minimizing the impact of checkpointing on the remaining system.

We adopt the continuous checkpointing approach proposed by Haubenschild
et al. for this purpose, since it alleviates various problems encountered by
existing general-purpose systems [101]. These include periodic bursts of high IO
activity and contention, a large number of configuration parameters, and limited
adaptivity to changing. Continuous checkpointing is essentially independent of
a specific logging protocol, and consequently few adaptations are necessary to
integrate it into our system.

64 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

Specifically, continuous checkpointing logically partitions the buffer pool
into 𝑆 equally sized buffer shards, and a configurable limit on themaximum size of
the log is set by the database administrator. Whenever the system has generated
log data amounting to a fraction 1/𝑆 of this limit, a checkpoint increment is
triggered in which all dirty pages within one buffer shard are flushed to disk.
Across individual increments, the checkpointer cycles through buffer shards in
a round-robin fashion, i.e. after 𝑆 iterations all pages within the buffer pool have
been flushed to disk at least once. During steady state operation, we can thus
truncate at least the oldest 1/𝑆 of the log after each checkpoint increment, and
the log will stay at its configured maximum size [101]. Since the rate at which
checkpoint increments are triggered directly depends on the rate at which log
data is generated, the checkpointer transparently adapts to changing workloads.

In practice, the checkpointer maintains a table with an entry for each buffer
shard which records the offset into the persistent log up to which all changes
within the shard have been persisted [101]. It retrieves the offset of the current
tail of the disk-resident log before each increment, and updates the corresponding
entry in this table to this value after all pages within the respective buffer shard
have been written to disk. As a result, the minimum such offset across all buffer
shards indicates the point up to which all changes in the database have been
persisted. We cannot unconditionally discard all log records below this threshold
however, as some of them may still be part of uncommitted transactions and
thus need to be retained for potential recovery. For this reason, we have to
additionally track the offset within the log up to which all transactions have
been committed or fully rolled back. Only log records that are located below
both of these thresholds can safely be truncated.

3.3 Implementation Details
In the following, we provide a detailed discussion of some essential implemen-
tation details underlying the high-level logging approach introduced above.

3.3.1 Ringbuffer Implementation
As discussed previously, a ringbuffer in our system effectively constitutes a
single-producer single-consumer queue where log records are produced by
precisely one worker thread and subsequently consumed by the log writer
thread. This allows for a straightforward latch-free implementation relying on
two monotonically increasing atomic counters 𝑖𝑅 ≤ 𝑖𝑊 that indicate the offset 𝑖𝑅
of the reader and the offset 𝑖𝑊 of the writer (cf. Figure 3.6). Since worker threads
should be able to construct log records directly within ringbuffer memory, we

3.3. IMPLEMENTATION DETAILS 65

writeablewriteable readable

return memory publish data

Ringbu�er
iR iW

Figure 3.6: Implementation of a log record ringbuffer. Data is published by
atomically increasing the writer offset 𝑖𝑊, and memory is returned by atomically
increasing the reader offset 𝑖𝑅.

need to ensure that they can always write to a contiguous virtual address range
even if the allocated memory wraps around the end of the ringbuffer. This
can be achieved using the mmap system call to create two memory-mappings of
the physical ringbuffer memory into adjacent virtual address ranges. If worker
threads now write beyond the end of the first mapping, they enter the second
memory mapping and the operating system kernel will make sure that writes
end up in the correct location in physical memory.

3.3.2 Log Record Lifecycle
The interaction between the worker threads and the log writer thread gives
rise to a well-defined lifecycle for individual log records. In order to stage a
log record, a worker thread first allocates some memory from its ringbuffer.
Any data written to this memory is initially invisible to the log writer and
can be extended through reallocation, allowing the worker thread to construct
the log record in-place. Once the log record is completely built, the worker
thread finalizes it. That is, the GSN of the log record is computed (updating
the transaction GSN in the process) and stored along with its final size and
the transaction identifier in the log record header. A finalized log record is
immutable, but still invisible to the log writer thread as the writer offset 𝑖𝑊 of the
ringbuffer has not yet been updated. This is exploited by system transactions,
which allow a worker thread to construct and finalize multiple log records before
making them visible to the log writer atomically.

More specifically, a group of one or more log records becomes visible to the
log writer once it is published by the worker thread. For this purpose, the latter
first reads the current next flush epoch 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 of the log writer, followed by
an atomic update of the ringbuffer writer offset 𝑖𝑊. As outlined in Section 3.2.1,
this guarantees that the log records have reached stable storage once the log
writer reports that 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 is greater than or equal to the flush epoch retrieved
when the log records were published. The changes encoded by a finalized but
unpublished log record can already be applied to the database, however the
write-ahead logging protocol requires that the latches acquired for this purpose

66 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

must not be released until the log record is published. In user transactions this is
usually transparent as most log records are finalized and immediately published
in a single step. System transactions on the other hand delay publishing log
records, for which reason all relevant latches must be retained until after a
system transaction commits (cf. Section 3.2.5).

3.3.3 Oversize Log Records

Within our system we choose a default ringbuffer capacity of 1MiB per worker
thread which has proved to be sufficiently large to absorb a decent amount of
short-term write activity. While this is much larger than the default page size of
64 KiB employed by Umbra, our system nevertheless has to anticipate allocation
requests that exceed the capacity of a ringbuffer. As outlined in Chapter 2, our
buffer manager supports variable-size pages to cope with large objects, and
correspondingly extremely large log records may occur. Furthermore, redo-
only system transactions buffer multiple log records within the ringbuffers
which may also overflow the available memory. We still consider these cases
to be exceptionally rare, though, so the main objective is to provide a fallback
mechanism that does not impede performance during regular processing.

If the system detects an allocation request larger than the capacity of a
ringbuffer, it allocates an additional sufficiently large buffer on the heap. All
previous log record data that was written to the ringbuffer but not yet published
to the log writer, e.g. previous log records of the same system transaction, are
copied to this buffer, and the ringbuffer offsets are not modified. Subsequent
reallocation requests will simply extend the size of the buffer as necessary. Once
preparation of the oversize log records is complete, the worker thread publishes
them by immediately flushing them to stable storage, i.e. oversize log records
bypass the log writer thread. While this simplifies the log writer implementation,
it requires some care in order to preserve the flush epoch protocol on which the
remainder of the system relies.

Specifically, we interrupt the log writer thread while flushing an oversize log
record, e.g. by acquiring an appropriate latch in the corresponding worker thread.
Subsequently, the follow the general approach for flushing log records outlined
in Section 3.2.1, i.e. we first increment the unstable flush epoch counter 𝑓 𝑒𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
and retrieve all pending regular log records from the thread-local ringbuffers.
These are flushed to disk in addition to the oversize log record, and the stable
flush epoch 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 is incremented afterwards. It is vital to flush both the oversize
log record as well as all pending log records, as both received the same flush
epoch when they were published and must therefore reach stable storage before
the stable flush epoch 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 can safely be incremented.

3.3. IMPLEMENTATION DETAILS 67

3.3.4 LogWriter Implementation

The log writer itself is implemented using the asynchronous io_uring interface,
which enables it to sustain high IO throughput on modern flash storage devices
by generating a continuous stream of parallel IO requests. Like all logging
approaches, our implementation needs a mechanism to guarantee the integrity
of writes to stable storage as system failure is possible at essentially any point
during regular operation, e.g. while the log writer is asynchronously flushing
log records. This is a nontrivial task that depends heavily on the system archi-
tecture and ultimately has a direct impact on the overall system performance.
Note, however, that it still cannot protect the system against all failure modes
on its own, and orthogonal approaches like log shipping may additionally be
required [253, 259].

As outlined above, the log writer conceptually serializes all log record data
into a single sequentially growing log. This log is stored on disk in multiple
segment files that are roughly equal in size, but minor size fluctuations are
possible due to the varying size of individual log records. While it is theoretically
possible to directly ensure the integrity of writes to these segment files, this is
prohibitively expensive in a high-performance system as it invariably requires
writing all log data to disk twice. Instead, the log writer maintains a separate
master file that only stores the offset of the oldest record that is relevant for
recovery, as well as the offset of the logical end of the sequential log. Writes to
this master file are guaranteed to be atomic and durable through the use of a
small double-write buffer to which all writes are replicated before being applied
to the actual file.

Within a given iteration, this allows the log writer to first write all log record
data to the segment files without further precautions. Only a single fdatasync()
call is required per segment file in order to ensure that these writes have actually
reached stable storage. At the end of an iteration, the log writer issues a single
write to the master file updating the logical end of the log. As recovery relies
exclusively on the information stored in the master file to determine the range
of log record data on disk that is relevant, this makes all data written during
the current iteration visible to recovery atomically. Torn writes to the segment
files can occur only if the system crashes before the master file is updated, in
which case recovery will simply ignore this data. After updating the master file
it is guaranteed that the log records of the current flush epoch are stable and
the stable flush epoch counter 𝑓 𝑒𝑠𝑡𝑎𝑏𝑙𝑒 can be incremented.

Truncation of log record data by the checkpointer is performed at the gran-
ularity of segment files as discarding entire segment files is much more efficient
than removing individual log records within a segment file. Nevertheless, we
have to ensure that we do not partially truncate the log records written by a

68 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

single flush epoch, in order to retain the atomicity guarantees provided by our
logging protocol. This can be achieved, for instance, by tracking suitable trun-
cation boundaries for each active segment file. Once the truncation threshold
maintained by the checkpointer has advanced sufficiently far, we update the
offset of the oldest relevant record stored in the master file to the most recent
truncation boundary below that threshold. Subsequently, we can delete all log
segment files that do not contain any relevant data. This ensures that any log
segment files that are referenced by the master file are actually present on disk.

3.4 Experiments
In the following, we evaluate our implementation of the proposed logging
framework within Umbra in isolation. As outlined in the previous chapter (cf.
Section 2.3), we defer presenting end-to-end experiments involving our logging
framework to Chapter 5.

3.4.1 Setup
Like before, we devise a synthetic microbenchmark that is linked into the
database engine and directly interacts with the logging subsystem. This mi-
crobenchmark spawns a number of worker threads that continuously allocate
and publish log records with a given size and random content. We simulate both
an OLTP-like workload with comparatively small log records, and a bulk-load
scenario in which the size of log records is comparable to the database page
size. For each log record, we measure the latency between the time at which the
record is published by the worker thread, and the time at which the respective
flush epoch is reported to be stable. Furthermore, we measure the overall IO
throughput sustained by the system. Note that we avoid the overhead of gener-
ating random data during the actual benchmark run by retrieving log record
data from a precomputed buffer of random data. All experiments are run on the
server system introduced previously for our buffer manager microbenchmarks
(cf. Section 2.3). No further database components are involved in this benchmark,
and we rely on direct IO in order to bypass any OS caches.

3.4.2 Results
In case of the OLTP-like workload, we generate log records of 256 bytes in size,
whereas they are 64 KiB in size for the bulk-load workload. Each benchmark run
is allowed to warm up for 60 seconds so that the system can settle into steady-
state operation, after which performance metrics are collected over another 60

3.4. EXPERIMENTS 69

1 16 32 48 64 80 96 112 128

number of threads

0

2

4

6

8

10
th
ro
u
g
h
p
u
t
[G

B
/s
]

0

25

50

75

100

125

la
te
n
c
y
[m

s
]

write throughput median latency

(a) Results on the synthetic OLTP-like workload.

1 16 32 48 64 80 96 112 128

number of threads

0

2

4

6

8

10

th
ro
u
g
h
p
u
t
[G

B
/s
]

0

25

50

75

100

125

la
te
n
c
y
[m

s
]

write throughput median latency

(b) Results on the synthetic bulk-load workload.

Figure 3.7: Log writer throughput and latency (𝑦-axis) in relation to the number
of worker threads (𝑥-axis). The light shaded area indicates the range between
the 1st and 99th latency percentile, while the darker shaded area indicates the
range between the 5th and 95th latency percentile.

seconds. Throughput and latency results in relation to the number of worker
threads are shown in Figure 3.7.

Apart from some minor differences, we observe the same general behavior
for both benchmarks. With more than 16 worker threads, write throughput
settles at around 9.5GB of log record data persisted per second. The median
latency increases slightly from 10ms with 16 worker threads to 30ms with 128
worker threads. Latency remains below 80ms in the 99th percentile, and the
maximum observed latency is 250ms. With fewer than 16 worker threads, we
notice that throughput rises more quickly for the bulk-load workload than for
the OLTP-like workload, which is to be expected as the larger log record size
in the former case allows fewer worker threads to generate the same amount
of data. Nevertheless, even a single worker thread can already sustain a write
throughput of 1GB/s in the OLTP-like workload, which we determined to be
sufficient for several 100 000 TPC-C transactions per second (cf. Chapter 5).

70 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

Overall, this experiment confirms that the proposed logging framework can
make full use of modern flash-based storage, while at the same time eliminat-
ing any scalability bottlenecks from the hot code path in the worker threads.
Once the log writer becomes IO-bound, the throughput sustained by the system
remains effectively constant regardless of the number of worker threads gener-
ating log record data, which is the primary design objective of our decentralized
approach. Similar to the experiments presented in Section 2.3, the difference be-
tween the observed throughput and the theoretically available write bandwidth
of approximately 20GB/s can be explained by the non-negligible complexity
involved in ensuring integrity of our writes (cf. Section 3.3.4). In contrast to the
dirty page writer which usually has to write to random locations, the log writer
achieves comparatively higher throughput since it generates mostly sequential
writes to the segment files.

Finally, even the tail of the log record latency distribution observed in our
benchmarks remains sufficiently low for interactive workloads. The general
trend of slightly increasing latency as more worker threads are added is unavoid-
able in our design once the log writer has become fully IO-bound. From this
point on, the size of each individual flush epoch grows since the log writer has
to poll more thread-local ringbuffers, but throughput cannot be increased any
further. It should be noted, however, that a fully IO-bound log writer constitutes
an arguably unrealistic extreme case. In practice, it is prudent to configure
the system in such a way that its steady-state operation lies well below this
threshold [253]. As a result, the tail latency of the storage devices themselves
is reduced substantially, and the log writer can usually flush data immediately
without being constrained by the available IO throughput.

3.5 RelatedWork
While traditional ARIES-style write-ahead logging has proved to be extremely
versatile [187], its scalability problems on modern hardware are well-known and
numerous alternative approaches have been investigated [101]. Techniques such
as Aether [119, 120], Border-Collie [136], ELEDA [122], or ERMIA [138] aim to
reduce contention on the centralized log without fundamentally changing the
underlying logging protocol. However, these approaches will still suffer from
noticeable contention with a sufficiently high core count [101].

More drastic solutions have been explored in the context of in-memory
database systems. For instance, Hekaton [54, 152] and SiloR [251, 281] employ
variants of value logging in which log records capture physical changes to
individual tuples instead of pages. While this approach allows for excellent
scalability, it does not support index recovery, transaction footprints larger

3.6. SUMMARY 71

than main memory, or incremental checkpoints. Command logging requires
all transactions to run as stored procedures, and only records the arguments
to the respective procedure calls in the log [177], possibly interspersed with
physical log records in order to improve recovery performance [270]. However,
supporting checkpoints and transactions that depend on potentially volatile
external data remains challenging in this approach.

In contrast, decentralized logging techniques aim to eliminate the scalability
bottleneck of a single centralized log while retaining most of the desirable
features of physiological write-ahead logging in the spirit of ARIES [101, 235,
257]. For this purpose, the log can either be partitioned by transaction [101, 257],
or by database page [33, 257]. Here, the main challenge is to establish a suitable
partial order over the log records that is sufficient for recovery, which can be
achieved through a distributed clock mechanism [257, 267], or by explicitly
tracking dependencies between log records [109, 271].

Persistent byte-addressable memory appeared to be the ideal storagemedium
for database workloads due to its strong durability guarantees and extremely low
latency. Consequently, a large body of recent research explores opportunities to
exploit these characteristics [101, 155, 257]. Some approaches utilize persistent
memory to optimize a single centralized log [46, 63, 110, 139], but this does not
address the inherent scalability problems of this architecture. Others exploit
that durable writes allow redo logging to be eliminated entirely [23, 78, 207,
209, 215], potentially with the help of specialized persistent data structures [20,
208]. Unfortunately, such approaches are prohibitively expensive on flash-based
storage media due to the high latency of fdatasync() persistency barriers.
Furthermore, they frequently sacrifice desirable feature of ARIES-style write-
ahead logging such as in-place updates [21, 215], or media recovery [259].

3.6 Summary
In this chapter, we presented a novel decentralized logging framework that
achieves excellent performance on modern hardware while retaining the key
benefits of traditional ARIES-style write-ahead logging. For this purpose, we
developed a highly scalable epoch-based logging protocol that allows worker
threads to publish log records without any pessimistic synchronization at all. A
single log writer thread periodically flushes outstanding log records to stable
storage, resulting in large sequential writes that are highly favorable on flash-
based storage media such as SSDs. Furthermore, our logging protocol can
provide strong guarantees about the order in which log records become visible
to recovery, which allows for an extremely efficient implementation of redo-only
system transactions that will never have to be rolled back. We fully integrated

72 CHAPTER 3. SCALABLE DECENTRALIZED LOGGING

the proposed approach within the Umbra database system, and demonstrated
that it can achieve both excellent write throughput of up to 10GB of log data
per second, and excellent median flush latency below 30ms for each individual
log record.

CHAPTER 4
Database Tables and Indexes

Excerpts of this chapter have been published in [195].

The buffer manager and logging framework presented in the previous chapters
provide the core infrastructure for building a scalable and performant memory-
optimized disk-based database system. While their internal design deviates
considerably from the corresponding components in a traditional disk-based
system due to the requirements of modern hardware, they expose a flexible and
conceptually familiar interface to the remaining system [103]. Namely, the logi-
cal database contents are physically organized on pages that are transparently
administrated by the buffer manager (cf. Chapter 2). Any changes to the persis-
tent database state represented by these pages are captured in the write-ahead
log in order to guarantee durability (cf. Chapter 3). These low-level components
are coordinated by suitable access path implementations that allows queries and
thus ultimately the user to retrieve and modify the logical database contents.

B+-trees have been ubiquitous within disk-based databases for this purpose
almost straight from their inception, since they are exceedingly versatile and
naturally fit the comparatively rigid page-based structure mandated by the buffer
manager [30, 85, 103]. Whereas numerous different access path implementations
have been explored within less restrictive environments, e.g. columnstores for
main memory databases or LSM-trees for key-value stores, few practical alter-
natives to B+-trees have emerged for buffer-managed systems despite decades
of research [4, 85, 129, 132, 148, 206]. Consequently, as we will discuss in more
detail in the following, we rely on B+-trees to represent both the database tables
and the secondary indexes in our proposed system.

Following mature systems such as PostgreSQL, tuples in our database tables
are unclustered and thus stored in no particular order [95]. In contrast to clus-
tering tables on their primary key, this has the major advantage that arbitrary
insert patterns can be handled robustly and with good space utilization [195].

74 CHAPTER 4. DATABASE TABLES AND INDEXES

Such unclustered database tables are typically represented as a heap, in which
tuples are stored on a collection of pages that is not indexed in any way [85,
103]. However, this design fundamentally requires that we can directly access
database pages through their page identifier, which is not possible within the
proposed system architecture due to the constraints of the pointer swizzling
approach employed by the buffer manager (cf. Chapter 2). Instead, we rep-
resent unclustered database tables by B+-trees that organize tuples based on
synthetically generated identifiers. As we will discuss in further detail below, a
careful implementation of this approach can retain the key advantages of a heap
while introducing only negligible overhead. Finally, we also employ B+-trees for
secondary indexing since they allow for both point and range lookups, unlike
other index types such as hash tables [85, 95, 103, 237].

Although a plethora of research has been published about variants, opti-
mizations, or practical considerations, it remains surprisingly challenging to
implement a robust B+-tree that performs well under all of the widely different
usage patterns encountered by the tables and indexes of a general-purpose
database system [85]. At least in part this is due to the coordinating role taken
on by the access path implementation within the broader scope of the entire
system, where it has to reconcile multiple, often contradictory, objectives. A
typical B+-tree does not merely organize some physical data on pages, but
among others also includes optimizations that enable efficient query processing
involving a mix of point and range operations, ensures both physical and logical
consistency through appropriate latching and concurrency control protocols,
and performs write-ahead logging in order to maintain durability of its contents.
Moreover, the way in which these objectives can be achieved depends heavily
on the characteristics of the remaining system. For example, a common B+-tree
optimization for fast range scans involves maintaining sibling pointers between
pages on the same level [156]. This is not feasible in our system since pointer
swizzling only allows a page to be referenced by a single owning swip, and an
alternative mechanism is required to enable efficient range scans (cf. Chapter 2).

In a nutshell, there is no one-size-fits-all B+-tree implementation that we
can simply adopt within our proposed system architecture. For this reason,
we provide a comprehensive description of our tailored implementation in this
chapter, highlighting how well-known techniques are adapted and combined
with novel mechanisms in order to ensure seamless integration into the pro-
posed memory-optimized disk-based system architecture. For this purpose, we
first discuss the core functionality that is identical for both tables and indexes.
Most importantly, we present a variant of optimistic latch coupling for B+-tree
traversal that aggressively caches optimistic latches on intermediate pages in
order to speed up future traversals [160]. Furthermore, we discuss how atomic
system transactions are employed for structural modifications of the B+-tree

4.1. FUNDAMENTAL B+-TREE DESIGN 75

structure, and propose a practical approach that allows us to perform such main-
tenance operations as part of forward processing. Subsequently, we focus on the
specific implementations for tables and indexes that are built on this foundation.
These components have to support different access patterns, which is reflected in
their internal page layout and some further targeted optimizations. Finally, we
outline some essential auxiliary data structures that are required for integration
with other subsystems like the buffer manager. We perform an experimental
evaluation within Umbra, which demonstrates that our B+-tree implementation
can achieve consistently high performance on real-world benchmarks.

In summary, this chapter discusses the following key points:

• A detailed end-to-end description of the many techniques involved in
a generic and robust B+-tree implementation for database tables and
secondary indexes.

• Several novel techniques that are crucial to ensure good performance
under the constraints of the memory-optimized disk-based architecture
established in this thesis.

• An extensive experimental evaluation that validates the feasibility of the
B+-tree implementation presented in this chapter.

The remainder of this chapter is structured as follows. We describe the
generic B+-tree framework underlying both our tables and secondary indexes
in Section 4.1, before discussing further aspects of the specific table and index
implementations in detail in Sections 4.2 and 4.3. Subsequently, we outline the
required auxiliary data structures (cf. Section 4.4), and present our experimental
evaluation (cf. Section 4.5). Finally, we review related work in Section 4.6 and
summarize the chapter in Section 4.7.

4.1 Fundamental B+-Tree Design
From a high-level point of view our B+-tree implementation behaves fairly close
to a textbook B+-tree, i.e. conceptually many of the algorithms and optimizations
we employ are well-known [85]. Nevertheless, as outlined above, they frequently
have to be adapted to the infrastructure available within a memory-optimized
disk-based system, and a careful implementation is essential to achieve per-
formance comparable to an in-memory system. Many of these considerations
apply to all B+-trees within our system, regardless of whether they represent
a table or a secondary index. As a result, they share a common design that is
largely independent from the precise logical contents of the individual nodes. We
present these foundations in the following section, before discussing the specific
implementation of tables and secondary indexes in the subsequent sections. For

76 CHAPTER 4. DATABASE TABLES AND INDEXES

this purpose, we intentionally omit some details about the internal structure and
contents of the B+-tree nodes which differ slightly between tables and indexes.
For the time being, it suffices to consider a B+-tree to store a number of search
keys that are potentially associated with some additional payload information.
Branch nodes within the tree store a sorted list of separator keys and child
pointers in the form of swips (cf. Chapter 2), while leaf nodes store full records
consisting of a search key and the associated payload in sorted order.

Most techniques presented in this chapter are concerned with the physical
organization of a B+-tree and thus applicable regardless of the specific con-
currency control algorithm employed by the system. Nevertheless, we cannot
completely decouple the physical representation from the logical interpretation
of the data stored within a B+-tree, which is reflected in some of the operations
that we describe [85]. Specifically, we assume that the system employs some
form of multi-version concurrency control for transaction isolation, since this
generally allows for much higher concurrency than a lock-based approach (cf.
Chapter 5). Consequently, leaf nodes may store multiple physical versions of
the same logical record, each of which is associated with a well-defined visibility
within any given transaction [189]. Versioning records both in tables and sec-
ondary indexes is advantageous since it allows for index-only scans which avoid
the overhead of a second lookup into the table B+-tree after each index hit [85,
102]. The precise implementation of multi-version concurrency control is irrele-
vant to our discussion in this chapter, and we present the memory-optimized
algorithm employed by our system separately in Chapter 5.

Maintaining physical consistency in the presence of concurrent readers and
writers without introducing excessive contention is one of the key challenges
that permeates our following discussion. To this end, we generally avoid ac-
quiring pessimistic latches on database pages whenever possible, and rely on
the optimistic latching primitives provided by the buffer manager instead (cf.
Chapter 2). However, since reading from optimistically latched pages can fail,
many operations need to be adapted from their pessimistic variants. This is
evident most prominently in the traversal algorithm employed by our imple-
mentation, which relies on optimistic latch coupling for navigating from the
root node to a specific leaf node [31, 160]. Further novel optimizations are
possible since optimistic latches do not have to be released as soon as possible
like pessimistic latches, since they do not block any concurrent operations from
proceeding. This allows us to aggressively cache optimistic latches acquired
during traversal, in the hope that they remain valid long enough to allow future
traversal operations to proceed more quickly. We can reasonably expect most
optimistic latches to remain valid for quite some time, since it is uncommon
for the branch nodes in a B+-tree to be modified or evicted from the buffer
pool. Thanks to these caching capabilities, range scans can usually navigate

4.1. FUNDAMENTAL B+-TREE DESIGN 77

directly from leaf to leaf without having to traverse the full tree every time even
though we do not maintain sibling pointers. Furthermore, caching traversal
information allows us to exploit the temporal and spatial locality found in many
workloads, for instance when a select statement returns a single tuple that is
then updated.

Although structural modifications of a B+-tree are generally required only
infrequently, their implementation can have a profound impact on the perfor-
mance and scalability of the data structure as well. For instance, the original
B+-tree design relies on cascading page splits that propagate upwards from a
leaf page, potentially all the way to the root of the tree [30, 85]. However, this
approach forces insertions to preemptively acquire a large number of exclu-
sive latches which can lead to substantial contention on frequently accessed
branch nodes. In contrast, we eagerly split full branch nodes encountered during
traversal, since this allows us to avoid most cascading page splits [85, 190]. Simi-
larly, any additional maintenance work, such as page compaction or merging, is
performed locally during traversal and thus interspersed with regular forward
processing, in contrast to systems like PostgreSQL which rely on a background
thread for this purpose [95]. Following related work on the subject, we argue
that this is desirable since it reduces the number of external tuning knobs and
makes the system more resilient to workload changes [38, 101]. In order to
minimize the associated overhead, we propose a number of lightweight yet
robust heuristics that are queried during traversal in order to determine whether
the actual maintenance routines for page compaction and merging should be
invoked. All of the above structural modifications are encapsulated in system
transactions since they do not affect the logical database contents and do not
need to be rolled back in case the surrounding user transaction aborts [85]. In
virtually all cases, we can employ the atomic system transactions supported
by the logging framework, which greatly simplifies our implementation since
structural modifications usually do not need to support rollback anyway (cf.
Chapter 3).

Finally, the B+-trees in our system can be partitioned horizontally in order to
increase locality and thus further reduce contention in workloads with a suitable
structure [85]. Partitioning is mostly transparent from the point of view of the
system users, who only have to specify the partition key once when creating
a partitioned database table, after which any secondary indexes on the table
are automatically partitioned on the same key as well. A separate independent
B+-tree is lazily created by the system for each table or index partition, and
references to the root nodes are maintained in an in-memory dictionary. Some
care has to be taken when probing partitioned indexes during query processing
depending on whether the partition key is covered by the search key, and we
provide a detailed description of the respective edge cases below.

78 CHAPTER 4. DATABASE TABLES AND INDEXES

...

Figure 4.1: Illustration of fence keys in a B+-tree. The figure shows regular sep-
arator keys with a solid background, and fence keys with a hatched background.
Each node stores a copy of the separator keys immediately to the left and right
of the corresponding child pointer within its parent node. They constitute an
inclusive lower bound and an exclusive upper bound of the search keys stored
within the node, respectively.

4.1.1 Page Headers
All B+-tree nodes within our system maintain a page header that stores some
common metadata. Since any modification need to be logged for recovery
each node stores its current GSN (cf. Chapter 3). Moreover, a node has to
store its height so that we can distinguish leaves from branch nodes, as well
as the number of entries it contains. In order to enable a number of essential
optimizations, we store fence keys within each node, which are copies of the
separator keys to the left and right of the corresponding child pointer within
the immediate parent of the node [85, 87]. That is, the left fence key constitutes
an inclusive lower bound on the search keys stored within a node, while the
right fence key constitutes an exclusive upper bound (cf. Figure 4.1). Further
implementation-specific attributes are stored in the page headers by the table
and index implementations. These are mostly related to the internal page layout
and are introduced in the respective sections below.

4.1.2 Traversal Algorithm
The core building block for all high-level operations on a B+-tree is the well-
known traversal algorithm that repeatedly performs binary search within branch
nodes in order to navigate from the root node to a specific leaf node [30]. For
this purpose, it conceptually receives a single input 𝐾𝑞𝑢𝑒𝑟𝑦 which can either be a
full search key or a prefix thereof. Depending on the precise operation at hand,
traversal can then be instructed to return either the leaf node containing the
lower bound of 𝐾𝑞𝑢𝑒𝑟𝑦, i.e. the first record with a search key 𝐾 that is lexico-
graphically greater than or equal to 𝐾𝑞𝑢𝑒𝑟𝑦, or the leaf node containing the upper
bound of 𝐾𝑞𝑢𝑒𝑟𝑦, i.e. the first record with a search key 𝐾 that is lexicographically
greater than 𝐾𝑞𝑢𝑒𝑟𝑦. For example, the lower bound of a full search key is relevant
for insertion or modification of a record, whereas both the lower and upper

4.1. FUNDAMENTAL B+-TREE DESIGN 79

bounds of a partial search key are relevant for range scans. Fortunately, these
variations of the traversal algorithm differ only in the binary search function
that is used to locate the appropriate child swip within branch nodes. In our
following discussion, we can thus assume that traversal simply receives the
appropriate binary search function instead of an individual search key as its
input, allowing us to present a unified formulation of our approach.

Naturally, a single B+-tree may be accessed and modified concurrently by
multiple threads, and a suitable thread synchronization mechanism is required
during traversal. This can be achieved, for instance, through traditional latch
coupling where root-to-leaf traversal retains a pessimistic latch on the current
page until it has successfully acquired a latch on the next page [31, 85, 160].
While this approach is straightforward and still widely-used, it involves a large
number of pessimistic latch acquisitions which results in limited scalability
on modern hardware [159, 160]. In order to address these issues, Leis et al.
propose optimistic latch coupling which follows the same basic approach but
replaces most pessimistic latch acquisitions with appropriately validated opti-
mistic reads [160]. We adopt this technique in our system, since it can easily
be implemented with the optimistic latching primitives provided by our buffer
manager and has been shown to achieve excellent scalability in practice. Past
research has also explored latch-free synchronization methods for in-memory
B+-trees as a way to improve scalability [169], but they generally offer no ad-
vantages over optimistic latch coupling while being vastly more complex to
implement [61, 160, 260].

Our implementation of optimistic latch coupling is based on a set of primitive
operations that we assume to be provided by the buffer manager in the system.
Much of the complexity associated with optimistic latch coupling is due to the
possibility that many of these operations rely on optimistic reads and may thus
fail. In order to establish a structured basis for our subsequent presentation,
we briefly summarize the relevant operations and their semantics below. A
detailed description of a possible buffer manager architecture that can provide
this functionality is provided in Chapter 2.

Validate(𝐿) Validate that the node protected by the optimistic latch 𝐿 has not
been changed concurrently since 𝐿 was acquired.

LatchOptimistic(𝑆) Acquire an optimistic latch on the page referenced by
the swip 𝑆, loading it into the buffer pool if necessary. This operation
requires that 𝑆 is stored in global memory and will thus always succeed
(cf. Section 2.1.5).

TryLatchOptimistic(𝐿, 𝑆) Acquire an optimistic latch on the page referenced
by the swip 𝑆, loading it into the buffer pool if necessary. This operation
assumes that 𝑆 is stored on another optimistically latched page 𝐿, for

80 CHAPTER 4. DATABASE TABLES AND INDEXES

given: The root swip 𝑆𝑟𝑜𝑜𝑡 of a B+-tree.
input: A function BinarySearch which locates the appropriate child swip

within a branch node.
output: An pessimistic latch on the leaf node containing the records of

interest.

1 function Traverse(BinarySearch)
2 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← LatchOptimistic(𝑆𝑟𝑜𝑜𝑡) ;

3 while not IsLeaf(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) do
// Locate the correct child swip within the branch node

4 𝑆𝑛𝑒𝑥𝑡 ← BinarySearch(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ;
5 if not Validate(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
6 restart;

// Dereference the child swip
7 𝐿𝑛𝑒𝑥𝑡 ← TryLatchOptimistic(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑆𝑛𝑒𝑥𝑡) ;
8 if EmptyLatch(𝐿𝑛𝑒𝑥𝑡) then
9 restart;

// Move to the next node
10 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝑛𝑒𝑥𝑡 ;

11 if not TryUpgradePessimistic(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
12 restart;

13 return 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;

Algorithm 4.1: Pseudocode of the basic optimistic latch coupling algorithm for
B+-tree traversal. Latches and swips in the pseudocode are identified by the
letters 𝑆 and 𝐿, respectively.

which reason it may have to temporarily upgrade 𝐿 to a shared latch (cf.
Section 2.1.5). If this is not possible, the operation will fail and return an
invalid latch.

EmptyLatch(𝐿) Check whether the latch 𝐿 returned by TryLatchOptimistic
represents a valid optimistic latch.

TryUpgradePessimistic(𝐿) Try to upgrade the optimistic latch 𝐿 to a pes-
simistic latch. This operation can fail, in which case false is returned.

The core optimistic latch coupling algorithm is shown in Algorithm 4.1.
Analogous to traditional latch coupling, traversal initially acquires an optimistic
latch on the root node (line 2). Subsequently, we iteratively traverse the branch
nodes within the tree until we have reached the target leaf node (lines 3–10). For

4.1. FUNDAMENTAL B+-TREE DESIGN 81

a given branch node, we first locate the correct child swip 𝑆𝑛𝑒𝑥𝑡 using the supplied
binary search function (line 4) and subsequently validate the optimistic latch on
the branch node to ensure that it was not modified concurrently (lines 5–6). Note
that both the check in line 3 and the binary search implementation optimistically
read from the branch node and thus have to take into account that this may
return nonsensical data. After we have validated that 𝑆𝑛𝑒𝑥𝑡 actually represents the
correct child swip, we can try to acquire an optimistic latch on the corresponding
node (line 7). Since dereferencing a swip that is stored on an optimistically
latched page may fail, we have to validate that this operation was successful
(lines 8–9), before traversal can continue on the child node (line 10). Assuming
that validation succeeds, the algorithm eventually reaches the leaf nodematching
our search criteria. For read operations, we try to acquire a shared latch on
this node which prevents concurrent modification and guarantees that the read
succeeds [195], while write operations obviously have to acquire an exclusive
latch (lines 11–12).

Validation failures primarily occur if the node that we are currently reading
is modified concurrently, in which case Algorithm 4.1 simply restarts traversal at
the root node [160]. Although B+-trees generally have a small height due to their
large branching factor, we found that unconditionally restarting traversal all the
way from the root node can still cause a noticeable drop in performance when the
entire working set fits into main memory. Therefore, we propose an extension
of Algorithm 4.1 which caches optimistic latches on all branch nodes on the path
to the current node in a small stack. This allows us to restart traversal at the
lowest unmodified ancestor in case of a validation failure. Furthermore, we can
keep the node stack alive across multiple invocations of the traversal algorithm
in order to exploit information about previous traversals, e.g. to quickly find
the sibling of a node during range scans. Maintaining the stack incurs only
negligible overhead and in particular no contention, since holding an optimistic
latch does not block any other latch acquisitions on the same node [37, 159].

The resulting extended traversal algorithm is displayed in Algorithm 4.2. In
addition to the binary search function that guides traversal, it receives a stack 𝑃
of optimistic latches as its input. This stack may either be empty, or the result of
a previous invocation of the traversal algorithm. If there are no latches on the
stack, we simply start traversal at the root node of the B+-tree as usual (line 3).
Otherwise, traversal begins at the last node that was pushed onto the page stack
(line 5). Subsequently, we check whether the target leaf page can be found below
the current node and restart traversal if this is not the case (lines 6–7). This
can easily be determined by inspecting the fence keys that are stored in the
header of every node. Overall, this procedure forms an implicit loop that moves
up the page stack to the lowest node below which the target leaf page can be
found. Once we have found a suitable starting point for traversal, we apply the

82 CHAPTER 4. DATABASE TABLES AND INDEXES

given: The root swip 𝑆𝑟𝑜𝑜𝑡 of a B+-tree.
input: A stack 𝑃 containing cached optimistic latches on the path from

𝑆𝑟𝑜𝑜𝑡 to some leaf node and a function BinarySearch which locates
the appropriate child swip within a branch node.

output: An pessimistic latch on the leaf node containing the records of
interest.

1 function Traverse(𝑃, BinarySearch)
// Determine the starting point for traversal

2 if IsEmpty(𝑃) then
3 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← LatchOptimistic(𝑆𝑟𝑜𝑜𝑡) ;
4 else
5 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Pop(𝑃) ;

// Check whether the search key can be found below the current node
6 if MismatchingFenceKeys(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡, BinarySearch) then
7 restart;

8 while not IsLeaf(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) do
// Locate the correct child swip within the branch node

9 𝑆𝑛𝑒𝑥𝑡 ← BinarySearch(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ;
10 if not Validate(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
11 restart;

// Dereference the child swip
12 𝐿𝑛𝑒𝑥𝑡 ← TryLatchOptimistic(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑆𝑛𝑒𝑥𝑡) ;
13 if EmptyLatch(𝐿𝑛𝑒𝑥𝑡) then
14 restart;

// Move to the next node
15 Push(𝑃, 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ;
16 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝑛𝑒𝑥𝑡 ;

17 if not TryUpgradePessimistic(𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
18 restart;

19 return 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;

Algorithm 4.2: Pseudocode of the full B+-tree traversal algorithm that caches
optimistic latches in a small stack 𝑃. Latches and swips in the pseudocode are
identified by the letters 𝑆 and 𝐿, respectively. Differences to Algorithm 4.1 are
shown in red.

4.1. FUNDAMENTAL B+-TREE DESIGN 83

regular optimistic latch coupling approach outlined above to navigate to the
target leaf node and acquire a suitable latch (lines 8–19). During this process,
we push optimistic latches on all branch nodes on the path to the leaf node onto
the page stack (line 15). If traversal has to be restarted at any point, e.g. due to a
validation failure, we move back up the page stack to the immediate ancestor
node and continue traversal from there.

We aggressively cache the node stacks built during B+-tree traversal to speed
up individual range scans. Since our actual implementation also stores the posi-
tion of child pointers within the page stack (not shown in Algorithm 4.2), we can
frequently avoid a full binary search within the branch nodes in this case. In-
stead, we first check whether the cached position or one of its neighbors matches
the criteria defined by the supplied binary search function. This optimization
allows our system to implement efficient range scans even though we cannot
maintain sibling pointers between B+-tree nodes, since navigating to the sibling
node usually requires only a couple of optimistic reads. Moreover, caching node
stacks can also be beneficial in transactional workloads that frequently exhibit
spatial and temporal locality across multiple logical operations. For example,
they commonly retrieve and subsequently modify a single tuple in two or more
separate SQL statements, in which case caching the node stack enables us to
directly jump to the corresponding leaf page. This mechanism is exploited by
both the relation and index implementations within Umbra, the details of which
are discussed in further detail in Sections 4.2 and 4.3.

4.1.3 Logical Modifications
From an outside perspective, the main purpose of traversal is to give user
transactions access to the leaf nodes and thus to the individual records that
constitute the actual logical contents of a B+-tree. As outlined above, the physical
representation of these logical contents is influenced to some degree by our
decision to employ multi-version concurrency control for transaction isolation.
Specifically, our B+-tree implementation is based on the assumption that records
on the leaf nodes physically store the most recent version of their payload, while
multi-versioning is encapsulated within a separate component that provides the
functionality to track visibility information and, if necessary, version chains for
these records (cf. Figure 4.2). This design is widely used in existing systems as
it provides substantial flexibility with regard to the precise implementation of
both concurrency control and the storage engine [74, 266]. We defer discussing
the specific memory-optimized multi-version concurrency control approach
employed by our system to Chapter 5.

Overall, this design makes concurrency control mostly transparent to our
B+-tree implementation, since we can directly apply the corresponding physical

84 CHAPTER 4. DATABASE TABLES AND INDEXES

Multi-Version Concurrency ControlB+-Tree Leaf Node

A2 A1

B1B2

D1PayloadKey

A3A
B
C
D

C1

D2

Figure 4.2: High-level illustration of logical modifications on a B+-tree leaf node
under multi-version concurrency control. Leaf nodes store the most recent pay-
load version of logical records, while a separate concurrency control component
encapsulates the state required for transaction isolation, e.g. version chains and
visibility intervals. This design requires us to perform deletions logically by
updating a flag that is part of the record payload.

changes to a leaf node whenever a write transaction inserts, updates, or deletes
some logical records. Ignoring space management issues for now, we first invoke
the traversal algorithm to acquire an exclusive latch on the appropriate leaf
node and subsequently apply the necessary physical modifications. In order to
guarantee durability of these changes, we additionally publish a log record that
contains both redo and undo information. In addition, the write transaction can
interact with the concurrency control component in order to record any further
information that is required for proper transaction isolation. Readers simply
scan all records in the B+-tree that physically match the respective search criteria,
and rely on this versioning information in order to reconstruct the appropriate
version of a given record that is visible to them.

Nevertheless, some minor adaptations are required in order to support multi-
version concurrency control. This is due to the fact that we cannot immediately
reclaim a physical record when it is deleted, since it may still be visible to a
concurrent transaction. For this reason, we store an additional state flag in the
payload of each record that indicates whether it is logically visible or deleted. A
logical deletion simply updates this flag and leaves the remainder of the record
unchanged, effectively transforming deletions into updates. Consequently, no
further adjustments are required for readers, since they can rely on the regular
concurrency control logic outlined above in order to reconstruct the correct
version of a record that is marked as logically deleted. Physical reclamation of
a record is possible once its logical deletion has become globally visible to all
active transactions. Consider, for instance, the situation depicted in Figure 4.2.
Here, record 𝐴was originally inserted with payload 𝐴1 which was subsequently

4.1. FUNDAMENTAL B+-TREE DESIGN 85

updated first to𝐴2 and then𝐴3. The most recent payload version𝐴3 is stored on
the B+-tree leaf node, but transactions can traverse the associated version chain
in order to reconstruct an earlier payload version of 𝐴. If the original insertion
of 𝐴 is invisible to a transaction, it will simply reconstruct the oldest payload
version that is marked as logically deleted and skip the record. Similarly, 𝐵 was
inserted with payload 𝐵1, which was later updated to 𝐵2 before the entire record
was deleted again. In this case, the most recent payload version stored on the
B+-tree leaf node is marked as deleted, but 𝐵2 and 𝐵1 can still be reconstructed
from the version chain if necessary.

The technique of maintaining logically deleted ghost records is quite well-
known since it offers some further key advantages [85]. First, it greatly facilitates
transaction rollback for record deletions, sincewemerely have to revert changing
the state flag instead of performing a much more complex record insertion.
Second, we can easily prevent duplicate keys from being inserted into a unique
secondary index by checking whether there exist any ghost records with the
same key, which works reliably even in the presence of concurrent deletions
(cf. Section 4.3). Finally, ghost records allow us to defer and aggregate some
aspects of space management such as page compaction in order to amortize the
associated overhead.

4.1.4 Structural Modifications
A careful implementation of structural modifications such as splitting, com-
pacting, or merging pages is essential in order to efficiently support the logical
operations outlined above. We broadly distinguish between two major scenarios
here. If there is insufficient space for a record to be inserted, we have to allocate
some additional space by splitting or compacting an overfull page. Since inser-
tions must be able to finish in a timely manner, these operations are mandatory
and cannot be deferred to a later point in time. In contrast, ghost records that
result from logical deletions do not affect correctness and could in theory remain
within the B+-tree indefinitely. Nevertheless, it is desirable to regularly compact
pages and reclaim ghost records that are not visible to any active transaction
anymore so that readers do not have to scan an excessive number of irrelevant
records. This may result in underfull pages which can be merged with their
siblings in order to further improve the space utilization of the B+-tree.

In our approach, we perform all of these structural modifications as part
of the regular B+-tree traversals that occur during query processing. Broadly,
we eagerly split overfull branch nodes when traversing the tree with the goal
of inserting a record, since this helps us avoid cascading page splits in most
cases [85, 190]. When inserting into a full leaf node, we first attempt to reclaim
some space through compaction and only split the leaf node if this is not possible.

86 CHAPTER 4. DATABASE TABLES AND INDEXES

The precise implementation of insertions and page splits differs between the
tables and indexes in our system, and is presented in Sections 4.2 and 4.3. If
we traverse the tree for any other purpose than an insertion, we lazily merge
any underfull branch or leaf nodes encountered along the way and additionally
compact leaf pages that contain a large fraction of ghost records. This heuristic
approach for space reclamation is shared by all B+-trees in our system, and a
detailed description is provided in the following section.

Since structural modifications do not affect the logical database contents, we
encapsulate them in separate nested system transactions. This ensures that the
respective changes are not rolled back even if the enclosing user transaction that
caused them is eventually aborted, which is essential since other transactions
may already depend on them [85]. The unique capabilities of our logging
framework allow us to atomically publish all log records generated by such a
system transaction, for which reason we can skip writing any undo information
for structural modifications. In exchange, we have to retain latches on all of the
modified pages until after the system transaction commits (cf. Chapter 3).

Some variants of B+-trees such as Blink-trees or Foster B-trees split structural
modifications into multiple steps, where each individual step requires at most
two latch acquisitions [89, 156]. This is primarily intended to reduce contention
in comparison to early synchronization schemes that have to retain multiple
pessimistic latches on intermediate branch nodes in order to allow for cascading
page splits [85, 89]. However, structural modifications and traversal are more
complex to implement in these variants. We determined this to be an undesirable
tradeoff within our system since traversals that require structural modifications
are extremely rare in relation to regular traversals that do not modify the B+-tree
structure in any way. Furthermore, our structural modifications need to acquire
at most three exclusive latches for a comparatively brief amount of time. Thus
the overhead introduced by a more complex traversal implementation gener-
ally outweighs the benefits of marginally reduced contention during structural
modifications.

4.1.5 Maintenance
As discussed previously, we regularly attempt to compact and merge nodes
in order to retain high system performance and optimize space utilization in
write-heavy workloads. In the following, we collectively refer to these opera-
tions as maintenance work. The respective structural modifications are applied
lazily whenever we traverse a B+-tree for any other purpose than a record
insertion, which offers several important advantages. First of all, it naturally
allows maintenance to adapt to changing workload characteristics which is not
easily achieved in systems that rely on a background thread for this purpose.

4.1. FUNDAMENTAL B+-TREE DESIGN 87

Furthermore, we minimize the overhead and contention introduced by main-
tenance since it is only attempted on nodes that have to be accessed anyway
during traversal. Finally, it is usually desirable to defer space reclamation until
a sufficiently large number of irrelevant ghost records has accumulated on a
page, since a few ghost records hardly impact forward processing performance.

In general, only an extremely small fraction of all B+-tree traversals will
actually need to apply such structural modifications to the nodes that they
encounter. Therefore, it is crucial that we introduce as little overhead as possible
in all other cases. For this reason, we first compute some lightweight heuristics
based exclusively on information stored within the page header whenever we
access a node during traversal. Note that this can easily be implemented with
optimistic reads only, i.e. no expensive pessimistic latch acquisitions are required.
Only if these heuristics indicate that some form of maintenancemay be beneficial
do we actually obtain exclusive latches on the participating pages and attempt
to apply the corresponding structural modification. Furthermore, maintenance
is not attempted at all if we already had to restart traversal at least once, since
this indicates that there is some contention on the path to the target leaf node
which we do not want to exacerbate further. Similarly, we abort maintenance
and restart traversal if any optimistic latch validation fails at any point.

In case of leaf nodes, the main objective of maintenance is to limit the number
of irrelevant ghost records that have to be scanned by readers through periodical
compaction. For this purpose, we store the number of logically deleted records
within the page header of leaf nodes. Compaction is attempted if the fraction of
logically deleted records exceeds a certain threshold (5 % in our implementation).
Note that we cannot directly store the exact number of irrelevant ghost records
on the page, since this number potentially changes every time a transaction
commits. Consequently, our heuristic is slightly fuzzy in the sense that not all
logically deleted records may actually be irrelevant. That is, page compaction
needs to query the concurrency control component for visibility information
before it can decide whether a specific ghost record can be reclaimed.

Over time, repeated page compaction can result in underfull leaf nodes,
which we attempt to merge with their neighbors so that we can subsequently
remove an empty node from the tree. Merging leaf nodes can in turn lead to
underfull branch nodes, which are handled in the same way as underfull leaf
nodes. We do not implement regular load balancing as it is quite expensive
but only marginally beneficial, i.e. we allow underfull nodes to remain in the
tree [85]. Whenever a node is accessed during traversal, we compute its current
physical fill rate by inspecting the amount of occupied and available space on
the corresponding database page. If the physical fill rate of the node is below a
given threshold (40 % in our implementation) we additionally attempt to acquire
an optimistic latch on one of its immediate neighbors. If its fill rate is also below

88 CHAPTER 4. DATABASE TABLES AND INDEXES

Partition Dictionary

Partition 2 Partition 4 Partition 10 Partition 17

Figure 4.3: Illustration of a partitioned table or index. Individual non-empty
partitions are maintained as independent B+-trees, and references to their root
nodes are stored in-memory within a partition dictionary.

this threshold, we proceed and attempt to merge the pages. The threshold for
this heuristic should be chosen lower than the expected physical fill rate of pages
after a split, so that the system does not enter a cycle of repeatedly splitting and
merging pages.

4.1.6 Partitioning
If a given workload exhibits suitable characteristics, users can request tables
to be partitioned horizontally based on a subset of their attributes in order to
improve data locality and reduce contention. Secondary indexes on a partitioned
table will automatically be partitioned in the same way. We implement hash
partitioningwithin our system since it allows for a low-overhead implementation
that does not require expensive attribute comparisons. That is, we assign tuples
to one of a fixed number of partitions based on the hash value of the respective
partition key. By default, we limit the number of such partitions to 1 024 per
table in our implementation. The individual partitions of a relation or index are
created lazily and maintained as essentially independent B+-trees, i.e. they are
mostly oblivious of any partitioning. Swips referencing to their root nodes are
stored in-memory within a single partition dictionary per table or index which
can be consulted to retrieve the appropriate B+-tree corresponding to a specific
partition number (cf. Figure 4.3).

The table implementation requires comparatively few adaptations to ac-
count for partitioning, since it only has to support full scans and point lookups.
Full table scans simply iterate over all partitions and employ the regular scan
implementation to enumerate all tuples within a partition. Point lookups ex-
tract the appropriate B+-tree from the partition dictionary, and subsequently
invoke the regular traversal algorithm in order to navigate to the correct leaf
node. In contrast, secondary indexes require a more careful treatment due to
the possibility that the search key used for a lookup may not fully cover the

4.2. TABLES 89

partition key in which case qualifying records may be distributed over multiple
partitions. Fortunately, we can easily determine whether the partition key is
covered at query compilation time which allows us to generate appropriate code
for the different cases. If the search key covers the partition key, we can simply
perform the lookup locally within the appropriate partition. Otherwise, we have
to fall back to scanning all partitions and performing a lookup within each of
them. The records produced by an index scan are only sorted if the partition
key is covered by the search key, i.e. some query tree optimizations such as
eliminating a sort operator above an index scan are only possible in those cases.

4.2 Tables
As discussed above, database tables in our system are unclustered in order
to achieve robust performance under arbitrary insert patterns [95, 195]. Any
given table is internally organized as a potentially partitioned B+-tree that
employs synthetic 8-byte tuple identifiers as its search keys. The identifier
for a given tuple is unique within the enclosing partition, and is generated
at the time the tuple is inserted into the corresponding B+-tree. As they are
stable during the lifetime of a tuple, these synthetic identifiers can also serve as
logical tuple pointers within the secondary indexes on a table [85]. Conceptually,
our implementation of database tables thus resembles an ordinary heap in the
sense that tuples are stored on a collection of pages in no particular order, with
the key difference that we maintain an additional index over these pages [85].
More precisely, the branch nodes of our B+-trees can be viewed as a dictionary
that maps ranges of logical tuple identifiers to the heap pages that contain
the respective tuples. This property is crucial within the proposed system
architecture since the design of our buffer manager requires that any given page
is referenced through exactly one owning swip (cf. Chapter 2). In contrast, a
traditional heap implementation requires that pages can be accessed directly
based on their page identifier [85, 103].

The B+-trees that represent our database tables are fundamentally built upon
the generic techniques presented in Section 4.1. They employ a tailored page
layout that allows for efficient table scans, and exploit the regular structure of
the generated tuple identifiers for some further essential optimizations. Most
importantly, we ensure that tuple identifiers are strictlymonotonically increasing
within a given partition, which allows us to entirely avoid regular page splits
during tuple insertions. Instead, we generally try to completely fill existing
branch and leaf nodes before appending new nodes to the tree. However, some
care is required to avoid excessive contention on the leaf nodes in case multiple
threads concurrently insert into the same partition.

90 CHAPTER 4. DATABASE TABLES AND INDEXES

Tuple Identi�er Swip

(a) Data layout of a table branch node.

Variable-Length DataTuple
 Id

en
ti�

er

Attr
ibu

te
1

C
ap

ac
it

y

Attr
ibu

te
2

Null B
its

et

(b) Data layout of a table leaf node.

Figure 4.4: Memory layout of B+-tree nodes in a database table. Branch nodes
simply store an array of interleaved tuple identifiers and child swips. Leaf nodes
store a fixed-size representation of all attributes in a PAX layout at the start of
the page, and any variable-length data at the end of the page. Page headers are
not shown for clarity.

4.2.1 Page Layout

The layout of branch nodes is straightforward since they only need to store
separator keys and child swips, both of which have a fixed length of 8 bytes.
As illustrated in Figure 4.4a, they are simply interleaved in a single array that
spans the entire page. We unconditionally employ the smallest available page
size for branch nodes, leading to a fanout of approximately 4 000 for 64KiB
pages. In contrast, leaf nodes need to store the actual tuples which may contain
variable-length attributes. In a way similar to traditional slotted pages, we
split these variable-length attributes into a fixed-length header that contains
an indirection to the actual variable-length payload, so that we can support
efficient random access to individual tuples (cf. Section 2.2.2). The resulting
fixed-length representation of tuples is stored at the start of the page, while their
variable-length payload is stored at the end of the page. In order to improve the
cache efficiency of scans, we internally organize the fixed-length part of a page

4.2. TABLES 91

in a PAX layout [11]. That is, it is structured in a columnar format where all
values of a given attribute are stored densely in a contiguous array. If a table
contains nullable attributes, we maintain an additional bitset for each tuple
which encodes the status of the respective attributes in order to optimize space
utilization (cf. Figure 4.4b).

A columnar tuple layout requires us to choose a capacity for the attribute
arrays when a leaf node is initialized. If the tuples only contain fixed-length
attributes we can deterministically choose the optimal capacity for a given page
size and tuple layout. However, if variable-length attributes are present this
is not possible, since we cannot reliably anticipate the space requirements of
incoming tuples anymore. In this case, it may be necessary to reorganize leaf
nodes during insertion by adjusting the capacity of the attribute arrays. In
our implementation, we heuristically choose the capacity based on the average
size of the newly inserted and existing tuples on a page. As a result, the initial
capacity of a leaf page is chosen based on the size of the first tuple that is inserted.
Whenever a new leaf node is created, we allocate a range of tuple identifiers to be
used within that node and set the fence keys accordingly. This range is chosen
sufficiently large so that the maximum theoretically possible number of tuples
can be inserted into the page. Subsequent insertions then simply assign the next
tuple identifier available within the page to the tuple. A useful side-effect of this
strategy is that tuple identifiers are usually dense within leaf nodes, in which
case we do not need to perform binary search for point lookups.

4.2.2 Scans & Point Lookups
An efficient implementation of full table scans is essential in order to guarantee
good performance in OLAP workloads. We scan tuples in the order of their tuple
identifiers, which results in a linear scan of the corresponding B+-tree. Table
scans are fully parallelized within the work-stealing parallelization framework
employed by Umbra [157]. This is achieved by partitioning the full range of
allocated tuple identifiers into approximately fixed-size morsels, which can
then be processed independently by the worker threads. Since we cannot
maintain sibling pointers in our implementation, we instead cache the page
stack containing the path to the current leaf node within each worker thread
during the scan, so that it can cheaply navigate to the next leaf node.

Within a given leaf node we exploit the columnar attribute layout to evaluate
compatible predicates in a vectorized way [148]. That is, we process tuples in
blocks and evaluate vectorized filters on the attribute arrays in order to eliminate
any tuples that do not satisfy the corresponding predicates. This results in far
fewer cache misses than processing tuples individually, and further optimizes
scan performance through the use of SIMD instructions. Any predicate that

92 CHAPTER 4. DATABASE TABLES AND INDEXES

cannot easily be vectorized is evaluated later by the generated code consuming
the tuples returned by the table scan.

Point lookups are mostly relevant in OLTP workloads that rarely involve
full table scans. During our preliminary experiments we determined that they
frequently exhibit substantial spatial locality, e.g. when a point lookup is followed
by an update or delete of the respective tuple. In order to exploit this locality,
we maintain a separate cached page stack for each table locally within each
worker thread. This page stack contains the path to the last leaf node that
was referenced by a point lookup, insert, update, or delete operation on the
respective table. This allows the traversal algorithm to quickly jump to the
correct leaf in many cases. We intentionally keep a separate page stack for full
table scans so that we do not pollute the lookup cache.

4.2.3 Insert
Since we guarantee that tuple identifiers are monotonically increasing, we can
heavily optimize page splits within our tables. Fundamentally, we still eagerly
split any full branch nodes that we encounter during traversal. However, instead
of splitting them in the middle we split them at the rightmost possible separator
location, ensuring that insertion fills them as far as possible. Note that branch
nodes must contain at least one child pointer for correctness, so we cannot
insert entirely empty branch nodes into the tree. Since tuple identifiers have a
fixed size, eager splitting can completely eliminate any cascading splits in this
case [85]. Leaf nodes within a table are never split, and we simply insert a newly
allocated page into the tree if insertion of a tuple into an existing page fails due
to insufficient available space.

Without any further optimizations, this approach would require all tuples
to be inserted into the rightmost leaf node of the tree which would clearly lead
to poor scalability in a multi-threaded setting. Our implementation avoids this
by lazily assigning a separate leaf node to each worker thread that wants to
insert tuples into a table. Similar to point lookups, the page stack containing
the optimistic latches on the path to this leaf node is cached locally within
the respective worker thread, allowing the vast majority of inserts to directly
jump to the respective leaf node without traversing the full tree. In some rare
cases this will not be possible due to a concurrent modification of the leaf node,
e.g. caused by maintenance during a lookup within a different worker thread.
Therefore, we additionally cache the last tuple identifier that was used for
insertion, so that we can also navigate to the leaf node with a regular traversal.
During bulk operations we can further optimize tuple insertion by batching
multiple tuples within a single log record. This reduces the amount of redundant
information that is written to the log and thus improves throughput. Note that

4.2. TABLES 93

Thread 1 Thread 2

1 2 3 4

(a) B+-tree state before threads 1 and 2 each
insert one tuple.

Thread 1Thread 2

1 2 3 4 5

(b) B+-tree state after threads 1 and 2 each
inserted one tuple.

Figure 4.5: Illustration of leaf allocations in database tables. Each worker thread
is assigned a separate leaf node into which it can insert tuples (leaf nodes 2 and
3 in a), while the rightmost leaf node is never assigned to any thread (leaf node
4 in a). If there is insufficient space to insert another tuple into the assigned
leaf node (leaf node 2 in a), we insert the tuple into a newly allocated leaf node
(leaf node 5 in b) but subsequently assign the previously rightmost leaf node for
further insertions (leaf node 4 in b).

this optimization is only possible since we never split leaf pages, i.e. we can
be sure that all tuples referenced by such a log record will reside on a single
database page. This is essential since we need to write a single compensation
log record in case the bulk insertion has to be rolled back.

While assigning separate leaf nodes for insertion to each worker thread
is a straightforward optimization conceptually, a careful implementation is
required to achieve acceptable performance in practice. This is due to the
fact that even though we do not physically split leaf pages, we still need to
update the rightmost leaf node whenever we append a newly allocated leaf
node to the B+-tree in order to adjust its right fence key. Since it is crucial
that leaf allocations complete quickly, especially when bulk-loading a table,
we minimize the potential for contention on the rightmost leaf node by never
directly assigning it to any worker thread. Instead, we pursue the following
approach when there is insufficient space for a tuple to be inserted into the leaf
page currently assigned to a worker thread (cf. Figure 4.5). We allocate a new
leaf node 𝐿𝑛𝑒𝑤 that is large enough to accommodate the tuple and append it
to the tree, updating the fence key of the currently rightmost leaf node 𝐿𝑜𝑙𝑑 in
the process. Afterwards, we insert the tuple into 𝐿𝑛𝑒𝑤 which is guaranteed to
be sufficiently large, but assign 𝐿𝑜𝑙𝑑 to the worker thread for any subsequent
insertions. As a result, the write frontier in the B+-tree will generally advance
in the second-to-rightmost leaf node, while the rightmost leaf node is only
occasionally accessed when a new leaf node needs to be allocated.

94 CHAPTER 4. DATABASE TABLES AND INDEXES

4.2.4 Delete & Update
Delete operations are relatively simple to implement in comparison to insertions.
We simply perform a point lookup to retrieve the leaf node containing the target
tuple, and subsequently apply the logical delete operation as outlined above.
Updates are usually performed by modifying the changed attributes in-place,
which follows the same procedure as for deletes. However, this may not be
possible in all cases due to several reasons. First, an update may modify an
indexed attribute in which case our multi-version concurrency control protocol
requires us to delete and re-insert the tuple into both the relation and the
index [197]. Second, when updating a variable-length attribute we cannot be
sure that there is sufficient available space within the leaf node. Therefore, we
currently perform all updates that involve variable-length attributes as a delete
followed by an insert in order to simplify the generated query code.

4.3 Indexes
A secondary index can be created on an arbitrary subset of the attributes in a
given table. Following standard practice, we always append the unique identifier
of the referenced tuples to the indexed attributes, both as a logical pointer into the
relation and as a tie-breaker in case of otherwise duplicate key values [85]. Note
that even a logically unique indexmay physically contain duplicates due to multi-
version concurrency control, although at most one of these duplicates will be
visible to any given transaction. Like the tables described in the previous section,
secondary indexes in our system are based on the generic B+-tree framework
presented in Section 4.1. However, their implementation is more challenging
and they can employ fewer specialized optimizations since search keys consist
of the actual values of the indexed attributes in this case. As a result, separator
keys may contain variable-length attributes, and page splits may cascade to
their parent nodes even if we eagerly split full branch nodes [85]. Moreover,
all key comparisons need to be performed according to the complex semantics
prescribed by the SQL data types of the individual indexed attributes. Finally,
secondary indexes may be used to enforce certain constraints on the indexed
tables which requires careful coordination during concurrent modifications.

4.3.1 Page Layout
The page layout for branch and leaf nodes is almost identical in secondary
indexes since no payload is associated with the search keys in our current
implementation. Similar to the layout of table leaf nodes, we store the fixed-size
part of the search keys at the start of a page, and any variable-size data at the

4.3. INDEXES 95

Variable-Length DataTuple
 Id

en
ti�

er

Attr
ibu

te
1

Attr
ibu

te
2

Null B
its

et

Figure 4.6: Memory layout of an index leaf node. A fixed-size representation
of the indexed attributes is stored in row-major layout at the start of the page,
and any variable-length data is stored at the end. Branch nodes additionally
interleave child pointers with the fixed-size part of the records. Page headers
and prefix compression are not shown for clarity.

end (cf. Figure 4.6). Since we expect that lookup performance is dominated by
the cost of binary search, we choose a row-major layout for both the branch
and leaf nodes in order to improve the cache efficiency of point accesses to
individual search keys. For the same reason, child swips are interleaved with the
search keys in case of the branch nodes. Finally, maintaining fence keys on each
page allows us to employ prefix compression at the granularity of individual
attributes in order to avoid storing redundant information [85].

Apart from some high-level information about the size of each attribute to
allow for space management and prefix compression, the search keys are opaque
to the index implementation. All key comparison functions as well as the most
commonly used cases of the binary search procedure are provided by callbacks
into generated code. This allows us to generate optimized code for each specific
index which greatly improves lookup performance.

4.3.2 Lookup
Internally, range and point lookups into an index are essentially indistinguishable
since we have to scan all records with a given search key prefix in both cases.
Even though all user-specified index attributes are bound in case of a point
lookup, the tuple identifierwhich is also part of the search key is usually unbound.
Therefore, we provide a unified implementation for both types of lookups that
iterates over all qualifying records in the search order of the index. For this
purpose, we rely on the generic traversal algorithm outlined above in order to
navigate to all relevant leaf nodes.

96 CHAPTER 4. DATABASE TABLES AND INDEXES

Within a given leaf, we have to perform some additional steps in order to
determine which of the records that physically match the lookup criteria are
actually visible within the current transaction. Since we always perform updates
of indexed attributes as a delete followed by an insert in our table implementation,
records in our indexes are never updated in-place. Consequently, it is sufficient
to consult the concurrency control component and reconstruct the correct value
of the state flag that indicates whether a given record is logically visible or
deleted. Once we have found a visible record, we proceed differently depending
on whether we are performing an index-only scan or a regular index scan.

In case of an index-only scan we can directly push the record to the consumer
of the index scan since it already contains all required attributes. If this is not the
case, we have to perform an additional point lookup into the indexed relation in
order to retrieve the missing attributes, using the tuple identifier stored in the
index record. Even though we have already determined that the index record
and consequently the referenced tuple are visible within the current transaction,
we still have to reconstruct the correct version of the referenced tuple. This is
necessary since in-place updates are possible within the relation, i.e. we may
have to reconstruct the values of some non-indexed attributes. Finally, the
reconstructed tuple can be pushed to the consumer of the index scan.

4.3.3 Insert & Delete

Indexes can be created on arbitrary attributes, for which reason the correspond-
ing search keys may contain variable-length data. It is still advantageous to
eagerly split full branch nodes during traversal as this can avoid cascading splits
in many cases [85]. However, they can realistically occur and we thus provide
the following fallback implementation in case the index contains variable-length
data. Before actually performing a page split we first check whether the selected
separator fits into the parent branch node. If this is not the case, we simply
restart traversal and attempt to split the parent node instead. These steps are
repeated until we eventually find a branch node that can be split after which
regular processing can be resumed [85]. If the search keys have fixed size we
usually split pages in the middle. Otherwise, we allow some slight deviation so
that we can choose the smallest possible separator key close to the middle of the
page. In general, it is recommended to split pages in the middle since we do not
have any information about the data distribution. However, it is well-known
that this leads to suboptimal space utilization especially if data is inserted in
sorted order, and unfortunately such insert patterns are frequently observed in
real-world workloads. We thus attempt to detect sequential insert runs at the
level of individual leaf nodes and adjust the page split behavior accordingly.

4.3. INDEXES 97

n = 21, nseq = 19, ilast = 19
1

10 11 12 13 14 15 16
17 18 19 20 21 2

3 4 5 6 7 8 9

(a) Index leaf node for which our heuristics
indicate a sequential insert run.

n = 0, nseq = 0, ilast = 0 n = 0, nseq = 0, ilast = 0

10 11 12 13 14 15 16
17 18 19 20 21

3 4 5 6 7 8 9 1 2

(b) State after an optimized page split of
the leaf node shown in (a).

Figure 4.7: Illustration of page splits during sequential insert runs. Records are
numbered in the order in which they were inserted into the original leaf node
in (a). When this leaf node needs to be split, we assume that a sequential insert
run is happening due to 𝑛𝑠𝑒𝑞/𝑛 > 90% and split the page immediately to the
right of the last insert position 𝑖𝑙𝑎𝑠𝑡, resulting in the state depicted in (b).

Specifically, we maintain three counters within the page header of leaf
nodes which track the position at which the last record was inserted (𝑖𝑙𝑎𝑠𝑡), the
total number of insertions (𝑛), and the number of sequential insertions (𝑛𝑠𝑒𝑞).
Whenever a record is inserted into a leaf node, we increase the total number
of insertions. If it was inserted immediately to the right of the last record that
was inserted into the page, we additionally increase the number of sequential
insertions. Finally, the cached insert position 𝑖𝑙𝑎𝑠𝑡 is updated to the position of the
newly inserted record. Once we have to split a leaf node, we check whether the
fraction 𝑛𝑠𝑒𝑞/𝑛 of sequential insertions into the node exceeds a given threshold
(90 % in our implementation). If this is the case, we assume that future insertions
will continue to follow a sequential pattern, and attempt to split the page to the
right of the last record that was inserted (cf. Figure 4.7).

Since structural modifications may affect the position at which records are
subsequently inserted, we pessimistically reset the heuristic state after any of
these operations. We found this optimization to be quite robust in practice, since
leaf splits generally only happen after a large number of insertions which gives
our heuristic a sizable sample on which to base its decision. Besides maximizing
space utilization, this adjusted page split behavior has the added advantage that
insertions during sequential insert runs now mostly occur at the end of the
record list within a leaf node, which substantially reduces the amount of data
that has to be shifted to make room for the new record.

Deletions are more straightforward to implement, as they only need to
perform a point lookup using a full search key, after which the record can be
marked as logically deleted. The regular maintenance approach outlined above
will eventually reclaim the record once the deletion has become globally visible
to all active transactions. While traversing to the target leaf node, both deletions

98 CHAPTER 4. DATABASE TABLES AND INDEXES

CREATE TABLE x (a INTEGER PRIMARY KEY)

Relation Unique Index (a)

CREATE TABLE y (b INTEGER REFERENCES x, c INTEGER UNIQUE)

Relation Unique Index (c)Index (b)

Outgoing FKIncoming FK

Figure 4.8: Illustration of the secondary indexes created for constraint checking.
A unique index is created for each primary key and unique constraint, and a
non-unique index is created for each outgoing foreign key constraint.

and insertions make use of the cached page stack that is also used for lookup
operations.

4.3.4 Constraint Checking
Within relational database management systems, secondary indexes are essential
not only to improve query processing performance, but also to enforce primary
key, foreign key, and unique constraints (cf. Figure 4.8). For this purpose, our
system implicitly creates a unique secondary index on the corresponding at-
tributes for each primary key or unique constraint. Note that we can treat both
of these constraint types in the same way since we do not support clustered
tables. In case of foreign key constraints, a unique constraint has to exist on
the referenced attributes which ensures that they form a key. Furthermore, we
implicitly create a non-unique secondary index on the referencing attributes in
order to facilitate constraint checks during tuple deletion. Since our concurrency
control approach does not employ any fine-grained locking, some care has to
be taken in order to guarantee that conflicts arising from concurrent operations
are handled correctly.

During tuple insertion, we have to ensure that none of the unique constraints
on the relation are violated. Specifically, we have to detect both the case in which
a tuple with the same key already exists, and the case in which such a tuple has
been inserted by a concurrent transaction. For a given unique constraint we
therefore first insert a record into the corresponding secondary index, before we
subsequently perform a point lookup to check for any conflicts. It is essential to
first insert the record into the index, as it would otherwise be possible for two

4.3. INDEXES 99

concurrent insert transactions to observe no conflicts during their respective
lookups. Unlike regular index lookups that only return records that are visible
to the current transaction, here we additionally return any record that has
concurrently been inserted into the index. If the lookup returns any record other
than the record that we just inserted ourselves, we report a unique constraint
violation and abort the inserting transaction. That is, we abort both in case of a
true unique constraint violation due to an existing key, as well as in case of a
concurrent conflicting insert. For example, when inserting into the relation y in
Figure 4.8, we have to apply this procedure to the unique index on c.

Furthermore, we have to verify that a matching tuple exists within the
referenced relation for each foreign key constraint. Here we have to detect
whether such a tuple does not exist at all, or whether a concurrent transaction
has deleted the referenced tuple. Similar to unique constraints, we can check
this by performing a point lookup into the corresponding secondary index on
the referenced attributes. For example, an insert into y in Figure 4.8 needs to
check the unique index on the attribute a of x. We return only index records
from this lookup that are visible to the current transaction and have not been
concurrently deleted. If no matching record can be found under these conditions,
we abort the inserting transaction.

When deleting a tuple we have to make sure that the deleted tuple is not
referenced by any incoming foreign keys. Like above this requires a point lookup,
this time into the secondary index that we create on respective attributes within
the referencing relation. In Figure 4.8, for example, deleting a tuple from x
requires a lookup into the non-unique index on the attribute b of y. Similar
to unique constraints, we have to detect both the case in which a referencing
tuple still exists or has been created concurrently. Thus, we return both visible
and concurrently inserted records from the point lookup and abort the deleting
transaction if any such record exists. In order to properly synchronize with
concurrent inserts into the referencing relation, we delete the respective records
from the indexes on the referenced relation before performing these checks.
This guarantees that no additional concurrent inserts of referencing tuples can
succeed while we check for incoming foreign keys, since they will already detect
the referenced key as concurrently deleted.

Constraint checks during out-of-place updates require special attention since
they are physically comprised of a delete followed by an insertion. Without
further adjustments, any incoming foreign key that references the updated tuple
would lead to an unconditional transaction abort during the deletion step, even
if the referenced attributes are not actually affected by the update. Furthermore,
some point lookups during the insertion step are unnecessary if the attributes
specified in a unique or foreign key constraint remain unchanged. For this reason,
we compute some additional metadata about out-of-place update operations as

100 CHAPTER 4. DATABASE TABLES AND INDEXES

follows. For each secondary index on the relation, we check whether any of the
updated attributes is covered by the index. If this is not the case, we statically
know that none of the updated attributes changed. Otherwise, we compare
the existing and updated attribute values at runtime to determine whether an
indexed attribute changed.

If we find that none of the indexed attributes changed for a given secondary
index, we skip checking for any incoming foreign key that references this index
during the deletion step. As outlined above, this is required for correctness.
Moreover, we optimize the insert step by not rechecking any unique constraint
that may be enforced by the index. Finally, if the index is associated with an
outgoing foreign key, we do not verify again that the a matching tuple exists
in the referenced relation. Since constraint checks are directly compiled into
the generated code for a query, we can either entirely omit generating code
for a constraint check if it is statically known to be superfluous, or generate a
conditional statement if this decision has to be made at runtime.

4.4 Auxiliary Data Structures
Some additional auxiliary functionality is required for a seamless integration of
the proposed access path implementations into a general-purpose system like
Umbra. In particular, we need a mechanism that allows us to persist the root
page identifiers of the respective B+-trees across system failures and restarts.
Furthermore, page allocations should be able to reuse pages that were previously
deallocated, e.g. during a B+-tree page merge, which requires us to maintain
an inventory of free pages. We intentionally omitted these components from
our discussion up to now, since they are more tightly coupled to the specific
characteristics of our proposed system than the generic techniques presented
above. Nevertheless, their implementation has a direct impact on the overall
system performance, for which reason we provide a brief description below.

4.4.1 Root Page Directory
Within our system, we maintain a single page file to which all database pages are
written. While this simplifies bookkeeping within the buffer manager to some
extent, it also implies that we cannot assign static page identifiers to the root
pages of all buffer-managed data structures. As a result, we need to implement
some form of durable root page directory that allows us to retrieve these page
identifiers after a system restart. However, it should be noted that our system
architecture does not constrain us to using a single page file in any way, and we
could easily maintain multiple separate page files if desired. This approach is

4.4. AUXILIARY DATA STRUCTURES 101

taken, for instance, by PostgreSQL which stores the pages associated with each
buffer-managed object in one or more individual page files and consequently
does not require a root page directory [95].

Fortunately, we can simply reuse our secondary index implementation for the
root page directory. Whenever we allocate the root page for a buffer-managed
object, we insert one record into this index which consists of the object type
(e.g. index or relation), the object identifier persisted in the database schema,
the partition number, and the page identifier of the root page. A regular prefix
lookup into the index can then be used to retrieve the root pages corresponding
to all partitions of a given schema object. The root page directory itself uses a
statically known page identifier for its root page so that it can still be accessed
after a system restart. Since we want to avoid frequently updating the root
page directory, we disallow changing root page identifiers once they have been
entered into the root page directory. As a consequence, splitting the root page in
a B+-tree must be implemented by first moving its contents to a newly allocated
page, which subsequently becomes the single child of the root page [85].

Interactions with the root page directory do not affect the logical database
contents, so they are always performed within system transactions. Therefore,
we can omit versioning the records within the corresponding B+-tree since no
transaction isolation is required for system transactions. Note that operations
within the root page directory may internally rely on further nested system
transactions, which is only allowed if the enclosing system transaction is not
yet in its atomic commit phase (cf. Chapter 3). If we need to perform any further
actions before interacting with the root page directory, we thus have to make
sure that these actions can be properly undone in case the system crashes. It is
of course still possible for the enclosing system transaction to transition into
the atomic commit phase after interacting with the root page directory.

4.4.2 Free Page Inventory
Structural operations such as page merging may result in unused pages that
should be reused in order to avoid excessive fragmentation of the database files
on disk. Therefore, we submit deallocated pages to a free page inventory that
is consulted every time a new page needs to be allocated. Conceptually, the
free page inventory stores the page identifiers of all existing but unused pages
within the system, as well as the next unallocated page identifier. Page allocation
requests first check if an unused page is available, and only we allocate a new
page identifier if this is not the case. Note that a free page inventory is required
even if we maintain separate page files for each buffer-managed object [95].

Like the root page directory, the free page inventory needs to be persistent
across system restarts and thus has to be implemented as a buffer-managed data

102 CHAPTER 4. DATABASE TABLES AND INDEXES

Free Page Tree 0 Free Page Tree n

Inventory Root

Size Class 0 Size Class n

Next PID ...

...

...

Figure 4.9: Structure of the free page inventory. A single root page with a known
address stores the next available page identifier and a reference to the root node
of a separate free page tree for each size class. Deallocated pages are inserted
into the appropriate free page tree, and can be returned from subsequent page
allocations. Traversal follows random child swips during both insertion and
extraction, resulting in an approximately balanced tree.

structure itself. Theoretically it is possible to simply maintain all unused pages
in a linked list by storing a reference to the next page within each unused page.
However, a linear chain of pages could dramatically slow down page eviction
within the buffer manager, and an approximately balanced tree structure is
preferable for the free page inventory (cf. Chapter 2). As an added benefit, this
also reduces contention when multiple threads attempt to concurrently extract
pages from the free page inventory.

The free page inventory maintains a single master page with a statically
known page identifier, on which the next unallocated page identifier is stored.
Furthermore, the master page stores a reference to the root node of an unused
page tree for each page size class supported by the buffer manager. A separate
tree is maintained for each size class since we can only reuse the disk space
associated with a certain page for pages of the same size (cf. Section 2.1.5). Each
node in an unused page tree can store zero or more child swips, the number of
which is stored within the page header (cf. Figure 4.9). A page that is submitted
to the free page inventory is cleared and reinitialized as an empty node with zero
children. If no tree for the respective size class exists yet, the page is inserted
as the root node of the unused page tree. Otherwise, we traverse the existing
tree by randomly following child swips until we find a node that has room
for another child. Once we find such a node, the swip referencing the newly
submitted page is appended to the corresponding child array. When a page
is requested from the free page inventory, we once again traverse the unused
page tree by randomly following child swips. Once an empty node is found, the

4.5. EXPERIMENTS 103

reference to this page is removed from its parent node, after which the extracted
page is cleared and returned from the allocation request. If no unused pages
exist, we instead allocate an entirely new page and update the next unallocated
page identifier on the master page of the free page inventory accordingly.

We intentionally choose a non-deterministic data structure for the free
page inventory since it allows us to build an approximately balanced tree of
pages without having to maintain any additional state within the nodes. This
allows us to implement inserting or extracting a node from the tree with exactly
two exclusive latch acquisitions, namely on the node itself and on its parent.
The remainder of the traversal algorithm can be implemented with optimistic
latch coupling similar to B+-tree traversal. Our approach therefore minimizes
contention on the free page inventory which is essential to ensure scalability of
operations that allocate or deallocate a large number of pages. All interactions
with the free pagemanagement have to be performedwithin system transactions,
since page allocations or deallocations should not be rolled back when the
surrounding user transaction aborts.

4.5 Experiments

In the following, we present the first end-to-end evaluation of the proposed
system architecture as it is implemented in the Umbra system. We focus onOLAP
workloads in this chapter, since we have not yet introduced our concurrency
control approach which is essential for OLTP workloads (cf. Chapter 5).

4.5.1 Setup

We demonstrate the competitive OLAP performance of Umbra in comparison
to its spiritual predecessor Hyper (version 0.0.16377), as well as to DuckDB
(version 0.6.1), MonetDB (version 11.45.13), PostgreSQL (version 14.1), and
another widely used commercial database system called DBMSX in the following.
All benchmark queries are submitted as ad-hoc SQL statements through the
standard client-server communication protocols provided by the respective
systems. Experiments are run on the server system used previously for our buffer
manager and logging subsystem microbenchmarks (cf. Sections 2.3 and 3.4).
That is, each database system is provided with 128 logical CPU cores and 512GiB
of main memory for query processing. Unless explicitly stated otherwise, all
systems are carefully configured in such away that no out-of-memory processing
is necessary.

104 CHAPTER 4. DATABASE TABLES AND INDEXES

Hyper MonetDB DuckDB DBMS X PostgreSQL

10−1

100

101

102

103
re
la
ti
v
e
s
p
e
e
d
u
p
(l
o
g
s
c
a
le
)

fa
s
te
r
⟶

⟵
s
lo
w
e
r

(a) Results on TPC-H at scale factor 10.

Hyper MonetDB DuckDB DBMS X PostgreSQL

10−1

100

101

102

103

re
la
ti
v
e
s
p
e
e
d
u
p
(l
o
g
s
c
a
le
)

fa
s
te
r
⟶

⟵
s
lo
w
e
r

(b) Results on TPC-DS at scale factor 10.

Figure 4.10: Relative speedup of Umbra over its competitor systems (𝑦-axis) in
case the entire working set fits into main memory. The boxplots show the 5th,
25th, 50th, 75th, and 95th percentiles.

4.5.2 System Comparison

We first perform an end-to-end system comparison on the well-known TPC-H
and TPC-DS data sets at scale factor 10 [2, 3]. Each benchmark query is repeated
five times in order to warm up any internal caches, after which we record the
execution time of the fastest repetition as measured by the database client. We
measure client-side execution time in this experiment, as we found during our
preliminary investigation that the reported server-side execution times are often
unreliable and cannot easily be compared in a fair way. Figure 4.10 shows the
relative speedup of Umbra over its competitor systems.

Most notably, we observe that Umbra performs excellently in comparison
to the pure in-memory system Hyper, achieving a geometric mean speedup of
2.2× on TPC-H and 1.7× on TPC-DS. While there are of course several distinct
factors that contribute to these results, in summary they clearly demonstrate
that a memory-optimized disk-based system like Umbra can indeed achieve

4.5. EXPERIMENTS 105

true in-memory performance on OLAP workloads. The observed speedup can
to some extent be attributed to the substantially reduced query compilation
latency incurred by Umbra [195], made possible by a combination of adaptive
compilation and low-latency code generation [131, 142]. Some of the larger
variations in performance also result from the respective query optimizers
picking different physical execution plans based on the available cardinality
estimates [75, 158]. However, Umbra outperforms Hyper even on scan-heavy
queries such as TPC-H Q1 or Q6, where these differences have little impact.

The remaining systems generally perform worse than Hyper. On TPC-
H, Umbra achieves a geometric mean speedup of 6.3× over MonetDB, 12.4×
over DuckDB, 24.1× over DMBS X, and 155.0× over PostgreSQL. Similarly, the
geometric mean speedup on TPC-DS amounts to 6.8× over MonetDB, 6.1× over
DuckDB, 23.7× over DBMS A, and 126.0× over PostgreSQL. Since these systems
share fewer similarities with Umbra thanHyper, the precise cause of these results
is less obvious. Nevertheless, some high-level observations are possible. First
of all, the benchmark queries in both TPC-H and TPC-DS contain a substantial
number of correlated subqueries [2, 3]. To the best of our knowledge, only
Umbra, Hyper, and DuckDB implement an approach that can reliably unnest
such queries and thus avoid quadratic runtime in the general case [196, 221].
MonetDB still chooses decent execution plans in most cases, but both DBMS A
and PostgreSQL occasionally pick extremely bad plans that result in a massive
slowdown. Even with good plans, however, query execution in these systems is
generally less efficient than in Hyper and Umbra. Finally, we observe a noticeable
performance gap between the comparatively more recent analytical systems
MonetDB and DuckDB on the one hand, and the general-purpose disk-based
systems DBMS A and PostgreSQL on the other hand. This illustrates that such
traditionally designed systems often fail to fully utilize the available hardware
resources even under ideal conditions where the entire working set fits into
main memory.

4.5.3 Scalability Beyond Main Memory
A key selling point of the memory-optimized disk-based system architecture
proposed in this thesis is that it not only achieves excellent performance on the
cached working set, but at the same time scales transparently and gracefully
beyond the capacity of main memory. In order to verify this claim, we measure
the query throughput sustained by Umbra on the TPC-H data set at scale factor
100 with progressively smaller buffer pool sizes ranging from 192GiB to 16GiB.
As the database contains 143GiB of page data, this simulates the transition
from an in-memory workload to an out-of-memory scenario with increasingly
severe memory pressure. Query throughput is extrapolated by repeating each

106 CHAPTER 4. DATABASE TABLES AND INDEXES

192 176 160 144 128 112 96 80 64 48 32 16

buffer pool size [GiB]

102

103

104
th
ro
u
g
h
p
u
t
[q
u
e
ri
e
s
/
h
]

Figure 4.11: Query throughput on TPC-H at scale factor 100 (𝑦-axis), measured
with progressively smaller buffer pool sizes (𝑥-axis). The vertical line indicates
the size of the database page file at 143GiB.

benchmark query five times, and recording the end-to-end execution time of the
entire set of queries. The results of this experiment are displayed in Figure 4.11.

For buffer pool sizes above 144GiB the entire working set fits into main
memory, and throughput remains stable at approximately 10 000 queries per
hour. Subsequently, the buffer manager has to swap an increasing number of
pages between main memory and stable storage, and throughput decreases
smoothly to 320 queries per hour with a buffer pool size of 16 GiB. This amounts
to a slowdown of just 31× even under extreme memory pressure. In contrast,
both DBMS A and PostgreSQL already incur a similar or even higher slowdown
over Umbra with an entirely memory-resident working set, which underscores
the efficiency of our implementation. Interestingly, we observe a slightly reduced
throughput of 7700 queries per hour with a buffer pool size of 144GiB, which
is nominally large enough to accommodate the entire data set. This is due
to our page replacement strategy which strives to maintain a small number
of unallocated buffer frames at all times (cf. Section 2.1.4). Most importantly,
however, there is no sharp drop in performance once the working set size
exceeds the buffer pool size since we can initially still cache a large fraction
of the working set. Our buffer manager maintains a steady read throughput
of approximately 8 GiB of page data per second in all of the cases that require
any degree of swapping, which further boosts performance if the working set
size only slightly exceeds the buffer pool capacity. Overall, this experiment
demonstrates that a memory-optimized disk-based system can unify the best of
both worlds within a single system: the performance of an in-memory system
and the scalability of a disk-based system.

4.6. RELATED WORK 107

4.6 RelatedWork
Since the B-tree was originally proposed in 1970 [30], it has matured into
an indispensable data structure in virtually all modern database systems, and
consequently a vast amount of research has been published about variants,
optimizations, or practical considerations thereof [87, 89, 140, 169, 178]. In-
stead of engaging in a futile attempt to exhaustively list all of this work, we
refer the reader to one of the excellent surveys published by Graefe [83, 85] or
Lomet [173] for a high-level overview of this area of research. In the following,
we additionally highlight specific techniques that are directly related to our
proposed B+-tree implementation.

Latch coupling is a well-known synchronization approach for B+-tree traver-
sal [31], but can suffer from poor scalability on modern multi-core systems. In
order to avoid this problem, we adopt optimistic latch coupling [160, 163], a
generic synchronization technique that has been demonstrated to work well
for B+-trees [159, 260]. Systems like PostgreSQL frequently maintain sibling
pointers in order to speed up range scans [115, 149, 156], but this optimization
is not applicable within our system since pointer swizzling requires each page
to be referenced by exactly one incoming swip [159]. Instead, we rely heavily
on the optimistic latching primitives provided by our buffer manager that al-
low us to cache references to previously visited pages without any additional
overhead [37]. The remainder of our traversal algorithm relies on more widely
used techniques, such as preemptively splitting nodes in order to avoid most
cascading page splits [190], and restarting traversal at an ancestor node if this
is not possible [85]. Similarly, the internal page layout of database tables and
secondary indexes in our system adopts many established optimizations, such as
prefix truncation [32], fence keys [89, 173], and a slotted record layout [85]. Fi-
nally, the vectorized evaluation of predicates on columnar data stored within the
leaf pages of our database tables is reminiscent of the corresponding approach
proposed for the Data Blocks in-memory storage layout [148].

Of course, there is a wide array of further optimizations that we could
adopt within our implementation in order to further improve its efficiency and
robustness. For example, storing some form of normalized keys [90, 173] in
our secondary indexes would allow for more aggressive prefix or suffix trunca-
tion [32], as well as for an easy implementation of interpolation search [84]. A
potential downside to this approach is that index-only scans cannot easily be
supported with normalized keys. A similar but less intrusive optimization is
to view strings as compound attributes made up by their individual characters,
which is beneficial if many strings share common prefixes or suffixes [232, 233].
Another promising technique is to reorder individual accesses to our access path
implementations which can improve both performance [53, 188, 282] and robust-

108 CHAPTER 4. DATABASE TABLES AND INDEXES

ness [88]. Finally, the page splitting and merging behavior could be adjusted
to address a number of issues, such as contention on a frequently accessed leaf
node [13], or an excessive number of node splits after index creation [80].

4.7 Summary
In this chapter, we presented the tailored B+-tree implementation that underlies
both the tables and secondary indexes within our proposed system. While
we can of course rely on many tried and tested techniques for this purpose,
several key adaptations to the unique characteristics of amemory-optimized disk-
based system are necessary. Foremost among these adaptations is a traversal
algorithm that allows for efficient range and point queries even though we
cannot maintain sibling pointer in our B+-trees. Furthermore, we discussed in
detail how this access path implementation interfaces with the other subsystems
discussed in this thesis in order to provide durability, transaction isolation, and
scalability beyond main memory with minimal overhead. As we demonstrate in
our experimental evaluation, this allows our system to achieve excellent OLAP
performance both on small workloads that fit entirely into main memory, and
on much larger workloads that substantially exceed the buffer pool capacity.

CHAPTER 5
Memory-Optimized Multi-Version

Concurrency Control
Excerpts of this chapter have been published in [74].

Robust and well-defined transaction isolation is one of the major selling points
of a general-purpose DBMS. It allows multiple clients to concurrently inter-
act with a database while providing each of them with the illusion that they
are the only user within the system [60, 92]. The database is responsible for
ensuring that these concurrent accesses occur in a semantically well-defined
way, which greatly simplifies the application logic that the clients have to im-
plement. Historically, concurrency control algorithms often relied on locking
to ensure transaction isolation, e.g. the well-known two-phase locking protocol
in which the database maintains read and write locks to coordinate conflicting
transactions [261]. However, locking-based approaches typically suffer from
major scalability problems as readers can block writers and vice-versa [197].
In contrast, multi-version concurrency control (MVCC) allows for much higher
concurrency between readers and writers [34, 189, 197, 261]. Under MVCC
any update of a data object creates a new version of that object while initially
retaining the old version, so that concurrent readers can still access it. Conse-
quently, writers can proceed even if there are concurrent readers, and read-only
transactions will never have to wait at all. Since this is a highly desirable
property, MVCC has emerged as the concurrency control algorithm of choice
both in disk-based systems such as MySQL [8], SQL Server [184], Oracle [9],
or PostgreSQL [95, 217], and in main memory databases such as HyPer [197],
Hekaton [54, 150], SAP HANA [64, 241], or Oracle TimesTen [146].

Following the same line of reasoning as these established systems, we argue
that MVCC is attractive for transaction isolation within a memory-optimized
disk-based system as well. It inherently provides excellent scalability since

110 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

it does not rely on locking, imposes few constraints on the remainder of the
system, and has been shown to exhibit robust performance in a wide variety
of real-world workloads. However, most recent work on high-performance
MVCC implementations has focused on the in-memory case since main memory
databases offer superior performance over traditional disk-based systems [228,
248, 266]. This allows several key simplifications that are not immediately
applicable to a disk-based system, such as assuming that all relation and version
data will reside in-memory at all times. In comparison, little attention has
been devoted to exploring novel MVCC approaches in a disk-based setting [185,
229]. Existing systems such as PostgreSQL still rely on MVCC implementations
that were devised decades ago [95, 266], and thus fail to optimally exploit the
capabilities of modern hardware. In particular, these systems often assume that
almost no database pages and version data at all can be maintained in-memory.
In the following chapter, we bridge this gap and present a novel approach that
is well-suited for a memory-optimized disk-based system.

Our proposal is based on the fundamental observation that the vast majority
of write transactions encountered during regular transaction processing are
extremely small. In particular, they generate comparatively few versions which
consumemany orders of magnitude less mainmemory than the amount typically
available on modern hardware. For instance, any given TPC-C transaction
updates substantially fewer than 100 tuples [1]. In these cases, a memory-
optimized disk-based system can easily maintain all versioning information
required by MVCC entirely in-memory. For this purpose, we extend the buffer
manager presented in Chapter 2 to transparently maintain a minimal mapping
layer which associates logical data objects on the database pages with memory-
resident versioning information in a decentralized way. By carefully relying
on the logging subsystem that is already in place anyway (cf. Chapter 3), it is
possible to ensure that this versioning information is truly ephemeral and will
never be written to persistent storage. As discussed in further detail below,
we can therefore design the remainder of our MVCC approach for the most
part like a pure in-memory implementation and adopt many of the existing
innovations and optimizations for this scenario. Not only does this lead to
excellent performance in the common case that the working set fits into main
memory, but it also dramatically reduces the amount of redundant data that has
to be written to disk, since generally only the most recent version of a data object
will be present on the actual database pages (cf. Chapter 4). Of course, large write
transactions with a footprint larger than main memory do realistically occur,
e.g. during bulk loading, and an efficient technique for providing transaction
isolation in these cases is required. We argue that the main objective here is to
allow read-only OLAP transactions to continue unimpeded by a concurrent bulk
operation, and consequently present a transparent fallback mechanism that does

5.1. FOUNDATIONS 111

not consume any additional main memory. This is achieved by storing some
minimal information on each database page in order to isolate bulk operations
from concurrent readers.

All techniques presented in this chapter have been integrated and evaluated
within the general-purpose database system Umbra [74, 195]. We thus provide
a detailed architecture blueprint for the transaction processing infrastructure
within a general-purpose disk-based database system. As we will demonstrate
in our experimental evaluation, the proposed system architecture achieves trans-
action throughput numbers up to an order of magnitude higher than traditional
disk-based database systems, which further confirms the viability of the memory-
optimized disk-based paradigm. Combined with the components presented in
the previous chapters, the proposed MVCC approach constitutes the final build-
ing block that allows such systems to combine graceful scalability and excellent
performance on both analytical and transactional workloads.

In summary, the key points covered by this chapter are:

1. A novel, low-overhead MVCC approach for disk-based systems which
exploits that most versioning information does not need to be persisted to
disk. This prevents bloating of database files, and tremendously expedites
transaction processing for the common case of small transactions.

2. A transparent fallback mechanism which allows the system to support
arbitrarily large write transactions whose footprint exceeds the available
main memory size.

3. Full integration and thorough evaluation of the proposed approach within
the general-purpose Umbra DBMS, validating that the proposed system
architecture is viable in a real-world setting.

The remainder of this chapter is structured as follows. In Section 5.1 we
present essential background information on multi-version concurrency control.
Subsequently, we discuss our in-memory version maintenance approach in Sec-
tion 5.2, the lightweight fallback mechanism for bulk transactions in Section 5.3,
and some further relevant considerations in Section 5.4. Finally, we conduct a
detailed experimental evaluation of our approach in Section 5.5, outline relevant
related work in Section 5.6, and summarize the chapter in Section 5.7.

5.1 Foundations
Our approach is based on the decentralized MVCC implementation first pro-
posed for the HyPer in-memory database system [197, 266]. We choose this
approach since it introduces little overhead and requires only minimal synchro-
nization, which matches the general design objectives for a memory-optimized

112 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

Relation Transaction Version Bu�ers

A
Tc

T2

T1 T1 T1

T2

U

V

X Y Z

W
B
C
D
...

Figure 5.1: Illustration of decentralized version maintenance in an in-memory
system. Relations store the most recent version of a tuple which is linked to a
chain of before-images stored in the transaction version buffers.

disk-based system. Furthermore, it allows for a garbage collection scheme that
is well-optimized and has been proven to be highly effective, which is especially
important if main memory is assumed to be finite [37, 197, 266]. Finally, it
can optionally ensure full serializability of transactions which may be desirable
depending on the workload. The key idea of this approach is to perform updates
in-place, and copy the previous values of the updated attributes to the private
version buffer of the updating transaction (cf. Figure 5.1). These before-images
form a chain for each tuple which possibly spans the version buffers of multiple
transactions. The entries in a given chain are ordered in the direction from
newest to oldest change, and can be traversed in order to reconstruct a previous
version of a tuple. Outdated versions that are no longer relevant to any trans-
action are garbage-collected continually, which is facilitated by having them
clustered within the transaction version buffers.

Each new transaction is associated with two timestamps, namely a unique
transaction identifier 𝑇𝑖𝑑 ∈ {263, … , 264 − 1} and a start timestamp 𝑇𝑠𝑡𝑎𝑟 𝑡 ∈
{0, … , 263 − 1} which corresponds to the most recent committed transaction.
Together, these timestamps determine the range of versions that are visible to
the transaction. During commit processing, transactions draw the next available
commit timestamp 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 from the same sequence that is used to generate the
start timestamps. Each version 𝑣 stores a single timestamp 𝑇 (𝑣) that is initially
set to the identifier 𝑇𝑖𝑑 of the transaction that created the version, and later
updated to the commit timestamp 𝑇𝑐𝑜𝑚𝑚𝑖𝑡. Thereby, the uncommitted state of a
tuple is initially only accessible to the transaction that modified the tuple, and all
other transactions reconstruct an old state of the tuple by traversing the chain
of before-images associated with the tuple.

Specifically, a transaction that accesses a tuple first reads the most recent
state of the tuple. Subsequently it traverses all versions 𝑣 in the corresponding

5.2. IN-MEMORY VERSION MAINTENANCE 113

version chain, applying the respective before-images along the way until the
following stopping criterion is met:

𝑣 = ∅ ∨ 𝑇 (𝑣) = 𝑇𝑖𝑑 ∨ 𝑇 (𝑣) ≤ 𝑇𝑠𝑡𝑎𝑟 𝑡.

The first term of the disjunction simply terminates traversal if there are no
more entries in a chain, the second term allows a transaction to see its own
changes, and the third term ensures that transactions reconstruct the state of
a tuple that was committed at the time of transaction begin. Note that this
scheme relies on the invariant that transaction identifiers are strictly larger than
any start timestamp. Consider, for example, the scenario depicted in Figure 5.1
and assume that there is an active transaction with 𝑇𝑖𝑑 = 𝑇𝑐 and 𝑇𝑠𝑡𝑎𝑟 𝑡 = 𝑇1. A
scan of the relation would then yield the values 𝐴 (since the update 𝑈 → 𝐴
was performed by 𝑇𝑐 itself), 𝑉 (since the update 𝑉 → 𝐵 by 𝑇2 is invisible due to
𝑇2 > 𝑇𝑠𝑡𝑎𝑟 𝑡, but the update 𝑌 → 𝑉 by 𝑇1 is visible to 𝑇𝑐 due to 𝑇1 ≤ 𝑇𝑠𝑡𝑎𝑟 𝑡), 𝐶 (since
the tuple is unversioned), and 𝐷 (since the update 𝑋 → 𝐷 by 𝑇1 is visible to 𝑇𝑐
due to 𝑇1 ≤ 𝑇𝑠𝑡𝑎𝑟 𝑡).

In order to avoid any locking overhead, transactions are allowed to execute
optimistically [144]. Write-write conflicts are deliberately avoided though, as
they could lead to cascading transaction aborts. They can easily be detected by
applying the above stopping criterion to check whether the most recent state of
the tuple is visible to the current transaction before performing the actual update.
If serializability is desired, the optimistic execution model requires a validation
phase in which it is ensured that all reads could logically have occurred at
the time of transaction commit [197]. Through an efficient implementation of
precision locking the enormous overhead of tracking the entire read set of a
transaction can be avoided. Instead, the predicates under which these reads
were performed are validated against the specific writes of recently committed
transactions that are recorded in their version buffers [121, 197].

5.2 In-Memory Version Maintenance
A buffer-managed database system typically employs a steal policy, i.e. database
pages containing uncommitted changes may be evicted to persistent storage.
This is essential in order to allow the system to scale gracefully beyond main
memory, but poses a key challenge when integrating anyMVCC approachwithin
such a system. The logical data objects comprising the database contents are
stored on database pages which may be evicted from main memory at any time,
yet at the same time they have to be associated with their respective version
chain in some way.

114 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

Existing systems resolve this challenge in awide variety of differentways, but
unfortunately none of these solutions are immediately applicable to a memory-
optimized disk-based system. A straightforward option is to physically materi-
alize all versions of a data object within the same storage space, e.g. all versions
of a tuple within the corresponding relation [266]. Although this approach is
taken by established systems such as the disk-based PostgreSQL [217] and the
in-memory Hekaton [54, 152], we argue that it leads to suboptimal resource
utilization and performance. Since they are maintained within the same physical
storage space, all versions necessarily become part of the persistent database
state that is written to disk, whereas only the most recent version of a data
object is actually required to be durable if write-ahead logging is used. Thus, a
large amount of redundant data is persisted leading to severe write amplification.
Append-only storage was extremely useful historically since it allowed MVCC to
be implemented with very few in-memory data structures, but this is no longer
necessary or desirable on modern hardware.

In order to avoid such write amplification it makes sense to store any ad-
ditional versions separately from the most recent version of a data object and
only include the latter in the persistent database state [266]. Variations of this
basic scheme are widespread in existing systems such as SQL Server, Oracle DB,
MySQL, SAP HANA, or HyPer, but they differ in essential details that have a
direct impact on the overall system performance [266]. Disk-based systems typ-
ically employ a global version storage data structure which maps stable logical
identifiers to actual versions. Each version of a data object, including the master
version that is persisted to disk, contains such a logical identifier as an additional
attribute to form a link to the next version in the corresponding chain. However,
a global data structure can easily become a major scalability bottleneck [38].
Moreover, versions can only be accessed through a non-trivial lookup into this
data structure, which makes even uncontended version chain traversals rather
expensive. In contrast, pure in-memory systems like HyPer store versions in
a decentralized way, and use raw pointers to directly link individual versions
within a chain instead of relying on logical identifiers [197]. This approach is of
course much more efficient, but a minimal logical mapping layer is still required
in our case since we cannot store raw pointer on database pages [159].

We thus propose the following high-level architecture for an efficient MVCC
implementation within a memory-optimized disk-based system (cf. Figure 5.2).
Database pages that can be evicted to disk store only the most recent version of
a data object (cf. Chapter 4). If a given database page contains any versioned
data objects at all, we maintain a local mapping table for this specific database
page exclusively in-memory. While the page is pinned in the buffer manager,
the respective buffer frame stores a pointer to the associated mapping table,
allowing direct access without consulting any global data structures. The table

5.2. IN-MEMORY VERSION MAINTENANCE 115

...

6
7

...
9

A
B
...

6
7
...Pa

ge
 3

...

...

... ...
...
...Pa

ge
 4

...

...

... ...
...
...Pa

ge
1

C
D
...

8
9
...Pa

ge
2

... ...

Bu�er FramesBu�er Pool

Orphans

...
2

Local Mapping
Tables

Evicted Page
Data on SSD Bu�er Manager Transaction Version Bu�ers

Tc

T2

T1 T1 T1

T2

U

V

X Y Z

W

Figure 5.2: Overview of version maintenance within our proposed approach.
Solid arrows represent physical pointers while dotted arrows indicate logical
references. Database pages store only the most recent version of a data object,
and all additional versioning information resides exclusively in-memory. The
buffer manager maintains a local mapping table for each versioned database
page which associates stable data object identifiers with version chains.

maps suitable stable logical identifiers of the versioned data objects (e.g. tuple
identifiers) residing on the page to the corresponding version chains which are
maintained in-memory. Any buffer-managed data structures are thus decoupled
from the actual version chain implementation and overall MVCC protocol,
allowing the latter to be chosen flexibly from a range of existing in-memory
MVCC implementations. As discussed previously, we argue that a decentralized
version maintenance scheme is best suited for our use-case and thus adopt the
MVCC approach outlined in Section 5.1, i.e. individual versions are clustered
within transaction-local buffers and linked through raw pointers. Garbage
collection is based on the highly scalable Steam algorithm devised for in-memory
systems, albeit with some extensions to account for the local mapping tables [38].

5.2.1 Version Maintenance
As outlined above, the logical versioning information required by MVCC is
physically highly decentralized within our proposed system. Central to our
approach are the local mapping tables that establish a link between data objects
on a page and their associated version chains, if any. A pointer to the mapping
table is stored in the corresponding buffer frame while a page resides in the
buffer pool, and can be accessed through the same latching protocol that is
already in place to access the page itself (cf. Chapter 2). That is, no additional
synchronization overhead is introduced since the system can request access to
both the database page and the associated mapping table with a single latch

116 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

acquisition [195]. The buffer manager can still evict arbitrary pages as usual,
but only the page data is actually written to disk. Any orphaned mapping tables
are retained in-memory by the buffer manager within a hash table that maps the
identifier of the corresponding page to the mapping table. Once a page is loaded
back into memory at a later point in time, the buffer manager probes this hash
table to check whether a mapping table exists for the page and reattaches it to
the respective buffer frame if necessary. A mapping table entry only stores a
pointer to the corresponding version chain that is maintained separately within
the transaction-local version buffers (cf. Section 5.1). This is extremely useful,
since it allows transactions to efficiently update the timestamps of their versions
during commit processing. Specifically, we do not have to update any mapping
tables which would require latching database pages.

Since we continuously reclaim expired versions, the vast majority of pages
will have no attached mapping table. Semantically, this means that there are no
version chains and thus the most recent state of all data objects on that page
is globally visible to all transactions. Note that such a page may still contain
logically deleted data objects that have not yet been physically reclaimed. A
mapping table is initialized lazily once a write transaction actually modifies a
data object on a previously unversioned page. Subsequently, writers can insert
mappings into this table in order to associate newly created version chains
with currently unversioned data objects, or retrieve existing mappings to apply
further modifications to an already versioned data object. When reading from
a versioned page, a lookup into the mapping table is required to determine
whether a version chain exists for a given data object. These lookups are only
performed in case that a page actually contains versioned data objects, which we
can determine at the granularity of pages by checking whether a mapping table
is present. In all other cases we can employ an optimized scan implementation
that unconditionally reads all non-deleted data objects from a page, minimizing
the overhead of our approach.

Consider, for example, the situation illustrated in Figure 5.2 which mirrors
the in-memory scenario shown previously in Figure 5.1. Pages 1 and 4 have
no associated local mapping table and thus contain no versioned data objects.
In contrast, pages 2 and 3 do contain versioned data objects which is indicated
by the presence of a local mapping table for these pages. Page 3 is currently
loaded into the buffer pool, so the respective buffer frame contains a pointer
to this mapping table. Page 2 is currently evicted, for which reason the buffer
manager remembers the pointer to the associated mapping table within the
separate orphan table. It will be reattached to the corresponding buffer frame
once page 2 is loaded back into memory.

5.2. IN-MEMORY VERSION MAINTENANCE 117

Page
Access

Page
Access

Transaction
Commit

42
84
21

Transaction Version Bu�ersMapping Tables

Figure 5.3: Illustration of garbage collection within our approach. Empty version
chain mappings and mapping tables are pruned on page access. Version buffers
of globally visible transactions are reclaimed upon transaction commit.

5.2.2 Garbage Collection

Like all MVCC implementations, our approach must ensure that outdated ver-
sioning information is reclaimed in a timely manner to prevent the system
from quickly running out of memory. For this purpose, we adapt the Steam
garbage collection approach to our proposed system architecture. This approach
has been shown to exhibit superior performance in comparison to a number
of alternative garbage collection schemes [38]. Moreover, Steam can be inte-
grated smoothly into our proposed system since it assumes a similar versioning
protocol [197].

Garbage accumulates in two different forms within our approach (cf. Fig-
ure 5.3). First, the version buffers maintained by the transactions must be
reclaimed once they are no longer relevant for any active transaction. Second,
each mapping table attached to a database page must be pruned regularly until
there are no more versioned data objects on the page and the mapping table
itself can be discarded. We deliberately split responsibility for these different
manifestations of garbage between several components of our system in order
to exploit the decentralized nature of our approach and minimize the commu-
nication overhead incurred by garbage collection. Specifically, during commit
processing the transaction version buffers are cleaned up but the mapping tables
are not modified in any way, since this would require latching the corresponding
database pages. Instead, they are pruned whenever a page is accessed during
regular query processing and we have to acquire a suitable latch on the page any-
way. Of course, on its own this only guarantees timely garbage collection of the
mapping tables for hot pages that are frequently accessed, and we additionally
rely on the buffer manager to prune the mapping tables of cold pages. Finally, as
proposed by Boettcher et al. individual obsolete versions can be pruned eagerly
during version chain traversal in order to ensure that the number of versions
per data object is limited to the number of active transactions [38]. This serves
to minimize the number of versions that have to be retained in the presence of

118 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

Tid = a, Tstart = 6

Tid = b, Tstart = 7

Tcommit = 5

Active Recently Committed

version bu�er

Tcommit = 6 version bu�er

Tcommit = 7 version bu�er

Figure 5.4: Transaction lists for garbage collection. Once transaction 𝑎 from
the active transaction list commits, we can reclaim the oldest two recently
committed transactions.

long-running readers, which otherwise could quickly cause obsolete versions to
accumulate.

In order to facilitate garbage collection of the transaction-local version
buffers, we maintain active and recently committed transactions in two ordered
linked lists (cf. Figure 5.4). A transaction is appended to the active list when
it begins, and moved to the recently committed list when it commits so that
the versions it created can be retained as long as they are still relevant to other
active transactions. Read-only transactions that did not create any versions
can be discarded immediately upon committing [38, 197]. As part of the com-
mit processing, we reclaim all recently committed transactions with a commit
timestamp that is less than the minimum start timestamp of any active transac-
tion. Note that we may unlink the last version of a chain during this process,
resulting in an empty version chain that is still associated with a data object
through a local mapping table. A data object which has an empty associated
version chain is by definition globally visible, so this obviously does not affect
correctness. However, we still want to remove such empty mappings as fast as
possible in order to limit the size of the local mapping tables and retain high
scan performance.

For this purpose, we extend the regular page-level maintenance processing
such as page compaction that is performed by a typical relation and index
implementation whenever it acquires a latch on a page (cf. Chapter 4). Before
any implementation-specific maintenance work is done, we first attempt to
prune any local mapping table that may be associated with the page. That is,
we iterate over the entries within the mapping table, discard mappings that
reference empty version chains, and finally remove the entire mapping table
if it has become empty. In order to avoid excessively many traversals of the
local mapping tables, we track some minimal statistics about the number of
empty version chains within the mapping tables, and only attempt pruning if
the fraction of empty version chains within a mapping table exceeds a certain
threshold, e.g. 5 %.

5.2. IN-MEMORY VERSION MAINTENANCE 119

Usually, write activity in the database will be focused on a comparably small
number of hot pages and the corresponding mapping tables will be continuously
pruned. Nevertheless, it is possible that versioned pages become cold and are
not accessed anymore, in which case they may even be evicted entirely by the
buffer manager. In order to limit the number of orphaned mapping tables within
the buffer manager, the worker threads employ the same pruning approach on
the orphaned mapping tables whenever they perform disk IO within the buffer
manager. Since we handle large write transactions through an entirely separate
mechanism that does not generate any physical versioning information at all,
we expect eviction of versioned pages to be extremely unlikely during regular
operation. Correspondingly the worker threads will rarely, if at all, have to
perform garbage collection duties on cold pages.

5.2.3 Recovery

As outlined briefly above, all versioning information maintained by our MVCC
implementation is ephemeral, meaning that it will never be written to disk and
is thus lost in case of system failure. This does not affect correctness, however,
since this information is only necessary in order to provide transaction isolation
during forward processing. Recovery exclusively relies on the information
captured in the write-ahead log generated during forward processing, and does
not require any concurrency control. After recovery, the database is in a globally
consistent state without any active transactions, and consequently no version
chains at all are present within the system. This allows the state of our MVCC
implementation to be initialized in the same way every time the system is (re-
)started, e.g. the transaction timestamp counters always start at their initial
values listed in Section 5.1 and the transaction lists are initially empty.

This property of our approach allows us to almost completely decouple
the logging and concurrency control subsystems, which greatly simplifies the
overall system design. One important exception to this strict separation is
transaction rollback, which has to be implemented carefully to account for
both components. In particular, an ARIES-style write-ahead logging protocol
requires that we write exactly one compensation log record whenever we revert
an existing log record, so that recovery can skip these log records in the undo
pass [189]. Since a single log record may encode changes to multiple data objects,
our system must implement rollback by scanning log records. When reverting
changes to a data object, the most recent version of that object on the database
page is overwritten with the before-image stored in the log record, and the
corresponding irrelevant version is unlinked from the respective chain. This
differs from a pure in-memory system which does not require undo logging and

120 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

can thus simply scan the version buffers and revert all changes to the affected
data objects individually.

5.2.4 Implementation Details
In order to ensure that garbage collection scales well, our actual implementa-
tion avoids centralized data structures wherever possible, which is especially
important on multi-socket systems. Specifically, we maintain additional active
and recently committed transaction lists locally within each worker thread as
proposed by the Steam framework [38]. Small write transactions are pinned to
a single worker thread, and subject to thread-local garbage collection according
to the approach outlined above. Larger transactions can be executed on multi-
ple worker threads, and are maintained within the global transaction lists for
garbage collection. These are protected through a regular latch, but this does not
constitute a major scalability bottleneck since it is unlikely that a large number
of multi-threaded transactions execute simultaneously (cf. Section 5.3). Inter-
nally, a multi-threaded transaction maintains a separate version buffer for each
worker thread, so that version allocation requests do not result in contention on
a single centralized data structure.

Since garbage collection directly operates on individual versions without
accessing them through the local mapping tables, it is possible that another
transaction tries to access the same versions concurrently during regular for-
ward processing. In order to ensure proper synchronization in this case, each
individual version chain contains a lightweight latch implemented using a single
integer which has to be acquired for any modification of the version chain [37].
All modifying operations are implemented carefully in such a way that read-
ers can still traverse version chains without latching them, using only atomic
operations. A side-effect of this optimization is that we cannot immediately
deallocate the transaction version buffers after garbage collection unlinked the
respective versions from their version chains [197]. Even though these versions
are certainly irrelevant to any active transaction, they may still be accessed by
concurrent readers. Deallocation is delayed until the oldest active transaction
has started after garbage collection processed the version buffer, at which time
we can be sure that no accesses to the versions are possible anymore [197].

5.3 Out-of-Memory Version Maintenance
Obviously, the in-memory versioning approach discussed in the previous section
fails for transactions which generate more version data than the amount of
available working memory. It is optimized for throughput in OLTP workloads,

5.3. OUT-OF-MEMORY VERSION MAINTENANCE 121

wherewe expect a high influx of concurrent but comparatively small transactions.
In contrast, OLAP workloads typically consist of expensive read-only queries,
with occasional ingestion of large amounts of data. Additionally, a user may
issue large write transactions at any point during regular operation, for example
intentionally for administrative purposes, or unintentionally due to a buggy
query. In all of these cases a robust mechanism is required to process such bulk
operations and allow the system to scale gracefully beyond main memory.

We argue that unlike the general-purpose MVCC implementations in ex-
isting disk-based systems, our fallback mechanism only has to support limited
concurrency which allows for a streamlined implementation. In particular, a
large write transaction will ideally saturate the available write bandwidth any-
way, so there is no benefit in allowing multiple such transactions to execute
in parallel. Furthermore, since a bulk operation by definition touches a large
fraction of the entire database, any concurrent writer substantially increases the
likelihood of write-write conflicts which could force the bulk operation to abort.
Due to the large amount of data that is modified, this is extremely undesirable.

We thus give bulk operations exclusive write access to the entire database,
and only allow read transactions to execute concurrently. This greatly simplifies
concurrency control, and additionally ensures that bulk operations will never
abort due to write-write conflicts. Conceptually, our approach allows bulk
operations to create virtual versions which encode creation or deletion of a
data object. This is sufficient to support transaction isolation for arbitrary
modifications in bulk operations, provided that bulk updates are performed
out-of-place. For the purpose of visibility checks, these virtual versions are
treated just like regular versions in our MVCC protocol. That is, a data object
can be associated both with virtual versions created by a bulk operation, and
regular versions created by the in-memory versioning approach. Crucially, such
virtual versions require no physical memory allocation, allowing our approach
to process arbitrarily large write transactions.

5.3.1 Versioning Protocol
Our proposed versioning protocol for bulk operations is based on a central mono-
tonically increasing bulk operation epoch counter maintained by the database.
Similar to the timestamps employed in the in-memory case, each transaction is
associated with a start epoch 𝐸𝑠𝑡𝑎𝑟 𝑡 ∈ {0, … , 264 − 1} taken from this sequence. A
virtual version 𝑣∗ is marked with an epoch 𝐸(𝑣∗) which is set to the start epoch
𝐸𝑠𝑡𝑎𝑟 𝑡 of the bulk operation that created the virtual version. A virtual version 𝑣∗
is visible to a transaction iff

𝐸(𝑣∗) ≤ 𝐸𝑠𝑡𝑎𝑟 𝑡.

122 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

cre
ate

d

de
let

ed

reference epoch 6

Page Logical Version Chains

A
B
C

YT2 createE6

E6 delete T1 X

T1 Z

Figure 5.5: Bulk operations create virtual versions (illustrated as dashed boxes)
by setting Boolean flags on the database pages. In this example, two regular
transactions 𝑇1 and 𝑇2 updated tuples on a database page, whereas a bulk trans-
action 𝐸6 created one tuple and deleted another. The local mapping table for
the database page and the individual transaction version buffers are omitted for
clarity.

For regular transactions, the start epoch is simply set to the current value of the
central counter when they begin. This allows them to see any virtual versions
that were created by bulk operations that committed before they started. In
bulk transactions, 𝐸𝑠𝑡𝑎𝑟 𝑡 is set to the next available value of the central counter.
Therefore, any virtual versions created by a bulk operation are initially invisible
to concurrent readers. Upon commit, a bulk transaction atomically increments
the central bulk operation epoch, which makes all virtual versions it created
visible to subsequent transactions. Note that a single epoch value per transaction
is sufficient here, since we do not allow multiple concurrent bulk operations.

The central bulk operation epoch is persistent across system restarts, and
any changes thereof are properly logged to ensure durability. This allows
us to implement virtual versions with extremely low overhead by storing a
single reference bulk load epoch in the header of each database page containing
potentially versioned data objects. Within each data object, two Boolean flags
are maintained which indicate whether the object has an associated virtual
creation or deletion version, which are implicitly marked with the reference
bulk load epoch of the page. The reference epoch is initially set to a sentinel
value indicating that no virtual versions are present on the page (264 − 1 in our
implementation). When a bulk operation later modifies a data object, it first sets
the reference bulk load epoch of the page to its start epoch 𝐸𝑠𝑡𝑎𝑟 𝑡. Subsequently,
it updates the data object and sets the appropriate virtual version flag. Note
that these flags do not actually consume any additional space on the pages in
our implementation, since we can pack them into some unused bits of the tuple
identifier stored in each data object.

Within the version chain associated with a given data object, a virtual version
implicitly constitutes the oldest (in case of creation) or newest (in case of deletion)

5.3. OUT-OF-MEMORY VERSION MAINTENANCE 123

version (cf. Figure 5.5). These virtual versions are processed together with the
in-memory versions during version chain traversal, and the visibility of the data
object is computed according to the visibility criterion given above. Therefore,
our approach for bulk operations does not require any intrusive modifications of
the high-level MVCC protocol implemented within our system, which ensures
that it incurs negligible overhead during regular transaction processing.

Consider, for example, Figure 5.5 where three subsequent transactions mod-
ified tuples on a given database page. A regular transaction with commit times-
tamp 𝑇1 updated the first tuple from 𝑋 to 𝐴 and the third tuple from 𝑍 to 𝐶.
Subsequently, a bulk transaction with epoch 𝐸6 deleted the first tuple, and cre-
ated the second tuple with value 𝑌. Instead of allocating physical versions like a
regular transaction, this information is recorded by setting the reference bulk
load epoch and the respective Boolean flags on the database page. Readers
interpret these flags as virtual versions with epoch 𝐸6 when scanning the page
(illustrated as dashed boxes in Figure 5.5). Finally, another regular transaction
with commit timestamp 𝑇2 updated the second tuple from 𝑌 to 𝐵. Therefore, a
scan with 𝑇𝑠𝑡𝑎𝑟 𝑡 = 𝑇1 and 𝐸𝑠𝑡𝑎𝑟 𝑡 = 5 would return A and C, whereas a scan with
𝑇𝑠𝑡𝑎𝑟 𝑡 = 𝑇1 and 𝐸𝑠𝑡𝑎𝑟 𝑡 = 6 would return Y and C.

In theory, it would be possible to directly use the transaction timestamps
for marking virtual versions but this has several major disadvantages. First of
all, it requires making changes to these timestamps durable since our persistent
database pages can reference them. Thus, every transaction commit would
need to write some additional data to disk. Most importantly, the in-memory
versioning protocol requires that all versions generated by a transaction are
retimestamped during commit. While this is practicable for small transactions,
it is prohibitively expensive for bulk operations that potentially modify a large
number of database pages.

5.3.2 Synchronization
As outlined above, our approach requires some synchronization between trans-
actions of different kinds. For this purpose we maintain a single global mutex
within the database. Read transactions never need to latch this mutex since
they are always allowed to proceed. Regular write transactions acquire a shared
latch on this mutex, allowing multiple regular write transactions to be executed
concurrently. Finally, bulk transactions acquire an exclusive latch on this mutex.
Despite requiring a global mutex, our approach introduces negligible contention
since latch acquisitions never block unless a bulk transaction is currently execut-
ing. Note that our approach would allow for more fine-grained synchronization
of writers on the relation or partition level, so that multiple independent bulk
operations can execute concurrently. While this increases implementation com-

124 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

plexity, it is attractive on multi-socket systems where a centralized latch could
introduce noticeable overhead.

A side-effect of our virtual version implementation is that we cannot allow
a new bulk operation to begin until after any previous bulk operations have
become globally visible to all active transactions. The reference bulk load epoch
stored on a database page is used to implicitly determine the visibility of all
virtual versions on the page, i.e. we cannot store virtual versions with multiple
visibilities on a single page. Thus, when committing a bulk operation we do
not immediately release the exclusive write latch on the database, but initially
only downgrade it to a shared latch. This allows regular write transactions to
begin immediately after a bulk operation has committed, but prevents another
bulk operation from starting until the shared latch is released once the previous
bulk operation has become globally visible. A desirable consequence of this
restriction is that long-running readers delay the next bulk operation instead of
forcing the system to maintain an excessive number of obsolete versions.

5.3.3 Detecting Bulk Operations
Detecting bulk operations in the first place poses a challenge in itself. The
preferred way is to receive explicit instructions from the user to execute a
transaction as a bulk operation, e.g. in an interactive administration session or
when ingesting large amounts of data. For this purpose, the database system can
provide a SET TRANSACTION BULK WRITE statement, for instance. Naturally,
this mechanism is inherently unreliable since it relies on correct user input.
It is thus not sufficient on its own, and we provide several fallback options to
alleviate this. First, we additionally try to infer the write behavior of statements
during query optimization, and automatically switch to bulk processing if the
first statement within a transaction is likely to modify a large amount of data. As
a last resort, e.g. during subsequent statements of a multi-statement transaction
or in case the optimizer incorrectly deduced the write behavior of a statement,
we also track the amount of memory consumed by the version buffers of the
transaction. If the system is in risk of running out of memory, the transaction is
aborted and the user can restart it explicitly as a bulk operation.

5.3.4 Garbage Collection
Since our versioning approach for bulk operations does not generate any physical
versions, garbage collection can be performed more lazily than in the in-memory
approach. Whenever a page containing virtual versions is accessed, we check
whether the corresponding reference bulk load epoch is globally visible. If this
is the case, we clear the virtual version flags of all data objects on the page, and

5.4. FURTHER CONSIDERATIONS 125

reset the reference bulk load epoch to the sentinel value. These operations can
be performed alongside the pruning of local mapping tables during each page
access, where a suitable latch on the database page has already been acquired.

5.4 Further Considerations
In the following we briefly discuss some potential directions in which our
proposed approach could be extended in the future.

5.4.1 Scalability to Multi-Socket Systems
Although modern CPUs already feature up to 100 logical threads, multi-socket
server configurations promise even greater parallelism. However, this comes at
the cost of a non-uniform memory access (NUMA) topology which can impede
performance in case of excessive cross-socket communication. As outlined
in more detail above, the proposed MVCC approach itself takes care to avoid
centralized data structures whenever possible to reduce potential scalability bot-
tlenecks. Cross-socket communication could be reduced further by leveraging
information about data locality and making the buffer manager and scheduler
aware of the NUMA topology [157, 159]. Write operations can then be scheduled
in such a way that most local mapping tables and their associated version chains
are created within the same NUMA region as the corresponding database pages.
If necessary, larger operations can also be split into smaller fragments that are
then scheduled individually [157].

5.4.2 Serializability Validation
Our approach as described in this chapter guarantees snapshot isolation for all
transactions processed by the system. While this is sufficient for the majority
of workloads, especially if high throughput is desired, our approach could be
extended to allow for full serializability using the precision locking approach
outlined in Section 5.1 [197]. Recall that this requires us to validate upon
transaction commit that all reads performed by the transaction could have been
done at the logical end of the transaction without any observable change. During
execution, we thus log the predicates under which a transaction reads data, and
later use these during validation to determine whether any conflicting writes
were committed in the meantime. Only the transactions that committed after
the start timestamp of the transaction under validation are relevant for this
check.

126 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

For any regular transaction among these, this can be achieved efficiently by
scanning the associated version buffers maintained in the recently committed
transaction list, and evaluating the predicates on the respective versions [197].
This limits the number of data objects that have to be inspected exactly to the
number of potentially conflicting writes. For recently committed bulk transac-
tions this approach cannot be employed since they create no versions in main
memory. Therefore, we have to fall back to actually repeating the reads per-
formed by the transaction under validation in this case, i.e. we perform an actual
table scan with the logged predicates. However, this is still reasonably perfor-
mant since we can use the reference bulk load epoch stored on the database
pages to quickly determine whether a page could contain any potentially con-
flicting writes. Therefore, the number of actual data objects that have to be
inspected is close to the number of writes performed by the bulk operation. A
detailed discussion of the underlying precision locking approach is provided in
the original paper on this subject [197].

5.5 Experiments
In the following, we provide a thorough evaluation of our concurrency control
approach as it is implemented within Umbra, concluding our experimental study
of the proposed storage engine architecture.

5.5.1 Setup
In order to demonstrate the feasibility of our proposed approach within a real-
world setting, all experiments are performed through an external benchmark
driver that communicates with the database system server over a standard com-
munication protocol. We compare our implementation to PostgreSQL version 14
and another widely used commercial database management system referred to
as DBMS A in the following [95]. We consider both the disk-based (DBMS AD)
and the in-memory (DBMS AM) storage engines provided by DBMS A in our
evaluation. The respective workloads are implemented as stored procedures that
require minimum communication with the benchmark driver, i.e. we carefully
avoid any unnecessary data transfer [220]. In case of Umbra, we make use of the
UmbraScript scripting language for this purpose. For PostgreSQL, the workloads
are implemented using PL/pgSQL and for DMBS A we rely on its proprietary
scripting language.

In case of both Umbra and PostgreSQL, the driver uses libpq version 14 for
communication through the PostgreSQL message protocol. We make use of the
message pipelining capabilities provided by this protocol in order to minimize

5.5. EXPERIMENTS 127

the communication overhead in both cases. For DBMS A, communication with
the database server occurs through ODBCwhere we simulate message pipelining
by issuing batches of prepared statements. All systems are configured to employ
snapshot isolation in conjunction with asynchronous commit semantics which
ensures that throughput results are not affected by the latency of the storage
device. Finally, we ensure that a separate DBMS worker thread is available to
process the requests by a given benchmark driver client thread.

Experiments are run on a server system equipped with 192GB of RAM and
an Intel Xeon Gold 6212U CPU providing 24 physical cores and 48 hyper-threads
at a base frequency of 2.4 GHz. The write-ahead log resides on a 768GB Intel
Optane DC Persistent Memory device, while all remaining database files are
placed on a PCIe-attached Samsung 970 Pro 1 TB NVMe SSD, both of which are
formatted as ext4. Note that we only rely on the persistent memory device since
it is able to absorb the large volume of log data written during the benchmark
runs, i.e. we do not exploit any properties specific to persistent memory. As
Haas et al. have demonstrated, comparable write bandwidth could be obtained
through directly-attached NVMe arrays which we expect to become widely
available in future server configurations [97].

5.5.2 System Comparison
We begin our experiments with an end-to-end system comparison between Um-
bra, PostgreSQL, and DBMS A. For this purpose we select the well-known TATP
and TPC-C transaction processing benchmarks [1, 199]. For TATP we populate
the database with 10 000 000 subscribers and run the default transaction mix
consisting of 80 % read transactions and 20 % write transactions with uniformly
distributed keys. For TPC-C, we use 100 warehouses and run the full transac-
tion mix consisting of about 8 % read transactions and 92% write transactions.
Depending on the system, the initial database population including indexes
requires between 7GB to 8GB for TATP, and between 11GB to 12GB for TPC-C.
Umbra is configured to employ hash partitioning on the warehouse number
for the TPC-C database, i.e. it internally creates separate relation and index
instances for each warehouse hash value in order to minimize latch contention.
Partitioning is disabled for the other systems, as our preliminary experiments
showed that it has a negative effect on their overall performance. The systems
are configured to use 100GB of main memory for their buffer pool, which is
sufficient to accommodate the entire working set throughout the benchmarks.
Therefore, they are executed under ideal conditions for high performance since
only minimal disk IO is required, which allows us to investigate to which extent
the different systems can exploit the capabilities offered by modern hardware
platforms. All benchmarks first run for 30 seconds to warm up any caches and

128 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

1 4 8 16 24 32 40 48

number of clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
th
ro
u
g
h
p
u
t
[⋅1

06
T
X
/s
]

Umbra PostgreSQL DBMS AD DBMS AM

(a) TATP throughput results.

1 4 8 16 24 32 40 48

number of clients

0

50

100

200

300

400

th
ro
u
g
h
p
u
t
[⋅1

03
T
X
/s
]

Umbra PostgreSQL DBMS AD DBMS AM

(b) TPC-C throughput results.

Figure 5.6: Transaction throughput on the OLTP workloads (𝑦-axis) in relation
to the number of client threads (𝑥-axis).

internal data structures, after which throughput numbers are measured over
another 30 seconds.

Performance Results

Throughput results on the TATP and TPC-C benchmarks in relation to the num-
ber of client threads are shown in Figure 5.6. In both cases Umbra outperforms
its competitors by up to an order of magnitude, reaching a maximum speedup of
9.2 × over PostgreSQL, 27.6 × over DBMS AD, and 18.8 × over DBMS AM. Trans-
action throughput universally scales well with the number of client threads
on the TATP benchmark. With a single client thread, the systems respectively
process 183 000 TX/s (Umbra), 33 400 TX/s (PostgreSQL), 7 900 TX/s (DBMS AD),
and 15 000 TX/s (DBMS AM). Umbra, PostgreSQL, and DBMS AM attain their

5.5. EXPERIMENTS 129

maximum throughput at 48 client threads with 3 247 000 TX/s, 618 700 TX/s, and
237 900 TX/s, respectively. DBMS AD achieves its maximum of 117 700 TX/s at
40 client threads after which throughput decreases marginally to 113 000 TX/s.
Since TPC-C is much more write-heavy than TATP, we observe generally lower
throughput, starting at 27 000 TX/s (Umbra), 2 600 TX/s (PostgreSQL), 1 100 TX/s
(DBMS AD), and 4 000 TX/s (DBMS AM) with a single client thread. Neverthe-
less, performance scales well for Umbra, PostgreSQL, and DBMS AM as the
number of client threads is increased, and they reach maximum throughput at
48 client threads with 413 300 TX/s, 44 700 TX/s, and 22 000 TX/s respectively. In
contrast DBMS AD struggles to achieve good scalability, and attains its maxi-
mum throughput of 14 900 TX/s at 24 client threads beyond which performance
decreases again down to around 9 000 TX/s.

Discussion

Our experiments clearly demonstrate that traditionally designed disk-based
database systems such as PostgreSQL and DBMS AD cannot fully exploit the
capabilities of modern hardware, which confirms earlier such results from
related work [101, 159, 195]. The single-threaded throughput numbers constitute
particularly strong evidence for this conclusion, as system performance is far
from being bound by IO throughput in this case. In fact, even the mature in-
memory system DBMS AM falls short of Umbra although it can avoid many of
the complexities encountered in a disk-based system. Note that despite the low
absolute performance of DBMS AM, its relative speedup over DBMS AD matches
the corresponding performance metrics published by the manufacturer. The
large speedup of Umbra over its competitors is almost entirely due to the greatly
reduced overhead of its novel memory-optimized system architecture and the
proposed MVCC implementation. We can exclude communication overhead as
a source of the observed speedup over PostgreSQL, since the benchmark drivers
for Umbra and PostgreSQL rely on exactly the same client-server communication
protocol (cf. Section 5.5.1). Although PostgreSQL does scale well on both TATP
and TPC-C, adding more client threads cannot resolve the inherent performance
impediment caused by the excessive implementation overhead.

In contrast, Umbra is much better suited to exploit the large amount of
main memory and high IO bandwidth offered by the benchmark platform. Its
low-overhead buffer manager and decentralized logging framework ensure that
virtually no overhead is introduced while accessing and modifying database
pages [101, 159], despite generating slightly over 1GB/s of log data in order to
guarantee durability. Since the proposed memory-optimized MVCC implemen-
tation is highly decentralized and closely integrated with the buffer manager, it
introduces little additional overhead and negligible contention (cf. Section 5.5.3).

130 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

As outlined above, the storage engine employed by Umbra is derived from
LeanStore which is one of the fastest disk-based storage engines currently
published [159]. Therefore, our experiments provide a unique opportunity to
quantify the additional implementation overhead that is required to provide
general-purpose relational database functionality on top of such a state-of-the-
art storage manager. On the same benchmark platform as used for our experi-
ments, a standalone implementation of LeanStore achieves a single-threaded
TPC-C throughput of 41 000 TX/s which scales to 857 000 TX/s with 48 threads,
albeit without any concurrency control [101]. Various factors contribute to the
observed performance differential. For example, data is manipulated through
SQL in Umbra, and its relation and index implementations have to generically
support arbitrary tuple layouts. In contrast, both data layout and manipulation
are hard-coded in the LeanStore benchmark driver. A further contributing factor
is that LeanStore employs clustered relations, whereas Umbra only supports
non-clustered relations which roughly doubles the number of lookup operations
that Umbra has to perform (cf. Chapter 4). A well-optimized in-memory system
can operate with even lower overhead since it can employ highly specialized
data structures that are not applicable to a disk-based setting [161]. For instance,
we measured the single-threaded TPC-C throughput of HyPer in our benchmark
environment to be 58 800 TX/s, using the libpq driver executable also employed
for our experiments with Umbra and PostgreSQL. Note that the academic version
of HyPer does not employ any thread synchronization [129], for which reason
we were unable to obtain any multi-threaded throughput numbers. In summary,
our results show that a memory-optimized disk-based system architecture, and
in particular the MVCC implementation proposed in this chapter, are viable in
a real-world setting and achieve excellent performance even when integrated
into a general-purpose database system.

5.5.3 Detailed Evaluation
In the following we present additional experiments within Umbra in order to
investigate key characteristics of our proposed approach in more detail.

Impact of MVCC Implementation

In our first experiment we quantify the impact of various components of our
MVCC implementation (cf. Table 5.1). Specifically, we begin my measuring the
TPC-C throughput achieved by Umbra without any of the transactional features
discussed in this chapter, i.e. under read uncommitted isolation semantics. Sub-
sequently, we successively enable the transaction lists discussed in Section 5.2.2,
and the centralized shared writer latch introduced in Section 5.3, both of which

5.5. EXPERIMENTS 131

Table 5.1: Breakdown of the impact that various components of the proposed
approach have on the overall performance of Umbra. We show TPC-C transac-
tion throughput for 1 and 24 client threads, along with the slowdown relative to
non-transactional Umbra in parentheses.

TPC-C throughput [⋅103 TX/s]
1 client 24 clients

non-transactional Umbra 32.8 452.0
+ transaction lists 31.6 (-1.04 ×) 440.7 (-1.03 ×)
+ shared writer latches 31.3 (-1.05 ×) 429.8 (-1.05 ×)
+ snapshot isolation 27.0 (-1.22 ×) 366.0 (-1.23 ×)
- in-place updates 6.4 (-5.13 ×) 86.2 (-5.24 ×)

require some coordination between worker threads. Note that we do not yet
perform any versioning in these measurements in order to isolate the overhead
introduced by the respective components. The efficient latch implementation
employed by Umbra ensures that the combined slowdown is barely noticeable
at 1.05 × for both 1 and 24 client threads [37]. Next, we enable the actual MVCC
implementation and thus change the transaction semantics to snapshot isolation.
As expected, this affects transaction throughput which decreases by a factor of
about 1.2 × relative to the non-transactional system configuration. Nevertheless,
these results demonstrate that our MVCC implementation allows the system
to retain both good scalability and high transaction throughput. Finally, we
disable in-place updates in our approach, forcing all versions to be physically
materialized within the same storage space. The resulting system configuration
thus imitates the append-only version storage scheme employed by established
systems such as PostgreSQL and Hekaton [266]. As shown in Table 5.1, this
causes throughput to drop dramatically by more than 5 × relative to the max-
imum attainable value, although the system still outperforms its competitors
due to other optimizations such as a compiling query execution engine. Based
on previously published results, we expect the benefit of supporting in-place
updates to be even more pronounced in scan-heavy workloads since they pre-
vent excessive fragmentation of the relations [197]. In summary, the experiment
confirms that the proposed MVCC implementation has a crucial impact on the
performance of a memory-optimized disk-based system.

Scalability Beyond Main Memory

As we repeatedly emphasize throughout this thesis, one of the major selling
points of a memory-optimized disk-based system is its scalability to working set

132 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

0

100

200

300

400
th
ro
u
g
h
p
u
t
[k
T
X
/s
]

TPCC throughput

0.1

1

10

100

M
V
C
C
m
e
m
o
ry

[M
B
]

mapping tables version chains

0 120 240 360 480 600

time [s]

0

0.5

1.0

IO
a
c
ti
v
it
y
[G
B
/s
] log write page read page write

Figure 5.7: Umbra performance metrics (𝑦-axis) sampled over time (𝑥-axis) in
100ms intervals. We run TPC-C with 24 client threads and a restricted buffer
pool size in this experiment, resulting in heavy memory pressure.

sizes which exceed the available main memory capacity. We demonstrate the
feasibility of the proposed MVCC approach within such a system by running the
TPC-C benchmark with 24 client threads and an artificially constrained buffer
pool size of 16GB in order to simulate such an out-of-memory scenario. Since
Umbra requires roughly 12GB of database pages in order to store the initial
TPC-C population, this quickly results in heavy memory pressure. Figure 5.7
shows the development of various performance metrics over 10 minutes of
running this workload. The final database state after the experiment contains
close to 150GB of database pages.

During roughly the first half of the experiment, we observe a smooth and
graceful transition from pure in-memory transaction processing to steady-state
operation beyond main memory. During this transition, Umbra transparently
begins to swap database pages to disk as memory pressure increases, while

5.5. EXPERIMENTS 133

Table 5.2: Time and version memory required to load the initial TPC-H database
population at scale factor 10, depending on whether MVCC is enabled and the
optimized versioning scheme for bulk operations is used.

MVCC Bulk Op. Time [s] Version Memory [GB]

no N/A 11.7 0
yes no 15.0 2.9
yes yes 13.0 0

retaining high write throughput for the write-ahead log. Regular phases of in-
creased page write activity are caused by the checkpointer which continuously
writes dirty pages to disk in order to ensure bounded recovery time [101]. Sub-
sequently, the system continues to exhibit stable performance during the second
half of the experiment. Raw transaction throughput settles at ~340 000 TX/s,
which unsurprisingly is slightly lower than the ~370 000 TX/s achieved in the
corresponding in-memory experiments presented thus far. Crucially, the experi-
ment confirms that it is entirely feasible to maintain all versioning information
in main memory even under otherwise heavily constrained conditions. The
decentralized garbage collection approach proposed in Section 5.2.2 is able to
keep the memory consumption of the proposed MVCC approach bounded by
continuously reclaiming unnecessary versions and local mapping tables. On
average, the system requires ~38MB to store the local mapping tables, and
an additional ~400 KB to store the actual versions. Occasionally, memory con-
sumption exhibits some minor spikes, although they never reach beyond 60MB.
Spikes generally occur during brief times in which the available IO bandwidth
decreases due to operating system interference and transaction latencies in-
crease correspondingly. Overall, however, the amount of memory required by
our MVCC approach remains several orders of magnitude below the amount
of available main memory, and is effectively constant over time. Interestingly,
Umbra achieves comparable transaction throughput to LeanStore in the out-of-
memory scenario [101]. As performance becomes IO-bound, comparably more
CPU time is available for Umbra to perform the many additional tasks required
in a general-purpose system. Consequently, their impact on the overall system
performance is less visible, explaining the comparatively better performance of
Umbra in the out-of-memory case.

Bulk Operations

We conclude our experiments by studying the impact of the optimized versioning
scheme for bulk operations introduced in Section 5.3. For this purpose, we first

134 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

Table 5.3: Multi-threaded query throughput on TPC-H at scale factor 10 with
and without a concurrent update stream.

TPC-H throughput [queries/s]
No Updates Regular Updates Bulk Updates

28.6 23.8 25.0

measure the time and amount of version memory required to load the initial
TPC-H database population at scale factor 10 without any indexes [3], the
results of which for different system configurations are displayed in Table 5.2.
Unsurprisingly, bulk loading requires the least time at 11.7 s when versioning is
disabled entirely, and no memory at all is allocated for versioning information
in this case. If the specific circumstances allow for relaxed transaction isolation,
this is a viable option for ingesting large amounts of data. In contrast, the
system has to allocate 2.9 GB of memory for storing versioning information
and bulk loading time increases to 15.0 s if we enable MVCC but disable the
optimized bulk versioning scheme. Since the amount of versioning information
is directly proportional to the amount of data ingestedwithin a single transaction,
this quickly becomes problematic for large data set sizes. The optimized bulk
versioning scheme resolves this problem by creating virtual versions that do
not require any physical memory, completing bulk loading in 13.0 s without
allocating any memory for versioning information.

Furthermore, we execute a workload inspired by the TPC-H power test,
i.e. we continuously submit batches of analytical queries from a single client
thread, while another client thread simultaneously updates the orders and
lineitem tables by ingesting new data and deleting old data [3]. Note that the
analytical queries are sufficiently complex to benefit from parallelization across
all available CPU cores, i.e. this setup fully utilizes the underlying hardware
platform. Without any concurrent updates, Umbra can process 28.6 analytical
queries per second, which drops to 23.8 queries per second when concurrent
updates are performed using the regular in-memory versioning scheme. When
using bulk operations to perform the updates, throughput is slightly higher at
25.0 queries per second (cf. Table 5.3). In summary, our results show that the
proposed bulk versioning scheme allows the system to transparently process
arbitrarily large write transactions without having a negative impact on system
performance. In fact, performance is generally improved slightly since creating
and interpreting virtual versions introduces less overhead to both readers and
writers than the full in-memory versioning scheme.

5.6. RELATED WORK 135

5.6 RelatedWork
Multi-version concurrency control was first proposed towards the end of the
1970s [223]. Due to its immediately obvious advantages over alternative concur-
rency control algorithms (cf. Section 5.1), the field quickly developed through
some initial theoretical considerations [34, 40, 212] into a vast area of both
active research and practical relevance. A large number of both disk-based
and in-memory database management systems rely on MVCC for transaction
isolation [8, 9, 54, 64, 93, 94, 95, 138, 146, 152, 153, 154, 170, 171, 184, 197, 204, 214,
217, 241, 242], ranging from fully featured commercial solutions to prototype
systems exploring novel approaches. Active research focuses on many aspects of
MVCC, among them variations of the underlying multi-versioning protocol [55,
171, 174, 229], physical version maintenance [22, 137, 197, 246], scalability [38,
96, 171], serializability [50, 62, 197, 217, 258], or support for mixed workloads [22,
38, 137, 138, 150, 211].

Recent work on the practical aspects of implementing these MVCC ap-
proaches within a larger system is mostly focused on pure main-memory sys-
tems, even though the underlying theoretical concepts are often more widely
applicable [228, 248, 266, 277]. At the same time, many in-memory systems
acknowledge the importance of scaling beyond main memory, and have added
some form of fallback support for extremely large data sets. However, Leis et al.
argue that adding such functionality as an afterthought leads to a suboptimal
system design [159]. For instance, these approaches commonly require index
structures to remain memory-resident which constitutes a major limitation [52,
77, 159, 239].

Many disk-based MVCC implementations are found within established com-
mercial database systems with a rigid architecture that cannot easily be adapted
to modern hardware [8, 9, 95, 159, 184]. As outlined in Section 5.2, these im-
plementations consequently suffer from several drawbacks such as substantial
overhead, severe write amplification, or poor scalability. In view of these issues,
several novel disk-based system designs have been proposed recently. LLAMA
is a log-structured storage engine on top of which the Deuteronomy component
uses MVCC to provide a transactional key-value store [168, 170]. Versions are
physically stored in the recovery log, and accessed through a latch-free but
centralized hash table. This architecture thus incurs a non-negligible overhead
during version chain traversal. Similar to our approach, the BTrim architecture
recognizes that modern hardware platforms provide sufficient RAM for disk-
based systems to maintain a large amount of data purely in-memory [96]. It
adds a transparent in-memory row store on top of the buffer-managed SAP ASE
system, although the main objective here is to reduce contention. The design
of FOEDUS is based on the same fundamental observation, combining a buffer

136 CHAPTER 5. MULTI-VERSION CONCURRENCY CONTROL

manager with large in-memory buffers for optimistic concurrency control [140].
It achieves excellent scalability by avoiding most latch acquisitions, but requires
specialized hardware such as Phase Change Memory.

5.7 Summary
In this chapter, we developed a novel multi-version concurrency control ap-
proach which is designed specifically for memory-optimized disk-based database
systems deployed on modern hardware. The proposed approach allows such
systems to achieve excellent transaction throughput in the common case that
the entire working set fits into main memory, and offers transparent and grace-
ful scalability to working sets exceeding main memory capacity. Specifically,
we exploit that most versioning information can be maintained entirely in
main memory on modern hardware, which allows for a highly optimized im-
plementation that directly attaches this information to buffer frames. In line
with previous results on the subject, our experiments demonstrate that such a
memory-optimized disk-based system is indeed viable in a real-world setting,
and far outperforms traditionally designed systems. Together with the results
presented in the previous chapters, this constitutes strong evidence in favor of a
paradigm shift towards a memory-optimized disk-based system architecture for
the next generation of general-purpose database systems.

CHAPTER 6
Accurate Group-By Result Estimates

Excerpts of this chapter have been published in [75].

In the previous chapters we have developed a robust architecture for storage
and concurrency control within a memory-optimized disk-based database sys-
tem. While the respective components certainly exert a key influence on the
performance of the system as a whole, their benefits can easily be negated by
inefficiencies introduced elsewhere within the system. For instance, it is of
paramount importance that the query optimizer reliably selects efficient execu-
tion plans since suboptimal plans can easily take orders of magnitude longer
to execute. This is even more important for a disk-based system than for an
in-memory system, as suboptimal plans not only waste CPU resources, but may
additionally cause an excessive number of expensive IO operations.

Query optimizers heavily rely upon cardinality estimates for finding efficient
execution plans, and estimation errors can thus have a profound impact on query
execution times [158, 236]. In particular, estimating the number of distinct values
for a given set of attributes is one of the classical problems of query optimization.
Consider, for example, the following query fragment which could be part of a
larger query.

SELECT A, B, SUM (C)
FROM R
GROUP BY A, B

The result cardinality of this query is determined by the number of unique pairs
(𝐴, 𝐵). Besides group-by clauses, these distinct value counts are also used in
many other places such as hash table sizing or cardinality estimation for outer
and multi-attribute joins.

Accordingly, the problem of estimating the number of distinct values has
been extensively studied before, albeit largely with negative results [43, 98]. In

138 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

GEE AE HyperLogLog
1

10

40

ra
ti
o
e
rr
o
r
(l
o
g
s
c
a
le
)

1.39

99th percentile
75th percentile
mean

median
25th percentile
1st percentile

Figure 6.1: Multiplicative estimation error (𝑦-axis) of the existing sampling-
based approaches GEE and AE in comparison to a 64 byte HyperLogLog sketch.
The displayed error distribution is computed from the estimated distinct value
counts on all individual columns of the IMDb data sets.

their seminal paper, Charikar et al. proved that we cannot derive good estimates
from reasonably sized samples [43]. Fundamentally, most of the input has to
be examined to estimate the domain size accurately. Nevertheless, Charikar et
al. proposed two sampling-based estimators for pragmatic reasons, namely the
guaranteed error estimator (GEE) and the adaptive estimator (AE). Scanning entire
relations at optimization time is clearly not feasible in practice, and precise group
counts cannot be precomputed for every possible combination of attributes due
to the enormous storage overhead that this would entail.

A different family of approaches uses small fixed sized data sketches that
allow for estimating the number of distinct values with little overhead. A
prominent example is the HyperLogLog (HLL) estimator that manages to get
very accurate estimates using an astonishingly small state [69]. Figure 6.1 shows
the estimation accuracy of GEE and AE, using a sampling fraction of 0.1%,
compared to a 64 byte HLL sketch using the improved estimator proposed by
Ertl [59]. The plot shows the error distribution of the estimated distinct value
counts on all individual columns of the Internet Movie Database (IMDb) data
sets on a logarithmic scale. We can see that while the sampling based approaches
often have very large estimation errors, the improved HLL estimates are nearly
perfect. The fundamental difference is that the HLL sketch has seen every input
value once during construction, while GEE and AE try to extrapolate from few
samples to the full relation.

Nevertheless, most existing systems use sampling based approaches, often
with very poor accuracy. PostgreSQL 10.3, for instance, which uses sampling,
estimates the number of distinct l_orderkey values in TPC-H SF1 as 395 518.
This estimate deviates from the true value by a factor of 3.8, although the
simple TPC-H data set exhibits convenient uniform distributions in its columns.
Estimates on real-world data sets with skewed data distributions can be expected

139

to be much worse. HLL based sketches promise dramatically better accuracy
with very little state, but they are hard to use in general. First, traditional HLL
sketches do not allow for deletions or updates, while extensions that support
these operations require an excessive amount of state. Second, estimates must
be supported for arbitrary combinations of attributes, but we cannot maintain
an exponential number of HLL sketches.

In the following chapter, we address these challenges and present a novel
estimation framework that combines sketched full information over individual
columns with random sampling to correct for correlation bias between attributes.
For this purpose, we develop a variant of HLL sketches that relies on proba-
bilistic counters in order to support deletions and updates with low overhead.
Furthermore, we formally prove that the expected distribution of distinct values
within a random sample follows some previously overlooked patterns. This
allows us to derive a novel sampling-based estimator that exhibits superior
accuracy in comparison to GEE and AE in practice. Finally, we combine the
individual benefits of these components and propose a generic sketch-correction
framework that exploits the highly accurate single-column estimates produced
by HLL sketches in order to improve the accuracy of multi-column estimates
obtained from a sampling-based estimator. This framework relies on an efficient
algorithm for sample scans in order to ensure that estimation times remain
negligible for realistic sample sizes. By means of an extensive experimental
evaluation on both synthetic and real-world data sets, we demonstrate that our
framework can estimate group counts for individual columns nearly perfectly,
and for arbitrary column combinations with high accuracy.

In summary, this chapter covers the following key points:

1. An efficient HLL sketch implementation that supports updates and dele-
tions with little overhead.

2. A sketch-based correction framework that allows for computing accurate
multi-column estimates from a sample.

3. An optimized implementation of sample scans that ensures low estimation
overhead.

The remainder of this chapter is structured as follows. We present our
implementation of updateable HLL sketches for single-column estimates in
Section 6.1. Subsequently, Section 6.2 first discusses how we can derive multi-
column estimates from a random sample in isolation, and subsequently describes
how these estimates can be improvedwith the help of HLL sketches. Our efficient
algorithm for sample scans is outlined in Section 6.3. Finally, we present our
experimental results in Section 6.4, review related work in Section 6.5, and
summarize the chapter in Section 6.6.

140 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

given :𝑚 = 2𝑏 zero-initialized buckets 𝑀 ∈ ℕ𝑚

input :A 64-bit hash value ℎ = ⟨ℎ64, … , ℎ1⟩2
1 function Insert (h)

// compute bucket index
2 𝑖 ← ⟨ℎ64, … , ℎ64−𝑏+1⟩2 ;

// compute leading zero count of remaining bits
3 𝑧 ← LeadingZeros(⟨ℎ64−𝑏, … , ℎ1⟩2) ;

// update bucket
4 𝑀𝑖 ← max(𝑀𝑖, 𝑧) ;

Algorithm 6.1: Pseudocode for insertion into a traditional HLL sketch. We
compute the bucket index 𝑖 from the first 𝑏 bits of a hash value, in which the
maximum leading zero count 𝑧 observed within the remaining 64 − 𝑏 bits is
recorded.

6.1 Sketching Individual Columns
Before addressing the general case of arbitrary attribute combinations, we first
discuss how HLL sketches can be utilized in order to obtain highly accurate
distinct value estimates on individual columns. As outlined above, the main
challenge lies in supporting arbitrary modifications of the underlying tuples.
Traditional HLL sketches only support inserting elements, which means that
their estimates would progressively deteriorate in the presence of updates or
deletes. Although extensions of the original algorithm that support these oper-
ations have been proposed in previous work, they are not directly applicable
in our case since they require an excessive amount of additional state [70, 193].
Our goal is to maintain HLL sketches on all columns stored in the database,
so it is desirable to minimize this storage overhead as much as possible. For
this reason, we propose a variant of HLL sketches that relies on probabilistic
counters in order to support updates and deletions with low overhead [70]. In
the following, we first briefly review traditional HLL sketches, and subsequently
discuss how they can be generalized to support updates and deletions.

6.1.1 Traditional HyperLogLog Sketches
HyperLogLog sketches are a greatly improved variation of the ground-breaking
Flajolet-Martin sketches [69, 70]. Given a high-quality hash function that maps
values uniformly into the integer domain, the key idea is that the number of
distinct values in a multiset can be deduced by making use of two properties

6.1. SKETCHING INDIVIDUAL COLUMNS 141

of their hash values. First, two identical values will have the same hash value.
Second, of the distinct hash values, roughly 50% will have a zero in the first bit
of the hash value, roughly 25% will have only zeros in the first two bits, and a
fraction of approximately 1/2𝑖 will have only zeros in the first 𝑖 bits. Thus, we
can compute a very rough estimate for the number of distinct values as follows.
First, we hash all values in the multiset, and track the maximum number max(𝑖)
of leading zero bits 𝑖 of all hash values. The number of distinct values can then
be estimated as 2max(𝑖), using just one small integer as state regardless of the
size of the multiset.

In practice, using just one integer for estimation is too sensitive to outliers.
Instead, hash values are assigned to 𝑚 = 2𝑏 buckets based on their first 𝑏 bits.
The number of leading zeros is then computed on the remaining bits, and
its maximum is tracked individually for each bucket (cf. Algorithm 6.1). The
original HyperLogLog algorithm computes the harmonic mean of the resulting
𝑚 individual estimates [69], but this can lead to biased results if the cardinality is
small [107]. In the following, we will use an improved estimator proposed by Ertl
which uses a Poisson model to handle the complete range of cardinalities [59].
The resulting algorithm executes only a handful of bit operations per hash value
and is thus very cheap [59, 107].

Within each bucket the maximum number of leading zeroes is stored, which
is at most 64 − 𝑏 for 64 bit hash values. Each bucket thus fits into a single byte,
leading to a very small state size of 𝑚 bytes. The expected relative error is
1.04/√𝑚, which means that with just 64 bytes of state we expect a multiplicative
error of 1.13, which is good enough for estimation purposes. During experiments
with thousands of data sets from a commercial vendor, we found that, with 64
bytes of state, the improved estimator achieves a median multiplicative error
of only 1.07, and an error of 1.24 in the 99% quantile. Based on these excellent
results, we choose a state size of 64 bytes in the following, which also happens
to coincide with the cache line size on modern CPUs.

6.1.2 Updateable HyperLogLog Sketches
When using sketches inside a database system, we have to cope with the fact that
values are both inserted and deleted. HLL sketches support inserts out of the
box, but deleting a value whose leading zero count is equal to the current bucket
value is problematic. We do not know if we have to decrease the bucket value,
since other values could exist in that bucket with the same number of leading
zeroes, and this information is not maintained by traditional HLL sketches.

Therefore, counting HyperLogLog sketches have been proposed that remem-
ber how many values had a certain number of leading zeroes [70, 193]. With this
information we can support both insertion and deletion, increasing and decreas-

142 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

given :𝑚 = 2𝑏 buckets of 64 − 𝑏 + 1 zero-initialized counters
𝑀 ∈ ℕ𝑚×(64−𝑏+1)

input :A 64-bit hash value ℎ = ⟨ℎ64, … , ℎ1⟩2
1 function Insert (h)

// compute bucket index
2 𝑖 ← ⟨ℎ64, … , ℎ64−𝑏+1⟩2 ;

// compute leading zero count of remaining bits
3 𝑧 ← LeadingZeros(⟨ℎ64−𝑏, … , ℎ1⟩2) ;

// update probabilistic counter
4 if 𝑀𝑖𝑧 ≤ 128 then
5 increment 𝑀𝑖𝑧 ;
6 else
7 increment 𝑀𝑖𝑧 with probability 1/2𝑀𝑖𝑧−128 ;

Algorithm 6.2: Pseudocode for insertion into a counting HLL sketch. The
bucket index and leading zero count are computed analogously to Algorithm 6.1.
However, instead of only recording the maximum leading zero count observed
within a bucket, we employ probabilistic counters to record the approximate
number of times that we observed each individual leading zero count.

ing the counters as needed. The estimation process itself remains unchanged, as
we only maintain the sketched information in a different representation. Since
we are using 𝑚 = 26 = 64 buckets, there are 59 possible leading zero counts for
64 bit hash values. If we maintain counters for each of these values naively [193],
using 8 byte integers, we end up with a sketch that requires nearly 30 kB of space.
This can be prohibitively expensive if we sketch every column in a database,
and we thus propose a more space-efficient variant of counting HLL sketches.

As outlined above, the probability that a hash value has exactly 𝑖 leading
zeros is 1/2𝑖+1. That is, low values of 𝑖 are exponentially more likely than high
values, and the maximum observed value used for estimation likely occurs only
a few times. This can be exploited to reduce storage space considerably, by
using a one-byte probabilistic counter [70]. The first 128 occurrences of a value
are counted exactly, and the remaining byte values 𝑣 > 128 represent ranges
of exponentially growing size [128 + 2𝑣−129, 128 + 2𝑣−128]. When incrementing
a counter that is within these exponential ranges, we perform the increment
with the probability that the current value is the largest value within the range
(cf. Algorithm 6.2). This is a variant of the probabilistic counting approach
by Flajolet and Martin [70], with the difference that we count the important
small values exactly, while the less relevant large values are counted with some

6.2. MULTI-COLUMN ESTIMATES 143

Inserting 2000 times the hash value 000010 000 10110011011...

Counting HLL
Sketch (3.6 kB)

Count Bucket
(59 bytes)

Probabilistic
Counter (1 byte)

bucket
bucket
bucket
bucket
bucket

...
bucket

Interpretation

H
as

h
B

uc
ke

t

0
1
2
3
4
...
63

Le
ad

in
g

Z
er

os

0
1
2
3
4
...
58

C
ou

nt
er

 V
al

ue

0
...

128
129
...

139
...

count ...
count ...
count ...

count 139
count ...

count ...
...

0
...

128
[129, 130]

...

...
[1152, 2176]

Figure 6.2: Illustration of the internal state of a counting HLL sketch after
inserting the same hash value multiple times.

uncertainty, but expected correct behavior. The delete operation is symmetrical
to Algorithm 6.2, decrementing instead of incrementing counters. For instance,
Figure 6.2 shows the effect of inserting one hash value 2 000 times into the sketch.
The first 6 bits of the hash value indicate that bucket 2 needs to be updated.
Within the remaining bits of the hash value, there are 3 leading zeroes, which
means that we increase the corresponding counter 2 000 times. This is beyond
the exact range of the counter, and we end up with an (expected) counter value
of 139 which represents the interval [1 152, 2 176].

The proposed approach allows our HLL sketches to handle both deletion
and insertion with a reasonable overhead. The state size is 3.6 kB, which is of
course much larger than the original 64 bytes. Nevertheless, in most cases it is
still much smaller than the space required to store a sample of a column, which
requires at least 8 bytes per value in our implementation (i.e. 3.6 kB for only 450
rows). The update and delete operations require only few additional instructions
compared to the original algorithm, and remain very cheap (cf. Section 6.4).

6.2 Multi-Column Estimates
Counting HLL sketches offer excellent accuracy and performance for estimat-
ing distinct value counts on individual attributes, but it is generally infeasible
to maintain sketches on all possible attribute combinations. Furthermore, we
cannot easily combine multiple independent single-column estimates into an
accurate multi-column estimate, since HLL sketches capture no positional in-
formation that would allow us to detect attribute correlations. For these cases,
we instead propose a novel estimation approach which leverages the accurate
single-column estimates of counting HLL sketches to correct multi-column esti-
mates obtained through sampling. This approach combines the advantages of

144 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

Table 6.1: Selected notation used throughout Section 6.2. Uppercase variables
refer to the entire table, and lowercase variables refer to a sample of the table.
A tuple refers to an entire row of the table.

Notation Denotation
Table Sample

𝑁 𝑛 Number of rows
𝐷 𝑑 Number of distinct tuples
𝐷𝑗 𝑑𝑗 Number of distinct values in the 𝑗-th column
𝑁𝑘 𝑛𝑘 Frequency of the 𝑘-th distinct tuple
𝑁𝑘,𝑗 𝑛𝑘,𝑗 Frequency of the 𝑘-th distinct value in the 𝑗-th column
𝐹𝑖 𝑓𝑖 Number of distinct tuples which occur exactly 𝑖 times
𝐹𝑖,𝑗 𝑓𝑖,𝑗 Number of distinct values in the 𝑗-th column which occur

exactly 𝑖 times

each individual technique, i.e. it exploits that sketches are highly accurate on
individual columns, while sampling-based approaches are better suited to detect
complex dependencies between the distributions of these individual columns.
As we will demonstrate in our experimental evaluation, our sketch-correction
approach can substantially improve the accuracy of existing sampling-based
estimators such as GEE and AE [43]. Nevertheless, the overall accuracy often
remains suboptimal in these cases due to the comparatively poor quality of
the underlying sampling-based estimates. In order to address this issue, we
additionally propose an improved sampling-based estimator that is based on
some formal insights into the expected distribution of tuples within a sample.

6.2.1 Background
In the following, we consider a table with 𝑁 rows and 𝐶 ≥ 2 attributes, which
contains 𝐷 distinct tuples. Let these distinct tuples be indexed by 𝑘 ∈ {1, … , 𝐷},
and suppose the 𝑘-th distinct tuple occurs𝑁𝑘 times in the table, i.e.𝑁 = ∑𝐷

𝑘=1 𝑁𝑘.
Furthermore, let 𝑄 = max(𝑁𝑘), and define 𝐹𝑖 to be the number of distinct tuples
that occur exactly 𝑖 times in the table, i.e. 𝑁 = ∑𝑄

𝑖=1 𝑖 ⋅ 𝐹𝑖 and 𝐷 = ∑𝑄
𝑖=1 𝐹𝑖. In the

following, we will refer to a tuple which occurs exactly once as a singleton tuple,
or simply singleton. Our estimation approach examines a sample containing
𝑛 ≤ 𝑁 rows, which are chosen uniformly at random from the table. Suppose
there are 𝑑 distinct tuples in this sample, indexed by 𝑘 ∈ {1, … , 𝑑}, and the 𝑘-
th distinct tuple occurs 𝑛𝑘 times in the sample. Let 𝑓𝑖 denote the number of
distinct tuples which occur exactly 𝑖 times in the sample, and 𝑞 = max(𝑛𝑘). Then,
analogous as above, 𝑛 = ∑𝑞

𝑖=1 𝑖 ⋅ 𝑓𝑖 and 𝑑 = ∑𝑞
𝑖=1 𝑓𝑖. For a clarification of this

6.2. MULTI-COLUMN ESTIMATES 145

full table

N = 8
D = 4

F1 = 2
F2 = 1
F4 = 1

A
B
C
D

B
A

A
A

sample

n = 4
d = 3

f1 = 2
f2 = 1

A

A
B
D

Figure 6.3: Example of a sample being drawn from a table with an unspecified
number of columns. For an overview of the notation used, see Table 6.1.

notation, consider the example shown in Figure 6.3. There is a table containing
𝑁 = 8 rows, with 𝐷 = 4 distinct tuples identified by distinct uppercase letters.
Within the entire table, two tuples occur once (𝐹1 = 2), one tuple occurs twice
(𝐹2 = 1), and one tuple occurs four times (𝐹4 = 1). We draw a sample containing
𝑛 = 4 rows from this table, of which 𝑑 = 3 are distinct tuples. Two tuples occur
once in the sample (𝑓1 = 2), and one tuple occurs twice (𝑓2 = 1). An overview
of our notation is also displayed in Table 6.1.

Following previous work on the subject [43], we evaluate an estimator �̂� of
the number of distinct tuples 𝐷 in terms of its multiplicative ratio error which is
defined as

𝑒𝑟 𝑟𝑜𝑟(�̂�) = {
𝐷/�̂� if 𝐷 ≥ �̂�
�̂�/𝐷 if 𝐷 < �̂�

. (6.1)

While previous theoretical work predominantly considered sampling with re-
placement [43], systems often employ sampling without replacement in practice.
For this reason, we assume in the following that sampling with replacement is
employed to ensure comparability with such previous work, but additionally
provide a discussion of the required adaptations to sampling without replace-
ment. Note that this distinction only applies to the underlying sampling-based
estimators, and our proposed correction approach can be employed without
any changes in both cases. For sampling with replacement, a powerful negative
result due to Charikar et al. states that any estimator which examines at most 𝑛
rows of a table with 𝑁 rows must incur an expected ratio error in 𝑂(√𝑁/𝑛) on
some input [43]. They develop the Guaranteed Error Estimator (GEE) which is
optimal with respect to this result, in the sense that its ratio error is bounded by

√𝑁/𝑛 with high probability. This estimator is defined as

�̂�𝐺𝐸𝐸 =
√
𝑁
𝑛
𝑓1 +

𝑞

∑
𝑖=2

𝑓𝑖. (6.2)

146 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

The key intuition underlying this approach is that any tuple which appears
frequently in the entire table is also likely to be present in the sample. Thus,
estimating the number of such tuples as ∑𝑞

𝑖=2 𝑓𝑖 can be expected to be fairly
accurate [43]. The total number of singleton tuples, on the other hand, can be
much larger in the entire table than in the sample. Specifically, the 𝑓1 singletons
present in the sample could constitute up to a fraction 𝑁/𝑛 of the entire set
of singletons, for a total of 𝑁𝑓1/𝑛 ≤ 𝑁 singletons. At the same time, however,
there could be as few as 𝑓1 singletons in the entire table. In order to minimize
the expected ratio error, GEE estimates the true number of singletons as the
geometric mean √𝑁/𝑛𝑓1 between the lower bound 𝑓1 and upper bound 𝑁𝑓1/𝑛.

Despite its provable optimality, GEE provides only loose bounds on the ratio
error for reasonable sampling fractions 𝑛/𝑁. For example, for a sampling fraction
of 1 % the ratio error of GEE can still be as large as 10. This renders its estimates
unusable in many real-world scenarios. In particular, if 𝑓1 is large relative to
the number of distinct values in the sample, GEE will severely underestimate
the actual number of singleton values [43]. Figure 6.4, for instance, shows
a scatter plot of the true number of singletons 𝐹1 in relation to the observed
number of singletons 𝑓1 in a sample of size 𝑛/𝑁 = 1% on the well-known
Census data set [57]. In most cases where 𝑓1 is close to 𝑛, the true number of
singletons 𝐹1 is close to 𝑁 = 100𝑛. However, for 𝑓1 = 𝑛, GEE would estimate
the true number of singletons as √𝑁/𝑛𝑓1 = 10𝑛, which differs from 𝑁 by a
factor of 10. For this reason, Charikar et al. propose an adaptive estimator (AE),
which attempts to derive some information about the data distribution from the
sample in order to obtain more accurate estimates of the number of singleton
values [43]. Nevertheless, our experimental results show that AE can still not
produce satisfactory results in many cases (cf. Figure 6.1 and Section 6.4).

6.2.2 Improved Estimation Bounds
As outlined above, GEE incurs a high estimation error mainly when there is
a large number of singleton tuples 𝐹1 in the entire table. In these cases, GEE
computes an overly conservative lower bound on 𝐹1 from a given sample, which
causes it to severely underestimate the true number of singletons. Figure 6.4
illustrates this problem on the Census data set [57]. There is a clear nonlinear
relationship between the number of singletons observed in a sample 𝑓1, and
the number of singleton tuples 𝐹1 in the entire table. However, as shown in
Figure 6.4, GEE fails to exploit this relationship since it estimates the true number
of singletons to be √𝑁/𝑛𝑓1 which scales linearly in 𝑓1. Note that even though
this behavior may lead to large estimation errors in non-pathological cases, it
is essential for the worst-case error guarantee provided by GEE. Nevertheless,
as Charikar et al. point out themselves, it can be beneficial to optimize for the

6.2. MULTI-COLUMN ESTIMATES 147

0 𝑛
2

𝑛

observed number of singletons 𝑓1

0

𝑁
2

𝑁

tr
u
e
n
u
m
b
e
r
o
f
s
in
g
le
to
n
s
𝐹 1 upper bound (both)

lower bound (GEE)

lower bound (proposed)

Figure 6.4: Scatter plot of the true number of singletons (𝑦-axis) in relation to
the number of singletons observed in a random sample (𝑥-axis). The data points
correspond to 1 500 randomly selected attribute combinations from the Census
data set [57], and a sampling fraction of 𝑛/𝑁 = 1% is used.

scenarios that are likely to arise in practice instead of the rarely encountered
worst case [43].

In the following, we thus derive improved bounds on the true number of
singleton tuples based on quantities that can be observed in a sample of the
relation. This allows us to subsequently propose a novel estimator with improved
estimation accuracy in comparison to GEE and AE. In particular, we present an
upper bound on the expected value 𝔼(𝑓1) of singleton tuples, and a lower bound
on the expected value of distinct tuples 𝔼(𝑑) in the sample. These inequalities
link the number of distinct tuples 𝐷 in the entire relation to these expected
values, which can be estimated easily on a sample of the relation.

Sampling With Replacement

As shown in previous work [43], the expected number of singletons in the
sample is given by

𝔼(𝑓1) =
𝐷
∑
𝑘=1

𝑛𝑃𝑘(1 − 𝑃𝑘)𝑛−1, (6.3)

where 𝑃𝑘 = 𝑁𝑘/𝑁 denotes the relative frequency of the 𝑘-th distinct tuple in
the entire table. Intuitively, for a large number of distinct tuples, the expected
value of 𝑓1 is maximized when they are approximately uniformly distributed

148 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

in the entire table. If some tuple occurred more frequently than others in the
entire table, these would be more likely to be present frequently in the sample as
well, reducing the expected number of singletons. This intuition is formalized
as follows.

Theorem 6.1. Consider a table with 𝑁 rows containing 𝐷 distinct tuples. Suppose
we draw a sample of 𝑛 rows uniformly at random with replacement, and let 𝑓1
denote the observed number of singleton tuples in this sample. Then, the following
inequality holds

𝔼(𝑓1) ≤
⎧

⎨
⎩

𝑛 ⋅ (1 −
1
𝐷
)
𝑛−1

if 𝐷 ≥ 𝑛,

𝐷 ⋅ (1 −
1
𝑛
)
𝑛−1

otherwise.

On the other hand, as shown previously [43], the expected number of distinct
tuples is given by

𝔼(𝑑) = 𝐷 −
𝐷
∑
𝑘=1

(1 − 𝑃𝑘)𝑛. (6.4)

Each distinct tuple must occur at least once in the table, i.e. 𝑁𝑘 ≥ 1 and
consequently 𝑃𝑘 ≤ 1/𝑁 for all 𝑘. Hence, a simple lower bound on 𝔼(𝑑) can be
derived as follows.

Theorem 6.2. Consider a table with 𝑁 rows containing 𝐷 distinct tuples. Suppose
we draw a sample of 𝑛 rows uniformly at random with replacement, and let 𝑑
denote the observed number of distinct tuples in this sample. Then, the following
inequality holds

𝔼(𝑑) ≥ 𝐷 − 𝐷 ⋅ (1 −
1
𝑁
)
𝑛
.

Formal proofs of these theorems are presented in Appendix A. By rearranging
the inequalities in Theorem 6.1 and Theorem 6.2 suitably, we obtain bounds 𝐿
and 𝑈 on the true number of distinct tuples 𝐷 that depend on 𝔼(𝑑) and 𝔼(𝑓1),
where 𝐿 ≤ 𝐷 ≤ 𝑈. The observed quantities 𝑑 and 𝑓1 clearly constitute unbiased
estimators for these expected values, allowing us to estimate the bounds on 𝐷
as follows

�̂� =
⎧⎪
⎨⎪
⎩

1
1 − 𝑛−1√𝑓1/𝑛

if 𝑓1 ≥ 𝑛 (1 −
1
𝑛
)
𝑛−1

,

𝑓1
(1 − 1/𝑛)𝑛−1

otherwise,

(6.5)

6.2. MULTI-COLUMN ESTIMATES 149

as well as

�̂� =
𝑑

1 − (1 − 1/𝑁)𝑛
. (6.6)

Naturally, we apply sanity bounds to ensure that 𝑑 ≤ �̂�, �̂� ≤ 𝑁. These estimated
bounds can now be leveraged to define a novel estimator for the number of
distinct tuples 𝐷. We adopt the assumption made by GEE that∑𝑞

𝑖=2 𝑓𝑖 accurately
estimates the true number of tuples which occur more than once. Under this
assumption, �̂� −∑𝑞

𝑖=2 𝑓𝑖 and �̂� −∑𝑞
𝑖=2 𝑓𝑖 provide approximate bounds on the true

number of singletons 𝐹1, allowing us to tighten the bounds originally used by
GEE, i.e.

�̂�𝐵𝐶 = max (𝑓1, �̂� −
𝑞

∑
𝑖=2

𝑓𝑖) , (6.7)

�̂�𝐵𝐶 = min (
𝑁𝑓1
𝑛

, �̂� −
𝑞

∑
𝑖=2

𝑓𝑖) . (6.8)

Analogous to GEE, the true number of singletons is then estimated as the
geometric mean between the adjusted lower and upper bounds, resulting in the
bound-corrected estimator (BC), specifically

�̂�𝐵𝐶 = √�̂�𝐵𝐶�̂�𝐵𝐶 +
𝑞

∑
𝑖=2

𝑓𝑖. (6.9)

As shown in Figure 6.4, the adjusted lower bound �̂�𝐵𝐶 matches the data
distribution much more accurately, especially for large cardinalities. In general,
we observed that the adjusted upper bound �̂�𝐵𝐶 frequently coincides with the
original upper bound used by GEE, which is also evident in Figure 6.4. In practice,
∑𝑞

𝑖=2 𝑓𝑖 will clearly underestimate the true number of tuples which occur more
than once. Hence, �̂� − ∑𝑞

𝑖=2 𝑓𝑖 will generally overestimate the upper bound on
𝐹1, resulting in the observed behavior.

Sampling Without Replacement

In case of sampling without replacement, one can follow a similar line of rea-
soning and develop approximate bounds on 𝔼(𝑓1) and 𝔼(𝑑) based on the work
of Goodman [81]. In case of the expected number of singletons 𝔼(𝑓1) one can
derive the following theorem.

150 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

Theorem 6.3. Consider a table with 𝑁 rows containing 𝐷 distinct tuples. Suppose
we draw a sample of 𝑛 rows uniformly at random without replacement, and let 𝑓1
denote the observed number of singleton tuples in this sample. Define

𝑅 =
𝑁 − 𝑛
𝑁 − 1

.

Then, the following inequality holds.

𝔼(𝑓1) ≤ {
𝑛 ⋅ 𝑅

𝑁
𝐷−1 if 𝐷 ≥ −𝑁 ⋅ ln𝑅

−
𝑛 ⋅ 𝐷

𝑁 ⋅ ln𝑅
⋅ 𝑅−

1
ln𝑅−1 otherwise.

For the expected number of distinct tuples, we can in fact derive the same
inequality as in the case of sampling with replacement.

Theorem 6.4. Consider a table with 𝑁 rows containing 𝐷 distinct tuples. Suppose
we draw a sample of 𝑛 rows uniformly at random without replacement, and let 𝑑
denote the observed number of distinct tuples in this sample. Then, the following
inequality holds

𝔼(𝑑) ≥ 𝐷 − 𝐷 ⋅ (1 −
1
𝑁
)
𝑛
.

Like above, we present formal proofs for these theorems in Appendix A.
Rearranging the inequalities in Theorems 6.3 and 6.4 yields estimated bounds �̂�
and �̂� on the true number of distinct tuples 𝐷, namely

�̂� =
⎧

⎨
⎩

𝑁
ln(𝑓1/𝑛)/ ln𝑅 + 1

if 𝑓1 ≥ 𝑛 ⋅ 𝑅−
1

ln𝑅−1,

−
𝑓1 ⋅ 𝑁 ⋅ ln𝑅

𝑛
⋅ 𝑅

1
ln𝑅+1 otherwise,

(6.10)

and

�̂� =
𝑑

1 − (1 − 1/𝑁)𝑛
. (6.11)

From this point on, we can proceed analogously to the case of sampling with
replacement in order to derive a bound-corrected estimator for sampling without
replacement. Note that in practice, there is often only a negligible difference
between the estimated bounds for sampling with and without replacement
if 𝑛/𝑁 is small. Intuitively this is to be expected, since for a small sampling
rate the probability of picking the same tuple twice is essentially zero for all
practical purposes. Therefore, sampling with replacement can be viewed as a
good approximation for sampling without replacement and vice-versa in this
case.

6.2. MULTI-COLUMN ESTIMATES 151

F1,1 = 25 000

D1 = 50 000

Column 1

F1,2 = 15 000

D2 = 30 000

Column 2

Sample

f1 = 750
d = 1000

n = 1 000

Full Table

F1 = 50 000
D = 75 000

N = 100 000

Figure 6.5: Illustration of the value distribution in a table with two columns from
which a sample is drawn. For an overview of the notation used, see Table 6.1.

6.2.3 Sketch-Corrected Estimators

As our experimental evaluation in Section 6.4 demonstrates, the BC estimator
already achieves substantially better accuracy than GEE and AE on a number of
synthetic and real-world data sets. Nevertheless, since it is based purely on a
sample of the table, there are cases in which BC will incur a high ratio error in
𝑂(√𝑁/𝑛) as well [43]. For example, Figure 6.4 shows that both the proposed
lower bounds and upper bounds are quite loose in many cases, which may lead to
inaccurate estimates. As outlined above, we address this problem by correcting
the multi-column estimates using information about the value distribution of
the individual attributes. Thus, let 𝐷𝑗 denote the number of distinct values, and
𝐹𝑖,𝑗 the number of distinct values which occur exactly 𝑖 times in the 𝑗-th column
of the table. Furthermore, suppose that the 𝑘-th distinct value in the 𝑗-th column
occurs 𝑁𝑘,𝑗 times, and define 𝑄𝑗 = max(𝑁𝑘,𝑗), i.e.

𝑄𝑗

∑
𝑖=1

𝐹𝑖,𝑗 = 𝐷𝑗, (6.12)

and

𝑄𝑗

∑
𝑖=1

𝑖 ⋅ 𝐹𝑖,𝑗 = 𝑁. (6.13)

Finally, define 𝑑𝑗, 𝑓𝑖,𝑗 and 𝑞𝑗 analogously on a sample of the table (cf. Table 6.1).
Assuming that 𝐷𝑗 and 𝐹1,𝑗 are known for all individual attributes 𝑗, we can

derive bounds on the true number of distinct tuples 𝐷 and singleton tuples 𝐹1,

152 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

namely

max(𝐹1,𝑗)𝑗=1,…,𝐶 ≤ 𝐹1 ≤ Π𝐶
𝑗=1𝐷𝑗, (6.14)

max(𝐷𝑗)𝑗=1,…,𝐶 ≤ 𝐷 ≤ Π𝐶
𝑗=1𝐷𝑗. (6.15)

The lower bound in Inequality 6.14 holds since any row which contains a single-
ton value in one column must be part of a singleton row when more columns are
considered. Similarly, the lower bound in Inequality 6.15 applies because each
distinct value in an individual column is part of at least one distinct tuple over
multiple columns. For instance, the individual columns in Figure 6.5 contain up
to max(𝐹1,1, 𝐹1,2) = 25 000 singletons and max(𝐷1, 𝐷2) = 50 000 distinct values.
This implies that there are at least 25 000 singletons and 50 000 distinct values in
the full table. In both cases, an upper bound is trivially given by the cardinality
of the cross product of the distinct values in the individual columns. The latter
bound is useful if the number of rows 𝑁 is large, and there are few distinct values
in the individual columns.

In practice, sketches can be employed to estimate 𝐷𝑗 accurately and cheaply.

Let these estimates be denoted by �̂�𝑗, and recall that GEE assumes ∑
𝑞𝑗
𝑖=2 𝑓𝑖,𝑗 to

fairly accurately estimate the number of non-singleton values in the 𝑗-th column.
Hence, we can estimate the true number of singleton values in column 𝑗 as

̂𝐹1,𝑗 = �̂�𝑗 −
𝑞𝑗
∑
𝑖=2

𝑓𝑖,𝑗. (6.16)

Substituting the exact values by these estimates in Inequalities 6.14 and 6.15
yields bounds on 𝐹1 and 𝐷 which can be used to correct the multi-column
estimates of BC. For comparison purposes, we also correct the multi-column
estimates of GEE and AE. In the following, we will refer to the corrected estima-
tors as sketch-corrected estimators. In all cases, Inequality 6.15 is leveraged to
provide sanity bounds on the estimates.

Sketch-Corrected GEE (SCGEE)

In case of GEE, we can tighten the original bounds on the true number of
singleton tuples using Inequality 6.15, i.e.

�̂�𝑆𝐶𝐺𝐸𝐸 = max (𝑓1,max(̂𝐹1,𝑗)𝑗=1,…,𝐶) , (6.17)

�̂�𝑆𝐶𝐺𝐸𝐸 = min (
𝑁𝑓1
𝑛

, Π𝐶
𝑗=1�̂�𝑗) . (6.18)

Analogous to GEE, the expected ratio error can be minimized by estimating 𝐹1
as the geometric mean of the upper and lower bounds, and the corresponding

6.2. MULTI-COLUMN ESTIMATES 153

sketch-corrected estimator is defined as

�̂�𝑆𝐶𝐺𝐸𝐸 = √�̂�𝑆𝐶𝐺𝐸𝐸�̂�𝑆𝐶𝐺𝐸𝐸 +
𝑞

∑
𝑖=2

𝑓𝑖. (6.19)

In Figure 6.5, for example, GEE would estimate the number of singletons to be

√𝑁/𝑛𝑓1 = 7 500, far below the true value 𝐹1 = 50 000. Due to corrected bounds,
on the other hand, SCGEE estimates the number of singletons much more

accurately as √�̂�𝑆𝐶𝐺𝐸𝐸�̂�𝑆𝐶𝐺𝐸𝐸 ≈ 43 000. Conveniently, the estimator inherits
the worst-case error bound guarantee of GEE, since it only tightens the original
bounds on 𝐹1.

Sketch-Corrected AE (SCAE)

The adaptive estimator AE involves a complex numerical approximation of the
estimated number of low-frequency elements in the table. It is beyond the scope
of this work to identify ways in which these approximations can be corrected
directly. Hence, we only apply the sanity bounds provided by Inequality 6.15 to
AE, resulting in the sketch-corrected adaptive estimator �̂�𝑆𝐶𝐴𝐸.

Sketch-Corrected BC (SCBC)

Although the bound-corrected estimator BC already employs tightened esti-
mation bounds, we conjecture that it can be improved further through sketch-
correction. We correct BC in the same way as GEE, by adjusting the bounds on
the true number of singleton tuples using Inequality 6.14. Therefore, we obtain

�̂�𝑆𝐶𝐵𝐶 = max (�̂�𝐵𝐶,max(̂𝐹1,𝑗)𝑗=1,…,𝐶) , (6.20)

�̂�𝑆𝐶𝐵𝐶 = min (�̂�𝐵𝐶, Π𝐶
𝑗=1�̂�𝑗) , (6.21)

and the sketch-corrected estimator

�̂�𝑆𝐶𝐵𝐶 = √�̂�𝑆𝐶𝐵𝐶�̂�𝑆𝐶𝐵𝐶 +
𝑞

∑
𝑖=2

𝑓𝑖. (6.22)

Returning to the example displayed in Figure 6.5, BC would estimate the true

number of singletons to be √�̂�𝐵𝐶�̂�𝐵𝐶 ≈ 16 000, which already improves over
the estimate by GEE. After sketch-correction, SCBC employs the same bounds

as SCGEE in this case and estimates 𝐹1 to be approximately √�̂�𝑆𝐶𝐵𝐶�̂�𝑆𝐶𝐵𝐶 ≈
43 000. In general SCBC produces more accurate estimates than SCGEE, as our
experimental evaluation will demonstrate (cf. Section 6.4).

154 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

given :A sample 𝑆 ∈ ℕ𝑛×𝐶.
input :A partially built frequency vector 𝑓 ∈ ℕ𝑛, a set of row indices 𝑃,

and a column index 𝑗.
output :𝑓 updated by the multiplicities of rows in 𝑃.

1 function ComputeFrequenciesRecursive(𝑓, 𝑃, 𝑗)
2 if 𝑗 > 𝐶 ∨ |𝑃 | = 1 then

// base case
3 𝑓|𝑃 | ← 𝑓|𝑃 | + 1;
4 else

// partition 𝑗-th column and recurse
5 (𝑃 ′𝑘)𝑘=1,…,𝑚 ← RefinePartition(𝑃, 𝑗);

6 for partition index 𝑘 = 1 to 𝑚 do
7 𝑓 ← ComputeFrequenciesRecursive(𝑓, 𝑃 ′𝑘 , 𝑗 + 1);

8 return 𝑓;

Algorithm 6.3: Pseudocode for recursively computing the frequency vector on a
sample.

6.3 Computing Frequencies
The estimators presented in the previous section need to determine the number
𝑓𝑖 of attribute combinations that occur exactly 𝑖 times in a sample. This fre-
quency vector 𝑓 can be computed in a straightforward way by using a hash table,
but hashing or comparing entire rows can be expensive since each individual
attribute has to be accessed. Moreover, the constants hidden in the 𝑂(1) time
complexity of the insertion and retrieval operations of a hash table can notably
impact computation time even if the number of columns is small (cf. Section 6.4).
Finally, as the number of distinct attribute combinations is not known before-
hand, memory for the hash table has to be allocated pessimistically in order to
avoid expensive rehashing during computation. Thus, the hash table will be
unnecessarily large in many cases.

Instead, we propose a recursive approach for computing the frequency vector
𝑓 based on an algorithm for string multiset discrimination first proposed by Cai
and Paige [39]. Their algorithm scans strings in a multiset from left to right,
and progressively splits the multiset into smaller partitions by examining the
characters at the current position. A similar approach can be used to compute
𝑓 if rows in the sample are interpreted as strings over a suitable alphabet, as
the size of partitions then indicates how often a row occurs in the sample. For
convenience, we will assume in the following that all values in the sample

6.3. COMPUTING FREQUENCIES 155

are integers. This can easily be achieved, for instance, through dictionary
compression. A high-level illustration of the resulting algorithm is displayed
in Algorithm 6.3. Given a sample 𝑆 ∈ ℕ𝑛×𝐶, it takes a partially built frequency
vector 𝑓 ∈ ℕ𝑛, a set of row indices 𝑃, and a column index 𝑗 ∈ {1, … , 𝐶 + 1} as its
input. The algorithm then recursively computes the multiplicities of rows in 𝑃,
and updates the corresponding entries of the frequency vector 𝑓.

The recursion terminates either if 𝑃 contains only one row, or if there are
no more columns to check, i.e. 𝑗 = 𝐶 + 1. In these cases, we have found a row
with multiplicity |𝑃 |, and the frequency vector is updated accordingly (lines 2–4).
Otherwise, the given partitioning is refined based on the values in the 𝑗-th
column, using the RefinePartition subroutine (line 5). It takes as input a
set of row indices and a column index, and splits the row indices into several
sets so that the respective column values are equal for all rows within one set.
Finally, the given frequency table is updated recursively on each of these refined
partitions (lines 6–7). A frequency table for the entire sample can be computed
by passing 𝑓 = 0, 𝑃 = {1, … , 𝑛}, and 𝑗 = 1 as parameters to Algorithm 6.3. The
algorithm maintains the invariant that for a given 𝑗, all columns 𝑗′ < 𝑗 have the
same value within a partition, which implies correctness. It terminates since 𝑗 is
incremented in each recursive step and cannot exceed 𝐶 + 1.

The proposed approach can be optimized further as follows. First, any row
which contains a singleton value in at least one column must be a singleton
attribute combination, and can be pruned in a preprocessing step, e.g. by main-
taining suitable singleton bitmaps. Second, we can encode the remaining column
values as indices into a dictionary, which require at most ⌈log2(𝑛)⌉ bits for a
sample of size 𝑛. This allows the algorithm to process multiple columns at once,
by packing several column values into a single machine word (cf. Figure 6.6).
Furthermore, all values in the sample can be converted to integers this way, jus-
tifying the corresponding assumption made above. Finally, we consider columns
with many distinct values early, so that partition sizes decrease more quickly
and the algorithm terminates faster.

The RefinePartition subroutine can be implemented in linear time using
either hash tables or radix sort, at the cost of using some auxiliary memory.
However, we have found that, in practice, simply sorting the rows in-place
followed by a linear scan to determine the partition boundaries can perform
better on realistic sample sizes. Since partitions never overlap, the recursive
algorithm can be implemented using a single auxiliary array of row indices,
which is progressively updated as partitions are refined (cf. Figure 6.6). When
partitioning several columns at a time, another auxiliary array of the same size
is required in order to compute the packed row values. These values cannot be
precomputed because the algorithm must be able to compute frequency vectors
for arbitrary subsets of attributes.

156 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

01 01
01

01

01 0110

10

10 10

01

01
00

00 01

01

01

00

00

00

00 0100

0001 00
00

00 00

01
01
01

01

01

10

10

10

00

10 0000
00 10

10

10
00

00

00

10 1000 00

01 01

01

11 11
11
11

11

11
11

11
11

11 11
11

11 10
10

11

11

Partition Packed
Columns 1 and 2

Partition Packed
Columns 3 and 4

Partitioned
Sample

1
1

2

2

3

1
12

2

3 3

3

4

4 4

4 1 2 3 4
1 2 3 4

5
6

5

5
6

6

Figure 6.6: Example of recursively partitioning several columns at a time. Col-
umn values are encoded in 2 bits, and a machine word size of 4 bits is assumed.
The computed frequencies are 𝑓1 = 𝑓2 = 2.

6.4 Experiments
In the following, we evaluate the proposed approach with respect to its com-
putational performance and estimation accuracy. First, we demonstrate that
the proposed counting HLL sketch incurs a negligible performance overhead
compared to traditional HLL sketches, while retaining similarly high estima-
tion accuracy in the presence of deletions. Second, we show that the proposed
sketch-corrected estimators exhibit superior estimation accuracy in comparison
to previous approaches. Finally, our experiments confirm that the proposed
frequency computation algorithm offers excellent performance, providing low
estimation latency even on large real-world data sets.

6.4.1 Counting HyperLogLog Sketches
As discussed above, we propose to maintain a counting HLL sketch for each
individual column in a database. Whenever values in a table are inserted,
updated, or deleted, these sketches have to be updated. Therefore, it is critical
that the counting HLL sketch incurs a low runtime overhead. At the same time,
high estimation accuracy is required for the sketch-correction framework, even
if values are deleted frequently.

Computational Performance

We only evaluate the runtime cost of inserting values into a counting HLL sketch,
since the delete operation is symmetrical to the insert operation (cf. Section 6.1).
The well-known MurmurHash64A1 hash function is used throughout our ex-

1Available at https://github.com/aappleby/smhasher

https://github.com/aappleby/smhasher

6.4. EXPERIMENTS 157

Table 6.2: CPU time required to sketch all values of a table with 10 million rows
and 10 columns for the traditional HLL sketch and the proposed approach. The
time required per tuple is shown in parentheses.

Processing
HLL variant column-wise row-wise

traditional 132ms (1.3 ns) 111ms (1.1 ns)
counting 340ms (3.4 ns) 370ms (3.7 ns)

periments, and the traditional HLL sketch serves as a baseline for comparison.
Table 6.2 shows the CPU time required to compute sketches for all 10 columns
of a table with 10 million rows on an Intel i7 7820X CPU. All values in the table
are 8 byte integers, and we differentiate between column-wise processing, i.e.,
sketching one column after the other, and row-wise processing, where values
are inserted into their corresponding sketches row-by-row.

Unsurprisingly, counting sketches are more expensive, but only by a factor
of 2.5. In absolute terms, both approaches are extremely fast, requiring at most
1.3 ns per value for the traditional approach, and 3.7 ns per value for the proposed
approach. Correspondingly, we observed that the bulk-load time of TPC-H at
scale factor 1 in Umbra increased only by about 5 % when computing sketches of
all columns on the fly. The counting sketch profits from column-wise processing
due to better cache utilization. As the sketches are larger, row-wise sketching
risks thrashing the L1 cache. For the simple sketches we would expect the same
behavior, but, surprisingly, row-wise processing is actually faster. We suspect
the reason for this to be the good out-of-order execution engine of the CPU,
which can execute multiple updates concurrently due to the low number of
instructions. On an older Haswell CPU, column-wise processing is faster for
simple sketches, too, as one would expect.

Estimation Accuracy

As long as there are no deletions, the improved estimator due to Ertl [59] will
produce exactly the same estimates on counting and traditional HLL sketches,
because it requires only the maximum leading zero count in each bucket. The
probabilistic counters used in the proposed sketch count the first 128 values
exactly, i.e., without deletions, the probabilistic counter for a certain leading
zero count has a value greater than zero if and only if we have observed at least
one value with that leading zero count. Thus, the maximum number of leading
zeros in each bucket is tracked exactly, and matches the value maintained by a
traditional HLL sketch.

158 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

0 2 ⋅ 108 4 ⋅ 108 6 ⋅ 108 8 ⋅ 108

number of operations

0

227

228

c
a
rd
in
a
li
ty

True Value Counting HLL Estimate

Figure 6.7: Illustration of the workload used to evaluate the estimation accuracy
of counting HLL sketches. In this example, after each 𝑖 = 224 insertions, 𝑟 = 50%
of these operations are subsequently reverted by deleting the corresponding
values from the sketch.

Table 6.3: Ratio error incurred by counting HLL sketches, aggregated across
all experiments. For comparison, the same values have been inserted into a
traditional HLL sketch without any deletions.

Percentiles
HLL variant Mean 1% 25% 50% 75% 99%

traditional 1.13 1.00 1.05 1.13 1.20 1.34
counting 1.13 1.00 1.05 1.12 1.20 1.34

For this reason, we present an evaluation of the estimation accuracy on
a workload that involves frequent deletions. We generate 228 ≈ 268 000 000
random 64-bit values which are successively inserted into the counting HLL
sketch. After each 𝑖 insertions, some fraction 𝑟 of these operations is reverted
by deleting the corresponding values from the sketch (cf. Figure 6.7). In our
experiments, we choose 28 ≤ 𝑖 ≤ 224 and 0.125 ≤ 𝑟 ≤ 0.875. As a baseline, we
successively insert the same 228 values into a traditional HLL sketch without any
deletions. The ratio error as defined in Section 6.2 is sampled in fixed intervals
during the workload to obtain 216 measurements per experiment.

As shown in Table 6.3, counting HLL sketches exhibit virtually identi-
cal estimation accuracy in comparison to the baseline. The displayed results
are obtained by aggregating the ratio error measurements across all experi-
ments. The mean ratio error of 1.13 matches the theoretically expected error
of 1.04/√𝑚 = 13% perfectly, and in the 99th percentile the ratio error is still
only 1.34. The probabilistic counters employed by counting HLL sketches have

6.4. EXPERIMENTS 159

214 216 218 220 222 224 226 228

maximum cardinality (log scale)

1.00

1.05

1.10

1.15
m
e
a
n
ra
ti
o
e
rr
o
r

Traditional HLL Counting HLL

Figure 6.8: Mean ratio error (𝑦-axis) of counting and traditional HLL sketches
when inserting a given number of distinct values (𝑥-axis). For counting HLL
sketches, the ratio error is aggregated over all workload configurations. The
dashed horizontal line indicates the theoretically expected ratio error of 1.13.

expected correct behavior if the number of increment and decrement operations
is sufficiently large. Therefore, we can indeed rely on counting and traditional
HLL sketches to behave identically in terms of accuracy for a sufficiently large
number of operations.

Accordingly, we also investigate themean ratio error for smaller cardinalities,
by aggregating measurements with a true cardinality below a given value (cf.
Figure 6.8). Our results show that the mean ratio error can be slightly greater
for counting HLL sketches than for traditional HLL sketches. However, the
difference is generally very small, and decreases as the maximum cardinality
increases. Moreover, in most cases the mean ratio error actually lies below the
theoretically expected value of 1.13 for both sketches. We also experimented
with repeating each insert or delete operation several times, in order to put
additional strain on the probabilistic counters. However, we found that this
has no visible impact on the overall estimation accuracy as the large number of
inserts in our experiments causes many counters to take on values well beyond
the range which is counted exactly anyway.

In summary, the proposed counting HLL sketches exhibit high estimation
accuracy comparable to traditional HLL sketches. At the cost of negligible
runtime overhead and moderately increased space consumption, the counting
HLL sketch can retain high accuracy even in the presence of frequent deletions.
Therefore we conclude that it is feasible to maintain a counting HLL sketch for
each individual column in a database.

160 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

Table 6.4: Characteristics of the data sets used to evaluate the proposed multi-
column estimation approach.

Source Data Set Rows Attributes

– Synthetic 1 048 576 2

UCI Census 48 842 15
UCI Cover Type 581 012 11
UCI Poker Hand 1 000 000 11
UCI El Nino 178 080 12

IMDb name.basics 8 739 726 6
IMDb title.akas 3 387 419 8
IMDb title.basics 5 155 098 9
IMDb title.crew 5 155 097 3
IMDb title.episode 3 484 084 4
IMDb title.principals 29 204 341 6
IMDb title.ratings 852 567 3

6.4.2 Multi-Column Estimators
A thorough empirical evaluation of the proposed multi-column estimation frame-
work is conducted on both real-world and synthetic data.

Data Sets

We chose four real-world data sets from the UCI Machine Learning repository2,
namely the census and forest cover type data sets used in the original evaluation
of GEE andAE [43], aswell as the poker hand and El Nino data sets. Moreover, we
conduct experiments on the well-known IMDb data sets3. The forest cover type
data set originally contains 55 attributes, of which 44 are binary. Since this results
in an impractically high number of attribute combinations, we removed these
binary attributes for our experiments. In addition, we generate 4 455 synthetic
data sets with 𝑁 = 220 rows and two columns that have varying correlation
(0 ≤ 𝜌 ≤ 1). The values in each individual column follow a generalized Zipfian
distribution with varying population size (24 ≤ 𝑝 ≤ 220) and skew coefficient
(0 ≤ 𝑠 ≤ 4). Key characteristics of these data sets are also shown in Table 6.4.

The sample size 𝑛 is selected per data set, so that a fixed sampling rate 𝑛/𝑁
is maintained (0.01 % ≤ 𝑛/𝑁 ≤ 10.00 %). For a given data set and sampling

2Available at https://archive.ics.uci.edu/ml/
3Available at https://www.imdb.com/interfaces/

https://archive.ics.uci.edu/ml/
https://www.imdb.com/interfaces/

6.4. EXPERIMENTS 161

rate, ten different samples are drawn with replacement according to a uniform
distribution on the rows, and the ratio error of the estimators is computed on
all possible combinations of two or more attributes. By drawing ten different
samples per data set, the impact of random fluctuations on our results is reduced.
At the same time, it allows us to verify that the estimation approach is robust
against small changes in the random sample.

Results

Evaluation results are shown in Figure 6.9 and Table 6.5 for trials on the syn-
thetic data sets, and in Figure 6.10 and Table 6.6 for trials on the real-world
data sets. Note that the box plots use a logarithmic 𝑦-axis scale. Overall, the
sketch-corrected variant SCBC of the proposed bound-corrected estimator BC
consistently outperforms the other estimators, achieving the lowest mean ratio
error in all cases. Furthermore, SCBC exhibits the lowest 99th percentile of the
ratio error in all cases but one. Even with extremely small sampling rates, the
estimates of SCBC remain sufficiently accurate in most cases to be useful in
practice. In the following, we outline further key results in more detail.

First, we observe that GEE and AE generally provide rather poor estimates.
In particular, AE struggles on the synthetic data sets, which is evident from
the extremely high mean (up to 54.8) and 99th percentile (up to 400.2) of the
ratio error (cf. Table 6.5). Upon closer inspection, we found that AE tends to
widely underestimate the true cardinality when there is moderate skew in at
least one column (1 ≤ 𝑠 ≤ 2). In these cases, we can expect values to occur with
a wide range of frequencies in the sample, which can cause the approximations
employed by AE to become inaccurate [43]. At the same time, this leads to
true cardinalities close to the value estimated by GEE, for which reason GEE
performs better than AE on the synthetic data sets. The real-world data sets, on
the other hand, seldom contain moderately skewed data, and AE consequently
outperforms GEE in terms of the mean ratio error. However, the 99th percentile
of its ratio error remains too large for practical purposes even for large sampling
fractions (cf. Tables 6.5 and 6.6).

The proposed bound-corrected estimator BC can improve over GEE and AE
substantially, even without sketch-correction. Especially for smaller sampling
fractions, BC can provide much more accurate estimates, which underlines the
robustness of the proposed approach. As shown in Figures 6.9 and 6.10, both
the mean and the quantiles of its ratio error decrease sharply as the sampling
fraction is increased. A mean ratio error below 2.0 can be achieved with a
sampling fraction of only 0.05 % on the synthetic data sets, and only 0.01 % on
the real-world data. Since the corrected bounds derived in Section 6.2 depend
on possibly inaccurate estimates of expected values, there can be cases in which

162
CHAPTER

6.
ACCURATE

GROUP-BY
RESULT

ESTIM
ATES

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

100

101

102

103
ra
ti
o
e
rr
o
r
(l
o
g
s
c
a
le
)

𝑛/𝑁 = 0.01 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.05 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.10 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.50 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 1.00 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 5.00 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 10.00 %

99th percentile

75th percentile

mean

median
25th percentile

1st percentile

Figure 6.9: Distribution of the ratio error incurred by the estimators on synthetic data, for varying sampling fractions 𝑛/𝑁.
The dashed horizontal line marks the theoretical error guarantee of GEE and SCGEE at √𝑁/𝑛.

Table 6.5: Mean and 99th percentile of the ratio error incurred by the estimators on synthetic data, for varying sampling
fractions 𝑛/𝑁. The best results for each sampling fraction are printed bold.

GEE AE BC SCGEE SCAE SCBC
𝑛/𝑁 Mean 99 % Mean 99 % Mean 99 % Mean 99 % Mean 99 % Mean 99 %

0.01 % 16.3 100.4 54.8 400.2 6.2 46.1 3.2 17.0 9.5 84.9 3.1 17.5
0.05 % 8.1 44.7 17.5 80.6 3.3 15.2 2.8 13.8 6.3 42.9 2.3 10.2
0.10 % 6.2 31.6 11.4 44.8 2.7 10.3 2.6 13.5 5.2 29.0 2.0 8.1
0.50 % 3.4 14.2 4.8 12.7 1.8 5.3 2.0 8.8 3.4 10.2 1.6 5.0
1.00 % 2.8 10.1 3.4 7.7 1.6 3.7 1.8 8.9 2.8 7.0 1.5 3.7
5.00 % 1.9 4.7 1.8 2.7 1.3 2.1 1.5 4.6 1.7 2.7 1.3 2.1
10.00 % 1.6 3.4 1.4 1.8 1.2 1.7 1.4 3.4 1.4 1.8 1.2 1.7

6.4.
EXPERIM

ENTS
163

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

100

101

102

103
ra
ti
o
e
rr
o
r
(l
o
g
s
c
a
le
)

𝑛/𝑁 = 0.01 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.05 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.10 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 0.50 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 1.00 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 5.00 %

G
E
E

A
E

B
C

S
C
G
E
E

S
C
A
E

S
C
B
C

𝑛/𝑁 = 10.00 %

99th percentile

75th percentile

mean

median
25th percentile

1st percentile

Figure 6.10: Distribution of the ratio error incurred by the estimators on real-world data, for varying sampling fractions
𝑛/𝑁. The dashed horizontal line marks the theoretical error guarantee of GEE and SCGEE at √𝑁/𝑛.

Table 6.6: Mean and 99th percentile of the ratio error incurred by the estimators on real-world data, for varying sampling
fractions 𝑛/𝑁. The best results for each sampling fraction are printed bold.

GEE AE BC SCGEE SCAE SCBC
𝑛/𝑁 Mean 99 % Mean 99 % Mean 99 % Mean 99 % Mean 99 % Mean 99 %

0.01 % 72.9 110.3 11.5 218.2 5.9 63.5 5.6 54.6 3.1 25.3 2.9 23.6
0.05 % 30.5 45.1 5.6 78.1 2.2 11.3 4.9 29.4 3.6 43.8 1.8 7.1
0.10 % 21.6 31.9 4.8 43.7 1.8 8.4 4.7 21.9 4.0 37.9 1.6 4.8
0.50 % 9.9 14.4 3.1 13.1 1.5 4.5 3.8 13.1 3.1 13.1 1.4 2.8
1.00 % 7.2 10.2 2.5 8.1 1.4 2.9 3.1 10.1 2.5 8.1 1.3 2.4
5.00 % 3.6 4.7 1.5 2.7 1.2 1.8 2.1 4.7 1.5 2.7 1.2 1.7
10.00 % 2.8 3.5 1.3 1.9 1.2 1.6 1.8 3.4 1.3 1.9 1.2 1.5

164 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

the maximum ratio error of BC exceeds that of GEE. However, this occurs only
rarely in our experiments, indicating that the corrected bounds are usually
sound.

Applying sketch-correction further improves the estimation accuracy of all
estimators, and the best overall results are achieved by the sketch-corrected
variant SCBC of the BC estimator. In particular, SCBC outperforms BC in all
cases, allowing us to conclude that the proposed bound-correction and sketch-
correction approaches are orthogonal to some degree. We observed that SCBC
mainly improves over BC for small cardinalities, which is consistent with theo-
retical considerations. If all individual columns contain only few distinct values,
sketch-correction can derive tight bounds on the true number of distinct values.
In particular, the cardinality of the cross-product of the distinct values in the
individual columns is small, i.e. the upper bound employed by SCBC is more
accurate than the original upper bound used by BC. On the other hand, the
improved estimation bounds employed by BC deviate from the bounds employed
by GEE mainly for large cardinalities, where sketch-correction can not provide
a useful upper bound. The effectiveness of sketch-correction decreases for large
sampling fractions, and there are cases in which no further improvement can be
achieved. This is to be expected, however, since a larger sampling fraction allows
the estimators to infer more accurate information about the data distribution
themselves, without having to rely on sketch-correction. Depending on the
cardinalities of the individual columns, it can even occur that all distinct values
are present in a large sample of the relation, in which case sketch-correction
cannot contribute any significant further information.

As outlined above, we generate the synthetic data sets with varying domain
sizes and data skew in the individual attributes, and varying correlation between
the attributes. We observed that all estimators produce similarly accurate esti-
mates regardless of the correlation between attributes. As expected from our
theoretical considerations (cf. Section 6.2), GEE and AE struggle if the domain
size is large, while BC performs well across the entire tested range. Moderate
data skew in at least one attribute causes accuracy to decrease for all estima-
tors, although the effect is much less pronounced for the BC estimator than for
GEE and AE. Finally, we note that the maximum ratio error of GEE exceeds its
theoretical error guarantee for low sampling fractions on the real-world data
sets (cf. Figure 6.10). We determined that this is caused by exceedingly small
samples, which can contain as few as 4 rows on the census data set, for example.
Thus, a simple remedy in practice would be to set a sufficiently large minimum
sample size. Apart from such edge cases, the ratio errors of GEE and SCGEE are
bounded by √𝑁/𝑛 as expected from their theoretical analysis.

6.4. EXPERIMENTS 165

Table 6.7: Mean and percentiles of the absolute frequency vector computation
time in milliseconds across all tested configurations (a). Additionally, the mean
and percentiles of the speedup over the baseline approach are shown (b).

(a) Absolute computation time in milliseconds.

Percentiles
Mean 1% 25% 50% 75% 99%

Baseline 9.84 0.02 0.17 0.95 5.28 200.68
Proposed 0.38 0.00 0.01 0.05 0.35 2.81

(b) Speedup.

Percentiles
Mean 1% 25% 50% 75% 99%

Speedup 418.5 1.6 3.4 9.3 58.8 8738.8

6.4.3 Frequency Vector Computation
The proposed approach for computing frequency vectors is evaluated only on
synthetic data, so that its asymptotic behavior can be studied under controlled
conditions. Samples are generated with 28 ≤ 𝑛 ≤ 215 rows and 20 ≤ 𝐶 ≤ 210
columns according to a uniform distribution on {1, … , 𝑁 }, where 2−8 ≤ 𝑁/𝑛 ≤ 22
to simulate varying numbers of distinct values. We measure the CPU time
required by the proposed approach to compute frequency vectors on the CPU
introduced above, in comparison to a baseline hash table implementation as
outlined in Section 6.3. We noticed that, as expected, the value of 𝑁/𝑛 has no
visible influence on the performance of the baseline implementation, and we do
not report separate baseline results for different values of 𝑁/𝑛.

The proposed approach consistently improves over the baseline, with a
minimum and median speedup of 1.4× and 9.3×, respectively. However, much
larger speedups are possible depending on the data at hand, as illustrated by
the 75th and 99th percentiles at approximately 59× and 8700×, respectively (cf.
Table 6.7b). This large variability is caused by the different asymptotic behavior
of the baseline and proposed approaches, as illustrated in Figure 6.11 (note again
the logarithmic scale on the 𝑦-axis). While the figure displays only selected
results, they are representative for the behavior across all experiments.

Computation time scales approximately linearly in the sample size for all
approaches, as well as in the column count for the baseline implementation.
However, it remains constant or even decreases with increasing number of
columns for the proposed approach, because more singleton rows can be pruned.

166 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

21 23 25 27 29

number of columns (log scale)

100
101
102
103
104
105

C
P
U

ti
m
e
(𝜇
𝑠,
lo
g
s
c
a
le
)

Baseline

Proposed (𝑁/𝑛 = 2−4)
Proposed (𝑁/𝑛 = 2−2)
Proposed (𝑁/𝑛 = 20)

(a) Computation time vs. column count for 𝑛 = 16384

28 29 210 211 212 213 214 215

Sample Size (log scale)

100
101
102
103
104
105

C
P
U
T
im

e
(𝜇
𝑠,
lo
g
s
c
a
le
)

Baseline

Proposed (𝑁/𝑛 = 2−4)
Proposed (𝑁/𝑛 = 2−2)
Proposed (𝑁/𝑛 = 20)

(b) Computation time vs. sample size for 𝐶 = 32

Figure 6.11: CPU time (𝑦-axis) required to compute frequency vectors in relation
to the number of columns (a) and size (b) of samples (𝑥-axis). The value of 𝑁/𝑛
has no impact on the performance of the baseline hash table implementation,
and only a single graph is visible.

For the same reason, computation time is reduced dramatically if there are many
singleton values in each column, i.e. 𝑁/𝑛 is large. At the same time, Figure 6.11a
shows that the recursive approach improves over the baseline even if there
are few columns and singletons. Note that we resized the hash table suitably
before taking our measurements, so that no rehashing was necessary during our
experiments. This illustrates that despite the 𝑂(1) complexity of inserting and
retrieving values into a hash table, the constant overhead of these operations
is large enough to negatively impact computation time (cf. Section 6.3). In
absolute terms, the proposed approach offers excellent performance across all
tested configurations (cf. Table 6.7a), and requires at most 3.4ms to compute
a frequency vector even on an extremely large sample with 32 768 rows and

6.5. RELATED WORK 167

1 024 columns. The estimators themselves are very cheap to compute, typically
taking less than 5 𝜇s to produce an estimate for a given frequency vector.

6.5 RelatedWork
Being a key problem of query optimization, cardinality estimation algorithms
have been studied extensively in the literature [48, 100]. Broadly, such algorithms
can be categorized into sampling-based and sketch-based approaches [181].

Algorithms in the first category examine only a small sample of a relation in
order to produce an estimate. While this offers attractive performance and triv-
ially allows for cardinality estimates over arbitrary attribute combinations, any
purely sampling-based approach has provably poor accuracy [43]. Consequently,
many approaches focus on improving the quality of the samples using auxiliary
information obtained, for instance, from a full relation scan [56, 79], existing
index structures [162], or query feedback [151]. Oracle has recently presented
an adaptive scheme which iteratively builds a sample to provide confidence
intervals around the estimated cardinalities [274]. The main drawback of these
approaches is that they may produce different samples for different attribute
combinations. Thus, an exponential number of samples has to be maintained in
order to avoid expensive sample computations during query optimization.

Sketch-based approaches, on the other hand, hash each row in the relation
once and build a small fixed-size synopsis from which the cardinality can then
be estimated. Arguably the most prominent representative of this class of
algorithms is the HyperLogLog sketch [69, 107], which provides much more
accurate estimates than sampling-based approaches [100]. One can also sketch
only a sample of a relation, which improves computation speed further without
severely impacting accuracy [227]. However, sketches on individual attributes
can not easily be combined, since by design there is no clear relationship between
the hash values of multiple individual attribute values and of the corresponding
attribute combination. Accordingly, an exponential number of sketches has to
be stored in order to provide estimates for arbitrary attribute combinations.

Since it is obviously not feasible to maintain an exponential number of sam-
ples or sketches in practice, current systems frequently assume the individual
attributes to be independent [158]. However, this assumption is often unfounded
on real-world data which may lead to large estimation errors [273]. More accu-
rate cardinality estimates could be derived from multi-dimensional histograms
or wavelets [48, 238], as well as from information about soft functional depen-
dencies [112]. Unfortunately, these synopses are prohibitively expensive to
construct and maintain in the presence of updates and deletions [48, 213]. A
recent approach estimates the inclusion coefficient between columns using only

168 CHAPTER 6. ACCURATE GROUP-BY RESULT ESTIMATES

single-column sketches [193], which could be used to infer the number of distinct
tuples if all attributes have equal domains. Another recent scheme combines
Count-Min and HyperLogLog sketches in order to estimate the cardinalities of
distinct events in a stream, but this estimation problem is orthogonal to the one
studied in this chapter [250]. An approach combining sketches and sampling
has been implemented successfully for selectivity estimation [192, 272], but to
the best of our knowledge there is no previous work on combining sketches and
sampling for cardinality estimation.

Traditional HyperLogLog sketches, however, are not suitable for this purpose
since they do not support updates and deletions. Flajolet and Martin themselves
point out that a possible solution is to maintain a counter for each possible bucket
value [70], which has been adopted in recent work [193]. However, this results
in an overly large memory footprint if sketches should be maintained for each
individual column (cf. Section 6.1). Deletions are also inherently encountered in
the sliding window model, where old observations have to be removed from the
sketch when new observations arrive [42]. In these cases, it is known exactly
at which time an element is going to be deleted, allowing for more specialized
solutions which cannot be adopted in a general-purpose database scenario.

Finally, the proposed recursive algorithm for computing frequency vectors is
based on a string partition refinement algorithm proposed by Cai and Paige [39].
Their algorithm is formulated without any recursion, and maintains auxiliary
data structure instead. Henglein developed a generic discrimination frame-
work which encompasses recursive partition refinement similar to the proposed
approach [106].

6.6 Summary
Query optimizers require accurate cardinality estimates in order to find efficient
execution plans, which is especially critical in disk-based database systems.
In this chapter, we showed that existing sketch-based approaches are highly
accurate, but require exponential space to produce estimates for arbitrary com-
binations of attributes. Furthermore, they do not support updates and deletions
out of the box. Sample-based approaches, on the other hand, can produce such
estimates but have provably poor accuracy. We presented a novel estimation
framework, which employs highly accurate sketched estimates over individual
columns to correct sample-based estimates over arbitrary combinations of at-
tributes. Moreover, we developed novel counting HyperLogLog sketches which
support update and delete operations with little additional state, and an efficient
algorithm for computing value frequencies in a sample, which are required for
estimation. Our approach consistently improves over previous sample-based

6.6. SUMMARY 169

approaches, producing highly accurate estimates on synthetic and real-world
data sets, while keeping the estimation overhead negligible.

CHAPTER 7
Adopting Worst-Case Optimal Joins

Excerpts of this chapter have been published in [71, 72].

The vast majority of relational database management systems relies on binary
joins to process queries that involve more than one relation, since they are well-
studied and straightforward to implement. Owing to decades of optimization
and fine-tuning, they offer great flexibility and excellent performance on a wide
range of workloads. Nevertheless, it is well-known that there are pathological
cases in which any binary join plan exhibits suboptimal performance [25, 88,
128]. The main shortcoming of binary joins is the generation of intermediate
results that can become much larger than the actual query result [201].

Unfortunately, this situation is generally unavoidable in complex analytical
settings where joins between non-key attributes are commonplace. For instance,
a conceivable query on the TPC-H schema would be to look for parts within
the same order that could have been delivered by the same supplier. Answering
this query involves a self-join of lineitem and two non-key joins between
lineitem and partsupp, all of which generate large intermediate results [73].
Self-joins that incur this issue are also prevalent in graph analytic queries
such as searching for triangle patterns within a graph [7]. On such queries,
traditional relational database management systems that employ binary join
plans frequently exhibit disastrous performance or even fail to produce any
result at all [6, 7, 203, 252]. While these issues can arise in all types of relational
databases, they are particularly undesirable within disk-based systems where
large intermediate results may have to be spooled to disk, further degrading
performance.

Consequently, there has been a long-standing interest in multi-way joins
that avoid enumerating any potentially exploding intermediate results [25, 88,
128]. Seminal theoretical advances recently enabled the development of worst-
case optimal multi-way join algorithms which have runtime proportional to

172 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

tight bounds on the worst-case size of the query result [24, 200, 201, 252]. As
they can guarantee better asymptotic runtime complexity than binary join
plans in the presence of growing intermediate results, they have the potential
to greatly improve the robustness of relational database systems. However,
existing implementations of worst-case optimal joins have several shortcomings
which have impeded their adoption within such general-purpose systems so far.

First, they require suitable indexes on all permutations of attributes that
can partake in a join which entails an enormous storage and maintenance
overhead [7]. Second, a general-purpose RDBMS must support inserts and
updates, whereas worst-case optimal systems like EmptyHeaded or LevelHeaded
rely on specialized read-only indexes that require expensive precomputation [6,
7]. The LogicBlox system does support mutable data, but can be orders of
magnitude slower than such read-optimized systems [7, 18]. Finally, multi-way
joins are commonly much slower than binary joins if there are no growing
intermediate results [183]. We thus argue that an implementation within a
general-purpose RDBMS requires an optimizer that only introduces a multi-way
join if there is a tangible benefit in doing so, and performant indexes structures
that can be built efficiently on-the-fly and do not have to be persisted to disk.

In this chapter, we present the first comprehensive approach for implement-
ing worst-case optimal joins that satisfies these constraints. The first part of our
proposal is a carefully engineered worst-case optimal join algorithm that is hash-
based instead of comparison-based and thus does not require any precomputed
ordered indexes. It relies on a novel hash trie data structure which organizes
tuples in a trie based on the hash values of their key attributes. Crucially, this
data structure can be built efficiently in linear time and offers low-overhead
constant-time lookup operations. As opposed to previous implementations,
our join algorithm handles changing data transparently as any required data
structures are built on-the-fly during query processing. The second part of our
proposal is a heuristic extension to traditional cost-based query optimizers that
intelligently generates hybrid query plans by utilizing the existing cardinality es-
timation framework. Finally, we discuss how our approach can be implemented
within a code-generating database system like Umbra that is designed for HTAP
workloads [195]. Our experiments show that the proposed approach outper-
forms binary join plans and several systems employing worst-case optimal joins
by up to two orders of magnitude on complex analytical workloads and graph
pattern queries, without sacrificing any performance on the traditional TPC-H
and JOB benchmarks where worst-case optimal joins are rarely beneficial.

In summary, this chapter discusses the following key points:

1. A novel hash-based worst-case optimal join algorithm that does not re-
quire any precomputed ordered index structures.

7.1. BACKGROUND 173

2. A heuristic query optimization approach that produces hybrid query plans
containing both binary and worst-case optimal joins.

3. A full implementation of the proposed approach within a code-generating
database system, which results in a speedup of up to two orders of magni-
tudes over existing systems.

The remainder of this chapter is organized as follows. In Section 7.1 we
present some background on worst-case optimal join algorithms. The hash
trie index structure and associated multi-way join algorithm are described in
detail in Section 7.2, and the hybrid query optimizer is presented in Section 7.3.
Section 7.4 contains the experimental evaluation of our system, Section 7.5
gives an overview of related work, and a summary of the chapter is provided in
Section 7.6.

7.1 Background
In the following section, we provide a brief overview of worst-case optimal joins
and their key differences to traditional binary join plans. In the remainder of
this chapter, we consider natural join queries of the form

𝑄 ∶= 𝑅1 B ⋯ B 𝑅𝑚, (7.1)

where the 𝑅𝑗 are relations with attributes 𝑣1, … , 𝑣𝑛. Note that any inner join
query containing only equality predicates can be transformed into this form by
renaming attributes suitably. While most queries of this type can be processed
efficiently by traditional binary join plans, query patterns such as joins on non-
key attributes can lead to exploding intermediate results which pose a significant
challenge to relational DBMS which rely purely on binary join plans. Consider,
for example, the query

𝑄Δ ∶= 𝑅1(𝑣1, 𝑣2) B 𝑅2(𝑣2, 𝑣3) B 𝑅3(𝑣3, 𝑣1).

If we set 𝑅1 = 𝑅2 = 𝑅3 and view tuples as edges in a graph, 𝑄Δ will contain
all directed cycles of length 3, i.e. triangles in this graph (cf. Figure 7.1a). Any
binary join plan for this query will first join two of these relations on a single
attribute, which is equivalent to enumerating all directed paths of length 2 in
the corresponding graph. This intermediate result will generally be much larger
than the actual query result, since a graph with 𝑒 edges contains on the order
of 𝑂(𝑒2) paths of length 2 but only 𝑂(𝑒1.5) triangles [231]. The resulting large
amount of redundant work will severely impact the overall query processing
performance.

174 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

R1(v1, v2) R2(v2, v3) R3(v3, v1)

0 1

2 3

0 1

2 3

0 1

2 3

(a) Sample instances of the relations 𝑅1, 𝑅2, 𝑅3. Each relation contains the tuples
(0, 1), (1, 2), (1, 3), (2, 0), (2, 3) which are viewed as edges in a directed graph. The di-
rected triangles in this graph are (0, 1, 2), (1, 2, 0), (2, 0, 1).

0 1 2

1 2 3 0 3

πv1
(R1)

πv2
(σv1=k1

(R1))

0 1 2

1 2 3 0 3

πv2
(R2)

πv3
(σv2=k2

(R2))

0 1 2 3

2 0 1 1 2

πv1
(R3)

πv3
(σv1=k1

(R3))

(b) The trie structure induced by Algorithm 7.1 on these instances of 𝑅1, 𝑅2, 𝑅3. Each
recursive step conceptually iterates over the elements in the intersection between some
trie nodes (line 5), and subsequently moves to the children of these elements (line 6).

Figure 7.1: Illustration of Algorithm 7.1 on the triangle query 𝑄Δ.

Worst-case optimal join algorithms, on the other hand, avoid such exploding
intermediate results [201]. Continuing our example, a worst-case optimal join
conceptually performs a recursive backtracking search to find valid assignments
of the join keys 𝑣1, 𝑣2, and 𝑣3 before enumerating any result tuples. Specifically,
we begin by iterating over the distinct values 𝑘1 of 𝑣1 that occur in both 𝑅1 and
𝑅3, i.e. 𝑘1 ∈ {0, 1, 2} in Figure 7.1a. For a given 𝑘1 we then recursively iterate
over the distinct values 𝑘2 of 𝑣2 that occur in both 𝑅2 and the subset of 𝑅1 with
𝑣1 = 𝑘1, e.g. 𝑘2 ∈ {1} for 𝑘1 = 0 in Figure 7.1a. Finally, we proceed analogously to
find valid assignments 𝑘3 of 𝑣3. Unlike a binary join plan, a worst-case optimal
join avoids redundant intermediate work if a specific join key value occurs in
multiple tuples, since only the distinct join key values need to be considered.
Thus, as discussed in detail in our experimental evaluation (cf. Section 7.4),
any relational join query in which a large fraction of tuples have multiple join
partners can potentially benefit from worst-case optimal joins.

7.1.1 Worst-Case Optimal Join Algorithms

Formally, this chapter builds on the generic worst-case optimal join algorithm
shown in Algorithm 7.1 which directly implements the conceptual backtracking
approach motivated above [201, 202]. It operates on the query hypergraph
𝐻𝑄 = (𝑉 , ℰ) of a query𝑄, where the vertex set 𝑉 contains the attributes {𝑣1, … , 𝑣𝑛}

7.1. BACKGROUND 175

given :A query hypergraph 𝐻𝑄 = (𝑉 , ℰ) with attributes 𝑉 = {𝑣1, … , 𝑣𝑛}
and hyperedges ℰ = {𝐸1, … , 𝐸𝑚}.

input :The current attribute index 𝑖 ∈ {1, … , 𝑛 + 1}, and a set of relations
ℛ = {𝑅1, … , 𝑅𝑚}.

1 function Enumerate(𝑖, ℛ)
2 if 𝑖 ≤ 𝑛 then

// Relations participating in the current join
3 ℛ𝑗𝑜𝑖𝑛 ← {𝑅𝑗 ∈ ℛ ∣ 𝑣𝑖 ∈ 𝐸𝑅𝑗 } ;

// Relations unaffected by the current join
4 ℛ𝑜𝑡ℎ𝑒𝑟 ← {𝑅𝑗 ∈ ℛ ∣ 𝑣𝑖 ∉ 𝐸𝑅𝑗 } ;

// Key values appearing in all joined relations
5 foreach 𝑘𝑖 ∈ ⋂𝑅𝑗∈ℛ𝑗𝑜𝑖𝑛

𝜋𝑣𝑖(𝑅𝑗) do
// Select matching tuples

6 ℛ𝑛𝑒𝑥𝑡 ← {𝜎𝑣𝑖=𝑘𝑖(𝑅𝑗) ∣ 𝑅𝑗 ∈ ℛ𝑗𝑜𝑖𝑛} ;

// Recursively enumerate matching tuples
7 Enumerate(𝑖 + 1, ℛ𝑛𝑒𝑥𝑡 ∪ ℛ𝑜𝑡ℎ𝑒𝑟) ;
8 else

// Produce result tuples
9 Produce(⨉𝑅𝑗∈ℛ

𝑅𝑗) ;

Algorithm 7.1: Pseudocode of the generic worst-case optimal join algorithm.

of 𝑄, and the edge set ℰ = {𝐸𝑗 ∣ 𝑗 = 1, … , 𝑚} contains the attribute sets of the
individual relations 𝑅𝑗. In case of our running example 𝑄Δ, the query hypergraph
is given by 𝑉 = {𝑣1, 𝑣2, 𝑣3} and ℰ = {𝐸1, 𝐸2, 𝐸3} with 𝐸1 = {𝑣1, 𝑣2}, 𝐸2 = {𝑣2, 𝑣3},
𝐸3 = {𝑣1, 𝑣3}.

Algorithm 7.1 consists of a recursive function which searches for valid
assignments of a single join key 𝑣𝑖 in each recursive step. The index 𝑖 of the
current join key is passed as a parameter to the algorithm. In later recursive
steps (i.e. 𝑖 > 1), the backtracking nature of the algorithm entails that a specific
assignment for the join keys 𝑣1, … , 𝑣𝑖−1 has already been selected in the previous
recursive steps (see above). The second parameterℛ consists of 𝑚 separate sets,
one for each input relation 𝑅𝑗, which contains all tuples from 𝑅𝑗 that match this
specific assignment of join key values. Initially, 𝑖 is set to 1 and ℛ contains the
full relations 𝑅𝑗.

Within a given recursive step 𝑖, the algorithm first determines which relations
contain the join key 𝑣𝑖 and thus have to be considered when searching for

176 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

matching assignments of 𝑣𝑖 (line 3). These relations are collected as separate
elements in the set ℛ𝑗𝑜𝑖𝑛. Next, the algorithm iterates over all assignments 𝑘𝑖 of
𝑣𝑖 that appear in every one of these relations (line 5). In every iteration of this
loop, the tuples that match the current assignment 𝑘𝑖 of 𝑣𝑖 are selected from the
relations in ℛ𝑗𝑜𝑖𝑛 (line 6) and the algorithm proceeds to the next recursive step
(line 7). In the final recursive step (i.e. 𝑖 = 𝑛 + 1), the relations in ℛ contain only
tuples that match one specific assignment of the join keys and are thus part of
the query result (line 9).

When taking a closer look at a specific input relation 𝑅𝑗, we observe that
the parameter ℛ of Algorithm 7.1 contains only tuples from 𝑅𝑗 that share a
common prefix of join key values. In case of the input relation 𝑅1 of the triangle
query, for example, ℛ will contain the full relation 𝑅1 in the first recursive step,
all tuples that match a specific value of 𝑣1 in the second step, and all tuples
that match a specific value of (𝑣1, 𝑣2) in the final step. Therefore, Algorithm 7.1
induces a trie structure on each input relation, as illustrated in Figure 7.1b [7].
The levels of this trie correspond to the join keys appearing in this relation, in
the order in which they are processed by the join algorithm.

The theoretical foundation for the study of worst-case optimal join algo-
rithms such as Algorithm 7.1 was laid down by Atserias, Grohe, and Marx,
who derived a non-trivial and tight bound on the output size of 𝑄 that depends
only on the size of the input relations 𝑅𝑗 [24, 201, 202]. Given the query hyper-
graph 𝐻𝑄 of 𝑄 as defined above, we consider an arbitrary fractional edge cover
x = (𝑥1, … , 𝑥𝑚) of 𝐻𝑄 [202], which is defined by 𝑥𝑗 > 0 for all 𝑗 ∈ {1, … , 𝑚} and
∑𝑣𝑖∈𝐸𝑗

𝑥𝑗 ≥ 1 for all 𝑣𝑖 ∈ 𝑉. Then this bound states that

|𝑄| ≤
𝑚
∏
𝑗=1

|𝑅𝑗|
𝑥𝑗 , (7.2)

and the worst-case output size of 𝑄 can be determined by minimizing the right-
hand size of Inequality 7.2 [202]. A join algorithm for computing 𝑄 is defined
to be worst-case optimal if its runtime is proportional to this worst-case output
size [201, 202]. In case of our running example 𝑄Δ, the right-hand side of
Inequality 7.2 is minimal for the fractional edge cover x = (0.5, 0.5, 0.5) which
results in an upper bound of √|𝑅1| ⋅ |𝑅2| ⋅ |𝑅3| on the size of 𝑄Δ [7, 202].

Central to the analysis of the runtime complexity of worst-case optimal joins
is the query decomposition lemma proved by Ngo et al. [202] For a given query
hypergraph 𝐻𝑄 and a subset of join attributes 𝑈 ⊆ 𝑉, we write ℰ𝑈 ∶= {𝐸𝑗 ∈ ℰ ∣
𝑈 ∩ 𝐸𝑗 ≠ ∅} to identify the set of all hyperedges that contain at least one of
the join attributes in 𝑈. Then the query decomposition lemma can be stated as
follows.

7.1. BACKGROUND 177

Lemma 7.1. Consider the query hypergraph 𝐻𝑄 = (𝑉 , ℰ) describing the natural
join query 𝑄 = 𝑅1 B ⋯ B 𝑅𝑚. Let 𝑈 ⊎ 𝑊 = 𝑉 be an arbitrary partition of 𝑉 with
1 ≤ |𝑈 | < |𝑉 | and 𝐿 ∶= B𝐸𝑗∈ℰ𝑈

𝜋𝑈(𝑅𝑗). Then

∑
t∈𝐿

(∏
𝐸𝑗∈ℰ𝑊∩ℰ𝑈

|𝑅𝑗 N t|𝑥𝑗 ∏
𝐸𝑗∈ℰ𝑊⧵ℰ𝑈

|𝑅𝑗|
𝑥𝑗) ≤ ∏

𝐸𝑗∈ℰ
|𝑅𝑗|

𝑥𝑗 (7.3)

holds for any fractional edge cover x = (𝑥1, … , 𝑥𝑚) of 𝐻𝑄.

From their constructive proof of this lemma, they derive a generic worst-case
optimal join algorithm that has runtime in 𝑂(𝑛𝑚∏𝐸𝑗∈ℰ

|𝑅𝑗|
𝑥𝑗) for an arbitrary

fractional edge cover x = (𝑥1, … , 𝑥𝑚) of the query hypergraph. Algorithm 7.1
as shown here can be recovered as a special case of this generic algorithm by
setting 𝑈 = {𝑣𝑖} in Lemma 7.1. In particular, the set intersection in Algorithm 7.1
corresponds to the set 𝐿, and the runtime of the loop over this set intersection
corresponds to the left-hand side of Inequality 7.3.

7.1.2 Implementation Challenges
Any implementation of Algorithm 7.1 has to rely on indexes that explicitly
model the trie structure on the input relations in order to maintain the runtime
complexity guarantees that are required for the algorithm to be worst-case
optimal [201, 202]. However, this requirement for index structures poses a con-
siderable practical challenge. The order in which the join keys 𝑣𝑖 of a query are
processed heavily influences the performance of Algorithm 7.1 [6]. Depending
on the query and its optimal join key order, indexes are required on different
permutations of attributes from the input relations. The number of such permu-
tations is usually much too large to store the corresponding indexes persistently.
Therefore, they have to be built on-the-fly during query processing, precluding
any expensive precomputation of the indexes themselves. Moreover, a general-
purpose relational database system and in particular an HTAP database has to
support changing data. This makes it difficult to precompute data structures that
could be reused across indexes. For instance, EmptyHeaded and LevelHeaded
rely heavily on a suitable dense dictionary encoding of the join attribute values
which is hard to maintain in the presence of changing data [6, 7].

At the same time, the overall runtime of Algorithm 7.1 is dominated by the set
intersection computation in line 5 which has to be implemented using these trie
indexes [7]. While traditional B+-trees or plain sorted lists are comparably cheap
to build, they exhibit poor performance on this computation. The read-optimized
data structures employed by EmptyHeaded and LevelHeaded can perform orders

178 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

of magnitude better, but as outlined above are far too expensive to build on-
the-fly [7, 18, 45]. For example, we measured in Section 7.4 that EmptyHeaded
spends up to two orders of magnitude more time on precomputation than on
actual join processing [7]. In contrast, our hash trie index structure proposed
in Section 7.2 is much cheaper to build while still offering competitive join
processing performance.

Finally, binary join processing has been studied and optimized for decades,
leading to excellent performance on a wide range of queries. Even efficiently
implemented worst-case optimal join algorithms frequently fail to achieve the
same performance on queries that do not contain growing joins [6]. For instance,
even when disregarding precomputation cost, the highly optimized LevelHeaded
system is outperformed by HyPer by up to a factor of two on selected TPC-H
queries [6, 129]. Moreover, we measured that Umbra which employs binary
join plans outperforms a commercial database system that relies on worst-case
optimal joins by up to four orders of magnitude on the well-known TPC-H and
JOB benchmarks (cf. Section 7.4) [158, 195]. Therefore, we propose a hybrid
query optimization approach that only replaces binary joins with growing
intermediate results by worst-case optimal joins, as we expect a tangible benefit
in this case (cf. Section 7.3).

7.2 Multi-Way Hash Trie Joins
In this section, we present our hash-based worst-case optimal join algorithm.
The workhorse of this approach is a novel hash trie data structure which is
carefully designed to fulfill the requirements identified above.

7.2.1 Outline
Conceptually, the trie structure required by Algorithm 7.1 can be modeled easily
through nested hash tables, where each level of nesting corresponds to exactly
one join key attribute [252]. The path to a nested hash table then determines
a unique prefix of join key values, and the nested hash table itself stores the
distinct values of the corresponding join key attribute that appear in tuples with
this prefix. On the last level, the hash tables store some sort of tuple identifiers
that allow access to the tuple payload. The set intersections required by the
worst-case optimal join algorithm can then trivially be computed in linear time,
and the tuples matching a specific join key value can be selected by a single
constant-time hash table lookup.

However, a straightforward implementation of this approach will suffer
from suboptimal performance due to the substantial overhead incurred by each

7.2. MULTI-WAY HASH TRIE JOINS 179

h2(3) h2(2) h2(0) = h2(3)h2(1)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

hash table
on h1(v1)

hash tables
on h2(v2)

materialized tuples
in R1(v1, v2)

Figure 7.2: Illustration of a hash trie on the relation 𝑅1(𝑣1, 𝑣2) shown in Figure 7.1.
The example contains a collision between ℎ2(0) and ℎ2(3) that is marked in red.

hash table lookup. Most importantly, every successful lookup into a hash table
involves at least one key comparison in order to detect and eliminate hash
collisions. This requires that the actual key values are accessible from the hash
table buckets, and consequently, we either have to follow a pointer to the actual
tuple on each hash table lookup, or the key values have to be stored within the
buckets themselves. In either case, the cache performance of lookup operations
will suffer considerably even if the actual key comparison function is cheap.
Variable-length join keys such as strings further exacerbate this problem [254].
Finally, Algorithm 7.1 will generally produce many tentative matches in the
upper levels of the tries that are later rejected because no corresponding matches
exist on the lower levels, each of which still requires at least one key comparison.

The proposed hash trie data structure is based on the core insight that this
key comparison can be deferred until the actual result tuples are enumerated by
the join algorithm. Specifically, we modify Algorithm 7.1 to operate exclusively
on the hash values of join keys, i.e. enumerate all tuples for which the hash
values instead of the actual values of the join keys match. As a result, the
corresponding trie structures will also be built on the hash values instead of the
actual values of the join keys (cf. Figure 7.2). Of course, this enumeration will
now include some false positives due to hash collisions, but we eliminate these
false positives by verifying the actual join condition just before producing a
result tuple (line 9 in Algorithm 7.1). The amount of redundant work introduced
by this relaxation will generally be negligible since hash collisions are extremely
rare in any decent hash function like AquaHash or MurmurHash [17, 226].

These modifications allow for a much more efficient implementation of the
nested hash table structure, since no information about the actual key values is
required. Thus, all hash tables share a uniform compact memory layout, and
both set intersections and lookup operations can be computed without any
type-specific logic by only relying on fast integer comparisons. Moreover, the
modified version of Algorithm 7.1 does not require any actual key comparisons
for tentative matches that are later rejected.

180 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

7.2.2 Join Algorithm Description
The proposed join processing approach can be split into clearly separated build
and probe phases. In the build phase the input relations are materialized and
the corresponding hash tries are created. In the subsequent probe phase, the
worst-case optimal hash trie join algorithm utilizes these index structures to
enumerate the join result.

Hash Tries

As outlined above, a hash trie represents a prefix tree on the hashed join attribute
values of a relation, where the join attributes and their order are determined
by a given query hypergraph. Thus, we assume in the following that there is a
hash function ℎ𝑖 for each join attribute 𝑣𝑖 which maps the values of 𝑣𝑖 to some
integer domain. A node within a hash trie consists of a single hash table which
maps these hash values to child pointers. These point to nodes on the next trie
level in case of inner nodes, and to the actual tuples associated with a full prefix
in case of leaf nodes. Within a leaf node, these tuples are stored in a linked list.
For example, Figure 7.2 illustrates a possible hash trie on the relation 𝑅1(𝑣1, 𝑣2)
of 𝑄Δ shown in Figure 7.1, containing the tuples (0, 1), (1, 2), (1, 3), (2, 0), (2, 3).
Its root hash table contains the distinct hash values of 𝑣1, i.e. ℎ1(0), ℎ1(1), and
ℎ1(2). The child hash table of the entry for ℎ1(1), for instance, then contains the
distinct hash values of 𝑣2 that occur in tuples with ℎ1(𝑣1) = ℎ1(1), i.e. ℎ2(2) and
ℎ2(3).

Build Phase

In the build phase, this hash trie data structure is built on each input relation
𝑅𝑗 of the join query 𝑄. For a given relation 𝑅𝑗, we first materialize all tuples
in 𝑅𝑗 in a linked list. Subsequently, this linked list is passed to Algorithm 7.2
which recursively constructs the hash tables comprising the hash trie from top
to bottom. Its inputs are the global index 𝑖 of the join attribute on which to build
a hash table, and a linked list 𝐿 of tuples. The algorithm first allocates space
for the hash table, where the number of buckets is chosen as the next power
of two larger than some fixed multiple of the number of tuples in 𝐿 (line 3).
Subsequently, the tuples in 𝐿 are inserted into the hash table based on the hash
value of the current join attribute 𝑣𝑖. Tuples that fall into the same bucket are
collected in a linked list stored in that bucket (lines 4–7). Finally, the hash tables
on the next join key attribute are built by calling Algorithm 7.2 recursively on
these linked lists (lines 8–12). In the base case (line 15), the linked list 𝐿 itself is
returned unchanged as the leaf node.

7.2. MULTI-WAY HASH TRIE JOINS 181

given :A hyperedge 𝐸𝑗 ∈ ℰ and hash functions ℎ𝑖 for the join attributes
𝑣𝑖 ∈ 𝑉.

input :The global index 𝑖 ∈ {1, … , 𝑛 + 1} of the currently processed
attribute 𝑣𝑖 ∈ 𝐸𝑗 and a linked list 𝐿 of tuples.

1 function Build(𝑖, 𝐿)
2 if 𝑖 ≤ 𝑛 then

// Allocate hash table memory
3 𝑀 ← AllocateHashtable(2⌈log2(1.25⋅|𝐿|)⌉) ;

// Build outer hash table
4 while 𝐿 is not empty do
5 t ← pop next tuple from 𝐿 ;
6 𝐵 ← LookupBucket(𝑀, ℎ𝑖(𝜋𝑣𝑖(t))) ;
7 Push t onto the linked list stored in 𝐵 ;

// Build nested hash tables
8 𝑖𝑛𝑒𝑥𝑡 ← index of the next attribute in 𝐸𝑗 ;
9 foreach populated bucket 𝐵 in 𝑀 do
10 𝐿𝑛𝑒𝑥𝑡 ← extract linked list stored in 𝐵 ;
11 𝑀𝑛𝑒𝑥𝑡 ← Build(𝑖𝑛𝑒𝑥𝑡, 𝐿𝑛𝑒𝑥𝑡) ;
12 Store 𝑀𝑛𝑒𝑥𝑡 in 𝐵 ;

13 return 𝑀 ;
14 else

// All attributes in 𝐸𝑗 have been processed
15 return 𝐿 ;

Algorithm 7.2: Pseudocode for the build phase of the proposed hash trie join
algorithm.

Probe Phase

The probe phase is responsible for actually enumerating the tuples in the join
result of a query. As outlined above, we modify the generic multi-way join
algorithm shown in Algorithm 7.1 to defer key comparisons and make use of
the hash trie data structures created in the build phase. Our implementation
accesses hash tries through iterators. A hash trie iterator points to a specific
bucket within one of the nodes of a hash trie, and thus identifies a unique
prefix stored within this trie. Iterators can be moved through a set of well-
defined interface functions which are shown in Table 7.1. These functions allow
horizontal navigation within the buckets of a given node (next, lookup), and

182 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

given :A query hypergraph and hash tries on the input relations with
iterators ℐ = {𝐼1, … , 𝐼𝑚}.

input :The current attribute index 𝑖 ∈ {1, … , 𝑛 + 1}.

1 function Enumerate(𝑖)
2 if 𝑖 ≤ 𝑛 then

// Select participating iterators
3 ℐ𝑗𝑜𝑖𝑛 ← {𝐼𝑗 ∈ ℐ ∣ 𝑣𝑖 ∈ 𝐸𝑗} ;
4 ℐ𝑜𝑡ℎ𝑒𝑟 ← {𝐼𝑗 ∈ ℐ ∣ 𝑣𝑖 ∉ 𝐸𝑗} ;

// Select smallest hash table
5 𝐼𝑠𝑐𝑎𝑛 ← argmin𝐼𝑗∈ℐ𝑗𝑜𝑖𝑛

Size(𝐼𝑗) ;

// Iterate over hashes in smallest hash table
6 repeat

// Find hash in remaining hash tables
7 foreach 𝐼𝑗 ∈ ℐ𝑗𝑜𝑖𝑛 ⧵ {𝐼𝑠𝑐𝑎𝑛} do
8 if not Lookup(𝐼𝑗, Hash(𝐼𝑠𝑐𝑎𝑛)) then
9 Skip current iteration of outer loop ;

// Move to the next trie level
10 foreach 𝐼𝑗 ∈ ℐ𝑗𝑜𝑖𝑛 do
11 Down(𝐼𝑗)

// Recursively enumerate matching tuples
12 Enumerate(𝑖 + 1);

// Move back to the current trie level
13 foreach 𝐼𝑗 ∈ ℐ𝑗𝑜𝑖𝑛 do
14 Up(𝐼𝑗)
15 until not Next(𝐼𝑠𝑐𝑎𝑛);
16 else

// All iterators now point to tuple chains
17 foreach t ∈ ⨉𝐼𝑗∈ℐ

Tuples(𝐼𝑗) do
18 if join condition holds for t then
19 Produce(t) ;

Algorithm 7.3: Pseudocode for the probe phase of the proposed hash trie join
algorithm.

7.2. MULTI-WAY HASH TRIE JOINS 183

Table 7.1: The trie iterator interface used in the probe phase of our hash trie
join algorithm (cf. Algorithm 7.3). An iterator points to a specific bucket within
one of the nodes of a hash trie, and the interface functions allow navigation
within the trie.

Function Description

Up Move the iterator to the parent bucket of the current node.
Down Move the iterator to the first bucket in the child node of the

current bucket.
Next Move the iterator to next occupied bucket within the current

node. Return false if no further occupied buckets exist.
Lookup Move the iterator to the bucket with specified hash. Return

false if no such bucket exists.

Hash Return the hash value of the current bucket.
Size Return the size of the current node.
Tuples Return the current tuple chain (only possible after calling

down on the last trie level).

vertical navigation between different nodes of the hash trie (up, down). Crucially,
all functions can be implemented with amortized constant time complexity as
they directly map to elementary operations on the underlying hash tables.

The resulting worst-case optimal hash trie join algorithm is shown in Al-
gorithm 7.3. It exclusively interacts with iterators 𝐼𝑗 ∈ ℐ on the hash tries
corresponding to the input relations 𝑅𝑗 ∈ ℛ. As outlined above, a hash trie
iterator 𝐼𝑗 ∈ ℐ always points to a specific node within a hash trie. We write 𝑅(𝐼𝑗)
to identify the set of tuples stored in the leaves of the subtrie rooted in this node,
and 𝐻(𝐼𝑗) to identify the set of hashed join keys that are present in these tuples.
For example, let 𝐼𝑗 point to a bucket in the inner node containing ℎ2(2) and
ℎ2(3) in Figure 7.2. Then 𝑅(𝐼𝑗) consists of the tuples (1, 2) and (1, 3), while 𝐻(𝐼𝑗)
consists of the tuples (ℎ1(1), ℎ2(2)) and (ℎ1(1), ℎ2(3)). Clearly, |𝐻 (𝐼𝑗)| ≤ |𝑅(𝐼𝑗)|
holds for any hash trie iterator 𝐼𝑗. In the following, we will view 𝐻(𝐼𝑗) as a
relation with the same attribute names as the corresponding 𝑅(𝐼𝑗).

From a high-level point of view Algorithm 7.3 operates in exactly the same
way as the generic algorithm shown in Algorithm 7.1, with the key difference
that it initially enumerates all tuples for which the hash values of the join keys
match. In particular, the loop in lines 6–15 iterates over the elements 𝑘𝑖 in the set
intersection ⋂𝐼𝑗∈ℐ𝑗𝑜𝑖𝑛

𝜋𝑣𝑖(𝐻(𝐼𝑗)), and invoking down on the participating iterators

is equivalent to computing 𝜎𝑣𝑖=𝑘𝑖(𝐻(𝐼𝑗)) for 𝐼𝑗 ∈ ℐ𝑗𝑜𝑖𝑛. Any false positives arising
due to hash collisions are filtered by a final check just before passing the tuples

184 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

to the output consumer of the multi-way join operator (line 18).

Complexity Analysis

In the following, we present a formal investigation of the time and space com-
plexity of the proposed hash trie join approach, revealing in particular that its
runtime is indeed worst-case optimal. For this purpose, we state two theorems
concerning the complexity of Algorithms 7.2 and 7.3, for which we provide
formal proofs in Appendix B.

Theorem 7.2. The build phase of the proposed approach shown in Algorithm 7.2
has time and space complexity in 𝑂(𝑛 ⋅ ∑𝐸𝑗∈ℰ

|𝑅𝑗|).

Before studying the runtime analysis of Algorithm 7.3, it is important to
recall that we intend to integrate our approach into a general-purpose relational
database management system, and thus have to adhere to the bag semantics
imposed by the SQL query language. However, both the theoretical groundwork
on worst-case optimal join processing as well as existing implementations
only consider the case of set semantics, used for example in the Datalog query
language [7, 201]. We thus pursue the following line of reasoning. In the first
step, we formally prove that Algorithm 7.3 is worst-case optimal under set
semantics, where exactly one tuple is associated with each distinct join key in
the input relations 𝑅𝑗. Subsequently, we informally motivate how this worst-case
optimality under set semantics translates to bag semantics.

Theorem 7.3. Consider the query hypergraph 𝐻𝑄 = (𝑉 , ℰ) describing the natural
join query 𝑄 = 𝑅1 B ⋯ B 𝑅𝑚. Let x = (𝑥1, … , 𝑥𝑚) be an arbitrary fractional
edge cover of 𝐻𝑄, and let ℐ = {𝐼1, … , 𝐼𝑚} be iterators pointing to the root nodes
of hash tries on the relations 𝑅𝑗. Then the time complexity of Algorithm 7.3 is in

𝑂 (𝑛𝑚∏𝐸𝑗∈ℰ
|𝐻 (𝐼𝑗)|

𝑥𝑗) and its space complexity is in 𝑂(𝑛𝑚).

Taking into account that |𝐻 (𝐼𝑗)| ≤ |𝑅(𝐼𝑗)| as outlined above, Theorem 7.3
yields that the runtime of Algorithm 7.3 is indeed worst-case optimal under set
semantics. Concluding our analysis, we note that under bag semantics, we can
view the algorithm as performing a worst-case optimal join on the set of join key
values, before expanding the bag of tuples corresponding to the join keys that
are part of the join result. By construction (cf. Algorithm 7.2), the inner nodes
of a hash trie store only the distinct join attribute hash values present in the
respective input relation, and consequently only the leaf nodes are affected when
multiple tuples can be associated with a single join key. Such duplicated tuples
are simply stored in the linked list associated with the respective leaf node and

7.2. MULTI-WAY HASH TRIE JOINS 185

62 h2(3) h2(2)
hash ptr hash ptr

61 h1(1) h1(0) h1(2)
hash ptr hash ptr hash ptr

8-byte shi� 16-byte buckets

ptr v1 v2

2 3
ptr v1 v2

0 1
ptr v1 v2

2 0null null

ptr v1 v2

1 2
ptr v1 v2

1 3

8-byte chain pointer tuple memory

nullnull

62 h2(3)
hash ptr

hash table
on h1(v1)

hash tables
on h2(v2)

materialized tuples
in R1(v1, v2)

Figure 7.3: Memory layout of the hash trie in Figure 7.2. The gray boxes
correspond to the individual hash tables and materialized input tuples. No
nested hash table is built for the tuple (0, 1) due to singleton pruning.

enumerated as part of the cross product between tuple chains in the base case
of Algorithm 7.3 (line 17). Crucially, this expansion occurs after Algorithm 7.3
has determined that all tuples in this cross product are part of the join result,
except of course for potential false positives due to hash collisions.

7.2.3 Implementation Details
In the following, we provide essential implementation details of the proposed
approach, and a brief account of its integration into a compiling query execution
engine [194].

Hash Trie Implementation

Figure 7.3 shows the memory layout of a hash trie as it is implemented within
the Umbra system [195]. We assume that the size of a hash value is 64 bits,
which is sufficient even for very large data sets. As outlined above, the size
of hash tables is restricted to powers of two, as this allows us to compute the
bucket index for a given hash value using a fast bitwise shift instead of a slow
modulo operation. Specifically, for a hash table size of 2𝑝 and a 64-bit hash
value, the bucket index is computed by shifting the hash value 64 − 𝑝 bits to the
right. Each hash table contiguously stores this shift value, i.e. 64 − 𝑝, as a single
8-byte integer followed by an array of 2𝑝 16-byte buckets.

The first 8 bytes of each bucket contain the full hash value that is stored
in the bucket, which is required as we use linear probing to resolve collisions
within the bucket array. In comparison to other collision resolution schemes
such as chaining, linear probing has the advantage that all distinct hash values
are stored separately in the hash table. This allows us to store the associated

186 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

S E chain length memory address
1 bit 1 bit 14 bit 48 bit

64 bit tagged pointer

Figure 7.4: Structure of tagged child node pointers. The S bit is set if the child
node is a singleton tuple, and the E bit indicates whether the child node has
already been expanded.

h2(3) h2(2) h2(1) h2(3)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

(a) No singleton pruning.

h2(3) h2(2) h2(3)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

(b) Singleton pruning.

Figure 7.5: Illustration of singleton pruning. Any sub-trie that represents only a
single tuple (shown red in (a)) is represented by a direct pointer to the corre-
sponding tuple (shown red in (b)).

child pointer directly within the remaining 8 bytes of a bucket, which would
otherwise require at least one further level of indirection. The upper 16 bits
of child pointers are unused on prevalent 64-bit architectures, and we encode
additional information about the target of the pointer in these bits (cf. Figure 7.4).
This plays a central role in the two main optimizations of hash tries, namely
singleton pruning and lazy child expansion.

Singleton pruning is based on the observation that the size of hash tables
tends to decrease drastically in the lower levels of the trie. In particular, we
observed that inner nodes quite frequently represent a prefix that occurs only
in a single tuple. Such singleton nodes and their descendants form a path on
which each node has exactly one child, and we represent such paths by a direct
pointer to the corresponding singleton tuple (cf. Figure 7.5). Single-entry paths
that are associated with multiple tuples are not pruned, as we cannot cheaply
detect this case without actually building the corresponding hash tables (e.g. ℎ(3)
in Figure 7.5). The upper bit of a child pointer is used to distinguish between
regular child pointers and singleton child pointers (cf. Figure 7.4). We do not
apply singleton pruning to the root node, as this simplifies our code and we
expect the root node to contain more than one tuple anyway.

Lazy child expansion exploits that Algorithm 7.3 computes the intersection of
multiple hash tables before actually accessing any children thereof. Depending
on the selectivity of this intersection operation, many inner nodes of the hash

7.2. MULTI-WAY HASH TRIE JOINS 187

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

(a) Initial state.

h2(3) h2(2)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

(b) After lookup of ℎ1(1).

Figure 7.6: Illustration of lazy child expansion. Initially, only the root hash table
is built (a), and nested hash tables are built lazily when required (b).

trie are never accessed. In order to avoid the overhead of unnecessarily creating
nodes, we lazily expand child nodes when they are accessed for the first time.
Only the root node is eagerly created by Algorithm 7.2, as it is usually accessed
at least once by the join algorithm. Any recursive calls to Algorithm 7.2 are
then deferred to the probe phase, until the corresponding child node is actually
accessed. When a node is first created, all tuples that fall into a given hash bucket
are collected in a linked list (cf. Algorithm 7.2), and a pointer to the head of this
list is stored in the corresponding child pointer (cf. Figure 7.6). The second bit of
the child pointer is then used to indicate whether the corresponding child node
has already been expanded (cf. Figure 7.4). Upon the first access to this bucket,
the tuple chain is scanned and the respective child node is built by executing
the respective deferred recursive call of Algorithm 7.2.

The number of tuples in the chain needs to be known to choose a correct
size for this child hash table. In order to avoid having to scan the tuple chain
twice, we use the remaining 14 unused bits of the child pointer to track the
length of the tuple chain while building the parent hash table (cf. Figure 7.4). Of
course, we can only store chain lengths up to a certain limit this way, and we
store the lengths of longer chains in a separate hash table. Specifically, the child
pointer can be used to store chain lengths up to 214 − 2 = 16 382, and the value
214 − 1 is used as a sentinel to indicate that an overflow occurred. Fortunately,
most hash tables in the lower levels of a hash trie are small, so such long chains
are only encountered very rarely.

For this reason we simply expand a child node in the first thread that accesses
it. This thread atomically replaces the child pointer with a sentinel value that
cannot occur during regular operation (263 −1). Before following a child pointer,
threads first check for this sentinel value and spin until the value becomes
valid. We could also allow multiple threads to collaboratively expand child
nodes, but our experiments show that the simple approach implemented in our
system works fine in the vast majority of cases. We thus leave the exploration

188 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

of alternative approaches to future work.
Our implementation of hash tries makes heavy use of pointer tagging which

calls for a brief discussion of the portability of our approach. Most importantly,
we note that we can maintain the overall asymptotic complexity guarantees of
the data structure even without pointer tagging. We merely use it to optimize
for cache performance by reducing the size of the hash buckets. If the upper
16 bits of pointers are not available to encode additional information, we can
simply store this information in an additional data field within the hash buckets.

Build Phase

As outlined in Section 7.2.2 the incoming tuples within a given input pipeline
are conceptually placed in a linked list as part of the build phase. In our imple-
mentation, we materialize these incoming tuples contiguously in an in-memory
buffer prior to running Algorithm 7.2. They are stored using a fixed-length
memory layout that is determined during query compilation time, in order to
facilitate subsequent random tuple accesses. In case of variable-length data, this
is achieved by materializing a fixed-length metadata entry containing a pointer
to the actual variable-length data (cf. Chapter 2). In addition to the actual tuple
data, we reserve an additional 8 bytes of memory per tuple which is used later
to store the tuple chain pointer required by the linked lists (cf. Figure 7.3). Note
that we do not materialize the hash values of the join key attributes at this point,
but generate functions to compute these hash values from the materialized tuple
data on-demand. This reduces the storage overhead per tuple as the hash values
are stored as part of the hash trie anyway.

As part of the materialization step, the tuples are partitioned based on the
hash values of the first join key attribute. This ensures that tuples with similar
join key hash values reside in physically close memory locations which is critical
to achieve good cache performance during the remainder of the build and probe
phases. For this purpose, we employ a variant of the two-pass radix partitioning
scheme proposed by Balkesen et al. that has been adapted to the morsel-driven
parallelization scheme employed by Umbra [28, 29, 157, 280]. After the incoming
tuples have been materialized and partitioned, we create the root node of the
corresponding hash trie. In contrast to the lazily expanded nested hash tables,
these root hash tables can routinely become quite large, depending on the
number of distinct join attribute values in the corresponding input pipelines.
For this reason we fully parallelize their creation within the morsel-driven
parallelization framework provided by Umbra [157, 195]. Concurrent insertions
into the same bucket are synchronized with lock-free atomic operations. As a
result of the self-join patterns frequently found in graph analytic workloads,
multiple input pipelines to a worst-case optimal join may produce exactly the

7.3. OPTIMIZING HYBRID QUERY PLANS 189

same hash tries. This is evident, for example, in Figure 7.1b where two of the
three tries on the participating relations are identical. We detect this during
code generation and only build the corresponding data structures once.

Probe Phase

After the build phase, the initial hash trie structure for each input pipeline is
available, and the join result can be computed by Algorithm 7.3. Within the
compiling database system Umbra, the hash trie data structure and trie iterators
are implemented in plain C++, while the code that implements the build and
probe phases of a multi-way join for a specific query is generated by the query
compiler. At query compilation time, the query hypergraph and, in particular,
the number and order of join attributes is statically known. This allows us to
fully unroll the recursion in Algorithm 7.3 within the generated code, resulting
in a series of tightly nested loops that enumerate the tuples in the join result.
This code is fully parallelized by splitting the outermost loop, i.e. the first set
intersection, intomorsels that can be processed independently byworker threads
within the work-stealing framework provided by Umbra [157].

7.2.4 Further Considerations
An attractive way to reduce the amount of work required in the build phase
is to exploit existing index structures. As the proposed join algorithm is hash-
based, it is unfortunately not possible to reuse traditional comparison-based
indexes like B+-trees for this purpose. However, with minor extensions to allow
for insertions, the proposed hash trie data structure could also be used as a
secondary index structure. Then, the build phase can be skipped for input
pipelines that scan a suitably indexed relation.

Even more aggressive optimizations are possible if the data is known to be
static. In this case, it is actually desirable to perform as much precomputation
as possible in order to minimize the time required to answer a query. While this
obviates the need for data structures that can be built efficiently on-the-fly, a
hash-based approach retains the advantage that complex attribute types can be
handled much more efficiently than in a comparison-based approach.

7.3 Optimizing Hybrid Query Plans
As discussed in Section 7.1, even an efficiently implemented worst-case optimal
join can be much slower than a binary join plan if there are no growing binary
joins that can be avoided by the worst-case optimal join [6]. Therefore, we argue

190 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

input :An optimized operator tree 𝑇
output :A semantically equivalent operator tree 𝑇 ′ which may employ

multi-way joins

1 function RefineSubtree(𝑇)
2 if 𝑇 ≠ 𝑇𝑙 B 𝑇𝑟 then
3 return 𝑇 ;

4 𝑇 ′𝑙 ← RefineSubtree(𝑇𝑙) ;
5 𝑇 ′𝑟 ← RefineSubtree(𝑇𝑟) ;

// Detect growing joins and multi-way join inputs
6 if |𝑇 | > max(|𝑇 ′𝑙 |, |𝑇

′
𝑟 |) ∨ 𝑇 ′𝑙 ≠ 𝑇𝑙 ∨ 𝑇 ′𝑟 ≠ 𝑇𝑟 then

7 return CollapseMultiwayJoin(𝑇 ′𝑙 B 𝑇 ′𝑟) ;

8 return 𝑇 ′𝑙 B 𝑇 ′𝑟 ;

Algorithm 7.4: Pseudocode for heuristically refining binary join trees.

that a general-purpose system cannot simply replace all binary join plans by
worst-case optimal joins and consequently, its query optimizer must be able to
generate hybrid plans containing both types of joins.

The main objective of our optimization approach is to avoid binary joins
that perform exceptionally poorly due to exploding intermediate results. We
thus propose a heuristic approach that refines an optimized binary join plan
by replacing cascades of potentially growing joins with worst-case optimal
joins. Although the hybrid plans generated by this approach are not neces-
sarily globally optimal, they nevertheless avoid growing intermediate results
and thus improve over the original binary plans. We identify such growing
joins based on the same cardinality estimates that are used during regular join
order optimization. As query optimizers depend heavily on accurate cardinality
estimates, state-of-the-art systems have been subject to decades of fine-tuning to
produce reasonable estimates on a wide variety of queries. Thus, although it is
well-known that errors in these estimates are fundamentally unavoidable [114],
we expect our approach to work well on a similarly wide range of queries.

The pseudocode of our approach is shown in Algorithm 7.4. We perform
a recursive post-order traversal of the optimized join tree, and decide for each
binary join whether to replace it by a multi-way join. A binary join is replaced
either if it is classified as a growing join, i.e. its output cardinality is greater
than the maximum of its input cardinalities, or if one of its inputs has already
been replaced by a multi-way join (line 6). In both cases, a single multi-way
join is built from the inputs and the current join condition (cf. Figure 7.7). We

7.3. OPTIMIZING HYBRID QUERY PLANS 191

R1 R2 R3 R4

10

20

2015

20

5 10

(a) Binary join plan

R1 R2

R3 R4

10

20

2015

5
10

(b) Hybrid join plan

Figure 7.7: Illustration of the proposed join tree refinement algorithm. A growing
binary join and all its ancestors (shown in red in (a)) are collapsed into a single
multi-way join (shown in (b)).

choose to eagerly collapse the ancestors of a growing binary join into a single
multi-way join, as the output of a growing join will necessarily contain duplicate
key values which would cause redundant work when processed by a regular
binary join. Note that the formulation in Algorithm 7.4 is slightly simplified,
as our actual implementation contains additional checks to ensure that only
inner joins with equality predicates are transformed into a multi-way join, as
this is not possible for other join types in the general case. Furthermore, we do
not create multi-way join nodes with only two inputs as they offer no benefit
over regular binary joins. Like many commercial and research relational DBMS,
Umbra employs a dynamic programming approach for cost-based join order
optimization, and we could also attempt to integrate hybrid query plans into the
search space of this optimizer. However, this attempts to holistically improve
the quality of all query plans, whereas we only want to avoid binary joins that
suffer from exploding intermediate results. Furthermore, recent work within a
specialized graph system has shown that accurate cost estimates for such plans
require detailed cardinality information that cannot be computed cheaply within
a general-purpose relational DBMS like Umbra [183].

As the final step of our optimization process, the join attribute order of each
multi-way join introduced by Algorithm 7.4 is optimized in isolation. For this
purpose, we adopt the cost-based optimization strategy that was developed
for the worst-case optimal Tributary Join algorithm [45]. We selected this
particular strategy over other alternatives [6, 7, 18, 183], as its cost estimates
rely only on cardinality information that is already maintained within Umbra (cf.
Chapter 6), and the generated attribute orders exhibited good performance in our
preliminary experiments. We emphasize that the multi-way join optimization
strategy is entirely independent of both the actual join implementation presented
in the previous section and the join tree refinement algorithm presented in
this section. Therefore, other multi-way join optimization approaches such
as generalized hypertree decompositions could easily be integrated into our

192 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

Table 7.2: Key statistics of the graph datasets used in our experiments.

Dataset Nodes Directed Edges Undirected Edges

Wiki 7.1 K 103.7 K 100.8 K
Epinions 75.9 K 508.8 K 405.7 K
Slashdot 82.2 K 948.5 K 582.5 K

Google+ 0.1M 13.7M 12.2M
Orkut 3.1M 117.2M 117.2M
Twitter 41.7M 1 468.4M 1 202.5M

system [7, 82].

7.4 Experiments
In the following, we present a thorough evaluation of the implementation
of the proposed hybrid optimization and hash trie join approach within the
Umbra RDBMS [195]. We will subsequently refer to the corresponding system
configuration as UmbraOHT. For comparison purposes, we also run experiments
in which all binary joins are eagerly replaced by worst-case optimal joins, and
refer to the corresponding system configuration as UmbraEAG.

7.4.1 Setup
We compare our implementation to the unmodified version of Umbra and to the
well-known column-store MonetDB (v11.33.11), both of which exclusively rely
on binary join plans [111, 195]. Furthermore, we run comparative experiments
with a commercial database system (DBMS X) and the EmptyHeaded system,
both of which implement worst-case optimal joins based on ordered index
structures [5, 7]. We additionally intended to compare against LevelHeaded,
an adaptation of EmptyHeaded for general-purpose queries, but were unable
to obtain a copy of its source code which is not publicly available [6]. Finally,
we implemented the Leapfrog Triejoin algorithm within Umbra (UmbraLFT),
based on dense sorted arrays that are built during query processing using the
native parallel sort operator of Umbra [252, 265]. Our preliminary experiments
showed that using sorted arrays within the UmbraLFT system is consistently
faster than using the B+-tree indexes also available within Umbra as the former
incur substantially less overhead when computing set intersections.

For our experiments, we select the join order benchmark (JOB) which is
based on the well-known IMDB data set [158], and the TPC-H benchmark at

7.4. EXPERIMENTS 193

scale factor 30. Furthermore, we run a set of graph-pattern queries on selected
network datasets from the Stanford Large Network Dataset Collection which
have been used extensively in previous work [165, 203]. For a comprehensive
evaluation of our approach, we include both comparably small and extremely
large data sets. In particular, we choose the Wikipedia vote network [164], as
well as the Epinions and Slashdot social networks [166, 225], all of which we
classify as small data sets. Finally, we select the much larger Google+ and Orkut
user networks [26, 269], as well as the Twitter follower network which is one
of the largest publicly available network data sets [145]. An overview of these
graph datasets is shown in Table 7.2.

All graph data sets are in the form of edge relations in which each tuple
represents a directed edge between two nodes identified by unsigned 64-bit
integers. Like previous work on the subject [7, 15, 108, 183, 203], we focus on
undirected clique queries on these graphs as they are a common subpattern in
graph workloads [203]. In order to allow for undirected queries, the edges are
preprocessed such that the source node identifier is less than or equal to the
target node identifier. We then run queries that count the number of directed
3, 4, and 5-cliques in these preprocessed graphs, which is equal to the number
of undirected cliques in the original graphs [231]. The queries used in our
experiments are available online [73].

All experiments are run on a server system with 28 CPU cores (56 hyper-
threads) on two Intel Xeon E5-2680 v4 processors and 256GiB of main memory.
Each measurement is repeated three times and we report the results of the best
repetition. Our runtime measurements reflect the end-to-end query evaluation
time including any time required for client communication, query optimiza-
tion, or compilation, and a timeout of one hour is imposed on each individual
experiment repetition.

7.4.2 End-To-End Benchmarks
We first present end-to-end benchmarks which demonstrate the effectiveness of
the hash trie join implementation.

Traditional OLAPWorkloads

In our first experiment, we expand upon the preliminary results that were
briefly discussed in Section 7.1. In particular, we demonstrate that a hybrid
query optimization strategy is critical to achieve acceptable performance on
relational workloads such as TPC-H and JOB. EmptyHeaded is excluded in
this experiment as it does not support the complex analytical queries in these
benchmarks.

194 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

D
B
M
S
X

M
on
et
D
B

U
m
br
a
E
A
G

U
m
br
a
O
H
T

105

104

103

102

101

1

0.1

re
la
ti
v
e
s
lo
w
d
o
w
n
(l
o
g
s
c
a
le
) TPC-H (SF 30)

D
B
M
S
X

M
on
et
D
B

U
m
br
a
E
A
G

U
m
br
a
O
H
T

fa
s
te
r
⟶

⟵
s
lo
w
e
r

JOB

Figure 7.8: Relative slowdown of the different systems in comparison to binary
join plans within Umbra on TPC-H and JOB. The boxplots show the 5th, 25th,
50th, 75th, and 95th percentiles.

Here, the unmodified version of Umbra that relies purely on binary join
plans outperforms all other systems except for the UmbraOHT system which
employs our novel hybrid optimization strategy. The relative slowdown of these
systems in comparison to Umbra is shown in Figure 7.8. The worst-case optimal
join plans of DBMS X exhibit the lowest performance by far, with a median
slowdown of 57.4× on TPC-H and 134.0× on JOB. MonetDB performs much
better than DBMS X on these benchmarks, but is still outperformed by Umbra
with a median slowdown of 3.7× on TPC-H and JOB, which are measurements
consistent with previous work [195]. Our implementation of multi-way joins
within Umbra further improves over both DBMS X and MonetDB even when
eagerly replacing all binary joins with multi-way joins in the UmbraEAG config-
uration. However, it still incurs a median slowdown of 1.1× on TPC-H and 2.3×
on JOB in comparison to Umbra. These results constitute the key observation
in this benchmark, as they demonstrate that our implementation of worst-case
optimal joins is highly competitive even in comparison to mature and optimized
systems such as MonetDB. However, they also show that even such a compet-
itive implementation falls short of binary join plans if the latter do not incur
any redundant work. Similar results have been obtained in previous work on
the LevelHeaded system [6]. The UmbraOHT system which employs our novel
hybrid query optimizer closes this gap in performance and incurs no slowdown
over the unmodified version of Umbra on the TPC-H and JOB benchmarks. In
fact, our optimizer correctly determines that a worst-case optimal join plan
is never beneficial on these queries as there always exists a binary join plan

7.4. EXPERIMENTS 195

Ti
m
eo
ut

[10
4 , 10

3)

[10
3 , 10

2)

[10
2 , 10

)
[10
, 2)

[2,
1.1
)

[1.
1, 0
.9)

[0.
9, 0
)

Umbra

DBMS X

MonetDB

UmbraEAG

UmbraOHT

1 0 0 0 0 0 31 0

8 3 16 5 0 0 0 0

8 1 3 10 8 2 0 0

1 0 0 7 18 6 0 0

0 0 0 0 0 1 25 6

Figure 7.9: Histogram of the relative slowdown of the different systems in
comparison to binary join plans within Umbra on JOB without filter predicates.

without growing joins (cf. Section 7.4.3).

Relational Workloads with Growing Joins

This situation changes when growing joins are unavoidable, e.g. in the query on
the TPC-H schema introduced above that looks for parts within the same order
that are available in the same container from the same supplier. Our hybrid
query optimizer correctly identifies the growing non-key joins in this query,
and generates a plan containing both binary and multi-way joins. As a result,
the UmbraOHT system exhibits the best overall performance, improving over
Umbra by a factor of 1.9× and over UmbraEAG by a factor of 4.2×. In comparison
to MonetDB and DBMS X, the speedup of UmbraOHT increases even further to
7.6× and 350.0×, respectively.

We broaden this experiment by additionally running the JOB queries without
any filter predicates on the base tables. Similar to the previous query on TPC-H,
they contain a mix of non-growing and growing joins and are thus challenging
to optimize. Query 29 is excluded in this experiment as it contains an extremely
large number of joins which causes the query result to explode beyond the size
that even a worst-case optimal join plan can realistically enumerate. We again
measure the relative performance of the competitor systems in comparison to
the unmodified version of Umbra.

Figure 7.9 shows the distribution of this relative performance for each sys-
tem. Most importantly, we observe that although the benchmark now contains
growing joins, neither DBMS X nor the UmbraEAG system are able to match the
performance of the unmodified version of Umbra, by a similar margin as in the
previous experiment. This indicates that pure worst-case optimal join plans are
still not feasible on queries which contain a mix of growing and non-growing
joins, where the non-growing joins could be processed much more efficiently

196 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

Table 7.3: Absolute runtime in seconds of the graph pattern queries on the small
network data sets. The best results for each experiment are printed bold.

Wiki Epinions Slashdot

3-clique EH-Probe 0.28 0.30 0.29
EmptyHeaded 0.43 0.79 1.07
DBMS X 0.28 0.52 1.37
MonetDB 0.37 0.96 0.97
Umbra 0.03 0.06 0.08
UmbraLFT 0.36 0.53 0.49
UmbraOHT 0.04 0.07 0.07

4-clique EH-Probe 0.40 0.55 0.47
EmptyHeaded 0.55 1.04 1.24
DBMS X 1.66 6.53 13.95
MonetDB 8.16 16.58 10.63
Umbra 1.61 12.04 7.91
UmbraLFT 3.82 7.02 4.09
UmbraOHT 0.10 0.23 0.18

5-clique EH-Probe 0.97 3.19 1.57
EmptyHeaded 1.12 3.69 2.35
DBMS X 8.98 85.21 80.93
MonetDB 368.34 1 392.41 timeout
Umbra 45.06 570.92 166.30
UmbraLFT 21.47 57.13 37.48
UmbraOHT 0.42 1.43 0.90

by binary joins. The relative performance of MonetDB deteriorates sharply in
comparison to the regular JOB benchmark, as it materializes all intermediate
results which become much larger in the presence of growing joins and might
even have to be spilled to disk. In contrast, the UmbraOHT system with our
hybrid query optimizer matches or improves over the performance of Umbra,
by identifying five queries on which a hybrid query plan containing worst-case
optimal joins is superior to a traditional binary join plan. Moreover, the hybrid
query plans employed by the UmbraOHT system do not incur any timeouts on
this benchmark, unlike any other system that we investigate.

7.4. EXPERIMENTS 197

Graph Pattern Queries

Finally, we evaluate our hash trie join implementation on the graph pattern
queries and data sets introduced above. On such queries, worst-case optimal join
plans typically exhibit asymptotically better runtime complexity than binary
join plans, and previous research has shown that large improvements in query
processing time are possible [7, 203]. However, systems that are optimized for
such read-only workloads require expensive precomputation of index structures
in order to achieve high performance [7]. Our experiments show that the
hash trie join implementation within Umbra achieves competitive end-to-end
performance on such workloads, even though it computes all required data
structures on-the-fly during query processing.

We first run the 3, 4, and 5-clique queries on the small Wiki, Epinions, and
Slashdot graph data sets. The absolute end-to-end query execution times of
the different systems are shown in Table 7.3. Note that our measurements for
EmptyHeaded include the time required for its precomputation step, without
any disk IO that is done as part of this step. For reference, we also provide
measurements for EmptyHeaded that exclude this precomputation step (EH-
Probe). First of all, we observe that the hash trie join implementation within the
UmbraOHT system consistently exhibits the best runtime across all data sets and
queries, outperforming the remaining systems by up to two orders of magnitude.
In general, the performance advantage of worst-case optimal join plans rapidly
increases as the complexity of the graph pattern queries grows. This is to be
expected, as more complex pattern queries result in more intermediate results
that can explode when using a binary join plan. Interestingly, the unmodified
version of Umbra matches the performance of our hash trie join implementation
on the 3-clique query, and all other systems perform considerably worse. In case
of EmptyHeaded, this is evidence of both a large optimization and compilation
overhead that we observed to be essentially static on this benchmark, and its
expensive precomputation step. The multi-way join implementations of DBMS
X and UmbraLFT rely on ordered data structures which are less efficient than
our optimized hash trie data structure, a finding that is also evident on the more
complex graph pattern queries. Finally, we emphasize that the UmbraOHT system
outperforms the highly optimized EmptyHeaded system even on the complex 4-
and 5-clique queries where the static overhead incurred by EmptyHeaded does
not affect its runtime as significantly.

Finally, we run the 3-clique query on the much larger Google+, Orkut, and
Twitter graph data sets (cf. Table 7.4). We do not run the more complex graph
pattern queries on these data sets as their result size on large data sets quickly
increases beyond the size that can be reasonably enumerated by any system.
We also exclude MonetDB in this experiment, as it cannot compute the query

198 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

Table 7.4: Absolute runtime in seconds of the 3-clique query on the large network
data sets. The best results for each experiment are printed bold.

Google+ Orkut Twitter

EH-Probe 0.64 2.78 150.16
EmptyHeaded 18.67 309.14 timeout
DBMS X 59.77 311.44 timeout
Umbra 28.53 55.49 timeout
UmbraLFT 14.55 30.61 1 175.97
UmbraOHT 7.70 15.25 579.07

result within the one hour time frame allocated for each experiment repetition.
Once again, the UmbraOHT system consistently outperforms its competitors
by a large margin. The performance of EmptyHeaded degrades in comparison
to the benchmarks on the small data sets, as its precomputation step becomes
excessively expensive on these larger data sets.

7.4.3 Detailed Evaluation
The next set of experiments provides a detailed evaluation of the applicabil-
ity of worst-case optimal joins to relational workloads, and of the proposed
optimization strategy.

Applicability of Worst-Case Optimal Joins

We expand on the end-to-end benchmarks presented above, and study the
applicability of worst-case optimal joins within a general-purpose RDBMS in
detail. Traditional relational workloads such as TPC-H or JOB do not produce
any growing intermediate results and thus there is no benefit in introducing a
worst-case optimal join. In fact, as demonstrated above, worst-case optimal joins
incur a substantial overhead on such workloads, primarily since they have to
materialize all their inputs in suitable index structures. However, as exemplified
by the experiments in Section 7.4.2, growing intermediate results can arise, for
example, due to unconstrained joins between foreign keys.

In order to study such workloads under controlled conditions, we generate
an additional synthetic benchmark. In particular, we choose two parameters 𝑟 ∈
{104, 105, 106, 107} and 𝑑 ∈ {1, … , 10}, and generate randomly shuffled relations
𝑅, 𝑆, and 𝑇 as follows. 𝑅 simply contains the distinct integers 1, … , 107, while
𝑆 and 𝑇 contain the distinct integers 1, … , (107 + 𝑟)/2 and (107 − 𝑟)/2, … , 107
respectively. Each distinct integer in 𝑅, 𝑆, and 𝑇 is duplicated 𝑑 times. Thus the

7.4. EXPERIMENTS 199

0.0 0.2 0.4 0.6 0.8 1.0

duplicates 𝑑 per input tuple (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

ru
n
ti
m
e
in

s
(l
o
g
s
c
a
le
)

0.1

1

10
𝑟 = 104 𝑟 = 105

1 5 10

0.1

1

10
𝑟 = 106

1 5 10

𝑟 = 107

Umbra UmbraEAG UmbraOHT

Figure 7.10: Absolute query runtime on the synthetic query 𝑅 B 𝑆 B 𝑇 as the
number of distinct values 𝑟 and duplicated tuples 𝑑 in the query result is varied.

result of the natural join 𝑅 B 𝑆 B 𝑇 contains exactly 𝑟 distinct integers, each
of which is duplicated 𝑑3 times for a total of 𝑟𝑑3 tuples. While any binary join
plan for this query will contain growing intermediate results for 𝑑 > 1, they
do not grow beyond the size of the query result if the join 𝑆 B 𝑇 is performed
first. This differs from graph pattern queries, where usually any binary join
plan produces an intermediate result that is larger than the query result.

Figure 7.10 shows the absolute runtime of the query 𝑅 B 𝑆 B 𝑇 for different
configurations of the Umbra system. As expected, we observe that as the number
of duplicates in the join result is increased, the runtime of binary join plans
increases much more rapidly in comparison to worst-case optimal joins. As
outlined above, each distinct value in the join result is duplicated 𝑑3 times. In
a binary join plan, enumerating each one of these duplicates requires at least
two hash table lookups. In contrast, a hash trie join determines once that the
distinct value is part of the join result after which all duplicates thereof can be
enumerated without any additional hash table operations.

However, we also observe that the superior scaling behavior of worst-case
optimal joins does not necessarily translate to an actual runtime advantage. If
there are few distinct values 𝑟 or duplicates 𝑑 in the query result, binary join
plans still exhibit reasonable performance and commonly outperform worst-case
optimal joins. In these cases, the additional time required by a hash trie join
for materializing all input relations in hash tries exceeds the time saved by its
more efficient join evaluation. Consequently, the break-even point at which

200 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

Table 7.5: Breakdown of the decisions made by the hybrid query optimizer on
each benchmark. The table shows the total number of joins, as well as the
number of introduced multi-way joins categorized into true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).

Benchmark Joins TP TN FP FN

TPC-H 59 0 59 0 0
JOB 864 0 859 0 5

JOB (no filters) 234 19 140 0 75
Graph 48 48 0 0 0
Synthetic 80 52 8 18 2

Total 1 285 119 1 066 18 82

worst-case optimal joins begin to outperform binary join plans moves towards
a smaller number of duplicates 𝑑 as the number of distinct values 𝑟 in the query
result is increased. That is, worst-case optimal joins offer the greatest benefit
on join queries where most tuples from the base relations have a large number
of join partners.

Finally, we note that the hybrid query optimizer employed by UmbraOHT

accurately detects this break-even point for 𝑟 > 104, resulting in good perfor-
mance across the full range of possible query behavior. While the optimizer
does switch to worst-case optimal joins too early for 𝑟 = 104, we determined
that this is caused by erroneous cardinality estimates. This is a common failure
mode in relational databases which unfortunately cannot be avoided in the gen-
eral case [114, 158]. Crucially, the optimizer always correctly detects the case
𝑑 = 1 which corresponds to a traditional relational workload without growing
intermediate results.

Optimizer Evaluation

In order to gain more detailed insights into the behavior of our hybrid query
optimizer, we additionally analyze every decision made by the optimizer on
the benchmarks presented in this chapter. Specifically, we collect both the
estimated and true input and output cardinalities of all join operators inspected
by Algorithm 7.4. For a given join, we subsequently check if the optimizer
decided to introduce a multi-way join or not, and whether this decision matches
the correct decision given the true input and output cardinalities. This allows
us to sort these decisions into true and false positives, respectively negatives,
where the correct introduction of a multi-way join is counted as a true positive.

7.4. EXPERIMENTS 201

An overview of the results is shown in Table 7.5. As discussed previously,
growing joins are exceptionally rare in traditional relational workloads like TPC-
H and JOB. Out of a total of 923 joins, the optimizer incurs only 5 false negatives
where a growing join is incorrectly classified as non-growing. These errors
occur on two JOB queries (8c and 16b) where the initial binary join ordering
produces a suboptimal plan containing mildly growing joins due to incorrect
cardinality estimates. We determined that the optimal plan for these queries
would not contain any growing joins. Beyond that, our results show that the
proposed hybrid query optimizer is insensitive to the cardinality estimation
errors that routinely occur in relational workloads [114, 158]. This is to be
expected, as the optimizer relies only on the relative difference between the
cardinality estimates of the input and output of join operators, and not their
absolute values.

On the modified JOB queries, the optimizer correctly identifies the severely
growing joins, while also incurring a comparably large number of false nega-
tives. They occur primarily on weakly growing joins, where minor errors in
the absolute cardinality estimates can already affect the decision made by the
hybrid optimizer. However, we measured that these false negatives affect the
absolute query runtime only on 3 of the 32 queries, on which we only miss a
potential further speedup of up to 1.6×. The join attributes in this benchmark
are frequently primary keys, which generally causes Umbra to estimate lower
cardinalities. A major advantage of this behavior is that it makes false posi-
tives, i.e. the incorrect introduction of multi-way joins, unlikely and in fact no
false positives occur on these queries. This is critical to ensure that we do not
compromise the performance of Umbra on traditional relational queries.

The graph pattern queries contain only very rapidly growing joins, all of
which are correctly identified by the hybrid optimizer. As discussed above, the
behavior of joins in the synthetic benchmark varies. However, as none of the join
attributes are marked as primary key columns the system is much less hesitant
to estimate high output cardinalities for joins. This is evident in Figure 7.10 for
𝑟 = 104 and results in some false positives which in comparison to the optimal
plan increase the absolute query runtime by up to 3.7× for 𝑑 = 2. However, it is
important to note that these false positives affect only joins on non-key columns
where 𝑑 > 1. In summary, our results show that the proposed hybrid query
optimizer achieves high accuracy even under difficult circumstances and across
a wide range of different queries.

7.4.4 Microbenchmarks
We conclude our experiments by providing an in-depth evaluation of key aspects
of our implementation. These microbenchmarks are conducted using the simple

202 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

103 104 105 106 107 108 109

number of edges (log scale)

100

101

102

103

104

105

106

107

ru
n
ti
m
e
in

m
s
(l
o
g
s
c
a
le
)

Umbra

UmbraLFT
UmbraOHT

EH-Probe

DBMS X

Figure 7.11: Absolute runtime of the 3-clique query on increasingly larger
random subsets of the Twitter data set.

3-clique graph pattern query as this query has been used extensively to evaluate
the performance of other systems in related work [6, 203].

Scaling Behavior

First, we investigate the scaling behavior of the different systems as the data
set size grows. For this purpose, we run the 3-clique query on increasingly
larger randomly chosen subsets of the Twitter data and record the end-to-end
query execution time, the results of which are shown in Figure 7.11. We exclude
precomputation time for EmptyHeaded in this benchmark in order to better
highlight the scaling behavior of its join implementation.

We can make several key observations on these results. First, we note that
the binary join plans of the unmodified version of Umbra actually exhibit the
best overall performance up to a data set size of roughly 106, which is explained
by the fact that the smaller random subgraphs are highly disconnected with
only few 2-paths and 3-cliques. Therefore, a binary join plan will not have to
enumerate large intermediate results, and at the same time forgoes the overhead
of building the trie data structures required by the UmbraLFT and UmbraOHT

systems. Similar to the experiments on synthetic data presented in Section 7.4.3,
the hybrid optimizer incurs some false positives in these cases due to incorrect
cardinality estimates. That is, it incorrectly introduces a worst-case optimal join
although there is no runtime benefit in doing so. Analogous to the end-to-end
benchmark results present above, we observe a large static overhead on these
small data sets for the EmptyHeaded system.

7.4. EXPERIMENTS 203

Table 7.6: Ablation tests using the 3-clique query on random subsets of the
Twitter data. Runtime is shown in seconds, and memory consumption is shown
in GiB.

Edges Metric Baseline -LE -SP -RP

5M runtime 0.17 1.24× 2.33× 2.25×
memory 0.35 1.08× 1.79× 1.79×

50M runtime 2.52 1.21× 1.49× 1.32×
memory 3.69 1.05× 1.29× 1.29×

500M runtime 126.96 1.01× 1.04× 1.18×
memory 35.48 1.02× 1.05× 1.05×

1 202M runtime 579.07 1.00× 1.03× 1.24×
memory 84.03 1.01× 1.02× 1.02×

On the larger subgraphs with more than 106 edges, the performance of
Umbra quickly degrades until query execution times out on graphs with more
than 108 edges. Surprisingly, the runtimes of DBMS X exhibit virtually the
same asymptotic behavior which could indicate that the system incorrectly
uses a binary join plan in this benchmark. In contrast, our hybrid optimizer
selects a worst-case optimal join plan for the UmbraLFT and UmbraOHT systems
resulting in greatly improved runtime, and the UmbraOHT system consistently
outperforms the comparison-based UmbraLFT system. In fact, the hash trie
join implementation in the UmbraOHT configuration actually even matches or
outperforms EmptyHeaded on all subgraph queries and only falls short on the full
Twitter data set, although we do not measure the precomputation time required
by EmptyHeaded in this experiment. EmptyHeaded heavily relies on aggressive
set layout optimizations in its precomputed index structures which enable it to
employ an optimized set intersection algorithm [7]. These optimizations are
dependent on a suitable dense numbering of the nodes which is present in the
full Twitter data, but not in any random subgraphs thereof. In contrast, the
performance of the proposed hash trie approach is entirely independent of such
data set specifics, making it much more versatile in practice.

Ablation Tests

Next, we study which impact the main optimizations introduced in Section 7.2
have on the performance of the hash trie join algorithm. We thus disable
these optimizations one-by-one within the UmbraOHT system, and record the
runtime and memory consumption of the 3-clique query on selected random

204 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

Table 7.7: Comparison of the absolute runtime in seconds of the 3-clique query
on the Orkut data when using string keys instead of integer keys. The best
result for each experiment is printed bold.

Integer String Slowdown

DBMS X 311.44 726.80 2.33×
UmbraLFT 30.61 58.53 1.91×
UmbraOHT 15.25 17.29 1.13×

subgraphs of the Twitter data. Specifically, Table 7.6 shows the performance
with all optimizations enabled (baseline), and with successively disabled lazy
child expansion (-LE), singleton pruning (-SP), and radix partitioning of the
input (-RP).

Overall, the experiment shows that these optimizations have a positive im-
pact on both runtime and memory consumption in all cases, and disabling all
optimizations increases runtime by up to a factor of 2.25× and memory consump-
tion by up to a factor of 1.79×. Lazy child expansion and singleton pruning are
generally more useful on the smaller random subgraphs. As mentioned above,
this is to be expected since these graphs are sparse and highly disconnected,
leading to many nodes that never have to be expanded or that have only a
single outgoing edge. In contrast, radix partitioning has a positive impact on
runtime regardless of the size of the data set. It is arguably the most important
optimization of our approach, as it eliminates any runtime fluctuations due to
the specific order in which data is stored in the base tables. In combination, the
proposed optimizations thus enable the hash trie join algorithm to perform well
on a wide variety of data sets with diverse sizes and characteristics.

Non-Integer Key Attributes

Previous work has shown that non-integer key attributes are ubiquitous in
real-world data sets [254]. As outlined in Section 7.2, the proposed hash trie join
approach is for the most part not comparison-based, and therefore the actual key
data types used in a multi-way join do not significantly affect the query runtime.
We demonstrate this by changing the data type of the edge relation attributes
from 64-bit integers to variable-length strings representing the same integers,
and subsequently run the 3-clique query on this modified graph data set. We
choose the Orkut data set for the remaining experiments to avoid timeouts due
to excessively long runtimes in our competitors. EmptyHeaded does not support
strings as join key attributes and is thus excluded from this experiment.

Table 7.7 displays the query execution time of DBMS X, UmbraLFT and

7.4. EXPERIMENTS 205

Table 7.8: Comparison of the build and probe times in seconds required for the
3-clique query on the Orkut data set. The best result for each experiment is
printed bold.

1 Thread 56 Threads
Build Probe Build Probe

EmptyHeaded 471.42 75.85 306.36 2.78
UmbraLFT 207.87 729.31 8.91 21.70
UmbraOHT 20.84 435.21 1.01 14.23

UmbraOHT when using 64-bit integers or strings as the join key attributes.
Unsurprisingly, the comparison-based approaches incur a large performance hit
of 2.33× in case of DBMSX, and 1.91× in case of UmbraLFT when computing the 3-
clique query on string attributes, as string comparisons are muchmore expensive
than integer comparisons. In contrast, the performance of the UmbraOHT system
is hardly affected and decreases only by a factor of 1.13×. A small performance
penalty is unavoidable even in case of the UmbraOHT system, as we still have
to compute hash values of string attributes and check the actual join condition
before producing a result tuple (cf. Section 7.2).

Build and Probe Times

Finally, we investigate the tradeoff that the different systems make between the
effort spent on building the required index structures and the time required for
query execution. For this purpose, we separately record the build and probe
times for the 3-clique query on the Orkut data set. As EmptyHeaded does
not support fully multi-threaded precomputation of its index structures, we
additionally run this experiment single-threaded. DBMS X cannot separately
report build and probe times and is thus excluded from this experiment.

As shown in Table 7.8, EmptyHeaded spends far more time on precomputa-
tion than on query execution even in the single-threaded case, by a factor of
roughly 6×. EmptyHeaded builds a common dense dictionary encoding of all join
attribute values during precomputation. This operation is hard to parallelize
efficiently and EmptyHeaded does not provide an optimized multi-threaded
implementation. Therefore, this factor increases to 110× in the multi-threaded
case. While this expensive precomputation results in greatly improved query
execution time, the combined runtime falls short of that required by the hash
trie join approach of the UmbraOHT system. In the proposed hash trie join
approach, we trade a much lower build time for a somewhat increased probe
time. Crucially, however, this enables us to avoid any precomputation of persis-

206 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

tent index structures while still offering competitive performance. This is not
possible with an ordered trie join approach, as both the build and probe times
of the UmbraLFT system are greatly increased in comparison to the UmbraOHT

system.

7.5 RelatedWork
As outlined above, it is well-known that binary joins exhibit suboptimal perfor-
mance in some cases, and especially in the presence of growing intermediate
results [25, 88, 128, 279]. Hash Teams and Eddies were early approaches that
addressed some of these shortcomings by simultaneously processing multiple
input relations in a single multi-way join [25, 88, 128]. However, these ap-
proaches do not specifically focus on avoiding growing intermediate results
as Hash Teams are primarily concerned with avoiding redundant partitioning
steps in cascades of partitioned hash joins [88, 128], and Eddies allow different
operator orderings to be applied to different subsets of the base relations [25].
They still rely on binary joins internally and hence are not worst-case optimal
in the general case.

Ngo et al. were among the first to propose a worst-case optimal join al-
gorithm [200, 201, 202], which provides the foundation of most subsequent
worst-case optimal join algorithms, including our proposed hash trie join algo-
rithm (cf. Section 7.2). On this basis, theoretical work has since continued in a
variety of directions, such as operators beyond joins [7, 116, 117, 126, 133, 268],
stronger optimality guarantees [14, 134, 135, 200], and incremental maintenance
of the required data structures [123, 125]. Implementations of worst-case opti-
mal join algorithms have been proposed and investigated in a variety of settings.
Veldhuizen proposed the well-known Leapfrog Triejoin algorithm that is used in
the LogicBlox system and can be implemented on top of existing ordered indexes
or plain sorted data [45, 252, 265]. Variants of such join algorithms have been
adopted in distributed query processing [10, 15, 45, 143] graph processing [7, 15,
108, 183, 278, 283], and general-purpose query processing [6, 18].

However, such comparison-based implementations incur a number of prob-
lems, as outlined in more detail above. Persistent precomputed index structures
are only feasible in limited numbers, e.g. in specialized graph processing or RDF
engines [7, 108, 183]. One could sort the input data on-the-fly during query
processing. This has been shown to work well in distributed query processing
where communication costs far outweigh the computation costs [45], but can
severely impact the performance of a single-node system. The proposed tech-
niques could also be applied to this domain, e.g. by integrating them into the
approach developed by Chu et al. [45] Here, data is sent to worker nodes in a

7.5. RELATED WORK 207

single communication round, after which the entire query result can be com-
puted by running the original query locally on the data sent to each node. The
latter step could be performed by the proposed hybrid join processing technique,
allowing different query plans to be chosen on the worker nodes depending on
the local data characteristics.

Veldhuizen already suggested representing the required trie index structures
through nested hash tables [252]. However, as this chapter demonstrates a
careful implementation of this idea is required to achieve acceptable performance,
and we are not aware of any previous work addressing this practical challenge.
Fekete et al. propose an alternative, radix-based algorithm that achieves the
same goal, but do not evaluate an actual implementation of their approach [66].
The hash trie data structure itself is structurally similar to hash array mapped
tries [218] and the data structure used in extendible hashing schemes [104].
However, while these approaches allow for optimized point lookups of individual
keys, our hash trie data structure supports optimized range-lookups of key
prefixes as they are required by a hash-based multi-way join algorithm. Prefix
hash trees within peer-to-peer networks address a similar requirement, albeit
with different optimization goals such as resilience [222].

A key point presented in this chapter is the comprehensive implementation
of our approach within the general-purpose Umbra RDBMS [195]. The Level-
Headed system is an evolution of the graph processing engine EmptyHeaded
towards such a general-purpose system, but like EmptyHeaded it requires ex-
pensive precomputation of persistent index structures and only allows for static
data [6, 7]. The most mature system that implements worst-case optimal joins is
the commercial LogicBlox system which allows for fully dynamic data through
incremental maintenance of the required index structures [18, 123]. However,
previous work has shown that it exhibits poor performance on standard OLAP
workloads [6].

Similar to our approach, LogicBlox is reported to also employ a hybrid opti-
mization strategy [6], but no information is available on its details. Approaches
that holistically optimize hybrid join plans have been proposed for graph pro-
cessing [183, 283], but as outlined in Section 7.3 these approaches generally
rely on statistics that are prohibitively expensive to compute or maintain in a
general-purpose RDBMS. An algorithm that is similar to our join tree refinement
approach has been proposed for introducing multi-way joins using generalized
hash teams into binary join plans [88, 105, 128]. However, this approach greedily
transforms as many binary joins as possible into a multi-way join which results
in suboptimal performance according to our experiments.

208 CHAPTER 7. ADOPTING WORST-CASE OPTIMAL JOINS

7.6 Summary
In this chapter, we presented a comprehensive approach that allows the seminal
work on worst-case optimal join processing to be integrated seamlessly into
general-purpose relational database management systems. We demonstrated
the feasibility of this approach by implementing and evaluating it within the
state-of-the-art Umbra system. Our implementation offers greatly improved
runtime on complex analytical and graph pattern queries, where worst-case
optimal joins have an asymptotic runtime advantage over binary joins. At
the same time, it loses no performance on traditional OLAP workloads where
worst-case optimal joins are rarely beneficial. We achieve this through a novel
hybrid query optimizer that intelligently combines both binary and worst-case
optimal joins within a single query plan, and through a novel hash-based multi-
way join algorithm that does not require any expensive precomputation. Our
contributions thereby allow mature relation database management systems to
benefit from recent insights into worst-case optimal join algorithms, exploiting
the best of both worlds.

CHAPTER 8
Conclusions and Future Work

As the environment in which relational database systems are deployed evolves,
their internal implementation needs to adapt to these changed circumstances.
In this thesis, we identified several recent developments that require the storage
engines of currently prevailing database architectures to be redesigned, and
presented a comprehensive discussion of a novel memory-optimized disk-based
system architecture that addresses the respective issues. A decentralized buffer
manager supporting variable-size pages provides an intelligent global replace-
ment strategy while introducing virtually no overhead in the common case
that a large fraction of the working set fits into main memory. Durability is
provided by a highly scalable decentralized write-ahead logging approach that
can fully exploit the capabilities of modern solid-state storage and provides a
wide range of useful features known from traditional ARIES-style logging. On
top of these components, we introduced tailored access path implementations
that provide excellent performance in both read- and write-heavy workloads.
Finally, we proposed a novel memory-optimized multi-version concurrency
control algorithm that vastly improves over previous disk-based approaches
by exploiting that most versioning information can easily be maintained in-
memory. In addition to developing the storage engine of a memory-optimized
disk-based system, we also studied novel query optimization and processing
techniques within relational database systems in general. In particular, we im-
proved cardinality estimation over multiple columns by combining sketches on
individual attributes with information derived from a random sample in order
to correct for correlation bias. Furthermore, we devised a flexible approach
that allows worst-case optimal joins to be integrated into relational database
systems, which greatly increases their robustness on complex analytical queries
that may contain growing intermediate results. All techniques presented in this

210 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

thesis were implemented and evaluated within the fully functional compiling
database Umbra, which allowed us to provide additional insights regarding the
integration of our techniques into a modern high-performance system.

Even though we demonstrate that our memory-optimized disk-based sys-
tem routinely achieves performance orders of magnitude higher that mature
commercial database systems, there remain some open problems that need to
be solved in order to achieve the same level of robustness and versatility as
these systems. Foremost among these is the requirement to provide support for
intermediate query execution state that exceeds the size of main memory, which
we did not address in this thesis. In some cases, e.g. when materializing tuples,
this can be solved trivially by just spooling data to external storage and later
reading it back. However, more complex data structures such as hash tables
generally benefit from different representations on external storage and in main
memory in order to maximize performance. Developing a suitable spooling
framework for the data structures employed by Umbra remains an interesting
area for future research.

Another unsolved problem closely related to spooling query execution state
concerns the allocation of main memory to different subsystems. Since we
currently configure the size of the buffer pool statically when the database
server is started, we are forced to pick a rather conservative size to ensure that
there is sufficient working memory left for query processing. It would be highly
desirable to choose this tradeoff dynamically at runtime, allowing the system to
adapt to changing workload characteristics and delay IO caused by the buffer
manager or spooling as much as possible.

We could also extend our storage engine to store database pages in multiple
separate page files, which would open up several interesting avenues for future
work. For example, it may then be possible to extend the pointer swizzling
scheme employed by our buffer manager to support some degree of random
access to individual pages. This could be exploited to implement a virtual
memory subsystem on top of the buffer manager, potentially providing a trans-
parent solution for spooling query state. Moreover, the additional flexibility
provided by random page access would allow us to explore alternative access
path implementations.

Finally, implementing complex analytical workloads directly in SQL or an
imperative SQL-based scripting language such as UmbraScript is certainly possi-
ble, but frequently introduces an unnecessary impedance mismatch. Extending
the system to support additional query language frontends besides SQL, e.g. for
graph query languages such as GQL, could offer benefits to both users and the
system. Users gain a more expressive way of formulating queries, while the
system can potentially derive additional information that can be used to guide
query optimization.

Bibliography

[1] Transaction Processing Performance Council (TPC). TPC benchmark C:
Standard specification. 2010. url: http://www.tpc.org/ (visited on
Jan. 18, 2022).

[2] Transaction Processing Performance Council (TPC). TPC benchmark DS:
Standard specification. 2021. url: http://www.tpc.org/ (visited on
Feb. 9, 2023).

[3] Transaction Processing Performance Council (TPC). TPC benchmark H:
Standard specification. 2021. url: http://www.tpc.org/ (visited on
Jan. 26, 2022).

[4] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. “The Design and Implementation of Modern Column-
Oriented Database Systems”. In: Found. Trends Databases 5.3 (2013),
pp. 197–280.

[5] Christopher R. Aberger. EmptyHeaded GitHub repository. 2017. url:
https : / / github . com / HazyResearch / EmptyHeaded (visited on
Dec. 20, 2022).

[6] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher
Ré. “LevelHeaded: A Unified Engine for Business Intelligence and Linear
Algebra Querying”. In: ICDE. IEEE Computer Society, 2018, pp. 449–460.

[7] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle
Olukotun, and Christopher Ré. “EmptyHeaded: A Relational Engine for
Graph Processing”. In: ACM Trans. Database Syst. 42.4 (2017), 20:1–20:44.

[8] Oracle Corporation and/or its affiliates. MySQL. 2022. url: https://
www.mysql.com/ (visited on Feb. 7, 2022).

[9] Oracle Corporation and/or its affiliates. Oracle. 2022. url: https://www.
oracle.com/database/ (visited on Feb. 7, 2022).

[10] Foto N. Afrati and Jeffrey D. Ullman. “Optimizing Multiway Joins in a
Map-Reduce Environment”. In: IEEE Trans. Knowl. Data Eng. 23.9 (2011),
pp. 1282–1298.

http://www.tpc.org/
http://www.tpc.org/
http://www.tpc.org/
https://github.com/HazyResearch/EmptyHeaded
https://www.mysql.com/
https://www.mysql.com/
https://www.oracle.com/database/
https://www.oracle.com/database/

212 BIBLIOGRAPHY

[11] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-
ounakis. “Weaving Relations for Cache Performance”. In: VLDB. Morgan
Kaufmann, 2001, pp. 169–180.

[12] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. “Adaptive
Range Filters for Cold Data: Avoiding Trips to Siberia”. In: Proc. VLDB
Endow. 6.14 (2013), pp. 1714–1725.

[13] Adnan Alhomssi and Viktor Leis. “Contention and Space Management
in B-Trees”. In: CIDR. www.cidrdb.org, 2021.

[14] Kaleb Alway, Eric Blais, and Semih Salihoglu. “Box Covers and Domain
Orderings for Beyond Worst-Case Join Processing”. In: ICDT. Vol. 186.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 3:1–
3:23.

[15] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar.
“Distributed Evaluation of Subgraph Queries Using Worst-case Optimal
and Low-Memory Dataflows”. In: Proc. VLDB Endow. 11.6 (2018), pp. 691–
704.

[16] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro,
Nitish Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald
Kossmann, Nikolas Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey
Trimmer, Kapil Vaswani, Ramarathnam Venkatesan, and Mike Zwilling.
“Azure SQL Database Always Encrypted”. In: SIGMOD Conference. ACM,
2020, pp. 1511–1525.

[17] Austin Appleby. Murmurhash GitHub repository. 2016. url: https://
github.com/aappleby/smhasher (visited on Dec. 20, 2022).

[18] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.
“Design and Implementation of the LogicBlox System”. In: SIGMOD
Conference. ACM, 2015, pp. 1371–1382.

[19] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Mon-
ish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang,
Michael McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas,
Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena,
Gokul Soundararajan, Sriram Subramanian, and Doug Terry. “Amazon
Redshift Re-invented”. In: SIGMOD ’22: International Conference on Man-
agement of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Ed. by Zachary
Ives, Angela Bonifati, and Amr El Abbadi. ACM, 2022, pp. 2205–2217.

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher

BIBLIOGRAPHY 213

doi: 10.1145/3514221.3526045. url: https://doi.org/10.1145/
3514221.3526045.

[20] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke
Larson. “BzTree: A High-Performance Latch-free Range Index for Non-
Volatile Memory”. In: Proc. VLDB Endow. 11.5 (2018), pp. 553–565.

[21] Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. “Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database Sys-
tems”. In: SIGMOD Conference. ACM, 2015, pp. 707–722.

[22] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. “Bridging the
Archipelago between Row-Stores and Column-Stores for Hybrid Work-
loads”. In: SIGMOD Conference. ACM, 2016, pp. 583–598.

[23] Joy Arulraj, Matthew Perron, and Andrew Pavlo. “Write-Behind Log-
ging”. In: Proc. VLDB Endow. 10.4 (2016), pp. 337–348.

[24] Albert Atserias, Martin Grohe, and Dániel Marx. “Size Bounds and Query
Plans for Relational Joins”. In: SIAM J. Comput. 42.4 (2013), pp. 1737–
1767.

[25] Ron Avnur and Joseph M. Hellerstein. “Eddies: Continuously Adaptive
Query Processing”. In: SIGMOD Conference. ACM, 2000, pp. 261–272.

[26] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xi-
angyang Lan. “Group formation in large social networks: membership,
growth, and evolution”. In: KDD. ACM, 2006, pp. 44–54.

[27] David F. Bacon, Nathan Bales, Nicolas Bruno, Brian F. Cooper, Adam
Dickinson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind
Joshi, Eugene Kogan, Alexander Lloyd, Sergey Melnik, Rajesh Rao, David
Shue, Christopher Taylor, Marcel van der Holst, and Dale Woodford.
“Spanner: Becoming a SQL System”. In: SIGMOD Conference. ACM, 2017,
pp. 331–343.

[28] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
“Main-memory hash joins on multi-core CPUs: Tuning to the underlying
hardware”. In: ICDE. IEEE Computer Society, 2013, pp. 362–373.

[29] Maximilian Bandle, Jana Giceva, and Thomas Neumann. “To Partition, or
Not to Partition, That is the Join Question in a Real System”. In: SIGMOD
Conference. ACM, 2021, pp. 168–180.

[30] Rudolf Bayer and EdwardM. McCreight. “Organization andMaintenance
of Large Ordered Indexes”. In: SIGFIDET Workshop. ACM, 1970, pp. 107–
141.

https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045

214 BIBLIOGRAPHY

[31] Rudolf Bayer and Mario Schkolnick. “Concurrency of Operations on
B-Trees”. In: Acta Informatica 9 (1977), pp. 1–21.

[32] Rudolf Bayer and Karl Unterauer. “Prefix B-Trees”. In: ACM Trans.
Database Syst. 2.1 (1977), pp. 11–26.

[33] Philip A. Bernstein and Sudipto Das. “Scaling Optimistic Concurrency
Control by Approximately Partitioning the Certifier and Log”. In: IEEE
Data Eng. Bull. 38.1 (2015), pp. 32–49.

[34] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[35] Altan Birler, Bernhard Radke, and Thomas Neumann. “Concurrent online
sampling for all, for free”. In: DaMoN. ACM, 2020, 5:1–5:8.

[36] Anja Bog, Kai Sachs, and Alexander Zeier. “Benchmarking database
design for mixed OLTP and OLAP workloads”. In: ICPE. ACM, 2011,
pp. 417–418.

[37] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons
Kemper. “Scalable and robust latches for database systems”. In: DaMoN.
ACM, 2020, 2:1–2:8.

[38] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. “Scal-
able Garbage Collection for In-Memory MVCC Systems”. In: Proc. VLDB
Endow. 13.2 (2019), pp. 128–141.

[39] Jiazhen Cai and Robert Paige. “Look Ma, No Hashing, And No Arrays
Neither”. In: POPL. ACM Press, 1991, pp. 143–154.

[40] Michael J. Carey and Waleed A. Muhanna. “The Performance of Multi-
version Concurrency Control Algorithms”. In: ACM Trans. Comput. Syst.
4.4 (1986), pp. 338–378.

[41] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon.
“Cache-Conscious Concurrency Control of Main-Memory Indexes on
Shared-Memory Multiprocessor Systems”. In: VLDB. Morgan Kaufmann,
2001, pp. 181–190.

[42] Yousra Chabchoub and Georges Hébrail. “Sliding HyperLogLog: Esti-
mating Cardinality in a Data Stream over a Sliding Window”. In: ICDM
Workshops. IEEE Computer Society, 2010, pp. 1297–1303.

[43] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R.
Narasayya. “Towards Estimation Error Guarantees for Distinct Values”.
In: PODS. ACM, 2000, pp. 268–279.

BIBLIOGRAPHY 215

[44] Hong-Tai Chou and David J. DeWitt. “An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems”. In: VLDB. Morgan
Kaufmann, 1985, pp. 127–141.

[45] Shumo Chu, Magdalena Balazinska, and Dan Suciu. “From Theory to
Practice: Efficient Join Query Evaluation in a Parallel Database System”.
In: SIGMOD Conference. ACM, 2015, pp. 63–78.

[46] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven
Swanson. “From ARIES to MARS: transaction support for next-
generation, solid-state drives”. In: SOSP. ACM, 2013, pp. 197–212.

[47] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970), pp. 377–387.

[48] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jer-
maine. “Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches”. In: Found. Trends Databases 4.1-3 (2012), pp. 1–294.

[49] Andrew Crotty, Viktor Leis, and Andrew Pavlo. “Are You Sure You
Want to Use MMAP in Your Database Management System?” In: CIDR.
www.cidrdb.org, 2022.

[50] Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph
Koch. “Transaction Repair for Multi-Version Concurrency Control”. In:
SIGMOD Conference. ACM, 2017, pp. 235–250.

[51] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Everything
you always wanted to know about synchronization but were afraid to
ask”. In: SOSP. ACM, 2013, pp. 33–48.

[52] Justin A. DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker,
and Stanley B. Zdonik. “Anti-Caching: A New Approach to Database
Management System Architecture”. In: Proc. VLDB Endow. 6.14 (2013),
pp. 1942–1953.

[53] David J. DeWitt, Jeffrey F. Naughton, and Joseph Burger. “Nested Loops
Revisited”. In: PDIS. IEEE Computer Society, 1993, pp. 230–242.

[54] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. “Hekaton:
SQL server’s memory-optimized OLTP engine”. In: SIGMOD Conference.
ACM, 2013, pp. 1243–1254.

[55] Bailu Ding, Lucja Kot, and Johannes Gehrke. “Improving Optimistic
Concurrency Control Through Transaction Batching and Operation
Reordering”. In: Proc. VLDB Endow. 12.2 (2018), pp. 169–182.

216 BIBLIOGRAPHY

[56] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and
ChiWang. “Sample + Seek: Approximating Aggregates with Distribution
Precision Guarantee”. In: SIGMOD Conference. ACM, 2016, pp. 679–694.

[57] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017.
url: http://archive.ics.uci.edu/ml (visited on Dec. 5, 2022).

[58] Ahmed Eldawy, Justin J. Levandoski, and Per-Åke Larson. “Trekking
Through Siberia: Managing Cold Data in aMemory-Optimized Database”.
In: Proc. VLDB Endow. 7.11 (2014), pp. 931–942.

[59] Otmar Ertl. “New cardinality estimation algorithms for HyperLogLog
sketches”. In: CoRR abs/1702.01284 (2017).

[60] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger.
“The Notions of Consistency and Predicate Locks in a Database System”.
In: Commun. ACM 19.11 (1976), pp. 624–633.

[61] Jose M. Faleiro and Daniel J. Abadi. “Latch-free Synchronization
in Database Systems: Silver Bullet or Fool’s Gold?” In: CIDR.
www.cidrdb.org, 2017, p. 9.

[62] Jose M. Faleiro and Daniel J. Abadi. “Rethinking serializable multiversion
concurrency control”. In: Proc. VLDB Endow. 8.11 (2015), pp. 1190–1201.

[63] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. “High perfor-
mance database logging using storage class memory”. In: ICDE. IEEE
Computer Society, 2011, pp. 1221–1231.

[64] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan
Sigg, and Wolfgang Lehner. “SAP HANA database: data management for
modern business applications”. In: SIGMOD Rec. 40.4 (2011), pp. 45–51.

[65] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, IngoMüller,
Hannes Rauhe, and Jonathan Dees. “The SAP HANA Database – An
Architecture Overview”. In: IEEE Data Eng. Bull. 35.1 (2012), pp. 28–33.

[66] Alan D. Fekete, Brody Franks, Herbert Jordan, and Bernhard Scholz.
“Worst-Case Optimal Radix Triejoin”. In: CoRR abs/1912.12747 (2019).

[67] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu, Yuanwei Wang,
Zixuan Ma, Shengqi Chen, and Wenguang Chen. “TriCache: A User-
Transparent Block Cache Enabling High-Performance Out-of-Core Pro-
cessing with In-Memory Programs”. In: OSDI. USENIX Association, 2022,
pp. 395–411.

[68] Philipp Fent and Thomas Neumann. “A Practical Approach to Groupjoin
and Nested Aggregates”. In: Proc. VLDB Endow. 14.11 (2021), pp. 2383–
2396.

http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 217

[69] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
“HyperLogLog: The analysis of a near-optimal cardinality estimation
algorithm”. In: Conference on Analysis of Algorithms. 2007, pp. 137–156.

[70] Philippe Flajolet and G. Nigel Martin. “Probabilistic Counting Algorithms
for Data Base Applications”. In: J. Comput. Syst. Sci. 31.2 (1985), pp. 182–
209.

[71] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. “Adopting Worst-Case Optimal Joins in Relational
Database Systems”. In: Proc. VLDB Endow. 13.11 (2020), pp. 1891–1904.

[72] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper,
and Thomas Neumann. Combining Worst-Case Optimal and Traditional
Binary Join Processing. Tech. rep. TUM-I2082. Technische Universität
München, 2020. url: https://mediatum.ub.tum.de/1545314.

[73] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper,
and Thomas Neumann. Queries used in the experimental evaluation. 2020.
url: https://github.com/freitmi/queries-vldb2020 (visited on
Dec. 20, 2022).

[74] Michael Freitag, Alfons Kemper, and Thomas Neumann. “Memory-
Optimized Multi-Version Concurrency Control for Disk-Based Database
Systems”. In: Proc. VLDB Endow. 15.11 (2022), pp. 2797–2810.

[75] Michael Freitag and Thomas Neumann. “Every Row Counts: Combining
Sketches and Sampling for Accurate Group-By Result Estimates”. In:
CIDR. www.cidrdb.org, 2019.

[76] Florian Funke, Alfons Kemper, and Thomas Neumann. “Benchmarking
Hybrid OLTP&OLAP Database Systems”. In: BTW. Vol. P-180. LNI. GI,
2011, pp. 390–409.

[77] Florian Funke, Alfons Kemper, and Thomas Neumann. “Compacting
Transactional Data in Hybrid OLTP & OLAP Databases”. In: Proc. VLDB
Endow. 5.11 (2012), pp. 1424–1435.

[78] Shen Gao, Jianliang Xu, Theo Härder, Bingsheng He, Byron Choi, and
Haibo Hu. “PCMLogging: Optimizing Transaction Logging and Recovery
Performance with PCM”. In: IEEE Trans. Knowl. Data Eng. 27.12 (2015),
pp. 3332–3346.

[79] Phillip B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports”. In:VLDB. Morgan Kaufmann,
2001, pp. 541–550.

https://mediatum.ub.tum.de/1545314
https://github.com/freitmi/queries-vldb2020

218 BIBLIOGRAPHY

[80] Nikolaus Glombiewski, Bernhard Seeger, and Goetz Graefe. “Waves of
Misery After Index Creation”. In: BTW. Vol. P-289. LNI. Gesellschaft für
Informatik, Bonn, 2019, pp. 77–96.

[81] Leo A. Goodman. “On the Estimation of the Number of Classes in a
Population”. In: The Annals of Mathematical Statistics 20.4 (1949), pp. 572–
579.

[82] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and
Francesco Scarcello. “Hypertree Decompositions: Structure, Algorithms,
and Applications”. In:WG. Vol. 3787. Lecture Notes in Computer Science.
Springer, 2005, pp. 1–15.

[83] Goetz Graefe. “A survey of B-tree logging and recovery techniques”. In:
ACM Trans. Database Syst. 37.1 (2012), 1:1–1:35.

[84] Goetz Graefe. “B-tree indexes, interpolation search, and skew”. In: Da-
MoN. ACM, 2006, p. 5.

[85] Goetz Graefe. “Modern B-Tree Techniques”. In: Found. Trends Databases
3.4 (2011), pp. 203–402.

[86] Goetz Graefe. “Query Evaluation Techniques for Large Databases”. In:
ACM Comput. Surv. 25.2 (1993), pp. 73–170.

[87] Goetz Graefe. “Write-Optimized B-Trees”. In: VLDB. Morgan Kaufmann,
2004, pp. 672–683.

[88] Goetz Graefe, Ross Bunker, and Shaun Cooper. “Hash Joins and Hash
Teams in Microsoft SQL Server”. In: VLDB. Morgan Kaufmann, 1998,
pp. 86–97.

[89] Goetz Graefe, Hideaki Kimura, and Harumi A. Kuno. “Foster B-Trees”.
In: ACM Trans. Database Syst. 37.3 (2012), 17:1–17:29.

[90] Goetz Graefe and Per-Åke Larson. “B-Tree Indexes and CPU Caches”. In:
ICDE. IEEE Computer Society, 2001, pp. 349–358.

[91] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph
Tucek, Mark Lillibridge, and Alistair C. Veitch. “In-Memory Performance
for Big Data”. In: Proc. VLDB Endow. 8.1 (2014), pp. 37–48.

[92] Jim Gray. “The Transaction Concept: Virtues and Limitations (Invited
Paper)”. In: VLDB. IEEE Computer Society, 1981, pp. 144–154.

[93] Carnegie Mellon University Database Group. NoisePage – Self-Driving
DatabaseManagement System. 2022. url: https://noise.page/ (visited
on Feb. 7, 2022).

https://noise.page/

BIBLIOGRAPHY 219

[94] Carnegie Mellon University Database Group. Peloton – The Self-driving
Database Management System. 2019. url: https : / / pelotondb . io/
(visited on Feb. 7, 2022).

[95] The PostgreSQL Global Development Group. PostgreSQL: The World’s
Most Advanced Open Source Relational Database. 2022. url: https://
www.postgresql.org/ (visited on Feb. 7, 2022).

[96] Aditya Gurajada, Dheren Gala, Fei Zhou, Amit Pathak, and Zhan-Feng
Ma. “BTrim - Hybrid In-Memory Database Architecture for Extreme
Transaction Processing in VLDBs”. In: Proc. VLDB Endow. 11.12 (2018),
pp. 1889–1901.

[97] Gabriel Haas, Michael Haubenschild, and Viktor Leis. “Exploiting
Directly-Attached NVMe Arrays in DBMS”. In: CIDR. www.cidrdb.org,
2020.

[98] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes.
“Sampling-Based Estimation of the Number of Distinct Values of an
Attribute”. In: VLDB. Morgan Kaufmann, 1995, pp. 311–322.

[99] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. “OLTP through the looking glass, and what we found there”.
In: SIGMOD Conference. ACM, 2008, pp. 981–992.

[100] Hazar Harmouch and Felix Naumann. “Cardinality Estimation: An Ex-
perimental Survey”. In: Proc. VLDB Endow. 11.4 (2017), pp. 499–512.

[101] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Vik-
tor Leis. “Rethinking Logging, Checkpoints, and Recovery for High-
Performance Storage Engines”. In: SIGMOD Conference. ACM, 2020,
pp. 877–892.

[102] Gerald Held and Michael Stonebraker. “B-trees Re-examined”. In: Com-
mun. ACM 21.2 (1978), pp. 139–143.

[103] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton.
“Architecture of a Database System”. In: Found. Trends Databases 1.2
(2007), pp. 141–259.

[104] Sven Helmer, Robin Aly, Thomas Neumann, and Guido Moerkotte.
“Indexing Set-Valued Attributes with a Multi-level Extendible Hash-
ing Scheme”. In: DEXA. Vol. 4653. Lecture Notes in Computer Science.
Springer, 2007, pp. 98–108.

[105] Michael Henderson and Ramon Lawrence. “AreMulti-way Joins Actually
Useful?” In: ICEIS (1). SciTePress, 2013, pp. 13–22.

https://pelotondb.io/
https://www.postgresql.org/
https://www.postgresql.org/

220 BIBLIOGRAPHY

[106] Fritz Henglein. “Generic top-down discrimination for sorting and parti-
tioning in linear time”. In: J. Funct. Program. 22.3 (2012), pp. 300–374.

[107] Stefan Heule, Marc Nunkesser, and Alexander Hall. “HyperLogLog in
practice: Algorithmic engineering of a state of the art cardinality esti-
mation algorithm”. In: EDBT. ACM, 2013, pp. 683–692.

[108] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. “A Worst-
Case Optimal Join Algorithm for SPARQL”. In: ISWC (1). Vol. 11778.
Lecture Notes in Computer Science. Springer, 2019, pp. 258–275.

[109] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo, Lintao Zhang, and Li-
dong Zhou. “KuaFu: Closing the parallelism gap in database replication”.
In: ICDE. IEEE Computer Society, 2013, pp. 1186–1195.

[110] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. “NVRAM-
aware Logging in Transaction Systems”. In: Proc. VLDB Endow. 8.4 (2014),
pp. 389–400.

[111] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd
Mullender, and Martin L. Kersten. “MonetDB: Two Decades of Research
in Column-oriented Database Architectures”. In: IEEE Data Eng. Bull.
35.1 (2012), pp. 40–45.

[112] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboul-
naga. “CORDS: Automatic Discovery of Correlations and Soft Functional
Dependencies”. In: SIGMOD Conference. ACM, 2004, pp. 647–658.

[113] Intel Coporation. Q2 2022 Financial Results. 2022. url: https://www.
intc.com/financial-info/financial-results (visited on Oct. 27,
2022).

[114] Yannis E. Ioannidis and Stavros Christodoulakis. “On the Propagation of
Errors in the Size of Join Results”. In: SIGMOD Conference. ACM Press,
1991, pp. 268–277.

[115] Ibrahim Jaluta, Seppo Sippu, and Eljas Soisalon-Soininen. “Concurrency
control and recovery for balanced B-link trees”. In: VLDB J. 14.2 (2005),
pp. 257–277.

[116] Manas Joglekar, Rohan Puttagunta, and Christopher Ré. “Aggregations
over Generalized Hypertree Decompositions”. In: CoRR abs/1508.07532
(2015).

[117] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. “AJAR: Ag-
gregations and Joins over Annotated Relations”. In: PODS. ACM, 2016,
pp. 91–106.

https://www.intc.com/financial-info/financial-results
https://www.intc.com/financial-info/financial-results

BIBLIOGRAPHY 221

[118] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki,
and Babak Falsafi. “Shore-MT: a scalable storage manager for the multi-
core era”. In: EDBT. Vol. 360. ACM International Conference Proceeding
Series. ACM, 2009, pp. 24–35.

[119] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,
and Anastasia Ailamaki. “Aether: A Scalable Approach to Logging”. In:
Proc. VLDB Endow. 3.1 (2010), pp. 681–692.

[120] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and
Anastasia Ailamaki. “Scalability of write-ahead logging on multicore
and multisocket hardware”. In: VLDB J. 21.2 (2012), pp. 239–263.

[121] J. R. Jordan, J. Banerjee, and R. B. Batman. “Precision Locks”. In: SIGMOD
Conference. ACM Press, 1981, pp. 143–147.

[122] Hyungsoo Jung, Hyuck Han, and Sooyong Kang. “Scalable Database
Logging for Multicores”. In: Proc. VLDB Endow. 11.2 (2017), pp. 135–148.

[123] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. “Flexible Caching in
Trie Joins”. In: EDBT. OpenProceedings.org, 2017, pp. 282–293.

[124] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex
Rasin, Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael
Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. “H-store:
a high-performance, distributed main memory transaction processing
system”. In: Proc. VLDB Endow. 1.2 (2008), pp. 1496–1499.

[125] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe
Zhang. “Counting Triangles under Updates inWorst-Case Optimal Time”.
In: ICDT. Vol. 127. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, 4:1–4:18.

[126] Ahmet Kara and Dan Olteanu. “Covers of Query Results”. In: ICDT.
Vol. 98. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
16:1–16:22.

[127] Alfons Kemper and Donald Kossmann. “Adaptable Pointer Swizzling
Strategies in Object Bases: Design, Realization, and Quantitative Analy-
sis”. In: VLDB J. 4.3 (1995), pp. 519–566.

[128] Alfons Kemper, Donald Kossmann, and Christian Wiesner. “Generalised
Hash Teams for Join and Group-by”. In: VLDB. Morgan Kaufmann, 1999,
pp. 30–41.

[129] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots”. In:
ICDE. IEEE Computer Society, 2011, pp. 195–206.

222 BIBLIOGRAPHY

[130] Alfons Kemper and Thomas Neumann. HyPer: HYbrid OLTP&OLAP
High PERformance Database System. Tech. rep. TUM-I1010. Technische
Universität München, 2010. url: https : / / mediatum . ub . tum . de /
1094491.

[131] Timo Kersten, Viktor Leis, and Thomas Neumann. “Tidy Tuples and
Flying Start: fast compilation and fast execution of relational queries in
Umbra”. In: VLDB J. 30.5 (2021), pp. 883–905.

[132] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. “Access Path
Selection in Main-Memory Optimized Data Systems: Should I Scan or
Should I Probe?” In: SIGMOD Conference. ACM, 2017, pp. 715–730.

[133] Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q.
Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. “On
Functional Aggregate Queries with Additive Inequalities”. In: PODS.
ACM, 2019, pp. 414–431.

[134] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra.
“Joins via Geometric Resolutions: Worst Case and Beyond”. In: ACM
Trans. Database Syst. 41.4 (2016), 22:1–22:45.

[135] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. “FAQ: Questions
Asked Frequently”. In: PODS. ACM, 2016, pp. 13–28.

[136] Jong-Bin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong
Kang, and Hyungsoo Jung. “Border-Collie: A Wait-free, Read-optimal
Algorithm for Database Logging on Multicore Hardware”. In: SIGMOD
Conference. ACM, 2019, pp. 723–740.

[137] Jong-Bin Kim, Kihwang Kim, Hyunsoo Cho, Jaeseon Yu, Sooyong Kang,
and Hyungsoo Jung. “Rethink the Scan inMVCCDatabases”. In: SIGMOD
Conference. ACM, 2021, pp. 938–950.

[138] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis.
“ERMIA: Fast Memory-Optimized Database System for Heterogeneous
Workloads”. In: SIGMOD Conference. ACM, 2016, pp. 1675–1687.

[139] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. “NVWAL: Exploiting NVRAM in Write-Ahead Logging”. In:
ASPLOS. ACM, 2016, pp. 385–398.

[140] Hideaki Kimura. “FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM”. In: SIGMOD Conference. ACM, 2015, pp. 691–706.

[141] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas
Neumann, and Alfons Kemper. “Estimating Filtered Group-By Queries
is Hard: Deep Learning to the Rescue”. In: AIDB@VLDB. 2019.

https://mediatum.ub.tum.de/1094491
https://mediatum.ub.tum.de/1094491

BIBLIOGRAPHY 223

[142] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive Execution of
Compiled Queries”. In: ICDE. IEEE Computer Society, 2018, pp. 197–208.

[143] Paraschos Koutris, Paul Beame, and Dan Suciu. “Worst-Case Optimal
Algorithms for Parallel Query Processing”. In: ICDT. Vol. 48. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 8:1–8:18.

[144] H. T. Kung and John T. Robinson. “On Optimistic Methods for Con-
currency Control”. In: ACM Trans. Database Syst. 6.2 (1981), pp. 213–
226.

[145] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. “What
is Twitter, a social network or a news media?” In: WWW. ACM, 2010,
pp. 591–600.

[146] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. “Oracle
TimesTen: An In-Memory Database for Enterprise Applications”. In:
IEEE Data Eng. Bull. 36.2 (2013), pp. 6–13.

[147] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (1978), pp. 558–565.

[148] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Data Blocks: Hybrid OLTP and OLAP
on Compressed Storage using both Vectorization and Compilation”. In:
SIGMOD Conference. ACM, 2016, pp. 311–326.

[149] Vladimir Lanin and Dennis E. Shasha. “A Symmetric Concurrent B-Tree
Algorithm”. In: FJCC. IEEE Computer Society, 1986, pp. 380–389.

[150] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jig-
nesh M. Patel, and Mike Zwilling. “High-Performance Concurrency Con-
trol Mechanisms for Main-Memory Databases”. In: Proc. VLDB Endow.
5.4 (2011), pp. 298–309.

[151] Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback.
“Cardinality estimation using sample views with quality assurance”. In:
SIGMOD Conference. ACM, 2007, pp. 175–186.

[152] Per-Åke Larson, Mike Zwilling, and Kevin Farlee. “The HekatonMemory-
Optimized OLTP Engine”. In: IEEE Data Eng. Bull. 36.2 (2013), pp. 34–
40.

[153] Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal Sikka,
Hasso Plattner, Jens Krüger, and Martin Grund. “High-Performance
Transaction Processing in SAP HANA”. In: IEEE Data Eng. Bull. 36.2
(2013), pp. 28–33.

224 BIBLIOGRAPHY

[154] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun
Noh, Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. “Hybrid
Garbage Collection for Multi-Version Concurrency Control in SAP
HANA”. In: SIGMOD Conference. ACM, 2016, pp. 1307–1318.

[155] Sangjin Lee, Alberto Lerner, André Ryser, Kibin Park, Chanyoung Jeon,
Jinsub Park, Yong Ho Song, and Philippe Cudré-Mauroux. “X-SSD: A
Storage System with Native Support for Database Logging and Replica-
tion”. In: SIGMOD Conference. ACM, 2022, pp. 988–1002.

[156] Philip L. Lehman and S. Bing Yao. “Efficient Locking for Concurrent
Operations on B-Trees”. In:ACM Trans. Database Syst. 6.4 (1981), pp. 650–
670.

[157] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
“Morsel-driven parallelism: a NUMA-aware query evaluation framework
for the many-core age”. In: SIGMOD Conference. ACM, 2014, pp. 743–754.

[158] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. “How Good Are Query Optimizers,
Really?” In: Proc. VLDB Endow. 9.3 (2015), pp. 204–215.

[159] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. “LeanStore: In-MemoryDataManagement beyondMainMemory”.
In: ICDE. IEEE Computer Society, 2018, pp. 185–196.

[160] Viktor Leis, Michael Haubenschild, and Thomas Neumann. “Optimistic
Lock Coupling: A Scalable and Efficient General-Purpose Synchroniza-
tion Method”. In: IEEE Data Eng. Bull. 42.1 (2019), pp. 73–84.

[161] Viktor Leis, Alfons Kemper, and Thomas Neumann. “The adaptive radix
tree: ARTful indexing for main-memory databases”. In: ICDE. IEEE Com-
puter Society, 2013, pp. 38–49.

[162] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and
Thomas Neumann. “Cardinality Estimation Done Right: Index-Based
Join Sampling”. In: CIDR. www.cidrdb.org, 2017.

[163] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
“The ART of practical synchronization”. In: DaMoN. ACM, 2016, 3:1–3:8.

[164] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. “Signed
networks in social media”. In: CHI. ACM, 2010, pp. 1361–1370.

[165] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. 2014. url: http : / / snap . stanford . edu / data
(visited on Dec. 20, 2022).

http://snap.stanford.edu/data

BIBLIOGRAPHY 225

[166] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-
honey. “Community Structure in Large Networks: Natural Cluster Sizes
and the Absence of Large Well-Defined Clusters”. In: Internet Math. 6.1
(2009), pp. 29–123.

[167] Justin J. Levandoski, Per-Åke Larson, and Radu Stoica. “Identifying hot
and cold data in main-memory databases”. In: ICDE. IEEE Computer
Society, 2013, pp. 26–37.

[168] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. “LLAMA: A
Cache/Storage Subsystem for Modern Hardware”. In: Proc. VLDB Endow.
6.10 (2013), pp. 877–888.

[169] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. “The Bw-
Tree: A B-tree for new hardware platforms”. In: ICDE. IEEE Computer
Society, 2013, pp. 302–313.

[170] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Ryan Stutsman,
and Rui Wang. “High Performance Transactions in Deuteronomy”. In:
CIDR. www.cidrdb.org, 2015.

[171] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. “Cicada:
Dependably Fast Multi-Core In-Memory Transactions”. In: SIGMOD
Conference. ACM, 2017, pp. 21–35.

[172] David B. Lomet. “Cost/Performance in Modern Data Stores: How Data
Caching Systems Succeed”. In: ICDE Workshops. IEEE, 2019, p. 140.

[173] David B. Lomet. “The Evolution of Effective B-tree: Page Organization
and Techniques: A Personal Account”. In: SIGMOD Rec. 30.3 (2001),
pp. 64–69.

[174] David B. Lomet, Alan D. Fekete, Rui Wang, and Peter Ward. “Multi-
version Concurrency via Timestamp Range Conflict Management”. In:
ICDE. IEEE Computer Society, 2012, pp. 714–725.

[175] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou
Wang, Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra
Wang, Wen Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li,
Feng Guo, JiangWu, Jesse Zhang, and Venkatesh Raghavan. “Greenplum:
A Hybrid Database for Transactional and Analytical Workloads”. In:
SIGMOD Conference. ACM, 2021, pp. 2530–2542.

[176] Lin Ma, Joy Arulraj, Sam Zhao, Andrew Pavlo, Subramanya R. Dulloor,
Michael J. Giardino, Jeff Parkhurst, Jason L. Gardner, Kshitij A. Doshi, and
Stanley B. Zdonik. “Larger-than-memory data management on modern
storage hardware for in-memory OLTP database systems”. In: DaMoN.
ACM, 2016, 9:1–9:7.

226 BIBLIOGRAPHY

[177] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-
braker. “Rethinking main memory OLTP recovery”. In: ICDE. IEEE Com-
puter Society, 2014, pp. 604–615.

[178] YandongMao, Eddie Kohler, and Robert TappanMorris. “Cache craftiness
for fast multicore key-value storage”. In: EuroSys. ACM, 2012, pp. 183–
196.

[179] John M. Mellor-Crummey and Michael L. Scott. “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors”. In: ACM Trans.
Comput. Syst. 9.1 (1991), pp. 21–65.

[180] Leonard von Merzljak, Philipp Fent, Thomas Neumann, and Jana
Giceva. “What Are You Waiting For? Use Coroutines for Asynchronous
I/O to Hide I/O Latencies and Maximize the Read Bandwidth!” In:
ADMS@VLDB. 2022.

[181] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Why go
logarithmic if we can go linear?: Towards effective distinct counting
of search traffic”. In: EDBT. Vol. 261. ACM International Conference
Proceeding Series. ACM, 2008, pp. 618–629.

[182] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and
Gábor Szárnyas. “LSQB: a large-scale subgraph query benchmark”. In:
GRADES-NDA@SIGMOD. ACM, 2021, 8:1–8:11.

[183] Amine Mhedhbi and Semih Salihoglu. “Optimizing Subgraph Queries
by Combining Binary and Worst-Case Optimal Joins”. In: Proc. VLDB
Endow. 12.11 (2019), pp. 1692–1704.

[184] Microsoft.Microsoft Data Platform. 2022. url: https://www.microsoft.
com/en-us/sql-server/ (visited on Feb. 7, 2022).

[185] Pulkit A. Misra, Jeffrey S. Chase, Johannes Gehrke, and Alvin R. Lebeck.
“Multi-version Indexing in Flash-based Key-Value Stores”. In: CoRR
abs/1912.00580 (2019).

[186] GuidoMoerkotte and Thomas Neumann. “Dynamic programming strikes
back”. In: SIGMOD Conference. ACM, 2008, pp. 539–552.

[187] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter
M. Schwarz. “ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging”.
In: ACM Trans. Database Syst. 17.1 (1992), pp. 94–162.

[188] C. Mohan, Don Haderle, Yun Wang, and Josephine M. Cheng. “Sin-
gle Table Access Using Multiple Indexes: Optimization, Execution, and
Concurrency Control Techniques”. In: EDBT. Vol. 416. Lecture Notes in
Computer Science. Springer, 1990, pp. 29–43.

https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/sql-server/

BIBLIOGRAPHY 227

[189] C.Mohan, Hamid Pirahesh, and RaymondA. Lorie. “Efficient and Flexible
Methods for Transient Versioning of Records to Avoid Locking by Read-
Only Transactions”. In: SIGMOD Conference. ACM Press, 1992, pp. 124–
133.

[190] Yehudit Mond and Yoav Raz. “Concurrency Control in B+-Trees
Databases Using Preparatory Operations”. In: VLDB. Morgan Kaufmann,
1985, pp. 331–334.

[191] Jan Mühlig and Jens Teubner. “MxTasks: How to Make Efficient Syn-
chronization and Prefetching Easy”. In: SIGMOD Conference. ACM, 2021,
pp. 1331–1344.

[192] Magnus Müller, Guido Moerkotte, and Oliver Kolb. “Improved Selectivity
Estimation by Combining Knowledge from Sampling and Synopses”. In:
Proc. VLDB Endow. 11.9 (2018), pp. 1016–1028.

[193] Azade Nazi, Bolin Ding, Vivek R. Narasayya, and Surajit Chaudhuri. “Ef-
ficient Estimation of Inclusion Coefficient using HyperLogLog Sketches”.
In: Proc. VLDB Endow. 11.10 (2018), pp. 1097–1109.

[194] Thomas Neumann. “Efficiently Compiling Efficient Query Plans for
Modern Hardware”. In: Proc. VLDB Endow. 4.9 (2011), pp. 539–550.

[195] Thomas Neumann and Michael Freitag. “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR. www.cidrdb.org, 2020.

[196] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary Queries”.
In: BTW. Vol. P-241. LNI. GI, 2015, pp. 383–402.

[197] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast Serial-
izable Multi-Version Concurrency Control for Main-Memory Database
Systems”. In: SIGMOD Conference. ACM, 2015, pp. 677–689.

[198] Thomas Neumann and Bernhard Radke. “Adaptive Optimization of Very
Large Join Queries”. In: SIGMOD Conference. ACM, 2018, pp. 677–692.

[199] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.
Telecom Application Transaction Processing Benchmark. 2011. url: http:
//tatpbenchmark.sourceforge.net/ (visited on Jan. 18, 2022).

[200] Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. “Beyond
worst-case analysis for joins with minesweeper”. In: PODS. ACM, 2014,
pp. 234–245.

[201] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. “Worst-case
Optimal Join Algorithms”. In: J. ACM 65.3 (2018), 16:1–16:40.

http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/

228 BIBLIOGRAPHY

[202] Hung Q. Ngo, Christopher Ré, and Atri Rudra. “Skew strikes back: New
Developments in the Theory of Join Algorithms”. In: SIGMOD Rec. 42.4
(2013), pp. 5–16.

[203] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias,
Hung Q. Ngo, Christopher Ré, and Atri Rudra. “Join Processing for Graph
Patterns: An Old Dog with New Tricks”. In: GRADES@SIGMOD/PODS.
ACM, 2015, 2:1–2:8.

[204] NuoDB. NuoDB. 2022. url: https : / / nuodb . com/ (visited on Feb. 7,
2022).

[205] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. “The LRU-K
Page Replacement Algorithm For Database Disk Buffering”. In: SIGMOD
Conference. ACM Press, 1993, pp. 297–306.

[206] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil.
“The Log-Structured Merge-Tree (LSM-Tree)”. In: Acta Informatica 33.4
(1996), pp. 351–385.

[207] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. “SOFORT: a hybrid SCM-DRAM storage engine for
fast data recovery”. In: DaMoN. ACM, 2014, 8:1–8:7.

[208] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. “FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory”. In: SIGMOD Conference. ACM,
2016, pp. 371–386.

[209] Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Willhalm,
and Peter Bumbulis. “Instant Recovery for Main Memory Databases”. In:
CIDR. www.cidrdb.org, 2015.

[210] John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. “The case for RAMClouds: scalable high-
performance storage entirely in DRAM”. In: ACM SIGOPS Oper. Syst. Rev.
43.4 (2009), pp. 92–105.

[211] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. “Hybrid Transactional/-
Analytical Processing: A Survey”. In: SIGMOD Conference. ACM, 2017,
pp. 1771–1775.

[212] Christos H. Papadimitriou and Paris C. Kanellakis. “On Concurrency
Control by Multiple Versions”. In: ACM Trans. Database Syst. 9.1 (1984),
pp. 89–99.

https://nuodb.com/

BIBLIOGRAPHY 229

[213] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Nau-
mann. “Functional Dependency Discovery: An Experimental Evaluation
of Seven Algorithms”. In: Proc. VLDB Endow. 8.10 (2015), pp. 1082–1093.

[214] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah,
Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken,
Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. “Self-Driving
Database Management Systems”. In: CIDR. www.cidrdb.org, 2017.

[215] Steven Pelley, Thomas F.Wenisch, Brian T. Gold, and Bill Bridge. “Storage
Management in the NVRAM Era”. In: Proc. VLDB Endow. 7.2 (2013),
pp. 121–132.

[216] Hasso Plattner. “A common database approach for OLTP and OLAP
using an in-memory column database”. In: SIGMOD Conference. ACM,
2009, pp. 1–2.

[217] Dan R. K. Ports and Kevin Grittner. “Serializable Snapshot Isolation in
PostgreSQL”. In: Proc. VLDB Endow. 5.12 (2012), pp. 1850–1861.

[218] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. “Lock-Free
Resizeable Concurrent Tries”. In: LCPC. Vol. 7146. Lecture Notes in
Computer Science. Springer, 2011, pp. 156–170.

[219] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen.
“Fair Benchmarking Considered Difficult: Common Pitfalls In Database
Performance Testing”. In: DBTest@SIGMOD. ACM, 2018, 2:1–2:6.

[220] Mark Raasveldt and Hannes Mühleisen. “Don’t Hold My Data Hostage -
A Case For Client Protocol Redesign”. In: Proc. VLDB Endow. 10.10 (2017),
pp. 1022–1033.

[221] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Ana-
lytical Database”. In: SIGMOD Conference. ACM, 2019, pp. 1981–1984.

[222] Sriram Ramabhadran, Sylvia Ratnasamy, JosephM. Hellerstein, and Scott
Shenker. “Brief announcement: Prefix hash tree”. In: PODC. ACM, 2004,
p. 368.

[223] David P. Reed. “Naming and synchronization in a decentralized computer
system”. PhD thesis. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1978.

[224] Alice Rey, Michael Freitag, and Thomas Neumann. “Seamless Integra-
tion of Parquet Files into Data Processing”. In: BTW. Gesellschaft für
Informatik, Bonn, 2023.

230 BIBLIOGRAPHY

[225] Matthew Richardson, Rakesh Agrawal, and Pedro M. Domingos. “Trust
Management for the Semantic Web”. In: ISWC. Vol. 2870. Lecture Notes
in Computer Science. Springer, 2003, pp. 351–368.

[226] J. Andrew Rogers. AquaHash GitHub repository. 2019. url: https://
github.com/jandrewrogers/AquaHash (visited on Dec. 20, 2022).

[227] Florin Rusu and Alin Dobra. “Sketching Sampled Data Streams”. In: ICDE.
IEEE Computer Society, 2009, pp. 381–392.

[228] Mohammad Sadoghi and Spyros Blanas. Transaction Processing on Mod-
ern Hardware. Synthesis Lectures on Data Management. Morgan & Clay-
pool Publishers, 2019.

[229] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee,
Fabian Nagel, and Kenneth A. Ross. “Reducing Database Locking Con-
tention Through Multi-version Concurrency”. In: Proc. VLDB Endow. 7.13
(2014), pp. 1331–1342.

[230] Caetano Sauer, Goetz Graefe, and Theo Härder. “FineLine: log-structured
transactional storage and recovery”. In: Proc. VLDB Endow. 11.13 (2018),
pp. 2249–2262.

[231] Thomas Schank and Dorothea Wagner. “Finding, Counting and List-
ing All Triangles in Large Graphs, an Experimental Study”. In: WEA.
Vol. 3503. Lecture Notes in Computer Science. Springer, 2005, pp. 606–
609.

[232] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “B2-Tree: Cache-Friendly String Indexing within
B-Trees”. In: BTW. Vol. P-311. LNI. Gesellschaft für Informatik, Bonn,
2021, pp. 39–58.

[233] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “B2-Tree: Page-Based String Indexing in Concurrent
Environments”. In: Datenbank-Spektrum 22.1 (2022), pp. 11–22.

[234] Harald Schöning. “The ADABAS Buffer Pool Manager”. In: VLDB. Mor-
gan Kaufmann, 1998, pp. 675–679.

[235] Russell Sears and Eric A. Brewer. “Segment-based recovery: Write ahead
logging revisited”. In: Proc. VLDB Endow. 2.1 (2009), pp. 490–501.

[236] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. “Access Path Selection in a Rela-
tional Database Management System”. In: SIGMOD Conference. ACM,
1979, pp. 23–34.

https://github.com/jandrewrogers/AquaHash
https://github.com/jandrewrogers/AquaHash

BIBLIOGRAPHY 231

[237] Margo I. Seltzer and Ozan Yigit. “A New Hashing Package for UNIX”. In:
USENIX Winter. USENIX Association, 1991, pp. 173–184.

[238] Michael Shekelyan, Anton Dignös, and Johann Gamper. “DigitHist: a
Histogram-Based Data Summary with Tight Error Bounds”. In: Proc.
VLDB Endow. 10.11 (2017), pp. 1514–1525.

[239] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian
Dragusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian
Lemke, Sebastian Seifert, Sarika Iyer, Sasikanth Gottapu, Robert Schulze,
Chaitanya Gottipati, Nirvik Basak, Yanhong Wang, Vivek Kandiyanallur,
Santosh Pendap, Dheren Gala, Rajesh Almeida, and Prasanta Ghosh.
“Native Store Extension for SAP HANA”. In: Proc. VLDB Endow. 12.12
(2019), pp. 2047–2058.

[240] Reza Sherkat, Colin Florendo, Mihnea Andrei, Anil K. Goel, Anisoara
Nica, Peter Bumbulis, Ivan Schreter, Günter Radestock, Christian Bens-
berg, Daniel Booss, and Heiko Gerwens. “Page As You Go: Piecewise
Columnar Access In SAP HANA”. In: SIGMOD Conference. ACM, 2016,
pp. 1295–1306.

[241] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas
Peh, and Christof Bornhövd. “Efficient transaction processing in SAP
HANAdatabase: the end of a column storemyth”. In: SIGMODConference.
ACM, 2012, pp. 731–742.

[242] Inc. SingleStore. SingleStore is The Single Database for All Data-Intensive
Applications. 2022. url: https://www.singlestore.com/ (visited on
Feb. 7, 2022).

[243] Radu Stoica and Anastasia Ailamaki. “Enabling efficient OS paging for
main-memory OLTP databases”. In: DaMoN. ACM, 2013, p. 7.

[244] Michael Stonebraker. “Operating System Support for Database Manage-
ment”. In: Commun. ACM 24.7 (1981), pp. 412–418.

[245] Michael Stonebraker and Ariel Weisberg. “The VoltDB Main Memory
DBMS”. In: IEEE Data Eng. Bull. 36.2 (2013), pp. 21–27.

[246] Yihan Sun, Guy E. Blelloch, Wan Shen Lim, and Andrew Pavlo. “On
Supporting Efficient Snapshot Isolation for HybridWorkloads withMulti-
Versioned Indexes”. In: Proc. VLDB Endow. 13.2 (2019), pp. 211–225.

[247] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan
Birler, Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. “The LDBC Social
Network Benchmark: Business Intelligence Workload”. In: Proc. VLDB
Endow. 16.4 (2022), pp. 877–890.

https://www.singlestore.com/

232 BIBLIOGRAPHY

[248] Takayuki Tanabe, Takashi Hoshino, Hideyuki Kawashima, and Osamu
Tatebe. “An Analysis of Concurrency Control Protocols for In-Memory
Database with CCBench”. In: Proc. VLDB Endow. 13.13 (2020), pp. 3531–
3544.

[249] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Yanfeng Zhang, Siyuan Ma,
and Xiaodong Zhang. “A Low-cost Disk Solution Enabling LSM-tree
to Achieve High Performance for Mixed Read/Write Workloads”. In:
ACM Trans. Storage 14.2 (2018), 15:1–15:26. doi: 10.1145/3162615. url:
https://doi.org/10.1145/3162615.

[250] Daniel Ting. “Approximate Distinct Counts for Billions of Datasets”. In:
SIGMOD Conference. ACM, 2019, pp. 69–86.

[251] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. “Speedy transactions in multicore in-memory databases”. In:
SOSP. ACM, 2013, pp. 18–32.

[252] Todd L. Veldhuizen. “Leapfrog Triejoin: A Simple, Worst-Case Optimal
Join Algorithm”. In: ICDT. 2014, pp. 96–106.

[253] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. “Amazon Aurora: De-
sign Considerations for High Throughput Cloud-Native Relational
Databases”. In: SIGMOD Conference. ACM, 2017, pp. 1041–1052.

[254] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kem-
per, Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel
Then. “Get Real: How Benchmarks Fail to Represent the Real World”. In:
DBTest@SIGMOD. ACM, 2018, 1:1–1:6.

[255] Benjamin Wagner, André Kohn, and Thomas Neumann. “Self-Tuning
Query Scheduling for Analytical Workloads”. In: SIGMOD Conference.
ACM, 2021, pp. 1879–1891.

[256] M. Mitchell Waldrop. “The chips are down for Moore’s law”. In: Nat.
530.7589 (2016), pp. 144–147.

[257] Tianzheng Wang and Ryan Johnson. “Scalable Logging through Emerg-
ing Non-Volatile Memory”. In: Proc. VLDB Endow. 7.10 (2014), pp. 865–
876.

[258] Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pan-
dis. “Efficiently making (almost) any concurrency control mechanism
serializable”. In: VLDB J. 26.4 (2017), pp. 537–562.

https://doi.org/10.1145/3162615
https://doi.org/10.1145/3162615

BIBLIOGRAPHY 233

[259] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. “Query Fresh:
Log Shipping on Steroids”. In: Proc. VLDB Endow. 11.4 (2017), pp. 406–
419.

[260] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. “Building a Bw-
Tree Takes More Than Just Buzz Words”. In: SIGMOD Conference. ACM,
2018, pp. 473–488.

[261] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. Morgan Kaufmann, 2002.

[262] Seth J. White and David J. DeWitt. “QuickStore: A High Performance
Mapped Object Store”. In: SIGMOD Conference. ACM Press, 1994, pp. 395–
406.

[263] Christian Winter, Jana Giceva, Thomas Neumann, and Alfons Kemper.
“On-Demand State Separation for Cloud Data Warehousing”. In: Proc.
VLDB Endow. 15.11 (2022), pp. 2966–2979.

[264] ChristianWinter, Tobias Schmidt, Thomas Neumann, andAlfons Kemper.
“Meet Me Halfway: Split Maintenance of Continuous Views”. In: Proc.
VLDB Endow. 13.11 (2020), pp. 2620–2633.

[265] Haicheng Wu, Daniel Zinn, Molham Aref, and Sudhakar Yalamanchili.
“Multipredicate Join Algorithms for Accelerating Relational Graph Pro-
cessing on GPUs”. In: ADMS@VLDB. 2014, pp. 1–12.

[266] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. “An
Empirical Evaluation of In-MemoryMulti-Version Concurrency Control”.
In: Proc. VLDB Endow. 10.7 (2017), pp. 781–792.

[267] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. “Taurus:
Lightweight Parallel Logging for In-Memory Database Management
Systems”. In: Proc. VLDB Endow. 14.2 (2020), pp. 189–201.

[268] Konstantinos Xirogiannopoulos and Amol Deshpande. “Memory-
Efficient Group-by Aggregates over Multi-Way Joins”. In: CoRR
abs/1906.05745 (2019).

[269] Jaewon Yang and Jure Leskovec. “Defining and Evaluating Network
Communities Based onGround-Truth”. In: ICDM. IEEEComputer Society,
2012, pp. 745–754.

[270] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai
Wu. “Adaptive Logging: Optimizing Logging and Recovery Costs in
Distributed In-memory Databases”. In: SIGMOD Conference. ACM, 2016,
pp. 1119–1134.

234 BIBLIOGRAPHY

[271] Chang Yao, Meihui Zhang, Qian Lin, Beng Chin Ooi, and Jiatao Xu.
“Scaling distributed transaction processing and recovery based on de-
pendency logging”. In: VLDB J. 27.3 (2018), pp. 347–368.

[272] Xiaohui Yu, Nick Koudas, and Calisto Zuzarte. “HASE: A Hybrid Ap-
proach to Selectivity Estimation for Conjunctive Predicates”. In: EDBT.
Vol. 3896. Lecture Notes in Computer Science. Springer, 2006, pp. 460–
477.

[273] Xiaohui Yu, Calisto Zuzarte, and Kenneth C. Sevcik. “Towards estimating
the number of distinct value combinations for a set of attributes”. In:
CIKM. ACM, 2005, pp. 656–663.

[274] Mohamed Zaıẗ, Sunil Chakkappen, Suratna Budalakoti, Satyanarayana R.
Valluri, Ramarajan Krishnamachari, and Alan Wood. “Adaptive Statistics
in Oracle 12c”. In: Proc. VLDB Endow. 10.12 (2017), pp. 1813–1824.

[275] Hao Zhang, Gang Chen, Beng Chin Ooi, Weng-Fai Wong, Shensen Wu,
and Yubin Xia. “”Anti-Caching”-based elastic memory management for
Big Data”. In: ICDE. IEEE Computer Society, 2015, pp. 1268–1279.

[276] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky,
Lin Ma, and Rui Shen. “Reducing the Storage Overhead of Main-Memory
OLTP Databases with Hybrid Indexes”. In: SIGMOD Conference. ACM,
2016, pp. 1567–1581.

[277] Ling Zhang, Matthew Butrovich, Tianyu Li, Andrew Pavlo, Yash Nan-
napaneni, John Rollinson, Huanchen Zhang, Ambarish Balakumar,
Daniel Biales, Ziqi Dong, Emmanuel J. Eppinger, Jordi E. Gonzalez, Wan
Shen Lim, Jianqiao Liu, Lin Ma, Prashanth Menon, Soumil Mukher-
jee, Tanuj Nayak, Amadou Ngom, Dong Niu, Deepayan Patra, Poojita
Raj, Stephanie Wang, Wuwen Wang, Yao Yu, and William Zhang. “Ev-
erything is a Transaction: Unifying Logical Concurrency Control and
Physical Data Structure Maintenance in Database Management Systems”.
In: CIDR. www.cidrdb.org, 2021.

[278] Wangda Zhang, Reynold Cheng, and Ben Kao. “Evaluating multi-way
joins over discounted hitting time”. In: ICDE. IEEE Computer Society,
2014, pp. 724–735.

[279] Xiaofei Zhang, Lei Chen, and Min Wang. “Efficient Multi-way Theta-
Join Processing Using MapReduce”. In: Proc. VLDB Endow. 5.11 (2012),
pp. 1184–1195.

[280] Zuyu Zhang, Harshad Deshmukh, and Jignesh M. Patel. “Data Partition-
ing for In-Memory Systems: Myths, Challenges, and Opportunities”. In:
CIDR. www.cidrdb.org, 2019.

BIBLIOGRAPHY 235

[281] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. “Fast
Databases with Fast Durability and Recovery Through Multicore Paral-
lelism”. In: OSDI. USENIX Association, 2014, pp. 465–477.

[282] Jingren Zhou and Kenneth A. Ross. “Buffering Accesses to Memory-
Resident Index Structures”. In: VLDB. Morgan Kaufmann, 2003, pp. 405–
416.

[283] Guanghui Zhu, Xiaoqi Wu, Liangliang Yin, Haogang Wang, Rong Gu,
Chunfeng Yuan, and Yihua Huang. “HyMJ: A Hybrid Structure-Aware
Approach to Distributed Multi-way Join Query”. In: ICDE. IEEE, 2019,
pp. 1726–1729.

APPENDIX A
Proofs for Chapter 6

In the following appendix, we provide proofs of the theorems presented in
Chapter 6. For this purpose, we first derive a useful lemma.

Lemma A.1. Consider a function 𝑔 ∶ (0, 1] → ℝ+0 in 𝐶2 and values 𝑎, 𝑏 ∈ (0, 1]
with 𝑎 < 𝑏 such that

𝑔′(𝑎) = 0 (A.1)
∀ 0 < 𝑥 < 𝑎 ∶ 𝑔′(𝑥) > 0 (A.2)
∀ 𝑎 < 𝑥 ≤ 1 ∶ 𝑔′(𝑥) ≤ 0 (A.3)

as well as

𝑔″(𝑏) = 0 (A.4)
∀ 0 < 𝑥 < 𝑏 ∶ 𝑔″(𝑥) < 0 (A.5)
∀ 𝑏 < 𝑥 ≤ 1 ∶ 𝑔″(𝑥) ≥ 0. (A.6)

Furthermore, let 𝐾 ∈ ℕ and define x = (𝑥1, … , 𝑥𝐾) with 0 < 𝑥𝑘 ≤ 1 and

𝐾
∑
𝑘=1

𝑥𝑘 = 1. (A.7)

Then the following inequality holds

𝑓 (x) ∶=
𝐾
∑
𝑘=1

𝑔(𝑥𝑘) ≤ {
𝐾 ⋅ 𝑔 (

1
𝐾
) if 𝐾 ≥

1
𝑎

𝐾 ⋅ 𝑔(𝑎) otherwise.

238 APPENDIX A. PROOFS FOR CHAPTER 6

1
0

𝑎

𝑏

𝑔(𝑥) 𝑔′(𝑥)

Figure A.1: Qualitative behavior of the function 𝑔 and its derivative 𝑔′ used in
the proof of Lemma A.1.

Proof. We prove the proposition by individually analyzing the respective cases.

Case 1: 𝐾 < 1/𝑎 In this case, we can deduce from Equations A.1–A.3 that 𝑔
has a global maximum at 𝑎 (cf. Figure A.1). Therefore, it follows that

𝑓 (x) ≤
𝐾
∑
𝑘=1

𝑔(𝑎) = 𝐾 ⋅ 𝑔(𝑎). (A.8)

While this upper bound trivially holds for 𝐾 ≥ 1/𝑎 as well, we aim to prove a
tighter bound in that case.

Case 2: 𝐾 ≥ 1/𝑎 In order to derive this tighter bound, we maximize 𝑓 subject
to Constraint A.7. Thus, we introduce a Lagrange multiplier 𝜆 ∈ ℝ and define

ℒ(x, 𝜆) =
𝐾
∑
𝑘=1

𝑔(𝑥𝑘) − 𝜆 ⋅ (
𝐾
∑
𝑘=1

𝑥𝑘 − 1) . (A.9)

Since a maximum of 𝑓 must occur at a critical point of the Lagrange function ℒ,
a necessary condition for optimality is ∇ℒ(x, 𝜆) = 0, i.e.

⎛
⎜
⎜
⎜
⎝

𝑔′(𝑥1) − 𝜆
⋮

𝑔′(𝑥𝐾) − 𝜆
∑𝐾

𝑘=1 𝑥𝑘 − 1

⎞
⎟
⎟
⎟
⎠

= 0. (A.10)

From this, one can immediately conclude that x is a critical point of ℒ if and
only if it satisfies Constraint A.7, and the derivatives 𝑔′(𝑥𝑘) are equal for all
𝑘 ∈ {1, … , 𝐾}. For 𝐾 ≥ 1/𝑎, the only such critical point which satisfies 0 <
𝑥𝑘 ≤ 1 occurs at 𝑥1 = … = 𝑥𝐾 = 𝜆 = 1/𝐾, which we prove by contradiction.
The following line of reasoning relies heavily on the behavior of 𝑔′, which is
illustrated qualitatively in Figure A.1.

APPENDIX A. PROOFS FOR CHAPTER 6 239

Let us assume that there exist 𝑥1, … , 𝑥𝐾 with 𝑔′(𝑥1) = … = 𝑔′(𝑥𝑘) and
𝑥𝑖 ≠ 1/𝐾 for some index 𝑖. Furthermore, assume without loss of generality that
𝑥𝑖 > 1/𝐾. If this is the case, Constraint A.7 implies that there exists another
index 𝑗 such that 𝑥𝑗 < 1/𝐾. Since we require that 𝐾 ≥ 1/𝑎 we can infer that
𝑥𝑗 < 1/𝐾 < 𝑎 and consequently 𝑔′(1/𝐾) > 0 due to InequationA.2. Furthermore,
𝑔′(𝑥) is strictly monotonically decreasing for 𝑥 < 𝑎 due to Inequation A.6, so
𝑔′(𝑥𝑗) > 𝑔′(1/𝐾) > 0. At the same time, however, we can infer that 𝑔′(𝑥𝑖) ≤
𝑔′(1/𝐾) since 𝑔′(𝑥) is strictly monotonic decreasing for 1/𝐾 ≤ 𝑥 < 𝑎 and
𝑔′(𝑥) ≤ 0 < 𝑔′(1/𝐾) for 𝑥 ≥ 𝑎. In summary, we obtain 𝑔′(𝑥𝑖) ≠ 𝑔′(𝑥𝑗) in
contradiction to the assumption that 𝑔′(𝑥1) = … = 𝑔′(𝑥𝑘), and conclude that
𝑥1 = … = 𝑥𝐾 = 𝜆 = 1/𝐾 is indeed the only critical point of ℒ.

It can easily be verified from Equations A.4–A.5 that this critical point of ℒ
does not correspond to a minimum or saddle point of 𝑓. Thus, we obtain the
proposition

𝑓 (x) ≤
𝐾
∑
𝑘=1

𝑔 (
1
𝐾
) = 𝐾 ⋅ 𝑔 (

1
𝐾
) . (A.11)

Sampling With Replacement
Theorem 6.1 (revisited). Consider a table with 𝑁 rows containing 𝐷 distinct
tuples. Suppose we draw a sample of 𝑛 rows uniformly at random with replacement,
and let 𝑓1 denote the observed number of singleton tuples in this sample. Then, the
following inequality holds

𝔼(𝑓1) ≤
⎧

⎨
⎩

𝑛 ⋅ (1 −
1
𝐷
)
𝑛−1

if 𝐷 ≥ 𝑛,

𝐷 ⋅ (1 −
1
𝑛
)
𝑛−1

otherwise.

Proof. As stated in Section 6.2.2, the expected number of singleton tuples in this
case is given by

𝔼(𝑓1) =
𝐷
∑
𝑘=1

𝑛 ⋅ 𝑃𝑘 ⋅ (1 − 𝑃𝑘)𝑛−1, (6.3)

where 𝑃𝑘 = 𝑁𝑘/𝑁 denotes the relative frequency of the 𝑘-th distinct attribute
combination in the entire table. Note that 0 < 𝑃𝑘 ≤ 1 for all 𝑘 ∈ {1, … , 𝐷},
since 1 ≤ 𝑁𝑘 ≤ 𝑁 by definition. In order to apply Lemma A.1, we interpret

240 APPENDIX A. PROOFS FOR CHAPTER 6

this expected value as a function 𝑓 of the vector P = (𝑃1, … , 𝑃𝐷) of relative
frequencies, i.e.

𝑓 (P) =
𝐷
∑
𝑘=1

𝑔(𝑃𝑘), (A.12)

with

𝑔(𝑃𝑘) = 𝑛 ⋅ 𝑃𝑘 ⋅ (1 − 𝑃𝑘)𝑛−1. (A.13)

Furthermore, we can easily determine the derivatives

𝑔′(𝑃𝑘) = 𝑛 ⋅ (1 − 𝑛 ⋅ 𝑃𝑘)(1 − 𝑃𝑘)𝑛−2, and (A.14)

𝑔″(𝑃𝑘) = 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 ⋅ 𝑃𝑘 − 2) ⋅ (1 − 𝑃𝑘)𝑛−3. (A.15)

Therefore, we derive that 𝑔′(𝑃𝑘) has a zero at 𝑃𝑘 = 1/𝑛 with 𝑔′(𝑃𝑘) > 0 for
𝑃𝑘 < 1/𝑛, and 𝑔′(𝑃𝑘) ≤ 0 for 𝑃𝑘 > 1/𝑛. Similarly, 𝑔″(𝑃𝑘) has a zero at 𝑃𝑘 = 2/𝑛
with 𝑔″(𝑃𝑘) < 0 for 𝑃𝑘 < 2/𝑛, and 𝑔″(𝑃𝑘) ≥ 0 for 𝑃𝑘 > 2/𝑛. Since 1/𝑛 < 2/𝑛,
the preconditions of Lemma A.1 are satisfied and we conclude that

𝑓 (P) ≤
⎧

⎨
⎩

𝐷 ⋅ 𝑔 (
1
𝐷
) if 𝐷 ≥ 𝑛

𝐷 ⋅ 𝑔 (
1
𝑛
) otherwise.

=
⎧

⎨
⎩

𝑛 ⋅ (1 −
1
𝐷
)
𝑛−1

if 𝐷 ≥ 𝑛

𝐷 ⋅ (1 −
1
𝑛
)
𝑛−1

otherwise.
(A.16)

Theorem 6.2 (revisited). Consider a table with 𝑁 rows containing 𝐷 distinct
tuples. Suppose we draw a sample of 𝑛 rows uniformly at random with replacement,
and let 𝑑 denote the observed number of distinct tuples in this sample. Then, the
following inequality holds

𝔼(𝑑) ≥ 𝐷 − 𝐷 ⋅ (1 −
1
𝑁
)
𝑛
.

Proof. As outlined in Section 6.2.2, the expected number of distinct tuples in the
sample is given by

𝔼(𝑑) = 𝐷 −
𝐷
∑
𝑘=1

(1 − 𝑃𝑘)𝑛. (6.4)

APPENDIX A. PROOFS FOR CHAPTER 6 241

Hence, 𝔼(𝑑) is minimal if ∑𝐷
𝑘=1(1 − 𝑃𝑘)𝑛 is maximized. Let

ℎ(𝑃𝑘) = (1 − 𝑃𝑘)𝑛, (A.17)

and consider the derivative

ℎ′(𝑃𝑘) = −𝑛 ⋅ (1 − 𝑃𝑘)𝑛−1. (A.18)

For 0 < 𝑃𝑘 ≤ 1 we have ℎ′(𝑃𝑘) < 0, thus ℎ(𝑃𝑘) is strictly monotonic decreasing
in this interval. As we require each of the distinct tuples to occur at least once
in the table, we know that 𝑃𝑘 ≥ 1/𝑁, and therefore

𝐸(𝑑) ≥ 𝐷 −
𝐷
∑
𝑘=1

ℎ (
1
𝑁
) = 𝐷 − 𝐷 ⋅ (1 −

1
𝑁
)
𝑛
. (A.19)

Sampling Without Replacement
Theorem 6.3 (revisited). Consider a table with 𝑁 rows containing 𝐷 distinct
tuples. Suppose we draw a sample of 𝑛 rows uniformly at random without replace-
ment, and let 𝑓1 denote the observed number of singleton tuples in this sample.
Define

𝑅 =
𝑁 − 𝑛
𝑁 − 1

.

Then, the following inequality holds.

𝔼(𝑓1) ≤ {
𝑛 ⋅ 𝑅

𝑁
𝐷−1 if 𝐷 ≥ −𝑁 ⋅ ln𝑅

−
𝑛 ⋅ 𝐷

𝑁 ⋅ ln𝑅
⋅ 𝑅−

1
ln𝑅−1 otherwise.

Proof. In case of sampling without replacement, Goodman [81] points out that
the expected value 𝔼(𝑓1) is given by

𝔼(𝑓1) =
𝐷
∑
𝑘=1

𝔼(𝛿1,𝑛𝑘), (A.20)

where

𝛿1,𝑛𝑘 = {
1 if 𝑛𝑘 = 1
0 if 𝑛𝑘 ≠ 1.

(A.21)

242 APPENDIX A. PROOFS FOR CHAPTER 6

Thus, we can derive

𝔼(𝑓1) =
𝐷
∑
𝑘=1

𝑃(𝑛𝑘 = 1)

=
𝐷
∑
𝑘=1

(𝑁𝑘
1) ⋅ (

𝑁−𝑁𝑘
𝑛−1)

(𝑁𝑛)

=
𝐷
∑
𝑘=1

𝑁𝑘 ⋅
(𝑁 − 𝑁𝑘)!

𝑁 !
⋅

(𝑁 − 𝑛)!
(𝑁 − 𝑛 − 𝑁𝑘 + 1)!

⋅
𝑛!

(𝑛 − 1)!

=
𝐷
∑
𝑘=1

𝑛 ⋅ 𝑁𝑘
𝑁

⋅
(𝑁 − 𝑁𝑘)!
(𝑁 − 1)!

⋅
(𝑁 − 𝑛)!

(𝑁 − 𝑛 − 𝑁𝑘 + 1)!

=
𝐷
∑
𝑘=1

𝑛 ⋅ 𝑁𝑘
𝑁

⋅
𝑁 − 𝑛
𝑁 − 1

⋅ ⋯ ⋅
𝑁 − 𝑛 − (𝑁𝑘 − 2)
𝑁 − 1 − (𝑁𝑘 − 2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑘−1 terms

. (A.22)

Since

0 <
𝑁 − 𝑛 − 𝑖
𝑁 − 1 − 𝑖

≤
𝑁 − 𝑛
𝑁 − 1

< 1 (A.23)

for all 𝑖 ∈ ℕ, we obtain

𝔼(𝑓1) ≤
𝐷
∑
𝑘=1

𝑛 ⋅ 𝑃𝑘 ⋅ (
𝑁 − 𝑛
𝑁 − 1

)
𝑁 ⋅𝑃𝑘−1

, (A.24)

where 𝑃𝑘 = 𝑁𝑘/𝑁 once again denotes the relative frequency of the 𝑘-th distinct
attribute combination in the entire table. From this point on, we can proceed
analogously to the proof of Theorem 6.1, i.e. we interpret the right-hand side of
Inequation A.24 as a function 𝑓 of the vector P = (𝑃1, … , 𝑃𝐷) and write

𝑓 (P) =
𝐷
∑
𝑘=1

𝑔(𝑃𝑘) (A.25)

with 0 < 𝑃𝑘 ≤ 1 and

𝑔(𝑃𝑘) = 𝑛 ⋅ 𝑃𝑘 ⋅ 𝑅𝑁 ⋅𝑃𝑘−1. (A.26)

The first two derivatives of 𝑔 are given by

𝑔′(𝑃𝑘) = 𝑛 ⋅ 𝑅𝑁 ⋅𝑃𝑘−1 ⋅ (1 + 𝑁 ⋅ 𝑃𝑘 ⋅ ln𝑅) , and (A.27)

𝑔″(𝑃𝑘) = 𝑛 ⋅ 𝑁 ⋅ 𝑅𝑁 ⋅𝑃𝑘−1 ⋅ ln𝑅 ⋅ (2 + 𝑁 ⋅ 𝑃𝑘 ⋅ ln𝑅) . (A.28)

APPENDIX A. PROOFS FOR CHAPTER 6 243

We can easily determine that 𝑔′(𝑃𝑘) has exactly one zero at 𝑃𝑘 = −1/(𝑁 ⋅ ln𝑅),
with 𝑔′(𝑃𝑘) > 0 for 𝑃𝑘 < −1/(𝑁 ⋅ ln𝑅) and 𝑔′(𝑃𝑘) ≤ 0 for 𝑃𝑘 > −1/(𝑁 ⋅ ln𝑅).
Similarly, 𝑔″(𝑃𝑘) has exactly one zero at 𝑃𝑘 = −2/(𝑁 ⋅ ln𝑅) with 𝑔″(𝑃𝑘) < 0 for
𝑃𝑘 < −2/(𝑁 ⋅ln𝑅), and 𝑔″(𝑃𝑘) ≥ 0 for 𝑃𝑘 > −2/(𝑁 ⋅ln𝑅). Finally, −1/(𝑁 ⋅ln𝑅) <
−2/(𝑁 ⋅ ln𝑅) since 𝑅 < 1, allowing us to apply Lemma A.1 to conclude

𝑓 (P) ≤
⎧

⎨
⎩

𝐷 ⋅ 𝑔 (
1
𝐷
) if 𝐷 ≥ −𝑁 ⋅ ln𝑅

𝐷 ⋅ 𝑔 (−
1

𝑁 ⋅ ln𝑅
) otherwise.

= {
𝑛 ⋅ 𝑅

𝑁
𝐷−1 if 𝐷 ≥ −𝑁 ⋅ ln𝑅

−
𝑛 ⋅ 𝐷

𝑁 ⋅ ln𝑅
⋅ 𝑅−

1
ln𝑅−1 otherwise.

(A.29)

Theorem 6.4 (revisited). Consider a table with 𝑁 rows containing 𝐷 distinct
tuples. Suppose we draw a sample of 𝑛 rows uniformly at random without replace-
ment, and let 𝑑 denote the observed number of distinct tuples in this sample. Then,
the following inequality holds

𝔼(𝑑) ≥ 𝐷 − 𝐷 ⋅ (1 −
1
𝑁
)
𝑛
.

Proof. Here, we first observe that

𝔼(𝑑) =
𝐷
∑
𝑘=1

1 − 𝑃(𝑛𝑘 = 0)

= 𝐷 −
𝐷
∑
𝑘=1

(𝑁−𝑁𝑘
𝑛)

(𝑁𝑛)

= 𝐷 −
𝐷
∑
𝑘=1

(𝑁 − 𝑁𝑘)!
(𝑁 − 𝑁𝑘 − 𝑛)!

⋅
(𝑁 − 𝑛)!

𝑁 !
⋅
𝑛!
𝑛!

= 𝐷 −
𝐷
∑
𝑘=1

𝑁 − 𝑁𝑘
𝑁

⋅ ⋯ ⋅
𝑁 − 𝑁𝑘 − (𝑛 − 1)

𝑁 − (𝑛 − 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 terms

. (A.30)

Due to

0 <
𝑁 − 𝑁𝑘 − 𝑖

𝑁 − 𝑖
≤

𝑁 − 𝑁𝑘
𝑁

< 1 (A.31)

244 APPENDIX A. PROOFS FOR CHAPTER 6

for all 𝑖 ∈ ℕ, we obtain

𝔼(𝑑) ≥ 𝐷 −
𝐷
∑
𝑘=1

(
𝑁 − 𝑁𝑘

𝑁
)
𝑛
, (A.32)

and finally

𝔼(𝑑) ≥ 𝐷 −
𝐷
∑
𝑘=1

(
𝑁 − 1
𝑁

)
𝑛
, (A.33)

since 𝑁𝑘 ≥ 1 by definition. The proposition follows.

APPENDIX B
Proofs for Chapter 7

In the following appendix, we provide proofs of the theorems presented in
Chapter 7.

Theorem 7.2 (revisited). The build phase of the proposed approach shown in
Algorithm 7.2 has time and space complexity in 𝑂(𝑛 ⋅ ∑𝐸𝑗∈ℰ

|𝑅𝑗|).

Proof. As outlined in Section 7.2.2, the same operations are performed for each
input relation 𝑅𝑗 during the build phase, hence we focus on a given 𝑅𝑗 in the
following. The initial materialization of 𝑅𝑗 in a linked list clearly requires time
and space proportional to |𝑅𝑗|. Moving on to Algorithm 7.2, we note that each
tuple in the input linked list 𝐿 is moved to exactly one of the linked lists that
are processed recursively. That is, no additional space is required for tuple
storage, and the overall set of tuples that is processed in each recursive step of
Algorithm 7.2 is some partition of 𝑅𝑗. As there are at most 𝑛 join attributes in a
relation, we obtain a total time and space complexity of 𝑂(𝑛 ⋅ |𝑅𝑗|) for the build
phase of a single relation 𝑅𝑗. The proposition follows.

Theorem 7.3 (revisited). Consider the query hypergraph𝐻𝑄 = (𝑉 , ℰ) describing
the natural join query 𝑄 = 𝑅1 B ⋯ B 𝑅𝑚. Let x = (𝑥1, … , 𝑥𝑚) be an arbitrary
fractional edge cover of 𝐻𝑄, and let ℐ = {𝐼1, … , 𝐼𝑚} be iterators pointing to the root
nodes of hash tries on the relations 𝑅𝑗. Then the time complexity of Algorithm 7.3

is in 𝑂 (𝑛𝑚∏𝐸𝑗∈ℰ
|𝐻 (𝐼𝑗)|

𝑥𝑗) and its space complexity is in 𝑂(𝑛𝑚).

Proof. We begin by proving the time complexity of Algorithm 7.3 by induction
over its recursive steps 𝑖. Our approach is based on the assumption that good
hash functions are used, in the sense that collisions occur only very rarely. As

246 APPENDIX B. PROOFS FOR CHAPTER 7

we impose set semantics for the purposes of this proof, we can formalize this
assumption as

|𝐻 (𝐼𝑗)| ∈ Θ(|𝑅(𝐼𝑗)|) (B.1)

for any hash trie iterator 𝐼𝑗. This formalization encompasses the intuitive for-
mulation that hash collisions occur with a fixed small probability.

In the base case 𝑖 = 𝑛 + 1 all hash trie iterators point to leaf nodes, i.e. by
construction |𝐻 (𝐼𝑗)| = 1 for all iterators 𝐼𝑗 ∈ ℐ. Under Assumption B.1, this yields
|𝑅(𝐼𝑗)| ∈ 𝑂(1) and thus the cross product of the 𝑅(𝐼𝑗) enumerated in lines 17–19
contains 𝑂(1) elements. Actually constructing the candidate result tuple t and
checking the join condition on t can then easily be done in 𝑂(𝑛𝑚) which yields
an overall runtime of 𝑂(𝑛𝑚) = 𝑂(𝑛𝑚∏𝐸𝑗∈ℰ

|𝐻 (𝐼𝑗)|
𝑥𝑗) for the base case.

In the inductive case 1 ≤ 𝑖 ≤ 𝑛 we will apply Lemma 7.1 to the sets 𝐻(𝐼𝑗). As
outlined above, the loop in lines 6–15 iterates over the elements in

𝐿 ∶= ⋂
𝐼𝑗∈ℐ𝑗𝑜𝑖𝑛

𝜋𝑣𝑖(𝐻(𝐼𝑗))

= ⋂
𝐸𝑗∈ℰ𝑈

𝜋𝑈(𝐻(𝐼𝑗))

= B𝐸𝑗∈ℰ𝑈
𝜋𝑈(𝐻(𝐼𝑗)) (B.2)

for 𝑈 = {𝑣𝑖}. By construction this set intersection is computed in time propor-
tional to size(𝐼𝑠𝑐𝑎𝑛) (cf. line 5), i.e. proportional to

|ℰ𝑈| min
𝐸𝑗∈ℰ𝑈

|𝜋𝑈(𝐻(𝐼𝑗))| ≤ 𝑚 (min
𝐸𝑗∈ℰ𝑈

|𝐻 (𝐼𝑗)|)
∑𝐸𝑗∈ℰ

𝑥𝑗

= 𝑚 ∏
𝐸𝑗∈ℰ

(min
𝐸𝑗∈ℰ𝑈

|𝐻 (𝐼𝑗)|)
𝑥𝑗

≤ 𝑚 ∏
𝐸𝑗∈ℰ

|𝐻 (𝐼𝑗)|
𝑥𝑗 (B.3)

since |𝐻 (𝐼𝑗)| ≥ 1 and 𝑥𝑗 > 0.
If a given iteration of the loop is not skipped in line 8, each iterator in ℐ𝑗𝑜𝑖𝑛

points to the bucket containing a specific hash value 𝑘𝑖 ∈ 𝐿. In the following,
we will view these hash values as tuples t with the single attribute 𝑣𝑖. After
invoking down on these iterators in lines 10–11, we have thus restricted the set
of hashed join keys 𝐻(𝐼𝑗) associated with these iterators to

𝜎𝑣𝑖=𝑘𝑖(𝐻(𝐼𝑗)) = 𝐻(𝐼𝑗) N t. (B.4)

APPENDIX B. PROOFS FOR CHAPTER 7 247

Applying the inductive hypothesis then yields that the runtime of the recur-
sive call in line 12 is proportional to

𝑛𝑚 ∏
𝐸𝑗∈ℰ𝑈

|𝐻 (𝐼𝑗) N t|𝑥𝑗 ∏
𝐸𝑗∈ℰ⧵ℰ𝑈

|𝐻 (𝐼𝑗)|
𝑥𝑗 . (B.5)

Let 𝑊 ∶= 𝑉 ⧵ 𝑈 = 𝑉 ⧵ {𝑣𝑖}, and note that hyperedges 𝐸𝑗 ∈ ℰ𝑈 ⧵ ℰ𝑊 contain only
the join key 𝑣𝑖. Thus, |𝐻𝑗 N t| = 1 for 𝐸𝑗 ∈ ℰ𝑈 ⧵ ℰ𝑊. Moreover, one can easily
verify that ℰ ⧵ ℰ𝑈 = ℰ𝑊 ⧵ ℰ𝑈 since there are no empty hyperedges 𝐸𝑗. Thus,
the runtime of the recursive call shown in (B.5) is equivalent to

𝑛𝑚 ∏
𝐸𝑗∈ℰ𝑊∩ℰ𝑈

|𝐻 (𝐼𝑗) N t|𝑥𝑗 ∏
𝐸𝑗∈ℰ𝑊⧵ℰ𝑈

|𝐻 (𝐼𝑗)|
𝑥𝑗 . (B.6)

Moreover, the loops invoking down and up on the iterators in lines 10–11
and 13–14 each have runtime in 𝑂(𝑚). In conjunction with (B.6), this allows us
to state the overall runtime of the loop in lines 6–15 as proportional to

∑
t∈𝐿

(2𝑚 + 𝑛𝑚 ∏
𝐸𝑗∈ℰ𝑊∩ℰ𝑈

|𝐻 (𝐼𝑗) N t|𝑥𝑗 ∏
𝐸𝑗∈ℰ𝑊⧵ℰ𝑈

|𝐻 (𝐼𝑗)|
𝑥𝑗)

which is clearly bounded by

3𝑛𝑚∑
t∈𝐿

(∏
𝐸𝑗∈ℰ𝑊∩ℰ𝑈

|𝐻 (𝐼𝑗) N t|𝑥𝑗 ∏
𝐸𝑗∈ℰ𝑊⧵ℰ𝑈

|𝐻 (𝐼𝑗)|
𝑥𝑗) . (B.7)

Hence, the prerequisites for Lemma 7.1 are satisfied by (B.2) and (B.7), and we
conclude that the runtime of this loop is in𝑂(𝑛𝑚∏𝐸𝑗∈ℰ

|𝐻 (𝐼𝑗)|
𝑥𝑗). In combination

with (B.3) this yields the desired time complexity for Algorithm 7.3.
Finally, we observe that the hash trie iterators and interface functions re-

quired by Algorithm 7.3 can easily be implemented using 𝑂(𝑛𝑚) additional space,
as each iterator only needs to store the path to the current bucket.

	Acknowledgments
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Memory-Optimized Disk-Based Systems
	Design Challenges
	The Umbra System

	Contributions

	Low-Overhead Buffer Management
	Buffer Manager Architecture
	Buffer Pool Memory Management
	Pointer Swizzling
	Page Latching
	Page Replacement
	Implementation Details

	Query Compilation
	Modular Execution Engine
	String Handling

	Experiments
	Setup
	Results

	Related Work
	Summary

	Scalable Decentralized Logging
	Background
	ARIES
	Decentralized Logging

	Scalable Decentralized Logging
	Logging Protocol
	Transaction Commit
	Transaction Abort
	Recovery
	System Transactions
	Checkpointing

	Implementation Details
	Ringbuffer Implementation
	Log Record Lifecycle
	Oversize Log Records
	Log Writer Implementation

	Experiments
	Setup
	Results

	Related Work
	Summary

	Database Tables and Indexes
	Fundamental B+-Tree Design
	Page Headers
	Traversal Algorithm
	Logical Modifications
	Structural Modifications
	Maintenance
	Partitioning

	Tables
	Page Layout
	Scans & Point Lookups
	Insert
	Delete & Update

	Indexes
	Page Layout
	Lookup
	Insert & Delete
	Constraint Checking

	Auxiliary Data Structures
	Root Page Directory
	Free Page Inventory

	Experiments
	Setup
	System Comparison
	Scalability Beyond Main Memory

	Related Work
	Summary

	Memory-Optimized Multi-Version Concurrency Control
	Foundations
	In-Memory Version Maintenance
	Version Maintenance
	Garbage Collection
	Recovery
	Implementation Details

	Out-of-Memory Version Maintenance
	Versioning Protocol
	Synchronization
	Detecting Bulk Operations
	Garbage Collection

	Further Considerations
	Scalability to Multi-Socket Systems
	Serializability Validation

	Experiments
	Setup
	System Comparison
	Detailed Evaluation

	Related Work
	Summary

	Accurate Group-By Result Estimates
	Sketching Individual Columns
	Traditional HyperLogLog Sketches
	Updateable HyperLogLog Sketches

	Multi-Column Estimates
	Background
	Improved Estimation Bounds
	Sketch-Corrected Estimators

	Computing Frequencies
	Experiments
	Counting HyperLogLog Sketches
	Multi-Column Estimators
	Frequency Vector Computation

	Related Work
	Summary

	Adopting Worst-Case Optimal Joins
	Background
	Worst-Case Optimal Join Algorithms
	Implementation Challenges

	Multi-Way Hash Trie Joins
	Outline
	Join Algorithm Description
	Implementation Details
	Further Considerations

	Optimizing Hybrid Query Plans
	Experiments
	Setup
	End-To-End Benchmarks
	Detailed Evaluation
	Microbenchmarks

	Related Work
	Summary

	Conclusions and Future Work
	Bibliography
	Proofs for Chapter 6
	Proofs for Chapter 7

