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A B S T R A C T

Cerebrovascular diseases are the most common life-threatening
neurological events in the world. Diagnosis of this class of dis-
eases normally involves the acquisition of angiography-based
images which offer insight into the blood flow and conditions
of the cerebrovascular system. Image acquisition is usually fol-
lowed by processing and analysis steps which aim at extracting
useful information about the structure and function of the cere-
brovascular system. Common tasks include vessel segmentation
and detection of the associated centerlines and bifurcation points.
In the related field of natural image processing, advances in deep
learning have revolutionized image analysis. With the ability
to automatically learn high-level feature representation from
images, deep learning methodologies have achieved outstand-
ing performances in previously difficult tasks. The transition
of deep learning methods from natural image processing to
medical image processing introduces new methodological chal-
lenges due to the differences in the structure and presentation
of information contained in images from these two domains.

The first part of this dissertation focuses on three main chal-
lenges that arise from using existing state-of-the-art deep learn-
ing methodologies in the analysis of vascular networks extracted
from clinical data. (1) Using 3-D convolutional neural networks
(CNNs) leads to a drastic increase in the number of parameters
to be optimized and computations to be executed compared
to 2-D CNNs. We propose cross-hair filters as a replacement
for classical 3-D convolutional operations and show that the
proposed cross-hair filters require less memory and are compu-
tationally faster than the classical 3-D convolutional operation.
(2) Vessels account for less than 3% of the total voxels in a pa-
tient volume, centerlines represent a fraction of the segmented
vessels, and visible bifurcations are in the hundredths of seg-
mented vessels at best. This has led to the introduction of a
class-balancing loss function that is computationally unstable
and leads to a high false positive rate (FPR). We propose a
modified loss function that is more stable and helps litigate the
FPR problem. (3) There exist limited annotated data for training
deep learning networks for vascular network analysis which
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has stifled the pace of research in this domain. We, therefore,
generate synthetic data with accurate annotations for vessel seg-
mentation, centerlines, bifurcation points, and vessel radius. We
have made the synthetic data publicly available to foster further
research in this direction.

The second part of the dissertation studies collateral circulation
and its grading in patients with ischaemic stroke. The quality of
collateral circulation has been established as a key factor in deter-
mining the likelihood of a favorable clinical outcome and plays
a major role in determining the choice of the stroke care model.
Collateral flow grading by visual inspection is time-consuming
and has a high inter-rater variability. We present a multi-stage
deep learning approach to automate the grading process using
parametric information from MR perfusion data. Experiments
on different feature extraction schemes and classifiers are pre-
sented and compared to ascertain which methodology best suits
the problem at hand.
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Z U S A M M E N FA S S U N G

Zerebrovaskuläre Erkrankungen sind weltweit die häufigsten le-
bensbedrohlichen neurologischen Erkrankungen. Die Diagnose
dieser Krankheitskategorie umfasst in der Regel die Akquisi-
tion von angiographischen Bildern, welche Aufschluss über
den Blutfluss und den Zustand der Blutgefäße geben. An die
Bildakquisition schließen sich in der Regel Verarbeitungs- und
Analyseschritte an, die darauf abzielen, nützliche Informationen
über die Struktur und Funktion des zerebrovaskulären Sys-
tems zu gewinnen. Zu den üblichen Aufgaben gehören die Seg-
mentierung von Gefäßen und die Erkennung der zugehörigen
Mittellinien und Verzweigungspunkte. Auf dem verwandten
Gebiet der natürlichen Bildverarbeitung haben die Fortschritte
im Bereich des Deep Learning die Bildanalyse revolutioniert.
Mit der Fähigkeit, automatisch Bildmerkmale zu erlernen, ha-
ben Deep-Learning-Methoden hervorragende Leistungen bei
zuvor schwierigen Aufgaben erzielt. Die Ubertragung von Deep
Learning Methoden der natürlichen Bildverarbeitung auf die
medizinische Bildverarbeitung bringt neue methodische Heraus-
forderungen mit sich, da sich die Struktur und die Darstellung
der in Bildern aus diesen beiden Bereichen enthaltenen Informa-
tionen unterscheiden.

Der erste Teil dieser Dissertation konzentriert sich auf drei
Hauptherausforderungen, die sich aus der Verwendung beste-
hender hochmoderner Deep-Learning-Methoden bei der Ana-
lyse zerebrovaskulärer Strukturen ergeben, die aus klinischen
Daten gewonnen werden. (1) Die Verwendung von 3-D Convo-
lutional Neural Networks (CNNs) führt zu einem drastischen
Anstieg der Anzahl der zu optimierenden Parameter und der
auszuführenden Berechnungen im Vergleich zu 2-D CNNs.
Wir schlagen Fadenkreuzfilter als Ersatz für klassische 3-D-
Faltungsoperationen vor und zeigen, dass die vorgeschlagenen
Fadenkreuzfilter weniger Speicherplatz benötigen und rechne-
risch schneller sind als die klassischen 3-D-Faltungsoperationen.
(2) Gefäße machen weniger als 3% der gesamten Voxel eines
Patientenvolumens aus, Mittellinien stellen einen Bruchteil der
segmentierten Gefäße dar, und sichtbare Verzweigungen liegen
bestenfalls in Hunderten von segmentierten Gefäßen vorhanden.
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Dies hat zur Verwendung einer Verlustfunktion für den Klassen-
ausgleich geführt, die rechnerisch instabil ist und zu einer hohen
Falsch-Positiv-Rate (FPR) führt. Wir schlagen eine modifizierte
Verlustfunktion vor, die stabiler ist und hilft, das FPR-Problem
zu bewältigen. (3) Es gibt nur wenige annotierte Daten für das
Training von Deep-Learning-Netzwerken für die Analyse von
vaskulären Strukturen, was den Fortschritt der Forschung in
diesem Bereich gebremst hat. Daher generieren wir synthetische
Daten mit genauen Annotationen für die Gefäßsegmentierung,
Mittellinien, Verzweigungspunkte und Gefäßradien. Wir haben
die synthetischen Daten öffentlich zugänglich gemacht, um die
weitere Forschung in dieser Richtung zu fördern.

Der zweite Teil der Dissertation untersucht die Kollateralen
und ihre Klassifizierung bei Patienten mit ischämischem Schlag-
anfall. Die Qualität der Kollateralen hat sich als Schlüsselfaktor
für die Wahrscheinlichkeit eines günstigen klinischen Ergeb-
nisses erwiesen und spielt bei der Wahl des Versorgungsmo-
dells für Schlaganfallpatienten eine große Rolle. Die Bewertung
des Kollateralflusses durch visuelle Inspektion ist zeitaufwän-
dig und weist eine hohe Interrater-Variabilität auf. Wir stellen
einen mehrstufigen Deep-Learning-Ansatz vor, um die Klassifi-
zierung unter Verwendung parametrischer Informationen aus
MR-Perfusionsdaten zu automatisieren. Es werden Experimente
mit verschiedenen Merkmalsextraktionsschemata und Klassi-
fikatoren vorgestellt und verglichen, um festzustellen, welche
Methodik sich am besten für das vorliegende Problem eignet.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 motivation and open challenges

Angiography offers insights into the blood flow and conditions
of the vascular tree. Three dimensional volumetric angiography
information can be obtained using magnetic resonance (MRA),
ultrasound, or x-ray based technologies like computed tomogra-
phy (CT). A common first step in analyzing these data is vessel
segmentation. Still, moving from raw angiography images to
vessel segmentation alone might not provide enough informa-
tion for clinical use, and other vessel features like centerline,
diameter, or bifurcations of the vessels are also needed to accu-
rately extract information about the vascular tree, for example,
to characterize its structural properties or flow pattern.

The first sets of public data for vessel segmentation were the
STructured Analysis of the Retina (STARE) [19] and Digital Reti-
nal Images for Vessel (DRIVE) [47] datasets. These datasets were
2-D in nature and served as the gold standard for testing com-
puter vision algorithms on vessel segmentation. Early works
on these datasets made use of nearest neighbor, kernel boost,
random forest, and other classical machine learning algorithms
[3, 13, 34] and achieved results comparable to a 2nd human
annotator. Motivated by the success of deep learning in natu-
ral images, the focus was shifted to deep learning algorithms
which further improved results over human annotators. Maninis
et al. [30] proposed a unified framework of CNN for retinal
image analysis that provides both retinal vessel and optic disc
segmentation and achieved a dice score of 82% compared to a
human performance of 79% on the DRIVE dataset and 84% dice
score compared to human annotator score of 76% on the STARE
dataset.

Though vessel segmentation in the STARE and Drive datasets is
successful, medical images obtained from modalities like MRA
and CT are 3-D in nature. Adopting the existing methodolo-
gies to handle the extra dimension introduces technical and
implementation problems. In addition, vessel segmentation, cen-

3
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terline prediction, and bifurcation detection tasks which are the
focus of this work introduce even more specialized challenges
enumerated below:

• Memory and computational limitation: Processing of 3-
D medical volumes poses a memory consumption and
speed challenge. Using 3-D convolutional neural networks
(CNNs) leads to a drastic increase in the number of pa-
rameters to be optimized and computations to be executed
when compared to 2-D CNNs. This poses restrictions on
the depth and kernel sizes that can be employed on medi-
cal data given the currently limited memory and computa-
tional resources. At the same time, applying a 2-D CNN
in a slice-wise fashion discard valuable 3-D context infor-
mation that is crucial for tracking curvilinear structures in
3-D.

• Extreme class imbalance: In most medical image analysis
tasks the object of interest is less than 5% of the overall
data points leading to a general problem of class imbalance.
The vessel, centerline, and bifurcation prediction tasks are
especially characterized by high class imbalances. Vessels
account for less than 3% of the total voxels in a patient
volume, centerlines represent a fraction of the segmented
vessels, and visible bifurcations are in the hundredths at
best – even when dealing with volumes with 106 and more
voxels. This bias toward the background class is a common
problem in medical data [5, 16, 17]. To achieve a balanced
prediction power between the foreground and background
one has to apply a class balancing loss function during
the training of deep learning networks. Unfortunately, cur-
rent class balancing loss functions for training CNNs turn
out to be numerically unstable in extreme cases such as
vessel segmentation, centerline prediction, and bifurcation
detection.

• Lack of annotated data for training: Deep learning has
been successful with natural images partly due to the exis-
tence of large-scale public datasets for training and evalu-
ation. Publicly available data for medical image analysis
is however very limited partly due to special regulations
concerning medical data and the fact that manually an-
notating medical data, in general, is tedious and requires
professional expertise. Vessel, centerline, and bifurcation
annotation in particular require even more hours of work
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and expertise. This has stifled the pace of research in med-
ical image analysis in general and especially brain vessel
analysis.

1.2 contributions

This dissertation is made up of two main parts. The first part,
captured in two peer-reviewed publications [49, 51], contributes
to the advancement of research in the analysis of vascular net-
works extracted from clinical MRA data using deep learning.
We identify challenges associated with applying deep learning
methods to the tasks of vessel segmentation, centerline predic-
tion, and bifurcation detection in medical data. We then propose,
implement and test solutions to the identified challenges. The
technical and scientific contributions comprise the following:

• proposing a lightweight deep feature extraction (deep-
FExt) scheme for extracting multi-level and multi-scale
image features crucial for detecting and tracking curvilin-
ear structures in medical images.

• developing fast cross-hair filters, a substitute for the classi-
cal 3-D convolutional kernels which offer improved speed
and memory usage while maintaining accuracy.

• proposing class balancing scheme and false prediction (FP)
rate correction term for training deep neural networks in
tasks where there is an extreme class imbalance between
the object of interest and the background.

• generating synthetic data, through a simulation of a vas-
cular tree that follows a generative process inspired by
the biology of angiogenesis, with annotations for vessel,
centerlines, and bifurcation points and making it possible
to train deep networks for these tasks with few expert
annotations.

The second part of this dissertation, captured in the journal
publication Tetteh et al. [50], studies collateral circulation and its
grading in ischaemic stroke patients. The quality of collateral cir-
culation has been established as a key factor in determining the
likelihood of a favorable clinical outcome and goes a long way
to determining the choice of the stroke care model. The current
method of grading collateral flow in clinical routine is through
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visual inspection. This is time consuming and introduces bias
in the assigned grade. This dissertation presents a multi-stage
deep learning approach to automate the grading process. Exper-
iments on different feature extraction schemes and classifiers
are presented and compared to ascertain which methodology
best suits the problem at hand. This serves as a first attempt at
fully automating the collateral flow grading process and will
serve as a basis for further research in this direction.

1.3 outline

In part I, we have already been introduced to the motivation
of this dissertation and we have also seen an overview of the
two main contributions of this work. The following chapter 2

provides background to medical image processing, highlights
the research journey and contributions at each stage of the jour-
ney, and is divided into six sections. Sec. 2.1 gives a brief history
of medical image processing and the migration from natural
image processing to medical image analysis in the deep learning
domain. Sections 2.2, 2.3, and 2.4 cover some of the challenges
associated with using deep learning in medical image analysis
and proposed methodological solutions in this work. Sec. A.3
discusses a follow-up work on the analysis of whole mouse
brain vasculature which uses the methodological improvements
proposed in this dissertation. Sec. 2.6 gives a brief introduction
to the work on collateral flow grading some of the main findings.

In part II, the main publications considered under this publication-
based dissertation are presented. Chapter 3 [51] presents our
work on extracting deep features using inception models. We
analyze the extracted features and use these features as input to
a deep learning pipeline to segment vessels and predict center-
lines in retinal images. In Chapter 4 [49] we present thoroughly
the proposed methodological improvements aimed at handling
the challenges associated with applying deep learning to brain
vascular analysis and medical image processing in general. We
formulate the cross-hair filter as an efficient replacement for
the classical 3-D convolutional operation, propose a stable loss
function, and generate synthetic data which can be used for
transfer learning purposes in the brain vessel analysis domain.
In Chapter 5 [50], we discuss challenges associated with collat-
eral flow grading and present a set of tools aimed at automating
the grading process. We experiment with different methodolo-



1.3 outline 7

gies in the form of feature extractors and classifiers and compare
the outcome to know which methodology suit the problem.

In part III, the overall contribution of this dissertation and the
important findings are discussed in Chapter 6. We follow up
with the conclusion and outlook for future work in Chapter
7 where we discuss what will be interesting research that can
spawn out of this dissertation.

The appendix in part IV includes relevant co-author publications
which are not considered in the evaluation of this publication-
based dissertation but complement the contributions of this
dissertation in a form of follow-up studies or tests of the pro-
posed methodological improvements.





2
B A C K G R O U N D

2.1 medical image processing

Medical image processing and analysis cover a range of poten-
tial topic areas including image acquisition, image enhancement,
image compression and storage, image analysis, and image vi-
sualization. The area of image analysis in the medical domain
includes the development of methodologies for tasks like image
segmentation, image registration, motion tracking and change
detection in image sequences, and the measurement of anatomi-
cal and physiological parameters from images. These research
efforts are direct responses to system-oriented problems like
image-guided surgery/intervention, atlas-based description of
entire anatomical regions, deformation analysis based on biome-
chanical and other models, and visualization of anatomical and
physiological processes [10]. Research back in the 1970s treated
medical and biomedical image analysis as a unique information
processing problem, one where approaches based on pattern
recognition, image/signal processing, and computer vision may
play a role [10]. Ballard and Sklansky [1, 2] used computer
vision-based methods to enhance the edges of the images of
tumors in radiographs and isotope scans to ease the tumor
detection task and a ladder-structured decision tree for recog-
nizing tumors in chest radiographs. Pizer and Todd-Pokropek
[35] Also used computer processing to improve the quality of
scintigrams and increase the accuracy with which the image
approximates the activity distribution by reversing degradation.
In the 1990s, research in computer vision took a new turn with
machine learning and deep learning at the center stage. Most
researchers in the field at the time focused on the processing
and analysis of natural images. After about a decade, informed
by the success stories in natural image analysis, early attempts
at applying deep learning in medical image analysis started.

2.1.1 Natural Images to Medical Image Analysis

Computer vision is an interdisciplinary field that enables sys-
tems and computers to derive resourceful information from

9
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Figure 2.1: Sample of images from the MNIST dataset. There are a total
of 60,000 examples in the training set and 10,000 examples
in the test set. Each image has a resolution of 28× 28 pixels.

videos, digital images, and other forms of visual inputs. In the
early stages of computer vision and image processing, the in-
terest was on object recognition or what can be seen in a given
image and requires primarily assigning a single class label to a
given image or video frame.

Very common among these tasks is the classification of hand-
written digits from the Modified National Institute of Standard
and Technology (MNIST) [25] (Sample images in Figure 2.1).
From an initial error rate of 12% [25] in the first attempts in the
late 1990s to an error rate of less than 0.5% [7, 8, 31, 45] in a
span of 10 years the computer vision community was ready to
take up more challenging tasks.

Focus was quickly shifted towards the classification of natural
images with two databases from the Canadian Institute For
Advanced Research (CIFAR) - CIFAR-10 and CIFAR-100 [23]
which are labeled subsets of 80 million tiny (32px× 32px) im-
ages with 10 and 100 classes respectively being one of the first
attempts at the task. Sample images from the CIFAR-10 dataset
are presented in Figure 2.2. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [9] followed with a dataset of
over 10 million images in 1000 categories (Sample images in
Figure 2.3).

With the success in natural image classification, there is high
interest in going beyond just what can be seen in an image to
answer the question of "where can it be seen?". This led to object
localization, detection, and semantic segmentation tasks. Figure
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Figure 2.2: Sample of images from the CIFAR-10 dataset. There are
10 classes with 6,000 images per class. A total of 50,000

examples in the training set and 10,000 examples in the
test set. Each image has a resolution of 32× 32 pixels.

2.4 shows an overview of the category of computer vision tasks
that goes beyond "what can be seen" to identify where the object
can be seen within the image. Very common in this category
of computer vision tasks are the Caltech [15], PASCAL [11],
LabelMe [39], TinyImages [53], ImageNet [9], SUN [54], and
COCO [28] datasets with single and multiple instance object
detection and localization. These and other large-scale datasets
paved the way for rapid growth in the field of categorical object
detection by providing rich training and evaluation datasets and
leading to the development of more robust learning algorithms
and architectures.

Different versions of CNN-based architectures have been pro-
posed for handling object detection tasks. Krizhevsky, Sutskever,
and Hinton [24] proposed AlexNet, a deep convolutional neural
network, to classify the 1.2 million high-resolution images in
the ImageNet LSVRC-2010 contest into the 1000 different classes
and achieved top-1 and top-5 error rates of 37.5% and 17.0%
respectively. Simonyan and Zisserman [46] investigated the ef-
fect of the convolutional network depth on its accuracy in the
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Figure 2.3: Samples of images from the ImageNet dataset. The dataset
contains over 14 million annotated images for image classi-
fication and object detection.

large-scale image recognition setting and proposed the VGGNet
architecture, which is made up of 16-19 convolutional layers and
overperforming the state-of-the-art at the time. An inception
model based on the idea of a network within a network was ex-
amined by Szegedy et al. [48] leading to 22 layers deep network
called GoogLeNet. He et al. [18] explicitly reformulated network
layers as learning residual functions with reference to the layer
inputs, instead of learning unreferenced functions and proposed
a Residual Network (ResNet) architecture with a depth of up
to 152 layers which achieved 3.57% error rate on the ImageNet
dataset - an over 40% improvement in the state-of-the-art at the
time. The trend in these groundbreaking architectures has been
robust data representation and network depth.

Based on the above success stories, early attempts at apply-
ing deep learning to medical image analysis started. Prasoon et
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Figure 2.4: Computer vision tasks that go beyond "what can be seen" to
the detection of objects of interest through object detection
and classification, semantic segmentation, and instance
segmentation (Li, Johnson, and Yeung [26]).

al. [36] and Liao et al. [27] used CNNs for segmentation of knee
cartilage and prostate in MR scans respectively. Ronneberger,
Fischer, and Brox [37] proposed U-NET, a network architecture
consisting of a contracting path to capture context and a sym-
metric expanding path that enables precise localization. The
U-NET architecture was used for the segmentation of neuronal
structures in electron microscopic stacks and also won the ISBI
cell tracking challenge 2015 by a large margin. U-NET and 3D U-
NET [6] inspired a lot of pixel and voxel-based architectures and
were modified and applied to several medical image segmenta-
tion tasks [5, 20, 32, 56–59] with Siddique et al. [44] providing a
comprehensive review on U-NET and its variants for medical
image segmentation.

Extending deep learning methods from natural images to medi-
cal images, in general, requires one to consider the main differ-
ences between natural images and medical images.

• Medical images have increased dimension and resolution;
images are mostly 3-D in nature which implies that compu-
tations and memory requirements are increased exponen-
tially. Again, medical images are in most cases of higher
resolution compared to real-world images which again
adds to the memory and computational problem of the
third dimension. Medical images capture a wider range
of the light spectrum as compared to natural images and
hence have a higher intensity range. Most natural images
have and intensity of integer data type ranging between
0-255 per pixel which requires an 8bits (28) memory per
pixel for storage. Medical images on the other hand have
completely different intensity ranges and data types. Im-
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ages from CT scanners can have intensities between −1024
to +3071 HU, and sometimes single or double precision
floating point data types.

• Another profound challenge with medical image analysis
is the limited data for training due to regulatory require-
ments. The limited available data are also not open sourced
and therefore benchmark testing and thorough algorithm
performance comparison are not possible. Unlike natural
images, acquiring annotations for medical data requires
professional expertise and time. Some tasks require anno-
tation to be carried out in 3-D and on a voxel level which is
either impossible or takes longer professional hours from
medical practitioners.

• In addition to the above differences, vascular analysis in
medical images which is the focus of this works places
more relevance on local information than global infor-
mation. Vessel segmentation, centerline prediction, and
bifurcation detection tasks require voxel-level details, and
therefore downsampling the images as a way of conserving
memory can have a detrimental effect on the final accuracy
of these tasks due to the loss in the low-level information.

These differences lead to different challenges and require medi-
cal images to be handled differently to achieve the best results
from existing methodologies and computational resources. In
Sections 2.2,2.3, and 2.4, we discuss some of the challenges aris-
ing from these differences and propose solutions in the form of
a memory-efficient cross-hair filters, a class balancing loss func-
tion, and a synthetically simulated data for transfer learning.

2.2 memory efficient cross-hair filters

We will start our discussion on the proposed cross-hair filters
by formulating the memory and computational requirements
for standard 2-D and 3-D convolutional operations. Given an
image I, and a kernel M of size a convolutional operator ∗ can
be defined for 2-D and 3-D cases respectively as follows:

I ∗M = A = {aij}; aij =
kx

∑
r=1

ky

∑
s=1

I(R,S)M(r,s) (2.1)
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Figure 2.5: A graph showing the computational and memory con-
sumption of 2-D vs 3-D convolutional operations. Blue
bars represent 2-D operations and red bars represent 3-D
operations. The left graph shows memory consumption in
the form of the number of parameters needed to store in
memory during the computation for a single convolutional
operation given the kernel size. The middle graph repre-
sents the number of computations per voxel/pixel given
the kernel size. The right graph shows the total number of
computations in billions (1e9) for a given image size when
we use a kernel size of five (5).

I ∗M = A = {aijk}; aijk =
kx

∑
r=1

ky

∑
s=1

kz

∑
t=1

I(R,S,T)M(r,s,t) (2.2)

where R = i + r − (1 + [ kx
2 ]), S = j + s − (1 + [

ky
2 ]), and

T = k + t− (1 + [ kz
2 ]).

The above equation involves kxkykz multiplications and kxkykz−
1 additions for each voxel of the resulting image A in the 3-D
case as compared to kxky multiplications and kxky − 1 additions
in the 2-D case. Figure 2.5 shows the computational and memory
requirements in different scenarios for 2-D and 3-D convolu-
tional operations and depicts clearly the exponential increase in
computational and memory needs between 2-D and 3-D opera-
tions especially when we have increased image and kernel sizes
which is normally the case for medical image analysis.

The immediate solutions to the computational and memory
problem have been applying 2-D convolutions to the slices of



16 background

the 3-D volumes and stitching the results of the 2-D slices in a
post-processing step to get back the 3-D volume [5, 29, 42]. Other
works improve this by feeding neighboring voxels as additional
channels for the 2-D convolution [38]. The main setback to
these approaches is the lack of 3-D context information which
is crucial when dealing with vessel segmentation, centerline
prediction, and bifurcation detection tasks due to the size of the
objects of interest.

2.2.1 Cross-hair filter for 2-D convolutional operations

In other to retain context information and at the same time
address the computational and memory problem we propose
the use of cross-hair filters which involve convolution along the
perpendicular axis of the center point of interest. To demon-
strate this we start with 2-D cross-hair filters where we replace
normal 2-D filters with one that uses information only along
the perpendicular axis. Figure 2.6 is a graphical depiction of the
proposed cross-hair filter for 2-D image processing. By introduc-
ing the cross-hair filters we reduce the parameter size from kxky
to (kx + ky) and the number of computations from 2kxky − 1 to
2(kx + ky)− 1 and Figure 2.7 shows these gains in computation
and memory.

Figure 2.6: Proposed 2-D cross-hair filters to replace full 2-D kernels.
At the left is a depiction of the full 2-D kernels in blue and
at the right is the cross-hair filters with light-blue and red
representing the perpendicular axis of interest.

To test the proposed cross-hair filters we perform a preliminary
experiment using the MNIST handwritten digit data. We de-
signed a CNN with three convolutional layers of kernel size
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Figure 2.7: A graph showing the computational and memory con-
sumption of full 2-D vs cross-hair filters(1D-CF). Blue bars
represent 2-D operations and red bars represent cross-hair
operations. The left graph shows memory consumption
in the form of the number of parameters needed to store
in memory during the computation for a single convolu-
tional operation given the kernel size. The middle graph
represents the number of computations per pixel given the
kernel size. The right graph shows the total number of
computations for a given image size when we use a kernel
size of five (5).

(5× 5) and three hidden layers. Details of the experiment are
provided in Figure 2.8. By replacing the full 2-D kernels with
cross-hair filters in the convolutional layers we can improve the
computational speed by about 18% (from Table 2.1) while at the
same time achieving comparable accuracy.

Figure 2.8: Experimental setup of the preliminary test of the 2-D cross-
hair filter. To make comparison we run two experiments
with the same network structure but replace the 2-D con-
volutional kernels with the proposed cross-hair kernels in
one of the experiments.
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Table 2.1: Quantitative results from preliminary experiments on the
MNIST handwritten digit classification using full 2-D and
cross-hair filters. The result shows comparable results in
terms of error and an improvement of about 18% in execu-
tion time.

Method Error Execution Time

Full 2-D 1.27% 4.67e06

Cross-hair 1.58% 3.79e06

2.2.2 Cross-hair filter for 3-D convolutional operations

With the success of the preliminary experiments, we proceed to
formulate the cross-hair filter for 3-D convolutional operations.
By replacing the full 3-D convolution with convolutions along
the three perpendicular planes we can reformulate the Equation
2.2 as follows:

aijk = α

ky

∑
s=1

kz

∑
t=1

I(i,S,T)Mi
(s,t) + β

kx

∑
r=1

kz

∑
t=1

I(R,j,T)Mj
(r,t) + γ

ky

∑
r=1

ky

∑
s=1

I(R,S,k)Mk
(r,s)

(2.3)

where Mi, Mj, and Mk are 2-D filters extracted from the original
3-D filter M and α, β, and γ are plane weights. This reduces
the number of parameters from kxkykz to (kxky + kxkz + kykz)
and the number of elementary operations (computations) from
2(kxkykz)− 1 to 2(kxky + kxkz + kykz)− 1. We can easily see that
(kxky + kxkz + kykz) ≤ (kxkykz) for kx, ky, kz ≥ 3 which is nor-
mally the case for convolutional operations in image processing.

Figure 2.9 shows improved computation and memory require-
ments between full 3-D filters and the proposed cross-hair filters.
We conduct further experiments to test the actual improvements
in speed and memory consumption with the VNET architecture
proposed by Milletari, Navab, and Ahmadi [32]. With a volume
size of (128× 128× 128) and by replacing the full 3-D filters
with our proposed 2-D filters we reduce the number of parame-
ters from 22.89× 106 to 16.56× 106 and the execution time from
11 to 7 seconds which represent at least 27% improvement in
both measures. Details of the experimental setup and full results
of this experiment are presented in Tetteh et al. [49]. The results
from the experiments show that cross-hair filters are an efficient
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Figure 2.9: Comparison of computational and memory requirements
of full 2-D, full 3-D, and cross-hair filters. The left graph
shows the number of parameters given per kernel size.
The middle graph shows the number of computations per
voxel for the given kernel size and the right graph shows
the total number of computations in billions (1e9) for the
given volume size and a kernel size of five (5).

way of performing 3-D convolutional operations while at the
same time maintaining enough 3-D context information which
improves accuracy over 2-D convolutional operations.

2.3 extreme class balancing loss function

In most medical image processing tasks, the object of interest
represents less than 5% of the overall volume. Especially in seg-
mentation tasks, there is an extreme class imbalance between
the background and the object of interest. For our specific tasks
of vessel segmentation, centerline prediction, and bifurcation
detection the problem increases with a maximum of less than 3%
of vessels compared to the background. Figure 2.10 shows the
label distribution in the datasets used in experiments presented
in Tetteh et al. [49]. This is an issue when training a deep net-
work because by predicting the whole image as background the
network is already achieving over 97% accuracy. This makes the
network learn to predict the background at the expense of the
objects of interest when trained with the standard cross-entropy
loss proposed in the literature below.

L(W) = − 1
N

[ ∑
j∈Y+

log P(yj = 1|X; W) + ∑
j∈Y−

log P(yj = 0|X; W)]
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Figure 2.10: Distribution of foreground labels in the three data sets
used in Tetteh et al. [49]. Red represents the percent-
age of vessel labels, yellow represents the percentage of
centerline labels, blue represents bifurcation points and
green represents bifurcation points with a (3× 3× 3) cube
around it

(2.4)

where N is the total number of labels, Y+ is the set of foreground
labels, Y− is the set of background labels, P(.) is the probability
operator, X is the given image, and W is the set of network
parameters.

The solution is the introduction of class weights into the loss
functions used during the training phase to penalize the net-
work more when it predicts the foreground as the background.
Earlier works by [5, 30, 55] proposed the use of a parameter β

which is the ratio of the number of background labels to the total
labels to penalize the network for wrong foreground prediction
and 1− β for wrong background prediction. This transforms
the standard cross-entropy loss function in Equation 2.4 to the
form below.

L(W) = −β ∑
j∈Y+

log P(yj = 1|X; W)− (1− β) ∑
j∈Y−

log P(yj = 0|X; W)

(2.5)

where β = |Y−|
|Y| , |Y−| is the number of background labels and

|Y| is the total number of labels.
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Our experiments with the class-balancing weights in Equation
2.5 however show that the weights β and 1− β as defined above
first of all lead to numerical instability for big datasets and also
introduce a problem of high false positive rate. We, therefore,
propose new weights to correct the numerical instability and a
new term (L2(W)) to address the problem of high false positive
rate.

L(W) = L1(W) + L2(W) (2.6)

L1(W) = − 1
|Y+| ∑

j∈Y+

log P(yj = 1|X; W)

− 1
|Y−| ∑

j∈Y−

log P(yj = 0|X; W)

L2(W) = − γ1

|Y+| ∑
j∈Yf +

log P(yj = 0|X; W)

− γ2

|Y−| ∑
j∈Yf−

log P(yj = 1|X; W)

γ1 = 0.5 +
1
|Yf +| ∑

j∈Yf +

|P(yj = 0|X; W)− 0.5|

γ2 = 0.5 +
1
|Yf−| ∑

j∈Yf−

|P(yj = 1|X; W)− 0.5|

where Yf + and Yf− are the set of false positive and false nega-
tive predictions respectively.

Here L1(W) is a more numerically stable version of Equation
2.5 and L2(W) is design to control the false positive rate. We
perform further experiments to compare the proposed loss func-
tion in Equation 2.6 with the existing loss function in Equation
2.5 and our results as depicted in Figure 2.11 shows that training
with L2 improves the ratio of precision to recall (a value closer
to 1) compared to training without L2.

2.4 synthetic data for transfer learning

One of the major reasons for the success of natural image pro-
cessing is the availability of large-scale datasets. Deeper net-
works require more data for training and testing which is a ma-
jor challenge with medical data. Medical data are hardly open-
sourced due to stringent regulations. In limited cases where



22 background

Figure 2.11: Precision-recall ratio during training, with false positive
(FP) rate correction L2 and without FP rate correction.
The graph shows that FP rate correction (red line) leads
to a higher and more stable ratio compared with training
without FP rate correction (blue line).

Figure 2.12: Generated annotations for the synthetic data. Segmenta-
tion covers the region contained within the vessel walls,
the centerline refers to the center of the vascular tube,
bifurcation is the point where the vessel split into two or
more smaller vessels, and the radius is the distance from
the vascular wall to the centerline.

there are available data for the task at hand, there are little or no
ground truth annotations for the data. Unlike natural images,
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annotating medical data require a certain level of medical exper-
tise and time. For brain vessel analysis, the annotation process
becomes even more tedious and near impossible due to the size
and nature of the object of interest. To overcome this challenge,
we resort to the generation of synthetic data with associated
annotations. Schneider et al. [41] proposed and implemented
a simulator of a vascular tree that follows a generative process
inspired by the biology of angiogenesis. This same approach is
developed as a complementary algorithm for filling in missing
elements of a vascular tree in µCT [40]. We use the proposed
simulator to generate physiologically plausible vascular trees
in graph form, and transform the graph data into volumetric
data that can be used in training Deep network architectures.
The volumetric data generated includes annotation for vessels,
centerline, vessel bifurcation, and vessel radius (see Figure 2.12).
Details of the generated synthetic data, parameters used and
availability can be found in Tetteh et al. [49]. The generated
synthetic data is used for pre-training deep networks for ves-
sel segmentation and as transfer learning data for centerline
prediction and bifurcation detection in the work of Tetteh et al.
[49].

2.5 analysis of whole mouse brain vasculature

Figure 2.13: Overview of results from vessel segmentation task from
the Vessel Segmentation and Analysis Pipeline (VesSAP).
Left column (b), shows the accuracy and F1 score for the
inter-annotator experiment (blue) as compared to VesSAP
(red). Middle column (c) shows a sample of a full brain
segmentation from a mouse and right column (d) shows
a zoomed version of the small volume (marked white) in
column (c).
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Figure 2.14: A snapshot of Table 1 from Todorov et al. [52]. The seg-
mentation model VesSAP CNN refers to the model built
with our proposed cross-hair filters. A Detailed descrip-
tion of the other models and experimental setup can be
found in Todorov et al. [52] in the Appendix.

Imaging of the complete mouse brain vasculature down to the
smallest blood vessels has been made possible by recent ad-
vances in tissue clearing. However, imaging of the complete
vascular network of the brain to the capillary level results in a
dataset of terabyte size. Established image processing methods
do not scale well with terabyte-sized image volumes due to
the high memory and computational requirements. In addition,
obtaining ground truth labels for such high-resolution data is
tedious and requires long expert hours. As a direct application
of our proposed cross-hair filter and generated synthetic data,
we build a Vessel Segmentation and Analysis Pipeline (VesSAP)
in the work of Todorov et al. [52]. VesSAP uses as a base the
proposed computational and memory efficient cross-hair filters
in a fully convolutional neural network (FCNN) architecture.
The network architecture is first trained on the synthetically gen-
erated data discussed in Section 2.4 and fine-tuned on sparsely
annotated mice data. Figures 2.13 and 2.14 show a sample of
complete 3D segmentation from the mice data and a snapshot of
quantitative results from the VesSAP experiments as presented
in Todorov et al. [52]. Other results from the work (Table 1 of
[52]) show that cross-hair filters used as a building block help
reduce the parameter size (< 0.6 million) as compared to the
state-of-the-art network architectures (> 88 million) and im-
prove execution speed by at least 95% (1.19s vs 24.31s). Details
of the image acquisition, clearing, and the experimental setup
can be found in Todorov et al. [52] which is attached to the
Appendix of this thesis.
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Figure 2.15: A sample of patient DSA image. The red circle represents
the occluded region.

2.6 collateral flow grading

Collateral circulation results from specialized anastomotic chan-
nels which are present in most tissues and capable of providing
nutrient perfusion to regions with compromised blood flow
due to ischemic injuries caused by ischemic stroke, coronary
atherosclerosis, peripheral artery disease, and similar conditions
or diseases [12]. Collateral circulation helps to sustain blood
flow in the ischaemic areas and is a key factor in determining
the likelihood of successful reperfusion and favorable clinical
outcome [14]. MRI perfusion and diffusion have evolved as key
biomarkers in determining collateralization of stroke patients,
and a patient stratification based on these markers has been
proposed repeatedly [43]. At the same time, a qualitative CTA
and DSA-based grading are the most common approaches for
evaluating collateralization [21, 22, 33]. Figure 2.15 shows a sam-
ple DSA of a patient with the occluded region marked in red.

A high number of imaging methods exist to assess the struc-
ture of the cerebral collateral circulation and several grading
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criteria have been proposed to quantify the characteristics of col-
lateral blood flow. However, this grading is mostly done through
visual inspection of the acquired images which introduces two
main challenges.

• First, there are biases and inconsistencies in the current grad-
ing approaches: There is a high tendency of introducing bias
in the final grade assigned to a patient depending on the
experience level of the clinician. There are inconsistencies
also in the grade assigned by a particular clinician at dif-
ferent times for the same patient. These inconsistencies
are quantified at 16% interobserver agreement and a max-
imum intraobserver agreement of 74% respectively in a
similar study by [4].

• Second, grading is time-consuming and tedious: Aside from
the problem of bias prediction, it also takes the clinician
several minutes to go through the patient images to first
select the correct image sequence, detect the region of
interest and then assign a grading – a period of time which
otherwise could have been invested in the treatment of the
patient.

We present a set of solutions focusing on two main aspects of
the task at hand. That is, the region of interest (ROI) needs to be
identified, and the identified region of interest (ROI) needs to be
processed and classified. We predict digitally subtracted angiog-
raphy (DSA) based collateral flow grading (bad = 0, medium
= 1, good = 3) from parametric MR perfusion images in this
task. The dataset includes three parametric volumes for each
patient. That is the time-to-peak (Tmax) volume which represents
the time taken for the blood flow to reach its peak, the relative
blood flow (rBF) volume which is the volume of blood passing
through a given brain tissue per unit of time, and the relative
blood (rBV) volume which is defined as the volume of blood in
a given brain tissue relative to an internal control (e.g. normal
white matter or an arterial input function). Figure 2.16 shows
samples of the three parametric volumes sampled from the three
categories of collateral flow grading.

We proposed a reinforcement learning scheme for achieving
the first step of identifying the ROI from the MRI perfusion
volume and propose several feature extraction and classification
algorithms for processing and classifying the ROI.

Results from the experiment show an acceptable level of accu-
racy from the region of interest identification task and suggest
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Figure 2.16: Sample of images from the MR perfusion dataset used in
the collateral flow grading experiment. The Tmax column
represents the time-to-peek, that is the time taken for the
blood flow to reach its peak, the rBF column represents
relative blood flow which is the volume of blood passing
through a given brain tissue per unit of time, and the
rBV column represents relative blood volume defined as
the volume of blood in a given brain tissue relative to an
internal control (e.g. normal white matter or an arterial
input function). The upper row is a sample of slices from
a patient with poor collateral flow, the middle row is from
a patient with medium collateral flow and the bottom row
represents a patient with good collateral flow.
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that this task can be automated. The classification task also
shows an overall accuracy of 72% which is very promising
compared to an inter-observer agreement of 16% in a similar
experiment. This is the first attempt at fully automating the
collateral flow grading task and will serve as the baseline for
any further research in this direction. Detailed literature review,
description of the methodology used, and the intermediate and
final results are presented in Tetteh et al. [50].
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Abstract. Feature extraction is a very crucial task in image and pixel
(voxel) classification and regression in biomedical image modelling. In
this work we present a feature extraction scheme based on inception
models for pixel classification tasks. We extract features under multi-
scale and multi-layer schemes through convolutional operators. Layers of
Fully Convolutional Network are later stacked on these feature extraction
layers and trained end-to-end for the purpose of classification. We test
our model on the DRIVE and STARE public data sets for the purpose of
segmentation and centerline detection and it outperforms most existing
hand crafted or deterministic feature schemes found in literature. We
achieve an average maximum Dice of 0.85 on the DRIVE data set which
outperforms the scores from the second human annotator of this data
set. We also achieve an average maximum Dice of 0.85 and kappa of 0.84
on the STARE data set. Even though these datasets are only 2-D we
also propose ways of extending this feature extraction scheme to handle
3-D datasets.

Keywords: Feature extraction, image and pixel classification and re-
gression, biomedical image modelling, inception models, convolutional
networks, vessel segmentation, centerline prediction.

1 Introduction

Most recent research in biomedical modelling involves qualitative and quanti-
tative classification of a single pixel (voxel), a region of interest ROI and or
an image (volume). These classification tasks mostly involve three main steps:
feature extraction, feature selection and classification [1]. Out of these three
steps, the feature extraction step is the most crucial since it determines which
information will be present or discarded in the next steps.

Feature extraction is the process of generating features to be used in the
selection and classification tasks[1]. In whole image or volume classification, fea-
ture extraction and selection can serve as a dimensionality reduction where a
subset of the extracted features is selected to eliminate redundant features while
maintaining the underlying discriminatory information[2]. The newly extracted



features are normally of lower dimension than the original feature space. How-
ever, most pixelwise feature extraction tasks lead to dimensionality extension.
That is, a new set of features of high dimension is extracted for each given pixel
based on its neighbourhood.

Feature extraction techniques come mainly in three main flavours - hand
crafted texture features, supervised learned features and unsupervised feature
extraction.

Textures are complex visual patterns composed of entities, or subpatterns,
that have characteristic brightness, colour, slope, or size [3]. The local subpattern
properties give rise to the perceived lightness, uniformity, density, roughness, reg-
ularity, linearity, frequency, phase, directionality, coarseness, randomness, fine-
ness, smoothness, or granulation of the texture as a whole [4]. For a review of
texture features, categorization and various uses one can refer to [3].

Other groups of hand crafted features are based on differential geometry and
the analysis of gradient and Hessian of pixel intensity. These are mostly used as
image enhancement to objects of specific shape of interest in a given image. For
example in [5] the multiscale second order local structure of an image (Hessian) is
examined with the purpose of developing a vessel enhancement filter. Ultimately,
a vesselness measure is obtained on the basis of the eigenvalues of the Hessian.
This vesselness measure serves as a measure of the likelihood of the presence
of geometrical structures which can be regarded as tubular. Also a curvilinear
structure detector, called Optimally Oriented Flux (OOF) finds an optimal axis
on which image gradients are projected in order to compute the image gradient
flux[6].

The second class of feature extraction techniques are in the form of unsu-
pervised learning and transfer learning. These are mainly autoencoders and its
variations like restricted Boltzmann’s machine. Autoencoders are simple learn-
ing circuits which aim to transform inputs into outputs with the least possible
amount of distortion [7]. For detailed discussion of autoencoders, unsupervised
learning and deep architectures one can refer to [7]. These architectures though
very simple are very important in the field of machine learning and form the
base components of deep learning architectures.

Architectures like CNN and other deep networks also extract hierarchical
features in a supervised manner through the use of ground truth annotations.
Szegedy et al. [8] proposed the inceptions model as a way of building deeper
networks capable of learning and extracting dense feature while maintaining
acceptable speed and memory usage. This idea has been used in building the
GoogLeNET [8] which achieves the state of the art results on image classification
tasks.

In this paper we discuss briefly inception models in general and extend the
idea to build feature extraction layers in an autoencoder fashion. We will also
discuss how to stack these pixelwise feature extraction layers to form a deep
architecture which is then fine-tuned for the purpose of supervised learning.
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Fig.1: (i): Mini-network replacing
a 5x5 convolutional operation. (ii):
Mini-network replacing a 3x3 con-
volutional operation

2 Methodology

2.1 Inception Models

The main idea of the Inception architecture is based on finding out how an opti-
mal local sparse structure in a convolutional vision network can be approximated
and covered by readily available dense components [8]. Inception based networks
replaces convolutional operations with mini-networks which uses less parameters
and less computation. A convolution with a filter size of 5 × 5 can be replaced
with a mini-network of two layers of filter sizes 3 × 3 each as shown in Figure
1i. This reduces the parameter size from 25 (i.e. 5× 5) to 18 (i.e. 3× 3 + 3× 3
Similarly a convolutional operation with filter size 3× 3 can be replaced with a
mini-network of two layers with filters 1× 3 and 3× 1 respectively as shown in
Figure 1ii.

By factorizing convolutional operations with bigger filter sizes into mini-
networks with smaller filter sizes [9] proposed building a network which make
use of filters with sizes not greater than 3×3. This helps to conserve memory and
computational time which can be used to increase the depth of the network to
improve performance. Inception modules as described in [8,9] form the building
layers of the state of the art GoogLeNet network which was presented to the
ILSVRC14 competition. Thorough discussion of inception architure can be found
in [8,9]. The original inception models are used in networks meant for full image
classification. In the next section we discuss adapting the inception model to
form a feature extraction layer in pixel wise classification tasks.

2.2 Pixelwise feature extraction layer

The original inception architecture described in Section 2.1 is designed to fit
in the domain of full image classification. This therefore leads to feature or
dimensionality reduction. However, in this section we are rather interested in
extracting features for pixel classification. In order to achieve this aim we first
take the following two steps:
1. Remove all pooling operations. Pooling operations are used in image based
classification tasks to extract invariant features and to reduce the dimension in
the downstream layers of the network. Pooling layers work by replacing a region
of an image by a statistic (e.g. mean, or maximum) of that region. This helps
in image based classification by removing noise and outliers. However, pooling
leads to loss of fine local details which is very crucial in pixelwise (voxelwise)
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Fig. 2: Feature extraction
layers: figure i represents
a layer without network
factorization and figure ii
represents a layer after
network factorization.

tasks. This is a major problem in applying deep learning to detection problems
in medical images. We therefore remove all pooling layers to make our feature
extraction layers robust to object of interest of all sizes. Again we note that this
is done only in the feature extraction layers not in the classifier which is later
stack on the extracted features.
2. All convolution operations result in an output of the same size as the input.
Here the idea is to keep the feature extraction layers as simple as possible such
that we can stack them. We do this by padding the input to each layer with
enough zeros so that it takes care of the number of pixels or voxels that are
lost through the convolutional operation. This makes stacking the layers easier
without thinking about the output shape of the previous layers.

we then choose a set of scales s e.g. {3, 5, 7, 9} design a multiscale layer as shown
in Figure 2i. We then replace all convolutions with bigger than 3× 3 filter sizes
with mini-networks as described in Section 2.1 to obtain our final feature extrac-
tion layer in Figure 2ii. By stacking multiple layers together we build a feature
extraction network suitable for pixel classification. We note that the output from
each layer is further transformed by a non-linear activation function (rectified
linear units - ReLU) before it moves to the next layer. The concatenated output
from each layer together with the input image are further concatenated to form
the final feature set as shown in Figure 3. We refer to this deep feature extraction
network as Deep-FExt in the rest of the paper.

3 Experiments

To test Deep-FExt we design a network of 5 feature extraction layers which ex-
tract a total of 100 features per pixel (see Figure 1). We then create a 10 × 10
feature mesh from each pixel feature set. Hence each pixel is then represented
by 2-D image of size 10× 10. We first train the feature extraction network in an
unsupervised manner and then stack a CNN with 3 layers and randomly initial-
ized parameters on the feature mesh and fine-tune end-to-end using stochastic
gradient descent for classification and prediction purposes.



Fig. 3: Feature extraction network with final feature set from multiple layers

Table 1: Feature extraction network structure employed in our experiment.

Layer Input type and size Filter sizes (extracted feats) Total features

1 RGB image with 3 channels 3(5),5(5),7(5),9(3),11(3) 21
2 concat features from layer 1 3(5),5(5),7(5),9(3),11(3) 21
3 concat features from layer 2 3(5),5(4),7(4),9(3),11(3) 19
4 concat features from layer 3 3(4),5(4),7(4),9(3),11(3) 18
5 concat features from layer 4 3(4),5(4),7(4),9(3),11(3) 18

Total 97 + 3 (input RGB) = 100

The full network structure is described in Table 1. Qualitative visualizations
in Figure 4 show that Deep-FExt is able to extract hierarchical features ranging
from edge detectors, intensity gradients, and curvature at different scales.

3.1 Vessel Segmentation

For vessel segmentation we experiment on the DRIVE [10] and STARE [11]
datasets. The DRIVE dataset is made up of 20 training examples and 20 test
examples with two annotations in each group. We use the first annotation as the
ground truth for training our network and testing. We also compare our results to
the second annotation. The STARE dataset is made up of 20 annotated images
with two annotations each. We split the data into 10 images for training and
the remaining 10 for testing. Our results (See Table 2) show that our Deep-FExt
network outperforms most of the existing architecture on the segmentation of the
DRIVE and STARE datasets. Results for Deep Retinal Understanding (DRIU)
[12] are obtained by evaluating pre-computed probability maps provided on the



Fig. 4: Actual image (top left). We observe that Deep-FExt is able to learn fea-
tures that resemble edge detectors, intensity gradients, and curvature at different
scales.

paper’s page. DRIU outperforms Deep-FExt in dice however, DRIU uses VGG
as a base network, which is much deeper, carefully pre-trained and fine-tuned
on millions of images. In contrast, Deep-FExt uses a simple SGD and does not
employ any pre-training, or special parameter initialization. Yet we achieved
results which is less than 3% lower than DRIU in dice. Other results are also
stated as reported by [12].

3.2 Centerline Prediction

We again test Deep-FExt on DRIVE and STARE datasets for the purpose of
centerline prediction. We generated centerline annotations by applying skele-
tonization to the the various manual annotations and used the same training
and testing splits that were used for the vessel segmentation. We evaluated our
results based on centerline prediction alone (OC) and a combined multi-class
prediction of centerline and vessel (B). We compare our results to the second
annotator of these datasets (see Table 3).

4 Conclusion

Deep-FExt outperforms most of the existing architectures on the DRIVE and
STARE datasets. We believe Deep-FExt can be used to extract feature for gen-
eral medical image segmentation tasks. By replacing the 2-D convolutions with
3-D we can also extend Deep-FExt to handle medical volumes. With the idea of



Fig. 5: Qualitative predictions from Deep-FExt. Top images show close view of
region marked blue in the original image.

Table 2: Vessel segmentation results on the DRIVE and STARE datasets. AMD
refers to the average maximum Dice.

Dataset Method Precision Recall Dice AMD Kappa

DRIVE

Deep-FExt 80.44 80.32 80.38 84.67 78.48
DRIU [12] 81.59 82.61 82.10 86.02 80.34
N4 fields [13] 80.50
Kernel Boost[14] 80.00
HED [15] 79.60
CRFs [16] 78.10
2nd Annotator 80.40 77.46 78.90 82.98 76.90

STARE

Deep-FExt 82.04 79.54 80.78 84.87 79.20
DRIU [12] 82.67 83.80 83.23 86.28 81.84
HED [15] 80.50
2nd Annotator 63.65 94.46 76.05 79.66 73.64

mini-networks memory is conserved and speed is also improved. As further re-
search, we consider experimenting with training Deep-FExt in an unsupervised
manner similar to autoencoders. This would be valuable for generating features
for clustering, or in situations where supervised learning is not feasible due to
lack of annotated data.



Table 3: Centerline prediction results on the DRIVE and STARE datasets. Met-
rics are computed on a pixel level. AMD refers to the average maximum Dice.

Dataset Method Precision Recall Dice AMD Kappa

DRIVE

Deep-FExt(OC) 57.95 82.04 67.92 72.30 66.88
Deep-FExt(B) 71.38 74.65 72.98 77.20 71.49
2nd Annotator(OC) 60.38 45.86 52.13 63.95 44.72
2nd Annotator(B) 70.45 69.35 69.89 69.89 67.31

STARE

Deep-FExt(OC) 53.63 74.27 62.29 75.98 61.45
Deep-FExt(B) 73.33 75.73 74.51 79.72 72.45
2nd Annotator(OC) 57.51 52.43 54.85 66.42 40.72
2nd Annotator(B) 63.23 75.99 69.02 72.27 65.54
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Abstract: We present DeepVesselNet, an architecture tailored to
the challenges faced when extracting vessel trees and networks
and corresponding features in 3-D angiographic volumes us-
ing deep learning. We discuss the problems of low execution
speed and high memory requirements associated with full 3-D
networks, high-class imbalance arising from the low percentage
(<3%) of vessel voxels, and unavailability of accurately anno-
tated 3-D training data – and offer solutions as the building
blocks of DeepVesselNet. First, we formulate 2-D orthogonal
cross-hair filters which make use of 3-D context information at
a reduced computational burden. Second, we introduce a class
balancing cross-entropy loss function with false-positive rate
correction to handle the high-class imbalance and high false
positive rate problems associated with existing loss functions.
Finally, we generate a synthetic dataset using a computational
angiogenesis model capable of simulating vascular tree growth
under physiological constraints on local network structure and
topology and use these data for transfer learning. We demon-
strate the performance on a range of angiographic volumes at
different spatial scales including clinical MRA data of the hu-
man brain, as well as CTA microscopy scans of the rat brain.
Our results show that cross-hair filters achieve over 23% im-
provement in speed, lower memory footprint, lower network
complexity which prevents overfitting and comparable accuracy
that does not differ from full 3-D filters. Our class balancing
metric is crucial for training the network, and transfer learning
with synthetic data is an efficient, robust, and very generalizable
approach leading to a network that excels in a variety of angiog-
raphy segmentation tasks. We observe that sub-sampling and
max pooling layers may lead to a drop in performance in tasks
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that involve voxel-sized structures. To this end, the DeepVessel-
Net architecture does not use any form of sub-sampling layer
and works well for vessel segmentation, centerline prediction,
and bifurcation detection. We make our synthetic training data
publicly available, fostering future research, and serving as one
of the first public datasets for brain vessel tree segmentation
and analysis.
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We present DeepVesselNet, an architecture tailored to the challenges faced when

extracting vessel trees and networks and corresponding features in 3-D angiographic

volumes using deep learning. We discuss the problems of low execution speed and

high memory requirements associated with full 3-D networks, high-class imbalance

arising from the low percentage (<3%) of vessel voxels, and unavailability of

accurately annotated 3-D training data—and offer solutions as the building blocks of

DeepVesselNet. First, we formulate 2-D orthogonal cross-hair filters which make use

of 3-D context information at a reduced computational burden. Second, we introduce

a class balancing cross-entropy loss function with false-positive rate correction to

handle the high-class imbalance and high false positive rate problems associated with

existing loss functions. Finally, we generate a synthetic dataset using a computational

angiogenesis model capable of simulating vascular tree growth under physiological

constraints on local network structure and topology and use these data for transfer

learning. We demonstrate the performance on a range of angiographic volumes at

different spatial scales including clinical MRA data of the human brain, as well as CTA

microscopy scans of the rat brain. Our results show that cross-hair filters achieve over

23% improvement in speed, lower memory footprint, lower network complexity which

prevents overfitting and comparable accuracy that does not differ from full 3-D filters.

Our class balancing metric is crucial for training the network, and transfer learning

with synthetic data is an efficient, robust, and very generalizable approach leading to a

network that excels in a variety of angiography segmentation tasks. We observe that sub-

sampling and max pooling layers may lead to a drop in performance in tasks that involve

voxel-sized structures. To this end, the DeepVesselNet architecture does not use any

form of sub-sampling layer and works well for vessel segmentation, centerline prediction,

and bifurcation detection.Wemake our synthetic training data publicly available, fostering

future research, and serving as one of the first public datasets for brain vessel tree

segmentation and analysis.

Keywords: vascular network, cross-hair filters, deepvesselnet, bifurcation, vessel segmentation, centerline, class

balancing, vascular tree
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1. INTRODUCTION

Angiography offers insights into blood flow and conditions of
the vascular tree. Three dimensional volumetric angiography
information can be obtained using magnetic resonance
(MRA), ultrasound, or x-ray based technologies like computed
tomography (CT). A common first step in analyzing these data
is vessel segmentation. Still, moving from raw angiography
images to vessel segmentation alone might not provide enough
information for clinical use, and other vessel features like
centerline, diameter, or bifurcations of the vessels are also
needed to accurately extract information about the vascular
tree, for example, to characterize its structural properties or flow
pattern. In this work, we present a deep learning approach, called
DeepVesselNet, to perform vessel segmentation, centerline
prediction, and bifurcation detection tasks. We make the code
available (Tetteh, 2019a), and a ready-to-use implementation is
available as companion material to our study “Machine learning
analysis of whole mouse brain vasculature” (Todorov et al., 2020).
DeepVesselNet deals with challenges that result from speed and
memory requirements, unbalanced class labels, and the difficulty
of obtaining well-annotated data for curvilinear volumetric
structures by addressing the following three key limitations.

Processing 3-D medical volumes poses a memory
consumption and speed challenge. Using 3-D convolutional
neural networks (CNNs) leads to drastic increase in number of
parameters to be optimized and computations to be executed
when compared to 2-D CNNs. At the same time, applying a
2-D CNN in a slice-wise fashion discards valuable 3-D context
information that is crucial for tracking curvilinear structures
in 3-D. Inspired by the ideas of Rigamonti et al. (2013), Roth
et al. (2014), and Liu et al. (2017) who proposed separable
filters and used intersecting 2-D planes, we demonstrate the use
of cross-hair filters from three intersecting 2-D filters, which
helps to avoid the memory and speed problems of classical
3-D networks, while at the same time making use of 3-D
information in volumetric data. Unlike the existing ideas where
2-D planes are extracted at a pre-processing stage and used as
input channels (see discussion in section 2.1.2), our cross-hair
filters are implemented on a layer level which help to retain the
3-D information throughout the network (see section 2.1).

The vessel, centerline and bifurcation prediction tasks is
characterized by high class imbalances. Vessels account for <3%
of the total voxels in a patient volume, centerlines represent a
fraction of the segmented vessels, and visible bifurcations are
in the hundreds at best—even when dealing with volumes with
106 and more voxels. This bias toward the background class is a
common problem in medical data (Grzymala-Busse et al., 2004;
Christ et al., 2016; Haixiang et al., 2017). Unfortunately, current
class balancing loss functions for training CNNs turn out to be
numerically unstable in extreme cases as ours.We offer a solution
to this “extreme class imbalance” problem by introducing a new
loss function (see section 2.2) that we demonstrate to work well
with our vascular features of interest.

Manually annotating vessels, centerlines, and bifurcations
requires many hours of work and expertise. To this end, we
demonstrate the successful use of simulation based frameworks

(Szczerba and Székely, 2005; Schneider et al., 2012, 2014) that
can be used for generating synthetic data with accurate labels
(see section 2.3) for pre-training our networks, rendering the
training of our supervised classification algorithm feasible. The
transfer learning approach turns out to be a critical component
for training CNNs in a wide range of angiography tasks and
applications ranging from CT micrographs to TOF MRA. The
synthesized and the clinical MRA datasets are made available
publicly for future research and validation purposes. Further
description and download link is provided in section 3.1.

1.1. Prior Work and Open Challenges
1.1.1. Vessel Segmentation
Vessel enhancement and segmentation is a longstanding task in
medical image analysis (see reviews by Kirbas and Quek, 2004;
Lesage et al., 2009). The range of methods employed for vessel
segmentation reflect the development of image processing during
the past decades, including region growing techniques (Martínez-
Pérez et al., 1999), active contours (Nain et al., 2004), statistical
and shape models (Chung and Noble, 1999; Young et al., 2001;
Liao et al., 2013; Moreno et al., 2013), particle filtering (Florin
et al., 2006; Wörz et al., 2009; Dalca et al., 2011), and path
tracing (Wang et al., 2013). All of these examples are interactive,
starting from a set of seed labels as root and propagating
toward the branches. Other approaches aim at an unsupervised
enhancement of vascular structures: a popular multi-scale second
order local structure of an image (Hessian) was examined
by Frangi et al. (1998) with the purpose of developing a
vessel enhancement filter. A measure of vessel-likeliness is then
obtained as a function of all eigenvalues of the Hessian. A novel
curvilinear structure detector, called Optimally Oriented Flux
(OOF) was proposed by Law and Chung (2008) to find an
optimal axis on which image gradients are projected to compute
the image gradient flux. OOF has a lower computational load
than the calculation of the Hessian matrix proposed in Frangi
et al. (1998). A level-set segmentation approach with vesselness-
dependent anisotropic energy weights is presented and evaluated
in Forkert et al. (2013, 2011) for 3-D time-of-flight (TOF) MRA.
Phellan and Forkert (2017) presented a comparative analysis of
the accuracy gains in vessel segmentation generated by the use of
nine vessel enhancement algorithms on time-of-flight MRA that
includedmulti scale vesselness algorithms, diffusion-based filters,
and filters that enhance tubular shapes and concluded that vessel
enhancement algorithms do not always lead to more accurate
segmentation results compared to segmenting non-enhanced
images directly. An early machine learning approach for vessel
segmentation was proposed by Schneider et al. (2015), combining
joint 3-D vessel segmentation and centerline extraction using
oblique Hough forest with steerable filters. In a similar fashion,
Ciresan et al. (2012) used deep artificial neural network as a pixel
classifier to automatically segment neuronal structures in stacks
of electron microscopy images, a task somewhat similar to vessel
segmentation. One example using deep learning architecture is
the work of Phellan et al. (2017) who used a deep convolutional
neural network to automatically segment the vessels of the brain
in TOF MRA by extracting manually annotated bi-dimensional
image patches in the axial, coronal, and sagittal directions as an
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FIGURE 1 | An overview of the three main tasks tackled in this paper. For bifurcations, we predict a neighborhood cube around the indicated point.

input to the training process. Koziński et al. (2018) proposed
a loss function that accommodates ground truth annotations
of 2-D projections of the training volumes, for training deep
neural networks in tasks where obtaining full 3-D annotations
is a challenge.

Though deep learning has been applied in many medical
imaging tasks, there are no dedicated architectures so far
for vessel segmentation in 3-D volumetric datasets. Existing
architectures might be sub-optimal and not work directly out of
the box due to the unique nature of the vasculature as compared
to other imaging tasks. There is therefore the need to explore
other architectures and training strategies.

1.1.2. Centerline Prediction
Identifying the center of a vessel is relevant for calculating the
vessel diameter, but also for obtaining the “skeleton” of a vessel
when extracting the vascular tree or network (see Figure 1). The
vessels’ skeleton and center can be found by post-processing a
previously generated vessel segmentation. A method based on
morphological operations is developed by Shagufta et al. (2014)
which performs erosion using 2 × 2 neighborhoods of a pixel
to determine if a pixel is a centerline candidate. Active contour
models are applied in Maddah et al. (2003) as well as path
planning and distance transforms for extracting centerline in
vessels, and Chen and Cohen (2015) proposed a geodesic or

minimal path technique. A morphology-guided level set model
is used in Santamaría-Pang et al. (2007) to performed centerline
extraction by learning the structural patterns of a tubular-like
object, and estimating the centerline of a tubular object as the
path with minimal cost with respect to outward flux in gray
level images. Vesselness filters were adopted by Zheng et al.
(2012) to predict the location of the centerline, while Macedo
et al. (2010) used Hough transforms in handling a similar task.
A Hough random forest with local image filters is designed in
Schneider et al. (2015, 2012) to predict the centerline, and trained
on centerline data previously extracted using one of the level set
approaches.

The application of deep learning to the extraction of vessel
centerline has not been explored. One reason may be the lack of
annotated data necessary to train deep architectures that is hard
to obtain especially in 3-D datasets.

1.1.3. Bifurcation Detection
A vessel bifurcation refers to the point on a vessel centerline
where the vessel splits into two vessels (see Figure 1). Bifurcations
represent the nodes of the vascular tree or network and knowing
their locations is important both for network extraction and for
studying its properties (Rempfler et al., 2015). They represent
structures that can easily be used as landmarks in image
registration, but also indicate the locations of modified blood
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FIGURE 2 | Graphical representation of cross-hair filters for 3-D convolutional operation. (Left) A classical 3-D convolution with filter M. (Right) Cross-hair 3-D

convolutional with 2-D filter stack Mi ,Mj ,Mk .

flow velocity and pressure within the network itself (Chaichana
et al., 2017). Bifurcations are hard to detect in volumetric
data as they are rare point-like features that vary in size and
shape significantly. Similar to centerline extraction, the detection
of bifurcations often happens by post-processing a previously
generated vessel segmentation or by searching a previously
extracted vessel graph. A two staged deep learning architecture
is proposed in Zheng et al. (2015) for detecting carotid artery
bifurcations as a specific landmark in volumetric CT data by
first training a shallow network for predicting candidate regions
followed by a sparse deep network for final prediction. A
three stage algorithm for bifurcation detection is proposed in
Chaichana et al. (2017) for digital eye fundus images, a 2-D task,
and their approach included image enhancement, clustering, and
searching the graph for bifurcations.

The direct predicting of the location of centerlines and
bifurcations without a previous segmentation of vessels as an
intermediate step is a task which has not been attempted yet. We
foresee that having directly predicted centerlines and bifurcations
together with those from postprocessing vessel segmentations
will enhance the overall robustness and accuracy of the analysis
of angiographic volumes.

2. METHODOLOGY

In the design of our DeepVesselNet architecture, we offer three
methodological contributions: A. introducing fast cross-hair
filters, B. dealing with extreme class balancing by relying on a
loss function with stable weights, and C. generating synthetic 3D
vessel structures for training DeepVesselNet and other standard
segmentation architectures.

2.1. Cross-Hair Filters Formulation
In this section, we introduce the 3-D convolutional operator,
which utilizes cross-hair filters to improve speed and memory
usage while maintaining accuracy. For a graphical representation

of classical 3-D convolutional operator and the proposed cross-
hair filters is see Figure 2. Let I be a 3-D volume, M a
3-D convolutional kernel of shape (kx, ky, kz), and ∗ be a
convolutional operator. We define ∗ as:

I ∗M = A = {aijk}; aijk =
kx
∑

r=1

ky
∑

s=1

kz
∑

t=1

I(R,S,T)M(r,s,t); (1)

R = i+ r −
(

1+
[

kx

2

])

, (2)

S = j+ s−
(

1+
[

ky

2

])

, (3)

T = k+ t −
(

1+
[

kz

2

])

,

where {aijk} is a position element of matrix A, I(R,S,T) is the
intensity value of image I at voxel position (R, S,T),M(r,s,t) is the
value of kernelM at position (r, s, t), and [c] is the greatest integer
less or equal to c.

From Equation (1), we see that a classical 3-D convolution
involves kxkykz multiplications and kxkykz − 1 additions for
each voxel of the resulting image. For a 3 × 3 × 3 kernel, we
have 27 multiplications and 26 additions per voxel. Changing
the kernel size to 5 × 5 × 5 increases the complexity to 125
multiplications and 124 additions per voxel. This then scales up
with the dimension of the input image. For example, a volume
of size 128 × 128 × 128 and a 5 × 5 × 5 kernel results in about
262 × 106 multiplications and 260 × 106 additions. To handle
this increased computational complexity, we approximate the
standard 3-D convolution operation by

aijk =
ky
∑

s=1

kz
∑

t=1

I(i,S,T)M
i
(s,t) +

kx
∑

r=1

kz
∑

t=1

I(R,j,T)M
j

(r,t)

+
kx
∑

r=1

ky
∑

s=1

I(R,S,k)M
k
(r,s), (4)
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FIGURE 3 | Pictorial view of efficient implementation of cross-hair filters. Grayscaled stacks refer to input to the layer, red shaped squares refer to 2-D kernels used for

each plane. Brown colored slices refer to extracted features after convolution operations and + symbol refers to matrix addition.

whereMi,Mj,Mk are 2-D convolutional (cross-hair) kernels used
as an approximation to the 3-D kernelM in (1) along the ith, jth,
and kth axes, respectively. R, S, and T are as defined in (1). Using
cross-hair filters results in (kykz + kxkz + kxky) multiplications
and (kykz + kxkz + kxky − 1) additions. If we let km1, km2, km3

be the sizes of the kernel M such that km1 ≥ km2 ≥ km3, we can
show that

kykz + kxkz + kxky ≤ 3(km1km2) ≤ kxkykz , (5)

where strict inequality holds for all km3 > 3. Equation (5)
shows a better scaling in speed and also in memory since the
filters sizes in (1) and (4) are affected by the same inequality.
With the approximation in (4), and using the same example
as above (volume of size 128 × 128 × 128 and a 5 × 5 ×
5 kernel), we now need <158 × 106 multiplications and
156 × 106 additions to compute the convolution leading to a
reduction in computation bymore than 100×106 multiplications
and additions when compared to a classical 3-D convolution.
Increasing the volume or kernel size, further increases the
gap between the computational complexity of (1) and (4).
Moreover, we will see later from our experiments that (4)
still retains essential 3-D context information needed for the
classification task.

2.1.1. Efficient Implementation
In Equation (4), we presented our 2-D crosshair filters. However,
applying (4) independently for each voxel leads to a redundant
use of memory. More precisely, voxels close to each other share
some neighborhood information and making multiple copies of
it is not memory efficient. To this end we present an efficient

implementation below (depicted in Figure 3). Consider I as
defined in Equation (1) and let us extract the sagital, coronal,
and axial planes as Is, Ic, and Ia, respectively. By application of
Equations (1) and (4), we have a final implementation as follows:

I ⋄M = A = βcA
c + βsA

s + βaA
a, (6)

Ac = Ic ∗ ∗Mi, As = Is ∗ ∗Mj, Aa = Ia ∗ ∗Mk,

where ∗∗ refers to a 2-D convolution along the first and second
axes of the left matrix over all slices in the third axis. βc, βs, and
βa are weights to control the input of the planes toward the final
sum, for example, in the case of different spatial resolutions of
the planes (we use βc = βs = βa = 1 in our experiments) and
⋄ refers to our crosshair filter operation. This implementation
is efficient in the sense that it makes use of one volume at a
time instead of copies of the volume in memory where voxels
share the same neighborhood. In other words, we still have only
one volume in memory but rather rotate the kernels to match
the slices in the different orientations. This lowers the memory
requirements during training and inference, allowing to train on
more data with little memory.

2.1.2. 2.5-D Networks vs. 3-D Networks With

Cross-Hair Filters
Its important to discuss the difference between existing 2.5-
D networks and our proposed cross-hair filters. Given a 3-D
task (e.g., vessel segmentation in 3-D volume), a 2.5-D based
network handles the task by considering one 2-D slice at a time.
More precisely, the network takes a 2-D slice (sometimes with
few neighboring slices) as input and classifies all pixels in this
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slice. This is repeated for each slice in the volume and the final
results from the slices are fused again to form the 3-D result.
On the architecture level, 2.5-D networks are 2-D networks
with a preprocessing method for extracting 2-D slices and a
postprocessing method for fusing 2-D results into a 3-D volume.
We note that the predictions of 2.5-D networks are solely based
on 2-D context information. Examples of 2.5-D networks are the
implementation of UNet in Christ et al. (2016) used for liver
and lesion segmentation tasks in CT volumetric dataset, and the
network architecture of Sekuboyina et al. (2017) for annotation
of lumbar vertebrae. Extensions of this approach may include a
pre-processing stage where several 2-D planes are extracted and
used as input channels to the 2-D network (Roth et al., 2014; Liu
et al., 2017).

On the other hand, 3-D networks based on our proposed
cross-hair filters take the whole 3-D volume as input, and at
each layer in the network we apply the convolutional operator
discussed in section 2.1. Therefore, our filters make use of 3-
D context information at each convolutional layer and do not
require specific preprocessing or post processing. Our proposed
method differs from classical 3-D networks in the sense that
it uses less parameters and memory since it does not use full
3-D convolutions. However, it is worth noting that our filters
scale exactly the same as 2.5-D (i.e., in only two directions) with
respect to changes in filter and volume sizes. More precisely,
given a square or cubic filter of size k, we have k2 parameters
in a 2.5-D network and 3k2 in our cross-hair filter based
network. Increasing the filter size by a factor of r will scale
up as k + r quadratically in both situations [i.e., (k + r)2

for 2.5-D and 3(k + r)2 in cross-hair filter case] as compared
to full 3-D networks where the parameter size scales as a
cube of k+ r.

In summary, unlike the existing 2.5-D ideas where 2-D
planes are extracted at a pre-processing stage and used as input
channels to a 2-D network architecture, our cross-hair filters
are implemented on a layer level which help retain the 3-
D information throughout the network making it a preferred
option when detecting curvilinear objects in 3-D.

2.2. Extreme Class Balancing With Stable
Weights
We now discuss the problem of “extreme” class imbalance and
introduce a new cost function that is capable of dealing with this
problem. Often in medical image analysis, the object of interest
(e.g., vessel, tumor etc.) accounts for a minority of the total voxels
of the image. The objects of interest in the datasets used in this
work account for <2.5% of the voxels (the different datasets are
described in section 3.1). A standard cross entropy loss function
is given by

L(W) = −
1

N

N
∑

j=1

yj log P(yj = 1|X;W)+ (1− yj)

log[1− P(yj = 1|X;W)], (7)

L(W) = −
1

N

(

∑

j∈Y+

log P(yj = 1|X;W)

+
∑

j∈Y−

log P(yj = 0|X;W)

)

,

where N is the total number of examples, P is the probability of
obtaining the ground truth label given the data X and network
weights W, yj is the label for the jth example, X is the feature
set, W is the set of parameters of the network, Y+ is the set
of positive labels, and Y− is the set of negative (background)
labels. Using this cost function with extreme class imbalance
between Y− and Y+ could cause the training process to be
biased toward detecting background voxels at the expense of the
object of interest. This normally results in predictions with high
precision against low recall. To remedy this problem, Hwang
and Liu (2015) proposed a biased sampling loss function for
training multiscale convolutional neural networks for a contour
detection task. This loss function introduced additional trade-off
parameters and it samples twice more edge patches than non-
edge ones for positive cost-sensitive finetuning, and vice versa,
for negative cost-sensitive finetuning. Based on this, Xie and Tu
(2015) proposed a class-balancing cross entropy loss function of
the form

L(W) = −β
∑

j∈Y+

log P(yj = 1|X;W)

− (1− β)
∑

j∈Y−

log P(yj = 0|X;W), (8)

where W denotes the standard set of parameters of the network,
which are trained with backpropagation and β and 1− β are the

class weighting multipliers, which are calculated as β = |Y−|
|Y| ,

1 − β = |Y+|
|Y| . P(.) is the probability from the final layer of the

network, and Y+ and Y− are the set of positive and negative class
labels, respectively.

2.2.1. Challenges From Numerical Instability and High

False Positive Rate
The idea of giving more weight to the cost associated with the
class with the lowest count from Equation (8), has been used
in other recent works (Christ et al., 2016; Maninis et al., 2016;
Nogues et al., 2016; Roth et al., 2016). However, our experiments
(in section 3.4) show that the above loss function raises two
main challenges.

First, there is the problem of numerical instability. The
gradient computation is numerically unstable for very big
training sets due to the high values taken by the loss. More
precisely, there is a factor of 1

N , that scales the final sum to
the mean cost in the standard cross-entropy loss function in
Equation (7). This factor ensures that the gradients are stable
irrespective of the size of the training data N. However, in
Equation (8), the weights β and 1 − β do not scale the cost to
the mean value. For high number of data points |Y| (which is
usually the case of voxel-wise tasks), the sums explode leading
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to numerical instability. For example, given a perfectly balanced
data, we have β = 1 − β = 0.5, irrespective of the number of
data points |Y|. Thus, increasing the size of the dataset (batch
size) has no effect on the weights (β) but increases the number
of elements in the summation, causing the computations to
be unstable.

Second, there are challenges from high false positive rate. A
high rate of false positives leading to high recall values is observed
during training and at test time. This is caused by the fact that in
most cases the object of interest accounts for <5% of the total
voxels (about 2.5% in our case). Therefore, we have a situation
where 1 − β < 0.05, which implies that wrongly predicting 95
background voxels as foreground is less penalized in the loss than
predicting 5 foreground voxels as background. This leads to high
false positive rate and, hence, high recall values.

2.2.2. A New “Extreme” Class Balancing Function
To address the challenges discussed above, we introduce different
weighting ratios and an additional factor to take care of the high
false positive rate; and define:

L(W) = L1(W)+ L2(W) (9)

L1(W) = −
1

|Y+|
∑

j∈Y+

log P(yj = 1|X;W)

−
1

|Y−|
∑

j∈Y−

log P(yj = 0|X;W)

L2(W) = −
γ1

|Y+|
∑

j∈Yf+

log P(yj = 0|X;W)

−
γ2

|Y−|
∑

j∈Yf−

log P(yj = 1|X;W)

γ1 = 0.5+
1

|Yf+|
∑

j∈Yf+

|P(yj = 0|X;W)− 0.5|

γ2 = 0.5+
1

|Yf−|
∑

j∈Yf−

|P(yj = 1|X;W)− 0.5|

where Yf+ and Yf− are the set of false positive and false
negative predictions respectively and |.| is the cardinality
operator which measures the number of elements in the set.
L1 is a more numerically stable version of Equation (8) since
it computes the voxel-wise, cost which scales well with the
size of the dataset or batch. But the ratio of β to 1 − β is
maintained as desired. L2 [false prediction (FP) Rate Correction]
is introduced to penalize the network for false predictions.
However, we do not want to give false positive (Yf+) and
false negatives (Yf−) the same weight as total predictions
(Y+,Y−), since we will end up with a loss function without
any class balancing because the weights will offset each other.
Therefore, we introduce γ1 and γ2, which depend on the
mean absolute distance of the wrong predicted probabilities
from 0.5 (the value can be changed to suit the task). This
allows us to penalize false predictions, which are very far
from the central point (0.5). The false predictions (Yf+,Yf−)
are obtained through a 0.5 probability threshold. Experimental

results from application of FP rate correction can be found
in section 3.3.2.

2.3. Synthetic Data for Transfer Learning
To generate synthetic data, we follow the method of Schneider
et al. (2012) which implements a simulator of a vascular tree
that follows a generative process inspired by the biology of
angiogenesis. This approach, described in Schneider et al. (2012),
has initially been developed to complement missing elements
of a vascular tree, a common problem in µCT imaging of the
vascular bed (Schneider et al., 2014). We now use this generator
to simulate physiologically plausible vascular trees that we can
use in training our CNN algorithms. The simulator considers
the mutual interplay of arterial oxygen (O2) supply and vascular
endothelial growth factor (VEGF) secreted by ischemic cells to
achieve physiologically plausible results. Each vessel segment is
modeled as a rigid cylindrical tube with radius r and length
l. It is represented by a single directed edge connecting two
nodes. Semantically, this gives rise to four different types of
nodes, namely root, leaf, bifurcation, and inter nodes. Each node

is uniquely identified by the 3-D coordinate
−→
P = (x, y, z)T .

Combining this with connectivity information, fully captures the
geometry of the approximated vasculature. The tree generation
model and the bifurcation configuration is shown in Figure 4.
The radius of parent bifurcation branch rp, and the radius
of left (rl) and right (rr) daughter branches are related by a
bifurcation law (also known as Murray’s law) given by r

γ
p =

r
γ

l
+ r

γ
r , where γ is the bifurcation exponent. Our simulator

enforces the Murray’s law during the tree generation process.

Further constraints, cos(φl) =
r4p+r4

l
−r4r

2r2pr
2
l

and cos(φr) =
r4p+r4r−r4

l

2r2pr2r
are placed on the bifurcation angles of the left (φl) and right
(φr) vessel extension elements respectively. This corresponds
corresponds to the optimal position of the branching point
−→
P b with respect to a minimum volume principle, another
constraint enforced in the simulator from Schneider et al. (2012,
2014).

2.3.1. Properties of the Simulated Data
The output of the generation process is a tree with information

on the 3-D position
−→
P of the nodes, their type (root, bifircation,

inter, leaf), and connectivity information, which includes the
edge Eij between two nodes Ni and Nj, and its radius Rij.
We reconstruct a 3-D volumetric data from this abstracted
network description by modeling each vessel segment as a
cylinder in 3-D space. We simulate different background
and foreground intensity patterns with different signal-to-
noise ratios. Detailed description of generated data is given in
section 3.1.

3. EXPERIMENTS, RESULTS, AND
DISCUSSION

3.1. Datasets
In this work, we use three different datasets to train and test the
networks. In all three data sets, the test cases are kept apart from
the training data and are used only for testing purposes. The
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FIGURE 4 | A representation of the constrained bifurcation configuration, as presented in Schneider et al. (2012), where lp, lr , and ll are the length of the parent, right

daughter, and left daughter segments, respectively. pr and pl are the right and left daughter nodes, respectively.

datasets can be downloaded for public research from the paper’s
GitHub page (Tetteh, 2019a).

3.1.1. Synthetic Dataset
Training convolutional networks from scratch typically requires
significant amounts of training data. However, assembling a
properly labeled dataset of 3-D curvilinear structures, such
as vessels and vessel features, takes a lot of human effort
and time, which turns out to be the bottleneck for most
medical applications. To overcome this problem, we generate
synthetic data based on the method proposed in Schneider et al.
(2012, 2014). A brief description of this process has already
been presented in section 2.3. In the arterial tree generation
experiment, the parameters in Table 1 of Schneider et al. (2012)
are used. We use the default (underlined) values for all model
parameters. We initialize the processes with different random
seeds and scale the resulting vessel sizes in voxels to match the
sizes of vessels in clinical datasets. Vessel intensities are randomly
chosen in the interval [128, 255] and non-vessel intensities are
chosen from the interval [0 − 100]. Gaussian noise is then
applied to the generated volume randomly changing the mean
(i.e., in the range [−5, 5]) and the standard deviation (i.e.,
in the range [−15, 30]) for each volume. We generate 136
volumes of size 325 × 304 × 600 with corresponding labels
for vessel segmentation, centerlines, and bifurcation detection.
Vessel, centerline and bifurcation labels occupy 2.1, 0.2, and
0.05% of total intensities, respectively, further highlighting the
problem of class imbalance. Twenty volumes out of the 136 is

used as a test set and the remaining volumes are used for pre-
training our networks in the various tasks at hand. An example
of the synthetic dataset can be found in Figure 5C. The synthetic
dataset including both training and test volumes with ground
truth labels for vessel, centerlines, and bifurcation are available
at Tetteh (2019b) for download and public use.

3.1.2. Clinical Magnetic Resonance Angiograph

(MRA) Dataset
To finetune and test our network architectures on real data,
we obtain 40 volumes of clinical TOF MRA of the human
brain, 20 of which are fully annotated, and the remaining 20
partially annotated using the method proposed by Forkert et al.
(2013). Each volume has a size of 580 × 640 × 136 and spacial
resolution of 0.3125 × 0.3125 × 0.6mm on the coronal, sagittal,
and axial axes, respectively. We select 15 out of the 20 fully
annotated volumes for testing and use the remaining five as a
validation set. We also correct the 20 partially annotated volumes
by manually verifying some of the background and foreground
voxels. This leads to three labels, which are true foreground
(verified foreground), true background (verified background),
and the third class, which represent the remaining voxels not
verified. In our later experiments, we use the true foreground and
background labels to finetune our networks. This approach helps
in avoiding any uncertainty with respect to using the partially
annotated data for finetuning of the network. Image intensity
ranges were scaled with a quadratic function to enhance bright
structures and normalized to a standard range after clipping high
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FIGURE 5 | Sample of datasets used in our experiments with the corresponding ground truth segmentations. (A) Clinical MRA, (B) µCTA, (C) Synthetic.

intensities. A sample volume of the TOF MRA dataset can be
found in Figure 5A.

3.1.3. Micro Computed Tomogaphy Angiography

(µCTA)
A 3-D volume of size 2, 048×2, 048×2, 740 and spacial resolution
0.7 × 0.7 × 0.7mm is obtained from synchrotron radiation X-
ray tomographic microscopy of a rat brain. From this large
volume, we extract a dataset of 20 non-overlaping volumes of
size 256 × 256 × 256, which were segmented using the method
proposed by Schneider et al. (2015), and use them in our later
experiments to finetune the networks. To create a test set, we
manually annotate 52 slices in 4 other volumes different from
the 20 volumes above (208 slices in total). As with the clinical
MRA data, image intensity ranges for the µCTA were also
scaled with a quadratic function to enhance bright structures and
normalized to a standard range after clipping high intensities.
Detailed description of the µCTA data can be found in Reichold
et al. (2009), and a sample volume is presented in Figure 5B.

3.2. Network Architecture and
Implementations
In this study we focus on the use of artificial neural networks
for the tasks of vessel segmentation, centerline prediction,
and bifurcation detection. Different variants of state-of-the-
art Fully Convolutional Neural Networks have been presented
for medical image segmentation (Christ et al., 2016; Maninis
et al., 2016; Milletari et al., 2016; Nogues et al., 2016; Roth
et al., 2016; Sekuboyina et al., 2017; Tetteh et al., 2017).

Most of these architectures were based on the popular idea
of convolutional-deconvolutional network which applies down-
sampling at the earlier layers of the network and then reconstruct
the volume at the later layers through up-sampling. This may
be a bad choice given that the vascular tree tasks, especially
centerline prediction and bifurcation detection, require fine
details at the voxel level which can easily be lost through down-
sampling. We therefore use a fully convolutional network (FCN)
without down-sampling and up-sampling layers as a preferred
architecture to test the performance of DeepVesselNet discussed
in sections 2.1, 2.2, and 2.3. Nonetheless we also implement
DeepVesselNet with popular convolutional-deconvolutional
architectures to systematically study the effect of cross-hair
kernel, as well as training behavior and generalization. Python
implementation of our cross-hair filters and all other codes used
in our experiments is available on GitHub (Tetteh, 2019a) for
public use.

3.2.1. DeepVesselNet-FCN
We construct a Fully Convolutional Network FCN with four
convolutional layers and a sigmoid classification layer. In this
implementation, we do not use down-sampling and up-sampling
layers and we carry out the convolutions in a way that the
output image is of the same size as the input image by
zero-padding. The removal of the down-sampling and up-
sampling layers is motivated by the fact that the tasks (vessel
segmentation, centerline prediction, and bifurcation detection)
involve fine detailed voxel sized objects and down-sampling
has an effect of averaging over voxels which causes these fine
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FIGURE 6 | Our proposed DeepVesselNet-FCN architecture implementation with crosshair filters.

details to be lost. The alternative max-intensity pooling can easily
change the voxel position of the maximum intensity later in
the up-sampling stage of the network. With DeepVesselNet-
FCN implementation, we have a very simple 5-layer fully-
convolutional network, which takes a volume of arbitrary
size and outputs a segmentation map of the same size. For
the network structure and a description of the parameters
(see Figure 6).

3.2.2. DeepVesselNet-VNet and DeepVesselNet-Unet
To analyse the properties of our proposed cross-hair filters,
we implement two alternative convolutional-deconvolutional
architectures—VNet (Milletari et al., 2016) and 3D UNet
(Çiçek et al., 2016)—and replace all 3-D convolutions with our
proposed cross-hair filters discussed in section 2.1 to obtain
DeepVesselNet-VNet and DeepVesselNet-UNet, respectively.
By comparing the parameter size and execution time of
DeepVesselNet-VNet and DeepVesselNet-UNet to the original
VNet and 3D UNet implementations, we can evaluate the
improvement in memory usage as well as the gain in speed
that cross-hair filters offer. We also use these implementations
to test whether gain in speed and memory consumption
have a significant effect on prediction accuracy. Finally,
DeepVesselNet-VNet and DeepVessel-UNet architectures
include sub-sampling (down-sampling and up-sampling) layers.
By comparing these two architecture with DeepVesselNet-FCN
we can evaluate the relevance of sub-sampling when handling
segmentation of fine structures like vessels and their centerlines
and bifurcations.

3.2.3. Network Configuration, Initialization, and

Training
We use the above described architecture to implement three
binary networks for vessel segmentation, centerline prediction,
and bifurcation detection. Network parameters are randomly
initialized, according to the method proposed in Bengio and
Glorot (2010), by sampling from a uniform distribution in the
interval (− 1√

kxkykz
, 1√

kxkykz
) where (kx×ky×kz) is the size of the

given kernel in a particular layer. For each volume in our training
set, we extract non-overlapping boxes of size (64 × 64 × 64)
covering the whole volume and then feed them through the
network for the finetuning of parameters. The box extraction is
only done at training time to enable fast training and efficient
use of computation memory, this is however not needed after
our convolutional kernels are trained since full volumes can
be used at test time. We train the network using a stochastic
gradient descent optimizer without regularization. During pre-
training, we use a learning rate of 0.01 and decay of 0.99, which
is applied after every 200 iterations for all network architectures.
For finetuning, we use a learning rate of 0.001 and a decay of 0.99
applied after every 200 iterations. We implement our algorithm
using the THEANO (Theano Development Team, 2016) Python
framework and train on a machine with 64GB of RAM and
Nvidia TITAN X 12GB GPU.

3.3. Evaluating the DeepVesselNet
Components
Prior to evaluating the performance of DeepVesselNet, we
conducted a series of experiments to test the components of
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DeepVesselNet which includes fast cross-hair filters, the FP rate
correction, and pre-training on synthetic data. Results of this
ablation analysis are offered here.

3.3.1. Fast Cross-Hair Filters
To investigate the usefulness of cross-hair filters in
DeepVesselNet, we experiment with full 3-D versions of
DeepVesselNet and evaluate the effect on performance based
on three main criteria—memory footprint based on number
of parameters, computational speed based on execution
time, and prediction accuracy based on Dice score. Table 1

shows the number of parameters in the various architectures
and the execution times in the three datasets. Comparing
DeepVesselNet-VNet and DeepVesselNet-UNet with their 3-D
versions (VNet and UNet), we find more than 27% (16.56
vs. 22.89 m and 4.45 vs. 7.41 m, respectively) reduction in
memory footprint. Also, the execution time in Table 1 shows
that cross-hair filters improve the computational speed of
DeepVesselNet-VNet and DeepVesselNet-UNet by more than
23% over VNet and UNet respectively in both synthetic and
clinical MRA datasets. DeepVesselNet-FCN uses very low
(only 0.05 m) number of parameters as compared to the other
architectures due to the absence of sub-sampling layers. Scores in
Table 1 are obtained using kernels of size 3× 3× 3 and 5× 5× 5,
and the benefits of using sparse cross-hair filter will be even more
profound with larger kernel sizes and volume sizes. Evaluation of

cross-hair filters in terms of prediction accuracy is discussed in
section 3.4.

3.3.2. Extreme Class Balancing (L1 + L2)
To test the effect of FP rate correction loss function discussed in
section 2.2, we train the DeepVesselNet-FCN architecture on a
sub-sample of four clinical MRA volumes from scratch, with and
without FP rate correction described in Equation (9).We train for
5,000 iterations and record the ratio of precision to recall every
5 iterations using a threshold of 0.5 on the probability maps. A
plot of the precision-recall ratio during training without FP rate
correction (L1 Only) and with FP rate correction (L1 + L2) is

TABLE 1 | Number of convolutional parameters in the networks used in our

experiments.

Architecture Params Ex. time Ex. time Ex. time

(millions) Synthetic (s) TOF MRA (s) µCTA (s)

DeepVesselNet-FCN 0.05 13 13 4

DeepVesselNet-VNet 16.56 17 20 7

DeepVesselNet-UNet 4.45 13 14 4

VNet 22.89 23 26 11

UNet 7.41 17 19 6

For the purpose of comparison, the number of parameters stated here refers to only the

convolutional layers in the various architectures. Ex. Time refers to the average time in

seconds required to process one volume in the sythetic and MRA TOF datasets.

FIGURE 7 | Precision—recall ratio during training, with FP rate correction and without FP rate correction in the loss function, on four selected clinical MRA volumes. A

balanced precision-recall ratio (i.e., close to 1) implies that we obtain the FP rate correction we propose in the work and the training process is not bias toward the

background or the foreground.
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presented in Figure 7. The results of this experiments suggest that
training with both factors in the loss function, as proposed in
section 2.2, keeps a better balance between precision and recall
(i.e., a ratio closer to 1.0) than without the second factor. A
balanced precision-recall ratio implies that the training process
is not bias toward the background or the foreground. This helps
prevent over-segmentation, which normally occurs as a result of
the introduction of the class balancing.

3.3.3. Transfer Learning From Synthetic Data
We assess the usefulness of transfer learning with synthetic data
by comparing the training convergence speed, and various other
scores that we obtain when we pretrain DeepVesselNet-FCN
on synthetic data and finetune on the clinical MRA dataset,
compared to training DeepVesselNet-FCN from scratch on the
clinical MRA. For this experiment, we only consider the vessel
segmentation task, as no annotated clinical data is available for
centerline and bifurcation tasks. Results of this experiment are
reported in Table 2. We achieve a Dice score of 86.39% for
training from scratch without pre-training on synthetic data and
86.68% when pretraining on synthetic data. This shows that
training from scratch or pre-training on synthetic data does
not make much difference regarding the accuracy of the results.
However, training from scratch requires about 600 iterations
more than pre-training on synthetic data for the network to
converge (i.e., 50% more longer).

3.4. Evaluating DeepVesselNet
Performance
In this subsection, we retain the best training strategy from the
described experiments in section 3.3 and assess the performance
of our proposed network architecture with other available
methods mainly on the vessel segmentation task. As a further
validation of our methodology we handle centerline prediction
and bifurcation detection using the proposed architectures.
Given a good vessel segmentation, centerline prediction, and
bifurcation detection tasks is classically handled by applying
vessel skeletonization as a post processing step and a search of the
resulting graph. Our aim in applying our architecture to handle
these tasks is not to show superiority over the existing vessel
skeletonization methods but it is to serve as a further verification
of the effects of our described methodology and to offer a
complementary way of obtaining centerlines and bifurcations,
for example, to increase the robustness of the processing pipeline
when fusing results of complementary approaches. The details of
these experiments, results and discussion are given below.

3.4.1. Vessel Segmentation
We pretrain DeepVesselNet-(FCN, VNet, UNet) architectures
on synthetic volumes for vessel segmentation and evaluate its
performance on TOF MRA volumes through a transfer learning
approach. We later finetune the networks with additional clinical
MRA data, repeating the evaluation. Table 3 reports results of
these tests, together with performances of competing methods.
We obtain a Dice score of 81.48% for DeepVesselNet-FCN,
81.32% for DeepVessel-UNet, and 80.10% for DeepVesselNet-
VNet on TOF MRA test dataset with the transfer learning step,

TABLE 2 | Results from pretraining DeepVesselNet-FCN on synthetic data and

finetuning with the training set from the clinical MRA vs. training

DeepVesselNet-FCN from scratch on clinical MRA.

Method Precision Recall Dice Iterations

With pretraining 86.44 86.93 86.68 1200

Without pretraining 85.87 86.92 86.39 1800

Iterations refers to training iterations required for the network to converge. Although the

result in Dice score are not very different, it is clear that the pre-training on synthetic data

leads to an earlier convergence of the network.

TABLE 3 | Results for vessel segmentation.

Dataset Method Prec. Rec. Dice

Synthetic DeepVesselNet-FCN 99.84 99.87 99.86

DeepVesselNet-VNet 99.54 99.59 99.56

DeepVesselNet-UNet 99.48 99.42 99.45

VNet 99.48 99.50 99.49

UNet 99.57 99.52 99.55

Schneider et al. 99.47 99.56 99.52

TOF MRA

DeepVesselNet-FCN (finetuned) 86.44 86.93 86.68

DeepVesselNet-FCN (pretrained) 82.76 80.25 81.48

DeepVesselNet-VNet (finetuned) 85.00 83.51 84.25

DeepVesselNet-VNet (pretrained) 83.32 77.12 80.10

DeepVesselNet-UNet (finetuned) 83.56 85.18 84.36

DeepVesselNet-UNet (pretrained) 83.48 79.27 81.32

VNet (finetuned) 84.34 85.62 84.97

VNet (pretrained) 82.41 75.82 78.98

UNet (finetuned) 84.02 85.35 84.68

UNet (pretrained) 83.16 80.23 81.67

Schneider et al. 84.81 82.15 83.46

Forkert et al. 84.99 73.00 78.57

µCTA DeepVesselNet-FCN 96.72 95.82 96.27

DeepVesselNet-VNet 95.83 96.18 96.01

DeepVesselNet-UNet 95.85 96.06 95.95

VNet 95.25 95.84 95.55

UNet 95.27 95.71 95.49

Schneider et al. 95.15 91.51 93.30

TOF MRA are evaluated within the brain region only.

Pretrained results refers to the scores we obtained on the test set after pretraining, and

finetuned results are scores after finetuning with annotated data available for TOF-MRA.

Best performing method in each metric are show in bold.

and 86.68% (DeepVesselNet-FCN), 84.36% (DeepVesselNet-
UNet) as well as 84.25% (DeepVesselNet-VNet) after finetuning.
This results (also box plots in Figure 8) suggest that, with a
Cox-Wilcoxon significance test p < 0.001, DeepVesselNet-FCN
which does not use sub-sampling outperforms the versions
of networks that use sub-sampling layers (VNet and UNet).
Table 3 also reports results from the methods of Schneider et al.
(2015) and Forkert et al. (2013) all of which are outperformed
by DeepVesselNet-FCN in terms of Dice score. Comparing
DeepVesselNet-VNet and VNet (84.25 vs. 84.97% with a p-value
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FIGURE 8 | Box plots of Dice scores from vessel segmentation (A), centerline prediction (B), and bifurcation detection (C) tasks over our test set in the clinical MRA

dataset across the deep learning architectures. It is evident that DeepVesselNet-VNet and DeepVesselNet-UNet obtain comparable results as VNet and UNet,

respectively. However, DeepVesselNet-FCN achieves a significantly higher results in all three tasks as confirmed by a p < 0.001.

FIGURE 9 | Centerline prediction on MRA TOF (A) and Synthetic (B) test datasets using DeepVesselNet-FCN (centerline in green). There are more detections in

smaller vessels than in larger vessels which can be explained by the network seeing more smaller vessels than bigger vessels during training. Again, centerline

detection in MRA TOF covers all the vessels with missing points and can be improved by finetuning on annotated MRA data or by a post-processing strategy to fill in

the missing points.

of 0.04) as well as DeepVesselNet-Unet and UNet (84.36 vs.
84.68 with a p-value of 0.07) on the MRA data, we find an
advantage of up to 1% for the latter in terms of Dice scores.
However, DeepVesselNet-VNet and DeepVesselNet-Unet have
the advantage of being memory and computationally efficient as
seen in Table 1. These results show that cross-hair filters can be
used in DeepVesselNet at a little to no cost in terms of vessel
segmentation accuracy.

3.4.2. Centerline Prediction
For centerline prediction, we train DeepVesselNet on the
synthetic dataset, test it on synthetic dataset and present
visualizations on synthetic and clinical MRA datasets

(see Figure 9). The networks use the probabilistic segmentation
masks from the vessel segmentation step as an input. Qualitative
results are presented in Figure 9 together with quantitative
scores in Table 4. DeepVesselNet-VNet performs slightly worse
than VNet in terms of the Dice score (66.96 vs. 74.82% with a
p-value of 0.0001). Similar trend can be seen when we compare
Dice scores of DeepVesselNet-UNet and UNet (72.10 vs. 72.41%
with a p-value of 0.0001). We obtain a Dice score of 79.92% for
DeepVesselNet-FCN, which outperforms UNet and VNet and
their corresponding DeepVesselNet variants with a significance
test p < 0.0001. Here we note that the morphological operations
based method of Schneider et al., which represents a state
of the art method for centerline prediction, is able to obtain
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FIGURE 10 | Bifurcation detection on synthetic (A) and MRA TOF (B) test datasets using DeepVesselNet-FCN (bifurcations in green). Similar to centerline prediction,

bifurcation detections in smaller vessels are better than in bigger vessels which might be due to the network seeing more examples in smaller vessels than in bigger

vessels during training. At regions where a lot of vessels intersect, the network predicts it as a big bifurcation, this can be seen in the circled regions in zoomed

images (a–c).

a higher recall than DeepVesselNet-FCN method (86.03 vs.
82.35%). This means that it detects more of the centerline
points than DeepVesselNet-FCN. However, it suffers from lower
precision (48.07 vs. 77.63%) due to higher false positive rate
which causes the overall performance to fall (61.68 vs. 79.92%
Dice score) as compared to DeepVesselNet-FCN. From the
box plots in Figure 8 it is very evident DeepVesselNet-FCN
significantly outperforms all other architectures suggesting that
the performance of the other architectures suffers from the use
of sub-sampling layers.

3.4.3. Bifurcation Detection
For a quantitative evaluation of DeepVesselNet in bifurcation
detection, we use synthetically generated data, and adopt a two-
input-channels strategy. We use the vessel segmentations as one
input channel and the centerline predictions as a second input
channel relying on the same training and test splits as in the
previous experiments. In our predictions we aim at localizing a
cubic region of size (5 × 5 × 5) around the bifurcation points,
which are contained within the vessel segmentation. We evaluate
the results based on a hit-or-miss criterion: a bifurcation point
in the ground truth is counted as hit if a region of a cube of size
(5×5×5) centered on this point overlaps with the prediction, and
counted as a miss otherwise; a hit is considered as true positive
(TP) and a miss is considered as false negative (FN); a positive
label in the prediction is counted as false positive (FP) if a cube
of size (5× 5× 5) centered on this point contains no bifurcation
point in the ground truth. Qualitative results on synthetic and
clinical MRA TOF are shown in Figure 10, respectively. Results
for Schneider et al. are obtained by first extracting the vessel
tree and searching the graph for nodes. Then all nodes with
two or more splits are treated as bifurcations—this being one of
the standard methods for bifurcation extraction. In Figure 8, we

TABLE 4 | Results for centerline prediction tasks.

Method Prec. Rec. Dice

DeepVesselNet-FCN 77.63 82.35 79.92

DeepVesselNet-VNet 65.15 68.87 66.96

DeepVesselNet-UNet 71.28 72.95 72.10

VNet 76.41 73.30 74.82

UNet 71.25 73.61 72.41

Schneider et al. 48.07 86.03 61.68

Results suggest that architectures with sub-sampling layers suffer fall in performance due

to loss of fine details which is crucial in centerline prediction.

Best performing methods in each category in bold.

present the box plots of Dice score distributions obtained by the
different architectures over our test set. Results from Table 5 and
Figure 8 show that DeepVesselNet-FCN performs better than the
other architectures in 5 out of 6 metrics. In our experiments, it
became evident that VNet tends to over-fit, possibly due to its
high number of parameters. This may explain why results for
VNet are worse than all other methods, also suggesting that in
cases where little training data is available, the DeepVesselNet-
FCN architecture may be the preferable due to low number of
parameters and the absence of sub-sampling layers.

4. SUMMARY AND CONCLUSIONS

We present DeepVesselNet, an architecture tailored to the
challenges of extracting vessel networks and features using
deep learning. Our experiments in sections 3.3 and 3.4 show
that the cross-hair filters, which is one of the components of
DeepVesselNet, performs comparably well as 3-D filters and, at
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TABLE 5 | Results from bifurcation detection experiments.

Method Prec. Rec. Det. % Mean err Err std

DeepVesselNet-FCN 78.80 92.97 86.87 0.2090 0.6671

DeepVesselNet-VNet 46.80 56.70 84.21 1.6533 0.9645

DeepVesselNet-UNet 29.47 88.41 85.89 0.6227 0.9380

VNet 25.50 68.71 70.29 1.2434 1.3857

UNet 32.57 77.81 71.78 1.2966 1.4000

Schneider et al. 77.18 85.08 84.30 0.1529 0.7074

Precision and recall aremeasured on the basis of the 5×5×5 blocks around the bifurcation
points. Mean error and its corresponding standard deviation are measured in voxels away

from the bifurcation points (not the 5× 5× 5 blocks).

Best performing method in each metric are show in bold.

the same time, improves significantly both speed and memory
usage, easing an upscaling to larger data sets. Another component
of DeepVesselNet, the introduction of new weights and the FP
rate correction discussed in section 2.2, helps in maintaining
a good balance between precision and recall during training.
This turns out to be crucial for preventing over and under-
segmentation problems, which are common problems in vessel
segmentation. We also show from our results in section 3.4
that using sub-sampling layers in a network architecture in
tasks which includes voxel-sized objects can lead to a fall in
performance. Finally, we successfully demonstrated in sections
3.3 and 3.4 that transfer learning of DeepVesselNet through pre-
training on synthetically generated data improves segmentation
and detection results, especially in situations where obtaining
manually annotated data is a challenge.

As future work, we will generalize DeepVesselNet to
multiclass vessel tree task, handling vessel segmentation,

centerline prediction, and bifurcation detection simultaneously,

rather than in three subsequent binary tasks. We also expect that
network architectures tailored to our three hierarchically nested
classes will improve the performance of the DeepVesselNet. For
example by using a multi-level activation approach proposed in
Piraud et al. (2019) or through a single, but hierarchical approach
starting from a base network for vessel segmentation, additional
layers for centerline prediction, and a final set of layers for
bifurcation detection.

The current implementation of cross-hair filters, network
architectures and cost function are available on GitHub (Tetteh,
2019a). Datasets can also be downloaded from the wiki page of
the same GitHub page.
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Collateral circulation results from specialized anastomotic channels which are

capable of providing oxygenated blood to regions with compromised blood

flow caused by arterial obstruction. The quality of collateral circulation has been

established as a key factor in determining the likelihood of a favorable clinical

outcome and goes a long way to determining the choice of a stroke care model.

Though many imaging and grading methods exist for quantifying collateral blood

flow, the actual grading is mostly done through manual inspection. This approach

is associated with a number of challenges. First, it is time-consuming. Second,

there is a high tendency for bias and inconsistency in the final grade assigned

to a patient depending on the experience level of the clinician. We present a

multi-stage deep learning approach to predict collateral flow grading in stroke

patients based on radiomic features extracted from MR perfusion data. First, we

formulate a region of interest detection task as a reinforcement learning problem

and train a deep learning network to automatically detect the occluded region

within the 3D MR perfusion volumes. Second, we extract radiomic features from

the obtained region of interest through local image descriptors and denoising

auto-encoders. Finally, we apply a convolutional neural network and other

machine learning classifiers to the extracted radiomic features to automatically

predict the collateral flow grading of the given patient volume as one of three

severity classes - no flow (0), moderate flow (1), and good flow (2). Results from

our experiments show an overall accuracy of 72% in the three-class prediction

task. With an inter-observer agreement of 16% and a maximum intra-observer

agreement of 74% in a similar experiment, our automated deep learning approach

demonstrates a performance comparable to expert grading, is faster than visual

inspection, and eliminates the problem of grading bias.

KEYWORDS

collateral flow, radiomics, perfusion, reinforcement learning, image descriptors,

angiography, auto-encoder, deep learning

1. Introduction

Collateral circulation results from specialized anastomotic channels which are present

in most tissues and capable of providing nutrient perfusion to regions with compromised

blood flow due to ischemic injuries caused by ischemic stroke, coronary atherosclerosis,

peripheral artery disease, and similar conditions or diseases (1). Collateral circulation
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Tetteh et al. 10.3389/fneur.2023.1039693

helps to sustain blood flow in the ischaemic areas in acute,

subacute, or chronic phases after an ischaemic stroke or transient

ischaemic attack (2). The quality of collateral circulation has

been convincingly established as a key factor in determining the

likelihood of successful reperfusion and favorable clinical outcome

(3). It is also seen as one of themajor determinants of infarct growth

in the early time windows which is likely to have an impact on the

chosen stroke care model that is the decision to transport or treat

eligible patients immediately.

A high number of imaging methods exist to assess the structure

of the cerebral collateral circulation and several grading criteria

have been proposed to quantify the characteristics of collateral

blood flow. However, this grading is mostly done through visual

inspection of the acquired images which introduces two main

challenges.

First, there are biases and inconsistencies in the current grading

approaches: There is a high tendency of introducing bias in the final

grade assigned to a patient depending on the experience level of the

clinician. There are inconsistencies also in the grade assigned by a

particular clinician at different times for the same patient. These

inconsistencies are quantified at 16% interobserver agreement and

a maximum intraobserver agreement of 74% respectively in a

similar study by Ben Hassen et al. (4).

Second, grading is time-consuming and tedious: Aside the

problem of bias prediction, it also takes the clinician several

minutes to go through the patient images to first select the correct

image sequence, detect the region of collateral flow and then to be

able to assign a grading a period of time which otherwise could have

been invested in the treatment of the patient.

In this work, we analyze several machine learning and deep

learning strategies that aim toward automating the process of

collateral circulation grading.We present a set of solutions focusing

on two main aspects of the task at hand.

First, the region of interest needs to be identified. We automate

the extraction of the region of interest (ROI) from the patient

images using deep reinforcement learning (RL). This is necessary

for achieving a fully automated system that will require no human

interaction and save the clinician the time spent on performing

this task.

Finally, the region of interest needs to be processed and

classified. We consider various feature extraction schemes and

classifiers suitable for the task described above. This helps to

extract useful image features, both learned and hand-crafted,

which are relevant to the classification task. We predict digitally

subtracted angiography (DSA) based collateral flow grading from

MR perfusion images in this task. This saves the time required in

choosing the right DSA sequence from the multiple DSA sequences

acquired and helps achieve a fully automated system.

1.1. Prior work and open challenges

1.1.1. Imaging criteria for cerebral collateral
circulation

Imaging methods for assessing cerebral collateral flow can

be grouped under two main classification schemes, invasive vs.

non-invasive and structural vs. functional imaging. Structural

imaging methods provide information about the underlying

structure of the cerebral collateral circulation network. Some of

the commonly used structural imaging modalities are traditional

single-phase computed tomography angiography (CTA), time-of-

flight magnetic resonance angiography (TOF-MRA), and digitally

subtracted angiography (DSA), among others. Other imaging

modalities have been used in clinical practice and relevant research

areas in accessing the structure of the cerebral collateral circulation

are discussed in Liu et al. (2), McVerry et al. (5), Martinon et al.

(6). DSA is the gold standard for assessing the collateral flow,

however, due to the associated high cost and invasive nature, other

non-invasive methods like CTA and MRA are commonly used (2).

Functional imaging methods are used to assess the function

of the underlying cerebral collateral circulation. Single-photon

emission CT (SPECT), MR perfusion, and positron emission

tomography (PET) are examples of imaging methods that provide

functional information about the cerebral collateral flow. MR

perfusion imaging is often followed by a post-processing step

to extract parametric information. Very common parametric

information includes the time-to-peak (Tmax) time taken for the

blood flow to reach its peak (max) at a given region in the brain,

relative blood flow (rBF) volume of blood flowing through a given

brain tissue per unit of time, and relative blood volume (rBV)

volume of blood in a given brain tissue relative to an internal

control (e.g. normal white matter or an arterial input function).

Functional imaging is sometimes combinedwith structural imaging

either in a single scanning procedure or separate procedures and

can serve as complementing information in the decision making

process. Here, structural imaging is oftentimes used to map the

anatomy and probe tissue microstructure.

MRI perfusion and diffusion have evolved as key biomarkers

in determining collateralization of stroke patients, and a patient

stratification based on these markers has been proposed repeatedly

(7). At the same time, a qualitative CTA and DSA based grading

are the most common approaches for evaluating collateralization

(8–10).

1.1.2. Cerebral collateral flow grading
Cerebral collateral circulation plays an important role in

stabilizing cerebral blood flow when the normal blood circulation

system is compromised in cases of acute, subacute, or chronic

ischaemic stroke. The quality of the cerebral collateral circulation

system is one of the factors that determine the speed of infarct

growth and the outcome of stroke treatment and reperfusion

therapies. A poor collateral flow is associated with worse outcomes

and faster growth of infarcts while a good collateral flow is

associated with good outcomes and slower growth of infarcts in

acute stroke treatment (11). Due to the important role played

by cerebral collateral blood flow, various grading scales and their

association with risk factors and treatment outcomes have been

discussed extensively in literature.

Several grading systems have been proposed for assessing

the quality of the collateral circulation network. Among these

grading systems, the DSA based system proposed by the American

Society of Interventional and Therapeutic Neuroradiology/Society

of Interventional Radiology (ASITN/SIR) is the most widely
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accepted scheme. This grading system describes the collateral flow

as one of five levels of flow which are; absence of collaterals (0),

slow collaterals (1), rapid collaterals (2), partial collaterals (3),

and complete collaterals (4) to the periphery of the ischaemic site

(2, 12). In most studies that use the ASITN/SIR scheme, the grading

scale is merged into three levels—grades 0–1 (poor), 2 (moderate)

and 3–4 (good collateral) flow. CTA based systems also have several

grading schemes ranging from two (good, bad) to five (absent,

diminished >50%, <50%, equal, more) labels (12).

The relationship between pretreatment collateral grade and

vascular recanalization has been assessed for patients who received

endovascular therapy for acute cerebral ischemia from two

distinct study populations by Bang et al. (13). The study showed

that 14.1, 25.2, and 41.5% of patients with poor, good, and

excellent pretreatment collaterals respectively achieved complete

revascularization. Another study by Bang et al. (14) on the

relationship between MRI diffusion and perfusion lesion indices,

angiographic collateral grade, and infarct growth showed that

the greatest infarct growth occurred in patients with both

non-recanalization and poor collaterals. Mansour (15) assessed

collateral pathways in acute ischemic stroke using a new grading

scale (Mansour Scale) and correlated the findings with different

risk factors, clinical outcomes, and recanalization rates with

endovascular management. More research (13–17) has been

conducted into the relationship between the cerebral collateral

circulation, its grading, and the clinical outcome of the choice of

treatment of acute ischemic stroke, and they all confirm a positive

association between collateral flow and the success of the outcome.

Due to the crucial role played by collateral circulation, it is

a common practice in most clinical procedures to determine the

quality of a patient’s collateral as first-hand information toward

the choice of the treatment or care model. This grading is done

manually by inspecting patient scans which is time-consuming

and also introduces some level of bias in the final grade assigned

to a patient. Ben Hassen et al. (4) evaluated the inter-and

intraobserver agreement in angiographic leptomeningeal collateral

flow assessment on the ASITN/SIR scale and found an overall

interobserver agreement κ = 0.16 ± 6.5 × 10−3 among 19

observers with grades 0 and 1 being associated with the best results

of κ = 0.52 ± 0.001 and κ = 0.43 ± 0.004 respectively.

By merging the scales into two classes, poor collaterals (grade 0,
1, or 2), versus good collaterals (grade 3 or 4), the interobserver

agreement increased to κ = 0.27 ± 0.014. The same study
recorded maximum intraobserver agreements of κ = 0.74 ± 0.1

and κ = 0.79 ± 0.11 for the ASITN/SIR and dichotomized

scales respectively. McHugh (18) presented a study on interrater
reliability and the kappa statistic as a measure of agreement and

recommended a moderate interobserver agreement of 0.60 ≤ κ ≤
0.79 as a minimum requirement for medical data and study. These
results are evidence of the need to automate the collateral grading

process to achieve speed and consistency in the assigned grading.

Methods for automating the grading of collateral flow have
not yet been properly explored in literature. Kersten-Oertel et al.

(19) presented an automated technique to compute a collateral

circulation score based on differences seen in mean intensities

between left and right cerebral hemispheres in 4D angiography

images and found a good correlation between the computed

score and radiologist score (r2 = 0.71) and good separation

between good and intermediate/poor groups. Grunwald et al. (20)

used a machine learning approach to categorize the degree of

collateral flow in 98 patients who were eligible for mechanical

thrombectomy and generated an e-CTA collateral score (CTA-

CS) for each patient. The experiments showed that the e-CTA

generated improved the intraclass correlation coefficient between

three experienced neuroradiologists from 0.58 (0.46–0.67) to 0.77

(0.66–0.85, p = 0.003).

1.1.3. Reinforcement learning for medical imaging
Defining the region of interest (ROI) is often the first step in

most image-based radiomics pipelines. This is the case because

full patient scans often include artifacts and other information

which are irrelevant and can affect the final outcome of the study.

Therefore, most pipelines propose a manual localization of a ROI

as a preprocessing step. However, it is crucial to define the ROI

in an automated and reproducible fashion in other to achieve a

fully automated pipeline. We propose a reinforcement learning

approach for the localization of the region of interest due to

increased speed and lower training data requirements compared to

other supervised learning approaches.

Reinforcement learning (RL) has become one of the most active

research areas in machine learning and involves the training of

a machine learning agent to make a sequence of reward-based

decisions toward the achievement of a goal through interaction

with the environment. The idea of RL has been long applied

in the field of robotics for robot vision and navigation (21–23)

before the topic became very popular in the image processing

society. RL has been used in the general field of computer vision

mainly for object detection (24–26), image segmentation (27, 28),

and image enhancement (29–31). However, in medical imaging

RL is still in the research phase with very high potential. Netto

et al. (32) presented an overview of medical imaging applications

applying reinforcement learning with a detailed illustration of a use

case involving lung nodules classification which showed promising

results. Sahba et al. (27) implemented an RL based thresholding for

segmenting prostate in ultrasound images with results that showed

high potential for applying RL in medical image segmentation.

Alansary et al. (33) evaluated reinforcement learning agents for

anatomical landmark detection by comparing fixed and multi-scale

search strategies with hierarchical action steps in a coarse-to-fine

manner and achieved a performance better than state-of-the-art

supervised learning methods.

1.2. Main contributions

In this study, we employ parametric information (Tmax, rBF,

rBV) from MR perfusion images of patients with acute ischaemic

stroke and predict the three-level DSA based grading of these

patients based on this functional information. We hypothesize that

the rich information on blood flow visible from MRI perfusion

can be used to predict collateral flow in a similar manner to DSA.

Moreover, we argue that this approach, using 3D information, may

even offer a more reliable biomarker than the interpretation of

DSA images. As collateralization patterns are often unstable and
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may undergo significant changes in the course of minutes, a second

estimate of the activation of collateral flow using MRI—in addition

to the subsequent DSA—will offer better diagnostic information.

We explore machine learning and deep learning methods in

collateral flow grading. We apply deep reinforcement learning,

a variant of RL which combines the power of deep learning

and reinforcement learning, to detect a rigid-sized cube around

the occluded region in an acute ischemic stroke patient scan as

an initial step toward the prediction of cerebral collateral flow

grading. This step is necessary to automate the detection of the

occluded region which improves the accuracy of the prediction.

Reducing the time spent on this task and ensuring that the proposed

methodology is fully automated.

We provide experiments on different feature extraction

strategies including denoising autoencoder (DAE), histogram of

oriented gradient (HOG), and local binary pattern (LBP). The

extracted features are further utilized in a random forest (RF),

K-nearest neighbor (KNN), support vector machine (SVM), and

convolutional neural network (CNN) classifiers for the prediction

of the collateral flow grading. We provide detailed experimental

setup and results which will serve as a guide for further research

in this direction.

2. Methodology

In this section, we will discuss the details of the steps we

employed in predicting the collateral flow grading from MR

perfusion data. Figure 1 shows an overview of the main steps

involved in the classification process. The first step is the detection

of the region of interest (ROI) using reinforcement learning. This

step helps to narrow down the classification task to only the area

which has been occluded from normal blood flow. The second step

deals with extracting features from the ROI. Finally, we feed the

extracted features to a set of classifiers to obtain the collateral flow

grading for the given patient data.

2.1. Deep reinforcement learning for region
of interest detection

The idea of reinforcement learning includes an artificial agent

which is trained to interact with an environment through a

sequence of reward-based decisions toward a specific goal. At

every time step t, the agent takes into account its current state

s and performs an action a in a set of actions A and receives a

reward r which is a measure of how good or bad the action a

is toward the achievement of the set goal. The aim of the agent,

which is to find an optimal policy (set of states, actions, and

rewards) that maximizes the future reward, can be formulated as a

Markov Decision Process. Since Markov Decision Process involves

a large number of possible decision points which are normally not

fully observable, RL approximates the optimal decision function

by iteratively sampling from the set of policies through a process

known as Q-learning.

2.1.1. Q-learning
At time point t and state s, let π = ai

t+T
i=t be a policy that is a

sequence of actions needed by the agent to move from the current

state s to the target. Let Qt be a future discounted reward function

such that

Qt(s,π) =
t+T
∑

i=t

γ i−trπ i, (1)

where rπ i is the reward associated with the action ai of policy π at

time t = i, γ ∈ [0, 1] is the future reward discounting factor, and

T is the number of steps needed to reach the target by the chosen

policy π . At any time step t the optimal policy π∗ is the policy that

maximizes the expected value of Qt . This can be represented by an

action-value function Q∗
t (s) defined by

π∗ = Q∗
t (s) = max

π
E[Qt(s,π)] (2)

The optimal value function Q∗
t (s) obeys the Bellman equation,

stating that if the optimal value Q∗
t+1(s) of the next state is known

for all possible policies π , then the optimal behavior is to select the

policy π∗ that maximizes the expected value of rπ t + Qt+1(s,π)

[which follows from setting i = t in Equation (1)]. The action-value

function can therefore be estimated recursively as

Q∗
t (s) = max

π
E[rπ t + Qt+1(s,π)] (3)

If the problem space is small enough then the set of policies

and state can be fully observed and Equation (3) can be used to

determine the optimal policy toward the target. However, in most

cases, the problem space is too complex to explore, and hence

evaluating the future reward for all possible policies is not feasible.

Q∗
t (s) is therefore approximated by a non-linear deep network

Q∗(s, θ) with a set of parameters θ resulting in what is known as

deep Q-learning (34).

2.1.2. Agent state, action definition, and reward
function

Given a 3-D scan as the agent’s environment, a state s is

represented by (sx, sy, sz) which is the top-left corner of a (64 ×
64×64) cube contained in the 3-D scan. We adopt an agent history

approach which involves feeding the last four states visited by the

agent to the network to prevent the agent from getting stuck in a

loop. Since we have a fixed-sized cube as a state our agent’s set of six

actions {mu,md,ml,mr ,mf ,mb} is made up of only movements up,

down, left, right, forward, and backward respectively which enables

the agent to visit all possible locations within the volume. The

agent’s reward for taking an action a is a function of the intersection

over union (IoU) of the target state s∗ and the state before (sab), and

after (saa) taking the action. This is given by

Ra(saa, sab) = sign[IoU(saa, s
∗)− IoU(sab, s

∗)] (4)

where sign is the sign function that returns −1 for all values less

than 0 and 1 otherwise. This leads to a binary reward (r ∈ {−1, 1})
scheme which represents good and bad decisions respectively.

During the training stage, the agent search sequence is terminated

when the IoU of the current agent’s state and the target state is

Frontiers inNeurology 04 frontiersin.org



Tetteh et al. 10.3389/fneur.2023.1039693

FIGURE 1

An overview of the steps involved in predicting collateral flow grading from MR perfusion parametric data. The first step involves a region of interest

detection using reinforcement learning, followed by histogram of gradient (HOG), local binary pattern (LBP), and denoising autoencoder (DEA)

feature extraction schemes and then the classification step which uses random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM),

and convolutional neural network (CNN) classifiers.

greater than or equal to a predefined threshold τ . At test time

the agent is terminated when a sequence of decisions leads to an

oscillation [as proposed by Alansary et al. (33)], that is when the

agent visits one state back and forth for a period of time.

Experiments by Alansary et al. (33) and Navarro et al. (35)

show that deep reinforcement learning has superior performance

in object detection as compared to classical supervised learning,

especially in images with a noisy background. RL agents also

require lesser training data as compared to other supervised

learning methods like CNN. These proven advantages make deep

reinforcement learning the right choice for our limited and

noisy data.

2.2. Feature extraction and classification

Feature extraction methods are used in many machine learning

tasks to either reduce the dimension of the problem or to extract

information from the raw input which would otherwise not be

easily extracted by the underlying classifier. In this work, we

extract two main classes of features—learned features through a

denoising auto-encoder (DAE), and local image descriptors made

up of histogram of oriented gradients (HOG) and local binary

pattern (LBP).

2.2.1. Denoising auto-encoder
An auto-encoder is an unsupervised deep learningmethod used

for dimension reduction, feature extraction, image reconstruction

or denoising and is sometimes also used as a pre-training strategy

in supervised learning networks. An auto-encoder is made up of

two parts: an encoder 8 :X → F which maps an image x ∈ X to

fx ∈ F in the features domain and a decoder 9 :F → X which

maps a feature set f ∈ F to xf ∈ X. The full auto-encoder is

therefore a composite function of the form 9 ◦ 8 :X → X . Let

ŷ = 9(8(x)) for a given input image x ∈ X , then the learning

process of auto-encoder involves finding a pair of {8,9} such that

ŷi = xi for all xi ∈ X . The encoder 8 then becomes the feature

extractor which is used for extracting the needed features.

If the function 8 is invertible, then the learning process can

lead to a trivial solution by just choosing 9 to be the inverse of

8, and 9 ◦ 8 becomes an identity function leading to what is

known as identity-function risk. To prevent this, the input image

x is first corrupted by adding noise before feeding it to 8 leading to

a denoising auto-encoder. We therefore have

ŷ = 9(8(x̃)), x̃ = ϒ(x) (5)

where ϒ is the random image corruption function. We

approximate the encoder and decoder by deep CNNs E(x, θe)

and D(f , θd) parameterized by θe and θd; respectively. Training is

done through back-propagating the Mean Squared Error (MSE) of

the original image x and the reconstructed image ŷ given by

L =
1

N

N
∑

i=1

(̂yi − xi)
2 (6)

where N is the number of images in the training set or

training batch. We adopt the V-Net architecture proposed by

Milletari et al. (36) and simplify it by removing the fine-grained

feature forwarding, and reducing the depth of the network due

to limitations on the amount of training data available. The

downsampling layers of the VNET architecture represent the

encoding part [E(x, θe)] of the DAE and the upsampling layers

represent the decoding part [D(f , θd)] of the DAE. Figure 2 shows

an overview of the simplified architecture used for extracting the

DAE features.
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FIGURE 2

The network architecture used for extracting the DAE features. The downsampling layer is a convolution with a stride of (2× 2× 2) which

downsamples the input volume to half of the size on every axes. The upsampling layer is a transposed convolution with a stride of (2× 2× 2) which

doubles the size of the input on every axes.

2.2.2. Local image descriptors and classifiers
We consider two types of local image descriptors - histograms

of oriented gradients (HOG) and a local binary pattern (LBP).

Given a volume X, we extract the LBP encoding of each voxel by

thresholding its 3×3×3 neighborhood by the intensity value p∗ of

the center voxel which results in 26 long bits b0, b1, b2, ..., b25 where

bi = {1, if pi ≥ p∗, 0 otherwise} and pi is the intensity value of the

ith neighbor. We then concatenate the binary encoding to a single

binary number b0b1b2...b25 and then into a decimal value which

results in 225 possible binary codes. Details of the implementation

until this point can be found in Heikklä and Pietikäinen (37). We

group the codes into two main classes—uniform codes which have

at most two binary transitions and non-uniform codes which have

more than two binary transitions. A binary transition is a switch

from 0 to 1 or vice versa. For example the codes 0000, 000111,

011100, and 110110 have zero, one, two, and three transitions

respectively. To handle noisy data and to reduce the feature space,

we group all the non-uniform codes into one class and add it to the

uniform codes resulting in 927 codes instead of 225 . Finally, the

histogram distribution of the individual codes is extracted as the

LBP feature representation for the volume X.

We also explore the HOG feature extractor based on the

method proposed in Klas̈er et al. (38). Given a volume X, we

quantize gradient orientations over an icosahedron and merge

opposite directions in one bin resulting in 10 gradient orientations.

The gradient for each voxel xi ∈ X is obtained by convolving the

5×5×5 neighborhood of the voxel by gradient filters kx , ky , and kz
of the same size, giving us a gradient vector−→x i ∈ R3. The gradient

filters are zero everywhere except for the center columns along the

respective axes kx(i, 3, 3) = ky(3, i, 3) = kz(3, 3, i) = [1, 0,−2, 0, 1]

for i ∈ {1, 2, ..., 5}. The gradient vectors −→x i are then projected

to the gradient orientations and a histogram representation of

these orientations are obtained and used as the HOG feature

representation of the volume X.

We run experiments with four machine learning classifiers

on each of the features extracted. We implement Convolutional

Neural Network (CNN), Random Forest (RF), Support Vector

Machine (SVM), and K-Nearest Neighbor (KNN) classifiers. Our

CNN classifier in Figure 3 has four convolutional layers, aimed at

extracting local image features, followed by two fully connected

layers and a sigmoid layer for classification. Each layer is followed

by a non-linear hyperbolic tangent (tanh) activation function. For

classification based on theHOG, LBP, andDEA features, we remove

the convolutional layers and feed the features directly to the fully

connected layers and then the sigmoid layer for the classification.

For the RF, SVM, and KNN classifiers we use the implementation

of these classifiers from the Scikit-Learn library (39) in python.

3. Experiments and results

3.1. Patient population and image data

We test our proposed methods on parametric volumes

extracted from MR perfusion data from 183 patients with acute

ischemic stroke. Details of the image acquisition and preparation

are already published by Pinto et al. (40). Our dataset is made up

of three parametric information—Tmax volumes which refer to the

time taken for the blood flow to reach its peak, relative blood flow

(rBF) volumes which refer to the volume of blood passing through a

given brain tissue per unit of time, and relative blood volume (rBV)

defined as the volume of blood in a given brain tissue relative to

an internal control (e.g., normal white matter or an arterial input

function). Each volume has a resolution of (0.9, 0.9, and 6.5 mm)
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FIGURE 3

The CNN architecture used in the classification task. Convolutional layers are made up of (5× 5× 5) kernels with a stride of (2× 2× 2) which reduces

the volume by half of the input size on each layer. The first two layers extract 2 feature cubes and the last two layers extract 4 feature cubes each.

The fully connected layers have 64 and 32 hidden nodes respectively and the convolutional and fully connected layers are followed by a non-linear

hyperbolic tangent (tanh) activation function.

and a dimension of (256, 256, and 19) voxels on the sagittal, coronal

and axial planes respectively. Ground truth labels are obtained from

a trained neuroradiologist, with over ten years of experience, who

manually investigates the DSA slides of the associated patient and

assigns one of three labels (0-poor, 1-medium, 2-good) to this

patient. We use these labels for a 3-class prediction experiment

and we also experiment on a risk-stratified nested test where we

first predict good - (2) against not good (0, 1) collaterals and then

separate the not good class into poor (0) andmedium (1) collaterals

in a cascaded approach.

3.2. Preprocessing

Our image preprocessing involves two main tasks. First, we

make our datasets isotropic by applying a B-spline interpolation to

the axial axis since the other two axes have the same spacing leading

to volume with a resolution of 0.9 mm on each plane and a new

dimension of (256, 256, and 127). This is followed by an extraction

of the brain region from the skull using the brain extraction tool

(BET) from the ANTS library. The brain extraction is carried out

on the Tmax volumes and the resulting mask is then applied to the

rBF and rBV volumes.

3.3. Region of interest localization

After the preprocessing step we extract the occluded regions

as the region of interest (ROI) using the reinforcement learning

architecture described in Section 2.1. We adopt the network

architecture from Alansary et al. (33) with modifications proposed

in Navarro et al. (35). A stopping criterion of τ = 0.85 is used

during training—that is, an intersection over union (IoU) value

greater than or equal to 0.85 implies that the region of interest is

detected. We perform the ROI detection task on the Tmax volumes

since the occluded regions are easier to detect in these volumes. The

TABLE 1 Quantitative results from the region of interest detection task.

Type Class Mean Std Max Min

IoU 0 0.49 0.22 0.79 0.08

1 0.52 0.14 0.81 0.09

2 0.42 0.21 0.81 0.04

Center points
displacement (in
voxels)

0 20 13 51 5

1 17 9 52 4

2 23 14 63 5

IoU refers to the intersection over union ratio between the prediction and the ground truth.

Center point displacement is the euclidean distance between the predicted center point and

the ground truth center point.

resulting cube region is then applied on the rBF and rBV volumes

to extract the corresponding cubes in these volumes as well. For

each volume, we select 20 starting cubes of size (64 × 64 × 64)

at random and run the agent till the stopping criterion is reached.

We then aggregate the results from the 20 different runs to get the

prediction of the final ROI. After getting the region we extract the

mirror of the ROI (ROI+M) by reflecting the ROI on the opposite

side of the brain and using it as an additional feature. This results

in 6 cubes per patient (i.e., two volumes each from Tmax , rBF, and

rBV volumes). Qualitative and quantitative results from the region

of interest extraction can be found in Table 1 and Figures 4, 5. From

the box plots in Figure 5, it is evident that the region of interest

detection was more successful in the poor collateral flow classes

(class 0 and 1) than in the good collateral flow class. This can be

explained by the fact that in cases of good collateral flow, there is a

uniform distribution of the Tmax value within the occluded region

and its neighborhood making it hard for the RL agent to detect

the ROI. From Figure 4 we observe that in most cases the ground

truth does not cover the total occluded region [e.g., column (b)] and

hence the predicted ROI, though does not completely overlap the

ground truth, still contains other parts of the occluded region which
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FIGURE 4

Qualitative results from the ROI detection task. The top row is the axial view of the ground truth (in red) and the prediction (in green). The bottom

row is a 3-D visualization of the ground truth cube (in red), the predicted cube (in green), and the intersection between the two (in blue). Column (A)

corresponds to the worst prediction in our test set while column (C) refers to the best result in terms of IoU. In column (B), we can observe that

though the overlap is not perfect the prediction still contains some part of the occluded region which is not in the ground truth. This implies that

though we have poor scores we still have good ROI detection which can be used for the classification task.

FIGURE 5

Box plots of results from ROI detection task. Left is the intersection over union (IoU) ratio between the prediction and the ground truth over the three

classes. Right is the euclidean distance between the predicted center point and the ground truth center point. From the distributions, it is clear that it

is easy to detect the ROI in the poor collateral flow class (class 0) compared to the good collateral flow class (class 2). This can be explained by the

fact that in good collateral flow cases Tmax shows uniform values in the whole volume.
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FIGURE 6

Sample of extracted features using Local Binary Pattern (LBP) on the left and Histogram of Oriented Gradients (HOG) on the right. Bar heights from

LBP features represent the frequency of a given pattern and the position on the x-axis is the decimal representation of the binary pattern. Arrow

directions in HOG features are the gradient vectors and the length of the arrows represents the frequency of the given gradient. The LBP features

show a uniform distribution of the extracted patterns with no dominant pattern. The HOG features on the other hand show evidence of high

gradients in the extracted region of interest.

TABLE 2 Results from preliminary experiments on collateral flow grading.

Type Method RAW ROI ROI+M DAE HOG LBP

Three classes CNN+MLP 0.51(±0.04) 0.63(±0.06) 0.65(±0.03) 0.50(±0.07) 0.38(±0.13) 0.25(±0.14)

RF 0.51(±0.02) 0.65(±0.04) 0.67(±0.05) 0.66(±0.04) 0.69(±0.02) 0.60(±0.05)

KNN 0.48(±0.10) 0.54(±0.02) 0.58(±0.05) 0.55(±0.06) 0.59(±0.02) 0.43(±0.04)

SVM 0.56(±0.04) 0.66(±0.05) 0.70(± 0.03) 0.70(±0.04) 0.53(±0.02) 0.25(±0.15)

Cascaded (two
step)

CNN+MLP 0.55(±0.01) 0.72(± 0.05) 0.70(±0.04) 0.66(±0.05) 0.54(±0.02) 0.21(±0.13)

RF 0.47(±0.07) 0.67(±0.03) 0.64(±0.03) 0.65(±0.04) 0.70(±0.03) 0.56(±0.07)

KNN 0.44(±0.04) 0.55(±0.06) 0.56(±0.07) 0.52(±0.08) 0.60(±0.05) 0.48(±0.08)

SVM 0.38(±0.02) 0.51(±0.04) 0.46(±0.04) 0.51(±0.04) 0.46(±0.04) 0.10(±0.00)

RAW features refer to the full-sized three parametric volumes (Tmax , rBF, and rBV) after skullstripping. ROI refers to the corresponding cubes extracted from the parametric volumes based on

the manually annotated ROI and ROI+M is the ROI combined with its mirror cube on the opposite side of the brain. Other features (DEA, HOG, and LBP) are all extracted from the ROI cubes.

Scores represent mean accuracy over the 5-fold cross-validation experiments with their corresponding standard deviation in parenthesis.

Values in bold refer to the feature-classifier combination with the highest accuracy under each experiment type.

is not captured in the ground truth and it is therefore sufficiently

accurate for the classification task.

3.4. Classification

3.4.1. Feature representations
In total three sets of features (DAE, HOG, and LBP) are

extracted in addition to the actual extracted cube (ROI) and its

mirror cube (ROI+M). We learn features automatically through

an unsupervised denoising auto-encoder. The network takes the

extracted ROI cubes from the Tmax, rBV, and rBF volumes as three

input channels and produces a single channel feature set of size

(8 × 8 × 8). We normalize the cubes individually into the range

[0, 1] before feeding them to the network.

For HOG features we extract 10 features each for the three

parametric volumes and concatenate them into a vector of length 30

for the classification task. Figure 6 shows a sample of the extracted

HOG features for a patient for the three input channels. Finally,

LBP features are extracted using the method described in Section

2.2. Here we combine all the three channels and run the histogram

over the three channels which results in a 927 feature vector as

explained in Section 2.2. Figure 6 shows a sample of the extracted

LBP features from our dataset.

3.4.2. Classifier training
We handle the collateral flow classification through two main

approaches—a three-class multi-label classification task where we

predict three labels in one step, and a two-step cascaded approach

where we predict a binary label of classes (0, 1) against 2 in the

first step and separate the class 0 from 1 in the second step.

We implement our CNN architecture using the Keras library

(41) in python with TensorFlow as the backend. Random forest,

support vector machine, and K-nearest neighbor classifiers were
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implemented using the scikit-learn library (39) in python. We set

up our experiments as follows:

CNN classifier: For the CNN classifier, we use a weighted

categorical cross-entropy with a weight of 1
|k| for each class k in

the training set. A stochastic gradient descent optimizer with a

learning rate of 0.001, decay of 1e−6, and momentum of 0.9 is used

to fine-tune the network parameters at 20 epochs.

K-Nearest neighbor classifier: We conduct preliminary a

experiment with a grid search to know which parameters will work

best. For our final experiment, we use k = 3 neighbors with

uniform weights, a leaf size of 30, and the Minkowski metric.

Random forest classifier: After the initial grid search

experiment, we implement the classifier with 200 estimators, and

the Gini impurity function is used to measure the quality of a split.

Support vector machine classifier: We use a regularization

parameter C = 10, a third-degree polynomial kernel, a balanced

class weight, and a tolerance of 1e−3 for the stopping criterion.

3.4.3. Classification results
We test different combinations of the feature sets extracted in

the previous experiments and classifiers discussed in a preliminary

experiment and present the results in Table 2. Due to limitations in

the size of the dataset, we adopt a 5-fold cross-validation approach

in a preliminary experiment instead of a training-validation-test

splitting approach and report the average scores over the accuracy

in the individual validations. In the preliminary experiments

(results in Table 2), we use the manually annotated ROI and not

the ROI predicted from the proposed reinforcement learning. We

later, in a follow-up experiment, compare the performance of the

proposed CNN on manually annotated ROI and the predicted ROI

(results in Table 3).

The results in Table 2 show that the region of interest extraction

step helps improve the results in all classification methods. This

can be verified by comparing the performance from the full image

(RAW column) with the performance of the region of interest (ROI

column) in Table 2. Also by adding the mirror of the occluded

region to the extracted ROI (ROI+M) we achieve improved results

in most of the classifiers with performance falling in classifiers

like KNN and SVM due to the increase in the dimension of data

introduced by the mirror of the ROI. The cascaded method shows

higher accuracy in almost all the classifier-feature combinations

when compared to the direct three-class prediction. This can be

explained by the distribution of classes in the dataset. That is,

for the cascaded approach we have fairly balanced data when we

combine poor andmoderate flow against good collateral flowwhich

is not the case with the direct three-class multi-label prediction

approach. It, therefore, suggests that in cases where we have highly

imbalanced class distributions a multi-label classification might

perform poorly. The overall performance of CNN is better than

the other machine learning classifiers and can be explained by

the fact that the convolutional layers of the CNN architecture

extract features while paying attention to the class of the input

data. This makes the feature extraction process more efficient than

the other feature extraction schemes which have no knowledge of

the underlying label of the input data at the time of extracting the

features. Again CNN with only ROI data performs slightly better

TABLE 3 Results from the experiment on collateral flow grading using

only ROI data on our proposed cascaded CNN.

Input data Binary Three classes

Manual ROI 0.84 0.74

Automated ROI 0.80 0.72

Manual ROI refers to the ground truth ROI and automated ROI refers to the predicted ROI

from our proposed Reinforcement Learning approach. Binary refers to the result from the first

binary classification (i.e., {0,1} vs. 2) and three classes is the three-class classification based on

the cascaded networks.

than with the mirror of the ROI (72 vs. 70% in Table 2) and this can

also be explained by the fact that the CNN used in our experiments

is fairly shallow and hence could not handle the additional feature

dimensions introduced by the mirrored images.

Based on the results of the preliminary experiment, we further

probe into the training of the proposed CNN classifier with the

ROI data. In this experiment, we split the data into training and

testing sets. The test set is made up of 50 volumes randomly selected

with reference to the ratio of class count in the entire dataset. We

make use of both the manually annotated ROI and the automated

ROI from our proposed Reinforcement Learning approach during

training. We finally evaluate the trained models on the automated

ROI and compare it with the same network trained and evaluated

solely on the manually annotated ROI data. Table 3 shows the result

of this experiment.

The results in Table 3 from our follow-up experiment show that

the automated ROI from the proposed Reinforcement Learning

approach is comparable to the manually detected ROI in terms of

predicting collateral flow (2% drop in accuracy which represents

one out of the 50 patients in the test set). This is crucial in

automating the whole collateral flow prediction workflow in a

clinical setting.

4. Summary and conclusion

In this work, we present a deep learning approach toward

grading collateral flow in ischemic stroke patients based on

parametric information extracted from MR perfusion data. We

start by extracting regions of interest using deep reinforcement

learning. We then learn denoising auto-encoder features and

modern implementation of 3-D HOG and LBP features. We

proceed to the actual classification task using a combination of the

extracted features and CNN, random forest, K-nearest neighbor,

and support vector machine classifiers.

Our experiments show that the rich information on blood

flow visible from MRI perfusion can be used to predict collateral

flow in a similar manner to DSA images which are invasive in

nature. Region of interest detection with reinforcement learning

is successful to an acceptable level and can be used as a guide to

estimate the region in the brain which requires more attention.

It is evident that high class imbalance can be a major challenge

in the collateral flow grading task and many similar works. We

however show that for datasets with high class imbalance, a two-

step cascaded classification approach performs better than a one-

time multi-label classification method. It is also evident from our

results that a direct CNN classifier is able to extract relevant features
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from the region of interest and has an advantage over classical

machine learning classifiers like RF, KNN, and SVM that depend

on handcrafted features like HOG and LBP.

Collateral flow grading is an essential clinical procedure in

the treatment of ischemic stroke patients. We have presented

a framework for automating the process in clinical setup and

have achieved promising results given our limited dataset. For

the proposed framework to be clinically useful there is the need

for further tests with possibly more data from multiple stroke

centers. The grading can also be customized for specific patient

groups for example providing information about age group,

gender, and other biographical and historical information of

patients as an additional feature can help improve the result of

the framework.
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6
D I S C U S S I O N

This research aims to present methodological advances toward
the transition of deep learning from natural image processing
to medical image analysis in general. Specifically, this thesis
focuses on addressing some of the challenges that arise from the
application of deep learning methods to the analysis of vascular
and curvilinear structures. Drawing inspiration from the success
stories in natural image processing, several variants of convolu-
tional neural networks (CNNs) have been adopted for the pur-
pose of medical image processing and hence the methodological
framework of this dissertation is centered around CNNs.

This publication-based dissertation is made up of three first-
author conference and journal publications in Part 2 (ii) which
outlines the methodological contributions of this work and three
co-author conference and journal publications in Appendix A
which cover the application of the proposed methodologies and
serve as a further proof of the research findings.

The work starts with the extraction of deep features using a
multi-scale convolutional neural network. We explore the idea
of inception architecture proposed by Szegedy et al. [48] which
is based on finding out how an optimal local sparse structure
in a convolutional vision network can be approximated and
covered by readily available dense components. By replacing
convolutional operations with mini-networks inception models
reduce the number of parameters in a CNN and lead to fewer
computations. The publication in Chapter 3 presents the feature
extraction scheme and its application to the publicly available
Digital Retinal Images for Vessel Extraction (DRIVE) dataset [47]
for the tasks of vessel segmentation and centerline prediction.
The results in Chapter 3 show that inception models can be used
to reduce network parameter size and computational require-
ment and at the same time achieve comparable segmentation
and prediction accuracy.

Chapter 4 presents the next and major study in this dissertation.
Here we present a careful study of some challenges associated
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with applying deep CNNs to medical images in general and
specifically to the analysis of vascular networks. The following
three main challenges are identified and several methodological
contributions are proposed to address these challenges as part
of the deepvesselnet study [49].

high computation and memory requirements Un-
like natural images, medical images are normally 3-D and of
high resolution. Processing of these images involves 3-D convo-
lutional operations which increases memory and computational
needs exponentially. The early solution has been to use 2-D
based networks which leads to the loss of 3-D context infor-
mation and impacts the accuracy of the learning process. In
Chapter 4 we propose cross-hair filters as a replacement for the
classical 3-D convolutional operation. We show mathematically
and through experiments on actual medical data that cross-hair
filter reduces computational and memory burden introduced
by classical 3-D convolutional operations. At the same time,
we show that cross-hair filters achieve comparable accuracy as
classical 3-D filters. In a follow-up experiment by Todorov et al.
[52] in Appendix A.3, the proposed cross-hair filters are used in
a deep network to segment the vascular network in the whole
mouse brain dataset. The results from the above-mentioned
work confirm the effect of the proposed cross-hair filters on
computational and memory requirement and show a superior
performance compared to classical 3-D filters.

high class imbalance In most medical image processing
tasks the object of interest accounts for less than 5% of the entire
data points. This leads to an imbalance between the distribution
of the data in the class of the object of interest (foreground) and
the background or irrelevant data points. Our study showed
that the problem is significantly worse for vessel segmentation,
centerline prediction, and bifurcation detection tasks where
vessels account for less than 2.5%, and vessel centerlines and
bifurcation points account for less than 0.3%. This imbalance in
data leads to bias in the learning process for deep networks. The
obvious solution to this problem has been the introduction of a
class balancing loss function to account for the class imbalance.
We have shown that this class balancing loss function leads
to computational instability and a high false positive rate. As
one of the methodological contributions, we have proposed a
modified version of the class balancing loss function which is
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computationally stable and help fix the problem of a high false
positive rate in cases of extreme class imbalance.

unavailability of accurately annotated training

data the success of deep learning in natural image analy-
sis is partly due to the existence of publicly available datasets.
Deep learning networks learn from experience and require a lot
of data for the learning process to be successful. Medical data
comes with two main challenges, that is due to privacy policies
associated with medical information there are very few publicly
available medical datasets which makes it difficult to compare
results in different experiments from different researchers. In
addition, medical datasets are domain-specific and require a
certain level of expertise to be able to annotate them. This makes
obtaining accurately annotated training data very expensive and
time-consuming. Annotating the vascular network, its center-
lines, and bifurcation points are extremely slow and sometimes
even not possible from a technical perspective. Drawing inspira-
tion from the work of Schneider et al. [41] we have generated
synthetic data with annotations for the vascular tree, its center-
lines, and bifurcation points as part of this work. We have also
shown that by using the synthetic data in a pre-training step
we can use achieve high segmentation accuracy with little to no
manually annotated data. Follow-up research by Todorov et al.
[52] in Appendix A.3 has also shown the success of the synthetic
data in a transfer learning experiment where deep networks are
trained on the synthetic data and tested on mouse brain data. We
have made the generated data publicly available and serve as the
first publicly available 3-D vessel data with accurate annotations.

In our final set of experiments presented in Chapter 5 we discuss
the crucial role of collateral flow in sustaining blood flow in the
ischaemic areas in acute, subacute, or chronic phases after an
ischaemic stroke or transient ischaemic attack. We highlighted
the need for clinicians to determine the quality of the collateral
circulation due to its role as a key factor in determining the like-
lihood of a successful reperfusion, favorable clinical outcome,
and infarct growth in the early time window and impact the
chosen stroke care model - that is the decision to transport or
treat eligible patients immediately. We identified time consump-
tion and inconsistent grading as the main challenges associated
with the current clinical practice of grading collateral flow in
stroke patients through manual inspection. We have provided
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among other solutions a two-step approach toward automating
the collateral flow grading task. The first step involves region of
interest (ROI) extraction and a follow-up step is used to classify
the extracted ROI as one of three gradings (poor = 0, medium =
1, good = 2). We have proposed a deep reinforcement learning
approach for the ROI extraction task and have shown promising
results in this task. For the classification of the extracted ROI,
we have presented experiments using different configurations
of feature extraction strategies and classifiers. We also examined
a cascaded approach where we merged poor and medium (0,
and 1) flow classes in a preliminary step and a follow-up step
of separating the two classes. Our results show that using the
extracted ROI improved the classification accuracy (from 55%
to 72%) when compared to using the full image. The cascaded
approach also showed a slight advantage over direct three-class
prediction (72% vs 70%).
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C O N C L U S I O N A N D O U T L O O K

This work covers medical image analysis topics related to brain
vascular network analysis. The vascular network is a complex
system and the fine nature of vessels makes the analysis in
this domain very complicated. Intending to push the state of
the art in vascular analysis, the methodological improvements
proposed in this work are not to reinvent the wheel but aimed
at addressing major challenges faced when using existing state-
of-the-art deep learning architectures in vascular analysis.

Regarding the problem of computation time and memory con-
sumption, the proposed methodological improvements have
already proven very successful. We can however gain more im-
provements by utilizing a cross-hair filter which does not take
into account all the information on the orthogonal planes but
rather samples from these planes. This will lead to a loss of
information and will require further experiments to measure
the impact on segmentation or classification accuracy. Still, on
the methodological side, the proposed arterial generative model
in Schneider et al. [41], though works well, takes a long time
and requires a post-processing step to convert the graph infor-
mation to image information. Deep learning generative models
like generative adversarial networks (GANs) and variational
autoencoders (VAEs) that learn from existing clinical data could
help improve the variation and quality of the synthetically gen-
erated dataset. Further experiments in this direction will help
ascertain the suitability of these network architectures as models
for generating synthetic vascular data.

Our work on collateral flow grading was limited mainly by
the amount of data used in the study. Though the work covered
many aspects methodologically, there are still other approaches
that can be explored with improved data size. For example, the
choice of reinforcement learning for the extraction of the region
of interest is highly influenced by the size of the data used in the
experiment. Supervised learning methods could lead to better
ROI prediction accuracy but require more data during training.
The results showed that CNN as a classifier performs better than
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other classifiers. The CNN used is however very shallow due
to the same data size limitation and a deeper CNN with more
layers could further improve the classification accuracy. Another
area that would need improvement is the data annotation. The
interobserver agreement in the collateral flow grading needs to
be thoroughly examined through a multi-center study to obtain
better and standardized ground truth for training and proper
evaluation of the methodologies. The work on collateral flow
grading in this dissertation is the first attempt at fully automat-
ing the process and will serve as the basis for further research
in this direction.

The goal of medical image analysis in general is to improve
healthcare delivery and this goal can only be achieved when
research findings are integrated into clinical routine. Besides
the regulatory requirements, one major bottleneck in moving
research into clinical practice is the inability to thoroughly test
image processing methodologies in a clinical environment with-
out interfering with the daily routine of clinicians. There are
currently well-established libraries in the research field which
makes it easy to implement ideas within a short time. These
libraries have similar APIs which makes it easy to switch from
one to the other with a very short learning curve. An interesting
direction for future work will be to study the clinical environ-
ment and investigate ways in which clinical trials in medical
image processing can be fully automated without interfering
with the existing work routine. A possible outcome of such re-
search will be a standardized translational tool or pipeline that
would integrate easily into existing clinical systems and would
provide an environment for easy clinical trials in the field.
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A P P E N D I X





A
P E E R - R E V I E W E D C O - AU T H O R J O U R N A L A N D
C O N F E R E N C E P U B L I C AT I O N S

a.1 transfer learning from synthetic data reduces

need for labels to segment brain vasculature

and neural pathways in 3d
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Abstract

Novel microscopic techniques yield high-resolution volumetric scans of complex anatomical
structures such as the blood vasculature or the nervous system. Here, we show how transfer
learning and synthetic data generation can be used to train deep neural networks to segment
these structures successfully in the absence of or with very limited training data.

Keywords: Deep learning, transfer learning, synthetic data, vasculature, neural pathways.

1. Introduction

Recent advances in tissue-clearing (Ertürk et al., 2012; Chung and Deisseroth, 2013) com-
bined with 3D light-sheet microscopy (3D LSM ) overcome previous imaging limitations:
they enable volumetric acquisition at cellular resolution of entire organisms (Cai et al.,
2018; Pan et al., 2019; Stefaniuk et al., 2016; Mano et al., 2018). This yields unprece-
dented insight into the micro-anatomy at the macro-scale, e.g., to study highly connected
structures like the brain vasculature or the peripheral nervous system. Differences in these
structures have been associated with a wide range of disorders (Joutel et al., 2010; Li et al.,
2010). Thus, segmentation and characterization of these anatomical structures is crucial
to study causes and effects of such pathologies. However, manual segmentation of complex
structures is very time-consuming, especially in high-resolution volumetric scans. While
this motivates the need for deep learning it also implies a high cost of labeling. Here, we
substantially reduce the need for manually labeled training data using transfer learning,
an approach gaining attention (Van Opbroek et al., 2015; Khan et al., 2019). In short, we
show that training deep networks on synthetic data is already sufficient to learn the basic
underlying task across different anatomical structures, species, and imaging modalities.

2. Methods

Here, we present results from three widely different applications: human brain vessels
(MRI), mouse brain vessels and the mouse peripheral nervous system (both 3D LSM ).
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Transfer Learning for 3D Segmentation

The same network was trained either on a small labeled set from the respective application
(”real data”), on synthetically generated data, or on a combination of both. The synthetic
data used is identical for all three applications. We chose DeepVesselNet as our architec-
ture; the schedule for pre-training on synthetic data and refinement on real data match the
methods of (Tetteh et al., 2018). The methods for generation of synthetic training data is
described in (Schneider et al., 2012). MRI scans from human brain vasculature are taken
from (Tetteh et al., 2018) (voxel size: 300µm x 300µm x 600µm). Volumetric scans of
the brain vasculature (voxel size: (3µm)3) and the peripheral nervous system (voxel size:
(10µm)3) were obtained using DISCO tissue clearing and fluorescent light-sheet microscopy
as described in (Cai et al., 2018). Representative 2D cross-sections of the synthetic data
and segmentations of all three applications are shown in Figure 1.

3. Results

Transfer learning from synthetic data (Table 1, Part 1). For segmenting the human
vasculature from MRI scans, training the net on the synthetic data alone yields very good
results, 81% in F1-score (note: the synthetic data set had been designed for this application).
Training on the real data for this application yields a higher F1-score of 86%. The best
result (87%), however, is achieved by a combination of both: pre-training on synthetic data
and fine-tuning on real data. Interestingly, the network also converges about 50% faster in
this case (data not shown). Motivated by this observation, we repeated this experiment for
3D LSM scans of the mouse brain vasculature. Again, the same pattern can be observed
and the combination of synthetic with real data (F1-score of 76%) outperforms synthetic
data (71%) or real data alone (73%). Taking the approach yet further, we applied the
approach to 3D LSM full body scans of the peripheral nervous system of a mouse. While
training on synthetic data alone was not very successful (16%) as compared to real data
(49%), the gain from combining both was almost completely additive (64%).

Figure 1: A) Synthetic training data was designed to resemble vasculature of human brain
in MRI scans. B-D) Predicted segmentations of 3 different applications: MRI
scans of human brain vasculature (B), 3D LSM of mouse brain vasculature (C),
and peripheral nervous system (D; shown here: innervated muscle fibres)

Transfer learning across domains (Table 1, Part 2). Here, we trained the network
on a combination of synthetic data and the real data from a given application and then
predicted on data from another application. When predicting on human vasculatures from
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MRI scans, the refinement step on real data from another application after pre-training on
synthetic data leads to worse results (left column: 43% and 36%) compared to training on
synthetic data alone (81%, see Part 1). However, when training the model on synthetic
data and real data of human vessels in MRI scans (first row of Part 2), the performance
on 3D LSM scans of mouse brain vessels (72%) or the mouse peripheral nervous system
(49%) is about as good as when trained on the respective real data alone. Also, while
the domain transfer from mouse vasculature to mouse nervous system only yields mediocre
results (35%), it works well the other way around: refining a model trained on synthetic
data with real data from the nervous system to segment brain vessels almost works as well
(75%) as if it had been refined on data within the same domain (76%, see Part 1).

Table 1: Quality of predicted segmentations (F1-score) for 3 different applications

4. Discussion

Our results demonstrate how pre-training on synthetically generated data can accelerate
model convergence and boost the overall segmentation performance. For a given desired
performance, this thus means a reduced need for manually labeled training data, which is
very expensive for complex structures in 3D scans. Importantly, a single synthetic data
set that was originally designed to represent human vessels also works well for applications
from different species, anatomical structures, and imaging modalities. This suggests that
the features learned from the synthetic data are of general use for the abstract segmentation
tasks, highlighting the generalizability of the approach. Thus, the expensively labeled data
for a given application does not have to be used to learn a basic task but rather can be
preserved for refining the pre-trained model to the specifics of the application (such as
contrast, noise, background structures). Interestingly, this approach may also be of use in
cases where no training data is available at all. For instance, we could show that a model
trained on synthetic data and real data from another application can match the performance
of a model trained from scratch on real data from the application of interest. Together,
these results highlight the importance of transfer learning towards the goal of resolving a
key bottleneck in adoption of deep learning: the high cost of data annotation.
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Abstract

Accurate segmentation of vascular structures is an emerging research topic with
relevance to clinical and biological research. The connectedness of the segmented
vessels is often the most significant property for many applications such as dis-
ease modeling for neurodegeneration and stroke. We introduce a novel metric
namely clDice, which is calculated on the intersection of centerlines and volumes
as opposed to the traditional dice, which is calculated on volumes only. Firstly,
we tested state-of-the-art vessel segmentation networks using the proposed met-
ric as evaluation criteria and show that it captures vascular network properties
superior to traditional metrics, such as the dice-coefficient. Secondly, we propose
a differentiable form of clDice as a loss function for vessel segmentation. We
find that training on clDice leads to segmentation with more accurate connectivity
information, higher graph similarity and often superior volumetric scores.

1 Introduction

Segmentation of blood vessels is a key step in many clinical and biological applications such as
analyzing neurodegenerative diseases, e.g. Alzheimer’s disease [1], brain-vessel, and stroke modeling
[2]. The two most commonly used categories of quantitative performance measures are a) overlap
based distance measures such as dice-score, precision, recall, and Jaccard index; and b) volumetric
distance measures such as the Hausdorff distance and the Mahalanobis distance [3, 4, 5, 6, 7].

However, in many vessel segmentation applications, the most important properties are the connectivity
of the vascular network segments. Traditional scores, e.g. dice and Jaccard rely on the average
voxel-wise hit or miss prediction [8]. On the other hand, in a task like vascular network extraction,
a proper sequence of hits in the voxel domain is preferred over spurious hits. Further, a globally
averaged metric does not equally weight vessels with large, medium and small radii. In real datasets,
where vessels of wide radius ranges exist, e.g. 30 µm for arterioles [6, 9] and 5 µm for capillaries,
training on a globally averaged loss induces a strong bias towards the volumetric segmentation of
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Figure 1: Motivation, (a) Shows an examplary 2D slice of real microscopic data, (b) and (c) are two random
segmentation results which achieve similar dice scores (not from our presented model). Note that (b) does not
capture any of the small vessels while segmenting the large vessel very accurately, on the other side segmentation
(c) captures all vessels in the image while being a less accurate on the diameter of the large vessel.

large vessels. This is pronounced in imaging modalities like fluorescence microscopy, where the
image intensities of arteriole surrounding tissue are higher than the intensity within capillaries [6]. In
Figure 1, an example illustrates the suboptimality of traditional scores in some scenarios.

Furthermore, the most traditional metrics are ambiguous when some of the objects of interest are
of the same order as the resolution of the signal. Single-voxel shifts in prediction change the local
metric score significantly, thus making the metric difficult to interpret [8]. In this context of a vascular
network extraction task, we ask the following research questions:

Q1. What is a good connectivity-aware metric to benchmark vessel-segmentation algorithms?

Q2. How can we leverage this metric in a loss function to improve connectivity in vessel-
segmentation?

2 Methods

In this section we first introduce the clDice as a metric and subsequently introduce a differentiable
loss function namely soft-clDice.

clDice Metric : We propose a novel connectivity-preserving metric to evaluate vessel segmentation,
based on intersecting centerlines of vessels with vessel volumes. We call this metric a centerline-in-
volume-dice-coefficient or clDice in short. We consider two binary volumes: first, the ground truth
label map (L), and second, the predicted segmentation volume (P ). The centerlines clP and clL are
extracted from P and L respectively. Subsequently, we compute the fraction of clL that lies within
P , which we call clL2volP and vice-a-versa to get clP 2volL [c.f. Algorithm 1]. We observe that
clP 2volL is very susceptible to false positives in the prediction while clL2volP is susceptible to false
negatives. Therefore, we proceed to interpret clL2volP as precision and clP 2volL as recall. Since
we want to maximize both precision and recall, we formulate it symmetrically similar to the dice
coefficient in Equation 1. This leads us to the final expression of clDice in Equation 2.

Dice = 2× precision× recall
precision + recall

(1) clDice = 2× clP 2volL × clL2volP
clP 2volL + clL2volP

(2)

Figure 2: 2D slice of the soft-centerline(right)
of a real valued class probability map (left).

soft-clDice Loss : The centerline can be extracted
through Euclidean distance transform or via repeated
morphological thinning. Although Euclidean distance
transform has been used in multiple occassion [10] to
induce skeletons, it is a discrete operation and an end-
to-end differentiable approximation remains unsolved,
which prevents us from using it in our loss function. On
the contrary, morphological thinning consists of dilation
and erosion operations. Further, min- and max filters
are commonly used as the greyscale alternative of mor-
phological dilation and erosion. Motivated by this fact
we replace dilation and erosion operations with iterative
min- and max-pooling. This allows us to leverage clDice to extract a parameter-free, morphologically
motivated soft-centerline on greyscale valued data. We call this loss soft-clDice and describe it in
Algorithm 1 and 2. We determine the hyper-parameter k to be in the range of the maximum radius for
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the vessel like structure. In our experiment it is 5 for the synthetic and real data. Choosing a larger k
does not reduce performance but increases computation time, on the other hand a too low k leads to
incomplete skeletonization.

Algorithm 1: soft-clDice
Input :P,L
clP ← soft-centerline(P )
clL ← soft-centerline(L)

clP 2volL ← |clP ◦L|+ε
|clP |+ε

clL2volP ← |clL◦P |+ε
|clL|+ε

clDice← 2× clP 2volL × clL2volP
clP 2volL + clL2volP

Output :clDice

Algorithm 2: soft-centerline
Input :I, k
I ′ ← maxpool(minpool(I))
cl← ReLU(I − I ′)

for i← 0 to k do
I ← minpool(I)
I ′ ← maxpool(minpool(I))
cl← cl + cl ◦ReLU(I − I ′)

end
Output :cl

Vessel Segmentation: We evaluate the proposed clDice metric on two state-of-the-art 3D veseel
segmentation networks i) a 3D U-net[11], and ii) a 3D fully connected network (FCN)[12]. We used
generalized soft-Dice [13, 14] to train our baseline model for the vessel segmentation. Since our
objective here is to achieve accurate segmentation, while giving vascular connection more importance,
we add our proposed soft-clDice with soft-Dice as following

Lc = 0.5(soft-Dice + soft-clDice) (3)

In stark contrast to previous works, where vessel segmentation and centerline prediction has been
learned jointly as a multi-task learning [15], or which only learned vessel-centerlines (or trees
[12]), we are not interested in learning the centerlines. We are interested in learning a whole vessel
segmentation, where the connections between individual vessels are robust and complete.

3 Experiments

Dataset: We test our proposed metric and loss function on a synthetic and a real dataset. The
generation of the synthetic data is described in [16], additionally, we add a Gaussian noise term to this
generated data. The real dataset consists of multi-channel volumetric scans of the brain vasculature
(voxel size: (3µm3), which were obtained using light-sheet microscopy of tissue cleared Murine
brains, as introduced in [17]. We performed experiments on a synthetic dataset using fifteen single-
channel volumes for training, two for validation and five for testing, each of the size 325× 304× 600
pixels. On the real data we used both single and two-channel inputs, the inputs correspond to different
fluorescent stains, which have been shown to contain complimentary information [6]. Eleven volumes
were used for training, two for validation and four for testing, each of the size 500× 500× 50 pixels.

Evaluation Metric: We report overlap based metrics such as the Dice coefficient, Jaccard index(IOU)
and Accuracy along with our proposed clDice for all the experiment settings. Additionally, we extract
a vascular graph from the centerline of the predicted segmentation and compute relative accuracy
of total vascular network length (Dist.), the number of detected bifurcation points (Bifurc.) and
endpoints (End Pt.) compared to the ground truth.

Results & Discussion: We trained a Unet and a FCN in different scenarios of identical settings and
datasets. From Table 1 we observe that the inclusion of soft-clDice loss not only leads to a higher
clDice in all cases, but also performs better than the standalone soft-dice in terms of dice coefficient
and IOU. We also observe that soft-clDice improves the extracted network properties significantly
for real data. We do not see any systematic change in synthetic data after adding soft-clDice. We
attribute this to the fact that the synthetic data has higher signal-to-noise ratio and lacks significant
illumination variation.

4 Conclusion

This abstract introduces a novel connectivity-preserving metric clDice for vessel segmentation. We
use the new metric to evaluate segmentation quality, and in a loss function, to train state-of-the-art
networks on real and synthetic data. We find that training on soft-clDice leads to vessel segmentation
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Table 1: Experimental results for 3D U-nets and 3D FCNs on synthetic and real data. We observe a
consistent performance improvement for real data with the combination of soft-clDice and soft-dice.

Data Loss Network Dice clDice IOU Acc. Dist. Bifurc. End Pt.

Synthetic
soft-dice FCN, 1 ch 99.41 99.45 98.83 99.97 0.92 0.91 0.91

Unet, 1 ch 99.61 99.90 97.23 99.98 0.88 0.86 0.89

Lc FCN, 1 ch 99.16 99.77 98.34 99.96 0.92 0.91 0.92
Unet, 1 ch 98.73 99.90 97.49 99.94 0.88 0.86 0.88

Real data

soft-dice

FCN, 1 ch 75.28 90.98 60.35 89.88 0.87 0.72 0.81
FCN, 2 ch 78.54 92.03 64.67 91.66 0.90 0.82 0.84
Unet, 1 ch 87.11 95.03 77.17 95.78 0.92 0.82 0.97
Unet, 2 ch 80.20 93.05 66.94 92.33 0.95 0.93 0.70

Lc
FCN, 1 ch 85.57 96.16 74.78 95.09 0.97 0.88 0.97
FCN, 2 ch 85.28 95.75 74.34 94.91 0.91 0.91 0.97
Unet, 1 ch 86.94 95.28 76.89 95.86 0.94 0.83 0.97
Unet, 2 ch 83.96 96.10 72.36 94.18 0.96 0.89 0.85

with more accurate connectivity information, higher graph similarity and similar to better volumetric
scores. More importantly clDice and soft-clDice can be readily deployed in other tree-structured
object segmentation tasks such as neuron segmentation and bronchial tract segmentation.
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Changes in cerebrovascular structures are key indicators for a 
large number of diseases affecting the brain. Primary angiop-
athies, vascular risk factors (for example, diabetes), traumatic 

brain injury, vascular occlusion and stroke all affect the function of 
the brain’s vascular network1–3. The hallmarks of Alzheimer’s dis-
ease, including tauopathy and amyloidopathy, can also lead to aber-
rant remodeling of blood vessels1,4, allowing capillary rarefaction to 
be used as a marker for vascular damages5. Therefore, quantitative 
analysis of the entire brain vasculature is pivotal to developing a 
better understanding of brain function in physiological and patho-
logical states. However, quantifying micrometer-scale changes in 
the cerebrovascular network of the brain has been difficult for two 
main reasons.

First, labeling and imaging of the complete mouse brain vascu-
lature down to the smallest blood vessels has not yet been achieved. 
Magnetic resonance imaging (MRI), micro-computed tomography 
(micro-CT) and optical coherence tomography do not have suffi-
cient resolution to capture capillaries in bulk tissue6–8. Fluorescent 
microscopy provides higher resolution, but can typically only 
be applied to tissue sections up to 200 μm in thickness9. Recent 
advances in tissue clearing could overcome this problem10, but so 
far there has been no systematic description of all vessels of all sizes 
in an entire brain in three dimensions (3D).

The second challenge relates to the automated analysis of large 
3D imaging datasets with substantial variance in signal intensity 
and signal-to-noise ratio (SNR) at different depths. Simple inten-
sity- and shape-based filtering approaches such as Frangi’s vessel-
ness filters and more advanced image processing methods with 
local spatial adaptation cannot reliably differentiate vessels from 

background in whole-brain scans11,12. Finally, imaging of the com-
plete vascular network of the brain at capillary resolution results 
in datasets of terabyte size. Established image processing methods  
do not scale well to terabyte-sized image volumes, as they do  
not generalize well to large images, and require intensive manual 
fine-tuning13–15.

Here we present VesSAP (Vessel Segmentation & Analysis 
Pipeline), a deep learning-based method for automated analysis of 
the entire mouse brain vasculature, overcoming the above limita-
tions. VesSAP encompasses three major steps: (1) staining, clearing 
and imaging of the mouse brain vasculature down to the capil-
lary level with two different dyes: wheat germ agglutinin (WGA) 
and Evans blue (EB); (2) automatic segmentation and tracing of 
the whole-brain vasculature data via CNNs; and (3) extraction of 
vascular features for hundreds of brain regions after registration of 
the data to the Allen brain atlas (Fig. 1). Our deep learning-based 
approach for network extraction in cleared tissue is robust, despite 
variations in signal intensities and structures, outperforms previ-
ous filter-based methods and reaches the quality of segmentation 
achieved by human annotators. We applied VesSAP to the three 
commonly used mouse strains C57BL/6J, CD1 and BALB/c.

Results
Vascular staining, DISCO clearing and imaging. To reliably stain 
the entire vasculature, we used WGA and EB dyes, which can be 
visualized in different fluorescence channels. We injected EB dye 
into live mice 12 h before WGA perfusion, allowing its long-term 
circulation to mark vessels under physiological conditions16, while 
we perfused mice with WGA during fixation. We then performed 
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Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis 
of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to 
quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a con-
volutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By 
using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale 
after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization 
in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased 
and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular 
function of the brain.
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3DISCO clearing17 and light-sheet microscopy imaging of whole 
mouse brains (Fig. 2a–c and Supplementary Figs. 1 and 2). WGA 
highlighted microvessels, and EB predominantly stained major 
blood vessels, such as the middle cerebral artery and the circle of 
Willis (Fig. 2d–i and Supplementary Fig. 3). Merging the signals 
from the two dyes yielded more complete staining of the vasculature 
than relying on individual dyes alone (Fig. 2c,f and Supplementary 
Video 1). Staining with the two dyes was congruent in midsized 
vessels, with signals originating from the vessel wall layer (Fig. 2j–l 
and Supplementary Fig. 3a–c). When using WGA, we reached a 
higher SNR for microvessels than for bigger vessels. With EB, the 
SNR for small capillaries was lower but larger vessels reached a 
high SNR (Supplementary Fig. 4). Integrating the information from 
the two channels allowed acquisition of the entire vasculature and 
resulted in optimized SNR. We also compared the fluorescence sig-
nal quality of the WGA staining (targeting the complete endothe-
lial glycocalyx lining18) to signal for a conventional vessel-specific 
antibody (anti-CD31, targeting endothelial cell–cell adhesion19) and 
found that WGA produced higher SNR for blood vessels in general 
(Supplementary Fig. 5).

Segmentation of volumetric images. To enable extraction of quan-
titative features of the vascular structure, vessels in acquired brain 
scans need to be segmented in 3D. Motivated by deep learning-
based approaches in biomedical image data analysis20–28, we used a 
five-layer CNN (Fig. 3a) to exploit the complementary signals of 
the two dyes to derive complete segmentation of the entire brain 
vasculature.

In the first step, the two input channels (WGA and EB) were 
concatenated. This yielded a matrix in which each voxel was char-
acterized by two features. Then, each convolutional step integrated 
the information from a voxel’s 3D neighborhood. We used full 3D 
convolutions20 without further down- or upsampling and fewer 
trainable parameters than, for example, 3D U-Net and V-Net29,30 
to achieve high inference speeds. After the fourth convolution, the 
information from 50 features per voxel was combined with a con-
volutional layer with a kernel size of one and sigmoidal activation 
to estimate the likelihood that a given voxel represented a vessel. 
Subsequent binarization yielded the final segmentation. In both 
training and testing, the images were processed in subvolumes of 
50 × 100 × 100 pixels.

Deep neural networks often require large amounts of annotated 
data or many iterations of training. Here we circumvented this 
requirement with a transfer learning approach31. In short, we first 
pretrained the network on a large, synthetically generated vessel-
like dataset (Supplementary Fig. 6)32 and then refined it on a small 
number of manually annotated parts of real brain vessel scans. This 
approach reduced the training iterations on manually annotated 
training data.

To assess the quality of the segmentation, we compared the 
VesSAP CNN predictions to manually labeled ground truth and the 
predictions from alternative computational approaches (Table 1). 
We report voxel-wise segmentation metrics, namely, accuracy, F1 
score33, Jaccard coefficient and cl-F1, which weights the centerlines 
and volumes of the vessels (detailed in the Methods). In comparison 
to the ground truth, our network achieved an accuracy of 0.94 ± 0.01 
and an F1 score of 0.84 ± 0.05 (for additional scores, see Table 1; all 
values are given as the mean ± s.d.). As controls, we implemented 
alternative state-of-the-art deep learning and classical methods. 
Our network outperformed classical Frangi filters11 (accuracy, 
0.85 ± 0.03; F1 score, 0.47 ± 0.18), as well as recent methods based 
on local spatial context via Markov random fields13,34 (accuracy, 
0.85 ± 0.03; F1 score, 0.48 ± 0.04). VesSAP achieved similar perfor-
mance in comparison to 3D U-Net and V-Net architectures, which 
require substantially more trainable parameters (3D U-Net: accu-
racy, 0.95 ± 0.01; F1 score, 0.85 ± 0.03; V-Net: accuracy, 0.95 ± 0.02; 
F1 score, 0.86 ± 0.07; no statistical difference in comparison to the 
VesSAP CNN: two-sided t test, all P > 0.3). However, the VesSAP 
CNN substantially outperformed the other architectures in terms of 
speed, being ~20 and ~50 times faster in the feedforward path than 

VesSAP pipeline for quantitative analysis of whole-brain vasculature

1. Clearing & imaging 2. Deep learning 3. Analysis

• Multi-dye
vessel staining

• DISCO
tissue clearing

• 3D light-sheet
microscopy

• Preprocessing

• Deep network
segmentation

• 3D reconstruction
of vasculature

• Feature
quantification

• Anatomical
registration to atlas

• Statistical
evaluation

500 µm50 µm

S

Fig. 1 | Summary of the VesSAP pipeline. The method consists of three 
modular steps: (1) multi-dye vessel staining and DISCO tissue clearing for 
high imaging quality using 3D light-sheet microscopy; (2) deep learning-
based segmentation of blood vessels with 3D reconstruction; and  
(3) anatomical feature extraction and mapping of the entire vasculature to 
the Allen adult mouse brain atlas for statistical analysis.
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Fig. 2 | Enhancement of vascular staining using two complementary dyes.  
a–c, Maximum-intensity projections of automatically reconstructed tiling 
scans of WGA (a) and EB (b) signal in the same sample and the merged 
view (c). d–f, Magnified view of the boxed region in c. g–l, Confocal images 
of WGA- and EB-stained vessels and vascular wall (g–i, maximum-
intensity projections at 112 µm; j–l, single slices of 1 µm corresponding to the 
boxed region in i). The experiment was performed on nine different mice 
with similar results.
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V-Net and 3D U-Net, respectively. This is particularly important for 
our large datasets (hundreds of gigabytes). For example, the VesSAP 
CNN segmented a single brain in 4 h, whereas V-Net and 3D U-Net 
required 3.3 d and 8 d, respectively. The superior speed of the 
VesSAP CNN is due to the substantially fewer trainable parameters 
in its architecture (for example, our implementation of 3D U-Net 
had ~178 million parameters, whereas the VesSAP CNN had ~0.059 

million parameters) (Table 1). Next, we compared the segmenta-
tion accuracy of our network to the accuracy of human annotations.  
A total of four human experts independently annotated two volumes. 
We found that the inter-annotator accuracy and F1 scores of the 
experts were comparable to those from the predicted segmentation 
of our network (human annotators: accuracy, 0.92 ± 0.02; F1 score, 
0.81 ± 0.06; Fig. 3b). Notably, we extrapolate that human annotators 
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Fig. 3 | Deep learning architecture of VesSAP and performance on vessel segmentation. a, The 3D VesSAP network architecture consisting of five 
convolutional layers and sigmoid activation for the last layer, including the kernel size and feature size for the input/output. ReLU, rectified linear units. 
b, Accuracy and F1 score for the inter-annotator experiment (blue) as compared to VesSAP (red). c, 3D rendering of full brain segmentation from a CD1 
mouse. d, 3D rendering of the small volume boxed in c. The experiment was performed on nine different mice with similar results.

Table 1 | Evaluation metrics of the different segmentation approaches for 75 volumes of 100 × 100 × 50 pixels

Segmentation model cl-F1 Accuracy F1 score Jaccard Parameters Speed

VesSAP CNN 0.93 ± 0.02* 0.94 ± 0.01 0.84 ± 0.05 0.84 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, trained from 
scratch

0.93 ± 0.02 0.94 ± 0.01 0.85 ± 0.04* 0.85 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, synthetic 
training data

0.87 ± 0.02 0.90 ± 0.05 0.72 ± 0.07 0.70 ± 0.05 0.0587 M* 1.19 s*

3D U-Net 0.93 ± 0.02 0.95 ± 0.01* 0.85 ± 0.03* 0.85 ± 0.03 178.4537 M 61.22 s

V-Net 0.94 ± 0.02* 0.95 ± 0.02* 0.86 ± 0.07* 0.86 ± 0.07* 88.8556 M 26.87 s

Frangi vesselness 0.84 ± 0.03 0.85 ± 0.03 0.47 ± 0.19 – – 117.00 s

Markov random field 0.86 ± 0.02 0.85 ± 0.03 0.48 ± 0.04 – – 24.31 s

All values are given as the mean ± s.d. The best performing algorithms are in bold and highlighted with an asterisk; algorithms whose performance did not differ more than 2% from the best performing 
algorithms are in bold. The number of trainable parameters for deep learning architectures is given in millions (M).
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would need more than a year to process a whole brain instead of the 
4 h required by our approach. Moreover, we observed differences in 
the human segmentations due to annotator bias. Thus, the VesSAP 
CNN can segment the complete brain vasculature consistently 
at human-level accuracy with a substantially higher speed than  
currently available methods, enabling high throughput for  
large-scale analysis.

We show an example of the vasculature from a brain segmented 
by VesSAP in 3D (Fig. 3c and Supplementary Videos 2 and 3). 
Zooming in on a smaller patch revealed that the connectivity of the 
vascular network was fully maintained (Fig. 3d and Supplementary 
Video 2). Comparing single slices of the imaging data with the 
predicted segmentation showed that vessels were accurately seg-
mented regardless of absolute illumination or vessel diameter 
(Supplementary Fig. 7).

Feature extraction and atlas registration. Vessel lengths and 
radii and the number of bifurcation points are commonly used to 
describe the angioarchitecture2. Hence, we used our segmentation 
to quantify these features as distinct parameters to characterize the 
mouse brain vasculature (Fig. 4a and Supplementary Video 4). We 
evaluated the local vessel length (length normalized to the size of 
the brain region of interest), local bifurcation density (sum of the 
occurrences normalized to the size of the brain region of inter-
est) and local vessel radius (average radius along the full length) of 
blood vessels in different brain regions.

We report the vascular features in three ways to enable com-
parison with various previous studies that differed in the mea-
sures used (Supplementary Fig. 8). More specifically, first, we 
provide the count of segmented voxels as compared to total voxels  
within a specific brain region (voxel space). Second, we provide the 

measurements by calculating the voxel size of our imaging system 
and accounting for the Euclidean length (microscopic space). Third, 
we corrected the microscopic measurements to account for tissue 
shrinkage caused by the clearing process (anatomical space)35,36 
(Supplementary Tables 2–10). We calculated this shrinkage rate by 
measuring the same mouse brain volume with MRI before clearing.

Here we use the anatomical space to report our specific bio-
logical findings, as it is closest to the physiological state. For the 
average blood vessel length of the whole brain, we found a value of 
545.74 ± 94 mm per mm³ (mean ± s.d.). Because our method quanti-
fies brain regions separately, we could compare our results to the lit-
erature, which mostly reports either quantifications for specific brain 
regions or extrapolations to the whole brain from regional quanti-
fications. For example, a vascular length of 922 ± 176 mm per mm³  
(mean ± s.d.) was previously reported for cortical regions (size of 
508 × 508 × 1,500 µm3)10. We found a similar vessel length for the same 
region in the mouse cortex (C57BL/6J mice: 913 ± 110 mm per mm³),  
substantiating the accuracy of our method. We performed addi-
tional comparisons to other reports (Supplementary Table 11).  
Moreover, we compared the measurements acquired with our 
algorithms to manually labeled ground truth data and found devi-
ations of 8.21% for centerlines, 13.18% for the number of bifurca-
tion points and 16.33% for the average radius. These deviations 
were substantially lower than the average deviation among human  
annotators (Methods).

We quantified and visualized vessel radius along the entire vas-
cular network (Fig. 4b). After extracting vascular features for the 
whole brain with VesSAP, we registered the volume to the Allen 
brain atlas (Supplementary Videos 5 and 6). This allowed us to map 
the segmented vasculature and corresponding features topographi-
cally to distinct anatomical brain regions (Fig. 4c). Each anatomical  
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MaxMin
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1 mm

Fig. 4 | Pipeline showing the feature extraction and registration process. a, Representation of the features extracted from vessels. b, Radius illustration of 
the vasculature in a CD1 mouse brain. c,d, Vascular segmentation results overlaid on the hierarchically (c) and randomly (d) color-coded atlas to reveal all 
annotated regions available, including hemispheric difference (dashed line in d). The experiment was performed on nine different mice with similar results.
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Fig. 5 | Anatomical properties of the neurovasculature in adult mouse brain mapped to the Allen brain atlas clusters. a–c, Representations of the local 
vessel length (a), density of bifurcations (b) and average radius (c) in each of the 71 main anatomical clusters of the Allen brain atlas. Open, black and 
orange circles denote measurements in the CD1, C57BL/6J and BALB/c strains, respectively; each circle represents a single mouse. Data are given as 
the mean ± s.e.m.; n = 3 mice per strain. d, Local distribution of large, intermediate and microvessels in the same anatomical clusters. Abbreviations are 
defined in Supplementary Table 1.
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region could be further divided into subregions, yielding a total 
of 1,238 anatomical structures (619 per hemisphere) for the entire 
mouse brain (Fig. 4d). This allowed analysis of each denoted  
brain region and grouping of regions into clusters such as left versus 
right hemisphere, gray versus white matter, or any hierarchical clus-
ter of the Allen brain atlas ontology. For our subsequent statistical  
feature analysis, we grouped the labeled structures according to  
the 71 main anatomical clusters of the current Allen brain atlas 
ontology. We thus provide the whole mouse brain vascular map 
with extracted vessel lengths, bifurcation points and radii down to 
the capillary level.

VesSAP provides a reference map of the whole brain vasculature 
in mice. By studying whole brain vasculature in the C57BL/6J, CD1 
and BALB/c strains (n = 3 mice for each strain), we found that the 
local vessel length and local bifurcation density differed in the same 

brain over different regions, while they were highly correlated among 
different mice for the same regions (Fig. 5a,b). Furthermore, the 
local bifurcation density was highly correlated with the local vessel 
length in most brain regions (Supplementary Fig. 9), and the aver-
age vessel radius was evenly distributed in different regions of the 
same brain (Fig. 5c). In addition, the extracted features showed no 
statistical difference (by Cohen’s d; Supplementary Table 12) for the 
same anatomical cluster across the strains (Supplementary Fig. 9).  
Finally, microvessels made up the overwhelming majority of the 
total vascular composition in all brain regions (Fig. 5d). We visually 
inspected exemplary brain regions to validate the output of VesSAP. 
Both VesSAP and visual inspection revealed that the gustatory 
areas had a higher vascular length per volume than the anterodor-
sal nucleus (Fig. 6a–c). Visual inspection also suggested that the  
number of capillaries was the primary reason for regional feature 
variations within the same brain.
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Fig. 6 | Exemplary quantitative analysis enabled by VesSAP. a, Respective locations of the anterodorsal nucleus (AD) and gustatory areas (GU) in  
the mouse brain (left) and maximum-intensity projections of representative volumes from segmentation of these areas (600 × 600 × 33 µm3) (right).  
b,c, Quantification of the bifurcation density (b) and local vessel length (c) for the anterodorsal nucleus and gustatory area clusters. CD1 mice are shown 
by open circles, BALB/C mice by orange circles and C57BL/6J mice by black circles. Values are the mean ± s.e.m.; n = 3 mice per strain. d–f, Images of the 
vasculature in representative C57BL/6J (d), CD1 (e) and BALB/c (f) mice, where white arrowheads indicate anastomoses between major arteries. Direct 
vascular connections between the medial cerebral artery, the anterior cerebral artery and the posterior cerebral artery are indicated by red arrowheads. 
The experiment was performed three times with similar results.
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Finally, VesSAP offered insights into the neurovascular structure 
of the different mouse strains in our study. There were direct intra-
cranial vascular anastomoses in the C57BL/6J, CD1 and BALB/c 
strains (white arrowheads in Fig. 6d–f). The anterior cerebral artery, 
middle cerebral artery and posterior cerebral artery were connected 
at the dorsal visual cortex in CD1 mice (red arrowheads in Fig. 6d,e) 
unlike in the BALB/c strain33 (Fig. 6f).

Discussion
VesSAP can generate reference maps of the adult mouse brain vas-
culature, which can potentially be used to model synthetic cerebro-
vascular networks37. In addition to the metrics we obtain to describe 
the vasculature, advanced metrics, for example, Strahler values, 
network connectivity and bifurcation angles, can be extracted by 
using the data generated by VesSAP. Furthermore, the centerlines 
and bifurcation points can be interpreted as the edges and nodes for 
building a full vascular network graph, offering a means for study-
ing local and global properties of the cerebrovascular network in 
the future.

The VesSAP workflow relies on staining of blood vessels by 
two different dyes. WGA binds to the glycocalyx of the endothelial 
lining of blood vessels38 but may miss some segments of large ves-
sels18. EB is a dye with a high affinity for serum albumin35,36,39; thus, 
it remains in the large vessels after a short perfusion protocol. In 
addition, EB labeling is not affected by subsequent DISCO clearing.

Vessels have long and thin tubular shapes. In our images, the 
radii of capillaries (about 3 µm) are in the range of our voxel size. 
Therefore, segmentation that yields the correct diameter down to 
single-pixel resolution poses a challenge, as we observed a 16% 
deviation for the radius. This subpixel deviation did not pose a 
problem for segmenting the whole vasculature network and extract-
ing features because the vascular network can be defined by its cen-
terlines and bifurcations.

The described segmentation concept is based on a transfer learn-
ing approach, where we pretrained the CNN and refined it on a small 
labeled dataset of 11% of the synthetic dataset and only 0.02% of 
one cleared brain. We consider this to be a major advantage in com-
parison to training from scratch. Thus, our CNN might generalize 
well to different types of imaging data (such as micro-CT angiogra-
phy) or other curvilinear structures (for example, neurons), as only 
a small labeled dataset is needed to adjust our pretrained network.

On the basis of our vascular reference map, unknown vascular 
properties can be discovered and biological models can be confirmed. 
VesSAP showed a high number of collaterals in albino CD1 mice. 
Such collaterals between large vessels can substantially alter the out-
come of ischemic stroke lesions: blood-deprived brain regions arising 
from occlusion of a large vessel can be compensated by blood sup-
ply from the collateral extensions of other large vessels33,40. Therefore, 
our VesSAP method can lead to the discovery of previously unknown 
anatomical details that could be functionally relevant.

In conclusion, VesSAP is a scalable, modular and automated 
machine learning-based method to analyze complex imaging data 
from cleared mouse brains. We foresee that our method will accel-
erate the applications of tissue clearing, in particular for studies 
assessing brain vasculature.
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Methods
Tissue preparation. Animal experiments were conducted according to 
institutional guidelines (Klinikum der Universität München/Ludwig Maximilian 
University of Munich), after approval of the ethical review board of the government 
of Upper Bavaria (Regierung von Oberbayern, Munich, Germany), and in 
accordance with European directive 2010/63/EU for animal research. Animals were 
housed under a 12-h light/12-h dark cycle. For this study, we injected 150 μl (2% 
(vol/vol) in saline) EB dye (Sigma-Aldrich, E2129) intraperitoneally into 3-moth-
old male mice from the C57BL/6J, CD1 and BALB/c strains (Charles River, strain 
codes 027, 482 and 028, respectively; n = 3 mice per strain). Twelve hours after 
injection of EB dye, we anesthetized the animals with a combination of midazolam, 
medetomidine and fentanyl (administered intraperitoneally; 1 ml per 100 g body 
weight containing 5 mg, 0.5 mg and 0.05 mg per kg body weight, respectively) and 
opened their chest for transcardial perfusion. Medium with WGA (0.25 mg WGA 
conjugated to Alexa Fluor 594 dye (Thermo Fisher Scientific, W11262) in 150 µl 
PBS, pH 7.2) was supplied by peristaltic pump set to deliver the medium at a rate 
of 8 ml min–1, along with 15 ml of 1× PBS and 15 ml of 4% paraformaldehyde. This 
short perfusion protocol was established on the basis of preliminary experiments, 
where both WGA and EB staining were partially washed out (data not shown), 
with the goal of delivering fixative to brain tissue via the vessels to achieve a 
homogenous preservation effect41.

After perfusion, brains were extracted from the neurocranium while severing 
some of the segments of the circle of Willis, which is an inevitable component 
of most retrieval processes aside from corrosion cast techniques. Next, the 
samples were incubated in 3DISCO clearing solutions as described17. Briefly, we 
immersed them in a gradient of tetrahydrofuran (Sigma-Aldrich, 186562): 50%, 
70%, 80% and 90% (in distilled water) followed by 100%, at 25 °C for 12 h at each 
concentration. At this point, we modified the protocol by incubating the samples 
in tert-butanol for 12 h at 35 °C followed by immersion in dichloromethane 
(Sigma-Aldrich, 270997) for 12 h at room temperature and a final incubation with 
refractive index-matched BABB solution (benzyl alcohol + benzyl benzoate,  
1:2; Sigma-Aldrich, 24122 and W213802), for at least 24 h at room temperature 
until transparency was achieved. Each incubation step was carried out on a 
laboratory shaker.

Imaging of cleared samples with light-sheet microscopy. We used a ×4 objective 
lens (Olympus XLFLUOR 340) equipped with an immersion-corrected dipping 
cap mounted on a LaVision UltraII microscope coupled to a white-light laser 
module (NKT SuperK Extreme EXW-12) for imaging. Images were taken with 
16-bit depth and at a nominal resolution of 1.625 μm per voxel on the x and y axes. 
For ×12 imaging, we used a LaVision objective (×12/0.53 NA MI PLAN with an 
immersion-corrected dipping cap). Brain structures were visualized by Alexa Fluor 
594 (using a 580/25-nm excitation filter and a 625/30-nm emission filter) and EB 
fluorescent dye (using a 640/40-nm excitation filter and a 690/50-nm emission 
filter) in sequential order. We maximized the SNR for each dye independently to 
avoid saturation of differently sized vessels when only a single channel was used. 
We achieved this by independently optimizing the excitation power so that the 
strongest signal in major vessels did not exceed the dynamic range of the camera. 
In the z dimension, we took sectional images in 3-μm steps while using left- and 
right-sided illumination. Our measured resolution was 2.83 µm × 2.83 µm × 4.99 µm 
for x, y and z, respectively (Supplementary Fig. 2). To reduce defocus, which 
derives from the Gaussian shape of the beam, we used 12-step sequential shifting 
of the focal position of the light sheet per plane and side. The thinnest point of the 
light sheet was 5 μm.

Imaging of cleared samples with confocal microscopy. Additionally, the cleared 
specimens were imaged with an inverted laser-scanning confocal microscope 
(Zeiss, LSM 880) for further analysis. Before imaging, samples were mounted by 
placing them onto the glass surface of a 35-mm glass-bottom Petri dish (MatTek, 
P35G-0-14-C) and immersed in BABB. A ×40 oil-immersion objective lens was 
used (Zeiss, ECPlan-NeoFluar ×40/1.30 NA Oil DIC M27, WD = 0.21 mm). Images 
were acquired with the settings for Alexa Fluor 594 (using excitation at 561 nm 
and an emission range of 585–733 nm) and EB fluorescent dye (using excitation at 
633 nm and an emission range of 638–755 nm) in sequential order.

Magnetic resonance imaging. We used a nanoScan PET/MR device (3 Tesla, 
Mediso Medical Imaging Systems) equipped with a head coil for murine heads to 
acquire anatomical scans in the T1 modality.

Reconstruction of the datasets from tiling volumes. We stitched the acquired 
volumes by using TeraStitcher’s automatic global optimization function (v1.10.3). 
We produced volumetric intensity images of the whole brain while considering 
each channel separately. To improve alignment to the Allen brain atlas, we 
downscaled our dataset in the xy plane to achieve pseudouniform voxel spacing 
matching the z plane.

Deep learning network architecture. We relied on a deep 3D CNN for 
segmentation of our blood vessel dataset. The network’s general architecture 
consists of five convolutional layers, four with ReLU (rectified linear units) 

followed by one convolutional layer with sigmoid activation (Fig. 3a). The input 
layer is designed to take n images as input. In the implemented case, the input 
to the first layer of the network comprised n = 2 images of the same brain, which 
had been stained differently (Fig. 3a). To specifically account for the general 
class imbalance (much more tissue background than vessel signal) in our dataset 
and the potential for high false-positive rates associated with this, we chose the 
generalized soft-Dice as the loss function to our network. At all levels, we used full 
3D convolutional kernels (Fig. 3a).

The network’s training is driven by an Adam optimizer with a learning rate 
of 1 × 10–5 and an exponential decay rate of 0.9 for the first moment and 0.99 
for the second moment42. A prediction or segmentation with a trained model 
takes volumetric images of arbitrary size as input and outputs a probabilistic 
segmentation map of identical size. To deal with volumes of arbitrary size and 
extension, we processed them in smaller subvolumes of 100 × 100 × 50 pixels in 
size. The algorithms were implemented by using the Tensorflow framework and 
KERAS43. They were trained and tested on two NVIDIA Quadro P5000 GPUs and 
on machines with 64 GB and 512 GB of RAM.

Transfer learning. Typically, supervised learning tasks in biomedical imaging 
are aggravated by the scarce availability of labeled training data. Our transfer 
learning approach aims to circumvent this problem by pretraining our models 
on synthetically generated data and refining them on a small set of real images44. 
Specifically, our approach pretrains the VesSAP CNN on 3D volumes of vascular 
image data, synthetically generated together with the corresponding training labels 
by using the approach of Schneider and colleagues45. The pretraining is carried out 
on a dataset of 20 volumes of 325 × 304 × 600 pixels in size for 38 epochs. During 
pretraining, we applied a learning rate of 1 × 10–4. Afterward, the pretrained model 
was fine-tuned by retraining on a real microscopic dataset consisting of 11 volumes 
of 500 × 500 × 50 pixels in size. The image volumes were manually annotated by 
commissioned experts, including the expert who previously prepared the samples 
and operated the microscope. The labels were verified and further refined in 
consensus by two additional human raters. The data we used in this fine-tuning 
step amounted to 11% of the volume of the synthetic datasets and only 0.02% 
of the voxel volume of a single whole brain. For the fine-tuning step, we used a 
learning rate of 1 × 10–5. The final model was obtained after training on the real 
dataset for six epochs. This training was substantially shorter than training from 
scratch, where we trained the same VesSAP CNN architecture for 72 epochs until 
we reached the best F1 score on the validation set. The labeled dataset consisted of 
17 volumes of 500 × 500 × 50 pixels from five mouse brains. Three of these brains 
were from the CD1 strain, and two were from the C57BL/6J strain. The volumes 
were chosen from regions throughout the whole brain, to represent the variability 
in the vascular dataset in terms of both vessel shape and illumination. To ensure 
independence, volumes for the training set and test/validation set were chosen 
from independent brains. All datasets included brains from the two strains. Our 
training dataset consisted of 11 volumes, the validation dataset of 3 volumes and 
the test dataset of 3 volumes. We cross-tested on our test and validation datasets 
by rotating these. The volumes were processed during training and inference in 25 
small subvolumes of 100 × 100 × 50 pixels.

We observed an average F1 score of 0.84 ± 0.02 (mean ± s.d.), an average 
accuracy of 0.94 ± 0.01 (mean ± s.d.) and an average Jaccard coefficient of 
0.84 ± 0.04 (mean ± s.d.) on our test datasets (Fig. 3b). We tested the statistical 
significance of differences among the top three learning methods (the VesSAP 
CNN, V-Net and 3D U-Net) by using paired t tests. We found that the differences 
in F1 score were not statistically significant (all P > 0.3, rejecting the hypothesis of 
different distributions).

Because the F1 score, accuracy and Jaccard coefficient are all voxel-wise  
volumetric scores and can fall short in evaluating the connectedness of 
components, we developed the cl-F1 score. cl-F1 is calculated from the intersection 
of centerlines and vessel volumes and not from volumes only, as the traditional 
F1 score is46. To determine this score, we first calculated the intersection of the 
centerline of our prediction with the labeled volume and then calculated the 
intersection of the labeled volume’s centerline with the predicted volume. Next, we 
treated the first intersection as recall, as it is susceptible to false negatives, and the 
second intersection as precision, as it is susceptible to false positives, and input this 
into the traditional F1 score formulation:

F1 ¼ 2 ´
precision ´ recall
precision þ recall

ð1Þ

We report an average cl-F1 score of 0.93 ± 0.02 (mean ± s.d.) on the test set.
All scores are given as mean and s.d. Our model reached the best model 

selection point on the validation dataset after six epochs of training.

Comparison to 3D U-Net and V-Net. To compare our proposed architecture to 
different segmentation architectures, we implemented V-Net and 3D U-Net, both 
of which use more complex CNNs with substantially more trainable parameters, 
which further include down- and upsampling. While our experiments showed 
that 3D U-Net and V-Net reached marginally higher performance scores, the 
differences were not statistically significant (two-sided t test, P > 0.3). The amount 
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of parameters for these tools makes them 51 and 23 times slower than VesSAP 
during the inference stage. For segmentation of one of our large whole-brain 
datasets, this translated to 4 h for VesSAP versus 8 d for 3D U-Net and 3.8 d for 
V-Net. This difference was also prevalent in the number of trainable parameters. 
The VesSAP CNN had 0.058 million parameters, whereas 3D U-Net consisted 
of more than 178 million and V-Net of more than 88 million parameters. 
Furthermore, the light VesSAP CNN already reached human-level performance. 
We therefore consider the problem of vessel segmentation as solved by the VesSAP 
CNN for our data. It should be mentioned that the segmentation network is a 
modular building block of the overall VesSAP pipeline and can be chosen by each 
user according to his or her own preferences and, importantly, according to the 
computational power available.

Preprocessing of segmentation. Preprocessing factors into the overall success of 
the training and segmentation. The intensity distribution among brains and among 
brain regions differs substantially. To account for intensity distributions, two 
preprocessing strategies were applied successively.

1. High-cut filter. In this step, the intensities x above a certain threshold c are 
set to c; c is defined by a global percentile. Next, they were normalized by f(x).

g xð Þ ¼ c; x>c

x; x≤c

�
ð2Þ

2. Normalization of intensities. The original intensities were normalized to a range 
of 0 to 1, where x was the pixel intensity and X was all intensities for the volume.

f xð Þ ¼ x �min Xð Þ
max Xð Þ �min Xð Þ ð3Þ

Inter-annotator experiment for segmentation. To compare VesSAP’s segmentation 
to human-level annotations, we implemented an inter-annotator experiment. 
For this experiment, we determined a gold-standard label (ground truth) for two 
volumes of 500 × 500 × 50 pixels from a commissioned group of three experts, 
including the expert who imaged our data and was therefore most familiar with the 
images. Next, we gave the two volumes to four other experts to label the complete 
vasculature. The experts spent multiple hours labeling each patch in the ImageJ 
and ITK-snap environment and were allowed to use their favored approaches 
to generate what they considered to be the most accurate labeling. Finally, we 
calculated the accuracy and F1 scores for the different annotators, as compared to 
the gold standard, and compared them to the scores for our model (Table 1).

Feature extraction. To quantify the anatomy of the mouse brain vasculature, we 
extracted descriptive features on the basis of our segmentation. First, we calculated 
the features in voxel space. Later, we registered them to the Allen brain atlas.

As features we extracted the centerlines, the bifurcation points and the radii of 
the segmented blood vessels. We consider these features to be independent from 
the elongation of the light-sheet scans and the connectedness of the vessels due to 
staining, imaging and/or segmentation artifacts.

Our centerline extraction was based on a 3D thinning algorithm47. Before 
extracting the centerlines, we applied two cycles of binary erosion and dilation 
to remove false-negative pixels within the volume of segmented vessels, as these 
would induce false centerlines. On the basis of the centerlines, we extracted 
bifurcation points. A bifurcation was the branching point on a centerline where 
a larger vessel split into two or more smaller vessels (Fig. 4a). In a network 
analysis context, bifurcations are meaningful as they represent the nodes of a 
vascular network48. Furthermore, bifurcation points have relevance in a biological 
context. In neurodegenerative diseases, capillaries are known to degenerate49, 
thereby substantially reducing the number of bifurcation points in an affected 
brain region as compared to healthy brain. Next, we implemented an algorithm 
to detect bifurcation points. We achieved this by calculating the surrounding 
pixels for every point on each centerline and determined whether a point was 
a centerline. The radius of a blood vessel is a key feature to describe vascular 
networks. The radius yields information about the flow and hierarchy of the vessel 
network. The proposed algorithm calculates the Euclidean distance transform for 
every segmented pixel v to the closest background pixel bclosest. Next, the distance 
transform matrix is multiplied by the 3D centerline mask, equaling the minimum 
radius of the vessel around the centerline.

d v; bclosestð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

1

vi � bclosest;i
� 2

vuut ð4Þ

Feature quantification. Here we describe in detail how we calculated the features 
between the three different spaces.

Voxel space to microscopic space. To quantify the length of our vessels in SI units 
instead of voxels, we calculated their Euclidean length, which depends on the 
direction of the connection of skeleton pixels (Supplementary Fig. 9). To calculate 

the Euclidean length of our centerlines, we carried out a connected component 
analysis, which transformed each pixel of the skeleton into an element of an 
undirected weighted graph, where zero weight means no connection and non-zero  
weights denote the Euclidean distance between two voxels (considering 26 
connectivity). Thus, we obtained a large and sparse adjacency matrix. An element-
wise summation of such a matrix provides the total Euclidean length of the 
vascular network along the extracted skeleton.

As measuring connected components is computationally very expensive, we 
calculated the Euclidean length of the centerlines for 12 representative volumes of 
500 × 500 × 50 pixels and divided by the number of skeleton pixels. We calculated an 
average Euclidean length εCl of 1.3234 ± 0.0063 voxels (mean ± s.d.) per centerline 
element. This corresponds to a length of 3.9701 ± 0.0188 µm (mean ± s.d.) in cleared 
tissue. Because the s.d. of this measurement was low, at less than 0.5% of the length, 
we applied this correction factor to the whole brain centerline measurements. This 
correction does not apply to the bifurcation points and our radius statistics, as 
bifurcations are independent of length and also radius extraction returns a Euclidean 
distance by default. Depending on the direction of the connection of skeleton pixels, 
the Euclidean length of a skeleton pixel is different (Supplementary Fig. 9).

Microscopic space to anatomical space. To account for tissue shrinkage 
(Supplementary Fig. 9), which is inherent to DISCO clearing, we carried out 
an experiment to measure the degree of shrinkage. Before clearing, we imaged 
the brains of three live BALB/c mice by MRI and calculated each brain’s average 
volume, through precise manual segmentation by an expert. Next, we cleared 
three BALB/c brains, processed them with VesSAP and measured the total brain 
volume with atlas alignment. We report an average volume of 423.84 ± 2.04 mm3 
for the live mice and 255.62 ± 6.57 mm3 for the cleared tissue. This corresponds to 
a total volume shrinkage of 39.69%. We applied this as a correction factor for the 
volumetric information (for example, for brain regions).

Similarly to previous studies, shrinkage was uniform in all three dimensions. 
This is important when considering shrinkage in one dimension, as needed to 
account for the shrinkage in centerlines and radii. The one-dimensional correction 
factor КL then corresponds to the cube root of the volumetric correction factor КV.

Accounting for these factors, we calculated the vessel length per volume (Z) in 
cleared (Zcleared) and real (Zreal) tissue in equation (5), where NV,vox is the number of 
total voxels in the reference volume and NCl,vox is the number of centerline voxels in 
the image volume:

Zcleared ¼ NCl;vox

NV;vox
´ εCl Zreal ¼ NCl;vox

NV;vox
´ εCl ´ κL

κV
ð5Þ

Similarly, we calculated the bifurcation density (B) in cleared and real tissue in 
equation (6), where NBif,vox is the number of bifurcations in the reference volume:

Bcleared ¼ NBif ;vox

NV;vox
Breal ¼ NBif ;vox

NV;vox
´ 1

κV
ð6Þ

Please note that the voxel spacing of 3 µm has to be taken into consideration 
when reporting features in SI units.

Inter-annotator experiment for features. To estimate the error in VesSAP’s feature 
quantification, we extracted the features on a labeled test set of five volumes of 
500 × 500 × 50 pixels. When comparing to the gold-standard label, we calculated 
errors (disagreements) of 8.21% for the centerlines, 13.18% for the number of 
bifurcation points and 16.33% for the average radius. To compare VesSAP’s 
extracted features to human-level annotation, we implemented an inter-annotator 
experiment. For this experiment, we had four annotators label the vessels and radii 
in two volumes of 500 × 500 × 50 pixels by using ImageJ and ITK-snap. Finally, 
we calculated the agreement of the extracted features between all annotators and 
compared to the gold-standard labeling.

We calculated this for each of the volumes and found an average error 
(disagreement) of 34.62% for the radius, 25.20% for the bifurcation count and 
12.55% for the centerline length.

The agreement between the VesSAP output and the gold standard was higher 
than the average agreement between the annotators and the gold standard. This 
difference underlines the quality and reproducibility of VesSAP’s feature extraction.

Registration to the reference atlas. We used the average template, the annotation 
file and the latest ontology file (Ontology ID: 1) of the current Allen mouse 
brain atlas: CCFv3 201710. Then, we scaled the template and the annotation file 
up from 10 to 3 µm3 to match our reconstructed brain scans and multiplied the 
left side of the (still symmetrical) annotation file by −1 so that the labels could 
be later assigned to the corresponding hemispheres. Next, the average template 
and 3D vascular datasets were downsampled to 10% of their original size in each 
dimension to achieve reasonably fast alignment with the elastix toolbox50 (v4.9.0). 
For the sake of the integrity of the extracted features, we aligned the template 
to each of the brain scans individually by using a two-step rigid and deformable 
registration (B-spline; optimizer, AdaptiveStochasticGradientDescent; metric, 
AdvancedMattesMutualInformation; grid spacing in physical units, 90; in the 
VesSAP repository, we host the log and parameter files for each brain scan) and 
applied the transformation parameters to the full-resolution annotation volume 
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(3-μm resolution). Subsequently, we created masks for the anatomical clusters on 
the basis of the current Allen brain atlas ontology.

Statistical analysis of features. Data collection and analysis were not performed 
with blinding to the strains. Data distribution was assumed to be normal, although 
this was not formally tested. All data values of the descriptive statistics are given 
as mean ± s.e.m. unless stated otherwise. Data were analyzed with standardized 
effect size indices (Cohen’s d)51 to investigate differences in vessel length, number 
of bifurcation points and radii between brain areas across the three mouse strains 
(n = 3 mice per strain). Descriptive statistics were evaluated across brain regions in 
the pooled (n = 9) dataset.

Data visualization. All volumetric datasets were rendered with Imaris, Vision4D 
and ITK-snap.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
VesSAP data are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include original scans and registered atlas data.

Code availability
VesSAP codes are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include the imaging protocol, trained algorithms, training data and a reference 
set of features describing the vascular network in all brain regions. Additionally, 
the source code is hosted on GitHub (https://github.com/vessap/vessap) and on 
the executable platform Code Ocean (https://doi.org/10.24433/CO.1402016.v1)52. 
Implementation of external libraries is available on request.
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