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Abstract

Microscopy has been one of the pinnacles of the functional understanding of biologi-
cal specimens for centuries. And for a good reason, being able to visualize and study
how cells, bacteria, and viruses, among others., develop, interact, and strongly influence
our day-to-day is not only mesmerizing but necessary. Industries and research directions
indispensable to humankind depend on it, like the alimentary and pharmaceutical indus-
try, medicine, and genetics. In parallel, computational tools have become essential for
microscopy analysis, processing, and optimization. This work integrates computational
sciences and microscopy to develop tools for imaging living specimens’ 3-dimensional
(3D) dynamics. Due to biology being a continuous 3D process, having access to real-
time 3D information is essential for the understanding of biological systems.
Within this doctorate project, tools for 3D real-time fluorescent imaging were inves-

tigated. Mainly focused on the light field microscope (LFMic) and its image formation
model. The LFMic is a scan-less fluorescent microscope capable of acquiring images
at camera speed and reconstructing 3D volumes in a post-processing step, enabled by
a micro lens array (MLA) within the optical path. As the reconstruction procedure
is lengthy and far from real-time, the first approach tried was a deep learning (DL)
model that showed substantial speed and quality improvements. However, due to the
lack of certainty metrics, the biological validity of the DL reconstruction could not be
determined, which is a priority when working with bio-medical data. Hence, motivating
the usage of Bayesian learning, specifically of Normalizing Flows (NFs), where fast 3D
reconstructions are possible with a certainty metric and out-of-distribution (OOD) de-
tection. Meanwhile, exploring different optical architectures, like light field microscopy
(LFM) and Fourier light field microscopy (FLFM), in fluorescently labeled mice brain
vasculature and image sequences of zebrafish neural activity.
During this process, an important notion came alight, the joint optimization of the

optical system and the reconstruction algorithm is a powerful concept. Tunable ele-
ments like a spatial light modulator (SLM) optimized with either a neural network or a
reconstruction algorithm allow the algorithm to pick which setup and features are best
for a given task e.g., 3D reconstruction. With this vision in mind, we developed the
WaveBlocks Python framework, an auto-differentiable wave-optics simulator. And put
it into practice for aberration correction and point spread function (PSF) recovery with
a SLM on a bright field microscope.
Finally, I present the research workflow based on tools and paradigms crucial to project

organization, like GitHub, Notion, and the Pomodoro method. And tools like SLURM
and guild.ai for handling the computational needs and experiments in a reproducible
and organized way.
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Zusammenfassung

Die Mikroskopie ist seit Jahrhunderten einer der Höhepunkte des funktionalen Verständ-
nisses biologischer Exemplare. Und das aus gutem Grund: Es ist nicht nur faszinierend,
sondern auch notwendig, zu sehen und zu studieren, wie sich Zellen, Bakterien und
Viren entwickeln, miteinander interagieren und unser tägliches Leben stark beeinflussen.
Industrien und Forschungsrichtungen, die für die Menschheit unverzichtbar sind, sind
davon abhähgig, genauso wie die Lebensmittel- und Pharmaindustrie, die Medizin und
die Genetik. Parallel dazu sind computergestützte Werkzeuge für Mikroskopieanalyse,
-verarbeitung und -optimierung unverzichtbar geworden. Diese Arbeit integriert Com-
puterwissenschaften und Mikroskopie, umWerkzeuge zur Abbildung der 3-dimensionalen
(3D) Dynamik lebender Proben zu entwickeln. Da die Biologie ein kontinuierlicher 3D-
Prozess ist, ist der Zugang zu 3D-Informationen in Echtzeit für das Verständnis biolo-
gischer Systeme unerlässlich.

Im Rahmen dieses Promotionsprojekts wurdenWerkzeuge für die 3D-Echtzeit-Fluores-
zenzbildgebung untersucht. Der Schwerpunkt lag dabei auf dem Lichtfeldmikroskop
(LFMic) und seinem Bildgebungsmodell. Das LFMic ist ein scanloses Fluoreszenzmikros-
kop, das in der Lage ist, Bilder mit Kamerageschwindigkeit aufzunehmen und 3D-
Volumen in einem Nachbearbeitungsschritt zu rekonstruieren, was durch ein Mikrolinsen-
Array (MLA) im optischen Pfad ermöglicht wird. Da das Rekonstruktionsverfahren
langwierig und weit davon entfernt ist, in Echtzeit abzulaufen, wurde zunächst ein Deep-
Learning-Modell (DL) ausprobiert, das erhebliche Geschwindigkeits- und Qualitätsverbe-
sserungen zeigte. Aufgrund des Fehlens von Sicherheitsmetriken konnte die biologis-
che Validität der DL-Rekonstruktion jedoch nicht bestimmt werden, was bei der Ar-
beit mit biomedizinischen Daten eine Priorität ist. Dies motiviert den Einsatz von
Bayesian Lernen, insbesondere von Normalizing Flows (NFs), bei denen schnelle 3D-
Rekonstruktionen mit einer Gewissheitsmetrik und Out-of-Distribution (OOD) Erken-
nung möglich sind. In der Zwischenzeit wurden verschiedene optische Architekturen, wie
Lichtfeldmikroskopie (LFM) und Fourier-Lichtfeldmikroskopie (FLFM) in fluoreszenz-
markierten Hirngefäßen von Mäusen und Bildsequenzen neuraler Aktivität von Zebrafis-
chen untersucht.

Während dieses Prozesses kam ein wichtiger Gedanke zum Vorschein: Die gemein-
same Optimierung des optischen Systems und des Rekonstruktionsalgorithmus ist ein
leistungsfähiges Konzept. Abstimmbare Elemente wie ein räumlicher Lichtmodulator
(SLM), der entweder mit einem neuronalen Netz oder einem Rekonstruktionsalgorithmus
optimiert wird, ermöglichen es dem Algorithmus, die am besten geeigneten Einstellungen
und Merkmale auszuwählen. Mit dieser Vision im Hinterkopf haben wir das WaveBlocks
Python-Framework entwickelt, einen auto-differenzierbaren Wellenoptik-Simulator. Wir
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Zusammenfassung

haben ihn für die Aberrationskorrektur mit einem SLM an Fluoresenzmikroskopen in
die Praxis umgesetzt.

Zuletzt stelle ich den Forschungsworkflow vor. Dieser basiert auf Tools und Paradig-
men, die für die Projektorganisation entscheidend sind, wie GitHub, Notion und die
Pomodoro-Methode sowie auf Tools, wie SLURM und guild.ai, für die reproduzierbare
und organisierte Handhabung der Berechnungsanforderungen und Experimente.
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1 Introduction

1.1 Microscopy in life sciences

Microscopic living and non-living entities significantly impact our daily life, from the food
we eat, our gut microbiome, the bio-chemistry in our brains, etc. Basically influencing
every aspect of human existence. And it wasn’t until the invention of diffraction optics
that this notion became apparent to humankind. Realizing that the world had much
more than we were aware of. With the invention of the microscope, our understanding
and technology started to shift and have brought us to the current state.

The influence of the optical microscope within life sciences has been essential and will
continue to be, for instance, in fluorescence microscopy. For example, in applications like
neural-activity analysis or spatial transcriptomics, where imaging fluorescently labeled
specimens allow the spatial and functional understanding of biology and chemistry.

However, life happens in dynamical 3D environments, where capturing only a single
image doesn’t gather enough information for functional analysis and further understand-
ing. This is where 3D fluorescence microscopy comes into play.

1.2 Real-time 3D microscopy in live specimens

A straightforward approach to acquire 3D information is to use a traditional fluorescence
microscope, in which a sample is illuminated through a set of lenses, which then capture
the fluorescence emanating from the sample and conduct the light towards a camera,
as seen in Fig. 1.1. With this setup, a stack of images can be acquired by focusing on
multiple focal points and capturing images. This setup focuses the illumination into a
depth in the sample but also illuminates other planes where it goes through. Affecting
the measurement such that the camera capture fluorescence incoming from out-of-focus
planes.

Due to this disadvantage, a more common approach to acquiring volumetric infor-
mation is to scan the sample volume at multiple planes or points in space and reduce
the out-of-focus fluorescence. This, of course, involves more complex systems such as
the confocal, light-sheet, and two-photon microscopes [9–11]. Scanning can achieve a
high spatial resolution, but at the expense of time-consuming volumetric acquisitions, a
substantial amount of storage usage for the acquired data, and high excitation power,
resulting in high photo-toxicity and photo-bleaching of the sample.

These shortcomings motivated my work towards finding a scan-less approach capable
of achieving 3D microscopy in real-time.
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Figure 1.1: Fluorescent microscope simplest design, also known as bright field microscope

LFM [12] is a technique that turns any bright-field microscope into a scan-less single-
shot 3D microscope. It offers low phototoxicity, reduced data storage, and high capture
frame rates. However, it suffers from lower spatial resolution compared to scanning
microscopes and from time-consuming 3D reconstruction post-processing.

1.3 Why light-field microscopy for 3D imaging?

In LFM, the key component is a MLA, which is placed in the optical path of a bright-
field microscope, as seen in Fig. 1.2. The MLA embeds volumetric information about a
sample by mapping its brightness for all combinations of incoming directions on a grid of
locations on the camera sensor. Thus embedding 4D information (two parameters for the
direction in 3D and two parameters for the location on the grid) in 2D space (the camera
sensor coordinates). In the second step, the fluorescence volume is recovered from the
captured LF image by using a reconstruction algorithm [6,13–15]. This approach enables
advanced computational imaging applications, such as in-vivo calcium 3D imaging of
neural activity in animals that are immobilized [16–22] or freely moving [23–26], and for
imaging the scattering tissue of the mouse brain up to 380µm in-depth [18].

sC
M
O
s

C
am
er
a

Exitation

light

Fluorescent

sample

Dichroic

filter

Emission

MLALensTubelens

Figure 1.2: A Fourier light field microscope
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1.4 The role of Computational microscopy

The task of recovering a 3D volume from a single LF image is an ill-posed inverse
problem [12], which suffers from several shortcomings, including an-isotropic lateral and
axial resolutions [3,6,14,27] and artifacts in the recovered volumes [4,28]. Most volume
reconstruction methods are based first on devising an image formation model, which boils
down to describing the optics via a point spread function (PSF), and then on inverting
such model through an optimization procedure, typically iterative, called deconvolution
[6, 13–15]. Such reconstruction algorithms are often rather slow due to their iterative
nature and the high computational complexity of the imaging model, particularly the
space-variant PSF used to describe LF microscopes. To aid the reconstruction problem
and further constrain the solution space, explicit statistical data priors are used, such as
a Poisson distribution [29] for the measured fluorescent counts or regularization during
the deconvolution process [30]. The accuracy of the mathematical model in fitting a real
microscope and of the priors in capturing the statistical structure of the observed data
determines the quality of the recovered volumes. Unfortunately, in practice, fitting the
model and priors to the microscope and data is a challenging and sometimes impossible
task, as the exact aberrations of the microscope are usually unknown.

1.4 The role of Computational microscopy

In the years previous to accessible computational power, microscopy was bounded to
manual analysis and optimization, with a limit to the achievable tasks but setting a
strong base into the mathematics, physics, and concepts needed for the future.

With this base in place, when computational power started to be available and con-
tinued to evolve, concepts of microscopy that couldn’t be implemented before became
a reality, for example, by having access to deconvolution in bright-field microscopy and
being able to remove the out of focus light from captures. However, the strongest impact
was on techniques where a computational method is required to access the underlying
information, like scanning methods, where multiple captures and synchronization have
to be orchestrated to get a 3D volume, as in confocal, light-sheet, and multi-photon mi-
croscopy. Or LFM, where accessing 3D information relies completely on a computational
deconvolution.

The work presented in this dissertation is based on the computational influence on
microscopy and presents novel tools and paradigms that integrate these in an even tighter
matter, where joint optimization of optics and reconstruction algorithms start to become
a reality.

1.5 Goals of the dissertation

In this project, we had the aim of creating computational tools to complement and aid
3D real-time fluorescence microscopy, mainly through the following incremental steps:

1. Increase 3D reconstruction speed of LFM: Due to the lack of simple methods
capable of 3D microscopy, expanding the scannless approaches is essential.

3
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2. Generate reliable reconstructions, suitable for biomedical applications:
Even though neural networks and other ”black box” algorithms can generate good
quality reconstructions, having a certainty metric that the network is doing what
is trained to do is essential. Due to the low tolerance of false positives in the
biomedical realm.

3. Explore and expand the computational microscopy realm: Having com-
putational tools for microscopy has been of crucial importance, and now they are
more integrated than ever. Pushing this frontier is a necessary and engaging ac-
tivity that motivated me through the PH.D.

1.6 Thesis outline

This thesis is divided into multiple sections guiding the reader. First, in the background
section, we introduce fluorescence microscopy, its image formation model, and the math-
ematics used to model it as an inverse problem, followed by a brief review of different
reconstruction methods, such as deconvolution, deep learning, and Bayesian learning.
Also, a review of computational microscopy, where computer science and microscopy
integration become evident once the algorithms and microscope are optimized jointly
in a task-specific design workflow. It is important to mention that in this work, I try
to avoid redundancy in the mathematical background. For example, for subjects like
deconvolution or DL we refer the reader to already developed works. However, a deeper
mathematical insight is presented for contributions like the sparse-low rank decomposi-
tion and the CWFA.

After the background, in chapters 3 and 4, I present incremental steps toward the
mentioned goals (sec. 1.5) explaining the importance of the different requirements and
tackling them progressively.
Followed by a chapter presenting the basic concepts of computational microscopy

and the implementation of a joint-optimization Python framework (chapter. 5) aimed
towards joint optimization of optical elements (e.g. SLM) and algorithms towards a goal
(e.g. 3D deconvolution).
The last chapter (6) presents a set of tools and techniques that were fundamental for

the research project management during my Ph.d. E. g., time and hardware manage-
ment, project planning and execution, and supervision of teams and students.
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2 Background

2.1 The 3D fluorescence microscope image formation model

A 3D fluorescent microscope uses fluorescence as a contrast media to visualize biological
and non-biological specimens. Fluorescence is the property of certain molecules to emit
light when excited by a specific light wavelength known as the excitation wavelength.
The emitted light has a longer wavelength, known as the emission wavelength, and can
be captured by the microscope to form an image.

2.1.1 Types of fluorescence

In nature, fluorescence can be observed in beings like fungi, algae, marine animals like
medusa, etc. And in the lab and research, fluorescence can be introduced to biological
systems using the following [31]:

• Fluorescent staining: Molecules designed to attach to specific structures. Like cell
walls or nucleic acid.

• Immuno-fluorescence: This technique uses highly specific binding of an antibody
to its antigen to label specific proteins or other molecules within the cell, e.g.
micro-tubules.

• Fluorescent proteins: Genetically engineered animals like zebrafish, fruit flies, C-
Elegans, etc., can be modified to transcript a fluorescent protein reporter, like a
Calcium indicator on zebrafish neurons.

2.1.2 The image formation process

The image formation, also called the forward model in a 3D fluorescent microscope, can
be summarized into the following steps and visualized in Fig. 1.1:

1. Excitation: A light source, typically a laser, provides the excitation wavelength
required to activate the fluorescence in the sample. The excitation light is directed
onto the sample using an objective lens, which focuses the light onto a small area.

2. Emission: When the fluorophores in the sample are excited, they emit light at
the emission wavelength. The emitted light is collected by the objective lens and
directed to a series of filters.
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3. Filtering: The filters separate the fluorescence signal from the excitation light
and other background noise. The filters typically include a dichroic mirror, which
reflects the excitation light and transmits the fluorescence signal, and an emis-
sion filter, which only allows the light of the desired emission wavelength to pass
through.

4. Detection: The filtered fluorescence signal is directed to a detector, such as a
CCD or sCMOS camera, which converts the light into an electronic signal, later
converted into an image by a computer.

2.1.3 Mathematical interpretation

The image formation process can be modeled mathematically as a linear system. This
means that the fluorescence signal observed by the detector can be modeled as a linear
combination of the fluorophore distribution in the sample and the system response of
the microscope. Mathematically, this can be expressed as: I = HV + n

Where I is the observed fluorescence signal, V is the fluorophore distribution in the
sample, H is the system response of the microscope, and n is the noise in the measure-
ment.

The system response H includes all of the optical elements in the microscope, such as
the objective lens, filters, and detector, and their associated transfer functions. It rep-
resents how the fluorophore distribution in the sample is transformed into the observed
fluorescence measurement. The noise n includes all measurement error sources, such as
background noise, photobleaching, and shot noise.

It is important to note that the image formation model is linear because it assumes
that the system’s response to different fluorescence levels is proportional. This means
that the observed fluorescence signal is proportional to the fluorescence in the sample
and that adding two fluorescence signals together results in an observed fluorescence
signal equal to the sum of the individual signals.

In practice, the linearity of the image formation model may not hold exactly, and non-
linear effects, such as saturation of the detector, photo-bleaching of the fluorophores, or
the misalignment of optical components, may need to be considered. However, the linear
model provides a good first approximation for many applications, and it can be used to
obtain an initial estimate of the fluorophore distribution in the sample. And, t is often
computationally implemented as a convolution operation (⊛), which makes it highly
compatible with graphics processing unit (GPU) devices.

The detection, excitation, and emission of fluorophores are often modeled as a Poisson
process, as the number of excited fluorophores and photons detected on the camera are
discrete numbers. Furthermore, modeling this as a Poisson distribution has desirable
mathematical properties, such as being easy to manipulate and having a simple likelihood
function, which makes it a convenient choice for image analysis.
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2.2 Scanning microscopes

2.1.4 3D reconstruction or inverse problem

The inverse action of computing a 3D volume out of one or many measured images is
called 3D reconstruction, which is an inverse problem.

It consists of recovering the fluorophore distribution V by taking one or more mea-
surement images and inverting the system matrix H. In other words, tracing the light
that arrived at a pixel back to the voxels it came from. This might be a one-to-many
problem, and H might be ill-posed or inaccessible as a single matrix. Hence, an iterative
method is usually employed to recover V , as discussed in sec. 2.4.

As the image formation model can be modeled as a Poisson process, reconstruction
methods suited for this are used. Like expectation maximization [32], maximum likeli-
hood estimation [33], also called RL deconvolution [34,35], etc. RL is the most commonly
used, further described in sec. 2.4.1. And for a deeper analysis of the image formation
model and the RL deconvolution, please refear to the dissertation from A. Ştefănoiu [36].

2.2 Scanning microscopes

3D microscopes are widely available for non-moving samples, where the only temporal
constraint is sample photobleaching. These include microscopes like computing axial
stacks with a bright-field microscope [37], confocal [38], light-sheet [39], multi-photon
[40], Fourier ptychography [41], fluorescence correlation spectroscopy [42], fluorescence
lifetime imaging [43], and super-resolution microscopes [44] like stimulated-emission-
depletion fluorescence [45], Structured Illumination [46], stochastic optical reconstruction
[47,48], etc.

However, the need to investigate moving specimens in 3D with high spatiotemporal
resolution has fostered the development of other alternatives. For instance, modified
versions of light-sheet [49], reverberation two-photon [50–52] and spinning disk confocal
microscopy (SDCM, also known as Nipkow disk confocal) [53]. The latter, for example,
uses a fast-rotating disc that improves acquisition speed with multiple pinholes (ca.
1000) that allow for acquisition with multiple excitation spots. This solution grants
a theoretical imaging time of only 10ms per field of view. Thus, compared to laser
scanning confocal, spinning disk confocal acquisition speed is increased by two orders of
magnitude. Moreover, in SDCM, digital cameras are adopted as detectors, improving
the speed and efficiency of acquisition compared to photo multipliers commonly implied
in laser scanning confocal microscopes. Additionally, SDCM acquisition reduces photo-
bleaching and photo-toxicity compared to laser scanning confocal, thus being a better
alternative for live imaging.

Despite the significant increase in xy-scanning speed, SDCM, multi-photon, and light-
sheet still require z-scanning to produce 3D images and rely on complex and expensive
imaging setups with either convoluted optics or specialized fluorescent dyes. Addition-
ally, all rely on computational post-processing for getting an actual 3D volume.
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2.3 Scan-less or single shot microscopes

Regarding imaging real-time biological processes, delay matters, and scanning a sample
introduces unavoidable delays. Hence, the idea behind pushing microscopes that rely on
a single snapshot per frame that are scanless by nature.

To capture a snapshot of the volumetric information, two main approaches come in
handy:

• Introducing a MLA in the optical path, like in LFM and FLFM.

• Other types of wave-front coding. Like the Fourier Nets approach that uses an
SLM.

Both approaches involve modifying the PSF of the system in some way, either to
diversify the information arriving at the camera or specifically select the information
relevant to the reconstruction algorithm. This is also called PSF engineering.

With scanless methods, a 3D volume is obtained from reconstruction from a single-
shot acquisition, subject to a post-processing reconstruction. For this reason, compared
to SDCM and the previously mentioned methods, scan-less volumetric acquisition speed
is increased proportionally to the number of axial planes acquired. Thus, reducing
the required storage space, sample photo-toxicity, and photo-bleaching. In practical
applications, acquisition speed is only limited by the speed of the camera and by the
intensity of the fluorescence signal of the sample, which impacts the required exposure
time. So, for a proper time comparison, one would need to use the same camera in both
LFM and the other methods.

2.3.1 Light field microscopy

Light field microscopy was first proposed by Levoy et al. in 2006 [12], as a technique that
multiplexes the camera sensor between spatial and angular information and allows for
3D reconstruction with a post-processing deconvolution step. This initial approach used
a measured PSF, for a single voxel behind the central micro lens (ML) and synthetically
refocused it along the axial dimension to get a 3D PSF.

In later work, the reconstruction quality was significantly enhanced by Broxton et
al. [6] by using a wave-optics model to simulate the LFM PSF considering multiple
voxels behind a ML. Thus showing the limits of the angular and spatial resolution while
increasing the sampling rate to 16 times that of the lenslet.

Unfortunately, when the tube-lens is focused on the MLA, all the angular information
at the focal plane in object space is lost [2, 15] and only MLA resolution is possible
(i.e., only one voxel per microlens at the focal plane). Indicating that the achievable
x-y resolution varies with depth, as seen in Fig. 4.8. Hence, the regular sampling used
by Broxton et al. [6] introduces artifacts in the reconstructions, specifically on the focal
plane. As a solution, Stefanoiu et al. [4] introduced a pre-filtering depth-dependent step
that removes artifacts by allowing each depth to be reconstructed only to its maximum
possible resolution.
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Figure 2.1: Geometric optics analysis of the LFM. This scheme illustrates the effect of the axial
position of a point-light source on the blur produced at the MLA plane.

The remarkable speed of LFM makes it a powerful tool in neuroscience for high-speed
neural activity imaging, especially in small transparent animal models. This capability
was first demonstrated in 2014 by imaging the whole brains of C. Elegans and larval
zebrafish [54] and further enhanced in recent years [10, 19, 21, 22, 26, 55–58]. It has also
been applied to mice [17,23,59] and drosophila [25] neural activity imaging. Furthermore,
pan-neuronal, high temporal resolution data from LFM has fueled new understandings
of the principles underlying key cognitive processes, such as decision making [60].

However, two drawbacks have limited the applicability of LFM. First, compared to
scanning 3D imaging methods, the inferior spatial resolution of classical LFM methods
is sometimes insufficient to resolve, for instance, individual neurons in larval zebrafish
brains. Second, current methods for LFM volumetric reconstruction can require days of
data processing (see sec. 2.4.1).

2.3.1.1 LF and LF2.0

In the first LFM design, the MLA was placed at the focal plane of the tube lens and
the sensor at the focal plane of the MLA. This setting is called LF 1.0 [61]. Georgiev
and Lumsdaine [2, 3] propose instead a focused LF setting, or LF-2.0, which places the
MLA and sensor relative to each other according to the thin lens equation 1

a +
1
b = 1

Fml
,

where Fml is the focal length of the MLA, a is the distance from the microscope focal
plane to the MLA, and b from the MLA to the sensor (see Fig. 2.1). This approach
yields an optical configuration where images appear in focus at the sensor plane, which
better aligns with the conventional microscopist notion of having the sample in focus,
and allows for shifting the focal plane artifacts to less impactful depths. Li et al. [62]
propose to instead use a setting such that 1

a + 1
b > 1

Fml
, so that the induced aliasing

could be exploited for 3D reconstruction purposes.

Format and Representation of LF Data
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This section introduces the basic notation and illustrates the technical details of an
LFMic setup. A light field is a 4D function with dimensions Sx × Sy × Ax × Ay, where
the first two coordinates sample the spatial domain and the last two coordinates sample
the angular domain. The 2D spatial coordinates define a position in the object space.
The 2D angular coordinates define instead the angle of the ray (in the geometric optics
approximation) from which the object is observed. The 2D camera sensor of the LFMic
captures an image of AxSx ×AySy pixels, which we call the spatial representation of an
LF. To map the 4D light field (LF), to the 2D sensor, a light field microscope uses a
MLA inserted as shown in Fig. 2.1. The MLA has Sx × Sy micro-lenses and is aligned
to the sensor so that each micro-lens covers a region of Ax ×Ay pixels.

For example, in our setup (sec. 4.1.1, we set Sx = Sy = 39 micro-lenses (imaged by
the whole sensor) and Ax = Ay = 33 pixels (per micro-lens). Notice that approximately
Ax and Ay can be obtained by dividing the micro-lens diameter by the pixel width, i.e.,
112µm/3.45µm ≃ 33 pixels.

(a) (b) (c)

Figure 2.2: Spatial and angular LF representations. (a) Spatial representation of the LF (raw
LFM image). (b) Angular representation of the LF. (c) The magnification of the
region is shown in (b). The number of micro-lenses is the number of pixels in each
sub-image.

The LF 4D information captured at the camera can be mainly visualized as a 2D
image in two ways

• Spatial representation. This is the format with which the LFM acquires the
LF, where each micro-lens samples the object from a different spatial coordinate,
as shown in Fig. 2.2 (a), and every pixel inside a micro-lens captures light from
the object along different angles.

• Angular representation or perspective views. This arrangement is achieved
by gathering all the pixels at the same distance relative to each micro-lens cen-
ter. Because each pixel behind a micro-lens gathers information from a different
angle, the angular representation is somehow analogous to a camera array view
(which we also call perspective view) where each camera captures a small image
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2.3 Scan-less or single shot microscopes

from a different angle. These views are tiled as shown in Fig. 2.2 (b) and in the
enlargement Fig. 2.2 (c).

Some approaches propose modifying the optics to compensate for the loss of informa-
tion at the focal plane. For instance:

2.3.2 The Fourier light-field microscope (FLFM)

The Fourier light field microscope (FLFMic) get its name from having the MLA in a
conjugated plane relative to the objective back-focal plane, as in Fig. 1.2 where the
emission is organized as the Fourier space, where the low-frequency components are
located close to the optical axis and the high frequencies on the borders. This concept
was introduced by Cong et al. [63], Scrofani et al. [64], Sung [65], and Cong et al. [66].

In the traditional LFMic, each micro-lens position samples different positions in sample
space, and each pixel behind a lenslet a ray with a different angle going through that
point. On the contrary, the FLFMic samples the angular space with the micro-lens
position and the spatial coordinates with the pixels behind a lenslet.

This provides the FLFMic distinct advantages over the traditional LFM, when imaging
fluorescent samples:

• Space-invariant PSF: The PSF of the FLFMic is directly capturing the angular
space, making them space invariant and allowing to compute or measure a single
PSF per depth, and use that PSF for all the voxels on that depth. On the con-
trary, LFM lenslets sample the angular space directly, making the PSF of a voxel
dependent on its position relative to the center of the lenslet. Which translates to
computing and storing Ax ×Ay PSF’s.

• High spatial resolution: In LFM, the spatial resolution is defined by the number of
lenslets on the grid. Which is usually limited to a small number (e.g. 150×150. In
the case of FLFM, the spatial resolution is given by the number of pixels behind a
lens that, with larger micro-lenses, makes it highly optimizable to the application’s
necessities.

As a final remark, the design choice will depend on the priorities of the application.
For fluorescent 3D microscopy, FLFM has more advantages, as spatial resolution is a
priority. But for applications where angular diversity is of higher importance, such
as polarization light field microscopy (PFLFM), the LFM design might be preferred.
These designs propose an integral microscope without a tube lens that allows accessing
the phase space and with large lenses to recover a high spatial resolution. The system
and image comparison of a forward projection with both microscopes is presented in
Fig. 2.3.

2.3.3 Alternative optical designs
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FLFM image

LFM image

Fluorescent sample MIP

1.5 minutes 100 iterations RL

FLFM recon

LFM recon

RL deconv

RL deconv

86 minutes 20 iterations RL

LFM system

FLFM system

Figure 2.3: 3D reconstructions using a simulated forward projection as the measurement image.
Top: Light field microscope. Bottom: Fourier light field microscope. All volumes
are shown as maximum intensity projections.

Variations to LFM The drawbacks of LFM have motivated research to engineering
more complex approaches. For example, Cohen et al. [13] and Wu et al. [58] propose
introducing phase masks to shift the phase at the focal plane and construct a better
behaved PSF.

Furthermore, there are even more complex systems that alleviate most of the above
issues. An example is the work of Geng et al. [67], where they simultaneously capture
an LF image and a bright field image to enhance the resolution at the focal plane. An-
other possibility is to employ light-sheet microscopy illumination to excite the specimen
plane by plane and enhance the contrast and signal-to-noise ratio in the acquired im-
ages [9, 10, 56, 57]. Wagner et al. [55] proposed the ISO-LFM, which captures images
with two synchronized LFMic’s positioned at 90 degrees to each other. This arrange-
ment reduces the artifact plane to a single line in the volume. It allows a more isotropic
resolution of the reconstruction but still relies on individual deconvolutions for each
LFM and sacrifices temporal resolution due to the light-sheet scanning. Similarly, Zhu
et al. [68] used a dual-view LFMic and DL to alleviate artifacts and slow reconstruction
speed. Another approach proposed by Pan et al. [69], is the diffraction-assisted light
field microscope. They introduce a diffraction grating between the specimen and the
objective, reducing the loss of spatial and angular information received by the sensor.
Also, a mathematical model was developed and later used to recover rigid body full-field
displacement measurements. Zhang et al. [22] proposed the confocal LFM. Taking the
idea from confocal microscopy, their system blocks the out-of-focus light from the spec-
imen, achieving high axial resolution at the expense of increased exposure time. It can
track a freely moving zebrafish and capture its full brain at six frames per second. Their
reconstructions are performed after the acquisition stage and rely on the Richardson-
Lucy deconvolution algorithm, which takes 60 seconds per volume. LFM has also been
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2.4 3D reconstruction techniques

successfully used for imaging genetically encoded voltage indicators, as in work from
Quicke et al. [59].

There are LF microscopy works in the literature specifically aimed to recover neu-
ral activity in scattering media, for instance, the seeded iterative demixing [70], the
compressive light-field microscopy approach [71], which create a dictionary of activation
of individual neurons deep into scattering tissue, and use this dictionary to infer the
temporal neural activity from an LF video of the specimen, similar to [72].

Wave-front coding approaches Modifying the optical path with micro-lenses, dif-
fusers, SLM etc. has a common goal, creating a PSF or system matrix H that is easier
to invert, or in other words, not so ill-posed.

Some works don’t utilize a MLA and use different objects and techniques. For example,
the work from Kattenborn et al. [73] used water droplets instead of micro-lenses. The
randomness in size, position, and focal length of the droplets provides a wide spectrum
of frequency sampling, helping with the inversion process. Or the work from Yanny et
al. [74], which introduces a Miniscope3D, which uses the FLFM approach, but with an
optimized phase-mask instead of the MLA.

A very flexible approach to wave-front coding uses an SLM, a programmable array of
micro-mirrors that shift the light phase. This allows to modify and engineer the PSF
easily. The work from Waller and Manley [75] uses an optimized SLM to increase the
depth of field, reduce out-of-focus blur, and improve the signal-to-noise ratio, coupled
with an iterative algorithm for reconstruction. Finally, the works from Diptodip et al. [76]
and Muthumbi et al. [77], are great examples of computational microscopy, where they
optimize an SLM placed on the optical path together with a 3D reconstruction neural
network. The former proposed the so-called FourierNets, a neural network architecture
that works in Fourier space and thus has access to non-local features. This approach
allows them to focus the attention of the network at different places in the volume and
optimize the SLM for this case.

2.4 3D reconstruction techniques

2.4.1 Deconvolution

The reconstruction of a volume from a light field image can be cast as a deconvolution
problem once the optics’ PSF or system matrix H is given or estimated. The main
challenge in solving deconvolution problems is that they are very sensitive to small
errors in the data (an LF image in this case) and have ambiguities in the solution space.
It is common to use a regularized approach to resolve these issues, where information
about the solution space is used to constrain the problem better and favor only plausible
solutions.
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2.4.1.1 The Richardson-Lucy deconvolution

Also known as Maximum-likelihood expectation maximization, RL deconvolution [34,35]
aims to maximize the likelihood of a volume given a set of measurements.

Following, a brief derivation is presented. For a full derivation of the algorithm, we
refer the reader to the work of Broxton et al. [78], from Dey et al. [79] or the dissertation
from A. Ştefănoiu [36].
If an object V is observed as an image I through an optical system with PSF H and

affected by Poisson distributed noise, the likelihood can be written as:

p(i|V ) =
∏
x

(
[(H ⊛ V )(x)]i(x)e−(H⊛V )(x)

i(x)!

)
(2.1)

Where x is a 2D basis function of the image, i = P(H ⊛ V ), P is a Poisson process and
⊛ a convolution.
Maximizing the likelihood function in eq. 2.1 is equivalent to minimizing:

− log p(i|V ) =
∑
x

([(H ⊛ V )(x)− i(x) · log(H ⊛ V )(x)] + log i(x)!) (2.2)

Hence, we can define the function to minimize as:

L(V ) =
∑
x

((H ⊛ V )(x)− i(x) · log(H ⊛ V )(x)) (2.3)

And find a solution where ∇L(V ) = 0. Note that log i(x)! can be dropped, as it’s a
constant.
This leads to an iterative algorithm with the update rule:

Vk+1 =

{[
i

(H ⊛ Vk)

]
⊛H∗

}
· VK (2.4)

Where ⊛ is the convolution operator, and H∗ is the adjoint (or conjugate transposed)
operator of the system matrix H, also known as the backward projection operator, and
maps the intensity on pixel x back to the voxels affecting it in V , with the assumption
that H is normalized with the column sums equal to 1.

2.4.1.2 Deconvolution of LFM images

Multiple works have explored the PSF modeling and deconvolution in the Fourier do-
main [80,81] by taking advantage of the Fourier properties of wave optics. Lu et al. [82]
developed a phase space method that deconvolves an LF image by converting it to
up-sampled views and allowing a space-invariant method. This method reconstructs a
volume without the zero plane artifacts and enables faster convergence against the LF
deconvolution of Broxton et al. [6]. Nevertheless, the computational time of their algo-
rithm is still unsuitable for reconstructing a large number of images. The same authors
propose the artifact-free deconvolution method [28]. Stefanoiu et al. [4] implemented an
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2.4 3D reconstruction techniques

aliasing-aware deconvolution method that adds a filtering step to [6] at every iteration
of the deconvolution, which removes artifacts but still incurs a high computational time.

Even though these methods have enhanced the quality of the reconstructions, they still
depend on an accurate LF PSF computation, which is difficult to achieve. Furthermore,
capturing the microscope’s aberrations, misalignment, and exact parameters within the
PSF is extremely challenging and hard to validate. Deconvolution is memory- and time-
demanding due to the high dimensionality and complexity of the LFM data.

2.4.1.3 Deconvolution of FLFM images

However, some of the aforementioned issues get alleviated using a FLFMic instead of an
LFMic. For instance, a measured PSF can be used due to the space-invariance property
of the FLFMic PSF. Due to the convolution theorem, deconvolution can be performed in
Fourier space, allowing for much faster calculations. And a single convolution is needed
per depth when forward/backward projecting.

A comparison of a 3D reconstruction with both setups is shown in Fig. 2.3, using a
forward projection of a fluorescent zebrafish. The PSF used for the LFMic is simulated,
as acquiring it is unfeasible. And the PSF of the FLFMic is measured. Note the huge
quality and speed increase when using the FLFMic, resulting in a ≈ 280× reconstruction
time increase.

2.4.2 Deep-learning for 3D reconstruction

DL approaches applied to LFMic [83] aims to learn advanced data priors from the
microscope and the observed geometry without requiring an explicit mathematical model
of the optics or the sample’s light scattering properties. Instead of providing a hand-
crafted approximation of such a model, DL approaches capture the data prior by training
a general-purpose neural network with a large data set of input-output examples. The
challenges of this approach then lie in how the network is designed and trained.

2.4.2.1 Learning priors from the data

Because the LF image is a 2D rearrangement of a 4D function (two dimensions for
the spatial coordinates and two for the angular coordinates), it is useful to consider its
structure when designing the neural network.

Based on this principle, Wang et al. [5] proposed a network using a View-to-Channel
(V2C) transformation, where the LF image is reshaped into a 1D list of views (see
section 2.3.1.1). One of the main advantages of this approach is that the V2C trans-
formation preserves a direct connection between the original structure of the input data
and that of the output. Thus the complexity of the reconstruction task for the network
is relatively small. However, this approach only works with a fixed LF image size. The
1D mapping of the angular domain destroys the original angular lattice, limiting the net-
work’s learning capabilities. Furthermore, their network was trained on simulated light
fields (with the model of Broxton et al. [6]) from confocal stacks and simulated micro-
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spheres, which limits the possible prior LFM information available to the network, such
as noise and optical aberrations of a real microscope.

Hybrid approaches have also been proposed. For example, the DeepLFM by Li et
al. [84] is based on first deconvolving the input LF image with a deconvolution method
and then using a U-Net [85] to super-resolve the deconvolved volume. This method
produces volumes with good accuracy, but the computational workload and time are
very high due to using an LF deconvolution step.

The aforementioned drawbacks motivated our work [86] (explained on sec. 4.1.1),
which aimed toward a DL approach to reconstruct confocal microscopy stacks from single
LF images. To perform the reconstruction, we introduce LFMNet, a fully convolutional
neural network architecture inspired by the U-Net design that considers the 4D nature
of the LF to make a fully convolutional network, able to reconstruct an arbitrary number
of micro-lenses. Furthermore, this work was the first to train on confocal stacks and LF
image pairs, contributing with a dataset to the community [87].

2.4.2.2 Including physical model priors

A big advantage of this imaging modality is that the image formation model, although
complex, is well understood. This motivated a batch of mixed approaches aiming to
incorporate priors from the image formation model into DL models. For example, the
work from Verinaz-Jadan et al. [88] substitutes the forward operator of the image forma-
tion model of an LFMic by a convolutional network; then, use this operator to train an
adversarial network. The same group [72], proposed a neuron localization technique that
uses a network to solve a convolutional sparse coding (CSC) problem to map epipolar
plane images to corresponding sparse codes, where the sparse codes are individual neu-
rons signatures. Similarly, Zhang et al. [89] proposed an artifact-free and noise-robust
approach using a high-resolution dictionary to substitute the artifacted or low-resolution
reconstructed zones of a 3D volume.

In terms of Fourier light field microscopy, in our work [90] (presented in sec. 4.1.2),
DL has been used for recovering the spatiotemporal sparse neural activity of zebra-fish
in real-time with XLFM images. First, by using a dense-sparse decomposition to recover
the 2D neural activity of fluorescent zebrafish, then, used a neural network to perform
3D reconstructions.

2.4.2.3 Pros and cons of DL for 3D reconstruction

The main advantage of using DL is reconstruction speed and low memory consumption.
However, this comes with strong drawbacks:

• The amount of data needed to train a DL model is quite large, and acquiring pairs
of LFMic and 3D ground truth stacks requires either complex imaging systems (e.g.
simultaneous light-sheet and light field acquisition [57], or alignment of acquired
data like in [86]).
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• Using DL for biomedical tasks can be risky, as there is no certainty that the recon-
structed volumes contain realistic structures and that the network isn’t dreaming
of biologically unfeasible structures.

This motivates works like the one from Wagner et al. [57], where an LFMic and a
light-sheet microscope were built in the same setup. This allowed them to acquire data
used for training (light-sheet 3D volumes and LF images) and validate whenever the
network reconstruction was deviating from the light-sheet stacks. But at the expense of
a complex optical system.

2.4.3 Further DL approaches for 3D microscopy

DL is used together with different microscopy modalities to recover 3D information on
biological specimens. For example, the work of Ounkomo et al. [91] trains networks to
recover different fluorescent cellular structures from bright field focal stacks. Further-
more, the work from Huang et al. [92], recovers a 3D fluorescent stack from an array
of arbitrarily placed focal captures, gaining speed against regular focal stack capturing
and confocal microscopy. Although these approaches work well, they are unsuited for
real-time imaging due to the requirement of capturing a focal stack. Wu et al. [93] with
their Deep-Z network, use a single fluorescent image and refocus it to a maximal range
of 20µm; this approach is suitable for real-time imaging but with a narrow depth of field.
Another branch of 3D reconstruction and DL is the joint optimization of the mi-

croscope and reconstruction algorithm, such as the work from Diptodip et al. [76] or
Muthumbi et al. [77], performing single shot 3D reconstruction using a programmable
phase-mask. In the super-resolution and STORM realm, the work from Nehme et al. [94]
becomes relevant, where they optimize a phase-mask pattern together with a neural net-
work for 3D particle localization, reducing the number of captures needed to reconstruct
a volume with an optimized PSF. Kellman et al. [95] used a Fourier ptychography mi-
croscope and optimized the light patterns projected into the sample together with a
neural network, reducing time against conventional Fourier ptychography and similar
image quality.

2.4.4 Bayesian networks for 3D reconstruction

As mentioned in the previous chapter, DL models can achieve high 3D reconstruction
speeds, but at the expense of a lack of certainty on the reconstructions. The lack of
certainty might render DL unsuitable for biomedical applications.
This shifts our attention to Bayesian neural networks (BNNs). These are a type of

neural network that uses Bayesian learning to model the uncertainty in the parameters of
the network. Traditional neural networks typically use deterministic weights and biases.
BNNs extend this to probabilistic models that provide a distribution over the weights
and biases of the network. In this case, we are interested in a network that directly
computes the uncertainty (or likelihood) of a sample belonging to a given distribution.
In other words, out of distribution detection.
Some types of BNNs and their characteristics are:
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• Generative adversarial networks [96]: Without exact likelihood computation. No
OOD capabilities.

• Variational auto-encoders [97]: Optimizes the evidence lower-bound. No OOD
capabilities.

• Normalizing flows [98] or invertible neural networks [99]: Access to the exact like-
lihood. With OOD capabilities.

NFs [98,100] is a type of Invertible Neural Network (INN) recently used for biomedical
imaging [101], inverse problems [102–105] and other applications like image generation
[106, 107]. NFs learn a mapping between an arbitrary statistical distribution and a
normal distribution through a set of invertible and differentiable functions. Also, a
tractable exact likelihood allows for probing the reaction of this mapping for individual
samples. This information, in turn, allows for deciding what to do with the new sample,
perhaps retraining the network with the new data, if desired.

One disadvantage of NFs is that due to the required invertible mapping, no data
bottlenecks are possible (like in an encoder-decoder approach), making it necessary to
store all the tensors and gradients in memory during training. This limits the size of the
data that can be used due to the limited GPU memory. The conventional solution to
this issue is to split the processed tensor after each invertible function [108], feed only
one part of it to the next function, and concatenate the other part to the output tensor
of the NF. However, when working with large tensors, the gradients during training still
overwhelm conventional GPU. Hence, Wavelet-Flow (WF) [106] were introduced, where
an invertible down-sampling operation is used (such as the Haar transform) to serially
down-sample the input image to the desired size (could be down to a single pixel). This
allows training each down-sampling NF individually with commercial GPU, allowing
their usage for high data throughput inverse problems for the first time. Generating a
new image consists of running the WF backward. The lowest resolution image is sampled
from an NF, then up-sampled through all the WF until reaching the original resolution.

2.4.4.1 Mathematical derivation

A normalizing flow (NF), through a sequence of invertible and differentiable functions,
transforms an arbitrary distribution pX(x) into the desired distribution pZ(z) (usually
a normal distribution, hence the name Normalizing Flows). This is possible through the
change of variables formula from probability theory, where the density function of the
random variable X is given by:

pX(x) = pZ(z)|det(J)| (2.5)

Where z is a normally distributed random variable (mean 0 and variance 1), with prob-
ability density function pZ(z). An NF can be trained by setting z = fΘ, where fΘ is

an invertible differentiable function parameterized by Θ, and J = JΘ = ∂fΘ(x)
∂x is the

Jacobian of fΘ concerning x, also known as the volume correction term.
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As seen in Eq. 2.5, a tractable and easily computable Jacobian determinant of fΘ(x)
is preferred (for example, where the Jacobian is block-triangular or diagonal). Hence,
choosing the functions conforming fΘ(x) is a crucial step.

A NF can be modified into a CNF and represent a conditional distribution pX(X|C),
for a set of observationsX = {x(1),x(2), ...,x(N)} and conditionsC = {c(1), c(2), ..., c(N)}.
The Likelihood from Eq. 2.5 becomes:

pX(X|C,Θ) = pZ(z
(i) = fΘ(x, c)) · |det(JΘ)| (2.6)

Due to Bayes theorem, the posterior over the model’s parameters are given by p(Θ|x, c) ∝
pX(x|c,Θ)·pΘ(Θ). And assuming a Gaussian distribution on the model parameters. The
negative-log-likelihood (NLL) and the loss function:

L = E(i)[−log(pX(x(i)|c(i)))]− log(pΘ(Θ)) (2.7)

L = E(i)

[
∥fΘ(x(i), c(i))∥22

2
− log|J (i)

Θ |

]
+ ρ∥Θ∥22 (2.8)

Where ρ = 1
2σ

2
Θ and J

(i)
Θ = ∂(fΘ(x(i),C(i)))

∂(x(i))
.

2.4.4.2 Training a conditional normalizing flow

Training a CNF involves finding the parameters Θ that maximize the likelihood:

(2.9)

Or minimize the negative log-likelihood

Θ∗ = argmin
Θ

N∑
i=1

[
∥fΘ(x(i), c(i))∥22

2
− log|det(J (i)

Θ )|

]
(2.10)

Inference with a new sample is done by sampling from z ∼ pZ(z) (in our case z ∼
N (µ, σ2)) and obtaining x by applying the inverse transformation of the flow: x =
f−1
Θ (z), as shown in Fig. 2.4.

Even though this method is mathematically sound, in practice, its lossless nature
limits its usability due to high memory requirements. For 3D reconstruction of large
volumes, the amount of memory needed to train a CNF is unpractical for commercially
available hardware.

To alleviate this, the WF method was introduced [106], where an image is down-
sampled multiple times with an ortho-normal wavelet transform (usually the Haar trans-
form [109] due to its invertibility). This transform splits the input into four half-sized
images comprising an average image and three images containing directional detail co-
efficients. These tensors can recover the original image when applying the inverse trans-
formation. WF are used to learn the distribution of the detail coefficients conditioned by
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a low-resolution image. And the last down-sampling step comprises an NF that directly
learns the probability distribution of the lowest-resolution image.

On the negative side, this architecture is not designed for inverse problems as it ignores
the image formation model prior knowledge, such as the raw XLFM image or the point
spread function. Furthermore, when training the individual NFs within the WF, the
Haar transform operator generates the low-resolution image, hence an exact down-sample
of the GT volume. When performing a 3D reconstruction, the low-resolution volume
received by the NFs deviates from the GT. These deviations cause errors that propagate
upwards through the network affecting the output 3D volume heavily. This means that
the quality of the lowest-resolution image greatly impacts the final reconstruction. Given
that the 3D reconstruction is performed in a succession of up-sampling operations, the
lowest resolution initial guess (Vn) is fundamental.

...

Figure 2.4: Conditional normalizing flow internal functionality.

We modified the WF architecture to account for the mentioned issues. In sec. 4.2,
an implementation of a CWF for FLFM is presented, which uses a XLFM image as an
input condition. It is suited for the 3D reconstruction of XLFM fluorescent images and
domain shift detection (DSD). The CWF reconstruction and DSD capabilities enable
a fast, accurate, and robust method for 3D fluorescence microscopy. Fast enough to
be applied within close-loop or human-in-the-loop experiments, where reconstructed
activity could trigger further steps in an experiment.

20



3 Traditional 3D reconstruction

For decades, iterative approaches have been the preferred method to solve inverse prob-
lems in fluorescence microscopy (described in sec. 2.4.1), as the underlying statistics
can be included in a mathematically sound and coherent matter. However, in practice,
although the LFM is an application of fluorescence microscopy, its setup is not as simple
as the image formation model previously described (see sec. 2.1.3). As a LFMic is char-
acterized by a space-variant PSF, a practical and robust deconvolution implementation
is not trivial.
Here we present two approaches used and collaboratively implemented during my

project to perform deconvolution in an organized and efficient way.

3.0.1 3D deconvolution with oLaF in Matlab

oLaf is a flexible 3D reconstruction framework for light field microscopy [1] written
in Matlab [110], it builds up on previously released source code [54] but offers highly
optimized storage and computation. It includes pre-processing routines of LF images
from the Light Field Toolbox for Matlab by Donald G. Dansereau [111], point spread
function computation, 3D reconstruction methods, and support for multiple LFM system
types.

3.0.1.1 LFM images pre-processing

The available pre-processing present is:

• Image calibration: By using a white image (LFM image without a sample and with
white light present), the centers of the microlenses are computed.

• LFM image rectification: Rotate the image to account for the rotation of the
microlenses concerning the camera. And Scale such that each micro-lens covers an
odd number of pixels.

Images from the pre-processing are shown in fig 3.1.

3.0.1.2 Point Spread function simulation

PSF simulation in fluorescence microscopy is commonly used, especially when measuring
a real PSF is either unfeasible or the microscope is unavailable. This is particularly
useful for the case of LFM, especially the LF 1.0 and LF 2.0 setups, where the PSF is
space-variant, which means that the PSF at the sensor changes relative to the emitter’s
position. e.g. the center pixel of a microlens has a different refraction pattern than
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(a) White image with lenslet centers detected (b) Rectified image

Figure 3.1: Pre and post-rectification of LFM image. The red lines show the rotation correction
applied. Images from [1]

a pixel on a border of the microlens. Measuring a PSF with an LFMic would involve
having a high-resolution stage that allows moving a fluorescent micro-sphere with sub-
micrometer resolution in 3 dimensions. And, somehow, align it with each pixel behind
the central microlens.

However, for the FLFMic, due to its space-invariant nature, measuring the PSF in-
volves only moving a micro-sphere in the axial dimension and measuring the different
PSFs.
oLaF uses a wave optics approach [6] to compute a simulated PSF. One problematic

aspect is the needed storage. Imagine a microscope with a camera with 2000 × 2000
pixels, 33 × 33 pixels behind each microlens, and 50 distinct depths. This setup would
generate a PSF with shape 2000 × 2000 × 33 × 33 × 50. If stored in a float32 array,
this would take 830842Mb ≈ 830Gb for the forward patterns and double that for both
forward and backward patterns. Making it very hard to work with.
This inspired a series of optimizations in storage and computation.

3.0.1.3 Memory and computation optimization

The optimizations and changes added to the initial source code [54] can be summarized
as:

• Exploit microlens pixel symmetries: Given that the objective + tube lens PSF is
radially symmetric, the PSFs from voxels with the same absolute distance to the
center of the microlens share a PSF. But depending on their position, they are
flipped either vertically or horizontally. Allowing us to compute and store only
1/4th of the PSFs. As seen in Fig. 3.2.

• PSF pattern sparse storage: The fluorescent PSF of a light field microscope is
highly sparse (mostly zero values). Hence, instead of storing all the pixels, we can

22



efficiently store only the non-zero pixel coordinates and their value. As the emitter
moves away from the focal plane, the PSF spatial support and the non-zero pixels
increases, explaining why the computing and storage load increase together with
PSF depth.

• Sparse convolution: We leverage Matlab’s built-in sparse convolution by storing
the PSF and the data in sparse format.

When applying these optimizations and considering that around 5% of a PSF contains
information, the size of the mentioned PSF goes down to

√
0.05 · 2000×

√
0.05 · 2000×

33
4 × 33

4 × 50 ≈ 100× 100× 8× 8× 50 with a storage space of 1024Mb ≈ 1Gb. Providing
an 800× space reduction.

3.0.1.4 3D reconstruction methods

In terms of reconstruction methods, oLaF supports:

• Richardson-Lucy algorithm [34,35] as described in Sec. 2.1.4.

• Estimate-Maximize-Smooth algorithm [4].

• One-Step-Late algorithm. [112]

3.0.1.5 Optical setups available

And works with a variety of optical setups, such as:

• LFM: regular and hexagonal grid MLA placement.

• MLA focus: single-focus lenslets and mixed multi-focus lenslets.

• MLA optical placement: original 1.0, defocused 2.0, and Fourier LFM designs.

3.0.2 WaveBlocks and 3D deconvolution in Python

The WaveBlocks framework [113] surged as a seamless tool to integrate fluorescence
microscopy and machine learning. This is mainly due to the auto-differentiation capa-
bilities in frameworks like PyTorch [114] that are missing in Matlab.

Within WaveBlocks, there are two main ways of performing a 3D reconstruction:

3.0.2.1 Explicitly computing the update step as in the Richardson-Lucy method

This approach follows the logic from oLaF. Where forward and backward operators are
known from the PSF and are used to compute an update for the volume iteratively, as
described in sec. 2.4.1.
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3 Traditional 3D reconstruction

3.0.2.2 Exploiting PyTorch auto-differentiability

This approach is much more flexible, allowing reconstructing by minimizing arbitrary
cost functions (log-likelihood as in RL, mean squared error, etc.). This by:

1. Building a forward model (as shown in sec. 2.1.3) in PyTorch.

2. Forward projecting an initial guess volume (filled with ones, for example).

3. Computing the loss between the produced LF image and the measurement to
reconstruct.

4. Back propagating gradients of the loss function with respect to the volume.

5. Update the volume.

6. Repeat until reaching a stopping criteria.

——————————————————————————-
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Figure 3.2: PSF storage representation of a 5× 5 voxels per microlens system, where each cell
is a PSF for a position in front of a single microlens. Number 6 is the central voxel.
Note how we only need to compute one-fourth of the PSFs, and the rest can be
computed by flipping the pre-computed PSF.
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4 Deep-learning-based 3D reconstruction

4.1 Traditional deep learning approaches

Traditional reconstruction methods used for 3D LFM (as described in sections 2.4.1 and
3) suffer from slow reconstruction speeds, anisotropic resolution at different depths and
artifacts. Which motivated approaching the problem with DL approaches.

In this chapter, you can find implementations for reconstructing 3D volumes using
LFM, and FLFM images with two novel architectures based on the U-net [85] together
with a dataset of mice brain confocal 3D stacks and LFM pairs used for training. Fur-
thermore, a sparse-low-rank decomposition network is presented, named SLNet, capable
of extracting neural activity of fixed living zebrafish images. In some applications, only
the neural activity is relevant, so reconstructing the whole fish is unnecessary and only
makes the inverse problem harder to solve.

4.1.1 Learning to reconstruct confocal microscopy stacks from single light
field images

This is an adapted version of a peer-reviewed manuscript [86] published during my Ph.D.

This work aims toward a deep-learning approach to 3D reconstruct LF images with
confocal-like resolution and quality. We introduce LFMNet, fully convolutional neural
network architecture inspired by the U-Net design.

LFMNet can reconstruct with near confocal accuracy a 112× 112× 57.6µm3 volume
(1287× 1287× 64 voxels) in 50ms given a single light field image of 1287× 1287 pixels,
dramatically reducing 720-fold the capture time compared to confocal scanning of assays
at the same volumetric resolution and 64-fold the required storage (72s for a confocal
stack scan vs. 100ms for an LF image capture) and a 30,000-fold decrease in reconstruc-
tion time against conventional LF deconvolution methods. On average, for our volume
and image resolutions, it takes 1500s for a deconvolution-based reconstruction vs. 50ms
for reconstruction with LFMNet (30ms for the light field rectification, and 20ms to run
LFMNet).

Our approach is evaluated quantitatively and qualitatively on mouse brain slices with
fluorescently labeled blood vessels to prove its applicability in life sciences. Because
of the drastic reduction in image acquisition time, our setup and method are suitable
for imaging highly dynamic and light-sensitive events and closed-loop systems, where
latency due to the reconstruction time is crucial. We provide an empirical analysis of
the optical design, the network architecture, and our training procedure to reconstruct
confocal-like volumes for a given target depth range. To train our network, we built a
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4 Deep-learning-based 3D reconstruction

data set of 362 light field images of the mouse brain sample and the corresponding aligned
set of 3D confocal scans, which we use as ground truth, freely available online [87].

Tissue slice

Confocal Scan

Storage: 1.7𝐌
𝐁 0.05 𝐬

Deconvolution

Storage: 108𝐌
𝐁

LFM capture

Confocal Vol
Final

Final LF Vol
40x
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4
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6
4

 slices
6

4
 slices

0.1 𝐬

72 𝐬
6 𝐬

78 𝐬

Totaltime: 

0.15 𝐬

Totaltime: 

LFMNet

Confocal Microscope

Figure 4.1: Comparison of a confocal stack scan vs. a scan with our LFM. Memory and time
measurements refer to a volume with 1287 × 1287 × 64 voxels. Notice how the
LFM data acquisition (bottom row) is faster at capturing and reconstructing and
requires much less storage than the confocal stack scan (top row).

In LFM 3D reconstruction, a simulated PSF is commonly used due to the complexity
of measuring one on a real microscope. The resemblance between the mathematical
model used to simulate the PSF and a real microscope determines the achievable quality
of the recovered volumes after deconvolution. Unfortunately, in practice, fitting the
model and priors to the microscope and data is a challenging and sometimes impossible
task, as the exact aberrations of the microscope are usually unknown.

In this work, we propose to use LFM in combination with a DL approach on a non-
simulated data set to address the above shortcomings. As shown in Fig. 4.1, we propose
to learn through many examples an effective prior describing both the microscope and
the specific data of interest while ensuring high-quality volumetric reconstructions.

We provide three main contributions: 1) a volume reconstruction method from LF
images with accuracy similar to that of confocal scans and high computational efficiency
compared to deconvolution methods, 2) a data set of non-simulated LF images and
corresponding confocal volumetric scans [87], and 3) empirical analysis of the LFM design
for confocal-like reconstruction quality. In the first contribution, we introduce LFMNet,
a novel CNN architecture with a volume reconstruction accuracy close to that of confocal
scans, despite using 64× fewer data, and capable of producing 20 volumes per second
from single LF images (for more details see section 4.1.1.1). We present an analysis of the
design factors that make the architecture fully convolutional and illustrate the challenges
in achieving this with 4D data. LFMNet is thus able to handle light fields with variable
spatial resolutions and formats. This flexibility allows us to train LFMNet on large
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4.1 Traditional deep learning approaches

batches of LF patches and test it on full images, yielding higher computational efficiency
than patch-wise inference. This training strategy allows extensive data shuffling and
helps prevent overfitting. We introduce a new real data set of LF images and confocal
scans in the second contribution. The main advantage of training a network on real
instead of synthetic data is that it can learn data prior that also incorporates the optical
properties of the microscope. The central challenge in building and exploiting such a
data set is that LF images and the corresponding confocal scan volumes must be aligned.
We propose an automatic alignment technique that finds the position of an LF image
relative to the full confocal scan and extracts the corresponding volume from it. The
proposed approach does not require a time-consuming procedure to build the data set,
as no manual labeling is required. Only a small number of high-resolution images is
needed (362 in our data set). We illustrate the pipeline used to align the LF images to
the confocal stacks in section 4.1.1.1.

Our final contribution is the empirical analysis of the LFM optical configuration to
determine which settings, among a finite set, yield the best 3D reconstruction with our
available hardware. The placement of the MLA and the sensor in the optical path of
an LF system plays a crucial role in the amount of angular and spatial information
available at the sensor, the amount of aliasing, and the achievable 3D reconstruction
accuracy [2, 15, 61, 62]. We carried out an extensive empirical analysis of the possible
configurations by using simulated data, and a set of performance metrics as previously
done by Broxton et al. [6] and Cohen et al. [13]. This analysis allowed us to find the
best configuration for the depth range of interest (see section 4.1.1.1).

4.1.1.1 Methods

In this section, we describe the main steps of our approach. First, our LFMic design
criteria, followed by the sample preparation for the created data set and the procedure
to acquire and align corresponding light field images and confocal stack scans. Later
in the chapter, we describe the architecture of our neural network, its design criteria,
and training on the data set. Finally, we describe the steps to make LFMNet a fully
convolutional network. All computations were performed on a machine with an Intel
Core-i7-6800K processor, two Nvidia Titan-X graphic cards, and 64 GB of RAM.

Designing a Light Field Microscope

Our LFM setup consists of a Zeiss Axio Observer microscope with a 40 × /0.9 NA
air objective. The MLA (from Flexible OKO optical) is placed in the lateral light path
of the microscope and built-in regular packing (orthogonal arrangement) with a focal
length of 2.5mm and 112µm pitch. The MLA is followed by a 1:1 relay lens (Edmund
Optics Achromat Pair 100mm focal length) that translates the image formed by the
MLA to the camera plane. Our camera is a Baumer VCXG-124M CMOS with 3.45µm
square pixels. To scan the sample, a motorized stage with universal mounting frame K
(Zeiss) is used, and a custom script was written in MicroManager [115], which allows
the acquisition of our samples automatically.
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4 Deep-learning-based 3D reconstruction

The most fundamental element of the design of an LFM is the placement of the MLA
relative to the imaging sensor and the object (see a and b in Fig. 2.1 in the appendix). To
identify the best settings, we evaluate various parameters against different performance
measures on simulated data. As detailed in the Experiments section, this analysis shows
that the LF-1.0 setting provides the best configuration for the depth range
of interest. We evaluate the different configurations via a uniform grid search, where
the sensor is placed at 17 positions relative to the MLA (b in the thin lens equation
in Fig. 2.1 in the appendix), spanning a range from 1000µm to 5000µm with steps of
250µm. We then measure the frequency response of a USAF 1951 resolution target when
placed at 65 different depths relative to the front focal plane of the objective, ranging
from −32µm to 32µm with steps of 1µm. In this resolution target, the highest frequency
is at group 9, element 3 (645.1line-pairs/mm or 0.78µm line size).
To evaluate the performance of each configuration, we employ the following metrics:

a) Fisher Information (FI) of the Point Spread Function: The FI matrix F
measures the amount of change on the sensor response when varying the location of
a source point. This performance metric was previously used by Cohen et al. [13]
and measures the amount of information a PSF carries. One of the main advantages
of this metric is that it does not depend on a specific deconvolution or reconstruction
method.

b) USAF 1951 contrast and Pearson correlation coefficient: This performance
metrics are a measure of contrast on a resolution target. The former analyzes how
the modulation transfer function (MTF) varies when one places the resolution target
at different depths and computes how well the line pairs can be reconstructed. It has
been previously used as a metric for lateral resolution [6, 13]. The contrast is given
by C = (Imax − Imin)/(Imax + Imin), where Imax and Imin are the maximum and
minimum intensities of a patch in the observed image. For this experiment, we place
the target at the same depths as the computed PSFs from the Fisher Information
experiment and compute the contrast and correlation coefficients against a ground
truth resolution target as shown in Fig. 4.2.

Sample Preparation
The sample preparation follows three steps:

1. Fluorescent Labeling of the Vasculature: To label all blood vessels uniformly,
we inject retro-orbitally 30µl of fluorescently labeled lectin (1mg/ml, DyLight
594conjugated, DL-1177) into isoflurane-anesthetized C57BL/6J mice. After an
awake period of 30 minutes, we sacrifice the mice and intracardially perfuse them
with 10ml of Dulbecco’s phosphate-buffered saline (PBS,14190-094) followed by
perfusion with 2% paraformaldehyde in PBS (PFA,30525-89-4).

2. Brain Isolation and Processing: We carefully isolate mice brains from the
skull and store them in 2% PFA in PBS for 16 to 20 hours post-fixation. After
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(a) MTF contrast plot (b) Correlation coefficient (c) Fisher Information

Figure 4.2: Grid evaluation of the MLA-to-sensor distance in the LFM for different depths.
The white dotted line is the location where the focal point on an LF-2.0 LFM [2,3]
would be located. The red horizontal line shows our selected setting, equivalent
to an LF-1.0 microscope, with the camera sensor placed at the focal plane of the
MLA. On the right side of every plot is the depth-wise sum. The green dot in each
plot indicates which configuration maximizes the corresponding metric across our
selected depth range.

one day, we wash the brains with PBS and then store them for 20 to 24 hours in
PBS. Then, we embed the brains in 2% low-temperature gelling agarose (A9414) to
provide tissue stability during the sectioning. Finally, we cut 60µm thick coronal
sections of the brains using a vibrating blade microtome (Leica VT1000S) and
collect the slices in PBS.

3. Sample Mounting: To create chambers for sample mounting that protect the
brain slices from mechanical compression, we glue 120µm deep microscopy spacers
(S24735) onto microscopy slides. We then position single brain slices in the cham-
ber’s center and cover them with 30µl Mowiol mounting medium (9002-89-5). We
then mount and seal the samples with a cover glass to allow for subsequent imaging.
Before imaging, we overnight store the slides in the dark at room temperature.

Data Set Preparation

The next step is to build a data set containing pairs of confocal stacks and correspond-
ing LFM images. One sample consists of a 60µm thick slice of the mouse brain, where
the blood vessels are fluorescently labeled with tomato lectin, with excitation and emis-
sion of 592nm and 617nm, respectively. An essential aspect of our procedure is that the
LFM images and the corresponding confocal scans are aligned after capture because the
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4 Deep-learning-based 3D reconstruction

acquisitions are performed on two separate microscopes. The following sections describe
how the imaging and the alignment are performed.

Confocal Microscope Image Acquisition: We acquire the confocal microscope im-
ages on a Zeiss LSM 800 microscope. First, we image the full brain slice with a 10×/0.45
objective to create a coarse overview of the slice. Then, we select a region of interest
(ROI) and scan it with a 40 × /1.3 oil immersion objective. We image a grid of tiles
per ROI, each spanning 1536 × 1536 × 64 voxels, with a 0.087µm lateral sampling and
a 0.9µm axial sampling. For the confocal data set, we acquire three areas from two
brain slices, of 12 × 8, 7 × 17, and 17 × 12 tiles, respectively, with a 10% overlap be-
tween tiles. We then mark the ROI on the 10× overview image for easier localization
of the LFM images. We perform a deconvolution step to improve the acquired volumes’
quality further. For this purpose, we run the Classic Maximum Likelihood Estimation
algorithm with the Huygens Remote Manager, a web-based implementation of Huygens
Core deconvolution software (SVI, the Netherlands), for 25 iterations. Finally, the tiles
are stitched together by applying a concentric gradient on the borders of each tile and
by adding them to the final image.

Sample scattering and depth of field: Scattering in samples is a hindering factor for
fluorescence imaging when trying to image deep into the tissue, mainly when using bright
field microscopes. Confocal microscopes dim this effect due to the confocal principle that
blocks out-of-focus light. Nevertheless, they are still prone to low signal-to-noise ratios
at deep tissue, influencing our decision on the depths to use in this project. To quantify
the performance of confocal against the bright field, we compared a deconvolved bright
field focal stack against a confocal stack in terms of the PSNR across depths, as seen in
Fig. 4.3 and Fig. 4.4. In Fig. 4.3, it is presented how the signal quality of a bright field
stack degrades towards deeper depths.
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Figure 4.3: PSNR between Confocal and brightfield stacks: By comparing the confocal and
brightfield z-stacks, we can observe how even though both get attenuated deeper
into the tissue, brightfield stacks suffer from poorer signal due to scattering.

It is essential to mention that this scattering is present in the LF images, as LF
microscopes are based on bright field microscopes. Hence, the aim of reconstructing

32



4.1 Traditional deep learning approaches

x
-z

 p
ro

j

20𝜇𝑚 20𝜇𝑚

20𝜇𝑚

y-z proj

𝐷
𝑒
𝑒
𝑝
𝑒
𝑟

(a) Brightfield deconvolved z-stack.

y-z proj

x
-z

 p
ro

j

20𝜇𝑚

20𝜇𝑚

20𝜇𝑚

𝐷
𝑒
𝑒
𝑝
𝑒
𝑟

(b) Confocal deconvolved z-stack.

Figure 4.4: Focal stack comparison of a mice brain slice.

confocal volumes from LF images is also a de-scattering task, as the input has scattering
and the output has low scattering as in confocal scans.
Acquisition and Alignment of LF Images and Confocal Volumes: In our proce-
dure, we use the confocal stacks as a fixed reference and adjust the capture and alignment
of the LFM images instead. To locate the LFM image within the region of interest of
the volume scanned with the confocal microscope, we perform the following initial steps:

• Locate the region of interest through visual inspection.

• Manually center the slice in z, such that the center of the sample is focused at the
MLA.

• Scan a grid of 25 × 25 tiles around the detected location (the scanned grid thus
covers a larger area than the confocal volume).

Each tile is captured by exposing the camera for 100ms and covers an area of 111×111µm
(with 1287 × 1287 pixels). The system acquires a 25× 25 grid of tiles covering an area
of 2.77× 2.77mm in ∼ 625 seconds (delayed mainly by the motorized stage).

Once the LFM images (with the corresponding confocal stacks) are acquired, the
following automated steps are performed to align the data (see Fig. 4.5):

• Image Rectification (Fig. 4.5 (a)): LF images are captured with a resolution
of 1287 × 1287 pixels on a grid of 39 × 39 microlenses (which correspond to the
spatial resolution of the LF), each covering 33 × 33 pixels (which correspond to
the angular resolution of the LF). For more details on the structure of LF, images
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Figure 4.5: Data set sample acquisition and alignment: (a) LF image and (b) average of the
confocal stack along the z axis. Both images are obtained by stitching multiple
acquisitions of the same brain slice sample. (c) Single LF image tile to be aligned
to the confocal volume. (d) Deconvolved [4] volume from the LF image in (c) aver-
aged along the z-axis. (e) Correlation map between (b) and (d). The region in the
correlation map with the highest peak is highlighted with a green box. (f) Corre-
sponding position of the tile found in the confocal scan. (g) (h) LFM image crop
aligned with 3D Confocal stack crop. The 4D LFM image and the corresponding
confocal stack are then stored in the database for training.

see the pioneering work of Ng et al. [61]. The LF images are rectified photo-
metrically using a captured white image and geometrically using the LF Matlab
Toolbox [111]. After the geometric rectification, an integer number of pixels fits
within exactly one lenslet. In our case, the originally captured LFM images with
lenslet pitch/sensor pitch = 112µm/3.45µm = 32.46 pixels per lenslet are rectified to 33
pixels per lenslet. This task takes 30 ms per image in our system.

• 3D Deconvolution (Fig. 4.5 (c), (d)): Each rectified image is deconvolved into
a volume that spans the same axial range as the scanned confocal stack (64 depths·
0.9µm = 57.6µm) by using the aliasing-aware deconvolution algorithm proposed by
Stefaniou et al. [4]. The reconstructions are sped up by a modified implementation
of the algorithm that reconstructs a smaller number of voxels (7 voxels per lenslet,
which corresponds to a lateral resolution of 0.4µm). Furthermore, because the
confocal microscope uses an oil immersion objective and the LFM uses an air
objective instead, we compensate for the effective measured depth difference by
considering the refractive index of the mouse brain and immersion oil. We use the
z-step, adjusted by the ratio 0.9/1.44, and obtain a compensated depth range of
∼ 40µm.
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• Alignment (Fig. 4.5 (b)-(e)): To align an LFM image tile to its correspond-
ing confocal volume, first, we average both the 3D LF deconvolution volume and
confocal stack (Fig. 4.5 (b)) along their z-axis. Then, we compute the correlation
between these average images [116]. The method returns a 2D correlation coeffi-
cient map with a peak at the highest correlated position (Fig. 4.5 (e)). A peak
is only selected to avoid false positives if its value surpasses a manually chosen
threshold of 0.59 (notice that the correlation coefficient ranges between -1 and 1).
The falsely classified samples, which rarely happened, were discarded through a
brief visual inspection of the dataset.

• Storage (Fig. 4.5 (g), (h)): Finally, the LFM image tile (Fig. 4.5 (h)) is reshaped
to a 4D LF and stored as a training sample into the data set together with the
corresponding aligned confocal stack patch.

The final data set consists of 362 LF images composed of 33 × 33 × 39 × 39 elements
and their corresponding confocal stacks with 1287 × 1287 × 64 voxels and voxel size of
0.087× 0.087× 0.9µm. The data set is split so that 317 images are used for training, 35
for validation, and 10 for testing.

Deep Learning Model
We are interested in mapping LFM images to confocal stacks. This task, however,

presents several challenges. Firstly, since LFM images carry less data than confocal
stacks, direct mapping is ill-posed. To introduce the missing information, we exploit the
fact that the space of confocal stacks has a limited complexity and use neural networks
to capture such structure. Secondly, because of the optical arrangement, LFM images do
not capture the same amount of information at every depth (i.e., the effective volume
slice resolution) [15]. In particular, the angular resolution is the lowest at the depth
corresponding to a focused image on the MLA. In fact, aberrations and misalignment
can be beneficial because they distort the sampling patterns defined by the ideal system
and thus avoid degenerate imaging conditions. These aspects have been exploited, for
example, by Li Yi et al. [117]. However, modeling precisely aberrations, misalignment,
and other optics parameters is challenging, and errors can result in strong artifacts.
Thus, we address these challenges by taking advantage of the data-driven approach

of deep learning (i.e., no explicit modeling is required). We train a neural network with
real data and aim at learning a good prior about both the microscope setup and the
data domain.
Design Criteria: We call our proposed network LFMNet. It receives as input an LF
image in the tensor format 1 × Ax × Ay × Sx × Sy, where Sx and Sy are the spatial
dimensions and Ax and Ay the angular dimensions (see also section 2.3.1.1 in the 2
chapter). The first layer of LFMNet is a 4D convolutional layer (more details will be
presented in section 4.1.1.1). The output of this layer is denoted T1 (see Fig. 4.6), with
shape nD × Ax × Ay ×Ox ×Oy where nD corresponds to the number of depths of the
reconstructed volume encoded in the channel dimension and Ox,y = Ax,y− fov+1, where
the field of view fov is discussed in section 4.1.1.1. T1 is then converted to a 2D image
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Tensor Dimensions (ch,dim1,dim2,..)

4D LF in 1, Ax, Ay, Sx, Sy

T1 nD,Ax, Ay, Ox, Oy

T2 and Vol Out nD,Ax ·Ox, Ay ·Oy

D1 and U3 nD, (Ax · nT )/2, (Ay ·Oy)/2
D2 and U2 nD, (Ax ·Ox)/4, (Ay ·Oy)/4
D3 and U1 nD, (Ax ·Ox)/8, (Ay ·Oy)/8

D4 nD, (Ax ·Ox)/16, (Ay ·Oy)/16

Table 4.1: Tensor sizes for the LFMNet, whose architecture is shown in Fig. 4.6. Ai and Si are
the angular and spatial coordinates, nD the number of depths and Oi = Si− fov+1
the output spatial size.

D4

Shallow U-net Version

D1

D2

D3 U1

U2

T1 L
F

 to
 Im

g

C
o

n
v

4
D

4D LF in

T2 Vol Out

U3

Channel concatenation

TrConv2D(k3,s2,p1)  +   Conv2D(k3,s1,p1)
+  BN  +  ReLu

Conv2D(k3,s2,p1)  +   Conv2D(k3,s1,p1)

+  BN  +  ReLu
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Network layers

Figure 4.6: Proposed LFMNet architecture. We show two different versions of the U-Net:
One is the full version, with four down-sampling convolutions, and the other is
the shallow version, shown in the blue dotted rectangle. The dimensions of the
tensors can be found in Table 4.1.

T2 through the mapping nD × Ax × Ay × Ox × Oy 7→ nD × AxOx × AyOy. Then, a
modified U-Net [85], which employs convolutions as down-sampling operators, finalizes
the feature extraction and 3D reconstruction. The output shape is nD×AxOx ×AyOy.
Furthermore, because of its fully convolutional design, our network can reconstruct the
volume behind single or multiple lenslets. The complete model is shown in Fig. 4.6

Tiles vs Full Images and a Fully Convolutional Network: We are interested in
designing a fully-convolutional LF network, meaning a network that can process any
shape of input LF and reconstruct a volume corresponding to the input. This would
allow us to train the network with patches of the LF data, increasing the possibility of
data shuffling and augmentation, and use the network with full LF images at inference
time.

The LFMNet aims to reconstruct the volume behind a group of lenslets, but 2D lenslet
image patterns are hardly exploitable by a 2D convolution, meaning that consecutive
pixels in the image don’t necessarily correspond to consecutive voxels in the volume;
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this is due to the 4D nature of light fields. Hence, we use a 4D convolution as the input
layer, which processes the spatial coordinates of the LF image microlens by microlens
and has a kernel shape just large enough to fit the neighborhood around our volume of
interest. The kernel size of this layer is 3 × 3 × fov × fov, where fov is the size of the
lenslet neighborhood used as input (as also discussed in section 4.1.1.1), with a padding
equal to 1 × 1 × 0 × 0, and a stride equal to 1 in every dimension. All other layers are
already convolutional and do not require an adjustment for processing any input size.
Receptive Field Analysis: Another important factor for the generalization from
patches to full LF images is the receptive field of the network. The receptive field
tells us what elements of an input to a layer can potentially affect an output. This
information is useful to ensure that the receptive field is large enough to include all the
required information to produce the output. In the case of LF microscopy, the image of
a voxel is spread in a neighborhood because of the PSF, and its size can then be used to
define the minimum receptive field. However, we explain below that special care must
be taken at the input boundaries.
A single convolutional layer has a receptive field that depends on its kernel size and the

stride (the down- or up-sampling factor). When stacking several convolutional layers,
the overall receptive field depends on their connectivity, as shown by Dumoulin and
Visin [118]. Our analysis and experiments show that the output might change when
LFMNet is fed the same input but with different neighborhood sizes. This effect is
undesirable as we want to train the network with the smallest possible size to increase
diversity and limit overfitting. Still, we want to use the trained network on full LF
images for computational efficiency. Suppose the receptive field of LFMNet is larger than
Ax ×Ay of the input LF image region used for training. In that case, the convolutional
layers will fill in the missing data at the boundaries with reflecting conditions. However,
if at test time, the input LF image is larger than the receptive field of LFMNet, then the
reflecting conditions are not applied, and thus the network may produce an unpredictable
outcome. We observe that the section of the U-Net closest to the bottleneck (see D3,
D4, and U1 in Fig. 4.7) contributes greatly to the broadening of the receptive field.
We experimented with the following settings (see Fig. 4.6 for more details and note

that the shallow LFMNet is within the blue dotted box)

1. Shallow U-Net with two down/up-sample operations and a receptive field of 19
pixels.

2. Full U-Net with four down/up-sample operations and a receptive field of 104
pixels.

In Fig. 4.7, we evaluate both settings (shown on different rows) under two modes of
operation (shown on different columns). In the first mode of operation, we reconstruct
the full volume by processing LF patches independently (each patch has a size of 33 ×
33 × 9 × 9) and then by stitching the patches together to form the output volumes. In
this case, both networks produced similar results. In the second mode, that is, when we
reconstruct the full volume by processing a full LF image (33× 33× 39× 39 + padding
of 4 in the last two dimensions), only the network with the limited receptive field (the
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Figure 4.7: Reconstruction comparison when using the shallow U-Net vs the full U-Net.
Left column: input LF image (top) and ground truth volume average z projection
from the confocal scan (bottom). Middle column: patch-wise reconstruction with
the full U-Net (top) and the shallow U-Net (bottom). Right column: Fully
convolutional reconstruction (20 ms). The reconstruction with the full U-Net
(top) shows artifacts.

shallow U-Net in the bottom row in Fig. 4.7) maintains the volume behind each lenslet
untangled from its neighbors, and avoids artifacts. Moreover, this mode of operation
can exploit parallel processing more efficiently than the patch-wise mode and produce
the full output in just 20ms. Hence, we use the shallow U-Net for our LFMNet.

Field of View of an LF Image:

Our analysis showed that for the desired depth range, a maximum field of view of
21 lenslets is needed (see section 2.3.1.1 in the background chapter) (see Fig. A.1 in
Appendix A.1.0.2). In our ablation study, we compare the LFMNet reconstructions
when using fields of view with sizes 21 × 21, 15 × 15, and 9 × 9 lenslets. We find that
the 9× 9 fov yields the highest performance (see Table 4.2). Also, it comprises the best
trade-off between run time, data overfitting, and minimum field of view requirements.
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Table 4.2: Performance results for different LFMNet configurations. The top part shows ab-
lation results. The bottom part shows the final network compared with previous
work. The best results per metric are in boldface. In orange, we highlight the cho-
sen network configuration. The testing is performed on ten full LF images with
shape 33× 33× 39× 39.

Model
definition

Train LF
input shape

Train
volume
output
shape

Full
LF

PSNR
(db)

Full
LF

SSIM

Train
time

(sec×img)

Full LF
Test
time

(ms×img)

LFMNet U-Net receptive field test (trained on 27 images), (section 4.1.1.1)

Shallow U-Net,
no SC

33,33,9,9 33,33,64 28.86 0.69 3.58 20

Full U-Net, no
SC

33,33,9,9 33,33,64 22.49 0.55 4.66 29

U-Net with skip connections (SC), (trained on 27 images)

Shallow U-Net,
SC

33,33,9,9 33,33,64 24.03 0.56 3.82 20

Full U-Net, SC 33,33,9,9 33,33,64 26.78 0.66 4.25 29

LFMNet Input field of view (fov), (trained on 27 images) section 4.1.1.1

Shallow U-Net,
no SC, fov = 15

33,33,15,15 33,33,64 25.61 0.60 9.70 29

Shallow U-Net,
no SC, fov = 21

33,33,21,21 33,33,64 28.31 0.67 9.59 25

Number of microlenses to reconstruct (nT ), with fov=9, (trained on 27 images) , section 4.1.1.2

Shallow U-Net,
no SC, fov = 9,
nT = 3 MLAs

33,33,11,11 99,99,64 29.56 0.70 10.27 20

Shallow U-Net,
no SC, fov = 9,
nT = 5 MLAs

33,33,13,13 165,165,64 29.12 0.69 23.97 23

Final LFMNet design and comparison to other methods (trained on 317 images)

Shallow U-Net,
no SC, fov = 9,
nT = 3 MLAs

33,33,11,11 99,99,64 34.45 0.87 5.81 20

Shallow U-Net,
no SC, fov = 9,
nT = FullLF

33,33,39,39 1287,1287,64 27.27 0.58 0.48 20

V2C Net [5] 33,33,39,39 1287,1287,64 31.27 0.82 0.60 160

V2C Net Patch 33,33,11,11 99,99,64 30.76 0.80 5.00 160

Deconvolution [4]
5 iterations

33,33,39,39 1287,1287,64 28.64 0.60 - 1500s
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4 Deep-learning-based 3D reconstruction

4.1.1.2 Experiments

LFM hardware Design Validation The analysis described in section 4.1.1.1 focuses
on the effect of moving the sensor and the MLA within the LFM and proposes several
performance metrics to evaluate the different configurations. PSF validation: The
first step in our analysis is to validate our model of the PSF, which is based on that
of Stefanoiu et al. [4], against experimental data by looking at the MTF (MTF). To do
so, we first measure the MTF of our LFM setup by using the frequency responses of
groups 7-9 from the USAF 1951 resolution target. Then, we compare it to the simulated
MTF from our model after inserting all the calibration parameters. Because of space
limitations. The measured and simulated MTFs are shown in Fig. 4.8. The simulated
MTF (see Fig. 4.8 (a)) has a slightly higher response at all frequencies than that of the
measured MTF (see Fig. 4.8 (b)). This mismatch is due to the inaccuracies of the LFM
model, mostly caused by the relay optics. The important factor in this analysis is the
matching focal plane between the simulated and the real MTF.
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(b) Measured MTF in our LFM

Figure 4.8: Comparison between (a) the simulated MTF and (b) our measured MTF. Measur-
ing the recovered frequencies from reconstructions of an USAF resolution target.

Finding the best MLA placement: After validating our PSF model, we can evaluate
the LFM setup. In Fig. 4.2, we show each performance metric for a wide range of settings
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4.1 Traditional deep learning approaches

in the form of a heat map: For each setting, the heat color corresponds to the highest
frequency with at least 80% of (a) contrast, (b) correlation and (c) Fisher Information.
Thus, bright (yellow) colors correspond to high frequencies, which should yield high-
resolution reconstructions, and dark (blue) colors correspond to low frequencies, which
imply a poorer reconstruction quality. We also highlight with a white dotted line the
optimal MLA distance for each object depth according to the LF-2.0 design [2,3]. Note
how the LF-2.0 setting follows approximately the profile with the highest peak (i.e., best
high-resolution reconstruction) for each MLA distance.
Such a setting would be particularly useful when imaging thin volumes, but this does

not apply to us, as our setup acquires a volume spanning 57.6µm. On the right-hand
side of each heat map in Fig. 4.2 (a)-(c), we plot the average performance across the
depths for each MLA placement. The maximum value across all object depths (marked
with a green dot) indicates the best MLA setting for our LFM. This choice matches the
conventional LF-1.0 design [2, 3], and thus we used it for our final setup.
Even though the extent of the PSF at the MLA with our setup theoretically covers

∼ 20 micro-lenses (as discussed in section A.1.0.2), having such a large input (and 4D
convolution kernel) hampers the training time considerably and might incur more easily
overfitting.

Network Ablation and Performance Evaluation
In this section, we evaluate the effectiveness of our method on the design criteria

introduced in section 4.1.1.1, by comparing side-by-side the two U-Net configurations
(shallow and full), the use of skip connections in the U-Net architecture, the different
field of view choices (fov) and the volume size used for training, denoted by AxnT ×
AynT ×nD, where nT ∈ {3, 5}. The networks in Table 4.2 are trained on a subset of the
data formed by 27 images (41,067 patches), validated on 3 images (4,563 patches), and
tested on 10 full LF images (33×33×39×39). The quality measures of reconstruction are
the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) [119].
Also, we show the training and reconstruction times for a single LF image. As a result
of our ablation, the design that yielded the highest image PSNR and SSIM (see 4th and
5th columns in Table 4.2) is

The shallow U-Net without skip connections, trained with 33×33×11×11
input LF patches and with an output volume of 99 × 99 × 64 voxels. This
corresponds to the volume behind 3×3 microlenses (nT ), given a fov = 9 per
microlens.

Next, we compare the LFMNet with these settings (highlighted in orange at the bottom
of Table 4.2) against the V2C approach [5], the V2C trained on patches, the aliasing-
aware deconvolution [4] and the LFMNet trained with full LF images. As the original
V2CNet employs around 27 million parameters, we use a modified version with 8.5
million parameters, matching the amount present in the LFMNet. All networks are
trained with 370 LF images (LFMNet with real LF images and V2C net with simulated
LF images as in [5]) and tested on the 10 LF images from the separate test set. The
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4 Deep-learning-based 3D reconstruction

LFMNet trained with full images achieves lower performance than when training with
patches, showing the advantage of using patches over full images. For details about
the deconvolution initialization and the number of iterations, refer to sec. 4.1.1.2 and
Fig. 4.9a.

Deconvolution initialization and number of iterations: Algorithmic optimization
performance depends heavily on the hyper-parameters used, in the case of Richardson-
Lucy deconvolution, the only parameters are the type of initialization and the number of
iterations. In this work, we used five iterations and initialized the reconstructed volume
with 1’s to be comparable to previous works [4, 6]. However, when initializing with
a backward projection, as seen in Fig. 4.9a “Vol 1 Back. Init.“ starts with a smaller
error and converges faster. Nevertheless, it converges to the same value as the “Vol 1“
with initialization equal to 1. We conclude that either of these initialization works for
comparison, as at iteration 5, both produce a similar error.
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Figure 4.9

LF images reconstructed with the LFMNet, V2C, and deconvolution are qualitatively
compared in Fig. 4.10 (zoom-in may be required to see differences). A slice through a
single vessel is depicted in Fig. 4.11. Our proposed method provides overall a 75,000 fold
improvement in reconstruction time against deconvolution and a higher reconstruction
accuracy in terms of PSNR and SSIM.

The networks were trained using Adam optimizer and mean squared error as a loss
function. The learning rate of both LFMNet and V2CNet was optimized with the cyclical
learning rates method from Smith [7], resulting in a learning rate of 1.08E-3 and 1.49E-4
for LFMNet and V2CNet. For further detail on the learning rate optimization, refer to
sec. 4.1.1.2.

Learning rate and number of parameters:

The choice of a learning rate in CNN directly impacts its performance. To use the
optimal learning rates for LFMNet and V2CNet, we employed the cyclical learning rates
method from Smith [7] implemented in the Python package pytorch-lr-finder.
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Figure 4.10: Reconstruction comparison between the proposed LFMNet, the V2C network [5]
trained on simulated LFs and LF deconvolution [6]. The green line in sample 2,
is used for further analysis in Fig. 4.11.
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Method FWHM (µm)

Confocal 1.032
LFMNet 1.118
V2C [5] 3.698

LF Deconv. [6] 3.950

(f)

Figure 4.11: Brain vessel axial image comparison. (a)-(d) shows the projection of a blood
vessel with different reconstruction methods. The projections are taken from the
green line (and indicated by the white arrow) shown in Fig. 4.10, Sample tile 2. (e)
shows the intensity profiles through the middle of the blood vessel (green dotted
line in (a)-(d)) of different methods. (f) shows the full width at half maximum
comparison.

This algorithm searches for a learning rate in a range R : [lrmin : lrstep : lrmax]in the
following manner:

1 # Def ine s to rage f o r de l t a = change o f e r r o r
2 d e l t a s = {}
3 f o r i in range (max epochs ) :
4 # Def ine the cur rent l e a rn i ng ra t e
5 l r c u r r = l r min + i ∗ l r s t e p
6 # Train the network f o r one i t e r a t i o n
7 net . t r a i n ( )
8 # In f e r
9 p r ed i c t i o n = net ( input )

10 # Measure the mean square e r r o r between the p r e d i c t i o n s and the GT
11 mse i = MSE(Gt , p r ed i c t i on )
12 # Measure the change in e r r o r between
13 de l ta mse = mse i − mse i1
14 mse i1 = de l ta mse
15 d e l t a s [ de l ta mse ] = l r c u r r
16 # Choose the l r producing the l a r g e s t de l ta mse
17 l r = max( d e l t a s )

Listing 4.1: Learning rate search
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4.1 Traditional deep learning approaches

The optimized learning rate is established by training a network with an incremented
learning rate in every epoch, then selecting the learning rate that produces the steepest
error between GT and prediction.

The optimization of LFMNet and V2CNet is presented in Fig. 4.12 a) and b) re-
spectably. Note that the MSE is shown in log scale, for visualization purposes.

(a) LFMNet learning rate optimization

1.00E-04

1.00E-02

1.00E+00

1.00E-3 1.81E-3 3.28E-3 5.95E-3 1.08E-2 1.95E-2

M
SE

Learning Rate

LFMNet

Optimized lr:
1.08E-3

1

0.01

0.0001

1

M
ea

n 
Sq

ur
ae

d 
Er

ro
r

1 181
Learning rate x10^(-4)

328 595 1080 1950

(b) V2CNet learning rate optimization
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Figure 4.12: Learning rate optimization: learning rate vs. MSE (in log scale for visualization).
The dotted line shows the selected learning rate, where the steepest MSE change
is present, as in [7].

Furthermore, to corroborate that the optimal learning rate is the one dealing with the
smallest error, we compared the optimal V2CNet learning rate against three other learn-
ing rates. In Fig. 4.9b, the validation set PSNR or reconstructed volumes is presented,
where the dotted line represents the optimized learning rate. Note that when using a
higher learning rate e.g., 2.16E-3, the PSNR increases but decreases with further train-
ing, indicating overfitting. The resulting PSNR of the network trained with the optimal
learning rate of 1.49E-4 increases slowly, reaching its highest point at the end of the
training. Even though higher learning rates reach their highest performance 4x faster
than the optimized one, it’s essential to consider that these ablations are performed on a
subset of the whole dataset. We chose the optimized learning rate to train the V2CNet
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with the full dataset due to its stability and constant uptrend and trained it for 8000
epochs.

Resolution Evaluation Measuring the spatial resolution of a microscope is commonly
performed by fluorescent imaging objects with sizes similar to the resolution limit [5,6].
We measure the 3D profile of a blood vessel and compare the reconstructions with
different methods. In Fig. 4.11, we show a projection of a 3D slice from a blood vessel
indicated by the green arrow in Fig. 4.10, Sample tile 2. Also, the table in Fig. 4.11 (f)
compares the Full Width at Half Maximum (FWHM) of an intensity profile across these
projections. We show that LFMNet can resolve a blood vessel with 0.086µm error, in
contrast to the V2C and LF deconvolution methods, which obtain 2.666µm and 2.918µm
errors, respectively.

To demonstrate that the LFMNet can handle different types of structures, we retrained
the LFMNet with 100 simulated LF images of volumes containing fluorescent beads with
a shape of 0.9×0.9×1.8µm. This uses the same simulation setup used for deconvolution
in sec. 4.1.1.1. In Fig. 4.13 (a)-(d), we show a detail of the simulated volume and
the corresponding reconstructions from LFMNet, V2C, and the deconvolution method.
Using this dataset allows measuring the lateral and axial FWHM across all depths, as
seen in Fig. 4.13 (e), and to further characterize the proposed method. When using a
network with different biological structures, network re-training might be needed.

Moreover, if V2C is trained on the training and test data, it can fit very well. This
shows that the network has enough capacity to learn the mapping. However, if it is
trained on only the training set (as shown in Fig. 4.13), then it does not generalize
well on the test data. As discussed in section 4.1.1.1, we believe this might be caused
by the dimensionality of the input used during training. That is why we designed our
architecture so that it can be trained with small input images.

Data Set Evaluation

To better understand the nature and structure of the created data set, we provide
some measures of the variability and complexity of the captured samples. Rather than
computing statistics of the raw data (i.e., the pixel intensities), we use the first two
layers of a pre-trained VGG-16 [120] as feature extractors and analyze the first and
second moments of their distribution.

We compare the statistics of these features to those of other data sets. We consider
three reference data sets: One is ImageNet [121], which contains images with high texture
diversity; a second data set is the C-elegans, which consists of confocal stacks [122]; a
third data set is CCDB, which consists of mouse neuronal data [123]. As measures
of the data complexity, we use the first ten components of the Principal Component
Analysis (PCA) and the coefficient of variation (σ⁄µ) of the features, where σ is the
standard deviation and µ the mean of all the entries of all the features. As one can see
in Fig. 4.14, the complexity in terms of both the PCA and the coefficient of variation
of our LF brain data set sits between that of ImageNet and that of both CCDB and
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Figure 4.13: Simulated beads image comparison. (a)-(d) show zoomed projection of simulated
fluorescent beads with different reconstruction methods. (e) shows the mean lat-
eral and axial FWHM, extracted from each depth of the reconstructions generated
with different methods. The missing points represent depths where no beads could
be found, due to artifacts.
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C-elegans. As expected, ImageNet has a large coefficient of variation, but our data set
is quite similar in complexity to other useful data sets in biology.
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Figure 4.14: Statistical comparison of data sets. (a) and (b): Block histograms showing the
relative importance of each PCA coefficient on VGG-16 relu1 (left) and relu2
(right) features. (c) and (d): Coefficients of variation of VGG-16 relu1 (left) and
relu2 (right).

4.1.1.3 Discussion

The optical components used in our LFM perform a high-density sampling of the spatial
and angular information of the real-world light field due to the 112µm lenslet diameter
and the 3.45µm camera pixel width. These reduced dimensions of the pixels were chosen
to enable the reconstruction of the object at a resolution close to that of a confocal
scan when using a deep learning approach (0.086µm error when reconstructing a blood
vessel). However, small pixels also have a poor signal-to-noise ratio. To compensate
for the noise, these sensors require a high exposure time and thus have a limitation
in the achievable frame rate when used to capture videos. Ten frames per second is a
frame rate that makes scanning large volumes, such as a whole mouse brain, practical
(about 30 minutes). We leave the design of an LFM capable of real-time in vivo imaging
to future work. For example, one could employ a modern sCMOS camera with high
quantum efficiency, high frame rate, and larger pixel size (e.g., 6.5µm or 4.25µm) to
achieve shorter exposure times while maintaining a high signal-to-noise ratio.

This form of optical image compression, as already demonstrated by our LFM, would
enable faster scan times and smaller data storage than existing methods (such as light-
sheet, confocal or, multi-photon microscopy). The reconstruction network would work
as a decompression algorithm that recovers the full-volume scan. We expect that such
a system would achieve an even higher performance than what we have demonstrated
with our LFMNet.
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However, as with most deep-learning approaches, there is no certainty on the biological
and optical correctness of the reconstruction. One idea to tackle this, is to use the forward
model to evaluate the error in image space, giving a sense of how close or far from the
GT the reconstruction is.

4.1.2 Real-Time light field 3D microscopy via sparsity-driven learned
deconvolution

This is an adapted version of a peer-reviewed manuscript [124] published during my
Ph.D.

XLFM is a scan-less 3D imaging technique similar to FLFM well suited to capture
fast biological processes, such as neural activity in zebrafish. However, even with its
space-invariant PSF, current methods to recover a 3D volume from the raw data require
long reconstruction times (around 0.011Hz), hampering the usability of the microscope
in a closed-loop system or with large datasets. Moreover, when high auto-fluorescence is
present, neural activity in a fish becomes dim and hard to measure. Thus, the ideal vol-
umetric reconstruction should be sparse to reveal the dominant signals, where methods
like the sparse-low-rank decomposition can be used [125]. Unfortunately, these methods
are computationally intensive and introduce substantial delays (0.028Hz).

The issues motivated us to introduce a 3D reconstruction method that recovers the
sparse spatiotemporal components of an image sequence in real-time. By combining a
self-supervised neural network (SLNet) that recovers the sparse components of an LF
image sequence and a neural network (XLFMNet) for 3D reconstruction. In particular,
XLFMNet can achieve high data fidelity and preserve essential signals, such as neural
potentials, even on previously unobserved samples. We demonstrate successful sparse
3D volumetric reconstructions of the neural activity of live zebrafish, with an imaging
span covering 800 × 800 × 250µm3 at an imaging rate of 24 − 88Hz, which provides a
1500-fold speed increase against prior work [125] and enables real-time reconstructions
without sacrificing imaging resolution.

Sparse decomposition algorithms were previously applied to XLFM images to take
advantage of the spatiotemporal sparsity of neural activity. For example, in work from
Yoon et al. [125], where sparse decomposition light field microscopy (SDLFM) was in-
troduced and which improved the resolution and signal-to-noise ratio in immobilized
samples.

Several attempts can be found in the literature regarding a fast 3D reconstruction of
neural activity. For example, the offline data processing time can be significantly reduced
by directly estimating the light field “footprints”, and activity of individual cells and
structures without reconstructing volumes [70, 71]. These methods, however, have not
been widely used because they are specialized for neural signal extraction in motionless
samples and cannot yield actual volumes.

In this work, summarized in Fig. 4.15, we propose SLNet and XLFMNet, two neural
networks that can efficiently perform sparse decomposition and volume reconstruction
on XLFM raw recordings at high speed. We also evaluate the generalization capabilities
of the networks to unseen samples through techniques such as reducing the number of
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XLFM time series Sparse series

1000𝑚𝑠

5𝑚𝑠
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 45, 000𝑚𝑠
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 SDLFM

 Proposed method

SD
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Sample
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Figure 4.15: Top: Diagram of the XLFM used in this work. The microlens array was con-
jugated to the back focal plane of the objective lens through a 4-f lens pair.
Excitation light from a 470 nm LED was projected on the sample through the
objective lens using a dichroic mirror (DM). An sCMOS camera recorded all the
sub-images formed behind the microlens array. Bottom: A comparison between
the state-of-the-art SDLFM reconstruction (in orange) and the proposed method
(in blue). Both methods first compute a sparse representation of an XLFM time
series stack and later perform a 3D reconstruction of the sparse images.

parameters and augmenting the training data with estimated noise statistics and spatial
transformations.

SLNet is trained with an unsupervised approach by minimizing a loss function that
aims to approximate the input images with a low-rank representation. The experiments
show that a sparse representation can be recovered using this reconstruction. This
problem is well suited for the chosen network and allows our method to generalize to
new samples. We evaluate a wide range of neural network settings and choose the most
robust one when reconstructing seen and unseen samples.

The SLNet network, once trained, can perform a temporally and spatially sparse de-
composition using three images of the sample at different time points in an interval
of fewer than five milliseconds. The trained XLFMNet reconstructs a 3D volume at
24 − 88Hz. This real-time reconstruction capability would expand not only the appli-
cability of LFM but also unlock novel paradigms of experiments that allow closed-loop
feedback control of the experimental parameters, such as instrumental adjustment (e.g.,
autofocus and tracking), animal stimulus delivery (e.g., visual, auditory, or olfactory),
and neuronal activity manipulation (e.g., optogenetics) based on the real-time informa-
tion of the reconstructed volumes.
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In the following sections, we first present the unsupervised training of the SLNet,
followed by a description of the XLFMNet, its design criteria, and training strategy,
followed by a description of the XLFM microscope and the sample preparation for the
experiments.

In the experimental results, sec. 4.1.2.2, we describe our findings on the SLNet training
and the effect of the design parameters. Later, we discuss our results on the XLFMNet
parameter ablation and an analysis of the neural activity of zebrafish. We present an
evaluation of the XLFM generalization capabilities by measuring the full with at half
maximum (FWHM) of micro-spheres that are not present in the training set. And finally,
an estimation of the achieved resolutions of the different methods is presented using 3D
MTF analysis.
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Figure 4.16: Proposed network architecture, where the SLNet performs a sparse decomposi-
tion of an image time series and XLFMNet the 3D reconstruction of the sparse
component. The number of depths can be controlled by the parameter n, and the
amount of channels per convolutional layer per depth is controlled by the param-
eter w.

4.1.2.1 Methods

Unsupervised sparse decomposition (SD)

The robust principal component analysis or sparse decomposition [126] is a method
that decomposes a matrix M into its low-rank (L) and sparse (S) component, such that
M = L+ S.

Let Mk,m,r ∈ Rk×m×r
≥0 be a set of images captured at k different times points, with

lateral sizes m and r. SD can be used to decompose temporal stacks if we arrange Mk,m,r

to be Mk,mr ∈ Rk×mr
≥0 and minimize the optimization problem:
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min
L,S

||L||∗ + λ||S||1

s.t. L+ S = Mk,mr

(4.1)

Here ||L||∗ is the nuclear norm of the low-rank component, λ a parameter control-
ling the degree of sparseness, and ||S||1 the L1 norm of the sparse component. This
constraint optimization is usually solved using Augmented Lagrangian methods, such as
the Augmented Lagrangian multiplier [127,128].

However, as previously shown by [129], the constraint can be implicitly fulfilled if
we first compute L and, with it, compute S = (M − L)≥0, the non-negative result of
subtracting the input image and the low-rank representation. Let N SL

Θ (Mk,m,r) ≈ Lk,mr

be a neural network with parameters Θ that generates a low-rank representation of M .
We refer to this network as SLNet. Then S = (M −N SL

Θ (M))≥0.

The final loss function becomes:

min
Θ

||M − Γµ

(
N SL

Θ (Mk,m,n)
)
||1 (4.2)

Γµ(·) is a singular value shrinking operator that enforces a low-rank in its output by
setting the eigenvalues Σ<µ = 0 and shrinking the remaining one. The full operator
reads:

Γµ(X) = U [sign(Σ) ·max(|Σ| − µ, 0)]V ∗

Where: X = UΣV ∗ (4.3)

The work from [129] employed four fully connected layers to perform the decomposi-
tion. However, due to the dimensionality of our images (k = 3, m = n = 2160), fully
connected layers were not plausible due to the memory requirement. Hence, our network
is implemented using two convolutional layers followed by a single ReLu as an activation
function, as seen in Fig 4.16. The threshold µ dictates the degree of rank shrinkage
and the amount of sparseness on S. We explore the effect of varying this parameter in
sec. 4.1.2.2.

The weight initialization here is crucial, as a higher weight produces an L with entries
larger than the entries in M , resulting in zero entries in S and no further training. To
ensure this does not happen, we initialize the weights Θ of the SLNet, first using the
Kaiming method [130], followed by scaling and a positivity constraint as in Θ = 0.1|Θ|.
For our decomposition, we chose the frames Mt−100, Mt−50 and, Mt, where k is the

time coordinate. We chose these time shifts based on a grid search analysis shown in
Fig. 4.17a.

In practice, to use the SLNet, one would start recording frames, and once the images
at Mt−100 and Mt−50 are available, the network starts to work in real-time by recovering
the sparse components of the three images. This could be interpreted as a 100-frame
buffer or warm-up.

Something essential to ensure is that the three frames used contain different informa-
tion or are not inside a neural activation peak. As can be seen in Fig. 4.18, our frame
rate (10Hz) is higher than the calcium dynamic of both a single event (decay time >
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Figure 4.17

200ms) and higher than events of sustained activity (e.g. bursting neurons) that can
appear as a long activation. In red are marked the frames used as input for the SLNet.
The difference in the intensities allows the network to find the low-rank component of
the neural activity across different frames.

Neural activity

Camera exposure

SLNet input frame

𝑀𝑡−100 𝑀𝑡−50 𝑀𝑡

Figure 4.18: Activity of a single neuron and the three frames (Mt−100, Mt−50, Mt)used as input
for SLNet to compute the sparsity of frame Mt.

3D Deconvolution neural network architecture

In the next stage, we employ a 2D U-net [85] for the 3D reconstruction, similar to the
one used by Wang et al. [5] and Page et al. [86], where the depth stacks are stored in the
channel dimension. We named this part of our pipeline XLFMNet. Our XLFMNet N 3D

Θ

is parametrized by n and w, the number of down/up sample steps, and an exponent
to control the number of channels used: the first layer has 2w channels, and any of the
n consecutive layers has 2w+n channels. This parameterization allows the exploration
of a wide range of different networks, as seen in Fig 4.16. We explored networks with
n = {2, 3, 4, 5} and w = {4, 5, 6, 7} in a systematic grid-like fashion.

Network selection criteria towards generalization:
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4 Deep-learning-based 3D reconstruction

We look for a network that could perform well with unseen images of the same sample
(validation set) and on unseen samples (testing set). We employed several performance
criteria to achieve this:

• PSNR in the test set reconstruction results,

• SSIM in volume space (compared to a conventional deconvolution algorithm),

• SSIM in image space (see below).

The image space metric is computed by forward projecting the reconstructed volume
(R̃s) using the image formation model is = R̃s⊛PSF , and then comparing the generated
image against the sparse image (S) used as input to the XLFMNet. This is possible as
the PSF of the XLFM setup was measured before the experiments.
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Figure 4.19: XLFMNet training data generation pipeline: From left to right, 3D reconstruction
is applied to every image k in a time series. The sparse component of the time
series is also extracted with the SLNet and reconstructed. In the middle, for
each augmentation n, both the dense and the sparse reconstructions are fed to T ,
where the same random transformation is applied to both volumes. The dense
augmented volume Rn

M is forward projected to image space. In the last step, the
dense image Mn

a and the sparse volume Rn
s are stored to train the XLFMNet.

Generalization to non-observed samples: Generalization in neural networks is not
trivial, as the networks tend to learn only the observed images’ statistics. However,
the degree of overfitting of a network to a dataset depends mainly on the dataset, the
number of trainable parameters, etc. To evaluate the generalization capability of our
networks, we built a testing dataset consisting of several zebrafish and microspheres data
acquisitions.

With our architecture parametrization, we perform a systematic grid search of the pa-
rameters and evaluate the resulting networks’ generalization capabilities using a training
data set of 100 images. The results for the grid search and the final training can be found
in Tables 4.4 and 4.3, respectively.

54



4.1 Traditional deep learning approaches

Reconstruction Method

Dataset RL Deconv. SDLFM
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Table 4.3: 3D reconstruction of different samples. 100 frames of the first sample were used for
training, as described in sec. 4.1.2.1. The next 100 frames and the first 100 frames
of the remaining three samples were used for testing. The neural activity sections
are taken from the white areas numbered 1 to 4 for each sample.
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Dataset generation for XLFMNet training

This section describes the dataset preparation for the XLFMNet, containing pairs of
XLFM images and sparse volumes. See Fig. 4.19 for an overview.

An essential aspect for generalization is the close resemblance of the training data and
the real-world images. However, capturing a dataset of zebrafish with enough variation
is a resource-consuming task that we try to avoid. In this work, we construct the training
dataset using a single time sequence of a zebrafish, as explained by the following steps
(see also Fig. 4.19):

1. Capture a time series of a fluorescent specimen with the XLFM.

2. Generate a sparse image (S) per frame using a pre-trained SLNet.

3. Apply 3D deconvolution to each time step, using the method from [63].

4. Perform data augmentation to the reconstructed volumes and forward project them
to image space.

5. Store the dense images (M) and the sparse volumes (Rs) into the dataset.
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Figure 4.20: (a) Sparseness progression along a SLNet training with µ = 2. Compared against
the SD result using the augmented Lagrangian. (b) Mean rank comparison and
min/max results between SD method and SLNet with µ = 2 when evaluating 12
images in the test set.
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XLFMNet ablation results

U-net
depth
(n)

Channel
exponent

(w)

#
params.

PSNR
volume

SSIM
volume
(%)

SSIM
reproj.
(%)

Time
(Hz)

2 4 76K 23.92 98.69 61.18 88.10
2 5 171K 24.31 98.98 70.29 79.36
2 6 511K 25.36 98.97 71.20 63.37
2 7 1.794M 25.59 99.00 72.64 45.06

3 4 168K 23.56 98.87 70.31 82.65
3 5 537K 25.34 98.87 67.27 71.45
3 6 1.972M 25.40 98.86 70.08 52.5
3 7 7.631M 25.99 98.97 72.43 29.42

4 4 533K 24.49 98.82 67.76 79.38
4 5 1.997M 25.18 98.90 65.54 67.06
4 6 7.809M 25.42 98.92 73.37 46.75
4 7 30.972M 25.91 98.94 72.48 24.00

5 4 1,994K 24.37 98.81 67.73 77.16
5 5 7.835M 25.31 98.96 71.60 62.93
5 6 31.150M 24.92 98.90 70.48 40.04

Table 4.4: Results of XLFMNet ablation study, as described in sec. 4.1.2.1. The row in orange
is the setting used for our final tests, achieving the best performance in two out of
the four performance metrics.

Zebrafish preparation for imaging: Pan-neuronal nuclear localized GCaMP6s Tg(HuC:H2B:GCaMP6s)
and pan-neuronal soma localized GCaMP7f Tg(HuC:somaGCaMP7f) [131] zebrafish lar-
vae were imaged at 4–6 days post fertilization. The transgenic larvae were kept at 28°C
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and paralyzed in standard fish water containing 0.25 mg/ml of pancuronium bromide
(Sigma-Aldrich) for 2 min before imaging to reduce motion. The paralyzed larvae were
then embedded in agar with 0.5% agarose (SeaKem GTG) and 1% low melting point
agarose (Sigma-Aldrich) in Petri dishes. The fish water was added to the dishes once
the agar solidified.

3D fluorescent bead samples preparation: To better evaluate the performance
of our method, we imaged 1-µm-diameter green fluorescent beads (ThermoFisher) ran-
domly distributed in 1% agarose (low melting point agarose, Sigma-Aldrich). The stock
beads were serially diluted using melted agarose to 10-3, 10-4, 10-5, 10-6 of the original
concentration. The diluted beads-agar colloid was then transferred to small Petri dishes
to gel. The thicknesses of solidified bead samples were approximately 800 µm, which
were sufficiently large to cover the full axial field of view of the microscope.

Dataset augmentation: The augmentation consisted of random 3D rotations, trans-
lation, and scaling of the volumes Rm and Rs. However, to increase the resemblance
of the simulated images to the real microscope, there are two key aspects to take into
consideration:

• Noise augmentation: Fluorescence microscopes suffer from noise when acquiring
an image, mainly shot noise. Due to this, it is important to add the proper shot
and background noise to the simulated dense images M . Additionally, as the
microscope might be used for imaging samples with very low or very high counts, we
augmented M by re-scaling its pixel intensities to a random signal power (between
302 and 702 ADU). The noise was then added using the camera specifications.

• Sample axial distribution: To avoid training bias towards certain depths, we
applied z translation of the sample, such that in a subset of the samples, only a
few structures are present in depths far from the focus plane. We found that this
is of crucial importance due to the nature of the PSF where the pixel intensities
decrease for planes far away from the focal plane, biasing the network towards
learning the higher-intensity structures near the focal plane.

Extended field-of-view light field microscope (XLFM)

We built an XLFM setup as described in [125] as the imaging hardware (see Fig. 4.15).
The microscope used a 16× 0.8 NA water dipping objective lens (CFI75 LWD 16×W,
Nikon) for excitation and detection. The excitation light generated by a blue LED (µ
= 470 nm, M470L4, Thorlabs) was collimated and passed a 480 nm short-pass filter
before being reflected into the back pupil of the objective lens by a dichroic mirror
(FF495-Di03-25×36, Semrock). A customized microlens array (29 lenses, f = 35.4 mm
or 36.6 mm) was mounted on an sCMOS camera (Zyla 5.5 sCMOS, Andor), with the
camera sensor at the focal plane of the microlenses. The microlens array was conjugated
with the back pupil plane of the objective lens through a 4f relay lens pair (f1 = 180
mm, AC508-180-A-ML, Thorlabs; f2=125mm, PAC074, Newport). A 525/50 nm band
pass filter (FF03-525/50-25, Semrock) was attached to the microlens array for green
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fluorescent imaging. The system point spread function (PSF) was measured by taking
a 600 µm thick image z-stack of a 1-µm-diameter green fluorescent bead located at the
center of the field of view with an axial step size of 2.5 µm. The total magnification of
the system is Mtotal =

Fmla·F1
Fobj·F2

= 4.5312 as in [132]. Hence, a voxel in the sample space
spans 1.4344µm laterally and 2.5µm axially.

4.1.2.2 Experiments

Sparseness threshold and the SLNet
Controlling the degree of sparseness in the reconstructions produced by the SLNet is

possible through the term µ from eq. (4.2). µ dictates how the eigenvalues of image
M get shrunk and thresholded, forming a low-rank representation. This behavior was
clearly visible in our experiments, where we evaluated different SLNet networks trained
on a subset of 20 temporal 2D stacks and tested on 12 unseen ones. We tested networks
with a threshold equal to µ = {0.0, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0}. Fig 4.21(a) displays
how the different choices of µ’s influence sparseness, which we define as:

sparseness =
# non-zero elements

# total elements
% (4.4)

Our results corroborate the intuition behind the unsupervised training approach (see
sec. 4.1.2.1), as the sparseness increases as µ increases. This makes this parameter a
user-friendly way of controlling the sparseness of the network.
An interesting finding is that even with µ=0.0, which corresponds to neither shrinkage

nor thresholding, the network produces a low-rank solution in the spatial domain, which
is an excellent starting point for the SLNet to focus mostly on refining the temporal
sparseness. Our interpretation is that the blurring nature of convolutions in CNN is
a good fit for this task. In Fig 4.21(b), a comparison of the rank of the decomposed
images with the SD method vs. the SLNet is presented. The mean, min, and max
ranks are shown to evaluate the 12 test images previously described. The rank of the
images produced by SLNet is distributed in a small region, showing the robustness of
the proposed method across sample space.
Fig 4.20 shows how the sparseness of a network (with µ=5.0) decreases across training

epochs. We found it helpful that by storing the state of intermediate training steps, the
user can decide which level of sparseness is desired for a given application. However,
if the SLNet is trained for too long, eventually, the sparseness is too high to be useful,
generating very low-contrast images as a result. For our images, a sparseness of 5%
suffices for the 3D reconstruction to perform optimally.

Network ablation towards generalization
The network evaluation strategy consists of training on the first 100 frames of a 10Hz

capture of a single zebrafish and testing in the following 100 frames of the same fish and
two other fish with different fluorescent labeling and age.
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Training the XLFMNet on a workstation with an Nvidia Quadro RTX 6000 graphic
card takes around 5 hours for 500 epochs using the Adam optimizer. The possibility of re-
training the network for every new sample is at reach. However, in daily microscopy work,
one would avoid re-training the network often. Also, the amount of graphic memory
required to train it efficiently is too large for regular computers. In our case, we focus
on crafting a robust network to work with different samples without compromising the
data fidelity. Hence, reducing the network re-training frequency.

The results of the XLFMNet ablation (see Table 4.4) show that the number of trainable
network parameters has a direct relation to the achievable reconstruction quality (e.g.
SSIM volume). However, the performance decreases when the parameters are spread
across deeper networks. Compare, for example, two networks with a similar amount
of parameters but different depths (n) in the U-net: the XLFMNet with n = 2 and
w = 7 versus the net with n = 5 and w = 4, where the first one performs better in all
performance metrics.

3D reconstruction of seen and unseen samples

When evaluating neural networks with biological data, it is crucially important that
the information of the neural activity is preserved, no matter the method used for 3D
reconstruction. In other words, the network should not introduce non-physical artifacts
that might hamper the analysis of the recovered signal.

In Fig. 4.3, we evaluated the neural activity across a period of 100 seconds by applying
different methods:

• Deconvolution of the raw image,

• SDLFM (SD + Deconvolution),

• SLNet + Deconvolution,

• SLNet + XLFMNet.

The SDLFM algorithm requires parameter tuning for optimal performance. Based on
the original work [125], we used the Frobenious norm to find the best settings for the SD
method with the training sample. We evaluated which configuration of λ results in the
smallest error (e) for use in our experiments. e is measured with the Frobenious norm
as in:

e = ||M − L− S||F (4.5)

Where M is the input image, L and S are a low-rank, and the sparse representations
from eq. 4.2.

In Fig. 4.17b, a large range of λ was evaluated, and in orange can be found the best
configuration with λ = 4E−4
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Reconstructing fluorescent beads

When applying the different sparse decomposition methods to images of beads, we
found that the output is quite similar to the input, as seen in the last row of Fig. 4.3.
However, we can use the images of the beads to analyze how the XLFMNet infers unseen
types of samples. In this experiment, first, we applied conventional deconvolution to
XLFM images of beads and computed their FWHM for every detectable bead. The
position of the beads was stored for extracting the same information from a volume
reconstructed with an XLFMNet trained on a single zebrafish.

In Table. 4.5, we compare the FWHM of beads images when 3D reconstructed with
deconvolution against XLMNet, together with the detection histogram per depth —
in other words, how many beads were detected per depth — which helps us analyze
the information trade-offs of the proposed method. Looking at the FWHM plots, it
is evident that XLFM suffers from resolution loss against deconvolution, mainly in the
axial direction. However, as seen in the histograms, it keeps a detectability comparable
to the deconvolved volume.

Spatial resolution estimation

To further evaluate the image quality from the SLNet and XLFMNet, we estimated
the 3D resolutions of the reconstructed larval zebrafish brain images based on 3D MTF
analysis. The analysis results are shown in Fig. 4.22. We inferred the 3D resolutions from
the spatial frequency support regions in the 3D MTFs, as enclosed in white dotted lines
in Fig. 4.22. According to our estimation, XLFM has a lateral resolution of ∼ 4.3µm
and an axial resolution of ∼ 10.0µm. At the same time, SDLFM, SLNet+Deconv., and
XLFMNet provided similarly enhanced resolutions of ∼ 3.2µm laterally and ∼ 7.7µm
axially. These resolution values aligned well with the measured FWHMs of fluorescent
beads in Table. 4.5.

RL. Deconvolution XLFMNet

FWHM (µm) Detectability
histogram

FWHM (µm) Detectability
histogram
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Table 4.5: Generalization analysis with beads. Reconstructed with conventional deconvolution
(left) and the proposed XLFMNet (right). The lateral and axial plots show the
full width at half maximum for every depth and a detectability histogram, i.e.the
number of beads found per depth with each method. The beads were not part of
the training set of the XLFMNet.
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Figure 4.22: Spatial resolution estimation for different reconstruction methods. The top panel
shows reconstructed zebrafish brain volumes’ temporal and axial max intensity
projections. The bottom panel shows 3D MTFs (displayed in log scale) that show
the spatial frequency support of each method.

4.1.2.3 Discussion

The first contribution of our work is the SLNet, which performs the sparse decomposition
of temporal raw XLFM stacks. During its training and evaluation, we found that CNNs
are an excellent pick for this task due to their effect of producing blurry images that are
already a low-rank representation of the input in the spatial domain. Then, the SLNet
focuses mostly on finding the sparseness in the temporal domain. Also, we found that
the sparseness parameter µ used to shrink the principal components of the images during
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4.2 Bayesian learning for reconstruction and out-of-distribution detection

training is very user-friendly as it is an intuitive way of controlling the sparseness of the
reconstructions. We consider that this approach could be integrated into the microscopy
workflow and even have networks trained with different µ stored and let the user decide
the level of sparseness desired, for example, as a Micro-Manager or an ImageJ plugin.

The second contribution is the XLFMNet, which reconstructs 3D volumes from the
sparse representations produced by the SLNet. Which achieves real-time computations
(45Hz) on large volumes (800 × 800 × 250µm3). The ablation study provided helpful
information regarding the network’s generalization to unseen samples. A network with a
higher number of parameters performs better than one with a lower number. However,
these parameters should not be spread across too many down-convolutional steps. The
best network we consider performed is one with two down-convolutional steps (n = 2)
and a channel exponent w = 7, which reconstructs volumes at a rate of 45.05Hz.

When evaluating the network with different samples, in Table 4.3, we found out that
when trained on a zebrafish, it works well for other unseen zebrafish, preserving the
neural potentials at a similar pace as the other reconstruction methods. However, when
imaging beads substantially different from fish, the network can reconstruct the central
depths with high fidelity but loses contrast when approaching depths farther away from
the focal plane. The intuition behind this is that the beads that are far away spread
their energy in a larger sensor area, dimming the individual pixels substantially. Never-
theless, the network could still detect the beads even at far away planes, as seen in the
detectability histogram comparison from Table 4.5, where the number of detected beads
is quite similar to the one from the conventional deconvolution method.

A possible solution would be to retrain a batch normalization block at the network’s
entrance for every new sample type while keeping the XLFMNet frozen. We leave this
for future work.

4.2 Bayesian learning for reconstruction and out-of-distribution
detection

After exploring the previously mentioned approaches and not finding a suitable solution
for a real-time and reliable 3D reconstruction, I gravitated towards statistically informed
reconstruction methods, which have the potential of fast reconstructions and certainty
metrics for out-of-distribution detection (OODD), introduced in sec.2.4.4.

In this chapter, you can find an implementation for reconstructing 3D volumes using
the XLFM images with a novel architecture based on NF and CWF, trained and tested
on six zebrafish image sequences and 3D deconvolutions. Also, once more, the SLNet
is employed to extract the neural activity of the fish before reconstruction, putting
emphasis on reconstructing the relevant signals only.
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4 Deep-learning-based 3D reconstruction

4.2.1 Fast Light-field 3D microscopy and out-of-distribution detection
enabled by conditional normalizing flows

This is an adapted version of a work-in-progress manuscript, which will be submitted
shortly after this dissertation.

This work proposes a workflow including the CWF, a modified WF architecture that
uses the XLFM image as an input condition. It is suited for the 3D reconstruction
and OODD of XLFM sparse fluorescent images generated with the SLNet, a sparse-low-
rank decomposition neural network. The CWF’s reconstruction and OODD capabilities
enable a fast, accurate, and robust method for 3D fluorescence microscopy. Fast enough
to be applied within close-loop or human-in-the-loop experiments, where reconstructed
activity could trigger further steps in an experiment.

OODD is achieved by having access to an exact likelihood computation that allows
the proposed CWFA to evaluate the likelihood of a sample belonging to the training
distribution at different image scales. Measured in all the down-sampling NFs in the
network (see Fig. 4.23). Specifically, in a testing step, the likelihood of a novel sample
can be computed and compared with the training set likelihood distribution through the
Mahalanobis distance [133]. As described in sec. 4.2.1.2.

We demonstrate the reliability of the proposed CWFA on XLFM acquisitions of living
zebrafish larvae full-brain neural activity, processed with the SLNet, which separates the
neural activity from the background of the acquisitions. As a gold standard or GT, we
used 3D reconstructions (100 iterations with the RL algorithm) of the SLNet output.
We compare the CWFA against the XLFMNet [124] and the WF on 3D reconstructions
covering a FOV of 734 × 734 × 225µm3 (512 × 512 × 90 voxels), the CWFA achieves a
MAPE [134] of 0.021 against 0.020 and 0.035 respectively, shown in Fig. 4.26.

Furthermore, when analyzing the neural activity of individual neurons in a time se-
quence, as seen in Fig. 4.27, the proposed method achieves a Pearson correlation coeffi-
cient (PCC) [135] of 0.892, where the XLFMNet and WF achieve 0.541 and 0.408 respec-
tively. In OODD, the CWFA achieved an F1-score [136] of 0.985, as seen in Fig. 4.28.
Once an out-of-distribution sample type is detected, we found that 60 minutes of fine-
tuning of the proposed CWFA architecture are enough to achieve a substantial increase
in quality. Reaching a mean increase of 4.16% and 12.29% of PCC and MAPE. And a
final mean PCC of 0.881. And time-wise, CWFA reconstructs a single frame in 0.130s,
the XLFMNet in 0.021s, and the WF in 0.100s. This is without applying any network
distillation or model compilation.

4.2.1.1 Methods

Proposed Conditional Wavelet Flow architecture TheWF architecture uses a multi-
scale hierarchical approach that allows training each up/down-scale independently, al-
lowing flexibility during memory management. Each down-sampled operation is a Haar
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Figure 4.23: The Conditional Wavelet Flow Architecture and workflow: (a) Dataset prepara-
tion with the SLNet [8] and performing 3D reconstructions using the RL algorithm.
The volume (d) and image (b) pairs are used to train the CWFs. Training is per-
formed in each CWF individually and consists in feeding V0 and the processed
condition (b) Ω1(C) to the CWF 1, generating outputs V1 and z1. The latter is
used in loss function 2.10. V1 is fed to the next CWF, which is trained similarly.
This is repeated (g) until reaching the lowest resolution output. This is used to
train the deterministic CNN Ωn (h). 3D reconstruction is performed by running
the flow inversely. First, by reconstructing Vn with the CNN (h), feed this to
the last flow (g), sample zn−1 from a normal distribution (i), and run the CNFn

inversely to generate the Haar detail coefficients Dn used to up-sample the low-
resolution volume Vn into Vn−1. This process is repeated for each up-sampling
step (g, f, e) until reaching the desired resolution (d).

transform chosen due to its orthonormality and invertibility. The likelihood function of
a WF model is given by:

p(In) = p(I0)
n−1∏
i=0

p(Di|Ii) (4.6)

where each In is the final high-resolution image, Di the Haar transform detail coefficients
and Ii the image for down-sampling step i. p(I0) and all p(Di|Ii) are normalizing flows.
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4 Deep-learning-based 3D reconstruction

In the proposed CWFA, we substituted p(I0) with a deterministic CNN. We con-
ditioned all the up-sampling NFs on an external condition Ωi(C) instead of the low-
resolution image Ii (as shown in Fig.4.23). Giving:

p(V0) = p(Vn)
n−1∏
i=1

p(Di|Ωi(C)) (4.7)

And the log-likelihood (LL):

log p(V0) = log p(Vn) +
n−1∑
i=1

log p(Vi|Ωi(C)) (4.8)

Note that we changed the indexes order, as in our case, set V0 as the goal volume with full
resolution, and every consecutive CWF runs in lower resolution. The final loss function
can be optimized independently as log p(V0) is comprised of a sum of probabilities.
Showing the advantage of the Wavelet-Flow architecture.

Sampling from the Conditional Wavelet Flow architecture Reconstructing a 3D
volume starts by reconstructing Vn = Ωn(C). This low-resolution image generation is an
easy task for a network, is accurate, and includes information from the image formation
model. Then, use this low-resolution volume for reconstructing the detail coefficients of
the first flow: Di ∼ p(Di|Ωi(C)) and generate an up-sampled volume Vi−1 = h−1(Vi, Di),
where h−1 is the inverse Haar transform. And repeating until reaching the full-resolution
volume V0.

Conditioning the wavelet flows In the original WF, each NF uses only the next level
low-resolution volume as a condition. We propose to append the raw XLFM image pre-
processed by a CNN to the conditions. Allowing the NF to extract missing information
about the inverse problem from the raw data.
Furthermore, the original Wavelet Flow (WF) network [106] aims to generate human

faces from a learned face distribution, where the low-resolution HAAR transformed image
is used as a condition on each up-sampling step. In such a case, face distribution is the
only known information.
However, when dealing with microscope images, prior information about the system

and volume to reconstruct are known, such as the forward process in the form of a
point spread function (PSF) and the captured microscope image. Motivating its usage
as conditioning in each up-sampling step. In this work, we evaluate the impact on
performance when using the low-resolution volume as a condition like [106] plus the
post-processed views of the raw XLFM image.
The raw XLFM input for the conditions and the first up-sampling step is prepared

first by detecting the center of each micro-lens from the central depth of the measured
PSF (using the Python library findpeaks [137], then cropping a 512 × 512 area around
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4.2 Bayesian learning for reconstruction and out-of-distribution detection

the 29 centers, then stacking the images in the channel dimension, as seen in Fig 4.23
panel (b). The resulting tensor is passed to a CNN that down-samples and processes the
input to the required size. Note that each down-sampling operation of the WF network
requires a different condition size.

Domain-shift detection We measured the Mahalanobis distance [133] from the NLL

of a test sample to the training data mean, given by: MD =
Lsample−µLtrain

σLtrain
, where µLtrain

and σLtrain are the mean and standard deviation of the training dataset NLL L.
The OODD threshold is picked by selecting a small number of samples from the

testing set and evaluating their likelihood. Then define ten thresholds linearly distributed
between the training and testing Mahalanobis distance mean values, and pick the one
achieving the largest F1-score.
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Figure 4.24: Out-of-distribution detection workflow when using the CWFA

The following steps are executed for domain shift detection, also illustrated in Fig. 4.24:

• Train the CWF on a set of fish image-volume pairs.

• Given a novel image Inovel, deconvolve via RL and obtain Vnovel.

• Use the novel reconstruction Vnovel and the image Inovel and feed them to the
CWFs in the forward direction.

• Compute the likelihood of the generated normal distributions z1−zn with eq. 2.10

• Measure the Mahalanobis distance [133] between the training set Likelihood dis-
tribution and the novel sample as specified in sec. 4.2.1.1.

67



4 Deep-learning-based 3D reconstruction

Sample Description Age

Used for training

GCaMP7f fish 1 NLS GCaMP6s different age

GCaMP7f fish 2 NLS GCaMP6s different age

GCaMP6s fish 1 Pan-neuronal nuclear
localized GCaMP6s
Tg(HuC:H2B:GCaMP6s)

4-6 days

GCaMP6s fish 2 Pan-neuronal nuclear
localized GCaMP6s
Tg(HuC:H2B:GCaMP6s)

4-6 days

Used for testing

GCaMP7f fish 3 Soma localized GCaMP7f
Tg(HuC:somaGCaMP7f)

different age

Table 4.6: Datasets used: 4 networks were trained, each on a single fish from the ’Used for
training list.’ We re-trained all networks with each fish for the out-of-distribution
experiment.

• Decide if a domain shift was detected based on a pre-defined threshold.

• Once detected, the network could be fine-tuned to the new sample type, etc.

The detection threshold is picked by selecting a small subset of samples from the
testing set and evaluating their likelihood. Then define ten thresholds linearly distributed
between the training and testing Mahalanobis distance mean values, and pick the one
achieving the largest F1-score. In this work, we found a threshold of 2.5 σtrain, where
σtrain is one standard deviation from the training set.

The CWFA The proposed architecture uses six CWFs, each comprised of a Haar trans-
form down-sampling operation and an NF, as seen in Fig. 4.23. The internal CNF learns
the mapping between the detailed Haar coefficients and a normal distribution. And is
built from 7 conditional invertible blocks (see Supplementary Fig. 4.25). The parame-
ters of each block, such as the type and number of invertible blocks (like GLOW [138],
RNVP [108], HINT [139], NICE [100], CAT [140] etc.), the number of parameters in
each internal convolution, and the training learning rate, were optimized for each block
independently in a grid-like fashion. The optimized settings of each NF are presented in
Table 4.7 and an example of the grid search visualization is shown in Fig. 4.29. Where
we optimized for PSNR and MAPE.

Network implementation The architecture was implemented in PyTorch aided by
the Freia framework for invertible neural networks [141]. Adam optimizer was used for
training without weight decay or learning rate scheduling. This Hyper-parameters are
optimized on a subset of 180 images from 3 fish.

68



4.2 Bayesian learning for reconstruction and out-of-distribution detection

Initial low-resolution reconstruction through a CNN: As mentioned in the pro-
posed architecture section, the first step of reconstruction is performed by a deterministic
CNN (ΩN in Fig. 4.23), that takes an input XLFM sparse image and reconstructs a low-
resolution volume (8× 8× 90). ΩN first multiplies the input image by a global attention
module that selects the relevant pixel-wise information by first turning the image into a
1D array, then applying a Conv1D, a ReLU, a Conv1d, and a sigmoid activation which
outputs a value from 0 to 1 that gets multiplied or weights the original pixel. This mod-
ified input image is then down-sampled by an encoder, formed by two sets of Conv2D
(with kernel size eight and stride 8), AlphaDropout (alpha(0.1), SELU activation, and
Batch normalization.

CWFs used for up-sampling: Each of the 6 CWF uses 7 CNFs internally, with 16
channels per convolution and CAT invertible blocks. A single block can be visualized in
Fig. 4.25. After the 6 CWF

Conditional NF

Figure 4.25: Single conditional normalizing flow used within the CWFA, also present in
Fig. 4.23 as CNF1,2, etc. In blue, the CAT block is responsible for comput-
ing a scaling and translation from the condition and applying it to the input.

Dataset acquisition and pre-processing Pan-neuronal nuclear localized GCaMP6s
Tg(HuC:H2B:GCaMP6s) and pan-neuronal soma localized GCaMP7f Tg(HuC:somaGCaMP7f)
[131] zebrafish larvae were imaged at 4–6 days post fertilization. The transgenic larvae
were kept at 28°C and paralyzed in standard fish water containing 0.25 mg/ml of pan-
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4 Deep-learning-based 3D reconstruction

curonium bromide (Sigma-Aldrich) for 2 min before imaging to reduce motion. The
paralyzed larvae were then embedded in agar with 0.5% agarose (SeaKem GTG) and
1% low melting point agarose (Sigma-Aldrich) in Petri dishes.

Each fish was imaged for 1000 frames at 10Hz. Neural activity images were extracted
using the SLNet [124], as seen in the top part of Fig. 4.23. Later, the resulting images
were 3D reconstructed with the RL algorithm for 100 iterations. 500 pairs of XLFM
sparse images and volumes were used to train the CWFA, and 500 were used for valida-
tion, testing, and domain shift detection.

The beads dataset was created by imaging 1-µm-diameter green fluorescent beads
(Ther-284moFisher) randomly distributed in 1% agarose (low melting285point agarose,
Sigma-Aldrich). The stock beads were serially diluted using melted agarose to 10−3,
10−4, 10−5, 10−6 of the original concentration.

4.2.1.2 Experiments

3D reconstruction of sparse images with the CWFA Fig. 4.23 depicts how to train
the CWFA (forward pass) and reconstruct 3D volumes from XLFM images (inverse pass).
Reconstruction with a trained CWFA involves, first, reconstructing a low-resolution vol-
ume (Vn) using the raw XLFM image with the CNN Ωn(C) and using this as an input to
the last up-sampling NF (CWFn−1). To up-sample on this CWF: first, sample zn−1 from
a normal distribution, and input the pre-processed XLFM image Ωn−1(C) as a condition
to the NF. Then, generate the Haar coefficients (Dn−1), later used for up-sampling Vn−1

by a factor of 2 with the Haar transform and generate Vn−2. We repeat this process
until reaching V0 at full resolution.

We compared the proposed method against the XLFMNet [8] and a modified version
of the Wavelet Flow [106] (WF). The XLFMNet is a U-net-based architecture [85] that
achieves high reconstruction speeds but lacks any certainty metrics (as in conventional
deep learning techniques). The WF modifications are necessary, as the original model
was used as a face generator without external conditions, which doesn’t comply with
inverse problems modus-operandi, where a measurement is required to reconstruct the
variable in question. Also, in the original WF, the lowest resolution was reconstructed
from an unconditioned normalizing flow based purely on the training data distribution.

The modified version follows the original design in which only the low-resolution im-
age is used as a condition in each flow; however, we used a CNN Ωn instead of the
lowest-resolution NF, informing the system about the measurement and making a fair
comparison. A grid search of learning rates was performed on both methods, and the
model with the highest validation performance was selected.
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Figure 4.26: 3D reconstruction comparison of sparse zebrafish images with different methods.
On the top row, the volumes considered GT generated with 100 iterations of
the RL algorithm using a measured PSF. On each column, a different zebrafish
acquisition. The following rows show reconstructions with different methods. The
left-most column shows the performance metrics used for comparison: MAPE,
followed by the mean Pearson correlation coefficient (PCC) of 100 frames from
the same fish acquisition measured on the top 50 most active neurons per fish.
The bottom arrows show which direction the metrics are considered better.

Comparison metrics Conventionally, metrics like peak signal-to-ratio and structured
similarity are used for image quality assessment. However, these might be deceiving
when working with highly sparse data, as most of the pixel’s intensity is close to zero.
We consider the neural activity similarity to the GT most relevant. Hence, the PCC
is used on the activity of single neurons across time, and the MAPE for single frame
quality assessment.

As seen in Fig. 4.26, the proposed method outperforms the other two approaches
regarding the neural PCC. And has a similar MAPE performance to the XLFMNet.
However, XLFMNet provides faster inference capabilities but lacks any certainty metrics.
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4 Deep-learning-based 3D reconstruction

Domain shift or out-of-distribution-detection (OODD)We evaluated this method
by training the CWFA on four zebrafish fluorescent activity datasets. Then presented,
the domain shift detection pipeline with different sample types, such as previously un-
seen fish sparse images (processed with the SLNet), raw XLFM fish images (not pre-
processed), and fluorescent bead images with different concentrations. As shown in
Fig. 4.28. Our algorithm achieves an F1-score of 0.9848 on CWF1. The achieved F1-
scores for all the down-sampling CWFs are presented in Fig. 4.28 panel d.

4.2.1.3 Discussion

In this work, I explored for the first time Bayesian Networks, which promised a robust
workflow for inverse problems, particularly when false positives should be minimized, as
in the case of bio-medical data. Most of the works using generative models are oriented
towards either art or applications where accuracy is not essential, which pushed me
toward exploring new designs. Implementing a new architecture was a challenge, as
designing, justifying, and ablating a new and large one, as shown here, is a lengthy task
where experiments must be performed and documented meticulously.
A possible enhancement to the CWFA is to, instead of up-sampling the x-y space with

the individual CWFs, up-sample the depth dimension. This makes much more sense, as
the shape of the fluorescent fish is present at high definition since the beginning, coming
from the raw XLFM images used as conditions. Furthermore, the conditional networks
act as a bottleneck that might be unnecessary, making feature extraction harder for the
networks. However, I realized this late in the project when most of the experiments and
results were ready, and making such a large change to the architecture wouldn’t make
sense. I’ll leave this for a future project or for you, the reader, to implement.

Step Block Type # channels Learning rate Volume size

1 CAT 16 5x10−5 512× 512× 90
2 CAT 16 5x10−5 256× 256× 90
3 CAT 16 1x10−4 128× 128× 90
4 CAT 16 1x10−4 64× 64× 90
5 CAT 16 5x10−5 32× 32× 90
6 CAT 16 1x10−5 16× 16× 90

Table 4.7: Result of hiper-parameter optimization on each CNF step.
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Figure 4.27: Neural activity comparison with different methods on a single fish acquisition. In
(a), the MIP of the GT volume, with the top 50 most active neurons highlighted.
A single reconstructed frame with different methods is in the (b) row. In (c), the
neural potentials of 3 neurons in 100 frames (10 seconds). (d) shows the mean
PCC with four different fish and the three methods.
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Figure 4.28: Domain Shift Detection (DSD) performance of the CWF proposed method. In (a)
the MIP of the GT and predicted CWF volumes. In (b), 3 types of datasets to test
the DSD. In (c), the Mahalanobis distance from a sample negative Log-Likelihood
training mean to different samples per dataset, measured in training standard de-
viations. A threshold of 2.5 σtrain was used to discern out-of-distribution samples.
Each CWF in the architecture has access to the NLL. Hence the Mahalanobis
approach can be applied to discern OOD samples, and in (c), the output distri-
butions of step 1 are shown. In (d), the performance of all the down-sampling is
presented, where each dot represents the performance when training the CWF in
a different fish.
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Figure 4.29: Grid search for hyper-parameter tuning for up-sample step-5,, conducted with
guild.ai and visualized in tensorboard. In our experiments, we optimized for the
highest PSNR value. The optimized settings for each step can be found in Ta-
ble. 4.7
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5 Mix of both worlds: Joint optimization

5.1 Using auto-differentiability for inverse problems

Reconstruction algorithms in medical imaging rely on a deep understanding of measuring
devices’ forward process or image formation model. For example, when designing a
LFMic the trade-off between angular and spatial resolution is dictated by the size and
placement of the micro-lenses. Which might be optimally chosen for one task but might
not be optimal for different sample types or situations.

Why not let the reconstruction algorithm choose which optical setup provides the best
features to solve a problem? (3D reconstruction, segmentation, background removal,
etc.) Furthermore, as in most optimization problems, the derivatives of an objective
function with respect to the parameters to optimize are required. Having a flexible
system where the derivatives are automatically computed becomes essential. This is
possible in machine learning frameworks, such as PyTorch [114] and JAX [142].

In this chapter, WaveBlocks is introduced, a flexible wave-optics fluorescence simulator
useful for applications like forward modeling, microscope calibration, joint optimization
of optical systems and algorithms, etc.

5.1.1 Wave-blocks: Learning to model and calibrate optics via a
differentiable wave optics simulator

This is an adapted version of a peer-reviewed manuscript [113] published during my
Ph.D.

We present a novel learning-based method to build a differentiable computational
model of a real fluorescence microscope. Our architecture can calibrate an actual optical
setup directly from data samples, and engineer point spread functions by specifying the
desired input-output data. This approach is poised to drastically improve the design
of microscopes because the parameters of current models of optical setups cannot be
easily fit to real data. Inspired by the recent progress in deep learning, our solution
is to build a differentiable wave optics simulator composed of trainable modules, each
computing light wave-front (WF) propagation due to a specific optical element. We call
our differentiable modules WaveBlocks and show reconstruction results in the case of
lenses, wave propagation in air, camera sensors, and diffractive elements (e.g., phase
masks).

Microscopes have a fundamental impact on biology, life science, and engineering. Be-
cause of their essential role in imaging, their design has constantly evolved to improve
the imaging quality (e.g., the lateral and axial resolutions and the speed). One approach
toward this goal is to improve the quality of the captured data through better sensors,
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Figure 5.1: Fluorescent microscope recreated with WaveBlocks. A bright-field PSF is propa-
gated through the air by WP1, then imaged by the first camera (C1). Alternatively,
the wavefront continues to the 4-f system (L1-2) with a phase mask (PM) placed
at its Fourier plane. Later, the second Camera (C2) convolves the object and the
PSF from the back focal plane of L2. Each camera (C1-C2) is used for a separate
experiment in sec. 5.1.1.2.
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Figure 5.2: Microscope used for the experiments. See Fig. 5.1 for a definition of the optical
elements involved.
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5.1 Using auto-differentiability for inverse problems

optics, and configuration. Such an approach is currently based mostly on manual design
and analysis and is often referred to as point spread function engineering [143–145].

A second approach is instead to improve the captured data via image processing. The
task is posed as an inverse problem, where the latent high-quality image is reconstructed
by combining a generative model of observed data (the data fidelity term) with a model
of the patterns typically observed in the data (prior). In this domain, recent deep
learning methods have demonstrated impressive performance, both in terms of image
reconstruction accuracy and speed, thanks to their ability to efficiently and accurately
describe complex data priors and generative models [146].

Traditional PSF engineering is sub-optimal as it does not consider the subsequent
image-processing step. In fact, an optimal data capture system should be designed
around the patterns of typically observed data, and this is a complicated problem to
solve analytically due to the complex iterative nature of image reconstruction algorithms.
Therefore, we argue that a better approach is to optimize both steps numerically through
real data jointly. Towards this goal, in this paper, we introduce and study a model of
optics that can be readily integrated with deep learning models for image processing.
Our solution is to first accurately describe light propagation through optical elements
(e.g., lenses, air, phase-masks) with computational modules, which we call WaveBlocks
(see Fig. 5.1). This way, it can relate each module to a physical counterpart. Secondly,
to enable the automatic optimization of the optical elements, we ensure that the mod-
ules are differentiable with respect to their parameters. We can then fit real data to
our compositional model through optimization (i.e., via stochastic gradient descent), a
procedure that we call calibration. In this paper, we illustrate our approach with several
calibration tasks. First, we show how to accurately fit the PSF of a real microscope by
using real data. Later, we show how to recover the diffracting pattern caused by the
lack of a 100% fill factor in an SLM within a 4-f setup.

PSF engineering depends on the goal of the system. For example, one could aim
to improve imaging for super-resolution [143,144,147–149], 3D reconstruction [144,146,
150,151], extended depth of field [145,151,152], even light-field microscopy [150], general
phase-mask optimization [145], and calibration [143]. One approach to solve calibration
is to pose the task as a blind deconvolution problem [153–155]. Also, phase retrieval
and the removal of the zero-order diffraction from an SLM have been previously studied
[156, 157]. A microscope simulator for generating synthetic biological images has also
been explored [158]. However, such a computational model is unsuitable for the optical
components’ data-driven automatic optimization. Thus, our proposed WaveBlocks, a
differentiable and scalable optimization framework, provides a fundamental automatic
data-driven PSF engineering tool. In future work, we aim to demonstrate our framework
on various image processing tasks and imaging devices.

5.1.1.1 Methods

Building a Wave Optics Simulator We are interested in building a differentiable
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5 Mix of both worlds: Joint optimization

model that can accurately approximate real optics with modules associated with each
optical component in a microscope, following the image formation model defined in
sec. 2.1.3. The PSF or system matrix H can be acquired in several ways: By measuring
it directly with the microscope or by modeling it computationally. In our modules, the
light emitted by a fluorescent particle is propagated as a complex WF through each of
the optical elements in the microscope until it hits the sensor, where the irradiance of
the WF is computed and stored as the PSF for later use.
The linear operators that model each optical element forming the PSF are based

on complex diffraction integrals, which are difficult to optimize when stacked together.
However, their linearity enables the usage of each operator as a block that receives an
input WF and produces an output WF. Moreover, it is possible to stack as many blocks
as desired easily. We implement these operators in the Pytorch framework [114], which
performs auto-differentiation. The architecture is user-friendly and allows the optimiza-
tion of various parameters in an optical system. The rationale behind WaveBlocks is
that the user provides a bright-field PSF (for example, generated in Fiji [159]). This
PSF propagates through the user-defined optical blocks until it reaches a camera module.
In this module, the image irradiance is computed and convolved with a user-provided
object, as shown in Fig. 5.1.

Wave Blocks Implementation The following sections describe the computational
models of the key optical elements implemented.
Wave-front propagation (WP): To compute the monochromatic WF propagation
through a medium (the WP block), we use the Rayleight-Sommerfeld integral (see [160],
page 52). Our implementation of the Rayleight-Sommerfeld propagation is limited to
a minimum distance of 200µm to ensure that the required sampling remains compu-
tationally practical. According to the Fourier convolution theorem (see [160], page
39), the WP block can be obtained via U2(x, y) = F−1{F {U1(x, y)}F {h(x, y)}}, with
h(x, y) = z

jλ
exp(jkr)

r2
, where F denotes the Fourier transform, F−1 denotes its inverse,

(x, y, z) are 3D image spatial coordinates, j denotes the imaginary component in complex
numbers, h(x, y) is the Rayleigh-Sommerfeld impulse response, λ is the light wavelength,
k is the wave number and r =

√
z2 + x2 + y2 is the distance from a point in U1 to a

point in U2.
Lens (L): The lens block (the L block) describes a convex lens that propagates a WF
from a plane at the front of the lens to the back of it. According to the Fraunhofer
approximation (see [160], page 97), the lens propagation from the front plane to the
back focal plane is given by the following equation

U2(x2, y2) = c

∫∫
U1(x1, y1)P (x1 + x2, y1 + y2)

exp[−j
2π

λfl
(x1x2 + y1y2)]dx1dy1

(5.1)

where P (x, y) is the pupil function and c is the scaling factor given by c = exp(jkfl)
jλfl

,
where fl is the focal length of the lens.
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5.1 Using auto-differentiability for inverse problems

Camera (C):
The camera block (the C block) performs two tasks: 1) It determines the PSF H

by computing the irradiance of the incoming WF, which is the time-averaged square
magnitude of the field U , given by H(x, y) = U(x, y)U∗(x, y) = |U(x, y)|2. This time
averaging occurs due to the inability of current detectors to follow the high-frequency
oscillations of the electric field (> 1014Hz) (see [160], page 49); 2) It convolves the
computed PSF H with an object V placed in front of the microscope, i.e., i = H ∗ V.
Phase-mask (PM) or spatial light modulator (SLM): The phase-mask block (the
PM block) describes a phase mask that distorts the phase of the WF in a space-variant
way. The incoming WF U1 is modified by the modulation function ϕ, defined by the PM
block, as in U2(x, y) = U1(x, y) exp(jϕ(x, y)). A particular case applies when a phase-
only SLM is used, where only the imaginary part of the exponential is multiplied by U1,
and the real part becomes zero. In WaveBlocks, ϕ is a parameter that can be changed
freely or even optimized for.

Data-driven calibration
To calibrate an optical system, we capture images of several known objects. If we

denote the real system matrix with Hgt, captured real images i of known objects V are
modeled as i = Hgt ∗ V . Thus, WaveBlocks allows us to describe this data via a system
matrix HΘ parametrized via Θ, which collects all the settings of the optical elements
(e.g., the main objective PSF, the phase-mask phase change). Then, this optimization
problem can be written as the minimization of the expectation over all objects and
corresponding observed images (which can be approximated by using a finite number of
samples)

Θ̂ = argmin
Θ

Ei,o [ℓ (HΘ ∗ o, i)] (5.2)

where ℓ is the cost function measuring the discrepancy between the observed images i and
the synthesized ones HΘ ∗ o. The successive stack of blocks can form HΘ. For example,
the configuration shown in Fig. 5.1 yields HΘ = C2(L2(PM(L1(WP1(PSF ))))), where
Θ has the parameters of the PM and/or the PSF. This configuration is also used in the
experiments in sec. 5.1.1.2.

5.1.1.2 Experiments

To demonstrate the capabilities of our proposed calibration approach, we aim to recon-
struct two sets of parameters: 1) the initial PSF of the microscope and 2) the distortion
diffraction pattern generated by the inactive space between the pixels of an SLM, shown
in Fig. 5.2. We employ a USAF 1951 resolution target, a 20× 0.45NA objective, a
165mm focal length tube-lens, a camera (C1-C2) with 6.9µm pixel size, two lenses (L1-
L2) with a focal length of 150mm and aperture of 50.8mm and the PM used is an SLM
Holoeye Pluto-vision. All optimizations use the Adam optimizer.

Bright-field PSF estimation In this section, we focus on reconstructing the PSF of
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5 Mix of both worlds: Joint optimization

NMSE(igt, i) NMSE(Θgt,Θ)
Mean Std-Dev Mean Std-Dev

PSF 9.34 · 10−3 6.95 · 10−3 1.5 0.43

PM 6.30 · 10−2 2.14 · 10−3 0.51 0.42

Table 5.1: Mean and standard deviation of NMSE error between the image stack (i) captured by
C1 and C2 and the ground truth stack (igt). The first row is the PSF in experiment
one, and the second row is the PM in experiment two.

a real microscope in the simplest case, where only a PSF block representing the PSF
generated by the objective and tube lens, a wave-propagation block, and a camera block
is used (PSF, WP1, and C1 in Fig. 5.1). As V we choose the USAF 1951 target object
(only one image in this case), and the loss is the normalized mean square error (NMSE)

loss given by NMSE(i, g) =
∥i−g∥22
∥i∥22

.

Recovery of the PSF from synthetic data: To measure the robustness of the PSF
reconstruction algorithm, we randomly transform and reconstruct a PSF computed via
the scalar Debye theory [78, 161]. First, we translate the object randomly in a range
of ±20 pixels, then re-scale it in x and y directions independently in the range 1±0.3
and defocus it using WP1 by a random distance between ±200 and ±1000 µm in image
space. Hgt is built by setting the parameters Θgt. A total of 500 different PSFs were
estimated using defocused images at −50, 0, and 50 µm relative to the focal plane of the
objective. Table 5.1 shows that even though the error in the PSF parameters estimation
is not small, the error in the image reconstruction is very low, a sign that there exist
ambiguities in solution space. This is not an issue since we can use any solution to
reproduce the observed images.

Recovery of the PSF from real data: In this experiment, we aim to recover the PSF
of a real microscope. We acquire a stack of images of the USAF 1951 target placed at
depths spanning -50 to 50 µm in steps of 2µm relative to the focal plane of the objective.
For this experiment, only the images at depths -50, 50, and 0 µm were used in training,
and the rest were stored for later testing. The recovered PSF can be seen in Fig. 5.3 next
to the PSF of an ideal microscope. Notice how the recovered PSF exhibits aberrations
not present in the ideal case.

To verify that the recovered PSF is optimal, we use the optical configuration in Fig. 5.1
with the optimized PSF to predict the depth at which an image with the real microscope
was taken. We compare each image in the full depth range against a stack generated
through our estimated model and plot which depth yields the smallest error. As shown
at the top of Fig. 5.4 the recovered PSF achieves the highest accuracy, with a mean
NMSE error of 2.8µm, against the initial PSF, with an error of 19.21µm. Note how the
ideal PSF sometimes predicts the wrong direction of defocus.

Phase-mask distortion pattern recovery
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5.1 Using auto-differentiability for inverse problems

PSF recovery experiment sec. 5.1.1.2

Initial PSF Image at C1 GT Image NMSE: 0.633

Recovered PSF Image at C1 GT Image NMSE: 0.520

Phase-Mask recovery experiment sec. 5.1.1.2

Constant PM Image at C2 GT Image NMSE: 0.153

Recovered PM Image at C2 GT Image NMSE: 0.089

Figure 5.3: First row: comparison between the PSF (at 0µm) of an ideal microscope and the
recovered PSF obtained through our approach. Second row: comparison between
a constant PM pattern and the recovered one.
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Figure 5.4: Top: Comparison of depth prediction using the initial PSF or the optimized one.
Bottom: Comparison of depth prediction using the recovered PSF and either a
constant PM as displayed in the SLM or the recovered PM.

In this section, we aim to recover the diffraction pattern created by the lack of a 100%
pixel fill factor in an SLM [156, 157] placed at the Fourier plane of a 4-f system. The
zero-order diffraction lobe hits exactly the center of the output image, thus hampering
the usability of an SLM.
With Synthetic data: Consistently with sec. 5.1.1.2, a test on synthetic data was
first performed, where a PM was selected randomly between a cubic mask due to its
simplicity, and stable behavior in the Fourier domain [152] and a circular mask with
a circular gradient towards the center, simulating the zero diffraction mode produced
by a real SLM. Then, random scaling and translation were performed. A total of 500
examples were run, for which the results are presented in Table 5.1.
Recovering the phase-mask distortion pattern: We use the recovered PSF from
sec. 5.1.1.2 in a 4-f system and propagate the WF until C2. As discussed in sec. 5.1.1.2,
the diffraction pattern created by the SLM distorts the PSF in the frequency domain,
and by recovering this pattern, the distortion can be corrected. In this experiment, we
show that by using our synthesis model with the correction pattern displayed at the SLM,
an accurate depth of a stack of defocused images can be inferred (see Fig. 5.4 bottom).
We observe a mean NMSE error of 0.67µm against 5.70µm without PM correction. The
recovered phase range matches the vendor’s description (0 to 5π max shift).

5.1.1.3 Discussion

We have introduced a novel learning-based method to build a differentiable computa-
tional model of a real microscope. Experiments with synthetic and real experiments
demonstrated that the proposed method allows the recovery of latent parameters of
an optical setup (e.g., a PSF or a PM) with high accuracy. We encourage the reader
to explore the project https://github.com/pvjosue/WaveBlocks repository for working
examples and constant updates.
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6 Toolkit for research project management

Through this Ph.D., a variety of projects took place. Regarding timelines, some lasted
months and other years, and, regarding collaboration, most of them were individual
projects, but some also interdisciplinary teams and supervision of student projects.
In general, tools for managing research projects were essential for organized advance-

ment and reduced procrastination during work-from-home periods.
In this chapter, I present a set of tools for different parts of project management that

could aid any Ph.D. student and perhaps me of the past.

6.1 Time management

Time management became a key necessity, especially during the COVID-19 pandemic,
where working from home was necessary, and going to the office stayed optional even after
it was over. The Pomodoro technique is based on having working cycles of 25 minutes,
followed by 5-minute breaks, and after four cycles, a 25-minute break. Although this
sounds trivial, I don’t know anyone who uses it consistently apart from me.
Pomodoro allowed me to manage my working time; for example, sometimes working

8 hours straight (16 cycles) becomes heavy and tiring. In the summer days, working at
midday is unfeasible due to the heat. So, I would split my day accordingly: do eight
cycles in the morning (8 AM till midday) and 6-8 cycles in the evening when the sun goes
down (4 PM - 8 PM). This, of course, changed around the year, but it was a consistent
way of measuring my amount of work.
And interestingly, with some tools, you can even get some statistics of cycles, as seen

in Fig. 6.1

6.2 Progress tracking

In terms of progress tracking and planning, gathering information was required, for
example:

1. Listing all or a subset of tasks to do.

2. Mention the estimated task duration (perhaps given in Pomodoro cycles, as in 6.1).

3. Details of each task.

4. Assign them to the correct person.

5. Define task hierarchy and order.
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Figure 6.1: Pomodoro cycle statistics from the last 9 months
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6.2 Progress tracking

(a) Board view

(b) List view

Figure 6.2: Github project planning views

Then, when working on the project, this list can be multiply iterated through the
project, as in Sprints of an Agile approach.

Some tools aid in this, for example:

6.2.1 Github project

Github (github.com) can handle project boards where planning, progress, and tracking
can be easily applied, together with commit information, issues, etc. It allows represen-
tation of the tasks, their state, and information with different views, for example, board
and list view, as seen in Fig. 6.2.

6.2.2 Notion

A very flexible approach to achieve the same and more is Notion (notion.so). Which is
a powerful editor where you can embed images, videos, calendars, diagrams, etc., and
create pages, sub-pages, and full Wikis. Notion is great for project planning, as it allows
you to include all the information you want and still has a clean interface. It is beneficial
for student projects, where planning and task tracking are possible in a seamless manner.
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6 Toolkit for research project management

Like Github, you can arrange tasks and visualize them with different views, as seen in
Fig. 6.3.

6.3 Experiment repeatability

Returning to previous configurations and results is crucial for long research projects.
One advantageous approach is to use Git and constantly commit the changes. However,
it is easy to lose track of the changes or comeback to specific results, especially when
the source code grows in size and complexity.

As soon as I noticed that this was crucial, I took two main approaches:

6.3.1 Copy and store the used code and arguments manually

For this, I reused a code snippet across many projects, presented in the code snippet 6.1

1 # Create tensorboard summary
2 s a v e f o l d e r = ’ . ’
3 wr i t e r = SummaryWriter ( l o g d i r=s a v e f o l d e r )
4 # Store a l l the arguments used in the tensorboard log f i l e
5 wr i t e r . add text ( ’ arguments ’ , s t r ( vars ( args ) ) , 0 )
6
7 # Store f i l e s f o r backup
8 import z i p f i l e
9 z f = z i p f i l e . Z ipF i l e ( s a v e f o l d e r + ”/ f i l e s . z ip ” , ”w” )

10 # I t e r a t e the l i s t o f f i l e s to s to re , f o r example , ’∗ . py∗ ’
11 f o r f f in args . f i l e s t o s t o r e :
12 z f . wr i t e ( s t r ( f i l e p a t h ) + ’ / ’ + f f , f f )
13 z f . c l o s e ( )

Listing 6.1: Storing source code

6.3.2 The guild.ai framework

A more complete solution toward repeatability is (guild.ai), a tool 100% open source,
designed for tracking experiments, pipeline automation, hyper-parameter tuning, etc.

A program run through guild will store in the ’runs’ directory the following:

• A copy of the files or file type specified.

• The arguments associated with that run.

• Scalars, images, etc. logged through a tensorboard summary writer.

• The run name, date, tags, etc.
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6.3 Experiment repeatability

6.3.2.1 Running a script

For example, let’s run the script helloworld.py by typing in the console:

1 gu i l d run he l l owor ld . py arg1=123 arg2=456

Listing 6.2: Running a program with guild

This will run and block the console until it finishes. If we want to add a tag to this run,
we can do the following:

1 gu i l d run he l l owor ld . py arg1=123 arg2=456 −−tag=f i r s t r u n

Listing 6.3: Tagging runs

6.3.2.2 Listing runs status

To visualize in the console what we just ran, we can do the following:

1 # For a l l runs
2 gu i l d runs
3 # For a l l runs with a given tag
4 gu i l d runs −Ft f i r s t r u n
5 # For a l l runs in a g iven time frame
6 gu i l d runs −−s t a r t ed ” today”

Listing 6.4: Checking guild runs

The list of available filters is truly complete. For further detail, check the guild.ai
webpage.

6.3.2.3 Visualizing in the browser

Guild has a pretty good user interface, which can be run by using the following:

1 # For a l l runs
2 gu i l d view
3 # And support the same f i l t e r i n g ope ra t i on s j u s t mentioned .
4 # Also view the runs in tensorboard i s po s s i b l e , by typing :
5 gu i l d tensorboard

Listing 6.5: Visualization in the browser
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6.4 Hardware management in shared computed servers

Sharing resources in a research group is quite common. Everyone had a working station
and a laptop, and we shared two large computing servers. As a group that does research
in machine learning, large GPUs were a most.

A very useful work paradigm is how to split the resources and how to allocate these
such that we don’t interfere with the research from the others.

6.4.1 Guild queues

One feature worth mentioning from the guild framework is the queues, which allow
the creation of a queue of jobs, and executing them in ’runners’. These queues can
have specific GPUs associated with them, making them great for multiple experiments
where each run requires a full GPU, for example, hyper-parameter optimization for deep
learning. You can start a queue and en-queue a job by running:

1 gu i l d run queue −−gpus 0
2 # Or a non−b lock ing queue
3 gu i l d run queue −−gpus 0 −−background −y
4 # And to add a job to a queue
5 gu i l d run he l l owor ld . py arg1=123 arg2=456 −−tag=f i r s t r u n −−s tage

Listing 6.6: Starting queues with guild

Stopping a queue or any job can be done by first identifying the job id with guild runs,
then calling guild stop id with the corresponding id.

6.4.2 SLURM

We also had SLURM (slurm.schedmd.com) installed in the servers, which was the main
job scheduling software that we used. However, I won’t go into detail, as it is well
documented online, and we didn’t have anything particular within our setup.
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6.4 Hardware management in shared computed servers

(a) Calendar view (b) Timetable with task dependency

(c) List view, similar to Github

Figure 6.3: Notion project organization views.
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7 Conclusion & closing thoughts

In this dissertation, I first explored the fluorescence microscopy world by clarifying why
it is so essential for humanity and how important it is to have access to 3D real-time
imaging. Different methods and approaches towards this goal were presented, trying
to share with the reader the thought process on the decisions made in the optical and
algorithm architectures.
DL for problem-solving has become an often picked approach; however, it’s essential

to take some things into account: Certainty metrics and ways to evaluate how sure a
network is are necessary for biomedical imaging. Relying on a deep-learning-only ap-
proach might be powerful, but a physics-informed approach, where the image formation
model is taken into consideration, or a jointly optimized algorithm + optics is done, may
offer unprecedented quality and powerful insights.
It became clear that microscopy has evolved to be computational microscopy and

that joint optimization of physical devices and reconstruction algorithms will be highly
utilized in the future. And for a good reason, the features extracted from a hand-designed
microscope aren’t necessarily the most useful for all applications. And by relying on the
algorithm to choose a design and hence the features used, we can aim to extract the
most helpful information and reach unprecedented performance.
I finish this five years of work with an even greater excitement towards nature, physics,

and their interaction. And looking forward to new and exciting projects to come.
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A. Schier, T. Nöbauer, and A. Vaziri. Cerebellar neurodynamics predict decision
timing and outcome on the single-trial level. Cell, 180(3):536–551, 2020.

[61] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan. Light Field
Photography with a Hand-held Plenoptic Camera. Main, 2005.

[62] L. Haoyu, G. Changliang, K.-H. Deborah, L. Weiyi, A. Yelena, S. Bryce, L. Wen-
hao, M. Yizhi, B. F. Jarrod, T. Ken-Ichi, A. F. Michael, and J. Shu. Fast, vol-
umetric live-cell imaging using high-resolution light-field microscopy. Biomedical
Optics Express, 10(1), 2019.

[63] L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang,
and Q. Wen. Rapid whole brain imaging of neural activity in freely behaving larval
zebrafish (Danio rerio). eLife, 6:e28158, sep 2017. doi:10.7554/eLife.28158.

[64] G. Scrofani, J. Sola-Pikabea, A. Llavador, E. Sanchez-Ortiga, J. C. Barreiro,
G. Saavedra, J. Garcia-Sucerquia, and M. Mart́ınez-Corral. FIMic: design for
ultimate 3D-integral microscopy of in-vivo biological samples. Biomedical Optics
Express, 9(1), 2018. doi:10.1364/boe.9.000335.

[65] Y. Sung. Snapshot projection optical tomography. arXiv, 2019. arXiv:1906.

04720.

[66] L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang,
and Q. Wen. Rapid whole brain imaging of neural activity in freely behaving larval
zebrafish (danio rerio). eLife, 6, Sep 2017. 28930070[pmid]. doi:10.7554/eLife.
28158.

[67] Q. Geng, Z. Fu, and S.-C. Chen. High-resolution 3D light-field imaging. Journal
of Biomedical Optics, 25(10):106502, 2020. doi:10.1117/1.JBO.25.10.106502.

[68] L. Zhu, C. Yi, G. Li, Y. Zhao, and P. Fei. Deep-learning based dual-view light-field
microscopy enabling high-resolution 3d imaging of dense signals. In Biophotonics
Congress 2021, page DTh2A.3. Optica Publishing Group, 2021. doi:10.1364/

BODA.2021.DTh2A.3.

100

http://dx.doi.org/10.1101/672584
http://dx.doi.org/10.1117/1.nph.7.3.035006
http://dx.doi.org/10.7554/eLife.28158
http://dx.doi.org/10.1364/boe.9.000335
http://arxiv.org/abs/1906.04720
http://arxiv.org/abs/1906.04720
http://dx.doi.org/10.7554/eLife.28158
http://dx.doi.org/10.7554/eLife.28158
http://dx.doi.org/10.1117/1.JBO.25.10.106502
http://dx.doi.org/10.1364/BODA.2021.DTh2A.3
http://dx.doi.org/10.1364/BODA.2021.DTh2A.3


BIBLIOGRAPHY

[69] Z. Pan, M. Lu, and S. Xia. Diffraction-Assisted Light Field Microscopy for Mi-
crotomography and Digital Volume Correlation with Improved Spatial Resolution.
Experimental Mechanics, C, 2019. doi:10.1007/s11340-019-00522-2.
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A Appendix

A.1 LFM geometry

A.1.0.1 Field of view of an LF image

The PSF of an optical system changes its support depending on the depth of the point
light source. The LFMNet considers this aspect by using a neighborhood of lenslets to
reconstruct the volume behind the central lenslets. Given this specification, we compute
analytically the blur at the MLA plane generated by a point-light source placed in
front of the microscope at different depths (see Fig. 2.1 in the supplementary material)
according to the model used by Bishop and Favaro [15]. The derivation of the blur-depth
relationship is also reported in section A.1.0.2 in the supplementary material.

A.1.0.2 Blur of an object at the MLA plane

As described in section A.1.0.1 the number of MLAs that gather information about an
object in front of the microscope depends on the MLA blur equation given by

MLb =
TLr · |c − i2|

i2
, (A.1)

where TLr is the blur radius size at the tube-lens, c the distance from the tube-lens to
the MLA and i2 the position where a point in object space forms the image. We take
into account that the objective back aperture (with radius Objr = Fobj ·NA) works as a
telecentric stop and that the distance between the objective and the tube-lens is equal
to the sum of their focal lengths (as in a 4-F system), which is equal to (M + 1) · Fobj .
From similar triangles, we find that

TLr =
Objr[i1 − (M + 1)Fobj ]

i1
. (A.2)

When imaging an object of size Os, its blur diameter is MLtb = 2 ·MLb +M ·Os. By
using the thin lens equation 1/i+ 1/o = 1/F , we can express i1 and i2 in terms of the point
emitter and the position in object space o1 such that

i1 =
Fobjo1

o1 − Fobj
i2 = M

(
Fobj(1 +M)−M · o1

)
. (A.3)

This relationship between object depth and MLA blur can be better observed in Fig. A.1.
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A Appendix

Figure A.1: Blur at MLA vs. the number of lenslets. The number of micro-lenses overlapping
with the blur from an object with size Os = MLpitch

M = 112
40 µm = 2.8µm placed

at different depths (O1) in front of the microscope. The red lines show the depths
used in our setup (-28.8 to 28.8 µm). In this range, the blur covers approximately
20 micro-lenses.
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