
1

RT-DLO: Real-Time Deformable Linear Objects
Instance Segmentation

Alessio Caporali, Kevin Galassi, Bare Luka Žagar, Riccardo Zanella, Gianluca Palli and Alois C Knoll

Abstract—Deformable Linear Objects (DLOs) such as cables,
wires, ropes, and elastic tubes are numerously present both
in domestic and industrial environments. Unfortunately, robotic
systems handling DLOs are rare and have limited capabilities
due to the challenging nature of perceiving them. Hence, we
propose a novel approach named RT-DLO for real-time instance
segmentation of DLOs. First, the DLOs are semantically seg-
mented from the background. Afterward, a novel method to
separate the DLO instances is applied. It employs the generation
of a graph representation of the scene given the semantic mask
where the graph nodes are sampled from the DLOs center-
lines whereas the graph edges are selected based on topological
reasoning. RT-DLO is experimentally evaluated against both
DLO-specific and general-purpose instance segmentation deep
learning approaches, achieving overall better performances in
terms of accuracy and inference time.

Index Terms—Deformable Linear Objects, DLO, Instance
Segmentation, Industrial Manufacturing, Computer Vision

I. INTRODUCTION

Deformable Linear Objects (DLOs) belong to the generic
class of deformable objects and consist of wires, cables,
strings, ropes, and elastic tubes, as the main relevant examples
according to [1]. Although vastly present in every domestic
and industrial environment, DLOs still represent a problematic
task for automated robotic systems, both at perception and
manipulation levels [1]. From the perception side, this is
a result of the lack of any specific shape, color, texture,
or feature making them easily distinguishable with respect
to other objects. In addition, DLOs are characterized by
small dimensions in terms of diameters, posing an additional
challenge concerning their 3 Dimensional (3D) perception
capabilities with most sensors [2]. From the manipulation side,
the DLOs intrinsic deformability results in a high-dimensional
state space with complex and nonlinear dynamics. Thus,
modeling and predicting their behavior during a manipulation
task is challenging [3], [4].

The problem of DLOs segmentation is usually addressed
in simple settings, like color threshold with a single DLO

Alessio Caporali, Kevin Galassi, Riccardo Zanella and Gianluca Palli are
with DEI - Department of Electrical, Electronic and Information Engineering,
University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

Bare Luka Žagar and Alois C. Knoll are with the Chair of Robotics, Ar-
tificial Intelligence and Real-Time Systems, Technical University of Munich,
85748 München, Germany.

This work was supported by the European Commission’s Horizon 2020
Framework Programme with the project REMODEL - Robotic technologies
for the manipulation of complex deformable linear objects - under grant
agreement No 870133.

Corresponding author: alessio.caporali2@unibo.it

20 30 40 50 60 70 80
Accuracy [IoU %]

0

5

10

15

20

25

30

35

40

FP
S

real− time
RT-DLO

Re−net-101

Resnet-50

FASTDLO

Ariadne+

YOLACT
YOLACT++

BlendMask

CondInst
+29 FPS

+10 FPS

FPS vs Accuracy

DLO-specific general-purpose

Fig. 1: FPS vs accuracy of RT-DLO versus baselines methods.

instance [5] or markers [6]. In the last years, several DLO-
specific approaches tried to address the instance segmen-
tation problem more steadily, e.g. [7]–[9] with remarkable
improvements at the introduction of every novel approach.
Although the very recent method named FASTDLO [9] reaches
good accuracy results with reasonable computation time, i.e.
above 20 FPS (Frames Per Second), it is still far from being
real-time capable. From the domain of general-purpose Deep
Convolutional Neural Networks (DCNN) tackling the instance
segmentation task, there exist several approaches real-time
capable, e.g. YOLACT [10] and YOLACT++ [11], however
applying these methods directly to DLO-like objects usually
does not guarantee satisfactory accuracy results [9].

To mitigate the aforementioned drawbacks and challenges,
we propose an algorithm real-time capable and highly accurate
for instance segmentation of DLOs, dubbed RT-DLO (Real-
Time Instance Segmentation of Deformable Linear Objects).
In Fig. 1 the plot of FPS vs accuracy shows how RT-DLO
stands against the competition, being the fastest DLO-specific
approach and the most accurate overall on the test-set of [9].

RT-DLO does not require any assumption about the back-
ground and the number of DLOs present in the scene. As
input, it acquires the RGB image and provides as output a
pixel-mapped colored mask where each DLO is represented
by a unique color identifying its ID. In addition, being
the DLO instances modeled as a sequence of key-points, a
representation of the scene with spline curves can be easily
obtained, e.g. for manipulation tasks employing a state-space
representation different from the image space [3].

First, as a pre-processing step, the input RGB image is
propagated through a DCNN trained on synthetically gener-
ated data aiming at segmenting the background, i.e. pixels

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

not representing a DLO, and providing as output a binary
mask. Then, a graph representation of the scene is constructed
by efficiently sampling the vertices from the segmentation
mask. The edges connecting the graph’s vertices are instead
computed by reasoning about the topology expressed by the
mask, with an approach that considers both the proximity
and orientations constraints among the vertices. Ideally, only
a maximum of two edges per vertex should be sampled. In
the case of intersections of DLOs resulting in the presence of
high-degree vertices in the graph, sub-graphs around the target
vertices are extracted and further processed to disentangle the
DLOs in the graph. Finally, the single DLOs are extracted
from the graph based on an analysis of its connectivity. RT-
DLO achieves a processing rate higher than 30 FPS with an
input image of 640 × 360 pixels. To summarize, the main
contributions of this paper are:

1) First instance segmentation approach concerning DLOs
able to reach a processing rate higher than 30 FPS, i.e.
real-time capable.

2) Robust graph-based enhanced representation of the DLOs
configuration in the scene given the segmentation mask.

3) Improved overall performance compared to several base-
lines, i.e. +2.9% IoU with +7 FPS compared to [9] and
+3.4% IoU with +32 FPS compared to [8].

The source code implementing RT-DLO and the associated
data is available at https://github.com/lar-unibo/RT-DLO.

II. RELATED WORKS

A. Real-Time Instance Segmentation

The instance segmentation task consists in predicting
objects-wise segmentation masks. Remarkable results in this
challenging task were achieved by Mask R-CNN [12] with its
detect-and-segment approach. However, due to this two-phase
method, Mask R-CNN is not real-time. Recent approaches
for instance segmentation of general objects are [10], [11],
[13]–[15]. Among those, only [10], [11], [15] are capable of
real-time performances. However, their applicability to DLOs
requires attention due to the challenges highlighted in Sec. I.
Also considering the dataset supply problem, satisfactory re-
sults were obtained only concerning the semantic segmentation
task [16] and not for the instance segmentation one. Indeed,
the performances of these methods are affected by the DLO
instances lacking distinctive embeddings. On the contrary, due
to the high-level abstraction by using a graph representation
of the DLOs, RT-DLO can achieve better performances and
robustness.

B. Segmentation of DLOs

The limited adoption of automatic or robotic solutions in the
manufacturing and assembly tasks having to deal with DLOs
has made the perception of such objects an important research
topic of the last decade. In the past, simplifying assumptions
were usually made, e.g. knowledge of the background [3], [5],
[17], number of DLOs in the scene [5], markers [6].

Specific to DLOs, the first approach tackling complex
backgrounds is represented by Ariadne [7] which employs

a Convolutional Neural Network (CNN) for DLO endpoints
detection and a walking algorithm along the superpixels orig-
inated from the image. Ariadne+ [8] improves Ariadne in
accuracy by employing a DCNN for the background semantic
segmentation, removing the need for endpoint detection and
thus also significantly speeding up the processing time. In
Ariadne+, a graph representation of the scene is obtained by
exploiting a superpixel-based approach where the graph nodes
are selected based on the superpixels centroids and the edges
based on superpixels contours overlapping.

Recently, FASTDLO [9] was introduced employing a
skeleton-based approach on the segmentation mask and a
similarity network for the correct interconnection of DLOs
segments. FASTDLO is currently the state-of-the-art approach
for instance segmentation of DLOs, achieving an inference
time of more than 20 FPS.

RT-DLO employs an efficient and informative graph repre-
sentation of the scene as opposed to the skeleton originated
segments-based approach of FASTDLO and superpixel-based
one of Ariadne+, resulting in faster processing times and im-
proved accuracy, especially at the DLOs intersection. Indeed,
RT-DLO can handle degraded masks more effectively since
the continuity of the segmentation mask foreground along a
DLO is not required.

III. METHOD

The idea exploited in RT-DLO is to model the current
configuration of the DLOs present in the image with a graph
structure G = (V, E) and then to extract the DLO instances
from the obtained graph. The approach, schematized in Fig. 2,
can be subdivided into six main steps:
A) Mask Generation: obtaining a binary mask Mb from the

input color image via a DCNN;
B) Vertices Sampling: processing Mb, with vertices orien-

tation characterization employing a CNN;
C) Edges Sampling: exploiting the proximity among the

vertices and the orientation between vertices and edges;
D) Intersections Processing: disentangling the DLOs in the

graph representation via sub-graphs analysis;
E) DLOs Instances Extraction: computing pixel-wise

DLOs instances masks in the image plane;
F) Intersections Layout: assessing the correct instances

locally at the intersections.
In the remainder of this section, the procedures for ob-

taining the graph representation and extracting coherently
DLOs instances from it are presented. First, the binary mask
Mb generation is discussed in Sec. III-A. Then, concerning
the graph formation process, the vertices are examined in
Sec. III-B while the edges are in Sec. III-C. Thereafter, the
algorithm employed for processing problematic regions of the
graph is provided in Sec. III-D. Finally, the extraction of the
DLO instances, given the graph representation, is presented in
Sec. III-E while the approach for analyzing their layout is in
Sec. III-F.

A. Mask Generation
The mask generation step can be considered a pre-

processing phase of RT-DLO since the graph representation

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

input image

binary mask

intersections
layout

instances mask

CNN
Angle

vertices orientations

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

graph
generation

vertices sampling

edges sampling

sub-
graphs

processing

DLOs
instances
extraction

key-points

19

40

8

27

17

25

34

39

rgb values

Fig. 2: Schematic representation of the RT-DLO algorithm.

of the DLOs is obtained employing only the binary mask Mb

of the scene and not the RGB image. In this paper we assume
to use a DCNN, specifically DeepLabV3+ [18], trained on
synthetically generated data [9]. This choice is convenient
since 1) good performances are shown in [9] concerning
the semantic segmentation capabilities of this method; 2)
a simplification on the comparison of RT-DLO against the
baseline methods is achieved. Therefore, a binary mask Mb

is obtained by setting the pixels predicted to belong to a DLO
to 1 and the remaining ones to 0.

It is worth mentioning that RT-DLO is independent of the
method used to obtain the semantic segmentation mask. Dif-
ferent approaches can be employed depending on application
requirements.

B. Vertices

First, vertices of the graph G are cleverly sampled from
the binary mask Mb and then characterized in terms of local
orientation by a CNN.

1) Vertices sampling: The set V = {vi}ni=1 contains the
n vertices of the graph efficiently sampled from the binary
mask Mb. First, the distance transform operator is executed
on Mb obtaining Mdist. This operator computes the euclidean
distances between the non-zero values of Mb and the nearest
boundaries (zero/black values) [19], thus assigning an intensity
value to each pixel based on the computed distance. In Fig. 3b,
Mdist originated from Mb (Fig 3a) is shown where Mdist is
color-mapped on the grayscale level from dark (zero distance)
to bright (maximum distance).

Then, Mdist is dilated with a small square kernel (i.e. 3×3).
The dilation operation is a maximum locating morphology
operation. Indeed, as the kernel is convolved over the target
image, the maximal pixel value overlapped by the kernel is
computed and the corresponding image pixel at the anchor
position is replaced. Dilation is usually applied on binary
masks to enlarge the foreground (white) portion. Instead, in
this paper, the dilation operation is applied to the mask Mdist
which contains intensities values, i.e. Mdist is not binary,
obtaining Mdil. The local maximums of Mdist are retrieved
by comparing pixel-wise Mdist and Mdil masked using Mb, as
follows:

Mmax(i, j) =

1 if Mdil(i, j) = Mdist(i, j) and
Mb(i, j) = 1

0 otherwise

(a) Mb (b) Mdist

(c) Mmax (d) vertices

Fig. 3: Vertices sampling key elements: the mask Mb (a), Mdist
(b) and Mmax (c), the obtained vertices (d). The bright regions
in (b) denote high intensity values.

Indeed, if the value of pixel (i, j) in Mdist and Mdil is the
same, this means that the considered pixel is a local maximum.
By assigning the pixel value of 1 to the maximums and 0 to
the rest of the pixels, a new mask is obtained, denoted with
Mmax, and illustrated in Fig 3c. It is worth mentioning that, by
construction, Mmax approximates the center lines of the DLOs
in the mask.

The set of maximum pixels of Mmax, i.e. pixels whose
value is equal to 1, is denoted as Vmax. The cardinality of
Vmax is relatively large and not really tractable in case real-
time applications are sought. Thus, the farthest point sampling
(fps) algorithm [20] is employed for down-sampling Vmax. A
sampling ratio of α ∈ [0, 1] is used to specify the amount
of down-sampling. The set of vertices V of the graph G is
obtained as αVmax. In Fig. 3d the vertices extracted from the
sample mask of Fig. 3a with α = 0.15 are depicted.

2) Vertices Orientations: In the context of linear objects
and linear shapes representation, for each given vertex of the
graph, an orientation characterization can be performed. The
objective is to describe locally the section of the linear object
in the vicinity of the vertex as an orientation attribute of the
vertex itself. Thus, the local orientation θ of a given vertex
at pixel coordinates (x, y) is derived from a local patch of
size δ × δ pixels, centered at (x, y) and with intensity values
extracted from the distance transform image Mdist.

A CNN is used to estimate an angular value from a given
patch. Predicting an angular value via a learning-based method

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

can become quite a complex task due to the periodicity of the
angular data resulting in inaccurate distance representations
when computing the loss function. Indeed, an angle of 2◦ de-
scribes an orientation quite close both to 5◦ and 179◦, although
the corresponding loss values when applying common losses,
e.g. L1-loss or MSE-loss, are quite different. An approach
pioneered in [21] is thus employed to address the angular
periodicity and ambiguity in the loss computation. A given
angular value θ in the range [0◦, 180◦] is encoded as a 180-
dimensional vector with entries defined by applying a Gaus-
sian function centered at θ and with variance σ. In this way,
the angle θ is propagated smoothly in its proximity enabling
benefits during the loss computation. The network structure
is composed of two convolutional layers followed by a fully
connected linear layer. Each convolution layer comprises a
2D convolution followed by batch normalization. Between the
two layers, a max-pooling operation takes place. After the
convolution layers, the embedded data are flattened and the
fully connected layer is used as an output to classify the patch
in the 180-dimensional vector. Binary cross entropy is used as
loss function during the training stages, effectively shaping the
learning task as a classification problem of the angular value
in one of the 180 available classes. Consequently, the actual
predicted angle is easily obtained from the 180-dimensional
vector as the index of the vector associated to the maximum
probability. This angular value characterizes the orientation of
the vertex associated to the processed patch.

C. Edges

The set E = {ej}mj=1 contains the m edges of the graph.
Identifying the correct edges to be inserted in the graph is
a complex task. Indeed, the connections between the vertices
should consider both their relative proximity as well as orienta-
tion constraints, the latter in the form of vertex orientation and
edge orientation. The vertices orientations were described in
Sec. III-B2. For convenience, a matrix E ∈ Rm×2 describing
the edge set E as organized tuples is introduced.

The relative proximity between vertices is exploited to
obtain an initial candidate set of edges, denoted as Eknn =
{ej}mknn

j=1 . That is, for each vertex, the Knn nearest neighbors
in V are retrieved as edges. The value of Knn is a user-defined
parameter and it follows that mknn = n×Knn if we consider
the edges as directed. In addition, Eknn ∈ Rmknn×2 is the
matrix description of Eknn. The Knn nearest neighbor case with
Knn = 8 for a sample vertex is depicted in Fig. 4a.

1) Vertex-Vertex Similarity: The orientation constraints be-
tween two general vertices v1 and v2 are evaluated by as-
signing a score to their connection by means of the cosine
similarity defined as

s(d1
v,d

2
v) =

d1
v
T
d2
v

∥d1
v∥∥d2

v∥
(1)

In particular d1
v is obtained as [cos(θ1), sin(θ1)]

⊤, where θ1
is the orientation of v1 obtained from Sec. III-B2. For d2

v the
derivation is similar. In eq. 1, at the denominator is denoted
the product of the norms. The cosine similarity is then used
to score the orientations between two vertices pair.

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(c) graph generated

19

40

8

27

17

25

34

30
47

(a) Knn edges

19

40

8

27

17

25

34

30
47

(b) pos/neg edges

19

40

8

27

17

25

34

39

(e) subgraph
processing

19

40

8

27

17

25

34

39

30
47

(d) intersection
subgraph

Fig. 4: Edges processing main elements: (a) Knn edges to
obtain initial candidate edge set; (b) positive/negative edges
illustration; (c) graph generated; (d) intersection subgraph
extracted; (e) subgraph processing schema.

For efficiency reasons, the cosine similarity is evaluated by
means of matrix operations. Given the matrix Dv ∈ Rn×2 of
vertices orientations in the form of direction vectors obtained
from the predicted angles, i.e. for vertex i we have di

v/
∥∥di

v

∥∥,
the cosine similarity between each pair of vertices of the set
V can be obtained as

Sv,v = |DvD
T
v | (2)

being Sv,v ∈ Rn×n and | · | denoting the absolute value.
2) Vertex-Edge Similarity: Similarly to the vertex-vertex

case, the matrix De ∈ Rmknn×2 of edges orientations can
be defined. It contains the direction vectors obtained by
subtracting the coordinates of the associated vertices followed
by a normalization by their distance. The cosine similarity
between each vertex of V and each edge of Eknn is obtained
as:

Sv,e = DvD
T
e (3)

with Sv,e ∈ Rn×mknn being the obtained similarity matrix
between vertices and edges.

3) Combining Sv,v and Sv,e: At the current stage, because
of the dimensions mismatch, it is not possible to combine Sv,v

(eq. 2) and Sv,e (eq. 3). Thus, an augmented similarity vertices
score matrix S̄v,v ∈ Rn×mknn is introduced. This matrix is
obtained by mapping the values of Sv,v in a column vector
employing the entries of Eknn as row-column pairs to access
Sv,v . Then, a matrix is constructed by repeating the column
vector n times along the rows. Notice that this is a valid
operation since Sv,v is a symmetric matrix. The complete
similarity score matrix is obtained as:

S = Sv,e ⊙ S̄v,v ⊙B (4)

where B ∈ Rn×mknn is the oriented incidence matrix and ⊙
the Hadamard product. The matrix B is used to inject into
the scores the knowledge of the edge existence (entries 0) and
direction (entries ±1). i.e. source vertex to target vertex. This
information is very helpful since it allows the discrimination of

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

the edge set based on the sign of their similarity score, i.e. the
entries of S. An illustration of the two possible situations that
can occur is provided in Fig 4b. The cosine similarity between
the sample vertex 30 and its Knn neighbors can provide both
positive values, in case the edge direction vectors and the
vertex orientation vector of 30 are both in the green region,
or negative values if instead they lay in the red region.

Based on the scores contained in the similarity matrix S, a
positive and a negative edge for each vertex of V is sought,
being the characterization of an edge as positive or negative
related to the sign of the associated score in S. Notice that
it may happen that a positive or negative edge for a given
vertex does not exist, e.g. in presence of a vertex describing
the terminal region of a DLO. In Secs III-C4 and III-C5 the
calculus to extract the positive and negative edges from the
similarity matrix S of eq. 4 are provided.

4) Positive Edges: Let’s define B+ ∈ Rn×m as the positive
incidence matrix where the entries −1 of B are set to zero,
i.e. B+ contains values of the set {0,+1}. Let’s also define a
row vector d ∈ R1×mknn containing the lengths of the edges. A
matrix D ∈ Rn×mknn can be created stacking n times d along
the rows. Thus, the entries of D can be filtered out based
on B+ as D+ = D ⊙ B+. Then, a generic entry (i, j) of
S is weighted based on the associated edge length as wij

+ =

1 − dij
+−min(di

+)

max(di
+)

. The vector di
+ denotes the i-th row of D+.

The matrix containing all the computed weights is denoted as
W+ ∈ Rn×mknn . The presence of B+ makes W+ sparse since
only the entries associated to an entry +1 in B+ will have
a weight different from zero. It follows that S+ = S ⊙W+,
where S+ is the similarity matrix associated to the positive
incidence matrix. Finally, an edge, if it exists, is selected for
each row of S+ as the edge associated to the maximum entry
of S+ along the considered row. Thus, considering the generic
vertex i, i.e. row i of S+, its positive edge ei+ is obtained as
ei+ = {Eknn}j∗ , with j∗ = argmax(si+), sij

∗

+ > µ, where
with si+ we denote the i-th row of S+, with {Eknn}j∗ ∈ R1×2

the column vector at index j∗ containing the indices of the
source and target vertices and with µ a small threshold to
avoid selecting edges with a very low similarity score.

5) Negative Edges: Following a similar discussion to the
one of Sec. III-C4, let’s define B− ∈ Rn×m as the negative
incidence matrix where the entries +1 are set to zero, i.e. B−
contains values {−1, 0}. The entries of D can be filtered out
based on B− as D− = D⊙B−. The weight matrix associated
to D− can be defined as W− ∈ Rn×mknn where only the entries
associated to −1 in B− are different from zero. A generic

entry wij
− of W− is obtained as wij

− = 1 − dij
−−min(di

−)

max(di
−)

. It
follows that S− = S ⊙W−, obtaining S− as the similarity
matrix associated to the negative incidence matrix. Finally, an
edge, if it exists, is selected for each row of S− as the edge
associated to the minimum entry of S− along the considered
row. The generic edge ei− is obtained as ei− = {Eknn}j∗ , with
j∗ = argmin(si−), s

ij∗

− < −µ.
6) Edge Set: The edges obtained from Secs. III-C4 and

III-C5 are combined into a single edge set denoted as E with
which the graph G is generated (Fig. 4c).

Algorithm 1: Intersections Processing
Input: G = (V, E)
Output: G′

1 Vint ← {v ∈ V : deg(v) > 2}
2 N̄ ← ∅
3 foreach v ∈ Vint do
4 N ← neighbors(v)
5 N̄ ← N̄ ∪ N
6 N̄ ← merge overlapping(N̄)
7 Enew ← ∅
8 foreach N ∈ N̄ do
9 kconn = |N | div 2

10 C ← combinations(N , 2)
11 Z ← edge solver(C)
12 Z ← sorted(Z, ”descending”)
13 Vdone ← ∅, c← 0
14 while c ≤ kconn do
15 foreach (vi, vj , sij) ∈ Z do
16 if vi /∈ Vdone and vj /∈ Vdone then
17 Enew ← Enew ∪ (vi, vj)
18 Vdone ← Vdone ∪ {vi, vj}
19 c← c+ 1

D. Intersections Processing

Although the graph G should contain vertices having a
degree, i.e. number of neighbors, of only 1 or 2, depending
on if the considered vertex is an endpoint, vertices having a
higher degree, i.e. 3 or more, are still possible. This happens if
the considered vertex is placed at the intersection area between
multiple DLOs resulting in several ambiguous edge connec-
tions, e.g. Fig. 4d. To address this problem, Alg. 1 is employed:
it detects the problematic vertices, extracts subgraphs around
each of them, and by employing the cosine similarity approach
it finds the correct edges.

With more details, Alg. 1 takes as input the graph G just
created and provides as output the updated graph G′ where the
ambiguous vertices are removed and their edges redistributed
correctly in their local subgraphs. First, the ambiguous vertices
are detected as those vertices with a degree larger than 2 and
collected in Vint, line 1. Then, for each v in Vint, the neighbor
vertices are collected (lines 2 to 5). In case one or more
vertices of one set of neighbors overlaps with another one,
those sets are merged (line 6) grouping all vertices and treating
the problematic area as the composition of the original ones.
Each set N of N̄ defines a subgraph around the problematic
area. For each subgraph defined by the vertices in N , the
number of connections (edges) to establish is determined by
kconn as the integer division between the cardinality of N and
2 (line 9). The combinations of 2 elements of the vertices
contained in N are collected in the set C (line 10). These
tuples of elements can be considered as edge candidates for
the subgraph. For instance, in Fig. 4e, the candidate edges
of the subgraph under analysis are depicted in red (wrong)
and green (valid). Thus, an edge solver (line 11) is employed

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

to assign a score to each of those. In particular, given two
sample vertices, i.e. v1 and v2, which connection should be
scored, the direction of the edge connecting them is computed
as d1,2

e = v1 − v2. Then, the connection cosine similarity
score, similarly to eq. (1), is evaluated as

sint(d
1
v,d

2
v,d

1,2
e) =

∣∣s(d1
v,d

1,2
e) s(d2

v,d
1,2
e)

∣∣
where with d1

v and d2
v the vertices orientations are denoted.

Notice that the absolute value of the similarity is employed
since we are not interested in its sign, but only in its mag-
nitude. Each (vi, vj) of C is therefore augmented by the
computed score sij as (vi, vj , sij) and collected by the set Z
which is then sorted based on the score values in descending
order (line 12). Finally, an interactive procedure takes place
to loop through the elements of Z and collect the kconn new
edges into Enew as those defined by vertices not being already
assigned to other edges (lines 13 to 19). The sample subgraph
analyzed through this paper is solved obtaining the final graph
depicted in Fig. 6a.

E. DLOs Instances Extraction

The single instances of the DLOs present in the scene
are retrieved considering the connectivity of the graph, i.e.
each DLO is represented as an isolated sub-graph from the
initial global graph. For each subgraph, the path from one
endpoint (vertex with degree 1) to the other is extracted. A
path Pt can be denoted as an ordered sequence of vertices
as Pt = {vt1, vt2, . . . vttn}. The extracted path denotes the se-
quence of key-points describing the DLO instance. From these
key-points, a spline curve can be fitted to better approximate
the DLO shape and then an estimate of the DLO thickness can
be obtained from the distance transform mask Mdist. Thus, a
colored mask Mc can be drawn as shown in Fig. 6.

In some cases, it can happen that two or more DLO
instances are effectively denoted by a single path. This situa-
tion can occur in case, for instance, the intersection between
two DLOs happens along the border of the image. RT-
DLO, employing only the mask image, tries to solve this
scene by connecting jointly the two distinct DLOs, see as
an example Fig. 5 showing the obtained DLOs instances
given the source image and mask. To handle this condition,
as a final consistency check along the obtained path, the
cosine similarity is computed between each vertex of the
path and its two neighbors. In particular, given a sample
vertex vti , i ∈ [2, tn − 1] belonging to path Pt. Its two
neighboring vertices are vti−1 and vti+1 while the two edges
directions are di,i−1

e and di,i+1
e . According to eq. (1), the

cosine similarity between di
v and di,i−1

e can be denoted as
si,i−1 = s(di

v,d
i,i−1
e), where di

v describes the orientation of
vertex vti . Similarly, si,i+1 = s(di

v,d
i,i+1
e). If the product

si,i+1 si,i−1 is negative, it means that the path is not smooth
at vertex vti . Thus, the path Pt is detached at vertex vti into
two different paths, see Fig. 5.

F. Intersections Layout

To correctly assign the DLOs IDs in the intersection areas
among two or more DLOs, additional color information is

input binary mask w/o check with check

Fig. 5: DLOs instances extraction with and without consis-
tency check in case of a problematic mask.

0

1

2

3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

49

50

(a) grap final (b) colored mask

Fig. 6: The connectivity graph (a) is processed to extract the
DLOs instances and obtaining the colored mask Mc (b).

required. Indeed, only from the binary mask Mb and the corre-
sponding constructed graph, this information is not achievable.
In this work, we deploy the approach first described in [9]: the
standard deviation of the RGB color along the edge connecting
two vertices in the area of the intersection is used. For a
given intersection, all the involved edges are collected and
the standard deviation of the RGB values along the edges
compared. The edge corresponding to the smallest value is
selected as the one being at the top of the pile. Therefore, the
mask Mc is drawn taking into account this information.

IV. EXPERIMENTAL VALIDATION

The experiments were performed employing a workstation
with an Intel Core i9-9900K CPU clocked at 3.60GHz and
an NVIDIA GeForce GTX 2080 Ti. PyTorch 1.4 is used for
software implementation.

A. Test Dataset and Metrics

To evaluate the RT-DLO performances on real data, a test
set originally deployed in [8] and extended in [9] is used. It
consists of 135 manually labeled real images of electrical wires
with varying diameters and grouped into 3 categories, each
consisting of 45 images defining a specific scenario, labelled
as C1, C2 and C3. Each category is further divided into sub-
classes based on the number of intersections present in the
images, i.e. 1, 2, and 3, with 15 samples each.

As evaluation metric, the Intersection over Union (IoU =
|M∩Mgt|
|M |+|Mgt| , where M is the mask under evaluation and Mgt

is the ground truth) is employed. The mask M corresponds
to the colored mask Mc where each DLO instance is denoted
by a unique color and the IoU score is just the average score
across the instances of the image.

B. Training

The training dataset and the training details for the semantic
segmentation network employed in Sec. III-A are those of [9].
As the threshold for the segmentation mask Mb, the value of
0.3 is used for its binarization based on [9].

Concerning the CNN network of Sec. III-B2, the dataset
was obtained from the synthetic dataset of [9] by randomly

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

(a) losses

20 0 20
angular error [deg]

0.00

0.04

0.08

0.12

er
ro

r d
en

sit
y

Gabor
Net

(b) eval synthetic

20 0 20
angular error [deg]

0.00

0.04

0.08

0.12

er
ro

r d
en

sit
y

Gabor
Net

(c) eval real

Fig. 7: Evaluation of the CNN angular prediction network and
comparison against baseline approach based on Gabor filters.
(a) training and validation losses, (b) evaluation on synthetic
dataset, (c) evaluation on real dataset. The error density is
recovered via a kernel density estimation.

cropping a square patch along the vertices, obtained applying
Sec. III-B, and by using the knowledge of the 2D ground
truth curve to label the orientations. A patch size δ = 15
was used. The convolutional layers have 32 filter channels
as opposed to the 180 neurons for the last linear layer. The
network was trained for 50 epochs, employing a batch size of
32 and a learning rate equal to 5× 10−4. Adam was selected
as optimizer with the final network weights selected based on
the validation loss. In Fig 7a the training and validation loss
curves smooth decay can be observed, validating the choice
of the smooth angle labeling approach.

C. Angle Prediction Evaluation
The network employed to sample the vertices orientations

(Sec. III-B2) is compared to a baseline method and tested both
on a synthetic test set (100 samples like those of Sec. III-A)
and on the real test set. As baseline method, an approach based
on Gabor filters [22] is used. A Gabor filter is a linear filter
usually employed for texture analysis. By properly defining
its main parameters, it is possible to obtain a patch similar
to the one processed by the network. Thus, the baseline
approach consists in: generating 180 Gabor filters spanning
[0, 180[degrees; finding the filter with the smallest cumulative
difference with respect to the input local patch; assigning as
angle prediction the angular value used to generate the filter.

The ground truth angular value for each vertex is directly
available in the synthetic data. In the real test set, instead,
it is recovered from the ground truth instances mask: spline
curves are fitted for each instance and the vertices’ reference
orientation extrapolated as tangent of the curve at a vertex
position.

Overall, the proposed network approach shows better per-
formances, especially in the real scenario (see Figs. 7b and
7c). Indeed, we discovered that the Gabor filter approach is
more sensitive to the mask’s noisy edges and to its charac-
terizing parameters. Considering the real scenario, the error
distributions are characterized with the following mean and
standard deviation statistics: −0.03◦ ± 6.00◦ for network;
−0.17◦ ± 7.07◦ for Gabor.

D. Parameters Choice and Influence
RT-DLO employs two user-defined parameters that can

affect the method performances, the vertex sampling ratio

TABLE I: Performances of RT-DLO when varying the vertices
sampling ratio α and the number of Knn nearest neighbors. In
bold the values within 1% distance from the maximum one.

Knn
vertices sampling ratio α

0.05 0.1 0.15 0.2 0.25 0.3

4 51.20 75.06 77.10 76.70 75.87 75.32
8 57.98 78.19 79.80 79.20 77.50 77.38
16 56.68 78.72 79.91 79.86 78.86 78.83
32 56.31 77.78 79.42 79.13 78.79 78.25

TABLE II: RT-DLO versus baseline methods.

Method Backbone Key-points FPS ↑ Time [ms] ↓ IoU [%] ↑

YOLACT ResNet-50 ✗ 44 23 32.15
YOLACT ResNet-101 ✗ 32 31 35.25
YOLACT++ ResNet-50 ✗ 42 24 29.96
YOLACT++ ResNet-101 ✗ 31 32 29.64
BlendMask ResNet-50 ✗ 15 66 15.92
BlendMask ResNet-101 ✗ 12 81 21.24
CondInst ResNet-50 ✗ 16 62 23.29
CondInst ResNet-101 ✗ 13 78 29.24

Ariadne+ ResNet-50 ✓ 3 354 73.96
Ariadne+ ResNet-101 ✓ 3 360 76.87
FASTDLO ResNet-50 ✓ 23 44 73.89
FASTDLO ResNet-101 ✓ 22 46 77.77

RT-DLO ResNet-50 ✓ 36 27 77.65
RT-DLO ResNet-101 ✓ 32 31 79.91

α and the number of Knn nearest neighbors. In Tab. I, the
performances of RT-DLO on the test set are compared by
varying α and Knn. RT-DLO maintains remarkably strong
performances across a wide range of values for α, i.e. between
0.1 and 0.3. On the contrary, selecting α as 0.05 results in
a quite reduced number of vertices, hurting the description
power of the graph. The selection of Knn is also not critical
with a value of 8 already sufficient to reach top performances.

E. Baseline Methods

RT-DLO is compared against both DLO-specific and
general-purpose instance segmentation methods. To the first
group belong the algorithms named Ariadne+ [8] and
FASTDLO [9]. Both approaches employ the same segmenta-
tion network architecture of the one deployed in Sec. III-A. In
particular, the network weights are those of [9], thus allowing
a straightforward comparison with [9] and [8].

The general purpose DCNN baselines are: YOLACT [10],
YOLACT++ [11], BlendMask [13] and CondInst [14]. Overall,
the same dataset configuration and training details of [9] are
used to train the aforementioned nets.

F. Evaluation

The comparison of RT-DLO against the baseline methods
of Sec. IV-E is presented in Tab. II by means of the IoU
score computed starting from the color masks provided as
output by each method. The table also provides details about
the average inference time, FPS, and key-points availability
as output. Overall, RT-DLO shows strong performances both
in terms of IoU score, i.e. +2.14% and +3.76% improve-
ments against FASTDLO, i.e. top-performing algorithm, when
deploying the same segmentation mask Mb. In particular, RT-
DLO can provide the same level of performance of FASTDLO

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Input RT-DLO FASTDLO Ariande+
C

1
C

2
C

3

Fig. 8: Qualitative evaluation of RT-DLO versus FASTDLO
and Ariadne+ on the test set classes.

employing a lighter backbone, thus making it possible to reach
a frame-rate of 36 FPS, +13 FPS over FASTDLO.

A qualitative comparison on a few samples of the test set
among RT-DLO and the DLO-specific methods is provided in
Fig. 8, where the superiority of RT-DLO is especially visible
at the intersections. Indeed, the major advantage of RT-DLO
against the competing approaches resides in its graph represen-
tation which is based on Mb but is less susceptible to degraded
area as opposed to the skeleton approach of FASTDLO and
mask-guided superpixels method of Ariadne+. In this regard, a
deeper analysis on RT-DLO robustness is reported in Sec IV-H,
where the requirement of an accurate segmentation mask Mb

is experimentally relaxed in two different scenarios: 1) the
mask is artificially corrupted with an erosion process; 2) the
segmentation back-end specifically trained on electric wires is
replaced with others back-ends trained on general purposed
datasets.

G. Evaluation of Inference Time

In Tab. III a characterization of the average timing on the
test set for each stage of the proposed method is provided.
Faster processing times can be achieved by deploying a lighter
backbone, such as ResNet-50, saving several milliseconds in
the binary segmentation phase and obtaining a total processing
time of about 27 ms as opposed to 31 ms. The graph generation
time is below 10 ms, highlighting the efficiency of RT-DLO.
If the colored mask is not required, the last two stages
can be skipped shortening the computation time by 1 to 2
milliseconds depending on the number of intersections, as
shown in Tab. III. The timings in the table are obtained
employing the hardware setup highlighted at the beginning
of Sec. IV. A similar timing of about 13.5 ms is obtained
for the Total w/o Segmentation case with a consumer laptop
(Intel Core i7-12700H CPU). Indeed, high computation power
is mostly required for the deep segmentation network. Thus,
if the application does not require a complex deep model for
scene semantic segmentation, the hardware specifications can
be relaxed or, alternatively, higher overall FPS can be achieved.

H. Mask Degradation and Different Segmentation Back-Ends

The improvements of RT-DLO against the main compet-
ing methods, i.e. the DLO-specific algorithms Ariadne+ and
FASTDLO, are not only in the form of faster processing
time and better accuracy. Indeed, an important benefit of the

Procedure Number Intersections
1 2 3 avg

Binary Segmentation 19.72 19.49 19.49 19.50
Graph Generation 6.69 8.23 9.17 8.03
Intersections Processing 0.57 0.80 0.95 0.77
DLOs Instances Extraction 1.25 1.55 1.79 1.53
Intersections Layout 0.61 1.13 1.65 1.13
Output Colored Mask 0.37 0.45 0.51 0.44

Total w/o Segmentation 9.50 12.15 14.07 11.91
Total 29.22 31.64 33.56 31.41

TABLE III: Average execution times [ms] of the main RT-DLO
stages wrt the number of intersections in the image.

graph representation approach of RT-DLO is its ability to
better handle degraded semantic segmentation masks Mb. To
illustrate the graph-based advantage of RT-DLO, a two-fold
study is conducted. On one hand, the performance drop of RT-
DLO and the competition is evaluated after an erosion process
is applied on Mb. On the other hand, different segmentation
networks trained on public datasets, i.e. not DLO-specific
ones, are employed.

Concerning the first study, the masks Mb of the test set are
iteratively eroded, that is the process consisting in thinning
the foreground area of a binary mask, with a kernel of 3× 3
pixels to simulate the effects of less precise masks coming
from Sec. III-A. The evaluation is performed by comparing
RT-DLO to the DLO-specific methods on the masks obtained
from the two different backbones, i.e. ResNet-50 and ResNet-
101, see Fig. 9. From the plots of Fig. 9a, RT-DLO shows the
capability of maintaining an almost steady performance after
the first round of erosion process, followed by a drop in the
scores in the subsequent iterations. On the contrary, the drop
of scores associated to FASTDLO and Ariadne+ is significant
from the very first iteration. Considering the mask IoU score
as an upper bound, RT-DLO is capable of maximizing its score
as opposed to the compared approaches. The images of Fig. 9b
allow to catch better the effects of the erosion process and the
RT-DLO advantages on the test sample C1 of Fig. 8.

A study about replacing the segmentation back-end of
Sec. III-A with ImageNet pre-trained salient object segmenta-
tion (SOS) approaches is conducted in Fig. 10, avoiding the
need of training a segmentation network on a DLO-specific
dataset. The SOS architectures tested are: EGNet [23], F3Net
[24], CPD [25] and PoolNet [26]. When evaluated on the
test set, RT-DLO continues to achieve strong performances
compared to the competing approaches, see Fig. 10a. The
advantages of RT-DLO in the case of degraded masks are even
more apparent for the sample images of Fig. 10b which show
how RT-DLO is able to minimize the number of extracted
instances.

V. CONCLUSIONS

In this paper, a novel method for real-time instance seg-
mentation of DLOs is presented. The representation of the
DLOs as a graph offers an efficient, simple and intuitive way
to obtain the DLOs instances. The segmentation performance
improvements compared to current state-of-the-art approaches
for DLOs detection are noticeable. More importantly, the
inference time capabilities of RT-DLO make it stand out

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

20

40

60

80
Io
U
[%

]
ResNet-101

MASK
ARIADNE+
FASTDLO
RT-DLO

ev
al
 o
n
te
st
-s
et

ResNet-50

0 1 2 3 4
iterations

−10

0

Io
U
[%

]

0 1 2 3 4
ite%ations

w%
t m

as

(a) evaluation on the test set eroding Mb.

Mask (Mb) RT-DLO FASTDLO Ariadne+

1

2

3

(b) qualitative comparison given Mb eroded for 1, 2 and 3 iterations.

Fig. 9: RT-DLO, FASTDLO and Ariadne+ performance com-
parison after iteratively degrading the binary mask Mb.

EGNet F3Net CPD PoolNet32

37

42

47

Io
U
[%

]

MASK
ARIADNE+

FASTDLO
RT-DLO

(a) evaluation on the test set employing Mb obtained by SOS networks.

Mask (Mb) RT-DLO FASTDLO Ariadne+

(b) qualitative comparison of the instances masks given Mb from EGNet.

Fig. 10: Comparison of RT-DLO, FASTDLO and Ariadne+
when employing popular salient object segmentation networks.

even more compared to existing approaches. In future works,
RT-DLO can be improved and expanded in several ways. For
example, RT-DLO currently processes each image individually.
However, the segmentation stage can be substituted with a
different approach exploiting the previous frames of a video
sequence for a better and possibly faster segmentation mask.
In this context, a tracking system can be also investigated to
match the DLO instances across the video sequence. Finally,
the graph-based representation of DLOs can be easily extended
to other structures, like wiring harnesses, and other sensors,
like 3D cameras resulting in a 3D graph.

REFERENCES

[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic
manipulation and sensing of deformable objects in domestic and in-
dustrial applications: a survey,” The International Journal of Robotics
Research, 2018.

[2] K. P. Cop, A. Peters, B. L. Žagar, D. Hettegger, and A. C. Knoll,
“New metrics for industrial depth sensors evaluation for precise robotic
applications,” in Proc. IEEE/RSJ Int. Conf. IROS, 2021.

[3] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE robotics
and automation letters, 2020.

[4] N. Lv, J. Liu, and Y. Jia, “Dynamic modeling and control of deformable
linear objects for single-arm and dual-arm robot manipulations,” IEEE
Transactions on Robotics, 2022.

[5] A. Keipour, M. Bandari, and S. Schaal, “Deformable one-dimensional
object detection for routing and manipulation,” IEEE Robotics and
Automation Letters, 2022.

[6] X. Jiang, K.-m. Koo, K. Kikuchi, A. Konno, and M. Uchiyama, “Robo-
tized assembly of a wire harness in a car production line,” Advanced
Robotics, 2011.

[7] D. D. Gregorio, G. Palli, and L. D. Stefano, “Let’s take a walk on
superpixels graphs: Deformable linear objects segmentation and model
estimation,” in Asian Conference on Computer Vision. Springer, 2018.

[8] A. Caporali, R. Zanella, D. De Gregorio, and G. Palli, “Ariadne+: Deep
learning-based augmented framework for the instance segmentation of
wires,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2022.

[9] A. Caporali, K. Galassi, R. Zanella, and G. Palli, “Fastdlo: Fast de-
formable linear objects instance segmentation,” Robotics and Automation
Letters, 2022.

[10] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in Proceedings of the IEEE/CVF Conf. ICCV, 2019.

[11] ——, “Yolact++: Better real-time instance segmentation,” IEEE trans-
actions on pattern analysis and machine intelligence, 2020.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE Int. Conf. ICCV, 2017.

[13] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask:
Top-down meets bottom-up for instance segmentation,” in Proceedings
of the IEEE/CVF Conf. CVPR, 2020.

[14] Z. Tian, C. Shen, and H. Chen, “Conditional convolutions for instance
segmentation,” in Proceedings of the Conf. ECCV. Springer, 2020.

[15] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and
fast instance segmentation,” Advances in Neural information processing
systems, 2020.

[16] R. Zanella, A. Caporali, K. Tadaka, D. De Gregorio, and G. Palli,
“Auto-generated wires dataset for semantic segmentation with domain-
independence,” in Proc. of the ICCCR, 2021.

[17] Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-
occluded deformable objects while enforcing geometric constraints,” in
2021 IEEE Int. Conf. ICRA. IEEE, 2021.

[18] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proc. European Conf. on computer vision, 2018, pp. 801–818.

[19] G. Borgefors, “Distance transformations in digital images,” Computer
vision, graphics, and image processing, 1986.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[21] X. Yang and J. Yan, “Arbitrary-oriented object detection with circular
smooth label,” in ECCV. Springer, 2020.

[22] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using
gabor filters,” Pattern recognition, vol. 24, no. 12, pp. 1167–1186, 1991.

[23] J.-X. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng, “Eg-
net: Edge guidance network for salient object detection,” in Proceedings
of the IEEE/CVF Conf. ICCV, 2019.

[24] J. Wei, S. Wang, and Q. Huang, “F3net: fusion, feedback and focus for
salient object detection,” in Proceedings of AAAI-20, 2020.

[25] Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast and
accurate salient object detection,” in IEEE/CVF Conf. CVPR, 2019.

[26] J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-
based design for real-time salient object detection,” in IEEE/CVF Conf.
CVPR, 2019.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Alessio Caporali Alessio Caporali received the
M.Sc. degree in automation engineering from the
University of Bologna, Italy in 2019. He is currently
pursuing the Ph.D. degree in biomedical, electri-
cal and system engineering with the University of
Bologna. His research interests include computer vi-
sion for robotic manipulation of deformable objects.

Kevin Galassi Kevin Galassi received the B.Sc. and
M.Sc. degree in automation engineering from the
University of Bologna, Italy, respectively in 2018
and 2020. He is currently pursuing the National
Ph.D. program in Artificial Intelligence at the lab-
oratory of Robotics (LAR) at the University of
Bologna. His research interests include industrial
robotic manipulation of deformable objects, collab-
orative robotics and robotic learning.

Bare Luka Žagar Bare Luka Žagar is a Ph.D. can-
didate currently working in the Chair of Robotics,
Artificial Intelligence and Real-time Systems at the
Technical University of Munich (TUM). He com-
pleted his B.Sc. and M.Sc. in Control Engineering
and Automation at the University of Zagreb (Faculty
of Electrical Engineering and Computing). His re-
search interests include computer vision for robotics,
point cloud representation learning and 3D object
detection.

Riccardo Zanella Riccardo Zanella received the
M.Sc. degree in automation engineering from the
University of Padova, Italy in 2016, and the Ph.D.
degree in biomedical, electrical and system engineer-
ing from the University of Bologna, Italy in 2021.
He is currently working as Postdoctoral Researcher
at the University of Bologna. His research interests
include computer vision and robot learning for au-
tonomous manipulation of deformable objects.

Gianluca Palli Gianluca Palli (Senior Member,
IEEE) received the Laurea and Ph.D. degrees in
automation engineering from the University of
Bologna, Bologna, Italy, in 2003 and 2007, respec-
tively. He is currently a Full Professor with the Uni-
versity of Bologna. He has authored or coauthored
more than 150 scientific articles presented at confer-
ences or published in journals. His research interests
include design and control of manipulation devices,
mobile manipulation, manipulation of deformable
objects and soft robotics.

Alois C Knoll Alois C Knoll (Senior Member,
IEEE) received the M.Sc. degree in electrical /com-
munications engineering from the University of
Stuttgart, Stuttgart, Germany, in 1985, and the Ph.D.
(summa cum laude) degree in computer science from
the Technical University of Berlin (TU), Berlin,
Germany, in 1988. He served on the faculty of
the Computer Science Department of TU Berlin
until 1993, when he qualified for teaching computer
science at a university (habilitation). Following this,
he was a Full Professor and the Director of the

Computer Engineering research group at the University of Bielefeld until
1991, when he assumed the Professorship of Real-Time Systems and Robotics
at Technical University of Munich, Munich, Germany. His research interests
include cognitive, medical and sensor-based robotics, multiagent systems,
data fusion, adaptive systems, multimedia information retrieval, model-driven
development of embedded systems with applications to automotive software
and electric transportation, and simulation systems for robotics and traffic.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3245641

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

