
Technische Universität München
TUM School of Management

Three Essays on Costing and Decision Making

in the Digital Age

Marcus Richard Witter

Vollständiger Abdruck der von der TUM School of Management der Technischen Universität
München zur Erlangung eines Doktors der Wirtschafts- und Sozialwissenschaften

(Dr. rer. pol.) genehmigten Dissertation.

Vorsitz: Prof. Dr. Jürgen Ernstberger
Prüfer der Dissertation: 1. Prof. Dr. Gunther Friedl

2. Prof. Magne Jørgensen, Ph.D.

Die Dissertation wurde am 16.03.2023 bei der Technischen Universität München eingereicht und
durch die TUM School of Management am 15.05.2023 angenommen.

Acknowledgements

I sincerely thank my doctoral supervisor Gunther Friedl for his mentoring guidance, constructive

feedback, and continuous support throughout my doctoral studies and beyond. Sitting in my

first university class in Cost Accounting in May 2011 at TUM, I could have never imagined

where my academic trajectory would take me. Thank you for providing the platform to follow

my research interests and encouraging me to participate in conferences and conduct a research

stay abroad. I extend my gratitude to Magne Jørgensen and his team for welcoming me kindly

to the Simula Research Laboratory. Discussing my essays with you and your team was enriching

and very instructive.

I further thank my doctoral fellows and friends for mutual encouragement, fruitful discussions

on various research topics, and, particularly, for creating a collaborative atmosphere at the

chair. Thank you for countless trips, days full of laughter, and fun-filled evenings. I give special

regards to Eline Schoonjans, Moritz Rombach, and Peter Schäfer for their detailed feedback and

countless discussions on my essays, from which I have benefited a lot, and Alexander Schult,

Lukas Schloter, and Yanis Gamarra for keeping the team spirit up. Further, I thank my co-

author Michael Blumberg for collaborating constructively on my third essay. Moreover, I am

grateful to Strategy&, particularly, Christian Foltz, Hans-Jörg Kutschera, and Henning Rennert

for their generous support and counsel during my doctoral thesis.

My heartfelt gratitude belongs to my family, my parents Sally and Ronald, and my brother Sven

for their relentless support throughout my life, teaching me perseverance and advising me to

slow down and speed up when necessary. Finally, I am indebted to my fiancée and partner in

life, Sabine, for her never-ending encouragement, valuable feedback, and help in prioritizing my

ideas and work. Words cannot describe how thankful I am to share the journey through life

together with you. This dissertation is dedicated to them.

i

Abstract

The digital transformation affects many industries and shifts firms’ value creation towards dig-

ital products and services. In this dissertation, I use different research methods to investigate

the implications of the digital transformation on firms’ decision-making and cost-management

practices. In the first essay, I run an experiment to investigate how accountability, i.e., the need

to justify one’s decision, affects decision-making quality under increasing levels of information

load. I find that information overload reduces decision-making quality, and I provide evidence

that managers facing information overload are more likely to make the optimal decision if they

are held accountable than if they are not. In the second essay, I conduct a multiple-case study

to assess how firms across industries estimate their future software project costs. I find that

firms structure their cost estimation process into three stages, i.e., Understand, Plan, and Im-

plement, and ten activities. I describe the activities of each stage and show how firms adapt

their actions to their organizational and project-specific setting. I identify challenges that firms

face during their cost estimation and triangulate these with extant literature to derive proposi-

tions that support managers in designing their estimation process. In the third essay, I propose

a cost system design for software firms that accounts for the changes in cost structures. The

cost system integrates different cost-management and modeling approaches and allows firms to

evaluate past, calculate current, and manage future software product costs. The three essays

contribute to the decision-making and cost-management literature and business practice from

different perspectives. First, information providers such as controllers should be careful not

to overload managers with information and, if necessary, consider holding them accountable for

their decisions. Second, I provide a process model for estimating software costs that practitioners

can use to standardize their estimation process. Third, I discuss how controllers can re-design

firms’ cost systems to meet digital product and process requirements.

ii

Summary in German

Diese Dissertation befasst sich mit den Auswirkungen der digitalen Transformation auf die

Entscheidungsfindung und das Kostenmanagement in Unternehmen. Im ersten Aufsatz un-

tersuche ich experimentell, wie sich die Einführung einer Rechenschaftspflicht auf die Entschei-

dungsqualität bei ansteigender Informationslast auswirkt. Ich stelle fest, dass eine Informa-

tionsüberlastung die Entscheidungsqualität verringert. Darüber hinaus liefere ich Evidenz,

dass Manager bei Informationsüberlastung häufiger die optimale Entscheidung treffen, wenn sie

rechenschaftspflichtig sind. Die Ergebnisse implizieren, dass Informationsgeber wie Controller

ihre Manager nicht mit Informationen überladen und die Rechenschaftspflicht als Controlling-

Instrument zur Entscheidungsoptimierung prüfen sollen. Im zweiten Aufsatz führe ich eine

Multiple-Case-Studie durch, um zu untersuchen, wie Unternehmen die Kosten ihrer Softwarepro-

jekte schätzen. Ich stelle fest, dass Unternehmen den Kostenschätzungsprozess in drei Phasen

und zehn Aktivitäten strukturieren und fasse die Ergebnisse in einem Prozessmodell zusam-

men. Ich beschreibe die Aktivitäten jeder Phase und zeige, wie Unternehmen ihre Handlun-

gen an ihre organisatorischen und projektspezifischen Gegebenheiten anpassen. Ich identi-

fiziere Herausforderungen, denen sich Unternehmen während der Kostenschätzung gegenüberse-

hen, und trianguliere sie mit der wissenschaftlichen Literatur, um Empfehlungen abzuleiten,

die Manager bei der Gestaltung ihres Schätzungsprozesses unterstützen. Im dritten Aufsatz

schlage ich ein Kostensystemdesign für softwareproduzierende Unternehmen vor. Die Basis

stellt eine Analyse bereits existierender Kostensysteme und der Eigenschaften von Software-

produkten und -prozessen dar. Das Kostensystem integriert verschiedene Kostenmanagement-

und -modellierungsansätze und ermöglicht es Unternehmen, vergangene, aktuelle und zukün-

ftige Softwarekosten zu berechnen. Der Aufsatz leistet einen Beitrag zur Literatur über die

Gestaltung von Kostensystemen, indem ich erörtere, wie Controller die Kostensysteme von soft-

wareproduzierenden Unternehmen gestalten können, um die Anforderungen an digitale Produkte

und Prozesse zu erfüllen.

iii

Contents

List of figures vi

List of tables viii

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Theoretical background and literature context . 7
1.3 Methodologies and results . 10
1.4 Contribution to academic and practical debates 16
1.5 Structure of the dissertation . 19

2 Finding the Needle in the Haystack: How Information Load and Accountabil-
ity Influence Decision Quality 22
2.1 Introduction . 23
2.2 Theory and hypotheses development . 27

2.2.1 The effect of information load . 27
2.2.2 The effect of accountability . 28

2.3 Experimental method . 30
2.3.1 Experimental setting . 30
2.3.2 Experimental conditions and variables . 33

2.4 Results . 34
2.4.1 Participants and procedure . 34
2.4.2 Test of hypotheses . 36

2.5 Discussion and conclusion . 40

3 Understand, Plan, and Implement: A Multiple-Case Study on How Firms
Estimate Software Costs 43
3.1 Introduction . 44
3.2 Background and related work . 47

3.2.1 Software cost estimation processes . 47

iv

Contents v

3.2.2 Software cost estimation methods . 49
3.3 Research design . 53

3.3.1 Multiple-case study research approach . 53
3.3.2 Data sample . 54
3.3.3 Data sources and analysis . 55

3.4 Results . 57
3.4.1 Outline of the UPI process model for cost estimation 57
3.4.2 Description of the UPI model for software cost estimation 58

3.4.2.1 Understand . 58
3.4.2.2 Plan . 60
3.4.2.3 Implement . 69

3.5 Challenges and propositions . 72
3.6 Conclusion . 76

4 Divide and Conquer: Designing Cost Systems for Software Firms 79
4.1 Introduction . 80
4.2 Theory and research question . 84

4.2.1 Review of extant cost systems . 84
4.2.2 Accounting for information goods’ cost structure 87

4.3 Proposed software cost-management and modeling systems 89
4.3.1 Life-cycle framework for software projects 89
4.3.2 Inherent cost allocation model . 93
4.3.3 Dynamic target costing . 96

4.4 Integration of the cost-management and modeling systems 98
4.5 Discussion and conclusion . 100

5 Conclusion 103
5.1 Summary of main results . 103
5.2 Limitations . 105
5.3 Avenues for future research . 107
5.4 Concluding remarks . 108

Appendix 110

Bibliography 124

List of figures

1 Introduction 1
1.1 Schematic assignment of the three essays to the software life-cycle phases and

organizational levels. 17

2 Finding the Needle in the Haystack: How Information Load and Accountabil-
ity Influence Decision Quality 22
2.1 Predicted effects. 30
2.2 Instructions in the Accountability—Present conditions. 31
2.3 BSC data in the Information Load—High and Accountability—Present condition. 32
2.4 Results (dependent variable = decision quality). 37

3 Understand, Plan, and Implement: A Multiple-Case Study on How Firms
Estimate Software Costs 43
3.1 Basic estimation process. 48
3.2 Categorization of software cost estimation methods. 50
3.3 Conceptual illustration of the UPI model. 58

4 Divide and Conquer: Designing Cost Systems for Software Firms 79
4.1 Conceptual illustration of life-cycle costing in the context of software projects. . . 90
4.2 Typical cost collection and allocation mechanisms segmented by cost source for a

software firm. 91
4.3 Inherent cost allocation based on the inherent cost drivers of a software project. . 94
4.4 Systematic framework outline. 98

Appendix 110
A.1 Case-related instructions. 110
A.2 BSC data. 111
A.3 A briefing note. 112
A.4 Sequence of events in the experimental design. 113
A.5 Overview of the data structure. 116

vi

List of figures vii

A.6 Data structure of the Understand phase. 117
A.7 Data structure of the Plan phase (1/2). 118
A.8 Data structure of the Plan phase (2/2). 119
A.9 Data structure of the Implement phase. 120
A.10 Cost structure table for industrial goods and information goods. 121
A.11 Illustration of the dynamic target costing process. 122
A.12 Description of the dynamic target costing process. 123

List of tables

1 Introduction 1
1.1 Overview of the three essays. 21

2 Finding the Needle in the Haystack: How Information Load and Accountabil-
ity Influence Decision Quality 22
2.1 Descriptive statistics for decision quality for each experimental condition. 36
2.2 Factorial ANOVA (dependent variable = decision quality). 37
2.3 Simple effects (dependent variable = decision quality). 38
2.4 Descriptive statistics for perfect decision quality for each experimental condition. 39
2.5 Logistic regression (dependent variable = the optimal decision). 39
2.6 Simple effects (dependent variable = the optimal decision). 40

3 Understand, Plan, and Implement: A Multiple-Case Study on How Firms
Estimate Software Costs 43
3.1 Sample overview. 55
3.2 Challenges and propositions. 73

4 Divide and Conquer: Designing Cost Systems for Software Firms 79
4.1 Overview of the suggested cost-management and modeling systems. 83

Appendix 110
A.1 Case study protocol. 114
A.2 Interview questions. 115

viii

Abbreviations

ABC Activity-based costing
AI Artificial intelligence
BSC Balanced scorecard
CAS Complex adaptive systems
CEO Chief executive officer
COCOMO Constructive cost model
EBSPM Evidence-based software portfolio management
ECU Electronic control unit
EEPS Early estimation and planning stages
ERP Enterprise resource planning
ISBSG International software benchmark standards group
IT Information technology
KPI Key performance indicator
LCC Life-cycle costing
ML Machine learning
MBO Management-by-objectives
PERT Program evaluation and review technique
PO Product owner
R&D Research and development
SLOC Source lines of code
SVP Senior vice president
UPI Understand, plan, and implement

ix

1 | Introduction

1.1 Motivation

"We have to master the digital transformation, if we want to survive."

Herbert Diess, Former CEO of Volkswagen AG

(Afhüppe et al., 2018)

In an interview with the German business newspaper Handelsblatt, Herbert Diess refers to "the

digital transformation as the central task of the automotive industry," a task that is even more

vital than the electrification of vehicles (Afhüppe et al., 2018). The quote of the former CEO

of Volkswagen AG highlights the importance and actuality of accommodating the opportunities

and challenges of the digital transformation.

Digital technologies, viewed as combinations of information, computing, communication, and

connectivity technologies (Bharadwaj et al., 2013), enable products to realize innovative func-

tionalities. Scholars and practitioners refer to digital transformation as the process of utilizing

digital technologies to induce organizational changes that generate new paths for value creation

(Vial, 2019) and lead to profound shifts on both firm and industry levels (Scott and Orlikowski,

2022). Research on digital transformation has focused on how firms strategically shift processes,

products, and services within and across firms, i.e., how firms create value (e.g., Yoo et al., 2010,

Vial, 2019, Warner and Wäger, 2019).

The rise of digital technologies goes hand in hand with the process of digitization and digital-

ization. Digitization, i.e., the encoding of analog information into a digital format (Yoo et al.,

2010), is induced by Moore’s law and an increasingly cheap and easy-to-use digital infrastructure

(Fichman et al., 2014). Hardware miniaturization, increasing microprocessor power, cheaper and

1

1 Introduction 2

more reliable memory, broadband communication, and a more efficient power management fos-

ter firms to digitize functionalities and capabilities of physical products, including cars, phones,

televisions, cameras, and books (Yoo et al., 2010). With embedded digital capabilities, prod-

ucts offer new functionalities, opportunities for customer use, and improved price/performance

characteristics that transform their development and production processes (Yoo et al., 2010).

The increasing digitization, software, and processing power facilitate firms’ ability to acquire

and process data. The increasing level of data creates new opportunities and challenges for

firms (Bhimani and Willcocks, 2014, Gupta et al., 2018). On the one hand, firms benefit from

automizing routine processes and introducing business intelligence and data analytics to im-

prove decision making (Möller et al., 2020). On the other hand, firms must adapt their business

activities to the new digital products and services.

Scholars and practitioners generally refer to the term digitalization as the use of digital technolo-

gies to change a business model and provide new revenue and value-producing opportunities—it

is the process of moving to a digital business (Gartner glossary, 2020). Studies examine how dig-

italization influences industry standards (Scott and Orlikowski, 2022) and affects firms’ strategic

choices in developing and offering digital products and services (e.g., Yoo et al., 2010, Lusch and

Nambisan, 2015), digital platforms and infrastructure (e.g., Hinings et al., 2018), new digital

business strategies (e.g., Bharadwaj et al., 2013, Adner et al., 2019), and business models (e.g.,

Warner and Wäger, 2019).

The automotive industry displays an instructive example of the shift from physical to digital

value creation (Riasanow et al., 2017). Car manufacturers digitize most subsystems of their cars

and connect these through car-based software architectures, leading to cars acting as computer

platforms on which firms across industries can develop and integrate new devices, networks,

services, and content (Henfridsson and Lindgren, 2010, Yoo et al., 2010). Software was first

combined with hardware to an embedded system in the late 1960s to improve engine controls.

Over time, engineers connected the isolated functions to systems containing multiple functions

that interact and depend on each other, realizing more complex tasks (Broy, 2006). Only until

the mid of the 2000s, up to 40% of a car’s production costs were related to electronics and soft-

ware, whereas 50-70% of the embedded systems were software costs (Broy, 2006). The growing

importance of software is further increasing based on industry trends like autonomous driving,

connectivity, and electrification, for which software displays the functional enabler (Riasanow

et al., 2017). Automotive embedded software is a multi-billion dollar market and is expected

1 Introduction 3

to continuously grow 9% until 2030 (McKinsey & Company, 2021). However, the shift in value

creation is not only limited to the Automotive industry. Firms in various industries, such as

aerospace, industrial machinery, and consumer electronics, rely on embedded systems and direct

their business focus increasingly towards embedded systems (McKinsey & Company, 2021).

The shift in value creation from hardware to software-oriented products entails various challenges.

As software development costs increasingly dominate a vehicle’s total costs, car manufacturers

must adapt their traditional cost-by-part paradigm and production-centric cost models (Broy,

2006). Further, practitioners found that automotive project software complexity has grown

300% over the past decade. Thereby, the software complexity grows twice as fast as the growth

in development productivity (McKinsey & Company, 2020), leading to launch delays, budget

overruns, and quality issues. Aerospace firms experience similar trends. As engineers implement

system functionalities with software, the source lines of code (SLOC) are doubling every four

years (Aeresospace Vehicle Systems Institute, 2016). At the same time, development efforts and

costs for the respective systems increase exponentially with the increase in SLOC (Aeresospace

Vehicle Systems Institute, 2016). Thus, firms need to find ways of reducing development costs.

Research has shown that technological improvement is only one part of the puzzle for firms to

stay competitive in a digital world (Vial, 2019). Firms must adjust their strategy (Bharadwaj

et al., 2013), management practices (Matt et al., 2015), organizational structure (Selander and

Jarvenpaa, 2016), processes (Carlo et al., 2012), and culture (Karimi and Walter, 2015) to

successfully follow new paths of value creation (Svahn et al., 2017). Many car manufacturers

and suppliers have announced strategic initiatives to rebuild their organizations to adapt to

software’s rising importance. A case in point is the German car manufacturer Volkswagen,

which founded the CARIAD SE to strengthen its software development efforts (CARIAD SE,

2021). The firm’s objective is to increase the in-house share of car software development from

less than 10% in 2020 to more than 60% by 2025. Therefore, Volkswagen is willing to invest more

than 7 billion EUR and aims to expand the organization from 3,000 employees to more than

10,000 digital experts by hiring new employees, entering into new partnerships, and acquiring

companies until 2025 (Volkswagen Group, 2019).

Digitalization also entails implications for various business activities, supply chains, and support

functions (Möller et al., 2020). For example, the digital transformation affects the finance

function, controllers’ tasks, and practices (Bhimani and Willcocks, 2014, Brands and Holtzblatt,

1 Introduction 4

2015).1 Organizational cost structures shift and are characterized by rising fixed costs that

strongly exceed variable cost elements (Afuah and Tucci, 2001, Bhimani and Willcocks, 2014).

Although investments in technology and hardware for use in production always had an impact

on cost structures, the effect is particularly strong for investments in digital technology (Bhimani

and Willcocks, 2014). Further, traditional capital budgeting and investment control approaches

might not account for the characteristics of digital products and their potential for exponential

growth fueled by platform strategies and network economies (Möller et al., 2020).

Firms must react to the organizational cost mix changes and adapt traditional cost-management

practices as they move towards digitally enabled businesses (Bhimani and Willcocks, 2014).

Typical cost-management approaches to calculating costs per item produced or delivered do not

hold for virtual firms (Bhimani and Willcocks, 2014). Controllers must find models beyond the

cost or market-based traditional approaches, which account for product- and value-co-creation

(Bhimani and Bromwich, 2009). Costing methods, such as functional or activity-based costing,

are only applicable to a limited degree as the cost variability in digitized operations does not

relate to traditional volume- and non-volume-based cost drivers (Bhimani and Bromwich, 2010).

Revenue sources, such as key customers, may differ from the actual resource consumers. Costs

occur when developing and providing consumer platforms, but the revenue is generated from the

volume instead of the activities or services consumed by the users. Examples include advertising,

market experiments, or customer data derived from Big Data analysis (Bhimani and Bromwich,

2010). As the revenue generators must not cause costs, internet-based firms need to operate on

different commercial models than traditional firms producing tangible goods and require their

accounting system designs to incorporate some financial intelligence to capture the dynamics of

cost and revenue sources (Bhimani and Willcocks, 2014). The differentiation between products

consumed by users and customers who generate revenues also necessitates firms to rethink their

pricing strategy and the calculation of quality, target, or product life cycle costs (Castells, 2010).

The shift in value creation necessitates extended job roles and skills for the finance function

within firms and, in particular, for providing management accounting information (Bhimani

and Willcocks, 2014, Oesterreich et al., 2019). Individuals in finance functions may need to

develop new competencies and build up expertise in technology and analytics (Möller et al.,

2020). The traditional image of a "bean counter" and number-centric "information provider"

shifts towards job roles like a "business partner" or a "change agent" who internally consults and
1I use the term "finance function" instead of "management accounting and control function". Similarly, I refer
to the term "controller" rather than "management accountant".

1 Introduction 5

provides services to the firm’s management (Oesterreich et al., 2019). In the past, controllers

relied on internal data sources to provide information for making decisions, e.g., concerning sales,

expenses, or product costs (Brands and Holtzblatt, 2015). Today, controllers can access rapidly

growing data volumes inside and outside the organization, enabling future-oriented analytics,

e.g., predictive analytics, to identify, understand, and react to market trends and customer

behavior when developing products and making strategic decisions (Bhimani and Willcocks,

2014). Brynjolfsson et al. (2011) and Brynjolfsson and McElheran (2016) find that firms that

apply data and analytics for decision making achieve higher productivity and better outputs. In

this context, firms must evaluate how to provide accounting information to managers (Shields,

1995). Managers need to understand and analyze the altered nature of data, including structured

and unstructured data from various sources, activities, processes, and devices. Managers must

learn to process this information into formatted reports to allow for more effective and efficient

decision making (Bhimani and Willcocks, 2014).

This dissertation contributes to the academic literature on costing and decision making in the

digital age from the perspective of an accounting researcher. In doing so, I derive three research

questions at the interface of management accounting and software engineering and aim to build a

bridge between both disciplines. In three essays, I investigate (1) whether practitioners can mit-

igate the detrimental effects of information overload on decision-making quality by introducing

accountability as a control mechanism, (2) how firms estimate their software costs, and (3) pro-

pose a cost system design for software firms. I apply experimental, qualitative, and conceptual

research methods to answer the research questions soundly.

The dissertation’s first research question (cf. Essay I in Chapter 2) experimentally investigates

whether and how accountability affects decision-making quality when managers face different

levels of information load. The analysis addresses the issue that the increasing volume of avail-

able information, driven by artificial intelligence (AI) and big data, supports firms in acquiring

and processing information but also implies the risk of information overload (Gupta et al.,

2018). I consider managers as boundedly rational agents who encounter limits in solving com-

plex problems and processing information (Simon, 1955) and making suboptimal decisions or

avoid decision making when they face a number of choices between five and nine (Iyengar, 2010).

The role of controllers plays a decisive role when investigating issues of information overload. On

the one hand, controllers are significant information providers to firms’ decision-makers and, to

1 Introduction 6

some extent, responsible for designing usable information systems and decision-making frame-

works. On the other hand, controllers make crucial decisions and are therefore subject to being

overloaded with information (Schick et al., 1990).

While Essay I focuses on decision making in the digital age, Essay II and Essay III emphasize

the costing practices of software firms. In Essay II (cf. Chapter 3), I conduct a multiple-

case study to provide a process model that shows how firms estimate their software costs. While

delivering software projects on time and within budget gains increasing importance in the digital

economy (Rahmati et al., 2021), software projects exceed their budget on average by 30% percent

(Halkjelsvik and Jørgensen, 2012). The successful delivery of projects strongly depends on

meeting time and cost estimates (Chow and Cao, 2008). In this context, improving estimation

accuracy allows firms to more effectively plan and control the project budget, reduce costs and

delays, and improve customer satisfaction (Heemstra, 1992, Jørgensen and Carelius, 2004, Huang

et al., 2008). However, estimating costs for software projects is challenging due to their complex

development environment, including various technical and social factors (Kula et al., 2022). In

the past, scholars have focused on developing statistical models for estimating software costs

(Moløkken-Østvold and Jørgensen, 2005, Menzies et al., 2017). Today, scholars call for research

involving practitioners in estimation studies to produce relevant findings for business practice

(Eduardo Carbonera et al., 2020) and understand the "why" and "how" factors (Hannay et al.,

2007) to incorporate the human aspects of software development (Hannay et al., 2007). This

essay aims to create transparency by describing how firms comprehensively estimate software

costs. Further, I outline common estimation challenges and derive propositions for managers

to increase process consistency and enhance project control by triangulating the results of the

qualitative data analysis with literature on software cost estimation.

Essay III (cf. Chapter 4) proposes a cost system design for software firms that can serve

multiple purposes in the context of computing software’s product costs. Introducing guidelines

for designing cost systems for software products is important because the digital transformation

creates new paths for value creation (e.g., Yoo et al., 2010, Vial, 2019, Warner and Wäger, 2019),

shifting the focus from hardware products to digital technologies. The rise of digital technologies

creates new opportunities for firms but also involves challenges for existing business activities

and support functions (Vial, 2019, Möller et al., 2020), such as the finance function (Bhimani

and Willcocks, 2014). Firms must adapt traditional cost-management practices to account for

the organizational cost mix changes, characterized by rising fixed costs that strongly exceed the

1 Introduction 7

variable costs (Bhimani and Willcocks, 2014). Extant literature on designing cost systems has

focused on manufacturing and commercializing tangible goods (Schweitzer et al., 2015). Astrom-

skis et al. (2014) find low dissemination of cost systems in software firms, which they relate to the

lack of cost systems adapted to the requirements for software’s product and process peculiarities

and low expected benefit of applying these systems. Thus, we follow the call for research to

adapt management accounting systems to industry- and firm-specific factors (Messner, 2016) by

analyzing differences in the development, manufacturing, and commercialization of traditional

industrial goods and intangible goods such as software and outline the benefits of implementing

such systems.2

1.2 Theoretical background and literature context

The three essays address different issues for controllers in the digital age. Consequently, I refer

to different theories and literature streams when deriving my research questions and hypotheses.

Essay I grounds on the information load and accountability theories in management accounting

literature. Controllers need to recognize three variables when providing managers with reports to

enable efficient decision making: (1) the uncertainty of the managers, (2) the information load,

and (3) the data load (Iselin, 1993). Information and data load differ as information load only

includes information cues relevant to the decision, while data load also contains irrelevant cues.

Scholars differ between two types of data load. First, information cues that are not relevant to

the decision at any time. Second, cues that may predict the main criterion but are correlated at

the same time with another cue that predicts the criterion equally well or better. The latter is

part of information load (Iselin, 1993) and used in my experiment.

Information overload describes a condition in which the processing requirements of individuals

exceed their processing capacity (Schneider, 1987). Information overload can originate from cog-

nitive restrictions in processing information (Simon and Newell, 1971), little motivation (Muller,

1984), or too much choice of different options (Iyengar, 2010). An increase in the amount of

information requires individuals to process more information, making it difficult to filter the rel-

evant cues for decision making. The filtering process can be error-prone and reduce individuals’

cognitive capacity, leading to lower decision quality (Iselin, 1993). Further, information overload
2Essay III in Chapter 4 is based on a joint research project. I refer to my co-author and me when using plural
pronouns in the context of this essay.

1 Introduction 8

can emerge from high processing requirements related to complex tasks (Tushman and Nadler,

1978), time pressure (Schick et al., 1990), or budget restrictions (Roetzel, 2019). Lastly, schol-

ars agree that information overload harms the performance of individuals (Eppler and Mengis,

2004). Drawing on information load literature, I state my first hypothesis: Information overload

reduces decision quality.

I introduce accountability to mitigate the adverse effects of information overload on decision

quality when no decision aids are available to managers. Accountability is a crucial design feature

of management control systems (e.g., Ahrens, 1996, Merchant and Otley, 2006, Birnberg et al.,

2008, Fehrenbacher et al., 2020) and "refers to the implicit or explicit expectation that one may

be called on to justify one’s beliefs, feelings, and actions to others" (Lerner and Tetlock, 1999,

p. 255). Scholars show that holding individuals accountable can improve judgment and decision

quality (e.g., Siegel-Jacobs and Yates, 1996, Libby et al., 2004, Chang et al., 2013, Dalla Via et al.,

2019, Fehrenbacher et al., 2020) by stimulating critical thinking and anticipating objections in

one’s argumentation (Tetlock, 1983, Ahrens, 1996), increasing their mental effort to justify their

position (Tetlock et al., 1989) and search effort (Schneider, 1987). Referring to accountability

theory, I expect a positive influence on decision quality. However, I hypothesize that the effect

of accountability on filtering of information under a low information load is smaller than under

information overload. Thus, I study their interactive effects and state my second hypothesis:

Increasing information load raises the positive impact of accountability on decision quality.

Essay II picks up two literature streams for conducting the multiple-case study of how firms

estimate software costs. First, I review extant cost estimation processes in the software engi-

neering literature. I describe the basic principles of the process (Trendowicz and Jeffery, 2014)

and outline three exemplary procedures. First, the software planning and control framework

by Boehm and Papaccio (1988) suggests improving software costs by performing management-

by-objectives (MBO) control loops and organizing the development strategy around project

predictability and control. Second, the early estimation and planning stages (EEPS) model by

Edwards and Moores (1994) differentiates on a high level between the estimation of software

costs before project launch (top-down) and the control of costs during the project (bottom-up).

Third, the two-stage estimation process for large-scale distributed agile projects by Usman et al.

(2018) distinguishes between the high-level quotation stage and the detailed analysis stage for a

product customization task.

1 Introduction 9

Second, I analyze the literature on effort and cost estimation in the software engineering domain.

Scholars have developed and tested different estimation methods since the 1980s (e.g., Benbasat

and Vessey, 1980) while two categories of methods have proven to be dominant. One category

focuses on developing statistical estimation models for estimating software costs (Moløkken-

Østvold and Jørgensen, 2005, Menzies et al., 2017). The other category focuses on improving

expert judgments (Basten and Mellis, 2011), which is the dominant method applied in practice

(Trendowicz et al., 2011, Jørgensen, 2014, Usman et al., 2015). However, scholars argue that

there is no "one-size-fits-all" approach for estimating software costs of all domains and applica-

tions (Resmi and Vijayalakshmi, 2019). Additionally, scholars find that the research on software

cost estimation does not respond to the needs of practitioners (Basten and Mellis, 2011) and

call for research to involve professionals in estimation studies (Eduardo Carbonera et al., 2020)

to better understand the "why" and "how" factors (Hannay et al., 2007).

In Essay III, we evaluate the product and process characteristics of intangible goods such as

software. Then, we review extant cost systems which support managers to compute product costs

(Balakrishnan et al., 2012), determine product prices (Banker et al., 1994), and plan long-term

resource capacities (Balakrishnan et al., 2011). We discuss the basics of cost system theory, e.g.,

selecting a cost object dependent on the decision situation and determining costs by collecting

data and assigning direct and, in particular, overhead costs to a cost object. We examine three

concepts in more detail: activity-based costing (ABC), life-cycle, and target costing. Cooper and

Kaplan (1988) introduced the ABC concept to respond to the increasing share of indirect costs

across industries. Their idea was to determine costs for a cost object based on activity consump-

tion (Noreen, 1991). Therefore, they suggest defining multiple indirect cost pools which share

similar activities (Noreen, 1991). Life-cycle costing defines the entire product life cycle within the

scope of cost observation, integrating design, development, and post-commercialization phases

(Riezler, 1996, Schweitzer et al., 2015) During cost observation, managers can choose between

a planning perspective to make decisions early in the product life cycle and optimize costs or

an as-is perspective to realize adjustments of actually incurred costs (Ewert and Wagenhofer,

2014). The concept of target costing focuses on influencing costs early during the product de-

sign and product development phases (Kato, 1993, Ewert and Ernst, 1999) to generate new ideas

for product development and levers for cost reduction (Tani, 1995). In doing so, managers set

targets using market information and behavioral control aspects (Hiromoto, 1988).

1 Introduction 10

1.3 Methodologies and results

In Essay I, I test my hypotheses in an experiment with 198 participants from the laboratory for

experimental research in economics of a leading Western European university. In the experiment,

participants decide on the optimal investment amount for a follow-up efficiency improvement

project based on balanced scorecard (BSC) data (Dalla Via et al., 2019). I base the BSC

measures on Humphreys et al. (2016), including financial, customer, internal business process,

and learning and growth project data. The participants need to analyze the BSC data and

derive the nonlinear relation between previous investment amounts and financial performance

data (Ittner and Larcker, 1998b) while ignoring the irrelevant non-financial information cues.

I manipulate information load using a BSC for three reasons. First, the design of a BSC enables

participants to measure decision quality as the dependent variable (Dalla Via et al., 2019).

In this setting, I measure decision quality based on the accuracy of participants’ investment

decision, which is optimal when the amount invested in the project leads to the highest net profit

(Dalla Via et al., 2019). Second, a BSC contains financial and non-financial metrics, allowing

participants to identify interrelations among the given performance measures (Banker et al.,

2000). Introducing accountability as a control measure may influence individual’s motivation

and sharpens their information-processing capabilities, which leads to better decision making

(Dalla Via et al., 2019). Third, a BSC allows a flexible format for firms to present various

amounts of information. Scholars contend that the complexity of a BSC leads to information

overload, as it illustrates multiple perspectives, including 16 measures (Ding and Beaulieu, 2011).

I employ a 2 x 2 between-subjects design in which I vary information load as low or high (Chewn-

ing and Harrell, 1990, Swain and Haka, 2000) and accountability as absent or present (Fehren-

bacher et al., 2020). In the low information load condition, participants are presented with

four BSC measures, one for each BSC perspective, as four measures display only a few options

(Iyengar, 2010). Scholars commonly use 16 measures in a BSC, each perspective containing four

measures (Lipe and Salterio, 2000, Ding and Beaulieu, 2011, Humphreys et al., 2016), serving as

a proxy for the high information load, i.e., information overload, condition (Ding and Beaulieu,

2011). I manipulate accountability as to whether participants are held accountable for their

decision (Fehrenbacher et al., 2020). When held accountable, participants are required to justify

their decision by explaining how they arrived at it. When not held accountable, participants’

decision is treated confidentially and anonymously (Siegel-Jacobs and Yates, 1996).

1 Introduction 11

I test my hypotheses with an ANOVA analysis. I find a significant main effect of information load

on decision quality, supporting Hypothesis 1 that information overload reduces average decision

quality. However, the results reveal no main effect of accountability, and there is no significant

interaction of information load and accountability on decision quality, rejecting Hypothesis 2.

Possible reasons why accountability does not improve the average decision quality can be found

in the literature. Potentially, among participants in my experiment, the irrelevant information

cues have evoked an effect of dilution that can offset the benefits from accountability (Tetlock

and Boettger, 1989, Tetlock et al., 1989, Siegel-Jacobs and Yates, 1996, Bartlett et al., 2014).

Next, decision quality is examined in more detail. In particular, I investigate the frequency

of participants making the optimal decision across conditions, i.e., when participants reach a

100% accurate decision. I estimate a logistic regression with a binary variable that indicates

whether the participant made the optimal decision. I do not find a main effect of information

overload and no significant interaction effect of information load and accountability on decision

quality. However, participants facing information overload are significantly more likely to make

the optimal decision if they are held accountable than if they are not.

In Essay II, I analyze the following research question: "How do firms estimate software project

costs?" To answer this question, I must identify and analyze practitioners’ different estimation

approaches. To do so, I conduct a multiple-case study according to Eisenhardt (1989) and

Corbin and Strauss (1990). A multiple-case study design displays a suitable research method

to address the research question of how firms estimate software costs for many reasons. First,

it enables the analysis of contemporary phenomena in a rich, real-world context (Eisenhardt

and Graebner, 2007) and relies on multiple data sources to triangulate results. Second, multiple

cases enhance the generalizability of the results (Eisenhardt and Graebner, 2007, Yin, 2018) by

applying a replication logic (Eisenhardt, 1989) that confirms or disapproves the inference from

the past cases.

The essay aims to develop a model that shows how firms estimate software costs depending on

their organizational and project-specific setting. To gain diverse perspectives, I follow a diverse

sampling strategy. The data sample comprises nine software-producing firms from five indus-

tries, including computer software and cloud solutions, financial services, electric/electronics,

automotive, and professional services. Besides differences in industry, the variation accounts for

different project environments, e.g., varying levels of time constraints or requirements uncer-

tainty and the varying perspectives of contractors and suppliers. The unit of analysis displays

1 Introduction 12

an individual software project from the start of planning to the first release, excluding updates

and maintenance (Austin and Devin, 2009).

My main source of analysis displays 14 semi-structured interviews with software executives,

project managers, engineers, and other subject matter experts. I stopped conducting interviews

after the additional findings had decreased strongly (Eisenhardt, 1989). Besides conducting the

interviews, I received and analyzed project documents of two firms, including process flows and

project records. The written data displays an additional source of documentary evidence and

enables a more straightforward interview process, a better understanding of project content and

context, and data triangulation. I followed the coding approaches by Miles et al. (2019) and

visualized the emerging structures according to Gioia et al. (2012). I arrived at 1,268 codes

(1st-order concepts) that I grouped into 31 2nd-order themes, into ten aggregated dimensions,

and into three highest dimensions.

I conduct a cross-case analysis to develop the UPI process model that shows how firms estimate

their software costs. I structure the process into three levels: project stages, activities, and

activity features. On the highest abstraction level, firms follow three generic project stages to

estimate software costs: Understand, Plan, and Implement. On the intermediate abstraction

level, the three stages include ten activities. On the lowest abstraction level, firms implement

features of these activities. Firms have a homogeneous perspective on following the project

stages and activities. However, the activity features are heterogeneous depending on the firm

and project-specific setting. I describe the activity features within each stage in detail and

outline why firms select different activity features and how they proceed in their development

context.

During the stage Understand, firms focus on understanding the characteristics of the project en-

vironment and the requirements. The project environment analysis follows three criteria: prod-

uct uncertainty, time dependency, and customer-supplier involvement. Based on these criteria,

firms decide on further activities in the Plan and Implement stages. Afterward, the develop-

ment team tries to understand the project requirements as comprehensively and granularly as

possible. Firms decompose the requirement largely, logically, and hierarchically into functional

blocks, epics, features, stories, or tasks depending on the degree of completeness.

In the Plan stage, firms select the estimation and data strategy, the estimation method, the

project governance, and, if necessary, the contract type between customer and supplier. The

1 Introduction 13

estimation strategy can follow a top-down or bottom-up approach depending on the project

environment categorization and requirements analysis results. For example, firms estimate de-

velopment costs top-down if the product uncertainty is low and analogs are available. In contrast,

firms choose a bottom-up strategy for short-term estimations, which occur continuously before

sprints within the agile development process. Firms can also combine both strategies by esti-

mating costs top-down during initial planning and bottom-up during ongoing development.

Firms define the data strategy to build a standardized data repository. To increase data-driven

estimations, firms set the criteria and outline the process for collecting data throughout the

entire development process.

Subsequently, firms select the estimation method in alignment with the project governance.

Firms primarily rely on group-based expert estimations, regardless of the project environment.

Within group-based expert estimations, they only differentiate the aggregation level of the es-

timates depending on the product uncertainty and the current development phase. Examples

of group-based expert estimations are the Planning Poker method, Delphi method, Dice game,

or T-shirt size estimations. For projects where relevant past data is available, firms selectively

apply statistical approaches as an add-on to expert estimations.

Firms decide on the project governance by implementing different control mechanisms for the

development team. Controls are decisive in reacting to deviations and to the different stakehold-

ers’ political motives for over- or underestimation. The development teams focus on informal

controls like clan control, which are enforced by the estimation method and are based on find-

ing consent between all team members. Among others, the controlling team is responsible for

setting the right incentives, defining the Key Performance Indicators (KPIs), and implementing

a governance board with formal controls, e.g., when the target-actual comparison of estimates

deviates strongly.

The selection of the contract type between contractor and supplier impacts the estimation process

and incorporates benefits and drawbacks for each party. Generally, firms can choose between

three contract types: time and material, fixed price, and agile fixed price. The time-and-material

contract refers to the total development time invested by the supplier and upfront agreed cost

rates. Due to its flexibility concerning the project scope, firms often agree on this contract

type in early development phases and when the requirements are hard to specify. A fixed-price

contract comprises a fixed fee for delivering a specified software (Jørgensen et al., 2017). The

1 Introduction 14

agile fixed-price contract displays a hybrid solution with a fixed project size but a variable scope

for which partial volumes are agreed on iteratively. This contract type fosters communication

between the stakeholders and partially eliminates the disadvantages of the other contract types.

The Implement stage is based on the previous two stages and focuses on implementing the de-

composed requirements of Understand. During the Implement stage, firms consider project and

team factors when estimating the development costs. The project factors include categorizing

the decomposed requirements by requirements and system complexity and novelty. Further,

they comprise within-project, cross-project, and cross-firm lessons learned to re-calibrate their

estimates. The team factor evaluates the individual team members’ capabilities and availability.

Finally, firms define rules for implementing the factors, e.g., as a defined number of story points

or as an adjustment to the number of iterations within the development process.

Besides setting up the UPI model descriptively, I identify procedural estimation challenges and

suggest five propositions that should support managers in designing their estimation process,

reduce situational or human biases, and increase the consistency of their estimation results.

To derive the propositions, I evaluate the identified estimation challenges and triangulate these

with the insights gained during the literature review and with theories in information systems.

First, firms should conduct a specification workshop with all stakeholders to increase the clar-

ity of the project requirements, reduce the risk of neglecting tasks, and improve information

sharing between stakeholders (Vidgen and Wang, 2009). Second, managers should systemati-

cally train estimators based on past projects and scientific literature. Managers can support the

learning process and increase productivity by giving estimators checklists to support the estima-

tion process (Jørgensen and Molokken, 2003, Usman et al., 2018). Third, firms should build a

firm-specific database to realize data-driven decision making. Systematic data collection would

also enable firms to apply machine learning (ML)-based methods. Fourth, estimators should

recognize team characteristics and the interests of stakeholders during estimation. Team charac-

teristics include varying capabilities, capacities, locations, cultures, and political motives. Fifth,

managers should adapt controls to react to the project teams’ need for control and flexibility. I

suggest extending the controls by introducing emergent outcome controls (Harris et al., 2009)

to agile development settings. This form of control comprises two control mechanisms: scope

boundaries and ongoing feedback. Scope boundaries like a product vision, feature specifications,

or technical constraints limit the range of possible solutions without specifying outcomes. At

the same time, ongoing feedback is decisive when the scope boundaries need to be set tighter.

1 Introduction 15

In Essay III, we examine the following research question: "How can controllers design cost

systems for software firms to encompass software’s product and process peculiarities?" Therefore,

we analyze software’s product and process characteristics to derive requirements for designing

cost systems for software firms. We identify differences between industrial goods and information

goods in cost occurrence, cost composition, and decision-making relevance. Information goods’

costs incur during the development while the production and distribution are related to virtually

zero costs (Shapiro and Varian, 1999, Jones and Mendelson, 2011). Contrary, industrial goods’

costs arise mainly during production and distribution (Jones and Mendelson, 2011). The cost

occurrence highlight differences in value creation between information and industrial goods.

While information goods often require creative development effort and flexibility (Harris et al.,

2009), industrial goods follow a production process that can be physically observed. Next,

we compare the differences with the underlying mechanisms in extant management accounting

research on cost system designs for tangible products.

Based on this review, we conceptually develop a cost system design that supports software

firms in making informed decisions on software product costing. The cost system takes multiple

perspectives on software costs by following the divide-and-conquer principle and integrating

three cost-management and modeling systems. We divide the larger problem of product costing

into smaller partial problems ("Divide") if a problem cannot be directly solved. Then the partial

problems can be solved and combined into an overall solution ("Conquer"). Thus, each cost-

management and modeling system can realize its capabilities while establishing synergies across

systems. In doing so, we follow the idea of (Kaplan, 1988) that "One cost system Isn’t Enough."

First, we recommend that firms take a life-cycle perspective and define the software development

project as the cost object to collect, measure, and allocate costs. The life-cycle perspective allows

managers to monitor and plan software costs of a complete economic life cycle beyond the core

development phase (Bradley and Dawson, 1999, Zarnekow and Brenner, 2005). Considering total

software costs is important because the recurring costs for production (e.g., operations, support,

and maintenance) (Zarnekow and Brenner, 2005) make up a high share of total software costs

(Boehm, 1981, Nguyen, 2010). Zarnekow and Brenner (2005) state that firms do not collect and

evaluate data of actual recurring costs because they lack awareness regarding their significance.

In this context, we also recommend shifting the focus from the software product to the software

project as a cost object independent of the life-cycle phases. The total project costs comprise

1 Introduction 16

project—internal costs, shared reuse costs, firm—internal support costs, and external service

provider costs. We suggest how to allocate indirect costs to the specified cost sources.

Second, we propose a regression-based cost model that allows firms to examine the effect of

project parameters (independent variables) on project costs (dependent variable). We describe

the model as an inherent cost allocation process, i.e., how to allocate the total project costs to

virtual cost drivers such as functional size or project duration. The sum of the intercept, the

independent variables, and the residual represent the total costs. We structure the model in

four steps: (1) Setting up a firm-specific database for project cost data and characteristics. (2)

Selecting firm and project-specific parameters as cost drivers for the model. (3) Developing a

regression model based on their idiosyncratic data and variables. (4) Defining a firm-specific in-

herent cost allocation scheme to divide the total project costs into their virtual cost components.

In doing so, we apply a linear regression analysis.

Third, we illustrate a dynamic target costing approach to plan and steer costs during software

design and early development stages. We realign the traditional target costing approach to

account for the virtual nature of software products and the dynamic requirements. Specifically,

we initiate the dynamic target costing process after analyzing the functional and non-functional

requirements. We suggest shifting the focus towards the development costs and defining target

costs aggregated for multiple versions of one product. In doing so, we aim to dissolve the

relatively static definition of functions and associated components to account for flexible software

versioning strategies. Additionally, we recommend dissolving the static link between customer

preferences and component cost weights because customer preferences cannot be directly related

to the importance of functions due to the separate consideration of application and solution

domain (Brügge and Dutoit, 2014). Further, we suggest defining target costs not only on a

product level but also on a component and function level.

1.4 Contribution to academic and practical debates

The three essays contribute to the literature on management accounting, software engineering,

and their intersection. Together, the essays present evidence on decision making and costing

from multiple perspectives. In Essay I, I analyze how information providers should provide

information to firms’ decision-makers to mitigate the negative effects of overloading managers

with information induced by the digital transformation. In doing so, I take the perspective of

1 Introduction 17

a controller who designs information systems, decision-making frameworks, reports, or financial

ratios for managers on different organizational levels, e.g., firm, department, or project. In Essay

II, I analyze the software cost estimation process on a granular project level, from understanding

the project requirements and environment to implementing the actual estimation. Here, I take

the perspective of a project controller or project manager who focuses on estimating the costs of

their responsible project. In contrast, Essay III outlines why firms must adapt their extant cost

systems to the requirements of intangible products on a firm or departmental level. Thereby,

I take the perspective of a chief controlling officer or head of controlling who is responsible for

defining congruent cost-management and modeling systems that allow firms to gain multiple

perspectives on product costing and, thus, improve decision making. Figure 1.1 displays a

schematic assignment of the three essays to the software life-cycle phases and organizational

levels (Ebert, 2007).

Figure 1.1: Schematic assignment of the three essays to the software life-cycle phases and organizational levels.

Notes: The life-cycle phases and organizational levels are adapted from Ebert (2007).

Essay I contributes to the information load and accountability literature. First, I complement

the literature about the negative effects of information overload on decision quality (e.g., Iselin,

1988, Chewning and Harrell, 1990, Roetzel, 2019). Managers need information to make good

decisions, but if overloaded with information, they might make worse decisions. The results

support evidence that organizations must consider individuals experiencing information overload

when designing decision-making frameworks.

1 Introduction 18

Second, I pick up recent calls for research (Gupta et al., 2018, Brynjolfsson et al., 2021) and

investigate accountability as an additional measure to alleviate negative consequences of infor-

mation overload in the context of the digital transformation (e.g., Eppler and Mengis, 2004,

Brown-Liburd et al., 2015, Kelton and Murthy, 2016). Individuals and firms increasingly face

this challenge because AI and big data support acquiring and processing of information, but

at the same time, enhance the risk of the brain suffering from information overload (Gupta

et al., 2018). Previous research found that financial incentives (Ding and Beaulieu, 2011) or

decision models and decision aids reduce the adverse effects of information overload (Paul and

Nazareth, 2010, Ding and Beaulieu, 2011, Dalla Via et al., 2019). I add that accountable in-

dividuals are significantly more likely to make the optimal decision under information overload

than non-accountable individuals.

Essay II makes three contributions. First, I add to the literature on software cost estimation

by reflecting on the current state of practice (Jørgensen and Shepperd, 2007, Eduardo Carbon-

era et al., 2020). I strengthen scholars’ and practitioners’ understanding of the software cost

estimation process by enlarging their perspective on software cost estimation beyond describ-

ing individual estimation methods and comprising the entire process from understanding the

project environment to estimating the costs. I integrate the peculiarities of selected industries,

value chain positions, and organizational roles to understand different facets of the estimation

process and increase the external validity of my results. Thereby, I add to Boehm and Papaccio

(1988) who describe a software planning and control framework, Edwards and Moores (1994)

who introduce the EEPS model, and Jørgensen and Molokken (2003) and Usman et al. (2018)

who suggest using checklists structured along the software cost estimation process. Firms can

compare their current estimation process with the UPI model to adapt or extend their process

and increase the consistency of their estimation results. Further, the results allow researchers to

recognize gaps between research and practice and base their future research efforts on real-life

findings (Eisenhardt and Graebner, 2007).

Second, I show that group-based expert judgment is still the dominant method across industries

due to the high degree of implicit expert knowledge and the high effort in setting up a customized

formal model. Differences only occur at the aggregation level of the estimates, e.g., in epics,

stories, or story points. The results are in line with the literature on effort estimation, which

highlights that accurate estimation results depend on the previous experience from a similar

task (Jørgensen, 2004b, Haugen, 2006, Idri et al., 2015).

1 Introduction 19

Third, I suggest propositions that support managers in designing their estimation process. The

propositions aim at supporting managers in overcoming identified challenges in software cost

estimation, reduce situational and human biases, and increase estimation accuracy.

Essay III contributes to the cost system design literature by conceptualizing how firms can sys-

tematically model and manage software costs. We add to Otley (1980), who suggests setting up

cost-management systems contingent on organizational circumstances, e.g., production technol-

ogy and organizational structure. Further, we pick up the calls for research by Messner (2016),

who recommends scholars to tailor management accounting systems to organization-specific

practices, e.g., research and development, and industry-specific characteristics, e.g., regulations.

Further, our study adds to the research on measuring and allocating product and service costs

(e.g., Cooper and Kaplan, 1988, Datar and Gupta, 1994, Labro and Vanhoucke, 2007, Balakrish-

nan et al., 2011, 2012) by suggesting guidelines for designing a cost system for software projects.

We contribute to the research gap identified by Astromskis et al. (2014), who observe a need for

a framework that defines principles for a cost system design for software firms.

Altogether, this dissertation contributes to the academic literature and practical debates on cost-

ing and decision making in the digital age. I take the perspective of an accounting researcher

and derive insights at the intersection of management accounting and software engineering. I

suggest how controllers should provide decision-relevant information to other managers amidst

the rising information volumes induced by big data. I describe how software-producing firms es-

timate software costs and derive propositions for their estimation process. And finally, I propose

how to adapt traditional cost-management practices by discussing guidelines for designing cost

systems for software firms to account for the organizational cost mix changes.

Table 1.1 provides an overview of the three essays, including the research questions, methodolo-

gies, unit of analyses, findings, and contributions.

1.5 Structure of the dissertation

The remainder of the dissertation is organized along with my three essays. All essays represent

separate research projects. Thus, there might be some overlapping content. However, readers of

this dissertation can understand the three essays independently of each other.

1 Introduction 20

Chapter 2 contains Essay I with the title "Finding the Needle in the Haystack: How Information

Load and Accountability Influence Decision Quality". In this essay, I experimentally investigate

whether and how accountability affects decision-making quality when managers face different

levels of information load. In Chapter 3, I present Essay II, "Understand, Plan, and Implement:

A Multiple-Case Study on How Firms Estimate Software Costs". This essay provides a process

model that shows how firms estimate their software costs. Chapter 4 contains Essay III "Divide

and Conquer: Designing Cost Systems for Software Firms" and proposes a cost system design

for software firms. Finally, Chapter 5 summarizes the key findings of the three essays, discusses

theoretical and managerial implications, limitations, and provides overall concluding remarks.

The appendix includes additional information about the three essays, such as the case-related

instructions, the BSC manipulation, the briefing note for the experiment, and the flow of the

experimental design for Essay I, the case study protocol, the interview questions, the overview of

the data structure, and the actual data structure of the UPI model for Essay II, and exemplary

cost structure differences between industrial and information goods, and the illustration and

description of a selected cost-management system for Essay III.

1 Introduction 21

T
a
bl

e
1.

1:
O

ve
rv

ie
w

of
th

e
th

re
e

es
sa

ys
.

E
ss

ay
ch

ar
ac

te
ri

st
ic

s
E
ss

ay
I

(c
f.

C
h
ap

te
r

2)
E
ss

ay
II

(c
f.

C
h
ap

te
r

3)
E
ss

ay
II

I
(c

f.
C

h
ap

te
r

4)

R
es

ea
rc

h
qu

es
ti
on

D
oe

s
ac

co
un

ta
bi

lit
y

aff
ec

t
de

ci
si

on
-

m
ak

in
g

qu
al

it
y

un
de

r
va

ry
in

g
le

v-
el

s
of

in
fo

rm
at

io
n

lo
ad

?

H
ow

do
fir

m
s

es
ti

m
at

e
so

ft
w

ar
e

pr
oj

ec
t

co
st

s?
H

ow
ca

n
co

nt
ro

lle
rs

de
si

gn
co

st
sy

st
em

s
fo

r
so

ft
w

ar
e-

pr
od

uc
in

g
fir

m
s?

R
es

ea
rc

h
ap

pr
oa

ch
E

xp
er

im
en

ta
l

Q
ua

lit
at

iv
e

C
on

ce
pt

ua
l

M
et

ho
do

lo
gy

La
bo

ra
to

ry
ex

pe
ri

m
en

t
M

ul
ti

pl
e-

ca
se

st
ud

y
P

re
vi

ou
s

re
se

ar
ch

U
ni

t
of

an
al

ys
is

∼
20

0
pa

rt
ic

ip
an

ts
m

ak
in

g
an

in
-

ve
st

m
en

t
de

ci
si

on
.

In
di

vi
du

al
so

ft
w

ar
e

pr
oj

ec
ts

of
ni

ne
ca

se
fir

m
s.

E
xt

an
t

co
st

sy
st

em
de

si
gn

s
an

d
so

ft
w

ar
e

ch
ar

ac
te

ri
st

ic
s.

F
in

di
ng

s
M

an
ag

er
s

fa
ci

ng
in

fo
rm

at
io

n
ov

er
-

lo
ad

ar
e

m
or

e
lik

el
y

to
m

ak
e

th
e

op
ti

m
al

de
ci

si
on

if
th

ey
ar

e
he

ld
ac

-
co

un
ta

bl
e

th
an

if
th

ey
ar

e
no

t.
In

-
fo

rm
at

io
n

ov
er

lo
ad

re
du

ce
s

th
e

av
-

er
ag

e
de

ci
si

on
qu

al
it
y

bu
t

do
es

no
t

in
te

ra
ct

w
it

h
ac

co
un

ta
bi

lit
y.

F
ir

m
s

st
ru

ct
ur

e
th

ei
r

co
st

es
ti

m
a-

ti
on

pr
oc

es
s

in
to

th
re

e
st

ag
es

an
d

te
n

ac
ti

vi
ti

es
w

hi
le

ad
ap

ti
ng

th
ei

r
ac

ti
on

s
to

ch
an

gi
ng

en
vi

ro
nm

en
ts

.
Ii

de
nt

ify
es

ti
m

at
io

n
ch

al
le

ng
es

an
d

su
gg

es
t

pr
op

os
it

io
ns

fo
r

de
si

gn
in

g
th

e
es

ti
m

at
io

n
pr

oc
es

s.

W
e

pr
ov

id
e

a
co

st
sy

st
em

de
si

gn
fo

r
so

ft
w

ar
e

fir
m

s
by

in
te

gr
at

in
g

th
re

e
co

st
-m

an
ag

em
en

t
an

d
m

od
el

-
in

g
ap

pr
oa

ch
es

.
W

e
co

nc
ep

tu
al

iz
e

ho
w

fir
m

s
ca

n
ca

lc
ul

at
e,

ev
al

ua
te

,
an

d
m

an
ag

e
so

ft
w

ar
e

pr
od

uc
t
co

st
s

fr
om

m
ul

ti
pl

e
pe

rs
pe

ct
iv

es
.

C
on

tr
ib

ut
io

ns
F
ir

m
s

sh
ou

ld
co

ns
id

er
in

fo
rm

a-
ti

on
ov

er
lo

ad
an

d
ac

co
un

ta
bi

l-
it
y

w
he

n
de

si
gn

in
g

th
ei

r
de

ci
si

on
-

m
ak

in
g

fr
am

ew
or

ks
.

I
pr

ov
id

e
th

e
U

P
I

pr
oc

es
s

m
od

el
an

d
en

la
rg

e
th

e
pe

rs
pe

ct
iv

e
of

co
st

es
ti

m
at

io
n

be
yo

nd
se

le
ct

in
g

in
di

-
vi

du
al

m
et

ho
ds

.

W
e

de
fin

e
gu

id
el

in
es

fo
r

so
ft

w
ar

e-
pr

od
uc

in
g

fir
m

s
fo

r
de

si
gn

in
g

th
ei

r
co

st
sy

st
em

to
m

ak
e

in
fo

rm
ed

de
-

ci
si

on
s

on
pr

od
uc

t
co

st
in

g.

N
ot

es
:

T
hi

s
ta

bl
e

su
m

m
ar

iz
es

th
e

th
re

e
es

sa
ys

w
it

hi
n

th
is

di
ss

er
ta

ti
on

.
T

he
ta

bl
e

pr
ov

id
es

an
ov

er
vi

ew
of

th
e

es
sa

ys
’
re

se
ar

ch
qu

es
ti

on
s,

m
et

ho
do

lo
gi

es
,
un

it
of

an
al

ys
es

,
fin

di
ng

s
an

d
co

nt
ri

bu
ti

on
s.

2 | Finding the Needle in the Haystack:

How Information Load and Account-

ability Influence Decision Quality

Abstract

This study investigates how information load and accountability influence decision-making quality. In

today’s digital age, the volume of available information increases faster than the attention and processing

capabilities, leading to information overload. Drawing on information load literature, I hypothesize that

decision quality declines under information overload. I introduce accountability (i.e., justifying one’s de-

cision) as a mitigation measure and expect a positive influence on selecting the relevant cues for making

the right decision. In detail, I hypothesize that the effect of accountability on the filtering of information

increases with rising information load. I test these hypotheses in an experiment in which nearly 200 stu-

dents decide on the optimal investment amount for an efficiency improvement project. I apply a Balanced

Scorecard setting and vary information load at two levels—low and high—and manipulate accountability

at two levels—absent and present. The results are partially consistent with my hypotheses. Information

overload reduces the average decision quality, yet accountability does not improve the average decision

quality, and accountability and information load do not interact. However, accountability increases the

likelihood of making the optimal decision under information overload. The different results could indicate

a dilution effect that shifts the attention during complex tasks towards irrelevant information. I discuss

the implications of my findings for management accounting research and practice.

Author: Marcus Witter

Status: Working Paper3

3This essay was presented at the 44th Annual Congress of the European Accounting Association (EAA) in Bergen,
Norway, the 19th Annual Conference for Management Accounting Research (ACMAR) in Vallendar, Germany,
and the 38th Eurasian Business and Economics Society (EBES) Conference in Warsaw, Poland (online). I thank
the participants for their valuable comments. Further, I thank Stefanie Baumgartner, a former master’s degree
student at TUM, who supported me in reviewing the literature. Our discussions greatly benefited the work.

22

2 Essay I 23

2.1 Introduction

I investigate whether and how accountability affects decision-making quality when managers

face an increasing information load. This analysis is important because the growing abundance

of information, driven by artificial intelligence and big data supporting organizations and their

members in acquiring information, provides opportunities for making better decisions (Brynjolf-

sson et al., 2021). Yet, the wealth of available information also implies the risk of exceeding their

attention and processing capabilities (Gupta et al., 2018). Scholars describe this condition as

information overload, and question how organizations should adopt decision-making frameworks,

design reports (van Knippenberg et al., 2015), financial ratios or statements (Iselin, 1993), and

organize usable information system interfaces to provide information to decision-makers (Schick

et al., 1990). The latter is particularly relevant for controllers who are significant information

providers to decision-makers across firms and are decision-makers and, thus, users of information

themselves (Schick et al., 1990).

In today’s digital age, managers can easily acquire information to increase the likelihood of

making the right decisions. However, when overloaded with information, they tend to make sub-

optimal decisions or avoid decision making (Gupta et al., 2018). Individuals are considered as

boundedly rational agents who encounter limits in solving complex problems (Simon, 1955), can

be distracted from relevant information (van Knippenberg et al., 2015), and make suboptimal

decisions or avoid decision making when they face a number of choices between five and nine

(Iyengar, 2010). When designing reports for supporting managers making a decision, informa-

tion providers must consider that three variables affect the decision quality: 1) the uncertainty

experienced by the managers, 2) the information load, i.e., the quantity of information cues

that are relevant for making a decision, and 3) the data load, i.e., the quantity of cues that

are irrelevant for the decision (Iselin, 1993). Scholars differentiate two types of data load. The

first type of data load contains redundant and irrelevant cues for the decision at any time. The

second type of data load consists of cues that may predict the main criterion but are correlated

with another cue that predictions the main criterion equally well or better. We adhere to the

categorization of Iselin (1993) and consider the second type as part of information load.

According to the human information processing approach by Schroder et al. (1967), decision

quality is optimal at a certain level of information load. As soon as the information load becomes

higher or lower, decision quality decreases. Specifically, an increase in the amount of information

2 Essay I 24

requires more of the limited information processing capacity, complicating the identification of

relevant information cues by increasing the demand to filter out irrelevant data, leading to errors

and deteriorating decision quality (Iselin, 1993). Extant literature on information load deals with

mitigating the adverse effects of information overload (e.g., Ding and Beaulieu, 2011, Brown-

Liburd et al., 2015, Kelton and Murthy, 2016). On the one hand, Chewning and Harrell (1990)

suggest mitigating information overload by equipping decision-makers with a decision model

adapted to the situation. On the other hand, Paul and Nazareth (2010) find that incorporating

a decision aid into group decision processes enables groups to process a larger amount and more

complex information.

I suggest that accountability mitigates the detrimental effects of information overload when no

decision aids are available to the manager. Accountability exhibits a pivotal design feature of

management control systems (e.g., Ahrens, 1996, Merchant and Otley, 2006, Birnberg et al.,

2008, Fehrenbacher et al., 2020) and "refers to the implicit or explicit expectation that one may

be called on to justify one’s beliefs, feelings, and actions to others" (Lerner and Tetlock, 1999, p.

255). In this study, accountability refers to whether individuals are accountable for explaining

how they arrived at their decision (Fehrenbacher et al., 2020). A large body of literature in this

area shows that holding managers accountable can significantly affect judgment and decision

quality (e.g., Siegel-Jacobs and Yates, 1996, Libby et al., 2004, Chang et al., 2013, Dalla Via

et al., 2019, Fehrenbacher et al., 2020). Accountable individuals tend to think more critically and

are more likely to make the right decision (Tetlock, 1983, Ahrens, 1996). However, the positive

effect does not hold for all individuals, as accountability can trigger stress (Hall et al., 2017) and

inherits the risk of focusing not only on relevant but also irrelevant information, evoking a dilution

effect that compromises decision quality (Siegel-Jacobs and Yates, 1996, Tetlock and Boettger,

1989). As information overload and accountability potentially affect individuals’ decision-making

quality, I study their interactive effects.

Building on information load literature and accountability theory, I assume that differences in

cognitive processes induced by experimental conditions affect individuals’ decision quality. I

suspect that a high amount of information necessitates an increase in the information search

effort, thus, making it more difficult for individuals to identify decision-relevant information

cues. Hence, I predict that information overload leads to lower decision quality. I assume that

accountable individuals increase their mental effort to justify their position (Tetlock et al., 1989)

2 Essay I 25

and identify causality between decision-relevant information cues. Thus, I predict that account-

ability increases decision quality. In particular, I expect that being accountable is advantageous

to decision quality under information overload because individuals are motivated to increase

their search effort and mitigate the detrimental effects of information overload.

I test my hypotheses with an experiment. I adapt the experimental setting from Dalla Via et al.

(2019) and employ an investment decision task in which participants are asked to decide on

the optimal amount for a follow-up efficiency project. Participants need to derive the nonlinear

relation between previous investment amounts and financial performance data from a Balanced

Scorecard (BSC). In order to make the optimal decision, participants need to identify and process

the relevant performance measures in the BSC and ignore irrelevant information cues. I employ

a 2 x 2 between-subjects design in which I manipulate information load at two levels—low and

high—and manipulate accountability at two levels—absent and present.

Manipulating the information load through a BSC is well suited to test my hypotheses for

three reasons. First, a BSC setting, by design, enables the measurement of decision quality

as the dependent variable (Dalla Via et al., 2019).4 Second, a BSC provides decision-makers

with financial and non-financial performance data, allowing the identification of interrelations

among given performance dimensions (Banker et al., 2000). Hence, accountability may influence

individuals’ motivation and sharpen how they process information, resulting in better decision

quality (Dalla Via et al., 2019). Third, a BSC provides a versatile format for organizations

to present different amounts of information. Ding and Beaulieu (2011) investigate the effect

of different levels of information load in the context of performance evaluations and contend

that the BSC represents information overload, as it includes multiple perspectives and up to 16

measures.

My results are partially consistent with my predictions. Information overload reduces the av-

erage decision quality. However, the effect of accountability depends on the variable used to

capture the decision quality. Accountability does not counteract the detrimental effects of in-

formation overload on average decision quality, and information load and accountability do not

interact. The missing effect of accountability on decision quality could indicate a dilution effect

that comprises decision quality (Tetlock and Boettger, 1989, Siegel-Jacobs and Yates, 1996),

shifting individuals’ focus towards irrelevant information (Bartlett et al., 2014). Further, being
4Following Dalla Via et al. (2019), I measure decision quality by the accuracy of participants’ investment decision.
Decision quality is highest when the amount invested in the project leads to the best financial performance, in
my case, the highest net profit.

2 Essay I 26

accountable can stress individuals (Hall et al., 2006) and reduce the consistency of behavior

as soon as individuals do not know how to solve the problem (Siegel-Jacobs and Yates, 1996).

However, the frequency of making the optimal decision is significantly higher for accountable

individuals than non-accountable individuals under information overload.

My study contributes to two streams of literature. First, they complement the literature about

the effects of information overload (e.g., Iselin, 1988, Chewning and Harrell, 1990, Roetzel, 2019).

Consistent with previous results, a high amount of information reduces decision quality. The

results support existing evidence that information overload is a decisive factor for designing

decision-making frameworks.

Second, I contribute to the literature that studies measures to alleviate the negative consequences

of information overload (e.g., Eppler and Mengis, 2004, Brown-Liburd et al., 2015, Kelton and

Murthy, 2016), picking up recent calls for research (Gupta et al., 2018, Brynjolfsson et al., 2021).

The issue gains increasing importance because technological advancements increase the available

information for most decision-makers. Previous research in information systems and accounting

identified financial incentives (Ding and Beaulieu, 2011) or decision models and decision aids to

reduce the negative effects of information load (Paul and Nazareth, 2010, Ding and Beaulieu,

2011, Dalla Via et al., 2019). I add that accountability can increase the probability that managers

who are overloaded with information will still make the optimal decision. This finding also

enriches the management accounting literature that investigates other effects of accountability

on decision making (e.g., Iselin, 1988, Chewning and Harrell, 1990, Roetzel, 2019). Assuming

that accountability as a control mechanism is in place in most, if not all, organizations, the

linkage of information overload and control mechanisms in organizations displays a valuable

setting to understand the role that accountability plays in improving decision making under

information overload.

The remainder of this study is organized as follows. Chapter 2.2 elaborates on the theoretical

background of my hypotheses, Chapter 2.3 outlines the experimental design, Chapter 2.4 shows

my results, and, finally, Chapter 2.5 concludes.

2 Essay I 27

2.2 Theory and hypotheses development

2.2.1 The effect of information load

Information overload describes a condition in which managers or organizations cannot adequately

process information, i.e., the processing requirements exceed the processing capacity (Schneider,

1987). On the one hand, from a cognitive point of view, managers are boundedly rational agents

who experience limits in processing information, then stop acquiring information and make a

decision based on the limited information they have (Simon, 1955). Also, other personal factors

such as managers’ motivation (Muller, 1984) can influence the decision-making process. On

the other hand, the characteristics of a task can increase information processing requirements,

e.g., when individuals face noticeably complex tasks (Tushman and Nadler, 1978), time pressure

(Schick et al., 1990), or budget restrictions (Roetzel, 2019). Further, information complexity

(Schneider, 1987) and the presence of irrelevant information cues for making an optimal decision

increase the information processing requirements (Iselin, 1993, Hartmann and Weißenberger,

2020). Recent studies indicate that technological advancements reinforce the increase in in-

formation processing requirements, potentially leading to the brain suffering from information

overload (van Knippenberg et al., 2015, Gupta et al., 2018). Individuals and organizations ac-

quire information readily with low costs (Levitin, 2014), while information systems can process

and store an increasing amount of data (Roetzel, 2019).

The manifold causes of information overload lead to a variety of symptoms. First, individuals

stop searching for additional information necessary for making a decision (Simon, 1955, Schroder

et al., 1967, Gupta et al., 2018) and tend to disregard information cues before all information

is used (Roetzel, 2019). Second, the existence of irrelevant information creates overconfidence

in the decision accuracy of individuals and dilutes judgment (Fleisig, 2011). Third, information

overload triggers the loss of priorities and goal orientation (Schneider, 1987), and a general lack

of perspective, leading to stress (Schick et al., 1990). Fourth, information overload increases

mental discomfort and raises emotions when making decisions (Swar et al., 2017), leading to

irrational behavior (Schneider, 1987).

Scholars find consensus that the symptoms of information overload harm the performance of

an individual (Eppler and Mengis, 2004). Focusing on the amount of information provided for

making decisions, an individual’s decision-making performance correlates positively with the

2 Essay I 28

amount of information up to a certain point in which information processing requirements equal

information processing capacity. Beyond this tipping point, decision quality declines as individ-

uals receive more information than they can process, resulting in an inverted u-shaped function

(Schroder et al., 1967, Driver and Streufert, 1969). Drawing on information load literature, I

hypothesize that information overload leads to lower decision quality.

H1: Information overload reduces decision quality.

2.2.2 The effect of accountability

Management accounting scholars consider accountability as a pivotal design feature of man-

agement control systems (e.g., Ahrens, 1996, Merchant and Otley, 2006, Birnberg et al., 2008,

Fehrenbacher et al., 2020). Further, research in psychology considers accountability as a relevant

factor for influencing decision-makers (Lerner and Tetlock, 1999, Chang et al., 2013). Lerner and

Tetlock (1999) argue that being accountable evokes three cognitive processes, i.e., conformity,

preemptive self-criticism, and defensive bolstering. First, accountable individuals are confronted

with social anxiety and seek conforming behavior. Second, accountability enforces self-critical

and inclusive behavior to take different points of view and avoid confrontations. Third, account-

able individuals turn to defensive bolstering, i.e., to seek as many reasons as possible to prove

critics wrong. The involvement of such cognitive processes sharpens the actions of individuals

by itself and does not depend on the presence of an auditor (Roberts, 1991). Being accountable

stimulates critical thinking and the anticipation of objections in one’s argumentation (Tetlock,

1983, Ahrens, 1996), enhancing the likelihood of making right judgments (Tetlock, 1983) and

providing more rational reasons for a decision (Moser et al., 2013), ultimately improving deci-

sion quality (Siegel-Jacobs and Yates, 1996, Libby et al., 2004, Jermias, 2006, Dalla Via et al.,

2019, Fehrenbacher et al., 2020). Accountable individuals increase their mental effort to justify

their position (Tetlock et al., 1989), acknowledge more value tradeoffs, and are more tolerant in

evaluating the advantages and disadvantages of a decision to an unfamiliar audience (Tetlock,

1983).

Being accountable can be implemented in various forms. In general, management accounting

literature distinguishes two essential types of accountability, e.g., outcome accountability and

process accountability (e.g., Siegel-Jacobs and Yates, 1996, Libby et al., 2004, Chang et al., 2013,

2 Essay I 29

Moser et al., 2013, Patil et al., 2014, Dalla Via et al., 2019, Schulz-Hardt et al., 2021). Outcome-

accountable individuals are solely responsible for the outcomes of their decision or judgment,

regardless of the underlying cognitive process. In contrast, process-accountable individuals are

responsible for the degree to which they can explain and justify their decision (Lerner and

Tetlock, 1999). In general, scholars consider process accountability to motivate information

search efforts (Dalla Via et al., 2019, Siegel-Jacobs and Yates, 1996), reduce the variability in

judgment (Siegel-Jacobs and Yates, 1996), increase the complexity of thinking, and have a more

powerful effect on decision quality (Siegel-Jacobs and Yates, 1996, Libby et al., 2004, Chang

et al., 2013, Patil et al., 2014, Dalla Via et al., 2019). In my research, I refer to Fehrenbacher

et al. (2020) and summarize accountability to whether participants are held accountable for

"how they arrived at their decision," potentially capturing both the decision process and the

decision outcome.

Various implications of accountability have been investigated in the past two decades. Fehren-

bacher et al. (2020) study the effect of accountability on positive and negative affective reactions

in capital budgeting decisions. They find that accountability reduces the tendency to select an

economically non-preferred project which is suggested by a manager triggering a positive affec-

tive reaction. Fehrenbacher et al. (2020) argue that accountable individuals are more inclined to

pre-emptive self-criticism and, hence, are more likely to anticipate objections, leading to an in-

crease in decision quality. In contrast, accountability does not reduce the tendency to disregard

an economically preferred project, which is suggested by a manager triggering negative reac-

tions. Libby et al. (2004) apply process accountability to a BSC setting to increase the cognitive

effort involved in performance evaluations and, thus, ensure the use of not only common, but

also unique BSC measures. The study illustrates that accountability makes participants more

self-critical, reducing the overweighting of general decision-making measures.

Drawing on accountability theory, I expect that the advantages of accountability outweigh the

disadvantages. I conjecture that accountability reduces the adverse effects of information over-

load by motivating individuals to acquire and process information more diligently and infer

interrelations among decision-relevant information cues better, thus, improving decision quality.

Under low information load, the effect of accountability depends on the complexity of the given

information and task and, lastly, how successful individuals are in ascertaining the interrelations

without being accountable. If the available information and task to be solved are straightfor-

ward to establish causality, there will be no effect of accountability on decision quality. However,

2 Essay I 30

being accountable can still enable individuals to increase decision quality— yet not as much as

under information overload. Therefore, I expect to find an increased difference in decision quality

between accountable and non-accountable individuals under information overload. Figure 2.1

illustrates my formally stated hypotheses 1 and 2 graphically.

H2: Increasing information load raises the positive impact of accountability on decision quality.

Figure 2.1: Predicted effects.

Notes: This figure shows the predicted patterns for decision quality across the information load conditions (Information
Load—Low and Information Load—High) and accountability type conditions (Accountability—Absent and Accountabil-
ity—Present).

2.3 Experimental method

2.3.1 Experimental setting

I adjust the experimental setting from Dalla Via et al. (2019) and Humphreys et al. (2016) and

ask participants to assume the role of the head of product development of a software company for

which they receive BSC performance data. The company introduces a development efficiency

initiative called "Autonomous Driving Development Platform" in ten development locations

as a one-year pilot test. The objective was to quickly launch future product generations on

the market by increasing the speed of developing a distinguishing characteristic of a software

2 Essay I 31

prototype ("Power feature development rate"). The participants learn that the market is highly

competitive and customers face cost pressure, and, hence, that the company’s ultimate objective

is to maximize its net profit (see Figure 2.2).

Figure 2.2: Instructions in the Accountability—Present conditions.

Participants received the pilot test data as percentage results of the previous year, indicating

performance changes based on the development efficiency initiative, and were asked to make

a follow-up investment decision. To measure the effectiveness of the development efficiency

initiative, the investment amount varied between 100,000 EUR to 1,000,000 EUR across the

different development locations. In all other relevant aspects, all locations are comparable to

each other. Following Dalla Via et al. (2019), the power feature development rate data increases

linearly with the investment amount data. In contrast, the relationship between changes in

financial performance data, i.e., the net profit, and the investment amount data is nonlinear. This

reflects that leading financial performance indicators frequently change with individual decisions

in a nonlinear manner (Ittner and Larcker, 1998b). To make the optimal decision, participants

were required to ignore potential inclinations to maximize the power feature development rate

by investing maximum amounts. Instead, participants had to solely focus on maximizing the

net profit, for which the optimal amount was 520,000 EUR (see Figure 2.3). Figure A.1 in

the appendix shows the case-related instructions in the different accountability conditions, and

Figure A.2 in the appendix displays the different BSC conditions.

2 Essay I 32

Figure 2.3: BSC data in the Information Load—High and Accountability—Present condition.

Notes: Participants in this treatment group saw a brief repetition of the task instructions and the BSC data. In addition
to the BSC data, explanations of the measures were provided when participants hovered with their mouse pointer over the
respective measures.

I choose a BSC to manipulate the information load due to three reasons. First, following

Dalla Via et al. (2019), a BSC setting enables the measurement of decision quality, which,

2 Essay I 33

in my case, is the highest for the investment amount, which leads to the highest net profit.

Second, a BSC supports strategic planning and management decisions (Kaplan and Norton,

1996a,b, 2001a,b), yet it is also applied in accounting research for control reasons such as per-

formance evaluations (Ittner and Larcker, 1998a, Lipe and Salterio, 2000, 2002, Banker et al.,

2004). A BSC provides decision-makers with financial and non-financial performance data, en-

abling the identification of causal effects among performance dimensions (Banker et al., 2000).

Thus, being accountable may influence participants’ motivation and sharpen the way they pro-

cess information, resulting in better decision quality (Dalla Via et al., 2019). Third, a BSC

allows organizations to present different amounts of information. Ding and Beaulieu (2011) in-

vestigate the levels of information load in the context of performance evaluations, e.g., using two,

eight, and 16 BSC measures, and contend that a BSC with 16 measures represents information

overload itself.

Further, I choose an investment decision setting for information systems projects for three rea-

sons. First, scholars call for experimental research in the context of information since techno-

logical advancements like AI or big data can lead the brain to suffer from information overload

(Gupta et al., 2018). I base the BSC measures on Humphreys et al. (2016), whereas the data

includes financials, customers, internal business processes, as well as learning and growth as-

pects of software projects. Second, uncertainty originates from software’s intangible nature,

incorporating less transparently observable tasks and input materials. Third, investment deci-

sions by definition involve uncertain outcomes that are important to a firm’s long-term survival

and about which complete information is not available (Maritan, 2001). Thus, an investment

decision for information systems projects is of particular practical importance as it displays an

extreme example, and the results can be transferred to tangible products of various industries.

2.3.2 Experimental conditions and variables

I employ a 2x2 between-subject experiment in which I manipulate information load and account-

ability. I manipulate information load as high or low (Chewning and Harrell, 1990, Swain and

Haka, 2000) by presenting participants a BSC with either 16 or four measures. Most recent lit-

erature commonly illustrates the BSC with 16 measures in four perspectives (Lipe and Salterio,

2000, Ding and Beaulieu, 2011, Humphreys et al., 2016), which represents an approximation for

the high information load condition (Ding and Beaulieu, 2011). I choose four BSC measures for

2 Essay I 34

the low information load condition, one per BSC perspective, as four measures do not exceed

participants’ limits in processing information (Iyengar, 2010).

I manipulate whether or not participants are held accountable for their decision (Fehrenbacher

et al., 2020). Researchers operationalize accountability by requiring decision-makers to justify

their decision-making process or outcome before making a final decision (Libby et al., 2004).

When held accountable, participants must justify their decision and explain how they arrived at

it. When not held accountable, participants are reminded that their decision is confidential and

anonymous (Siegel-Jacobs and Yates, 1996).

Following Dalla Via et al. (2019), decision quality, the first dependent variable for my analyses,

is computed as follows:

Decision Quality =
P ∗ − |Pa − P ∗|

5, 200
(2.1)

Decision quality measures the investment decision quality. The numerator captures how far the

investment amount that the participant allocated to the project Pa deviates from the optimal

amount of 520,000 (P ∗). The denominator scales the dependent variable to equal 100 when the

optimal amount is invested to the project. By considering the absolute value of the deviation,

the formula guarantees that identical deviations relate to equal values, regardless of whether they

are above or below the optimum. For example, both 220,000 and 820,000 deviate 300,000 from

the optimum (of 520,000) and yield the same value (of 42) for decision quality. The absolute

value of the deviation is subtracted from the optimal value to guarantee that higher values relate

to higher decision quality, i.e., 100 corresponds to 100% decision quality.

Second, to explore decision quality in more detail, I additionally examine how many participants

invested the optimal amount of 520,000 EUR and, thus, reached a decision quality of 100%.

2.4 Results

2.4.1 Participants and procedure

In total, 198 participants from the laboratory for experimental research in economics of a lead-

ing Western European university participated in my experiment. Students display suitable

2 Essay I 35

subjects to address theories of cognitive and decision-making processes (Libby et al., 2002). The

participants are part of the university’s experimental subject pool and self-registered for the

experiment online. I implemented the experiment using Qualtrics. I compensated participants

with a fixed fee of 7.00 EUR. Following Dalla Via et al. (2019), I chose a fixed fee compensa-

tion for two reasons. First, I want to avoid confounding the accountability manipulation with a

performance-based payment. Second, I would have had to compensate process-accountable par-

ticipants based on their written justification, but non-accountable participants based on their

decision accuracy, which would have been difficult to implement.

I randomly assigned the participants in every experimental session to one of the four treatment

conditions. At the beginning of every session, all participants attended an introductory virtual

meeting in which I read the general instructions of the experiment aloud to the participants (see

Figure A.3 in the appendix for the exact wording of the briefing note). After concluding the

briefing, I shared the link and password for conducting the experiment. Participants read two

introductory pages of general instructions and compensation information on-screen. Then they

learned about the company’s background, the task to be performed, and the managerial role to

be assumed. To ensure that participants understood their task and introduced accountability

manipulation, participants had to pass a brief comprehension and manipulation check of which

amount they were allowed to allocate to the project and whether they were held accountable.

Afterward, participants received the description of the business case and its performance data

in the form of a BSC. As a next step, participants in the accountability condition were asked to

justify their decision before entering the amount they decided to invest. In the end, participants

were asked to complete a post-experimental questionnaire and insert their payment details.

Figure A.4 in the appendix illustrates the sequence of events.

Taking insufficient effort responding into consideration (Huang et al., 2012), I excluded 9 par-

ticipants from the analysis, leading to a usable sample size of 189.5

Participants took, on average, 11.1 minutes to complete the experiment. 49.2% of the partici-

pants were male, 47.1% female, 1.6% non-binary, and 2.1% preferred not to mention their gender.
5Qualtrics predicts a total processing time of in average 11.9 min for non-accountable participants and 12.5
min for accountable participants. I assume a shortened response time as an indicator of insufficient effort
responding, describing responses which are provided by unmotivated students who conduct the survey too fast
to cognitively process the provided information in an adequate manner (Huang et al., 2012). I perceive it
unlikely for participants to complete the survey with reasonable cognitive effort in less than 3.5 minutes, which
displays the mark for the 5% percentile. I suggest the 5% percentile as a sufficient yet conservative cutoff value,
as it remains below one-third of the predicted processing time estimated by Qualtrics. In total, 9 participants
completed the experiment in less than 3.5 minutes.

2 Essay I 36

31.2% of the participants studied management, 30.1% engineering, 12.2% economics, and 26.5%

other subjects. On average, participants were 24.6 years old, with 51.9% being in a Master’s,

39.2% in a Bachelor’s, and 8.9% in another program. Further, 74.1% have up to three years of

work experience and 25.9% more than three years of work experience.

2.4.2 Test of hypotheses

Table 2.1 summarizes the decision quality, as defined in 2.3, by experimental condition. On

average, decision quality under low information load (mean = 72.01) is higher than under high

information load (mean = 63.46). On average across information load conditions, the mean

decision quality is similar when participants are accountable and when they are not (67.74 vs.

67.69).

Table 2.1: Descriptive statistics for decision quality for each experimental condition.

Accountability Overall

Information Load Accountability Absent Accountability Present

Low Information Load 73.76 (28.81)
N=45

70.41 (34.88)
N=49

72.01 (31.99)
N=94

High Information Load 61.62 (35.35)
N=45

65.12 (35.06)
N=50

63.46 (35.05)
N=95

Overall 67.69 (32.64)
N=90

67.74 (34.89)
N=99

67.71 (33.75)
N=189

Notes: Descriptive statistics include: mean (standard deviation) and number of observations.

To test my hypotheses, I perform an ANOVA analysis. Table 2.2 presents the results. They reveal

a significant main effect of information load on decision quality (F = 3.15, p = 0.0775), support-

ing Hypothesis 1.6 I checked for the information load manipulation in the post-experimental

questionnaire. Participants indicated their level of agreement on a seven-point Likert scale,

ranging from (1) strongly disagree to (7) strongly agree. The information load manipulation

was verified with the following item: "I perceived the amount of information of the pilot test

as very high". Following the human processing approach, the perceived amount of information

should be higher in the high information load conditions than in the low information load con-

ditions. Consistent with my manipulation, the mean score on this question was significantly

higher in the high information load conditions than in the low information load conditions (5.20

versus 4.21; t = -4.380, p < 0.001). Hence, I conclude that participants perceived, according to
6All reported p-values in this study are two-tailed.

2 Essay I 37

the treatment group, a different amount of information, which allows testing for the differential

effects of information load.

The results, however, reveal no main effect of accountability (F = 0.00, p = 0.9887). Fur-

ther, against Hypothesis 2, there is no significant interaction effect of information overload and

accountability on decision quality (F = 0.49, p = 0.4866).

Table 2.2: Factorial ANOVA (dependent variable = decision quality).

Source Sum of Squares dF Mean Square F p-value

Accountability - Present 0.23 1 0.28 0.00 0.989
Information Load - High 3,580.19 1 3,580.19 3.15 0.078
Accountability x Information Load 552.02 1 552.02 0.49 0.487
Error 210,103.09 185 1,135.69
Total 214,110.70 188 1,138.89

Notes: All reported p-values are two-tailed.

Figure 2.4 provides a graphical overview of the effects on decision quality. Comparing the ex-

perimental conditions reveals that the decision quality among participants with low information

load is higher if they are not held accountable (mean = 73.76) than if they are held accountable

(mean = 70.41). Yet, the decision quality among participants with information overload is higher

if they are held accountable (mean = 65.12) in comparison to if they are not (mean = 61.62).

Figure 2.4: Results (dependent variable = decision quality).

Notes: This figure shows the average decision quality across the information load conditions (Information Load—Low
and Information Load—High) and accountability type conditions (Accountability—Absent and Accountability—Present).
Decision quality measures the quality of the investment decision, with higher scores referring to better decisions (i.e., a
score of 100 corresponds to a decision quality of 100%).

2 Essay I 38

Table 2.3 displays the corresponding simple effects. When accountability is absent, participants’

decision quality is significantly higher under low information load than high information load

(effect size = +0.376, t = 1.785, p = 0.078). However, when accountability is present, no

difference occurs across accountability types (effect size = +0.151, t = 0.753, p = 0.453). Further,

results indicate that accountability increases decision quality neither in the low information load

condition (effect size = +0.104, t = 0.506, p = 0.614), nor in the high information load condition

(effect size = -0.099, t = -0.483, p = 0.630).

Potentially, among participants in my experiment, accountability does not improve decision

quality because the negative effects of dilution might offset benefits from accountability. Al-

though the benefits of process accountability prevail in various accounting studies (Glover, 1997,

Hoffman and Patton, 1997, Libby et al., 2004), studies comparing process accountability to non-

accountability identify the dilution effect as dominant (Tetlock et al., 1989, Siegel-Jacobs and

Yates, 1996, Bartlett et al., 2014). My experimental setting, including a BSC with 16 measures

of ten project locations, can exceed participants’ cognitive complexity, increasing the likelihood

of dilution.

Table 2.3: Simple effects (dependent variable = decision quality).

Effect Size t-stat (p-value)

Low vs. High Information Load in Accountability Present condition +0.151 0.753 (0.453)
Low vs. High Information Load in Accountability Absent condition +0.376 1.785 (0.078)
Accountability Absent vs. Present in Low Information Load condition +0.104 0.506 (0.614)
Accountability Absent vs. Present in High Information Load condition -0.099 -0.483 (0.630)

Notes: Effect sizes refer to Cohen’s d.

Next, I examine the likelihood of making the optimal decision across conditions, i.e., reaching a

100% decision quality.7 In total 59 participants (31.2%) invested the optimal amount, of whom

18 were in both conditions in which participants are held accountable. The frequency of investing

the optimal amount among participants who are not accountable was 14 in the low information

load condition and 9 in the high information load condition. Comparing the frequency patterns

of the different conditions shows that the results do not reflect the continuous variable decision

quality results. In particular, the results show that accountable participants chose the optimal
7I performed an exploratory analysis of the written justifications of the participants in the accountability con-
ditions. In these conditions, 36 participants chose the optimal amount of 520,000 EUR. I identified that 33
participants have consciously chosen the optimal investment amount by, for instance, describing the net profit
maximization as the ultimate objective (e.g., "as the main aim of the company is to increase profit", "biggest
percentage increase on the net profit").

2 Essay I 39

decision more often (36 accountable participants and 23 non-accountable participants). Table

2.4 summarizes the optimal decision by experimental condition.

Table 2.4: Descriptive statistics for perfect decision quality for each experimental condition.

Accountability Overall

Information Load Accountability Absent Accountability Present

Low Information Load 14 (31.1%)
N=45

18 (36.7%)
N=49

32 (34-0%)
N=94

High Information Load 9 (20.0%)
N=45

18 (36.0%)
N=50

27 (28.4%)
N=95

Overall 23 (25.6%)
N=90

36 (36.4%)
N=99

59 (31.2%)
N=189

Notes: Descriptive statistics include: frequency (percentage) and number of observations.

To test this difference for statistical significance, I estimate a logistic regression with a binary

variable that indicates whether the participant made the optimal decision. The results, however,

reveal no main effect of information overload (z = -1.20, p = 0.230) and no significant interaction

effect of information overload and accountability on decision quality (z = 0.87, p = 0.386). Table

2.5 reports the results.

Table 2.5: Logistic regression (dependent variable = the optimal decision).

Source Coefficient Std. error z p-value

Accountability Present 0.251 0.438 0.57 0.566
High Information Load -0.591 0.493 -1.20 0.230
Accountability - Present x High Information Load 0.560 0.650 0.87 0.386
Cons -0.795 0.322

Notes: All reported p-values are two-tailed.

When analyzing the simple effects, participants with high information load are significantly more

likely to make the optimal decision if they are held accountable than if they are not (z = 1.71, p

= 0.088). However, accountability does not improve the optimal decision under low information

load (z = 0.57, p = 0.566). This result does not mimic the result for the continuous variable

decision quality, for which I did not find a significant effect of accountability on decision quality.

Table 2.6 shows the corresponding simple effects.

2 Essay I 40

Table 2.6: Simple effects (dependent variable = the optimal decision).

Coefficient Std. err. z p-value

Accountability Absent vs. Present (High Information Load) 0.811 0.475 1.71 0.088
Low. vs High Information Load (Accountability Present) -0.032 0.418 -0.08 0.939

Notes: All reported p-values are two-tailed.

2.5 Discussion and conclusion

In this study, I examine how information load and accountability affect decision making. The

results contribute to various literature streams and contain implications for business practice.

Consistent with findings from information load literature (e.g., Iselin, 1988, Chewning and Har-

rell, 1990, Roetzel, 2019), I observe that information overload impairs decision quality. I observe

that this happens even if the information is presented in a BSC, which is considered as a lucid

tool to present high amount of information in several dimensions.

The results imply that organizations must tailor decision-making frameworks to individuals’ re-

quirements and acknowledge that a high amount of available information does not necessarily

entail better decisions. Chewning and Harrell (1990) suggest two approaches to prevent infor-

mation overload and increase decision quality. On the one hand, organizations must recognize

individuals’ limits in solving complex problems and reduce information cues to a considerable

amount while only considering decision-relevant information. However, this requires that organi-

zations deal with the decision preventively and consider previous lessons learned when designing

decision-making frameworks for individual business situations. On the other hand, organizations

may equip individuals with decision models or causal chains, which reduce cognitive complexity

and direct individuals’ focus to relevant information cues for decision making (Humphreys et al.,

2016, Dalla Via et al., 2019), creating a competitive advantage for organizations that use and

analyze information effectively and efficiently.

I extend this stream of literature by studying whether accountability mitigates the adverse effects

of information overload in the absence of decision models or decision aids. I find that, under

information overload, accountable participants are more likely to make the optimal decision.

However, while the average decision quality is higher when participants under information over-

load are held accountable than when they are not, the difference is not statistically significant.

2 Essay I 41

The findings complement the management accounting literature that studies effects of process

accountability on decision making (e.g., Iselin, 1988, Chewning and Harrell, 1990, Roetzel, 2019).

The missing effect of accountability on the average decision quality could indicate a dominant

dilution effect in my setting, increasing individuals’ attention to irrelevant information and,

thus, comprising decision quality (Tetlock and Boettger, 1989, Siegel-Jacobs and Yates, 1996).

Bartlett et al. (2014) identify that process accountability implies additional cognitive information

processing, which prompts a consideration of not only relevant but also irrelevant information,

triggering a dilution effect and leading to an increased risk of judgment bias. Further, being

accountable can increase the stress level of individuals (Hall et al., 2006). Depending on the stress

level caused, accountability can lead to differentiated decision quality. While a medium level of

stress may lead to a state of excitement and increased interest in the task to be accomplished, a

high amount of stress causes tension and emotional exhaustion, which inversely leads to a high

stress level, thus, decreasing decision quality (Hall et al., 2017). Also, the effect of accountability

depends on the situation and its implementation, as being accountable only motivates individuals

to a limited extent. As soon as individuals do not know how to improve the decision, there is

a risk of reducing the overall consistency of behavior and disrupting the performance (Siegel-

Jacobs and Yates, 1996). Further, Lerner and Tetlock (1999) highlight that the implications of

accountability depend on the timing of its manipulation. Pre-decision accountability leads to

preemptive self-criticism and individuals carefully preparing their decision, whereas post-decision

accountability can trigger defensive bolstering and individuals processing information in a biased

manner.

My results are subject to the limitations associated with experimental studies. First, I cannot

exclude the possibility that my results do not generalize to other information load settings.

I manipulate information overload by the use of a BSC with 16 measures according to Ding

and Beaulieu (2011) which represents an abstraction of the technological progress fostered, for

instance, by AI and big data. Second, it is unclear whether findings from how I implement

accountability in the experiments generalize to other settings as I apply only a single decision

rule (Dalla Via et al., 2019). Researchers could analyze how accountability influences decision

quality under multiple decision rules in the next step. Further, being accountable in a BSC

setting triggers the recognition of unique measures in performance evaluations (Libby et al.,

2004). In my experimental task, participants had to focus solely on maximizing the net profit,

2 Essay I 42

whereas Libby et al. (2004) argue that accountable individuals tend to consider not only financial

measures for their decision, but also measures from other perspectives.

My study reveals further interesting avenues for research. On the one hand, it seems valuable to

investigate additional control mechanisms as a basis for decision-making frameworks to mitigate

the adverse effects of information overload on decision quality. On the other hand, future re-

search could examine if digital working environments and the accompanying increasing amount

of virtual meetings induce information overload and influence decision making.

3 | Understand, Plan, and Implement:

A Multiple-Case Study on How Firms

Estimate Software Costs

Abstract

This paper provides a process model that shows how firms estimate their software costs. I find that

firms follow three stages and develop the UPI model—Understand, Plan, and Implement—for software

cost estimation. I describe the activities of the UPI model and show how firms adapt their actions

to their organizational and project-related setting. To derive the model, I conduct a multiple-case

study and investigate the estimation process of software-producing firms from five industries. Further,

I triangulate my results with theories from the information system literature to derive five propositions

that support managers in designing their estimation process, e.g., finding the right balance between

control and flexibility in different estimation stages. I contribute to the academic literature by describing

the entire estimation process along three stages and outlining that software cost estimation goes beyond

developing and testing estimation methods. Firms can apply the UPI model as a whole or partially

to standardize their estimation process and follow the propositions to enhance the consistency of their

estimation results.

Author: Marcus Witter

Status: Working Paper

43

3 Essay II 44

3.1 Introduction

How do firms estimate software costs? Firms develop software in heterogeneous organizational

and project-specific settings. However, one common pitfall is that the cost estimates of software

projects tend to be too low (Moløkken-Østvold et al., 2004, Yang et al., 2008), leading to delayed

software deliveries, budget overruns, and frustrated customers (Jørgensen, 2013). For example,

Halkjelsvik and Jørgensen (2012) report that software projects exceed their budget on average

by 30%. Simultaneously, successful software projects gain importance with the world economy

transforming into an information economy (Shapiro and Varian, 1999). Fuelled by the rising

demand for software products across industries, IT and software companies are situated on fertile

ground for business growth. In contrast, industrial companies must manage the shift in value

creation from a tangible, hardware-oriented approach to an intangible, software-oriented one. In

this paper, I present a process model that I derive from a multiple-case study and that outlines

how firms estimate their software costs. Further, I outline procedural estimation challenges and

suggest propositions to support managers in designing the process by triangulating the results

with theories in information systems literature.

The success of software projects strongly depends on meeting time and cost estimates (van

Genuchten, 1991, Chow and Cao, 2008). Failure to do so arises from reasons such as staff

turnover (Abdel-Hamid, 1989), alignment issues (Vermerris et al., 2014), poor requirements

understanding (Lederer and Prasad, 1995) or underestimation of effort during project planning

(Shmueli et al., 2016). Further, firms frequently lack accurate data at early project stages,

causing wrong assumptions and making accurate estimates challenging (Angelis and Stamelos,

2000). Estimating effort is especially challenging for software products due to their complex

development environment, which is affected by various social and technical factors (Kula et al.,

2022).8

This study aims to reduce project overruns by creating transparency on how firms practically

design and control their estimation process (Moløkken-Østvold and Jørgensen, 2005). Estimat-

ing software costs is a typical project management process that requires inputs and obtains
8The terms “effort" and “cost" are interchangeable and mainly applied synonymously. The working effort usually
displays the central cost driver within software development projects and is considered a proxy for actual costs
(Jørgensen and Shepperd, 2007, Huijgens et al., 2017). The effort drives the compensation of the development
team and is recorded as direct variable costs of the project, positively associated with the project size and
duration (Maltzman and Epstein, 2013, Chellappa and Mehra, 2018).

3 Essay II 45

outputs by using resources (Trendowicz and Jeffery, 2014). Boehm and Papaccio (1988) intro-

duce a software project planning and control framework in which managers estimate costs by

project phase, activity, and product components to determine "should-cost" targets. Further,

they suggest implementing MBO control loops to improve the control of software costs and

outline situations when managers should favor project control over predictability (Boehm and

Papaccio, 1988). Edwards and Moores (1994) outline the EEPS model, which differentiates be-

tween estimating software costs before project launch (top-down) and controlling software costs

during the project (bottom-up). The model is structured in five sequential steps and describes

a client’s involvement from a developer’s perspective in the negotiation process. In a similar

vein, Usman et al. (2018) distinguish a product customization task into a high-level quotation

and detailed analysis stage. However, they focus on a large-scale distributed agile setting. The

quotation stage generates an efficient cost indication, whereas the detailed analysis stage focuses

on refining the estimate.

Despite the availability of various estimation methods and guidelines (e.g., Boehm and Papaccio,

1988, Trendowicz et al., 2008), accurate cost estimation remains a critical challenge in the indus-

try. Trendowicz and Jeffery (2014) distinguish between data-driven, expert-based and hybrid

methods. Data-driven methods are based on the quantitative analysis of historical data and

project the relationship between project costs and project characteristics of past projects onto

new projects. In contrast, expert-based methods range from "gut feeling" to "structured estima-

tion" , i.e., expert judgment supported by guidelines or checklists (Jørgensen, 2004b). Hybrid

methods combine the advantages of different individual methods (e.g., Kocaguneli et al., 2012,

Malgonde and Chari, 2019). The differentiation between quantitative and qualitative methods

for cost estimation is also common for physical products in other disciplines (Niazi et al., 2006).

The question of how to estimate software costs has been the subject of research for several decades

(e.g., Benbasat and Vessey, 1980). Extant literature on software cost estimation has focused on

developing data-driven estimation models for measuring project size and duration (Moløkken-

Østvold and Jørgensen, 2005, Menzies et al., 2017) and has analyzed estimation models from

a technical point of view (Jørgensen and Shepperd, 2007). However, how to address specific

cost estimation problems in practice is still underrepresented in academic literature (Eduardo

Carbonera et al., 2020) because we do not know sufficiently well how the industry applies cost

estimation models and what practitioners require. Thus, scholars recommend focusing on non-

technical factors such as the estimation process and organizational issues when many stakeholders

3 Essay II 46

are involved in the estimation process (Jørgensen and Shepperd, 2007, Jørgensen, 2014). Scholars

call for research involving professionals in estimation studies to produce findings relevant to

business practice (Eduardo Carbonera et al., 2020) and understand the "why" and "how" factors

(Hannay et al., 2007) to account for the complex and human-behavior-driven phenomenon of

software development (Austin and Devin, 2009). I address these shortcomings by analyzing

why firms choose their estimation strategy and, ultimately, how they estimate software costs

(Hannay et al., 2007). Motivated by extant literature, I state my research question: How do

firms estimate software costs for individual projects?

I conduct a multiple-case study to record, analyze, and synthesize nine companies’ software

effort estimation processes. I apply the principles of diverse sampling to obtain results that

can be generalized and to build strong theory (Eisenhardt, 1989). I focus my research on five

different industries: software and cloud solutions, financial services, electronics, automotive,

and professional services. The industry selection allows for controlling environmental variation,

while the focus on individual software projects constrains variation in development types among

the organizations. This specification reduces external variation and clarifies the domain of the

findings as individual software projects in specific types of environments (Eisenhardt, 1989).

After analyzing the cases individually, I apply a replication logic by comparing the cases with

each other with a single case confirming or disproving the gained insights from the previous case

(Eisenhardt, 1989).

I develop the UPI process model for cost estimation. The process model synthesizes the recorded

single-case processes and differentiates between three structural levels. First, I find that firms

follow three generic stages: Understand, Plan, and Implement. Second, I identify that the three

project stages include ten activities. Third, I describe the features of the activities. In doing so,

I identify that firms have a homogeneous perspective on the project stages and follow similar

activities. Thus, the first two levels describe what firms consider when estimating software costs.

However, the activity features at the third level are heterogeneous depending on the firm and

project-specific setting. Based on the findings, I follow a contingency-based approach (Austin

and Devin, 2009) by describing why firms select different activity features and how they proceed

in their development context.

Further, I evaluate the identified estimation challenges and triangulate these with the results

of previous research studies on software cost estimation to define propositions of how firms can

standardize their process and enhance the consistency of their estimation results. I recommend

3 Essay II 47

conducting workshops to increase the clarity of requirements, recognize team characteristics

and the interests of different stakeholders, train estimators, adapt controls to the development

situation, and build a database for data-driven decision-making.

This study aims to enhance the understanding of the software cost estimation process. It en-

larges the perspective on estimating software costs beyond individual estimation methods and

integrates the peculiarities of selected industries, value chain positions, and organizational roles.

My findings suggest that practitioners should not rely on a unique estimation method but rather

follow conceptual stages to meet context-specific requirements when estimating software effort.

Further, this study enables firms to standardize their estimation process to increase the consis-

tency of their estimation results.

The remainder of this study is organized as follows. Chapter 3.2 reviews the software effort esti-

mation literature. Chapter 3.3 outlines the multiple-case study approach. Chapter 3.4 describes

the UPI model. Chapter 3.5 states the challenges and propositions, and Chapter 3.6 concludes.

3.2 Background and related work

3.2.1 Software cost estimation processes

Estimating software costs is a typical project management process requiring inputs and obtaining

outputs using resources (Trendowicz and Jeffery, 2014). Inputs include the project objectives

and qualitative and quantitative data from historical projects. The estimation can be carried

out by various methods or procedures, which firms adjust to the project context and objectives.

Resources consist of people, invested time, and applied tools for effort estimation. Similar to

the actual estimation, the people and tools should adapt to evolving development contexts such

as new software technologies or development paradigms. Based on the previous elements of the

estimation process, firms derive the output. The output can represent an estimation model or

an estimate (Trendowicz and Jeffery, 2014). Figure 3.1 illustrates the basic estimation process.

3 Essay II 48

Figure 3.1: Basic estimation process.

Notes: This figure is based on Trendowicz and Jeffery (2014).

Boehm and Papaccio (1988) introduce a software project planning and control framework. They

suggest two mechanisms for improving the control of software costs: First, by implementing MBO

control loops. Second, by optimizing the software development strategy for project predictability

and control. Managers estimate costs and schedules by phase, activity, and product components

to create program evaluation and review technique (PERT) charts, work breakdown structures,

and personnel plans. They use these resource allocation approaches to determine "should-cost"

targets. As the project advances, they suggest different instruments to compare the progress

and expenditures with the plan to create status reports that flag areas of MBO attention if

necessary. Additionally, firms must balance their objectives on predictability and control of

software costs. For example, firms prioritize control over predictability when synchronizing their

software development with other developments, such as complex embedded system product

launches. In doing so, firms can invest additional time at the project start to identify and

eliminate sources of project risk. This risk-driven approach stands in contrast to a success-

oriented approach which focuses on efficiency but is very costly if the projects’ assumptions turn

out differently (Boehm and Papaccio, 1988).

The EEPS model by Edwards and Moores (1994) outlines a survey-based theory, which differen-

tiates between the estimation of software costs before project launch (top-down) and the control

of software costs during the project (bottom-up), resulting in a plan-to-actual cost comparison.

Further, the EEPS model describes how to involve the client from a developer’s perspective in

the functional and cost negotiation process. The EEPS model is structured in five steps and

3 Essay II 49

refers to a waterfall development model, describing a linear, sequential software development ap-

proach. First, the client outlines the requirements to the developers. Based on the requirements,

the developers discuss their plan to generate an initial rough estimate in a second step. Third,

the client agrees on the initial estimate or negotiates a more detailed specification. Fourth,

based on the agreement, the developers detail the project plan and iterate between the plan

and estimate to ensure that the plan lies within the budget. In the last step, the client agrees

to the budget, and the developers can start developing the system or software. Edwards and

Moores (1994) recommend that managers differentiate between the top-down estimate based on

an outlined plan and the bottom-up estimate based on a detailed project plan to accommodate

for the amount of available information, the number of people involved, and the objective to be

fulfilled by the information.

Usman et al. (2018) investigate how firms in large-scale distributed agile projects design their cost

estimation process. They identify a two-stage estimation process for a product customization

task by differentiating between the high-level quotation and the detailed analysis stage. During

the first stage, firms prepare the quotation estimate in seven steps when they receive a request

to initiate the customization task. The objective of the quotation stage is to efficiently generate

the best cost indication as the basis for deciding whether to start a project or move on to the

next development phase. However, firms have yet to determine which team will conduct the

development. During the second stage, firms refine an analysis estimate and propose a solution

in eight steps (Usman et al., 2018). Usman et al. (2018) outline how different roles work together

to perform the estimation based on an expert-based approach in both stages. Further, they focus

on describing tasks sequentially and elaborating on the collaboration between different project

stakeholders.

3.2.2 Software cost estimation methods

Scholars have proposed numerous methods for estimating software costs in the past decades. This

study categorizes estimation methods into three overarching categories, i.e., data-driven, expert-

based, and hybrid methods (Trendowicz and Jeffery, 2014). Data-driven methods predict project

costs based on the quantitative analysis of past data. In doing so, they transfer the relationship

between project costs and project characteristics of historical projects onto the new project

(Trendowicz and Jeffery, 2014). Scholars differentiate between two sub-categories of data-driven

methods: (1) model-based estimation and (2) analogy-based estimation. Model-based methods

3 Essay II 50

apply algorithms to predict the costs of new projects based on past data (Menzies et al., 2006).

They include (1) LOC-based models such as the Constructive Cost Model (COCOMO) (Boehm,

1981) and Software Life Cycle Model (SLIM) (Putnam, 1978), (2) function point-based methods

such as the Function Point Analysis (FPA) (Albrecht, 1979), and (3) learning-based models

such as decision trees (Srinivasan and Fisher, 1995) and neural networks (Venkatachalam, 1993).

Analogy-based methods do not apply algorithms but explicitly leverage past project data for

new estimations. Examples are case-based reasoning methods such as Estor (Mukhopadhyay

et al., 1992) and ANGEL (Shepperd and Schofield, 1997).

I refer to a broad definition of expert-based methods, including the range from unaided intuition,

i.e., "gut feeling", to expert judgment supported by past data, guidelines, or checklists, i.e.,

"structured estimation" (Jørgensen, 2004b). Further, firms can apply work breakdown structures

(Tausworthe, 1979) or methods such as Planning Poker (Usman et al., 2015). Hybrid methods

aim to reduce the weaknesses of individual methods by combining methods (e.g., Kocaguneli

et al., 2012, Malgonde and Chari, 2019).

Figure 3.2 categorizes the estimation methods and shows typical methods including exemplary

authors.

Figure 3.2: Categorization of software cost estimation methods.

3 Essay II 51

Other disciplines categorize cost estimation methods for physical products similarly. For exam-

ple, Niazi et al. (2006) differentiate between qualitative and quantitative product cost estimation.

Qualitative methods are subdivided into intuitive and analogical cost estimations, whereas quan-

titative methods are split into parametric and analytical cost estimations. Controllers focus on

quantitative estimation methods by defining cost functions that describe the cause-and-effect

relationship between cost drivers and costs (Friedl et al., 2017). In doing so, they differentiate

between analytical and statistical methods (Friedl et al., 2017). Analytical methods examine the

cause-and-effect relationships between outputs and inputs by quantifying the resource consump-

tion of processes. Controllers can leverage resources such as bills of material, work schedules, or

technical documentation. Statistical methods such as regression analysis leverage the costs of

past periods to estimate the cost function and forecast the costs of future periods (Friedl et al.,

2017).

Recent software cost estimation literature observes that no "one-size-fits-all" approach is suitable

for estimating effort in software development projects of all domains and applications (Resmi

and Vijayalakshmi, 2019). Basten and Mellis (2011) find that the focal points of research do not

reflect actual industry applications. While scholars focus on data-driven methods and size mea-

sures from a technical viewpoint (Menzies et al., 2017), e.g., regression-based estimation models

(Jørgensen and Shepperd, 2007), practitioners prefer applying methods such as expert judgment,

analogy-based, and work-breakdown-based effort estimation (Basten and Mellis, 2011). Tren-

dowicz et al. (2011) report that most survey participants apply expert-based methods, and only

20% of the surveyed companies use data-driven models like COCOMO. Usman et al. (2015)

find that agile teams rely on expert-based effort estimation methods due to the high degree

of implicit development knowledge and focus on people and their interactions. However, firms

often combine several expert-based methods because stand-alone techniques can only partially

address some difficulties of cost estimation (Usman et al., 2015).

In expert estimation, one expert or an entire team of experts estimates the effort of develop-

ment tasks based on their experience and without any underlying model. Instead, experts rely

on their intuition, which displays a non-explicit and non-recoverable reasoning process (Jør-

gensen, 2004b). Expert estimations can follow a top-down or bottom-up strategy. For top-down

strategies, experts estimate the total project effort without dividing the project into individual

activities by comparing the project characteristics with completed, similar projects. Afterward,

experts distribute the total effort estimate over the different project activities. For bottom-up

3 Essay II 52

strategies, experts decompose the project into its individual activities, estimate each activity’s

effort, and add the estimates to a total estimate (Jørgensen, 2004a). Popular examples are

the work breakdown structure, checklists, or group-based estimations like Planning Poker. The

methods are more flexible with respect to the required input and time spent to generate the

estimates (Jørgensen, 2004a).

The work breakdown structure displays a typical planning tool, which links objectives with

activities and resources to a logical framework (Tausworthe, 1979). It organizes all work activities

in a hierarchical order of detail, allowing managers to derive manageable tasks with quantifiable

inputs, outputs, schedules, and responsibilities (Jørgensen, 2004b).

Scholars propose to apply checklists, which provide guidelines or process frameworks to stan-

dardize the estimation process and enhance the consistency of results (Jørgensen and Molokken,

2003, Jørgensen, 2004b, Usman et al., 2018). Jørgensen (2004b) argues in favor of checklists

as they aggregate previous estimation experience and are easier to leverage than building up

databases. He provides guidelines and recommendations for estimating software costs, e.g., to

combine estimates from different experts and estimation strategies, ask the estimator to justify

their estimates, or use documented data from previous development tasks but filter irrelevant

and unreliable estimation information (Jørgensen, 2004b).

Development teams frequently apply Planning Poker as a single method (Usman et al., 2015).

This method enables face-to-face interactions and discussions between team members to reach

a consensus for the effort estimate (Moløkken-Østvold et al., 2008). It aims at reducing the

estimation time and involving all relevant stakeholders.

Most experts rely on formal or informal analogies for estimating the project effort (Hihn and

Habib-Agahi, 1991). Formal analogies are supported by historical data, process guidelines,

or checklists, whereas informal analogies are based on unaided expert judgment such as gut

feeling (Jørgensen, 2004b). However, analogy-based effort estimation methods are limited to

the availability and quality of past project data (Li et al., 2007) and assume that projects with

similar features entail a similar project effort, which is frequently wrong (Keung et al., 2008).

Why does research emphasize data-driven models while practice relies on expert-based methods?

First, scholars argue that researchers and practitioners have not yet developed a data-driven

model that estimates effort more accurately than other methods for widespread adoption in

business practice (Vicinanza et al., 1991, Menzies and Shepperd, 2012). Data-driven models can

3 Essay II 53

hardly be adapted to individual needs and organizational environments and ignore tacit expert

knowledge. Further, firms have little understanding of the relationship between cost drivers and

costs in complex parametric models (Vicinanza et al., 1991).

Second, researchers strive to develop a broadly applicable data-driven estimation model.9 Re-

searchers frequently rely on publicly available data sets like the ISBSG10 or EBSPM11 repositories

to build their models (Rastogi et al., 2014, Huijgens et al., 2017). However, the characteristics of

the data sets are only transferable to organizations to a limited extent, threatening the external

validity of the developed models. Instead, practitioners prefer to apply models that specifically

suit the requirements and characteristics of their projects.

3.3 Research design

3.3.1 Multiple-case study research approach

Following the calls for qualitative research in software cost estimation (Hannay et al., 2007,

Eduardo Carbonera et al., 2020), I conduct a theory-building, multiple-case study according to

Eisenhardt (1989) and Corbin and Strauss (1990). A case study design helps to address the

research question of how firms estimate software costs for individual projects for two reasons.

On the one hand, case study research displays an empirical inquiry that analyzes contemporary

phenomena in a real-life context (Eisenhardt and Graebner, 2007), i.e., how practitioners solve

the challenge of software cost estimation. On the other hand, case study research depends on

multiple data sources enabling the triangulation of results.

I investigate multiple cases for three reasons. First, a theory built from multiple cases can usu-

ally be better generalized and is more accurate than a theory from single cases (Eisenhardt and

Graebner, 2007, Yin, 2018). Second, a multiple-case study design enables the analysis within

and across cases (Eisenhardt, 1989). My first interview partners confirmed the appropriateness

of the multiple-case study approach by indicating that there is no best practice estimation pro-

cess. Thus, comparing the process is of particular interest. During my analyses, I employ a
9I refer, for example, to Saeed et al. (2018) who suggest developing a data-driven model which achieves superior
accuracy in comparison to existing models independent of the used data set.

10The International Software Benchmark Standards Group repository contains roughly 6000 projects from various
industries and a wide range of countries.

11The Evidence-Based Software Portfolio Management repository entails data from roughly 500 software projects
within three companies in the banking and telecom sector in The Netherlands and Belgium.

3 Essay II 54

replication logic (Eisenhardt, 1989). Following Yin (2018), I consider the cases as a series of

experiments with a single case confirming or disproving the drawn inference from the previous

cases. Third, multiple-case studies allow the analysis of phenomena in a rich, real-world con-

text (Eisenhardt and Graebner, 2007), resulting in a better understanding of the "why" and

"how" factors (Hannay et al., 2007) and the complex and human-behavior-driven phenomenon

of software development.

3.3.2 Data sample

I follow a diverse sampling strategy to develop a contingency-based process model that guides

firms in estimating costs depending on their organizational and project-specific setting. The case

variation is decisive in gaining manifold perspectives and considers a broad range of potential

estimation strategies. Further, the diverse sampling enhances the generalizability of the results.

The sampling strategy specifies the domain of the findings to software development environments.

The unit of analysis is the individual software project from the start of project planning to the

first release, excluding further updates and product maintenance (Austin and Devin, 2009).

Five criteria guided the selection of the cases: (1) The firms had to be active in different in-

dustries. Thus, I select nine case companies from five industries: computer software and cloud

solutions, financial services, electronics, automotive, and professional services. (2) The firms had

to develop different software products or services. I consider cases with firms developing standard

software and firms developing customized solutions. While all firms have significant software de-

velopment efforts, some develop software as a byproduct, while others consider software their

main product. (3) The sample must include varying development environments, e.g., concerning

time constraints and requirements uncertainty. Taking the example of the auto industry, the

rising demand for technologies like autonomous driving fosters the progress of software-based

functionalities and, at the same time, increases its development complexity at an unprecedented

speed (Broy, 2006). Uncertainty originates in software’s intangibility and inscrutability charac-

teristics. It is reinforced during early development stages, following rather unclear or unknown

requirements with necessary project information being often inaccurate or unavailable (Boehm

and Papaccio, 1988). (4) The firms had to take different positions in the value chain and fol-

low different business models, e.g., developing software as a supplier, purchasing software as a

client, or offering software solutions as a service to end customers themselves. (5) The sample

must include firms of varying sizes and organizational structures, e.g., small firms with up to 20

3 Essay II 55

employees and no dedicated controlling or purchasing unit, medium-sized firms with up to 250

employees with a controlling and purchasing unit covering all software projects, and large firms

with more than 100,000 employees with controlling and purchasing units organized by projects

or customers. Table 3.1 gives an overview of the case sample.

Table 3.1: Sample overview.

Industry Product/Service Roles Number Interviewed

1 Software Enterprise resource planning
Chief Controlling Officer, Head of Controlling,

Controlling Manager, Financial Planning Associate
4

2 Software Customer relationship management Chief Revenue Officer 1

3 Software Cloud-based crowd sensor technology Founder & CEO 1

4 Financial services People-to-people platform Head of Engineering 1

5 Electric/Electronics Automated test equipment SVP Software R&D 1

6 Electric/Electronics Electronic manufacturing services
Director Software Engineering,

Director IT Process Management
2

7 Automotive Car manufacturer Engineer 1

8 Automotive Electronics Director Hardware Technology 1

9 Professional services IT consulting services Partner, Director 2

3.3.3 Data sources and analysis

I gather data from two sources to ensure the validity and reliability of my results. First, I

conducted semi-structured interviews with 14 employees of the described sample. The list of

interviewees consists of software executives, project leaders, engineers, and individuals from

the project audience, including subject matter experts of the various involved departments,

e.g., accountants and hardware engineers. The semi-structured interviews enforce a systematic

coverage of findings across interviews but still allow for improvisation and exploration of emerging

issues. Second, I review various organizational documents or archival records, e.g., workflows,

work breakdown structures, or project reports. The written data provides an additional source

of documentary evidence to gain contextual information and to process past events. These

additional sources enable the triangulation of data (Yin, 2018).

I validated the interview objective and guidelines independently by two research colleagues from

other disciplines and one practitioner in the field of software development to ensure the clarity

of its structure and the selected questions. Further, I interviewed an expert in the professional

services industry to validate the initial interview results. After analyzing the data, I conducted

an expert workshop with software developers, purchasers, and cost analysts of a firm in the

automotive industry to validate the case companies’ statements and the aggregated results.

3 Essay II 56

The interviews are the main source for analysis. I designed the questions in a problem-centric way

and included narrative and exemplary elements to ensure that the interviewee understood the

question. During the interviews, I occasionally used selected illustrations of software engineering

and cost estimation process flows to evoke past experiences and create a basis for the interviews. I

structured the interviews in several parts. After starting with a brief introduction and personal-

related questions, I discussed the software effort estimation process, including the rationale

behind the process choice, mechanisms to control the process, and how the organizations leverage

data to estimate software effort. I let the interviewee evaluate their estimation results and

discussed reasons for effort under- or overestimation and their suggestions for improvement.

I concluded the interviews with an outlook on new software cost estimation trends. Table

A.1 in the appendix illustrates the case study protocol and Table A.2 in the appendix states

the interview questions. I conducted the interviews in November and December 2021. All

interviewees preferred interviews via video conference.

An interview took, on average, one hour and nine minutes, resulting in a total of 16 interview

hours and more than 414 pages of transcript. Following Eisenhardt (1989), I stopped conduct-

ing further interviews after the additional findings had decreased significantly. After creating

word-by-word transcripts of each interview, I coded the interviews in MAXQDA.12 I followed

the suggested coding approaches by Miles et al. (2019) and visualized the emerging structures

according to Gioia et al. (2012). In total, I arrived at 1,268 codes (1st order concepts) that

I grouped into 31 2nd order themes, into ten aggregated dimensions, and into three highest

dimensions (see the overview of the data structure in Figure A.5 in the appendix, the data

structure of the Understand phase in Figure A.6 in the appendix, the data structure of the Plan

phase in Figure A.7 and Figure A.8 in the appendix, and the data structure of Implementation

phase in Figure A.9 in the appendix). I collected and analyzed data in an iterative, case-by-case

approach while developing a case narrative for each case to facilitate the development of an

inside view. I focus on the cost estimation process, including identifying key events, activities,

and cost-influencing factors. Following an initial within-case analysis, I conducted a cross-case

analysis to derive the process model.
12MAXQDA is a software for qualitative and mixed methods research, supporting the researcher to code and

visualize the data.

3 Essay II 57

3.4 Results

3.4.1 Outline of the UPI process model for cost estimation

I develop a process model that synthesizes the findings from the nine cases. The interviews reveal

that firms take three stages in estimating software costs: Understand, Plan, and Implement. The

stages characterize different tasks, objectives, and outputs.

The stage Understand consists of comprehending and analyzing the characteristics of the project

environment and requirements. Managers categorize the project environment according to prod-

uct uncertainty, time dependency, and client-supplier involvement. Afterward, they try to under-

stand the project requirements comprehensively and granularly. Based on the results, managers

decide how to proceed in the other two stages.

The stage Plan entails selecting the estimation and data strategy, the estimation method, the

project governance, and, if applicable, the contract between client and supplier. Managers decide

on the estimation strategy, e.g., to estimate the effort bottom-up or top-down, depending on the

results of categorizing the project environment. Further, managers select the estimation method

in alignment with the project control mechanisms and strategy to build or extend a project

database. Managers leverage the results of Plan to implement the estimation.

The stage Implement funnels the results of Understand and Plan. In tasks at this stage, the

development team estimates software costs based on project and team factors. These factors are

considered calibration factors when estimating software costs. The project factor comprises a

novelty and complexity factor, whereas the team factor accounts for team members’ competence

and availability. Further, managers define implementation rules for the project and team factors

before starting the estimation. Figure 3.3 displays the outline of the UPI model, and the following

chapter describes the stages and their interrelations in more detail.

3 Essay II 58

Figure 3.3: Conceptual illustration of the UPI model.

3.4.2 Description of the UPI model for software cost estimation

3.4.2.1 Understand

Project environment

Managers comprehend the project environment along three dimensions: the degree of uncer-

tainty, time dependency, and involvement of a client or supplier. Categorizing the project along

these dimensions serves as a steering mechanism for managers planning the cost estimation pro-

cess and communicating expectations about the estimation accuracy to different stakeholders.

First, managers characterize uncertainty by various means, e.g., the availability of a target pic-

ture and the product novelty. For example, managers differentiate between estimating costs for

new and known software products based on available analogies and the varying uncertainty of

cost drivers. When firms develop a product from scratch, the cost estimation process requires

more effort, and the estimation accuracy will be lower. Second, projects can follow a continuous

improvement approach without a definite time horizon or have a strict deadline in the short,

3 Essay II 59

medium, or long term. Thereby, the estimation accuracy declines with an increasing estimation

time horizon. Third, managers consider that the possible negotiation of tenders between clients

or suppliers requires defining an additional process, e.g., for handling internal versus external

change requests.

"We need to differentiate the development of standard software and customized soft-

ware. For example, a customer’s change request has different implications for the

planning than an internal change request." (Case 1)

Project requirements

The development team analyzes the project’s functional and non-functional requirements. To

maximize the understanding of the project, the development team decomposes the project

largely, logically, and hierarchically, e.g., into functional blocks, epics, features, stories, or tasks.

Scholars refer to this approach as the decomposition principle, which describes decomposing

complex problems into relatively small sub-tasks that can be accomplished separately and com-

bined later (Connolly and Dean, 1997). After decomposing the project requirements, managers

describe the requirements as accurately and quickly as possible. The analysis of project require-

ments occurs upfront during the tender stage or directly at the beginning of the project phase.

However, the process of understanding is continuous to account for requirement changes and can

take place throughout the project life cycle.

"You can only do a proper estimation if you understand the specification." (Case 9)

The interviews reveal that firms prefer conducting a specification workshop with all relevant

stakeholders to understand the requirements and clarify possible ambiguities for estimating the

development costs. The objective of the workshop is threefold. First, the workshop targets

understanding the requirements and functional project scope as a team. For example, engineers

can work during the design of a user interface with paper mock-ups to align requirements before

starting to code. Following the advantages of user-centric design, contractors work as cheaply

as possible, and clients perceive a smaller hurdle to demand changes. Engineers can improve

the alignment iteratively beyond paper mock-ups, e.g., by using Photoshop, click dummies, or

prototypes. Second, the workshop gives the stakeholders a platform to identify and discuss cost

3 Essay II 60

drivers and evaluate the effect of environmental changes on past efforts for deriving analogies.

Third, the workshop enforces identifying all relevant stakeholders and organizational interfaces.

"There should be dedicated workshops to discuss the specification. The developers

should tell the requirements engineers in their own words what they have understood.

This is necessary to ensure that both parties are discussing the same thing, even if

this is tedious and time-consuming." (Case 3)

3.4.2.2 Plan

Estimation strategy

The second stage Plan is based on the results of the understanding stage and comprises several

activities. Which estimation strategy managers choose depends on the results of categorizing the

project environment and analyzing the requirements. Managers distinguish between top-down

and bottom-up estimation.

Firms encourage top-down estimations during early project stages when requirements are still

vague, a detailed breakdown of project activities is not yet possible, when facing a strict delivery

deadline, or when preparing the tenders for bidding phases. During the ongoing development,

firms estimate development costs with a top-down approach if analogies are available, i.e., when

the targeted product is not entirely new. Firms derive a top-down estimate, for example, after

the specification workshop. The top-down estimation shifts the cost estimation in an agile setting

towards more sequential planning because the firms consider all project requirements until the

end of development. The high-level estimate serves as orientation value for further decision-

making, e.g., aligning with stakeholders on project complexity, duration, and resources, weighing

the benefits and risks of the project, and improving the development process by cutting the scope

or outsourcing of tasks. The development team decomposes the requirements to estimate the

effort and project lengths for individual functional blocks and on a high level of granularity, e.g.,

in person months. When firms follow a top-down approach, they can extend the specification

workshop by identifying dependencies between the project requirements. This step enables

prioritizing tasks and aligning contextual interaction points between the project organizations

as early as possible. It increases the autonomy of the individual development teams, synchronizes

the development process, and enables the integration of software code during later development

3 Essay II 61

stages. Further, the team defines the critical development path based on the complexity and

dependency of the requirements analyzed during the understand task category.

"When we need to launch a product in a specific time frame, we do a back-of-the-

envelope estimate to give the business feedback about the rough complexity of the

project and the resources required." (Case 4)

Firms execute the bottom-up estimation continuously before sprints within the agile develop-

ment process. In particular, in volatile development settings with changing requirements and

a long development time horizon, development teams focus on prototyping and refining the re-

quirements in the short term rather than estimating the long-term costs upfront. The bottom-up

estimation entails a detailed project planning process and decomposes the requirements at the

task or story-point level.

Firms can combine both strategies by applying the top-down approach during initial planning

and the bottom-up approach during ongoing development. When firms estimate costs bottom-

up, they can consider the identified dependencies between requirements. Developers start with

the prioritized requirements, which often display the cost drivers, complex features, or common

development hurdles. Managers synchronize and align development processes concerning the

interaction points between the development teams and then implement parallel processes across

teams.

"When we know the critical paths, touch points, and interfaces between different

features, epics, and teams, we go into the agile mode and estimate and implement

one epic after another, elaborate requirements, evaluate their complexity, and distill

them to story points for sprint planning." (Case 4)

As a notable exception, two case firms try to avoid estimating effort upfront for new products,

characterized by uncertain requirements, lack of available analogies, and a long-term development

horizon beyond six months. They are convinced that the estimation process is counterproductive

and estimating such projects upfront leads to highly imprecise results. Instead, both case firms

focus on developing a prototype, refining the requirements, continuously delivering finished in-

crements and discussing the required capabilities of the software product while leaving product

features, including their effort estimates, aside until they are better specified.

3 Essay II 62

"We moved away from estimating features for projects with unknown requirements

because it was a waste of time. [...] The requirements are changing so quickly that

it did not end up being worth the time relative to the accuracy we got and, more

importantly, whether we released the feature. We estimate for what we are going to

release in the next three months." (Case 5)

Data strategy

Almost all firms highlight the necessity of defining the criteria and the process for collecting data

consistently throughout the entire development process to build a standardized data repository.

The interviews show that firms are starting to collect and analyze data to enable data-driven

decision making of individuals in expert and model-based effort estimation. However, most firms

still rely on individuals’ recollections of past projects. The development teams leverage their

implicit experience to derive analogies across and within projects to conduct the group-based

expert estimation.

"The past effort data is in people’s heads and gut feeling. We need to systematize data

collection and enforce comprehensive and consistent collection on the most granular

level because people’s memories are not perfect." (Case 5)

Individuals firms, in particular in a supplier position, already document their effort automatically

with tools like Jira or Confluence and manually with tools like Excel. Managers analyze the

individual changes in productivity or velocity within a defined time frame to consider learning

curves in the data-driven estimation. Further, development teams document and analyze change

requests separately to better trace requirements and understand what has changed. Consistent

documentation is decisive in identifying and evaluating firm- and project-specific cost drivers

and their impact on the estimation. Managers can subsequently track the cost drivers. Lastly,

firms enforce the consistent use of data by all team members.

Currently, firms are focusing on building databases by collecting data comprehensively and

systematically to enable a data-driven estimation and comparing data across projects. Managers

define criteria for collecting data, including the project environment and the project itself. The

project environment-related data is based on the results of the Understand stage and comprises,

for example, the customer, development environment, time frame, and uncertainty. Considering

3 Essay II 63

the project environment is important to account for the individuality of the different projects.

The project-related data consists of the functional and non-functional requirements, which are

broken down to the smallest granularity level possible, e.g., story points. Also, the data consists

of the estimated and actual effort, the respective skill class of the individuals and team, and

hourly or daily wages. Collecting the skill classes enables a differentiated perspective on the past

effort when deriving analogies for future projects. Firms can derive an individual’s or a team’s

productivity or velocity, e.g., by measuring the completed story points per sprint. Further, firms

define a methodology to harmonize data logging and text standards to make the requirements

comparable.

Estimation method

All firms rely on expert estimations, while group-based approaches are the dominant alterna-

tive. Firms apply the same methods in the early stages as during the actual development and

regardless of the project environment. A difference between estimating effort in the early stages

and during the actual development applies only to the aggregation level of the estimates, e.g.,

in epics, stories, or story points. Managers face the challenge that the accuracy of the estimates

decreases with an increasing degree of requirements uncertainty and an extended project time

horizon.

"Our firm’s estimation techniques do not depend on the project environment. I think

that the techniques are largely the same. It is the accuracy of the outcome that varies

greatly." (Case 5)

Managers primarily perceive expert estimation as a group task, combining structured method-

ological procedures with the experience of the estimators. Further, group-based estimation has

often grown historically in firms. It displays a valuable part of the culture of the companies

to encourage and not penalize employees for their decisions. The objective of the group task

is to discuss individual estimations and reach a holistic consensus as a team. Further, the es-

timations display a reference basis for subsequent discussions. That managers involved in the

estimation process need to find a consensus about the cost estimate is a control mechanism by

itself. Literature refers to this kind of control as clan control (Maruping et al., 2009).

3 Essay II 64

"There is not a method that solves everything. Most of the time, it is not the method

itself but the culture, the people, and collaboration within the project governance

framework. You can have the best tools available, but without the other factors,

you will not be able to make a good estimation." (Case 9)

In practice, there are various options to implement group-based expert estimation, e.g., the

Delphi method, Dice game, Fibonacci estimation, Infinity estimation, or Planning Poker. In all

these methods, cost estimation builds on a rating of complexity. For instance, poker cards or

dice figures refer to complexity ratings.

"Generally, teams apply their expert knowledge, regardless of the concrete agile de-

velopment process and estimation method." (Case 8)

Managers define the team size and roles for the group-based expert estimation. Firms often have

team sizes of five to ten individuals. The number of teams necessary for an individual project

depends on the project size. Managers define roles within a development team, e.g., coding,

estimation, and project responsibility. Additional roles like a trained communicator between the

different parties are necessary for client-supplier settings.

"The trained communicator between supplier and client must be a qualified person

who understands the different perspectives and speaks the language of all stakeholders

to translate the requirements between the parties." (Case 7)

Four out of nine sample firms apply data-driven approaches selectively as an add-on to expert

estimations, not on a stand-alone basis. The objective is to standardize estimates. Also, follow-

ing a top-down estimation strategy, development teams often apply more than one estimation

method to increase the reliability of their results.

"We do not recommend teams to rely on one particular estimation method. Instead,

teams should estimate costs using at least two different ways, e.g., expert-based esti-

mation and data-driven estimation, and then compare the results." (Case 8)

If applicable, practitioners rely on data-driven approaches like linear regression analysis to esti-

mate future costs based on firm-specific data of past projects. Cost drivers comprise numerical

3 Essay II 65

features like the effort for developing requirements of past projects and categorical features like

the complexity rating of requirements or the experience of the programmers. Firms apply the

data-driven approach for similar and not entirely new features, for which data of past projects

is available.

"The objective of the data-driven approach is to delete politics from the numbers.

However, it is only an add-on to the expert estimation." (Case 1)

The development team conducts the effort estimation in person-hours or person-days. Afterward,

the estimation effort in person-hours or person-days is multiplied by the respective hourly or

daily rate of the individuals or development team. This step is necessary to translate the effort to

a monetary unit, simplify communication with the management, and ask for product approval.

The development team or the respective controlling unit can conduct the monetary calculation.

Distinguishing effort and costs is necessary to avoid estimation bias by accounting for differences

in development productivity and cost rates. Besides estimating the non-recurring development

effort for an individual project, managers also consider auxiliary costs and risk costs as well as

recurring costs for service and maintenance, e.g., for the product or infrastructure.

Estimation process control

Firms implement different process control mechanisms for their effort estimates depending on

the project’s volume or strategic importance and the implementation timing, i.e., before or

after the project start. Thereby, the development team and respective controlling team have

different control responsibilities. On the one hand, the development team is responsible for

reviewing their technical estimations, including the developers’ effort and cost rates. Based on

the review, the development team tries to identify cost savings or adjust the implementation

to avoid development hurdles. The team can, for example, develop a minimum viable product

that the customer requests by minimizing the number of realized features and, thus, limit their

risk by being able to stop the development earlier. The development team focuses on informal

controls like clan control, enforced by the agile estimation techniques within a project team, as

the teams need to find a consensus for estimating the requirements. Additionally, managers can

implement formal controls, e.g., the development teams are requested to discuss estimates for

which the value deviates by 50% from the mean value. Managers can display the target-actual

comparison and velocity per sprint in burndown charts or velocity curves.

3 Essay II 66

"We shifted from waterfall to agile development, creating a new culture and departing

from formal control. Following the agile estimations, things run far more indepen-

dently. So you do not have to have a meeting every Monday morning and pull in

everybody to review their estimations. It just happens naturally on the teams. It was

as much about creating a culture as it was about actually formal control." (Case 5)

On the other hand, financial controlling can additionally control estimates. In general, the

financial controlling team integrates various perspectives, e.g., development, sales, and finance,

to gain a cross-project perspective, validate the alignment of development and firm strategy,

and analyze the impact a project can have on the firm. The Chief Operating or Financial

Officer is responsible for setting the right incentives, defining the standards for Key Performance

Indicator (KPI) reports, and implementing a governance board to steer the resources. Further,

the financial controlling team defines an interactive review of progress, e.g., monthly. During

the review, they conduct a target-actual comparison for user stories and discuss the burndown

chart.

Financial controlling teams apply an integrative financial planning tool, including different fi-

nancial planning levels for the development department, e.g., the long-term planning for the

entire firm, the strategic financial planning for the development department, and business case

planning for the product area. The tool improves the speed of planning. Taking the example

of strategic financial planning, financial controlling teams apply value driver trees and conduct

backward planning to define the budget for a development department. First, they plan the

revenue per department based on estimated market shares. Second, they define department-

related KPIs. Third, they derive the budget for the operative units based on the KPIs. Further,

financial controlling teams validate the internal and external cross-project capacity planning for

a development department. They evaluate the competence profiles and location strategy of the

existing workforce, e.g., low versus high-cost regions, and consider project-related reallocations.

Alternatively, they consider hiring a workforce externally. Thereby, firms consider a realistic

duration for the hiring process, including the notice period and the ramp up of new resources,

which often takes up to three to six months.

Controls are important because managers need to recognize the political motives of the different

individuals, teams, and departments when evaluating the estimates. The development, financial

controlling, and sales teams cooperate from the start of the product planning phase. However,

the parties have different departmental objectives and, thus, incentives to over- or underestimate.

3 Essay II 67

"I’ve seldomly seen a party in an organization that didn’t have an incentive to either

over- or underestimate." (Case 9)

The development teams often have incentives to overestimate the effort to block resources and

implement a safety buffer for development. Further, the development teams prefer to avoid

measuring their actual development progress.

"Improving R&D efficiency has been the number one way development teams have

been able to boost their power in the organization. We could improve the efficiency

by introducing the right measurement metrics." (Case 9)

Other organizational functions like financial control and purchasing follow different objectives.

Purchasers challenge the offer commercially, not technically, and have incentives to buy the

product or service as cheaply as possible. Financial controllers prefer to estimate as accurately

as possible, yet, often lack the information to be exact.

"Financial control is an organizational unit that is trying to be precise, but they often

lack the information to be precise." (Case 9)

Contract design choices in client-supplier settings

Four case firms highlight the effect of contract types in client-supplier settings on designing the

estimation process. Clients and suppliers generally arrange their relationship via three contract

types: time and material, fixed price, and agile fixed price. A time-and-material contract includes

agreed cost rates for material and time spent by employees. These rates usually differ for groups

of employees with different skills. The total price then depends on the total time the employees

work on the project (Jørgensen et al., 2017). Especially in early development phases, clients

and suppliers frequently agree on a time-and-material contract because requirements are hard

to specify, and this contract type provides the highest flexibility. On the one hand, the clients

benefit from the flexibility in the early development phases. On the other hand, the clients

monitor the project’s progress and bear the risk of cost overruns as they have no guarantee for

deliverables and cannot claim rework. Literature and interviews have revealed that time-and-

material contracts tend to favor the suppliers (Gopal et al., 2003).

3 Essay II 68

On the contrary, for fixed-price contracts, the clients and suppliers negotiate a fixed fee for

delivering a specified software (Jørgensen et al., 2017). Thus, the contract explicitly states

product requirements but does not refer to the resources, time, and material spent to achieve the

task. Clients benefit from fixed-price contracts because they can claim rework if the requirements

are not achieved in the specified quality. Hence, the suppliers bear a higher share of the project

risk under this contract. The contract requires a specific upfront definition of deliverables and

testing options (Gopal et al., 2003).

The agile fixed-price contract is a hybrid contract type. The full project price is fixed, compa-

rable to a fixed-price contract. However, the project scope is variable and settled iteratively.

This contract fosters communication between clients and suppliers and partially eliminates the

disadvantages of the other contract types. Specifically, the clients and suppliers agree on a

standardized collaboration process, which they frequently base on the SCRUM principles. The

clients’ and suppliers’ product owners (PO) take decisive roles as contact and negotiating part-

ners between the firms. They meet roughly two months before the project start for a PO board

1, in which both parties plan the assignment. The client communicates the requirements, in-

cluding an effort estimate for the epics, stories, or story points, depending on the respective

level of product uncertainty. Thereby, one sprint displays one increment and takes two weeks.

Further, the clients and suppliers discuss a monthly fixed price for pre-defined roles, for which

continuous support independent of the actual development task is necessary. The PO board 1

takes place twice a year, in which the client and supplier discuss improvement ideas and open

requirements of the old assignment. Firms choose this contract type when the requirements are

largely defined.

The team starts with a sprint planning session, in which the team plans the stories of the

upcoming sprint. After each sprint, the developers demonstrate the results of the stories in a

demo session. The demo session participants then decide on approval and the subsequent change

of sprint content or if the developers must further improve their results. During the sprint phase,

when no demo session occurs, the client and supplier team conduct a biweekly refinement session

1 to enable a common understanding between the parties, clarify questions, estimate, and adjust

story points for the upcoming stories. The team estimates the story points with the required skill

class to derive the necessary development time. All participants discuss the results, align on the

estimate, and, subsequently, the costs. Further, the team participates in a biweekly PO board

2 to ensure transparency of requirements. The clients communicate the requirements in their

3 Essay II 69

language, and the product owner of the supplier translates the requirements into stories. The

meeting takes place when no sprint change occurs. Additionally, the suppliers’ team conducts

internally a biweekly refinement session 2 to reflect on the progress, clarify the requirements,

and improve the development.

The clients and suppliers can define a neutral third party from an independent firm to support

their communication, the so-called PO partner. PO partners should understand the needs of

both clients and suppliers and translate the developers’ technical obstacles to the POs and Scrum

Masters while incorporating the client’s mindset. They participate in the meetings of suppliers

and clients and act as mentors. They are usually compensated hourly.

3.4.2.3 Implement

Project factors

The third stage Implement is based on the results of the Understand and Plan stages. According

to the chosen estimation and data strategy, managers implement the decomposed requirements

of Understand. Taking the SCRUM methodology as an example, the decomposed requirements

are prioritized in the product and sprint backlog. Engineers consider the identified dependencies

and start with the most critical requirements.

Managers consider project factors when estimating the development effort. The factors comprise

categorizing the decomposed requirements by complexity and novelty. First, managers can

divide the complexity categorization into requirements and system complexity. To define the

complexity of the requirements, managers define complexity classes and allocate the requirements

to the respective classes. They can do this by evaluating past cost drivers, reference tasks in

the product backlog, or based on their professional experience. To define the system complexity,

managers decompose the software system into sub-systems and agree on system interfaces to

define a complexity map. The development team defines complexity ratings for the different

sub-systems based on their experience. Managers analyze the system complexity to account for

differences in the system regarding code implementation, testing, integration, and the handling

of change requests. Engineers locate the decomposed requirements of the new project on the

map and evaluate which requirements can be allocated to the different sub-systems to consider

additional complexity if necessary.

3 Essay II 70

"We use a map of complexity for our software system. If a new project steps in the

defined complexity areas, we consider this for the estimation." (Case 4)

Second, development teams evaluate the project’s novelty by leveraging their experience and

deriving analogies to understand the differences between the new and previous projects. The

development teams rely on defined categories or criteria for analogies, e.g., previously identified

cost drivers. The team then projects the criteria-related data to the new requirements and

development environment. They try to understand differences in, for example, the uncertainty

of requirements, new technology, data content and quality, programming language, technical

environment, infrastructure, development methods and processes, testing methods and level of

testing, security levels, or tools. The analysis supports understanding whether the past data

is relevant and can be used for estimation. However, firms require reference data specific to

the development team to effectively and efficiently derive cross-project analogies as the firm

perspective is insufficient. Firms often lack relevant internal data for estimating new products,

and the requirements of new products are often not specified in detail to enable a comparison.

"The biggest challenge you are facing is understanding to what degree this requirement

is more different and novel than you have seen before." (Case 9)

Further, managers recognize within-project, cross-project, and cross-firm lessons learned to re-

calibrate their estimates. Development teams apply the within-project factor after the project

starts during the ongoing development when project teams evaluate the retrospective after each

sprint and adjust their estimates if necessary. Development teams evaluate the cross-project and

cross-firm factors before the project start. The cross-project factor describes the learning curves

the firm has taken since conducting the reference projects beyond the team level. Managers

make the development team aware of all previously identified project cost drivers. Developers

consider the cost drivers comprehensively and then analyze which ones are relevant for the spe-

cific use case. The cross-firm factor incorporates the technical progress since the organization

had conducted the reference projects. Engineers can identify the factor by conducting exter-

nal benchmarks to identify new technologies, programming paradigms, as well as development

methods and derive market-wide lessons learned. In addition, developers search for relevant

parameters for effort estimation in the research literature. The cross-firm factor is crucial for

new products to identify if analogies are in the market, which can be used for effort estimation.

Managers require development teams to incorporate these lessons learned in future estimations.

3 Essay II 71

"We cannot do the same thing repeatedly and hope for a better outcome. Learning

curves only can be realized by management action. It does not happen by itself."

(Case 9)

Team factors

Managers also consider defining a team factor, which comprises the individuals’ capabilities and

availability. Managers derive the team factor on an individual team member level. Managers

compare the assigned roles and responsibilities with the ones in previous projects and investigate

differences in skills, seniority level, domain-specific knowledge, and estimation characteristics of

individuals, e.g., if they tend to over- or underestimate or include a personal safety buffer. The

results are consistent with Shmueli et al. (2016), who find that project managers underestimate

the time needed to complete a task.

In addition, managers apply a focus factor for the individual team members to plan capacities

realistically during the project. The focus factor defines the capacity of individuals for the project

and thereby considers that engineers also work on other projects and have other obligations

within the firm. This factor is reviewed regularly, e.g., every three months.

"You need to recognize the domain knowledge of the individual team members. You

cannot simply exchange individuals who worked in different domains. That is like you

trying to make a person who formerly worked at the bakery now to be in the tailor’s

shop." (Case 9)

Rules

Managers define the implementation rules for the project and team factors before the estimation

starts. They communicate the rules to the development team to create a common understanding.

The project and team factors relate to a defined number of story points so that the project

and team factors can be translated into an effort estimation and respective time estimation.

Alternatively, the development team can implement the factors as additional iterations.

3 Essay II 72

3.5 Challenges and propositions

I summarize the most frequent challenges the sample firms faced during the estimation process

and assign the challenges to the respective activities of the UPI model. Based on the identified

challenges, I derive propositions by triangulating the results of my qualitative data analysis with

insights gained during the literature review (Eisenhardt, 1989). The propositions aim to support

managers in designing the estimation process, reduce situational and human biases, and, thus,

increase estimation accuracy. The overview of the challenges and propositions is presented in

Table 3.2.

Proposition 1: Conduct workshops to increase the clarity of requirements. The interviews

reveal that conducting an initial specification workshop to discuss, define, and understand the

requirements with the decision-maker, client, or supplier reduces the risk of neglecting develop-

ment tasks, improves information sharing and alignment with other functions, and, ultimately,

increases the estimation accuracy. Further, all stakeholders should develop or discuss the product

vision and roadmap. The alignment of product objectives facilitates the requirements specifi-

cation and reduces uncertainty. The initial planning stage is crucial for long-term projects,

projects with a definite time horizon, and projects with many stakeholders. Further, the work-

shop displays the baseline for applying the three complex adaptive systems (CAS) principles

by Vidgen and Wang (2009). Conducting a specification workshop to collaboratively define the

scope and requirements sets the basis for prioritizing development tasks and monitoring and

tracking requirement changes. Managers should distribute control and decision making in a

team to optimize self-organization and coordination by applying group-based expert estimation

techniques like Planning Poker to reach a consensus for each estimation. When coordinating

the estimation, the team members discuss the detailed specification and who will take over the

development task. The team leverages its capabilities within this process to fit best with each

development task. The process minimizes the risks of a wrong understanding of requirements

and serves as a guideline for inexperienced developers.

"The deviation of estimation results is lower for long-term planned than short-term

planned estimations because you can just put more time into formulating the require-

ments and planning their implementation." (Case 3)

3 Essay II 73

T
a
bl

e
3.

2:
C

ha
lle

ng
es

an
d

pr
op

os
it

io
ns

.

C
h
al

le
n
ge

#
ca

se
s

U
P

I
m

od
el

ac
ti

vi
ty

P
ro

p
os

it
io

n
R

el
at

ed
li
te

ra
tu

re

1.
F
ir

m
s

fr
eq

ue
nt

ly
un

de
re

st
im

at
e

th
e

pr
oj

ec
t

co
m

pl
ex

ity
by

no
t

un
de

rs
ta

nd
in

g
th

e

pr
oj

ec
t

no
ve

lty
(e

.g
.,

pr
od

uc
t,

en
vi

ro
nm

en
t)

an
d

th
e

re
qu

ir
em

en
ts

th
em

se
lv

es

(e
.g

.,
no

t
co

m
pr

eh
en

si
ve

,f
or

m
ul

at
ed

in
a

to
o

co
m

pl
ic

at
ed

m
an

ne
r,

no
t

pr
ec

is
e

en
ou

gh
).

Fu
rt

he
r,

fir
m

s
la

ck
in

it
ia

li
nf

or
m

at
io

n
sh

ar
in

g
be

tw
ee

n
de

pa
rt

m
en

ts
an

d
re

co
gn

iz
e

a

ga
p

be
tw

ee
n

w
ha

t
th

e
cl

ie
nt

w
an

ts
an

d
w

ha
t

th
e

su
pp

lie
r

un
de

rs
ta

nd
s.

A
ls

o,
fir

m
s

fin
d

it
di

ffi
cu

lt
to

fin
d

a
sw

ee
t

sp
ot

fo
r

sp
en

di
ng

ti
m

e
fo

r
in

it
ia

le
ffo

rt
es

ti
m

at
io

n.

8
U

nd
er

st
an

d
-

P
ro

je
ct

re
qu

ir
em

en
ts

C
on

du
ct

w
or

ks
ho

ps
to

in
cr

ea
se

th
e

cl
ar

ity
of

re
qu

ir
em

en
ts

V
id

ge
n

an
d

W
an

g
(2

00
9)

2.
F
ir

m
s

ne
gl

ec
t

us
ef

ul
in

fo
rm

at
io

n
ab

ou
t

pa
st

pr
oj

ec
ts

an
d

do
no

t
us

e
av

ai
la

bl
e

an
al

og
ie

s

fo
r

es
ti

m
at

io
n

(e
.g

.,
co

m
pa

re
an

d
an

al
yz

e
pa

st
co

st
dr

iv
er

s)
.

T
he

y
fa

il
to

im
pl

em
en

t

us
ab

le
kn

ow
le

dg
e

m
an

ag
em

en
t

m
ec

ha
ni

sm
s

to
co

un
te

ra
ct

th
ei

r
la

ck
of

ex
pe

ri
en

ce
.

T
hi

s
is

,i
n

pa
rt

ic
ul

ar
,c

ha
lle

ng
in

g
w

he
n

th
e

de
ve

lo
pm

en
t

te
am

ch
an

ge
s

an
d

ne
w

de
ve

lo
pe

rs
ar

e
hi

re
d.

7
Im

pl
em

en
t

-

P
ro

je
ct

fa
ct

or
s

Tr
ai

n
es

ti
m

at
or

s
H

ar
ri

s
et

al
.

(2
00

9)

3.
F
ir

m
s

ca
nn

ot
re

ly
on

da
ta

-d
ri

ve
n

es
ti

m
at

io
ns

du
e

to
a

la
ck

of
di

sc
ip

lin
e

fo
r

pr
oj

ec
t

do
cu

m
en

ta
ti

on
an

d
a

de
fin

ed
pr

oc
es

s
fo

r
sy

st
em

at
ic

da
ta

co
lle

ct
io

n
(e

.g
.,

no
re

le
va

nt

da
ta

av
ai

la
bl

e,
no

sp
ec

ifi
ca

ti
on

te
xt

st
an

da
rd

s
de

fin
ed

,i
nd

iv
id

ua
la

nd
in

co
ns

is
te

nt
us

e

of
da

ta
).

F
ir

m
s

hi
gh

lig
ht

th
e

fu
tu

re
re

le
va

nc
e

of
ap

pl
yi

ng
m

ac
hi

ne
le

ar
ni

ng
-b

as
ed

da
ta

an
al

ys
is

an
d

fo
re

ca
st

in
g

m
et

ho
ds

,f
or

w
hi

ch
sy

st
em

at
ic

da
ta

co
lle

ct
io

n
is

de
ci

si
ve

.

6
P

la
n

-

D
at

a
st

ra
te

gy

B
ui

ld
a

da
ta

ba
se

fo
r

da
ta

-d
ri

ve
n

de
ci

si
on

m
ak

in
g

Le
de

re
r

et
al

.
(1

99
0)

Jø
rg

en
se

n
(2

00
4b

)

4.
F
ir

m
s

de
ri

ve
an

al
og

ie
s

of
pr

oj
ec

t
eff

or
t

be
tw

ee
n

di
ffe

re
nt

te
am

s,
w

hi
ch

do
es

no
t

ac
co

un
t

fo
r

th
e

in
di

vi
du

al
di

ffe
re

nc
es

in
ca

pa
bi

lit
ie

s,
ca

pa
ci

ti
es

,l
oc

at
io

ns
,a

nd
cu

lt
ur

es
.

Fu
rt

he
r,

m
an

ag
er

s
of

te
n

do
no

t
re

co
gn

iz
e

th
e

po
lit

ic
al

m
ot

iv
es

of
th

e
di

ffe
re

nt
es

ti
m

at
or

s
w

he
n

re
vi

ew
in

g
th

e
es

ti
m

at
es

,n
ot

el
im

in
at

in
g

si
tu

at
io

na
la

nd
hu

m
an

bi
as

es
in

th
e

es
ti

m
at

es
.

4
Im

pl
em

en
t

-

Te
am

fa
ct

or
s

R
ec

og
ni

ze
te

am
ch

ar
ac

te
ri

st
ic

s
an

d

th
e

in
te

re
st

of
di

ffe
re

nt
st

ak
eh

ol
de

rs
M

en
zi

es
et

al
.

(2
01

7)

5.
F
ir

m
s

fa
ce

di
ffi

cu
lt

ie
s

to
co

nt
ro

lt
he

es
ti

m
at

io
n

pr
oc

es
s

w
he

n
th

e
re

qu
ir

em
en

ts
ar

e

un
cl

ea
r

at
th

e
pr

oj
ec

t
st

ar
t

or
th

e
re

qu
ir

em
en

ts
an

d
sc

op
e

ar
e

ch
an

gi
ng

in
th

e
on

go
in

g

de
ve

lo
pm

en
t

pr
oc

es
s.

3
P

la
n

-

E
st

im
at

io
n

pr
oc

es
s

co
nt

ro
l

A
da

pt
co

nt
ro

ls
to

de
ve

lo
pm

en
t

si
tu

at
io

ns

Jø
rg

en
se

n
an

d
M

ol
ok

ke
n

(2
00

3)

U
sm

an
et

al
.

(2
01

8)

3 Essay II 74

However, the planning of the initial estimation is a two-edged sword. The benefits of increas-

ing the understanding of the requirements confront the downsides of time loss and changing

requirements during development. Especially in volatile environments without client-supplier

interaction and specific deadlines, firms can shorten the initial planning stage and start with

agile development quickly.

Proposition 2: Train estimators. Managers should systematically train engineers to identify

and analyze past cost drivers to counteract the lack of experience with the task, project, client,

and supplier. Estimators need to get an overview of all cost drivers depending on the project

environment to avoid neglecting development efforts. Managers can give them documented data.

In addition, managers can give them checklists to support the estimation process (Jørgensen and

Molokken, 2003, Usman et al., 2018). Upfront training increases productivity by decreasing the

amount of communication necessary during the project. For example, firms often underestimate

the effort to define the software test environment as close to reality as possible and define

test scenarios that cover the requirements and their interaction. Thus, the development teams

should conduct test-driven development to avoid testing becoming a bottleneck, i.e., testing

every feature immediately after development and continuously testing the software against all

test cases. The objective is to reach a high code coverage with automatic tests.

Proposition 3: Build a database for data driven decision-making. The interviews show that

firms focus on collecting and analyzing data systematically to enable data-driven decision making

of individuals in expert estimations and data-driven effort estimation. Managers highlight that

systematic data collection is the decisive next step before applying machine learning (ML)-based

methods. These findings are in line with Menzies et al. (2017), who summarize that "how data is

collected is more important than what learner is applied to that data." The potential application

of ML-based methods has not yet arrived at the case firms. Managers highlight that using ML-

based estimation methods has many data collection, analysis, and forecasting opportunities. For

example, development teams can use natural language processing to search for text similarities in

product specifications. Further, they can apply AI-based estimation methods to flag peculiarities

and give the estimator feedback about the estimation based on previously collected data or find

similar tasks based on defined project parameters in databases for effort estimation. However,

firms investigate the opportunities only as a subsequent step after building a data repository.

ML-based estimations require detailed and comprehensive inputs, and, thus, managers think that

the effort necessary to specify respective models frequently outweighs the benefits from improved

3 Essay II 75

cost estimations. Firms must specify an extensive model containing detailed information about

individual tasks. Lastly, the future potential depends on the individual use cases.

"We need reliable data for applying methods based on artificial intelligence. There is

certainly potential, but the first step is to build a database, and the step afterward is

to apply these methods." (Case 1)

Proposition 4: Recognize team characteristics and the interests of different stakeholders. Man-

agers must recognize team characteristics in effort estimation. Team characteristics include the

varying capabilities, capacity, locations, and culture among individuals and development teams.

Besides individual competence, managers must also recognize the estimator’s political motives,

which can lead to inefficient decision making, e.g., the unwillingness to look bad in front of a

superior, reluctance to analyze the retrospective honestly, or communicating views contrary to

the group’s perspective. Lederer et al. (1990) pick up the different political motives of estima-

tors and differentiate between a "rational" and "political" model of the estimation process. The

rational model aims to achieve the highest estimation accuracy, whereas the political model in-

cludes individual motives, goals, and power conflicts. Jørgensen (2004b) suggests six principles

to reduce situational and human biases: Evaluate the estimation accuracy, but avoid high evalu-

ation pressure, avoid conflicting goals, ask the estimators to justify and criticize their estimates,

avoid irrelevant and unreliable information, use documented data from previous development

tasks, and find estimation experts with highly relevant domain background and good estimation

records.

Proposition 5: Adapt controls to development situations. Agile methodologies like SCRUM

structure the development with dedicated meetings, e.g., the planning, review, retrospective,

and daily meetings. For example, the retrospective meetings intend to discuss the team’s be-

havior and define lessons learned for the upcoming sprints. Two other forms of control extend

this form of behavioral control. First, managers’ formal control is based on their authority when

reviewing final estimates. Second, a group’s clan control is based on self-control and subtle

peer-to-peer signals when conducting group-based expert estimations. I suggest extending the

control mechanisms by emergent outcome control, enabling managers to take continuous cor-

rective actions and give the project team dynamic feedback when the scope and requirements

change during estimation and implementation (Harris et al., 2009). Thereby, managers apply

two control mechanisms: Scope boundaries and ongoing feedback. Scope boundaries limit the

3 Essay II 76

set of possible solutions without specifying outcomes. Boundaries can display a product vision,

feature specifications, or technical constraints like the architecture. Ongoing feedback is essen-

tial when the scope boundaries are not set tight enough and targets the development with a

minimum of iterations. The mechanisms are interdependent and inherit trade-offs between the

control choices (Harris et al., 2009).

3.6 Conclusion

This study develops a process model that outlines how firms estimate their software costs. I

observe the software cost estimation process over three stages: Understand, Plan, and Imple-

ment. I describe the activities within each stage and differentiate between organizational and

project-specific settings. I triangulate the case study results with the literature on software cost

estimation to derive propositions that support managers in designing the estimation process.

I conduct a multiple-case study to address the lack of developing theories in software engineering

(e.g., Hannay et al., 2007, Jørgensen and Shepperd, 2007, Dybå and Dingsøyr, 2008, Usman

et al., 2015, Idri et al., 2015, Eduardo Carbonera et al., 2020). I add to the literature on

software cost estimation by reflecting on the current state of practice (Jørgensen and Shepperd,

2007, Eduardo Carbonera et al., 2020). The results allow researchers to identify similarities

and divergences between research and practice and base their future research efforts on real-life

findings (Eisenhardt and Graebner, 2007).

Improving estimation accuracy is a critical goal for organizations to more effectively plan and

control the project budget, efficiently allocate resources, reduce costs and delays, and im-

prove customer satisfaction (Heemstra, 1992, Jørgensen and Carelius, 2004, Huang et al., 2008).

This study provides a rich understanding of the software cost estimation process for individual

projects. It enlarges the perspective on software cost estimation beyond describing individual es-

timation methods and comprises the entire process from understanding the project environment

to estimating the costs. The process model embodies peculiarities of various industries and in-

corporates different firms’ perspectives, e.g., clients and suppliers, and organizational roles, e.g.,

software developers, effort estimators, project leaders, and controllers, to understand different

facets of the estimation process. Taking this comprehensive perspective, I add to Boehm and

Papaccio (1988) who describe a software planning and control framework, Edwards and Moores

3 Essay II 77

(1994) who introduce the EEPS model, and Jørgensen and Molokken (2003) and Usman et al.

(2018) who suggest using checklists structured along the software cost estimation process.

My results show that firms have a homogeneous understanding of the high-level estimation

process, which can be structured in three stages: Understand, Plan, and Implement. However,

the activities within each stage are heterogeneous depending on the organizational and project-

specific setting. The estimation methods is a notable exception. I show that expert judgment

is still the dominant method across industries, and firms rely on group-based expert estimation

methods (Jørgensen, 2004b, Idri et al., 2015). The interviews reveal that this is due to the

high degree of implicit expert knowledge and the high effort in setting up a data-driven model.

The results are consistent with extant literature that previous experience from a similar task

is necessary for achieving accurate estimation results (Haugen, 2006). Further, I show that

development teams apply the same methods in the early stages as during the actual development,

regardless of the project environment. Differences only occur at the aggregation level of the

estimates, e.g., in epics, stories, or story points.

Firms can apply the UPI model as a whole or partially, depending on their organizational and

project-specific needs. The study suggests when firms should differentiate their estimation strat-

egy dependent on the project environment and suggests propositions to improve their estimation

process. Firms can compare their current estimation process with the UPI model to adapt or

extend their process.

My results are subject to limitations. I focus on how firms estimate their software costs and how

the process is adapted according to their project environment. Further, I analyze the procedural

estimation challenges they face to derive propositions. However, the multiple-case study design

does not reveal which stages and activities of the UPI model are mainly responsible for poor

estimation results, e.g., to which degree inferior requirements understanding, planning, and con-

trol, or estimation methods contribute to the inaccurate estimates. Further, despite suggesting

propositions based on identified estimation challenges, my analysis does not suggest a norma-

tive cost estimation process that practitioners can apply to achieve superior estimation results.

In addition, I do not investigate whether and how defining an initial estimate influences man-

agers in designing the remaining development process. Finally, I study software cost estimation

processes for individual projects. This focus constitutes a control in my study. However, my

findings may be limited to individual projects. It is possible that my results do not generalize

to other software development practices such as continuous developments or research projects.

3 Essay II 78

Scholars can strengthen the validity of my results by examining cost estimation processes for

other development methods.

My study reveals interesting avenues for future research. I suggest that scholars and practitioners

validate the descriptive UPI model and compare the estimation accuracy with the accuracy from

extant processes. Based on the results, scholars validate the proposed process model, generate

further advancements, and derive a normative model which fulfills both the social and technical

aspects of software cost estimation. Further, I suggest that scholars and practitioners focus on

overcoming challenges during early estimation phases with particularly high uncertainty due to

unknown product requirements. The interviews reveal that firms struggle to estimate the effort

for new products due to the lack of available analogies and partially move away from estimating

effort beyond the next six months due to changing requirements and inaccurate estimates.

4 | Divide and Conquer: Designing Cost

Systems for Software Firms

Abstract

This study proposes a cost system design for software firms that can serve multiple purposes in the

context of computing software’s product costs. We contribute to the sparse literature on cost systems

for information goods, which needs to catch up to the ongoing transformation of the world economy into

a digital economy. We develop the cost system conceptually, drawing on extant management account-

ing research and incorporating software’s product and process characteristics. Our cost system design

integrates three cost-management and modeling systems. First, we adopt a software life-cycle perspec-

tive and define the software development project as the cost object to collect, measure, and allocate

costs. Second, we propose a regression-based cost model that allows firms to understand the influence

of project characteristics on project costs. Third, we introduce a dynamic target costing approach to

plan and control costs during software design and development. We structure the cost system based

on the divide-and-conquer principle, enabling each system to account for its distinct capabilities while

establishing cross-system synergies. The proposed cost system design defines guidelines for firm-specific

implementation and allows managers to make informed decisions on software product costing by taking

multiple perspectives on software costs.

Authors: Marcus Witter and Michael Blumberg13

Status: Working Paper14

13Author contributions: The authors jointly conducted the literature review and the concept analysis. Marcus
Witter developed the research idea and led the writing of the essay. Michael Blumberg led the initial concept
adaptions.

14This essay was presented at the 2022 Manufacturing and Service Accounting Conference (MSAR) in Pisa, Italy.
I thank the participants for their valuable comments and helpful discussions with them.

79

4 Essay III 80

4.1 Introduction

We propose a framework that suggests guidelines for firms designing cost systems for information

goods in general and software products in particular. Designing cost systems for information

goods is important as the digital transformation involves organizational changes that generate

new paths for value creation by shifting processes, products, and services within and across firms

(e.g., Yoo et al., 2010, Vial, 2019, Warner and Wäger, 2019). The rise of digital technologies also

entails implications for various business activities, supply chains, and support functions (Vial,

2019, Möller et al., 2020), such as the finance function (Bhimani and Willcocks, 2014). Firms

must react to the shift in cost structures and adapt traditional cost-management practices as

they move towards digitally enabled businesses (Bhimani and Willcocks, 2014). The effect of

technology investments on cost structures is particularly strong for investments in digital tech-

nologies, characterized by rising fixed costs that strongly exceed variable cost elements (Afuah

and Tucci, 2001, Bhimani and Willcocks, 2014).

Extant cost system designs are production-centric and focus on the commercialization phase

of products (Schweitzer et al., 2015). When computing product costs, many companies have

traditionally considered software as a byproduct of tangible products, allocating its development

costs as a supplement to the product costs without an elaborated allocation scheme (Broy,

2006). From a decision-making perspective, the fixed costs of developing an information good

are sunk (Bhargava and Choudhary, 2008). Thus, software firms can hardly apply existing cost

systems focusing on the dominant manufacturing and distribution costs typical for industrial

products (Bhimani and Bromwich, 2010, Jones and Mendelson, 2011). They need to consider

that information goods’ costs occur by creating value during the development phase, and the

production and distribution of an additional unit incur virtually zero costs (Shapiro and Varian,

1999, Jones and Mendelson, 2011).

That research on cost systems for software development is scarce might reflect that only a

few companies apply cost accounting to their software development projects (Astromskis et al.,

2014). Astromskis et al. (2014) presume that a low expectation of a payoff from cost accounting

activities might be one potential reason for the phenomenon, which results in limited knowledge

about project costs, resource-saving potentials, and cost reduction opportunities associated with

working habits. Another reason might be that no common framework for designing specialized

cost systems in this field exists that is based on proven management accounting theory and which

4 Essay III 81

incorporates theoretical and practical insights about cost planning and project characteristics in

software engineering.

Firms need to adapt cost systems for information goods because the requirements for designing

cost systems for information goods differ from the requirements for traditional industrial goods.

Previous research on cost systems has focused on the manufacturing of industrial goods, for which

unit production and distribution costs are often dominant. In comparison, information goods’

unit production and distribution costs are marginal when compared to their development costs

(Jones and Mendelson, 2011). As soon as an information good has been developed, additional

units can be reproduced at virtually zero costs (Shapiro and Varian, 1999).

The optimal design of management accounting systems depends on industry and firm-specific fac-

tors (Messner, 2016). Specifically, cost systems must encompass the organization’s requirements

and business activities. For software development, these characteristics pertain, for instance, to

the development process and the cost structure. To address these contingent factors, we ana-

lyze software product and project cost characteristics in the development and commercialization

phases and elaborate on differences with regard to tangible products.

We design the cost system framework by following the principles of Kaplan (1988) that "no single

system can adequately answer the demands made by the diverse functions of cost systems".

Firms should rely on different cost systems which meet their products’ and processes’ needs for

cost information to perform different managerial functions sufficiently (Kaplan, 1988). Building

upon Kaplan (1988), we transfer the idea of the divide-and-conquer principle for designing

efficient algorithms in computer science to the management accounting practice. The divide-

and-conquer principle suggests dividing a larger problem into smaller partial problems ("Divide")

if a problem cannot be directly solved. These partial problems can then be solved ("Conquer")

and combined into an overall solution (Smith, 1985, Cormen et al., 2009). In this study, the

overall solution serves three purposes in the context of computing product costs.

We evaluate the characteristics of software products and review extant cost systems with regard

to their fit for computing software’s product costs. We suggest two cost-management approaches

and one cost-modeling system, each of which focuses on a specific task in cost management ("Di-

vide"). First, we suggest a life-cycle costing approach to allow for cost planning and measuring

throughout a software project’s full economic life cycle. We recommend a project-oriented cost

model that measures software development and commercialization costs in each phase of the

4 Essay III 82

product life cycle. Furthermore, the cost model includes recommendations on allocating costs

but maintains flexibility in respect of individual choices for firm-specific settings. Second, we

propose a regression-based cost model for investigating the relationship between software cost

drivers and software costs to enhance the understanding of software costs. Third, we apply a

modified target cost-management approach to improve software cost planning and management.

Managers can utilize these systems individually or in combination with each other to form a

joint cost system ("Conquer"). We suggest integrating the three individual cost-management

and modeling systems into a joint cost system, which can be used to manage software project

costs from multiple perspectives. Table 4.1 gives an overview of the suggested cost systems.

Our study follows calls for research to tailor management accounting systems to industry-specific

needs (Otley, 1980, Messner, 2016). Our paper contributes to the contingency-based manage-

ment accounting literature, which gives a more general perspective on the design of management

accounting systems contingent on a firm’s circumstances, e.g., production technology, organiza-

tional structure, and environmental aspects (Otley, 1980). In this context, Messner (2016) in-

vestigates how an organization’s industry context shapes its management accounting practices.

He argues that organization-specific practices, e.g., research and development, and industry-

specific characteristics, e.g., regulations or best practices, determine the design of management

accounting practices. Further, our study relates to the literature stream of strategic manage-

ment accounting, which investigates the design of management accounting practices subject to

strategic aspects (e.g., Miles et al., 1978, Porter, 1980, Lord, 1996, Astromskis et al., 2014, Otley,

2016).

Further, our study contributes to the research on measuring and allocating product and service

costs (e.g., Cooper and Kaplan, 1988, Datar and Gupta, 1994, Labro and Vanhoucke, 2007, Bal-

akrishnan et al., 2011, 2012). We contribute to this stream by developing guidelines for designing

a cost system for software development projects. Software development projects have rarely been

studied in the cost accounting literature. In a notable exception, Fichman and Kemerer (2002)

apply activity-based costing (ABC) principles for managing reuse costs in software development.

The remainder of this study is organized as follows. Chapter 4.2 lays the theoretical foundation

by reviewing extant cost systems and analyzing the cost structure of software products. Chapter

4.3 outlines the cost-management and modeling systems. Chapter 4.4 synthesizes the framework

proposition, and finally, Chapter 4.5 concludes.

4 Essay III 83

T
a
bl

e
4.

1:
O

ve
rv

ie
w

of
th

e
su

gg
es

te
d

co
st

-m
an

ag
em

en
t

an
d

m
od

el
in

g
sy

st
em

s.

C
os

t-
m

an
ag

em
en

t
an

d
m

od
el

in
g

sy
st

em
A

cc
ou

nt
in

g
ob

je
ct

iv
e

P
oi

nt
in

ti
m

e
M

ot
iv

at
io

n

Li
fe

-c
yc

le
fr

am
ew

or
k

-

P
ro

je
ct

co
st

m
od

el
(c

f.
C

ha
pt

er
4.

3.
1)

C
ol

le
ct

da
ta

co
m

pr
eh

en
si

ve
ly

an
d

al
lo

ca
te

co
st

s
by

ca
us

e
E

x-
po

st

C
os

t
in

cu
rr

en
ce

an
d

co
m

po
si

ti
on

of
in

ta
ng

ib
le

s
di

ffe
r

fr
om

ph
ys

ic
al

pr
od

uc
ts

(S
ha

pi
ro

an
d

V
ar

ia
n,

19
99

,J
on

es
an

d
M

en
de

ls
on

,2
01

1)
.

E
xt

an
t

co
st

sy
st

em
s

m
ai

nl
y

ac
co

un
t

fo
r

th
e

do
m

in
an

t
m

an
uf

ac
tu

ri
ng

an
d

di
st

ri
bu

ti
on

co
st

s
of

in
du

st
ri

al
pr

od
uc

ts
(B

hi
m

an
ia

nd
B

ro
m

w
ic

h,
20

10
).

Li
fe

-c
yc

le
fr

am
ew

or
k

-

Li
fe

-c
yc

le
co

st
in

g
(c

f.
C

ha
pt

er
4.

3.
1)

P
la

n,
m

on
it

or
,a

nd
do

cu
m

en
t

co
st

s
by

lif
e-

cy
cl

e
ph

as
e

E
x-

an
te

&

ex
-p

os
t

E
xt

an
t

co
st

sy
st

em
s

fo
cu

s
on

pr
od

uc
ti

on
an

d
co

m
m

er
ci

al
iz

at
io

n
an

d

do
no

t
m

ap
co

nt
in

uo
us

de
ve

lo
pm

en
t

pr
ac

ti
ce

s
(S

ch
w

ei
tz

er
et

al
.,

20
15

).

In
he

re
nt

co
st

al
lo

ca
ti

on
m

od
el

(c
f.

C
ha

pt
er

4.
3.

2)
U

nd
er

st
an

d
pa

st
co

st
dr

iv
er

s
E

x-
po

st
M

an
ag

er
s

ha
ve

di
ffi

cu
lt

ie
s

to
id

en
ti

fy
an

d
an

al
yz

e
so

ft
w

ar
e

co
st

be
ha

vi
or

an
d

co
st

dr
iv

er
s

(V
ic

in
an

za
et

al
.,

19
91

).

D
yn

am
ic

ta
rg

et
co

st
in

g

(c
f.

C
ha

pt
er

4.
3.

3)
P

la
n

fu
tu

re
co

st
s

E
x-

an
te

So
ft

w
ar

e
fir

m
s

fa
ce

un
ce

rt
ai

nt
y

an
d

co
ns

ta
nt

ly
ch

an
gi

ng
re

qu
ir

em
en

ts

w
he

n
de

ve
lo

pi
ng

pr
od

uc
ts

(M
es

o
an

d
Ja

in
,2

00
6,

H
ar

ri
s

et
al

.,
20

09
).

In
te

gr
at

ed
co

st
sy

st
em

de
si

gn

(c
f.

C
ha

pt
er

4.
4)

M
an

ag
e

so
ft

w
ar

e
pr

od
uc

t
co

st
s

E
x-

an
te

&

ex
-p

os
t

A
pp

ly
th

e
su

gg
es

te
d

co
st

-m
an

ag
em

en
t

an
d

m
od

el
in

g
sy

st
em

s
in

a

co
m

pl
em

en
ta

ry
m

an
ne

r
(i

.e
.,

"d
iv

id
e-

an
d-

co
nq

ue
r"

)
(K

ap
la

n,
19

88
).

N
ot

es
:

T
hi

s
ta

bl
e

in
cl

ud
es

an
ov

er
vi

ew
of

th
e

su
gg

es
te

d
co

st
-m

an
ag

em
en

t
an

d
m

od
el

in
g

sy
st

em
s,

in
cl

ud
in

g
th

ei
r

ac
co

un
ti

ng
ob

je
ct

iv
e,

ap
pl

ie
d

po
in

t
in

ti
m

e,
an

d
th

e
m

ot
iv

at
io

n
fo

r
se

le
ct

in
g

th
e

re
sp

ec
ti

ve
sy

st
em

s.

4 Essay III 84

4.2 Theory and research question

4.2.1 Review of extant cost systems

Cost systems help controllers to compute product costs (Balakrishnan et al., 2012), make pricing

decisions (Banker et al., 1994), and plan product and resource capacity in the long term (Balakr-

ishnan et al., 2011). Historically, cost systems originate from production theory, which argues

that the costs of resources deployed in production determine the product price. These are, in

particular, materials, human labor, and machinery utilized for production (Cobb and Douglas,

1928). Over the past decades, scholars and practitioners have developed various cost system

approaches to respond to changing production environments, individual information needs, and

perceived weaknesses of extant systems (Balakrishnan et al., 2012).

Most organizations determine a product’s full costs by allocating fixed costs to the variable

production costs (Balakrishnan and Sivaramakrishnan, 2002). The variable production costs

vary with changes in the quantity of a cost driver, i.e., the output volume. In contrast, fixed costs

remain constant even when the quantity of a cost driver changes. However, the main challenges

arise when assigning overhead costs to a product because they originate from multiple cost

objects and cannot be directly assigned to an individual cost object, such as a product (Friedl

et al., 2017). Organizations allocate the fixed overhead costs to support managers in optimizing

product and resource planning, enabling targeted organizational behavior and "taxing" undesired

behavior (Balakrishnan et al., 2012).

Traditional cost system theory determines costs in two stages, cost data collection and cost

assignment to a cost object. Scholars define different cost objects depending on the context,

e.g., product, service, project, customer, or department. Scholars differentiate between the di-

rect assignment of traceable costs and the application of an allocation key for indirect costs.

Therefore, they collect indirect costs in a cost pool, calculate a rate per unit in relation to a

selected allocation base, and allocate the indirect costs to the cost object according to the unit

consumption. Thereby, the cause-and-effect relationship indicates the prevailing criterion for

conceptualizing an allocation system (Datar et al., 2021). Scholars calculate the costs of a cost

object as the sum of direct and indirect costs. The traditional cost system theory benefits from

4 Essay III 85

simple conceptual mechanisms and widespread adoption in practice (Quinn et al., 2017). How-

ever, the cost allocation principle is criticized as arbitrary and inferior to recent advancements

in certain contexts (Mishra and Vaysman, 2001).

Kilger et al. (2012) proposed the practical marginal costing concept, which is rooted in the

traditional cost system theory and was implemented in the ERP software of SAP. The concept

focuses on calculating marginal costs, defining cost centers, and planning costs. In particular,

they suggested separating variable and fixed costs to calculate products’ contribution margin,

i.e., the difference between revenues and variable costs (Kilger et al., 2012). Further, Riebel

(1979) introduces the relative direct cost and contribution margin calculation approach. He

suggests displaying variable and fixed costs separately and treating indirect costs as direct costs,

i.e., not to allocate indirect costs to cost objects (Riebel, 1979). Simple contribution margin

accounting deducts all fixed costs from the contribution margin. If firms select a more differen-

tiated approach, they can consider fixed costs at different levels, e.g., product, product-group,

divisional and firm. The approach indicates the amount each product contributes to cover a

firm’s fixed costs (Friedl et al., 2017).

Cooper and Kaplan (1988) introduced the ABC concept to better account for the increasing

share of indirect costs, and suggested determining costs for a cost object based on its consump-

tion of activities (Noreen, 1991). ABC differs from fundamental cost system theory by defining

multiple indirect cost pools associated with activities instead of selecting a single cost pool.

The cost pools aggregate homogeneous activities, share a common underlying cost-driving re-

lationship and use an activity-specific allocation base (Datar et al., 2021). The application of

ABC potentially improves cost-management decisions by enhancing the measurement accuracy

(Noreen, 1991), e.g., leading to new price calculations (Kaplan and Anderson, 2004). ABC also

has disadvantages, e.g., the application is subject to several conditions (Noreen, 1991), agency

theoretical issues (Mishra and Vaysman, 2001), and practical implementation hurdles due to be-

havioral and organizational factors (Shields, 1995, Kaplan and Anderson, 2004). Despite being

initially designed for application to manufacturing firms, extant literature confirms the concept

mechanisms as also being suitable for the field of software development (e.g., Ooi et al., 1998, Raz

and Elnathan, 1999, Roztocki, 2001). For example, Fichman and Kemerer (2002) integrate ABC

for managing reuse costs in software development. In light of the practical implementation issues

of the original ABC approach, Kaplan and Anderson (2004) introduced time-driven ABC. They

revisit the ABC approach by introducing a time-driven determination approach for measuring

4 Essay III 86

activity consumption through focusing on feasible productive amounts of available time units.

The drawback is that controllers often cannot base the feasible resource capacity on solid em-

pirical foundations and rely on the assumption of homogeneous cost occurrence (Gervais et al.,

2010). An alternative for allocating indirect costs displays the German process cost calculation

approach, which focuses exclusively on indirect, non-production-related processes (Horváth and

Mayer, 1995).

The concept of life-cycle costing extends the scope of cost observation beyond the commer-

cialization phase of a product and incorporates the product design, development, and post-

commercialization phases (Riezler, 1996, Schweitzer et al., 2015). Thereby, life-cycle costing

observes costs from a plan or as-is perspective (Ewert and Wagenhofer, 2014). The former al-

lows managers to influence design choices, budget planning, and to identify cost drivers. As

management decisions in the early design stages of a product predetermine the majority of costs

in later stages, managers can utilize cost savings from a life-cycle point of view (Asiedu and Gu,

1998). The latter supports adjusting incurred costs (Ewert and Wagenhofer, 2014). Scholars

determine the planned costs based on various methods, e.g., parametric models, analogy-based

models, or expert estimations (Asiedu and Gu, 1998) and allocate costs to cost objects from

a cross-period perspective rather than a single period perspective to mitigate distorting effects

(Riezler, 1996, Ewert and Wagenhofer, 2014).

The concept of target costing intends to manage life-cycle costs during the early product design

and development phases (Kato, 1993, Ewert and Ernst, 1999). In this respect, target costing

incorporates behavioral control aspects and market information for setting cost objectives (Hi-

romoto, 1988). Target costing allows engineers and managers to generate new ideas for product

development and levers for cost reduction (Tani, 1995). The latter is particularly effective be-

cause the major share of life-cycle costs are determined in the development phase but occur

during production (Friedl et al., 2017). Scholars define target costs as the maximum costs of

a future product while considering profitability targets and customer requirements at the same

time (Everaert et al., 2006). In contrast, target costing involves a potential threat to creativity

if there is a time pressure factor (Kato, 1993). There is limited evidence for the adoption of tar-

get costing in software development, yet Becker and Gaivoronski (2018) demonstrate potential

applications, including critical aspects for future research.

4 Essay III 87

4.2.2 Accounting for information goods’ cost structure

Software as an information good differs in cost occurrence and composition from an industrial

good (Jones and Mendelson, 2011). An information good is a good whose costs arise in the course

of development, while the production and distribution of an additional unit of an information

good incurs virtually zero additional costs (Shapiro and Varian, 1999, Jones and Mendelson,

2011). In contrast, unit production and distribution costs dominate the costs of industrial

products (Jones and Mendelson, 2011). For example, Jones and Mendelson (2011) model firms

producing information goods with zero unit costs and positive development costs that increase

with product quality, and firms producing industrial goods with zero development costs and

positive unit costs that increase with product quality.

Alongside the difference in cost occurrence and composition, the focal point of value creation

differs between information and industrial goods. For example, software development involves

a creative attempt that requires flexibility under uncertain conditions (Harris et al., 2009). In

particular, agile methodologies emphasize the continuous reactions to changing environmental

conditions (Meso and Jain, 2006). Information goods lack a physically observable manufacturing

process, so managers cannot observe how development effort relates to the costs associated with

an individual product unit. Thus, they face the challenge of effectively allocating costs to a

software product.

The different characteristics of information goods and traditional goods also affect managers’

decision making. Management accounting scholars and practitioners target a rational view of

costs, which is not confounded by past decisions and allows managers to focus on costs that

can be influenced in the future. Cost-management approaches for industrial goods differentiate

between development and manufacturing effort, with the focus on manufacturing costs. Taking

the general perspective of a product as a cost object, the production costs of industrial goods are

decision-relevant because they can be influenced in the future. In contrast, software development

costs are considered as a past one-time investment that cannot be avoided ex-post. Thus, initial

software development costs are considered sunk (Bhargava and Choudhary, 2008, Friedl et al.,

2017).

Further, information goods do not incur direct input materials and manufacturing costs. Thus,

the perspective of a product as a cost object is an insufficient basis for decision making. As the

development effort is central to value creation, the crucial phase of cost occurrence is not covered

4 Essay III 88

from a product cost object and post-development perspective. Figure A.10 in the appendix

illustrates typical cost structure differences between industrial goods and information goods.

However, when taking the perspective of a project as a cost object for tangible goods, we

expect to observe similarities concerning the cost structures. Further, target costing for physical

products also aims to bring development into focus by influencing costs during the product

design and development phases through behavioral control and market information for defining

cost objectives (Ewert and Wagenhofer, 2014).

To account for the different characteristics under the perspective of a product cost object,

Schweitzer et al. (2015) suggest enlarging the cost-management perspective towards the ear-

liest and most direct cost originator where value creation takes place, i.e., the development

phase. The total software product costs can be calculated by adding the costs incurred in the

software development project and the software product costs incurred after the development

phase. Conceptually, the software project costs in the development phase consist of fixed costs,

which incur only once over the project duration, and variable costs, which depend on the project

size and duration (Maltzman and Epstein, 2013, Chellappa and Mehra, 2018). Based on this

approach, we propose the following conceptual cost Equation 4.1:

Total software product costs

= Software project costsDevelopment phase

+ Software product costsCommercialization phase

(4.1)

Practitioners can manage industrial goods appropriately from a product perspective while ac-

counting for the commercialization phase using the traditional cost system theory. However,

managers face challenges in applying these systems developed for industrial goods to informa-

tion goods such as software. Due to their intangible nature, information goods require a dis-

tinct consideration from a development project perspective, which disentangles value creation,

specifically production, from the creation of an additional product unit and thus shifts the cost

occurrence towards the development phase.15 Drawing on the review of extant cost-management

approaches and the differences between industrial goods and information goods, we derive the

research question of how controllers can design cost systems for software firms to encompass

software’s product and process peculiarities.
15Refer to Boehm and Papaccio (1988) for an overview of the software development value chain.

4 Essay III 89

4.3 Proposed software cost-management and modeling systems

4.3.1 Life-cycle framework for software projects

We propose that software firms adopt a life-cycle costing perspective, which dissolves the sep-

aration between the development and commercialization phases and allows for the monitoring

and planning of software costs for a project’s full economic life cycle. Thus, managers should

consider total software costs by extending their cost perspective beyond the core development life

cycle (Bradley and Dawson, 1999, Zarnekow and Brenner, 2005). We differentiate between the

development of the initial software release, the continuously ongoing development, the commer-

cialization, and the post-commercialization phase. Further, we suggest a parallelized life-cycle

understanding to support the practice of continuously ongoing development of software in parallel

to the commercialization phase. This distinction allows managers to understand the occurrence

of development costs better while obtaining a more comprehensive overview for decision making.

However, different life-cycle cost considerations must be taken into account depending on the

software’s purpose. Taking license or software-as-a-service solutions as an example, we depict

the idea of continuously ongoing development and commercialization and observe them partly

in parallel. According to this approach, multiple minor updates and major releases might follow

after the initial public release. Figure 4.1 illustrates the general concept of a full software project

life-cycle costing perspective for commercial software.

4 Essay III 90

Figure 4.1: Conceptual illustration of life-cycle costing in the context of software projects.

Notes: The illustration is based on the general life-cycle costing illustration by Riezler (1996) and adjusted to the context
of software projects. In addition, it integrates insights from the life-cycle illustration for application systems by Zarnekow
and Brenner (2005). Note that the post-commercialization is not depicted for simplification purposes in the proposed
conceptual cost Equation 4.1

As a supplement to the model depicted in Figure 4.1, we suggest a project-based cost model

for collecting and allocating software project costs independent of the life-cycle phases. The

framework incorporates the peculiarities of cost occurrence and integrates costs from various

internal and external sources from a macro perspective. Therefore, we reformulate Equation 4.1,

which is based on a heterogeneous cost object definition, to Equation 4.2 by focusing on the

definition of the project as a unique cost object and comprehensively taking all cost sources into

account.

Total software project costs

= (a) Project—internal costs

+ (b) Shared reuse costs

+ (c) Firm—internal support costs

+ (d) External service provider costs

(4.2)

The total project costs comprise (a) the project—internal costs which incur for activities within

software development, (b) costs for reuse of software components created for previous or other

ongoing projects, (c) internal support costs, and (d) external service provider costs, which can

4 Essay III 91

be assigned to the project based on the fees paid to the contractor.16 Typical cost collection

and allocation mechanisms segmented by cost source for a software firm collaborating with an

external service provider are presented in Figure 4.2.

Figure 4.2: Typical cost collection and allocation mechanisms segmented by cost source for a software firm.

Notes: Typical illustration that can be adjusted dependent on the specific setting. Refer to Seltsikas and Currie (2002) for
an evaluation of the business model Application Service Provision.

We structure the cost allocation principles for a phase-specific time period based on the outlined

cost sources within the organization. We propose assigning (a) project—internal costs by mea-

suring the time used for projects and multiplying the respective time units by the associated

hourly or daily wages. Firms can measure time by requesting employees to enter their times

worked on a project in a simple spreadsheet or database or by applying firm-internal automatic

time capturing tools (Astromskis et al., 2014). Fichman and Kemerer (2002) suggest allocating

(b) shared reuse costs according to the ABC principles, i.e., in relation to the actual degree of

reuse in the respective projects and the period in question (see Equation 4.3). Subsequently,

managers can multiply this rate by the quantity of reused components per project, adjustable

by a size or complexity weight, to derive the total activity-based costs of reuse allocated to a

project (Fichman and Kemerer, 2002).
16For example, refer to Nie and Hammouda (2017) on the practice of strategic software development outsourcing

or see Mishra and Mahanty (2016) on the effect of outsourcing on project costs and other performance measures.

4 Essay III 92

Reuse component unit costs

=
Total reuse component development costs

Total volume of reused components used by all products

(4.3)

Concerning (c), we recommend considering firm-specific allocation preferences for allocating

internal support costs. If managers prioritize simplicity over accuracy, they can, for example,

select a simple cost allocation scheme by calculating costs per unit of a selected reference basis.

If they want to increase accuracy, they can apply more advanced allocation approaches to reflect

the cause-and-effect relationship between costs and project cost drivers, e.g., ABC. Concerning

(d), we assign external service costs to the project based on the service provider’s service fee.

In the case of shared service use, managers can allocate costs according to different procedures,

e.g., by equally splitting costs among consuming projects, leveraging report documents of the

service provider as basis for assigning costs, or creating a "marketplace for externally sourced

solutions" to distribute external costs among projects.17

We recommend considering the project-oriented cost model as a blueprint for a context-specific

cost system that can be built from scratch or implemented based on existing cost systems.

In particular, existing concepts for cost allocation can be realigned to a project cost object

context and incorporated into a full life-cycle perspective. However, organizations must adapt the

cost model for their purpose, e.g., observe additional cost sources to enhance cost-management

insights and adapt the cost allocation principles dependent on their specific setting.

We define conceptual principles for documenting actual life-cycle costs transparently (Zarnekow

and Brenner, 2005). Here, life-cycle costing does not focus on a certain period of observation

but serves as a cross-period technique to establish a cross-phase analytical and planning per-

spective on costs (Coenenberg et al., 1997, Ewert and Wagenhofer, 2014). This provides an

opportunity for bridging the gap between different micro-structures that inherently characterize

development, commercialization, and post-commercialization phases. Wynn et al. (2014) suggest

one approach for automatically capturing process costs. They suggest extending the information

from Business Process Management Systems with cost information to enhance the scope of data

for management accounting. They use log data that record the execution of events and then

combine these logs with associated cost data, termed cost annotation. Based on cost-annotated

event logs, managers can quickly obtain reports for analyzing costs (Wynn et al., 2014).
17The calculation procedure for the "marketplace for externally sourced solutions" can been established by gen-

eralizing the ABC calculation proposal (Fichman and Kemerer, 2002).

4 Essay III 93

Firms track the value creating activities in the initial development phases to a lesser extent and

hence have difficulties generating informative cost insights and require more data on the specific

activities performed by developers (Astromskis et al., 2014). However, a close-meshed self-

logging of process executions would potentially intrude in the creative environment of developers.

Astromskis et al. (2014) propose an automated non-invasive method for measuring the time spent

on specific activities in software development. To do so, firms collect cost items that represent

specific elements, such as source code methods, websites, or collaborators, that interact within

software applications utilized in the development project. These cost items are recorded with

the corresponding time consumption (Astromskis et al., 2014).

We suggest implementing a phase-sensitive benchmarking of actual costs relative to planned costs

after establishing a transparent measurement system for costs incurred over the full economic

software life cycle. Depending on the phase, managers can apply different approaches for cost

planning. In the development phase, they could draw upon classical model-based or expert-

based estimation methods from the software engineering domain (e.g., Boehm, 1981, Jørgensen

and Shepperd, 2007, Idri et al., 2015, Eduardo Carbonera et al., 2020). Alternatively, they

could apply more general estimation methods rooted in business management knowledge in the

commercialization and post-commercialization phases. Here, insights from research can serve as

a potential means for enhancing and automating cost estimations.

In light of the demand for an interlinked cost-management approach across stages (Zarnekow and

Brenner, 2005), we recommend to introduce cross-phase sensitivity analyses. Managers should

evaluate the impact of decisions with regard to software characteristics or organizational project

parameters on the costs incurred in later stages. However, they should also conduct scenario

analyses in the opposite direction that make it possible to examine how decisions in the area of

commercialization or operations might affect development costs.

4.3.2 Inherent cost allocation model

We suggest a cost-modeling system that examines how underlying project characteristics influ-

ence project costs from an ex-post perspective. We determine the cost-modeling system as an

inherent cost allocation by allocating the total project costs to inherent project parameters, e.g.,

functional size, and duration, as cost drivers virtually.

4 Essay III 94

We suggest a four-step approach as a guideline for initializing the inherent cost allocation system.

We define the software project costs as the dependent variable and the underlying software

project characteristics as the independent variables.18 We define inherent virtually allocated

costs by combining the intercept, independent variables, parameters, and residual. Thus, actual

project costs represent the sum of allocated inherent costs. Figure 4.3 illustrates the four-step

approach schematically for a typical software project.

Figure 4.3: Inherent cost allocation based on the inherent cost drivers of a software project.

First, we recommend that companies set up a firm-specific database for project cost data and pa-

rameters because of opaque cost structures in the software industry (Huijgens et al., 2017). Com-

panies should refrain from drawing on cross-firm project databases in which the relevant depen-

dent variable portrays costs because this can confound the results due to different organization-

specific cost-influencing factors. Furthermore, not many large-scale company project databases,

including cost data, are available and accessible (Huijgens et al., 2017).

Second, we suggest selecting firm-specific project parameters as cost drivers because the rele-

vance of variables for effort estimation depends on the specific context (Jørgensen, 2014). On

the one hand, analogy-based effort estimation methods suggest selecting individual variables de-

pendent on the specific setting. The variable selection can be performed manually or supported

by automation (Shepperd and Schofield, 1997). Based on the insights of analogy-based effort

estimation, managers can select features based on a fuzzy clustering technique as proposed by

Idri et al. (2015). On the other hand, managers can consider the empirical results of scholars

in the field of effort or cost estimation as a starting point for supporting the firm-specific selec-

tion of relevant variables. For instance, Huijgens et al. (2017) perform an analysis, with costs
18We observe project costs from an overall monetary perspective and do not limit our focus to effort as a proxy

for development costs (Huijgens et al., 2017).

4 Essay III 95

as the dependent variable, on software project data from the Evidence-Based Software Portfo-

lio Management (EBSPM) and International Software Benchmark Standards Group (ISBSG)

repositories.19 The authors emphasize that different variables are more relevant than others

depending on the data set. However, they report size and duration (size and effort) to be of

primary relevance in the observed EBSPM (ISBSG) data excerpts (Huijgens et al., 2017). In

general, the effort is the central cost driver within software development projects (Jørgensen

and Shepperd, 2007). Effort describes the working hours spent on the project and drives the

wages paid to the development team. The wages are recorded as direct variable costs, which are

positively related to team size and project duration.

Third, we propose that companies develop a regression model based on their idiosyncratic data

and variables. Therefore, we establish the general structure of the inherent cost allocation model

as depicted in Equation 4.4, introducing a formal perspective on project costs.

Total software project costs

= β0

+
∑

βi × Project characteristici

+
∑

βij × Project characteristici × Project characteristicj

+ ϵ

(4.4)

Fourth, we suggest defining a firm-specific inherent cost allocation scheme. In our suggested

approach, we consider a linear model. The total project costs are subdivided into their virtual

cost components according to the regression analysis, a process we refer to as inherent cost

allocation.20 To do so, the allocation scheme can be directly derived from the cost formula

(Gordon, 1974, Wright, 1983). The intercept β0 can be considered as fixed costs that occur

independently of the project’s specific characteristics. The values of the products of independent

variables Project characteristici and the corresponding estimation parameters βi are defined as

inherent cost components associated with each variable as an inherent cost driver. The value of

residual ε represents idiosyncratic project costs that cannot be explained by the preceding core

associations between cost components and project costs.
19Refer to Rastogi et al. (2014) for an overview of data sets used.
20Estimated parameter values obtained from regression analysis can have a positive or negative algebraic sign.

Therefore, virtual cost component values carry positive or negative algebraic signs. Cost components with a
positive value can be considered cost contributors, and components with a negative value are cost alleviators.

4 Essay III 96

4.3.3 Dynamic target costing

We introduce the concept of dynamic target costing that allows managers to plan and steer

development costs with an integrated view of software development’s technical and economic

perspectives. Our concept aims to realign the traditional target costing approach with the

virtual nature of software products and the need of development teams to react to dynamic

market and technology changes that entail constantly changing requirements.

We recommend shifting the target costing focus towards the development costs and defining

target costs aggregated for all product units and not for a single unit. In traditional target

costing, managers derive the target costs from the market analysis on a per-unit basis and

then break these costs down so that they apply to the physical components of the product.

However, the traditional approach does not hold for intangible products as the development

phase displays the focal point of value creation and the costs for producing a virtual software

unit are close to zero. In this context, we aim to dissolve the relatively static definition of

functions and associated components. Referring to Fichman and Kemerer (2002) demonstrating

ABC for component-based software engineering, we define components as the reference point

to cost management. In software engineering, components are not part of a physically defined

product but rather flexible and coherent parts of one or more software versions, which comprise

multiple virtual components.21 One virtual component can be part of different versions, and one

version usually consists of multiple components. In general, firms create a high-end version of a

software product as a flagship product and then subsequently reduce features to create degraded

versions of the product (Wei and Nault, 2014). Thus, the dynamic target costing approach

focuses on aggregated target costs for multiple product versions that need to be fulfilled by the

associated components.

We adhere to the market-driven approach of target costing by identifying customer needs and

selecting functions that are required to meet these needs. Firms can apply different means to

extract market information, e.g., conduct market assessments, customer survey, focus groups, or

interviews with key customers (Becker and Gaivoronski, 2018). However, we propose to dissolve

the static link between customer preferences and component cost weights. In traditional target

costing, engineers derive the component cost weights based on market preferences of functions
21Versioning is representative of a quality-induced product-price strategy of firms in the software industry. Firms

offer multiple versions of software at different prices in order to enable different types of users to self-select their
best feature-price pair (Shapiro and Varian, 1999, Shivendu and Zhang, 2015). For example, Microsoft offers
its operating system Windows 10 and productivity software Office in more than five versions.

4 Essay III 97

and the contribution of components to these functions (Friedl et al., 2017). The sum of the costs

from the underlying components indicates the costs of the function. In software engineering,

customer preferences cannot be directly linked to the importance of functions and the associated

development costs as the application and solution domain are both volatile.22 For example, non-

functional requirements such as security functions can be costly to develop but are not directly

perceived by customers. The gap between the application and solution domain, as well as

the necessity for continuous flexible adjustments (Brügge and Dutoit, 2014) pose a challenge

concerning the viability of traditional target costing. The dynamic target costing concept must

allow managers to flexibly add, delete, or modify versions, components, or functions and their

relationships without performing time-consuming recalculations.

We suggest initiating the dynamic target costing process after thoroughly analyzing the func-

tional and non-functional requirements and translating these to system components.23 Managers

should only implement dynamic target costing activities after defining core characteristics of the

software product and, thus, focus on activities in the subsequent phases of the development life

cycle, e.g., the object design, implementation, and testing phase. This staggered approach based

on in-depth requirements and system design analysis is necessary because software engineers re-

quire specific implementation knowledge and an increased technical understanding to define

virtual software components. Subsequently, managers can use the defined functions and compo-

nents to measure costs. In contrast, hardware engineers can initiate the target costing procedure

early on because functions can be relatively easily linked to physical hardware components.

We recommend defining target costs not only at the product level but also for selected compo-

nents and functions. Managers should compare current component or function costs with their

target costs to gain an insights into whether a cost leeway exists or costs are overrun. This

granular analysis is necessary because component costs of software products are progressive,

while the costs of the development effort already made are sunk, so no ex-post component cost

reduction is possible. Managers should only calculate drifting costs in the sense of traditional

target costing at an aggregated product level, comparing overall target costs with the estimated

costs for the total development effort. However, managers should also ensure that the creative

environment of developers is not harmed by evaluating cost coverage at the component and

function level. They might foster creativity by creating transparency about the economic effect
22The application domain relates to the user perspective of the targeted functions, whereas the solution domain

describes aspects of system design and implementation (Brügge and Dutoit, 2014).
23We refer to Brügge and Dutoit (2014) for a description of the software development life-cycle phases.

4 Essay III 98

of their improvement activities and outline incentives that enable developers to participate in

the economic success of the function development. We derive and modify the dynamic target

costing process from the traditional target costing approach (Friedl et al., 2017). Figure A.11 in

the appendix illustrates the process and Figure A.12 in the appendix describes the procedural

steps in detail.

4.4 Integration of the cost-management and modeling systems

We propose integrating the cost-management and modeling systems into a common framework

by demonstrating how they can be applied in a complementary manner. Therefore, we estab-

lish a balance between using the systems individually and interlinking them to achieve syner-

gies between them (Cooper and Kaplan, 1998). Each system is assigned specific purposes and

capabilities to support controllers with a distinct cost perspective. Both individual software

departments and software firms can apply the framework. Figure 4.4 gives an overview of the

suggested cost-management and modeling systems and their interlinking points.

Figure 4.4: Systematic framework outline.

4 Essay III 99

Managers can apply the inherent cost allocation model as a complementary technique to the

life-cycle cost-management and project-oriented cost-modeling system. We conceptualize the

project-oriented cost model as a system that allocates costs to the project cost object. These

costs can be an ingredient in collecting project data and recording total costs associated with

characteristic project parameters. Managers can use this data to set up a regression analysis

establishing a cost formula for inherent cost allocation. Thus, managers obtain an analytical

cost-management perspective by supplementing the project-oriented cost model with an econo-

metric analysis and allocating total project costs to project parameters. The life-cycle framework

incorporates planning life-cycle costs from an ex-ante perspective based on scenarios and sensi-

tivity analysis. Managers can derive a general cost formula based on historical projects, with

project characteristics as input variables, and utilize the formula to initially estimate future

project costs. Hence, managers do not use the cost formula for inherent cost allocation but for

future cost estimation. Since the accuracy of estimates obtained from the formula might be

limited, combining the results with the results of other estimation methods, e.g., expert-based,

is crucial (Jørgensen, 2014).

The dynamic target costing approach can be combined with the life-cycle framework. Knauer

and Möslang (2018) report that the use of target costing and life-cycle costing is positively re-

lated. Life-cycle costing allows the measuring and planning of costs over the full economic life

cycle. However, it does not comprise an approach for directly managing the development costs

from a technical and economic perspective in a target-oriented way. Managers can fulfill this

task by applying the dynamic target costing concept, which enables cost steering of aggregated

component costs side by side with cost targets associated with commercially available software

versions. Managers can define these cost targets with a life-cycle costing perspective in an in-

terlinked way, assign the targets to specific versions and monitor their fulfillment in a dynamic

target costing setting. In doing so, managers must jointly utilize and synchronize the cost mea-

surement systems applied in dynamic target costing and life-cycle costing to ensure consistency

among the approaches.

We suggest establishing a holistic cost-management perspective for software development projects

by balancing the distinct and interlinked usage of the proposed systems. Managers must consider

that inherent capabilities and limitations of scope characterize each system. Thus, individual

systems cannot serve as a "one-fits-all" solution. Therefore it is crucial to consider, evaluate,

4 Essay III 100

and connect insights from multiple perspectives and, if necessary, perform adjustments for in-

terlinking systems.

4.5 Discussion and conclusion

The low dissemination of cost systems in software firms arises for various reasons. Established

techniques for designing cost systems might not be directly applicable to software applications,

raising the need for adjusting extant systems by considering context-specific peculiarities. In this

context, Astromskis et al. (2014) observe a lack of a common framework that defines principles

for a context-specific system design, thus hindering the implementation. Further, development

teams are reluctant to apply cost accounting techniques in development teams, potentially be-

cause the benefit obtained from these techniques is expected to be low (Astromskis et al., 2014).

Compared to tangible products, the atypical composition of costs and shift in value creation

towards the development phase of software can be an additional impediment to introducing ex-

isting cost systems. As outlined by Astromskis et al. (2014), this can result in a lack of cost

awareness and associated adjustment potentials.

This study proposes a cost system design for software firms. We define guidelines for designing

a customized cost system that fulfills the context and firm-specific peculiarities in software engi-

neering. We build the cost system on three cost-management and modeling systems ("Divide"),

each solution containing specific purposes and capabilities (Kaplan, 1988). We utilize syner-

gies between the solutions and suggest a way to interlink them into a joint cost system design

framework ("Conquer"). Organizations can implement and apply the cost system as suggested

or adjust it to their specific organizational requirements (Cooper and Kaplan, 1998).

The proposed cost system design inherits multiple perspectives on costs to enable informed

cost management. First, we utilize the life-cycle costing concept for our cost system design.

To assist in this, firms can apply the fundamental ideas of collecting and assigning costs to a

cost object from traditional cost system theory and the ABC approach without changing the

underlying mechanisms but by adjusting them to the characteristics of software development.

Second, we follow Datar et al. (2021) and define a cause-and-effect relationship between costs and

project cost drivers by implementing a modified empirical indirect cost allocation model, enabling

an analytical view of software project costs. Third, we re-define the underlying mechanics

of target costing for tangible products to account for software components’ intangibility and

4 Essay III 101

the development’s creative nature. However, we recommend that organizations maintain the

intuition of cost monitoring and steering.

We extend the cost system design literature by specifically accommodating the peculiarities in

software engineering. We do this by providing insights into how firms can systematically manage

and model software development costs. We add to Otley (1980), who establishes a contingency-

based view on cost management sensitive to firm-specific peculiarities, and Messner (2016), who

suggests incorporating industry-specific facets in management accounting research.

We consider our framework as a starting point for defining firm-specific cost system design

solutions, but neither as a finite nor definitive solution to software cost management and models

in organizations. Firms can apply all cost-management and modeling systems or select and

modify individual systems based on their specific costing challenges. To do so, firms must

consider two findings. First, organizations must recognize the intangible nature of software

products and the associated shifted focus of cost incurrence to the development phase. Second,

organizations should shift the focus from the software product to the software project as a cost

object and keep the project-oriented differentiation between fixed and variable costs in mind.

For a practical realization, managers can draw on already implemented solutions and modify

these to accommodate the context-specific software development requirements. However, we

recommend evaluating the existing and proposed cost-management and modeling solutions with

the aim of achieving a sound cost representation in the organizational setting.

Our results are subject to limitations. The cost-management and modeling systems inherit weak-

nesses concerning scope, practicability, and accuracy of cost measurement. While we focus on

developing a context-specific cost system design to handle the peculiarities of software products

and developments, the pre-existing limitations of the cost system concepts are inherent due to

the assumptions of cost systems as simplified models of reality.

Further, we lack evidence that our suggested framework improves managers’ decision making

in calculating software’s product costs. Therefore, we suggest that scholars and practitioners

validate our proposed framework in a case study and derive further advancements in cost system

design in software development by considering current development practices. We propose that

scholars follow an integrated approach by combining the academic and practical perspectives in

five steps. First, we suggest extending our conceptual proposals by expert-based assessments of

current costing practices in software development. To do so, scholars can conduct a focus group

4 Essay III 102

workshop. Second, scholars and practitioners should add industry-specific requirements for cost

systems based on the assessment results. Third, we recommend designing a newly adjusted

cost system by focusing on one cost-management or modeling approach to generate lead user

stories and incorporate feedback and validation loops. Fourth, scholars and practitioners can

implement prototype modules for software cost systems and conduct test runs with lead users or

collaborating clients while continuously monitoring the performance, recognizing feedback, and

improving the cost system. Fifth, practitioners can realize commercial software costing modules

as a stand-alone product or integrate these into existing software applications for effective cost

accounting in software departments or firms.

5 | Conclusion

5.1 Summary of main results

The digital transformation impacts various industries and shifts firms’ products and services

towards new value-producing opportunities for digitally enabled businesses (e.g., Yoo et al., 2010,

Vial, 2019, Warner and Wäger, 2019). In this dissertation, I focus on the implications of digital

transformation on firms’ decision-making and cost-management practices. I investigate how firms

can react to the increasing volume of available information originated through new technological

developments, such as AI and big data, and organizational cost mix changes. I address these

issues with three essays, which aim at finding solutions to improve decision making and adapt

traditional cost-management practices to the changing requirements of software product costing

and cost estimation. In doing so, I apply three research methodologies: a laboratory experiment

(cf. Essay I in Chapter 2), a qualitative multiple-case study (cf. Essay II in Chapter 3),

and a conceptual analysis (cf. Essay III in Chapter 4). Based on my findings, I conclude

that information overload impairs decision quality. Firms must adapt their decision-making

frameworks to ensure that managers make optimal decisions, e.g., by utilizing decision aids or

introducing accountability as a control mechanism. Further, I develop a comprehensive process

model which outlines how firms estimate their software project costs and derive propositions for

process improvements based on identified estimation challenges. Finally, I propose a solution for

how software-producing firms can design their cost systems to calculate current, evaluate past,

and manage future software product costs from multiple perspectives. Hence, this dissertation

contributes to the theoretical and practical debates on decision making and costing in the digital

age.

In Essay I (cf. Chapter 2), I conduct a laboratory experiment with nearly 200 participants and

investigate how information load and accountability affect decision-making quality. I contribute

103

5 Conclusion 104

to the information load literature that adding information cues impairs decision-making quality

in an investment decision task based on BSC data. This result is consistent with previous

findings from information load literature, which examine the effects of information overload on

decision quality in other settings (e.g., Iselin, 1988, Chewning and Harrell, 1990, Roetzel, 2019).

The results suggest that firms must prevent information overload when providing information

to managers and adapt their decision-making frameworks and reports to foster a more effective

and efficient decision making. Chewning and Harrell (1990) suggest preprocessing the available

information to a considerable amount or equipping managers with decision models or causal

chains to reduce cognitive complexity and shift the managers’ focus to the relevant information

cues (e.g., Humphreys et al., 2016, Dalla Via et al., 2019). Further, I pick up recent calls

for research (Gupta et al., 2018, Brynjolfsson et al., 2021) and introduce accountability as a

countermeasure to mitigate the negative effects of information overload on decision making (e.g.,

Iselin, 1988, Chewning and Harrell, 1990, Roetzel, 2019). I find that accountability improves

the frequency of making an optimal decision under information overload. However, I do not

find a main effect of accountability, and there is no significant interaction between information

load and accountability on decision quality. The missing main effect of accountability could

indicate a dominant dilution effect, increasing participants’ attention to irrelevant information

(e.g., Siegel-Jacobs and Yates, 1996, Tetlock and Boettger, 1989).

In Essay II (cf. Chapter 3), I address the research question of how firms estimate their software

costs. Based on a multiple-case study design, I develop a process model that structures the

process on three levels: project stages, activities, and activity features. The first level summarizes

the generic three project stages: Understand, Plan, and Implement. The second level illustrates

ten activities: understanding the project environment and project requirements during the first

stage, planning the estimation strategy, data strategy, estimation method, estimation control,

and client and supplier contract during the second stage, and, finally, implementing the project

factors, team factors, and rules during the third stage. The third level outlines the features of

each activity depending on the firm and project-specific environment. In doing so, I describe why

firms select different activity features and how they proceed in their given setting. In addition,

I triangulate the identified estimation challenges with the literature on software cost estimation

and theories in information systems to derive suggestions that aim at improving the estimation

process by enhancing the consistency of estimation results. The findings address the lack of

developing theories in software engineering (e.g., Hannay et al., 2007, Jørgensen and Shepperd,

2007, Dybå and Dingsøyr, 2008, Usman et al., 2015, Idri et al., 2015, Eduardo Carbonera et al.,

5 Conclusion 105

2020). I add to the literature on software cost estimation by reflecting on the current state

of practice and enlarging the perspective on software cost estimation beyond developing and

testing individual estimation methods (Jørgensen and Shepperd, 2007, Eduardo Carbonera et al.,

2020). Further, I complement the literature on software cost estimation processes by including

peculiarities of various industries and firms’ perspectives to understand the different facets of

software cost estimation (Boehm and Papaccio, 1988, Edwards and Moores, 1994, Jørgensen and

Molokken, 2003, Usman et al., 2018). Firms can compare their current estimation process with

the provided UPI model to adapt or extend their process.

In Essay III (cf. Chapter 4), we conceptually propose a cost system design for software firms.

In doing so, we take multiple perspectives on software product costing and integrate three cost-

management and modeling approaches that allow firms to calculate current, examine past, and

influence future software product costs. Our cost system design is based on the "divide-and-

conquer" principle. Following Kaplan (1988), each of the three cost-management and modeling

approaches fulfills a specific purpose ("Divide"). Then, we utilize synergies between the ap-

proaches by interlinking them to a joint cost system framework ("Conquer"). The first cost-

management approach describes a life-cycle costing concept for software firms and exemplifies

principles for collecting and allocating software costs over the entire economic life cycle. The

second cost-modeling approach illustrates an inherent cost allocation model to define a cause-

and-effect relationship between costs and project cost drivers. The third cost-management ap-

proach outlines an adapted target costing approach to account for software’s intangibility and

the development process’ creative nature. We follow the calls for research to define principles for

developing cost systems for software firms (Astromskis et al., 2014). Further, we add to the cost

system design literature by defining guidelines on how firms can compute their software product

costs (Otley, 1980, Messner, 2016).

5.2 Limitations

The conducted experiment in Essay I has limitations. First, my results might not generalize

to other information load settings. I manipulate information overload by using a BSC with

16 measures (Ding and Beaulieu, 2011), representing an abstraction of the increasing volume

of information induced by AI and big data and reducing real-world complexity. Second, the

experimental setting includes only a single-decision rule by solely focusing on maximizing the

5 Conclusion 106

net profit, which facilitates the analysis and simplifies reality (Dalla Via et al., 2019). In practice,

managers can face multiple decision rules and must weigh the given measures against each other.

The developed process model of Essay II also has limitations. I focus on depicting the process

of estimating software costs, identifying estimation challenges, and deriving propositions for

which a qualitative approach is suitable and enables scholars to gain insights. However, I do not

analyze whether and how defining an initial estimate in early project phases influences managers

in designing the ongoing development process, i.e., whether an anchoring effect occurs. Further,

despite deriving propositions for managers to improve their estimation process, I do not suggest

a normative cost estimation process that scholars or practitioners can apply to achieve better

results. Both shortcomings can also be related to the small sample size, which does not allow

a quantitative comparison of different project stages, activities, and activity features and their

effect on estimation accuracy. Moreover, the findings are limited to individual projects. I cannot

assume that the results can be generalized to other software development practices, such as

continuous developments or research projects.

The results of Essay III are subject to limitations. We consider our cost system design as a

starting point for defining firm-specific solutions, but neither as a finite nor definitive solution to

software product costing in firms. We focus on conceptually deriving the cost system design by

taking multiple perspectives and focusing on three objectives: calculate current, evaluate past,

and manage future software product costs. However, our main limitation is that we did not

validate our suggested cost system design and, thus, lack evidence that our proposed cost system

design increases the accuracy of software product costing. In this context, we cannot assume how

transferable and practical the guidelines are for developing the suggested cost system design for

a broad range of software-producing firms in different industries. Further, the limitations of the

suggested cost-management and modeling systems have weaknesses as they rely on simplified

assumptions of reality.

The dissertation also has limitations as a comprehensive work itself. The dissertation tackles

three issues in costing and decision making of firms affected by the digital transformation. To

answer the different research questions, I apply different methodologies and present evidence

from multiple perspectives. However, I do not use the results of one essay as an input variable

for the other essays. First, I lack to evaluate which process activities of estimating software costs

are prone to overloading managers with information. The same applies to the suggested cost

system design as I do not analyze which situations of the different cost-management or modeling

5 Conclusion 107

systems accommodate the risk of information overload. Future researchers could analyze which

decision-making frameworks, reports, or financial ratios should be adapted in software product

costing. Second, I do not link the cost estimation process to the proposed cost system design

for software firms, which aims to calculate current, examine past, and influence future software

product costs. Essay II aims to analyze the software cost estimation process on a granular

project level, from understanding the project requirements and environment to implementing

the actual estimation. In doing so, I take the perspective of a project controller or manager

who focuses on estimating the costs of his or her responsible project. In contrast, Essay III

aims to outline why firms must adapt their extant cost systems to the requirements of intangible

products on a firm or departmental level. Here, I take the perspective of a chief controlling

officer or head of controlling who is responsible for defining congruent cost-management and

modeling systems that allow firms to gain multiple perspectives on product costing and, thus,

improve decision making. A continuation of my work would be to extend the suggested cost

system design (cf. Essay III in Chapter 4) by integrating the software cost estimation process

on an individual project level (cf. Essay II in Chapter 3) according to the divide-and-conquer

principle.

5.3 Avenues for future research

Essay I reveals interesting opportunities for future research. First, researchers could validate my

experimental results in a field study with multiple decision rules to address the external validity

concerns. Second, they could vary the information overload manipulation and examine whether

and how digital working environments induce information overload and influence decision-making

quality. Third, future scholars could investigate additional control mechanisms to mitigate the

adverse effects of information overload on decision quality in the absence of decision aids.

Based on the results of Essay II, scholars and practitioners should validate the UPI model and

compare the estimation accuracy when implementing the UPI model with the accuracy from

extant processes. The findings allow scholars to improve the model while aiming at deriving a

normative model that fulfills software cost estimation’s social and technical aspects. Further, the

interviews highlight that firms that need to make a project bid or outline medium or long-term

budget requirements particularly need help estimating the software costs in early project phases

5 Conclusion 108

with unstable product requirements. Scholars should try to find solutions for such settings where

analogies are rarely available.

The limitations of Essay III reveal several avenues for future research. Scholars and practi-

tioners can follow our guidelines for building a cost system design and validate the results in a

case study. In particular, we propose that scholars validate the cost system design in four steps

and combine academic and practical insights. First, scholars can extend our cost system de-

sign by expert-based evaluations of current software costing practices by leveraging focus group

workshops. Second, scholars can add further industry-specific requirements. Third, scholars

can focus on one cost-management or modeling approach of the cost system design to generate

lead user stories, receive feedback, and continuously improve the approach. Fourth, scholars and

practitioners can implement a prototype of the selected cost-management or modeling approach

by conducting test runs with the respective lead users. Based on the test runs, they can monitor

the performance, incorporate feedback, and improve the approach.

This dissertation provides further opportunities for research and practice. Scholars can pick

up the results of introducing accountability as a control mechanism for decision-making under

information overload (cf. Essay I in Chapter 2) for introducing new cost-management practices

(cf. Essay II in Chapter 3 and Essay III in Chapter 4). They can investigate how firms

implement new cost-management practices using different forms of accountability. Enforcing

new cost-management practices can shape what managers should be held accountable for (i.e.,

outcome accountability) (Siegel-Jacobs and Yates, 1996, Chang et al., 2013, Patil et al., 2014),

how the practice should be performed (i.e., process accountability) (Lerner and Tetlock, 1999,

Dalla Via et al., 2019), and who should be responsible for the outcomes or processes (i.e., personal

accountability). Scholars can examine which accountability type supports the adaption of the

suggested cost-management and modeling practices in the context of management accounting

change and whether this changes throughout the implementation.

5.4 Concluding remarks

How can scholars and practitioners now proceed? Referring to Herbert Diess’ quote on managing

the digital transformation as the central task of the automotive industry, firms like Volkswagen

already rebuild their organization to account for the development and offering of digital prod-

ucts. However, adjusting the organizational structure is only part of the puzzle to survive in a

5 Conclusion 109

digital world. I examine how controllers should provide information to decision-makers in the

context of an increasing volume of available information. I comprehensively describe how project

managers currently estimate software project costs and suggest guidelines to chief controlling

officers for re-designing their cost systems on departmental and firm levels to meet digital prod-

uct requirements. In conclusion, this dissertation improves the understanding of controllers for

the implications of the digital transformation on firms’ decision-making and cost-management

practices and provides suggestions for how firms can approach the changes.

Appendix

Appendix to Essay I

Figure A.1: Case-related instructions.

Notes: This figure displays the case-related instructions participants read in the Accountability—Present and Accountabil-
ity—Absent conditions.

110

Appendix 111

Figure A.2: BSC data.

Notes: This figure displays the BSC data in the Accountability—Absent condition. In addition to the BSC data, explana-
tions of the measures were provided when participants hovered with their mouse pointer over the respective measures.

Appendix 112

Figure A.3: A briefing note.

Appendix 113

Figure A.4: Sequence of events in the experimental design.

Appendix 114

Appendix to Essay II

Table A.1: Case study protocol.

Structure Protocol items

Research
objective

I aim to develop a deeper understanding of the software cost estimation process
and explore how firms structure and conduct this task.

Research
question

How do firms estimate software project costs?

Interview
guide

(1) Personal introduction of the researcher (background and prior experience,
research interests and objective)
(2) Information on interview operations (explanation of recording practice and
anonymity, clarification of the next steps after the interview)
(3) Interview questions part I (see table A.2)
(4) Interview questions part II (see table A.2)
(5) Interview questions part III (see table A.2)
(6) Interview questions part IV (see table A.2)
(7) Interview questions part V (see table A.2)
(8) Potential questions of the interviewee

Notes: This table provides an overview of the case study protocol based on the recommended structure of Yin (2018).

Appendix 115

Table A.2: Interview questions.

Structure Questions

I: Introduction and
personal experience

1. Please state your current position and describe the roles and respon-
sibilities you have held in the field of software development and cost
estimation.
2. What is your field of expertise in software development and cost
estimation?

II: Estimation pro-
cess and methods

3. When you think of a recent individual project, please describe the
entire software cost or effort estimation process with regard to a specific
development activity.

• How did you leverage popular software cost estimation methods?

• Why are you using that specific type of process or method?

• On which criteria did the choice of process or method depend?

• How did you control the estimation process? Which mechanisms
did you apply?

III: Data manage-
ment

4. Talking about recent project examples, how did you leverage data to
estimate software costs, e.g., how did you collect, train and/or calibrate
cost or effort data?

IV: Evaluation of
estimation results

5. Looking at past projects, what were the main cost drivers?

6. If applicable, what were the main reasons for cost under- or overes-
timation?
7. What are your improvement suggestions to increase the estimation
accuracy?

V: Outlook and
trends

8. Where do you see future potential in the field of software cost esti-
mation?

Notes: This table includes an overview of the interview questions. Each interview consisted of five parts. However, the
table does not display which specific question I asked, considering the previous answers of the interviewee.

Appendix 116

Figure A.5: Overview of the data structure.

Appendix 117

Figure A.6: Data structure of the Understand phase.

Notes: This figure displays the data structure of the Understand phase as suggested by Gioia et al. (2012). Each 1st order
concept can consist of multiple codes with identical meaning.

Appendix 118

Figure A.7: Data structure of the Plan phase (1/2).

Notes: This figure displays the data structure of the Plan phase as suggested by Gioia et al. (2012). Each 1st order concept
can consist of multiple codes with identical meaning.

Appendix 119

Figure A.8: Data structure of the Plan phase (2/2).

Notes: This figure displays the data structure of the Plan phase as suggested by Gioia et al. (2012). Each 1st order concept
can consist of multiple codes with identical meaning.

Appendix 120

Figure A.9: Data structure of the Implement phase.

Notes: This figure displays the data structure of the Implement phase as suggested by Gioia et al. (2012). Each 1st order
concept can consist of multiple codes with identical meaning.

Appendix 121

Appendix to Essay III

Figure A.10: Cost structure table for industrial goods and information goods.

Notes: This figure compares the cost structures under equal conditions with regard to the timeline and type of cost
occurrence.

Appendix 122

Figure A.11: Illustration of the dynamic target costing process.

Appendix 123

Figure A.12: Description of the dynamic target costing process.

Bibliography

T. K. Abdel-Hamid. A study of staff turnover, acquisition, and assimilation and their impact

on software development cost and schedule. Journal of Management Information Systems, 6

(1):21–40, 1989.

R. Adner, P. Puranam, and F. Zhu. What is different about digital strategy? From quantitative

to qualitative change. Strategy Science, 4(4):253–261, 2019.

Aeresospace Vehicle Systems Institute. Motivation for advancing the savi program, 2016. URL

https://savi.avsi.aero/about-savi/savi-motivation/. Date accessed: 17 Oct 2022.

S. Afhüppe, P. Brors, and S. Menzel. Noch ist es nicht zu spät - VW-

Chef Diess warnt vor Abhängigkeit in der Batteriezellentechnik. Handels-

blatt, 2018. URL https://www.handelsblatt.com/unternehmen/industrie/

interview-noch-ist-es-nicht-zu-spaet-vw-chef-diess-warnt-vor-abhaengigkeit-in\

-der-batteriezellentechnik/22934412.html. Date accessed: 29 Sep 2022.

A. Afuah and C. Tucci. Internet Business Models and Strategies: Text and Cases. Boston

McGraw-Hill, 2001.

T. Ahrens. Styles of accountability. Accounting, Organizations and Society, 21(2-3):139–173,

1996.

A. J. Albrecht. Measuring application development productivity. In Proceedings of the Joint

SHARE, GUIDE, and IBM Application Development Symposium, pages 83–92, Monterey, CA,

1979.

L. Angelis and I. Stamelos. A simulation tool for efficient analogy based cost estimation. Em-

pirical Software Engineering, 5(1):35–68, 2000.

124

https://savi.avsi.aero/about-savi/savi-motivation/
https://www.handelsblatt.com/unternehmen/industrie/interview-noch-ist-es-nicht-zu-spaet-vw-chef-diess-warnt-vor-abhaengigkeit-in\ -der-batteriezellentechnik/22934412.html
https://www.handelsblatt.com/unternehmen/industrie/interview-noch-ist-es-nicht-zu-spaet-vw-chef-diess-warnt-vor-abhaengigkeit-in\ -der-batteriezellentechnik/22934412.html
https://www.handelsblatt.com/unternehmen/industrie/interview-noch-ist-es-nicht-zu-spaet-vw-chef-diess-warnt-vor-abhaengigkeit-in\ -der-batteriezellentechnik/22934412.html

Bibliography 125

Y. Asiedu and P. Gu. Product life cycle cost analysis: State of the art review. International

Journal of Production Research, 36(4):883–908, 1998.

S. Astromskis, A. Janes, A. Sillitti, and G. Succi. An approach to non-invasive cost accounting.

In EUROMICRO-Conference on Software Engineering and Advanced Applications, pages 30–

37, Washington, DC, USA, 2014. IEEE Computer Society.

R. D. Austin and L. Devin. Research commentary —weighing the benefits and costs of flexibility

in making software: Toward a contingency theory of the determinants of development process

design. Information Systems Research, 20(3):462–477, 2009.

R. Balakrishnan and K. Sivaramakrishnan. A critical overview of the use of full–cost data for

planning and pricing. Journal of Management Accounting Research, 14(1):3–31, 2002.

R. Balakrishnan, S. Hansen, and E. Labro. Evaluating heuristics used when designing product

costing systems. Management Science, 57(3):520–541, 2011.

R. Balakrishnan, E. Labro, and K. Sivaramakrishnan. Product costs as decision aids: An analysis

of alternative approaches (part 1). Accounting Horizons, 26(1):1–20, 2012.

R. D. Banker, H. Chang, and C. F. Kemerer. Evidence on economies of scale in software

development. Information and Software Technology, 36(5):275–282, 1994.

R. D. Banker, G. Potter, and D. Srinivasan. An empirical investigation of an incentive plan that

includes nonfinancial performance measures. The Accounting Review, 75(1):65–92, 2000.

R. D. Banker, H. Chang, and M. J. Pizzini. The balanced scorecard: Judgmental effects of

performance measures linked to strategy. The Accounting Review, 79(1):1–23, 2004.

G. Bartlett, E. Johnson, and P. Reckers. Accountability and role effects in balanced scorecard

performance evaluations when strategy timeline is specified. European Accounting Review, 23

(1):143–165, 2014.

D. Basten and W. Mellis. A current assessment of software development effort estimation. In

2011 International Symposium on Empirical Software Engineering and Measurement, pages

235–244, Washington, DC, USA, 2011. IEEE.

D. M. Becker and A. A. Gaivoronski. Optimisation approach to target costing under uncertainty

with application to ICT-service. International Journal of Production Research, 56(5):1904–

1917, 2018.

Bibliography 126

I. Benbasat and I. Vessey. Programmer and analyst time/cost estimation. MIS Quarterly, 4(2):

31, 1980.

A. Bharadwaj, O. A. El Sawy, P. A. Pavlou, and N. Venkatraman. Digital business strategy:

Toward a next generation of insights. MIS Quarterly, 37(2):471–482, 2013.

H. K. Bhargava and V. Choudhary. Research note: When is versioning optimal for information

goods? Management Science, 54(5):1029–1035, 2008.

A. Bhimani and M. Bromwich. Management accounting in a digital and global economy: The

interface of strategy, technology, and cost information. In Accounting, Organizations, and

Institutions: Essays in Honour of Anthony Hopwood. Oxford University Press, 2009.

A. Bhimani and M. Bromwich. Management accounting: Retrospect and prospect. CIMA Pub-

lishing, Amsterdam and Oxford, 2010.

A. Bhimani and L. Willcocks. Digitisation, ‘big data’ and the transformation of accounting

information. Accounting and Business Research, 44(4):469–490, 2014.

J. G. Birnberg, V. B. Hoffman, and S. Yuen. The accountability demand for information in

China and the US–a research note. Accounting, Organizations and Society, 33(1):20–32, 2008.

B. W. Boehm. Software engineering economics. Prentice-Hall, 1981.

B. W. Boehm and P. N. Papaccio. Understanding and controlling software costs. IEEE Trans-

actions on Software Engineering, 14(10):1462–1477, 1988.

M. Bradley and R. Dawson. Whole life cost: The future trend in software development. Software

Quality Journal, 8(2):121–131, 1999.

K. Brands and M. Holtzblatt. Business analytics: Transforming the role of management accoun-

tants. Management Accounting Quarterly, 16(3):1–12, 2015.

H. Brown-Liburd, H. Issa, and D. Lombardi. Behavioral implications of big data’s impact on

audit judgment and decision making and future research directions. Accounting Horizons, 29

(2):451–468, 2015.

M. Broy. Challenges in automotive software engineering. In Proceeding of the 28th International

Conference on Software Engineering, pages 33–42, New York, USA, 2006. ACM Press.

Bibliography 127

B. Brügge and A. H. Dutoit. Object-oriented software engineering: Using UML, patterns, and

Java. Prentice Hall, 3rd edition, 2014.

E. Brynjolfsson and K. McElheran. Data in action: Data-driven decision making in U.S. manu-

facturing: Working papers. Available at SSRN, 2016.

E. Brynjolfsson, L. M. Hitt, and H. H. Kim. Strength in numbers: How does data-driven

decisionmaking affect firm performance? Available at SSRN, 2011.

E. Brynjolfsson, C. Wang, and X. Zhang. The economics of it and digitization: Eight questions

for research. MIS Quarterly, 45(1):473–477, 2021.

CARIAD SE. Car.software organisation is now CARIAD, 2021. URL https://cariad.

technology/de/en/news/stories/car-software-organisation-is-now-cariad.html.

Date accessed: 13 Dec 2022.

J. L. Carlo, K. Lyytinen, and R. J. Boland. Dialectics of collective minding: Contradictory

appropriations of information technology in a high-risk project. MIS Quarterly, 36(4):1081,

2012.

M. Castells. The rise of the network society. The information age: Economy, society, and culture.

Wiley-Blackwell, Oxford, 2nd edition, 2010.

L. J. Chang, M. M. Cheng, and K. T. Trotman. The effect of outcome and process accountability

on customer–supplier negotiations. Accounting, Organizations and Society, 38(2):93–107, 2013.

R. K. Chellappa and A. Mehra. Cost drivers of versioning: Pricing and product line strategies

for information goods. Management Science, 64(5):2164–2180, 2018.

E. G. J. Chewning and A. M. Harrell. The effect of information load on decision makers’

cue utilization levels and decision quality in a financial distress decision task. Accounting,

Organizations and Society, 15(6):527–542, 1990.

T. Chow and D.-B. Cao. A survey study of critical success factors in agile software projects.

Journal of Systems and Software, 81(6):961–971, 2008.

C. W. Cobb and P. H. Douglas. A theory of production. The American Economic Review, 18

(1):139–165, 1928.

https://cariad.technology/de/en/news/stories/car-software-organisation-is-now-cariad.html
https://cariad.technology/de/en/news/stories/car-software-organisation-is-now-cariad.html

Bibliography 128

A. G. Coenenberg, T. Fischer, and J. Schmitz. Target costing und Product life cycle costing

als Instrumente des Kostenmanagements. In Kostenmanagement, pages 195–232. Springer,

Berlin, Heidelberg, 1997.

T. Connolly and D. Dean. Decomposed versus holistic estimates of effort required for software

writing tasks. Management Science, 43(7):1029–1045, 1997.

R. Cooper and R. S. Kaplan. Measure costs right: Make the right decisions. Harvard Business

Review, 66(5):96–103, 1988.

R. Cooper and R. S. Kaplan. The promise–and peril–of integrated cost systems. Harvard

Business Review, 76(4):109–119, 1998.

J. M. Corbin and A. Strauss. Grounded theory research: Procedures, canons, and evaluative

criteria. Qualitative Sociology, 13:3–21, 1990.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,

Cambridge 2009, 3rd edition, 2009.

N. Dalla Via, P. Perego, and M. Van Rinsum. How accountability type influences information

search processes and decision quality. Accounting, Organizations and Society, 75:79–91, 2019.

S. Datar and M. Gupta. Aggregation, specification and measurement errors in product costing.

The Accounting Review, 69(4):567–591, 1994.

S. Datar, M. V. Rajan, and C. T. Horngren. Horngren’s cost accounting: A managerial emphasis.

Pearson, Essex, United Kingdom, 17th edition, 2021.

S. Ding and P. Beaulieu. The role of financial incentives in balanced scorecard-based performance

evaluations: Correcting mood congruency biases. Journal of Accounting Research, 49(5):1223–

1247, 2011.

M. J. Driver and S. Streufert. Integrative complexity: An approach to individuals and groups

as information-processing systems. Administrative Science Quarterly, pages 272–285, 1969.

T. Dybå and T. Dingsøyr. Empirical studies of agile software development: A systematic review.

Information and Software Technology, 50(9):833–859, 2008.

C. Ebert. The impacts of software product management. Journal of Systems and Software, 80

(6):850–861, 2007.

Bibliography 129

C. Eduardo Carbonera, K. Farias, and V. Bischoff. Software development effort estimation: A

systematic mapping study. IET Software, 14(4):328–344, 2020.

J. S. Edwards and T. T. Moores. A conflict between the use of estimating and planning tools

in the management of information systems. European Journal of Information Systems, 3(2):

139–147, 1994.

K. M. Eisenhardt. Building theories from case study research. The Academy of Management

Review, 14(4):532–550, 1989.

K. M. Eisenhardt and M. E. Graebner. Theory building from cases: Opportunities and chal-

lenges. The Academy of Management Journal, 50(1):25–32, 2007.

M. J. Eppler and J. Mengis. The concept of information overload: A review of literature from

organization science, accounting, marketing, mis, and related disciplines. The Information

Society, 20(5):325–344, 2004.

P. Everaert, S. Loosveld, T. van Acker, M. Schollier, and G. Sarens. Characteristics of tar-

get costing: Theoretical and field study perspectives. Qualitative Research in Accounting &

Management, 3(3):236–263, 2006.

R. Ewert and C. Ernst. Target costing, co-ordination and strategic cost management. European

Accounting Review, 8(1):23–49, 1999.

R. Ewert and A. Wagenhofer. Interne Unternehmensrechnung. Springer, Berlin, Heidelberg, 8th

edition, 2014.

D. D. Fehrenbacher, S. E. Kaplan, and C. Moulang. The role of accountability in reducing the

impact of affective reactions on capital budgeting decisions. Management Accounting Research,

47:100650, 2020.

R. G. Fichman and C. F. Kemerer. Activity based costing for component-based software devel-

opment. Information Technology and Management, 3(1/2):137–160, 2002.

R. G. Fichman, B. L. Dos Santos, and Z. Zheng. Digital innovation as a fundamental and powerful

concept in the information systems curriculum. MIS Quarterly, 38(2):329–A15, 2014.

D. Fleisig. Adding information may increase overconfidence in accuracy of knowledge retrieval.

Psychological Reports, 108(2):379–392, 2011.

Bibliography 130

G. Friedl, C. Hofmann, and B. Pedell. Kostenrechnung: eine entscheidungsorientierte Ein-

führung. Vahlen, 2017.

Gartner glossary, 2020. URL https://www.gartner.com/en/information-technology/

glossary/digitalization. Date accessed: 19 Oct 2022.

M. Gervais, Y. Levant, and C. Ducrocq. Time-driven activity-based costing (TDABC): An

initial appraisal through a longitudinal case study. Journal of Applied Management Accounting

Research, 8(2):1–20, 2010.

D. A. Gioia, K. G. Corley, and A. L. Hamilton. Seeking qualitative rigor in inductive research:

Notes on the Gioia methodology. Organizational Research Methods, 16(1):15–31, 2012.

S. M. Glover. The influence of time pressure and accountability on auditors’ processing of

nondiagnostic information. Journal of Accounting Research, 35(2):213–226, 1997.

A. Gopal, K. Sivaramakrishnan, M. S. Krishnan, and T. Mukhopadhyay. Contracts in offshore

software development: An empirical analysis. Management Science, 49(12):1671–1683, 2003.

L. A. Gordon. Allocating service departments’ costs: Methodology and case study. Accounting

and Business Research, 5(17):3–8, 1974.

A. Gupta, K. Kannan, and P. Sanyal. Economic experiments in information systems. MIS

Quarterly, 42(2):595–606, 2018.

T. Halkjelsvik and M. Jørgensen. From origami to software development: A review of studies

on judgment-based predictions of performance time. Psychological Bulletin, 138(2):238–271,

2012.

A. T. Hall, M. T. Royle, R. A. Brymer, P. L. Perrewé, G. R. Ferris, and W. A. Hochwarter.

Relationships between felt accountability as a stressor and strain reactions: The neutralizing

role of autonomy across two studies. Journal of Occupational Health Psychology, 11(1):87,

2006.

A. T. Hall, D. D. Frink, and M. R. Buckley. An accountability account: A review and synthesis

of the theoretical and empirical research on felt accountability. Journal of Organizational

Behavior, 38(2):204–224, 2017.

J. E. Hannay, D. I. Sjoberg, and T. Dyba. A systematic review of theory use in software

engineering experiments. IEEE Transactions on Software Engineering, 33(2):87–107, 2007.

https://www.gartner.com/en/information-technology/glossary/digitalization
https://www.gartner.com/en/information-technology/glossary/digitalization

Bibliography 131

M. L. Harris, R. W. Collins, and A. R. Hevner. Control of flexible software development under

uncertainty. Information Systems Research, 20(3):400–419, 2009.

M. Hartmann and B. E. Weißenberger. Decision-making in the capital budgeting context–effects

of type of decision aid and increases in information load. Available at SSRN, 2020.

N. C. Haugen. An empirical study of using planning poker for user story estimation. In Proceed-

ings of the Conference on AGILE 2006, pages 23–34, USA, 2006. IEEE Computer Society.

F. J. Heemstra. Software cost estimation. Information and Software Technology, 34(10):627–639,

1992.

O. Henfridsson and R. Lindgren. User involvement in developing mobile and temporarily inter-

connected systems. Information Systems Journal, 20(2):119–135, 2010.

J. Hihn and H. Habib-Agahi. Cost estimation of software intensive projects: a survey of cur-

rent practices. In 13th International Conference on Software Engineering, pages 276–287,

Washington, DC, USA, 1991. IEEE Computer Society.

B. Hinings, T. Gegenhuber, and R. Greenwood. Digital innovation and transformation: An

institutional perspective. Information and Organization, 28(1):52–61, 2018.

T. Hiromoto. Another hidden edge—Japanese management accounting. Harvard Business Re-

view, 66(4):22–26, 1988.

V. B. Hoffman and J. M. Patton. Accountability, the dilution effect, and conservatism in auditors’

fraud judgments. Journal of Accounting Research, 35(2):227–237, 1997.

P. Horváth and R. Mayer. Konzeption und Entwicklungen der Prozeßkostenrechnung. In

Prozeßkostenrechnung, pages 59–86. Gabler Verlag, Wiesbaden, 1995.

J. L. Huang, P. G. Curran, J. Keeney, E. M. Poposki, and R. P. DeShon. Detecting and deterring

insufficient effort responding to surveys. Journal of Business and Psychology, 27(1):99–114,

2012.

S.-J. Huang, N.-H. Chiu, and L.-W. Chen. Integration of the grey relational analysis with genetic

algorithm for software effort estimation. European Journal of Operational Research, 188(3):

898–909, 2008.

Bibliography 132

H. Huijgens, A. van Deursen, L. L. Minku, and C. Lokan. Effort and cost in software engineering:

A comparison of two industrial data sets. In Proceedings of the 21st International Conference

on Evaluation and Assessment in Software Engineering, pages 51–60, New York, USA, 2017.

ACM.

K. A. Humphreys, M. S. Gary, and K. T. Trotman. Dynamic decision making using the balanced

scorecard framework. The Accounting Review, 91(5):1441–1465, 2016.

A. Idri, F. a. Amazal, and A. Abran. Analogy-based software development effort estimation: A

systematic mapping and review. Information and Software Technology, 58:206–230, 2015.

E. R. Iselin. The effects of information load and information diversity on decision quality in a

structured decision task. Accounting, Organizations and Society, 13(2):147–164, 1988.

E. R. Iselin. The effects of the information and data properties of financial ratios and statements

on managerial decision quality. Journal of Business Finance and Accounting, 20(2):249–266,

1993.

C. D. Ittner and D. F. Larcker. Innovations in performance measurement: Trends and research

implications. Journal of Management Accounting Research, 10:205, 1998a.

C. D. Ittner and D. F. Larcker. Are nonfinancial measures leading indicators of financial per-

formance? An analysis of customer satisfaction. Journal of Accounting Research, 36:1–35,

1998b.

S. Iyengar. The art of choosing. Twelve, New York, 1st edition, 2010.

J. Jermias. The influence of accountability on overconfidence and resistance to change: A

research framework and experimental evidence. Management Accounting Research, 17(4):

370–388, 2006.

R. Jones and H. Mendelson. Information goods vs. industrial goods: Cost structure and com-

petition. Management Science, 57(1):164–176, 2011.

M. Jørgensen. Top-down and bottom-up expert estimation of software development effort. In-

formation and Software Technology, 46(1):3–16, 2004a.

M. Jørgensen. A review of studies on expert estimation of software development effort. Journal

of Systems and Software, 70(1-2):37–60, 2004b.

Bibliography 133

M. Jørgensen. The influence of selection bias on effort overruns in software development projects.

Information and Software Technology, 55(9):1640–1650, 2013.

M. Jørgensen. What we do and don’t know about software development effort estimation. IEEE

Software, 31(2):37–40, 2014.

M. Jørgensen and G. J. Carelius. An empirical study of software project bidding. IEEE Trans-

actions on Software Engineering, 30(12):953–969, 2004.

M. Jørgensen and K. Molokken. A preliminary checklist for software cost management. In Third

International Conference on Quality Software, pages 134–140. IEEE, 2003.

M. Jørgensen and M. Shepperd. A systematic review of software development cost estimation

studies. IEEE Transactions on Software Engineering, 33:33–53, 2007.

M. Jørgensen, P. Mohagheghi, and S. Grimstad. Direct and indirect connections between type

of contract and software project outcome. International Journal of Project Management, 35

(8):1573–1586, 2017.

R. S. Kaplan. One cost system isn’t enough. Harvard Business Review, 66(1):61–66, 1988.

R. S. Kaplan and S. R. Anderson. Time-driven activity-based costing. Harvard Business Review,

82(11):131–138, 2004.

R. S. Kaplan and D. P. Norton. The balanced scorecard: Translating strategy into action. Harvard

Business School Press, Boston, 1996a.

R. S. Kaplan and D. P. Norton. Using the balanced scorecard as a strategic management system.

Harvard Business Review, (11):75–85, 1996b.

R. S. Kaplan and D. P. Norton. Transforming the balanced scorecard from performance mea-

surement to strategic management: Part I. Accounting Horizons, 15(1):87–104, 2001a.

R. S. Kaplan and D. P. Norton. Transforming the balanced scorecard from performance mea-

surement to strategic management: Part II. Accounting Horizons, 15(2):147–160, 2001b.

J. Karimi and Z. Walter. The role of dynamic capabilities in responding to digital disruption: A

factor-based study of the newspaper industry. Journal of Management Information Systems,

32:39–81, 2015.

Bibliography 134

Y. Kato. Target costing support systems: Lessons from leading Japanese companies. Manage-

ment Accounting Research, 4(1):33–47, 1993.

A. S. Kelton and U. S. Murthy. The effects of information disaggregation and financial statement

interactivity on judgments and decisions of nonprofessional investors. Journal of Information

Systems, 30(3):99–118, 2016.

J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: Providing statistical inference

to analogy-based software cost estimation. IEEE Transactions on Software Engineering, 34

(4):471–484, 2008.

W. Kilger, J. R. Pampel, and K. Vikas. Flexible Plankostenrechnung und Deckungsbeitragsrech-

nung. Gabler Verlag, Wiesbaden, 2012.

T. Knauer and K. Möslang. The adoption and benefits of life cycle costing. Journal of Accounting

& Organizational Change, 14(2):188–215, 2018.

E. Kocaguneli, T. Menzies, and J. W. Keung. On the value of ensemble effort estimation. IEEE

Transactions on Software Engineering, 38(6):1403–1416, 2012.

E. Kula, E. Greuter, A. van Deursen, and G. Gousios. Factors affecting on-time delivery in

large-scale agile software development. IEEE Transactions on Software Engineering, 48(9):

3573–3592, 2022.

E. Labro and M. Vanhoucke. A simulation analysis of interactions among errors in costing

systems. The Accounting Review, 82(4):939–962, 2007.

A. L. Lederer and J. Prasad. Causes of inaccurate software development cost estimates. Journal

of Systems and Software, 31(2):125–134, 1995.

A. L. Lederer, R. Mirani, B. S. Neo, C. Pollard, J. Prasad, and K. Ramamurthy. Information

system cost estimating: A management perspective. MIS Quarterly, 14(2):159, 1990.

J. S. Lerner and P. E. Tetlock. Accounting for the effects of accountability. Psychological Bulletin,

125(2):255, 1999.

D. J. Levitin. The organized mind: Thinking straight in the age of information overload. Penguin,

2014.

J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter. A flexible method for software effort estimation

by analogy. Empirical Software Engineering, 12(1):65–106, 2007.

Bibliography 135

R. Libby, R. Bloomfield, and M. W. Nelson. Experimental research in financial accounting.

Accounting, Organizations and Society, 27(8):775–810, 2002.

T. Libby, S. E. Salterio, and A. Webb. The balanced scorecard: The effects of assurance and

process accountability on managerial judgment. The Accounting Review, 79(4):1075–1094,

2004.

M. G. Lipe and S. E. Salterio. The balanced scorecard: Judgmental effects of common and

unique performance measures. The Accounting Review, 75(3):283–298, 2000.

M. G. Lipe and S. E. Salterio. A note on the judgmental effects of the balanced scorecard’s

information organization. Accounting, Organizations and Society, 27(6):531–540, 2002.

B. R. Lord. Strategic management accounting: The emperor’s new clothes? Management

Accounting Research, 7(3):347–366, 1996.

R. F. Lusch and S. Nambisan. Service innovation: A service-dominant logic perspective. MIS

Quarterly, 39(1):155–175, 2015.

O. Malgonde and K. Chari. An ensemble-based model for predicting agile software development

effort. Empirical Software Engineering, 24(2):1017–1055, 2019.

R. Maltzman and D. Epstein. Project Workflow Management: A Business Process Approach. J.

Ross Publishing, Florida, USA, 2013.

C. A. Maritan. Capital investment as investing in organizational capabilities: An empirically

grounded process model. Academy of Management Journal, 44(3):513–531, 2001.

L. M. Maruping, V. Venkatesh, and R. Agarwal. A control theory perspective on agile method-

ology use and changing user requirements. Information Systems Research, 20(3):377–399,

2009.

C. Matt, T. Hess, and A. Benlian. Digital transformation strategies. Business & Information

Systems Engineering, 57(5):339–343, 2015.

McKinsey & Company. Mastering automotive software-launch excellence: Auto-

motive players can crack the code on superior launch performance by reduc-

ing complexity and increasing robustness in embedded software development., 2020.

URL https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/

mastering-automotive-software-launch-excellence. Date accessed: 17 Oct 2022.

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mastering-automotive-software-launch-excellence
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mastering-automotive-software-launch-excellence

Bibliography 136

McKinsey & Company. Cracking the complexity code in embedded systems development:

How to manage—and eventually how to master—complexity in embedded systems devel-

opment., 2021. URL https://www.mckinsey.com/industries/advanced-electronics/

our-insights/cracking-the-complexity-code-in-embedded-systems-development.

Date accessed: 17 Oct 2022.

T. Menzies and M. Shepperd. Special issue on repeatable results in software engineering predic-

tion. Empirical Software Engineering, 17(1-2):1–17, 2012.

T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best practices for effort estimation. IEEE

Transactions on Software Engineering, 32(11):883–895, 2006.

T. Menzies, Y. Yang, G. Mathew, B. W. Boehm, and J. Hihn. Negative results for software

effort estimation. Empirical Software Engineering, 22(5):2658–2683, 2017.

K. A. Merchant and D. T. Otley. A review of the literature on control and accountability.

Handbooks of Management Accounting Research, 2:7F85–802, 2006.

P. Meso and R. Jain. Agile software development: Adaptive systems principles and best practices.

Information Systems Management, 23(3):19–30, 2006.

M. Messner. Does industry matter? How industry context shapes management accounting

practice. Management Accounting Research, 31:103–111, 2016.

M. B. Miles, A. M. Huberman, and J. Saldaña. Qualitative data analysis: A methods sourcebook.

SAGE Publications, Thousand Oaks, 4th edition, 2019.

R. E. Miles, C. C. Snow, A. D. Meyer, and H. J. Coleman. Organizational strategy, structure,

and process. The Academy of Management Review, 3(3):546–562, 1978.

B. Mishra and I. Vaysman. Cost-system choice and incentives-traditional vs. activity-based

costing. Journal of Accounting Research, 39(3):619–641, 2001.

D. Mishra and B. Mahanty. A study of software development project cost, schedule and quality

by outsourcing to low cost destination. Journal of Enterprise Information Management, 29

(3):454–478, 2016.

K. Möller, U. Schäffer, and F. Verbeeten. Digitalization in management accounting and control:

An editorial. Journal of Management Control, 31(1-2):1–8, 2020.

https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development

Bibliography 137

K. Moløkken-Østvold and M. Jørgensen. A comparison of software project overruns - flexible

versus sequential development models. IEEE Transactions on Software Engineering, 31(9):

754–766, 2005.

K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan, H. Gallis, A. C. Lien, and S. E. Hove. A

survey on software estimation in the Norwegian industry. In 10th International Symposium

on Software Metrics, pages 208–219. IEEE, 2004.

K. Moløkken-Østvold, N. C. Haugen, and H. C. Benestad. Using planning poker for combining

expert estimates in software projects. Journal of Systems and Software, 81(12):2106–2117,

2008.

K. Moser, H. Wolff, and A. Kraft. The de-escalation of commitment: Predecisional accountability

and cognitive processes. Journal of Applied Social Psychology, 43(2):363–376, 2013.

T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula. Examining the feasibility of a case-based

reasoning model for software effort estimation. MIS Quarterly, 16(2):155, 1992.

T. E. Muller. Buyer response to variations in product information load. Journal of Applied

Psychology, 69(2):300, 1984.

V. Nguyen. Improved size and effort estimation models for software maintenance. In 26th

International Conference on Software Maintenance, pages 1–2. IEEE Computer Society, 2010.

A. Niazi, J. S. Dai, S. Balabani, and L. Seneviratne. Product cost estimation: Technique

classification and methodology review. Journal of Manufacturing Science and Engineering,

128(2):563–575, 2006.

E. Nie and I. Hammouda. An exploratory study on strategic software development outsourcing.

In 12th International Conference on Global Software Engineering, pages 106–115. IEEE, 2017.

E. Noreen. Conditions under which activity-based cost systems provide relevant costs. Journal

of Management Accounting Research, 3:159–168, 1991.

T. D. Oesterreich, F. Teuteberg, F. Bensberg, and G. Buscher. The controlling profession in the

digital age: Understanding the impact of digitisation on the controller’s job roles, skills and

competences. International Journal of Accounting Information Systems, 35:100432, 2019.

Bibliography 138

G. Ooi, C. Soh, and P. M. Lee. An activity based costing approach to systems development

and implementation. In Proceedings of the International Conference on Information Systems,

pages 341–345, Atlanta, GA, USA, 1998.

D. T. Otley. The contingency theory of management accounting: Achievement and prognosis.

Accounting, Organizations and Society, 5(4):413–428, 1980.

D. T. Otley. The contingency theory of management accounting and control: 1980–2014. Man-

agement Accounting Research, 31:45–62, 2016.

S. V. Patil, F. Vieider, and P. E. Tetlock. Process versus outcome accountability. The Oxford

Handbook of Public Accountability, pages 69–89, 2014.

S. Paul and D. L. Nazareth. Input information complexity, perceived time pressure, and infor-

mation processing in GSS-based work groups: An experimental investigation using a decision

schema to alleviate information overload conditions. Decision Support Systems, 49(1):31–40,

2010.

M. E. Porter. Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free

Press, New York, 1980.

L. H. Putnam. A general empirical solution to the macro software sizing and estimating problem.

IEEE Transactions on Software Engineering, SE-4(4):345–361, 1978.

M. Quinn, O. Elafi, and M. Mulgrew. Reasons for not changing to activity-based costing: A

survey of Irish firms. PSU Research Review, 1(1):63–70, 2017.

P. Rahmati, A. Tafti, J. Westland, and C. Hidalgo. When all products are digital: Complexity

and intangible value in the ecosystem of digitizing firms. MIS Quarterly, 45:1025–1058, 2021.

H. Rastogi, S. Dhankhar, and M. Kakkar. A survey on software effort estimation techniques.

In 5th International Conference - Confluence The Next Generation Information Technology

Summit, pages 826–830. IEEE, 2014.

T. Raz and D. Elnathan. Activity based costing for projects. International Journal of Project

Management, 17(1):61–67, 1999.

V. Resmi and S. Vijayalakshmi. Analogy-based approaches to improve software project effort

estimation accuracy. Journal of Intelligent Systems, 29(1):1468–1479, 2019.

Bibliography 139

T. Riasanow, G. Galic, and M. Böhm. Digital transformation in the automotive industry:

Towards a generic value network. In Proceedings of the European Conference on Information

Systems, 2017.

P. Riebel. Einzelkosten- und Deckungsbeitragsrechnung. Gabler Verlag, Wiesbaden, 1979.

S. Riezler. Lebenszyklusrechnung: Instrument des Controlling strategischer Projekte. Gabler

Verlag, Wiesbaden, 1996.

J. Roberts. The possibilities of accountability. Accounting, Organizations and Society, 16(4):

355–368, 1991.

P. G. Roetzel. Information overload in the information age: A review of the literature from busi-

ness administration, business psychology, and related disciplines with a bibliometric approach

and framework development. Business Research, 12(2):479–522, 2019.

N. Roztocki. Using the integrated activity-based costing and economic value added information

system for project management. In 7th Americas Conference on Information Systems, pages

1454–1460, Boston, MA, 2001.

A. Saeed, W. H. Butt, F. Kazmi, and M. Arif. Survey of software development effort estimation

techniques. In Proceedings of the 7th International Conference on Software and Computer

Applications, pages 82–86, New York, USA, 2018. ACM.

A. G. Schick, L. A. Gordon, and S. Haka. Information overload: A temporal approach. Account-

ing, Organizations and Society, 15(3):199–220, 1990.

S. C. Schneider. Information overload: Causes and consequences. Human Systems Management,

7(2):143–153, 1987.

H. M. Schroder, M. J. Driver, and S. Streufert. Human information processing: Individuals and

groups functioning in complex social situations. Holt, Rinehart and Winston, 1967.

S. Schulz-Hardt, J. Rollwage, S. K. Wanzel, J. U. Frisch, and J. A. Häusser. Effects of process

and outcome accountability on escalating commitment: A two-study replication. Journal of

Experimental Psychology: Applied, 27(1):112, 2021.

M. Schweitzer, H.-U. Küpper, G. Friedl, C. Hofmann, and B. Pedell. Systeme der Kosten- und

Erlösrechnung. Vahlen, Munich, 11th edition, 2015.

Bibliography 140

S. Scott and W. Orlikowski. The digital undertow: How the corollary effects of digital transfor-

mation affect industry standards. Information Systems Research, 33(1):311–336, 2022.

L. Selander and S. L. Jarvenpaa. Digital action repertoires and transforming a social movement

organization. MIS Quarterly, 40(2):331–352, 2016.

P. Seltsikas and W. L. Currie. Evaluating the application service provider (ASP) business model:

The challenge of integration. In Proceedings of the 35th Annual Hawaii International Confer-

ence on System Sciences, pages 2801–2809, Los Alamitos, CA, USA, 2002. IEEE Computer

Society.

C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to the Network Economy.

Harvard Business School Press, Boston, 1999.

M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE Trans-

actions on Software Engineering, 23(11):736–743, 1997.

M. D. Shields. An empirical analysis of firms ’ implementation experiences with activity - based

costing. Journal of Management Accounting Research, 7:148–166, 1995.

S. Shivendu and Z. Zhang. Versioning in the software industry: Heterogeneous disutility from

underprovisioning of functionality. Information Systems Research, 26(4):731–753, 2015.

O. Shmueli, N. Pliskin, and L. Fink. Can the outside-view approach improve planning decisions

in software development projects? Information Systems Journal, 26(4):395–418, 2016.

K. Siegel-Jacobs and J. F. Yates. Effects of procedural and outcome accountability on judgment

quality. Organizational Behavior and Human Decision Processes, 65(1):1–17, 1996.

H. A. Simon. A behavioral model of rational choice. The Quarterly Journal of Economics, 69

(1):99–118, 1955.

H. A. Simon and A. Newell. Human problem solving: The state of the theory in 1970. American

Psychologist, 26(2):145, 1971.

D. R. Smith. The design of divide and conquer algorithms. Science of Computer Programming,

5:37–58, 1985.

K. Srinivasan and D. Fisher. Machine learning approaches to estimating software development

effort. IEEE Transactions on Software Engineering, 21(2):126–137, 1995.

Bibliography 141

F. Svahn, L. Mathiassen, and R. Lindgren. Embracing digital innovation in incumbent firms:

How Volvo cars managed competing concerns. MIS Quarterly, 41(1):239–253, 2017.

M. R. Swain and S. F. Haka. Effects of information load on capital budgeting decisions. Behav-

ioral Research in Accounting, 12:171, 2000.

B. Swar, T. Hameed, and I. Reychav. Information overload, psychological ill-being, and be-

havioral intention to continue online healthcare information search. Computers in Human

Behavior, 70:416–425, 2017.

T. Tani. Interactive control in target cost management. Management Accounting Research, 6

(4):399–414, 1995.

R. C. Tausworthe. The work breakdown structure in software project management. Journal of

Systems and Software, 1:181–186, 1979.

P. E. Tetlock. Accountability and complexity of thought. Journal of Personality and Social

Psychology, 45(1):74, 1983.

P. E. Tetlock and R. Boettger. Accountability: A social magnifier of the dilution effect. Journal

of Personality and Social Psychology, 57(3):388, 1989.

P. E. Tetlock, L. Skitka, and R. Boettger. Social and cognitive strategies for coping with account-

ability: Conformity, complexity, and bolstering. Journal of Personality and Social Psychology,

57(4):632, 1989.

A. Trendowicz and R. Jeffery. Software project effort estimation: Foundations and best practice

guidelines for success. Springer, Cham, 2014.

A. Trendowicz, M. Ochs, A. Wickenkamp, J. Münch, Y. Ishigai, and T. Kawaguchi. Integrat-

ing human judgment and data analysis to identify factors influencing software development

productivity. e-Informatica, 2:47–69, 2008.

A. Trendowicz, J. Münch, and R. Jeffery. State of the practice in software effort estimation:

A survey and literature review. In Software engineering techniques, volume 4980 of LNCS

sublibrary, Programming and software engineering, pages 232–245. Springer, Heidelberg, 2011.

M. L. Tushman and D. A. Nadler. Information processing as an integrating concept in organi-

zational design. Academy of Management Review, 3(3):613–624, 1978.

Bibliography 142

M. Usman, E. Mendes, and J. Börstler. Effort estimation in agile software development. In

Proceedings of the 19th International Conference on Evaluation and Assessment in Software

Engineering, pages 1–10, New York, USA, 2015. ACM.

M. Usman, K. Petersen, J. Börstler, and P. Santos Neto. Developing and using checklists to

improve software effort estimation: A multi-case study. Journal of Systems and Software, 146:

286–309, 2018.

M. van Genuchten. Why is software late? An empirical study of reasons for delay in software

development. IEEE Transactions on Software Engineering, 17(6):582–590, 1991.

D. van Knippenberg, L. Dahlander, M. Haas, and G. George. Information, attention, and

decision making. Academy of Management Journal, 58(3):649–657, 2015.

A. R. Venkatachalam. Software cost estimation using artificial neural networks. In Proceedings

of 1993 International Conference on Neural Networks, volume 1, pages 987–990, 1993.

A. Vermerris, M. Mocker, and E. van Heck. No time to waste: The role of timing and comple-

mentarity of alignment practices in creating business value in it projects. European Journal

of Information Systems, 23(6):629–654, 2014.

G. Vial. Understanding digital transformation: A review and a research agenda. The Journal

of Strategic Information Systems, 28(2):118–144, 2019.

S. S. Vicinanza, T. Mukhopadhyay, and M. J. Prietula. Software-effort estimation: An ex-

ploratory study of expert performance. Information Systems Research, 2(4):243–262, 1991.

R. Vidgen and X. Wang. Coevolving systems and the organization of agile software development.

Information Systems Research, 20(3):355–376, 2009.

Volkswagen Group. Volkswagen strengthens new software organization,

2019. URL https://www.volkswagen-newsroom.com/en/press-releases/

volkswagen-strengthens-new-software-organization-5607. Date accessed: 17 Oct

2022.

K. S. Warner and M. Wäger. Building dynamic capabilities for digital transformation: An

ongoing process of strategic renewal. Long Range Planning, 52(3):326–349, 2019.

X. Wei and B. R. Nault. Monopoly versioning of information goods when consumers have group

tastes. Production and Operations Management, 23(6):1067–1081, 2014.

https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-strengthens-new-software-organization-5607
https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-strengthens-new-software-organization-5607

Bibliography 143

R. L. Wright. Measuring the precision of statistical cost allocations. Journal of Business &

Economic Statistics, 1(2):93–100, 1983.

M. T. Wynn, W. Z. Low, A. H. M. Ter Hofstede, and W. Nauta. A framework for cost-aware

process management: Cost reporting and cost prediction. Journal of Universal Computer

Science, 20(3):406–430, 2014.

D. Yang, Q. Wang, M. Li, Y. Yang, K. Ye, and J. Du. A survey on software cost estimation in the

Chinese software industry. In Proceedings of the 2nd International Symposium on Empirical

Software Engineering and Measurement, page 253, New York, USA, 2008. ACM.

R. K. Yin. Case study research and applications: Design and methods. SAGE, Los Angeles, 6th

edition, 2018.

Y. Yoo, O. Henfridsson, and K. Lyytinen. Research commentary–the new organizing logic

of digital innovation: An agenda for information systems research. Information Systems

Research, 21(4):724–735, 2010.

R. Zarnekow and W. Brenner. Distribution of cost over the application lifecycle–a multi-case

study. In Proceedings of the European Conference on Information Systems, 2005.

	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Theoretical background and literature context
	1.3 Methodologies and results
	1.4 Contribution to academic and practical debates
	1.5 Structure of the dissertation

	2 Finding the Needle in the Haystack: How Information Load and Accountability Influence Decision Quality
	2.1 Introduction
	2.2 Theory and hypotheses development
	2.2.1 The effect of information load
	2.2.2 The effect of accountability

	2.3 Experimental method
	2.3.1 Experimental setting
	2.3.2 Experimental conditions and variables

	2.4 Results
	2.4.1 Participants and procedure
	2.4.2 Test of hypotheses

	2.5 Discussion and conclusion

	3 Understand, Plan, and Implement: A Multiple-Case Study on How Firms Estimate Software Costs
	3.1 Introduction
	3.2 Background and related work
	3.2.1 Software cost estimation processes
	3.2.2 Software cost estimation methods

	3.3 Research design
	3.3.1 Multiple-case study research approach
	3.3.2 Data sample
	3.3.3 Data sources and analysis

	3.4 Results
	3.4.1 Outline of the UPI process model for cost estimation
	3.4.2 Description of the UPI model for software cost estimation
	3.4.2.1 Understand
	3.4.2.2 Plan
	3.4.2.3 Implement

	3.5 Challenges and propositions
	3.6 Conclusion

	4 Divide and Conquer: Designing Cost Systems for Software Firms
	4.1 Introduction
	4.2 Theory and research question
	4.2.1 Review of extant cost systems
	4.2.2 Accounting for information goods’ cost structure

	4.3 Proposed software cost-management and modeling systems
	4.3.1 Life-cycle framework for software projects
	4.3.2 Inherent cost allocation model
	4.3.3 Dynamic target costing

	4.4 Integration of the cost-management and modeling systems
	4.5 Discussion and conclusion

	5 Conclusion
	5.1 Summary of main results
	5.2 Limitations
	5.3 Avenues for future research
	5.4 Concluding remarks

	Appendix
	Bibliography

