
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Semesterarbeit in Informatics

Thesis title

Autonomous Driving Simulator and
Benchmark on Neurorobotics Platform

Liu, Hongshen

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Semesterarbeit in Informatics

Thesis title

Autonomous Driving Simulator and
Benchmark on Neurorobotics Platform

Author: Liu, Hongshen
Supervisor: Knoll Alois Christian; Prof. Dr.-Ing. habil.
Advisor: Zhou, Liguo
Submission Date: 22.12.2022

I confirm that this semesterarbeit in informatics is my own work and I have documented all
sources and material used.

Munich, 22.12.2022 Liu, Hongshen

Abstract

In our days, vehicle automation is in a continuous evolutionary phase consisting of experi-
ments, testing and validation. Accelerating the development and deployment of autonomous
vehicles and infrastructure is a real demand as these technologies have a great potential to
improve traffic safety and resolve road transport problems. The Vehicle-In-the-Loop testing is
therefore indispensable throughout the development process.This article describes two poten-
tial solutions. The first one is a simulator built with ROS as the communication framework
and Gazebo as the physical simulation platform. The motion control of the test vehicle and
the implantation of the target detection algorithm are implemented. The second simulator is
based on SUMO and Unity 3D. large scale traffic flow is generated in SUMO and mapped
to Unity 3D via TraCI server and TCP/IP communication. unity 3D generates high fidelity
mapped vehicles and performs real time simulation.ROS2 is used as the communication
framework of the algorithm module to facilitate the implantation and testing of various
perception, decision-making, and planning algorithms.

iii

Kurzfassung

Heutzutage befindet sich die Fahrzeugautomatisierung in einer kontinuierlichen Entwick-
lungsphase, die aus Experimenten, Tests und Validierung besteht. Die Beschleunigung der
Entwicklung und des Einsatzes von autonomen Fahrzeugen und Infrastrukturen ist ein echter
Bedarf, da diese Technologien ein großes Potenzial zur Verbesserung der Verkehrssicherheit
und zur Lösung von Straßenverkehrsproblemen haben. Vehicle-In-the-Loop-Tests sind daher
während des gesamten Entwicklungsprozesses unverzichtbar, und in diesem Artikel werden
zwei mögliche Lösungen beschrieben. Bei der ersten handelt es sich um einen Simulator,
der mit ROS als Kommunikationsrahmen und Gazebo als physikalische Simulationsplat-
tform aufgebaut ist. Die Bewegungssteuerung des Testfahrzeugs und die Implantation des
Zielerkennungsalgorithmus sind implementiert. Der zweite Simulator basiert auf SUMO
und Unity 3D. Ein groß angelegter Verkehrsfluss wird in SUMO generiert und über einen
TraCI-Server und TCP/IP-Kommunikation auf Unity 3D abgebildet. Unity 3D generiert
realitätsgetreu abgebildete Fahrzeuge und führt Echtzeitsimulationen durch.ROS2 wird als
Kommunikationsrahmen des Algorithmusmoduls verwendet, um die Implantation und
das Testen verschiedener Wahrnehmungs-, Entscheidungs- und Planungsalgorithmen zu
erleichtern.

iv

Contents

Abstract iii

Kurzfassung iv

1 ROS-based autonomous driving platform 1
1.1 Concept . 1

1.1.1 Advantages and disadvantages . 1
1.1.2 Related components . 1

1.2 Construction of simulation platform . 3
1.2.1 Create vehicle model . 3
1.2.2 Implementation of Ackermann steering in ROS 8
1.2.3 Implementation of Object detection . 10

2 Autonomous driving simulator based on sumo and Unity3D 11
2.1 Introduction . 11

2.1.1 Software requirements . 11
2.1.2 Softwares Version . 12

2.2 building of Unity 3D simulation scene . 13
2.2.1 Mapping and integration of map . 13
2.2.2 Add test vehicle model . 14
2.2.3 Preinstantiation of random vehicle models 15

2.3 Co-simulation based on Sumo and Unity 3D . 15
2.3.1 Simulation in Sumo . 15
2.3.2 connection between Sumo and Unity 3D 17
2.3.3 Data transfer between SUMO and Unity 3D 20

2.4 To do in the future . 26

List of Figures 27

Bibliography 28

v

1 ROS-based autonomous driving platform

1.1 Concept

Robot system simulation is a technology that simulates a physical robot system by computer.
In ROS, simulation implementation involves three main elements: modeling the robot (URDF),
creating a simulation environment (Gazebo), and sensing the environment (Rviz), and other
systematic implementations.

1.1.1 Advantages and disadvantages

Simulation plays a pivotal role in the development of robotic systems and has the following
significant advantages over physical robot implementation in R&D and testing:

1. low cost: the current high cost of robotics, often hundreds of thousands of dollars,
simulation can greatly reduce the cost and reduce the risk.

2. High efficiency: The built environment is more diverse and flexible, which can improve
test efficiency and test coverage

3. High safety: In the simulation environment, there is no need to consider the problem
of wear and tear.

The performance of the robot in the simulation environment and the actual environment is
different, in other words, the simulation does not completely simulate the real physical world,
there are some "distortion" situation, the reason:

• The physics engine used by the simulator is not yet able to simulate the real-world
physics completely and accurately.

• The simulator is built for the absolute ideal situation of joint drive (motor & gearbox),
sensor and signal communication, and currently does not support the simulation of
actual hardware defects or some critical states and other situations.

1.1.2 Related components

1. URDF
URDF is an acronym for Unified Robot Description Format, which directly translates to
Uniform (Standardized) Robot Description Format, and can be used to describe parts of
the robot’s structure in an XML way, such as the chassis, camera, LIDAR, robot arm,
and the degrees of freedom of different joints This file can be converted into a

1

1 ROS-based autonomous driving platform

visual robot model by the C++ built-in interpreter, and is an important component for
implementing robot simulation in ROS.

2. Rviz
RViz is an acronym for ROS Visualization Tool, which translates directly to ROS 3D
visualization tool. Its main purpose is to display ROS messages in three dimensions,
allowing visual representation of the data. For example: robot models can be displayed,
sensor-to-obstacle distances from laser range finder (LRF) sensors can be expressed
without programming, point cloud data from 3D distance sensors such as RealSense,
Kinect or Xtion, image values from cameras, etc.

3. RoadRunner
RoadRunner is an interactive editor that lets you design 3D scenes for simulating and
testing automated driving systems. You can customize roadway scenes by creating
region-specific road signs and markings. You can insert signs, signals, guardrails, and
road damage, as well as foliage, buildings, and other 3D models. RoadRunner provides
tools for setting and configuring traffic signal timing, phases, and vehicle paths at
intersections.

RoadRunner supports the visualization of lidar point cloud, aerial imagery, and GIS
data. You can import and export road networks using OpenDRIVE. 3D scenes built
with RoadRunner can be exported in FBX, glTF™, OpenFlight, OpenSceneGraph, OBJ,
and USD formats. The exported scenes can be used in automated driving simulators
and game engines, including CARLA, Vires VTD, NVIDIA DRIVE Sim, Baidu Apollo,
Cognata, Unity, and Unreal Engine.

4. Gazebo 11.0

Gazebo is a powerful 3D physics simulation platform with a powerful physics engine,
high quality graphics rendering, easy programming and graphics interface, and most
importantly, its open source and free nature. gazebo has the same robot model as the
one used by rviz, but requires the addition of physical properties of the robot and its
surroundings to the model, such as mass, friction coefficient, coefficient of elasticity, etc.
The sensor information of the robot can also be added to the simulation environment in
the form of a plug-in for visualization.

2

1 ROS-based autonomous driving platform

1.2 Construction of simulation platform

1.2.1 Create vehicle model

The experimental vehicle is a highly detailed model of a car with independent controllable
steering for Ackermann steering control of the two front wheels, free front and rear wheels
and a high definition camera. The vehicle model is drawn and shaped by URDF language
rules. The specific idea of the implementation is:

1. Use xacro to optimize URDF.
Use xacro to optimize URDF. Wrap some chassis parameters, variables as xacro:property.
e.g.: PI value, cart chassis radius, ground clearance, wheel radius, width, etc.

Figure 1.1: Wrap chassis parameters, variables as xacro:property

2. Use links and joints to draw chassis entities and chassis-to-wheel connections.
The link element describes a rigid body with an inertia, visual features, and collision
properties.The joint element describes the kinematics and dynamics of the joint and
also specifies the safety limits of the joint. Attension, the name of model or link must be
specific and has no same name with other objects.The below figure 1.2 shows the base
architecture frame to describe the physical relationship of the whole vehicle in URDF
file:

3

1 ROS-based autonomous driving platform

Figure 1.2: Relationship of the whole vehicle

a) Description of URDF Labels

• <link> — The corresponding model as component from the entirety model.

• <joint> — Description of relationship between link-components <joint type>
— Type of the joint:

– revolute — a hinge joint that rotates along the axis and has a limited range
specified by the upper and lower limits.

– continuous — a continuous hinge joint that rotates around the axis and
has no upper and lower limits.

– prismatic — a sliding joint that slides along the axis, and has a limited
range specified by the upper and lower limits.

– fixed — this is not really a joint because it cannot move. All degrees of free-
dom are locked. This type of joint does not require the <axis>,<calibration>,
<dynamics>, <limits> or <safety_controller>.

– floating — this joint allows motion for all 6 degrees of freedom.

4

1 ROS-based autonomous driving platform

– planar — this joint allows motion in a plane perpendicular to the axis.

• <parent>/<child>

– - the secondary label as element of <joint> label

– — declaration for the belonging relationship of referring “links”

b) Sensor Label
A new URDF file is created to describe the camera configuration. Here the stereo
camera is selected for the implantation of the algorithm related to binocular ranging
And the detailed construction for the camera sensor seeing blow scripts:

Figure 1.3: Implementation of stereo camera

According to the requirement of YOLO detect algorithm the width and height of
camera should be set as integral multiples by 32.

3. Construction of vehicle controller
Simulating a robot’s controllers in Gazebo can be accomplished using ros_control and
a simple Gazebo plugin adapter. ros_control is a framework for implementing and
managing robot controllers, and is dedicated to providing a robot-agnostic approach to
controller design with real-time performance. ros_control is derived from the PR2 robot
controller pr2_mechanism, but ros_control is completely robot-agnostic. It is now a
standard controller interface in ROS. The specific implementation method is as follows:

a) Add the gazebo_ros_control plugin to URDF file
The transmission element is an extension to the URDF robot description model
that is used to describe the relationship between an actuator and a joint. Four
transmission tags are used here to set the relationship between each of the four
wheels and the controllers. Four transmission tags are used here to set the rela-
tionship between each of the four wheels and the controller. The rear wheels are
the drive wheels and the front wheels are the steering wheels. As shown in the
figure belowthe <hardwareInterface> attribute of the rear wheel controller is set to
VelocityJointInterface, and the front wheel driver is set to EffortJointInterface.

5

1 ROS-based autonomous driving platform

Figure 1.4: Transmission for wheels and controllers

b) Add the gazebo_ros_control plugin to URDF file
In addition to the transmission tags, a Gazebo plugin needs to be added to
your URDF that actually parses the transmission tags and loads the appropriate
hardware interfaces and controller manager. By default the gazebo_ros_control
plugin is very simple, though it is also extensible via an additional plugin archi-
tecture to allow power users to create their own custom robot hardware inter-
faces between ros_control and Gazebo. Pluginlib-based interface provided by the
gazebo_ros_control Gazebo plugin is usd to implement custom interfaces between
Gazebo and ros_control for simulating more complex mechanisms (nonlinear
springs, linkages, etc).

Figure 1.5: Implementation for Gazebo_ros_controller plugin

c) Create a .yaml config file
The PID gains and controller settings must be saved in a yaml file that gets loaded
to the param server via the roslaunch file. The .yaml file is created in the config

6

1 ROS-based autonomous driving platform

folder of the package and the PID parameters for each wheel controller are written
in it. See the official documentation for details on how to do this.

d) Graphical visualization in Rviz and Gazebo
The URDF model file of the vehicle is integrated into Rviz and Gazebo via the
launch file. Rviz and Gazebo will render the URDF text into a graphical model of
the car.

i. Create roslaunch file for starting the ros_control controllers.
First the config file is uploaded to the parameter server via the rosparam
tag.The controller_spawner node starts the four joint position controllers
for the vehicle by running a python script that makes a service call to the
ros_control controller manager. The service calls tell the controller manager
which controllers you want. It also loads a third controller that publishes the
joint states of all the joints with hardware_interfaces and advertises the topic
on /joint_states. The spawner is just a helper script for use with roslaunch. The
final line starts a robot_state_publisher node that simply listens to /joint_states
messages from the joint_state_controller then publishes the transforms to /tf.
This allows you to see your simulated robot in Rviz as well as do other tasks.

ii. Create roslaunch file for starting Gazebo
the map file path is wirten to gazebo’s launch file. This map is drawn using the
Roadrunner.This map model is based on the high accuracy satellite generated
and very similar to origin location.

iii. Integration of launch file.
A new launch fild named start.launch is created for starting the whole simu-
lation. As shown in the figure belowfirst the car initial position parameters
and the car model URDF file are uploaded to the parameter server. Then the
controller launch file and the gazebo launch file and rviz node are written to
this launch file.

Figure 1.6: Launch file for Simulation

7

1 ROS-based autonomous driving platform

e) Start the Simulation using roslaunch
Run start.launch with the roslaunch command, the result is shown in the figure
below.

Figure 1.7: Visualization in Rviz and Gazebo

1.2.2 Implementation of Ackermann steering in ROS

Ackermann steering mechanism was proposed by the German vehicle engineer Lankensperger
in 1817 and later patented by his British agent Rudolph Ackermann in 1818. The Ackermann
steering mechanism (Ackermann steering) is designed to solve the problem of different
steering angles of the left and right steering wheels caused by the different steering radii of
the left and right steering wheels when the vehicle is steering. The vehicle is designed with
the steering mechanism according to the Ackermann steering geometry, and when the vehicle
turns along the curve, the equal crank of the four-link can make the steering angle of the
inner wheel bigger than the outer wheel by about 24̃ degrees, so that the center of the circle
of the four wheel paths roughly meet at the instantaneous steering center on the extension
line of the rear axle, thus allowing the vehicle to turn smoothly. Therefore, in order to ensure
the realism of the simulation and the stability of the experimental vehicle it is necessary to
implement Ackermann steering of the experimental vehicle in ROS.

1. Implementation of Ackermann steering node in Python
The speed and angular velocity of the car in the forward direction can be obtained by
subscribing to the cmd_vel topic. As shown in the figure below, the steering angle of the
dashed wheel is the subscribed angular velocity. This steering angle is the Ackermann
steering angle.

8

1 ROS-based autonomous driving platform

Figure 1.8: Ackermann steering mechanism

According to the structural analysis Ackermann kinematic model, the the following
relation is derived.

r =
l

tan Φ
(1.1)

r_R = r − w
2

(1.2)

r_L = r +
w
2

(1.3)

ϕ_i = arctan
(

l
r_R

)
(1.4)

ϕ_o = arctan
(

l
r_L

)
(1.5)

v_R = v ∗ r_R
r

(1.6)

v_L = v ∗ r_L
r

(1.7)

The angle of the two steering wheels and the speed of the two driving wheels can be
obtained by the above relation.It is then posted separately to the topic of the correspond-
ing controller speed command. Note here that the name of the topic to be published
should be the same as the name of the topic to which the gazebo_ros_control plugin is
subscribed.

2. Add node to launch file
The Ackermann steering node is integrated into the start.launch written in the previous
subsection. Once the simulation starts, the Ackermann steering node receives the speed
message from cmd_vel, and after calculation, sends the Twist of each wheel to the
controller state topic. the Gazebo controller plugin receives the speed information to
control the vehicle movement and implement Ackermann steering. [(TODO: rqt bild)]

9

1 ROS-based autonomous driving platform

1.2.3 Implementation of Object detection

Object detection is an important research branch in the field of computer vision, which is the
basic link of object recognition and tracking, and its main research content is to find out the
object of interest in the image, including object localization and classification. Among them,
traffic scene object detection and recognition is a hot problem in the field of computer vision
research, and its purpose is to detect and identify vehicles, pedestrians and other traffic scene
object information in the traffic scene using image processing, pattern recognition, machine
learning, deep learning and other technologies to achieve the goal of intelligent transportation
and automatic driving.
This subsection describes how to integrate YOLO v5 into the ROS environment.

1. Impementation of YOLO v5 node in ROS.
Based on original execute-python-file “detect.py” has another python file “Yolov5Detector.py”
with self-defined Yolov5Detector class interface been wrote in “yolov5” package. To
use YOLO v5 should in main progress validate the yolo-v5 class, second use warm-up
function “detectorWarmUp()” to initiate the neural network. And “detectImage()” is
the function that sends image-frame to main preidict detection funtion and will final
return the detected image with bonding-boxes in numpy format.

2. Publish the detected images.
In the previous subsection stereo camera parameters are set by the built-in plugin
of gazebo. gazebo publishes topics for each camera image, subscribes to the initial
image topic in the detection node, and then passes the image to Yolo_v5_detector for
processing to get an image with a booding box. Finally, the processed images are
published, and the detected images are displayed by selecting the topic published by the
detection node in rviz, as shown in the following figure. See the official documentation
on how to write post and subscribe topics.

Figure 1.9: Detected image with bonding bix

10

2 Autonomous driving simulator based on
sumo and Unity3D

2.1 Introduction

In our time, vehicle automation is in a continuous evolutionary phase consisting of experimen-
tation, testing and validation. Accelerating the development and deployment of self-driving
vehicles and infrastructure is a real need, as these technologies have great potential to improve
traffic safety and solve road transport problems. Therefore, vehicle-in-the-loop testing is
essential throughout the development process. However, most simulation software today
is unable to create a realistic simulation environment with high definition. This leads to
less accurate testing of perception algorithms. As a potential solution to meet this need,
we develop an autonomous driving simulation platform based on SUMO and Unity 3D.
The platform is able to simulate real traffic around the self-driving test vehicles. A realistic
simulation environment is generated and rendered in Unity 3D to meet the high fidelity
required for computer vision. Provides interfaces to perception, planning, and decision
algorithms to facilitate algorithm validation.

2.1.1 Software requirements

Based on the research of the software and the requirements of the simulation platform, SUMO
and Unity 3D were finally selected as the basic development platform.

1. SUMO

SUMO is an open source microscopic continuous traffic flow simulation software
developed by the German National Aerospace Center. It comes with a traffic simulation
road network editor that allows interactive editing to add roads, edit lane connections,
handle intersection areas, edit signal timings, etc. It is also possible to convert road
networks from Vissim, OpenStreetMap, OpenDrive through a separate conversion pro-
gram. Routing can be specified for each vehicle by editing the routing file, or randomly
generated using parameters. At runtime, it is possible to handle continuous traffic
simulation requirements for several square kilometers and up to tens of thousands of
vehicles simultaneously, and also provides an OpenGL-based visualization to display
the traffic simulation results in real time.In addition, SUMO also supports secondary
development based on C++.

2. Unity 3D

11

2 Autonomous driving simulator based on sumo and Unity3D

Unity 3D, also known as Unity, is a comprehensive multi-platform game development
tool developed by Unity Technologies that allows players to easily create interactive
content such as 3D video games, architectural visualizations, real-time 3D animations,
and other types of interactive content.We chose Unity for the following main reasons.

• Unity has a great ecosystem. Unity has a great community where we can get
feedback on various issues.

• Unity has a very good Asset Store resource store, we can reuse a lot of third party
tools, we don’t have to start everything from scratch and build the wheel from
scratch.

• Unity has a very efficient graphics rendering system, and we can render realistic
images in real time.

• Unity’s performance is also getting better and better now, and it can help us a lot
in terms of cloud acceleration and GPU acceleration.

• Last but not least, Unity is a traditional game engine, but now Unity is also looking
more and more at the automotive industry, including the autonomous driving
field, and Unity has recently launched a toolkit for autonomous driving, which is
one of the main reasons why we are working with Unity.

3. RoadRunner

RoadRunner is an interactive editor that lets you design 3D scenes for simulating
and testing automated driving systems. You can customize roadway scenes by creating
region-specific road signs and markings. You can insert signs, signals, guardrails, and
road damage, as well as foliage, buildings, and other 3D models. RoadRunner provides
tools for setting and configuring traffic signal timing, phases, and vehicle paths at
intersections.

RoadRunner supports the visualization of lidar point cloud, aerial imagery, and GIS
data. You can import and export road networks using OpenDRIVE. 3D scenes built
with RoadRunner can be exported in FBX, glTF™, OpenFlight, OpenSceneGraph, OBJ,
and USD formats. The exported scenes can be used in automated driving simulators
and game engines, including CARLA, Vires VTD, NVIDIA DRIVE Sim, Baidu Apollo,
Cognata, Unity, and Unreal Engine.

2.1.2 Softwares Version

• SUMO 1.2

• Unity 3D 2021.3.10.f1

• RoadRunner R2022a

• Python 3.8

12

2 Autonomous driving simulator based on sumo and Unity3D

2.2 building of Unity 3D simulation scene

2.2.1 Mapping and integration of map

The map is drawn using the Roadrunner[1]. Export the drawn scene to the fbx model format
for unity, and then place the model file in the unity assets folder. Finally, put the fbx file
into the unity scene[2]. This map includes Garching, Garching hochbrueck and Garching
TUM campuses. It is based on the high accuracy satellite generated and very similar to origin
location. 2.1 shows a full view of the map.

Figure 2.1: Map for simulation

Then, buildings and cityscapes are then placed into the scene. As shown in the 2.2, the
simulation scenario is built.

13

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.2: City scene for simulation

2.2.2 Add test vehicle model

The vehicle model in the "NWH Vehicle Physics2" package[3] is used as the test vehicle.
NWH Vehicle Physics 2 is a complete vehicle simulation package for Unity. It simulates the
complete vehicle characteristics and each module to realistically simulate the kinematic and
dynamical characteristics of a real vehicle. The highly optimized code runs on both desktop
and mobile devices. All vehicles combined, the desktop demo takes less than 0.5 milliseconds
of total CPU time per frame. The "Playground" scene of NWH Vehicle Physics 2 pakeage is
opened as shown in the 2.3.

14

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.3: controlled vehicle

2.2.3 Preinstantiation of random vehicle models

Frequent generation and destruction of random vehicles are required in the simulation of
traffic flow. If we use dynamic generation method, it will take up a lot of cpu resources.
Instead of creating new vehicles and destroying old ones, all the required vehicle models are
pre-instantiated before the simulation starts and the model state is set to inactivate, so that
only the required vehicle models are activated or deactivated when the simulation runs. This
can greatly improve performance. You can also create an Object pooling[4] with c# script to
pre-instantiate the models.

2.3 Co-simulation based on Sumo and Unity 3D

2.3.1 Simulation in Sumo

Exporting the fbx map model in Roadrunner also exports a file in opendrive format, which is
a popular standard file format for describing road network information. SUMO has a built-in
netconvert command to generate road networks in SUMO format (.net.xml). Figure 2.4 shows
the road network generated using the netconvert command based on the scenario in Figure
2.1.

15

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.4: Road network in SUMO

The /randomtrips and /duarouter commands are then used to generate random trips and
routes for all vehicles in the scenario. The /randomtrips and /duarouter commands are
then used to generate random trips and routes for all vehicles within the scenario. The
.sumocfg format file allows the integration of the road network file and the routing file and
the simulation in SUMO-GUI. As shown in the figure 2.5, open the network.sumocfg file in
SUMO-GUI and click the play button to simulate it.

Figure 2.5: Simulation in SUMO-GUI

16

2 Autonomous driving simulator based on sumo and Unity3D

2.3.2 connection between Sumo and Unity 3D

A secondary development based on the work of Tettamanti[5] and Horváth[6] was made.
Communication is based on TCP/IP protocol. The detailed implementation is as follows.

1. TCP_server in Python
A new TCP_Server class is Created. The IP address, port, and the number of listening
clients in the constructor are Initialized. And a TCP/IP socket is created. Then bind() is
used to associate the socket with the server address.

Figure 2.6: Initialization of TCP_server Class

Calling listen() puts the socket into server mode, and accept() waits for an incoming
connection. accept() returns an open connection between the server and client, along
with the address of the client. The connection is actually a different socket on another
port (assigned by the kernel). Here we need to set up two clients in Unity 3D with the
names ’U3D00’ and ’U3D01’. One client is used to receive the status information of the
vehicle in SUMO, and the other one delivers the information of the test vehicle.

17

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.7: Start server

2. TCP_Clients in Unity 3D
Call the ConnectToTcpServer() function in the start() initialization function. In Con-
nectToTcpServer(), create and enable a new process and call the con() function. By
executing the con() function, you can create a client socket and send the client name
"U3D00" to the TCP server in python to verify if the connection is successful. Note that
the IP address and port of the server and client must be the same. ListenForData()
function is used to receive messages from the server and store them in the enqueue.
con() and ListenForData() functions are shown in Figure 2.8 and Figure 2.9.

18

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.8: Implementation of connection to Server

Figure 2.9: Implementation of listening data

19

2 Autonomous driving simulator based on sumo and Unity3D

The figure 2.10 shows the result of successful authentication. For sending messages
client "U3D01" can be connected to the server in the same way.

Figure 2.10: the result of connection authentication

2.3.3 Data transfer between SUMO and Unity 3D

This subsection introduces the acquisition of real-time vehicle data in Sumo scenes, the
transfer of data and the real-time mapping of Sumo to unity’s vehicle motion state.

1. Data transfer of SUMO simulation

a) Retrieval of Vehicle motion states by using TraCi

TraCI is the short term for "Traffic Control Interface". Giving access to a run-
ning road traffic simulation, it allows to retrieve values of simulated objects and to
manipulate their behavior "on-line".[7]

i. SUMO Startup
TraCI uses a TCP based client/server architecture to provide access to sumo
[8]. Thereby, sumo acts as server that is started with additional command-line
options: –remote-port <INT> where <INT> is the port sumo will listen on for
incoming connections. Note that the ip address and port of the sumo startup
function need to be the same as the socket created in the previous subsection.
SUMO’s official documentation describes the API usage of TraCi.

ii. Retrieval of Vehicle motion states
In Figure 2.13represent the Function callgraph which shows the process of
acquisition of real-time vehicle data in Sumo scenes and initialzation of this
Vehicles in Python.

20

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.11: Call graph of Retrieval of Vehicle motion states

The SumoObject class is created in the SUMO_vehicle module. The param-
eters of the vehicle in the constructor are initialized by using TraCi’s API.
For example, traci.vehicle.getPostion() is used to get the vehicle position,
traci.vehicle.getAngle() is used to get the vehicle head angle i.e. attitude, etc.
The following figure 2.12 shows the parameters in the constructor.

Figure 2.12: Construction of class SumoObject

The stepsumo() function in the TrafficSimulator module implements the
update of vehicles in sumo. The Sumobject class of SUMO_vehicle is called
and instantiated as shown in the figure 2.13. When a new vehicle is created
in SUMO or a vehicle reaches its destination and is destroyed, an instance of
SumoObject is created or destroyed with it. The existing instances are stored
in the SumoObjects list. The vehicle data is updated once at each simulation
step by calling UpdateVehicle(). A new vehicle "MyVehicle" in SUMO as a
mapping of the test vehicle in unity is insert by calling the AddCar API of
TraCi.

b) Transfer Data between SUMO and Unity 3D
This subsection describes how to implement data transfer based on the TCP
communication framework established in the previous subsection 1.3.2.

i. send Data to Unity
In Figure 2.13represent the Function callgraph which shows the process of
acquisition of sending the real-time vehicle datas to Unity 3D.

21

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.13: Call graph of Sending and receiving message to Unity3D

The attributes of all vehicle instances into a string message are packed to put
into the UnityQueue by calling the ToUnity() function. Open a new thread
in startUnity() to continuously call sendmessage() to send messages from the
UnityQueue to the unity client. The messages are sent once per simulationstep.

ii. Receive data from Unity 3D
Open a new thread instartReceive() to continuously call ReceiveMessage() to
receive messages from the unity client and put the decoded data to the SUMO-
Quene. Call moveMyVehicle() to get the data in SUMOQueue and update the
pose of the test vehicle in SUMO scene by API traci.vehicle.moveToXY().The
specific call relationship is shown in the figure 2.13.The figure 2.14 shows the
concrete implementation of the functions ReceiveMessage() and moveMyVe-
hicle().

22

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.14: Code of Functions ReceiveMessage() and moveMyVehicle()

2. Data transfer of Unity 3D
The code framework of Unity 3D part follows the work of Tettamanti and Horváth, and
rewrites some of the functions.

a) Receive Data from Sumo Motion Mapping of vehicles
The Figure 2.15 start() in the Main.cs store the external vehicle objects preloaded in
the Unity scene to the car List and deactivate all vehicle Objects.

Figure 2.15: Code of start function

The SplitData() and Transform() functions are overridden here. SplitData() im-
plements updating the vehicle status information based on the data received from
the TCP_server, activating and deactivating the preloaded vehicle, and calling the
Transform() function to update the vehicles status. The figure 2.16 and 2.17 shows
the code details.

23

2 Autonomous driving simulator based on sumo and Unity3D

Figure 2.16: Code of SplitData() function

Figure 2.17: Code of Transform() function

The transform() calls the gamecomponent scr_VehicleHandler script of the vehicle
object to calculate the wheel speed and implement the animation effect.

24

2 Autonomous driving simulator based on sumo and Unity3D

b) Send Data of the test vehicle
Create a new unity c# script scr_DatatoSumo.cs. Call the unity API GameOb-
ject.Find().Transform in the update function to get the pose information of the test
vehicle. Pack the pose information into string format and send it to TCP_server
with SendData(). synchronize the movement of the test vehicle "MyVehicle" in
SUMO with the in 1(b)ii executed MoveMyVehicle() function. See the official
documentation for how to use the unity API[9].

Figure 2.18: Code of update() function

The following figure 2.19 shows the real-time synchronization of the test vehicle in
SUMO and Unity 3D.

Figure 2.19: synchronization of the test vehicle in SUMO and Unity 3D

25

2 Autonomous driving simulator based on sumo and Unity3D

2.4 To do in the future

So far, we have completed the construction of unity 3D HD scene demo, the connection
between SUMO and Unity based on TCP/IP, and the real-time synchronization of vehicle
movement. We still need to add further features and improve the code in the future. The
works that needs to be done are as follows.

1. Solve the Unity simulation lag
The problem of vehicle motion lagging occurs during the simulation. After analysis, it
is due to some code running inefficiently and taking up too much computing resources.
The code needs to be further improved and modified.

2. Automatic building of scenes.
Automatically generate high precision maps based on real scenes using the Here high
precision map API in Roadrunner. Create generator for unity scenes. Generate city
scenes such as buildings, landscapes, weather, etc. by importing 3D high precision
maps.

3. Simulation of traffic light system and pedestrians system
Design traffic light timings based on real traffic flow conditions and simulate them in
SUMO and Unity in real time. Design the pedestrian system in SUMO and synchronize
it in Unity.

4. Integration of automated driving system
Implement a modular interface for algorithms based on the ROS2 framework for
perception, decision making, and planning.

5. GUI design.
Encapsulates the use of SUMO and Unity. Users can simply start the simulation and
adjust parameters to validate their algorithms.

26

List of Figures

1.1 Wrap chassis parameters, variables as xacro:property 3
1.2 Relationship of the whole vehicle . 4
1.3 Implementation of stereo camera . 5
1.4 Transmission for wheels and controllers . 6
1.5 Implementation for Gazebo_ros_controller plugin 6
1.6 Launch file for Simulation . 7
1.7 Visualization in Rviz and Gazebo . 8
1.8 Ackermann steering mechanism . 9
1.9 Detected image with bonding bix . 10

2.1 Map for simulation . 13
2.2 City scene for simulation . 14
2.3 controlled vehicle . 15
2.4 Road network in SUMO . 16
2.5 Simulation in SUMO-GUI . 16
2.6 Initialization of TCP_server Class . 17
2.7 Start server . 18
2.8 Implementation of connection to Server . 19
2.9 Implementation of listening data . 19
2.10 the result of connection authentication . 20
2.11 Call graph of Retrieval of Vehicle motion states 20
2.12 Construction of class SumoObject . 21
2.13 Call graph of Sending and receiving message to Unity3D 22
2.14 Code of Functions ReceiveMessage() and moveMyVehicle() 23
2.15 Code of start function . 23
2.16 Code of SplitData() function . 24
2.17 Code of Transform() function . 24
2.18 Code of update() function . 25
2.19 synchronization of the test vehicle in SUMO and Unity 3D 25

27

Bibliography

[1] https://de.mathworks.com/help/roadrunner/fundamentals.html.

[2] https://de.mathworks.com/help/roadrunner/export-scenes.html.

[3] https://assetstore.unity.com/packages/tools/physics/nwh-vehicle-physics-2-166252reviews.

[4] https://learn.unity.com/tutorial/introduction-to-object-pooling?uv=2019.4.

[5] T. Tettamanti. Vehicle-In-the-Loop Test Environment for Autonomous Driving with Microscopic
Traffic Simulation. IEEE International Conference on Vehicular Electronics and Safety
(ICVES), 2018.

[6] M. T. Horváth. Vehicle-In-The-Loop (VIL) and Scenario-In-The-Loop (SCIL) Automotive Simu-
lation Concepts from the Perspectives of Traffic Simulation and Traffic Control. Transport and
Telecommunication Journal, 2019.

[7] TraCi Reference: https://sumo.dlr.de/docs/TraCI.html.

[8] https://sumo.dlr.de/docs/TraCI/InterfacingTraCI f romPython.html.

[9] Unity Scripting Reference: https://docs.unity3d.com/ScriptReference/.

28

	Abstract
	Kurzfassung
	Contents
	ROS-based autonomous driving platform
	Concept
	Advantages and disadvantages
	Related components

	Construction of simulation platform
	Create vehicle model
	Implementation of Ackermann steering in ROS
	Implementation of Object detection

	Autonomous driving simulator based on sumo and Unity3D
	Introduction
	Software requirements
	Softwares Version

	building of Unity 3D simulation scene
	Mapping and integration of map
	Add test vehicle model
	Preinstantiation of random vehicle models

	Co-simulation based on Sumo and Unity 3D
	Simulation in Sumo
	connection between Sumo and Unity 3D
	Data transfer between SUMO and Unity 3D

	To do in the future

	List of Figures
	Bibliography

