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1 Introduction

Example 1.1
A car starts at point 0 from zero speed. It has to reach a point y1 > 0 in minimal time
T , and its speed at time T again has to be zero.

A simple mathematical model for this optimization problem is the following. Let y(t)
be the position of the car at time t, m the mass of the car, and u the accelerating (or
braking) force. We want to

minimize T (1.1)

subject to the differential equation

mÿ(t) = u(t) , t ∈ (0, T ) , (1.2)

the initial and terminal conditions

y(0) = 0 , ẏ(0) = 0 ,

y(T ) = y1 , ẏ(T ) = 0 ,
(1.3)

and the constraint
|u(t)| ≤ umax , t ∈ (0, T ) . (1.4)

The function u : [0, T ]→ R is called the control, the function y : [0, T ]→ R is called the
state.

The intuitively obvious solution is to use maximal acceleration and then maximal break-
ing,

u(t) =

{
umax , t < T

2
,

−umax , t ≥ T
2
.

(1.5)

The time T depends on y1 and can be computed. For t ≤ 1/2 we have

ẏ(t) =
umax
m

t , y(t) =
umax
2m

t2 ,

thus

y
(T

2

)
=
umax
8m

T 2 ,

and by symmetry we get

y1 = y(T ) = 2y
(T

2

)
=
umax
4m

T 2 .

which we can solve for T . 2

This optimization problem is infinite dimensional. Both the control u and the state y
are functions on [0, T ] and thus a priori have infinitely many degrees of freedom, and (1.2)
specifies infinitely many equality constraints. Another feature of this problem is that the
optimal control is discontinuous, it has a jump at time T/2.
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Example 1.2 (Optimal Heating)
We consider a body Ω ⊂ R3 with boundary Γ. It is heated (or cooled) from the boundary
with an external temperature source u : Γ→ R, which thus depends on x ∈ Γ but not on
time. Within the body, the temperature distribution starts from some initial condition and
converges to a stationary (that is, constant in time) temperature distribution y : Ω→ R.
In a simplified model (when the heat conduction coefficient is assumed constant), y is a
solution of the Laplace equation

−∆y = 0 in Ω. (1.6)

The process at the boundary is described by

∂ny = α(u− y) . (1.7)

The temperature difference u− y is proportional to the to the normal component of the
temperature gradient; the constant α is called the heat transfer coefficient. The external
source is restricted by

umin(x) ≤ u(x) ≤ umax(x) , x ∈ Γ . (1.8)

There may also be constraints on the temperature within Ω in the form

ymin(x) ≤ y(x) ≤ ymax(x) , x ∈ Γ . (1.9)

The goal is to achieve a desired temperature distribution yd : Ω→ R as close as possible.

There is no unique formulation as an optimization problem for this. From the standpoint
of mathematics, a convenient way is to choose

J(y, u) =
1

2

∫
Ω

(y(x)− yd(x))2 dx+
c

2

∫
Γ

u(x)2 dS(x) (1.10)

as a cost functional to be minimized; here c ≥ 0 is a freely chosen constant. 2

Usually there is no hope to solve a problem like this in closed form, that is, to give an
explicit formula for the optimal control.
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2 Time Optimal Control

In this section we consider a classical time optimal control problem.

Problem 2.1
We want to

minimize T (2.1)

such that the solution y : [0, T ]→ Rn of the initial value problem

ẏ = A(t)y +B(t)u , y(0) = y0 (2.2)

satisfies the terminal condition
y(T ) = y1 (2.3)

The control u : [0, T ]→ Rm is assumed to be a measurable function which satisfies

u(t) ∈ Ω , a.e. in [0, T ], (2.4)

where
Ω ⊂ Rm is compact, convex, not empty. (2.5)

We assume that A ∈ L∞(R+,R(n,n)) and B ∈ L∞(R+,R(n,m)). 2

In order that Problem 2.1 has a solution, it is necessary that there exists a control u such
that the terminal condition y(T ) = y1 can be satisfied for some T > 0. This is a question
of controllability.

Let us define the set of admissible controls

U = {u : u ∈ L∞(R+,Rm), u(t) ∈ Ω a.e.}
Ut = {u

∣∣
[0,t]

: u ∈ U} , t > 0 .
(2.6)

The sets U and Ut are convex, closed and bounded subsets of L∞(R+,Rm and L∞(0, t;Rm),
respectively. This follows directly from the corresponding properties of Ω.

It is a result of the theory of ordinary differential equations that, under the assumptions
of Problem 2.1, the initial value problem (2.3) has a unique solution y : [0, T ] → Rm for
any given u ∈ U , which is Lipschitz continuous. More precisely, there exists a the unique
continuous function y which solves of the associated integral equation

y(t) = y0 +

∫ t

0

A(s)y(s) +B(s)u(s) ds , for all t > 0, (2.7)

the Lipschitz continuity of y then follows from (2.7). By

y(t;u) (2.8)

we denote the value of this solution at time t.

Definition 2.2 (Reachable set)
The reachable set for Problem 2.1 is defined as

R(t) = {y(t;u) : u ∈ U} . (2.9)
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Proposition 2.3
Let t > 0. Every sequence (un)n∈N in Ut has a subsequence (unk

)k∈N which is weakly star
convergent in U , that is, there exists a u ∈ Ut such that

lim
k→∞

∫ t

0

〈unk
(s), v(s)〉 ds =

∫ t

0

〈u(s), v(s)〉 ds , ∀ v ∈ L1(0, t;Rm) . (2.10)

Proof: Since Ut is closed and bounded in L∞(0, t;Rm), this follows from a general result
of functional analysis. 2

It is another result of the theory of ordinary differential equations that the solution y(t;u)
of (2.3) can be represented in the form

y(t;u) = Φ(t, 0)y0 +

∫ t

0

Φ(t, s)B(s)u(s) ds , (2.11)

where Φ is a matrix-valued function with Φ(t, s) ∈ R(n,n) arising from the homogeneous
system ẏ = A(t)y; it satisfies

sup
t,s∈[0,M ]

‖Φ(t, s)‖ <∞ (2.12)

for all M > 0.

Proposition 2.4
The reachable set R(t) is a compact, convex and nonempty subset of Rn, and the set⋃

0≤τ≤t

R(τ) (2.13)

is bounded for every t ≥ 0.

Proof: Let t ≥ 0. We have R(t) 6= ∅, since U 6= ∅. Formula (2.11) shows that y(t;u) is
convex w.r.t. u, that is,

y(t;λu1 + (1− λ)u2) = λy(t;u1) + (1− λ)y(t;u2) . (2.14)

Since U is convex, this equation implies that R(t) is convex for every t ≥ 0.

From (2.11) we get for τ ≤ t that

‖y(τ ;u)‖ ≤ ‖Φ(τ, 0)y0‖+ ‖u‖∞
∫ τ

0

‖Φ(τ, s)B(s)‖ ds . (2.15)

Since U is bounded, we have
sup
u∈U
‖u‖∞ <∞ . (2.16)

It now follows from (2.12) and (2.15) that ∪0≤τ≤tR(t) is bounded. (Alternatively, the
boundedness can be proved from Gronwall’s inequality.)
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It remains to show thatR(t) is closed: Let (zn) be a sequence inR(t) with limn→∞ zn = z,
choose un ∈ U with zn = y(t;un). By Proposition 2.3 there exists a weakly star convergent
subsequence (unk

)k∈N, let u ∈ U its limit. We then have

z = lim
k→∞

znk
= lim

k→∞
y(t;unk

)

= lim
k→∞

[
Φ(t, 0)y0 +

∫ t

0

Φ(t, s)B(s)unk
(s) ds

]
= Φ(t, 0)y0 +

∫ t

0

Φ(t, s)B(s)u(s) ds

= y(t;u) ,

(2.17)

therefore z ∈ R(t). 2

Definition 2.5 (Hausdorff distance)
Let A,B ⊂ Rn , let x ∈ Rn , sei

δ(x,A) = inf
a∈A
‖x− a‖ . (2.18)

The Hausdorff distance of A and B is defined as

d(A,B) = max{sup
x∈B

δ(x,A) , sup
y∈A

δ(y,B)} . (2.19)

Lemma 2.6 (Hausdorff metric)
Formula (2.19) defines a metric on the set K of all nonempty compact subsets of Rn, it
is called the Hausdorff metric.

Proof: Omitted. 2

Proposition 2.7 The mapping t 7→ R(t) is continuous w.r.t. the Hausdorff metric.

Proof: We first claim that

|y(t;u)− y(τ ;u)| ≤ L(t)|t− τ | for all u ∈ U , τ ≤ t, (2.20)

where the Lipschitz constant L(t) does not depend on u. Indeed, we have

y(t;u)− y(τ ;u) =

∫ t

τ

A(s)y(s;u) +B(s)u(s) ds (2.21)

so (2.20) follows from Proposition 2.4 and since U is bounded.

Let now ξ ∈ R(t) and τ ≤ t be arbitrary, let u ∈ U with ξ = y(t;u) . Due to (2.20) we
have

δ(ξ,R(τ)) ≤ |y(t;u)− y(τ ;u)| ≤ L(t)|t− τ | ,
therefore

sup
ξ∈R(t)

δ(ξ,R(τ)) ≤ L(t)|t− τ | .

Interchanging the roles of t and τ yields the assertion. 2
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Corollary 2.8 Let ξ ∈ intR(t), t > 0. Then there exists an ε-ball V around ξ and an
η > 0 such that

|t− τ | < δ ⇒ V ⊂ int (R(τ)) . (2.22)

Proof: Exercise.

Definition 2.9 Consider Problem 2.1. A time T ≥ 0 is called minimal, if y1 ∈ R(T )
and y1 /∈ R(t) for all t < T . A control u ∈ U is called time optimal, if y(T ;u) = y1. 2

Proposition 2.10 (Existence of time optimal controls)
Let y1 ∈ Rn such that there exists a t > 0 with y1 ∈ R(t). Then there exists a minimal
T ≥ 0 such that y1 ∈ R(T ).

Proof: Sei tn ↓ T := inf{t : t > 0, y1 ∈ R(t)} be a sequence such that y1 ∈ R(tn). We
have

0 ≤ δ(y1,R(T )) ≤ d(R(tn),R(T ))→ 0 (2.23)

by Proposition 2.7. Since R(T ) is compact by Proposition 2.4, y1 ∈ R(T ). 2

Definition 2.11 A control u ∈ U is called extremal at time t, if y(t;u) ∈ ∂R(t) .

Proposition 2.12 Every time optimal control is extremal at the minimal time T .

Proof: Let u ∈ U a time optimal control, corresponding to the minimal time T . Then
y(T ;u) = y1 ∈ R(T ) ⊂ int (R(T )) ∪ ∂R(T ). We argue by contradiction. If y(T ;u) ∈
intR(T ), due to Corollary 2.8 there exists τ < T such that y1 ∈ int (R(τ)) ⊂ R(τ). But
then T is not the minimal time, a contradiction. Therefore y(T ;u) ∈ ∂R(T ). 2

We state the following basic result from convex optimization.

Proposition 2.13 (Separation in Rn)
Let C ⊂ Rn be convex, closed and nonempty, let y ∈ Rn. Then we have

y /∈ C ⇔ ∃ z ∈ Rn , ‖z‖2 = 1 ,with zTx < zTy for all x ∈ C. (2.24)

y ∈ ∂C ⇒ ∃ z ∈ Rn , ‖z‖2 = 1 ,with zTx ≤ zTy for all x ∈ C. (2.25)

2

Above it is not assumed that the interior of C is nonempty.

Proposition 2.14 (Characterization of extremal controls)
Let u ∈ U with associated state y(·;u), let T > 0. Then u is extremal at time T if and
only if there exists a solution p : [0, T ]→ Rn, p 6= 0, of the so-called adjoint system

ṗ = −A(t)Tp , (2.26)

which satisfies
p(T )Tx ≤ p(T )Ty(T ;u) for all x ∈ R(T ), (2.27)

as well as
p(t)TB(t)u(t) = max

ω∈Ω
p(t)TB(t)ω for almost all t ∈ [0, T ]. (2.28)
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Note that this characterization applies to time optimal controls, since every time optimal
control is extremal at time T , by Proposition 2.12.

Proof: If u is not extremal at time T , we have y(T ;u) ∈ intR(T ). The inequality (2.27)
then implies that p(T ) = 0; due to (2.26) we then must have p = 0. Conversely, let u be
extremal at time T , that is, y(T ;u) ∈ ∂R(T ). According to Proposition 2.13 we choose a
z ∈ Rn mit ‖z‖2 = 1 und

zTx ≤ zTy(T ;u) for all x ∈ R(T ). (2.29)

Let p : [0, T ]→ Rn be the unique solution of (2.26) for the “initial” value (in the sense of
an “initial value problem”)

p(T ) = z . (2.30)

We then have (2.27) by construction. It remains to show that (2.28) holds. For every
t ∈ [0, T ] we have

p(t)Ty(t;u)− p(0)Ty0 =

∫ t

0

d

ds

(
p(s)Ty(s;u)

)
ds

=

∫ t

0

(
ṗ(s)Ty(s;u) + p(s)T ẏ(s;u)

)
ds

=

∫ t

0

p(s)TB(s)u(s) ds .

(2.31)

For every ũ ∈ U we have y(T ; ũ) ∈ R(T ). Therefore, (2.27) and (2.31) imply that∫ T

0

p(s)TB(s)ũ(s) ds = p(T )Ty(T ; ũ)− p(0)Ty0

≤ p(T )Ty(T ;u)− p(0)Ty0

=

∫ T

0

p(s)TB(s)u(s) ds , for all ũ ∈ U .

(2.32)

We now choose a function ũ : [0, T ]→ Ω such that

p(t)TB(t)ũ(t) = max
ω∈Ω

p(t)TB(t)ω , for a.a. t ∈ [0, T ]. (2.33)

(This is possible for any given t since Ω is compact.) Then we have

p(t)TB(t)(ũ(t)− u(t)) ≥ 0 , for a.e. t ∈ [0, T ]. (2.34)

On the other hand, if ũ is measurable, then by (2.32)∫ T

0

p(t)TB(t)(ũ(t)− u(t)) dt ≤ 0 . (2.35)

Then we have equality in (2.34), and the assertion follows. (So far, this argument is not
complete, due to the “if ũ is measurable”. See the following remark.) 2
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Remark 2.15
(i) Let us consider the special case of a scalar control, that is, m = 1. Then Ω is a closed
interval, Ω = [umin, umax]. The matrix B(t) has only one column. The function

S(t) = p(t)TB(t) , S : [0, T ]→ R,

is called the switching function. The function

ũ(t) =


umax , S(t) > 0 ,

umin , S(t) < 0 ,

c , S(t) = 0 ,

(2.36)

where c ∈ Ω is arbitrary, satisfies (2.33) and is measurable.
(ii) The problem “find a measurable function f such that f(t) ∈ F (t) for given sets F (t)”
is called the problem of measurable selection.
(iii) One can circumvent the problem of measurable selection if, following (2.32), one uses
a different proof. For example, in points t in which u and B are continuous, one can argue
as follows. If there exists an ω ∈ Ω such that

p(t)TB(t)u(t) < p(t)TB(t)ω ,

the control

ũ(s) =

{
ω , |s− t| < ε ,

u(s) , |s− t| ≥ ε ,

violates (2.32) for small ε. For a general argument, one has to use the theorem of Lusin
from real analysis.

Example 2.16
We consider ÿ = u with an initial condition y(0) = y0 and terminal condition y(T ) = y1,
and the control constraint |u(t)| ≤ 1. We have

A =

(
0 1
0 0

)
, B =

(
0
1

)
, Ω = [−1, 1] . (2.37)

The adjoint system is given by
ṗ1 = 0 , (2.38)

ṗ2 = −p1 . (2.39)

The maximum condition becomes

p(t)TBu(t) = max
ω∈[−1,1]

p(t)TBω a.e. in t. (2.40)

The switching function is given by

S(t) = p(t)TB = p2(t) , (2.41)

and the time optimal control is

u(t) =

{
1 , p2(t) > 0 ,

−1 , p2(t) < 0 .
(2.42)
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The adjoint system can be solved explicitly,

p1(t) = α , p2(t) = β − αt , (2.43)

with some constants α, β which cannot both be zero due to Proposition 2.14. The switch-
ing function S = p2 therefore has at most one zero t∗. There are two possibilites for the
structure of the time optimal control u: It can be constant (either 1 or −1), or it has
exactly one switching point t∗ where it switches from −1 to 1 or vice versa. Which of
these cases occurs, depends on the values of y0 and y1.

For the example from the introduction,

y0 =

(
0
0

)
, y1 =

(
1
0

)
, (2.44)

the only possibility is

u(t) =

{
1 , t < t∗ ,

−1 , t > t∗ .
(2.45)

The values T = 2 and t∗ = 1 can then be computed from the state equation and (2.44).

In the previous example, the time optimal control is piecewise constant, and takes as
values only the end points ±1 of the admissible set Ω = [−1, 1]. The task of finding the
optimal control is reduced to finding out its “structure” (that is, the successive values
taken by the control) and the exact location of the switching points. We now look more
closely into situations where this might occur.

Constant coefficients, polyhedral control constraint. From now on we assume that

A and B are constant (no dependence on time)

Ω is a convex polyhedron (that is, defined by finitely many linear inequalities)

Let u : [0, T ]→ Rm be a time optimal control, let p : [0, T ]→ Rn be the adjoint obtained
from Proposition 2.14. Let S : [0, T ]→ Rm denote the switching function

S(t) = BTp(t) . (2.46)

S is continuous since p is continuous. The maximum condition then becomes

S(t)Tu(t) = max
ω∈Ω

S(t)Tω . (2.47)

For each fixed t, u(t) thus maximizes the linear functional ω 7→ S(t)ω over the polyhedron
Ω. There are two possibilities:

• (Regular case:) The maximum is unique, u(t) is a vertex of Ω.

• (Singular case:) The maximum is attained at a face F of Ω, which can be 1 D (an
edge) or higher dimensional. The vector S(t) is orthogonal to this face, and

S(t)Tw = 0 (2.48)

holds for all edges w of F ,
w = v1 − v2 , (2.49)

if the edge connects the vertices v1 and v2.
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Let t be a time where the maximum is unique. Since S is continuous, the maximizing
vertex does not change near t, so u(τ) = u(t) if |τ − t| is sufficiently small. Let It be the
maximal interval such that u(τ) = u(t) for all τ ∈ It. If a boundary point of It belongs
to the interior (0, T ) of the whole time interval, the maximum is not unique at t, and
S(t)Tw = 0 for some edge w of Ω.

Structure of the switching function. Let us look at the function

sw(t) = S(t)Tw = p(t)TBw , w edge of Ω. (2.50)

The function p solves ṗ = −ATp, a linear differential equation with constant coefficients.
In this case, we have the explicit solution formula

p(t) = e(T−t)AT

p(T ) , (2.51)

and thus
sw(t) = p(t)TBw = p(T )T e(T−t)ABw . (2.52)

This function is defined not only on [0, T ], but can be extended to the complex plane,

s̃w(z) = p(T )T e(T−z)ABw . (2.53)

The function s̃w : C → C is holomorphic ( = differentiable in the sense of complex
analysis) on C. By the identity theorem of complex analysis, for the behaviour of s̃w (and
thus, of sw) on [0, T ] there are only two possibilities:

s̃w has finitely many zeroes on [0, T ], (2.54)

or
s̃w = 0 in [0, T ]. (2.55)

Definition 2.17
Let Ω be a polyhedron. A control u : [0, T ] → Rm is called a bang-bang control for
Problem 2.1, if u is piecewise constant and u(t) is a vertex of Ω for all t ∈ (0, T ). 2

Proposition 2.18 Assume that A,B are constant and Ω is a polyhedron. Let u : [0, T ]→
Rm be a time optimal control such that (2.54) holds for all edges w of Ω. Then u is a
bang-bang control.

Proof: We define the switching set

P = {t : t ∈ [0, T ] , sw(t) = 0 for some edge w of Ω} . (2.56)

Since Ω has only finitely many edges, P is a finite set by assumption (2.54). On [0, T ]\P ,
all functions sw are nonzero, therefore we are in the regular case. Thus, on [0, T ] \ P the
time optimal control u is locally constant and has vertices of Ω as its values. Since P is
finite, u has at most finitely many discontinuities. 2
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Let us consider the case (2.55), sw = 0 on [0, T ] for some edge w of Ω. Then all derivatives
of sw are zero, and since ṗ(t)T = −p(t)TA, we have

0 = s(k)
w (t) = (−1)kp(t)TAkBw , for all k ∈ N, t ∈ (0, T ). (2.57)

Since p 6= 0, the n vectors
Bw , ABw , . . . , An−1Bw

must be linearly dependent.

Definition 2.19 We say that (A,B,Ω) satisfies the normality condition, if the vectors

Bw,ABw, . . . , An−1Bw (2.58)

are linearly independent for every edge w of Ω. 2

Proposition 2.20 Let (A,B,Ω) satisfy the normality condition. Then every time opti-
mal control is bang-bang.

Proof: The arguments above Definition 2.19 show that if the normality condition holds,
then sw has only finitely many zeroes for every edge w of Ω. The claim now follows from
Proposition 2.18. 2

In the scalar case m = 1, Ω = [umin, umax] there is exactly one edge w, namely umax−umin,
and AkB ∈ Rn for all k ≥ 0. The normality condition then becomes

The matrix with columns B AB . . . An−1B is invertible. (2.59)

In control theory it is shown that this is the case if and only if the system ẏ = Ay+Bu is
controllable, that is, for every y0, y1 ∈ Rn and T > 0 there exists a control u such that
y(0) = y0 and y(T ) = y1.
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3 Existence of Optimal Controls

Let X be a vector space, K ⊂ X convex and nonempty, J : X → R convex. We consider
the problem of convex optimization

minimize J(u) , u ∈ K . (3.1)

We say that u ∈ X is a solution (or a minimizer) of (3.1), if u ∈ K and J(u) ≤ J(w)
for all w ∈ K. A sequence {un} in K is called a minimizing sequence, if J(un) →
inf{J(u) : u ∈ K}.
In order that (3.1) makes sense, it is not required that J is defined on all of X; it suffices
that J : K → R.

In the theory for (3.1), the requirement that J is defined on all of X does not impose a
restriction; if J : K → R, we may extend J to all of X by setting

J̃(u) =

{
J(u) , u ∈ K ,

+∞ , u /∈ K .
(3.2)

Replacing J by J̃ in (3.1) does not change the set of solutions.

When we solve (3.1) numerically, however, if the algorithm uses arguments v which are
not elements of K, it plays a role how J is defined outside of K.

When X = Rn, and K is defined by finitely many constraints (inequalities, equations),
we are in the realm of finite-dimensional optimization. When either dimX =∞ or K is
defined by infinitely many constraints, one speaks of semi-infinite optimization. If both
dimX =∞ and there are an infinite number of constraints, the optimization problem is
called infinite-dimensional. Optimal control problems are infinite-dimensional. A typical
function space for the controls is the Hilbert space

X = L2(Ω) , Ω ⊂ Rn ,

a space which also includes discontinuous control functions. Another typical control space
is L∞(Ω).

Definition 3.1
Let X be a normed space, K ⊂ X, J : K → R.
J is called lower semicontinuous on K, if

J(u) ≤ lim inf
n→∞

J(un) (3.3)

holds for every sequence {un} in K which converges to some u ∈ K.
J is called coercive on K, if J(un)→∞ for every sequence {un} in K with ‖un‖ → ∞.

The definition of “coercive” is not uniform in the literature.

If K is bounded, then J is coercive on K because there is no unbounded sequence in K.

The following proposition contains the typical ingredients of an existence result in infinite-
dimensional optimization. We first formulate it in finite dimensions.
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Proposition 3.2 Let X = Rn, K ⊂ X closed and nonempty, J : K → R lower semicon-
tinuous, bounded from below and coercive on K. Then there exists a minimizer for J on
K. If moreover J is strictly convex, the minimizer is unique.

Proof: Since K is nonempty and J is bounded from below,

m = inf
u∈K

J(u)

is a real number (that is, neither −∞ nor +∞). Let {un} be a minimizing sequence
in K. Since J is coercive, {un} is bounded (otherwise there would exist a subsequence
{unk
} in K with ‖unk

‖ → ∞ and thus J(unk
) → ∞, a contradiction). Since X is finite-

dimensional, there exists a subsequence {unk
} with unk

→ u for some u ∈ X. Since K is
closed, u ∈ K. Since J is lower semicontinuous,

J(u) ≤ lim inf
k→∞

J(unk
) = m = inf

u∈K
J(u) .

Therefore, u is a minimizer of J on K. If J is strictly convex,

J
(u1 + u2

2

)
<

1

2
J(u1) +

1

2
J(u2)

holds if u1 6= u2. Thus, there cannot exist two different minimizers. 2

If we restrict our attention to X = Rn, the proof can be formulated more concisely.
Coercivity of J then implies that the sublevel sets of admissible points,

{w : J(w) ≤ α} ∩K

are nonempty (if α > infK J), closed and bounded, thus compact. Therefore, on such a
set J attains a minimum u, which is a minimizer of the original problem.

The arguments above work because every minimizing sequence turns out to have a con-
vergent subsequence, whose limit then is a minimizer. When X is infinite-dimensional,
closed bounded subsets of X need not be compact, and a minimizing sequence does not
necessarily have a subsequence which converges in the norm of X. Instead of compact-
ness, one then employs weak compactness. This yields weakly convergent minimizing
sequences. In order that “everything else works as before” we additionally assume that J
and K are convex.

Let X be a Hilbert space with a scalar product 〈·, ·〉. A sequence {un} in X converges
weakly to u ∈ X, denoted by un ⇀ u, if

lim
n→∞

〈un, v〉 = 〈u, v〉 , for all v ∈ X. (3.4)

If X = Rn, convergence and weak convergence coincide.

We need the following two results from functional analysis.

Proposition 3.3 Let X be a Hilbert space, K ⊂ X convex and closed, {un} a sequence
in K, un ⇀ u for some u ∈ X. Then u ∈ K.

Proof: This is a result from functional analysis. 2
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Proposition 3.4 Let X be a Hilbert space, {un} be a bounded sequence in X. Then {un}
has a weakly convergent subsequence.

Proof: This is a result from functional analysis. 2

A functional J : K → R, K ⊂ X, is called weakly lower semicontinuous, if

J(u) ≤ lim inf
n→∞

J(un) (3.5)

for every sequence {un} in K with un ⇀ u.

Proposition 3.5 Let X be a Hilbert space, K ⊂ X convex and closed, J : K → R convex
and lower semicontinuous on K. Then J is weakly lower semicontinuous on K.

Proof: For arbitrary α ∈ R, consider the set

Kα = {w : J(w) ≤ α} ∩K .

It is convex since K and J are convex; it is closed since for every sequence {un} with
un ∈ K, J(un) ≤ α and un → u we have u ∈ K and

J(u) ≤ lim inf
n→∞

J(un) ≤ α .

Now assume that J is not weakly lower semicontinuous on K. Then there exists a sequence
{un} in K with un ⇀ u and

J(u) > lim inf
n→∞

J(un) .

Choose α such that
J(u) > α > lim inf

n→∞
J(un) . (3.6)

Let {unk
} be a subsequence such that J(unk

) ≤ α for all k. Since unk
⇀ u and Kα is closed

and convex, we have that u ∈ Kα by Proposition 3.3. Thus J(u) ≤ α, a contradiction to
(3.6). Therefore, J is weakly semicontinuous on K. 2

Proposition 3.6 Let X be a Hilbert space, ∅ 6= K ⊂ X closed and convex, J : K → R
convex, lower semicontinuous, bounded from below and coercive on K. Then there exists
a minimizer for J on K. If moreover J is strictly convex, the minimizer is unique.

Proof: The proof parallels that of Proposition 3.2, taking into account the properties of
weak convergence. As before, one checks that

m = inf
u∈K

J(u)

is a real number, and that every minimizing sequence {un} is bounded. By Proposition
3.4 there exists a subsequence {unk

} with unk
⇀ u for some u ∈ X. Since K is closed

and convex, u ∈ K by Proposition 3.3. Moreover, J is weakly lower semicontinuous by
Proposition 3.5, thus

J(u) ≤ lim inf
k→∞

J(unk
) = m = inf

u∈K
J(u) ,
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and u is a minimizer of J on K. Strict convexity of J implies uniqueness as in Proposition
3.2. 2

Application to ordinary differential equations. Let us consider the linear ODE
system

ẏ = Ay +Bu , y(0) = y0 , (3.7)

for y : [0, T ]→ Rn, u : [0, T ]→ Rm, A ∈ R(n,n), B ∈ R(n,m), y0 ∈ Rn. From the theory of
ODE’s we have the solution formula

y(t) = etAy0 + etA
∫ t

0

e−sABu(s) ds , t ∈ [0, T ] . (3.8)

We want to take controls u in the space X = L2(0, T ). The integrand is an element of
L2(0, T ) because

sup
s∈[0,T ]

‖e−sAB‖ <∞ . (3.9)

By a result of integration theory, the function

t 7→
∫ t

0

f(s)ds ,

is continuous (even absolutely continuous) if f is integrable. Thus, (3.8) defines a function
y ∈ C[0, T ]. The corresponding operator

S : L2(0, T )→ C[0, T ] , y = Su , (3.10)

is called the control-to-state mapping. It is affine linear, that is,

S̃u = Su− S0 (3.11)

defines a linear operator S̃ : L2(0, T )→ C[0, T ]. Moreover, S̃ (and hence S) is continuous,
since

‖S̃u‖∞ = max
t∈[0,T ]

‖(Su)(t)− (S0)(t)‖ ≤ CT

∫ T

0

‖u(s)‖ ds

≤
√
T

√∫ T

0

‖u(s)‖2 ds = CT
√
T‖u‖L2(0,T )

for some constant CT which does not depend on u, obtained via (3.8) and (3.9).

We also consider a control constraint

u(t) ∈ Uad a.e. in (0, T ), Uad ⊂ Rm closed, convex and nonempty, (3.12)

and define the corresponding set K by

K = {u : u ∈ L2(0, T ) , u(t) ∈ Uad for a.a. t ∈ (0, T ).} (3.13)

The set K is a closed, convex and nonempty subset of L2(0, T ).
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We now consider the problem to

minimize J(u) = J1(Su) + J2(u), subject to u ∈ K . (3.14)

Here,
J1 : C[0, T ]→ R , J2 : L2(0, T )→ R . (3.15)

An example is given by

J1(y) =
1

2

∫ T

0

‖y(t)− yd(t)‖2 dt , yd ∈ L2(0, T ) given, (3.16)

J2(u) =
α

2

∫ T

0

‖u(t)‖2 dt , α ≥ 0 given. (3.17)

The functional J2 is coercive on K if α > 0, or if Uad is bounded. In this example, J1 and
J2 are quadratic, while the differential equation is linear (and, hence, the control-to-state
mapping S is affine linear). Such control problems are called linear-quadratic.

Proposition 3.7 Consider the optimal control problem (3.14), where S is the control-to-
state mapping from (3.10) and K is the control constraint (3.13). Assume that J1 and J2

are convex, continuous and bounded from below, and that J2 is coercive on K. Then the
problem has a solution u ∈ K.

Proof: We check that the assumptions of Proposition 3.6 are satisfied. The cost functional
J is convex since S is affine linear and J1 and J2 are convex. J is bounded from below
since so are J1 and J2. J is coercive since J2 is coercive and J1 is bounded from below. J
is continuous since J1, J2 and S are continuous. We already have stated above that K is
closed, convex and nonempty. 2

If one adds a terminal constraint to the problem,

y(T ) = y1 ,

one may subsume this under Problem (3.14), modifying K to

K = {u : u ∈ L2(0, T ) , u(t) ∈ Uad for a.a. t ∈ (0, T ), (Su)(T ) = y1.}

This modified setK is still convex and closed, but in order to check whether it is nonempty,
one has to consider the controllability problem.

Application to an elliptic problem. We consider the following optimal control prob-
lem. Let Ω ⊂ Rd be open and bounded. The state y : Ω→ R should satisfy

−∆y = βu in Ω,

u = 0 on ∂Ω.
(3.18)

Here, u : Ω→ R is the control function, and β ∈ L∞(Ω) is given. We want to minimize

1

2

∫
Ω

(y(x)− yd(x))2 dx+
c

2

∫
Ω

u(x)2 dx . (3.19)
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In contrast to the problem in Chapter 1, the control acts in the interior of Ω instead of
on the boundary; this is mathematically simpler to treat.

The question, whether and why the boundary value problem (3.18) has a unique solution
y for given u, is discussed in the theory of partial differential equations. Here, we present
a brief summary. In the variational approach, which we use here, (3.19) is replaced by
a variational equation. Let φ ∈ C∞0 (Ω) be a so-called test function. Multiplication and
partial integration gives∫

Ω

βuϕ dx =

∫
Ω

(−∆y)ϕdx =

∫
Ω

〈∇y,∇ϕ〉 dx .

(There are no boundary terms since ϕ is zero on the boundary.) One says that y : Ω→ R
is a weak solution of (3.18), if∫

Ω

〈∇y,∇ϕ〉 dx =

∫
Ω

βuϕ dx , for all ϕ ∈ C∞0 (Ω). (3.20)

When u ∈ L2(Ω) and β is bounded, this makes sense if y ∈ L2(Ω) as well as ∇y ∈ L2(Ω)
(that is, all partial derivatives ∂iy are in L2(Ω)). Moreover, the function space for y should
be a Hilbert space. For this reason, for the partial derivatives ∂iy one uses the concept of
a weak derivative. One again starts from a partial integration formula, namely∫

Ω

y ∂iϕdx = −
∫

Ω

∂iy ϕ dx .

A function z ∈ L2(Ω) is called the weak i-th partial derivative of y ∈ L2(Ω), and denoted
by ∂iy, if ∫

Ω

y ∂iϕdx = −
∫

Ω

z ϕ dx . (3.21)

One then defines the function space

H1(Ω) = {y : y ∈ L2(Ω) , ∂iy ∈ L2(Ω) for all i} . (3.22)

This function space is a Hilbert space with the scalar product and norm

〈y, v〉 =
n∑
i=1

∫
Ω

∂iy ∂iv dx+

∫
Ω

y v dx ,

‖y‖2
H1(Ω) =

n∑
i=1

∫
Ω

(∂iy)2 dx+

∫
Ω

y2 dx .

(3.23)

To incorporate the boundary condition y = 0, one uses the subspace

H1
0 (Ω) = C∞0 (Ω) ,

the closure of the space of test functions w.r.t. the norm of H1(Ω). This gives rise to the
norm

‖y‖2
H1

0 (Ω) =

∫
Ω

〈∇y,∇y〉 dx , (3.24)

which on H1
0 (Ω) is equivalent to the norm defined by (3.23).
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Proposition 3.8 Let β ∈ L∞(Ω). For every u ∈ L2(Ω) there exists a unique solution
y ∈ H1

0 (Ω) of (3.20). Moreover, there exists C > 0 such that

‖y‖H1
0 (Ω) ≤ C‖u‖L2(Ω) . (3.25)

Proof: This is a result from the theory of partial differential equations. 2

Thus, the control-to-state mapping u 7→ y =: Su is well-defined.

Corollary 3.9 The control-to-state mapping S for (3.18) is a linear and continous map-
ping from L2(Ω) to H1

0 (Ω). 2

The optimal control problem now has the form: Minimize

J(u) = J1(Su) + J2(u) =
1

2

∫
Ω

((Su)(x)− yd(x))2 dx+
c

2

∫
Ω

u(x)2 dx , c ≥ 0 , (3.26)

subject to
u ∈ K = {u : u ∈ L2(Ω) , u(t) ∈ Uad for a.a. t ∈ (0, T )} . (3.27)

We consider two cases:

(a) c > 0 , Uad = R , (b) c ≥ 0 , Uad = [umin, umax] . (3.28)

As in the subsection on the ODE control problem, this is a linear-quadratic problem. The
cost functional J is convex, coercive in both cases of (3.28), and bounded from below by
0. It is also continuous on L2(Ω), since J2 is obviously continuous on L2(Ω) and J1 is a
composition of continuous mappings

L2(Ω)→ H1
0 (Ω)→ L2(Ω)→ R , u 7→ Su 7→ Su 7→ J1(Su) .

Moreover, K is a closed convex subset of L2(Ω) in both cases of (3.28).

Proposition 3.10 The optimal control problem (3.26) has a solution u ∈ L2(Ω). In the
case c > 0, the solution is unique.

Proof: This is a consequence of Proposition 3.6. In the case c > 0, J is strictly convex.
2
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4 Adjoint Systems and Optimality

Let X be a vector space, K ⊂ X, j : X → R. We consider

minimize j(u) , u ∈ K . (4.1)

We say that j is directionally differentiable at u ∈ X in the direction h ∈ X, if

j′(u;h) = lim
λ↓0

j(u+ λh)− j(u)

λ
(4.2)

exists. We then call j′(u;h) the directional derivative of j at u in the direction h. If it
exists for all h ∈ X, we say that j is directionally differentiable at u.

If u ∈ K and K is convex, we call h an admissible direction for K at u, if there exists
λ > 0 such that u+ λh ∈ K. We then have u+ sh ∈ K for every s ∈ [0, λ]. We denote

K(u) = {h : h is an admissible direction for K at u} . (4.3)

Proposition 4.1 Let X be a vector space, K ⊂ X convex, let u be a minimizer for (4.1)
and j be directionally differentiable at u. Then

j′(u;h) ≥ 0 , for all h ∈ K(u). (4.4)

Proof: For every h ∈ K(u), we have 0 ≤ (j(u + λh) − j(u))/λ, if λ > 0 is sufficiently
small. Passing to the limit λ→ 0 we obtain the assertion. 2

Example 4.2
Let X = L2(Ω), f ∈ L2(Ω),

j(u) =
1

2
‖u− f‖2

2 =
1

2

∫
Ω

(u(x)− f(x))2 dx , u ∈ L2(Ω) . (4.5)

Then for h ∈ L2(Ω)

j(u+ λh)− j(u) =
1

2

∫
Ω

(u+ λh− f)2 − (u− f)2 dx

=
1

2

∫
Ω

(u− f)2 + 2λ(u− f)h+ λ2h2 − (u− f)2 dx

and

j′(u;h) =

∫
Ω

(u(x)− f(x))h(x) dx . (4.6)

If u is a minimizer of j on some convex subset K 6= ∅ of L2(Ω), then u is the projection
of f on K. Proposition 4.1 says that

0 ≤ j′(u;h) =

∫
Ω

(u(x)− f(x))h(x) dx = 〈u− f, h〉 , for all h ∈ K(u),

where 〈·, ·〉 denotes the scalar product in L2(Ω). This is a particular case of the projection
theorem in Hilbert space. 2
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In the example above, the mapping h 7→ j′(u;h) is a functional on X, that is, a linear
continuous mapping from X = L2(Ω) to R, it has the form

h 7→ 〈u− f, h〉 .

This functional is called the gradient of j at u,

(∇j(u))(h) = 〈u− f, h〉 . (4.7)

Since X = L2(Ω) is a Hilbert space, we can “identify” it with the element u− f of X (a
special case of the Riesz isomorphism). We then also write

∇j(u) = u− f . (4.8)

Problem 4.3 We consider the optimization problem

minimize J(y, u) = J1(y) + J2(u) , y = Su , u ∈ K . (4.9)

Here, u stands for the control and y for the state. We assume that X and Y are Hilbert
spaces, J1 : Y → R, J2 : X → R, K ⊂ X is a closed convex set and S : X → Y is
continuous and affine linear, that is,

Su = S̃u+ S0 , S̃ : X → Y linear and continuous. (4.10)

Setting
j(u) = J(Su, u) , (4.11)

we can reduce (4.9) to (4.1). 2

In order to compute the gradient ∇j(u), we need the chain rule.

A mapping F : X → Y between normed spaces X and Y is called directionally differen-
tiable at u if the limit

F ′(u;h) = lim
λ↓0

F (u+ λh)− F (u)

λ
(4.12)

exists for every h ∈ X. We call F ′(u;h) the directional derivative of F at u in the
direction h. Thus, F ′(u;h) ∈ Y .

It follows immediately from the definition that

F ′(u; th) = tF ′(u;h) , for all t ≥ 0. (4.13)

Lemma 4.4 Let X, Y be normed spaces, F : X → Y directionally differentiable and lo-
cally Lipschitz continuous. Then the mapping h 7→ F ′(u;h) is locally Lipschitz continuous
for every h ∈ X.
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Proof: Let u ∈ X, let L be a Lipschitz constant for F near u. Let h, h̃ ∈ X be arbitrary.
Then ∥∥∥F (u+ λh)− F (u)

λ
− F (u+ λh̃)− F (u)

λ

∥∥∥ =
∥∥∥F (u+ λh)− F (u+ λh̃)

λ

∥∥∥
≤ L‖λh− λh̃‖

λ
= L‖h− h̃‖ ,

if λ > 0 is sufficiently small. Letting λ→ 0 yields

‖F ′(u;h)− F ′(u; h̃)‖ ≤ L‖h− h̃‖ .

2

Proposition 4.5 Let X, Y, Z be normed spaces, let F : X → Y and G : Y → Z be locally
Lipschitz continuous and directionally differentiable at u (at F (u), respectively). Then so
is G ◦ F , and

(G ◦ F )′(u;h) = G′(F (u);F ′(u;h)) (4.14)

for all h ∈ X.

Proof: The composition of locally Lipschitz continuous functions is locally Lipschitz con-
tinuous, as an immediate consequence of the definition. Furthermore, we have∥∥∥G(F (u+ λh))−G(F (u))

λ
−G′(F (u);F ′(u;h))

∥∥∥
≤

∥∥∥G(F (u+ λh))−G(F (u) + λF ′(u;h))

λ

∥∥∥
+
∥∥∥G(F (u) + λF ′(u;h)))−G(F (u))

λ
−G′(F (u);F ′(u;h))

∥∥∥
(4.15)

If LG is a local Lipschitz constant for G, then for λ→ 0∥∥∥G(F (u+ λh))−G(F (u) + λF ′(u;h))

λ

∥∥∥ ≤ LG

∥∥∥F (u+ λh)− F (u)− λF ′(u;h))

λ

∥∥∥ → 0 .

The third term in (4.15) goes to zero as λ→ 0 since G is directionally differentiable. 2

If h 7→ F ′(u;h) defines a linear continuous mapping from X to Y , we denote it by DF (u).
In that case

F ′(u;h) = DF (u)h .

If the same is true for G, the chain rule can be written as

D(G ◦ f)(u) = DG(F (u)) ◦DF (u) . (4.16)

The more general case where h 7→ F ′(u;h) is not linear typically arises in nonsmooth
optimization, for example when the cost functional includes terms like∫

Ω

|u(x)| dx ,
∫

Ω

|∇u(x)| dx , sup
x∈Ω
|u(x)| .
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We return to the task of computing the derivative of j(u) = J1(Su) + J2(u) in the setting
of Problem 4.3. We have

S ′(u;h) = S̃h , (4.17)

since S is affine linear, thus the derivative does not depend on u. If J1 and J2 are Lipschitz
continuous and directionally differentiable, we get from the chain rule

j′(u;h) = J ′1(Su; S̃h) + J ′2(u;h) . (4.18)

If moreover the derivatives of J1 and J2 are linear continuous mappings from Y to R and
from X to R, respectively, then in the Hilbert space setting of Problem 4.3 we get

〈∇j(u), h〉 =
〈
∇J1(Su), S̃h

〉
+ 〈∇J2(u), h〉

=
〈
∇yJ(Su, u), S̃h

〉
+ 〈∇uJ(Su, u), h〉 .

(4.19)

The second line is just an alternative notation, since the derivatives of J1 and J2 may also
be written as partial derivatives of J .

Application to ordinary differential equations. We now look at the computation of
the composite mapping

h 7→ S̃h 7→
〈
∇J1(Su), S̃h

〉
in the case where S represents the solution of a linear system of ordinary differential
equations. As before, we consider

ẏ = Ay +Bu , y(0) = y0 , (4.20)

for y : [0, T ] → Rn, u : [0, T ] → Rm, A ∈ R(n,n), B ∈ R(n,m), y0 ∈ Rn. We recall the
solution formula

y(t) = etAy0 +

∫ t

0

e(t−s)ABu(s) ds

=: yin(t) + (S̃u)(t) , t ∈ [0, T ] .

(4.21)

We have seen that u 7→ y defines an affine-linear continuous control-to-state mapping
S : L2(0, T ) → C[0, T ] with linear part S̃. Since the embedding of C[0, T ] into L2(0, T )
is continuous,

S, S̃ : L2(0, T )→ L2(0, T ) (4.22)

are affine linear (linear, resp.) and continuous.
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Setting v = ∇J1(Su), we get〈
∇J1(Su), S̃h

〉
=
〈
v, S̃h

〉
=

∫ T

0

〈
v(t),

∫ t

0

e(t−s)ABh(s) ds

〉
dt

=

∫ T

0

∫ T

s

〈
v(t), e(t−s)ABh(s)

〉
dt ds

=

∫ T

0

∫ T

s

〈
e(t−s)AT

v(t), Bh(s)
〉
dt ds

=

∫ T

0

〈∫ T

s

e(t−s)AT

v(t) dt, Bh(s)

〉
ds

=

∫ T

0

〈∫ T

t

e(s−t)AT

v(s) ds,Bh(t)

〉
dt

=

∫ T

0

〈∫ T

t

e(s−t)AT∇J1(Su)(s) ds,Bh(t)

〉
dt .

(4.23)

Setting

p(t) =

∫ T

t

e(s−t)AT∇J1(Su)(s) ds , (4.24)

we thus obtain 〈
∇J1(Su), S̃h

〉
= 〈p,Bh〉 =

〈
BTp, h

〉
. (4.25)

The function p in (4.24) is called the adjoint or the adjoint state for the system (4.20).
It solves on [0, T ] the “backward” initial value problem (the adjoint system)

ṗ = −ATp−∇J1(Su) , p(T ) = 0 , (4.26)

as one sees when one computes its time derivative from (4.24). Thus,

〈∇j(u), h〉 =
〈
∇J1(Su), S̃h

〉
+ 〈∇J2(u), h〉 =

〈
BTp, h

〉
+ 〈∇J2(u), h〉 . (4.27)

This means in particular that, if one wants to compute j′(u;h) = 〈∇j(u), h〉 for different
directions h, one does not have to compute S̃h for each h. It suffices to solve the adjoint
system once.

Optimality conditions. We return to Problem 4.3. There we want to minimize

j(u) = J1(Su) + J2(u) .

Proposition 4.6 Let u be a minimizer for Problem 4.3, assume that J1 and J2 are locally
Lipschitz continuous and directionally differentiable. Then

J ′1(Su; S̃h) + J ′2(u;h) ≥ 0 , for all h ∈ K(u). (4.28)

Proof: This is a direct consequence of Proposition 4.1, since

j′(u;h) = J ′1(Su; S̃h) + J ′2(u;h)
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by the chain rule. 2

Application to ordinary differential equations. As before we consider the linear
system

ẏ = Ay +Bu , y(0) = y0 . (4.29)

with the control constraint

u ∈ K = {v ∈ L2(0, T ) : v(t) ∈ Uad for a.a. t ∈ (0, T )} , (4.30)

where Uad ⊂ Rm is convex, closed and nonempty. We want to minimize

j(u) = J1(Su) + J2(u) . (4.31)

Proposition 4.7 Let u be a minimizer of (4.29) – (4.31), assume that J1, J2 : L2(0, T )→
R have gradients ∇J1(Su) and ∇J2(u). Then we have〈

BTp+∇J2(u), w − u
〉
L2 ≥ 0 , for all w ∈ K, (4.32)

where p is the solution of the adjoint system

ṗ = −ATp−∇J1(Su) , p(T ) = 0 . (4.33)

Proof: We have

0 ≤ 〈∇j(u), h〉 =
〈
BTp, h

〉
+ 〈∇J2(u), h〉 , for all h ∈ K(u),

according to Proposition 4.6 and (4.27). This is equivalent to (4.32), since h ∈ K(u) if
and only if λh = w − u for some w ∈ K and some λ > 0. 2

We thus obtain the optimality system

ẏ = Ay +Bu , y(0) = y0 ,

ṗ = −ATp−∇J1(Su) , p(T ) = 0 , (4.34)

u ∈ K ,
〈
BTp+∇J2(u), w − u

〉
L2 ≥ 0 , for all w ∈ K.

It consists of ordinary differential equations and a variational inequality, and it has to be
solved for the unknown functions y, p and u.

Let us consider the special case

J2(u) =
α

2

∫ T

0

‖u(t)‖2 dt . (4.35)

Then ∇J2(u) = αu, and the variational inequality becomes

u ∈ K ,
〈
BTp+ αu,w − u

〉
L2 ≥ 0 , for all w ∈ K.

This is equivalent to

u ∈ K ,

〈
− 1

α
BTp− u,w − u

〉
L2

≤ 0 , for all w ∈ K.
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This in turn is equivalent to

u = PK
(
− 1

α
BTp

)
, (4.36)

where PK is the projection onto K in L2(0, T ). Thus, in this case the variational inequality
can be replaced by an equation.

So far, the differential equations in (4.34) are formulated pointwise in time, whereas the
variational inequality

u ∈ K ,

∫ T

0

〈
BTp(t) +∇J2(u)(t), w(t)− u(t)

〉
dt ≥ 0 , for all w ∈ K, (4.37)

is not. Again, as it was sketched in Chapter 2, one can pass from (4.37) to a pointwise
formulation

u(t) ∈ Uad ,
〈
BTp(t) +∇J2(u)(t), ω − u(t)

〉
≥ 0 , for all ω ∈ Uad, (4.38)

which holds for almost all t ∈ (0, T ). In the special case (4.35) one obtains analogously
that the minimizer u has to satisfy

u(t) = PUad

(
− 1

α
BTp(t)

)
, for a.a. t ∈ (0, T ). (4.39)

Here, PUad
is the projection onto Uad in Rm. The function

S(t) = − 1

α
BTp(t) (4.40)

takes on a role similar to that of a switching function. The optimal control u in general
is not bang-bang, since

u(t) = − 1

α
BTp(t) ∈ int (Uad) (4.41)

whenever the right-hand side lies in int (Uad). In particular, (4.41) holds for all t if
Uad = Rm (the case where there is no control constraint).

Interpretation of the adjoint system as a Lagrange multiplier. We write the
initial value problem as an equality constraint in function space

F (y, u) = 0 , (4.42)

where F = (F1, F2) and

F1(y, u)(t) = ẏ(t)− Ay(t)−Bu(t) , t ∈ (0, T ) ,

F2(y, u) = y(0)− y0 .
(4.43)

For the moment we ignore how the function spaces are chosen. We define the Lagrange
function

L(y, u, p, r) = J1(y) + J2(u)− 〈p, F1(y, u)〉L2
− 〈r, F2(y, u)〉Rn

= J1(y) + J2(u)− 〈p, ẏ − Ay −Bu〉L2
− 〈r, y(0)− y0〉Rn .

(4.44)
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The dependence on p and r is linear. Thus,

∇pL(y, u, p, r) = ẏ − Ay −Bu ,
∇rL(y, u, p, r) = y(0)− y0 .

(4.45)

This means that y = Su is the solution of the original system if and only if

∇pL(y, u, p, r) = 0 = ∇rL(y, u, p, r) . (4.46)

For the partial derivative with respect to y we obtain

〈∇yL(y, u, p, r), z〉 = 〈∇J1(y, z〉 − 〈p, ż − Az〉 − 〈r, z(0)〉 . (4.47)

Assuming that p is differentiable and partial integration is valid, we get

〈∇yL(y, u, p, r), z〉 =

∫ T

0

〈
(∇J1(y))(t) + ṗ(t) + ATp(t), z(t)

〉
dt

− 〈p(T ), z(T )〉+ 〈p(0), z(0)〉 − 〈r, z(0)〉 .
(4.48)

If p solves the adjoint system (4.33) and if r = p(0), then the right-hand side of (4.48) is
zero for “all” functions z, so

∇yL(y, u, p, r) = 0 . (4.49)

The partial derivative with respect to u becomes

〈∇uL(y, u, p, r), h〉 = 〈∇J2(u, h〉 − 〈p,−Bh〉 =
〈
BTp+∇J2(u, h

〉
= 〈∇j(u), h〉 .

(4.50)

If the control u is optimal, then 〈∇j(u), h〉 ≥ 0 for all admissible directions h at u.

Summarizing, we obtain (“(∗)” stands for (y, u, p, r))

∇yL(∗) = ∇pL(∗) = ∇rL(∗) = 0 ,

〈∇uL(∗), h〉 ≥ 0 for all h ∈ K(u).
(4.51)

To make these computations precise, one needs a function space for y and p such that
ẏ, ṗ ∈ L2(0, T ). This is achieved by the Sobolev space H1(0, T ), which is a Hilbert space.
Moreover, in H1(0, T ) the rule of partial integration is valid.

Alternatively, one can stay within the framework of L2 if one rewrites the initial value
problem as an integral equation. Set

G(y, u)(t) = y(t)− y0 −
∫ t

0

Ay(s) +Bu(s) ds , t ∈ (0, T ) . (4.52)

The constraint then becomes

G(y, u) = 0 , G : L2(0, T )× L2(0, T )→ L2(0, T ) . (4.53)

We define the Lagrange function

L(y, u, q) = J1(y) + J2(u)− 〈q,G(y, u)〉 , q ∈ L2(0, T ) . (4.54)
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Then
∇qL(y, u, q) = 0 ⇔ G(y, u) = 0 . (4.55)

Now

〈∇yL(y, u, q), z〉 =

∫ T

0

〈(∇J1(y))(t), z(t)〉 dt−
∫ T

0

〈
q(t), z(t)−

∫ t

0

Az(s) ds

〉
dt .

(4.56)
We define

p(t) =

∫ T

t

q(s) ds . (4.57)

Using partial integration, a similar computation as above yields that if p solves the adjoint
system (4.33), then

∇yL(y, u, q) = 0 ,

〈∇uL(y, u, q), h〉 ≥ 0 for all h ∈ K(u).
(4.58)
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5 The Superposition Operator

In this section we denote by | · | a norm in Rn.

Let f : Rn → Rm be given. We consider the superposition operator

(Fu)(x) = f(u(x)) , x ∈ Ω , (5.1)

which maps functions u : Ω → Rn to Fu : Ω → Rm; here, Ω is assumed to be an open
bounded subset of Rl. We consider the situations

F : L∞(Ω;Rn)→ L∞(Ω;Rm) , F : L2(Ω;Rn)→ L1(Ω;Rm) . (5.2)

In order that F maps L∞ into L∞, it suffices that f is measurable and bounded on
bounded arguments, that is,

sup
|v|≤M

|f(v)| <∞ , for all M > 0. (5.3)

This is the case, for example, if f is continuous. In order that F maps L2 into L1, it
suffices that f is measurable and satisfies, for some constants a and b,

|f(v)| ≤ a+ b|v|2 , for all v ∈ Rn. (5.4)

Then

‖Fu‖L1 =

∫
Ω

|f(u(x))| dx ≤
∫

Ω

a+ b|u(x)|2 dx = a|Ω|+ b‖u‖2
L2 <∞ , (5.5)

if u ∈ L2. It is a nontrivial result (which we do not need) that this condition is also
necessary, that is, if (5.4) does not hold for some a and b, then F does not map L2 into
L1.

We want to investigate whether F is differentiable. If f is continuously differentiable, we
have

f(u(x) + v)− f(u(x)) = Df(u(x))v + o(|v|) .

The natural candidate for the derivative of F at u in the direction h is therefore

(DF (u)h)(x) = Df(u(x))h(x) , x ∈ Ω . (5.6)

In the case of L∞, the mapping h 7→ Df(u(·))h(·) indeed defines a linear and continuous
map from L∞ to L∞, since Df is continuous and therefore the function x 7→ Df(u(x)) is
bounded. In the case of L2, we additionally assume that

‖Df(v)‖ ≤ a+ b|v| , for all v ∈ Rn. (5.7)

Then x 7→ Df(u(x)) belongs to L2 whenever u ∈ L2, and thus the right hand side of (5.6)
belongs to L1 for h ∈ L2, by the Cauchy-Schwarz inequality.

In order to estimate the remainder term, we consider the mapping

gx(t) = f(u(x) + th(x)) , g : (−δ, δ)→ Rm . (5.8)
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We then have, since g is continuously differentiable,

(F (u+ h))(x)− (Fu)(x) = gx(1)− gx(0) =

∫ 1

0

g′x(t) dt

=

∫ 1

0

Df(u(x) + th(x))h(x) dt .

(5.9)

We consider the remainder term rh : Ω→ Rm defined by

rh(x) = (F (u+ h))(x)− (Fu)(x)−Df(u(x))h(x)

=

∫ 1

0

Df(u(x) + th(x))−Df(u(x)) dt · h(x) .
(5.10)

We estimate it pointwise by

|rh(x)| ≤
∫ 1

0

‖Df(u(x) + th(x))−Df(u(x))‖ dt · |h(x)| , x ∈ Ω . (5.11)

In order to proceed further, we want to estimate the integral if h is close to 0. In the case
of L∞ this means that almost all values u(x) and h(x) are bounded resp. close to 0. In
this case, it suffices that Df(u) satisfies in every bounded set B a Lipschitz condition

‖Df(v) = Df(ṽ‖ ≤ L|v − ṽ| , for all v, ṽ ∈ B. (5.12)

This is equivalent to Df being locally Lipschitz continuous. In the case of L2 the values
of u and h may be unbounded no matter how small the norm of u and h is. In this case
we require Df to be globally Lipschitz continuous, that is, (5.12) holds for B = Rn. The
estimate (5.11) then becomes in both cases

|rh(x)| ≤ L|h(x)|2 . (5.13)

In the case of L∞ we then get

‖rh‖∞ ≤ L‖h‖2
∞ , lim

‖h‖∞→0

‖rh‖∞
‖h‖∞

= 0 . (5.14)

In the case of L2 we get

‖rh‖1 ≤ L

∫
Ω

|h(x)|2 dx = ‖h‖2
2 , lim

‖h‖2→0

‖rh‖1

‖h‖2

= 0 . (5.15)

Thus, in both cases F is differentiable.

In order to investigate whether the mapping u 7→ DF (u) is continuous, we consider the
expression

‖DF (u)−DF (ũ)‖ = sup
‖h‖=1

‖(DF (u)−DF (ũ))h‖ . (5.16)

We have

|((DF (u)−DF (ũ))h)(x)| = |(Df(u(x))−Df(ũ(x)))(h(x))| ≤ L|u(x)− ũ(x)| |h(x)| .
(5.17)
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Thus, in the case of L∞,

‖DF (u)−DF (ũ)‖ = sup
‖h‖∞=1

‖(DF (u)−DF (ũ))h‖∞

≤ sup
‖h‖∞=1

L‖u− ũ‖∞‖h‖∞ = L‖u− ũ‖∞ .
(5.18)

In the case of L2,

‖DF (u)−DF (ũ)‖ = sup
‖h‖2=1

‖(DF (u)−DF (ũ))h‖1

≤ sup
‖h‖2=1

∫
Ω

|(Df(u(x))−Df(ũ(x)))(h(x))| dx

≤ sup
‖h‖2=1

∫
Ω

L|u(x)− ũ(x)| |h(x)| dx ≤ sup
‖h‖2=1

L‖u− ũ‖2‖h‖2

= L‖u− ũ‖2 .

(5.19)

We summarize the above results for the superposition operator defined by

(Fu)(x) = f(u(x)) . (5.20)

Proposition 5.1 Assume that f : Rn → Rm is continuously differentiable and that
(i) Df is locally Lipschitz continuous, or
(i’) f satisfies (5.4) and Df satisfies (5.7) for some a, b > 0, and Df is globally Lipschitz
continuous.
Then F defined by (5.20) is continuously differentiable from L∞ to L∞ in case (i), and
from L2 to L1 in case (i’). The derivative of F is given by

(DF (u)h)(x) = Df(u(x))h(x) , x ∈ Ω . (5.21)

2

More information on superposition operators can be found in the book of J. Appell and
P. Zabrejko with the title “Nonlinear superposition operators”.

If f satisfies the growth condition

|f(v)| ≤ a+ b|v| , (5.22)

then F maps L2 into L2. But one can prove that F : L2 → L2 is not differentiable unless f
is affine. Consider the special case n = m = 1, Ω = (0, 1). As shown above, the remainder
can be written as

rh(x) =

∫ 1

0

f ′(u(x) + th(x))− f ′(u(x)) dt · h(x) . (5.23)

Let u be a constant function, set

hε = 1(0,ε) , hε(x) =

{
1 , x < ε ,

0 , x ≥ ε .
(5.24)
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Then

rε(x) =

∫ 1

0

f ′(u+ t)− f ′(u) dt · hε(x) . (5.25)

Setting

d =

∫ 1

0

f ′(u+ t)− f ′(u) dt ,

we obtain, if d 6= 0, ‖rε‖2 = |d|‖hε‖2, thus

‖rε‖2

‖hε‖2

= |d| 6= 0 , ‖hε‖2 =
√
ε→ 0 as ε→ 0. (5.26)

Therefore, F : L2 → L2 is not differentiable at such a point u.
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6 Second Order Conditions

Second order derivatives. Let X, Y be normed spaces, F : X → Y . For u ∈ X, we
define the second order directional derivative of F in the direction (h, k) by

F ′′(u;h, k) = lim
λ↓0

F ′(u+ λk;h)− F ′(u;h)

λ
, (6.1)

if the limit exists, and if F is directionally differentiable in a neighbourhood of u (thus,
F ′(u + λk;h) exists for small enough λ.) If this is the case for all h, k ∈ X, we say that
F is twice directionally differentiable at u.

If the mapping (h, k)→ F ′′(u;h, k) is bilinear and continuous, we denote it by

D2F (u) : X ×X → Y , D2F (u)(h, k) = F ′′(u;h, k) . (6.2)

In the special case X = Rn, Y = R, D2F (u) can be identified with the Hessian HF (u) ∈
R(n,n),

D2F (u)(h, k) = hTHF (u)h . (6.3)

The set of bilinear continuous mappings from X to Y is a normed space with the norm

‖T‖ = sup
‖h‖X=1

sup
‖k‖X=1

‖T (h, k)‖Y , (6.4)

and we have
‖T (h, k)‖Y ≤ ‖T‖‖h‖X‖k‖Y , for all h, k ∈ X. (6.5)

One usually computes D2F (u) by evaluating (6.1).

If moreover the mapping u 7→ D2F (u) is continuous on some open set V ⊂ X, then F
is called twice continuously differentiable on V . As in the finite-dimensional case,
Taylor’s formula then holds, namely

F (u+ h) = F (u) +DF (u)h+
1

2
D2F (u)(h, h) + r2(h) , lim

h→0

r2(h)

‖h‖2
X

= 0 . (6.6)

Second order optimality conditions. We again consider the problem

minimize j(u), u ∈ K , (6.7)

where X is a normed space, j : X → R and K ⊂ X is convex. If u is a minimizer, we
know that j′(u;h) ≥ 0 for all admissible directions, that is, for all h ∈ K(u). This is a
necessary condition for optimality. The next proposition provides a sufficient condition
in terms of second derivatives.

Proposition 6.1 Let j : X → R be twice continuously differentiable, let u ∈ K such that
Dj(u)h ≥ 0 for all h ∈ K(u). Assume that there exists a γ > 0 such that

D2j(u)(h, h) ≥ γ‖h‖2 , for all h ∈ K(u). (6.8)

Then u is a strict local minimizer, and there exists a δ > 0 such that

j(v) ≥ j(u) +
γ

4
‖v − u‖2 (6.9)

holds for all v ∈ K with ‖v − u‖ < δ.
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Proof: Let v ∈ K be arbitrary. Then h = v − u ∈ K(u) and

j(v) = j(u+ h) = j(u) +Dj(u)h+
1

2
D2j(u)(h, h) + r(h) , lim

h→0

r(h)

‖h‖2
= 0 .

Due to the assumptions,

j(u+ h) ≥ j(u) +
γ

2
‖h‖2 + r(h) .

Let δ > 0 such that |r(h)| ≤ (γ/4)‖h‖2 for every h with ‖h‖ < δ. 2

In the case K = X (the case without a control constraint), we have K(u) = X, and the
above proposition has a simpler form.

Corollary 6.2 Let j : X → R be twice continuously differentiable, let u ∈ X such that
Dj(u) = 0. Assume that there exists a γ > 0 such that

D2j(u)(h, h) ≥ γ‖h‖2 , for all h ∈ X. (6.10)

Then u is a strict local minimizer, and there exists a δ > 0 such that

j(v) ≥ j(u) +
γ

4
‖v − u‖2 (6.11)

holds for all v ∈ X with ‖v − u‖ < δ. 2

Two-norm discrepancy. Concerning our minimization problem, we have the two re-
quirements

lim
h→0

r(h)

‖h‖2
= 0 ,

A(h, h)

‖h‖2
≥ γ for all h ∈ X, (6.12)

where the bilinear form A has to be equal to D2j(u) if the limit exists. If X has finite
dimension, this is true either for every norm or for no norm (modulo the size of γ), because
all norms on X are equivalent. If X is infinite dimensional, it may happen that

• for some norm, the limit exists but A = D2j(u) is not positive definite,

• if we weaken the norm, then A becomes positive definite, but the limit (and thus
D2j(u)) no longer exists.

We illustrate this situation with the following example. (See F. Tröltzsch, Optimal Control
of Partial Differential Equations, 2010; German edition 2005 and 2009.) We want to
minimize

j(u) = −
∫ 1

0

cos(u(x)) dx , 0 ≤ u(x) ≤ 2π . (6.13)

We consider the sets of solutions in the spaces L2(0, 1) and L∞(0, 1). These sets are
identical, namely they consist of the measurable functions with u(x) = 1, that is,

u(x) ∈ {0, 2π} , for all x ∈ (0, 1). (6.14)
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Let u1 and u2 be two different solutions. Then |u1(x)− u2(x)| = 2π if u1(x) 6= u2(x), and
therefore

‖u1 − u2‖∞ = 2π , ‖u1 − u2‖2 = 2π
√

meas {u1 6= u2} . (6.15)

Thus, every solution is a strict local minimum in L∞, but no solution is a strict local
minimum in L2.

Now let us consider the second order optimality conditions. We have

j(u) =

∫ 1

0

(Fu)(x) dx , (6.16)

where F is the superposition operator generated by f(v) = − cos v. Since f belongs to
C∞ and all derivatives of f are bounded, the assumptions of Proposition 5.1 are satisfied,
so F : L∞ → L∞ as well as F : L2 → L1 are continuously differentiable with

(DF (u)h)(x) = f ′(u(x))h(x) , x ∈ (0, 1) . (6.17)

Since the integral is linear and continuous on L1 (and therefore, on L∞ too), the chain
rule yields

Dj(u)h =

∫ 1

0

f ′(u(x))h(x) dx (6.18)

in both cases, j : L∞ → R and j : L2 → R.

Now let us consider the second derivative in L∞. For a given h ∈ L∞, the mapping
u 7→ Dj(u)h can be expressed as the composition of the superposition operator

(Gu)(x) = f ′(u(x)) , G : L∞ → L∞ , (6.19)

and the linear continuous mapping from L∞ to R

d 7→
∫ 1

0

d(x)h(x) dx . (6.20)

We have (G′(u)k)(x) = f ′′(u(x))k(x) and therefore

j′′(u; (h, k)) =

∫ 1

0

f ′′(u(x))h(x)k(x) dx =

∫ 1

0

cos(u(x))h(x)k(x) dx . (6.21)

The mapping (h, k) 7→ j′′(u; (h, k)) is a bilinear and continuous mapping from L∞ × L∞
to R, so

D2j(u)(h, k) =

∫ 1

0

f ′′(u(x))h(x)k(x) dx =

∫ 1

0

cos(u(x))h(x)k(x) dx . (6.22)

Moreover, u 7→ D2j(u) is continuous, so j is twice continuously differentiable on L∞.
However, if we set

hε = 1(0,ε)

we have ‖hε‖∞ = 1 and

D2j(u)(hε, hε)

‖hε‖2
∞

≤
∫ 1

0

hε(x)2 dx = ε . (6.23)
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Therefore D2j(u) is not positive definite on L∞, and (6.9) does not hold in L∞, no matter
how we choose u. In particular, at this point we cannot use the second derivative in order
to conclude that u = 0 is a strict local minimum in L∞ (which is true according to (6.15)).

On the other hand, the quadratic form

Au(h, k) =

∫ 1

0

cos(u(x))h(x)k(x) dx (6.24)

is well-defined on L2 × L2, and for the minimizer u = 0 we obtain

A0(h, h) =

∫ 1

0

h(x)2 dx = ‖h‖2
2 ,

A0(h, h)

‖h‖2
2

= 1 , (6.25)

so A is positive definite on L2. However, it turns out that if we regard j as a functional
from L2 to R, the second derivative D2j(u) does not exist in u = 0. Indeed, setting

gx(t) = f(u(x) + th(x)) = f(th(x)) ,

we have the Taylor expansion

gx(1) = gx(0) + g′x(0) +
1

2
g′′x(0) +

∫ 1

0

(g′′x(t)− g′′x(0))(1− t) dt ,

so

f(h(x)) = f(0) + f ′(0)h(x) +
1

2
f ′′(0)h(x)2 +

∫ 1

0

(1− t)(f ′′(th(x))− f ′′(0))h(x)2 dt .

We integrate over (0, 1) with respect to x and obtain

j(h) = j(0) +Dj(0)h+
1

2

∫ 1

0

f ′′(0)h(x)2 dx+ r2(h) , (6.26)

where

r2(h) =

∫ 1

0

∫ 1

0

(1− t)(f ′′(th(x))− f ′′(0))h(x)2 dt dx . (6.27)

Again we choose
hε = 1(0,ε)

and get

r2(hε) =
1

2

∫ ε

0

∫ 1

0

(1− t)(cos t− cos 0) dt dx = εc (6.28)

where c 6= 0. Since ‖hε‖2 =
√
ε, we finally obtain

r2(hε)

‖hε‖2
2

= c 6= 0 . (6.29)

Thus, j is not twice continuously differentiable at u = 0.

Again, we cannot use Proposition 6.1 to conclude optimality of u = 0 (and indeed, u = 0
is not a strict local minimizer in L2).
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However, one can combine the results concerning L∞ and L2. From (6.27) we get, since
|f ′′′| ≤ 1,

|r2(h)| ≤
∫ 1

0

∫ 1

0

(1− t)t dt · |h(x)|3 dx ≤ 1

6
‖h‖∞‖h‖

2
2 . (6.30)

This implies that, if we restrict ourselves to h ∈ L∞,

r2(h)

‖h‖2
2

→ 0 as ‖h‖∞ → 0 . (6.31)

Now (6.26) becomes, since Dj(0) = 0 and f ′′(0) = 1,

j(h) = j(0) +Dj(0)h+
1

2

∫ 1

0

f ′′(0)h(x)2 dx+ r2(h)

= j(0) +
1

2
‖h‖2

2 + r2(h) = j(0) + ‖h‖2
2

(1

2
+
r2(h)

‖h‖2
2

) (6.32)

From (6.31) we conclude that

j(h) > 0 , if ‖h‖∞ is sufficiently small. (6.33)

This proves that u = 0 is a strict local minimizer in L∞.

In this manner one can resolve the difficulty (of proving optimality) which arises from the
two-norm discrepancy. This technique is used in particular in optimal control problems
for partial differential equations.
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7 The Semismooth Newton Method

One way to solve an optimization problem is to find a solution of the first order optimality
system.

The simplest case arises when the cost functional is quadratic and no constraint is present.
We consider

minimize j(u) =
1

2
〈u,Gu〉 − 〈f, u〉 . (7.1)

Here, j : X → R, X is a Hilbert space, f ∈ X, and G : X → X is a linear and continuous
operator.

We then have

〈∇j(u), h〉 =
1

2
〈h,Gu〉+

1

2
〈u,Gh〉 − 〈f, h〉

=

〈
1

2
(G+G∗)u, h

〉
− 〈f, h〉 ,

(7.2)

where G∗ : X → X is the Hilbert adjoint of G, defined by

〈G∗u, v〉 = 〈u,Gv〉 , for all u, v ∈ X.

In fact, we may assume that G is self-adjoint, that is, G∗ = G, since otherwise we may
replace G with the self-adjoint operator (G+G∗)/2 without changing j. Then

∇j(u) = Gu− f . (7.3)

All candidates for a minimizer of (7.1) must satisfy

Gu = f . (7.4)

This is a linear equation in the space X. Since D2j is constant and equal to G, solving
(7.4) can be interpreted as performing a Newton step

D2j(u0)(u− u0) = −∇j(u0)

for an arbitrary initial value u0 ∈ X.

Active set strategy for inequality problems. We consider the linear-quadratic ODE
control problem for the special case of a scalar control.

Miminize j(u) = J(Su, u), J(y, u) =
1

2

∫ T

0

‖y(t)− yd(t)‖2 dt+
α

2

∫ T

0

u(t)2 dt , (7.5)

where
ẏ = Ay + bu , y(0) = y0 , (7.6)

with A ∈ R(n,n), b ∈ Rn, and

u ∈ K = {v ∈ L2(0, T ) : v(t) ∈ [umin, umax] a.e. in (0, T )} . (7.7)
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The optimality system is given by (see Section 4)

ẏ = Ay + bu , y(0) = y0 ,

ṗ = −ATp− (y − yd) , p(T ) = 0 , (7.8)

u ∈ K ,
〈
bTp+ αu,w − u

〉
L2 ≥ 0 , for all w ∈ K.

It consists of ordinary differential equations and a variational inequality, and it has to be
solved for the unknown functions y, p and u.

We have already seen that in this particular case the variational inequality is equivalent
to

u = PK
(
− 1

α
bTp
)
, (7.9)

where PK is the projection onto K in L2(0, T ).

The pointwise formulation of (7.9) is

u(t) = P[umin,umax]

(
− 1

α
bTp(t)

)
, for a.a. t ∈ (0, T ). (7.10)

Setting

s(t) = − 1

α
bTp(t) , (7.11)

we can rewrite (7.10) as

u(t) =


umin , s(t) < umin ,

umax , s(t) > umax ,

s(t) , otherwise.

(7.12)

For an arbitrary function σ : [0, T ]→ R we define the active sets

Amin(σ) = {t : t ∈ [0, T ] , σ(t) < umin} ,
Amax(σ) = {t : t ∈ [0, T ] , σ(t) > umax} ,

(7.13)

and the inactive set
I(σ) = [0, T ] \ (Amax(σ) ∪ Amin(σ)) . (7.14)

The idea of the active set strategy is the following:
Given a current iterate (yn−1, pn−1, un−1, sn−1) of the optimality system, we update the
active sets by

Aminn = Amin(sn−1) ,

Amaxn = Amax(sn−1) ,
(7.15)

Then we compute the new iterate (yn, pn, un, sn) from the optimality system, where we
replace the nonlinear equation (7.9) by

un(t) =


umin , t ∈ Aminn ,

umax , t ∈ Amaxn ,

sn(t) , otherwise.

(7.16)
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In fact, this second part of the iteration is a linear problem. Let us denote by 1minn and
1maxn the characteristic functions of Aminn and Amaxn . Then (yn, pn, un, sn) is the solution
of the linear system

ẏ = Ay + bu , y(0) = y0

ṗ = −ATp− (y − yd) , p(T ) = 0

s = − 1

α
bTp

u− (1− 1minn − 1maxn )s = 1minn umin + 1maxn umax

(7.17)

for the unknown functions (y, p, u, s) as functions of time. The results from the previous
iteration step enter this system only through the active sets Aminn and Amaxn which were
obtained by (7.15). In this way, the active set strategy replaces the nonlinear optimal-
ity system by a sequence of linear problems. It is also called primal-dual active set
strategy, since the update of the active sets is based on the solution of the system for
the “primal” variable y and the “dual” variable p.

The semismooth Newton method. This is a variant of the Newton method for solving
a nonlinear equation

F (u) = 0 , F : X → Z , (7.18)

where X and Z are Banach spaces. The Newton method itself is an iterative method
which replaces the nonlinear equation (7.18) by a sequence of linear problems. Starting
from an initial value u0 ∈ X, it is defined by

DF (uk)hk = −F (uk)

uk+1 = uk + hk .
(7.19)

Thus, the increment hk is determined as the solution of a linear equation. In optimization,
F corresponds to ∇j, DF corresponds to D2j. The iteration step makes sense if F is
differentiable at uk with a linear and continuous derivative DF (uk) : X → Z which
is bijective. Then the linear equation has a unique solution hk for given F (uk), and
the inverse DF (uk)

−1 is continuous, as a consequence of the open mapping theorem in
functional analysis. Thus, hk depends continuously upon F (uk).

If such a derivative is not available, or if for some reasons one does not want to use it, one
may replace the operator DF (u) by some other operator G(u) which is linear, continuous
and bijective. The iteration (7.19) becomes

G(uk)hk = −F (uk)

uk+1 = uk + hk .
(7.20)

Under suitable assumptions, the Newton method converges locally with a quadratic con-
vergence rate to a u∗ ∈ X with F (u∗) = 0. When replacing DF with G, one loses the
quadratic convergence. One is, however, interested to keep superlinear convergence,

lim
k→∞

‖uk+1 − u∗‖
‖uk − u∗‖

= 0 . (7.21)

In order to see which properties of G would guarantee that, we observe that

uk+1 − u∗ = uk + hk − u∗ = uk − u∗ −G(uk)
−1F (uk)

= G(uk)
−1
(
G(uk)(uk − u∗)− F (uk) + F (u∗)

)
.
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It follows that

‖uk+1 − u∗‖ ≤ ‖G(uk)
−1‖ · ‖F (uk)− F (u∗)−G(uk)(uk − u∗)‖ . (7.22)

This leads to the following definition.

Definition 7.1 (Newton derivative)
Let X,Z be Banach spaces, U ⊂ X open, F : U → Z. A mapping G : U → L(X,Z) is
called a Newton derivative of F in U if

lim
h→0

‖F (u+ h)− F (u)−G(u+ h)h‖
‖h‖

= 0 (7.23)

holds for all u ∈ U . In this case, F is called Newton differentiable in U .

If G is a Newton derivative of F , the iteration (7.20) for solving F (u) = 0 is called the
semismooth Newton method.

The Newton derivative may not be unique. For example, if F is continuously differentiable,
then G(u) = F ′(u− h) as well as G(u) = F ′(u) define Newton derivatives of F .

Proposition 7.2 (Superlinear convergence)
Let X,Z be Banach spaces, U ⊂ X open, F : U → Z, let u∗ ∈ U with F (u∗) = 0. Let G
be a Newton derivative of F in U and assume that the set {‖G(u)−1‖ : u ∈ U} is bounded.
Then there exists an ε > 0 such that, for all initial values u0 ∈ B(u∗, ε), the iteration
(7.20) is well-defined, and uk → u∗ superlinearly.

Proof: Let ‖G(u)−1‖ ≤ M in U . Choose an arbitrary η ∈ (0, 1), and choose ε > 0 such
that

‖F (u∗ + h)− F (u∗)−G(u∗ + h)h‖ ≤ η

M
‖h‖ , for all ‖h‖ < ε. (7.24)

Choose any u0 with ‖u0 − u∗‖ < ε. Setting h = u0 − u∗, we obtain from (7.22) that

‖u1 − u∗‖ ≤ ‖G(u0)−1‖ · ‖F (u0)− F (u∗)−G(u0)(u0 − u∗)‖

≤M
η

M
‖u0 − u∗‖ = η‖u0 − u∗‖ ,

(7.25)

so u1 ∈ B(u∗, ε). Replacing u0 with uk−1 and u1 with uk, we see by induction that
uk ∈ B(u∗, ε) for all k and

‖uk+1 − u∗‖ ≤ η‖uk − u∗‖ .
Thus the iteration is well-defined, and uk → u∗ linearly. By (7.22),

‖uk+1 − u∗‖
‖uk − u∗‖

≤M
‖F (uk)− F (u∗)−G(uk)(uk − u∗)‖

‖uk − u∗‖
→ 0

as k →∞, according to the definition of the Newton derivative, since uk → u∗. 2

The chain rule holds for Newton derivatives. If G1 is a Newton derivative for F1, and G2

a Newton derivative for F2, and if F1 is locally Lipschitz continuous, then G2 ◦ G1 is a
Newton derivative for F2 ◦ F1. Like the proof of Proposition 4.5, it is solely based on the
definitions. (See the paper of Hintermüller and Kunisch in SIAM J. Opt. 20 (2009), 1133
– 1156.)
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Example 7.3
1. Let F : R→ R, F (x) = x+ = max{x, 0}. Then

G(x) =


1 , x > 0 ,

0 , x < 0 ,

d , x = 0 ,

(7.26)

with d ∈ R arbitrary, is a Newton derivative of F in R. Indeed, in {x 6= 0} it coincides
with the classical derivative for h small enough, and in x = 0 we have for all h ∈ R

F (x+ h)− F (x)−G(x+ h)h = h+ − 0− h+ = 0 .

2. Since |x| = x+ + (−x)+, the function F (x) = |x| has

G(x) =


1 , x > 0 ,

−1 , x < 0 ,

d , x = 0 ,

(7.27)

with d ∈ R arbitrary, as a Newton derivative.
3. The projection mapping F : R→ R onto [a, b],

F (x) = P[a,b](x) = min{b,max{x, a}} =


b , x ≥ b ,

x , a < x < b ,

a , x ≤ a ,

(7.28)

has as a Newton derivative the mapping

G(x) =

{
1 , a < x < b ,

0 , otherwise .
(7.29)

This can be computed directly, or it can be reduced to x 7→ x+, since

P[a,b](x) = (b− a− (x− a)+)+ − b .

4. Let X be a Hilbert space, F : X → R, F (x) = ‖x‖. Then G : X → X defined by
(recall the identification of X∗ and X)

G(x) =
x

‖x‖
, x 6= 0 , (7.30)

and G(0) = d, d ∈ X arbitrary, is a Newton derivative of F . This involves some scalar
product computations, see the book of Ito and Kunisch.

The following result is due to Ulbrich, Hintermüller, Ito and Kunisch.

Proposition 7.4 Let Ω ⊂ Rn be open and bounded, 1 ≤ p < q ≤ ∞, F : Lq(Ω)→ Lp(Ω
be defined by

(Fu)(x) = u+(x) = max{u(x), 0} , x ∈ Ω . (7.31)
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Then G : Lq(Ω)→ L(Lq(Ω), Lp(Ω)) defined by

((Gu)h)(x) =


h(x) , u(x) > 0 ,

0 , u(x) < 0 ,

d , u(x) = 0 ,

(7.32)

with d ∈ R arbitrary, is a Newton derivative for F .

The assumption p < q is essential, in the case p = q the assertion is false. This is analogous
to the situation for general superposition operators discussed in Section 5.

Corollary 7.5 Let Ω ⊂ Rn be open and bounded, 1 ≤ p < q ≤ ∞, F : Lq(Ω)→ Lp(Ω) be
defined by

(FPu)(x) = P[a,b](u(x)) =


b , u(x) ≥ b ,

u(x) , a < u(x) < b ,

a , u(x) ≤ a .

(7.33)

Then GP : Lq(Ω)→ L(Lq(Ω), Lp(Ω)) defined by

((GPu)h)(x) =

{
h(x) , a < u(x) < b ,

0 , otherwise ,
(7.34)

is a Newton derivative of FP .

Application to the control problem. We return to the optimal control problem with
scalar control

miminize j(u) = J(Su, u), J(y, u) =
1

2

∫ T

0

‖y(t)− yd(t)‖2 dt+
α

2

∫ T

0

u(t)2 dt , (7.35)

where
ẏ = Ay + bu , y(0) = y0 , (7.36)

with A ∈ R(n,n), b ∈ Rn, and

u ∈ K = {v ∈ L2(0, T ) : v(t) ∈ Uad a.e. in (0, T )} , Uad = [umin, umax] . (7.37)

As we have already computed,

〈∇j(u), h〉 =
〈
∇yJ(Su, u), S̃h

〉
+ 〈∇uJ(Su, u), h〉

=
〈
Su− yd, S̃h

〉
+ 〈αu, h〉 .

(7.38)

Here, S̃ : X → Y is the linear part of S defined by Su = S̃u + S0, and X = L2(0, T ),
Y = L2(0, T ;Rn).

We rewrite (7.38) as

〈∇j(u), h〉 =
〈
S̃∗(Su− yd) + αu, h

〉
. (7.39)
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Here, S̃∗ : Y → X is the Hilbert adjoint of S̃ : X → Y , defined by〈
S̃∗z, h

〉
=
〈
z, S̃h

〉
, z ∈ Y , h ∈ X . (7.40)

We define Q : X → X by
Qu = S̃∗(Su− yd) . (7.41)

Then
〈∇j(u), h〉 = 〈Qu+ αu, h〉 . (7.42)

As before, the optimality condition for the minimizer u∗,

〈∇j(u∗), v − u∗〉 ≥ 0 , for all v ∈ K,

is equivalent to

u∗ = PK
(
− 1

α
Qu∗

)
. (7.43)

We want to solve this equation with the semismooth Newton method. To this end, we
define

Fu = u− PK
(
− 1

α
Qu
)
, F : X → X . (7.44)

Proposition 7.6 The mapping F : L2(0, T ) → L2(0, T ) defined by (7.44) is Newton
differentiable. A Newton derivative is given by

(Gu)(h) = h+ 1in ·
1

α
S̃∗S̃h , (7.45)

where

1in(t) =

{
1 , umin < − 1

α
(Qu)(t) < umax ,

0 , otherwise,
(7.46)

is the characteristic function of the inactive set.

Proof: Since for K given by (7.37) the projection can be evaluated pointwise,

(PKv)(t) = PUad
(v(t)) ,

we obtain from Corollary 7.5 that

PK : Lq(0, T )→ L2(0, T ) (7.47)

is Newton differentiable if q > 2. From the very definition, Q maps X = L2 into itself,
which is not good enough. However, in view of (4.25), we have

〈Qu, h〉 =
〈
S̃∗(Su− yd), h

〉
=
〈
Su− yd, S̃h

〉
=
〈
bTp, h

〉
,

where p is the solution of the adjoint system

ṗ = −ATp− (Su− yd) , p(T ) = 0 . (7.48)
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The mapping u 7→ p defined by (7.48) is continuous and affine linear from L2(0, T )
to C[0, T ], and the embedding C[0, T ] → Lq(0, T ) is continuous for all q. Therefore
Q : L2(0, T )→ Lq(0, T ) is continuous for q > 2. The derivative of Q, Qu = S̃∗(Su− yd),
does not depend on u and is given by its linear part,

DQ(u) = S̃∗S̃ . (7.49)

According to Corollary 7.5, a Newton derivative of PK at the point s ∈ Lq(0, T ) is given
by

((GP s)d)(t) =

{
d(t) , umin < s(t) < umax ,

0 , otherwise .

The chain rule now yields (7.46), setting

s = − 1

α
Qu , d = − 1

α
DQ(u)(h) = − 1

α
S̃∗S̃h .

2

Proposition 7.7 The Newton derivative G given in Proposition 7.6 has an inverse which
is uniformly bounded, that is, there exists M such that

‖(Gu)−1‖ ≤M

for all u ∈ X.

Proof: Let u ∈ X be arbitary. According to Proposition 7.6, we have

(Gu)(h) = h+ 1in ·
1

α
S̃∗S̃h , (7.50)

where

1in(t) =

{
1 , umin < − 1

α
(Qu)(t) < umax ,

0 , otherwise.
(7.51)

We also define
1act(t) = 1− 1in(t) .

Let h ∈ X be arbitrary, set z = (Gu)h. Then

h1act = z1act ,

since 1in1act = 0, and hence (“‖ · ‖” denotes the norm in L2)

‖h1act‖ = ‖z1act‖ ≤ ‖z‖ . (7.52)

In order to estimate ‖h1in‖, we test (7.50) with h1in and compute

〈z, h1in〉 = 〈h, h1in〉+
1

α

〈
S̃∗S̃h, h1in

〉
= 〈h1in, h1in〉+

1

α

〈
S̃∗S̃(h1in + h1act), h1in

〉
= ‖h1in‖2 +

1

α

〈
S̃(h1in), S̃(h1in)

〉
+

1

α

〈
S̃(h1act), S̃(h1in)

〉
.
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This yields

‖h1in‖2 ≤ 〈z, h1in〉 −
1

α

〈
S̃(h1act), S̃(h1in)

〉
≤ ‖h1in‖

(
‖z‖+

1

α
‖S̃‖2‖h1act‖

)
≤ ‖h1in‖C‖z‖ , C = 1 +

1

α
‖S̃‖2 ,

where we have used (7.52) at the end. This yields

‖h‖ ≤ ‖h1in‖+ ‖h1act‖ ≤M‖z‖ , M = C + 1 . (7.53)

In particular, Gu is injective, since ‖z‖ = 0 implies ‖h‖ = 0. Next, the operator S̃∗S̃ :
L2 → L2 is a compact operator. Thus, Gu has the form

Gu = I −K

where K is compact. The Riesz-Schauder theory from functional analysis then says that
the Fredholm alternative holds for Gu; in particular, Gu is surjective if and only if Gu is
injective. Therefore, Gu is bijective. The assertion now follows from (7.53). 2

As a consequence, Proposition 7.2 can be applied. This shows that the semismooth
Newton iteration locally converges to a minimizer of the control problem with a superlinear
rate.
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8 Bellman Principle and Dynamic Programming

Problem 8.1 (Discrete optimal control problem)
We consider a discrete evolution with initial value x, states yk ∈ G and controls wk ∈ W ,

yk+1 = g(yk, wk) , y0 = x ∈ G , (8.1)

where g : G ×W → G and G,W are arbitrary sets. We define the set W of admissible
controls by

W = {w : w = (w0, w1, . . .), wk ∈ W for all k ∈ N} . (8.2)

According to (8.1) we define by

ϕ(w;x) = (y0, y1, . . .) , ϕk(w;x) = yk , (8.3)

a mapping
ϕ :W ×G→ G = {(y0, y1, . . .) : yk ∈ G for all k} . (8.4)

Moreover, we consider a terminal set T ⊂ G and define

NT (w;x) = min{k : k ∈ N0 , ϕk(w;x) ∈ T } . (8.5)

The cost functional is given by

J(w;x) =
N−1∑
k=0

c(yk, wk) + cT (yN) , N = NT (w;x) , (8.6)

if NT (w;x) < +∞; if not, we set

J(w;x) = +∞ . (8.7)

The function c : G ×W → R denotes the running costs, the function cT : G → R the
terminal cost. For a given initial value x ∈ G we want to find an optimal w∗, that is, a
w∗ ∈ W such that

J(w∗;x) = min
w∈W

J(w;x) . (8.8)

Definition 8.2 (Optimal value function)
The function V : G→ [−∞,+∞] defined by

V (x) = inf
w∈W

J(w;x) (8.9)

is called the optimal value function for Problem 8.1. A control w∗ ∈ W is called
optimal for the initial value x ∈ G if

V (x) = J(w∗;x) . (8.10)

2
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Definition 8.3 (Feedback control)
Let a discrete evolution g : G ×W → G be given. Any mapping ω : G → W is called a
feedback control. We define the sequence of states belonging to ω by

yk+1 = g(yk, ω(yk)) , y0 = x . (8.11)

A feedback control ω∗ is called optimal if (8.10) holds for

w∗ = (ω∗(x), ω∗(y1), . . .) , for all x ∈ G . (8.12)

2

Proposition 8.4 (Bellman principle, principle of dynamic programming)
The optimal value V of problem 8.1 satisfies

V (x) = inf
v∈W

[c(x, v) + V (g(x, v))] , if x /∈ T , (8.13)

and V (x) = cT (x), if x ∈ T . If ω∗ is an optimal feedback control, then

V (x) = c(x, ω∗(x)) + V (g(x, ω∗(x))) = inf
v∈W

[c(x, v) + V (g(x, v))] , if x /∈ T . (8.14)

Proof: For v ∈ W and w ∈ W we set

(v, w) = (v, w0, w1, . . .) . (8.15)

Then
ϕ((v, w);x) = (x, ϕ(w; g(v, x))) , (8.16)

holds for all v ∈ W , w ∈ W and x ∈ G, thus

J((v, w);x) = c(x, v) + J(w; g(x, v)) . (8.17)

The first assertion now follows from

V (x) = inf
w∈W

J(w;x) = inf
v∈W
w∈W

J((v, w);x)

= inf
v∈W
w∈W

[c(x, v) + J(w; g(x, v))] = inf
v∈W

[
c(x, v) + inf

w∈W
J(w; g(x, v))

]
= inf

v∈W
[c(x, v) + V (g(x, v))] . (8.18)

If ω∗ is an optimal feedback control, then for every x ∈ G and the corresponding optimal
control w∗ = (ω∗(x), w̃∗) we obtain

V (x) = J(w∗, x) = c(x, ω∗(x)) + J(w̃∗, g(x, ω∗(x))) ≥ c(x, ω∗(x)) + V (g(x, ω∗(x)))

≥ V (x) , (8.19)

by definition of V (g(x, ω∗(x))) and because of (8.13). 2

48



Proposition 8.5 Let ω∗ be a feedback control which satisfies

V (x) = c(x, ω∗(x)) + V (g(x, ω∗(x))) , if x /∈ T . (8.20)

Assume that V (x) > −∞ for all x ∈ G and

J(w∗;x) < +∞ , if V (x) < +∞ . (8.21)

Then ω∗ is an optimal feedback control.

Proof: We have to show that
V (x) = J(w∗;x) (8.22)

holds for all x ∈ G with V (x) <∞. We define

Gk = {x : x ∈ G , NT (w∗;x) = k} , (8.23)

and use induction to prove that (8.22) holds in Gk. For x ∈ G0 we have V (x) = cT (x) =
J(w∗;x). Let x ∈ Gk+1, then g(x, ω∗(x)) ∈ Gk. Now the induction hypothesis implies,
setting w∗ = (ω∗(x), w̃∗),

V (x) = c(x, ω∗(x))+V (g(x, ω∗(x))) = c(x, ω∗(x))+J(w̃∗; g(x, ω∗(x))) = J(w∗;x) . (8.24)

2

Problem 8.6 (Continuous control problem)
Minimize

J(w;x, t) =

∫ T

t

L(s, y(s), w(s)) ds+ L1(y(T )) . (8.25)

Here, y : [t, T ]→ Rn solves the initial value problem

ẏ = f(s, y, w(s)) , y(t) = x , (8.26)

the final time T ∈ R is given, and the controls belong to the set

w ∈ Wt = {w|w ∈ L∞(t, T ), w(s) ∈ W a.e.} , (8.27)

with a given measurable set W ⊂ Rm. 2

Problem 8.6 represents a family Px,t of optimization problems which are parametrized by
the initial value (x, t) ∈ Rn × [t0, T ], t0 < T is given.

Assumption 8.7 We assume that the initial value problem (8.26) has a unique solution
y : [t, T ] → Rn for every w ∈ Wt and every (x, t) ∈ Rn × [t0, T ]. We also assume that
L : [t0, T ]× Rn ×W → R is continuous and that

s 7→ L(s, y(s), w(s))

is integrable on [t, T ] for all initial values (x, t) and all w ∈ Wt with corresponding solu-
tions y of (8.26).
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Definition 8.8 (Optimal value function)
We define the optimal value function V : Rn × [t0, T ]→ [−∞,+∞] by

V (x, t) = inf
w∈Wt

J(w;x, t) . (8.28)

A control w∗ ∈ Wt is called optimal if

V (x, t) = J(w∗;x, t) . (8.29)

2

Proposition 8.9 (Bellman principle, continuous case)
Let assumption 8.7 hold. Then the optimal value function V of problem 8.6 satisfies, for
all (x, t) ∈ Rn × [t0, T ],

V (x, t) = inf
w∈Wt

[∫ τ

t

L(s, y(s), w(s)) ds+ V (y(τ), τ)

]
, ∀ τ ∈ [t, T ] , (8.30)

where y solves (8.26), as well as

V (x, T ) = L1(x) , x ∈ Rn . (8.31)

If w∗ ∈ Wt is optimal, then

V (x, t) =

∫ τ

t

L(s, y∗(s), w∗(s)) ds+ V (y∗(τ), τ) , ∀ τ ∈ [t, T ] . (8.32)

Proof: We first prove that “≤” holds in (8.30). Let w ∈ Wt, τ ∈ [t, T ], let w̃ ∈ Wτ be
arbitrary. We define

w(s) =

{
w(s) , s ∈ [t, τ) ,

w̃(s) , s ∈ [τ, T ] .

We have w ∈ Wt, and the corresponding state function y is given by

y(s) =

{
y(s) , s ∈ [t, τ) ,

ỹ(s) , s ∈ [τ, T ] .

From the definition of V we obtain

V (x, t) ≤
∫ T

t

L(s, y(s), w(s)) ds+ L1(y(T ))

=

∫ τ

t

L(s, y(s), w(s)) ds+ J(w̃; τ, y(τ)) .

(8.33)

Passing to the infimum w.r.t. w̃ ∈ Wτ and w ∈ Wt yields “≤”.
Let now δ > 0 be arbitrary, let w ∈ Wt mit J(w;x, t) ≤ V (x, t) + δ. Then

V (x, t) + δ ≥ J(w;x, t)

=

∫ τ

t

L(s, y(s), w(s)) ds+

∫ T

τ

L(s, y(s), w(s)) ds+ L1(y(T ))

=

∫ τ

t

L(s, y(s), w(s)) ds+ J(w; y(τ), τ)

≥
∫ τ

t

L(s, y(s), w(s)) ds+ V (y(τ), τ)

≥ V (x, t) ,

(8.34)
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the last inequality follows from the already proven inequality “≤”.
If w = w∗ is optimal, (8.34) holds with δ = 0, therefore (8.32) follows. 2

Proposition 8.10 (Hamilton-Jacobi-Bellman equation)
Let (x, t) ∈ Rn × (t0, T ), let assumption 8.7 hold. If the optimal value function V is
differentiable in the point (x, t), we have

∂tV (x, t) + 〈∇V (x, t), f(t, x, v)〉+ L(t, x, v) ≥ 0 , for all v ∈ W . (8.35)

If w∗ is an optimal control, V is differentiable in the point (y∗(t), t) and w∗ is continuous
in t, we have

∂tV (x, t) + min
v∈W

[〈∇V (x, t), f(t, x, v)〉+ L(t, x, v)] = 0 , (8.36)

and the minimum is attained at the value v = w∗(t).

Proof: Let v ∈ W be arbitrary, let δ < T − t. We choose a w ∈ Wt satisfying w|[t, t+δ] =
v. Let y be the corresponding state function. From (8.30) it follows for all h ∈ (0, δ) that

V (y(t+ h), t+ h)− V (x, t)

h
≥ −1

h

∫ t+h

t

L(s, y(s), v) ds .

Passing to the limit h ↓ 0 yields (8.35). In the same way it follows from (8.32) that

V (y∗(t+ h), t+ h)− V (y∗(t), t)

h
= −1

h

∫ t+h

t

L(s, y∗(s), w∗(s)) ds .

Letting h ↓ 0 shows that the minimum value 0 is attained at v = w∗(t). 2

Proposition 8.10 shows that the optimal value function V solves, at all points (x, t) where
it is differentiable, a so-called Hamilton-Jacobi equation

∂tu+H(x, t,∇u) = 0 , (8.37)

where in our case
H(x, t, p) = min

v∈W
[〈p, f(t, x, v)〉+ L(t, x, v)] . (8.38)

When H has the special form (8.38), (8.37) is called the Hamilton-Jacobi-Bellman
equation, in short HJB equation.

Proposition 8.11 (Sufficient optimality conditions)
Let 8.7 hold, let u : Rn × [t0, T ]→ R be continuously differentiable with

u(x, T ) = L1(x) , x ∈ Rn , (8.39)

∂tu(x, t) + inf
v∈W

[〈∇u(x, t), f(t, x, v)〉+ L(t, x, v)] = 0 , ∀ (x, t) ∈ Rn × [t0, T ) . (8.40)

Then
u(x, t) ≤ V (x, t) , ∀ (x, t) ∈ Rn × [t0, T ) . (8.41)

If moreover w∗ ∈ Wt is a control satisfying

∂tu(y∗(s), s) + 〈∇u(y∗(s), s), f(s, y∗(s), w∗(s))〉+ L(s, y∗(s), w∗(s)) = 0 , (8.42)

for almost all s ∈ [t0, T ], then w∗ is an optimal control for P(t,x), and

u(x, t) = V (x, t) . (8.43)
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Proof: Let (x, t) ∈ Rn × [t0, T ), w ∈ Wt be arbitrary. Then

J(w;x, t) =

∫ T

t

L(τ, y(τ), w(τ)) dτ + L1(y(T ))

=

∫ T

t

L(τ, y(τ), w(τ)) dτ + u(x, t) +

∫ T

t

d

dτ
u(y(τ), τ) dτ

=

∫ T

t

L(τ, y(τ), w(τ)) dτ + u(x, t)+

+

∫ T

t

∂tu(y(τ), τ) + 〈∇u(y(τ), τ), f(τ, y(τ), w(τ))〉 dτ

≥ u(x, t) ,

(8.44)

therefore (8.41) follows. If w∗ yields the minimum in (8.40), the same computation shows
that

J(w∗;x, t) = u(x, t) ≤ V (x, t) .

Therefore w∗ is optimal and u(x, t) = V (x, t). 2

Remark 8.12 (Construction of optimal feedback controls)
If the optimal value function is continuously differentiable, one can construct from Propo-
sition 8.11 the optimal value function as well as the optimal control in feedback form in
the following manner.

1. Determine ω(x, t, p), p ∈ Rn such that the minimum w.r.t. v ∈ W of

〈p, f(t, x, v)〉+ L(t, x, v)

is attained at the value v = ω(x, t, p).

2. Solve the partial differential equation

∂tu+ 〈∇u, f(t, x, ω(x, t,∇u))〉+ L(t, x, ω(x, t,∇u)) = 0 , (8.45)

with the boundary condition

u(x, T ) = L1(x) , x ∈ Rn . (8.46)

3. Check whether the solution satisfies the smoothness requirements of Proposition
8.11.

4. Compute y∗ as the solution of

y′ = f(s, y, ω(y, s,∇u(y, s)) , y(t) = x , (8.47)

and the optimal control w∗ from

w∗(s) = ω(y∗(s), s,∇u(y∗(s), s)) . (8.48)

Remark 8.13 (Unfortunately . . .)
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• Only in very special cases the optimal value function is globally continuously differ-
entiable. An example is given by the linear-quadratic problem.

• The construction method 8.12 may work in cases where the optimal value function
is piecewise continuously differentiable and the set on which ∇V is discontinuous
consists of smooth surfaces. It may then be possible to apply the construction
method between such surfaces successively. But those surfaces also have to be
determined.

• Until around 1980 this was the only method to solve the HJB equation. The situa-
tion changed when the concept of viscosity solutions was invented.

Let us consider the linear-quadratic problem.

Problem 8.14 (Linear-quadratic problem)
Minimize

J(w;x, t) =

∫ T

t

x(s)TM(s)x(s) + w(s)TN(s)w(s) ds+ x(T )TDx(T ) , (8.49)

subject to the constraints

x′ = A(s)x+B(s)w , x(t) = x , (8.50)

with given terminal time T and without control constraint, that is, W = Rm.

2

Here we use the letter x (instead of y) for the state function and accept the notation
x(t) = x for the initial condition.

Assumption 8.15 Let A,B,M,N be continuous matrix-valued functions of s of suitable
dimension, let D,M(s), N(s) be symmetric for all s, let D,M(s) be positive semidefinite
and N(s) positive definite for all s. 2

Ansatz 8.16
We make the ansatz

u(x, t) = xTQ(t)x = 〈x,Q(t)x〉 , (8.51)

where Q(t) is a symmetric matrix in R(n,n) for every t, and t 7→ Q(t) is continuously
differentiable. In order to compute the optimal control, for every (x, t) ∈ Rn × R, t < T
we have to minimize the function

g(v) = 〈∇u(x, t), f(t, x, v)〉+ L(t, x, v) (8.52)

over v ∈ W = Rm. Inserting f and L yields (we omit the argument t)

g(v) = 〈x,Q(Ax+Bv)〉+ 〈Ax+Bv,Qx〉+ xTMx+ vTNv

= 2xTQ(Ax+Bv) + xTMx+ vTNv ,
(8.53)
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since we have assumed Q to be symmetric. Because N is positive definite, g is strictly
convex. Every zero of ∇g is then a global minimizer of g. We have

∇g(v) = 2xTQB + 2vTN , (8.54)

therefore

∇g(v) = 0 ⇔ 2xTQB = −2vTN ⇔ v = −N−1BTQx . (8.55)

(N−1 exists since N is positive definite.) We thus have shown: It follows from the (8.51)
with Q symmetric that

ω(x, t) = −N(t)−1B(t)TQ(t)x (8.56)

is the unique solution of

min
v∈Rm

[〈∇u(x, t), f(t, x, v)〉+ L(t, x, v)] . (8.57)

In order to determine Q(t) we consider the HJB equation

∂tu(x, t) + min
v∈Rm

[〈∇u, f(t, x, v)〉+ L(t, x, v)] = 0 . (8.58)

Choosing v = ω(x, t) from (8.56) and u from (8.51) we obtain

0 = ∂tu(x, t) + 〈∇u, f(t, x, ω(x, t))〉+ L(t, x, ω(x, t))

= 〈x,Q′x〉+ 〈x,Q(Ax+Bω)〉+ 〈Ax+Bω,Qx〉+ xTMx+ ωTNω

= xTQ′x+ xT (QA+ ATQ+M)x+ xTQBω + ωTBTQx+ ωTNω

= xT (Q′ +QA+ ATQ+M)x+ xTQB(−N−1)BTQx

− xTQBN−1BTQx+ xTQBN−1NN−1BTQx

= xT (Q′ +QA+ ATQ+M −QBN−1BTQ)︸ ︷︷ ︸
=:P

x .

(8.59)

If we can find a symmetric Q(t) such that P (t) = 0 for all t and Q(T ) = D, then the
function u from (8.51) satisfies the sufficient conditions in Proposition 8.11, and we have
computed both the optimal value function and an optimal control in feedback form. 2

Proposition 8.17 (Solution of the linear-quadratic problem)
Let the assumptions 8.15 hold. Then the backward initial value problem for the so-called
matrix Riccati differential equation

Q′ = −QA− ATQ−M +QBN−1BTQT , Q(T ) = D , (8.60)

has a unique solution Q : (−∞, T ] → R(n,n), and Q(t) is symmetric for all t ≤ T . The
linear-quadratic problem 8.14 has a unique solution w∗ for all (x, t) ∈ Rn×R with t ≤ T .
This solution is obtained in the following manner.

1. Solve (8.60).

54



2. Set
ω(x, t) = −N(t)−1B(t)TQ(t)x , (8.61)

and determine the unique solution x∗ of the initial value problem

x′ = A(s)x+B(s)ω(x, s) , x(t) = x , (8.62)

with ω(x, t) from (8.61).

3. Set
w∗(s) = ω(x∗(s), s) , s ∈ [t, T ] . (8.63)

The optimal value function of Problem 8.14 is given by

V (x, t) = xTQ(t)x . (8.64)

Proof: Let Q : [t0, T ]→ R(n,n) be a solution of (8.60) for some t0 < T . Then R = Q−QT

solves the backward initial value problem

R′ = −RA− ATR , R(T ) = 0

on [t0, T ], therefore R = 0 and thus Q is symmetric. We set

u(x, t) = xTQ(t)x . (8.65)

Then, according to the construction in 8.16, the assumptions of Proposition 8.11 are
satisfied.
It remains to prove that the local solution of (8.60) can be extended to (−∞, T ]. Let
(t−, T ] be the maximal existence interval of the solution. Since D,M(t) and N(t) are
positive semidefinite, the cost function J of the original problem is nonnegative for all
controls, and therefore

0 ≤ V (x, t) = u(x, t) = xTQ(t)x (8.66)

holds for all t ∈ (t−, t1] and all x ∈ Rn. Since the control w̃ = 0 is admissible, for all
t ∈ (t−, t1] the state x̃ belonging to the initial value (x, t) satisfies (here Φ denotes the
transition matrix of the system x′ = A(s)x)

x̃(s) = Φ(s, t)x ,

and moreover

0 ≤ xTQ(t)x ≤ J(w̃;x, t) =

∫ T

t

x̃(s)TM(s)x̃(s) ds+ x̃(T )TDx̃(T )

≤ |x|2
∫ T

t

‖Φ(s, t)‖2
2‖M(s)‖2 ds+ |x|2‖D‖2‖Φ(T, t)‖2

2

= c(t)|x|2 ,

(8.67)

where c : (−∞, T ] denotes the function which arises from the foregoing line; it is contin-
uous. From

0 ≤ xTQ(t)x ≤ c(t)|x|2 , Q symmetric, (8.68)
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it follows that
‖Q(t)‖2 ≤ c(t) .

Now, if t− > −∞, then Q(t) is bounded on (t−, T ]. But then the solution of (8.60) can
be extended to the left of t−, a contradiction since t− is maximal. 2

The feedback control ω from (8.61) is not a pure state feedback, because the time t arises
explicitly. This is also the case in the autonomous LQ problem (with constant matrices
A,B,M,N) since Q always depends on t.
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