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• Performance analysis of calibration with noise and bias in initial OD demand matrices
• Bayesian optimization for automatic tuning of calibration algorithm
• Bagging and SPA to reduce variance in calibrated OD demand estimates
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A B S T R A C T
Large-scale traffic simulation models are a crucial tool for simulating and evaluating different
transport solutions, especially now that our mobility ecosystems are evolving at an unprece-
dented pace. Due to the scale and complexity of these models, numerous parameters exist that
can significantly influence their outputs. Thus, calibration of these models is a prerequisite for
a “realistic” assessment of new transport policies. Demand and supply are the two components
of the traffic simulation models. Origin-Destination (OD) based demand models are widely
adopted in the transport modeling community. Local gradient approximation algorithms are a
popular optimization choice for calibrating the OD matrices, usually reconstructed using socio-
demographic statistics and traffic data. However, the problem of reconstructing OD matrices is
highly under-determined, meaning that multiple plausible solutions exist in terms of data and
OD structure. Further, considerable time and manual effort are spent fine-tuning the calibration
performance. In this work, we propose an end-to-end methodology for sequential calibration of
demand and supply parameters that automates various components in the calibration workflow
and leverages new ensemble techniques to increase robustness. First, we propose a simple yet
effective heuristic to address the bias in the initial estimates. Then, we use Bayesian optimiza-
tion to automate fine-tuning of SPSA parameters, followed by Bagging and Stochastic Parameter
Averaging (SPA) techniques to reduce the variance in the estimates. Finally, we use Bayesian
optimization to calibrate the mesoscopic supply parameters. We test our approach on analytical
and DTA simulation (SUMO) models with synthetic and real-world data on the network of Mu-
nich. The results show that our approach can provide reliable estimates even when data contain
substantial errors. Methodologically, we show that bagging and SPA can dramatically improve
the performance of state-of-the-art algorithms such as W-SPSA. This is important in two as-
pects. First, using parallel computing, bagging can improve performances while not increasing
the computational times. Second, bagging and SPA can be used with any stochastic optimization
algorithm. Finally, we open-source the developed platform in the interest of open science. The
platform can be used to calibrate any network in SUMO and can be extended by incorporating
new data, parameters, additional components, or libraries.

1. Introduction
A transportation system comprises different parts and their interactions, which results in travel demand and supply

of transport services (Cascetta (2001)). Researchers and practitioners develop transport models to study the effects of
an ongoing or new phenomenon on the transport system, e.g., the effect of new technology or a policy change on - how,
when, from/ to where people move, and their resultant social, economic, and environmental impacts. While analytical
or static transport models do exist, their outputs do not fully capture the complex dynamic interactions that occur
on a transport network (Chiu et al., 2011). Dynamic Traffic Assignment (DTA) simulation can represent the short-
term traffic flow variations and behavioral choices in a large-scale network (Ben-Akiva et al., 2012). Therefore, traffic
simulation models are increasingly preferred in modeling applications. Calibration of transport demand and supply
parameters is crucial before the models are applied for analysis and forecasting, as inaccurate parameters translate
into unreliable simulation outputs. Calibration is the process of finding the simulation model’s parameters so that the
difference between the simulated behavior (counts, travel time, speed) and observed behavior is minimized.

Calibration is formulated as an optimization problem to minimize the value of the objective function subject to
constraints (Antoniou et al., 2016). Thus, calibration of traffic simulation models depends on three main factors, namely
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calibration method [objective or fitness function and its formulation, calibration approach, optimization algorithms,
the goodness of fit (GOF) criteria], simulation model [assignment method, level of detail] and data [Measures of
Performance (MOP), data sources, aggregation, coverage]. The calibration of DTA models is an active field of research
with applications such as demand calibration and real-time traffic management. Demand calibration or estimation/
updating of the origin-to-destination (OD) demand matrices using traffic counts is a well-studied problem for transport
modelers. Origin-Destination (OD) demand estimation is a particular case of demand calibration where the link traffic
volumes/ flows/ counts are used to estimate the OD matrix (Cascetta et al., 1993). When multiple time-dependent
OD matrices are to be calibrated, the problem is also referred to as Dynamic Origin-destination Demand Estimation
(DODE) (Cantelmo et al., 2018). Researchers have proposed various methods exploiting the data, models, and problem
structure. On the algorithmic side, black-box optimization using approximated gradients is widely used to calibrate
OD matrices.

For a large-scale simulation scenario, calibration suffers from the “curse of dimensionality”(Djukic et al., 2012;
Cascetta et al., 2013), because the size of the OD matrix is large and thus the number of parameters. This means
parameter calibration becomes increasingly difficult with the increase in the number of parameters or OD pairs. Further,
the higher the level of error (bias and noise) in a priori OD estimates, it will be challenging to obtain the desired
solution. For calibration and validation (Buisson et al., 2014) of the transport models, researchers and practitioners
need MOPs. Traffic flow data or link volumes are the commonly used MOP. It is well known that N independent
equations are needed to find the unique solution of the system of linear equations with N unknowns. The availability
of lesser equations as compared to the number of unknowns leads to an under-determined system. In transport demand
calibration, the number of unknowns (OD demand pairs) greatly exceeds the number of equations (observed data). The
stochasticity, such as from the gradient approximation or optimization heuristics, vehicle routing in a simulation model
further compounds this. In fact, when the number of unknowns equals the number of equations, multiple solutions
can still occur due to the nonlinear nature of traffic, not always captured by conventional traffic data (Frederix et al.,
2013). The fact that there are multiple solutions might also make the algorithm prone to get trapped in undesired local
optima instead of converging to the desired local optima. To reduce the chance of undesired local optima, extensive
analysis is needed to check the reliability and robustness of the solutions. All these practical challenges can lead to
increased time complexity and computational burden. Moreover, if the calibration approach is not carefully designed,
the calibrated OD parameters might be far from the desired solution. This motivates us to apply enhancements to the
current demand (OD estimation) and supply calibration framework and propose an end-to-end methodology to find
optimal calibrated estimates while keeping the computational burden in check.

This paper applies simple yet effective heuristics and ensemble techniques (borrowed from the machine learning
field) to demand (OD estimation) and supply calibration. Specifically, we test two approaches: Bagging and Stochastic
Parameter Averaging (SPA). The latter is a novel algorithm developed in this research and inspired by the Snapshot
ensembling (Huang et al., 2017) and Stochastic Weight Averaging (SWA) (Izmailov et al., 2018), used in the field of
computer science to find the weights of Deep Neural Networks (DNNs) while avoiding local minima. Using multiple
experiments, we show that ensembling effectively reduces the variance in the final OD estimates. Further, the aver-
aged estimates are much closer to the true or desired estimates and thus, use the results of multiple local optimizers
to land closer to the desired solution. The fact that bagging can be executed on parallel nodes helps achieve these
improvements without increasing time complexity. In addition, we propose automatic tuning of the calibration algo-
rithm and thus reduce the manual effort and time spent in doing so hitherto. The remainder of the paper is structured
as follows: section 2 concisely reviews the literature on this topic, section 3 introduces indirect OD estimation and
supply calibration, section 4 introduces the methodology of our study, section 5 provides details on experimental de-
sign and calibration platform description, followed by section 6 with results, followed by conclusion in section 7 with
discussion, implications, and limitations of our study.

2. Literature Review
Omrani and Kattan (2012) reviewed DTA model calibration, focusing on the calibration parameters and approach.

The traffic simulation parameters belong to two categories: demand model calibration and supply model calibration.
Demand model parameters pertain to trip generation, destination, departure time, mode, and pre-trip route choices. OD
estimation is a specific case of demand calibration where time-dependent OD matrices are calibrated. On the other
hand, supply model parameters pertain to during-trip route choice, link and junction performance functions, traffic
flow models, and driving behavior models such as lane-changing and car-following. The nature of these parameters
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can change depending on the granularity of the models, such as macroscopic, mesoscopic, and microscopic simulations.
Earlier, the demand models were calibrated considering other supply parameters as constant and vice-versa. These

approaches were followed by sequential (or iterative) calibration (Toledo et al., 2014), where supply calibration is
followed by demand calibration in a loop. These approaches, however, failed to capture the intrinsic interaction between
demand-supply (Toledo et al., 2014). In contrast, simultaneous calibration of all supply and demand parameters is
reported to provide the most efficient estimates (Toledo et al., 2014), although at the cost of additional complexity.
Another important distinction is between offline and online calibration procedures. The former calibrates the model
parameters given a set of historical observations. After this offline calibration, these parameters can be updated based
on the real-time or streaming data for prevailing traffic conditions in an online calibration(Balakrishna et al., 2007;
Antoniou et al., 2005). As for the optimization algorithms, global search methods, EA (Evolutionary Algorithms) (Ma
and Abdulhai, 2002), are reported to give good quality solutions. On the one hand, global search methods are relatively
less popular on large-scale networks, presumably because they are time-consuming and computationally expensive for
large-scale problems. The success of global algorithms depends on the properties of the model and might not scale
very well on large networks. Only a few studies have used the algorithms’ distribution and parallelization to improve
the efficiency of these algorithms and demonstrated their application on medium-sized networks (Omrani and Kattan,
2018).

On the other hand, researchers use local search heuristics, such as Simultaneous Perturbation Stochastic Approx-
imation (SPSA) (Spall, 1998a), which are efficient in terms of time and computation. Large-scale calibration is a
highly under-deterministic or indeterminate problem with multiple possible solutions. Therefore, local search ap-
proaches need enhancements, domain knowledge, and sensitivity analysis to obtain the desired solution. Researchers
have further tried to incorporate domain knowledge to improve the performance of SPSA. Some of the successful
applications of local heuristics are Weighted-SPSA (W-SPSA) (Antoniou et al., 2015; Lu et al., 2015), cluster-SPSA
(c-SPSA) (Tympakianaki et al., 2015), adaptive-SPSA (Cantelmo et al., 2014a). Djukic et al. (2012) applied Principal
Component Analysis (PCA) to tackle the high dimensionality of the calibrations to capture the input variation with
fewer parameters. Subsequently, the potential of dimensionality reduction was demonstrated in PC-Generalized Least
Squares (GLS) (Prakash et al., 2017), and PC-SPSA (Qurashi et al., 2020, 2022). Another approach is to assume a
prior distribution (quasi-dynamic assumption) of the data to reduce the number of variables artificially (Cascetta et al.,
2013) or to divide the problem into sub-tasks (Cantelmo et al., 2014b). Using meta-models to provide more domain
knowledge in black-box optimization helps converge faster. For example, Osorio (2019) approximated the network
model using an analytical representation and embedded it as a meta-model within the Simulation Optimization (SO)
algorithm. This approach gave promising results for large-scale networks. In another recent study by Ho et al. (2023),
authors used modified gradients in SPSA and proposed a differentiable Meta-model assisted SPSA (MSPSA) to speed
up the convergence of the SPSA.

The first set of challenges pertains to tuning the parameters of calibration algorithms such as SPSA’s gain coeffi-
cient. In the case of gradient-based optimization, the learning rate decides the convergence rate. The algorithm can
be very slow if the learning rate is too small. In contrast, if the learning rate is large, the algorithm can jump beyond
the optimum and oscillate or land in an unsuitable local optimum (too far from the starting iterate), leading to high
variance. Large learning rate values can also lead to high values in the OD matrix, leading to simulation overload
and slow down and even more time to tune the parameters of the optimization algorithm. In the literature, SPSA gain
coefficients, i.e., step-size (𝑎) and perturbation vector (𝑐), are predominantly manually selected after some sensitiv-
ity analysis. Spall (1998a) suggested that if the parameters to be optimized vary significantly in magnitude, scaling
should be applied to the gain coefficients. Such scaling was applied to step-size coefficients of SPSA by Tympakianaki
et al. (2018). However, even after scaling, finding the optimal value of gain coefficients requires conducting sensitivity
analysis and expensive function evaluations. The set of parameters for a scenario may not be transferable to a new
scenario and thus require a fresh and cumbersome sensitivity analysis. Thus, it costs a considerable time to select
the optimum parameters. The costly function evaluations limit the application of automatic parameter tuning methods
such as Bayesian optimization to OD demand estimation. Although Bayesian optimization works better than random
sampling, the former’s application will also be slowed due to time-consuming simulations. Thus, we conclude that
no existing systematic approach can help to automate the tuning of calibration algorithm parameter selection in the
context of OD demand estimation.

Traffic simulators are stochastic systems, implying that the simulation outputs and gradient approximations based
on these outputs are also stochastic. Thus, different types of averaging are used to address this stochasticity. For in-
stance, multiple simulations are averaged during each function evaluation to address the variance in the simulation
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outputs (e.g., due to randomness in flow propagation and route choice). Random search choice algorithms, such as
SPSA, leads to additional stochasticity because the random choice is made in a selection of perturbation vector dur-
ing the gradient approximation step, which induces randomness in the search process. To address the randomness
in gradient approximation, Spall (1998b) recommended that an average of a few gradient evaluations in every single
iteration should be used for each gradient approximation. We term this technique as “gradient replications” to differ-
entiate it from “gradient averaging” wherein gradients across current and past iterations are averaged. On this note,
Kostic et al. (2017) tested gradient replications and gradient averaging with the SPSA for demand calibration. They
found that gradient replications provide better convergence, whereas gradient averaging does not provide meaningful
benefit, which supposedly could be due to a highly uneven and complex loss surface. However, in a general context,
such averaging is beneficial when the curvature of the objective function starts to flatten along a dimension, e.g., as in
the case of the canal or a valley. In such situations, gradient descent-based optimization methods can be very slow in
convergence. In these cases, Momentum can help to tackle the slow convergence (Ruder, 2016). Momentum tweaks
the gradient descent by providing a short-term memory and taking the weighted average of the gradients from the past
runs. References to gradient smoothing across iterations for SPSA can be found in Spall (1998b); Spall and Cristion
(1994).

Instead of gradients, averaging parameters or iterates (also called weights in machine learning) across iterations
is another popular idea. Spall (2003) mentions that the innovation of the seminal work of Stochastic approximation
method by Robbins and Monro (1951) is to do a “form of averaging across iterations”. This was followed by main-
taining the running average of the iterates in the case of stochastic optimization algorithms (Ruppert, 1988; Polyak
and Juditsky, 1992) for better convergence. For iterate averaging to perform better than individual estimates, most
individual estimates must land within the local neighborhood of the true or desired estimate. Otherwise, averaging
will lead to poorer estimates (Spall, 2003). Different modifications of iterate averaging are also applied in the case of
Stochastic Gradient Descent (SGD) based algorithms in machine learning, where the running average of the weights of
the neural network helps to smooth the trajectory of the SGD. For instance, Izmailov et al. (2018) proposed Stochastic
Weight Averaging (SWA) where an average of the points/ iterates traversed by SGD with cyclical or constant learning
rate is used. SWA finds much flatter solutions than SGD, leads to higher test accuracy, and improves the generalization
ability of the neural networks.

Another averaging-related method is based on the ensemble concept. An ensemble of models means combining
the decisions/ predictions of a set of individual models to provide a better prediction. Dietterich (2000) pointed out that
there can be many possible solutions to a problem in case of insufficient data, which is also the case in OD estimation.
An ensemble of models can help to average the individual model “votes” and help to obtain optimal predictions.
Further, in machine learning, many models use local search to optimize the objective function and can often get stuck
in local optima. Therefore, an ensemble made by running multiple models with different initialization can provide
better results. Bagging (short for Bootstrap Aggregating) is a common ensemble method. Bagging predictor (Breiman,
1996) is a technique in machine learning where multiple models are trained on subsets of the training data (bootstrapped
datasets). Then the final prediction is the average of the predictions of these trained models. Bagging is helpful if the
individual models have high variance since the variance of the averaged model is reduced. Breiman (1996) found that
for unstable procedures, bagging works well and “can push a good but unstable procedure a significant step towards
optimality”. There are different techniques on how to obtain different models. For instance, in the case of Deep Neural
Networks (DNN), cosine annealing or cyclic learning rate is used during the training process, and model snapshots at
the end of each learning cycle are used for averaging the predictions. This method is known as snapshot ensembling
(Huang et al., 2017).

In this work, we aim to address the above challenges in demand and supply calibration in a unified framework, and
our contributions are summarized as follows:

• We develop a methodology to fine-tune the calibration algorithm parameters automatically. Substantial research
shows in fact that these hyperparameters play a crucial role, but to the best of the author’s knowledge, no method-
ology exists to estimate them. This is usually done manually, which is time-consuming and unreliable. This helps
to push the calibration process towards an automated approach.

• We find that applying Bagging and Stochastic Parameter Averaging (SPA) techniques can improve the robustness
of the results. This is important since, typically, solutions obtained by local search calibration algorithms have
high variance, and these ensemble techniques can help to reduce such variance in the estimates.
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Table 1
Symbols used in the paper

Symbol Description
𝑇 Number of time intervals
Δ𝑇 Duration of each time interval
𝑋 Time-dependent demand parameters, e.g., time-dependent OD flows in our case, 𝑋 = {𝑋𝑡}∀𝑡 ∈

𝑇 . In this work, we use the terms dynamic OD matrix and demand parameters interchangeably
since they are identical.

𝑿𝑎 A priori or initial or given time-dependent parameter values, 𝑿𝑎 = {𝑿𝑎
𝑡 }

𝑝 Number of OD pairs
𝑌 Selected supply parameters
𝑌 𝑎 A priori or initial of selected supply parameters
𝑞 Number of supply parameters
G Road network and other fixed supply parameters, 𝐺 = {𝐺}
𝑓 Traffic simulation model
𝑀𝑜 Observed time-dependent sensor measurements, 𝑀𝑜 = {𝑀𝑜

𝑡 }, e.g., 𝑀𝑜
𝑡 = {𝐶𝑜

𝑡 , 𝑉
𝑜
𝑡 } for count 𝐶

and speed 𝑉 measurements
𝑀 𝑠 Simulated time-dependent measurements, 𝑀 𝑠 = {𝑀 𝑠

𝑡 }, e.g., 𝑀 𝑠
𝑡 = {𝐶𝑠

𝑡 , 𝑉
𝑠
𝑡 } for count 𝐶 and

speed 𝑉 measurements
𝑚 Number of link measurements
𝑍1, 𝑍2, 𝑍3 Goodness of fitness function between simulated and observed measurements, simulated and prior

OD estimates, simulated and prior supply parameters, respectively
𝒘𝟏,𝒘𝟐,𝒘𝟑 Decision weights for error functions 𝑍1, 𝑍2, 𝑍3, respectively in the multi-objective optimization
𝐿 Weighted overall objective function
𝐵𝑥 Bias factor for OD matrices 𝑋
𝑅𝑥 Randomness factor for OD matrices 𝑋
𝑢 Acquisition function for Bayesian optimization
𝑨 OD flow-Link counts assignment matrix
𝑊 Weight-matrix for W-SPSA, 𝑊 = 𝐽 (𝑨), where 𝐽 is a non-linear function
𝑤𝑐𝑢𝑡−𝑜𝑓𝑓 threshold value below which the correlation is set as zero
𝑤𝑟𝑜𝑢𝑛𝑑−𝑜𝑓𝑓 boolean variable, if True, then the non-zero correlation between the parameter and the sensor is

set to 1
𝑎, 𝑐 SPSA gain coefficients
𝐴, 𝛾, 𝛿 other SPSA parameters
𝐾, 𝑆, 𝐵, 𝐸 Number of iterations for W-SPSA, sequential calibration, Bayesian optimization, and ensembles,

respectively
𝜏 Error level, which is acceptable and hence defines successful convergence

• We also provide two additional contributions, which from a methodological standpoint, are minor, but have
substantial impacts on the calibration output in practice. First, we develop a one-shot heuristic system that
reduces intrinsic bias, reducing computational time. Second, we apply a Bayesian optimization framework that
effectively estimates the supply parameters.

• The above approaches are developed using open-source tools and software and made available to advance the
research in traffic simulation calibration.

3. Indirect OD estimation
3.1. Problem formulation

The offline calibration problem can be formulated using the notation in Table 1, inspired by Antoniou et al. (2015):
Indirect Dynamic Origin-destination Demand Estimation (DODE) is a specific case of transport demand calibration

where values of time-dependent OD matrices are the demand calibration parameters. This can be formulated as the
minimization of loss or objective function 𝐿:

minimize
𝑋,𝑌

𝐿
(

𝑴𝒐,𝑴𝑠,𝑿, 𝒀 ,𝑿𝑎, 𝒀 𝑎) (1)
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which can be operationalized as follows:

minimize
𝑿,𝒀

𝑇
∑

𝑡=1

[

𝒘𝟏𝑍1
(

𝑴𝒐
𝒕 ,𝑴

𝒔
𝒕
)

+𝒘𝟐𝑍2
(

𝑿𝒕,𝑿𝒂
𝒕
)

+𝒘𝟑𝑍3
(

𝒀 𝒕, 𝒀 𝒂
𝒕
)] (2)

subject to:
𝑴𝑠

𝒕 = 𝑓
(

𝑿1,… ,𝑿𝑡; 𝒀 1,… , 𝒀 𝑡;𝑮
) (3)

𝒍𝒙 ≤ 𝑿 ≤ 𝒖𝒙 𝒍𝒚 ≤ 𝒀 ≤ 𝒖𝒚 (4)
and 𝑍 measures the discrepancy between the two quantities and is called Goodness-of-Fit (GoF) function or dis-

tance metric. In the case of measurements, the two quantities are the simulated and observed measurements, whereas,
in the case of parameters, they are the parameter’s current value and the parameter’s prior value. Equation 2 is a type
of multi-objective optimization, and 𝒘𝟏, 𝒘𝟐, and 𝒘𝟑 are the assigned weights for these objectives. Equation 3 captures
the dependence between simulated outputs and the input parameters, which is directly obtained from the DTA traffic
simulator.

𝑍2 contributes discrepancy of the current estimates from the initial or historical demand estimates, so the opti-
mization algorithm is penalized for exploring far from the initial OD demand values. Furthermore, if the initial values
are biased, dependence on initial values in the objective function can prevent the optimization algorithm from reaching
the desired optimum. In other words, a misleading specification of OD prior will restrict the algorithm from recovering
the desired values. The same is true for prior values of supply parameters. Thus, when prior parameters are heavily
biased or unreliable, 𝑍2 and 𝑍3 should be set to a small value. But still, the prior demand matrix has certain structural
information, such as the relative magnitude of the demand flows among the zones. Prior information about parameters
needs to be provided to narrow down the possible solutions.

Since calibration is a constrained optimization problem (equation 4), we must specify the domain of the decision
variables, i.e., values in the OD matrices. The equation 4 specifies the domain of the demand and supply parameters; if
the domain for the demand variables is wide, the local search algorithm has more flexibility to find solutions, leading
to a higher variance in the results. On the other hand, narrow domain specification restricts the search space. These
constraints help provide additional information to the optimization algorithm regarding the search space of parameters.
3.2. Stochastic search and approximation with SPSA
3.2.1. Stochastic Approximation

Equation 2 is a form of an iterative optimization problem where the analytical form of the objective function
is unknown. To handle this, we move to Stochastic approximation (SA), which is a family of iterative stochastic
optimization algorithms used for the minimization of objective functions without an analytical form. Such objective
functions can only be estimated from noisy observations or noisy function evaluations, such as in black box systems.
In black box systems, only inputs and outputs can be viewed but not the inner mechanism of the system (Bunge, 1963).
A general form of SA is:

�̂�𝑘+1 = �̂�𝑘 − 𝑎𝑘�̂�𝑘(�̂�𝑘) (5)
where �̂�𝑘 is the decision vector for the 𝑘𝑡ℎ iteration and �̂�𝑘(�̂�𝑘) is the estimate of gradient at �̂�𝑘. 𝑎𝑘 is the step

size or gain sequence. There are different approaches to estimating the gradient of the objective function from limited
observations or function evaluations. The naïve gradient estimation can be done using finite differences; the gradient is
estimated by perturbing the parameters in the decision vector sequentially, i.e., one at a time, evaluating the objective
function as many times as there is the number of parameters, and estimating the gradient. Sequential perturbation of
the elements of decision vector and function evaluation at those points has a high time complexity due to the high
run-time of large-scale traffic simulators.
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3.2.2. Simultaneous Perturbation Stochastic Approximation (SPSA)
SPSA algorithm, by Spall (1998b,a), is a gradient approximation based optimization algorithm for stochastic op-

timization. In SPSA, the gradient is approximated by perturbing all the parameters simultaneously. This leads to only
two function evaluations of the objective function per gradient evaluation. Due to this advantage, SPSA is favored
for use in simulation-based OD estimation since function evaluation is expensive and the number of OD parameters
is large (of the order of thousands). Furthermore, SPSA reduces the computation time by order of 𝑝, where 𝑝 is the
number of dimensions or, in our case, the number of OD parameters. The gradient vector in SPSA is approximated as
follows:

�̂�𝑘
(

�̂�𝑘
)

=
𝐿
(

�̂�𝑘 + 𝑐𝑘Δ𝑘
)

− 𝐿
(

�̂�𝑘 − 𝑐𝑘Δ𝑘
)

2𝑐𝑘Δ𝑘
=

𝐿
(

�̂�+𝑘
)

− 𝐿
(

�̂�−𝑘
)

2𝑐𝑘Δ𝑘
(6)

where �̂�+𝑘 = �̂�𝑘+𝑐𝑘Δ𝑘, and �̂�−𝑘 = �̂�𝑘−𝑐𝑘Δ𝑘. Gain sequences are given by 𝑐𝑘 = 𝑐∕(𝑘+1)𝛾 and 𝑎𝑘 = 𝑎∕(𝐴+𝑘+1)𝛼 ,
where 𝑐, 𝛾 , 𝑎, 𝛼 and 𝐴 are the SPSA parameters. The magnitude of gain sequences reduces with 𝑘. Δ𝑘 is a random
perturbation vector sampled from the Bernoulli distribution with values of +1 and −1 with equal probabilities.
3.2.3. Weighted - SPSA (W-SPSA)

SPSA does not account for any domain information and parameter correlations while propagating gradients from
objective function to parameters. Thus, various extensions of SPSA for DODE are proposed in the literature, as dis-
cussed in the previous section. Of the proposed extensions, the Weighted-Simultaneous Perturbation Stochastic Ap-
proximation (W-SPSA) exploits the simulator knowledge to map the correlations of the gradients with the parameters.
W-SPSA (Lu et al., 2015; Antoniou et al., 2015) uses instead a weight matrix to account for the correlation of the errors
in MOP with the parameters (OD flows) during gradient approximation. This enables the use of information from the
traffic simulator to discard the gradient signal from uncorrelated measurements. W-SPSA can also be seen as splitting
the original problem into multiple smaller SPSA problems (Antoniou et al., 2015). To show how W-SPSA works, we
re-write the loss function (2) by omitting the constants (observed measurements and prior values of the parameters),
using 𝜃 to denote the demand and supply parameters, and setting 𝑤2 = 𝑤3, 𝑍2 = 𝑍3, and 𝑃 = 𝑝 + 𝑞 for the sake of
verbosity:

𝐿(𝜃) =
𝑇
∑

𝑡=1

[

𝒘𝟏𝑍1 (𝑓 (𝜽)) +𝒘𝟐𝑍2 (𝜽)
] (7)

Now, the additive elements of 𝐿 can be arranged in a (𝑚 + 𝑃 )𝑇 array :

 =
[

𝒘𝟏𝑧1,1(𝜃) … 𝒘𝟏𝑧1,𝑚𝑇 (𝜃) 𝒘𝟐𝑧2,𝑚𝑇+1(𝜃) … 𝒘𝟐𝑧2,(𝑚+𝑃 )𝑇 (𝜃)
] (8)

Where 𝑧 corresponds to the element-wise error function for each parameter or measurement. The gradient es-
timation in W-SPSA makes use of the correlation between parameters and measurements based on the following
(𝑃𝑇 × (𝑚 + 𝑃 )𝑇 ) dimensional matrix :

𝑾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1,1 𝑤1,2 … 𝑤1,𝑚 … 𝑤1,𝑚𝑇 … 𝑤1,(𝑚+𝑃 )𝑇
𝑤2,1 𝑤2,2 … 𝑤2,𝑚 … 𝑤2,𝑚𝑇 … 𝑤2,(𝑚+𝑃 )𝑇
⋮ ⋮ ⋮ ⋮ ⋮

𝑤𝑃 ,1 𝑤𝑃 ,2 … 𝑤𝑃 ,𝑚 … 𝑤𝑃 ,𝑚𝑇 … 𝑤𝑃 ,(𝑚+𝑃 )𝑇
⋮ ⋮ ⋮ ⋮ ⋮

𝑤𝑃𝑇 ,1 𝑤𝑃𝑇 ,2 … 𝑤𝑃𝑇 ,𝑚 … 𝑤𝑃𝑇 ,𝑚𝑇 … 𝑤𝑃𝑇 ,(𝑚+𝑃 )𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where 𝑤𝑖,𝑗 is the correlation of 𝑖𝑡ℎ parameter with 𝑗𝑡ℎ measurement or parameter. Note that these weights 𝑤𝑖,𝑗 are
different from the weights of multi-objective optimization (as in the equation 2), which are denoted by bold symbol 𝒘.
The gradient calculation steps for the 𝑖𝑡ℎ parameter can be written as follows:
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�̂�𝑘𝑖
(

�̂�𝑘
)

=

∑(𝑚+𝑃 )𝑇
𝑗=1 𝑤𝑖𝑗

[

+
𝑗 −−

𝑗

]

2𝑐𝑘Δ𝑘𝑖
= 1

2𝑐𝑘Δ𝑘𝑖
𝑾 ⊤

𝑖
[

+ −−] (9)

where 𝑾 𝑖 is the 𝑖𝑡ℎ row of the weight matrix, and

+ =
[

𝒘𝟏𝑧1,1(𝜃+) … 𝒘𝟏𝑧𝑚𝑇 (𝜃+) 𝒘𝟐𝑧𝑚𝑇+1(𝜃+) … 𝒘𝟐𝑧(𝑚+𝑃 )𝑇 (𝜃+)
] (10)

− =
[

𝒘𝟏𝑧1,1(𝜃−) … 𝒘𝟏𝑧𝑚𝑇 (𝜃−) 𝒘𝟐𝑧𝑚𝑇+1(𝜃−) … 𝒘𝟐𝑧(𝑚+𝑃 )𝑇 (𝜃−)
] (11)

It can be seen that the gradient for each parameter is computed differently (equation 9) in W-SPSA instead of a
single gradient value for all parameters as in the case of SPSA (equation 6). The gradient matrix for all the parameters
can be written as follows:

�̂�𝑘 = 1
2𝑐𝑘

𝑾 ⊤ [

+ −−]⊘ Δ𝑘 (12)

where ⊘ is the operator for element-wise division of matrices. For further details on W-SPSA, we refer the reader
to Lu et al. (2015); Antoniou et al. (2015). Finally, momentum can be used with W-SPSA to obtain the running average
of the gradients across iterations for efficient convergence. Thus, the update step (equation 5) can be replaced with the
following:

𝑣𝑘+1 = 𝛽𝑣𝑘 − 𝑎𝑘�̂�𝑘
𝜃𝑘+1 = 𝜃𝑘 + 𝑣𝑘+1

(13)

Where 𝛽 is the momentum factor with a value between 0 and 1.
Algorithm 1 W-SPSA, source: Lu et al. (2015); Antoniou et al. (2015)
Input: SPSA gain coefficients {𝑎, 𝑐} and other parameters {𝛾 , 𝛼, 𝐴}, number of iterations 𝐾 or error tolerance 𝜏,

Initial parameter 𝜃0
Output: 𝜃†

1: 𝐿0 ← 𝐿
(

𝜃0
)

2: for k ← 1, 2, … , K do ⊳ minimize
𝜃={𝑋,𝑌 }

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑀𝑜
𝑡 ,𝑀

𝑠
𝑡
)

+𝒘𝟐𝑍1
(

𝑋𝑡, 𝑋𝑎
𝑡
)

+𝒘𝟑𝑍2
(

𝑌𝑡, 𝑌 𝑎
𝑡
)]

3: 𝑎𝑘 ← 𝑎∕(𝑘 + 𝐴)𝛼
4: 𝑐𝑘 ← 𝑐∕(𝑘)𝛿
5: 𝑊 ←𝑊𝑘
6: �̂�𝑘 ←

1
2𝑐𝑘

𝑾 ⊤ [

+ −−]⊘ Δ𝑘

7: 𝜃𝑘+1 ← 𝜃𝑘 - 𝑎𝑘�̂�𝑘(𝜃𝑘)
8: 𝐿𝑘 ←

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑓 (𝜽𝒌+𝟏)
)

+𝒘𝟐𝑍2
(

𝜽𝒌+𝟏
)]

9: if 𝐿𝑘 ≤ 𝐿𝑘−1 then
10: 𝜃† ← 𝜃𝑘
11: end if
12: if 𝐿𝑘 < 𝜏 then break
13: end if
14: end for
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4. Methodology
4.1. Overview

The complete methodological framework for off-line calibration is summarized in Figure 1. The figure shows the
application of the bias-correction heuristic on the initialized parameters. This is followed by automatic SPSA parameter
tuning and, finally, ensembling of W-SPSA with sequential demand calibration and supply calibration (only in case of
real data scenario). The following sub-sections provide the details on these aspects.

Figure 1: Proposed demand-supply offline calibration framework
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4.2. Sequential calibration
Equation 2 implies simultaneous calibration of demand and supply parameters since both sets of parameters are

optimized simultaneously in a single objective function. Even though simultaneous calibration of demand and supply
parameters provides efficient estimates (Toledo et al., 2014) (since at every iteration, both sets of parameters are consis-
tent), it comes with additional computational complexity and more degrees of freedom. On the contrary, in sequential
calibration, demand, and supply parameters are calibrated sequentially. It means the demand parameters are initially
calibrated while keeping supply parameters fixed, followed by calibrating supply parameters while keeping the de-
mand parameters fixed. Although this helps to reduce the complexity, this could be time-consuming since the process
is repeated till estimates of both sets of parameters are consistent. Therefore, in sequential calibration, Equation 2 can
be decomposed into two parts: demand (line 2 in algorithm 2) and supply (line 4) calibration.
Algorithm 2 Sequential demand and supply calibration
Input: weights for sensor counts and prior OD matrices 𝑤1 and 𝑤2, prior parameters 𝑋𝑎 and 𝑌 𝑎, number of sequential

iterations 𝑆
Output: 𝑋, 𝑌

1: for s ← 1, 2, … , S do
2: 𝑋†

𝑠 ← minimize
𝑋

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑀𝑜
𝑡 ,𝑀

𝑠
𝑡
)

+𝒘𝟐𝑍2
(

𝑋𝑡, 𝑋𝑎
𝑡
)]

⊳ Demand calibration
3: 𝑋𝑡 ← 𝑋†

𝑠
4: 𝑌 †

𝑠 ← minimize
𝑌

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑀𝑜
𝑡 ,𝑀

𝑠
𝑡
)

+𝒘𝟑𝑍3
(

𝑌𝑡, 𝑌 𝑎
𝑡
)]

⊳ Supply calibration
5: 𝑌𝑡 ← 𝑌 †

𝑠
6: end for

Sequential calibration provides the advantages of computational simplification of a large optimization problem
into two smaller problems. Also, optimization can be flexibly adapted for the demand and supply parameters. This is
important because demand and supply have distinct properties, such as a number of parameters, their range of possible
values, and parameter sensitivity (Ciuffo et al., 2014) toward simulation outputs. This reason motivates the selection
of suitable optimization techniques for each class of parameters. For instance, optimization algorithms scalable to
high dimensions, such as SPSA, make sense for demand parameters that are large in number. On the other hand, if
the number of supply parameters to be tuned is fewer, other state-of-the-art optimization techniques, such as Bayesian
optimization, can be applied.
4.3. Bias-variance decomposition

DODE can be seen as determining the optimal demand and supply parameters based on the given initial conditions
(starting parameters), and search process. Due to the estimation process, an error will occur between the estimated
demand (or supply) parameters and optimal demand parameters. Now, we define:

• Let ℎ(𝐱) represent the (family of) estimators to be learned from sequential minimization in algorithm 2, where
𝐱 = {𝑋, 𝑌 } are the possible solutions.

• Let ℎ∗(𝐱) be the best estimator i.e., which provides the best values of parameters.
•  represents the stochasticity of the search process which affects the outcome. This stochasticity can arise due

to the characteristics of the optimization algorithm and simulator.
• Then, bias is the error between the average estimator (averaged over  ) and the best estimator ℎ∗(𝐱)
• Randomness due to  will give rise to variance of a single estimator ℎ(𝐱)
• Finally, we have the noise or irreducible error, which is the difference between the unobserved true estimator 

and the best estimator ℎ∗(𝐱)
Using the Bias-Variance decomposition, the error can be written as:

expected error = (bias)2 + variance + noise (14)
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where
( bias )2 = ∫

{

𝔼 [ℎ(𝐱; )] − ℎ∗(𝐱))
}2 𝑝(𝐱)d𝐱

variance = ∫ 𝔼

[

{

ℎ(𝐱; ) − 𝔼 [ℎ(𝐱; )]
}2

]

𝑝(𝐱)d𝐱

noise = ∫ {ℎ∗(𝐱) −}2𝑝(𝐱,)d𝐱d

Initial values or the given parameter values can be seen as belonging to the sub-optimal estimator that needs im-
provement. Thus, DODE aims to correct initial parameter values to recover the “true” or desired values. If 𝑋∗ is the
best estimate (corresponding to ℎ∗(𝐱)) and 𝑋𝑎 is the initial/ current or given estimate, then:

𝑋𝑎 = 𝑋∗((1 − 𝐵𝑥) + 𝑅𝑥𝜖) (15)
where, 𝐵𝑥 and 𝑅𝑥 & 𝜖 control the systematic bias and randomness, respectively, in each parameter value. Here 𝑅𝑥

is the contribution due to the estimator variance and noise. Thus, the selected estimator should be the one that leads
to minimum error. In the following subsection, we provide a step-wise approach to addressing the bias and variance
of the estimators:
4.4. One-shot bias correction heuristic

As the true estimator  is unknown, it is impossible to compute the expected error. Therefore, this sub-section
introduces an alternative approach for bias correction (algorithm 3) applicable when the count data from links is
available. The functional relationship between the OD flows and sensor counts can be then represented using the
following equation (ignoring measurement errors):

𝐶 = 𝑨⊤𝑋 (16)
where, 𝐶 is the (𝑚𝑇 × 1) dimensional column matrix for the sensor counts, 𝑋 is the (𝑝𝑇 × 1) dimensional OD

demand demand column matrix, and 𝐴 is the (𝑝𝑇 × 𝑚𝑇 ) dimensional assignment matrix of demand onto the sensors.
In uncongested networks, link flows depend linearly on the demand because the link costs or assignment matrix in
uncongested networks do not depend on the demand. Now we can write the above equation for both the simulation
and real scenarios:

𝐶𝑜 = 𝑨𝒓
⊤𝑋𝑟 𝐶𝑠 = 𝑨𝒔

⊤𝑋𝑠 (17)
Under the assumptions of the uncongested network and similar demand-link assignment in real-world and simula-

tion, combining the above two equations gives us the following:

𝑋𝑟 = 𝐵𝑋𝑠 (18)
Where 𝐵 is the factor based on the sensor counts in simulation and measurements. Under assumptions of an

uncongested network, we only use a single run of the simulation to upscale or downscale the OD demand matrix for
a given time interval. Therefore, it is called a “one-shot”. We approximate 𝐵 in two ways, as shown in algorithm 3.
In first case, we simulate the initial demand 𝑋𝑎 and calculate the ratio of the cumulative simulated counts with the
cumulative measured counts (Line 5 in algorithm 3) where, 𝐶𝑠

𝑡,𝑚 and 𝐶𝑜
𝑡,𝑚 are the simulated counts and observed counts

during period 𝑡 for the 𝑚𝑡ℎ sensor, respectively, and 𝑁𝑐 is the number of sensors in the network. This scalar value is
termed the Naïve bias factor, which is used to upscale or downscale the initial values and estimate the intermediate
“bias-corrected” OD matrix {�̂�𝑡}.

The above factor has limitations as it assumes that demand for the current interval only influences the link incidence
of the same interval and ignores the correlation of count sensors with the demand. However, in practice, this is not
true. To address this, we can also use the simulator knowledge, i.e., the assignment matrix, to obtain an accurate Bias
Mahajan et al. Page 11 of 31
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Algorithm 3 Bias correction heuristic
Input: Initial OD parameters 𝑋𝑎, Other parameters including supply parameters 𝑌 , Road network and other fixed

supply parameters 𝐺, Observed sensor counts 𝐶𝑜

Output: �̂�𝑎

1: 𝑀𝑠
𝑡 ← 𝑓

(

𝑋𝑎
𝑡 ; 𝑌 ;𝐺

)

2: 𝐶𝑠
𝑡 , 𝑆

𝑠
𝑡 ← 𝑀𝑠

𝑡
3: if method=Naïve then
4: for 𝑡 ← 1, 2,… , 𝑇 do

5: �̂�𝑥
𝑡 ←

∑

𝑚∈𝑁𝑐
𝐶𝑠
𝑡,𝑚

∑

𝑚∈𝑁𝑐
𝐶𝑜
𝑡,𝑚

6: �̂�𝑎
𝑡 ←

𝑋𝑎
𝑡

�̂�𝑥
𝑡

7: end for
8: end if
9: if method=weighted then

10: �̂�𝑥 ← 𝐶𝑠 ⊘𝐶𝑜 ⋅𝑊 ⊤

11: �̂�𝑎 ← 𝑋𝑎 ⊘ �̂�𝑥

12: end if

factor. The idea is to estimate the bias factor for the demand flows based on the count sensors which fall along the
routes or paths during specific periods for the given demand flows. Thus, the contribution of the uncorrelated count
sensors and periods can be omitted. We use the weight matrix (same as the weight matrix in W-SPSA) in line 10 of
algorithm 3.

Due to the simplicity of the above heuristic, there is no guarantee that �̂�𝑎
𝑡 will lead to a better fit of sensor counts.

The proposed method can be applied to the demand corresponding to the off-peak hours before calibrating the demand
for the peak hours due to the possibility of congestion. If most of the network during peak hours is uncongested, then
the above relationship can be expected to approximate the upscaling or downscaling factor. Therefore, the accuracy of
the correction depends on the actual state of the network and how the congestion affects the demand-link assignment
within the calibration intervals. Nevertheless, this step is only an intermediate step and provides a principle for initial
adjustment in the given estimates. Further fine-tuning is performed by calibration algorithms, which are discussed in
the following sections.

Using initial demand i.e., 𝑋𝑎 for domain specification can be ineffective since initial values are disturbed due to
bias and noise, as shown in equation 15. Instead, we use �̂�𝑎 for specifying the domain since they have been partially
adjusted for the bias. Further, we specify a domain flexibly depending on each of the values of the parameter, using
the �̂�𝑎𝑙𝑥 ≤ 𝑋 ≤ �̂�𝑎𝑢𝑥, where, 𝑙𝑥 and 𝑢𝑥 are the multiplicative factors for specifying the lower bound and upper bound
on the parameters. Thus, at least two parameters (𝑙𝑥 and 𝑢𝑥) are needed to specify the domain for the complete set of
demand parameters. By using the �̂�𝑎, we take into account the (corrected) prior knowledge about the magnitude of
the parameters. The domain specification leads to a fan-shaped domain specification, where the domain is narrow for
the smaller values of the parameters, and vice-versa.
4.5. Automatic tuning of SPSA parameters using analytical model

We use an analytical assignment method approximated from the initial simulation run to automatically fine-tune
the calibration or optimization algorithm’s (such as SPSA) parameters. In this way, we avoid iterating over the com-
putationally expensive simulation-based dynamic assignment. Thus we call it a “simulator out of the loop,” i.e., the
calibration algorithm does not use DTA or simulation assignment but uses an alternate analytical assignment method.
Therefore, we do away with the need to fine-tune the algorithm’s parameters with the simulator in the loop, and thus
reduce the computational burden and save time. After tuning the calibration algorithm’s parameters, we run the cali-
bration with the simulator and similarly call it a “simulator in the loop,” i.e., The calibration algorithm involves iteration
or looping over the DTA simulator for traffic assignment.

To develop the analytical model, we only use an initial simulation-based assignment to derive the assignment
matrix. An assignment matrix is endogenous to the simulator based on the time-dependent OD flows and route choice
model and is derived from the incidence of the OD flows on the edges with count sensors. The functional relationship
Mahajan et al. Page 12 of 31
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between the OD flows and link counts can be then represented using the following equation:

�̂�𝑠 = 𝑨⊤�̂� (19)
where, �̂� are the sensor counts from the analytical assignment, 𝐴 is the assignment matrix derived from the simu-

lator. We use equation 19, as an approximation of the simulator to fine-tune the algorithm’s parameters. This analytical
assignment is way faster than running the simulator. This equation can also be seen as a meta-model of the simulation
model. This method does not use the sensor or link speeds, since the complex relationship between the link speeds and
OD flows is non-linear and cannot be analytically approximated using just the assignment matrix. Thus, to use this
approach, sensor counts must be used as MOP in the GoF function. The parameter (𝜙) tuning can be formulated as an
optimization problem (equation 20), keeping demand and supply parameters fixed, where, �̂�𝑠 is given by equation 19.

𝜙† ← minimize
𝜙

[

minimize
�̂�𝑡

𝑇
∑

𝑡=1

[

𝒘𝟏𝑍1
(

𝐶𝑜
𝑡 , �̂�

𝑠
𝑡
)

+𝒘𝟐𝑍2
(

�̂�𝑡, �̂�
𝑎
𝑡
)]

]

(20)

Overall, the automatic parameters tuning module can be viewed as a hierarchical optimization framework consisting
of the following:

1. First-level or inner optimization using calibration algorithm with an analytical model to calibrate the pseudo
demand parameters (�̂�𝑡) with a given set of parameters. This is shown by the inner part of the equation 20.
We cannot ensure the consistency between the demand and assignment matrix during optimization by using
the analytical model (equation 19) instead of the simulator. This is because when there is a change in the
demand parameters (�̂�), the assignment matrix (𝑨) is considered fixed during the inner minimization in equation
20. Thus, the calibrated demand parameters here are referred to as pseudo-demand parameters (�̂�𝑡) for the
algorithm’s parameter tuning. Still, they help decide the appropriate gain coefficient values for optimization
based on the magnitude of the parameters.

2. Second-level or outer optimization with Bayesian learning to fine-tune the algorithm’s parameters (𝑎𝑘, 𝑐𝑘) based
on the first-level optimization. The reason for using Bayesian optimization is that it is a powerful optimization
technique when the objective function is not observed, function evaluations are expensive, and the number of
parameters is limited. In this case, the objective function is shown by the outside part of the equation 20. A sim-
ple Bayesian optimization algorithm adapted from (Brochu et al., 2010) is presented in Algorithm 4. Bayesian
optimization uses an acquisition function 𝑢 to sample the next data point, deciding between exploration and
exploitation (Brochu et al., 2010). By specifying a smooth prior belief, such as Gaussian Process (GP), we can
calculate the posterior distribution of the GP by sampling the new data points iteratively. The posterior distribu-
tion is the surrogate model of our unobserved objective function (equation 20). The acquisition function samples
the points by evaluating the expected value of a surrogate function and selecting the point which maximizes it.
We refer the reader to the tutorial on Bayesian Optimization for further details (Brochu et al., 2010).

Algorithm 4 Bayesian optimization adapted from (Brochu et al., 2010)
1: for 𝑏 ← 1, 2,… , 𝐵 do
2: Let 𝑥 represent the gain coefficients {𝑎, 𝑐}, then find 𝑥𝑏 by optimizing the acquisition function over the GP:

𝑥𝑏 = argmax
𝑥

𝑢(𝑥|𝐷1∶𝑏−1)

3: Sample the objective function: 𝑦𝑏 = 𝐿(𝑥𝑏) ⊳ 𝐿 ← minimize
�̂�𝑡

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝐶𝑜
𝑡 , �̂�

𝑠
𝑡
)

+𝒘𝟐𝑍2
(

�̂�𝑡, �̂�𝑎
𝑡
)]

4: Augment the data 𝐷1∶𝑏 = {𝐷1∶𝑏−1, (𝑥𝑏, 𝑦𝑏)}
5: end for

Subsequently, the sequential optimization of demand (and supply) parameters (algorithm 2) is done using the
optimal calibration algorithm’s parameters obtained by the above hierarchical optimization module.
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4.6. Ensembling for variance reduction
Due to the under-determined nature of OD estimation, there can be multiple solutions for a given optimization

formulation (Equation at line 2 in algorithm 2) and local-search algorithms, such as SPSA, can result in the distinct local
minima resulting in parameters with considerable variance. Due to variance in the spatiotemporal demand patterns,
variance in sampling distribution or measurement errors, and simulation behavior stochasticity, some of these solutions
can be hypothesized as a manifestation of the desired or “true” solution. Parameter averaging, such as in the bagging
technique and SWA, can help to cancel out some of the variance in the individual solution so that the averaged solution
is closer to the desired solution.
Algorithm 5 W-SPSA with Bagging
Input: Bias-corrected dynamic OD matrices �̂�𝑎

𝑡 , number of bagging ensembles 𝐸, exploration parameter 𝜎2
Output: 𝑋† ⊳ Averaged or “bagged” estimate

1: for e ← 1, 2, … , E in parallel do ⊳ Bagging cycles
2: 𝜖 ← (0, 𝜎2)
3: �̂�𝑎 ← �̂�𝑎 + 𝜖
4: 𝑋†

𝑒 ← minimize
𝑋

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑀𝑜
𝑡 ,𝑀

𝑠
𝑡
)

+𝒘𝟐𝑍2
(

𝑋𝑡, �̂�𝑎
𝑡
)]

⊳ Demand calibration using W-SPSA
5: end for
6: 𝑋† ← 1

𝐸
∑

𝑋†
𝑒

4.6.1. Bagging (ensembling with cold restart)
Here we run multiple estimators, such as W-SPSA (in parallel or serial order), and record the final estimates of each

run or cycle. Since SPSA is stochastic due to the nature of its search process (see equation 6, where Δ𝑘 is a random
vector). Thus, different runs of SPSA with different seeds can lead to different local optima, even if SPSA parameters
are kept the same. In all the cycles, the same initial estimate is used, which is why this can be referred to as “cold
restart” (algorithm 5), since knowledge from the previous cycle is not used to influence the current cycle. However,
we add a small exploratory noise in the initial OD vector to promote the optimization algorithm to find new solutions.
With the cold restart, the algorithm has more freedom to explore other possible solutions which are scattered around
the desired solution. The final “bagged” estimate is the simple average of all the final estimates from all the W-SPSA
cycles. Further, specifically in bagging, individual models can be trained in parallel, thus offsetting the time cost of
multiple optimization cycles. For further details on bagging, we refer the reader to Dietterich (2000); Breiman (1996).
4.6.2. Stochastic Parameter Averaging (ensembling with warm restart)

We propose ensembling with warm restart and refer to this approach as SPA (Stochastic Parameter Averaging),
inspired by SWA (Izmailov et al., 2018), snapshot ensembling (Huang et al., 2017), and SGD with warm restarts
(Loshchilov and Hutter, 2016), for W-SPSA. We use the term “parameter” instead of weight since the former term is
more common in traffic calibration literature. In SPA, the gain coefficients are reset after fixed iterations or when the
objective function fitness is not changing much. The next optimization cycle uses the iterate from the previous cycle as
the initial parameters (algorithm 6); hence, it is referred to as “warm restart”. The resetting of SPSA gain coefficients
resembles the cyclic learning rate. The idea is after initial convergence around a probable solution, W-SPSA is further
pushed to explore the other solutions for improvement, but in the vicinity of the estimate from the previous cycle.
Finally, we take the simple average of cycle estimates to obtain the final “SPA” estimate.
4.7. Calibration of supply parameters

We use Bayesian optimization (Algorithm 4) for calibrating the selected supply parameters (line 4 in algorithm 2).
Different data sources, such as point-based, edge-based, and network-based, can be used to calibrate the parameters.
The type of supply parameters can vary based on the specific simulator. However, Bayesian optimization is a kind of
black-box optimization and thus accesses only the inputs (parameters) and outputs of the objective function. Therefore,
supply parameters to be calibrated are selected based on their sensitivity to the output data or corresponding MoPs. If
certain parameters are not much sensitive to the outputs, it is not possible to calibrate them with the given data.

Mahajan et al. Page 14 of 31



Autho
r-su

bmitted
vers

ion

Automating traffic simulation model calibration

Algorithm 6 W-SPSA with Stochastic Parameter Averaging (based on SWA (Izmailov et al., 2018))
Input: bias corrected dynamic OD matrices �̂�𝑡, number of SPA cycles 𝐸
Output: 𝑋𝑆𝑃𝐴 {Averaged SPA estimate}

1: for e ← 1, 2, … , E do
2: 𝑋†

𝑒 ← minimize
𝑋

∑𝑇
𝑡=1

[

𝒘𝟏𝑍1
(

𝑀𝑜
𝑡 ,𝑀

𝑠
𝑡
)

+𝒘𝟐𝑍2
(

𝑋𝑡, �̂�𝑎
𝑡
)]

3: 𝑋𝑆𝑃𝐴 = (𝑒−1)⋅𝑋𝑆𝑃𝐴+𝑋
†
𝑒

𝑒
4: �̂�𝑎 = 𝑋†

𝑒
5: end for
6: 𝑋† ← 1

𝐸
∑

𝑋†
𝑒

5. Experiment design and set-up
5.1. Overview

In this research, the demand parameters are the time-dependent OD matrices. Supply parameters control the traffic
propagation and route choice behavior. The details of scenarios with different simulation and data combinations for
varying levels of simulation complexity and data are as follows:

1. Scenario 1: Analytical assignment with synthetic sensor counts: A randomly generated demand-link assign-
ment matrix is used for mapping OD flows (randomly sampled using a distribution function) to sensor counts
using equation 19). In the case of synthetic experiments, where true OD parameters are generated/ known, the
algorithm is also validated by the error between the calibrated OD parameters and true OD parameters. The
method’s performance is evaluated on the fitness of sensor counts and OD matrices. This scenario focuses on
obtaining accurate demand estimates (line 2 of algorithm 2), which is why supply parameters are considered
fixed. Hence, this scenario is just restricted to demand calibration.

2. Scenario 2: SUMO and Munich network with synthetic sensor counts data: Given OD flows are simulated
(Moeckel et al., 2020) and corresponding sensor counts are recorded as desired counts. In this case, supply
parameters are kept constant and thus not part of the calibration. The method’s performance is evaluated on
both the fitness to measurements (counts, speeds) and OD matrices.

3. Scenario 3: SUMO and Munich network with real-world sensor counts: Given OD flows (Moeckel et al., 2020)
are used with sensor counts from real-world data sources (BAST: Bundesanstalt für Straßenwesen, 2023). We
use the best-performing approaches in the above scenarios and apply them here. In this case, true OD matrices
are not known, and the performance of the algorithm is only evaluated on sensor count fitness. To achieve the
best fitness, we calibrate the demand and the supply parameters sequentially (algorithm 2).

5.2. Initialization

Algorithm 7 Initialization
Input: Initial OD parameters 𝑋𝑡 (real case) or distribution 𝐷𝑋 (synthetic case), Other parameters including supply

parameters 𝑌 , Road network and other fixed supply parameters 𝐺, Observed sensor measurements 𝑀𝑜
𝑡 (real case)

Output: 𝑋𝑎, 𝐶𝑜
𝑡 , 𝑆

𝑜
𝑡

1: if scenario = synthetic then ⊳ Synthetic data scenario
2: 𝐗∗

𝑡 ∼ 𝐷𝑋 ⊳ Generate true OD matrix parameters
3: 𝑀𝑠

𝑡 ← 𝑓
(

𝐗∗
𝑡 ; 𝑌 ;𝐺

)

⊳ Generate true sensor measurements
4: 𝑋𝑎 ← 𝑋∗((1 − 𝐵𝑥) + 𝑅𝑥𝜖) ⊳ Perturb original parameters
5: 𝐶𝑜

𝑡 , 𝑆
𝑜
𝑡 ← 𝑀𝑠

𝑡 ⊳ Assign observed measurements
6: else ⊳ Real data scenario
7: 𝑋𝑎 ← 𝑋𝑡 ⊳ Assign seed matrix
8: 𝐶𝑜

𝑡 , 𝑆
𝑜
𝑡 ← 𝑀𝑜

𝑡
9: end if
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A “true” OD is sampled from an underlying distribution for the experiments with synthetic data. Based on the
empirical findings, we select a right-skewed distribution for sampling the OD demand, so a few OD pairs have many
trips mirroring large and dominating zones (such as external zones) within the study area. On the other hand, most
zones have a relatively smaller number of trips. The sampled demand matrix (in case of synthetic experiments) or initial
OD demand matrix (in case of real scenarios) is given as input to a traffic simulator (Algorithm 7), and corresponding
simulation outputs (link counts and link speeds) are recorded.

Subsequently, bias and randomness, proportional to the OD parameter’s magnitude, are added to the true demand
values according to equation 15. In this way, a “true” or desired OD matrix is corrupted or disturbed by adding artificial
bias and noise. This disturbed OD matrix is used as the initial or given OD matrix (𝑋𝑎), similar to practical situations
where the actual or “true” OD matrix is unknown. However, instead, an error-prone prior estimate is available. Due to
errors in the prior demand matrix, we do not use it in the calibration objective function, i.e., we set 𝑤2=0 and 𝑤3=0
in all the above scenarios (algorithm 2). Thus, optimization is guided by the fitness of counts or speeds measurements
(𝑤1=1), but the search is restricted within the domain or structure specified using bias-corrected prior estimates.
5.3. Gradient and performance evaluation

We use primarily Weighted Average Percentage Error (WAPE) (equation 21) as our evaluation criteria for OD fit-
ness and count fitness. WAPE weights the percentage errors based on their magnitude since the scale of the parameters
can vary across a wide range. WAPE, also called MAD/ mean ratio, is a preferred alternative over MAPE (Kolassa
and Schütz, 2007). This is crucial since the costs of inaccurate estimation of large OD demand flows can be more ad-
verse and thus need to be minimized. Apart from WAPE, we use Root Mean Squared Error (RMSE) for performance
evaluation.

WAPE =
∑

(|𝑥 − �̂�|)
∑

𝑥
(21)

In W-SPSA gradient calculation steps, we scale the estimators (𝑧1 and 𝑧2) relative to each other using the following
method (He et al., 2021):

𝑧2 = 𝑧2 ⋅
𝑚𝑎𝑥{𝑧1}
𝑚𝑎𝑥{𝑧2}

= 𝑧2 ⋅ 𝜂2 (22)

where 𝜂2 is the scaling factor. Alternatively, the measurements or parameters can be normalized or standardized
before evaluating the estimator. Similar scaling is used for speed measurements if included in the objective function.
5.4. Experiments

We conduct the grid-based evaluation of the effect of the parameters𝐵𝑥 and𝑁𝑥 on the effectiveness of our proposed
approach. Since we expect ensembling to be beneficial when the individual estimates are in the neighborhood of each
other, by averaging some of the variance can be canceled, and the mean of the estimates is closer to optimal values,
as compared to the individual estimates. We hypothesize that with the increase in the magnitude of bias and noise in
the initial OD values (𝑋𝑎), the resulting calibrated estimates can be far from each other, which can lead to reduced
effectiveness of the ensembling. This grid-based evaluation helps to define the value of 𝑁𝑥 for the following scenarios
2 and 3. We also add randomness to the sensor count measurements and check the impact on the calibrated estimates.
The noise is added to mimic random data errors according to �̂�𝑜 = 𝐶𝑜(1 + 𝑅𝑐𝜖). We incrementally add the proposed
methodological components to the baseline W-SPSA method and evaluate the improvement. The possibilities are
enumerated as follows:

1. W: Baseline, using only W-SPSA and manual specification of SPSA parameters.
2. BC: Bias correction heuristic
3. A-W: W-SPSA with Automatic SPSA’s parameter Tuning (AST).
4. W-B: W-SPSA with Bagging (B).
5. W-SPA: W-SPSA with Stochastic Parameter Averaging (SPA).
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6. A-W-B: W-SPSA with Automatic SPSA Tuning, followed by Bagging.
7. BC-A-W: Bias correction heuristic, followed by W-SPSA with Automatic SPSA Tuning.
8. BC-A-W-B: Bias correction heuristic, followed by Automatic SPSA Tuning for W-SPSA, with bagging

5.5. Computation burden
The computation requirement for convergence of the algorithm depends on many factors. We quantify the com-

putation requirement of our approach in terms of the number of objective function evaluations or traffic assignment
instances. Depending on the type of scenario, the type of traffic assignment (analytically or simulation-based) and its
time burden can be different. If all the methods are used, then the minimum number of times function evaluation is
done can be expressed as 1 + 𝑆((3 ⋅𝐸 ⋅𝐾) +𝐵). This is because we need one evaluation of BC and three evaluations
for each W-SPSA (ignoring gradient and simulation replications). We used a desktop PC (8 i7-11700F @ 2.50GHz
physical cores and 50 GB RAM) and a workstation (36 Intel Xeon @ 2.60 GHz physical cores and 156 GB RAM). A
single analytical traffic assignment requires less than 5 seconds due to its simplicity, whereas a single simulation-based
traffic assignment takes around 31 minutes.
5.6. Calibration platform description

Figure 2: Calibration platform and SUMO simulator coupling in Python

We developed a Python-based platform for the sequential calibration of the demand and supply parameters of the
large-scale mesoscopic traffic simulation in Simulation of Urban Mobility (SUMO) (Lopez et al., 2018). Figure 2 shows
a schematic representation of the platform. Given the simulation inputs (simulation network, traffic analysis zones,
detector locations) and parameters’ priors, the platform calibrates the demand according to the proposed methodology.
Other parameters that are fixed are, therefore, not part of calibration or outside of the scope of calibration. An initial
OD matrix is used to generate trips between edges in different Traffic Analysis Zones (TAZs). The routing algorithm
in SUMO assigns routes to these trips. We select a few supply parameters which influence traffic flow, junction delays,
and route choice behavior. These parameters are defined below:

1. Automatic or online routing is used for the traffic assignment. According to SUMO (2023a), this routing ap-
proach works by giving some or all vehicles the capability to re-compute their route periodically based on the
traffic conditions in the network. This kind of routing is also referred to as a “flexible one-shot assignment”
(Castiglione et al., 2014). The parameters influencing the routing of vehicles are

(a) re-routing probability: The probability for a vehicle to have a routing device
(b) re-routing period: The period with which the vehicle shall be rerouted
(c) re-routing adaptation steps: The number of adaptation steps for averaging
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Table 2
Enumeration of calibration parameters

Simulator → Analytical Black box
Data → 1. Synthetic 2. Synthetic 3. Real

Network parameters

𝑝 2500 5256 5256
𝑇 3 5 5

Δ𝑇 1 hour 1 hour 1 hour
𝑚 500 1166 450

SPSA parameters

𝛾 0.01 0.101 0.101
𝛼 0.7 0.602 0.602

Range for 𝑐 (0.01, 10) (0.01, 1) (0.01, 1)
Range for 𝑎 (1𝑥10−6, 1𝑥10−3) (1𝑥10−5, 1𝑥10−3) (1𝑥10−7, 1𝑥10−2)

𝐾 100 50 50

W-SPSA weight parameters

𝑤𝑟𝑜𝑢𝑛𝑑−𝑜𝑓𝑓 True True True
𝑤𝑐𝑢𝑡−𝑜𝑓𝑓 0.01 0.01 0.01

Other parameters

𝑆 upto 5
𝐵 upto 100
𝐸 upto 20

2. To influence the routing decision, the travel time of different types of edges can be scaled depending on their
priority, using the parameter edge priority factor (SUMO, 2023c). As a consequence, low-priority edges will
receive a penalty and have increased travel times, whereas high-priority edges receive little or no penalty.

3. The parameters which affect other delays (SUMO, 2023b) are
(a) tls_travel-time_penalty: This is a headway penalty to reduce the maximum flow across a signalized inter-

section.
(b) meso_minor_penalty: This is a fixed time penalty when passing a prioritized link.

We implement the W-SPSA by extending the Python SPSA implementation by Mayer (2017). All inputs pertaining
to the network specification, count detectors, demand zones, SPSA parameters, etc, for three scenarios, are shown in
Table 2. Values of SPSA parameters 𝛾 and 𝛼 are fixed based on initial sensitivity analysis. We select SPSA gain
coefficient 𝑎 and perturbation 𝑐 parameter for the automatic tuning module and thus 𝜙 = {𝑎, 𝑐}. Their search space is
specified in Table 2. The complete platform is implemented using Python and is available on GitHub (see footnote on
the front page).

6. Results
6.1. Automatic SPSA parameter Tuning (AST)

As discussed in Section 4.5, the automatic tuning procedure is solved as a hierarchical optimization process. The
first step deploys W-SPSA to calibrate the pseudo demand parameters, while the second step uses Bayesian learning to
fine-tune the SPSA parameters (𝑎𝑘, 𝑐𝑘). For the Bayesian learning model, we use Matérn kernel as the Gaussian prior,
and Upper Confidence Bound (UCB) as the acquisition function (Brochu et al., 2010). In all scenarios, we specified
the parameter space for 𝑐 as (1e-2, 1e1). The space for 𝑎 is set to (1e-6, 1e0) for scenario 1, whereas it is set to (1e-7,
1e1) for scenarios 2 and 3. The points are randomly sampled on the logarithmic scale for initial probing, followed by
Bayesian optimization. The number of iterations for initial probing/ exploration and number of iterations for Bayesian
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Figure 3: Automatic tuning of SPSA gain coefficients using Bayesian optimization for (left) scenario 1: synthetic simulator
and (right) scenario 3: SUMO with real data

optimization was set to {50, 100} for scenario 1, and {100, 200} for scenarios 2 and 3. In Figure 3, we show the results
of automatic SPSA parameter tuning for scenario 1 and scenario 3. The WAPE is lower for scenario 1 (scale of the
color bar in Figure 3), compared to scenario 3 since the former involves synthetic data and the analytical simulator has
a simpler loss surface without stochasticity. The approximated assignment matrix, in this case, is the same as the true
assignment matrix, which is static. In scenario 1, we see that the points are initially probed randomly over the specified
space of parameters during exploration, followed by a focused search based on the acquisition function. For scenario
1, we find that values of 𝑐 and 𝑎 in the ranges of (1e-2, 1e0) and (1e-6, 1e-4) are effective.

For scenario 3, the loss region is noisy due to errors from real data and analytical approximation of the assignment
matrix in place of the actual simulator. This is why parameter combinations do not have a clear boundary of lower
error and errors are also high. This stochasticity can be addressed by increasing the number of output averaging and
SPSA replications at the cost of additional computation. Still, a fuzzy pattern is evident for 𝑐 and 𝑎 in the range of
(1e0, 1e1) and (1e-5, 1e-4), where small errors are predominant. Thus, we conclude that automatic tuning of the SPSA
parameters using an analytical approximation of the simulator is effective since these values reduce the most error.
With these insights, the following scenarios 2 and 3 are instrumented with the above settings of the automatic tuning
module.
6.2. Scenario 1: Synthetic data with analytical assignment

We show the results of the grid-based evaluation for bagging effectiveness in Figure 4. At lower levels of ran-
domness (𝑅𝑥 in 30-40%), initial error in demand (𝑋𝑎) and sensor counts (𝑀𝑐) are about the same. At higher levels
of 𝑅𝑥, the initial error in 𝑋𝑎 (OD parameters) increases. During the initial increase in 𝑅𝑥 for 𝑅𝑥 < 30%, there is a
rapid increase in the error for higher values of 𝐵𝑥, whereas the error increase is gradual for smaller values of 𝐵𝑥. The
gradual error increase continues for higher values of 𝑅𝑥 in the case of lower 𝐵𝑥, but the error is stable for higher 𝐵𝑥.
For the sensor counts, the initial error stabilizes or even drops with an increase in 𝑅𝑥. This is because counts are the
weighted sum of the demand flows between respective OD zones. Thus, additional randomness in the ODs flows is
canceled due to weighted summation. There is no strong correlation between the initial error in OD demand flows and
corresponding counts in this range. Secondly, an increase in randomness cancels out the initial bias in some of the
parameters and thus results in a small drop in the initial count WAPE.

We notice that W-SPSA can minimize the objective function in all cases of bias and randomness. This is because
the sensor counts are used as MOP in the objective function and it is evident that the final count error is lower than the
initial count error. Further, the total error computed by equally weighing the error in sensor counts and OD parameters
is also lower. For low values of randomness (𝑅𝑥), the error is dominated by the factor 𝐵𝑥. Results indicate that
algorithm manages to correct even high bias values in OD parameters if 𝑅𝑥 is small. This is why the initial and final
total error gap is highest for low values of 𝑅𝑥.

The box plots in the middle column (Figure 4) show the WAPE of each individual estimate. The fitness of bagged
OD estimates is consistently lower than the individual estimates in all cases, which supports the effectiveness of the
bagging. However, the calibrated estimates are only better than the desired estimates for smaller values of 𝑅𝑥 (0-20%)
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in all the ranges of 𝐵𝑥. This observation implies that the algorithm can only move closer to the desired ODs 𝑋∗

for lower values of the 𝑅𝑥. This is because, firstly, increased randomness in the initial estimates will deteriorate the
structure of the initial demand specification and the quality of the domain specification of the demand parameters. At
high randomness values, the initial point and domain misguide the calibration algorithm to a local optimum which is
even far from the starting point resulting in higher error. Secondly, high 𝑅𝑥 is not translating to a higher error in sensor
counts due to the cancellation of the random errors. Thus, gradients relying on the sensor counts cannot effectively
guide the reach of the desired demand parameters. The conclusion is that desired OD parameters are only recoverable
when 𝑅𝑥 is small since, at higher values, the essential structure of the 𝑋∗ in 𝑋𝑎 starts to disappear. However, the
Bagging approach effectively improves the weighted fitness of both the demand and count parameters. Based on these
findings, in the black box simulation experiments i.e., scenario 2 and scenario 3, we set the randomness values as
𝑅𝑥=20%. This randomness value is similar to those used in the existing literature (Antoniou et al., 2016).

Figure 4: Scenario 1: Error at varying levels of 𝐵𝑥 and 𝑅𝑥, for a Synthetic scenario with 50 OD zones. The Final error
includes equally weighted sensor counts and OD demand estimates.

In Figure 5, we show the OD fitness error contours for single W-SPSA, SPA, and bagged estimates. Due to high
dimensional optimization, fitness error is influenced by thousands of demand parameters. The plot shows the condi-
tional error (because it depends on multiple parameters) region with the values of the pair of zones on X and Y-axes.
The columns in this figure correspond to two levels of 𝑅𝑥: 30% and 90%, both at 𝐵𝑥=0.6. Fitness error increases with
the increase in 𝑅𝑥. The single estimates are scattered in the region. However, the averaged estimates from SPA and
bagging lie with the region of lower errors than the single W-SPSA estimates. Thus, bagging and SPA help reduce the
variance in the estimates from single W-SPSA estimates.

We compare the performance of bagging and Stochastic Parameter Averaging (SPA) in Figure 6, where 𝐵𝑥=0.6
and 𝑅𝑥=30%. Here we report bagged estimates from 20 W-SPSA runs, each for 100 iterations. Further, we also
show the results of multiple SPA runs, each running for 2000 iterations. It is pointed out that function evaluations in
bagging (with 20 different W-SPSA cold restarts, each running for 100 iterations) are equivalent to those in a single
SPA run of 2000 iterations with warm restarts. Thus, the comparison between them is fair. The final count WAPE for
individual W-SPSA estimates (column 1 in Figure 6) stops to reduce at 0.05 after a few iterations. On the other hand,
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Figure 5: Contour plots showing the parameter values for selected pair of the zones with 𝐵𝑥=0.6, at different values of
the 𝑅𝑥. It can be seen that bagged ( ) or SPA (×) estimates lie in the lower error region as compared to the single SPSA
iterate ( ). The right column is the zoomed-in version of the plots in the left column. The plot shows the conditional error
region with the selected two OD zone pairs on X and Y-axes

count fitness WAPE for SPA continues to reduce up to a value of more than 0.025. In the SPA loss curve, we see that
each warm restart of the cyclic learning rate pushes the loss curve down faster than before the restart of the learning
rate. Individual estimates achieve an OD fitness WAPE of 0.70, whereas individual SPA achieves a WAPE of about
0.55. We find that averaging helps improve the final W-SPSA solution, compared to the single solutions from each.
Both bagging and SPA provide better OD estimates than the individual estimate from each W-SPSA run. However,
the averaged estimates from bagging show superior performance with a WAPE of 0.38 compared to the averaged SPA
estimates with a WAPE of 0.49. This implies that even though individual SPA estimates are more effective in fitting
the counts and ODs than individual W-SPSA estimates, the averaged estimates of bagging are better than those of
SPA. This could be because SPA prioritizes exploration around the initial local optima. If the initial local optimal is
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Figure 6: Scenario 1: OD and count fitness curves for bagging and stochastic parameter averaging with 𝐵𝑥=0.6 and
𝑅𝑥=30%.

insufficient, SPA does not explore sufficiently due to over-fitting, and SPA averaging fails to reduce the variance. In
the case of bagging, each estimate is obtained from exploration in a broader region. Thus, averaging the estimates has
a superior result. The results of averaged estimates from bagging are not too sensitive to the momentum parameter 𝛽,
as compared to those from the SPA. In bagging, five individual estimates reduce a significant part of the OD fitness
error, whereas, for SPA, the error reduction is gradual. This implies that a small number of cold restarts as in bagging
can give major benefits. Due to these reasons, we only used bagging or ensembling with cold restarts for the following
experimentation.

We compare the performance of different components of our methodology for OD parameter fitness and sensor
count fitness in Figure 7. In this case, we set 𝐵𝑥 = 0.8, test the performance for values of 𝑁𝑥 ranging from 10%
to 200%, and show WAPE and RMSE. The approaches compared are Bias correction (BC) using naive method, BC
with weighted method, BC with W-SPSA, W-SPSA with bagging, and BC with W-SPSA and bagging. Although a high
randomness factor leads to higher corresponding errors, the problem becomes more challenging since the structure of
the desired estimate is not identifiable from the initial matrix.

We find that the performance of the approaches depends on the 𝑅𝑥. All approaches with bias correction perform
equally well at low randomness values. This is an interesting finding since it implies a simple and computationally
inexpensive heuristic can achieve similar or better error performance as the W-SPSA optimization process for small
randomness in the initial OD matrix. At 𝑅𝑥>40%, bagging performs better than the other approaches, specifically as
seen from W-SPSA with bagging. This implies that for OD fitness, the bias-correction heuristic dominates at small
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Figure 7: Scenario 1: OD and count fitness (RMSE and WAPE) sensitivity with the change in the randomness parameter,
with different approaches using an analytical simulator (𝐵𝑥=0.8)

randomness, whereas bagging dominates at high randomness. For high randomness, initial estimates are unreliable;
thus, averaging multiple estimates helps provide better results. In the case of WAPE, OD fitness of BC with W-SPSA
without bagging show high errors than just using BC. Intuitively, the SPSA model works better when the objective
function has a clear descent direction. This is often the case when the objective function has a lower/ higher demand
with respect to the true demand (Cantelmo et al., 2015). However, as the BC heuristic removes bias related to, e.g.,
overestimation or underestimation, the performance of W-SPSA may be affected.

Looking at the fitness for sensor counts, we find that W-SPSA outperforms simple heuristics in matching the sensor
counts regarding both WAPE and RMSE. This is understandable since BC heuristics only adjust the OD parameters
without ensuring consistency with the true sensor counts. Simple heuristics work equally well if the randomness in
initial estimates is small (20% < 𝑅𝑥 < 30%), meaning that initial estimates sufficiently capture the structure of the
true estimates. The normalized total fitness shows that W-SPSA and bagging approaches achieve lower errors than
the BC heuristics even in high randomness. Thus approaches using W-SPSA and bagging are best when ensuring the
overall fitness of the counts and OD demand parameters. To speed up the convergence, BC can be used to adjust the
initial values of the OD parameters, followed by W-SPSA with bagging to ensure consistency with the MOPs, such as
counts.
6.3. Scenario 2: Munich scenario with SUMO simulator and synthetic data

We show the results of the calibration for the Munich scenario using the SUMO platform with synthetic counts
and speeds in Table 3. The first set of results corresponds to 𝐵𝑥 = 0.6 and a relatively smaller factor for randomness
(𝑅𝑥 = 20%) and uses only sensor counts or both sensor counts and link speeds in the objective function. We also add
artificial randomness to the sensor counts to mirror data errors. We perform an ablation study by using one or more
of the components of our methodology, namely W-SPSA (W), Bias Correction (BC), Automatic SPSA Tuning (A),
and Bagging (B). The initial WAPE errors in count, speed, and OD are 0.42, 0.03, and 0.45, respectively. Similarly,
the initial RMSE errors in count, speed, and OD are 288, 1.71, and 10.80, respectively. We define baseline as the
scenario using sensor counts as MOP, with only W-SPSA, where count fitness WAPE is 0.14. The corresponding
final speed and OD WAPE are 0.02 and 0.72, respectively. In this case, although counts and speeds fit better, the
estimated OD is worse than the initial OD values. This is because in the objective function minimization, W-SPSA
can converge to fit better to counts, but it lands in undesired local optima for the OD estimates, which is still away
from the desired optima. Thus, individual estimates from W-SPSA have worse OD fitness due to induced randomness
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Approach Which MOPs Count sensor Final error value
in objective? noise WAPE / RMSE

Count Speed Count Speed OD
Low noise (𝐵𝑥 = 0.6 & 𝑁𝑥 = 20)

Initial estimate - - - 0.42 / 288.12 0.03 / 1.71 0.45 / 10.80
W1(baseline) Yes No 0 0.14 / 89.34 0.02 / 0.85 0.72 / 19.75

BC Yes No 0 0.10 / 71.15 0.02 / 0.97 0.28 / 08.55
A-W-B Yes No 0 0.10 / 58.34 0.02 / 0.70 0.42 / 11.95

BC-A-W Yes No 0 0.11 / 72.96 0.02 / 1.00 0.63 / 18.81
BC-A-W-B Yes No 0 0.07 / 44.03 0.02 / 0.75 0.35 / 09.44

BC-A-W-B Yes Yes 0 0.11 / 81.75 0.02 / 0.89 0.41 / 11.35
BC-A-W-B Yes Yes 15 0.16 / 124.96 0.02 / 0.61 0.41 / 11.31
BC-A-W-B Yes Yes 30 0.28 / 230.30 0.02 / 0.72 0.46 / 14.41
BC-A-W-B Yes Yes 45 0.39 / 340.48 0.02 / 0.91 0.45 / 13.90

High noise (𝐵𝑥 = 0.6 & 𝑁𝑥 = 200)
BC Yes No 0 0.17 / 123.12 0.02 / 0.82 1.01 / 27.10

A-W-B Yes No 0 0.16 / 123.75 0.02 / 0.91 0.97 / 27.55
BC-A-W-B Yes No 0 0.14 / 95.15 0.02 / 1.06 1.03 / 30.26

1 W: W-SPSA; BC: Bias-Correction; A: Automatic SPSA tuning; B: Bagging

Table 3
Scenario 2: Results (WAPE and RMSE) of the Munich scenario with synthetic data

in the parameters during the optimization path. When using only BC, the OD fitness, count fitness, and speed WAPE
are 0.28, 0.10, and 0.02, respectively. When using W-SPSA with bagging (A-W-B), we obtain OD fitness of 0.42,
whereas count and speed fitness are 0.10 and 0.02. Thus, we find that bagging helps to provide improved count and
OD estimates over initial values as well as Baseline scenarios. In this case, we find speed and count fitness comparable
to the BC approach. Using BC-A-W provides better results than the baseline in terms of improvement over count and
OD fitness, but still, the estimated ODs are worse than the initial estimates in terms of WMAPE and RMSE. Adding
Bagging helps to address this variance in the estimated OD parameters since the approaches A-W-B and BC-A-W-B
have superior OD fitness than the baseline scenario. Only the latter approach outperforms the BC approach in terms
of count fitness. This means that at small levels of randomness in the initial estimates, a simple heuristic such as BC
can provide equal or better OD estimates than other approaches. However, we cannot simultaneously minimize fitness
with respect to MOPs. This is why the combination of BC, W-SPSA, and Bagging helps to obtain the estimates while
ensuring optimal fitness with respect to counts and speeds. For the given scenario, speed errors are low in all the cases
and are not sensitive to the count errors/ approach used. This is possible because most of the network is uncongested.
Therefore, they add little value to the calibration process.

When we add randomness to the sensor counts, we expect a reduction in fitness to the OD counts since the signal-to-
noise ratio of the gradients from MOPs reduces. Therefore, for different sensor noise levels, we see a gradual reduction
of OD fitness. Thus, the quality of sensor counts has important implications for the fitness of the OD parameters.
Another finding is that in our experiments, using speeds in MOPs leads to higher errors in estimates as compared
to using only counts in the MOPs. Since speed error is already low, they do not provide additional signals to the
calibration process. W-SPSA essentially decomposes the original problem into multiple smaller sub-SPSA problems.
By inclusion of speeds in the objective function, the number of MOPs increase, and due to the non-linear dependence
between speeds and OD flows, the complexity of sub-SPSA problems also increase, leading to a drop in the accuracy
of the estimates. However, speeds can provide additional context for better convergence in cases where the network
is significantly congested. We suppose that the trade-off between additional context from speed data and complexity
depends on the level and spread of congestion/ spill-back in the network and could be a matter of future research.

Then we set the OD randomness value to a high value (𝑁𝑥 = 200%) to simulate situations where the initial
demand estimates are of poor quality and, thus, the essential structure of the demand is lost. In the existing literature,
such extreme scenarios are not considered and tested in OD estimation. We observe the adverse effect of using the
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BC approach in these situations. This is because the BC approach is unreliable when the initial estimates have high
random errors; thus, the bias correction is ineffective. Therefore in these cases, A-W-B gives the best fitness for OD
parameters. Using BC-A-W-B provides the best count fitness in this case as well. However, the final estimates are still
far from the desired values. When the initial estimates have high errors, there is little hope of recovering the desired
estimates using the local search since the proposed methods will tend to converge to the local optima but far from the
desired optima.

The effects of bagging on the calibrated OD estimates are shown in Figure 8. The two plots on top and bottom
correspond to initial estimates with a good initial estimate (low randomness 𝑅𝑥=20%) and poor initial estimates (high
randomness 𝑅𝑥=200%). Bagging can benefit both cases, as the OD fitness improves with the number of estimates
used for averaging. We can see that averaging four individual estimates lead to most of the improvement in OD fitness.
However, the final OD fitness errors are much lower than initial estimates with low random errors. The calibrated
estimates in the case of bagging have lower variance, especially in case of low randomness, and is evident by calibrated
estimates closer to the 45◦ line. Another interesting thing to note in Figure 8 is that even though OD parameters have a
lot of scatter, counts have limited scatter. This implies that the variance in the OD parameters does not proportionally
translate into variance in link counts since counts are the weighted sum of the OD flows. Thus, even if the ODs have
significant random errors in case of poor estimates, the sensor counts will not have proportionately larger errors. Thus
the optimization algorithm will struggle to converge to a local optima solution using only counts as MOP, which is
undesirable. In case of poor estimates, the domain specification (𝑙𝑥, 𝑢𝑥) also needs to be broad enough to include the
desired solutions, which will further increase the complexity of the calibration and the possibility of more local optima.
Thus, the quality of good initial estimates from auxiliary sources cannot be overstated in the case of OD estimation.

Figure 8: Scenario 2: Effects of bagging with initial estimates with (top) small randomness (𝑅𝑥 = 20%) and (bottom)
high randomness (𝑅𝑥 = 200%)

6.4. Scenario 3: Munich scenario with SUMO and real-world data
This scenario requires a minimum of 400 function evaluations (𝑆 = 2, 𝐸 = 5, 𝐾 = 10, 𝐵 = 50) or 5-6 days

(reduced to 2-3 days if using parallelized W-SPSA and Bagging) to converge. However, these estimates can vary
depending on the preciseness of the initial demand and supply parameters. Regressing the error with the supply
parameters (𝑅2=0.90) shows that only priority factor, meso-minor penalty, rerouting adaptation, and tls travel-time
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penalty are significant. We also visually inspect the error surface. Figure 9 shows the error surface with supply
parameters. A meso-minor penalty of less than 10 gives optimal results. The optimal tls travel-time penalty is close
to 1, and rerouting adaptation is less than 5. The optimal priority factor lies between 0.35 to 0.60, and rerouting
probability lies between 0.40 to 0.50; however, lower values of the rerouting probability, such as close to 0.10 are also
feasible, conditional on other parameters. Based on the results, we select values of flow penalty, travel-time penalty,
and minor junction penalty are 0.57, 0.00, and 0.00, respectively. Rerouting probability, period, and adaptation interval
are 0.10, 80, and 1, respectively. We see that multiple values of the combination of supply parameters give desired or
good fitness of the sensor counts. This points to the fact that additional MOPs from other data sources, such as inter-
zone travel times, queue lengths, trajectory data, and travel speeds, should be considered for the further calibration of
these parameters.

Figure 9: Scenario 3: Fitness or error surface with the supply parameters

Figure 10 shows the plot of simulated and observed link sensor counts during 0700-1000 at different stages of
sequential demand and supply calibration. Before demand calibration, the scatter plot is not centered around a 45-
degree line for the counts on other link types (trunk and primary links), which implies room for improvement. WAPE
for other links ranges between 1.49 and 1.74. After demand calibration, WAPE for federal (motorway links) is in the
range of 0.24-0.40 for a time interval of 0700-1000 hours. WAPE for other links (trunk and primary links) is in the
0.51-0.53 for the same time interval. Overall WAPE varies between 0.39-0.47, which is lower than the corresponding
WAPE before calibration. Simulated counts for federal links during 0800-1000 hours are lower than the corresponding
observed counts. After supply calibration, WAPE for federal (motorway) links ranges from 0.19-0.25 for 0700-1000
hours. WAPE for other links (trunk and primary links) ranges from 0.40-0.48 for the same time interval. The over-
all WAPE varies between 0.32-0.37. Calibration of supply parameters substantially reduces the overall error. The
improved match for the federal links during the 0800-1000 is also evident.

We also show the hourly link volumes (Figure 11) on the network for the 0800-0900 hour, highlighting the compar-
ison between the uncalibrated and final calibrated models. The difference between the distribution of the flows between
the two cases is evident. In the uncalibrated model, there is lesser traffic on the links corresponding to the outer Au-
tobahn ring road (German translation: Äußerer Ring), as well as the middle ring road (Mittlerer Ring), whereas the
share of traffic on inner city links is higher. This points to lower impedance on inner roads, so a major share of the
traffic selects the routes through these links for their trips. On the contrary, in the calibrated model, traffic distribution
is consistent with the observed counts, with a major chunk of trips routed through the outer ring, middle ring roads,
and major radial roads. In Figure 12, we compare the uncalibrated, calibrated, and observed link speeds in the network.
The changes in the speeds between uncalibrated and calibrated models show that certain links (in red) in the former
model were congested but not in the latter. Further, we see a reasonable match of link speeds between observed data
and calibrated model.

7. Conclusion
This work presented an end-to-end sequential approach for demand (OD estimation) and supply calibration. Our

approach has components automating certain aspects, such as SPSA and tuning of supply parameters. We achieved
SPSA tuning using the Bayesian optimization algorithm and tackled bias and variance in the initial estimates by propos-
ing methods for each. We proposed a bias correction heuristic to correct the initial bias and thus reduce the burden on
the following optimization algorithm, i.e., W-SPSA. W-SPSA will stop improving the errors after most of the overall
bias has been corrected, i.e., beyond the limit where noise starts to dominate. This happens due to the cancellation of
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Figure 10: Scenario 3: Fitness of link sensor counts before demand calibration (top), after demand calibration (middle),
and followed by supply calibration (bottom). Data corresponding to federal links (motorways) and other links (trunk,
primary and secondary links) are highlighted in red and blue, respectively. The Centre line is 45◦, or the Y=X line, and
the lower and upper dotted lines are at Y=X/2 and Y=2X, respectively.

the random gradients dominated by the noise. We applied ensembling with bagging and SPA, and obtained estimates
that are precise compared to the estimates from W-SPSA without averaging. We show that averaging estimates can
be better than individual estimates, subject to the quality of the initial solution. We find that BC-A-W-B provides the
best fit of counts in both low and high-noise scenarios with simulation-based assignments. In low-noise scenarios,
BC works well to fit ODs and counts (second to BC-A-W-B), but in high-noise scenarios, an approach with bagging
provides a better fit. If the information from speed data is not conflicting with that from count data, then using them
does not lead to additional benefits or even a reduction in accuracy. Further, in high randomness scenarios, count data
is insufficient for reliable OD estimation.

Practically, the advantage of bagging is that it can be in parallel, and thus, with parallel compute nodes, it does not
cause substantial time overhead. Our approach can help modelers to calibrate their simulation models with little manual
effort. By releasing the codes, we also make a practical contribution to OD estimation; there is a large gap between
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Figure 11: Scenario 3: Simulated link flows and speeds during 0800-0900 hours (left) before calibration and (right) after
calibration.

Figure 12: Scenario 3: Simulated link speeds during 0800-0900 hours (left) before calibration, (middle) after calibration,
and (right) observed data (source: TomTom).

literature and open-source tools. An additional advantage of proposed ensembles is that they can be efficiently used
without parallel computing, which can be useful in practice (e.g., the number of licenses for ’commercial software’
often limits parallel computing in practice).

Future works should explore the transferability of the proposed approach and its derived conclusions to other real
networks. Our proposed OD estimation framework can be further augmented with any auxiliary OD demand data
sources in the objective function. Also, using additional data sources for MOPs will help reap additional benefits,
especially in real scenarios where true or global parameters are unknown. In these cases, W-SPSA may need to be
adapted according to the data source to reap benefits. For instance, the weight matrix based on the link assignment ma-
trix may not be the best choice for non-linear variables such as speed and thus need further enhancements. Ensembling
techniques such as bagging and SPA have proven effective in machine learning and thus should be explored for other
simulation-based optimization problems. The location of sensors can influence the quality of the estimated ODs. This
is related to the coverage or network observability the sensors provide. In our calibration experiments using synthetic
or analytical simulators, we use multiple random variations of detector configurations for each run and thus help to
tackle the variance due to such sensor location settings. For the experiments with SUMO simulators, doing this is
computationally expensive, and we consider investigation of this aspect beyond the scope of this paper and a matter of
future work. Methodological components such as BC are specific to traffic count data, and thus they cannot be applied
when such data are unavailable for calibration. Future work can be done to apply Probe Vehicle data (Antoniou et al.,
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2004) or Speed data for initial bias adjustment.
Experiments with the ensembling aspects, such as different types of gain coefficient restart techniques use of inter-

mediate estimates during each cycle are also interesting avenues. Although we used a mesoscopic simulation model
to ease the computation burden, the proposed methodological components are simulator agnostic. Theoretically, our
approach can also be applied to micro-simulation models in future works. Ensemble methods should also be explored
for application to calibrate parameters, even in car-following or lane-changing models. Still, there could be some prac-
tical challenges with micro-simulation, such as more number of parameters and their sensitivity to the measurements.
Further, the developed framework should be tested for application to online calibration where the fluctuations in the
demand and traffic flow are prominent and challenging to handle. A unique calibration parameter set is not guaranteed
in stochastic simulations involving high-dimensional inputs. The possibility of a multiple-parameter set arises from
the unobservable/ indeterminate system, wherein many solutions for given conditions are possible. However, some of
these parameters can be practically reasonable in real-world scenarios due to the stochasticity of the system. Thus,
having a single set of parameters but their distribution is insufficient. Here, multiple estimates during ensembling
cycles can also be used to quantify the uncertainty in parameters.
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