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1 Some Basic Notions of Convex Analysis

An introductory example. We consider the initial value problem

u′ + sign (u) = 0 , u(0) = u0 . (1.1)

Here, sign (x) = 1 if x > 0 and sign (x) = −1 if x < 0. For the moment we do not fix the
value of sign (0).

We look for solutions u : R+ → R. The only candidate which makes sense is

u(t) =

{
max{u0 − t, 0} , if u0 ≥ 0 ,

min{u0 + t, 0} , if u0 ≤ 0 .
(1.2)

Indeed, in the region {(t, v) : t ∈ R, v 6= 0} ⊂ R2 every solution of u′ + sign (u) = 0
satisfies (d/dt)|u| = −1. Since u(|u0|) = 0, for t > |u0| we cannot have u(t) 6= 0.

The function (1.2) is Lipschitz continuous, but not differentiable at t = u0. Moreover, it
depends continuously on u0. We obtain it as a solution of (1.1), almost everywhere in R+,
if and only if we set sign (0) = 0.

We can avoid having to find the correct value of sign (0) if we consider sign as a set-valued
function,

sign (x) =


1 , x > 0 ,

−1 , x < 0 ,

[−1, 1] , x = 0 ,

(1.3)

and write the differential equation as a differential inclusion

u′ + sign (u) 3 0 , u(0) = u0 . (1.4)

The solution (1.2) satisfies u′(t) + sign (u(t)) 3 0 almost everywhere in R+.

We will see in a moment that sign (x) = ∂ϕ(x) for ϕ(x) = |x|.
The definition (1.2) of the sign function has the property that every function α : R→ R
with α(x) ∈ sign (x) for all x ∈ R is nondecreasing.

The situation is different for the initial value problem

u′ − sign (u) = 0 , u(0) = u0 . (1.5)

Here we have

u(t;u0) =

{
u0 + t , if u0 > 0 ,

u0 − t , if u0 < 0 .
(1.6)

Since
lim
ε↓0

u(t; ε) = t , lim
ε↑0

u(t; ε) = −t , (1.7)

it is not possible to define a solution u(·, 0) : R+ → R such that both uniqueness and
continuous dependence on the initial value hold.

Some basic notions of convex analysis. In the following, all vector spaces are vector
spaces over the real numbers.
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Definition 1.1 (Epigraph)
Let V be a vector space, ϕ : V → (−∞,∞]. The subset

epiϕ = {(v, µ) : v ∈ V, µ ∈ R, µ ≥ ϕ(v)} (1.8)

of V × R is called the epigraph of ϕ.

D(ϕ) = {v : v ∈ V, ϕ(v) < +∞} (1.9)

is called the effective domain or simply domain of ϕ.

Denoting by pV : V × R→ V the projection to the first component, we get

D(ϕ) = pV (epiϕ) . (1.10)

We have epiϕ = ∅ if and only if ϕ(v) = +∞ for all v ∈ V . If this is not the case, ϕ is
called proper.

Definition 1.2 (Convex function)
Let V be a vector space. A function ϕ : V → (−∞,∞] is called convex, if epiϕ is convex.

Proposition 1.3 Let V be a vector space. A function ϕ : V → (−∞,∞] is convex if and
only if

ϕ(λv + (1− λ)w) ≤ λϕ(v) + (1− λ)ϕ(w) (1.11)

for all v, w ∈ V and all λ ∈ [0, 1].

Proof: Direct from the definitions. 2

Definition 1.4 Let V be a vector space, K ⊂ V convex. A function ϕ : K → (−∞,∞]
is called convex, if the function ϕ̃ : V → (−∞,∞],

ϕ̃(v) =

{
ϕ(v) , v ∈ K ,

+∞ , v /∈ K ,
(1.12)

is convex.

Let K ⊂ V . The function IK : V → [0,∞),

IK(v) =

{
0 , v ∈ K
+∞ , v /∈ K ,

(1.13)

is called the indicator function of K. This function is convex if and only if K is convex,
since epi IK = K × R+.

Lemma 1.5 Let V be a vector space, ϕ : V → (−∞,∞] convex. Then the sublevel sets
{v : v ∈ V, ϕ(v) ≤ α} and {v : v ∈ V, ϕ(v) < α} are convex for all α ∈ (−∞,∞].

Proof: Direct from the definitions. 2
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Definition 1.6 (Lower semicontinuity)
Let V be a Banach space. A function ϕ : V → (−∞,∞] is called (weakly) lower
semicontinuous if the sublevel sets

Mα = {v : v ∈ V, ϕ(v) ≤ α} (1.14)

are (weakly) closed for all α ∈ R.

Proposition 1.7 Let V be a Banach space. A function ϕ : V → (−∞,∞] is (weakly)
lower semicontinuous if and only if epiϕ is (weakly) closed in V × R.

Proof: “⇐”: Let α ∈ R. Then

Fα = {(v, α) : v ∈ V, ϕ(v) ≤ α} = epiϕ ∩ (V × {α}) (1.15)

is (weakly) closed in V ×R, therefore, too, the sublevel set Mα = j−1
α (Fα); here jα : V →

V × R denotes the embedding jα(v) = (v, α).
“⇒”: We show that the complement of epiϕ is open. Let (v, α) /∈ epi f , so ϕ(v) > α.
Choose an ε > 0 such that ϕ(v) > α+ε. By assumption, the set U = {v : ϕ(v) > α+ε} is
open in V , and W = U×(α−ε, α+ε) is an open neighborhood of (v, α) with W∩epiϕ = ∅,
since ϕ(w) > α + ε > β for all (w, β) ∈ W . 2

Corollary 1.8 Let V be a Banach space. A subset K ⊂ V is closed if and only if IK is
lower semicontinuous.

Proof: “⇒”: epi IK = K × [0,∞).
“⇐”: K = {v : IK(v) ≤ 0} . 2

Corollary 1.9 Let V be a Banach space, ϕ : V → (−∞,∞] convex. Then ϕ is lower
semicontinuous if and only if it is weakly lower semicontinuous.

Proof: In Banach space, a convex set is closed if and only if it is weakly closed. 2

Lemma 1.10 Let V be a Banach space, let ϕ : V → (−∞,∞] be convex and lower
semicontinuous. Then

ϕ(v) ≤ lim inf
n→∞

ϕ(vn) (1.16)

for all sequences vn ⇀ v.

Proof: Assume that vn ⇀ v, but ϕ(v) > lim inf ϕ(vn). Then there exists a subsequence
{vnk
} and an ε > 0 such that ϕ(vnk

) ≤ ϕ(v)− ε =: α. As ϕ is lower semicontinuous, the
sublevel set Mα is weakly closed, so ϕ(v) ≤ α, a contradiction. 2

Proposition 1.11 Let V be a reflexive Banach space, let ϕ : V → (−∞,∞] be convex,
lower semicontinuous and proper. Moreover, we assume that

lim
‖v‖→∞

ϕ(v) =∞ . (1.17)

Then there exists a u ∈ V such that

ϕ(u) = min
v∈V

ϕ(v) . (1.18)
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Proof: Let {un} be a minimal sequence for ϕ in V , that is, ϕ(un) ↓ infv∈V ϕ(v). Due to
(1.17), all sublevel set of ϕ and, hence, the sequence {un} are bounded in V . Since V is
reflexive, there exists a subsequence {unk

} with unk
⇀ u for some u ∈ V . From Lemma

1.10 it follows that
ϕ(u) ≤ lim inf

k→∞
ϕ(unk

) = inf
v∈V

ϕ(v) .

2

Lemma 1.12 Let V be a Banach space, let ϕi : V → (−∞,∞] be convex and lower
semicontinuous for all i ∈ I. Then supi∈I ϕi is convex and lower semicontinuous.

Proof:
epi (sup

i∈I
ϕi) =

⋂
i∈I

epiϕi .

2

Proposition 1.13 Let V be a Banach space, ϕ : V → (−∞,∞] convex, lower semicon-
tinuous and proper. Then

ϕ = sup{g| g : V → R affine and continuous, g ≤ ϕ} . (1.19)

Proof: “≥”: Obvious.
“≤”: It suffices to show: If (v, a) ∈ V × R with a < ϕ(v), then there exists an affine
continuous function g : V → R such that a ≤ g(v) and g ≤ ϕ. This is proved as
a consequence of the separation theorem, applied in the space V × R to such a point
(ϕ(v), a) and the closed convex set epiϕ. 2

Definition 1.14 (Subdifferential)
Let V be a Banach space, ϕ : V → (−∞,∞]. A functional u∗ ∈ V ∗ is called a subgradi-
ent of ϕ in u ∈ V , if ϕ(u) <∞ and

ϕ(v) ≥ ϕ(u) + 〈u∗, v − u〉 , for all v ∈ H. (1.20)

The set
∂ϕ(u) = {u∗ : u∗ ∈ V ∗, w is a subgradient for ϕ in u} (1.21)

is called the subdifferential of ϕ in u.
We set ϕ(u) = ∅ if ϕ(u) =∞.

If V = H is a Hilbert space, according to the Riesz isomorphism between H and H∗ we
also call w ∈ H a subgradient of ϕ in u ∈ H, if ϕ(u) <∞ and

ϕ(v) ≥ ϕ(u) + 〈w, v − u〉 , for all v ∈ H. (1.22)

The subdifferential is then given by

∂ϕ(u) = {w : w ∈ H, w is a subgradient for ϕ in u.} (1.23)

4



Example 1.15

(i) For ϕ : R → R, ϕ(v) = |v|, we have ∂ϕ(u) = {1} if u > 0, ∂ϕ(u) = {−1} if u < 0,
and ∂ϕ(0) = [−1, 1]. Thus, the subdifferential of the absolute value function equals
the set-valued sign function.

(ii) For ϕ : R→ R,

ϕ(v) =

{
1 , v > 0 ,

0 , v ≤ 0 ,

we have ∂ϕ(0) = {0}. But if we set

ϕ(v) =

{
1 , v ≥ 0 ,

0 , v < 0 ,

we have ∂ϕ(0) = ∅.

Definition 1.16 (Normal cone)
Let V be a Banach space, K ⊂ V convex, u ∈ K. An u∗ ∈ V ∗ is called a support
functional for K in u if

〈u∗, u− v〉 ≥ 0 , for all v ∈ K. (1.24)

The set
NK(u) = {u∗ : u∗ ∈ V ∗, u∗ is a support functional for K in u} (1.25)

is called the normal cone at K in u. For u /∈ K we set NK(u) = ∅.

Again, if V = H is a Hilbert space, one may replace the support functionals u∗ ∈ H∗ by
elements w ∈ H with 〈w, u− v〉 ≥ 0 for all v ∈ K. Then NK(u) becomes a subset of H
instead of H∗.

Lemma 1.17 Let V be a Banach space, K ⊂ V convex. Then

∂IK(u) = NK(u) , if u ∈ K, (1.26)

and ∂IK(u) = ∅ otherwise.

Proof: Direct from the definitions. 2

Proposition 1.18 Let V be a Banach space, ϕ : V → (−∞,∞], let u ∈ V with ϕ(u) <
∞. Then

ϕ(u) = min
v∈V

ϕ(v) ⇔ 0 ∈ ∂ϕ(u) . (1.27)

Proof: Direct from the definition. 2
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Lemma 1.19 Let ϕ : R→ (−∞,∞] convex, u ∈ D(ϕ). Then

d(t) =
ϕ(u+ t)− ϕ(u)

t
(1.28)

defines a nondecreasing function d : R \ {0} → (−∞,∞]. Moreover, d(−t) ≤ d(t) for all
t > 0.

Proof: We first consider d on (0,∞). For 0 < s < t we have

u+ s =
t− s
t

u+
s

t
(u+ t) ,

therefore

ϕ(u+ s) ≤ t− s
t

ϕ(u) +
s

t
ϕ(u+ t) .

We subtract ϕ(u) and divide by s to obtain

d(s) =
ϕ(u+ s)− ϕ(u)

s
≤ ϕ(u+ t)− ϕ(u)

t
= d(t) .

Now we consider d on (−∞, 0). For this purpose, we define ϕ̃ : V → (−∞,∞] by
ϕ̃(r) = ϕ(2u− r) Then ϕ̃ is convex, and the corresponding difference quotient becomes

d̃(t) =
ϕ̃(u+ t)− ϕ̃(u)

t
=
ϕ(u− t)− ϕ(u)

t
= −d(−t) .

By what we have proved above, d̃ is nondecreasing on (0,∞). Therefore, d is nondecreasing
on (−∞, 0).

Finally, we show that d(−t) = d(t) for all t > 0. Indeed,

ϕ(u) ≤ 1

2
ϕ(u− t) +

1

2
ϕ(u+ t) .

Thus ϕ(u)− ϕ(u− t) ≤ ϕ(u+ t)− ϕ(u) and therefore

d(−t) =
ϕ(u− t)− ϕ(u)

−t
≤ ϕ(u+ t)− ϕ(u)

t
= d(t) .

2

Proposition 1.20 Let H be a Hilbert space, let ϕ : H → (−∞,∞] be convex, lower
semicontinuous and proper, f ∈ H. Then the function J : H → (−∞,∞],

J(v) =
c

2
‖v − f‖2 + ϕ(v) , (1.29)

has a unique minimum u ∈ H, and

c(f − u) ∈ ∂ϕ(u) . (1.30)
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Proof: As ϕ is convex, lower semicontinuous and proper, the same is true for J . By
Proposition 1.13, J has an affine minorant, that is, there exists w ∈ H and α ∈ R such
that

ϕ(v) ≥ 〈w, v〉 − α , for all v ∈ H. (1.31)

It follows that

J(v) ≥ ‖v‖
( c

2
‖v‖ − c‖f‖ − ‖w‖

)
− α , for all v ∈ H.

Thus, J(v) → ∞ for ‖v‖ → ∞. Now Proposition 1.11 implies that J has a minimum
u ∈ H; this minimum is unique since J is strictly convex.

The optimality condition (1.30) can be obtained from the sum rule for subdifferentials.
Alternatively, an elementary proof is the following. Let v ∈ H be arbitrary. We set

vt = u+ t(v − u) , t ∈ [0, 1] .

For all t ∈ [0, 1] we have

0 ≤ J(vt)− J(u) =
c

2
‖(u− f) + t(v − u)‖2 − c

2
‖u− f‖2 + ϕ(vt)− ϕ(u)

= ct 〈u− f, v − u〉+
ct2

2
‖v − u‖2 + ϕ(vt)− ϕ(u) .

Dividing by t yields

0 ≤ c 〈u− f, v − u〉+
ct

2
‖v − u‖2 +

ϕ(vt)− ϕ(u)

t

≤ c 〈u− f, v − u〉+
ct

2
‖v − u‖2 + ϕ(v)− ϕ(u) ,

the latter since the difference quotient is monotone according to Lemma 1.19. Passing to
the limit t ↓ 0 yields

0 ≤ c 〈u− f, v − u〉+ ϕ(v)− ϕ(u) .

As v ∈ H was arbitrary, c(f − u) ∈ ∂ϕ(u) follows. 2
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2 Monotone Operators

Let V,W be sets, R ⊂ V ×W a relation. We may interpret a relation as a set-valued
mapping in the following way. Given a relation R, we define

A : V → P(W ) , (2.1)

by
Av = {w : w ∈ W, (v, w) ∈ R} . (2.2)

Instead of (2.1), we write
A : V ⇒ W . (2.3)

Conversely, any set-valued mapping A : V ⇒ W defines a relation R if we set

(v, w) ∈ R ⇔ w ∈ Av .

The domain and the range of A are defined by

D(A) = {v : v ∈ V, Av 6= ∅}

im (A) =
⋃
v∈V

Av (2.4)

Let A,B : V ⇒ W be set-valued mappings which arise from relations R and S, respec-
tively. B is called an extension of A if R ⊂ S; if moreover R 6= S, the extension is called
proper.

The inverse A−1 : W ⇒ V of A : V ⇒ W is defined as

A−1w = {v : v ∈ V, w ∈ Av} . (2.5)

We have D(A−1) = im (A) since

w ∈ Av ⇔ v ∈ A−1w

holds for all v ∈ V , w ∈ W .

Let W be a vector space, let A,B : V ⇒ W and λ ∈ R. We define

λA = {(v, λw) : v ∈ V , w ∈ Av} ,
A+B = {(v, w + z) : v ∈ V , w ∈ Av , z ∈ Bv} ,

cl (convA) = {(v, w) : v ∈ V , w ∈ cl (convAv)} .

For the sum we have D(A+B) = D(A) ∩D(B), as M + ∅ = ∅ for every subset M of H.

Definition 2.1 (Monotone operator)
(i) Let V be a Banach space. An operator A : V ⇒ V ∗ is called monotone if

〈v∗2 − v∗1, v2 − v1〉 ≥ 0 , for all v1, v2 ∈ H, v∗1 ∈ Av1, v∗2 ∈ Av2. (2.6)

(ii) Let H be a Hilbert space. An operator A : H ⇒ H is called monotone if

〈w2 − w1, v2 − v1〉 ≥ 0 , for all v1, v2 ∈ H, w1 ∈ Av1, w2 ∈ Av2. (2.7)

In both cases, A is called maximal monotone if A does not have a proper extension
which is monotone.
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Let f : R→ R be monotone nondecreasing. Then

f̃(r) = [f(r−), f(r+)] , f(r−) := sup
t<r

f(t) , f(r+) := inf
t>r

f(t) , (2.8)

defines a maximal monotone operator f̃ : R ⇒ R.

Using Zorn’s lemma one can show that every monotone operator has a maximal monotone
extension.

Lemma 2.2 Let V be a Banach space, let A,B : V ⇒ V ∗ monotone, λ ≥ 0.
(i) A−1, λA, A+B and cl (convA) are monotone.
(ii) If A is maximal monotone, then Av is closed and convex for all v ∈ H.
The same is true if H is a Hilbert space and A,B : H ⇒ H are monotone.

Proof: (i) follows directly from the definitions. (ii) holds since cl (convA) is a monotone
extension of A by (i), so A = cl (convA) if A is maximal monotone. 2

Definition 2.3 (Accretive operator)
Let V be a Banach space, A : V ⇒ V .

(i) A is called accretive if

‖v2 − v1‖ ≤ ‖(v2 + λw2)− (v1 + λw1)‖ (2.9)

holds for all v1, v2 ∈ V , w1 ∈ Av1, w2 ∈ Av2 and all λ > 0.
(ii) A is called maximal accretive if it is accretive and has no proper extension which
is accretive.
(iii) A is called m-accretive if it is accretive and im (I + A) = V .

Proposition 2.4 Let H be a Hilbert space, A : H ⇒ H.
(i) Let v, w ∈ H. Then

〈v, w〉 ≥ 0 ⇔ ‖v‖ ≤ ‖v + λw‖ for all λ > 0. (2.10)

(ii) A is monotone if and only if A is accretive.

Proof: (i) This follows from the equality

‖v + λw‖2 − ‖v‖2 = 2λ〈v, w〉+ λ2‖w‖2 .

(ii) We apply (i) with v = v2 − v1 and w = w2 − w1, where wi ∈ Avi.
2

Proposition 2.5 Let H be a Hilbert space, ϕ : H → (−∞,∞] convex, lower semicontin-
uous and proper. Then ∂ϕ : H ⇒ H is m-accretive.

Proof: Let v1, v2 ∈ H and w1 ∈ ∂ϕ(v1), w2 ∈ ∂ϕ(v2). Adding the inequalities

ϕ(v2)− ϕ(v1) ≥ 〈w1, v2 − v1〉
ϕ(v1)− ϕ(v2) ≥ 〈w2, v1 − v2〉

9



yields 〈w2 − w1, v2 − v1〉 ≥ 0, so ∂ϕ is accretive by Proposition 2.4. It remains to show
that

im (I + ∂ϕ) = H .

Let f ∈ H be arbitrary. We define J : H → (−∞,∞] by

J(v) =
1

2
‖v − f‖2 + ϕ(v) .

According to Proposition 1.20, J has a unique minimum u ∈ H, and f−u ∈ ∂ϕ(u). Thus
f ∈ im (I + ∂ϕ). 2

Example 2.6 On H = L2(Ω), Ω ⊂ Rn open, we define

Av = −∆v , D(A) = H1
0 (Ω) ∩H2(Ω) . (2.11)

We want to prove that A : H ⇒ H is m-accretive. Indeed, A : D(A) → H is monotone
(hence, accretive) because

〈Av, v〉 =

∫
Ω

−v(x) ·∆v(x) dx =

∫
Ω

‖∇v(x)‖2 dx ≥ 0 , for all v ∈ D(A).

Therefore, A is m-accretive if and only if the boundary value problem

−∆u+ u = f

has a solution u ∈ D(A) for every f ∈ L2(Ω). This is the case if Ω is bounded and ∂Ω
is sufficiently regular. We refer to the variational theory of elliptic partial differential
equations, see e.g. [8]. 2

Definition 2.7 (Nonexpansive operator)
Let H be a Hilbert space. A set-valued operator A : H ⇒ H is called nonexpansive if

‖w2 − w1‖ ≤ ‖v2 − v1‖ (2.12)

holds for all v1, v2 ∈ H, w1 ∈ Av1, w2 ∈ Av2.

Setting v2 = v1 in (2.12) we see that, for all v ∈ H, Av has at most one element.
Nonexpansive operators are therefore single-valued mappings A : D(A)→ H.

Lemma 2.8 Let H be a Hilbert space, A : H ⇒ H. Then A is accretive if and only if
(I + λA)−1 is nonexpansive for all λ ≥ 0.

Proof: This is a direct consequence of the definitions 2.3 and 2.7. 2

Lemma 2.9 Let H be a Hilbert space, A : H ⇒ H accretive. Then there are equivalent:
(i) im (I + λA) = H for some λ > 0,
(ii) im (I + λA) = H for all λ > 0.
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Proof: Let im (I+λA) = H for some λ > 0. Fix µ > λ/2. For arbitrary w ∈ H we define
Tw : H → H by

Tw(v) = (I + λA)−1
(λ
µ
w + (1− λ

µ
)v
)
.

Since 0 < λ/µ < 2 and (I + λA)−1 is nonexpansive, Tw is a contraction on H. Let v ∈ H
be the fixed point of Tw. Then

λ

µ
w + (1− λ

µ
)v ∈ (I + λA)v .

Subtracting v and multiplying by µ/λ gives w ∈ v + µAv. As w was arbitrary, im (I +
µA) = H for µ > λ/2. Now (ii) follows by induction. 2

Proposition 2.10 (Characterization of maximal monotone operators)
Let H be a Hilbert space, A : H ⇒ H. The following are equivalent:

(i) A is maximal monotone.

(ii) A is maximal accretive.

(iii) A is m-accretive.

(iv) A is accretive and im (I + λA) = H for all λ > 0.

Proof: “(i)⇔(ii)”: This follows, since by Proposition 2.4(ii) an extension of A is monotone
if and only if it is accretive.
“(iii)⇔(iv)”: This is a direct consequence of Lemma 2.9.
“(iii)⇒(ii)”: Let B be an accretive extension of A, let w ∈ Bv. Since A is m-accretive,
there exists u ∈ D(A) such that w + v ∈ u+ Au. Thus

w + v ∈ u+Bu , w + v ∈ v +Bv ,

so u, v ∈ (I + B)−1(w + v). Since (I + B)−1 is nonexpansive, we must have u = v, thus
w + v ∈ v + Av and finally w ∈ Av. It follows that A = B.
“(i)⇒(iii)”: This proof is long and delicate, it relies on a minimax theorem (an existence
result for saddle points) which in turn is based on Brouwer’s fixed point theorem. We
refer to [5] and to [2], Theorem 2.2. 2

Lemma 2.11 (Lipschitz perturbation)
Let A : H ⇒ H be m-accretive, B : H → H accretive and Lipschitz continuous with
D(B) = H. Then A+B is m-accretive.

Proof: Choose λ > 0 small enough such that λB : H → H is a contraction. For every
w ∈ H we have

u+ λAu+ λBu 3 w ⇔ u = Twu := (I + λA)−1(w − λBu)

As (I + λA)−1 is nonexpansive, Tw : H → H is a contraction and thus has a fixed
point u ∈ H. Therefore, w ∈ im (I + λ(A + B)). Since w was arbitrary, it follows from
Proposition 2.10 that A+B is m-accretive. 2

Part (ii) of the following lemma is a variant of what is known as Minty’s trick. It allows
to pass to the limit in the scalar product although both factors converge only weakly.
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Lemma 2.12 Let A : H ⇒ H be m-accretive, let wn ∈ Avn, vn ⇀ v and wn ⇀ w in H.
(i) If

lim inf
n→∞

〈wn, vn〉 ≤ 〈w, v〉

then w ∈ Av.
(ii) If

lim sup
n→∞

〈wn, vn〉 ≤ 〈w, v〉

then w ∈ Av and 〈wn, vn〉 → 〈w, v〉.

In particular, if one of the sequences converges strongly, then the scalar product converges
and w ∈ Av holds.

Proof: (i) Let ṽ ∈ D(A) and w̃ ∈ Aṽ. As A is accretive,

0 ≤ 〈wn − w̃, vn − ṽ〉 = 〈wn, vn〉 − 〈wn, ṽ〉 − 〈w̃, vn〉+ 〈w̃, ṽ〉 .

Passing to the limit inferior for n→∞ yields

0 ≤ lim inf
n→∞

〈wn, vn〉 − 〈w, ṽ〉 − 〈w̃, v〉+ 〈w̃, ṽ〉 ≤ 〈w − w̃, v − ṽ〉 . (2.13)

Thus Ã : H ⇒ H defined by Ãv = Av ∪ {w} and Ãṽ = Aṽ for ṽ 6= v is monotone. As A
is maximal, we must have w ∈ Av.
(ii) Setting ṽ = v and w̃ = w in (2.13) yields

〈w, v〉 ≤ lim inf
n→∞

〈wn, vn〉

which, together with the assumption, implies 〈wn, vn〉 → 〈w, v〉. 2

An important tool for the analysis of accretive resp. monotone operators are approxima-
tions by single-valued mappings, in particular the following one.

Let A : H ⇒ H be accretive. By Lemma 2.8,

Jλ := (I + λA)−1

is a nonexpansive operator for every λ > 0, with D(Jλ) = H if A is m-accretive.

Definition 2.13 (Yosida regularization)
Let A : H ⇒ H be accretive, λ > 0. The Yosida regularization Aλ : H → H of A is
defined as

Aλ =
1

λ
(I − Jλ) . (2.14)

Let ϕ : H → (−∞,∞] be convex, lower semicontinuous and proper. We have seen in
Proposition 1.20 that

v 7→ 1

2λ
‖v − u‖2 + ϕ(v)

has a unique minimum in H.
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Definition 2.14 (Moreau regularization)
Let ϕ : H → (−∞,∞] convex, lower semicontinuous and proper, let λ > 0. The function

ϕλ(u) = min
v∈H

(
1

2λ
‖v − u‖2 + ϕ(v)

)
(2.15)

is called the Moreau regularization of ϕ.

Example 2.15 (i) Let H = R, ϕ = I{0}, that is, ϕ(r) = 0 for r = 0 and ϕ(r) = ∞ for
r 6= 0. The Moreau regularization of ϕ is

ϕλ(r) = min
s∈R

(
1

2λ
|s− r|2 + ϕ(s)

)
=

1

2λ
r2 .

The subdifferential β = ∂ϕ : R ⇒ R is

β(r) =

{
R , r = 0 ,

∅ , r 6= 0 .

We have r ∈ (I + λβ)(s) if and only if s = 0 and r ∈ R, thus (I + λβ)−1 = 0. The Yosida
regularization of β becomes

βλ(r) =
r

λ
.

(ii) Let H = R, ϕ(r) = |r|. The Moreau regularization of ϕ is given by

ϕλ(r) =


r − λ

2
, r > λ ,

r2

2λ
, |r| ≤ λ ,

−r − λ
2
, r < −λ .

The subdifferential β = ∂ϕ equals the set-valued sign function

β(r) =


1 , r > 0 ,

[−1, 1] , r = 0 ,

−1 , r < 0 .

We have r ∈ (I + λβ)(s) if and only if r = s+ λ (if s > 0) resp. r = s− λ (if s < 0) resp.
r ∈ s+ [−λ, λ] = [−λ, λ] (if s = 0). It follows that

Jλ(r) =


r − λ , r > λ ,

0 , r ∈ [−λ, λ] ,

r + λ , r < −λ .

Therefore, the Yosida regularization of the sign function is

βλ(r) =
r − Jλ(r)

λ
=


1 , r > λ ,
r
λ
, r ∈ [−λ, λ] ,

−1 , r < −λ .
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(iii) Let K be a closed convex subset of a Hilbert space H, let ϕ = IK . Its Moreau
regularization is given by

ϕλ(u) = min
v∈H

( 1

2λ
‖v − u‖2 + IK(v)

)
=

1

2λ
(dist (u,K))2 .

According to Lemma 1.17, ∂IK(u) = NK(u), the normal cone. It follows that

v = Jλ(u) ⇔ u ∈ (I + λNK)(v) ⇔ 1

λ
(u− v) ∈ NK(v)

⇔ 1

λ
〈u− v, v − z〉 ≥ 0 for all z ∈ K

⇔ v = PK(u) .

In particular, Jλ = PK does not depend on λ. The Yosida regularization of the normal
cone mapping u 7→ NK(u) becomes

(NK)λ(u) =
1

λ
(u− PK(u)) .

2

Let A be m-accretive. According to Proposition 2.10 and Lemma 2.2(ii), the sets Av
are closed and convex. Denoting by PAv : H → H the projection onto Av, we define
A0 : D(A)→ H by

A0v = PAv(0) . (2.16)

Thus, A0v is the norm-minimal element of Av, ‖A0v‖ ≤ ‖w‖ for all w ∈ Av.

Proposition 2.16 Let A : H ⇒ H be m-accretive.
(i) For all λ > 0, its Yosida regularization Aλ is m-accretive.
(ii) We have

Aλv ∈ AJλv , for all v ∈ H, (2.17)

‖Aλu− Aλv‖ ≤
1

λ
‖u− v‖ , for all u, v ∈ H, (2.18)

(Aλ)µ = Aλ+µ , for all λ, µ > 0. (2.19)

(iii) For all v ∈ D(A) we have

‖Aλv‖ ↑ ‖A0v‖ , Aλv → A0v , for λ ↓ 0, (2.20)

and
‖Aλv − A0v‖2 ≤ ‖A0v‖2 − ‖Aλv‖2 . (2.21)

(iv) For all v /∈ D(A) we have
‖Aλv‖ ↑ +∞ . (2.22)

Proof: (ii) For Jλv = (I + λA)−1v we have

v ∈ (I + λA)(Jλv) = Jλv + λA(Jλv) .
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This implies (2.17) as Aλ = (I − Jλ)/λ. For u, v ∈ H we compute, using (2.17) for the
last estimate,

‖Aλv − Aλu‖‖v − u‖ ≥ 〈Aλv − Aλu, v − u〉
= 〈Aλv − Aλu, λAλv − λAλu〉+ 〈Aλv − Aλu, Jλv − Jλu〉
≥ λ‖Aλv − Aλu‖2 .

This proves (2.18) and that Aλ is monotone (hence, accretive). In order to prove (2.19)
we first note that

w = Aλv ⇔ v − λw = Jλv = (I + λA)−1v

⇔ v ∈ (I + λA)(v − λw)

⇔ v ∈ v − λw + λA(v − λw)

⇔ w ∈ A(v − λw) .

It follows that

w = Aµ+λv ⇔ w ∈ A(v − µw − λw) ⇔ w = Aλ(v − µw)

⇔ w = (Aλ)µv .

(i) As Aλ is accretive by (ii), by Proposition 2.10 it suffices to show that I + (λ/2)Aλ is
surjective. Now

w =
(
I +

λ

2
Aλ
)
v ⇔ v = Tw(v) := w − λ

2
Aλ(v) .

Since Tw is a contraction on H by (2.18), for every w ∈ H these equations have a solution
v ∈ H.
(iii) At first, let v ∈ H be arbitrary. As Aµ is accretive and single-valued, setting Jµλ =
(I + λAµ)−1 we have (Aµ)λv = AµJ

µ
λ v by (2.17) applied to Aµ, and

0 ≤ 〈Aµv − (Aµ)λv, v − Jµλ v〉 = λ 〈Aµv − (Aµ)λv, (Aµ)λv〉 .

Consequently, by (2.19)

‖Aλ+µv‖2 = ‖(Aµ)λv‖2 ≤ 〈Aµv,Aλ+µv〉 , ‖Aλ+µv‖ ≤ ‖Aµv‖ . (2.23)

In order to prove (iii), let now v ∈ D(A). Since A0v ∈ Av and Aλv ∈ AJλv, we get as
before

0 ≤
〈
A0v − Aλv, v − Jλv

〉
= λ

〈
A0v − Aλv, Aλv

〉
,

so
‖Aλv‖2 ≤

〈
A0v, Aλv

〉
, ‖Aλv‖ ≤ ‖A0v‖ . (2.24)

It follows from (2.23) and (2.24) that {Aλv} is bounded in H and ‖Aλv‖ ↑ γ as λ → 0
for some γ ≥ 0. Moreover

‖Aλ+µv − Aλv‖2 = ‖Aλ+µv‖2 + ‖Aλv‖2 − 2 〈Aλ+µv, Aλv〉 ,
≤ ‖Aλ+µv‖2 + ‖Aλv‖2 − 2‖Aλ+µv‖2

= ‖Aλv‖2 − ‖Aλ+µv‖2

(2.25)
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Since H is complete, Aλv → w as λ → 0 for some w ∈ H. Now v − Jλv = λAλv implies
that Jλv → v. From Lemma 2.12 we conclude that w ∈ Av. As ‖w‖ ≤ ‖A0v‖ and
since A0v is the unique element of minimum norm in Av ist, we must have w = A0v, so
‖Aλv‖ ↑ ‖A0v‖. This proves (2.20). Passing to the limit λ→ 0 in (2.25) proves (2.21).
(iv) We have seen in (2.23) that ‖Aλv‖ is nondecreasing as λ→ 0, for all v ∈ H. Moreover,
the computation (2.25) showed that if ‖Aλv‖ is bounded as λ→ 0, then Aλv → w ∈ Av
for some w ∈ H, so v ∈ D(A). Therefore, v /∈ D(A) implies that ‖Aλv‖ ↑ +∞. 2
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3 The Bochner Integral

In this chapter, [a, b] always denotes a compact interval in R. For A ⊂ [a, b] we denote its
characteristic function by χA,

χA(t) =

{
1 , t ∈ A ,
0 , t /∈ A .

(3.1)

Definition of the Bochner integral. It is based on the notion of a simple function,
which is a generalization of the notion of a step function.

Definition 3.1 (Simple function) Let V be a Banach space. A function u : [a, b]→ V
is called simple if it has the form

u(t) =
n∑
i=1

χAi
(t)vi , (3.2)

where n ∈ N, Ai ⊂ [a, b] measurable and vi ∈ V for 1 ≤ i ≤ n.

Lemma 3.2 Let V be a Banach space, u : [a, b]→ V simple. Then there exists a unique
representation of u in the form (3.2) satisfying⋃

i

Ai = [a, b] , Ai ∩ Aj = ∅ and vi 6= vj for i 6= j . (3.3)

It is called the canonical representation of u.

Proof: Omitted. 2

Definition 3.3 (Bochner measurability)
Let V be a Banach space. A function u : [a, b] → V is called Bochner measurable if
there exists a sequence of simple functions un : [a, b]→ V such that

lim
n→∞

un(t) = u(t) (3.4)

for almost all t ∈ [a, b].

Definition 3.4 Let V be a Banach space, u : [a, b]→ V a simple function

u(t) =
n∑
i=1

χAi
(t)vi . (3.5)

The Bochner integral of u is defined as∫ b

a

u(t) dt =
n∑
i=1

meas (Ai)vi . (3.6)

For measurable A ⊂ [a, b] we define∫
A

u(t) dt =

∫ b

a

χA(t)u(t) dt . (3.7)
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Definition 3.4 makes sense since the value of the right side of (3.6) does not depend on
which representation of u we choose.

As a direct consequence of the definition we obtain that for simple functions u, v : [a, b]→
V and numbers α, β ∈ R∫ b

a

αu(t) + βv(t) dt = α

∫ b

a

u(t) dt+ β

∫ b

a

v(t) dt , (3.8)

as well as ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ ≤ ∫ b

a

‖u(t)‖ dt . (3.9)

Lemma 3.5 Let V be a Banach space, un : [a, b] → V a sequence of simple functions
satisfying un → u almost everywhere. Then for every n ∈ N the function f : [a, b] → R
defined by

f(t) = ‖un(t)− u(t)‖ (3.10)

is measurable.

Proof: We have
f(t) = lim

m→∞
fm(t) , fm(t) := ‖un(t)− um(t)‖ , (3.11)

and fm is a simple function for all m ∈ N. 2

Let now un : [a, b] → V be a sequence of simple functions with un → u pointwise a.e.,
satisfying

lim
n→∞

∫ b

a

‖un(t)− u(t)‖ dt = 0 . (3.12)

(By Lemma 3.5 the integrand is measurable.) Due to∥∥∥∥∫ b

a

un(t) dt−
∫ b

a

um(t) dt

∥∥∥∥ ≤ ∫ b

a

‖un(t)− um(t)‖ dt

≤
∫ b

a

‖un(t)− u(t)‖ dt+

∫ b

a

‖um(t)− u(t)‖ dt ,
(3.13)

setting

yn =

∫ b

a

un(t) dt (3.14)

we obtain a Cauchy sequence {yn} in V . If vn : [a, b]→ V defines another sequence with
the same properties as {un},∥∥∥∥∫ b

a

vn(t) dt−
∫ b

a

un(t) dt

∥∥∥∥ ≤ ∫ b

a

‖vn(t)− un(t)‖ dt

≤
∫ b

a

‖vn(t)− u(t)‖ dt+

∫ b

a

‖un(t)− u(t)‖ dt .
(3.15)

Therefore, the limit of {yn} does not depend on the choice of the sequence {un}.
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Definition 3.6 (Bochner integral)
A function u : [a, b] → V is called Bochner integrable if there exists a sequence of
simple functions un : [a, b]→ V such that un → u pointwise a.e. and

lim
n→∞

∫ b

a

‖un(t)− u(t)‖ dt = 0 , (3.16)

In this case, the Bochner integral of u is defined as∫ b

a

u(t) dt = lim
n→∞

∫ b

a

un(t) dt . (3.17)

Lemma 3.7 Let V be a Banach space, let u, v : [a, b] → V Bochner integrable and
α, β ∈ R. Then αu+ βv is Bochner integrable, and∫ b

a

αu(t) + βv(t) dt = α

∫ b

a

u(t) dt+ β

∫ b

a

v(t) dt . (3.18)

Proof: This follows directly from the definitions. 2

Proposition 3.8 Let V be a Banach space. A function u : [a, b] → V is Bochner inte-
grable if and only if u is Bochner measurable and the function t 7→ ‖u(t)‖ is integrable.
In this case, ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ ≤ ∫ b

a

‖u(t)‖ dt . (3.19)

Proof: “⇒”: Let (un) be a sequence of simple functions with un → u pointwise a.e. and∫ b

a

‖u(t)− un(t)‖ dt = 0 . (3.20)

Since ‖un(t)‖ → ‖u(t)‖ for a.e. t ∈ [a, b], the function t 7→ ‖u(t)‖ is measurable. Then∫ b

a

‖u(t)‖ dt ≤
∫ b

a

‖u(t)− un(t)‖ dt+

∫ b

a

‖un(t)‖ dt <∞ . (3.21)

“⇐”: Let (un) be a sequence of simple functions with un → u pointwise almost every-
where. For any given ε > 0 we define vn : [a, b]→ V by

vn(t) =

{
un(t) , if ‖un(t)‖ ≤ (1 + ε)‖u(t)‖ ,
0 , otherwise.

(3.22)

vn is a simple function, since {t : ‖un(t)‖ ≤ (1 + ε)‖u(t)‖} is measurable. For

fn(t) = ‖vn(t)− u(t)‖ (3.23)

we have fn → 0 pointwise a.e. and

0 ≤ fn(t) ≤ (2 + ε)‖u(t)‖ . (3.24)
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From Lebesgue’s theorem on dominated convergence we obtain

lim
n→∞

∫ b

a

‖vn(t)− u(t)‖ dt = lim
n→∞

∫ b

a

fn(t) dt = 0 . (3.25)

Therefore, u is Bochner integrable. With (3.9) it follows that∥∥∥∥∫ b

a

vn(t) dt

∥∥∥∥ ≤ ∫ b

a

‖vn(t)‖ dt ≤ (1 + ε)

∫ b

a

‖u(t)‖ dt (3.26)

and thus ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ =

∥∥∥∥ lim
n→∞

∫ b

a

vn(t) dt

∥∥∥∥ ≤ (1 + ε)

∫ b

a

‖u(t)‖ dt . (3.27)

Since ε > 0 was arbitrary, (3.19) follows. 2

Function spaces. We now consider functions u : [a, b]→ V for which∫ b

a

‖u(t)‖p dt <∞ (3.28)

holds.

Definition 3.9 Let V be a Banach space, 1 ≤ p <∞. We define

Lp(a, b;V ) = {[u] |u : [a, b]→ V is Bochner measurable and satisfies (3.28) } . (3.29)

Here, [u] denotes the equivalence class of u with respect to the equivalence relation

u ∼ v ⇔ u = v almost everywhere . (3.30)

Due to Proposition 3.8, L1(a, b;V ) coincides with the vector space of all Bochner integrable
functions on [a, b].

Proposition 3.10 Let V be a Banach space, 1 ≤ p < ∞. The space Lp(a, b;V ) is a
Banach space when equipped with the norm

‖u‖Lp(a,b;V ) =

(∫ b

a

‖u(t)‖pV dt
) 1

p

. (3.31)

If V is a Hilbert space, then L2(a, b;V ) becomes a Hilbert space when equipped with the
scalar product

〈u, v〉 =

∫ b

a

〈u(t), v(t)〉V dt . (3.32)

Proof: Omitted. For a given Cauchy sequence, one constructs a limit in the same way as
in the scalar case V = R. In order to prove that this limit is Bochner measurable, one
uses a characterization of measurability due to Pettis. 2

Definition 3.11 For u : [a, b]→ R we define

ess sup
t∈[a,b]

u(t) = inf{M : M ∈ R, u(t) ≤M for almost all t ∈ [a, b]} . (3.33)

20



We now consider functions u : [a, b]→ V with values in a Banach space V for which

ess sup
t∈[a,b]

‖u(t)‖V <∞ . (3.34)

Definition 3.12 Let V be a Banach space. We define

L∞(a, b;V ) = {[u] |u : [a, b]→ V is Bochner measurable and (3.34) holds } . (3.35)

Proposition 3.13 Let V be a Banach space. Then L∞(a, b;V ) is a Banach space.

Proof: Again, this is proved in the same manner as in the case V = R. 2

Lemma 3.14 Let V be a Banach space. Then for all 1 ≤ p ≤ q ≤ ∞ we have

Lq(a, b;V ) ⊂ Lp(a, b;V ) . (3.36)

Proof: As in the case V = R. 2

Definition 3.15 Let V be a Banach space. We define

C([a, b];V ) = {u |u : [a, b]→ V continuous} . (3.37)

Definition 3.16 (Oscillation)
Let V be a Banach space, u : [a, b]→ V . We define the oscillation of u by

osc
[a,b]

(u; δ) = sup{‖u(t)− u(s)‖ : s, t ∈ [a, b], |t− s| ≤ δ} . (3.38)

Lemma 3.17 Let V be a Banach space, u : [a, b]→ V continuous. Then

lim
δ→0

osc
[a,b]

(u; δ) = 0 . (3.39)

Proof: The statement (3.39) is equivalent to the uniform continuity of u. 2

For a continuous function u : [a, b]→ V we have

ess sup
t∈[a,b]

‖u(t)‖ = max
t∈[a,b]

‖u(t)‖ , (3.40)

since continuity of u implies that ‖u(t)‖ ≤ ess sups∈[a,b] ‖u(s)‖ holds for all t.

Proposition 3.18 Let V be a Banach space. Then C([a, b];V ) is a Banach space when
equipped with the norm

‖u‖C([a,b];V ) = max
t∈[a,b]

‖u(t)‖ . (3.41)

Moreover, C([a, b];V ) can be identified with a closed subspace of L∞(a, b;V ).
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Proof: If u : [a, b]→ V is continuous, it is Bochner measurable: We define a sequence of
simple functions un : [a, b] → V by un(t) = u(ih), if t ∈ [ih, (i + 1)h), h = (b − a)/n is.
Then

‖un(t)− u(t)‖ ≤ osc
[a,b]

(u;h) , h =
b− a
n

, (3.42)

therefore un → u uniformly (pointwise convergence would already be sufficient for our
purpose). Moreover: Let (un) be a sequence in C satisfying [un]→ [u] in L∞. We choose
a subset N in [a, b] of zero measure such that un → u uniformly in M = [a, b] \N . Then
u is continuous on M . For an arbitrary given t ∈ N we choose a sequence (tk)k∈N in M
such that tk → t. Then

‖un(t)− um(t)‖ ≤ ‖un(t)− un(tk)‖+ ‖un − um‖L∞(a,b;V ) + ‖um(tk)− um(t)‖ ,

thus (un(t))n∈N is a Cauchy sequence. For t ∈ N , let ũ(t) be the limit of this Cauchy
sequence, and set ũ(t) = u(t) for t ∈ M . Then ũ : [a, b]→ V is continuous and [ũ] = [u].
2

Derivatives. For functions u : [a, b]→ V , the limit, if it exists,

u′(t) = lim
h→0

u(t+ h)− u(t)

h

is called the derivative of u at t.

Definition 3.19 Let V be a Banach space, u ∈ L1(a, b;V ). A function f ∈ L1(a, b;V ) is
called a weak derivative of u if∫ b

a

u(t)ψ′(t) dt = −
∫ b

a

f(t)ψ(t) dt for all ψ ∈ C∞0 (a, b). (3.43)

As in the scalar case one can show that the weak derivative (if it exists) is unique.

Definition 3.20 Let V be a Banach space, 1 ≤ p ≤ ∞. The Sobolev space W 1,p(a, b;V )
is defined as the space of all functions u ∈ Lp(a, b;V ) whose weak derivative exists and is
an element of Lp(a, b;V ).

Proposition 3.21 Let V be a Banach space, let u ∈ Lp(a, b;V ), 1 ≤ p ≤ ∞. Then there
are equivalent:
(i) u ∈ W 1,p(a, b;V ).
(ii) There exists a function ũ : [a, b] → V with ũ = u a.e., which is differentiable a.e. in
(a, b), whose pointwise derivative ũ′ belongs to Lp(a, b;V ) and which satisfies

ũ(t)− ũ(a) =

∫ t

a

ũ′(s) ds for all t ∈ [a, b]. (3.44)

In this case, ũ′ is a.e. equal to the weak derivative of u.

For the proof we refer to [5], Proposition A.6, and [2], Theorem 1.17.

Consequently, one writes u′ both for the weak derivative and for the pointwise a.e. deriva-
tive.
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Proposition 3.22 The Sobolev space W 1,p(a, b;V ) becomes a Banach space when equipped
with the norm

‖u‖W 1,p(a,b;V ) = ‖u‖Lp(a,b;V ) + ‖u′‖Lp(a,b;V ) .

If V is a Hilbert space, W 1,2(a, b;V ) becomes a Hilbert space with the scalar product

〈u, v〉 =

∫ b

a

〈u(t), v(t)〉 dt+

∫ b

a

〈u′(t), v′(t)〉 dt .

Proof: Omitted. 2
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4 Evolution Equations

In this chapter, H always denotes a real Hilbert space.

We investigate the initial value problem

u′ + Au = 0 , u(0) = u0 , (4.1)

as well as the corresponding integral equation

u(t) = u0 −
∫ t

0

Au(s) ds . (4.2)

Proposition 4.1 Let A : H → H be accretive and Lipschitz continuous with D(A) = H.
(i) The integral equation (4.2) has for every u0 ∈ H a unique solution u ∈ C([0,∞);H)
which moreover is continuously differentiable.
(ii) Let u and û be solutions of (4.2) for the initial values u0 and û0. Then the function
t 7→ ‖u(t)− û(t)‖ is nonincreasing, and in particular

‖u(t)− û(t)‖ ≤ ‖u0 − û0‖ . (4.3)

The function t 7→ ‖u′(t)‖ is nonincreasing.

Proof: (i) Unique solvability in C([0, T ];H) (and thus, in C([0,∞);H)) is a consequence
of Banach’s fixed point theorem. Since t 7→ Au(t) is continuous, u′ is continuous, too.
(ii) Since A is accretive,

d

dt

1

2
‖u(t)− û(t)‖2 = 〈u′(t)− û′(t), u(t)− û(t)〉 = −〈Au(t)− Aû(t), u(t)− û(t)〉 ≤ 0 .

Setting û(t) = u(t+ h) for given h > 0 we see that the function t 7→ ‖u(t+ h)− u(t)‖ is
nonincreasing. Dividing by h and passing to the limit h → 0 shows that t 7→ ‖u′(t)‖ is
nonincreasing. 2

Lemma 4.2 Let H be a Hilbert space, A : H ⇒ H accretive (resp. m-accretive), let
Ã : L2(0, T ;H) ⇒ L2(0, T ;H) be defined by

w ∈ Ãv ⇔ w(t) ∈ A(v(t)) a.e. in [0, T ]. (4.4)

Then Ã is accretive (resp. m-accretive).

Proof: Let A be accretive, let v1, v2 ∈ L2(0, T ;H), w2 ∈ Ãv2, w1 ∈ Ãv1. Then wi(t) ∈
A(vi(t)) for a.a. t. Therefore

〈w2 − w1, v2 − v1〉L2(0,T ;H) =

∫ T

0

〈w2(t)− w1(t), v2(t)− v1(t)〉H dt ≥ 0 .

Thus Ã is accretive. Let now A be m-accretive. We have to show that (I + Ã)u = w has
a solution u ∈ L2(0, T ;H) for every w ∈ L2(0, T ;H). Given w ∈ L2(0, T ;H), we define
u : [0, T ]→ H by

u(t) = (I + A)−1(w(t)) .
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As (I + A)−1 is nonexpansive and w is Bochner measurable, u is Bochner measurable,
too. Setting v0 = (I + A)−1(0) we get

‖u(t)− v0‖H ≤ ‖w(t)− 0‖H = ‖w(t)‖H a.e. in [0, T ].

Therefore, u ∈ L2(0, T ;H) and u+ Ãu 3 w. 2

We now consider the initial value problem

u′ + Au 3 0 , u(0) = u0 , (4.5)

in the case that A : H ⇒ H is m-accretive. We recall that A0v denotes the unique element
of minimal norm in Av. First we present an existence result. This goes back to Kato [9]
and Komura [10, 11].

Proposition 4.3 Let A : H ⇒ H be m-accretive, let u0 ∈ D(A). Then there exists a
Lipschitz continuous solution u : [0,∞)→ H of (4.5) with u(t) ∈ D(A) for all t > 0. Its
weak derivative u′ belongs to L∞(0,∞;H) and satisfies

u′(t) + Au(t) 3 0 a.e. in (0,∞), u(0) = u0 , (4.6)

‖u′‖L∞((0,∞);H) ≤ ‖A
0u0‖ , (4.7)

‖A0u(t)‖ ≤ ‖A0u0‖ for all t > 0. (4.8)

Proof: We consider the auxiliary problem

u′ + Aλu = 0 , u(0) = u0 , (4.9)

where we have replaced A by its Yosida regularization Aλ. By Proposition 4.1, (4.9) has
a continuously differentiable solution uλ : [0,∞)→ H which satisfies

‖Aλuλ(t)‖ = ‖u′λ(t)‖ ≤ ‖u′λ(0)‖ = ‖Aλuλ(0)‖ = ‖Aλu0‖ ≤ ‖A0u0‖ , (4.10)

the last inequality was proved in Proposition 2.16. We want to show that {uλ}λ has the
Cauchy property in C([0, T ];H) for every T > 0, that is,

lim
λ,µ→0

max
t∈[0,T ]

‖uλ(t)− uµ(t)‖ = 0 . (4.11)

For λ, µ > 0 we have (we omit the argument “t”)

u′λ − u′µ + Aλuλ − Aµuµ = 0 .

We multiply by uλ − uµ and get

d

dt

1

2
‖uλ − uµ‖2 + 〈Aλuλ − Aµuµ, uλ − uµ〉 = 0 . (4.12)

We decompose
uλ − uµ = λAλuλ + Jλuλ − µAµuµ − Jµuµ . (4.13)
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By Proposition 2.16 we have Aλv ∈ AJλv for all v ∈ H. Since A is accretive, it follows
from (4.13) that

〈Aλuλ − Aµuµ, uλ − uµ〉 ≥ 〈Aλuλ − Aµuµ, λAλuλ − µAµuµ〉

and furthermore, using (4.10)

≥ λ‖Aλuλ‖2 + µ‖Aµuµ‖2 − (λ+ µ)‖Aλuλ‖‖Aµuµ‖
≥ −(λ+ µ)‖Aλuλ‖‖Aµuµ‖ ≥ −(λ+ µ)‖A0u0‖2 .

Therefore, (4.12) implies

d

dt
‖uλ − uµ‖2 ≤ 2(λ+ µ)‖A0u0‖2 .

Integrating over [0, t] and taking the square root yields

‖uλ(t)− uµ(t)‖ ≤
√

2(λ+ µ)t‖A0u0‖ .

Thus, (4.11) is proved. As C([0, T ];H) is complete, there exists a u ∈ C([0, T ];H) such
that uλ → u and

‖uλ(t)− u(t)‖ ≤
√

2λt‖A0u0‖ . (4.14)

Moreover, Jλuλ → u in C([0, T ];H) as λ→ 0, since

‖Jλuλ(t)− uλ(t)‖ = λ‖Aλuλ(t)‖ ≤ λ‖A0u0‖ .

Let now t ∈ [0, T ] be arbitrary. Since {Aλuλ(t)}λ is bounded by (4.10), there exists
a weakly convergent subsequence {Aλkuλk(t)}k ⇀ z ∈ H. As Aλkuλk(t) ∈ AJλkuλk(t),
Lemma 2.12 implies that z ∈ Au(t). Thus u(t) ∈ D(A) and

‖A0u(t)‖ ≤ ‖z‖ ≤ ‖A0u0‖ . (4.15)

This proves (4.8). Since

‖u′λ(t)‖ = ‖Aλuλ(t)‖ ≤ ‖A0u0‖ , (4.16)

{u′λ} is bounded in L∞((0, T );H), so in L2(0, T ;H), too. Therefore, for some subsequence
and some w ∈ L2(0, T ;H) we have

u′λk ⇀ w in L2(0, T ;H), uλk → u in C([0, T ];H).

Passing to the limit in

uλk(t) = u0 +

∫ t

0

u′λk(s) ds

gives

u(t) = u0 +

∫ t

0

w(s) ds .

According to Proposition 3.21, u has a derivative (weak and pointwise a.e.), namely
u′ = w. As the derivative is uniquely determined, it follows that u′λ ⇀ u′ in L2(0, T ;H).
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In order to prove (4.7) we observe that the subset K = {v : ‖v(t)‖H ≤ ‖A0u0‖H a.e.} of
L2(0, T ;H) is convex and closed, hence weakly closed in L2(0, T ;H). Since u′λ ∈ K and
u′λ ⇀ u′, it follows that u′ ∈ K. This proves (4.7).

It remains to prove that −u′(t) ∈ Au(t) a.e. in (0, T ). Let Ã : L2(0, T ;H)→ L2(0, T ;H)
be the mapping from Lemma 4.2. As Aλ(uλ(t)) ∈ AJλ(uλ(t)) for all t > 0, we get

Aλ ◦ uλ ∈ Ã(Jλ ◦ uλ) .

Since Ã is m-accretive and Aλ ◦ uλ ⇀ −u′ as well as Jλ ◦ uλ → u hold in L2(0, T ;H), we
obtain −u′ ∈ Ãu by Lemma 2.12, so −u′(t) ∈ Au(t) a.e. in (0, T ). 2

The next proposition provides uniqueness.

Proposition 4.4 Let A : H ⇒ H be accretive, letf, f̂ ∈ L1(0, T ;H), let u, û ∈ W 1,1(0, T ;H)
solutions of

u′ + Au 3 f , û′ + Aû 3 f̂ , (4.17)

on some interval [s, t]. Then

‖u(t)− û(t)‖ ≤ ‖u(s)− û(s)‖+

∫ t

s

‖f(τ)− f̂(τ)‖ dτ . (4.18)

Proof: Since A is accretive, we obtain a.e. on [s, t] the estimate

‖u(τ)− û(τ)‖ d

dτ
‖u(τ)− û(τ)‖ =

d

dτ

1

2
‖u(τ)− û(τ)‖2 = 〈u(τ)− û(τ), u′(τ)− û′(τ)〉

≤
〈
u(τ)− û(τ), f(τ)− f̂(τ)

〉
≤ ‖u(τ)− û(τ)‖‖f(τ)− f̂(τ)‖ .

Therefore,
d

dτ
‖u(τ)− û(τ)‖ ≤ ‖f(τ)− f̂(τ)‖

holds a.e. on [s, t]. Integrating over [s, t] yields (4.18). 2

Here are some further properties of the solution of u′ + Au 3 0.

Proposition 4.5 In the situation of Proposition 4.3 the following holds:
(i) The solution u has a right derivative u′+(t) in every point t ≥ 0 which satisfies

u′+(t) + A0u(t) = 0 . (4.19)

(ii) The function t 7→ A0u(t) is right-continuous.
(iii) The function t 7→ ‖A0u(t)‖ is nonincreasing.

Proof: (ii) We first show that t 7→ A0u(t) is right-continuous at 0. Let tn ↓ 0 such that
A0u(tn) ⇀ ξ. As u(tn)→ u0 we have ξ ∈ Au0 by Lemma 2.12. Moreover, using (4.8),

‖ξ‖ ≤ lim inf
n→∞

‖A0u(tn)‖ ≤ ‖A0u0‖ .

It follows that ξ = A0u0. As therefore ξ does not depend upon the choice of the sequence
{tn}, we see that A0u(t) ⇀ A0u0 for t ↓ 0. Using again that ‖A0u(t)‖ ≤ ‖A0u0‖ we
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conclude that A0u(t) → A0u0 as t ↓ 0. Let now t0 > 0 be arbitrary. The translate
t 7→ u(t0 + t) uniquely solves the initial value problem for the initial value u(t0); by what
we have just proved, u is right-continuous at t0.
(iii) Again considering the translate just mentioned we see that ‖A0u(t0 + t)‖ ≤ ‖A0u(t0‖
for all t > 0 by (4.8).
(i) Again using the translate we see that for all t ≥ 0, h > 0

1

h
‖u(t+ h)− u(t)‖ =

∥∥∥1

h

∫ t+h

t

u′(s) ds
∥∥∥ ≤ ‖A0u(t)‖ .

For h→ 0 the middle term converges to ‖u′+(t)‖ a.e. in t. Thus

‖u′(t)‖ ≤ ‖A0u(t)‖ , −u′(t) ∈ Au(t) , a.e. in t.

Therefore, −u′(t) = A0u(t) a.e. in t. This implies

u(t+ h)− u(t)

h
+

1

h

∫ t+h

t

A0u(s) ds = 0

for all t ≥ 0, h > 0. By (ii), the second term converges to A0u(t) as h → 0. Therefore,
u′+(t) exists for all t, and (iii) is proved. 2

We now consider the initial value problem with nonzero right side,

u′ + Au 3 f(t) , u(0) = u0 . (4.20)

Proposition 4.6 Let A : H ⇒ H be m-accretive, let u0 ∈ D(A) and f ∈ W 1,1(0, T ;H).
Then there exists a unique u ∈ W 1,1(0, T ;H) which solves (4.20) a.e. in (0, T ). Moreover,
u is Lipschitz continuous and, for all t ≥ 0, u(t) ∈ D(A) and u′+(t) exists.

Proof: One considers solutions uλ of the auxiliary problems

u′ + Aλu = f(t) , u(0) = u0 .

and modifies the proof of Proposition 4.3 in a suitable manner. We refer to [20], Theorem
IV.4.1. 2

In order to treat more general right sides and initial values, we generalize the notion of a
solution on the basis of the estimate (4.18). Let f ∈ L1(0, T ;H) and u0 ∈ D(A) be given.
Let fn ∈ W 1,1(0, T ;H) and un0 ∈ D(A) such that fn → f in L1(0, T ;H) and un0 → u0

in H. Let un ∈ W 1,1(0, T ;H) be the solution to fn and un0 according to Proposition 4.6.
Applying (4.18) with s = 0 and t = T to solutions un and um we obtain

‖un − um‖C([0,T ];H) ≤ ‖un0 − um0 ‖H + ‖fn − fm‖L1(0,T ;H) . (4.21)

Therefore, {un} is a Cauchy sequence in C([0, T ];H), so un → u for some u ∈ C([0, T ];H).
This limit does not depend on the choice of the approximating sequence, so u is uniquely
defined by this process. It is called the generalized solution of (4.20) for f ∈ L1(0, T ;H)
and u0 ∈ D(A).

In the case where A = ∂ϕ, the generalized solution is more regular than just an element
of C([0, T ];H), if f belongs to L2.
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Proposition 4.7 Let A = ∂ϕ where ϕ : H → (−∞,∞] is convex, lower semicontinuous
and proper. Let f ∈ L2(0, T ;H) and u0 ∈ D(A). Then the generalized solution u of (4.20)
satisfies u(t) ∈ D(A) a.e. in (0, T ) as well as

ϕ ◦ u ∈ L1(0, T ) ,
√
tu′ ∈ L2(0, T ;H) . (4.22)

If moreover u0 ∈ D(ϕ), then

ϕ ◦ u ∈ L∞(0, T ) , u′ ∈ L2(0, T ;H) . (4.23)

Proof: See Theorem IV.4.3 in [20]. 2

Example 4.8 In a Hilbert space H we consider

u′ + ∂ϕ(u) 3 f , u(0) = u0 , (4.24)

where ϕ = IK is the indicator function of a closed convex subset K of H. Since ∂ϕ = NK ,
the normal cone, the differential inclusion becomes

f(t)− u′(t) ∈ NK(u(t)) .

This is equivalent to the evolution variational inequality

〈u′(t), v − u(t)〉 ≥ 〈f(t), v − u(t)〉 for all v ∈ K,

u(t) ∈ K .

2

Example 4.9 In H = L2(Ω) we consider

u′ + Au+ ∂ϕ(u) 3 f , u(0) = u0 , (4.25)

where A = −∆ (or a more general elliptic operator) and again ϕ = IK with K ⊂ H closed
and convex. One can show that under certain conditions the sum A+ ∂ϕ is m-accretive.
The differential inclusion becomes

f(t)− (u′(t)−∆u(t)) ∈ NK(u(t)) .

This is equivalent to the evolution variational inequality

〈u′(t)−∆u(t), v − u(t)〉 ≥ 〈f(t), v − u(t)〉 for all v ∈ K,

u(t) ∈ K .

Written more explicitly, the inequality has the form∫
Ω

(∂tu(t, x)−∆u(t, x))(v(x)− u(t, x)) dx ≥
∫

Ω

f(t, x)(v(x)− u(t, x)) dx , for all v ∈ K.

2
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5 The play and the stop operator

In this section we discuss the definition and some basic properties of the so-called play
and stop operators.

Rate independence. Let W be an operator which maps time-dependent functions u
with values in an arbitrary set X to time-dependent functions w = W [u] with values in
some set Y . Such an operator W is called rate independent if it commutes with time
transformations ψ : [a, b]→ [a, b] of the underlying time interval [a, b],

W [u ◦ ψ] = (W [u]) ◦ ψ . (5.1)

The time transformations are assumed to be nondecreasing,

s ≤ t ⇒ ψ(s) ≤ ψ(t) ,

and surjective; in particular, ψ(a) = a, ψ(b) = b and ψ is continuous.

The operator W is said to possess the Volterra property, if for every t the value w(t)
does not depend upon the future values u(s), s > t, of the function u. A rate-independent
operator which possesses the Volterra property is called a hysteresis operator.

In the period 1965 to 1985, a basic theory of hysteresis operators was developed by
Krasnosel’skĭı and his group, see the monograph [12]. Other monographs in this tradition
are [15, 21, 6, 13]. There is also the collection [4].

The scalar play. It arises when the diagonal w = u in the u-w-plane (which represents
the identity operator w = Iu on functions) is split into two separate straight lines w = u−r
und w = u+ r, where r > 0 is given. On the right line w = u− r one can only ascend, on
the left line one can only descend, and in the region in between w has to remain constant.
If the input function u is continuous and monotone, this behaviour is described by

w(t) = fr(u(t), w(a)) , t ≥ a ,

where
fr(u,w) = max{u− r,min{u+ r, w}} . (5.2)

If u : [a, b] → R is continuous and piecewise monotone with respect to the partition {ti}
of [a, b] (that is, u is monotone on each subinterval [ti, ti+1]), we set

w(t) = fr(u(t), w(ti)) , ti < t ≤ ti+1 , (5.3)

starting with
w(a) = fr(u(a), wa) (5.4)

wa ∈ R being a given initial value. In this manner we obtain an operator

w = Pr[u;wa] , Pr : Cpm[a, b]× R→ Cpm[a, b] . (5.5)

Here, Cpm[a, b] denotes the space of all continuous and piecewise monotone functions on
[a, b] with values in R.

For r = 0 we get back the identity P0 = I since f0(u,w) = u.

Maximum norm estimate. The basic maximum estimate for the scalar play arises
from a corresponding estimate for the function fr.
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Lemma 5.1 We have

|fr1(u1, w1)− fr2(u2, w2)| ≤ max{|u1 − u2|+ |r1 − r2| , |w1 − w2|} (5.6)

for all rj ≥ 0, uj, wj ∈ R.

Proof. We have

|max{x1, y1} −max{x2, y2}| ≤ max{|x1 − x2|, |y1 − y2|} ,
|min{x1, y1} −min{x2, y2}| ≤ max{|x1 − x2|, |y1 − y2|} ,

for all x1, x2, y1, y2 ∈ R. Consequently

|fr1(u1, w1)−fr2(u2, w2)| ≤ max{|(u1−r1)− (u2−r2)| , |(u1 +r1)− (u2 +r2)| , |w1−w2|} .

This implies the assertion. 2

Proposition 5.2 The operator Pr defined in (5.2) – (5.5) can be extended uniquely to a
Lipschitz continuous operator

Pr : C[a, b]× R→ C[a, b] ,

and there holds

‖Pr1 [u1;wa,1]− Pr2 [u2;wa,2]‖∞ ≤ max{‖u1 − u2‖∞ + |r1 − r2| , |wa,1 − wa,2|} (5.7)

for all u1, u2 ∈ C[a, b] and all wa,1, wa,2 ∈ R.

Proof. Since Cpm[a, b] is dense in C[a, b] it suffices to show that (5.7) holds for u1, u2 ∈
Cpm[0, T ]. Let {ti} be a partition of [a, b] such that both u1 and u2 are monotone on all
subintervals [ti, ti+1]. By Lemma 5.1, on each subinterval, setting wj(t) = Prj [uj;wa,j](t),

|w1(t)− w2(t)| ≤ max{max
s∈[a,t]

|u1(s)− u2(s)|+ |r1 − r2| , |w1(ti)− w2(ti)|}

for all t ∈ [ti, ti+1], therefore

|w1(ti+1)− w2(ti+1)| ≤ max{‖u1 − u2‖∞ + |r1 − r2| , |w1(ti)− w2(ti)|} .

The assertion now follows by induction over i. 2

The scalar stop. Let r ≥ 0. For a given input u ∈ C[a, b] and initial value za ∈ [−r, r],
the stop is defined by

Sr[u; za] = u− Pr[u;wa] , (5.8)

where wa = u(a)− za. Thus, the output functions

z = Sr[u; za] , w = Pr[u;wa]

are related by
u(t) = w(t) + z(t) , t ∈ [a, b] . (5.9)

Variation norm estimate. Let u1, u2 : [a, b]→ R be piecewise linear, let

wj = Pr[uj;wa,j] , zj = Sr[uj; za,j] , j = 1, 2 ,

such that
wj(a) + zj(a) = uj(a) .
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Lemma 5.3 We have
(ẇ1(t)− ẇ2(t))(z1(t)− z2(t)) ≥ 0 (5.10)

for all except finitely many t ∈ (a, b).

Proof. By construction, the functions wj and zj are piecewise linear. Let t be a point of
continuity of ẇ1 and ẇ2. Assume without loss of generality that z1(t) > z2(t). Then

z1(t) > −r , z2(t) < r .

We have two cases:

z1(t) < r ⇒ ẇ1(t) = 0 , z1(t) = r ⇒ ẇ1(t) ≥ 0 .

In both cases
ẇ1(t)(z1(t)− z2(t)) ≥ 0 .

Analogously, z2(t) < r implies that ẇ2(t)(z1(t)− z2(t)) ≤ 0. 2

Lemma 5.4 If u1, u2 are piecewise linear, we have

|ẇ1(t)− ẇ2(t)|+ d

dt
|z1(t)− z2(t)| ≤ |u̇1(t)− u̇2(t)| . (5.11)

for all except finitely many t ∈ (a, b).

Proof. On intervals where z1 = z2 we have

w1 − w2 = u1 − z1 + z2 − u2 = u1 − u2 ,

thus (5.11) holds with equality. On intervals where z1 6= z2 we obtain from (5.10) that

|ẇ1(t)− ẇ2(t)| = (ẇ1(t)− ẇ2(t))sign (z1(t)− z2(t)) .

Moreover
d

dt
|z1(t)− z2(t)| = (ż1(t)− ż2(t))sign (z1(t)− z2(t)) .

Adding the previous two equations yields the assertion. 2

For u ∈ W 1,1(a, b) we define

‖u‖BV = |u(a)|+ var (u) = |u(a)|+
∫ b

a

|u̇(t)| dt (5.12)

Proposition 5.5 Let u1, u2 ∈ W 1,1(a, b), wa,1, wa,2 ∈ R. Then wj = Pr[uj;wa,j] satisfy

var (w2 − w1) ≤ var (u2 − u1) + |u2(a)− u1(a)|+ |w2(a)− w1(a)| . (5.13)

Consequently,
Pr : W 1,1(a, b)× R→ W 1,1(a, b)

is Lipschitz continuous, and the same holds for Sr.
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Proof. Assume first that u1, u2 are piecewise linear. Set zj = Sr[uj;uj(a) − wj(a)], then
by virtue of (5.11)∫ b

a

|ẇ2(t)− ẇ1(t)| dt ≤
∫ b

a

|u̇2(t)− u̇1(t)| dt− |z2 − z1|
∣∣∣b
a

≤
∫ b

a

|u̇2(t)− u̇1(t)| dt+ |z2(a)− z1(a)|

which proves (5.13). This and the estimate

|w2(a)− w1(a)| ≤ max{|u2(a)− u1(a)|, |wa,2 − wa,1|}

yields the Lipschitz continuity for piecewise linear input functions. Since those functions
are dense in W 1,1(a, b), all assertions extend to W 1,1(a, b) 2

It is no coincidence that the maximum norm and the total variation norm enter the
basic estimates. Both norms are (in contrast to other usual norms) invariant w.r.t. time
transformations ψ, that is,

‖u ◦ ψ‖∞ = ‖u‖∞ , ‖u ◦ ψ‖1,1 = ‖u‖1,1 .

The scalar stop as a variational inequality. Given u : [a, b] → R and za ∈ [−r, r],
we look for z : [a, b]→ R such that

(ż(t)− u̇(t))(ζ − z(t)) ≥ 0 ∀ ζ ∈ [−r, r], a.e. in [a, b],

z(t) ∈ [−r, r] ∀ t ∈ [a, b], z(a) = za .
(5.14)

A function z ∈ W 1,1(a, b) solves (5.14) if and only if

ż = u̇ a.e. on {|z| < r},
ż = 0 and u̇ ≥ 0 a.e. on {z = r},
ż = 0 and u̇ ≤ 0 a.e. on {z = −r}.

(5.15)

This coincides with the properties of the construction given above for the scalar play,
taking into account (5.8) and (5.9).

The vector stop and play. Now, the functions u and z take values in some real Hilbert
space H instead of R. The interval [−r, r] is replaced by a closed convex set Z, the
product in (5.14) by the scalar product in H. Given u : [a, b] → H and za ∈ Z, we look
for z : [a, b]→ Z such that

〈ż(t)− u̇(t), ζ − z(t)〉 ≥ 0 ∀ ζ ∈ Z, a.e. in [a, b],

z(t) ∈ Z ∀ t ∈ [a, b], z(a) = za .
(5.16)

We assume that u ∈ W 1,1(a, b;H), that is, the weak derivative u̇ exists and is an element
of L1(a, b;H), the space of H-valued Bochner integrable functions. These functions have
the property that

u(t)− u(s) =

∫ t

s

u̇(τ) dτ

holds for all s, t ∈ [a, b].
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It turns out that for any given input u ∈ W 1,1(0, T ;H) and initial value za there exists
a unique solution z ∈ W 1,1(0, T ;H) of (5.16). A proof can be found in [14], Theorem
4.1 and Proposition 4.1 as well as in [13]; the uniqueness part is given in Proposition
5.6 below. In the next section, we will present the existence proof as developed in the
energetic approach.

Thus, the solution operator (u, za) 7→ z is well-defined; it is called the vector stop
operator. We write

z = SZ [u; za] . (5.17)

The corresponding vector play operator

w = PZ [u; za] (5.18)

should satisfy
u(t) = w(t) + z(t) , t ∈ [a, b] . (5.19)

We achieve this by simply setting

PZ [u; za] = u− SZ [u; za] .

The system

u(t) = w(t) + z(t)

〈ẇ(t), z(t)− ζ〉 ≥ 0 ∀ ζ ∈ Z, a.e. in (a, b),

z(t) ∈ Z ∀ t ∈ [a, b], z(a) = za ,

(5.20)

is obviously equivalent to (5.16).

The rate independence of SZ and thus of PZ can be checked directly from the definitions.
The Volterra property is a direct consequence of Proposition 5.6 below. Thus, SZ and PZ
are hysteresis operators.

Assume that w, z ∈ W 1,1(a, b) are solutions of (5.20). We have

〈ẇ(t), ż(t)〉 = 0 a.e. in (a, b). (5.21)

Indeed, (5.21) follows from the variational inequality (5.20) by testing with ζ = z(t± h)
for h > 0, dividing by h and letting h go to 0. The decomposition

u̇(t) = ẇ(t) + ż(t) , a.e. in (a, b), (5.22)

splits u̇(t) into its normal and its tangential part at z(t); namely,

ẇ(t) ∈ NZ(z(t)) = {y : 〈y, ζ − z(t)〉 ≤ 0 for all ζ ∈ Z}
ż(t) ∈ TZ(z(t)) = cone(Z − z(t)) .

(5.23)

As a further consequence of (5.21) and (5.22), |ẇ|2 = 〈u̇, ẇ〉 as well as |ż|2 = 〈u̇, ż〉, so

|ẇ(t)| ≤ |u̇(t)| , |ż(t)| ≤ |u̇(t)| , a.e. in (a, b). (5.24)

We now prove uniqueness and stability of the solution z of (5.16) using the standard
monotonicity argument.
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Proposition 5.6 Let z1, z2 ∈ W 1,1(a, b;H) be solutions of (5.20) for given functions
u1, u2 ∈ W 1,1(a, b;H) and initial values za,1, za,2. Then we have

|z1(t)− z2(t)| ≤ |za,1 − za,2|+
∫ t

a

|u̇1(τ)− u̇2(τ)| dτ (5.25)

for all t ∈ [a, b]. In particular, the solution of (5.16) is unique.

Proof: For almost all t we have

|z1(t)− z2(t)| d
dt
|z1(t)− z2(t)| = d

dt

1

2
|z1(t)− z2(t)|2 = 〈ż1(t)− ż2(t), z1(t)− z2(t)〉

= 〈u̇1(t)− u̇2(t), z1(t)− z2(t)〉 − 〈ẇ1(t)− ẇ2(t), z1(t)− z2(t)〉
≤ 〈u̇1(t)− u̇2(t), z1(t)− z2(t)〉 ≤ |u̇1(t)− u̇2(t)| |z1(t)− z2(t)|

due to the variational inequality. Therefore

d

dt
|z1(t)− z2(t)| ≤ |u̇1(t)− u̇2(t)|

for almost all t. Integrating over [a, t] yields the assertion. 2

We refer to [14] for several refined stability results for the vector stop and play operators.
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6 Energetic Solutions

In the previous section, the existence of a solution of the variational inequality defining the
vector stop operator remained open. We now prove existence with the energetic approach,
developed by A. Mielke and several co-workers, see the monograph [17] and the references
therein.

The energetic approach is based on two potentials which depend on time, typically via
a time-dependent function like an external force; their interaction generates a solution,
which is a time-dependent function. This approach deals with rate-independent problems
in a natural manner. It has created a unifying framework for many different problems
arising in mechanics.

The scalar play operator Pr can be used to illustrate “in a nutshell” some basic ingredients
of the energetic approach.

Let u ∈ W 1,1(a, b) be given. The function w = Pr[u;wa] satisfies

(w(t)− u(t))ẇ(t) + r|ẇ(t)| = 0 , a.e. in (a, b). (6.1)

We consider an energy E : [a, b]× R→ R,

E(t, q) =
1

2
(q − u(t))2 , DqE(t, q) = q − u(t) , (6.2)

and a dissipation potential R : R→ R+,

R(v) = r|v| , ∂R(v) = rsign (v) . (6.3)

Here, “sign” stands for the set-valued sign function with sign (0) = [−1, 1], and ∂R denotes
the subdifferential of R in the sense of convex analysis. We note that

R(v) = ∂R(v) · v = r|v| , for all v ∈ R. (6.4)

In terms of E and R, (6.1) becomes (we omit the phrase “a.e. in (a, b)”)

DqE(t, w(t))ẇ(t) +R(ẇ(t)) = 0 . (6.5)

Since |w(t)− u(t)| ≤ r holds for the play, (6.2) and (6.3 imply

DqE(t, w(t))v +R(v) ≥ 0 , for all v ∈ R. (6.6)

Moreover, dividing (6.1) by ẇ(t) yields

DqE(t, w(t)) + ∂R(ẇ(t)) 3 0 . (6.7)

When applying the energetic approach to problems from mechanics, equations (6.5), (6.6)
and (6.7) – for the appropriate energy and dissipation potentials, of course – can be
interpreted as a power balance (or local energy balance), a local stability condition, and a
force balance, respectively. (The play operator corresponds to the modeling of dry friction
in 1D, see [17].)
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The local stability condition (6.6) can be replaced by a global stability condition, since
q 7→ E(t, q) is convex. Indeed, the convex function

g(q) = E(t, q) +R(q − w(t))

satisfies ∂g(w(t)) = w(t) − u(t) + r sign (0) 3 0. Thus, w(t) is a global minimizer of g,
and we obtain the global stability condition

(S) E(t, w(t)) ≤ E(t, q) +R(q − w(t)) , for all q ∈ R, t ∈ [a, b]. (6.8)

The power balance, too, can be transformed into a global condition. As

E(b, w(b))− E(a, w(a)) =

∫ b

a

DtE(t, w(t)) +DqE(t, w(t))ẇ(t) dt

holds, using (6.5) we obtain the global energy balance

E(b, w(b)) +

∫ b

a

R(ẇ(t)) dt = E(a, w(a)) +

∫ b

a

DtE(t, w(t)) dt . (6.9)

For R as in (6.3), the integral on the left side equals r var(w). Thus, we may write (6.9)
in the form

(E) E(b, w(b))+sup
∆

∑
j

R(w(tj)−w(tj−1)) = E(a, w(a))+

∫ b

a

DtE(t, w(t)) dt , (6.10)

where the sup ranges over all finite partitions ∆ = {tj} of [a, b]. This equation no longer
includes derivatives except those of the “driving function” u, as DtE(t, q) = q − u̇(t).

The function w = Pr[u; z0] solves (6.8) and (6.10). Such solutions are called energetic
solutions of the system defined by E and R.

Coercive quadratic energies. This subsection is based on the exposition in Section
3.5 of [17] and Section 2 of [16].

The setting of the problem is as follows. Let Q be a real Hilbert space with dual Q∗. We
define the energy

E(t, q) =
1

2
〈Aq, q〉 − 〈`(t), q〉 , E : [a, b]×Q→ R . (6.11)

Here, ` ∈ W 1,1(a, b;Q∗) is the function which drives the evolution. The operator A : Q→
Q∗ is linear, bounded, symmetric and positive definite; in particular, we have

〈Aq, p〉 = 〈Ap, q〉 , α0|q|2 ≤ 〈Aq, q〉 ≤ α1|q|2 , for all p, q ∈ Q (6.12)

for some numbers α0, α1 > 0. The brackets 〈·, ·〉 denote the duality pairing on Q∗ × Q,
and | · | denotes the norm on Q.

The dissipation potential R : Q → [0,+∞] is assumed to be lower semicontinuous,
convex and positively 1-homogeneous, that is, R(λq) = λR(q) for all λ > 0, 1 and we
assume that R(0) = 0. 2

1 Note that for convex functionals on a Hilbert space, the four notions of semicontinuity (weak/strong,
sequential/topological) are equivalent. Note also that R satisfies the triangle inequality, as R(p + q) =
2R((p+ q)/2) ≤ R(p) +R(q).

2 Thus, 0 ∈ ∂R(0); in particular, ∂R(0) is not empty.
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There is no coercivity assumption for R, as the coercivity of A assumed above is all what
is needed. Moreover, A : Q→ Q∗ is a Hilbert space isomorphism, and

|q|A =
√
〈Aq, q〉 (6.13)

defines a norm which by (6.12) is equivalent to | · |.
Given an initial condition

q(a) = qa ∈ Q , (6.14)

we want to prove the existence of an energetic solution q ∈ W 1,1(a, b) of the problem
above; that is, the function q should satisfy the conditions (S) and (E), see (6.8) and
(6.10), in place of w, and with Q in place of R. Since we require the condition (S) to hold
at the initial time t = a, too, this restricts the choice of qa.

The general frame of the proof is a common one. One discretizes in time, solves a finite
sequence of time-discrete problems, proves a priori estimates, goes back to continuous
time via interpolation, obtains a candidate for the continuous solution by compactness,
and finally shows that this candidate indeed solves the problem. The difficulty, of course,
lies in carrying out this program.

The time-discrete problem. Let ∆N = {tk} be the equidistant partition of [a, b] with
a = t0 < · · · < tN = b. Assume that qk−1 ∈ Q is already constructed. Then qk ∈ Q is
chosen as a solution of

min
p∈Q
E(tk, p) +R(p− qk−1) . (6.15)

In order to analyze this problem, let

J(p) = E(t, p) +R(p− qin) , t ∈ [a, b] , qin ∈ Q .

Since J is coercive, strictly convex and lower semicontinuous, it has a unique minimizer
q∗ ∈ Q. An explicit computation which uses the quadratic structure of E and the convexity
of R yields, for 0 < λ ≤ 1,

0 ≤ J(q∗ + λ(p− q∗)− J(q∗))

λ
≤

≤ (E(t, p) +R(p− qin))− (E(t, q∗) +R(q∗ − qin))− 1− λ
2
〈A(p− q∗), p− q∗〉 .

Passing to the limit λ→ 0, we arrive at

E(t, q∗) +R(q∗ − qin) +
1

2
〈A(p− q∗), p− q∗〉 ≤ E(t, p) +R(p− qin) , ∀ p ∈ Q .

For problem (6.15), this becomes

E(tk, qk) +R(qk − qk−1) +
1

2
|p− qk|2A ≤ E(tk, p) +R(p− qk−1) , ∀ p ∈ Q . (6.16)

This implies (triangle inequality for R)

E(tk, qk) ≤ E(tk, p) +R(p− qk) , ∀ p ∈ Q . (6.17)
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Discrete a priori estimates. We insert p = qk−1 in (6.16) and obtain

E(tk, qk) +R(qk − qk−1) +
1

2
|qk−1 − qk|2A ≤ E(tk, qk−1) .

Replacing k with k + 1 we get

E(tk+1, qk+1) +R(qk+1 − qk) +
1

2
|qk − qk+1|2A ≤ E(tk+1, qk) . (6.18)

Inserting p = qk+1 in (6.16) gives

E(tk, qk) +R(qk − qk−1) +
1

2
|qk+1 − qk|2A ≤ E(tk, qk+1) +R(qk+1 − qk−1) .

Rearranging yields, again with the aid of the triangle inequality,

1

2
|qk+1 − qk|2A ≤ E(tk, qk+1)− E(tk, qk) +R(qk+1 − qk) ,

Adding inequality (6.18) to this inequality we next obtain

|qk+1 − qk|2A ≤ E(tk, qk+1)− E(tk, qk) + E(tk+1, qk)− E(tk+1, qk+1) . (6.19)

It follows that

|qk+1 − qk|2A ≤
∫ tk+1

tk

−∂tE(t, qk+1) + ∂tE(t, qk) dt =

∫ tk+1

tk

〈
˙̀(t), qk+1 − qk

〉
dt

= 〈`(tk+1)− `(tk), qk+1 − qk〉 ≤ ‖`(tk+1)− `(tk)‖Q∗ · |qk+1 − qk|
≤ ‖`(tk+1 − `(tk)‖Q∗ · α−1/2

0 |qk+1 − qk|A ,

so
|qk+1 − qk|A ≤ α

−1/2
0 ‖`(tk+1 − `(tk)‖Q∗ (6.20)

This yields the discrete a priori estimate (now we write qNk for qk)

|qNk |A ≤ |qa|A + α
−1/2
0

∫ b

a

‖ ˙̀(t)‖Q∗ dt (6.21)

which is valid for all k and all N .

Continuous interpolation. Let q̂N denote the piecewise affine interpolant of {tNk , qNk }k
and qN the piecewise constant interpolant with qN = qNk−1 on [tNk−1, t

N
k ). Then q̂N ∈

C([a, b];Q), qN ∈ L∞(a, b;Q), and (6.21) implies

‖q̂N‖∞ ≤ |qa|A + C

∫ b

a

‖ ˙̀(t)‖Q∗ dt , ‖qN‖∞ ≤ |qa|A + C

∫ b

a

‖ ˙̀(t)‖Q∗ dt . (6.22)

Moreover, for all s ≤ t in [a, b],

|q̂N(t)− q̂N(s)| ≤ C
(∫ t

s

‖ ˙̀(τ)‖Q∗ dτ + δN

)
, ‖q̂N − qN‖∞ ≤ CδN , (6.23)

for some δN → 0, since t 7→ ‖ ˙̀(t)‖Q∗ is integrable.
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Convergent subsequence. The estimates (6.22) and (6.23) imply that the sequence
{q̂N}N is equicontinuous and bounded in C([a, b];Q). A variant of the Arzela-Ascoli
theorem now implies that for some subsequence, denoted by {q̂m}, the values q̂m(t) weakly
converge to some q(t) ∈ Q pointwise in t. By (6.23), also qm(t) ⇀ q(t) pointwise in t.
Moreover, the weak lower semicontinuity of the norm in Q and (6.23) imply that

|q(t)− q(s)| ≤ C

∫ t

s

‖ ˙̀(τ)‖Q∗ dτ (6.24)

for s, t ∈ [a, b]. Therefore, q ∈ W 1,1(a, b;Q) and |q̇(t)| ≤ ‖ ˙̀(t)‖Q∗ a.e. in (a, b).

The quadratic trick. When vn ⇀ v in Q, the quadratic terms 〈Avn, vn〉 need not
converge to 〈Av, v〉. But for fixed w ∈ Q, we nevertheless have

〈A(vn + w), vn + w〉 − 〈Avn, vn〉 → 〈A(v + w), v + w〉 − 〈Av, v〉 ,

since the terms 〈Avn, vn〉 cancel. As a consequence, when tn → t in [a, b] and vn ⇀ v in
Q, we get

E(tn, vn + w)− E(tn, vn) → E(t, v + w)− E(t, v) .

This is relevant for the next step.

The limit function q satisfies (S). Let t ∈ [a, b], t > a. Given N ∈ N, choose k = k(N)
with tNk ≤ t < tNk+1, thus qNk = qN(t). According to (6.17),

E(tNk , q
N(t)) ≤ E(tNk , p) +R(p− qN(t))

for all p ∈ Q. We replace p with p+ qN(t)− q(t) and obtain

E(tNk , q
N(t)) ≤ E(tNk , p+ qN(t)− q(t)) +R(p− q(t))

We pass to the subsequence qm with qm(t) ⇀ q(t) and apply the quadratic trick to obtain

E(t, q(t)) ≤ E(t, p) +R(p− q(t)) for all p ∈ Q, t ∈ (a, b]. (6.25)

The condition on the initial value. In order that (6.25) also holds for t = a, the
initial value qa = q(a) has to be a minimizer of

J(p) = E(a, p) +R(p− qa) =
1

2
〈Ap, p〉 − 〈`(a), p〉+R(p− qa) .

As J is convex, this is equivalent to

0 ∈ ∂J(qa) = Aqa − `(a) + ∂R(0) .

This in turn is equivalent to

qa ∈ A−1(`(a)− Z) , Z := ∂R(0) . (6.26)

The limit function q satisfies “≤” in (E). Let t ∈ [a, b], let ∆ = {τj}, 0 ≤ j ≤M be
an arbitrary partition of [a, t], let ∆N the partition which was used in the time-discrete
step. From (6.16) with p = qNk−1 we obtain

E(tNk , q
N
k ) +R(qNk − qNk−1) ≤ E(tNk , q

N
k−1) = E(tNk−1, q

N
k−1) +

∫ tNk

tNk−1

DtE(s, qNk−1) ds . (6.27)
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If t ∈ [tNk , t
N
k+1), we have

E(t, qN(t)) +
k∑
i=1

R(qNi − qNi−1) = E(tk, q
N
k ) +

∫ t

tNk

DtE(s, qNk ) ds+
k∑
i=1

R(qNi − qNi−1) .

On the right side we successively use (6.27) and get

E(t, qN(t)) +
k∑
i=1

R(q(tNi )− q(tNi−1)) ≤ E(a, q(a)) +

∫ t

a

DtE(s, qN(s)) ds .

The left side does not change if we replace the points from ∆N by those from ∆ ∪ ∆N ;
the inequality persists if we only use those from ∆. Thus

E(t, qN(t)) +
M∑
j=1

R(qN(τj)− qN(τj−1)) ≤ E(a, q(a))−
∫ t

a

〈
˙̀(s), qN(s)

〉
ds .

Passing to the limes inferior for the subsequence with qm(t) ⇀ q(t) we obtain

E(t, q(t)) +
M∑
j=1

R(q(τj)− q(τj−1)) ≤ E(a, q(a))−
∫ t

a

〈
˙̀(s), q(s)

〉
ds .

Taking the supremum w.r.t all partitions ∆ of [a, t] yields the assertion.

The limit function q satisfies “≥” in (E). Let t ∈ [a, b], let ∆ = {τj}, 0 ≤ j ≤ M ,
be an arbitrary partition of [a, t]. For j ∈ {1, . . . ,M} we obtain, due to (6.25),

E(τj, q(τj)) +R(q(τj)− q(τj−1))

=

∫ τj

τj−1

DtE(s, q(τj)) ds+ E(τj−1, q(τj)) +R(q(τj)− q(τj−1))

≥
∫ τj

τj−1

DtE(s, q(τj)) ds+ E(τj−1, q(τj−1)) .

Let q∆ be the piecewise constant interpolant of q on ∆ with q∆(s) = q(τj) for s ∈ (τj−1, τj].
Summing over j we obtain, since t = τM ,

E(t, q(t)) +
M∑
j=1

R(q(τj)− q(τj−1)) ≥ E(a, q(a))−
∫ t

a

〈
˙̀(s), q∆(s)

〉
ds .

As ˙̀ ∈ L1(a, b;Q∗) and q∆ converges pointwise to the bounded function q as |Delta| → 0,
passing to the supremum w.r.t. ∆ yields

E(t, q(t)) + sup
∆

M∑
j=1

R(q(τj)− q(τj−1)) ≥ E(a, q(a)) +

∫ t

a

DtE(s, q(s)) ds . (6.28)

This proves the claim.

We summarize the existence result.
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Theorem 6.1 Let the assumptions on the energy functional E and the dissipation func-
tional R be satisfied, as they are described in the subsection above where (6.11) – (6.14)
are stated. Then for every qa ∈ A−1(`(a) − Z), Z = ∂R(0), there exists an energetic
solution q ∈ W 1,1(a, b : Q) with q(a) = qa, that is, a solution which satisfies

(S) E(t, q(t)) ≤ E(t, p) +R(p− q(t)) , for all p ∈ Q, t ∈ [a, b], (6.29)

as well as

(E) E(t, q(t)) + sup
∆

∑
j

R(q(tj)− q(tj−1)) = E(a, q(a)) +

∫ t

a

DtE(s, q(s)) ds , (6.30)

for all t ∈ [a, b], where the supremum is taken over all partitions ∆ = {tj} of [a, t].

In the case considered here (coercive quadratic energy), uniqueness and continuous de-
pendence on data also holds, see [17], Proposition 3.5.5.

From the energetic solution to the vector stop and play.

The starting point is the formula, valid for the energetic solution q,∫ t

r

R(q̇(s)) ds = sup
∆

∑
j

R(q(tj)− q(tj−1)) (6.31)

where ∆ ranges over all partitions ∆ of an arbitrary subinterval [r, t] of [a, b]. (See the
appendix below after (6.55). We use the chain rule for t 7→ E(t, q(t)) and get from (E)
and (6.31) ∫ t

r

〈DqE(s, q(s)), q̇(s)〉+R(q̇(s)) ds = 0 . (6.32)

Since r and t are arbitrary, we may pass to the pointwise form

〈DqE(t, q(t)), q̇(t)〉+R(q̇(t)) = 0 , a.e. in (a, b). (6.33)

On the other hand, q(t) minimizes p 7→ E(t, p)+R(p− q(t)) due to the stability condition
(S), so

0 ∈ DqE(t, q(t)) + ∂R(0) . (6.34)

The correspondence between the energetic solution and the vector stop resp. play operator
is based on a correspondence between the dissipation functional R : Q → [0,+∞] and
the closed convex set ∂R(0) ⊂ Q∗.

At this point we need some results from convex analysis.

Proposition 6.2 Let R : Q → [0,∞] be convex, lower semicontinuous and positively
1-homogeneous with R(0) = 0. Then

∂R(0) = {ζ : 〈ζ, v〉 ≤ R(v) for all v ∈ Q} , (6.35)

The convex conjugate R∗ defined on Q∗ by

R∗(ζ) = sup
v∈Q

(〈ζ, v〉 − R(v)) (6.36)
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satisfies
R∗ = I∂R(0)

3 (6.37)

and we have
R(v) = sup

ζ∈∂R(0)

〈ζ, v〉 , ∀ v ∈ Q . (6.38)

Proof. Since for ζ ∈ Q∗ and v ∈ Q we have R(v) − 〈ζ, v〉 = R(v) − R(0) − 〈ζ, v − 0〉,
(6.35) follows. Now, setting Z = ∂R(0),

ζ ∈ Z ⇔ 0 = sup
v∈Q

(〈ζ, v〉 − R(v)) = R∗(ζ)

ζ /∈ Z ⇔ sup
v∈Q

(〈ζ, v〉 − R(v)) > 0 ⇔ sup
v∈Q,λ>0

λ(〈ζ, v〉 − R(v)) = +∞

⇔ R∗(ζ) = +∞ .

This proves (6.37). Since R is proper, convex and lower semicontinous, we have R∗∗ = R
and therefore

R(v) = R∗∗(v) = I∗Z(v) = sup
ζ∈Q∗

(〈ζ, v〉 − IZ(ζ)) = sup
ζ∈Z
〈ζ, v〉

for all v ∈ Q. 2

Conversely, given a closed convex set Z ⊂ Q∗, we may construct a dissipation potential
R on Q with ∂R(0) = Z.

Proposition 6.3 Let Z ⊂ Q∗ be closed and convex, Z 6= ∅. Then

R(v) = I∗Z(v) = sup
ζ∈Z
〈ζ, v〉 (6.39)

defines anR : Q→ [0,+∞] which is convex, lower semicontinuous, positively 1-homogeneous
and satisfies R(0) = 0 as well as ∂R(0) = Z.

Proof. All properties of R except the last follow immediately from its definition in (6.39).
We have Z ⊂ ∂R(0) by (6.35). If on the other hand ζ /∈ Z, by separation there exists a
v ∈ Q such that

〈ζ, v〉 > sup
ζ∈Z
〈ζ, v〉 = R(v) .

Thus ζ /∈ ∂R(0). 2

Let q be an energetic solution according to Theorem 6.1. We set

z(t) = −DqE(t, q(t)) = `(t)− Aq(t) , Z = ∂R(0) . (6.40)

From(6.34) we see that
z(t) ∈ Z , for all t ∈ [a, b]. (6.41)

From (6.33) and (6.39) we get

〈z(t), q̇(t)〉 = R(q̇(t)) = sup
ζ∈Z
〈ζ, q̇(t)〉 , a.e. in (a, b).

3The indicator function IZ of a set Z is defined to be IZ(ζ) = 0 for ζ ∈ Z, and IZ(ζ) = +∞ otherwise.
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Inserting q̇ = A−1( ˙̀− ż) yields for a.a. t ∈ (a, b)〈
z(t)− ζ, A−1( ˙̀(t)− ż(t))

〉
Q∗Q
≥ 0 , for all ζ ∈ Z. (6.42)

We define a scalar product in Q∗ by

〈ζ, η〉A−1 =
〈
η, A−1ζ

〉
Q∗Q

, ζ, η ∈ Q∗. (6.43)

Therefore z ∈ W 1,1(a, b;Q∗) satisfies〈
ż(t)− ˙̀(t)), ζ − z(t)

〉
A−1
≥ 0 , ∀ ζ ∈ Z, for a.a. t ∈ (a, b)

z(t) ∈ Z ∀t ∈ [a, b] , z(a) = za .
(6.44)

Thus, if q ∈ W 1,1(a, b;Q) is an energetic solution, the function z = `− Aq satisfies

z = SZ [`; za] (6.45)

in the underlying Hilbert space (Q∗, 〈·, ·〉A−1). As the stop and the play operator always
come in pairs, the function w = `− z = Aq satisfies, in the same Hilbert space,

w = PZ [`; za] . (6.46)

Consequently,
q = A−1PZ [`; za] . (6.47)

One can also obtain a stop and play pair on the original space Q. Indeed, we have, since
A is symmetric,〈
z(t)− ζ, A−1( ˙̀(t)− ż(t))

〉
Q∗Q

=
〈
A(A−1z(t)− A−1ζ), A−1( ˙̀(t)− ż(t))

〉
Q∗Q

=
〈
AA−1( ˙̀(t)− ż(t)), A−1z(t)− A−1ζ

〉
Q∗Q

=
〈
A−1ż(t)− A−1 ˙̀(t)), A−1ζ − A−1z(t)

〉
A
.

In view of (6.44), we see that, on (Q, 〈·, ·〉A),

A−1z = SA−1Z [A−1`;A−1za] . (6.48)

Since q + A−1z = A−1`, the corresponding play operator becomes

q = PA−1Z [A−1`;A−1za] . (6.49)

From the vector stop to the energetic solution. Let H be a real Hilbert space,
let Z ⊂ H be closed and convex. In order to arrive at the setting above where the SZ
takes values in the dual Q∗ of a space Q where the energy and dissipation potentials are
defined, we employ the canonical isomorphism j : H → H∗∗ between H and its bidual,
defined by

〈j(h), h∗〉H∗∗H∗ = 〈h∗, h〉H∗H , h ∈ H, h∗ ∈ H∗ .

This generates the canonical scalar product on the bidual,

〈j(h), j(g)〉H∗∗ = 〈h, g〉H , h, g ∈ H .
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With the aid of the Riesz isomorphism rH : H → H∗,

〈rH(h), g〉H∗H = 〈h, g〉H , h, g ∈ H ,

we define a scalar product in H∗ by

〈rH(h), rH(g)〉H∗ = 〈h, g〉H , h, g ∈ H . (6.50)

This scalar product gives rise to another Riesz isomorphism rH∗ : H∗ → H∗∗ defined
analogously. One checks from the definitions that

j = r∗H ◦ rH

and that 〈
h̃, g̃
〉
H∗∗

=
〈
h̃, r−1

H∗(g̃)
〉
H∗∗H∗

, , h̃, g̃ ∈ H∗∗ . (6.51)

Given a stop operator SZ on a Hilbert space H, we now construct corresponding energy
and dissipation potentials. Using the canonical embedding j : H → H∗∗, we write down
the equivalent variational inequality in the bidual,〈

ż(t)− ˙̀(t), ζ − z(t)
〉
H∗∗
≥ 0 , ∀ ζ ∈ Z, for a.a. t ∈ (a, b)

z(t) ∈ Z ∀t ∈ [a, b] , z(a) = za .
(6.52)

Here, we write Z instead of j(Z) and so on. We now set Q = H∗, endowed with the scalar
product (6.50). We set A = rH∗ : Q→ Q∗ = H∗∗ and E(t, p) = 1/2 〈Ap, p〉− 〈`(t), p〉. We
define R : Q→ [0,+∞] as above by

R(v) = sup
ζ∈Z
〈ζ, v〉Q∗Q .

The variational inequality (6.52) then becomes, by virtue of (6.51),〈
ż(t)− ˙̀(t), ζ − z(t)

〉
A−1
≥ 0 , ∀ ζ ∈ Z, for a.a. t ∈ (a, b)

z(t) ∈ Z ∀t ∈ [a, b] , z(a) = za .
(6.53)

Thus, the energetic solution q ∈ W 1,1(a, b;Q) corresponds to z = SZ [`; za] via z = `−Aq,
compare (6.44).

Existence proof for the vector stop operator. The existence of a solution of the vari-
ational inequality defining the vector stop now follows from the existence of an energetic
solution obtained in Theorem 6.1.

Uniqueness and stability of the energetic solution. Since any energetic solution
q generates a solution z = ` − Aq of the variational inequality, uniqueness and stability
results for the latter can be transferred immediately to the energetic solution. Let `1, `2 ∈
W 1,1(a, b;Q∗) and za,1, za,2 be given. Let z1, z2 be the corresponding solutions of the
variational inequality (6.44) and qi = A−1(`i − zi), i = 1, 2. Let us denote ∆` = `2 − `1,
∆z = z2 − z1, ∆q = q2 − q1. From Proposition 5.6 we obtain

|∆z(t)|A−1 ≤ |∆za|A−1 +

∫ t

0

|∆ ˙̀(s)|A−1 ds , t ∈ [a, b] . (6.54)
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We have A∆q = ∆`−∆z and

|∆q(t)|2A = 〈A∆q(t),∆q(t)〉 =
〈
∆`(t)−∆z(t), A−1(∆`(t)−∆z(t))

〉
= |∆`(t)−∆z(t)|2A−1 .

We then get, using (6.54) and the estimate |∆`−∆z| ≤ |∆`|+ |∆z|,

|q2(t)− q1(t)|A ≤ |`2(a)− `1(a)|A−1 + |za,2 − za,1|A−1 + 2

∫ t

a

| ˙̀2(s)− ˙̀
1(s)|A−1 ds . (6.55)

One may compare this with the estimate in Proposition 3.5.5 of [17].

Appendix to Section 6. Let R : Q → [0,+∞] be lower semicontinuous, convex,
positively 1-homogeneous with R(0) = 0.

Let v ∈ L1(a, b;Q) be arbitrary, let Z = ∂R(0). Then

R
(∫ b

a

v(t) dt
)

= sup
ζ∈Z

〈
ζ,

∫ b

a

v(t) dt

〉
= sup

ζ∈Z

∫ b

a

〈ζ, v(t)〉 dt

≤
∫ b

a

sup
ζ∈Z
〈ζ, v(t)〉 dt =

∫ b

a

R(v(t)) dt .

(6.56)

Let q ∈ W 1,1(a, b;Q). let ∆ = {tj} be a partition of [a, b], Ij = [tj−1, tj]. Then

∑
j

R(q(tj)−q(tj−1)) =
∑
j

R
(∫

Ij

q̇(t) dt
)
≤
∑
j

∫
Ij

R(q̇(t)) dt =

∫ b

a

R(q̇(t)) dt . (6.57)

As a consequence,

sup
∆

∑
j

R(q(tj)− q(tj−1)) ≤
∫ b

a

R(q̇(t)) dt . (6.58)

Let ∆ = {tj} be a partition of [a, b], let q∆ be the piecewise affine interpolant of q w.r.t.
∆, so q(tj) = q∆(tj) for all j. Then∑
j

R(q(tj)− q(tj−1)) =
∑
j

R(q∆(tj)− q∆(tj−1)) =
∑
j

(tj − tj−1)R(q̇∆,j) =
∑
j

∫
Ij

R(q̇∆,j) dt

=

∫ b

a

R(q̇∆) dt .

(6.59)

We now need that for some sequence {∆N} of partitions and qN := q∆N we have q̇N(t) ⇀
q̇(t) a.e. in (a, b). (In fact, we even have q̇N(t) → q̇(t) a.e., as a consequence of the fact
that almost all points in (a, b) are Lebesgue points of q̇.) Then∫ b

a

R(q̇(t)) dt ≤
∫ b

a

lim inf
N→∞

R(q̇N(t)) dt ≤ lim inf
N→∞

∫ b

a

R(q̇N(t)) dt

= lim inf
N→∞

∑
j

R(q(tNj )− q(tNj−1)) ≤ sup
∆

∑
j

R(q(tj)− q(tj−1)) .
(6.60)

46



References

[1] H. Bauschke, P. Combettes: Convex analysis and monotone operator theory in Hilbert
spaces. Springer 2011.

[2] V. Barbu: Nonlinear differential equations of monotone types in Banach space. Springer
2010.

[3] V. Barbu: Optimal control of variational inequalities. Pitman 1984.

[4] G. Bertotti, I. Mayergoyz: The science of hysteresis, 3 volumes, Academic Press 2006.
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[26] M. Brokate, P. Krejč́ı: Weak differentiability of scalar hysteresis operators. Discrete Con-
tinuous Dyn. Syst. Ser. A 35 (2015), 2405–2421.

[27] M. Delfour, J.-P. Zolesio: Shapes and geometries. Analysis, differential calculus and opti-
mization. SIAM, Philadelphia, 2001. See also the 2nd edition, SIAM 2011.
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