
Technische Universität München
TUM School of Computation, Information and Technology

Gaussian Processes in Control:
Performance Guarantees through Efficient

Learning

Armin Lederer

Vollständiger Abdruck der von der TUM School of Computation, Information and Technol-
ogy der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Klaus Diepold

Prüfer*innen der Dissertation:

1. Prof. Dr.-Ing. Sandra Hirche

2. Prof. Dr. Andreas Krause

3. Prof. Dr. Colin Jones

Die Dissertation wurde am 22.02.2023 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 24.05.2023
angenommen.

“There is nothing more practical than a good theory.”

Kurt Lewin

Preamble
This thesis summarizes my research conducted at the Chair of Information-oriented Con-
trol (ITR) at the Technical University of Munich (TUM). I am very thankful for all the
amazing people that I had the pleasure of working with and the support I have received
from them during this time.
First of all, I am truly grateful to my doctoral advisor, Prof. Sandra Hirche, who has

supported me ever since my Bachelor’s thesis, allowing me to explore research fields along
my interests and find a topic I love working on. Her critical comments and questions have
pushed me to deepen my understanding of control and have brought me valuable inspiration.
I would also like to thank Prof. Andreas Krause for having me as a visiting guest researcher

in the Learning and Adaptive Systems Group at ETH Zurich. I have greatly benefited from
his machine learning perspective and the fruitful scientific discussions, which have given me
plenty of ideas for research.
A special thanks goes out to all my colleagues at ITR and LAS for the endless discussions,

comments on my papers, help with experiments and the enjoyable time. In particular, I am
grateful to Thomas Beckers and Jonas Umlauft for introducing me to Gaussian processes
during my Bachelor’s and Master’s thesis. I have greatly benefited from their continued
support and experiences in my research. Over the years, ITR has become a second home for
me, not just because of the amount of time I have spent at the lab, but because of people like
Alex Capone, Petar Bevanda, Jan Brüdigam, Pablo Budde gen. Dohmann, Samuel Tesfazgi,
Robert Lefringhausen and Xiaobing Dai. The joint kicker matches and lunches, late night
discussions and last-minute paper submissions, as well as social evenings have really made
my time at ITR memorable. I am indebted to Dr. Stefan Sosnowski, Miruna Werkmeister
and Ulrike Scholze for always having an open door and having my back when it comes to
administrative and teaching issues. I am also thankful to Mojmír Mutný, Mohammad Reza
Karimi and Sebastian Curi for being so welcoming and making my time in Zurich enjoyable
despite the many weekends in the office.
I have had the pleasure to work with many outstanding students and much of my work

would not have been possible without their help. I particularly want to thank Alejandro
Ordóñez Conejo, Korbinian Maier, Kang Lin, Wenxin Xiao, Markus Kessler, Marcel Diße-
mond, Ralf Römer and Azra Begzadić, who have all pushed me to give my best and payed
me back with incredible results.
Finally, I want to thank everyone back from home. I am thankful to my friends and

everyone in my Ju-jitsu club for keeping me grounded and reminding me that there is more
in life than research. I cannot express my gratitude towards my brother Patrick and my
parents. They have always been there for me, provided me with emotional support and have
been essential in getting this thesis finished.

Acknowledgments
This work was supported by the EU Seventh Framework Programme FP7/2007-2013 within
the ERC Starting Grant ”Control based on Human Models” (con-humo), grant agreement
no. 337654, by the European Union’s Horizon 2020 research and innovation programme
within the ERC Consolidator Grant ”Safe data-driven control for human-centric systems”
(CO-MAN), grant agreement no. 864686, and the German National Scholarship Foundation.

i

Abstract
For a long time, control engineering research has focused on problems for which accurate
models are available. In the last decade, this has started to change, e.g., because of an
increasing interest in biomedical applications and autonomous robots remotely operating
in unknown and dynamically changing environments. Due to the lack of precise models,
designing control strategies for these systems can be difficult. This often prevents achieving
a high control performance.
Machine learning offers great promise to overcome this limitation by inferring models

from data generated during the operation of a system. In particular, for control applications
requiring performance and safety guarantees, Gaussian process (GP) regression exhibits
many beneficial properties, such as its data efficiency and strong theoretical foundations.
This has led to multiple approaches for deriving and applying learning-based control laws
based on GP models. However, many challenges remain unaddressed, which prevents the
widespread usage of GP models in control. The existing theory on performance guarantees for
GP-based control is restricted to specific control design techniques and does not generalize.
Moreover, the impact and importance of training data for control performance are not clear,
such that little foundation of current data sampling strategies exists. In addition to these
theoretical problems, practical issues such as a high computational complexity and a lack of
scalability limit the applicability of GP-based control laws in real-world systems.
In this thesis, we address these challenges by developing a framework that covers all rele-

vant aspects for analyzing and implementing learning-based control laws based on GP mod-
els. We begin our analysis with GP models themselves and derive a Bayesian prediction error
bound. Moreover, we demonstrate how all necessary parameters of this bound can be effec-
tively determined. Based on this model accuracy guarantee, we investigate the performance
of a large class of GP-based tracking control laws and prove different probabilistic tracking
error bounds. In order to formalize the relationship between control performance guarantees
and available training data, we propose a data density measure that is tailored to GPs. By
utilizing this measure, we can derive decay rates of tracking error bounds with increasing
data set sizes and illustrate the state dependency of data density requirements for good
control performance. This insight is used to develop data sampling schemes for offline and
online learning with GP models, which can guarantee arbitrarily high tracking accuracies.
In order to enable the practical applicability of the proposed strategies, we develop a com-

putationally efficient approximation for GP-based online learning. By aggregating multiple,
locally active GP models, updates and predictions can be efficiently computed. Further-
more, error bounds from exact GP regression are proven to straightforwardly extend under
weak assumptions on the aggregation method. In addition to online learning, we show that
the aggregation of GP predictions enables distributed GP models in multi-agent systems.
For achieving this, we perform the aggregation using a consensus algorithm. This allows
the straightforward extension of prediction error bounds, which is exploited to derive accu-
racy guarantees for a cooperative tracking control law employing the distributed GP model.
Finally, we address the problem of implementing GP-based control on real-world systems
using such approximations and present architectures which help to mitigate remaining prac-
tical limitations such as high memory requirements. The effectiveness of the presented
architectures for learning-based control with GP models is demonstrated in several robotics
experiments and simulations.

iii

Zusammenfassung

Lange Zeit hat sich die regelungstechnische Forschung auf Probleme konzentriert, für die
genaue Modelle verfügbar sind. In den letzten zehn Jahren begann sich dies zu ändern, z.
B. aufgrund des zunehmenden Interesses an biomedizinischen Anwendungen und autonomen
Robotern, die in abgelegenen, unbekannten und sich dynamisch verändernden Umgebungen
arbeiten. Das Fehlen präziser Modelle für solche Systeme erschwert im Allgemeinen den
Reglerentwurf, so dass oft keine hohe Performanz erzielt werden kann.
Maschinelles Lernen verpsricht diese Einschränkung zu überwinden, indem es Modelle

aus Daten ableitet, die während des Betriebs eines Systems erzeugt werden. Insbesondere
für regelungstechnische Anwendungen, die Performanz- und Sicherheitsgarantien erfordern,
weist die Gauß-Prozess (GP) Regression viele vorteilhafte Eigenschaften auf, wie z. B.
ihre Dateneffizienz und ihr solides theoretisches Fundament. Dies hat zu zahlreichen An-
sätzen für die Herleitung und Anwendung lernfähiger Regelungsgesetze auf der Grundlage
von GP-Modellen geführt. Allerdings gibt es noch viele ungelöste Probleme, die den weit
verbreiteten Einsatz von GP-Modellen in der Regelungstechnik verhindern. Die bestehende
Theorie zu Performanzgarantien für GP-basierte Regelung ist auf spezifische Techniken zum
Reglerentwurf beschränkt und lässt sich nicht verallgemeinern. Darüber hinaus sind die
Auswirkungen und die Bedeutung der Trainingsdaten für die Regelungsperformanz nicht
klar, so dass es kaum eine Grundlage für die aktuellen Strategien zur Datenerzeugung gibt.
Zusätzlich zu diesen theoretischen Limitationen schränken praktische Probleme wie die hohe
Rechenkomplexität und die mangelnde Skalierbarkeit die Anwendbarkeit von GP-basierten
Regelgesetzen in realen Systemen ein.
In dieser Arbeit gehen wir diese Herausforderungen an, indem wir einen Rahmen entwick-

eln, der alle relevanten Aspekte für die Analyse und Implementierung von lernenden Regelge-
setzen auf der Basis von GP-Modellen abdeckt. Wir beginnen unsere Analyse mit den GP-
Modellen selbst und leiten eine Bayessche Modellfehlerschranke her. Darüber hinaus zeigen
wir, wie alle notwendigen Parameter dieser Schranke effektiv bestimmt werden können. Auf
der Grundlage dieser Modellgenauigkeitsgarantie untersuchen wir die Leistung einer großen
Klasse von GP-basierten Folgeregelungsgesetzen und beweisen verschiedene probabilistische
Folgefehlerschranken. Um die Beziehung zwischen den Performanzgarantien der Regelung
und den verfügbaren Trainingsdaten zu formalisieren, schlagen wir ein Datendichtemaß vor,
das auf GPs zugeschnitten ist. Mit Hilfe dieses Maßes können wir Abnahmeraten für Fol-
gefehlerschranken mit zunehmender Datensatzgröße herleiten und die Zustandsabhängigkeit
der Anforderungen an die Datendichte für eine gute Reglerperformanz veranschaulichen.
Diese Einsicht wird genutzt, um Datensampling-Schemata für das Offline- und Online-Lernen
mit GP-Modellen zu entwickeln, die beliebig hohe Folgegenauigkeiten garantieren können.
Um die praktische Anwendbarkeit der vorgeschlagenen Strategien zu ermöglichen, entwick-

eln wir eine rechnerisch effiziente Approximation für GP-basiertes Online-Lernen. Durch
die Aggregation mehrerer, lokal aktiver GP-Modelle können Aktualisierungen und Model
Evaluierungen effizient berechnet werden. Darüber hinaus wird bewiesen, dass sich die
Fehlerschranken der exakten GP-Regression unter schwachen Annahmen an die Aggregation-
smethode einfach erweitern lassen. Zusätzlich zum Online-Lernen zeigen wir, dass die Ag-
gregation von GP-Prädiktionen verteilte GP-Modelle in Multiagentensystemen ermöglicht.
Um dies zu erreichen, führen wir die Aggregation mit Hilfe eines Konsensalgorithmus durch.
Dies ermöglicht eine unkomplizierte Erweiterung der Prädiktionsfehlerschranken, die genutzt

iv

wird, um Genauigkeitsgarantien für ein kooperatives Folgeregelungsgesetz abzuleiten, das
das verteilte GP-Modell verwendet. Schließlich befassen wir uns mit dem Problem der Im-
plementierung einer GP-basierten Regelung auf realen Systemen unter Verwendung solcher
Approximationen und stellen Architekturen vor, die dazu beitragen, die verbleibenden prak-
tischen Einschränkungen, wie z. B. den hohen Speicherbedarf, zu mildern. Die Effektivität
der vorgestellten Architekturen für die lernbasierte Steuerung mit GP-Modellen wird in
mehreren Robotikexperimenten und Simulationen demonstriert.

v

Contents

1. Introduction 1
1.1. Challenges in Gaussian Process-Based Control 2
1.2. Main Contributions and Outline . 4

2. Gaussian Process Regression and Prediction Error Bounds 7
2.1. Fundamentals of Gaussian Process Regression 8

2.1.1. Parametric Regression in Feature Spaces 8
2.1.2. Non-Parametric Regression using the Kernel Trick 10
2.1.3. A Function Space View for Model Decomposition 12
2.1.4. Multi-Output Gaussian Process Regression 13
2.1.5. Hyperparameter Optimization . 14

2.2. Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces . 15
2.2.1. Guarantees through Prior Parameter Bounds 16
2.2.2. From Parameter Bounds to Reproducing Kernel Hilbert Space Norms 18

2.3. Bayesian Uniform Error Bounds . 22
2.3.1. Continuity-Based Error Bounds for Non-Parametric Regression 23
2.3.2. Uniform Error Bounds for Function Components 27
2.3.3. Hölder Continuity of Mean and Variance Functions 28
2.3.4. Probabilistic Lipschitz Constants for Sample Functions 30

2.4. Discussion . 32

3. Tracking Control with Gaussian Process Models 35
3.1. Compensating Nonlinear Perturbations in Linear Control Systems 36

3.1.1. Problem Setting . 36
3.1.2. General Linear Tracking Control Systems 38
3.1.3. Approximately Feedback Linearized Systems 40
3.1.4. Numerical Evaluation . 43

3.2. Certainty Equivalence Approaches for Lyapunov-Based Control Design . . . 44
3.2.1. Problem Setting . 46
3.2.2. General Lyapunov-Based Tracking Error Bounds 47
3.2.3. Linearization-Based Time-Varying Accuracy Guarantees 51
3.2.4. Numerical Evaluation . 55

3.3. Discussion . 57

4. Learning for Control with Arbitrary Accuracy Guarantees 59
4.1. Data Dependency of Uniform Error Bounds 59

4.1.1. Problem Setting . 60
4.1.2. Asymptotic Bounds for the Learning Error 61
4.1.3. Asymptotic Bounds for the Posterior Variance 64
4.1.4. Conditions for Specific Kernels . 66

vii

Contents

4.2. The Role of Data for Control-Theoretic Guarantees 68
4.2.1. Problem Setting . 69
4.2.2. Asymptotic Tracking Error Bound 70
4.2.3. Lyapunov-Based Quality Assessment 72
4.2.4. Numerical Evaluation . 76

4.3. Closed-Loop Data Generation for Tracking Accuracy Guarantees 79
4.3.1. Problem Setting . 81
4.3.2. Time-Triggered Learning . 82
4.3.3. Event-Triggered Learning . 84
4.3.4. Episodic Learning . 87
4.3.5. Numerical Evaluation . 89

4.4. Discussion . 93

5. Efficient Learning via Gaussian Process Model Aggregation 97
5.1. Computationally Efficient Online Learning with Error Bounds 98

5.1.1. Existing Approaches for Gaussian Process-based Online Learning . . 99
5.1.2. Problem Setting . 102
5.1.3. Locally Growing Random Trees of Gaussian Processes 103
5.1.4. Complexity Guarantees . 106
5.1.5. Uniform Regression Error Bounds . 108
5.1.6. Evaluation on Real-World Data . 110
5.1.7. Application to Event-Triggered Learning Control 115

5.2. Data-Efficient Learning for Cooperative Control of Multi-Agent Systems . . 118
5.2.1. Problem Setting . 119
5.2.2. Consensus-Based Aggregation of Gaussian Process Predictions 121
5.2.3. Cooperative Tracking Control using Distributed Gaussian Processes . 124
5.2.4. Numerical Evaluation . 130

5.3. Discussion . 132

6. Architectures for Practical Control with Gaussian Processes 135
6.1. Synchronous Online Learning from Disturbed State Measurements 136

6.1.1. Problem Setting . 137
6.1.2. Learning Control with Disturbed State Measurements 138
6.1.3. Numerical Evaluation . 140
6.1.4. Experimental Demonstration in Control of Robotic Manipulators . . 142

6.2. Asynchronous Online Learning with Computational Delays 144
6.2.1. Problem Setting . 145
6.2.2. Accuracy Guarantees with Delayed Predictions 147
6.2.3. Numerical Evaluation . 148
6.2.4. Experimental Demonstration in Human-Robot Interaction Scenario . 149

6.3. Networked Online Learning under Resource Constraints 153
6.3.1. Problem Setting . 154
6.3.2. Reachability-Based Local Model Selection 156
6.3.3. Delay-Aware Local Model Transmission 158
6.3.4. Numerical Evaluation in Exoskeleton Control 161

6.4. Discussion . 163

viii

Contents

7. Conclusion and Outlook on Future Research Directions 165
7.1. Summary of the Contributions . 165
7.2. Implications of Derived Results . 167
7.3. Future Directions . 168

A. Appendix 171
A.1. Fundamental Results from Linear Algebra 171
A.2. Lyapunov Stability Theory . 171

Notation 175

List of Figures 183

List of Tables 185

List of Algorithms 187

Bibliography 189

ix

Introduction 1.

Control theory and engineering deal with the fundamental problem of forcing a system to be-
have in a desired way [1]. This abstract definition includes many practical problems ranging
from the simple temperature regulation in a refrigerator [2] to the complex synchronization
of electric power systems [3]. For enforcing the desired behavior, a rule, the so-called control
law, needs to be defined, which maps measurements to the actions applied to a system.
The control law is classically designed using a model of the considered system, which can
be accurately determined using physics principles in many applications such as industrial
machinery and chemical processes [4, 5, 6]. While this approach has paved the road for var-
ious technological advancements in the past [7], the necessity of such first principle models
also poses a considerable limitation. This has become increasingly apparent with the recent
interest in applications such as biomedical engineering and autonomous robots.
For example, robotic rehabilitation has received growing attention due to the need for

therapeutic treatment of people with neurological disorders caused, e.g., by stroke or spinal
injuries [8, 9]. Since the exoskeletons used for robotic rehabilitation are often constructed
with series-elastic actuators in order to exhibit a compliant behavior [10], describing them
mathematically is complicated and accurate models are challenging to obtain in practice.
This lack of a precise mathematical description is even amplified when the exoskeleton is
attached to a patient: humans are notoriously challenging to model due to the absence of
principled methods to explain them, their change of behavior over time, and the variation
between individual persons [11]. Due to this absence of precise models for human-robot
systems, a high control performance can often not be achieved, and even the safety of the
human is potentially endangered.
While humans are probably one of the most prominent examples for the absence of pre-

cise models, robotic systems are also strongly affected. Due to the growing computational
power of low-cost processors, robots such as underwater, aerial, and wheeled vehicles oper-
ate increasingly autonomously. The dynamical behavior of these systems is well understood
in nominal operating conditions, but complex, unmodeled effects can occur when leaving
them, e.g., when a drone flies an aggressive maneuver [12] or when an autonomous car drives
near the limits of tire adhesion [13]. Additionally, when autonomous robots are employed in
remote, outdoor areas, unknown environmental effects like wind or water currents can have
a significant, time-varying effect on the robot behavior [14, 15]. Just as in robotic rehabili-
tation, this lack of an accurate mathematical system description poses a critical problem for
the design of control laws, which is a potential threat to the safe execution of remote tasks
with autonomous robots.
These examples demonstrate the need for precise mathematical descriptions of complex

and possibly dynamically changing system behaviors in control design. Since data is con-
tinuously generated during the operation of technical systems, such system models can be

1

1 Introduction

obtained by employing techniques from supervised machine learning, which has led to the
specification of learning-based system identification in control systems as a key research and
innovation challenge [16]. The probably most popular approach for supervised learning is
deep learning with artificial neural networks [17]. Although it has seen tremendous success
in applications with access to precise simulation environments such as games [18, 19], ap-
plying these results to practical control scenarios has proven difficult. This is due to several
attributes of deep learning, which are not ideal for control problems. Deep neural networks
generally need to be trained using large amounts of data, such that even for simple control
problems, hundreds of thousands of training samples are used [20]. Collecting such data
sets from real-world systems takes a long time and is expensive, which severely limits the
applicability of deep learning in control. In addition, state-of-the-art training methods for
deep learning do not admit sequential updates, which prevents a fast adaptation of deep
learning-based control laws to changing environmental conditions. Finally, the derivation of
certifiable performance guarantees for deep learning-based control laws is challenging, such
that the safety of real-world systems is a relevant concern. This is particularly problematic
because safety plays a vital role in the practical application of learning-based algorithms [21].
Many of these weaknesses of deep learning are avoided by employing Gaussian pro-

cess (GP) [22] models in control laws. GPs are generally considered to be data-efficient
and allow us to learn models for simple control problems already from a few dozen training
samples [23]. Moreover, their explicit expressions for model evaluations allow the straightfor-
ward derivation of exact, iterative model updates [24], and their potential for non-parametric
regression can make GP models universal approximators [25]. Finally, they provide a mea-
sure of model uncertainty along with their predictions of the system behavior. This has led to
a frequent application in learning-based control experiments in recent years [26, 27, 28, 29],
which is complemented by a theoretical analysis of many control design approaches with
GP models [30, 31, 32, 33, 34]. Motivated by these previous works, this thesis considers the
problem of deriving a framework for learning-based control with GP models, which covers
all relevant aspects for analyzing and implementing GP-based controllers. In the remainder
of this chapter, we first illustrate open challenges for control with GP models in Section 1.1.
Our contributions addressing these challenges and the structure of this thesis are outlined
in Section 1.2.

1.1. Challenges in Gaussian Process-Based Control
Despite the growing interest in GP models from theoretical and applied control perspectives,
research on GP-based control is only at an early stage, and many questions still need to be
answered. A particularly important open question revolves around GP-based control laws for
tracking problems, in which a dynamical system has to be steered along a reference trajectory.
Examples for this type of problem include underwater, aerial, and wheeled robots following
a desired path.
In order to enable the theoretically supported application of learning-based controllers

with GP models in real-world trajectory tracking problems, we believe that solutions for the
following open problems are essential.

Challenge 1. How can we ensure data-dependent learning error bounds for GP models?

In order to safely employ a model in control laws, we must be able to trust it. This is

2

1.1 Challenges in Gaussian Process-Based Control

not a crucial problem in classical identification methods with parametric models, for which
it suffices to derive accuracy guarantees for inferred model parameters. When GP models
with their potentially non-parametric structure are employed, this approach is not possible
since the prediction accuracy can depend heavily on the available data in the proximity of
a test point. Therefore, the data-driven nature of GP models necessitates the derivation of
learning error bounds, which can reflect locally varying model accuracies.

Challenge 2. How can we analyze the tracking accuracy for a broad class of control laws
based on Gaussian process models?

While tracking error bounds have been derived for many GP-based tracking control laws
as a guarantee for their control performance, the current theory is specific for certain control
design techniques and does not generalize. Therefore, every new control design requires a
new theoretical analysis. This prohibits the combination of GP models with novel control
techniques and drains research resources from crucial questions beyond the straightforward
performance analysis. Therefore, generally applicable theoretical guarantees for a wide range
of tracking control laws are necessary when GP models are employed in the control loop.

Challenge 3. How do training samples impact the certifiable control performance, and how
do we get valuable data in closed-loop control?

A crucial promise of learning-based control approaches is the improvement of the perfor-
mance with growing data sets. However, this conjecture has barely been investigated theo-
retically, and the general relationship between available training data and certifiable control
performance is largely unknown. As a consequence, approaches for offline data generation
and online learning with GP models are employed in literature, for which little theoretical
justification exists. Therefore, we need to establish a direct relationship between the locally
available training data density and its impact on control performance guarantees. This in-
sight is necessary to develop efficient data generation and online learning approaches that
fulfill the conjectured improvement guarantees.

Challenge 4. How can we reduce the computational complexity to enable online learning
and distributed learning in multi-agent systems while retaining accuracy guarantees?

The large number of theoretically advantageous properties of GP regression is accompanied
by a severe practical limitation: the computational complexity of GP regression scales cubi-
cally with the number of training samples. This prevents the exact inference of GP models
from large data sets and causes computation times for iterative model updates, which are of-
ten significantly larger than the sampling time of practically found control loops. Moreover,
the closed-form expression for GP regression provides a huge advantage in its theoretical
analysis, but it does not directly admit a distributed computation. This limits the scalabil-
ity of exact GP models to large-scale multi-agent systems since a centralized computation
of model evaluations is required. Since learning error bounds are crucial, as discussed for
Challenge 1, this explains the need for computationally efficient GP approximations, which
enable online and distributed learning while retaining model accuracy guarantees.

Challenge 5. Which adaptations of derived GP-based control laws are necessary for an
implementation in real-world systems but keep theoretical guarantees?

3

1 Introduction

While suitable assumptions allow proving many theoretical properties of learning-based
control laws, the relevant condition for the practical usefulness of GP-based controllers is usu-
ally the validity of these guarantees in real-world experiments. This requires the additional
consideration of practical restrictions, e.g., due to real sensors, actuators, and computational
infrastructure. Depending on the available hardware, a direct implementation of theoreti-
cally derived GP-based control laws is possible, but it might be accompanied by undesired
negative effects. Therefore, modifications of the implementation architecture of GP-based
control laws must be investigated in order to determine beneficial structures for practical
limitations while retaining theoretical guarantees.

1.2. Main Contributions and Outline
In this thesis, we address these challenges of learning-based tracking control with GP models
by deriving a framework that spans the complete relevant process necessary for implementing
a GP-based controller on a real-world system. Therefore, our analysis starts with the control
design and data collection strategies, continues with tracking accuracy guarantees, and fin-
ishes with practically implementable learning-based control architectures with GP models.
Each chapter of this thesis is devoted to one of the challenges described in Section 1.1 as
outlined in the following.

Chapter 2: Gaussian Process Regression and Prediction Error Bounds We be-
gin our analysis by investigating different approaches for the derivation of GP model error
bounds in order to address Challenge 1. For this purpose, we first provide an intuitive in-
troduction to GP-based machine learning with a particular focus on illustrating GP models
from different angles. By deriving non-parametric GP models from Bayesian linear regres-
sion, we obtain a weight-space view on GP regression. We show that this perspective allows
the straightforward extension of error bounds from parametric regression problems to learn-
ing error guarantees for general GP models. Furthermore, we exploit the interpretation of
GPs as a distribution over models to derive Bayesian regression error bounds, which exploit
the regularity of GP sample functions and tail bounds for the Gaussian distribution. The
results in this chapter have been partially published in [35, 36].

Chapter 3: Tracking Control with Gaussian Process Models Concerned with Chal-
lenge 2, we derive novel tracking error bounds for two scenarios. First, we consider the special
case of linear systems with nonlinear input perturbations, which are compensated in control
using GP models. We show that this setting allows the formulation of tracking error bounds
in the form of dynamical systems, with the GP error bound taking the role of the input.
While this linear systems scenario is very effective for the theoretical analysis, it causes a
restriction to linear feedback control laws. Therefore, we additionally analyze general, non-
linear dynamical systems for which control laws are designed using the GP mean function.
We show that this design approach, which follows the ideas of the certainty equivalence
principle, admits the derivation of error bounds by analyzing the temporal decay of track-
ing error proxies. Due to the generality of our analysis, it is applicable to a wide range of
practically employed nonlinear control laws. The results in this chapter have been partially
published in [36].

4

1.2 Main Contributions and Outline

Chapter 4: Learning for Control with Arbitrary Accuracy Guarantees In order
to address Challenge 3, we establish a direct relationship between tracking error bounds
for GP-based control and the density of available training data. We achieve this by first
investigating the dependency of GP error bounds on the training data. This analysis yields
a novel measure for the local density of data, which is specific to each GP model. Based on
the proposed density measure, we derive asymptotic guarantees for the GP model accuracy
with growing data set sizes. In combination with previously derived tracking error bounds,
these results directly ensure the improvement of control performance with additional training
data. Moreover, the structure of our data density measure allows the analysis of local training
data requirements for achieving desired tracking accuracies. We exemplarily investigate this
dependency for a control law revealing that training data in the proximity of the reference
trajectory is potentially insufficient for ensuring a high tracking accuracy using GP-based
control. In order to obtain suitable training data from control systems, we develop multiple
data sampling schemes for learning in closed-loop systems. By exploiting the gained insights
about training data requirements, we show that the proposed schemes can ensure desired
tracking accuracy guarantees by design. The results in this chapter have been partially
published in [36, 37].

Chapter 5: Efficient Learning via Gaussian Process Model Aggregation As a
solution approach for Challenge 4, we propose the utilization of model aggregation schemes
for enabling GP-based online learning and distributed learning in multi-agent systems. First,
we focus on the problem of performing online GP model updates and evaluations at rates
necessary for closed-loop control systems. To address this problem, we propose an iterative
approach for constructing tree structures with GP models in their leaf nodes. By expanding
the tree whenever necessary, the number of training samples in each GP model can be kept
bounded, which allows fast model updates. Moreover, our method ensures that only a few of
the GP models must be evaluated for computing predictions, which in turn guarantees a low
computational complexity. Due to the structure of commonly used aggregation schemes, the
proposed GP-based online learning method directly inherits model error bounds from exact
GP regression. Therefore, we can safely employ it in learning-based control applications
and keep tracking accuracy guarantees derived for exact GP models. In order to obtain
scalable GP models for multi-agent systems, we propose a consensus-based model aggregation
approach. Due to the strong theoretical foundation of consensus algorithms, the error bounds
for aggregated models straightforwardly extend to the distributed aggregation. We exploit
these guarantees to employ the consensus-based GP model aggregation in a cooperative
tracking control law, which we prove to provide tracking accuracy guarantees. The results
in this chapter have been published in [38, 39].

Chapter 6: Architectures for Practical Control with Gaussian Processes Since
Challenge 5 is concerned with the implementation of GP-based control laws on real-world
systems, we propose and investigate different learning-based control architectures. We begin
our analysis with a synchronous architecture corresponding to the direct realization of theo-
retically derived controllers. Due to the limitations of real sensors, we determine the effect of
measurement disturbances on the derived performance guarantees and illustrate their effect
in simulations. The real-world applicability of the synchronous architecture is demonstrated
in an experiment with a robotic manipulator. Since the synchronous evaluation of GP models

5

1 Introduction

and other components of control laws can be challenging, we also propose an asynchronous
architecture. This architecture computationally decouples GP predictions from the rest of
the control loop, such that time-consuming operations on the GP model do not slow down
the overall control loop. While this potentially causes delayed GP predictions in the control
law, we prove the deterioration caused by the delay to be bounded and illustrate the ad-
vantages in comparison to the synchronous architecture in simulations. The straightforward
applicability of the asynchronous architecture is demonstrated in a human-robot interaction
experiment involving several participants. Finally, we propose a networked architecture that
alleviates the escalating memory requirements of online learned GP models. By performing
a reachability analysis based on the derived tracking accuracy guarantees, relevant data for
the GP model can be determined. Therefore, the irrelevant data can be regularly sent to the
cloud via a network connection, from where it can be fetched if it is eventually needed again
on the local device. This allows the enforcement of resource constraints on the local system,
while GP model accuracy guarantees are unaffected. The effectiveness of this networked
online learning control architecture with GP models is demonstrated in a simulation of a
robotic exoskeleton attached to a human, which illustrates practical benefits in comparison
to the synchronous architecture. The results in this chapter have been partially published
in [40, 41].

Chapter 7: Conclusion and Outlook on Future Research Directions Finally, this
thesis is concluded by a review of the presented results. Moreover, important challenges
for research on control with GP models are presented, and the first approaches for solving
remaining open problems are discussed.

6

Gaussian Process Regression and
Prediction Error Bounds 2.

Gaussian process (GP) regression [22], also referred to as Kriging [42], is a supervised machine
learning method whose basic ideas can be dated back at least as far as the 1940s with works
from Wiener [43] and Kolmogorov [44] on time series analysis. As the name indicates, its
fundamental component is a GP, which can be interpreted as a generalization of the normal
distribution. Since GPs naturally arise in many problems, their statistical properties have
been thoroughly investigated and are generally well understood [45]. Moreover, they admit
the straightforward application of Bayesian principles, such that GPs can serve as the basis
for various probabilistic machine learning techniques [46].
When applied to regression problems, GPs can be used to infer a model µ : Rdz → R

of an unknown function f : Rdz → R from data. For this purpose, we assume to have
access to a data set D = {(z(n), y(n) = f(z(n)) + ε(n))}Nn=1 consisting of N ∈ N sample
pairs (z(n), y(n)), where z(n) ∈ Rdz are training inputs and y(n) ∈ R are training targets. The
training targets are assumed to be measurements of the unknown function f(·) perturbed
by observation noise ε(n) ∈ R. While this standard regression problem can be solved using
many approaches ranging from a simple least squares fitting of a polynomial [47] to complex
techniques such as deep learning [17], GP regression exhibits the advantage of providing a
measure of uncertainty along with the model µ(·). This explicit uncertainty representation
enables the derivation of probabilistic error bounds as formalized in the following.

Definition 2.1. A model µ(·) of an unknown function f(·) admits a uniform error bound
η : Rdz → R0,+ with probability of at least 1− δ, δ ∈ (0, 1], on the domain S ⊂ Rdz if

P
(
|µ(z)− f(z)| ≤ η(z), ∀z ∈ S

)
≥ 1− δ. (2.1)

It is important to note that the probability in (2.1) must hold jointly for all z ∈ S.
Therefore, any approach employing the GP model on the domain S can be analyzed using
deterministic methods accounting for the model error η(·), and the resulting guarantees will
hold with probability 1−δ. This is particularly useful in control, as it enables the application
of robust control techniques [48].
In the remainder of this chapter, we present different approaches for deriving probabilistic

error bounds. We start by introducing the fundamentals of GP regression in Section 2.1,
where we put a particular focus on different perspectives on regression problems. Based on
a classical weight space view, we demonstrate how parametric error bounds for regularized
regression can be straightforwardly extended to non-parametric GP regression in Section 2.2.
In Section 2.3, we take a more function space-oriented perspective and derive Bayesian
uniform error bounds. The chapter is concluded by a discussion of the results in Section 2.4.

7

2 Gaussian Process Regression and Prediction Error Bounds

2.1. Fundamentals of Gaussian Process Regression
While GP regression is a term often used to refer to supervised learning using a specific set
of equations, it actually comprises different formulations and perspectives. This is due to
the flexibility of GPs, which are defined, according to [22], as follows.

Definition 2.2. A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

This definition merely requires a joint Gaussian distribution between random variables,
but it does not impose any restrictions on the description of a GP. Therefore, GPs can be
represented in different forms, which provide a variety of insights into regression and can
offer problem-specific advantages.
In the remainder of this section, we review the fundamentals of Gaussian process re-

gression. Based on a parametric description of GPs, we present computationally efficient
equations for regression in finite-dimensional feature spaces in Section 2.1.1. Using the ker-
nel trick [49], we transform these equations in order to enable non-parametric regression in
possibly infinite-dimensional feature spaces in Section 2.1.2. In Section 2.1.3, we introduce a
function space perspective on GP regression, which allows the decomposition of learned mod-
els into additive and multiplicative components. We outline how GPs can be employed for
regression of multi-dimensional training targets in Section 2.1.4 before we briefly introduce
approaches for hyperparameter tuning in Section 2.1.5.

2.1.1. Parametric Regression in Feature Spaces
When performing GP regression in finite-dimensional feature spaces, which is commonly
known as Bayesian linear regression [47], we assume that the unknown function f(·) has the
form

f(z) = wTφ(z), (2.2)

where φ : Rdz → Rdw is a potentially high dimensional, non-linear feature map and w ∈ Rdw

are the corresponding weights. Moreover, we place a Gaussian prior w ∼ N (µ0
w, Σ0

w) on
the weights w with mean µ0

w ∈ Rdw and covariance matrix Σ0
w ∈ Rdw×dw . Due to this prior

distribution, it immediately follows that function evaluations f(z), f(z′) at inputs z, z′ ∈ Rdz

are jointly Gaussian distributed. Thus, the conditions of Definition 2.2 are satisfied, and f(·)
follows a GP distribution. In order to ensure that any collection of random variables y(n),
n = 1, . . . ,N , also satisfies the conditions of Definition 2.2, we make the following assumption
on the distribution of the observation noise.

Assumption 2.1. The independent and identically distributed (i.i.d.) observation noise ε(n)

follows a Gaussian distribution with mean 0 and variance σ2
on, i.e., ε(n) ∼ N (0,σ2

on) for all
n ∈ N.

Since the relationship between f(z) and z is deterministic for fixed weights w, this as-
sumption implies that p(y|Z,w) = N (wTΦ(Z),σ2

onIN), where we concatenate all training
input and target samples into Z = [z(1) · · · z(N)] and y = [y(1) · · · y(N)]T , respectively.

8

2.1 Fundamentals of Gaussian Process Regression

Moreover, we use the shorthand notation Φ(Z) = [φ(z(1)) · · · φ(z(N))]. This allows us to
directly employ Bayes’ law

p(w|Z,y) = p(w,y|Z)
p(y|Z) = p(y|Z,w)p(w)

p(y|Z) , (2.3)

where p(y|Z) is merely a normalization constant. Therefore, all involved distributions are
Gaussian, which results in a Gaussian posterior distribution p(w|Z,y) = N (µw, Σw), whose
mean µw and variance Σw can be straightforwardly derived as [47]

µw = Σw

((
Σ0
w

)−1
µ0
w + 1

σ2
on

Φ(Z)y
)

, (2.4)

Σw =
((

Σ0
w

)−1
+ 1
σ2

on
Φ(Z)ΦT (Z)

)−1

. (2.5)

These equations require the inversion of dw×dw dimensional matrices, such that this form of
GP regression exhibits a computational complexity of O(d3

w). Therefore, the complexity of
parameter inference only depends on the number of unknown weights, but it is independent
of the number of training samples N .
When the training samples are generated and processed sequentially, this complexity can

even be reduced through iterative model updates. For this purpose, we consider the posterior
distribution after N − 1 training samples1 as prior, such that Bayes’ law yields

p(w|ZN ,yN) = p(y(N)|z(N),w)p(w|ZN−1,yN−1)
p(y(N)|z(n)) . (2.6)

Therefore, we obtain, analogously to (2.4) and (2.5), a posterior mean vector and a covariance
matrix

µNw = ΣN
w

((
ΣN−1
w

)−1
µN−1
w + 1

σ2
on
φ(z(N))y(N)

)
, (2.7)

ΣN
w =

((
ΣN−1
w

)−1
+ 1
σ2

on
φ(z(N))φT (z(N))

)−1

. (2.8)

While this formulation does not yet provide a direct computational advantage, it should be
noted that for given matrices

(
ΣN−1
w

)−1
and ΣN

w , the mean computation (2.7) has quadratic
complexity O(d2

w). Moreover,
(
ΣN
w

)−1
can be updated with quadratic complexity based

on (2.8) since φ(z(N)) is a vector. Therefore, the computation of the inverse on the right
side of (2.8) is the only operation causing a cubic complexity. This inversion can be avoided
by applying Corollary A.2, commonly known as the Sherman-Woodbury-Morrison formula,
which results in

ΣN
w = ΣN−1

w − ΣN−1
w φ(z(N))φT (z(N))ΣN−1

w

σ2
on + φT (z(N))ΣN−1

w φ(z(N)) . (2.9)

This formula can be computed in a quadratic number of operations since it merely requires
matrix additions, matrix-vector, and vector-vector products. Therefore, it enables compu-
tationally efficient online model updates with a complexity of O(d2

w).
1Whenever necessary for clarity due to a varying number of training samples, we use a superscript to
indicate the number of training samples.

9

2 Gaussian Process Regression and Prediction Error Bounds

2.1.2. Non-Parametric Regression using the Kernel Trick
While parametric GP regression can be performed computationally efficiently, its flexibility
is inherently limited by the necessity of explicitly specifying features φ(·). As this limitation
does not arise from the need for fixed features, but rather the restriction to a finite number
of them [22], we present a reformulation of the regression equations (2.4) and (2.5), which
allows tractable inference in infinite-dimensional, implicitly defined feature spaces.
For this purpose, we start by considering the posterior distribution of the unknown func-

tion f(·) directly, which is immediately obtained from (2.2), (2.4), and (2.5) as p(f(z)|z,Z,y) =
N (µ(z),σ2(z)), where the mean function µ : Rdz → R and the variance function σ2 : Rdz →
R0,+ are defined as

µ(z) = φT (z)Σw

(
Σ0
w

)−1
µ0
w + 1

σ2
on
φT (z)ΣwΦ(Z)y, (2.10)

σ2(z) = φT (z)
((

Σ0
w

)−1
+ 1
σ2

on
Φ(Z)ΦT (Z)

)−1

φ(z). (2.11)

Due to Lemma A.1, often referred to as the Woodbury matrix inversion lemma, we can
equivalently express (2.11) as

σ2(z) = φT(z)Σ0
wφ(z)−φT(z)Σ0

wΦ(Z)
(
σ2

onIN+ΦT(Z)Σ0
wΦ(Z)

)−1
ΦT(Z)Σ0

wφ(z), (2.12)

which only depends on inner products of features φ(·). Therefore, we can exploit the kernel
trick, which bases on the idea of avoiding an explicit feature representation through an
implicit encoding in a kernel [49]. This can be achieved by defining a kernel k(z, z′) =
φT (z)Σ0

wφ(z′), which yields

σ2(z) = k(z, z)− kT (z)
(
K + σ2

onIN
)−1

k(z), (2.13)

where the Gram matrix K ∈ RN×N has elements Ki,j = k(z(i), z(j)), i, j = 1, . . . ,N and the
kernel vector k(z) ∈ RN is defined through ki(z) = k(z, z(i)), i = 1, . . . ,N .
For the first summand of the posterior mean function (2.10), we can proceed analogously,

such that we obtain

φT (z)Σw

(
Σ0
w

)−1
µ0
w = φT (z)µ0

w − kT (z)
(
K + σ2

onIN
)−1

ΦT (Z)µ0
w (2.14)

due to the kernel trick [49] and Lemma A.1. The second summand in (2.10) can be re-
formulated using Corollary A.1, known as the matrix push-through lemma, which results
in

1
σ2

on
φT (z)ΣwΦ(Z)y = kT (z)

(
K + σ2

onIN
)−1

y. (2.15)

Therefore, we can equivalently express the posterior mean function (2.10) as

µ(z) = µ0(z) + kT (z)
(
K + σ2

onIN
)−1

(y − µ0), (2.16)

where we define the prior mean function as µ0(z) = φT (z)µ0
w and the elements of the mean

data vector µ0 ∈ RN as µ0
i = µ0(z(i)), i = 1, . . . ,N .

10

2.1 Fundamentals of Gaussian Process Regression

Since the explicit dependency on the features φ(·) is removed in the reformulated ex-
pressions (2.13) and (2.16), these formulas allow to completely base GP regression on ker-
nels k(·, ·). The kernels can be defined by directly exploiting the kernel trick, which leads to
dot product kernels such as polynomial covariance functions

kpoly(z, z′) =
(
σ2

0 + zTΣ0
wz
)p

, (2.17)

where σ2
0 ∈ R0,+ can be considered a hyperparameter and p ∈ R+ denotes the degree of the

polynomial. Moreover, there exists a wide range of kernels that implicitly define an infinite
number of features. Probably the most commonly used among them are squared exponential
(SE) kernels with automatic relevance determination (ARD)

kSE(z, z′) = σ2
f exp


−

dz∑

i=1

(zi − z′i)
2l2i


 (2.18)

and Matérn class ARD kernels

k1/2(z, z′) = σ2
f exp


−

dz∑

i=1

|zi − z′i|
li


 , (2.19)

k3/2(z, z′) = σ2
f


1 +

√
3
dz∑

i=1

|zi − z′i|
li


 exp


−
√

3
dz∑

i=1

|zi − z′i|
li


 , (2.20)

k5/2(z, z′) = σ2
f


1 +

√
5
dz∑

i=1

|zi − z′i|
li

+ 5
3

dz∑

i=1

|zi − z′i|2
l2i


 exp


−
√

5
dz∑

i=1

|zi − z′i|
li


 , (2.21)

where the length scales li ∈ R0,+ and the signal variances σ2
f ∈ R0,+ are considered hyperpa-

rameters. Automatic relevance determination refers here to the fact that input dimensions i
become irrelevant as the corresponding length scale li goes to ∞. Since ARD requires a
comparatively high number of hyperparameters, these kernels can also be found without it,
which simply means that a single length scale parameter is used for all input dimensions,
i.e., li = lj for all i, j = 1, . . . , dz.
It is important to note that the complexity of GP regression differs between the feature

representation (2.10), (2.11) and the kernel-based formulation (2.13), (2.16). While the
direct inversion of Σw causes a cubic complexity in the number of features dw, i.e., O(d3

w),
the complexity of (2.13), (2.16) depends cubically on the number of training samples N , i.e.,
O(N3). Since the number of training samples N is often significantly larger than the number
of features dw, this means that it is usually advantageous to perform regression directly in the
feature space using (2.10), (2.11). This is the case, e.g., for polynomial kernels. However, it
is not always possible to revert the kernel trick for performing regression in the feature space.
When the kernel defines infinite-dimensional features, the Morrison matrix inversion lemma
cannot be used due to its restriction to finite-dimensional matrices, such that a feature space
equivalent of (2.13), (2.16) cannot be straightforwardly obtained. This implies, for example,
that SE and Matérn class kernels do not admit a finite, parametric representation in the form
of (2.10) and (2.11) such that we refer to them as non-parametric kernels in the following.
Therefore, both formulations (2.10), (2.11) and (2.13), (2.16) have a practical relevance.

Remark 2.1. Although it is not possible to exactly revert the kernel trick, for every positive
definite kernel k(·, ·), there exists a finite-dimensional feature vector φ(·) with sufficiently

11

2 Gaussian Process Regression and Prediction Error Bounds

y

z

y

,GP variance
,sample functions
,unknown function
,GP mean
,training samples

Figure 2.1.: Top: Prior GP distribution for a SE kernel together with sample functions.
Bottom: GP distribution conditioned on training samples together with sam-
ple functions. The variance is illustrated through 3 times standard deviation
intervals.

large dimension dw, such that φT (·)φ(·) is arbitrarily close to k(·, ·) [49, Proposition 2.11].
Therefore, (2.13), (2.16) can be approximated arbitrarily well using (2.10), (2.11), which
can be exploited to obtain computationally efficient approximations to non-parametric GP
regression [50, 51].

2.1.3. A Function Space View for Model Decomposition
While the weight space view on GP regression presented in Section 2.1.2 allows an intuitive
interpretation as linear regression in potentially infinite-dimensional feature spaces, it does
not provide insight into how structural properties of unknown functions can be represented
in kernels. Therefore, we present a function space-oriented perspective on GP regression in
this section, which focuses particularly on additive and multiplicative structures.
The function space view on GP regression is based on considering a GP as a distribution

over functions as illustrated in Fig. 2.1. This is commonly denoted as f(·) ∼ GP(µ0(·), k(·, ·)),
which is simply a shorthand notation for

µ0(z) = E[f(z)], (2.22)
k(z, z′) = E[(f(z)− µ0(z))(f(z′)− µ0(z′))] (2.23)

together with the statement of a joint Gaussian distribution of f(z) and f(z′) for all z, z′ as
required by Definition 2.2. Therefore, the kernel is often referred to as covariance function.
Due to these definitions, we can write down the joint distribution of training data and the
function value f(z) at an arbitrary test input z as

[
y|Z
f(z)|z

]
∼ N

([
µ0

µ0(z)

]
,
[
K + σ2

onIN k(z)
kT (z) k(z, z)

])
. (2.24)

Since the posterior distribution of f(z) can be obtained by conditioning on y, we can deter-
mine it using standard properties of Gaussian distributions [22] resulting in

f(z)|z,Z,y ∼ N (µ(z),σ2(z)), (2.25)

12

2.1 Fundamentals of Gaussian Process Regression

where the posterior mean µ(z) and variance σ2(z) are defined as

µ(z) = µ0(z) + kT (z)
(
K + σ2

onIN
)−1

(y − µ0), (2.26)

σ2(x) = k(z, z)− kT (z)
(
K + σ2

onIN
)−1

k(z). (2.27)

Therefore, this approach directly leads to the non-parametric formulation of GP regression
in (2.13), (2.16).
The advantages of this function space perspective become apparent when considering an

unknown function with an additive structure f(·) = f1(·) + f2(·), where f1, f2 : Rdz → R
can be arbitrary functions. Since we know that two different functions are involved, we
can put an individual GP prior on each function, i.e., fi(·) ∼ GP(µ0

i (·), ki(·, ·)), with mean
µ0
i : Rdz → R and covariance function ki : Rdz × Rdz → R0,+, i = 1, 2. This allows us to

consider the joint distribution of fi(z) and training targets y analogously to (2.24), which
can be straightforwardly obtained as

[
y|Z
fi(z)|z

]
∼ N

([
µ0

µ0
i (z)

]
,
[
K + σ2

onIN ki(z)
kTi (z) ki(z, z)

])
(2.28)

under the assumption of independence of f1(·) and f2(·), i.e., E[(f1(z) − µ0
1(z))(f2(z′) −

µ0
2(z′))] = 0 [52]. Note that we use k(·, ·) = k1(·, ·) + k2(·, ·) and µ0(·) = µ0

1(·) + µ0
1(·) for all

induced variables and functions without index i in the sequel (e.g., K) while other variables
and functions are defined via ki(·, ·) and µ0

i (·) (e.g., ki(·)). Due to the joint distribution
(2.28), the posterior of fi(·) can again be obtained using properties of Gaussian distributions,
which results in the conditional distribution fi(z)|z,Z,y ∼ N (µadd,i(z),σ2

add,i(z)) with

µadd,i(z) = µ0
i (z) + kTi (z)

(
K + σ2

onIN
)−1

(y − µ0), (2.29)

σ2
add,i(x) = ki(z, z)− kTi (z)

(
K + σ2

onIN
)−1

ki(z). (2.30)

Similarly, we can consider a function with multiplicative structure f(·) = f1(·)f2(·),
where we assume f1(·) to be unknown, while f2(·) is known. Therefore, we can put a
GP prior on f1(·), i.e., f1(·) ∼ GP(µ0

1(·), k1(·, ·)). This allows us to proceed analogously
to the additive function structure leading to the posterior distribution f1(z)|z,Z,y =
N (µmult,i(z),σ2

mult,i(z)) with

µmult,1(z) = µ0
1(z) + kT1 (z)F2

(
K + σ2

onIN
)−1

(y − µ0), (2.31)

σ2
mult,1(x) = k1(z, z)− kT1 (z)F2

(
K + σ2

onIN
)−1

F2k1(z), (2.32)

where F2 ∈ RN×N is a diagonal matrix with elements F2,n,n = f2(z(n)), n = 1, . . . ,N .
These examples clearly illustrate the advantages of the function space view, which admits
the straightforward inference of individual components of an unknown function.

2.1.4. Multi-Output Gaussian Process Regression
In many problems, it is necessary to learn a multi-dimensional function f : Rdz → Rdf .
Probably the most common approach to address this problem using GPs is by consider-
ing a GP prior on each element fi(·) of f(·) individually, i.e., fi(·) ∼ GP(µ0

i (·), ki(·, ·))

13

2 Gaussian Process Regression and Prediction Error Bounds

with mean µ0
i : Rdz → R and covariance function ki : Rdz × Rdz → R0,+, i = 1, . . . , df .

This allows to employ (2.26), (2.27) df times, once for each target dimension, and con-
catenate the resulting mean and variance functions into vectors µ(·) = [µ1(·) · · · µdf (·)]T
and σ2(·) = [σ2

1(·) · · · σ2
df

(·)]T . Since the complexity of this approach scales linearly with
the dimensionality of f(·), it merely increases the total complexity to O(dfN3). However, it
is not capable of exploiting possible correlations between the target dimensions to increase
the data efficiency.
This limitation can be overcome by employing multi-dimensional kernel functions, which

can be defined specifically for a given problem, e.g., via differential operators applied to scalar
kernels [53]. Moreover, the approach of individual priors can be interpreted as a diagonal
kernel matrix, which can be straightforwardly extended through multi-dimensional kernels
of the form Hdiag

(
[k1(·, ·) · · · kdf]

)
HT , where ki(·), i = 1, . . . , df are arbitrary scalar

kernel functions and H ∈ Rdf×df are arbitrary matrices. This concept, known as coregion-
alization [54], leads to kernel structures consisting of multiplicative and additive elements,
such that individual model components can be inferred analogously to (2.29)-(2.32) [55].
Therefore, the methods derived in this dissertation straightforwardly extend to these mod-
els. However, the increased data efficiency achieved by considering correlations between
target dimensions generally requires the inversion of dfN × dfN -dimensional matrices, such
that the complexity of multi-output GP regression increases to O(d3

fN
3). Therefore, data

efficiency and computational complexity have to be carefully balanced when employing GPs
in multi-dimensional regression problems.

2.1.5. Hyperparameter Optimization
Although GP regression admits the closed-form expressions (2.26), (2.27) for the posterior
mean and variance, these equations rely on the assumption of a known prior mean function
µ0(·), kernel k(·, ·) and observation noise variance σ2

on. However, µ0(·) and k(·, ·) often
depend on parameters in practice, e.g., the length scales li and the signal variance σ2

f for
SE and Matérn class kernels. Since these parameters can have a non-negligible impact on
the regression performance, they are usually considered hyperparameters together with the
observation noise variance σ2

on.
While it is sometimes possible to choose hyperparameters based on prior knowledge about

the unknown function [56], they usually have to be inferred from data. This can be done
with methods such as cross-validation [42] and log-pseudo likelihood maximization [57], but
probably the most common approach is log-likelihood maximization [22]. For this technique,
we concatenate all hyperparameters into a vector ϑ ∈ Rdϑ and note that the marginal
likelihood

p(y|Z) =
∫
p(y|f ,Z)p(f |Z)df (2.33)

is Gaussian. Moreover, its logarithm can be straightforwardly derived as [22]

log (p(y|Z)) = (2.34)

− 1
2(y−µ0)T

(
K+σ2

onIN
)−1

(y−µ0)− 1
2 log

(
det

(
K+σ2

onIN
))
− N

2 log(2π),

which allows an intuitive interpretation. The first term represents the data fit, which becomes
small if the prior mean evaluated at the training samples µ0 is similar to the measured

14

2.2 Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces

targets y. The second term can be considered a complexity measure, which penalizes, e.g.,
large observation noise variances σ2

on, while the last term is a constant. Therefore, the log-
likelihood (2.34) is a well-suited criterion for tuning the hyperparameters of GP regression.
This results in the optimization problem

ϑ∗ = arg max
ϑ∈Rdϑ

log (p(y|Z)) , (2.35)

which is known as log-likelihood maximization. Despite the general non-convexity of this
problem, it is commonly solved using gradient-based numerical optimization techniques [22].

2.2. Uniform Error Bounds for Learning in
Reproducing Kernel Hilbert Spaces

Since uniform error bounds cannot be derived for arbitrary functions, it is necessary to re-
strict the admissible class of unknown functions f(·). A common choice for this restriction
is a function space defined through the kernel used for regression, which is known as repro-
ducing kernel Hilbert space (RKHS). This space contains a large class of functions for many
kernels, e.g., all analytic functions on a compact set for SE kernels [58], such that it does
not pose a severe limitation in practice.
Regression error bounds for functions in an RKHS have been investigated for a long

time, initially going back to the field of scattered data approximation with radial basis
functions [59, 60, 61]. These works consider interpolation, i.e., regression without observation
noise, and derive deterministic error bounds for a certain class of kernels. The derived bounds
depend on the so-called power function, which is equivalent to the GP posterior standard
deviation [62]. Therefore, these results directly transfer to GP regression without observation
noise. Extending the approaches from scattered data interpolation to noisy observations
leads to the concept of kernel ridge regression [63], which formulates the regression as a
regularized optimization problem. This problem has received considerable attention, and
various error bounds have been derived, e.g., in dependence on L2 covering numbers [64, 65].
In particular, it is possible to recover the structure of interpolation error bounds and express
the regression error bound in terms of the power function for bounded observation noise [66].
Since the results of kernel ridge regression are identical to the GP posterior mean under
certain assumptions [22], these error bounds immediately extend to GP regression. When
GP regression is directly considered for the derivation of uniform error bounds, information-
theoretic approaches can be used [67, 68]. These bounds exhibit the advantage of admitting
a straightforward asymptotic analysis, while comparatively tight finite data guarantees can
also be obtained [69]. Moreover, these bounds can be flexibly adapted to different noise
distributions by employing tail bounds.
In this section, we demonstrate the straightforward derivation of such information-theoretic

uniform error bounds based on the weight space perspective on GP regression. Hence, we
start by presenting an approach for deriving uniform error bounds for parametric GP re-
gression in Section 2.2.1. In Section 2.2.2, show how these results can be generalized to
the non-parametric GP regression formulation using bounds on the norm of the unknown
function in the RKHS.

15

2 Gaussian Process Regression and Prediction Error Bounds

2.2.1. Guarantees through Prior Parameter Bounds
While the set of admissible functions is clearly defined through the features φ(·) for para-
metric GP regression as

H0 = {f(·) : ∃w ∈ Rdw such that f(·) = wTφ(·)}, (2.36)

the weights w of an unknown function f(·) = wTφ(·) can be arbitrarily large without any
further restrictions. This is problematic since for wi → ∞, no practically useful uniform
error bound can be obtained. Therefore, we require the following bound on the unknown
weights w and their prior distribution N (µ0

w, Σ0
w).

Assumption 2.2. The standardized prior error is bounded by a known constant w̄ ∈ R0,+,
i.e.,

∥∥∥∥
(
Σ0
w

)−1
(µ0

w −w)
∥∥∥∥ ≤ w̄. (2.37)

This assumption does not just pose an upper bound on the weights w, but it also takes
into account the parameters of the prior distribution. This is achieved through the use of
the inverse covariance matrix (Σ0

w)−1 as scaling factor, which ensures that a large difference
between the prior mean µ0

w and the unknown weights w does not cause a large bound w̄
as long as the prior uncertainty is sufficiently large. Therefore, Assumption 2.2 allows small
bounds w̄ even when little knowledge about the true weights w is known a priori.
In order to derive a uniform error bound η(·) ensuring

P
(
|µ(z)− f(z)| ≤ η(z), ∀z ∈ S

)
≥ 1− δ (2.1 revisited)

for parametric GP regression based on Assumption 2.2, we make use of the fact that f(·) ∈
H0 allows us to express the concatenated training targets as y = wTΦ(Z) + ε, where
ε = [ε(1) · · · ε(N)]T . This formulation directly leads to the following result.

Lemma 2.1. Consider an unknown function f(·) ∈ H0 and a prior Gaussian distribution
N (µ0

w, Σ0
w) on the weights w, such that Assumption 2.2 is satisfied. Then, the model µ(·) =

µTwφ(·) admits a uniform error bound

η(z) = w̄ ‖Σwφ(z)‖+ 1
σ2

on

∥∥∥φT (z)ΣwΦ(Z)
∥∥∥ ‖ε‖ (2.38)

with probability 1 on Rdz , where µw and Σw are defined via (2.4) and (2.5), respectively.

Proof. Due to the structure of the unknown function f(·) and the definition of the posterior
mean µw in (2.4), we have

µw = Σw

((
Σ0
w

)−1
µ0
w + 1

σ2
on

Φ(Z)
(
ΦT (Z)w + ε

))
. (2.39)

Since µTwφ(·) = φT (·)µw, the triangle inequality yields

‖µTwφ(z)− f(z)‖ ≤
∣∣∣∣∣φ

T (z)
(

Σw

((
Σ0
w

)−1
µ0
w + 1

σ2
on

Φ(Z)ΦT (Z)w
)
−w

)∣∣∣∣∣

+ 1
σ2

on

∥∥∥φT (z)ΣwΦ(Z)
∥∥∥ ‖ε‖ . (2.40)

16

2.2 Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces

The first term can be reformulated since (2.5) implies

1
σ2

on
ΣwΦ(Z)ΦT (Z) = Idw −Σw

(
Σ0
w

)−1
. (2.41)

Substituting this expression in (2.40) results in

‖µTwφ(z)− f(z)‖ ≤
∣∣∣∣φ

T (z)Σw

(
Σ0
w

)−1 (
µ0
w −w

)∣∣∣∣+
1
σ2

on

∥∥∥φT (z)ΣwΦ(Z)
∥∥∥ ‖ε‖ , (2.42)

such that Assumption 2.2 yields the uniform error bound (2.38).

This lemma provides the intuitive result that a decrease in the posterior covariance Σw

generally reduces the uniform error bound (2.38). However, Lemma 2.1 cannot be directly
used in practice since it still depends on the unknown observation noise realizations ε. In
order to overcome this limitation, we can employ additional assumptions on the observation
noise, such as a Gaussian distribution, which is exploited in the following corollary.

Corollary 2.1. Consider an unknown function f(·) ∈ H0 and a prior Gaussian distribution
N (µ0

w, Σ0
w) on the weights w, such that Assumption 2.2 is satisfied. Moreover, assume that

the noise ε(n), n = 1, . . . ,N , satisfies Assumption 2.1. Then, for every δ ∈ (0, 1), the model
µ(·) = µTwφ(·) admits a uniform error bound

η(z) = w̄ ‖Σwφ(z)‖+

√√√√2
√
N log

(1
δ

)
+ 2 log

(1
δ

)
+N

∥∥∥φT (z)ΣwΦ(Z)
∥∥∥ (2.43)

with probability 1− δ on Rdz , where µw and Σw are defined via (2.4) and (2.5), respectively.

Proof. The squared norm of a N -dimensional normal random vector follows a chi-square
distribution with N degrees of freedom. Hence. we have ‖ε‖2

σ2
on
∼ χ2

N . Due to [70], this
guarantees a bounded norm

‖ε‖2 ≤

2
√
N log

(1
δ

)
+ 2 log

(1
δ

)
+N


σ2

on. (2.44)

with probability of at least 1− δ, such that (2.43) immediately follows from Lemma 2.1.

This result demonstrates that tail bounds can be directly employed to obtain a practically
useful uniform error bound from Lemma 2.1. The probabilistic nature of these tail bounds
is directly inherited by the error bound, such that its size is closely linked to the specified
confidence parameter δ. Therefore, (2.43) exhibits the intuitive behavior of a growing error
bound with higher reliability.
While probabilistic uniform error bounds are the best achievable guarantees for Gaussian

noise, it is possible to obtain deterministic guarantees using different noise assumptions. For
this purpose, we consider deterministically bounded noise similarly as in [66].

Assumption 2.3. The observation noise is bounded by a known constant ε̄ ∈ R+, i.e.,
|ε(n)| ≤ ε̄ for all n = 1, . . . ,N .

Since the deterministic bound ε̄ admits a straightforward bound for ‖ε‖, we obtain the
following uniform error bound.

17

2 Gaussian Process Regression and Prediction Error Bounds

Corollary 2.2. Consider an unknown function f(·) ∈ H0 and a prior Gaussian distribution
N (µ0

w, Σ0
w) on the weights w, which satisfies Assumption 2.2. Moreover, assume that the

noise ε(n), n = 1, . . . ,N , satisfies Assumption 2.1. Then, for every δ ∈ (0, 1), the model
µ(·) = µTwφ(·) admits a uniform error bound

η(z) = w̄ ‖Σwφ(z)‖+
√
Nε̄

σ2
on

∥∥∥φT (z)ΣwΦ(Z)
∥∥∥ (2.45)

with probability 1 on Rdz , where µw and Σw are defined via (2.4) and (2.5), respectively.

Proof. This result is a direct consequence of Lemma 2.1 and the fact that ‖ε‖ ≤
√
Nε̄ under

Assumption 2.3.

Therefore, Lemma 2.1 allows a flexible derivation of uniform error bounds for parametric
GP regression.

2.2.2. From Parameter Bounds to Reproducing Kernel Hilbert
Space Norms

While Assumption 2.2 is limited to parametric GP regression, Corollary 2.1 and Corollary 2.2
clearly demonstrate the flexibility with respect to different types of observation noise, which
is enabled through the weight space perspective on GP regression. Therefore, we extend
these results to non-parametric GP regression in this section.
Mercer’s theorem [71] plays a key role in this analysis. Given a positive definite ker-

nel k(·, ·), Mercer’s theorem guarantees the existence of orthogonal features φi : Rdz → R,
i = 1, . . . ,∞, such that we can express the kernel as

k(z, z′) =
∞∑

i=1
λiφi(z)φi(z′) (2.46)

with some λi ∈ R and z, z′ ∈ S ⊂ Rdz in a compact set S. Note that we can simply
choose λi = 0 for i > dw when we have a parametric kernel, such that (2.46) can be
interpreted as a guaranteed reversal of the kernel trick requiring possibly infinitely many
features. This motivates a generalization of the set of admissible functions via

HS
0 = {f(·) : ∃dw ∈ N,w ∈ Rdw such that f(z) = wTφ(z),∀z ∈ S}, (2.47)

which is identical to (2.36) for parametric kernels. The set HS
0 is limited to functions express-

ible through an arbitrarily large but finite number of features dw, which is in contrast to the
requirement of possibly infinitely many features to represent the kernel k(·, ·) using (2.46).
Therefore, we define an inner product < f1(·), f2(·) >k=

∑∞
i=1

w1,iw2,i
λi

, where w1,i and w2,i
denote the weights corresponding to functions f1(·) and f2(·). This allows us to consider the
completion of HS

0 under the norm ‖f(·)‖k = ∑∞
i=1

w2
i

λi
induced by the inner product < ·, · >k,

which we denote as HS
k = HS

0. Due to the definition as a completion, the set HS
k contains

functions with an infinite number of features that exhibit a sufficiently fast weight decay [22].
Hence, it is capable of reflecting the expressivity of non-parametric kernels.
Since HS

k is equipped with an inner product and complete by construction, it is a Hilbert
space. Moreover, the orthogonality of features implies that for every function f(·) ∈ Hk, it

18

2.2 Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces

holds that < k(·, z), f(·) >k= f(z) for all z ∈ S. Therefore, the kernel has the so-called
reproducing property, which leads to HS

k being referred to as reproducing kernel Hilbert
space (RKHS). It should be noted that the RKHS is unambiguously connected to its kernel
and vice versa [72], even though this might not be visible from the presented derivation.
While it is generally not apparent from the kernel how the corresponding RKHS looks,

it often comprises a large class of functions. Moreover, many properties of this relationship
have been thoroughly investigated, such that the direct transfer of kernel attributes like
differentiability to functions in the RKHS is well-known [22]. This has allowed the explicit
formulation of the RKHS for certain kernels. For example, the RKHS of SE kernels corre-
sponds to the space of analytic functions [58], while Matérn kernels induce Sobolev spaces
as RKHS [62]. Even though the RKHS cannot correspond to the space of continuous func-
tions [73], these examples clearly illustrate the large variety of functions admitted by the
restriction to an RKHS.
In order to derive uniform error bounds similarly as in Lemma 2.1, the restriction to

an RKHS itself is again not sufficient. However, the RKHS allows a direct extension of
Assumption 2.2 through its norm.
Assumption 2.4. The unknown function f(·) has a bounded norm in the RKHS HS

k attached
to the kernel k(·, ·), i.e., ‖f(·)‖k ≤ Γ for some Γ ∈ R+.
Since it is possible to derive lower bounds that are non-decreasing with a growing number

of data points, an upper bound Γ can be estimated with a sufficiently large number of training
samples [74]. Moreover, the RKHS norm is strongly connected to the spectral properties
of kernels. This can be illustrated particularly well for the following class of kernels, which
includes SE and Matérn class ARD kernels.
Definition 2.3. A kernel is called stationary if it is only a function of the difference of its
arguments, i.e., k(z, z′) = k(z − z′) with a slight abuse of notation. If it is only a function
of the normed difference, i.e., k(z, z′) = k(‖z − z′‖), it is referred to as isotropic kernel.
Since stationary kernels effectively depend only on a single argument, we can apply the

Fourier transform F [·] to them. As shown in [62], this allows us to formulate the RKHS
norm of a function f(·) as

‖f(·)‖2
k = 1

(2π) dz2

∫ |F [f(·)](ω)|2
F [k(·)](ω) dω. (2.48)

Therefore, a bounded RKHS norm corresponds to a sufficiently fast decaying spectrum of
the unknown function f(·). In fact, this allows us to pose an assumption on the spectrum
of f(·), which guarantees a bounded RKHS norm. Note that a restriction to band-limited
functions gives rise to Paley-Wiener spaces [75], which are RKHSs themselves. In these
spaces, the RKHS norm can be shown to correspond to the L2 norm, such that it can
directly be estimated from data [76].
Based on Assumption 2.4, we can generalize Lemma 2.1 to non-parametric kernels, as

shown in the following proposition.
Proposition 2.1. Consider an unknown function f(·) ∈ HS

k satisfying Assumption 2.4
and a prior Gaussian process GP(0, k(·, ·)). Then, the posterior mean function µ(·) defined
in (2.26) admits a uniform error bound

η(z) = βσ(z) (2.49)

19

2 Gaussian Process Regression and Prediction Error Bounds

with probability 1 on the compact set S ⊂ Rdz , where σ(·) is defined via (2.27) and

β = Γ + 1
σon

√
εTK(K + σ2

onIN)−1ε. (2.50)

Proof. In order to prove this proposition, we proceed analogously to the proof of Lemma 2.1
by employing the triangle inequality to obtain

|f(z)− µ(z)| ≤
∣∣∣∣f(z)− kT (z)

(
K + σ2

onIN
)−1

f
∣∣∣∣+

∣∣∣∣k
T (z)

(
K + σ2

onIN
)−1

ε
∣∣∣∣ , (2.51)

where f denotes the noise-free evaluations of the unknown function f(·) and ε is the con-
catenation of all noise realizations. Due to [68], the right side of this inequality can be upper
bounded, such that

|f(z)− µ(z)| ≤ ‖f(·)‖kσ(z) + σ(z)
σon

√
εTK(K + σ2

onIN)−1ε (2.52)

holds for all z ∈ S. Then, the uniform error bound (2.49) directly follows from Assump-
tion 2.4.

This result shows that the posterior standard deviation σ(·) takes over the role of the
covariance matrix Σw in (2.38), while the RKHS norm bound Γ replaces the prior parameter
error bound w̄. Even though the observation noise now appears in a quadratic expression, it
still admits the same procedure for getting a practically computable error bound presented in
Section 2.2.1. For example, the following result can be obtained when dealing with bounded
noise ε(n).

Corollary 2.3. Consider an unknown function f(·) ∈ HS
k satisfying Assumption 2.4 and a

prior Gaussian process GP(0, k(·, ·)). Moreover, assume that the noise ε(n), n = 1, . . . ,N ,
satisfies Assumption 2.3. Then, the posterior mean function µ(·) defined in (2.26) admits a
uniform error bound (2.49) for

β = Γ +
√
Nε̄

σon

√
‖K(K + σ2

onIN)−1‖ (2.53)

with probability 1 on the compact set S ⊂ Rdz .

Proof. This result directly follows from Proposition 2.1 and the fact that ‖ε‖ ≤
√
Nē due

to Assumption 2.3

While this approach can also be applied to i.i.d. Gaussian noise [69], more sophisticated
concentration inequalities considering the gram matrix K can admit tighter uniform error
bounds [68]. Furthermore, the class of admissible observation noise distributions can be
generalized as formalized in the following assumption.

Assumption 2.5. The observation noise ε(n) is i.i.d. sub-Gaussian with scaling constant
σ̃on ∈ R0,+, i.e.,

∀s ∈ R : E
[
exp

(
sε(n)

)]
≤ exp

(
s2σ̃2

on
2

)
. (2.54)

20

2.2 Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces

This assumption effectively requires the tails of the observation noise distribution to be-
have similar to a normal distribution or decay even faster. This can also be seen in the
equivalent characterization of sub-Gaussian distributions through the following concentra-
tion inequality [77]

P
(
|ε(n)| ≥ s

)
≤ 2 exp

(
− s2

2σ̃2
on

)
. (2.55)

Therefore, sub-Gaussian distributions can be interpreted as a generalization of the normal
distribution, including it as a special case.
Using this assumption, the following uniform error bound, which can be found in a similar

form in [68, 69], can be derived as an extension of Proposition 2.1.

Theorem 2.1. Consider an unknown function f(·) ∈ HS
k satisfying Assumption 2.4 and a

prior Gaussian process GP(0, k(·, ·)). Moreover, assume that the observation noise satisfies
Assumption 2.5. Then, for every δ ∈ (0, 1), the posterior mean function µ(·) defined in (2.26)
admits a uniform error bound (2.49) for

β = Γ +
√

2σ̃on

σon

√√√√√1
2 + log



√√√√det

(
IN + 1

σ2
on
K

)
+ log

(1
δ

)
(2.56)

with probability 1− δ on the compact set S ⊂ Rdz .

Proof. Since the assumptions of Proposition 2.1 are satisfied, we directly obtain (2.50), for
which it remains to bound the second summand. To achieve this, note that

K(K+σ2
onIN)−1 =

1 + 1
N

σ2
on
K

(
1 + 1

N

σ2
on
K +

(
1 + 1

N

)
IN

)−1

. (2.57)

Therefore, we define K̃ = 1+ 1
N

σ2
on
K, such that it is straightforward to show

K̃
(
K̃ +

(
1 + 1

N

)
IN

)−1
≤
(
K̃ + 1

N
IN

)(
K̃ +

(
1 + 1

N

)
IN

)−1
(2.58)

≤
((
K̃ + 1

N
IN

)−1
+ IN

)−1

. (2.59)

Since the observation noise is independent of each other and the training inputs, this allows
us to apply [68, Theorem 1], which guarantees

εT
((
K̃+ 1

N
IN

)−1
+IN

)−1

ε ≤ 2σ̃2
on


log



√

det
((

1+ 1
N

)
IN+K̃

)
+log

(1
δ

)
. (2.60)

Therefore, we obtain

K(K+σ2
onIN)−1 ≤ 2σ̃2

on


log



√√√√det

(
IN+ 1

σ2
on
K

)
+N

2 log
(

1+ 1
N

)
+log

(1
δ

)
 (2.61)

by employing the definition of K̃. Substituting this expression into (2.50) and noting that
log(1 + 1/N) ≤ 1/N finally proves (2.56).

21

2 Gaussian Process Regression and Prediction Error Bounds

Due to the use of a dedicated concentration inequality for GP regression, this result offers a
crucial advantage compared to other error bounds presented in this section: it does not have
an explicit dependency on the number of training samplesN . While it still implicitly depends
on N through the determinant, information-theoretic methods can be used to derive kernel-
specific bounds. This often yields a logarithmic growth with increasing number of training
samples N for the scaling factor β in (2.56) [67]. Therefore, this bound enables an effective
analysis of the asymptotic behavior of the error bound.

Remark 2.2. Although not stating it explicitly, we have assumed a zero prior mean function
µ0(·) in this section. This does, however, pose no practical restriction because we can always
consider the prior error f̃(·) = f(·) − µ(·) as an unknown function which we want to infer
with GP regression. Thereby, all results immediately extend to the case of a non-zero prior
mean function µ0(·).

2.3. Bayesian Uniform Error Bounds
While the weight space view on GP regression allows the straightforward derivation of sta-
tistical uniform error bounds, the resulting guarantees for functions in reproducing kernel
Hilbert spaces are agnostic of the probabilistic nature of GPs [67]. This leads to the problem
that there is little to no justification that hyperparameter tuning methods relying on the
probabilistic GP formulation, e.g., log-likelihood maximization, also improve error bounds.
In order to overcome this limitation, we derive Bayesian uniform error bounds in this section,
whose guarantees are inherently tied to the GP prior distribution.
Point-wise Bayesian error bounds for GP regression directly follow from tail bounds for

Gaussian distributions [77], which has led to their wide-spread usage in control [78, 79, 80].
Due to their highly local nature, these bounds provide only theoretical value when the GP
model is evaluated at a finite number of test points. While this is sufficient in some scenarios,
e.g., when evaluated at a grid [67], it does not allow continuous domains as required for
uniform error bounds. In order to overcome this limitation, additional assumptions on the
continuity of the unknown function are necessary [81], such that interpolation between grid
points can extend point-wise bounds to uniform error bounds. However, computing these
bounds generally requires additional knowledge about the unknown function, e.g., a Lipschitz
constant.
In this section, which is based on our work [35, 36], we straightforwardly derive a Bayesian

uniform error bound by extending point-wise error bounds on a virtual grid to a compact do-
main. This approach allows us to recover the structure of RKHS-based uniform error bounds
through a suitable choice of the virtual grid constant. Moreover, the Bayesian perspective
can be viewed as a direct consequence of the function space view on GP regression, which
enables us to prove uniform error bounds for additive and multiplicative model components.
Finally, we show Hölder continuity for the GP mean µ(·), standard deviation σ(·) and the
unknown function f(·) itself, whose constants only depend on the prior GP distribution,
such that the proposed uniform error bounds can be directly computed without any further
assumptions.
The remainder of this section is structured as follows. In Section 2.3.1, the Bayesian

uniform error bound for unstructured kernels is derived, which is extended to additive and
multiplicative structures in Section 2.3.2. The Hölder continuity parameters of the posterior

22

2.3 Bayesian Uniform Error Bounds

mean µ(·) and standard deviation σ(·) are derived in Section 2.3.3. In Section 2.3.4, a
Lipschitz constant for the unknown function f(·) is shown, which follows from classical
sample path properties of Gaussian processes.

2.3.1. Continuity-Based Error Bounds for Non-Parametric
Regression

While the weight space view directly leads to the RKHS HS
k as the set of admissible functions,

this restriction is not necessary from a Bayesian perspective. This is because GPs already
induce such a hypothesis space via their prior. Therefore, assuming that the prior GP is
suitable for the unknown function as formalized in the following assumption is sufficient for
the derivation of Bayesian uniform error bounds.

Assumption 2.6. The unknown function f(·) is a sample from a Gaussian
process GP(0, k(·, ·)).

This assumption, which has similarly been used in, e.g., [67, 81], has a twofold implication.
On the one hand, it specifies the admissible functions for regression via the space of sample
functions, which depends on the employed kernel k(·, ·). For example, it is straightforward
to see that polynomial kernels can be used to learn polynomial functions of the same de-
gree. Moreover, it is well known that the sample space of GPs with SE kernel contains
all continuous functions with probability one [58]. Therefore, choosing a suitable kernel for
ensuring that the unknown function lies in the space of sample functions is usually not a
challenging problem in practice. On the other hand, Assumption 2.6 induces a weighting
between possible sample functions due to the GP probability density. Since we base the
derivation of the uniform error bound on this weighting, an unknown function f(·) with
low prior probability density would lead to sets {f ′(·) : |f ′(z) − µ(z)| ≤ η(z)} with a high
probability under the GP prior, even though they do not contain the unknown function f(·).
Hence, the true function f(·) should have a high probability density under the GP prior.
This can be efficiently achieved in practice using suitable kernel tuning methods, e.g., [82],
or via a re-calibration of the probability distribution after training [83]. Therefore, ensur-
ing a suitable prior distribution is not a severe limitation, such that Assumption 2.6 is not
restrictive in practice.
Since the prior Gaussian process induces a probability distribution for each point in a

compact set S, we can discretize this set and exploit standard tail bounds for Gaussian
distributions to obtain point-wise error bounds [67]. If all involved functions are continuous,
we can straightforwardly extend these point-wise guarantees to a continuous domain S.
Therefore, we make the following assumption.

Assumption 2.7. The posterior mean function µ(·), the standard deviation σ(·), and the
unknown function f(·) are Hölder continuous with order pµ, pσ, pf ∈ R+ and coefficients
Lµ,Lσ,Lf ∈ R+, respectively, on the compact set S ⊂ Rdz .

Hölder continuity of a function f(·) on a compact set S requires the existence of constants
pf ∈ R+, Lf ∈ R+ such that

|f(z)− f(z′)| ≤ Lf‖z − z′‖pf ∀z, z′ ∈ S. (2.62)

23

2 Gaussian Process Regression and Prediction Error Bounds

Therefore, Hölder continuity can be interpreted as a generalization of Lipschitz continu-
ity, coinciding with it for pf = 12. Note that we only assume Hölder continuity at this
point for ease of understanding, but we provide conditions guaranteeing the satisfaction of
Assumption 2.7 in Section 2.3.3 and Section 2.3.4.
Based on these assumptions, it is straightforward to show the following result.

Proposition 2.2. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
satisfying Assumption 2.6, and training data D with observation noise ε(n), n = 1, . . . ,N ,
fulfilling Assumption 2.1. If Assumption 2.7 holds, then, for every δ ∈ (0, 1) and τ ∈ R+,
the posterior mean function µ(·) defined in (2.26) admits a uniform error bound

η(z) = β̃σ(z) + Lµτ
pµ + Lfτ

pf + β̃Lστ
pσ (2.63)

with probability 1− δ on the compact set S ⊂ Rdz , where

β̃ =

√√√√2 log
(
M(τ ,S)

δ

)
(2.64)

and M(τ ,S) denotes the τ -covering number of S, i.e.,

M(τ ,S) = arg min
Sτ⊂Rdz

|Sτ | (2.65)

such that ∀z ∈ S,∃z′ ∈ Sτ : ‖z − z′‖ ≤ τ (2.66)

Proof. We exploit the continuity properties of the posterior mean, variance and the unknown
function to prove the probabilistic uniform error bound by exploiting the fact that for every
grid Sτ with |Sτ | grid points and

max
z∈S

min
z′∈Sτ

‖z − z′‖ ≤ τ (2.67)

it holds with probability of at least 1− |Sτ |e−s/2 that [67]

|f(z)− µ(z)| ≤ √sσ(z) ∀z ∈ Sτ . (2.68)

Choose s = 2 log
(|Sτ |

δ

)
, then

|f(z)− µ(z)| ≤
√√√√2 log

(
|Sτ |
δ

)
σ(z) ∀z ∈ Sτ (2.69)

holds with probability of at least 1− δ. Due to Hölder continuity of f(z), µ(z) and σ(z) we
obtain

min
z′∈Sτ

|f(z)− f(z′)| ≤ Lfτ
pf ∀z ∈ S, (2.70)

min
z′∈Sτ

|µ(z)− µ(z′)| ≤ Lµτ
pµ ∀z ∈ S, (2.71)

min
z′∈Sτ

|σ(z)− σ(z′)| ≤ Lστ
pσ ∀z ∈ S. (2.72)

2For notational simplicity, Lf denotes the Lipschitz constant of f if we do not explicitly state the order pf

of Hölder continuity.

24

2.3 Bayesian Uniform Error Bounds

Moreover, the minimum number of grid points satisfying (2.67) is given by the covering
number M(τ ,S). Hence, we obtain

|f(z)− µ(z)| ≤
√√√√2 log

(
M(τ ,S)

δ

)
σ(z)+Lµτ pµ+Lfτ pf +Lστ pσ

√√√√2 log
(
M(τ ,S)

δ

)
(2.73)

for all z ∈ S with probability 1− δ, which concludes the proof.

The virtual grid constant τ used in (2.63) balances the error due to the interpolation
and the inherent uncertainty measured by the posterior standard deviation σ(·). Therefore,
the uncertainty-independent terms in (2.63) can be made arbitrarily small by choosing a
sufficiently fine virtual grid. This, in turn, increases the covering number M(τ , S) and thus
the scaling β̃ of the posterior standard deviation σ(·). However, this scaling depends merely
logarithmically on τ such that even poor Hölder constants Lµ, Lσ and Lf can be easily
compensated by small virtual grid constants τ .
While the flexibility of choosing arbitrary values for the virtual grid constant τ in Proposi-

tion 2.2 can be advantageous for some theoretical derivations, it also complicates the practical
application of (2.63) due to an additional tuning parameter. Moreover, the existence of a
constant offset, which is independent of σ(·), generally reduces the interpretability of (2.63).
In order to mitigate these weaknesses, we couple τ with the posterior standard deviation σ(·)
as shown in the following theorem.
Theorem 2.2. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
satisfying Assumption 2.6, and training data D with observation noise ε(n), n = 1, . . . ,N ,
fulfilling Assumption 2.1. If Assumption 2.7 holds, then, for every δ ∈ (0, 1) and τ ∈ R+
with

δ ≤ 1
exp(1

2) , (2.74)

Lµτ
pµ + Lfτ

pf + Lστ
pσ ≤ min

z∈S
σ(z), (2.75)

the posterior mean function µ(·) defined in (2.26) admits a uniform error bound (2.49) for

β = 2

√√√√2 log
(
M(τ ,S)

δ

)
σ(z) (2.76)

with probability 1− δ on the compact set S ⊂ Rdz .
Proof. It directly follows from Proposition 2.2 that (2.76) ensures a uniform error bound
(2.49) if

σ(z) ≥ Lµτ
pµ + Lfτ

pf

√
2 log

(
M(τ ,S)

δ

) + Lστ
pσ (2.77)

holds for all z ∈ S. Since the covering number M(τ ,S) is trivially lower bounded by 1 for
all τ , it follows that

2 log
(
M(τ , S)

δ

)
≥ 2 log

(1
δ

)
≥ 1, (2.78)

where the second inequality follows from (2.74). Therefore, (2.75) guarantees (2.77), which
concludes the proof.

25

2 Gaussian Process Regression and Prediction Error Bounds

τ

r

,Sτ

,S
,S̃

Figure 2.2.: Illustration of the derivation of an upper bound for the covering numberM(τ , S).

While this theorem cannot completely resolve the problem of unspecified values for τ , the
constraint (2.75) can be straightforwardly employed for determining one, e.g., by employing
a line search to find the maximum value of τ satisfying (2.75). Moreover, if µ(·), σ(·) and f(·)
admit the same order of Hölder continuity, i.e., pf = pµ = pσ, condition (2.75) significantly
simplifies, such that we can directly choose

τ =



min
z∈S

σ(z)

Lµ + Lσ + Lf




1
pf

. (2.79)

Note that the upper bound for δ in (2.74) does not pose a practically restrictive condition
since we are usually interested in small values δ ≈ 0.
Due to the absence of a constant offset, the Bayesian uniform error bound in Theorem 2.2

depends linearly on the posterior standard deviation σ(·). Therefore, it exhibits the same
structure as the RKHS-based results in Proposition 2.1, Corollary 2.3 and Theorem 2.1 for
a fixed data set, such that subsequential results derived using RKHS-based bounds directly
transfer to the Bayesian setting and vice versa. Moreover, (2.76) can be straightforwardly
computed in practice given the parameters of Hölder continuity since it only depends on the
covering number M(τ ,S). While the computation of exact covering numbers is a difficult
problem for general sets S, it can be easily upper bounded for Euclidean spaces as illus-
trated in Fig. 2.2. For this reason, we over-approximate the set S through a d-dimensional
hypercube S̃ with edge length r. Then, the covering number of S̃ is bounded by [84]

M(τ , S̃) ≤


1 +

√
dz

max
z,z′∈S

‖z − z′‖∞
2τ




dz

, (2.80)

where ‖ ·‖∞ denotes the infinity norm. By construction, this is also a bound for the covering
number of S, i.e.,

M(τ ,S) ≤


1 +

√
dz max

z,z′∈S
‖z − z′‖∞

2τ




dz

. (2.81)

26

2.3 Bayesian Uniform Error Bounds

Therefore, (2.76) can be directly evaluated given the parameters of Hölder continuity. Note
that similar approximations are also possible for other topological spaces such as the special
Euclidean group SE(3) [85].

2.3.2. Uniform Error Bounds for Function Components
Since the Bayesian uniform error in Theorem 2.2 is completely based on the GP posterior
distribution, we can directly apply it to posterior distributions of component functions as
derived in Section 2.1.3. This is illustrated for additive functions in the following corollary.

Corollary 2.4. Consider an unknown function f(·) = f1(·) + f2(·), prior Gaussian pro-
cesses GP(0, ki(·, ·)), i = 1, 2, satisfying Assumption 2.6, and training data D with observa-
tion noise ε(n), n = 1, . . . ,N , fulfilling Assumption 2.1. If Assumption 2.7 individually holds
for the component functions f1(·), f2(·) and the corresponding mean and variance functions
defined in (2.29),(2.30), then, for every δ ∈ (0, 1) and τi ∈ R+ satisfying (2.74) and

Lµiτ
pµi
i + Lfτ

pfi
i + Lσiτ

pσi
i ≤ min

z∈S
σi(z), (2.82)

the posterior mean functions µadd,i(·), i = 1, 2, defined in (2.29) admit uniform error bounds

ηi(z) = βiσadd,i(z) (2.83)

with probability 1− δ on the compact set S ⊂ Rdz for

βi = 2

√√√√2 log
(
M(τi, S)

δ

)
. (2.84)

Proof. The uniform error bounds ηi(·), i = 1, 2 immediately follow from [52]

fi(z)|z,Z,y ∼ N (µadd,i(z),σ2
add,i(z)), (2.85)

which allows a proof analogously to Theorem 2.2.

It can be directly seen that the uniform error bound for an additive component only
depends on the posterior mean µadd,i(·) and the posterior standard deviation σadd,i(·) of
the function fi(·). Therefore, it naturally follows that condition (2.82) on the virtual grid
constant τi also depends purely on the Hölder continuity parameters of these functions.
When the function has a multiplicative structure with a known component, we can anal-

ogously obtain the following error bound.

Corollary 2.5. Consider an unknown function f(·) = f1(·)f2(·) with known function f2(·),
a prior Gaussian process GP(0, k1(·, ·)), satisfying Assumption 2.6, and training data D
with observation noise ε(n), n = 1, . . . ,N , fulfilling Assumption 2.1. If Assumption 2.7
individually holds for the component function f1(·) and the corresponding mean and variance
function defined in (2.31),(2.32), then, for every δ ∈ (0, 1) and τ1 ∈ R+ satisfying (2.74)
and (2.82), the posterior mean function µmult,1(·) defined in (2.31) admits a uniform error
bound

ηi(z) = βiσmult,i(z) (2.86)

27

2 Gaussian Process Regression and Prediction Error Bounds

with probability 1− δ on the compact set S ⊂ Rdz for

βi = 2

√√√√2 log
(
M(τi,S)

δ

)
. (2.87)

Proof. The uniform error bound η1(·) immediately follows from [52]

f1(z)|z,Z,y ∼ N (µmult,1(z),σ2
mult,1(z)), (2.88)

which allows a proof analogously to Theorem 2.2.

2.3.3. Hölder Continuity of Mean and Variance Functions
While the RKHS and its norm reflect the smoothness properties of the admissible unknown
functions in the RKHS-based uniform error bounds, the Hölder continuity parameters take
on this role in the Bayesian formulation. Therefore, it stands to reason that these parameters
also inherit smoothness properties of the kernel k(·, ·). In order to formally show this, we
define Hölder continuity of a kernel k(·, ·) with order pk ∈ R+ and coefficient Lk ∈ R+ on a
compact set S as

|k(z, z′)− k(z, z′′)| ≤ Lk‖z′ − z′′‖pk ∀z, z′, z′′ ∈ S. (2.89)

Then, it is straightforward to show that Hölder continuity with order pk and coefficient Lk
is directly inherited from the kernel k(·, ·) due to the linear dependence of the GP mean
function µ(·) on the kernel vector k(·).

Lemma 2.2. Consider a prior GP GP(0, k(·, ·)) defined through a Hölder continuous kernel
k(·, ·) with order pk and coefficient Lk. Then, the posterior mean µ(·) is Hölder continuous
with order pk and coefficient

Lµ ≤ Lk
√
N
∥∥∥(K + σ2

onIN)−1y
∥∥∥ . (2.90)

Proof. The norm of the difference between the posterior mean µ(z) evaluated at two different
points is given by

‖µ(z)− µ(z′)‖ =
∥∥∥(k(z)− k(z′)) (K + σ2

onIN)−1y
∥∥∥ . (2.91)

Due to the Cauchy-Schwarz inequality and the Lipschitz continuity of the kernel we obtain

‖µ(z)− µ(z′)‖ ≤ Lk
√
N
∥∥∥(K + σ2

onIN)−1y
∥∥∥ ‖z − z′‖pk , (2.92)

which proves Lipschitz continuity of the mean µ(z).

Due to the quadratic dependence of the posterior variance σ2(·) on the kernel vector k(·),
the posterior standard deviation does not admit a derivation of the Hölder continuity pa-
rameters analogous to Lemma 2.2. However, we can exploit the relationship of the posterior
standard deviation with a kernel-induced metric [86], which yields the following result for
general Hölder continuous kernels k(·, ·).

28

2.3 Bayesian Uniform Error Bounds

Lemma 2.3. Consider a prior GP GP(0, k(·, ·)) defined through a Hölder continuous ker-
nel k(·, ·) with order pk and coefficient Lk. Then, the posterior standard deviation σ(·) is
Hölder continuous with order pk/2 and coefficient

Lσ ≤
√

2Lk. (2.93)

Proof. The difference between two different evaluations of the posterior standard deviation
is bounded by

|σ(z)− σ(z′)| ≤ dk(z, z′) (2.94)

as shown in [86], where the kernel metric is defined as

dk(z, z′) =
√
k(z, z) + k(z′, z′)− 2k(z, z′). (2.95)

Due to Hölder continuity of the kernel, we have

dk(z, z′) ≤
√

2Lk‖z − z′‖pk , (2.96)

which concludes the proof.

While this lemma provides suitable parameters for Proposition 2.2 and Theorem 2.2, it
ensures Hölder continuity with a smaller order, which leads to a slower decay of the constant
coefficient in Lemma 2.1. Under the additional restriction to stationary kernels, this weakness
can be overcome, as shown in the following corollary.

Corollary 2.6. Consider a prior GP GP(0, k(·, ·)) defined through a continuously differen-
tiable kernel k(·, ·). Then, the posterior standard deviation σ(·) is Hölder continuous with
order pk = 1 and coefficient

Lσ(τ) = sup
z,z′∈S

√
1

2k(0)−2k(z−z′) ‖∇k(z−z′)‖ . (2.97)

Proof. For stationary kernels, we can express the kernel metric as

dk(z, z′) = dk(z − z′) =
√

2k(0)− 2k(z − z′). (2.98)

The simplified kernel metric is only a function of z − z′, such that the supremum of the
norm of the derivative of dk(·, ·) with respect to z−z′ is the Lipschitz constant of σ(·). This
derivative directly follows from the chain rule of differentiation as

∇dk(z − z′) =
√

1
2k(0)− 2k(z − z′)∇k(z − z′), (2.99)

which concludes the proof.

While computing the coefficient Lσ requires the computation of a supremum in general,
this optimization problem can be straightforwardly solved analytically for specific kernel
choices. For example, it immediately follows from L’Hôpital’s rule that

Lσ = σf

∥∥∥∥∥∥∥∥




1
l1...
1
ld




∥∥∥∥∥∥∥∥
(2.100)

29

2 Gaussian Process Regression and Prediction Error Bounds

for a SE ARD kernel. Since many practically employed kernels are Lipschitz continuous,
which is identical to Hölder continuity with order pk = 1, Corollary 2.6 consequently ensures
that pσ = pµ = 1. Therefore, it only remains to ensure Lipschitz continuity of the unknown
function f(·) in order to define τ using (2.79).

2.3.4. Probabilistic Lipschitz Constants for Sample Functions
Due to the importance of Hölder continuity with pf = 1 for employing (2.79), we focus on
this special case, such that Lf corresponds to a Lipschitz constant. In order to derive a prob-
abilistic Lipschitz constant Lf of the unknown function f(·) from the prior GP distribution,
we exploit the fact that the derivative of a GP is again a GP. Therefore, Lipschitz constants
can be obtained by adapting results from the well-studied theory of suprema of GPs. This
yields the following lemma, which is based on the metric entropy criterion [87].
Lemma 2.4. Consider a GP GP(0, k(·, ·)) with a continuously differentiable covariance
function k(·, ·) and let Lk denote its Hölder continuity coefficient for order pk = 1 on the
compact set S which is included in a cube with edge length r. Then, the expected supremum
of a sample function f(·) of this GP satisfies

E
[
sup
z∈S

f(z)
]
≤ 12

√
6dz max

{
max
z∈S

√
k(z, z),

√
rLk

}
. (2.101)

Proof. We prove this lemma by making use of the metric entropy criterion for the sample
continuity of GPs [87]. This criterion allows to bound the expected supremum of a sample
function f(·) by

E
[
sup
z∈S

f(z)
]
≤

max
z∈S

√
k(z,z)

∫

0

√
log(Nk(%,S))d%, (2.102)

where Nk(%, S) is the %-packing number of S with respect to the kernel metric (2.95). Instead
of bounding the %-packing number, we bound the %/2-covering number, which is known to
be an upper bound of the packing number. The covering number can be easily bounded by
transforming the problem of covering S with respect to the metric dk(·, ·) into a coverage
problem in the original metric of S. For this reason, define

ψ(%′) = sup
z,z′∈S

‖z−z′‖∞≤%′

dk(z, z′), (2.103)

which is continuous due to the continuity of the covariance kernel k(·, ·). Consider the inverse
function

ψ−1(%) = inf {%′ > 0 : ψ(%′) > %} . (2.104)

Continuity of ψ(·) implies % = ψ(ψ−1(%)). In particular, this means that we can guarantee
dk(z, z′) ≤ %

2 if ‖z − z′‖ ≤ ψ−1(%2). Due to this relationship it is sufficient to construct a
uniform grid with grid constant 2ψ−1(%2) in order to obtain a %/2-covering net of S. Further-
more, the cardinality of this grid is an upper bound for the %/2-covering number, such that
we obtain

Nk(%,S) ≤
⌈

r

2ψ−1(%2)

⌉dz
. (2.105)

30

2.3 Bayesian Uniform Error Bounds

Due to the Hölder continuity of the covariance function, we can bound ψ(·) by ψ(%′) ≤√
2Lk%′. Hence, the inverse function satisfies

ψ−1
(
%

2

)
≥
(

%

2
√

2Lk

)2

(2.106)

and consequently

Nk(%,S) ≤
(

1 + 4rLk
%2

)dz
(2.107)

holds, where the ceil operator is resolved through the addition of 1. Substituting this ex-
pression in the metric entropy bound (2.102) yields

E
[
sup
z∈S

f(z)
]
≤ 12

√
dz

max
z∈S

√
k(z,z)

∫

0

√√√√log
(
1+ 4rLk

%2

)
d%. (2.108)

As shown in [88] this integral can be bounded by
√

6 max{maxz∈S
√
k(z, z),

√
rLk}, which

concludes the proof.

While Lemma 2.4 provides a bound merely for the expected supremum of a sample func-
tion, a high probability bound for the supremum can be obtained using the Borell-TIS
inequality [89]. This is shown in the following result.

Lemma 2.5. Consider a GP GP(0, k(·, ·)) with a continuously differentiable covariance
function k(·, ·) on the compact set S which is included in a cube with edge length r. Then,
with probability 1− δL the supremum of a sample function f(·) of this GP is bounded by

fsup(δL, k(·, ·), r) =
√

2 log
(1
δL

)
max
z∈S

√
k(z, z) + 12

√
6dz max

{
max
z∈S

√
k(z, z),

√
rLk

}
.

(2.109)

Proof. We prove this lemma by exploiting the wide theory of concentration inequalities to
derive a bound for the supremum of the sample function f(·). We apply the Borell-TIS
inequality [89], which ensures for arbitrary c ∈ R0,+ that

P

(
sup
z∈S

f(z)−E
[
sup
z∈S

f(z)
]
≥c
)
≤ exp


− c2

2 max
z∈S

k(z, z)


. (2.110)

Due to Lemma 2.4 and the fact that continuous differentiability on a compact set implies
Hölder continuity with pk = 1, we can directly bound E[supz∈S f(z)]. Therefore, the lemma
follows from substituting (2.101) in (2.110) and choosing c =

√
2 log (1/δL) maxz∈S

√
k(z, z).

Since the derivatives of sample functions from GPs with sufficiently smooth kernels are
sample functions of the derivative GPs [90], Lemma 2.5 directly allows to compute a high
probability Lipschitz constant for the unknown function f(·) from the prior GP distribution.
This is summarized in the following Theorem.

31

2 Gaussian Process Regression and Prediction Error Bounds

Theorem 2.3. Consider a GP GP(0, k(·, ·)) defined through the covariance kernel k(·, ·)
with continuous partial derivatives up to the fourth order and partial derivative kernels

k∂i(z, z′) = ∂2

∂zi∂z′i
k(z, z′) ∀i = 1, . . . , dz. (2.111)

Then, a sample function f(·) of the GP is almost surely continuous on S and with probability
of at least 1− δL,

Lf ≤ L̂f =

∥∥∥∥∥∥∥∥




fsup(δL/2dz, k∂1(·, ·), r)
...

fsup(δL/2dz, k∂d(·, ·), r)




∥∥∥∥∥∥∥∥
(2.112)

for fsup(·, ·, ·) defined in (2.109).

Proof. Continuity of the sample function f(z) follows directly from [90, Theorem 5]. Fur-
thermore, this theorem guarantees that the derivative functions ∂

∂xi
f(z) are samples from

derivative Gaussian processes with covariance functions k∂i(z, z′). Therefore, we can apply
Lemma 2.5 to each of the derivative processes and obtain with probability of at least 1− δL

d

sup
z∈S

∣∣∣∣∣
∂

∂zi
f(z)

∣∣∣∣∣ ≤ fsup(δL/2dz, k∂i(·, ·), r). (2.113)

Applying the union bound over all partial derivative processes i = 1, . . . , dz finally yields the
result.

Since many practically employed kernels such as, e.g., the squared exponential and the
Matern 5/2, satisfy the required smoothness assumption of Theorem 2.3, it does not pose a
severe restriction. Therefore, this theorem allows us to straightforwardly determine high-
probability Lipschitz constants for the unknown function f(·), which can be directly used in
Proposition 2.2 and Theorem 2.2, while barely requiring additional assumptions.

2.4. Discussion
This chapter provides a concise overview of GP regression focused on relevant aspects for
this dissertation, but we do not claim that we even come close to presenting all the facets of
Gaussian processes. In fact, many general aspects of GPs are not even mentioned, such as
their combination with linear operators [91]. Furthermore, extensions with high relevance to
the identification of models for control are not introduced, e.g., constrained GP regression [92]
or the inference of GP models with control-theoretic properties such as stability [93, 94].
Therefore, we refer the interested reader to one of the many resources on Gaussian processes,
e.g., [22, 62, 95].
To the best of our knowledge, such a resource does not exist for uniform GP error bounds.

Even though many of the results on RKHS-based error bounds have been previously stated in
a similar form [68, 69], we believe this is the first time that they are introduced completely
using the weight space view, which allows an intuitive interpretation by establishing the
connection to regularized linear regression. It is important to note that RKHS-based uniform
error bounds have frequently been employed heuristically in early approaches for safe control

32

2.4 Discussion

design, e.g., by simply using a constant scaling factor 2 for the GP standard deviation [96].
While this often seems to work, it has caused concerns about theoretical guarantees for
safety-critical control applications, such that a more rigorous application of error bounds
has started to emerge in the field of control theory in recent years [69]. However, the
correct application strongly hinges on the knowledge of an upper bound for the RKHS norm
of the unknown function, which is a controversially discussed assumption. While we have
highlighted ideas to determine such bounds on the RKHS norm, this is still a largely unsolved
problem in general, and it is unclear whether the RKHS norm bound assumption can indeed
be verified using data. However, alternative approaches aiming for error bounds not relying
on RKHS theory have been proposed, which might offer a solution to this issue [97].
While a similar problem holds for the prior GP distribution in our novel Bayesian error

bounds in principle, it is less severe due to the existence of calibration methods [82, 83].
Therefore, obtaining a suitable prior distribution is usually not a crucial challenge. However,
Bayesian error bounds provide guarantees only with respect to the prior distribution. This
means that they do not allow a statistical interpretation in the sense that for ND ∈ N
different data sets of the same function, at most δND resulting GP models violate the error
bound in expectation. It is straightforward to see that this kind of guarantee would only
hold if the function would be sampled from the GP prior for every data set. Due to this
interpretation, Bayesian error bounds also do not admit deterministic guarantees similar
to Corollary 2.3. Therefore, both RKHS-based and Bayesian uniform error bounds have
their limitations in practice, such that they should be chosen based on application-specific
requirements.

33

Tracking Control with Gaussian
Process Models 3.

Since Gaussian process regression exhibits a high flexibility and data efficiency, it is frequently
employed for inferring models of unknown dynamical systems, which can be used to design
control laws through a wide variety of approaches [98, 99]. A particular advantage of GP
models for this application is their explicit uncertainty representation, which can be used
to tune the behavior of control laws towards curiosity [100, 101] or cautiousness [102, 103].
Moreover, the existence of uncertainty-based uniform error bounds allows the derivation
of theoretical guarantees for controllers designed using GP models, which is particularly
important in safety-critical problems [21].
Due to the high practical relevance, we specifically consider the control problem of tracking

a known reference trajectory xref : R0,+ → Rdx with the state trajectory x : R0,+ → Rdx

generated by an unknown or partially known dynamical system. Since we cannot achieve
exact tracking without knowledge of the system dynamics in general, we are interested in
quantifying the tracking accuracy. Due to the probabilistic guarantees from uniform error
bounds for GP models, this leads to the following definition of suitable tracking error bounds.

Definition 3.1. A closed-loop dynamical system admits a probabilistic tracking error bound
υ : R0,+ → R0,+, if there exists a set X0 ⊂ X and a probability δ ∈ (0, 1], such that

P (‖x(t)− xref(t)‖ ≤ υ(t), ∀t ≥ 0) ≥ 1− δ (3.1)

is satisfied for all x(0) ∈ X0.

Note that this definition does not require the global existence of a tracking error bound,
but a non-empty set of initial conditions X0 is sufficient. This restriction to a local guarantee
is necessary since the uniform error bounds presented in Chapter 2 are generally valid merely
on a compact domain S.
In this chapter, we derive tracking error bounds satisfying Definition 3.1 for two scenarios.

First, we consider the special case of linear systems with a certain nonlinear perturbation
for which a GP model is learned. As shown in Section 3.1, this allows the formulation of a
linear differential equation, whose solution is an upper bound for the tracking error. In order
to generalize these results, we consider stabilizing control laws designed using the certainty
equivalence principle in 3.2. Based on a Lyapunov approach, we derive general tracking error
bounds, which we show to be straightforwardly computable in practice.

35

3 Tracking Control with Gaussian Process Models

3.1. Compensating Nonlinear Perturbations in Linear
Control Systems

Although GP regression generally yields nonlinear models, it can be applied to linear control
systems in various forms. One of the probably most straightforward approaches relies on a
linearization of the GP mean function at a reference point, such that optimal and robust
controllers can be synthesized using classical H∞ design methods [104]. Since the deriva-
tive of a GP is a GP itself [90], the probability distribution can be considered in such an
optimization-based design, which allows the derivation of Bayesian stability guarantees [105].
The knowledge of a linear system structure can also be directly encoded in the Gaussian
process prior through a linear kernel, such that optimal controllers can be efficiently designed
using scenario optimization [106]. A more sophisticated kernel design can even enable the
computation of optimal controllers without inferring a system model by learning the cost
surface of linear quadratic controllers [107]. Finally, GPs can be used to learn perturbations
of a nominal linear system. This allows the derivation of stability guarantees both for time-
dependent [108] and state-dependent nonlinearities [30, 109]. While these methods generally
perform well, the derived guarantees are usually agnostic of the local model uncertainty
but instead rely on a worst-case error perspective over the state space. Therefore, a local
improvement of the GP model accuracy does not necessarily lead to an improvement of the
guarantees.
We address this issue by deriving a novel, uncertainty-dependent error bound for tracking

control systems, in which a GPmodel is used to compensate for an unknown nonlinear pertur-
bation. Such nonlinearities, which can be considered a form of matched uncertainty [48], can
be found in a wide range of applications ranging from underwater vehicles, where unmodeled
hydrodynamic forces due to currents can appear [14], to physical human-robot interaction,
where humans introduce generally unknown torques [10]. We formulate the error bound
as a stable linear dynamical system, which is forced by the uniform error bound evaluated
along the reference trajectory. Thereby, the local uncertainty is taken into account. More-
over, we demonstrate that improved bounds can be shown under additional assumptions on
the dynamics, which we exemplarily illustrate for approximate feedback linearization. The
applicability and effectiveness of the derived results are demonstrated in a simulation.
The remainder of this section, which is based on [36], is structured as follows. Section 3.1.1

formalizes the considered problem setting by specifying the system structure and the em-
ployed control law. A bound for general linear systems is derived in Section 3.1.2 before we
show the improved bounds for approximately feedback linearized systems in Section 3.1.3.
Finally, the derived theoretical results are evaluated on a numerical example in Section 3.1.4.

3.1.1. Problem Setting
We consider single-input linear dynamical systems with nonlinear input perturbation of the
form1

ẋ = Ax+ b(u+ f(x)) (3.2)

1Throughout this document, we drop explicit dependencies on the time t in differential equations for
notational simplicity.

36

3.1 Compensating Nonlinear Perturbations in Linear Control Systems

with initial condition x(0) = x0 ∈ X ⊆ Rdx and scalar control input u : R0,+ → U ⊆ R.
The matrix A ∈ Rdx×dx and vector b ∈ Rdx are assumed to be known, while we consider
f : X → R to be an unknown nonlinearity. This system structure covers a wide range
of practical systems and can represent, e.g., systems controlled via approximate feedback
linearization [31] or backstepping controllers for certain classes of dynamics [110]. Note that
we merely consider the restriction to single-input systems for notational convenience, but
our derived results can be easily generalized to multi-input dynamics.
The considered task is to track a bounded reference trajectory xref : R0,+ → Rdx with the

state x(t). In order to enable the accurate tracking of the reference trajectory xref(·), we
restrict ourselves to references of the form

ẋref = Axref + brref , (3.3)

where rref : R0,+ → R is a reference signal. Moreover, we require the following assumption
on A and b.

Assumption 3.1. The pair (A, b) is controllable.

This assumption is a common requirement in linear systems theory since it guarantees
that a linear dynamical system can be stabilized [1, 111]. It is satisfied by many linear
systems and linear dynamics obtained through nonlinear control techniques such as feedback
linearization, such that it is generally unrestrictive in practice.
Based on Assumption 3.1, we can employ a linear control law

u(t) = −θT (x(t)− xref(t)) + rref(t)− f̂(x(t)) (3.4)

for tracking the reference trajectory xref(·), where θ ∈ Rdx is a control gain vector and f̂ :
X→ R is a model of the unknown nonlinear perturbation f(·). In order to obtain this model,
we assume to learn it from measurements (z(n) = x(n), y(n) = f (n) + ε(n)), n = 1, . . . ,N ,
with observation noise ε(n) using Gaussian process regression as explained in Section 2.1.
Therefore, we can use f̂(x) = µ(x) in the control law (3.4), such that we can quantify the
error of the control input f̂(x) compared to the exact but unknown perturbation f(x) using
uniform error bounds. This is formalized in the following assumption.

Assumption 3.2. The error between the GP mean function µ(·) and the unknown func-
tion f(·) is uniformly bounded by a function η(·) on a compact domain S ⊂ X with probabil-
ity 1− δ.

Uniform error bounds satisfying this assumption can be directly obtained using, e.g., The-
orem 2.1 under Assumptions 2.4 and 2.5, or Theorem 2.2 under Assumptions 2.1, 2.6 and 2.7.
Therefore, Assumption 3.2 is merely used as a placeholder to straighten the presentation.
Due to the employment of the model f̂(·) = µ(·) in the controller (3.4), the nonlinearity f(·)

is generally not completely compensated. This leads to closed-loop dynamics of the tracking
error e(t) = x(t)− xref(t) given by

ė = Acl(θ)e+ b(f(x)− f̂(x)), (3.5)

where Acl(θ) = A − bθT . In order to simplify the presentation in the subsequent sections,
we make the following assumption on the diagonalizability of the matrix Acl(θ).

37

3 Tracking Control with Gaussian Process Models

Assumption 3.3. The matrix Acl(θ) has distinct eigenvalues.

Since the pair (A, b) is assumed to be controllable, the eigenvalues of Acl(θ) are a design
choice depending solely on the control gain vector θ. Therefore, this assumption can be
easily satisfied using control design techniques such as pole placement [111], such that it
is not restrictive in practice. Note that all results in subsequent sections can be general-
ized to non-diagonalizable matrices using Jordan blocks [112], which underlines the role of
Assumption 3.3 for straightening the exposition.
Since (3.5) does generally not converge to 0 even for matrices Acl(θ) with negative eigen-

values, we can only aim to guarantee that the state x remains in a neighborhood of the
reference trajectory xref(·). Hence, we consider the problem of quantifying the tracking
accuracy using probabilistic error bounds as formalized in Definition 3.1.

3.1.2. General Linear Tracking Control Systems
Due to the structure of the error dynamics (3.5), the tracking error crucially depends on the
eigenvalues of the matrixAcl(θ). This can be straightforwardly shown using Assumption 3.3,
which allows the computation of the eigendecomposition Acl(θ) = UΛU−1, where Λ is
a diagonal matrix consisting of the eigenvalues of Acl(θ). Based on this decomposition,
a dynamic bound for the tracking error e(·) can be derived inspired by the comparison
principle [113], as shown in the following theorem.

Theorem 3.1. Consider a linear system (3.2) satisfying Assumption 3.1, which is controlled
by (3.4) with control gains θ satisfying Assumption 3.3. Assume that a Gaussian process is
used to learn a model f̂(·) = µ(·) of f(·), such that Assumption 3.2 holds on a compact set
S ⊂ X with a uniform error bound η(·) which admits a Lipschitz constant Lη. Then, the
closed-loop system (3.5) admits a probabilistic tracking error bound υ(·), if Bυ(t)(xref(t)) ⊂ S
holds for all t ∈ R0,+, where υ(·) = ξ(·) is the solution of the linear dynamical system

ξ̇ =
(
λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖

)
ξ + ‖U‖‖U−1b‖η(xref) (3.6)

with initial condition ξ(0) = ‖U‖‖Ue(0)‖.

Proof. Due to the error dynamics in (3.5), its solution is given by

e(t) = eAcl(θ)te(0) +
t∫

0

eAcl(θ)(t−t′)bfe(t′)dt′, (3.7)

where fe(t) = f(x(t))− µ(x(t)). Therefore, we directly obtain

‖e(t)‖ ≤ ‖eAcl(θ)te(0)‖+
t∫

0

‖eAcl(θ)(t−t′)b‖|f̄e(t′)|dt′, (3.8)

where f̄e(t) can be any function such that |fe(t)| ≤ f̄e(t). Using the eigendecomposition of
Acl(θ) = UΛU−1, it can be directly seen that

‖eAcl(θ)tb‖ ≤ ‖U‖‖U−1b‖eλ̄(Acl(θ))t. (3.9)

38

3.1 Compensating Nonlinear Perturbations in Linear Control Systems

‖U‖‖U−1b‖
∫

λ̄(Acl(θ))+
Lη‖U‖‖U−1b‖

η(xref) ξ = υ

Figure 3.1.: Illustration of the tracking error bound for linear systems with input perturba-
tions as a dynamical system forced by the uniform GP error bound.

Hence, we obtain

‖e(t)‖ ≤‖U‖‖U−1e(0)‖eλ̄(Acl(θ))t + ‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′)|fe(t′)|dt′. (3.10)

The right-hand side of this inequality is again the solution of a differential equation such
that ‖e(t)‖ ≤ ξ̃ for

˙̃ξ = λ̄(Acl(θ))ξ̃ + ‖U‖‖U−1b‖f̄e (3.11)

with ξ̃(0) = ‖U‖‖U−1e(0)‖. It remains to derive a bound f̄e(t) for |fe(t)| in (3.11). Due
to Assumption 3.2, it holds that |fe(t)| ≤ η(x(t)) for all x in S with probability of at least
1− δ. Moreover, we have η(x(t)) ≤ η(xref(t)) +Lη‖e(t)‖ due to Lipschitz continuity of η(·)
guaranteed by Assumption 3.2. Therefore, it follows that

˙̃ξ ≤
(
λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖

)
ξ̃ + ‖U‖‖U−1b‖η(xref), (3.12)

which concludes the proof.

Since η(xref(t)) can be directly computed at any time instant, determining the tracking er-
ror bound using Theorem 3.1 simply requires simulating the linear dynamical system (3.6) as
illustrated in Fig. 3.1. This can be straightforwardly done for a given time horizon in contrast
to similar prior approaches [31, 35], where the uniform error bound needs to be determined
at the actual system state x(t). In order to achieve this improved practical applicability,
additional requirements on the stability of the linear dynamics described byAcl(θ) are neces-
sary. It is obvious that υ(·) is unbounded if the linear dynamics (3.6) are unstable, such that
eventually S ⊂ Bυ(t)(xref(t)) holds for sufficiently large t, i.e., the set inclusion is reversed.
Therefore, (3.6) effectively poses the upper bound

λ̄(Acl(θ)) < −Lη‖U‖‖U−1b‖. (3.13)

on the eigenvalues ofAcl(θ), which effectively corresponds to a lower bound on the magnitude
of admissible control gains θ. Note that except for (3.13), Bυ(t)(xref(t)) ⊂ S does usually
not cause severe restrictions in practice, but merely requires the choice of a sufficiently large
set S for a given set of initial conditions X0.
While Theorem 3.1 provides an accurate bound for the tracking error depending on the

local data density, it is sometimes beneficial to have a time-independent tracking error bound.
Therefore, we bound the maximum tracking error along the reference trajectory, as shown
in the following proposition.

39

3 Tracking Control with Gaussian Process Models

Proposition 3.1. Consider a linear system (3.2) satisfying Assumption 3.1, which is con-
trolled by (3.4) with control gains θ satisfying Assumption 3.3. Assume that a Gaussian
process is used to learn a model f̂(·) = µ(·) of f(·), such that Assumption 3.2 holds on a
compact set S ⊂ X with a uniform error bound η(·) which admits a Lipschitz constant Lη.
Then, for X0 = {xref(0)}, the closed-loop system admits a probabilistic tracking error bound
υ(·) = ῡ, if (3.13) is satisfied and Bῡ(xref(t)) ⊂ S holds for all t ∈ R0,+, where

ῡ = − ‖U‖‖U−1b‖
λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖ sup

t≥0
η(xref(t)). (3.14)

Proof. It immediately follows from (3.7) that

‖e(t)‖ ≤ ‖U‖‖U−1b‖
t∫

0

e(λ̄(Acl(θ))+Lη‖U‖‖U−1b‖)(t−t′)dt′ sup
0≤t′≤t

η(xref(t′)). (3.15)

Since the integral can be straightforwardly calculated, we obtain

sup
t≥0
‖e(t)‖ ≤ −

‖U‖‖U−1b‖ sup
t≥0

η(xref(t))

λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖ , (3.16)

which concludes the proof.

Note that the restriction to a zero initial condition is only considered to simplify the
derivation, but the extension to non-zero initial conditions is straightforward. Moreover,
the additional requirement of Lipschitz continuity for the uniform error bound η(·) is not
restrictive in practice since the error bounds derived in Chapter 2 depend linearly on the
GP standard deviation σ(·). This directly allows us to apply, e.g., Corollary 2.6, in order to
compute the necessary Lipschitz constant Lη. Therefore, the assumptions of Proposition 3.1
are not significantly more restrictive than those of Theorem 3.1.

3.1.3. Approximately Feedback Linearized Systems
While Theorem 3.1 and Proposition 3.1 are applicable to a wide class of linear systems,
it is possible to derive tighter tracking error bounds with additional assumptions on the
matrix Acl(θ). We exemplarily demonstrate this for systems (3.2) with a structure

Acl(θ) =




0 1 · · · 0
...
0 0 · · · 1
−kcθ̃1 −kcθ̃2 − θ̃1 · · · −kc − θ̃dx−1




, b =




0
...
0
1




, (3.17)

where the control gain vector is defined as θ = kc[θ̃T 1]T + [0 θ̃T]T for a Hurwitz vector
θ̃ ∈ Rdx−1 and a scalar gain kc ∈ R+. Systems (3.2) with this structure can be obtained
when approximately feedback linearizing nonlinear dynamics [31], such that matrices Acl(θ)
of the form (3.17) can be frequently found.

40

3.1 Compensating Nonlinear Perturbations in Linear Control Systems

Due to the structure of Acl(θ), we can perform a coordinate transform and define ẽ1(t) =
θ̃T ẽ2(t) + edx(t), ẽ2(t) = [e1(t) · · · edx−1(t)]T . In these new coordinates, the dynamics (3.2)
can be equivalently expressed as

˙̃e1 = −kcẽ1 + f(x)− µ(x), (3.18)
˙̃e2 = Ãẽ2 + b̃ẽ1 (3.19)

where

Ã(θ̃) =




0 1 · · · 0
...
0 0 · · · 1
−θ̃1 −θ̃2 · · · −θ̃d−1




, b̃ =




0
...
0
1




. (3.20)

Therefore, we can represent the part of the dynamics affected by the model error f(·)−µ(·)
via ẽ1(·), while ẽ2(·) captures the internal dynamics. This decoupled perspective admits an
effective analysis of the tracking error, as shown in the following theorem.

Theorem 3.2. Consider a linear system (3.2) with system structure (3.17), which is con-
trolled by (3.4) with control gains θ satisfying Assumption 3.3. Assume that a Gaussian pro-
cess is used to learn a model f̂(·) = µ(·) of f(·), such that Assumption 3.2 holds on a compact
set S ⊂ X with a uniform error bound η(·) which admits a Lipschitz constant Lη. Then, the
closed-loop system (3.5) admits a probabilistic tracking error bound υ(·), if Bt)(xref(t)) ⊂ S
holds for all t ∈ R0,+, where υ(·) is defined through

υ(t) =
√
ξ2

1(t) + (1 + ‖θ̃‖)ξ2
2(t) (3.21)

ξ̇ =
[

Lη − kc Lη(1 + ‖θ̃‖),
‖U‖U−1b̃‖ λ̄(Ã(θ̃))

]
ξ +

[
1
0

]
η(xref) (3.22)

with initial condition ξ1(0) = |ẽ1(0)|, ξ2(0) = ‖U‖‖U−1ẽ2(0)‖.
Proof. Due to the definition of ẽ2, it can be directly seen that

‖e(t)‖2 = e2
d(t) + ‖ẽ2(t)‖2. (3.23)

Moreover, if follows immediately from the definition of ẽ1(t) that ed(t) = ẽ1(t)− θ̃ẽ2(t), such
that we obtain the bound

|ed(t)| ≤ |ẽ1(t)|+ ‖θ̃‖‖ẽ2(t)‖. (3.24)

Substituting this expression into (3.23) yields

‖e(t)‖ ≤ |ẽ1(t)|+ (1 + ‖θ̃‖)‖ẽ2(t)‖. (3.25)

Therefore, it remains to obtain bounds for |ẽ1(t)| and ‖ẽ2(t)‖. Due to the dynamics of ẽ1(·)
in (3.18), its solution is given by

ẽ1(t) = ẽ1(0)e−kct +
t∫

0

e−kc(t−t′)fe(t′)dt′, (3.26)

41

3 Tracking Control with Gaussian Process Models

where fe(t) = f(x(t))− µ(x(t)). Therefore, we directly obtain

|ẽ1(t)| ≤ |ẽ1(0)|e−kct +
t∫

0

e−kc(t−t′)f̄e(t′)dt′, (3.27)

where f̄e(t) can be any function such that |fe(t)| ≤ f̄e(t). It is straightforward to see that
the right-hand side of this inequality is the solution of the differential equation

ξ̇1 = −kcξ1 + f̄e (3.28)

with initial condition ξ1(0) = |ẽ1(0)|, such that we obtain the bound |ẽ1(t)| ≤ ξ1(t). In order
to derive a bound for ‖ẽ2(t)‖ we proceed analogously. The norm along the trajectory ẽ2(·)
can straightforwardly be bounded by

‖ẽ2(t)‖ ≤ ‖eÃ(θ̃)tẽ2(0)‖+
t∫

0

‖eÃ(θ̃)(t−t′)b̃‖|ẽ1(t′)|dt′ (3.29)

Using the eigendecomposition of Ã(θ̃) = UΛU−1, it can be directly seen that

‖eÃ(θ̃)tb̃‖ ≤ ‖U‖‖U−1b̃‖eλ̄(Ã(θ̃))t. (3.30)

Hence, we obtain

‖ẽ2(t)‖ ≤‖U‖‖U−1ẽ2(0)‖eλ̄(Ã(θ̃))t + ‖U‖‖U−1b̃‖
t∫

0

eλ̄(Ã(θ̃))(t−t′)ξ1(t′)dt′ (3.31)

by exploiting the upper bound ξ1(t) of |ẽ1(t)|. The right-hand side of this inequality is again
the solution of a differential equation such that ‖ẽ2(t)‖ ≤ ξ2(t) for

ξ̇2 = λ̄(Ã(θ̃))ξ2 + ‖U‖‖U−1b̃‖ξ1 (3.32)

with initial condition ξ2(0) = ‖U‖‖U−1ẽ2(0)‖. It remains to derive a bound f̄e(t) for |fe(t)|
in (3.28). Due to Assumption 3.2, it holds that |fe(t)| ≤ η(x(t)) with probability of at
least 1 − δ. Moreover, we have η(x(t)) ≤ η(xref(t)) + Lη‖e(t)‖ due to Lipschitz continuity
of η(·) guaranteed by assumption. Due to the upper bound ξ2(t) of ‖ẽ2(t)‖, it follows from
(3.25) that

|fe(t)| ≤ η(xref(t)) + Lη(ξ1(t) + (1 + ‖θ̃‖)ξ2(t)). (3.33)

Defining the right handside expression as f̄e(t), substituting it into (3.28), and writing (3.28),
(3.32) in matrix-vector form yields (3.22). Finally, due to (3.25), we have ‖e(t)‖2 ≤ ξ2

1(t) +
(1 + ‖θ̃‖)2ξ2

2(t), which concludes the proof.

While Theorem 3.1 requires solving a one-dimensional differential equation, the decoupled
approach employed in Theorem 3.2 yields a two-dimensional system describing the tracking
error bound υ(·) as illustrated in Fig. 3.2. This allows a more easily interpretable investi-
gation of the dependence of (3.22) on the parameters of the matrix Acl(θ). For example,
we can directly see that a large value of kc is advantageous for small tracking error bounds,
which is an intuitive result considering the fact that kc corresponds to the control gain when
(3.17) is obtained using feedback linearization [31]. Therefore, Theorem 3.2 demonstrates
that the dedicated derivation of tracking error bounds υ(·) for specific systems following the
ideas of Theorem 3.1 can yield improved results.

42

3.1 Compensating Nonlinear Perturbations in Linear Control Systems

[
1
0

] ∫

[
Lη − kc Lη(1 + ‖θ̃‖)
‖U‖U−1b̃‖ λ̄(Ã(θ̃))

]

√
ξ2

1 + (1 + ‖θ̃‖)ξ2
2η(xref) υ

Figure 3.2.: Illustration of the tracking error bound for feedback linearized systems with
input perturbations as a dynamical system forced by the uniform GP error
bound.

3.1.4. Numerical Evaluation
For evaluating the time-varying tracking error bound, we consider a nonlinear dynamical
system

ẋ1 = x2, ẋ2 = f(x) + g(x)u, (3.34)

where f(x) = 1−sin(2x1)+1/(1+exp(−x2)) and g(x) = 20 (1+1/2 sin (x2/4)), which is a marginal
variation of the system considered in [31]. Assuming exact knowledge of g(·), we can ap-
proximately feedback linearize this system and apply a control law (3.4) with a gain vector
θ = kc[θ̃T 1]T + [0 θ̃T]T as introduced in Section 3.1.3. This yields a two-dimensional sys-
tem of the form (3.2) with A and b defined in (3.17). In order to demonstrate the effect
of the training data distribution on the tracking error bound υ(·), we use a uniform grid
over [0 3] × [−4 4] with 25 points and σ2

on = 0.01 as training data set, such that half of
the considered state space X = [−5 5]2 is not covered by training data. A SE ARD kernel
is employed for Gaussian process regression, and the hyperparameters are optimized using
likelihood maximization. Furthermore, we employ Proposition 2.2 with τ = 0.01, δ = 0.01
and Lf = 2 for computing the uniform error bound η(·). The task is to track the circular
reference trajectory xref,1(t) = 2 sin(t) with state x1, which leads to the reference trajectory
xref(t) = [2 sin(t) 2 cos(t)]T . We aim to achieve this using θ̃ = 20 and kc = 50, which can be
shown to satisfy condition (3.13).
Snapshots of the resulting trajectory together with visualizations of the tracking error

bounds obtained using Theorem 3.1 are illustrated in Fig. 3.3. When the GP standard
deviation σ(xref(t)) is large, the tracking error bound υ(t) starts to increase, such that it
reaches its maximum just before the system enters the region with low standard deviation.
Afterward, the feedback controller reduces the tracking error until the standard deviation
starts to increase again. This leads to the minimum tracking error bound illustrated on the
left of Fig. 3.3.
This effect can also be seen in the observed tracking error as illustrated in Fig. 3.4, which

has its peaks at times when the tracking error bound υ(t) is large. Therefore, the track-
ing error bound υ(·) reflects the behavior of the observed error ‖e(t)‖ well, even though
it is rather conservative. The sources of this conservatism can be easily investigated by
determining the bound obtained when using the true model error |f(xref(t))−µ(xref(t))|
as input in (3.6). It is clearly visible that even with the knowledge of the true prediction
error, the tracking error bound exhibits some conservatism due to the linearization around

43

3 Tracking Control with Gaussian Process Models

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

−4 −2 0 2 4
x1

,variance
,error bound
,training data
,trajectory
,reference

Figure 3.3.: Snapshots of the reference trajectory and simulated trajectory together with the
illustration of the tracking error bound υ(·). Low posterior standard deviations
lead to significantly smaller tracking error bounds.

10−4

10−2

100

‖e
‖

,tracking error bound
,bound w. true pred. error
,feedback linear. bound
,tracking error

0 5 10 15 20 25 30
0

2

4

6

t

|f
(x

re
f)
−
µ

(x
re

f)
|

,bound w. known Lipschitz
,prediction error

Figure 3.4.: Top: Tracking error bounds computed using (3.6) and (3.21) with different
prediction error bounds as inputs in comparison to the observed tracking error.
Bottom: Prediction error bounds in comparison to the true model error.

the reference trajectory xref(t). By employing the dedicated tracking error bound for feed-
back linearization in Theorem 3.2, this weakness can be partially mitigated. The remaining
conservatism is a consequence of the prediction error bound η(xref(t)) as visualized at the
bottom of Fig. 3.4. Even though this bound reflects the availability of data well, it needs to
capture the probabilistic worst case and is therefore considerably larger than the actual pre-
diction error |f(xref(t))−µ(xref(t))|. This leads to the fact that the tracking error bound υ(·)
conservatively reflects the behavior of the observed tracking error ‖e(t)‖.

3.2. Certainty Equivalence Approaches for
Lyapunov-Based Control Design

While the results in the previous section provide effective tracking error bounds, they are
inherently limited to linear control systems. Therefore, nonlinear tracking control laws based
on GP models must be employed in order to achieve a flexible applicability to a broad

44

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

class of continuous-time systems. These control laws can be designed using a variety of
methods. Even though there are approaches based on methods such as control contraction
metrics [114], the vast majority of design techniques for GP-based nonlinear control laws
rely on Lyapunov stability theory [113]. This theory can be directly applied using control
Lyapunov functions, such that second order cone programs need to be solved online for
determining control inputs [115]. The required Lyapunov functions can be chosen based on
classical control principles [32], but also admit a design exploiting the GP variance [102].
While the control Lyapunov function allows a straightforward implementation, solving an
optimization problem online is computationally expensive in general.
This issue is avoided by using closed-form control laws. Such controllers exist for a broad

class of systems and can be designed using feedback linearization [31, 33], computed torque
control [26, 34], sliding mode control [116], and backstepping [110]. The design approach for
these controllers is usually fundamentally based on the equivalence principle [117], i.e., they
are designed as if the GP model would correspond to the true system dynamics, even though
robustness can be additionally increased. Due to the existence of uniform error bounds for
the GP model, the nominal stability guarantees obtained through the certainty equivalent
design can be extended to the unknown system in a weaker form under some assumptions.
This allows the straightforward derivation of tracking error bounds for specific control laws,
which depend on the GP error bound.
Due to the widespread employment of certainty equivalent controllers based on GP models,

we propose a novel, unified approach for deriving tracking error bounds. The required
analysis is inspired by Lyapunov stability theory2, which is based on the sub-level sets of
Lyapunov candidates defined as follows.

Definition 3.2. A Lyapunov candidate is a continuous function V : Rdx → R0,+, such that
there exist class K functions α1,α2 : R0,+ → R0,+ satisfying

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Rdx . (3.35)

Due to the upper and lower bound by monotonically increasing functions α1(·) and α2(·),
respectively, Lyapunov candidates can be used to measure the distance of x ∈ X to the
origin 0. This allows us to investigate the behavior of tracking errors through the derivative
of Lyapunov candidates. We exploit this by bounding the Lyapunov candidate derivative
using uniform error bounds for GP models, which allows the computation of tracking error
bounds by solving an optimization problem. Using additional continuity assumptions, this
approach can be extended into a time-varying tracking error bound depending on the local
model error. These general approaches can be directly applied to specific control laws, which
we demonstrate for the example of feedback linearization to illustrate the practicality of the
derived theory.
The remainder of this section is structured as follows. The problem setting, together with

the assumption on the certainty equivalent controller design, is formalized in Section 3.2.1. A
general approach for deriving tracking error bounds based on subsets of Lyapunov candidates
is presented in Section 3.2.2. In Section 3.2.3, the general approach is slightly restricted to
admit the derivation of tracking error bounds, which depend on the local GP error bound.
Finally, the theoretical results are illustrated for feedback linearizing control laws in Sec-
tion 3.2.4.

2A short introduction to Lyapunov stability theory can be found in Appendix A.2, but is not necessary for
the comprehension of this section.

45

3 Tracking Control with Gaussian Process Models

3.2.1. Problem Setting
We consider a general, nonlinear dynamical system

ẋ = f(x,u), (3.36)

where f : X×U→ Rdx is an unknown, continuous function, x ∈ X ⊆ Rdx denotes the state
and u ∈ U ⊆ Rdu are the control inputs. The task is to track a bounded reference trajectory
xref : R0,+ → X with the state x(t).
In order to be able to execute this task, we assume to have a data set D = {z(n),y(n)}Nn=1,

N ∈ N, where we define z = [xT uT]T , such that we can train a multi-output GP model
with mean µ : Rdx+du → Rdx and variance σ2 : Rdx+du → Rdx as discussed in Section 2.1.4.
Based on the GP model, the goal is the development of a controller π : Rdx×R0,+ → U with
accuracy guarantees. While this is a challenging problem for general nonlinear dynamical
systems (3.36) even with exact knowledge of the function f(·, ·), many suitable nonlinear
control design methods exist under additional assumptions, e.g., feedback linearization, slid-
ing mode control or backstepping [113]. Since the derivation of tracking error bounds for
such control laws is usually based on Lyapunov stability theory, we avoid a restriction to
specific control design methods through the following assumption.

Assumption 3.4. Given a GP mean function µ(·), the design method provides a continuous
control law π(·, ·), such that there exists a Lyapunov candidate V : Rdx → R0,+ satisfying

V̇nom(x−xref(t)) = ∇TV (x−xref(t))(µ(x,π(x, t))− ẋref(t)) < 0, ∀x 6= xref(t), t ∈ R0,+,
(3.37)

where we define µ(x,π(x, t)) = µ([xT πT (x, t)]T) with a slight abuse of notation.

It is important to note that this assumption does not require knowledge of the unknown
dynamics f(·, ·), but only depends on the GP mean µ(·). Therefore, it merely requires a
sufficient flexibility of the nonlinear control design method, which is capable of dealing with
the non-parametric structure of GP models. In the past few years, this flexibility has been
shown for many classical nonlinear controller design methods such as backstepping [110],
computed torque control [34], feedback linearization [31], and sliding mode control [116],
such that Assumption 3.4 is not restrictive in practice.
Since control design methods satisfying Assumption 3.4 rely solely on the GP mean func-

tion µ(·), they are ignorant of potential model errors. This perspective on control design
is known as the certainty equivalence approach [117] and directly gives rise to a nominal
dynamical system

ẋ = µ(x,π(x)). (3.38)

While it is straightforward to check that (3.37) ensures a stable tracking of the refer-
ence xref(·) with the nominal system (3.38), this does not imply guarantees for the unknown
system (3.36). Therefore, we consider the problem of deriving probabilistic tracking error
bounds as formalized in Definition 3.1 for certainty equivalent control design approaches
satisfying Assumption 3.4 based on uniform error bounds for GP models as stated in As-
sumption 3.2.

46

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

3.2.2. General Lyapunov-Based Tracking Error Bounds
In order to derive probabilistic tracking error bounds for general closed-loop systems

ẋ = f(x,π(x)), (3.39)

we bound the impact of model errors on the Lyapunov condition (3.37) using uniform er-
ror bounds for GP models. While this approach allows to straightforwardly determine if a
positive Lyapunov derivative V̇ (x(t)−xref(t)) at a given state x(t) cannot occur, this infor-
mation alone does not allow us to decide if ‖x(t) − xref(t)‖ ≤ υ(t) or even determine υ(·).
This is due to the fact that Lyapunov theory does not allow statements for specific states
but crucially relies on (sub)-level sets of the Lyapunov candidate V (·). Therefore, we deter-
mine a probabilistic tracking error bound for system (3.39) by analyzing the sub-level sets
Vc(t) = {x ∈ X : V (x− xref(t)) ≤ c}, c ∈ R0,+, which results in the following theorem.

Theorem 3.3. Consider a dynamical system (3.36) and a Gaussian process model with
mean µ(·), such that Assumption 3.2 holds for each µi(·), i = 1, . . . , dx, with uniform error
bound ηi(·) on a compact set S = Sx × Su with Sx ⊂ X, Su ⊂ U. Moreover, assume
that a controller π(·, ·) satisfying Assumption 3.4 is used to track the bounded reference
trajectory xref(·). If VV̄ (t) ⊂ int(Sx) holds for all t ∈ R0,+ and π(x, t) ∈ int(Su) holds for
all x ∈ VV̄ (t), t ∈ R0,+, where

V̄ = max
x∈S,t∈R0,+

V (x−xref(t)) (3.40)

such that V̇nom(x−xref(t)) + |∇TV (x−xref(t))|η(x,π(x, t)) ≥ 0, (3.41)

then, the closed-loop system (3.39) admits a probabilistic tracking error bound υ(·) = ῡ,
where ῡ = α−1

1 (V̄).

Proof. In order to prove this theorem, we employ the Lyapunov candidate V (·) available
from Assumption 3.4 and investigate its temporal derivative, which is given by

V̇ (e) = ∇TV (e)f(x,π(x)). (3.42)

Due to Assumption 3.2, we can bound this expression on the compact set S by

V̇ (e) ≤ V̇nom(x−xref(t)) + |∇TV (e)|η(x,π(x)). (3.43)

Note that V (e(·)) is continuous due to the continuity of V (·) and the fact that e(·) is a
solution to a differential equation. Therefore, it is straightforward to see that

V̇ (e) ≤ 0 ∀e ∈ {e ∈ Rdx : V (e) = c} (3.44)

for any c ∈ R+ implies that V (e(t)) ≤ c for V (e(0)) ≤ c since V (·) is a scalar function.
This immediately implies that a bound for V (e(·)) can be obtained by considering (3.44) as
a constraint, which yields the optimization problem

inf
c∈R+

c (3.45)

such that V̇ (e) ≤ 0 ∀e ∈ {e ∈ Rdx : V (e) = c}. (3.46)

47

3 Tracking Control with Gaussian Process Models

If we know a value c satisfying (3.44), a local optimum of this problem can be obtained via
the optimization problem

max
e∈Rdx

V (e) (3.47)

such that V̇ (e) ≥ 0 (3.48)
V (e) ≤ c, (3.49)

which employs e as optimization variable. When substituting V̇ (e) by (3.43), x and t ex-
plicitly occur in the constraint, such that we need to consider them as optimization variables
instead of e. This leads to the optimization problem

sup
x∈X,t∈R0,+

V (x−xref(t)) (3.50)

such that V̇nom(x−xref(t)) + |∇TV (x−xref(t))|η(x,π(x, t)) ≥ 0 (3.51)
V (e) ≤ c. (3.52)

It is straightforward to see that if (3.40), (3.41) results in a solution V̄ such that VV̄ (t) ⊂
int(Sx) holds for all t ∈ R0,+, V̄ is identical to the solution of (3.50) for a sufficiently
large value c such that Vc(t) ⊂ int(Sx). Therefore, V̄ upper bounds V (e(·)). Finally, the
probabilistic tracking error bound follows from (3.35), which results in υ(·) = α−1

1 (V̄) for all
x(0) ∈ X0 = VV̄ (0).

Similar as in Section 3.1, a restriction to a compact set S is required in Theorem 3.3 in
order to ensure the validity of uniform error bounds for the GP model. While this local
analysis can lead to the problem that no valid tracking error bound υ(·) is obtained by
solving (3.40), this is usually merely an artifact stemming from a misspecification of S. By
choosing a sufficiently large set S, e.g., via an iterative enlargement until VV̄ (t) ⊂ int(S) is
satisfied, this limitation can often be overcome in a practically easily implementable way.
Due to the derivation of the optimization problem (3.40), it generally results in a locally

optimal tracking error bound υ(·), whose tightness depends on the choice of S. Moreover,
the solution of (3.40) can generally not be determined analytically, but it can be straight-
forwardly approximated using numerical optimization methods. If additional knowledge
about the structure of the Lyapunov candidate and the dynamics is known, it is possible to
significantly simplify (3.41). This can enable the straightforward derivation of closed-form
expressions for V̄ when an upper bound for η(·) is available [31, 34, 110], but generally
increases the conservatism of the probabilistic tracking error bound υ(·). Therefore, a trade-
off between quality and computational complexity for determining the tracking error bound
must be found in practice.
Finally, it is important to point out that the first term in (3.41) is negative due to the cer-

tainty equivalent controller design considered in Assumption 3.4. Therefore, we can generally
improve the tracking accuracy guarantees by reducing the model uncertainty represented by
the uniform error bound η(·). However, (3.41) highlights that we do not need the same
model accuracy everywhere: when the uniform error bound is small enough to ensure the
satisfaction of (3.41) at a state x, an improvement of the model accuracy at this state does
not improve the guaranteed tracking performance. This effect is investigated in more detail
in Section 4.2.

48

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

In order to demonstrate the applicability of Theorem 3.3, we employ it in the example of
a feedback linearizing controller designed using a GP mean function. For this purpose, we
consider a dynamical system of the form

ẋ1 = x2, · · · ẋdx−1 = xdx , ẋdx = f(x,u), (3.53)

where f : X × U → R is an unknown, continuous function. Moreover, we assume that
the unknown function f(·, ·) has a control-affine structure, i.e., f(x,u) = f̃(x) + g(x)u
for unknown functions f̃ : Rdx → R and g : Rdx → R. To allow exact tracking, the
reference trajectory is defined as xref(t) = [r(t) ṙ(t) · · · ddx−1r(t)

dtdx−1]T for a dx times continuously
differentiable function r : R0,+ → R.
We reflect the structure of the function f(·) in the GP model using a composite kernel

k(z, z′) = kf̃ (x,x′) + ukg(x,x′)u′ [31], where z = [xT u]T . Therefore, it directly follows
from Section 2.1.3 that we can recover individual mean functions for f̃(·) and g(·) from
measurements of f(·) via

µf̃ (z) = kTf̃ (z1)
(
K + σ2

onIN
)−1

y, (3.54)

µg(z) = kTg (z1)U
(
K + σ2

onIN ,
)−1

y (3.55)

under the assumption of prior means equal to 0, where the diagonal matrix U ∈ RN×N is
composed of control input measurements, i.e., Un,n = u(n). This model allows the definition
of a certainty equivalent control law

π(x, t) = 1
µg(x) (πlin(x, t)− µf (x)) , (3.56)

where πlin : X → R0,+ is a linear tracking controller. In order to ensure that this controller
is well-defined, we make the following assumption.
Assumption 3.5. The GP mean function µg(·) is positive, i.e., µg(x) > 0 for all x ∈ S.

This assumption, which can be commonly found when GP models are employed in feed-
back linearizing control laws [31, 32, 37], can be easily ensured by a suitable choice of GP
hyperparameters [31, Proposition 1]. Moreover, the existence of a uniform error bound im-
mediately implies that this assumption can be guaranteed using sufficiently large data sets
if the true function g(·) is positive. Therefore, it is generally not restrictive.
Defining the linear tracking controller as

πlin(x, t) = ddxr(t)
dtdx − kc

[
θ̃T 1

]
(x− xref(t))− θ̃T




x2 − xref,2(t)
...

xdx − xref,dx(t)


 , (3.57)

where θ̃ ∈ Rdx−1 are Hurwitz coefficients, and assuming the reference exhibits the form (3.3),
we can express the closed-loop dynamics of (3.53) as

ẋ = Acl(θ)(x− xref) + b(f(x)− µf (x) + (g(x)− µg(x))π(x)) + ẋref , (3.58)

where Acl(θ) ∈ Rdx×dx and b ∈ Rdx are defined in (3.17) and θ = kc[θ̃T 1]T + [0 θ̃T]T .
This formulation directly separates the model into a nominal component given by the first
summand and a model error described by the second summand. Therefore, it allows the
straightforward application of Theorem 3.3, which yields the following result.

49

3 Tracking Control with Gaussian Process Models

Corollary 3.1. Consider a dynamical system (3.53), prior Gaussian processes GP(0, kf̃ (·, ·)),
GP(0, kg(·, ·)) with Lipschitz continuous kernels such that Assumption 2.6 is satisfied, and
training data D with observation noise ε(n), n = 1, . . . ,N , fulfilling Assumption 2.1. More-
over, assume that a controller (3.56) with model µg(·) satisfying Assumption 3.5 is used to
track the bounded reference trajectory xref(·). Let the symmetric, positive definite matrix
P ∈ Rdx×dx denote the solution to the Lyapunov equation Acl(θ)TP + PAcl(θ) = −I for
Acl(θ) defined in (3.17). If VV̄ (t) ⊂ int(S) holds for all t ∈ R0,+, where

V̄ = max
x∈S,t∈R0,+

V (x−xref(t)) (3.59)

such that ‖x−xref(t)‖2 ≤ |(x−xref(t))TPb|
(
ηf̃ (x)+ ηg(x)

µg(x)
∣∣∣πlin(x, t)−µf̃ (x)

∣∣∣
)

(3.60)

with ηf̃ (·) and ηg(·) defined through the combination of Corollary 2.4 and Corollary 2.5,
then, the closed-loop system (3.58) admits a probabilistic tracking error bound υ(·) = ῡ,
where ῡ =

√
V̄/λ(P).

Proof. Due to Lemma 2.2, Lemma 2.3 and Theorem 2.3, Hölder continuity of µf̃ (·), σf̃ (·),
f̃(·), µg(·), σg(·) and g(·) is guaranteed. Therefore, probabilistic uniform error bounds for
f̃(·) and g(·) are guaranteed through the combination of Corollary 2.4 and Corollary 2.5.
Moreover, it is obvious from the closed-loop dynamics (3.58) that V (e) = eTPe is a Lya-
punov candidate satisfying Assumption 3.4 with ∇V (e) = 2Pe. Hence, it directly follows
from Theorem 3.3 that

V̄ = max
x∈S,t∈R0,+

V (x−xref(t)) (3.61)

such that ‖x−xref(t)‖2 ≤ 2|(x−xref(t))TPb|
(
ηf̃ (x)+ηg(x) |π(x, t)|

)
(3.62)

induces a probabilistic tracking error bound. Since µg(·) is positive by assumption, we can
simplify this optimization problem to (3.59) using the definition of π(·, ·) in (3.56). Finally,
the tracking error bound ῡ follows from λ(P)‖e‖2 ≤ V (e).

This corollary demonstrates that Theorem 3.3 admits the straightforward derivation of a
simple constraint (3.60) by exploiting the additional structure provided by the restriction
to feedback linearizing controllers. Moreover, it provides a helpful insight into the impact
of the model accuracy. In order to see this, assume that the quotient ηg(x)/µg(x) in (3.60) is
upper bounded by a constant c ∈ R. Then, we can exploit the definition of πlin(·, ·) to show
that

−|eT |(ÂTP + PÂ|e| ≤ 2|eTPb|
(
ηf̃ (x) + ηg(x)

∣∣∣∣∣
ddxr(t)

dtdx − µf̃ (x)
∣∣∣∣∣

)
, (3.63)

where

Â =




0 1 · · · 0
...
0 0 · · · 1

(c− 1)kcθ̃1 (c− 1)(kcθ̃2 + θ̃1) · · · (c− 1)(kc + θ̃dx−1)




. (3.64)

50

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

Therefore, the model error in g(·) effectively causes a control gain scaling by a factor 1− c.
If this factor is positive, we can simply increase the control gain kc to reduce the norm of Pb
for P defined via ÂTP +PÂ = −I. Hence, an arbitrary small tracking error bound can be
achieved with sufficiently large control gain kc if the uniform error bound ηg(·) is sufficiently
small compared to µg(·).
Note that the right side of (3.63) grows linearly with the error e when bounded kernels

kf (·, ·) and kg(·, ·) are employed, while the left side increases quadratically. Furthermore,
the Bayesian uniform error bound in Theorem 2.2 depends logarithmically on the extension
of S. Therefore, ηg(x)/µg(x) < 1 ensures that it is always possible to find a sufficiently large
set S for determining a valid tracking error bound υ(·), which underlines the statement that
the necessary restriction to a compact set S in Theorem 3.3 is often not a severe limitation.

3.2.3. Linearization-Based Time-Varying Accuracy Guarantees
While Theorem 3.3 allows a flexible application to a wide class of dynamical systems, the
resulting tracking error bounds υ(·) exhibit the same size globally along the whole trajectory.
In fact, a small region around one point along the reference trajectory xref(·) with high
uniform error bound η(·) can cause a large tracking error bound along the whole trajectory.
Therefore, (3.40) can only partially reflect the local model accuracy. In the following, we
show that this limitation can be overcome using additional assumptions, such as a further
restriction of the admissible Lyapunov candidates.

Assumption 3.6. The design method provides a continuous control law π(·, ·), such that
there exists a twice differentiable Lyapunov candidate V : Rdx → R0,+ satisfying

a1‖e‖2 ≤ V (e) ≤ a2‖e‖2, (3.65)
V̇nom(x−xref(t)) ≤ −a3‖x−xref(t)‖2, ∀x ∈ X, t ∈ R0,+. (3.66)

This assumption effectively requires exponential stability of the nominal closed-loop sys-
tem [113], which can be ensured for control laws such as computed torque [34] and feedback
linearization [31]. Therefore, it is not overly restrictive in practice.
Based on Assumption 3.6, we can linearize the Lyapunov derivative condition (3.41)

around the reference trajectory. This allows us to express the tracking error bound through
a differential equation, as shown in the following theorem.

Theorem 3.4. Consider a dynamical system (3.36) and a Gaussian process model with
mean µ(·), such that Assumption 3.2 holds for each µi(·), i = 1, . . . , dx, with Lipschitz
continuous uniform error bound ηi(·) on a compact set S = Sx×Su with Sx⊂ X, Su⊂ U.
Moreover, assume that a controller π(·, ·) satisfying Assumption 3.6 is used to track the
bounded reference trajectory xref(·). If

a3 > LηL∇V (1 + Lπ), (3.67)

Vξ(t)(t) ⊂ int(Sx) holds for all t ∈ R0,+ and π(x, t) ∈ int(Su) holds for all x ∈ Vξ(t)(t),
t ∈ R0,+, where ξ(·) is the solution to the differential equation

ξ̇ = −a3 + LηL∇V (1 + Lπ)
a2

ξ + L∇V ‖η(zref(t))‖√
a1

√
ξ (3.68)

51

3 Tracking Control with Gaussian Process Models

for initial condition ξ(0) = V (x(0)−xref(0)) > 0 and zref(·) = [xTref(·) πT (xref(·), ·)]T , then,
the closed-loop system (3.39) admits a probabilistic tracking error bound υ(t) =

√
ξ(t)/a1.

Proof. Since the assumptions of Theorem 3.3 are satisfied, it holds that

V̇ (e) ≤ V̇nom(x−xref(t)) + ‖∇V (e)‖‖η(x,π(x, t))‖. (3.69)

Moreover, Assumption 3.6 implies that

V̇ (e) ≤ −a3‖e‖2 + ‖∇V (e)‖‖η(x,π(x, t))‖ (3.70)
≤ −a3‖e‖2 + L∇V ‖η(x,π(x, t))‖‖e‖ (3.71)

where the second line follows from differentiability of ∇V (·) on a compact set and the
fact that (3.65) requires ∇V (0) = 0. Since η(·) is Lipschitz continuous, we can linearize
η(x,π(x, t)) around xref(t), which results in

V̇ (e) ≤ (−a3 + L∇VLη(1 + Lπ)) ‖e‖2 + L∇V ‖η(zref(t))‖‖e‖. (3.72)

Due to (3.67), we can exploit (3.65) to bound this expression completely in terms of V (e)
yielding

V̇ (e) ≤ −a3 + LηL∇V (1 + Lπ)
a2

V (e) + L∇V ‖η(zref(t))‖
√
V (e)
a1

. (3.73)

Therefore, it directly follows from the comparison lemma [113, Lemma 3.4] that V (e(t)) is
bounded by ξ(t) defined through the differential equation (3.68), such that the probabilistic
tracking error bound υ(·) can be obtained by employing the lower bound in (3.65). Finally,
note that stationary points of the Lyapunov candidate V (·) do not allow us to draw conclu-
sions about the transient behavior of the tracking error e(·), such we need can only ensure
a bound for initial conditions e(0) 6= 0 [118].

Condition (3.67) ensures the boundedness of ξ(·), which is necessary due to the restriction
of uniform error bounds for GP models to compact sets S. While a3 can often be increased
by increasing control gains in practice, this also causes a growth of Lπ. Therefore, the satis-
faction crucially relies on a sufficiently slowly varying uniform error bound η(·), which can
be locally achieved using a sufficiently high data density in a neighborhood of the reference
trajectory. Therefore, this assumption poses a relevant restriction, but it can be satisfied
through a careful design of the GP model.
Since (3.68) only depends on the uniform error bound along the reference trajectory xref(·),

it can be straightforwardly solved using numerical integration methods in practice. The
uniform error bound η(zref(t)) can hereby be considered as an external input forcing a
stable dynamical system. Therefore, the tracking error bound converges to a stationary
point if η(zref(t)) is almost constant but can also capture transient behavior if it changes.
This interpretation allows a straightforward computation of an upper bound for υ(·) by
considering the worst case error bound supt∈R0,+ ‖η(zref(t))‖ as a constant input to (3.72),
such that we obtain

V̇ (e) ≤ 0 ∀e : ‖e‖ ≥
L∇V sup

t∈R0,+
‖η(zref(t))‖

a3 − L∇VLη(1 + Lπ) . (3.74)

52

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

Thereby, we directly obtain the constant tracking error bound

‖e(t)‖ ≤

√
a2L∇V sup

t∈R0,+
‖η(zref(t))‖

√
a1(a3 − L∇VLη(1 + Lπ)) (3.75)

from (3.65). When the trajectory xref(·) is periodic or has a finite length, this supremum
can be easily computed numerically, such that (3.75) can be efficiently determined.
In order to demonstrate the practical applicability of Theorem 3.4, we consider again the

example of a feedback linearizing controller designed using a GP mean function. While we
assume a system of the form (3.53), we slightly simplify the scenario by restricting it to
known functions g(·). Therefore, we only have to learn a GP model µ(·) of the unknown
function f̃(·), where we drop the index f̃ for notational simplicity. This allows us to define
the controller by slightly adapting (3.56), which yields

π(x, t) = 1
g(x) (πlin(x, t)− µ(x)) . (3.76)

Since this controller requires the reciprocal value of g(x), we need to adapt 3.5 to ensure
well-defined control inputs. This leads to the following assumption.

Assumption 3.7. The function g(·) is known and positive, i.e., g(x) > 0 for all x ∈ X.

Using this assumption, it directly follows that the closed-loop dynamics of system (3.53)
controlled by (3.76) with a reference trajectory of the form (3.3) are given by

ẋ = Acl(θ)(x− xref(t)) + b(f̃(x)− µ(x)) + ẋref(t). (3.77)

As the uniform error bound for the unknown function f̃(·) does not depend on the control
input u, it is possible to increase the decay rate a3 without a potential increase of the
linearization error. This allows the derivation of a straightforward condition to ensure (3.67)
as shown in the following corollary.

Corollary 3.2. Consider a dynamical system (3.53) with function g(·) satisfying Assump-
tion 3.7, a prior Gaussian process GP(0, k(·, ·)) with Lipschitz continuous kernel such that
Assumption 2.6 is satisfied, and training data D with observation noise ε(n), n = 1, . . . ,N ,
fulfilling Assumption 2.1. Moreover, assume that a controller (3.76) is used to track the
bounded reference trajectory xref(·). Let the symmetric, positive definite matrix P ∈ Rdx×dx

denote the solution to the Lyapunov equation Acl(θ)TP +PAcl(θ) = −I for Acl(θ) defined
in (3.17). If

‖Pb‖ < 1
2Lη

, (3.78)

and Vξ(t)(t) ⊂ int(S) holds for all t ∈ R0,+, where

ξ(t) ≤
2
√
λ̄(P)‖Pb‖ max

t′∈[0,t]
‖η(zref(t′))‖

(1− 2‖Pb‖Lη)
, (3.79)

then, the closed-loop system (3.77) admits a probabilistic tracking error bound υ(t) = ξ(t)/
√
λ(P).

53

3 Tracking Control with Gaussian Process Models

V (e)

e

e = 0

ė = Acl(θ)e

bLη‖e‖

bη(xref)

unknown
dynamics

Figure 3.5.: Illustration of the linearization-based Lyapunov approach for feedback lineariz-
ing control laws: The linearization around the reference causes an additional
linear error term in the Lyapunov derivative.

Proof. It is trivial to see that for V (e) = eTPe, such that we have a1 = λ(P) and a2 = λ̄(P)
in (3.65). Moreover, due to Corollary 3.1, we have

V̇ (e) ≤ −‖e‖2 + 2|eTPb|η(x), (3.80)

such that a3 = 1 holds in (3.66). Since this expression is independent of the control law,
the linearization of the control is not necessary, and we can simply set Lπ = 0. Finally, it is
straightforward to see that

‖∇2eTPb‖ = ‖Pb‖, (3.81)

such that (3.78) and (3.79) immediately follow from Theorem 3.4 and (3.75).

Since the linearization of the control law is not necessary due to Assumption 3.7, Corol-
lary 3.2 relies on a decoupling of error sources as illustrated in Fig. 3.5. While the nominal
Lyapunov component −‖e‖2 is guaranteed to be negative and thus ė = Acl(θ)e points
towards the inside of the Lyapunov sub-level set, the error bound along the reference trajec-
tory η(xref(t)) and the linearization error Lη‖e(t)‖ cause an opposite effect. As long as the
nominal component is dominating, a bounded tracking error can be ensured.
This straightforward approach immediately results in condition (3.78). In this condition,

the matrix P is the parameter we can change since its values depend on the dynamics matrix
Acl(θ). Due to the structure of Acl(θ) defined in (3.17), it is possible to achieve arbitrar-
ily small values ‖Pb‖ through suitably high control gains θ. Therefore, (3.78) effectively
restricts the admissible values of θ, such that the convergence to the reference trajectory is
fast enough compared to the rate of change of the uniform error bound represented by Lη.
While this can cause the inapplicability of Theorem 3.4 to systems that admit a probabilistic
tracking error bound according to Theorem 3.3, it significantly simplifies the computation.
Therefore, it provides a useful instrument when the computationally efficient evaluation of
a probabilistic tracking error bound is required.

Remark 3.1. It is important that (3.79) can only partially reflect the temporal behavior of
the tracking error bound since it does not decrease if ‖η(zref(·))‖ reduces over time. Despite
this limitation, it yields a practically useful error bound υ(·), in particular for finite time
intervals [t1, t2] for t1, t2 ∈ R0,+. If it holds that ‖e(t2)‖ ≤ ξ̃(t2)/

√
λ(P), where

ξ̃(t) ≤ 2
√
λ̄(P)‖Pb‖‖η(zref(t))‖

(1− 2‖Pb‖Lη)
, (3.82)

54

3.2 Certainty Equivalence Approaches for Lyapunov-Based Control Design

then, we can apply the Corollary 3.2 for another time interval [t2, t3] for t3 ∈ R0,+. Since the
transfer of sub-level set guarantees to the tracking error bound υ(·) is often conservative, this
property is frequently satisfied in practice. Therefore, a sequential application of Corollary 3.2
can provide a practical method to reflect a decreasing tracking error bound. This approach
leads to the heuristic tracking error bound υ̃(·) = ξ̃(·)/

√
λ(P) for infinitesimally small time

intervals.

3.2.4. Numerical Evaluation
We demonstrate the effectiveness of the derived theoretical results by applying them to
the example in Section 3.1.4. Conforming with the notation in this section, this means we
consider a system

ẋ1 = x2, ẋ2 = f̃(x) + g(x)u, (3.83)

with f̃(x) = 1 − sin(2x1) + 1/(1+exp(−x2)) and g(x) = 20 (1 + 1/2 sin (x2/4)) controlled by a
feedback linearizing controller. For the beginning, we assume that both f̃(·) and g(·) are
unknown and put a prior GP distribution GP(0, kf̃ (·, ·)) and GP(20, kg(·, ·)) with SE kernels
kf̃ (·, ·), kg(·, ·) on them. Note that the prior mean for g(·) does not affect the theoretical
results as discussed in Remark 2.2. We generate Nx = 49 training samples for the states
x on a uniform grid over [−2.5, 2.5]2 and Nu = 2 training samples for the control inputs u
on a grid over [0, 5]. Training targets are determined for all combinations of training states
and control inputs, which leads to a data set of size N = 98. The hyperparameters of the
GPs are determined using log-likelihood maximization as explained in Section 2.1.5. Based
on the resulting GP model, we define a feedback linearizing control law (3.56) with tracking
controller (3.57), where we use kc = 30 and θ = 5 to track a reference xref(t) = [r(t) ṙ(t)]T
for r(t) = 2 sin(t). For computing the tracking error bound in Corollary 3.1, we employ a
uniform error bound based on Theorem 2.2 with δ = 0.01. The required Lipschitz constants
for the GP mean and standard deviation functions are computed numerically, while the
Lipschitz constants for f̃(·) and g(·) are determined using Theorem 2.3. Moreover, the
optimization problem (3.59) is solved by discretizing the state space using a uniform grid
over [−2.5, 2.5]2 with Ntest,x = 10000 and the time interval [0, 2π] with Ntest,t = 100 uniformly
spaced samples.
A snapshot of the resulting Lyapunov derivative bound (3.43) is illustrated in Fig. 3.6. Due

to the uniform grid data, the uniform error bound is almost constant, such that the derivative
bound is dominated by the quadratic growth of the Lyapunov candidate V (e) = eTPe.
This leads to merely a small sub-level set VV̄ (t) around the reference position with possibly
positive Lyapunov derivative bound. Due to the strong elliptical shape of this set, the
resulting tracking error bound is rather conservative.
This can also be seen when comparing the tracking error bound υ(·) obtained from Corol-

lary 3.1 to the actually observed error as depicted in Fig. 3.7. The tracking error bound
holds during the complete simulation but is rather conservative. This conservatism is caused
by the shape of the sub-level set because the value of the Lyapunov candidate itself comes
quite close to the bound V̄ defined in (3.59). Therefore, the Lyapunov-based approach for
deriving tracking error bounds provides a high flexibility but requires suitable Lyapunov
candidates to achieve tight tracking error bounds.

55

3 Tracking Control with Gaussian Process Models

−2 0 2

−2

0

2

x1

x
2

,Lyapunov derivative bound
,error bound
,Lyapunov sub-level set
,training data
,trajectory
,reference

Figure 3.6.: Snapshot of the Lyapunov derivative bound and the tracking error bound for
feedback linearization with a GP model resulting from Corollary 3.1.

10−3

10−2

10−1

100

‖e
‖ ,tracking error

,error bound

0 5 10 15 20 25 30

10−5

10−4

10−3

10−2

t

V
(e

(t
)) ,Lyapunov candidate value

,Lyapunov candidate bound

Figure 3.7.: Top: Lyapunov-based error bound computed using Corollary 3.1 in comparison
to the true error. Bottom: Value of the Lyapunov candidate along trajectories
together with its bound (3.59).

In addition to the general Lyapunov-based tracking error bound relying on Theorem 3.3,
we also evaluate the computationally more efficient, linearization-based approach in Theo-
rem 3.4. For this purpose, we consider the same setup as before but assume that g(·) is
known. Therefore, we can employ (3.76) as feedback linearizing control law with a tracking
controller (3.57), where we use kc = 100 and θ = 1. Moreover, we change the training data
set of states x to a uniform grid [0, 2.5] × [−2.5, 2.5] in order to illustrate the effect of the
training data density on the tracking error bound.
Snapshots of the heuristic error bound ξ̃(·)/

√
λ(P) based on (3.82) for this setting are de-

picted in Fig. 3.8. When the GP variance is high, the uniform error bound is large, which
results in a high value for the heuristic error bound ξ̃(·)/

√
λ(P). Thereby, a direct relationship

between data density and tracking error can be established.
As discussed in 3.1, this relationship can also be partially transferred to the certifiable

tracking error bound in Corollary 3.2. For this purpose, (3.79) is evaluated for time intervals
[t, t+ ∆t]. At the end of each interval, it is checked if the actual error is sufficiently small to
admit the computation of (3.79) for the following time interval. This procedure is repeated
until the end of the simulation time. The resulting error bounds for small time intervals with

56

3.3 Discussion

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

−4 −2 0 2 4
x1

,variance
,heurist. error bound
,training data
,trajectory
,reference

Figure 3.8.: Snapshots of the Lipschitz-based heuristic tracking error bound adapted from
Corollary 3.2 in different uncertainty regimes. The tracking error bound is
strongly related to the GP variance.

0 5 10 15 20 25 30
10−3

10−2

10−1

100

t

‖e
‖

,tracking error
,heurist. error bound
,error bound, short time int.
,error bound, long time int.

Figure 3.9.: Lipschitz-based tracking error bound (3.2) for different time interval lengths
together with the limit case for infinitesimally small intervals (3.82) as heuristic
error bound ξ̃(·)/

√
λ(P).

∆t = 0.25 and large intervals with ∆t = 2.5 are illustrated in Fig. 3.9. It can be clearly seen
that large time intervals can sometimes lead to a significant increase in conservatism. The
tracking error bound based on (3.79) for the short time interval is barely distinguishable
from the heuristic, which emphasizes the practical strength of the heuristic (3.82) as a
simple approximation. Overall, it must be noted that the computational efficiency obtained
from the linearization-based approach in Theorem 3.4 comes at the cost of a significantly
increased conservatism compared to the general approach of Theorem 3.3. Therefore, both
approaches offer practical advantages, such that the suitable tracking error bound must be
chosen dependent on the application requirements.

3.3. Discussion
The tracking error bounds in this chapter are applicable to a broad class of systems, but they
are generally restricted to controllers designed for nominal dynamics defined through the GP
mean function. Since the presented results are based on uniform error bounds for GP models,
they can still be applied to certain forms of robust controllers, e.g., [26]. However, they are
clearly not applicable to probabilistic design approaches as considered, e.g., in [105]. In
general, there are many other approaches to design control laws for continuous-time systems
using GP regression, such as black-box optimization [119] and sampling-based methods [120].
Moreover, other control goals such as optimality [121] and safety [81, 122] can be addressed,

57

3 Tracking Control with Gaussian Process Models

too. Therefore, we are convinced that our results are an essential step towards a more unified
theory for the analysis of GP-based control laws, but they are certainly only the beginning
of a holistic perspective.
The approach based on linear systems theory offers a remarkably straightforward and

effective analysis. While we only exploit this for the derivation of tracking error bounds, it
can be similarly used for the investigation of safety conditions [123]. Moreover, it can be
straightforwardly extended to scenarios other than input uncertainties, although this requires
more sophisticated control laws than the direct nonlinearity compensation considered in
Section 3.1. However, this flexible applicability to different problems comes at the price of
a necessary restriction to systems behaving almost linearly.
For general dynamical systems, directly solving the differential equation is usually impos-

sible, such that we need to represent relevant properties through a suitable proxy function.
Lyapunov candidates are such proxies for tracking errors, which we exploit for different error
bounds in Section 3.2. These ideas can be straightforwardly extended to safety concepts
using control barrier functions [124], although it becomes necessary to explicitly take the
GP model error into account. Due to the analysis using a proxy function, a broad class of
nonlinear dynamical systems can be analyzed, but often the resulting guarantees are rather
conservative. This is caused by the incapability of proxies to describe the full dynamic be-
havior as illustrated for the Lyapunov candidate in 3.2.4. In addition to this conservatism,
proxies generally increase the complexity of the analysis, such that numerical methods are
often required for solving the arising problems exactly. By employing suitable approxima-
tions, this weakness can be partially mitigated in practice. Therefore, theoretical properties
of general dynamical systems with GP-based control laws can be effectively analyzed, but
multiple practical challenges must be addressed.

58

Learning for Control with Arbi-
trary Accuracy Guarantees 4.

When employing Gaussian process regression for inferring a model of an unknown function,
the model accuracy crucially depends on the available training data. In general, the re-
lationship between the learning error and the training data is well understood [125], and
the informativeness of training data with respect to the global approximation error can be
effectively bounded using information-theoretic concepts [67]. However, such results have a
global nature over a considered compact domain, which is agnostic of specific model accu-
racy requirements for the derivation of control performance guarantees. Therefore a control-
oriented analysis of the training data requirements beyond uniform model approximation is
necessary, similarly as in GP-based optimization [126].
On the one hand, this requires a fundamental understanding of how the training data

locally affects uniform error bounds for GP regression, such that we can develop approaches
to reduce it where necessary. On the other hand, we need to know where a high model
accuracy is necessary to ensure high control performance guarantees. Such insight is nec-
essary to develop effective learning strategies to ensure arbitrarily high tracking accuracy
guarantees for GP-based control laws by generating suitable training data. Therefore, it is
critical to achieving one of the key promises of data-driven control: certifiably improving the
performance of control techniques using measurements of the controlled system.
In this section, we address these challenging problems by first investigating the local

data dependency of uniform error bounds in Section 4.1. Based on the results derived in
this section, we investigate the explicit data dependency of tracking accuracy guarantees in
Section 4.2. In Section 4.3, the gained insights are used to develop several approaches for
data generation in closed-loop control, which guarantee tracking error bounds for GP-based
control. The chapter concludes by discussing the derived theoretical results in Section 4.4.

4.1. Data Dependency of Uniform Error Bounds
For investigating the data dependency of uniform error bounds for GP regression, we can
make use of the structure of the bounds in Theorem 2.1 and Proposition 2.2, which allows us
to decouple the dependency into two core components. On the one hand, the uniform error
bounds directly depend on the training data, e.g., through the Gram matrix in Theorem 2.1
or simply the number of samples in Proposition 2.2. For RKHS based approaches, this
dependency is well understood [68] and can be bounded through the maximum information
gain [67]. In contrast, such an asymptotic relationship has not yet been established for
Bayesian uniform error bounds and requires a suitable choice for the virtual grid constants.
On the other hand, the GP standard deviation, which is a core component of the presented

uniform error bounds in Chapter 2, crucially depends on the training inputs. Bounds for the

59

4 Learning for Control with Arbitrary Accuracy Guarantees

standard deviation can be straightforwardly obtained for noise-free GP regression using re-
sults for kernel-based interpolation. By exploiting spectral properties of kernels, an effective
analysis of the asymptotic behavior is possible [127], but such approaches are not suited to
bound the GP standard deviation for fixed data sets. Moreover, classical results for scattered
data approximation can be applied due to the equivalence of the posterior variance and the
power function [62]. Therefore, classical results [59, 61] as well as newer findings [128, 129]
can be directly used for noise-free GP regression. However, it is generally not clear how
these results can be generalized to regression with noisy observations. Bounds for the case
of general GP regression have mostly been derived as intermediate results. For example, a
standard deviation bound for GPs with isotropic kernels has been shown in the context of
Bayesian optimization [130] while bounds for general kernels have been investigated within
the analysis of average learning curves [131, 132] and experimental design [133]. Although
these bounds are well-suited for low data regimes, they fail to capture the asymptotic be-
havior. Therefore, upper bounds on the GP standard deviation are missing, which allow us
to describe the learning behavior over the whole range of training data densities.
In order to address this lack of theoretical understanding about the relationship between

training data and uniform error bounds, we derive an explicit dependency of the uniform
error bound on a measure for the training data density. For this purpose, we propose a
kernel-based measure to evaluate the training data density, whose flexibility we demonstrate
by exemplarily illustrating it for squared exponential (SE), Matérn class and linear kernels.
Moreover, we show that our considered uniform error bounds directly depend on this data
density measure. This allows us to prove vanishing regression errors with growing data
density using RKHS-based and Bayesian uniform error bounds.
The remainder of this section, which is based on our work [36], is structured as follows. The

problem setting is formalized in Section 4.1.1. In Section 4.1.2, a novel bound for the asymp-
totic behavior of our Bayesian uniform error bounds in the limit of infinitely many training
samples is derived, and an analogous result for RKHS-based bounds is restated. Since these
results retain their dependency on the GP standard deviation, we develop a measure for
the density of training data, which reflects the data requirements encoded through kernels,
and prove a vanishing GP variance with growing data density in Section 4.1.3. Finally, we
demonstrate the intuitiveness of the proposed density measure by exemplarily bounding it
in terms of Euclidean distances for SE, Matérn class, and linear kernels in Section 4.1.4.

4.1.1. Problem Setting
Based on the probabilistic uniform error bounds η(·) derived in Chapter 2, our goal is the
derivation of conditions on the training data D which ensure that the error of GP regression
stays below a desired value η̄ ∈ R+. This can be formulated as the problem of finding a
measure of data density h : S → R+, which is capable of capturing the dependency of the
error bound η(·) on the data distribution. Since the error bounds η(·) derived in Chapter 2
strongly depend on the GP standard deviation σ(·), a suitable density measure h(·) must
reflect the data dependency induced by the kernel k(·, ·). Moreover, the existence of a lower
bound h ∈ R0,+ of the density measure h(·) for a data set D must guarantee the implication

h(z) ≥ h ⇒ η(z) ≤ η̄(h) (4.1)
for a bounding function η̄ : R0,+ → R0,+. As observation noise complicates the extraction
of model knowledge from training data, the function η̄(·) can change with the observation

60

4.1 Data Dependency of Uniform Error Bounds

noise variance σ2
on, but it must vanish for an infinite data density regardless of it, i.e.,

lim
h→∞

η̄(h) = 0. (4.2)

Since these conditions ensure that arbitrary small uniform error bounds η̄(h) can be achieved
using a data set D with sufficiently high density h(·), we consider the problem of deriving a
data density measure h(·) along with the bounding function η̄(·) satisfying (4.1) and (4.2)
in this section.

4.1.2. Asymptotic Bounds for the Learning Error
In order to derive a data density measure h(·) satisfying (4.1) and (4.2), it is necessary
to analyze the asymptotic behavior of the uniform error bound considered in Section 2.2
and Section 2.3 for N →∞. In order to limit the complexity of this analysis, we consider a
constant GP standard deviation σ(·) in this subsection, such that we can focus on other data
dependencies and remaining unspecified parameters. Moreover, we restrict our analysis to
the stochastic noise scenario, e.g., Theorem 2.1 and Proposition 2.2, due to its admissibility
for both RKHS-based and Bayesian uniform error bounds.
Due to the explicit dependency of the RKHS-based uniform error bounds in Section 2.2.2

on the kernel matrix, their asymptotic behavior is determined by the employed kernel k(·, ·).
This is exemplarily shown for linear and SE ARD kernels in the following result, which is a
direct consequence of [67, 68].

Theorem 4.1. Consider an unknown function f(·) ∈ HS
k satisfying Assumption 2.4 and a

prior Gaussian process GP(0, k(·, ·)). Moreover, assume that the observation noise satisfies
Assumption 2.5. Then, for every δ ∈ (0, 1), the posterior mean function µ(·) defined in (2.26)
admits a uniform error bound with probability 1 − δ on the compact set S ⊂ Rdz , whose
asymptotic behavior

1. for linear kernels is given by

η(z) ∈ O



1 +

√
log

(1
δ

)
+
√
dz log(N)


σ(z)


 ; (4.3)

2. for SE ARD kernels is given by

η(z) ∈ O



1 +

√
log

(1
δ

)
+ (log(N))

dz+1
2


σ(z)


 . (4.4)

Proof. Due to [68, Lemma 3], it holds that

γN ≥ log


√√√√det

(
IN + 1

σ2
on
K

)
 , (4.5)

where γN is the maximum information gain defined as

γN = max
Z∈Rdz×N∈SN

I(yZ ,fZ) (4.6)

61

4 Learning for Control with Arbitrary Accuracy Guarantees

for yZ = fZ + ε with fZ,i = f(xi) and ε the concatenation of observation noise realizations.
The function I : RN × RN → R0,+ is the mutual information, which is given by

I(yZ ,fZ) = 1
2 log(det(IN + σ2

onKZ)) (4.7)

for Gaussian random vectors yZ and fZ . Using (4.5), Theorem 2.1 guarantees a probabilistic
uniform error bound

η(z) ≤

Γ +

√
2σ̃on

σon

√
γN + 1 + log

(1
δ

)
σ(z). (4.8)

Finally, the result follows from upper bounds on the information gain γN derived in [67,
Theorem 5], which results in (4.3) and (4.4).

This result shows that an arbitrarily small uniform error bound η(z) can be achieved if
the GP standard deviation σ(z) decays fast enough. The required decrease rate is reciprocal
logarithmic, regardless if a SE ARD or a linear kernel is used. However, the choice of the
kernel determines how the dimension of the training inputs affects the increase rate of the
scaling factor for σ(·).
While the RKHS-based uniform error bound in Theorem 4.1 depends explicitly on the

kernel matrix, the Bayesian bound in Proposition 2.2 depends on the unspecified parameter τ .
Moreover, the required parameters of Hölder continuity are partially data-dependent. As
shown in the following theorem, the degree of freedom offered by τ allows to compensate for
the asymptotic behavior of Hölder coefficients.

Theorem 4.2. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
defined through a kernel k(·, ·) with continuous partial derivatives up to the fourth order
such that Assumption 2.6 is satisfied, and training data D with observation noise ε(n),
n = 1, . . . ,N , fulfilling Assumption 2.1. Then, for every δ ∈ (0, 1) and τ ∈ O(1/N2), the
posterior mean function µ(·) defined in (2.26) admits a probabilistic uniform error bound
asymptotically behaving as

η(z) ∈ O


√√√√dz log

(
Ndz
δ

)(
σ(z) + 1

N

)
 . (4.9)

Proof. Due to Proposition 2.2 it holds that

η(z) =

√√√√2 log
(
M(τ ,S)

δ

)
σ(z) + Lµτ

pµ + Lfτ
pf + Lστ

pσ

√√√√2 log
(
M(τ ,S)
δη

)
(4.10)

with probability of at least 1 − δη for δη ∈ (0, 1). A trivial bound for the covering number
can be obtained by considering a uniform grid over the cube containing X. This approach
leads to

M(τ , S̃) ≤


1 +

√
dz

max
z,z′∈S

‖z − z′‖∞
2τ




dz

. (4.11)

62

4.1 Data Dependency of Uniform Error Bounds

Therefore, we have
√√√√2 log

(
M(τ ,S)

δ

)
σ(z) ∈ O



√√√√dz log

(
dz
τδη

)
σ(z)


 (4.12)

for N →∞ and τ → 0. In order to derive a bound for the parameters of Hölder continuity,
we employ the assumed differentiability of the kernel k(·, ·), which implies its Lipschitz
continuity on the compact set S. Moreover, it guarantees the existence of a probabilistic
Lipschitz constant Lf for the unknown function f(·) on S due Theorem 2.3, such that pf = 1
and

Lfτ ∈ O


√√√√dz log

(
dz
δL

)
τ


 (4.13)

holds with probability 1− δL for δL ∈ (0, 1) for τ → 0. We can similarly derive a bound for
the Hölder coefficient of the GP mean µ(·). The continuous differentiability of the kernel
k(·, ·) implies its Lipschitz continuity on S, i.e., pk = 1. Furthermore, Lemma 2.2 ensures
that the Hölder coefficient, which is the Lipschitz constant of µ(·), is given by

Lµ ≤ Lk
√
N
∥∥∥(K + σ2

onIN)−1y
∥∥∥ . (4.14)

Since the Gram matrix K is positive semidefinite and f(·) is bounded by some f̄ due to
Lipschitz continuity and a compact domain X, we can bound ‖(K + σ2

onIN)−1y‖ by
∥∥∥(K + σ2

onIN)−1y
∥∥∥ ≤ ‖y‖

λ(K + σ2
onIN)

≤
√
Nf̄ + ‖ε‖
σ2

on
, (4.15)

where ε is a vector of N i.i.d. zero mean Gaussian random variables with variance σ2
on.

Therefore, it follows that ‖ε‖2
σ2

on
∼ χ2

N . Due to [70], with probability of at least 1 − δε,
δε ∈ (0, 1), we have

‖ε‖2 ≤
(

2
√
N log

(1
δε

)
+ 2 log

(1
δε

)
+N

)
σ2

on. (4.16)

Hence, the Lipschitz constant of the posterior mean function µ(·) satisfies with probability
of at least 1− δε

Lµτ ∈ O
(
Nτ log

(1
δε

))
. (4.17)

For the GP standard deviation σ(·), Hölder continuity directly follows from Lemma 2.3 with
order pσ = 1/2 and coefficient

Lσ =
√

2Lk, (4.18)

63

4 Learning for Control with Arbitrary Accuracy Guarantees

such that we directly obtain

Lστ
1
2

√√√√2 log
(
M(τ ,S)
δη

)
∈ O



√√√√dzτ log

(
dz
τδη

)
 . (4.19)

Finally, choose δη = δL = δε = δ/3 and τ ∈ O(1/N2) to compensate for the linear growth of
(4.17) with respect to the number samples N , which directly results in (4.9).

Due to the linear dependency of the bound for the Lipschitz constant Lµ on the number
of training samples, the virtual grid constant must decay faster than O(1/N). This, in turn,
leads to a logarithmic growth of the scaling factor of σ(z), such that a reciprocal logarithmic
decrease of the GP standard deviation becomes necessary for achieving a vanishing uniform
error bound. Therefore, the decay requirements for Bayesian and RKHS-based error bounds
are similar, although the specific behavior is slightly different.

4.1.3. Asymptotic Bounds for the Posterior Variance
In order to compensate for the growth of the scaling factor of σ(z) in Theorem 4.1 and
Theorem 4.2, a sufficiently fast decay of the standard deviation σ(z) must be ensured.
Therefore, we investigate the behavior of the posterior variance σ2(z) depending on the
training data density of an input data set Dz = {z(n)}Nn=1. The starting point of this analysis
is the following lemma, which provides a straightforward upper bound for the posterior
variance σ2(z).
Lemma 4.1. Consider a GP trained using a data set with input training samples Dz. Then,
the posterior variance is bounded by

σ2(z) ≤ σ2
onk(z, z) +N∆k(z)
N max

z′∈Dz
k(z′, z′) + σ2

on
, (4.20)

where

∆k(z) = k(z, z) max
z′∈Dz

k(z′, z′)−min
z′∈Dz

k2(z′, z). (4.21)

Proof. Since K + σ2
onIN is a positive definite, quadratic matrix, it follows that

σ2(z) ≤ k(z, z)− ‖k(z)‖2

λ̄ (K) + σ2
on

. (4.22)

Applying the Gershgorin theorem [134], the maximal eigenvalue is bounded by

λ̄(K) ≤ N max
z′∈Dz

k(z′, z′). (4.23)

Furthermore, due to the definition of k(z) we have
‖k(z)‖2 ≥ N min

z′∈Dz
k2(z′, z). (4.24)

Therefore, σ2(z) can be bounded by

σ2(z) ≤ k(z, z)−
N min

z′∈Dz
k2(z′, z)

N max
z′∈Dz

k(z′, z′) + σ2
on

. (4.25)

Finally, the proof follows from the definition of ∆k(z).

64

4.1 Data Dependency of Uniform Error Bounds

This theorem does not pose any restriction on the employed kernel but strongly depends
on the particular choice of kernel. Therefore, it can be difficult to interpret. However, it
can be significantly simplified for specific kernels, as shown in the following corollary for
stationary covariance functions.

Corollary 4.1. Consider a GP with stationary kernel and input training samples Dz. Then,
the posterior variance is bounded by

σ2(z) ≤ k(0)−
min
z′∈Dz

k2(z − z′)

k(0) + σ2
on
N

. (4.26)

Proof. The proof follows directly from Lemma 4.1 and the fact that maxz′∈Dz k(z′, z′) = k(0)
since the kernel is stationary.

In this special case of Lemma 4.1, which has been previously stated, e.g., in [130], the kernel
induces a notion of proximity, where the absence of training inputs z′ with k(z−z′) ≈ 0 leads
to a large bound for the posterior variance σ2(z). Therefore, this corollary shows that it is
desirable to have data close to the test point z as measured by k(·) for stationary kernels.
Since Lemma 4.1 and Corollary 4.1 still consider the full input data set Dz, a single sample

with k(z′, z) ≈ 0 can practically lead to the trivial bound σ2(z) . k(z, z). This is clearly
an undesired behavior for a bound since it would imply that additional data can potentially
increase the GP variance bound. In order to avoid this effect, we make use of an important
property of GP posterior variances, which is the fact that σ2(z) is non-increasing with the
number of training samples N [135]. Therefore, we can consider subsets of Dz to compute the
GP variance bounds in Lemma 4.1 and Corollary 4.1, which exclude these training samples
with a negative effect on the bound. Due to the importance of ∆k(z) for these bounds, we
make use of the following subset

Kh(z) = {z′ ∈ Dz : k2(z, z) ≤ k2(z′, z′) ≤ 1
h

+ k2(z′, z)} (4.27)

for this purpose, where h ∈ R+. It can be easily seen that considering only the subset
Kh(z) ⊂ Dz in (4.21) ensures

k(z, z) max
z′∈Kh(z)

k(z′, z′)− min
z′Kh(z)

k2(z′, z) ≤ 1
h

. (4.28)

Since the consideration of a subset of Dz also reduces the number of considered training
samples in (4.20), we trade-off the size ofKh(z) and the ensured value for ∆k(z) by defining h
using the following optimization problem

h(z) = max
h∈R+

h (4.29)

such that |Kh(z)| ≥ hσ2
onk(z, z). (4.30)

It can easily be seen that h(z) is well-defined since the optimization problem is always
feasible for h→ 0. Moreover, it can be directly used as a measure of data density, as shown
in the following proposition.

65

4 Learning for Control with Arbitrary Accuracy Guarantees

Proposition 4.1. Consider a Gaussian process GP(0, k(·, ·)) defined by the kernel k(·, ·). If
k(z, z) 6= 0, the posterior standard deviation at z satisfies

σ(z) ≤
√

2
h(z)k(z, z) , (4.31)

such that it behaves as σ(z) ∈ O(1/
√
h(z)).

Proof. By exploiting the fact that the posterior variance σ2(z) is non-increasing with the
number of training samples N [135] and considering only samples inside the set Kh(z)(z) for
the computation of the posterior standard deviation, we obtain

σ2(z) ≤ σ2
onk(z, z) + |Kh(z)(z)|∆k(z)

|Kh(z)(z)| max
z′∈Kh(z)(z)

k(z′, z′)+σ2
on

(4.32)

due to Lemma 4.1. Since z′ ∈ Kh(z)(z) implies k(z′, z′) ≥ k(z, z), we can simplify this
expression to

σ2(z) ≤ σ2
on

|Kh(z)(z)| + ∆k(z)
k(z, z) . (4.33)

Moreover, it can be straightforwardly checked that the restriction toKh(z)(z) implies ∆k(z) ≤
1/h(z), which yields

σ2(z) ≤ σ2
on

|Kh(z)(z)| + 1
h(z)k(z, z) . (4.34)

Since |Kh(z)(z)| is lower bounded by h(z)σ2
onk(z, z) by definition, we obtain

σ2(z) ≤ 2
h(z)k(z, z) , (4.35)

which directly implies σ(z) ∈ O(1/
√
h(z)), concluding the proof.

It can be clearly seen that h(z) is a measure of data density that is highly specific for
each particular GP and, therefore, capable of reflecting the requirements on good data dis-
tributions posed by the employed kernel k(·, ·). Moreover, it immediately follows from Theo-
rem 4.2 that a sufficiently fast growth of h(z) guarantees a vanishing error bound η(z), e.g.,
h(z) /∈ O(log(N)) for the Bayesian uniform error bound in Proposition 2.2. Therefore, h(·)
satisfies the requirements posed on a suitable measure of data density in Section 4.1.1.

4.1.4. Conditions for Specific Kernels
The high flexibility of Proposition 4.1 allows its application to GPs with arbitrary kernels
but comes at the price of a difficult interpretation. However, when we fix a specific kernel,
it is often possible to derive more accessible and intuitive subsets contained in Kh(z), as
shown in the following lemma for linear, squared exponential and Matérn class kernels.

Lemma 4.2. Geometrically interpretable subsets of Kh(z) defined in (4.27) are given by

66

4.1 Data Dependency of Uniform Error Bounds

1. the set

K̃c
h(z) =

{
z′ ∈ Dz : ‖z′‖2(‖z′‖2 − c‖z‖2) ≤1

h
, (4.36)

‖z‖ ≤ ‖z′‖,
∣∣∣zTz′

∣∣∣ ≥ c‖z‖‖z′‖
}
⊂ Kh(z)

with any c ∈ (0, 1) for linear kernels;

2. the Euclidean ball

B√1/2L∂kσ
2
f
h
(z) =



z
′∈Dz : ‖z−z′‖ ≤

√√√√ 1
2L∂kσ2

fh



 ⊂ Kh(z) (4.37)

for isotropic SE kernels kSE(·, ·) and Matérn kernels k3/2(·, ·), k5/2(·, ·), where σ2
f =

k(z, z).

Proof. Due to the definition of the linear kernel, we have the identity

k2(z′, z′)− k2(z′, z) = ‖z′‖4 − (zTz′)2. (4.38)

For |zT z′|/(‖z‖‖z′‖) ≥ c, we therefore obtain

k2(z′, z′)− k2(z′, z) ≤ ‖z′‖2
(
‖z′‖2 − c‖z‖2

)
. (4.39)

Finally, the first inequality in (4.27) yields the requirement

k2(z, z) = ‖z‖4 ≤ ‖z′‖4 = k2(z′, z′), (4.40)

which concludes the first part of the proof. For the second part of the proof, we exploit
the continuous differentiability of the considered kernels together with the fact that their
derivative at z − z′ = 0 is 0. Therefore, we have

k(z − z′) ≥ σ2
f − L∂k‖z − z′‖2. (4.41)

where L∂k ∈ R+ is the Lipschitz constant of the kernel derivative. Using this lower bound,
we obtain

k2(0)−k2(z − z′)≤2L∂kσ2
f‖z−z′‖2−L2

∂k‖z−z′‖4, (4.42)

which we can simplify to

k2(0)− k2(z − z′) ≤ 2L∂kσ2
f‖z − z′‖2 (4.43)

due to the non-negativity of the norm. Therefore, ‖z − z′‖2 ≤ h/2L∂kσ2
f implies |k2(z, z) −

k2(z, z′)| ≤ h. Since k(z, z) = k(z′, z′) for isotropic kernels, the first inequality is always
satisfied, concluding the proof.

67

4 Learning for Control with Arbitrary Accuracy Guarantees

Kh(z)

z

K̃0.9
h (z)

linear kernel

x1

x2

Kh(z)
z

B√
1/2L∂kσ

2
f
h
(z)

SE kernel

x1

x2

Figure 4.1.: Illustration of the set Kh(z) and geometrically simple subsets for a linear and a
SE kernel.

This lemma illustrates the flexibility of quantifying the data density using Kh(z). While
this set can be inner-approximated by a ball for Matérn and SE kernels as illustrated in
Fig. 4.1, it looks more like segments of a sphere for linear kernels. Since we can easily de-
termine the volume of such simple geometrical structures, Lemma 4.2 enables the derivation
of a straightforward relationship between the sampling distributions and data density h(z).
For example, when training samples in Dz are generated by drawing from a uniform dis-
tribution, the number of points in a Euclidean ball is proportional to the volume of the
ball, i.e., Bh(z) ∝ N/hdz . Therefore, it follows from (4.30) that h(z) ∈ O(N 1/dz+1) for SE
or Matérn kernels with uniformly drawn input training samples. This in turn implies that
σ(z) ∈ O(1/N1/2dz+2) due to Proposition 4.1 [136, 137]. Hence, we obtain for the Bayesian
error bound due to Theorem 4.2 that

η(z) ∈ O


√
dz log(Ndz)
N 1/1dz+1


 , (4.44)

where we neglect the dependency on δ for notational convenience. This demonstrates the
flexibility and effectiveness of the derived formalism for bounding the asymptotic decay of
the prediction error bounds η(z) presented in this section.

4.2. The Role of Data for Control-Theoretic
Guarantees

Since the results in the previous section provide insights into the effect of training data
on uniform error bounds for GP regression, it immediately arises the question about the
implications of these results on the guaranteed control performance of learning-based control
with GP models. While a global model accuracy perspective [125] allows to directly draw
conclusions using the results in Chapter 3, such an approach is task-agnostic and known to
be potentially sub-optimal for problems beyond modeling [67]. Therefore, a control-oriented
analysis of the role of training data is generally necessary.
This is a problem that has received comparatively little attention in research. In the

control-oriented literature, it is frequently assumed that there simply exists a training data
set, without even considering the problem of finding out how such a data set should look
like. This often leads to data sets in simulations that are chosen based on global model
accuracy considerations [34, 109] or ease of practical realizability [26, 138]. Due to this lack

68

4.2 The Role of Data for Control-Theoretic Guarantees

of understanding of the relationship between data distributions and control performance,
random sampling-based approaches have recently been employed to estimate the effect of
data on learning-based control systems [139]. Using a receding horizon formulation, these
approaches can be extended to implicitly reflect the relevance of future training samples
online [140, 141]. Even though such approaches can admit a rigorous theoretical analysis,
they are computationally expensive, such that their application is usually limited to small-
scale problems. Moreover, they do not provide direct insight into the interrelation between
training data and control performance. Therefore, understanding the control performance’s
data dependency is usually limited to a simple qualitative relationship: the more data, the
better the control performance [30, 109].
In order to improve the understanding of the interrelation between training data and

control performance guarantees, we exemplarily investigate conditions for the training data
distribution to ensure a desired error bound. First, this analysis is executed for the case of
linear systems with input perturbations. We show that data is required only in proximity
to the reference trajectory due to the structure of the tracking error bound for this example
and derive the asymptotic convergence rate of the tracking error bound in dependency on
the data density. While the required optimal data distribution is apparent for this example,
it cannot be trivially seen for the Lyapunov-based tracking error bounds. Therefore, we
analyze the training distribution requirements depending on the Lyapunov functions, which
leads to an intuitive quantity for determining the suitability of training data distribution
for control tasks specified through a Lyapunov candidate. Thereby, we show that the ideal
training data distribution generally depends on the considered control task.
The remainder of this section is structured as follows. The problem setting is specified

in Section 4.2.1. In Section 4.2.2, which is based on [36], the decay rate of the tracking
error bound is derived for linear systems with input perturbation compensated using a GP
model. Requirements on the training data distribution for data-efficient learning are shown
for a feedback linearizing control law with quadratic Lyapunov function in Section 4.2.3.
This section is comprised of adapted results from our prior work [37]. Finally, the presented
insights are illustrated on simulation examples in Section 4.2.4.

4.2.1. Problem Setting
Due to the construction of the control laws in Sections 3.1 and 3.2, they achieve exact
tracking if the uniform error bound η(·) is equal to zero. However, this is merely a sufficient
condition, and it cannot be straightforwardly seen how the probabilistic uniform error bound
must behave to ensure a desired upper bound ē ∈ R+ for a probabilistic tracking error
bound υ(·), i.e.,

υ(t) ≤ ē. (4.45)

The requirements on the training data density h(·) are even more unclear, such that the
role of training data D for control-theoretic guarantees is generally poorly understood for
control based on GP models. In order to increase the understanding of this relationship, we
consider the problem of deriving conditions for the training data density measured based
on h(·), such that (4.45) can be achieved. This means that we want to find lower bounds
h : S→ R0,+ for the data density h(·) such that the implication

h(z) ≥ h(z) ⇒ υ(t) ≤ ē (4.46)

69

4 Learning for Control with Arbitrary Accuracy Guarantees

holds. This problem is exemplarily investigated for nonlinearity compensation as presented
in Section 3.1 and the feedback linearizing control law in Section 3.2. Hence, the specific
problem settings of these sections apply to the corresponding subsections in the following.

4.2.2. Asymptotic Tracking Error Bound
We first investigate the data dependency of the tracking error bounds derived in Section 3.1.
Therefore, we follow the problem setting described in Section 3.1.1 and consider the example
of a linear dynamical system

ẋ = Ax+ b(u+ f(x)), (3.2 revisited)

which is perturbed by an unknown nonlinearity f(·), such that a GP model f̂(·) = µ(·) is
employed to compensate it using a control law

u(t) = −θT (x(t)− xref(t)) + rref(t)− f̂(x(t)). (3.4 revisited)

This results in the closed-loop error dynamics

ė = Acl(θ)e+ b(f(x)− f̂(x)), (3.5 revisited)

where Acl(θ) = A− bθT . Due to Proposition 3.1, a probabilistic tracking error bound υ(·)
can be computed in closed-form in this scenario, which allows the direct observation of a
linear relationship between ῡ and supt≥0 η(xref(t)). Since this implies that the GP standard
deviation σ(·) along the reference trajectory xref(·) is dominating the behavior of the uniform
error bounds in Theorem 2.1 and Proposition 2.2, it directly follows from Proposition 4.1
that we can also restrict the analysis of the data density h(·) to the reference trajectory.
By considering only the worst case density, this leads to the value href = inft≥0 h(xref(t))
as a measure of data quality. As exemplarily shown in the following result for uniform
error bounds obtained from Proposition 2.2, href allows the straightforward derivation of
asymptotic conditions on the data distribution to achieve (4.45).

Theorem 4.3. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (3.4) with gains θ satisfying Assumption 3.3 is applied to track a bounded reference
trajectory xref(·). Assume that a Gaussian process GP(0, k(·, ·)) with Lipschitz continuous,
stationary kernel k(·, ·) is used to learn a model f̂(·) = µ(·) of the unknown, Lipschitz continu-
ous function f(·), such that Assumptions 2.1 and 2.6 are satisfied. Then, for X0 = {xref(0)},
ensuring (4.45) asymptotically requires at most

href ∈ O
(1
ē2

)
, (4.47)

−λ̄(Acl(θ)) ∈ O


√

log
(
N

ē

)
 . (4.48)

Proof. Choose θ such that

κ = λ̄(Acl(θ))

‖U‖‖U−1b‖
√

2 log
(
M(τ ,S)

δ

) (4.49)

70

4.2 The Role of Data for Control-Theoretic Guarantees

is constant and (3.13) is satisfied. Due to Proposition 3.1 and Proposition 2.2, this implies
the existence of a probabilistic tracking error bound υ(·) = ῡ on a suitable compact set S,
where

ῡ = − ‖U‖‖U−1b‖
λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖ sup

t≥0
η(xref(t)). (4.50)

It directly follows from the definition of η(·) in (2.63) that its Lipschitz constant is given by

Lη = Lσ

√√√√2 log
(
M(τ ,S)

δ

)
(4.51)

where Lσ is the Lipschitz constant of the GP standard deviation σ(·), which is guaranteed
to exist due to Corollary 2.6. Choose τ ∈ R+ such that

τ ≤ 1
Lµ + Lf + Lσ

√
2

hrefk(0, 0) (4.52)

holds and δ ∈ (0, 1) satsifying (2.74). Then, we have

sup
t≥0

η(xref(t)) ≤ 2
√

2
hrefk(x,x)

√√√√2 log
(
M(τ ,S)

δ

)
(4.53)

due to Proposition 4.1, such that we obtain

ῡ = − 2
√

2
(κ+ Lσ)

√
hrefk(x,x)

. (4.54)

Due to the choice of θ resulting in a constant value of κ and the fact that Lσ can be globally
bounded independent of the data set due to Corollary 2.6, we can solve (4.54) for href to
determine the asymptotic behavior

href ∈ O
(1
ῡ2

)
. (4.55)

Since the required tracking accuracy in (4.45) can be guaranteed if ῡ = ē, this directly leads
to (4.47) and thereby concludes the first part of the proof. It remains to determine the
necessary asymptotic behavior of −λ̄(Acl(θ)). For this purpose, note that

1
τ
∈ O

(
N

ē

)
(4.56)

due to (4.47) and Lµ ∈ O(N) as shown the proof of Theorem 4.2. As κ is constant, (4.48)
immediately follows from (4.49) and (4.12).

While suitably small eigenvalues of the dynamics matrix Acl(θ) are sufficient to allow
the application of Proposition 3.1, the necessary condition (3.13) depends on the Lipschitz
constant Lη. This Lipschitz constant, in turn, grows with the data density href because
the scaling factor of the posterior standard deviation σ(·) in Proposition 2.2 does so for τ
defined in (4.52). Therefore, constant eigenvalues of Acl(θ) are not sufficient, but they have

71

4 Learning for Control with Arbitrary Accuracy Guarantees

to become smaller with vanishing desired error bound ē. This requirement is not severe in
practice since the eigenvalues of Acl(θ) are often designed through a lower level controller
as discussed after Assumption 3.1, such that arbitrarily small eigenvalues λ̄(Acl(θ)) can be
achieved. Moreover, if the number of training samples N grows at most polynomially with
h as ensured, e.g., for the case of SE or Matérn kernels with uniformly distributed training
data discussed in Section 4.1.4, this implies the requirement −λ̄(Acl(θ)) ∈ O(

√
log(1/ē)).

Therefore, the necessary increase rate of −λ̄(Acl(θ)) is merely log-hyperbolic, which is a
significant improvement compared to a reduction of the tracking error completely through
the choice of Acl(θ) and without any model. This is shown in the following lemma.

Lemma 4.3. Consider a system (3.2) with Lipschitz continuous nonlinearity f(·) satisfying
Assumption 3.1, to which a control law (3.4) with gains θ satisfying Assumption 3.3 with
f̂(·) = 0 is applied to track a bounded reference trajectory xref(·). Then, for X0 = {xref(0)},
ensuring (4.45) asymptotically requires at most

−λ̄(Acl(θ)) ∈ O
(1
ē

)
. (4.57)

Proof. Due to Lipschitz continuity of f(·), it is upper bounded by a constant f̄ on a suitable
compact set S. Therefore, it follows from (3.11) with f̄e(·) = f̄ that the tracking error is
upper bounded by

ῡ = −‖U‖‖U
−1b‖f̄

λ̄(Acl(θ))
(4.58)

Setting ē = ῡ and solving for λ̄(Acl(θ)) leads to (4.57).

Remark 4.1. In order to streamline the presentation, we have used several simplifications
in this subsection. Although we have restricted the analysis of the data dependency to the
Bayesian uniform error bound, an equivalent result can be derived based on error bounds
obtained from Theorem 2.1. Moreover, we have dropped the explicit dependencies on the
dimension dx of the state space and the probability δ of violating the tracking error bound
since the dependency on the data density href is the focus of this section.

4.2.3. Lyapunov-Based Quality Assessment
While the result in Section 4.2.2 relies on a closed-form expression for the tracking error
bound, we can also analyze the data dependency of results such as Theorem 3.3. In order to
demonstrate this, we follow the problem setting described in Section 3.2.1 with the particular
example of a system

ẋ1 = x2, · · · ẋdx−1 = xdx , ẋdx = f(x,u), (3.53 revisited)

with dynamics defined by f(x,u) = f̃(x)+g(x)u, such that a feedback linearizing controller

π(x, t) = 1
µg(x) (πlin(x, t)− µf (x)) , (3.56 revisited)

is employed for tracking a reference trajectory xref(·). Therefore, we can employ Corol-
lary 3.1, which allows us to obtain a probabilistic tracking error bound by solving (3.59).

72

4.2 The Role of Data for Control-Theoretic Guarantees

Due to the structure of the optimization constraint (3.60), it admits a straightforward de-
coupling of model error sources. Therefore, it can be directly seen that

1
2‖x−xref(t)‖2 ≥ |(x−xref(t))TPb|ηf̃ (x) ∀x ∈ S, t ∈ R0,+, (4.59)

1
2‖x−xref(t)‖2 ≥ |(x−xref(t))TPb|

ηg(x)
µg(x)

∣∣∣πlin(x, t)−µf̃ (x)
∣∣∣ ∀x ∈ S, t ∈ R0,+ (4.60)

guarantees 0 to be the only solution of (3.59), which implies exact tracking.
Since (4.59) and (4.60) independently depend on the individual uniform error bounds

ηf̃ (·) and ηg(·), respectively, it also makes sense to analyze the data requirements separately.
This can be achieved by adapting the data density measure h(·) to capture the behavior
of the component standard deviations σf̃ (·) and σg(·) instead of the overall GP standard
deviation σ(·). Since the derivation of h(·) relies on ∆k(·) defined in (4.21), we consider the
analogous function

∆kf̃ (x) = kf̃ (0)
(
kf̃ (0) + kg(0) max

[xT ,u]T∈D
u2
)
− min

[(x′)T ,u′]T∈D
k2
f̃ (x− x′) (4.61)

for the standard deviation σf̃ (·) resulting from stationary kernels kf̃ (·, ·) and kg(·, ·). Similarly
as in (4.27), this allows us to define the sets

Kf̃
h(x) =



z
′ =

[
(x′)T u′

]T ∈ D : u′ ≤
√√√√ 1

2hkf̃ (0)kg(0) , k2
f̃ (0)− k2

f̃ (x−x′) ≤
1

2h



 , (4.62)

which include only training data points with ∆kf̃ (x) ≤ h. Based on these sets, we can finally
measure the data density using

hf̃ (x) = max
h∈R+

h (4.63)

such that |Kf̃
h(x)| ≥ hσ2

onkf̃ (x,x). (4.64)

By construction, hf̃ (·) behaves analogously to h(·) and guarantees a posterior variance bound
similar to Proposition 4.1. However, note that this requires an additional constraint on the
control in (4.62) compared to (4.27). This is due to the intuitive property that only training
samples with control inputs close to zero allow the precise identification of f̃(·), such that
only training samples with u = 0 can be contained in Kf̃

h(x) for h → ∞. Thereby, hf̃ (·)
retains the beneficial property that it is reciprocal to the GP variance σ2(·). This property is
exploited in the following proposition to describe the requirements on the spatial distribution
of training data for ensuring (4.59).

Proposition 4.2. Assume that kf̃ (·, ·) and kg(·, ·) defining ηf̃ (·), ηg(·), µf̃ (·) and µg(·)
in (4.59) are stationary kernels. Then, (4.59) can be satisfied using training data with a
density satisfying

√
hf̃ (x) ∝

√
hf̃ (x) = max

t∈R0,+

|(x−xref(t))TPb|
‖x−xref(t)‖2 ∀x ∈ S. (4.65)

73

4 Learning for Control with Arbitrary Accuracy Guarantees

Proof. It is straightforward to see that

ηf̃ (x) ≤ max
t∈R0,+

‖x−xref(t)‖2

|(x−xref(t))TPb|
(4.66)

ensures the satisfaction of (4.59). The uniform error bound ηf̃ (·) following from a combina-
tion of Corollary 2.4 and Corollary 2.5 is proportional to the GP standard deviation σf̃ (z),
i.e., ηf̃ (z) ∝ σf̃ (z). By extending Lemma 4.1, the GP standard deviation σf̃ (z) can be
bounded by

σ2
f̃ (x) ≤ σ2

on
|Khf̃ (x)(x)| +

∆kf̃ (x)
max

z′∈Kf̃
h
f̃

(x)(x)
k(z, z) (4.67)

Since kernels are positive definite, we simplify the bound to

σ2
f̃ (x) ≤ σ2

on
|Khf̃ (x)(x)| +

∆kf̃ (x)
kf̃ (x,x) , (4.68)

such that the definition of hf̃ (x) yields

σ2
f̃ (x) ≤ 2

hf̃ (x)kf̃ (0) . (4.69)

Therefore, training data with a density satisfying (4.65) can ensure the existence of an error
bound ηf̃ (x) satisfying (4.66), which concludes the proof.

This proposition shows that it is not necessary to obtain uniformly distributed training
data for reducing the uncertainty about f̃(·) in order to satisfy (4.59) and consequently
to ensure a high tracking accuracy. Due to the quadratic growth of the nominal Lya-
punov derivative with the tracking error reflected by the left side of (4.59), the uniform
GP error bound ηf̃ (·) can increase linearly with the distance from the reference trajec-
tory xref(·). This increase directly admits the quadratically decaying data requirement en-
sured by Proposition 4.2. Note that this is a very intuitive requirement since the linear
tracking controller (3.57) becomes dominant in the feedback linearizing control law (3.56)
for large tracking errors in comparison to the model µf̃ (·). Therefore, the GP model µf̃ (·)
can be more imprecise and consequently does not need as many training samples far away
from the reference trajectory.
For the standard deviation σg(·), we can proceed analogously and consider

∆kg(x) = kg(0)
(
kf̃ (0) + kg(0) max

[xT ,u]T∈D
u2
)
− min

[(x′)T ,u′]T∈D
k2
g(x− x′)(u′)2. (4.70)

Constructing a set that ensures ∆kg(x) ≤ h for all contained samples is more complicated
since control inputs appear in maximization and minimization queries. Therefore, we define
ū = max[xT ,u]T∈D |u|, such that we can replace the minimization by a constraint on the
minimum values of the control inputs parameterized as u = ūα(h)/1+α(h), where α : R0,+ →

74

4.2 The Role of Data for Control-Theoretic Guarantees

R0,+ can be an arbitrary class K∞ function. These definitions lead to the set

Kg
h,ū(x) =



z
′ =

[
(x′)T u′

]T ∈ D : (4.71)

cū ≤ |u′|, k2
g(0)− c2k2

g(x− x′) ≤
1
h
− kf̃ (0)kg(0)

ū2 , c = α(h)
α(h) + 1



.

Based on this set, we can define a measure of data density via the optimization problem

hg(x) = max
h∈R+

h (4.72)

such that |Kg,ū
h (x)| ≥ hσ2

onkg(x,x)ū2. (4.73)

This function is again constructed in a way to ensure a bound for the GP variance σ2
g(·)

similar to Proposition 4.1. While the training samples with large control input amplitude
are excluded for hf̃ (·), only those are considered for hg(·). Therefore, the data density
measure hg(·) reflects the intuitive behavior that only large control input amplitudes allow
the accurate identification of g(·). Note, however, that hg(·) alone is not capable of capturing
the full data dependency because even for ū→∞, hg(x) is upper bounded by 1/kf̃ (0)kg(0). Due
to the consideration of ū2 in (4.73), it is still possible to straightforwardly show a vanishing
posterior variance following the ideas of Proposition 4.1. Therefore, this limitation is not a
critical issue, such that we can employ hg(·) to describe conditions on the spatial distribution
of training data for ensuring (4.60).
Proposition 4.3. Assume that kf̃ (·, ·) and kg(·, ·) defining ηf̃ (·), ηg(·), µf̃ (·) and µg(·)
in (4.60) are stationary kernels. If g(·) is lower bounded by g ∈ R+ and |f(·)| is upper
bounded by f̄ ∈ R+, then, (4.60) can be satisfied using training data with a density satisfying

√
hg(x) ∝

√
hg(x) =

‖(x−xref(t))TPb‖
(
|πlin(x, t)|+f̄+

√
1

hf̃ (x)

)
+ ‖x−xref(t)‖2

‖x−xref(t)‖2 . (4.74)

Proof. Since we are interested in the spatial distribution of the data, assume that we have
sufficiently many samples to ensure ηg(x) ≤ g. Then, the GP mean µg(x) is lower bounded
by g − ηg(x), which implies that (4.59) is satisfied if

1
2‖x−xref(t)‖2 ≥ |(x−xref(t))TPb|

(
|πlin(x, t)|+ f̄ + ηf̃ (x)

) ηg(x)
g − ηg(x) . (4.75)

By solving this inequality for ηg(x), we obtain the condition

ηg(x) ≤
1
2‖x−xref(t)‖2g

|(x−xref(t))TPb|
(
|πlin(x, t)|+ f̄ + ηf̃ (x)

)
+ 1

2‖x−xref(t)‖2
, (4.76)

such that we can proceed analogously to the proof of Proposition 4.2. Therefore, we have

σ2
g(x) ≤ 2

hg(x)kg(0)ū2 (4.77)

due to the definition of hg(x), such that training data with a density satisfying (4.74) can
ensure the existence of an error bound ηg(x) satisfying (4.76), which concludes the proof.

75

4 Learning for Control with Arbitrary Accuracy Guarantees

While the data density requirement hf̃ (·) quickly decreases away from the reference tra-
jectory, it remains almost constant for the identification of g(·). Ignoring f̄ and

√
1/hf̃ (x),

this directly follows from the linear increase of the tracking controller πlin(x, t) with the
distance to the reference trajectory. Therefore, an increase of the required data density hg(·)
only occurs close to states xref(t), when the constant term f̄ becomes dominant. This is an
expectable behavior of the necessary data density since the ratio between the GP mean µg(·)
and the uniform error bound ηg(·) can be interpreted as a state-dependent reduction of the
control gain kc. Bounding the mean using a constant, this immediately leads to the re-
quirement of a flat data distribution, which underlines the high interpretability of the data
density specification hg(·).
Due to the intuitiveness of the data density measures, we employ them to analyze the

suitability of training data distributions for ensuring low tracking errors. For this purpose,
we can simply compare the required densities hf̃ (·) and hg(·) with the corresponding actual
densities hf̃ (·) and hg(·). Since the requirements are formulated only up to constant factors,
this can be effectively realized using the log-ratios

ρf̃ (x) = log
(
hf̃ (x)
hf̃ (x)

)
, (4.78)

ρg(x) = log
(
hg(x)
hg(x)

)
, (4.79)

such that proportional factors merely appear as constant offsets. Therefore, the density
log-ratios ρf̃ (·) and ρg(·) allow a straightforward analysis of data distributions, e.g., ρg(x) >
ρg(x′) for states x,x′ ∈ X implies that more training samples with large control input
amplitude should be added around x to come closer to a good distribution. This information
can be exploited when designing active learning methods and closed-loop data generation
approaches to reduce the requirements on the number N of training samples necessary to
achieve desired tracking error bounds ē.

4.2.4. Numerical Evaluation
In order to illustrate the role of training data for tracking accuracy guarantees, we investi-
gate two examples in this section. First, we demonstrate the asymptotic error decay for a
linear system with unknown input perturbation before we investigate the Lyapunov-based
requirements for suitable training distributions.

Asymptotic Error Decay

In order to illustrate the dependency of the tracking error bound υ(·) on the data density
href derived in Theorem 4.3, we consider the same setting as in Section 3.1.4, i.e., a linear
system with

Acl(θ) =
[

0 1
−kcθ̃ −kc − θ̃

]
, b =

[
0
1

]
(4.80)

perturbed by a nonlinear function f(x) = 1−sin(2x1)+1/(1+exp(−x2)). Since we are interested
in the dependency on the data density, we use grids with different grid constants defined

76

4.2 The Role of Data for Control-Theoretic Guarantees

101 102 103

10−3

10−1

href

‖e
‖ ,observed error

,error bound
,asymp. behavior

Figure 4.2.: Comparison of the observed tracking error, the tracking error bound and its
guaranteed asymptotic decay rate for growing data densities.

0 5 10 15 20 25 30
0

10

20

30

1/ē

−
λ̄

(A
cl

(θ
))

,GP controller
,asymp. behavior
,without compensation

Figure 4.3.: Maximum eigenvalue λ̄(Acl(θ)) necessary to ensure a given tracking error
bound ē when learning a control law using equidistant grids in comparison to a
pure feedback controller without compensation of nonlinearities.

on [−4, 4]2 as training data sets, such that they cover the whole relevant domain. Due to
the varying size of the training data set, we determine τ by finding the maximum value
satisfying (4.52) using a line search. We set kc = θ, such that we can compute a gain kc
ensuring κ = 10 in (4.49) for the obtained value of τ .
The resulting tracking errors ‖e‖ and bounds ῡ obtained with Theorem 3.1 for different

data densities href are illustrated in Fig. 4.2. Moreover, the asymptotic decay rate of ῡ
following from Theorem 4.3 is depicted. It can be clearly seen that the asymptotic decay
rate closely reflects the actual decay rate of the error bound ῡ. Analogously to Section 3.1.4,
the tracking error bound is rather conservative, but the observed error ‖e‖ exhibits a decay
rate with high similarity to its bound ῡ. Despite this conservatism, the necessary maximum
eigenvalues λ̄(Acl(θ)) for ensuring a low desired tracking error bound ē with such train-
ing data are significantly larger than without a controller compensating the nonlinearity as
depicted in Fig. 4.3. Due to the linear growth required by Lemma 4.3, the necessary eigenval-
ues −λ̄(Acl(θ)) without a GP model quickly exceed the requirements for the learning-based
approach. Hence, href effectively captures the asymptotic data dependency for nonlinearity
compensation, such that the advantages of the learning-based approach can be demonstrated.

Dependency of Tracking Accuracy Guarantees on the Data Distribution

For illustrating the benefits of a spatial analysis of the data distribution as proposed in
Section 4.2.3, we investigate the example in Section 3.2.4 again. Therefore, we consider a
nonlinear dynamical system

ẋ1 = x2, ẋ2 = f̃(x) + g(x)u, (3.83 revisited)

77

4 Learning for Control with Arbitrary Accuracy Guarantees

−2 0 2

−2

0

2

x1

x
2

requirement for f̃(·)

−2 0 2
x1

requirement for g(·)

,required data density
,reference

Figure 4.4.: Required data densities hf̃ (·) and hg(·) for systems of the form (3.83) controlled
via GP-based feedback linearization.

−2 0 2

−2

0

2

x1

x
2

mismatch for f̃(·)

−2 0 2
x1

mismatch for g(·)

,density mismatch
,training data
,reference

Figure 4.5.: Training data density mismatch measured by the density log-ratios ρf̃ (·)
and ρg(·) for systems of the form (3.83) controlled via feedback linearization
based on a GP model trained on grid data.

where f̃(x) = 1− sin(2x1) + 1/(1+exp(−x2)) and g(x) = 20 (1 + 1/2 sin (x2/4)).
Based on the prior GP used in Section 3.2.4, we can directly compute the required data

densities hf̃ (·) and hg(·) using Proposition 4.2 and Proposition 4.3, respectively. The result,
which is depicted in Fig. 4.4, exhibits exactly the behavior discussed in Section 4.2.3. The
necessary data density for inferring a sufficiently accurate model of f̃(·) increases strongly
towards the reference trajectory, while it is almost constant for learning a suitable model
for g(·). Merely very close to the reference trajectory xref(·), a significant increase of hg(·)
can be observed. Finally, we can see a small directional dependency of the required data
densities hf̃ (·) and hg(·), which is caused by a large difference of the eigenvalues of P .
When using the training data employed in Section 3.2.4, which is basically a grid over states

and control inputs, it clearly does not satisfy these density requirements. This can be directly
seen when computing the density log-ratios ρf̃ (·) and ρg(·) as illustrated in Fig. 4.5. While
we can observe slight declines in the density between training samples, the grid generally
achieves almost constant densities hf̃ (·) and hg(·). Thereby, it satisfies the requirements
of a good data set for learning g(·), while it does not exhibit the increased density hf̃ (·)
around the reference trajectory xref(·), which is required for achieving a sufficiently accurate

78

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

systemcontrol
law

GP
model

xref

Ts

time-triggered learning

systemcontrol
law

GP
model

xref

−

event-triggered learning

Figure 4.6.: Illustration of time-triggered and event-triggered learning with Gaussian process
models: in time-triggered learning, data is sampled periodically with a sampling
time Ts, while in event-triggered learning, training data is generated when the
tracking error exceeds a threshold.

model of f̃(·). When generating additional training data for the GP model, we can take
this into account, e.g., by generating 49 equally spaced samples with control input u = 0
along the reference trajectory xref(·). These additional samples result in a reduction of the
probabilistic tracking error bound ῡ determined using Corollary 3.1 from 0.2740 to 0.1977. If
we simply augmented the training data set with more grid samples with control input 0, we
would merely achieve a reduction to 0.2107. Therefore, the insights gained from the density
log-ratios ρf̃ (·) and ρg(·) cause an improvement of 20%, which demonstrates the practical
advantages of choosing training data-dependent on the control task.

Remark 4.2. Due to the dependency of hf̃ (·) and hg(·) on the control inputs of training
samples, the almost constant densities crucially rely on the fact that the training data grid
contains samples with high and small control input for each training state. Therefore, a
uniform grid over the state space does not directly imply approximately constant data densi-
ties hf̃ (·) and hg(·) in general.

4.3. Closed-Loop Data Generation for Tracking
Accuracy Guarantees

While we investigate the dependency of tracking error bounds on the data distribution in
Section 4.2, the problem of actually obtaining suitable training data is not addressed. Since
the system dynamics constrain the generation process, a straightforward approach is the
sampling of closed-loop data during the regular operation of the system. If this data can be
processed in real-time, it can be directly employed for online updates of GP models, such
that an adaptive control behavior can be realized [33]. This behavior is commonly achieved
in a time-triggered fashion [142, 143], where training samples are measured at regularly
spaced time instances as illustrated on the left side of Fig. 4.6. Despite the simplicity of
this approach, the interrelation between control and learning has not been analyzed for this
approach to the best of our knowledge, such that merely tracking error bounds depending
on the a priori unknown GP standard deviation can be guaranteed [144]. This weakness

79

4 Learning for Control with Arbitrary Accuracy Guarantees

systemcontrol
law

GP
model data

xref

Ts

reset

Figure 4.7.: Illustration of episodic learning with GP models: Data is collected and stored
while the control law is executed. A reset signal is regularly sent, starts the
updating of the GP model, and restarts the system by bringing it back to the
initial state.

can be overcome using event-triggered learning [145], which transfers concepts commonly
employed in networked control methods [146] to the online learning problem. The key idea
behind event-triggered learning is to update the model only when needed as indicated, e.g.,
by the tracking error, which is illustrated on the right side of Fig. 4.6. By exploiting uniform
error bounds and GP variance bounds, this strategy enables the straightforward derivation
of probabilistic tracking accuracy guarantees for feedback linearizing [31] and backstepping
control laws [147]. However, the triggering conditions in these approaches are highly specific
for the considered controllers, such that a generalization of these results is not obvious.
When the data cannot be processed online, a model needs to be learned episodically

through an iteration between applying the control law for generating data and inferring a
GP model offline as illustrated in Fig. 4.7. This approach has received a high attention
in the context of optimization-based controller tuning [96, 148], which can be shown to
provide data-dependent performance guarantees due to the close relationship to Bayesian
optimization [67, 126]. While these guarantees can be extended to model-based reinforcement
learning [86, 149], they strongly rely on the solved optimization problems, such that they
do not generalize to a broader class of control techniques. Therefore, these results are not
applicable to model-based control laws, such that the episodic learning of GP models for
model-based control remains an open problem.
We address this lack of generalizable data generation approaches for learning GP models

by proposing three different strategies which provide tracking error guarantees:
1. We derive error bounds for time-triggered online learning control, which relate the

tracking accuracy to the sampling time. To the best of our knowledge, this is the first
result for time-triggered learning with GPs.

2. We present a straightforward triggering condition, which we prove to guarantee bounded
tracking error and a bounded time difference between two GP model updates.

3. We develop an episodic approach for learning GP models, which ensures an arbitrarily
high desired tracking accuracy within a finite number of episodes.

Even though these results are exemplarily derived for linear systems with unknown input
perturbation, they straightforwardly generalize to Lyapunov-based tracking error bounds.

80

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

Therefore, we present a flexible framework for GP-based online and offline learning with
performance guarantees.
The remainder of this section is structured as follows. In Section 4.3.1, the formal problem

setting is stated. The time-triggered online learning strategy for inferring GP models for
control is analyzed in Section 4.3.2. In Section 4.3.3, tracking error bounds for the event-
triggered online learning method are shown. The episodic approach for offline inference of
GP modelsis presented in Section 4.3.4. Finally, the different closed-loop data generation
strategies are illustrated in numerical simulations in Section 4.3.5.

4.3.1. Problem Setting
In order to develop closed-loop data generation approaches for achieving an arbitrary tracking
accuracy, we consider again the setting in Section 3.1. This means that the system dynamics
are given by

ẋ = Ax+ b(u+ f(x)), (3.2 revisited)

where f : X → R is an unknown, scalar perturbation of the linear system. Moreover, a
control law of the form

u(t) = −θT (x(t)− xref(t)) + rref(t)− f̂(x(t)). (3.4 revisited)

is employed for compensating the unknown nonlinearity, such that the closed-loop error
dynamics

ė = Acl(θ)e+ b(f(x)− f̂(x)) (3.5 revisited)

are obtained, where Acl(θ) = A− bθT . While a given data set D is implicitly assumed for
inferring a GP model µ(·) in the previous sections, this set must usually be generated by
taking measurements of the system (3.2) during closed-loop control in practice. Therefore,
we need to jointly address the problem of sampling data of the form (x(t), y = f(x(t)) + ε)
for learning a model µ(·) and tracking a reference trajectory xref(·) with the state x(t) by
compensating the nonlinearity f(·) using a control law (3.4) with f̂(·) = µ(·). This problem
manifests in the following two forms:

• Online learning problem: If we gather and process the data online, we obtain a time-
variant data set D(t) and thereby a time-variant control law with model f̂(·) = µ(·).
The data can be collected at fixed times or arbitrary sampling instances. We consider
the special case that the model update does not take any time, such that the improved
model is available immediately after the training data has been sampled.

• Episodic learning problem: When the model can only be updated offline, we need
to iterate between applying the control law (3.4) with a time-invariant GP model
f̂(·) = µ(·) to the system and updating the GP model µ(·) offline using measurements
of the so-called roll-out trajectory x(·). For simplicity, we consider the special case of
the same reference trajectory xref(·) and execution time T during all roll-outs.

In this section, we address these problem manifestations by developing algorithms for guar-
anteeing a desired, possibly arbitrarily tracking error bound ē.

81

4 Learning for Control with Arbitrary Accuracy Guarantees

Algorithm 4.1. Time-triggered online learning for GP-based control
1: Initialize GP model with N = dhσ2

onk(xref(0),xref(0))e training samples at xref(0)
2: while t < T do
3: Apply control input defined by GP-based control law (3.4)
4: if t/Ts ∈ N then
5: Take measurement x(N+1), y(N+1) = f(x(N+1)) + ε(N+1), N ← N + 1
6: Update GP mean µ(·) in the control law (3.4)
7: end if
8: end while

Remark 4.3. While we restrict our analysis to the case of a linear system with input pertur-
bation, the proposed algorithms can be straightforwardly extended to more general nonlinear
systems using the Lyapunov-based approach for certainty equivalent controllers presented in
Section 3.2. In fact, all theoretical guarantees derived for the tracking error e(·) can be
equivalently derived for Lyapunov candidates V (·). Therefore, the restriction to systems of
the form (3.2) is merely employed to simplify the presentation.

4.3.2. Time-Triggered Learning
We first consider the online learning scenario in which training data can be processed online,
but we restrict the time of the data measurements to fixed time instances nTs, where Ts ∈ R+
denotes the sampling time. Therefore, we generate a time-variant data set

D(t) =
{
x(n) = x(nTs), y(n) = f(x(n)) + ε(n)

}b t
Ts
c

n=1
, (4.81)

such that the GP model is updated using a new training pair at times t/Ts ∈ N. The resulting
online learning procedure, which we refer to as time-triggered learning, is summarized in
Algorithm 4.1.
Due to the definition of the training inputs x(n) using the states x(nTs), the distance

between them can be analyzed via properties of the trajectory x(·). For linear control
systems (3.2), it directly follows from the following lemma that this distance depends linearly
on the sampling time Ts.

Lemma 4.4. Consider a system (3.2) satisfying Assumption 3.1, to which a control law (3.4)
is applied to track a reference trajectory with bounded derivative ẋref(·). Assume that a
Gaussian process GP(0, k(·, ·)) is used to learn a model f̂(·) = µ(·), such that Assumption 3.2
holds on a compact set S ⊂ X with a uniform error bound η(·). Then, for all x ∈ S, the
state derivative ẋ(t) is bounded by

‖ẋ(t)‖ ≤ F = ‖Acl(θ)‖ sup
x∈S,t∈R0,+

‖x− xref(t)‖+ max
x∈S

η0(x) + sup
t∈R0,+

‖ẋref(t)‖ (4.82)

with probability 1− δ, where η0(·) denotes the error bound without any training samples.

Proof. It is straightforward to see that the state dynamics of the closed-loop system are
given by

ẋ = ẋref +Acl(θ)e+ b(f(x)− µ(x)). (4.83)

82

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

We can choose the parameters of the uniform error bound, such that it holds for the GP
model µ(·) used in the control law (3.4), and apply the same parameters for computing η0(·).
Since the GP standard deviation σ(·) is non-increasing with the number of training sam-
ples N , this implies that η0(·) is also a uniform error bound for the model µ(·). Then, (4.82)
immediately follows from (4.83), a bounded derivative of the reference trajectory and the
restriction to a compact set S.

Because of the restriction to a compact set S, the boundedness of ẋ(·) is a direct conse-
quence of the boundedness of ẋref(·). In fact, we do not necessarily need to determine the
supremum over S and R0,+ in (4.82). To see this, note that we only need to consider the
maximum difference between x(t) and xref(t). Therefore, we can obtain the tighter bound

‖ẋ(t)‖ ≤ F = ‖Acl(θ)‖ῡ + max
x∈S

η0(x) + sup
t∈R0,+

‖ẋref(t)‖ (4.84)

if we have a probabilistic tracking error bound υ(·) = ῡ. Furthermore, the function η0(·) is
constant for stationary kernels, which allows the easy computation of (4.83).
Based on F , it is straightforward to see that ‖x(n) − x(n+1)‖ ≤ FTs holds. Therefore, we

can upper bound the uniform error bound η(x(nTs)) after collecting n training samples by

ηTs = inf
N∈N

max
Dx⊂X,x∈S

ηDx(x) (4.85)

such that ‖x(n) − x(n+1)‖ ≤ FTs, ∀n = 1 . . . ,N − 1 (4.86)
Dx = {x(1) = x,x(2), . . . ,x(N)}. (4.87)

By fixing the number N of past sampling times, the error bounds defined in Theorem 2.1
and Proposition 2.2 only depend on the GP standard deviation σ(·). Then, no optimization
is necessary for stationary kernels since we can simply determine the direction of the fastest
decay of the kernel, e.g., the smallest length scale li for ARD SE and Matérn class kernels,
and align the samples x(n) in this direction with a distance FTs. The GP standard devia-
tion σ(x) obtained for these training samples defines ηTs . When the uniform error bound η(·)
is Lipschitz continuous, the value ηTs immediately implies a probabilistically bounded track-
ing error using a time-triggered online learning control law (3.4) as shown in the following
theorem.

Theorem 4.4. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (3.4) is applied to track a reference trajectory with bounded derivative ẋref(·). Assume
that a Gaussian process GP(0, k(·, ·)) with stationary kernel k(·, ·) is employed to learn a
model f̂(·) = µ(·) online using Algorithm 4.1, such that Assumption 3.2 holds on a com-
pact set S ⊂ X with a uniform error bound η(·) which admits a Lipschitz constant Lη. If
Bῡ(xref(t)) ∈ S holds for all t ∈ [0,T], T ∈ R0,+, where

ῡ = −‖U‖‖U
−1b‖

λ̄(Acl(θ))
(LηFTs + ηTs) , (4.88)

then, Algorithm 4.1 ensures a probabilistic tracking error bound υ(·) = ῡ during the time
interval [0,T] for initial states X0 = {xref(0)}.

83

4 Learning for Control with Arbitrary Accuracy Guarantees

Proof. Analogous to (3.10), we can bound the tracking error by

‖e(t)‖ ≤‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′)η(x(t′))dt′. (4.89)

Since Lemma 4.4 ensures a bounded state derivative, we can linearize the uniform error
bound around a training sample, such that we obtain

η(x(t)) ≤ η(x(0)) + LηFTs. (4.90)
Due to the definition of ηTs and the initialization of the GP model in Algorithm 4.1, it follows
that

‖e(t)‖ ≤‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′) (LηFTs + ηTs) dt′. (4.91)

Computing this integral yields (4.88), which concludes the proof.

Since the uniform error bound η(·) only holds for a constant data set D with probability
1 − δ, we have to combine multiple of them to deal with a time-variant data set D(t).
Similarly to previous works [67], we do this using the union bound, such that we need to
sum up the probabilities δ. However, this implies that we can only consider a finite number
of model updates N and consequently a finite time interval [0,T] using a constant probability
δ = δ̃/N during each time interval [(n− 1)Ts,Ts], n = 1, . . . ,N . Since this restriction admits
arbitrarily large final times T , it is not severe in practice. Moreover, it can be circumvented
in principle to allow an infinite number of updates N [67], but this leads to a growing uniform
error bound ηTs over time and thereby to an increase of (4.88).
For fixed time intervals [0,T], the probabilistic tracking error bound (4.88) exhibits an

intuitive behavior. On the one hand, a decrease of the sampling time Ts reduces the possible
increase of the uniform error bound during two sampling instances. On the other hand, it
directly diminishes the uniform error bound ηTs by ensuring a higher data density. In fact, it
immediately follows from a combination of Proposition 4.1 with Theorem 4.2 or Theorem 4.1
that the tracking error converges to 0 for vanishing sampling time Ts. Since the effect of
the time delay can effectively not be compensated by the eigenvalues of Acl(θ) due to the
definition of F in (4.82), this shows that the sampling time Ts is the crucial parameter
affecting the probabilistic tracking error bound (4.88).

4.3.3. Event-Triggered Learning
While using a fixed sampling time Ts allows us to ensure arbitrarily small tracking error
bounds ē using sufficiently high sampling rates, it generally causes large amounts of data
which require significant computational resources to be processed online. In order to mitigate
this issue, the training data can be generated on a need basis by adapting the sampling
scheme to the realized trajectory x(·). This can be achieved through an event-triggered
sampling strategy, where the sampling times tn are defined via conditions for the tracking
error e(t). For the linear system (3.2), we employ the triggering condition

tn+1 = inf
t>tn

t (4.92)

such that ‖U−1e(t)‖ = ē

‖U‖ (4.93)

84

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

Algorithm 4.2. Event-triggered learning for GP-based control
1: Initialize GP prior
2: while t < T do
3: Apply control input defined by GP-based control law
4: if ‖ẽ(t)‖ = ē/‖U‖ then
5: Take measurement x(N+1), y(N+1) = f(x(N+1)) + ε(N+1), N ← N + 1
6: Update GP mean µ(·) in the control law
7: end if
8: end while

for determining sampling times tn, which leads to the event-triggered online learning ap-
proach outlined in Algorithm 4.2. Since each training sample is measured when the tracking
error e(t) is high, the accuracy of the GP mean function µ(·) is improved whenever necessary.
Thereby, a time-varying data set

D(t) =
{
x(n) = x(tn), y(n) = f(x(n)) + ε(n)

}Ntrig(t)

n=1
(4.94)

is created, where Ntrig(t) denotes the number of triggering instances occurring up to time t.
As the accuracy guaranteed by an additional training sample can be quantified through the

uniform error bound η(·) and Proposition 4.1, the behavior of a tracking error bound after
a triggered measurement can be straightforwardly analyzed. This allows us to provide the
following guarantees for the tracking error e(t) and the inter-event times tn − tn−1 achieved
by Algorithm 4.2.

Theorem 4.5. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (3.4) is applied to track a reference trajectory with bounded derivative ẋref(·). Assume
that a Gaussian process GP(0, k(·, ·)) is employed to learn a model f̂(·) = µ(·) online using
Algorithm 4.2, such that Assumption 3.2 holds on a compact set S ⊂ X with a uniform error
bound η(·) which admits a Lipschitz constant Lη. If Bē(xref(t)) ∈ S holds for all t ∈ [0,T],
T ∈ R0,+, and κ̃ < −1 for

κ̃ = −1− −λ̄(Acl(θ))
LηF

(
−λ̄(Acl(θ))ē
‖U−1b‖‖U‖ − η1

)
, (4.95)

where η1 denotes the maximal uniform error bound at state x of a GP model whose only
training input is x, then, Algorithm 4.2 ensures a probabilistic tracking error bound υ(·) = ē
during the time interval [0,T] for initial states X0 = {xref(0)}. Moreover, the inter-event
time is lower bounded by

T s = κ̃−W0 (κ̃eκ̃)
λ̄(Acl(θ))

, (4.96)

where W0 : [−1/e,∞)→ [−1,∞) denotes the primary branch of the Lambert W function.

Proof. In order to prove this theorem, we need to ensure that the uniform error bounds hold
for all GP models generated by Algorithm 4.2. Therefore, we choose δ = δ̃T s/T , δ̃ ∈ (0, 1)
for determining the uniform error bound η1, such that the union bound guarantees the

85

4 Learning for Control with Arbitrary Accuracy Guarantees

joint satisfaction of η1 with probability 1 − δ̃ for T/T s GP models with different data sets.
Moreover, we perform a change of variables and define ẽ = U−1e. Similarly as in the proof
of Theorem 4.4, we can linearize the error bound around a sampling state. By denoting the
corresponding time as t = 0 for notational convenience, it immediately follows from (3.10)
and (4.91) that

‖ẽ(t)‖ ≤‖ẽ(0)‖eλ̄(Acl(θ))t + ‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′) (LηFt′ + η1) dt′ (4.97)

holds until the next measurement is taken, where ‖ẋ(t)‖ ≤ F follows from Lemma 4.4. This
integral can be straightforwardly determined, such that exploiting the fact that ‖ẽ(0)‖ ≤
ē/‖U‖ at the triggering time results in

‖ẽ(t)‖ ≤ (4.98)

ē

‖U‖eλ̄(Acl(θ))t+ ‖U
−1b‖

λ̄(Acl(θ))


η1

(
eλ̄(Acl(θ))t−1

)
+LηF

(
−t+ 1

λ̄(Acl(θ))
(
eλ̄(Acl(θ))t−1

))

.

Due to (4.95), it follows that

c = ē

‖U‖ + ‖U−1b‖
(

LηF

λ̄2(Acl(θ))
+ η1

λ̄(Acl(θ))

)
> 0. (4.99)

Therefore, we have

‖ẽ(t)‖ ≤ ceλ̄(Acl(θ))t + ē

‖U‖ − c−
LηF‖U−1b‖
λ̄(Acl(θ))

t. (4.100)

Since κ̃ > 1, this bound is decreasing at t = 0, which directly implies that ‖ẽ(t)‖ < ē/‖U‖ for
some time interval t ∈ (0,Ts). Since a new measurement is triggered as soon as ‖ẽ(t)‖ =
ē/‖U‖, this ensures ‖ẽ(t)‖ ≤ ē/‖U‖ and consequently ‖e‖ ≤ ‖U‖‖ẽ‖ = ē for all t ∈ [0,T] if not
more than T/T s update events are triggered. The time Ts between two update events can be
lower bounded by solving (4.100) for t when ‖ẽ(t)‖ = ē/‖U‖. This yields the equality

0 = eλ̄(Acl(θ))t − 1− LηF‖U−1b‖
cλ̄(Acl(θ))

t, (4.101)

which can be directly solved for t via the Lambert W function resulting in (4.96). Hence,
no more than T/T s different models are used, which concludes the proof.

Since the time tn− tn−1 between sampling events can be arbitrarily large, we can generally
not ensure that the uniform error bound η(·) for GP regression decreases below η1 at sampling
times tn. This makes it necessary to restrict the admissible error bounds ē in Algorithm 4.2
using condition κ̃ < −1 in order to ensure that the tracking error e(t) actually decreases
after the trigger event. The value κ̃ measures the distance of the desired error bound ē to
the minimum admissible value

ēmin = ‖U
−1b‖‖U‖η1

−λ̄(Acl(θ))
, (4.102)

for which continuous triggering would be necessary. Therefore, (4.96) exhibits the intuitive
behavior that for ē → ēmin, it potentially becomes necessary to sample more than once at
the same time instance tn, i.e., T s → 0.

86

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

Algorithm 4.3. Episodic learning with arbitrary accuracy guarantees
1: Initialize GP prior, i← 0
2: Compute ῡ0 using (3.14) for τ satisfying (4.52)
3: while ῡi > ē do
4: i← i+ 1
5: Apply the controller (3.4) to the system (3.2) and collect training samples
6: Choose θ such that (4.104) holds
7: Find Ts such that (4.105) is satisfied for a set DTs

N of collected samples
8: Determine µTs(·) and σ2

Ts(·) based on the data set DTs
N

9: Compute ῡi using (3.14) for τ satisfying (4.52)
10: end while

4.3.4. Episodic Learning
When online learning is not possible due to computational restrictions, we have to update
the GP model offline. Therefore, we develop an episodic approach for generating training
data sets in this section. For simplicity, we consider a constant sampling time Ts ∈ R+
during each episode with execution time Tp ∈ R+, which yields data sets of the form

DTs
N =

{
(x(nTs), f(x(nTs)) + ε(n))

}Np
n=0

, (4.103)

where Np = b1 + Tp/Tsc denotes the number of training samples gathered during one episode.
Therefore, the tracking error bound ῡ from one episode immediately provides guarantees
for the training data of the next episode. We exploit this by adjusting the sampling time
Ts and the maximum eigenvalue λ̄(Acl(θ)) as demonstrated in Algorithm 4.3 in order to
ensure a sufficiently small error bound for the next episode. An index Ts in the posterior
standard deviation σTs(·) emphasizes this dependency on the sampling time. As shown in
the following theorem, this approach guarantees the termination of Algorithm 4.3 after a
finite number of iterations.
Theorem 4.6. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (3.4) with control gains θ satisfying Assumption 3.3 is applied to track a bounded refer-
ence trajectory xref(·). Assume that a Gaussian process GP(0, k(·, ·)) with Lipschitz contin-
uous, stationary kernel k(·, ·) is used to learn a model f̂(·) = µ(·) of the unknown, Lipschitz
continuous function f(·), such that Assumptions 2.1 and 2.6 are satisfied. If θ and Ts are
chosen such that

−λ̄(Acl(θ)) ≥ 2‖U‖‖U−1b‖
√√√√2 log

(
M(τ ,S)

δ

)(
8
√
L∂k
c

+ Lσ

)
(4.104)

max
0≤t≤Tp

σ2
Ts(xref(t)) ≤ 16L∂kῡ2

i−1 (4.105)

holds in every episode for c < 1, Algorithm 4.3 ensures a probabilistically bounded tracking
error ē and terminates after at most

NE =




log
(
4ē
√
L∂k

)
− log

(√
k(0)

)

log(c)




(4.106)

episodes with probability of at least 1−NEδ.

87

4 Learning for Control with Arbitrary Accuracy Guarantees

Proof. It immediately follows from Proposition 3.1 and Proposition 2.2 that

ῡ = − 2‖U‖‖U−1b‖
λ̄(Acl(θ)) + Lη‖U‖‖U−1b‖

√√√√2 log
(
M(τ ,S)

δ

)
max

0≤t≤Tp
σTs(xref(t)) (4.107)

for τ satisfying (4.52). Due to (4.104), this yields

ῡ0 =
c
√
k(0)

4
√
L∂k

, (4.108)

ῡi+1 = c

4
√
L∂k

max
0≤t≤Tp

σTs(xref(t)), (4.109)

where the index i is used to denote the episode. Due to (4.105), this directly implies the
recursion

ῡi+1 ≤ cῡi (4.110)

with probability 1 − δ in each episode. Therefore, Algorithm 4.3 ensures a probabilistic
tracking error bound ē after at most NE episodes with probability 1−NEδ due to the union
bound.

Due to the exponential decay of the tracking error bound ῡ ensured by Theorem 4.6,
Algorithm 4.3 quickly terminates. This comes at the price of higher requirements (4.104) on
the eigenvalues ofAcl(θ) compared to the online learning scenarios presented in Sections 4.3.2
and 4.3.3. However, the difference is small, and it is indeed straightforward to see that
−λ̄(Acl(θ)) ∝ 1/

√
log(ē) is sufficient to compensate the effect of an increasing scaling factor

in the uniform error bound η(·) for all polynomially growing data sets. Therefore, this
requirement is still significantly lower compared to ensuring the tracking error bound ē
without learning as guaranteed by Lemma 4.3.
While Theorem 4.6 provides requirements on the sampling time Ts, the condition (4.105)

cannot be computed before the controller is applied to the system. However, it can easily be
verified a posteriori, such that we can simply downsample the obtained data to the necessary
sampling time Ts. The required maximum sampling rate can be bounded using the following
proposition.

Proposition 4.4. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (3.4) with control gains θ satisfying Assumption 3.3 is applied to track a bounded ref-
erence trajectory xref(·). Assume that a Gaussian process GP(0, k(·, ·)) with an isotropic
SE kernel k(·, ·) is used to learn a model f̂(·) = µ(·) of the unknown, Lipschitz continuous
function f(·), such that Assumptions 2.1 and 2.6 are satisfied. Then, the sampling time Ts
required by condition (4.105) in Algorithm 4.3 is bounded by

Ts ≥ T s = 16L∂kē3

σ2
on max0≤t≤Tp‖ẋ(t)‖ . (4.111)

Proof. We prove this proposition by deriving a value of Ts which satisfies (4.105) Due to
Proposition 4.1, (4.105) is guaranteed to hold if h ≥ 1/(8L∂kσ2

f ῡ
2
i−1). Set h = 1/(8L∂kσ2

f ῡ
2
i−1).

Then, it follows from Lemma 4.2 that

B2υi−1(xref(t)) ⊂ Kh(xref(t)). (4.112)

88

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

The Euclidean ball around xref(t) on the left-hand side can be inner bounded by a Euclidean
ball with half the radius around the actual trajectory, i.e.,

Bῡi−1(x(t)) ⊂ B2ῡi−1(xref(t)). (4.113)

The smaller Euclidean ball has a diameter of ῡi−1, and the actual trajectory passes through its
center. Moreover, the distance between two samples can be bounded by Ts max0≤t≤Tp ‖ẋ(t)‖,
where ‖ẋ(t)‖ is bounded due to Lemma 4.4. This allows us to bound the number of points
in Kh(xref(t)) by

|Kh(xref(t))|≥|Bῡi−1(x(t))|≥ 2ῡi−1

Ts max0≤t≤Tp‖ẋ(t)‖. (4.114)

For h ≥ h, it must hold that

2υi−1

Ts max0≤t≤Tp ‖ẋ(t)‖ ≥ hσ2
onk(0) = σ2

on
8L∂kυ2

i−1
(4.115)

due to (4.30). This inequality can be ensured to hold by setting

Ts = 16L∂kῡ3
i−1

σ2
on max0≤t≤Tp‖ẋ(t)‖ , (4.116)

which concludes the proof.

This result clearly shows that the necessary sampling rate for ensuring a desired track-
ing error bound ē converges to 0 when ē vanishes. Due to the restriction to SE kernels,
the required rate in (4.111) can be quantified and easily computed, e.g., by bounding the
state derivative ẋ(t) using Lemma 4.4. Therefore, Proposition 4.4 allows us to effectively
determine the maximally required sampling rate for implementing Algorithm 4.3.

4.3.5. Numerical Evaluation
We illustrate the different data generation strategies by considering the setting in Sec-
tion 3.1.4 again. Therefore, we have a linear closed-loop system described by

Acl(θ) =
[

0 1
−kcθ̃ −kc − θ̃

]
, b =

[
0
1

]
(4.80 revisited)

which is perturbed by the nonlinear input perturbation f(x) = 1−sin(2x1)+1/(1+exp(−x2)). If
not explicitly specified otherwise, the control gains are defined as kc = 10 and θ̃ = 5.
We first demonstrate the performance dependency of the time-triggered online learning in

Algorithm 4.1 on the sampling time Ts. Next, we evaluate the event-triggered online learning
using Algorithm 4.2 and investigate the behavior of the inter-event times caused by different
specified error bounds ē. Finally, the effectiveness of the episodic offline learning approach
outlined in Algorithm 4.3 is presented.

89

4 Learning for Control with Arbitrary Accuracy Guarantees

0 1 2 3 4 5 6
10−4

10−3

10−2

10−1

t

‖e
‖ ,observed error

Figure 4.8.: Examplary evolution of the tracking error norm ‖e(·)‖ with time-triggered online
learning as outlined in Algorithm 4.1.

100 200 300 400 500 600 700 800 900 1,000

10−2

100

1/Ts

‖e
‖ ,observed error

,standard deviation
,error bound

Figure 4.9.: Maximum tracking error and its bound ῡ in dependency of the sampling time Ts
for time-triggered learning as outlined in Algorithm 4.1.

Time-triggered Online Learning

For determining the probabilistic tracking error bound using Theorem 4.4, we iterate be-
tween computing F using (4.84) and evaluating (4.88) until convergence is reached. The
required optimization problem (4.85) for obtaining ηTs is approximated by fixing the num-
ber of considered training samples to N = 100, such that a closed-form solution can be
straightforwardly seen for the employed ARD SE kernel.
A resulting exemplary evolution of the tracking error norm ‖e(·)‖ is depicted in Fig. 4.8.

Due to the large length scales l1 = 2.04 and l2 = 0.86 in the ARD SE kernel (2.18), the
tracking error slowly decreases over time. In particular, the periodic reference trajectory
causes a significant increase of the training data density towards the end of the period time
Tp = 2π, which results in a clearly visible reduction of the tracking error. While this effect is
not considered by the probabilistic tracking error bound in Theorem 4.4, it is straightforward
to extend the derived theory to reflect the data density increase with periodic reference
trajectories xref(·).
Due to the randomness in training samples caused by the observation noise, the depen-

dency of the worst-case error on the sampling time Ts is investigated by averaging over 10
simulation runs. As illustrated in Fig. 4.9, the resulting curve decreases with the sampling
frequency 1/Ts with a similar rate as the probabilistic tracking error bound ē. The variation
caused by the randomness is marginal, as visualized by the shaded area, which reflects the
3 times standard deviation. Therefore, the time-triggered online learning strategy described
in Algorithm 4.1 exhibits the behavior guaranteed by Theorem 4.4 and enables the effective
reduction of the tracking error norm ‖e(·)‖ by decreasing the sampling time Ts.

90

4.3 Closed-Loop Data Generation for Tracking Accuracy Guarantees

1 2 3 4 5 6
0
2
4
6
8

·10−2

t

‖e
‖ ,tracking error

,trigger condition
,trigger event

Figure 4.10.: Examplary evolution of the tracking error norm ‖e(t)‖ with event-triggered
online learning as outlined in Algorithm 4.2.

0

5 · 10−2

0.1

0.15

0.2

‖e
‖ ,max. error

,standard deviation

10−2 10−1 100
0

0.2

0.4

ē

‖U
−

1 e
‖

,max. error
,standard deviation

Figure 4.11.: Maximum tracking error in dependency of the prescribed error ē for event-
triggered learning as outlined in Algorithm 4.2.

Event-triggered Online Learning

While the time-triggered learning approach generates a continuous stream of data, a desired
tracking error bound ē can be ensured with a higher data efficiency using the event-triggered
learning approach outlined in Algorithm 4.2, which is illustrated for ē = 0.10 in Fig. 4.10.
Whenever the value ‖U−1e‖ reaches the threshold ē/‖U‖ = 0.074, a training sample is gen-
erated and the model is updated. After these trigger events, symbolized with blue circles,
the tracking error decreases, such that overall only a small number of GP updates must be
computed to ensure the desired error bound ē.
This behavior can be observed for a wide range of prescribed error bounds ē as depicted in

Fig. 4.11. Due to the randomness of training samples, this figure shows again average curves
for 100 simulation runs. When the specified error ē is large, no training data is necessary,
such that the curves for ‖e(·)‖ and ‖U−1e‖ are constant. While the bound ‖U−1e(·)‖ ex-
hibits an almost continuous decrease for smaller values ē with practically no variation, the
actual tracking error ‖e(·)‖ suffers from a steep increase when GP updates start. However,
this is accompanied by a jump in the standard deviation, which indicates that this is a
consequence of the observation noise, which causes a performance deterioration of the GP
model with very few training samples in a few simulation runs. This artifact vanishes as ē
becomes smaller and quickly disappears, such that both curves decrease for the remaining
considered range of error bounds ē. Interestingly, the standard deviation starts to increase

91

4 Learning for Control with Arbitrary Accuracy Guarantees

10−3

10−1

101

m
in

n
∈N

∆
t e

ve
nt

,n

,min. inter-event time
,standard deviation
,bound

10−2 10−1 100
0%

50%

100%

ē

po
sit

iv
e

,min. inter-event time

Figure 4.12.: Top: Minimum inter-event time minn∈N ∆tevent,n together with its bound in
dependency of the prescribed tracking error ē for event-triggered learning as
described in Algorithm 4.2. Bottom: Percentage of non-zero minimum inter-
event times depending on the prescribed tracking error ē.

for small values ē in both plots.
This behavior can be easily explained when looking at the minimum inter-event times

illustrated in Fig. 4.12. While the average of positive minimum inter-event times exhibits an
approximately constant decay rate, the theoretical error bound does not ensure this. Due
to the conservatism of the theoretical analysis, this is not a problem for comparatively large
prescribed error bounds ē, but it eventually leads to minimum inter-event times becoming 0 in
some simulation runs, as illustrated at the bottom of Fig. 4.12. This occurs precisely around
the values of ē for which the standard deviation increase in Fig. 4.11 can be observed.
Therefore, the triggered GP updates cannot ensure a sufficient model accuracy increase,
which leads to a potential growth of the tracking error. Since this does not happen in all
simulation runs due to the randomness of training data, this causes the variation in the
observed tracking accuracy. This demonstrates that Theorem 4.5 describes a practically
relevant effect by providing a lower bound for the certifiable tracking accuracy, even though
the theoretically guaranteed bound is conservative.

Episodic Learning

If we need to process the training data offline due to computational constraints, the episodic
learning strategy outlined in Algorithm 4.3 can be employed. For realizing this approach,
we set kc = θ̃ and choose kc such that c = 0.95 holds in every iteration. A high-frequency
data set with sampling time 3 · 10−4 is generated in every episode, such that a line search
can be used to determine the maximum value of Ts satisfying (4.105).
The tracking error bounds obtained from Algorithm 4.3 with these parameters are exem-

plarily illustrated for several different episodes in Fig. 4.13. Due to the constant sampling
time, the training data density along the reference is very similar within an episode, which
directly leads to the minor variations in the tracking error bound over time. Moreover, it
can be seen that the decrease of the tracking error bound υ(·) is significantly larger during
the first few episodes before it slows down. This becomes even clearer when plotting the

92

4.4 Discussion

0 5 10 15 20 25 30
10−3

10−2

10−1

100

t

υ

,episode 1
,episode 5
,episode 10
,episode 30
,episode 60

Figure 4.13.: Tracking error bounds υ(t) for different episodes of Algorithm 4.3.

0 10 20 30 40 50 60

10−4

10−2

100

NE

‖e
‖ ,observed error

,error bound
,guaranteed decrease

Figure 4.14.: Decay rate of the tracking error bound ῡ and the observed tracking error
norm ‖e‖ resulting from Algorithm 4.3.

behavior of the error bound over the number of episodes as depicted in Fig. 4.14. During
the first 10 episodes, the error bound ῡ decays faster than the guaranteed rate of cNE ῡ0,
which is guaranteed by Theorem 4.6. This can be attributed to the fact that even a sin-
gle additional data point reduces the posterior variance more than required for (4.105) at
the beginning. Once a sufficiently large number of additional training samples is necessary
to ensure (4.105), this inaccuracy is overcome, and the error bound ῡ closely follows the
guaranteed decrease rate. In fact, while being rather conservative similar to the previous
simulations, the tracking error bound ῡ even reflects the behavior of the actually observed
tracking error ‖e‖ accurately after 10 episodes.
Note that this unexpected fast decay at the beginning has no influence on the required

maximum eigenvalues λ̄(Aθ) as depicted at the top of Fig. 4.15. While smaller eigenvalues
are required for the episodic approach compared to the asymptotic analysis in Section 4.2.4,
the maximum eigenvalue λ̄(Aθ) used in Algorithm 4.3 closely follow the expectedO(1/

√
log(ē))

behavior. Moreover, it can be directly seen that Algorithm 4.3 offers a significant advantage
over a direct reduction of the tracking error bound using the maximum eigenvalue λ̄(Aθ)
without compensation of the nonlinearity. Note that the sampling time Ts necessary to
achieve this behavior quickly decays as illustrated at the bottom of Fig. 4.15. However, since
it stays significantly larger than its theoretical bound T s, it remains in magnitudes that can
be realized in practice. Therefore, Algorithm 4.3 provides an effective method for generating
data, such that a GP model can be trained offline to ensure an arbitrary tracking error ē.

4.4. Discussion
While the presented approach for analyzing the impact of training data on the derived
uniform error bounds in Section 4.1 is applicable to a wide range of kernels in principle, it is

93

4 Learning for Control with Arbitrary Accuracy Guarantees

50

100

150

200
−
λ̄

(A
) ,episodic learning

,asymp. behavior
,without compensation

0 200 400 600 800 1,000 1,200
10−11

10−6

10−1

1/ē

T
s ,used sampling time

,lower bound

Figure 4.15.: Top: Maximum eigenvalue λ̄(A) necessary to ensure a given tracking error
bound ē when learning a control law using Algorithm 4.3 in comparison to
a pure feedback controller without compensation of nonlinearities. Bottom:
Employed sampling time Ts together with its lower bound T s for given error
bounds ē.

particularly well-suited for stationary covariance functions. This is clearly visible from the
analysis in Section 4.1.4, which shows that the global data dependency of linear kernels can
only be partially reflected by the derived density measure h(·). Since stationary kernels are
predominantly used in GP models for control applications at the moment, this weakness of
our approach is not critical for our addressed problems. Therefore, we leave the improvement
of our results for non-stationary kernels for future research, e.g., by investigating the data
dependency of the parametric error bounds derived in Section 2.2.1.
Due to the benefits of our analysis for stationary kernels, the derived bounds for the

posterior variance have a highly local nature, which allows the investigation of individual
test inputs through the training samples in its proximity. This local dependency fits excel-
lently to the requirements of the performance guarantees for the tracking accuracy derived
in Chapter 3, which depend on the local model accuracy. Therefore, the locality of the
density measure h(·) enables the restriction of the training data analysis along the reference
trajectory in Section 4.2.2 and a state-dependent derivation of data density requirements in
Section 4.2.3. For the latter example, the provided analysis illustrates an intuitive insight
that has independently been posed as a condition for suitable training samples in [150]: a
high control input magnitude is necessary to ensure a small prediction error of the model µg(·)
for the function g(·) when merely data of the control-affine function f(x) = f̃(x) + g(x)u
are available. Therefore, Section 4.2 presents an effective approach for relating desired track-
ing accuracies to requirements on the training data. It should be noted, however, that the
posterior variance bound in Lemma 4.1, which is the foundation of our analysis, is generally
not tight. When the global model accuracy on a compact domain is of concern, it is well-
known that information-theoretic concepts allow improved bounds [67]. The combination
of such information-theoretic concepts with our control-oriented analysis remains an open
problem for future research, which potentially can be addressed by transferring ideas from
safe Bayesian optimization such as [151].
The insights gained from the analysis in Section 4.2 lead to the development of effective

94

4.4 Discussion

methods for ensuring a desired tracking accuracy using GP-based learning in Section 4.3.
While the derived guarantees for the presented learning control approaches are rather conser-
vative, they allow the valuable conclusion that we can achieve arbitrary tracking accuracies
through sufficiently high sampling rates, both in offline and online learning. The proposed
strategies can be straightforwardly realized in practice and have been successfully demon-
strated in real-world applications [26, 27, 152]. Therefore, our derived results in Section 4.2
provide an important theoretical foundation for practically employed and highly relevant
learning approaches. While they can be easily extended beyond linear systems with unknown
input perturbation, e.g., by employing the Lyapunov approach proposed in Section 3.2, they
are limited to unknown dynamic components depending only on the system state, but not
the control inputs. This is due to the necessity of active exploration to excite more gen-
eral unknown functions, which directly follows from the results of Section 4.2.3. Hence,
the development of suitable learning and data generation approaches for general unknown
components in dynamical systems remains an open problem.

95

Efficient Learning via Gaussian
Process Model Aggregation 5.

While Gaussian processes have many beneficial theoretical properties for control, as demon-
strated in the previous chapters, their practical application is generally challenging. This
is mainly due to the computational complexity of both their predictions and model up-
dates, which strongly grows with the number of training samples. While there exist many
approaches to enable the learning of models from large data sets [153], the problem of de-
veloping suitable methods for learning in control loops has not specifically been addressed.
Control applications are a challenging problem for developing GP-based learning meth-

ods in many different aspects. Control loops often run at high sampling rates [154], such
that data needs to be processed quickly and sequentially, and models used in control laws
need to be evaluated with low latency. Furthermore, control systems are often composed
of multiple individual agents, which usually have the capability to communicate with each
other [155]. Since this implies that data is scattered across physically separated computing
units, extracted model knowledge needs to be efficiently shared between agents for the ef-
fective control of multi-agent systems. Finally, many control problems require performance
guarantees in order to ensure the safe operation of systems [156]. Therefore, model accuracy
guarantees such as probabilistic uniform error bounds must exist for practical GP-based
learning in control loops.
We address this challenging problem of developing learning methods based on GP regres-

sion for control systems using the aggregation of individual GP models [157]. The structure
of common aggregation methods can be generally expressed as

µ̃(z) = ψµ


∑

m∈M
ωmψω(µm(z),σ2

m(z))

 , (5.1)

σ̃2(z) = ψσ


∑

m∈M
ωmψω(µm(z),σ2

m(z))

 , (5.2)

where ωm are weighting factors, M denotes the index set of the individual models and
ψµ,ψσ : Rdψ → R and ψω : R2 → Rdψ are nonlinear functions. For example, a mixture of
GP experts approach [158] corresponds to

ψω(µm(z),σ2
m(z)) =

[
µm(z)

σ2
m(z) + µ2

m(z)

]
, (5.3)

ψµ(ψω) = ψω,1, (5.4)
ψσ(ψω) = ψω,1 − ψ2

ω,1 (5.5)

for ψω ∈ R2, which is often used in the form of a mixture of explicitly localized experts [159],
see, e.g., [142, 160]. Similarly, the generalized product of GP experts approach [161] can be

97

5 Efficient Learning via Gaussian Process Model Aggregation

obtained by choosing

ψω(µm(z),σ2
m(z)) =

[
µm(x)σ−2

m (x)
σ−2
m (x)

]
, (5.6)

ψµ(ψω) = ψω,1

ψω,2
, (5.7)

ψσ(ψω) = 1
ψω,2

. (5.8)

Based on such aggregation schemes, we propose a computationally efficient method for
GP-based online learning in control loops in Section 5.1. In this section, which is based
on [38], we also show that probabilistic uniform error bounds derived for exact GP regres-
sion straightforwardly transfer to many practically used aggregation schemes. In order to
enable the application of GP regression in multi-agent systems with a distributed computing
infrastructure, we propose a consensus-based aggregation in Section 5.2. We demonstrate
the improved data efficiency of this distributed learning approach by employing it in a coop-
erative control law and derive probabilistic tracking error bounds. These results are based
on [39]. Finally, this chapter is concluded by a discussion in Section 5.3.

5.1. Computationally Efficient Online Learning with
Error Bounds

In order to practically realize the online learning control approaches presented in Sec-
tion 4.3, predictions and model updates must typically be performed in real time due to
the fast evolution of many physical processes. These applications include the control of au-
tonomous cars [162], unmanned aerial vehicles [163], robotic manipulators [164], combustion
engines [165], and many others, where update rates in the magnitude of 102 Hz to 104 Hz are
required. In the case of predictive control schemes, where possible future trajectories are in-
ferred and evaluated, multiple predictions are made for a single control command, requiring
prediction rates that are orders of magnitudes higher [166].
Since the computational complexity of updates and predictions for GP models grows

strongly with the number of training points, many approximations have been developed
to enable the employment in real-time applications. Deterministic training conditional ap-
proximations [164, 167] and inducing point methods [168, 169] can speed up predictions,
while variational inference approaches for streaming data [170] allow fast model updates
and exhibit a beneficial performance-complexity trade-off compared to stochastic variational
inference [171]. However, error bounds from exact GP inference as derived in Chapter 2 do
not extend to these methods, which prevents their usage in applications with performance
guarantee requirements. Even though finite feature approximations of kernels [51] are ad-
vantageous in this regard and yield constant update and prediction complexities, safety
guarantees require an impractically high number of features [172]. Therefore, there is a
clear lack of methods that allow updates and predictions in real-time for applications with
performance guarantee requirements.
The main contribution of this section is a novel, computationally efficient, GP-based

method for real-time predictions and model updates in applications with performance guar-
antee requirements, called locally growing random tree of GPs (LoG-GP). Based on aggre-

98

5.1 Computationally Efficient Online Learning with Error Bounds

gation schemes (5.1), we propose an iterative random division of individual models, which
results in a random tree as computation graph and guarantees a logarithmic complexity of
model updates. In order to reduce the complexity of predictions, the number of necessary
individual GP evaluations is limited through the application of locally active models. We
prove that uniform error bounds from exact GP inference directly carry over to the proposed
method, such that it can be used in applications with performance guarantee requirements.
This is demonstrated through the application of LoG-GPs for event-triggered online-learning
control. In a comparison on real-world data sets and a control simulation, the superior com-
putational efficiency is demonstrated while providing comparable regression performance to
state-of-the-art methods.
The remainder of this section is structured as follows. Due to the extensive literature on

GP approximations for reducing the computational complexity, a more detailed overview of
GP-based online learning approaches is provided in Section 5.1.1. In Section 5.1.2, the prob-
lem setting for GP-based online learning with high update and prediction rates is presented.
The LoG-GP approach relying on the aggregation of locally active models is proposed in
Section 5.1.3. The computational complexity of the proposed method is analyzed in Sec-
tion 5.1.4 before probabilistic uniform error bounds for GP regression are extended to ag-
gregated predictions in Section 5.1.5. The beneficial computational efficiency in comparison
to state-of-the-art methods is demonstrated in Section 5.1.6. Finally, the straightforward
applicability in online learning control with performance guarantees is demonstrated in Sec-
tion 5.1.7.

5.1.1. Existing Approaches for Gaussian Process-based Online
Learning

Although scalability is a major issue of exact Gaussian process regression, a wide variety
of methods has been developed in recent years to overcome this problem. An extensive
overview of these methods can be found in [153]. Following the classification of methods
introduced in this survey article, we distinguish between global and local approximations of
GPs for online learning.

Global Approximations

Global GP approximations comprise, by far, the largest group of online learning methods.
Among the most common approaches are sparse approximations [173], which aim to re-
duce the computational complexity of the inverse of the kernel matrix. While there exist
approaches exploiting the structural properties of Gram matrices for ensuring a high com-
putational efficiency [174, 175], approximations of the prior and posterior GP distributions
are the most common approaches for online learning. The deterministic training conditional
(DTC) approximation is a particularly widespread prior approximation since it achieves a
constant complexity of predictions by heuristically choosing an active subset from the train-
ing data set. For determining the active subset, various methods have been proposed with
different complexities [164, 167, 176, 177]. However, the constant complexity of predictions
comes at the price of a linear complexity of updates. Fully independent training condi-
tional (FITC) and partially independent training conditional (PITC) approximations follow
a similar idea for approximating the prior but use arbitrary inducing points to compress

99

5 Efficient Learning via Gaussian Process Model Aggregation

the information of the original training data. The flexibility of choosing arbitrary inducing
points can be used to construct a suitable covering of the input domain online, e.g., through
a prior design [168], online clustering techniques [169, 178], or by selecting training inputs
as inducing points [179]. While this can be advantageous regarding regression performance,
it generally does not positively affect the computational complexity. Therefore, these ap-
proximations are best suited for offline training and online predictions but cannot be applied
when fast updates are necessary as in, e.g., event-triggered learning.

Subset of regressor approaches are a form of prior approximation, which are rather depre-
ciated in big data problems but have demonstrated to be very successful in online learning
problems. The idea of these approaches lies in the approximation of the kernel, such that the
complexity of the kernel inverse is reduced. This can be achieved directly via a compactifica-
tion of covariance functions [180, 181], such that sparsity in the Cholesky factors is ensured.
More popularly, finite feature maps are constructed, which allow to approximately express
the kernel as a scalar product. This procedure results in constant update and prediction
complexities, which only depend on the number of features. For determining the features,
different approaches exist. When prior data is available, meta-training can be used to fit
features to the training data using neural networks [182] or least squares [183]. Conversely,
without any offline data, random trigonometric features with strong theoretical guarantees
can be easily determined using Bochner’s theorem [184], such that the method is often re-
ferred to as sparse spectrum GP [50, 51]. In contrast to most other methods, sparse spectrum
GPs directly inherit many theoretical properties from exact Gaussian process regression due
to Bochner’s theorem [185]. Moreover, when numerical integration is used for obtaining
the feature maps instead of random sampling, uniform error bounds can be extended from
exact GP inference [172, 186]. However, these bounds often require a practically intractable
number of features. Moreover, these methods are known to suffer from overfitting [187], and
their posterior variances are overconfident [153]. Furthermore, the posterior mean and vari-
ance will be periodic functions, such that the variance might collapse far from any training
samples [188], leading to overconfident predictions.

Posterior approximations of GPs do not approximate the prior distribution but instead aim
at minimizing the difference between the approximate and exact posterior GP distributions.
The most common posterior approximation is the variational free energy [189], which can
be efficiently optimized using stochastic optimization methods [171, 190]. Although these
approaches can be applied in online learning problems with streaming data in principle, they
are usually unsuited for this task, as discussed in [170]. The reasons for this are manifold.
First, the optimization methods have the underlying assumption that data is uniformly
randomly subsampled into mini-batches. While streaming data can often be aggregated
into mini-batches, the data is rarely drawn i.i.d. from the input distribution. Moreover,
the data should typically be passed to the optimizer multiple times, which typically cannot
be satisfied with streaming data due to computational constraints. Finally, typically only
a single gradient step is performed for every mini-batch. Since data cannot be revisited,
this causes a risk of forgetting old data. In order to overcome these issues, [170] proposed
a posterior approximation for streaming data, which allows online predictions and online
updates in mini-batches. While this algorithm achieves a good regression performance, the
limitation to mini-batches can be prohibitive in applications such as event-triggered learning,
where the update must be performed after every new sample.

100

5.1 Computationally Efficient Online Learning with Error Bounds

Local Approximations and their Relationship to the Proposed Approach

The number of local GP approximations for online learning is significantly lower than for
global approximations, but they are frequently used in practical applications. Among the
most straightforward approaches are naive local models, which adapt the used data set to
the input. This can be achieved, e.g., through a windowing approach [191] or by choosing
the data subset based on task-specific information theoretic metrics [27]. Although these
approaches achieve a constant update and prediction complexity and typically work well in
applications where a local model is sufficient, they frequently suffer from discontinuous mean
functions and merely local validity of the models, which prevents their usage in applications
such as model predictive control or model-based reinforcement learning. Mixture of experts
approaches overcome this issue by composing a global model of multiple locally active Gaus-
sian process experts. While mixture of experts approaches have been initially proposed to
address the challenge of multi-modal data [158], explicitly localized models have led to great
success in online learning [24, 142, 160]. Since the number of local models and their respec-
tive regions in the input domain are not known a priori, they are typically adapted to the
streaming data online. The resulting prediction performance crucially depends on the pa-
rameters controlling this domain clustering behavior. In order to avoid an excessive number
of data points per local model, data points are typically added and removed according to an
information criterion. When this happens too often, the regression performance can suffer.
However, if too many local models are generated, the computation time increases due to a
linear dependency of the update and prediction complexity on the number of models. The
trade-off between computation time and prediction performance depends on a few crucial
parameters, which are hard to tune, particularly in online learning problems with stream-
ing data. Therefore, the application of mixtures of explicitly localized experts in real-time
learning problems is often challenging.
In order to overcome the issues of mixtures of explicitly localized GP experts, our approach

employs trees for defining the computing architecture. This idea goes back to [161], where a
generalized product of experts approach is used for aggregating individual GP models. In the
original approach, the data is split into multiple subsets by constructing a ball-tree [192],
which is an efficient method for representing models and allows fast queries of individual
leaves of the tree. Although each node of the ball-tree contains a separate GP model and
all models are generally evaluated for the prediction of a test point, only evaluating models
along the branch assigned to a test point has been investigated, too. Similar ideas have been
used in [193], where the tree is employed primarily as a computation graph. In contrast to the
ball-tree, a k-d tree is recursively constructed from a batch of data until a prescribed number
of leaves containing all the individual GP models is reached. While these approaches exploit
methods for the explicit localization of models, this idea is dropped in [157]. Instead, the
Bayesian Committee Machine proposed in [194] is adapted for aggregating the predictions of
Gaussian process models, such that higher importance is put on models with low posterior
variance. In order to address consistency concerns of Bayesian Committee Machines, different
extensions of this approach have been proposed [195, 196]. Although these approaches can
scale GPs to millions of training samples, this is mostly achieved through parallelization, but
the asymptotic complexity of predictions typically remains linear in the number of individual
GP models. In online learning problems, this can become problematic since the overhead of
parallelization becomes significant when only a single prediction is computed. Moreover, an
efficient online construction of the tree computing structure as well as error bounds for the

101

5 Efficient Learning via Gaussian Process Model Aggregation

predictions as required for safety-critical applications have not been investigated.
In contrast to the existing GP approximations using trees as computation graphs, we

focus on an iterative construction of the computation tree by growing a random tree with
streaming data. In fact, the proposed method is very general and includes many existing
methods as special cases, e.g., the k-d [193] and ball-tree constructions [161] can be seen as
deterministic cases for batch data. Although the idea of adapting the density and extension
of local models to the data distribution has been inherent in aggregation schemes with
localized models, most of the proposed approaches require the data in advance for clustering
the data points into the leaves, such that they cannot handle streaming data. Moreover,
the primary motivation behind localized models in existing methods lies in an improvement
of the regression performance. All models, even those far from a test input, are typically
evaluated for the overall prediction, which leads to a linear computational complexity in
the number of models. We overcome this issue in a principled way by exploiting the tree
structure and locality in each layer of the tree to limit the number of individual models
which need to be evaluated at a test point. Each model can only be active for prediction in
regions in which it also has a positive probability of receiving training samples. This ensures
a good prediction performance, while at the same time, active models can be determined
very efficiently using recursive tree search algorithms. The graph generated by our approach
can be interpreted as a random splitting tree [197], which enables a straightforward formal
analysis of the computational complexity of model updates and predictions. Therefore, our
proposed method is tailored for online learning of streaming data as needed in event-triggered
and time-triggered approaches for the inference of GP models.

5.1.2. Problem Setting
We consider the real-time Gaussian process regression problem, in which the objective is
to iterate between updating the GP model µ(·) of the unknown function f(·) based on
sequentially arriving training pairs (z(i), y(i)), i = 1, . . . ,∞ and evaluating µ(·) at arbitrary
test points z. This setting is encountered, e.g., in the time-triggered learning approach in
Section 4.3.2 and when performing event-triggered GP updates as proposed in Section 4.3.3.
Due to the continuous stream of training samples, the data needs to be processed fast. In

order to understand the computational bottlenecks of exact GP regression, we reformulate
the expressions for the GP mean and variance in (2.26) and (2.27), respectively, into a more
efficient form. For this purpose, we define

LK = cholesky(K + σ2
nI), (5.9)

α = (LK)T \ (LK \ y), (5.10)

where \" denotes the forward and backward substitution, respectively, and K denotes the
Gram matrix induced by the kernel and training inputs. From this definition, it is easy to
see that O(N3) and O(N2) operations are required for the computation of LK and α [22],
respectively, which can be interpreted as the complexity of inference. The posterior GP
distribution p(f(z)|z,Z,y) = N (µ(z),σ2(z)) at a test point z can then be computed using

µ(z) = k(z)α, (5.11)
σ2(z) = k(z, z)− vTv, v = LK \ kT (z). (5.12)

102

5.1 Computationally Efficient Online Learning with Error Bounds

Therefore, O(N) and O(N2) calculations are necessary for posterior mean and variance eval-
uations, respectively, which can be seen as the complexity of predictions with GP models.
Although it is possible to reduce the complexity of model updates to O(N2) when samples

are added online to the training data set1, i.e., ZN+1 = [ZN z
(N+1)], yN+1 = [yTN y(N+1)]T ,

by employing rank one updates to obtain LKN+1 from LKN [24], the streaming data quickly
accumulates to large data sets in real-time learning problems. Hence, the quadratic com-
plexity in each model update step becomes computationally prohibitive, such that the total
number of training samples for straightforward inference is roughly limited to 104 train-
ing samples in practice on today’s machines [157]. While this weakness can be effectively
overcome by employing model aggregation schemes of the form (5.1), (5.2) to combine pre-
dictions of multiple GP models trained on smaller subsets of the training data [142, 157],
such approaches do not deal with the specific difficulties of applying GPs to real-time learn-
ing problems. The complexity of computing predictions still grows linearly with the number
of individual models, and the assignment of streaming data to individual models is often not
investigated [157] or becomes inefficient for large data sets and requires further approxima-
tions [142]. Moreover, the existence of probabilistic uniform error bounds for these methods
is unclear, such that their usage in real-time learning for safety-critical applications remains
a challenge. Therefore, we consider the problem of developing a computationally efficient,
aggregation-based online learning method using Gaussian process models, which allows the
derivation of uniform error bounds.

5.1.3. Locally Growing Random Trees of Gaussian Processes
In order to address the limitations of existing GP aggregation methods, we develop an effi-
cient alternative for an iterative data distribution to individual models such that predictions
are computed based on local data, allowing both updates and predictions with logarithmic
complexity. Starting from a single, global model, local models are iteratively generated by
dividing existing models. This is efficiently performed by sampling the model, to which each
training sample is assigned, from localizing random distributions. Thereby, we locally grow
a random tree of GP models.
In detail, we iteratively construct a model by starting with a single data set D1 = ∅. This

data set constitutes the root node 1 of a rooted tree T , as depicted in Fig. 5.1. Incoming
training data is added to the data set D1, and each new data point can be efficiently included
into the single GP model (5.10) using rank one updates, which exhibit quadratic complex-
ity [24]. When the number of training samples reaches a prescribed threshold N̄ , we extend
the tree T by growing leaf nodes 1, . . . ,K, K ∈ N+ with data sets D2, . . . ,DK+1 as children of
the root node 1, as shown in the center of Fig. 5.1. In order to distribute the data efficiently
to the sets D2, . . ., DK+1, we define a function p1 : Rd → [0, 1]K , ∑K

k=1 p
1
k(z) = 1 for all

z ∈ Rd, which returns the probability of an assignment of a point z ∈ Rd to the sets Dk+1,
k = 1, . . . ,K, i.e., P (z ∈ Dk+1) = p1

k(z). We determine the probabilities p1(z) for each data
pair (z, y) in D1, and sample the child nodes n from the corresponding discrete probability
distributions. After the data set division, we compute the local GP models (5.10) for all
data sets, which generally has a complexity of O(N̄3) [22].
After the initial data set division, we continue to assign the streaming data pairs (z, y)

1As in Chapter 2, we use a superscript N to indicate the number of training samples a value depends on
whenever necessary for clarity.

103

5 Efficient Learning via Gaussian Process Model Aggregation

1

root model

1
2 3

initial set division
w1,1

w1,2

o1

1
2 3

4 5

second set division
s1

s2

Figure 5.1.: Iterative model tree construction and corresponding layout of the input space
for K = 2: active regions and training samples belonging to the same node are
depicted in the same color.

Algorithm 5.1. Updating of a LoG-GP with K-ary tree T using data (z, y)
1: Start at root node of T
2: while Current node n is not a leaf do
3: randomly draw a child node n′ from pn(z)
4: n← n′

5: end while
6: if |Dn| = N̄ then
7: Generate K children at current node n
8: for each (z′, y′) ∈ Dn do
9: Randomly assign pair (z′, y′) to a child n′ by sampling from pn(z′)
10: Update local GP model of node n′ using (5.10)
11: end for
12: randomly draw a child node n′ from pn(z)
13: n← n′

14: end if
15: Assign pair (z, y) to current node n
16: Update local GP model of node n using (5.10)

to the sets D2, . . . ,DK+1 by sampling from the discrete distributions with parameters p1(z).
When either of the sets D1, . . . ,DK+1 reaches its data capacity limit N̄ , we define a new
function pk+1(·), k = 1, . . . ,K, such that it induces the conditional probabilities given the
parent node, e.g., P (z ∈ DK+2|z ∈ D2) = p2

1(z). Based on this conditional probability,
we repeat the division process as explained for the root node. Therefore, we add another
level to the random tree as shown on the right-hand side of Fig. 5.1. For further training
data assignment, it is necessary to iteratively determine a branch of the tree using random
transitions based on the discrete distributions with probability parameters pn(z) until a leaf
node is reached, as outlined in Algorithm 5.1.
Note that the nodes n, which are not leaves, contain neither data nor a local GP model

after the data set division but instead encode the structure of the data distribution to in-
dividual data sets using the discrete distributions pn(·). Therefore, pn(·) are crucial design
choices of the LoG-GP approach. Intuitively, they should be chosen such that the data is dis-

104

5.1 Computationally Efficient Online Learning with Error Bounds

tributed equally to all children in order to generate a balanced tree, and this condition indeed
guarantees a logarithmic growth in complexity for the random tree construction as shown
in Section 5.1.4. A trivial example of a probability distribution satisfying this requirement
is the discrete uniform distribution, i.e., pnk(z) = 1/K, which can be seen as the sequential
version of the commonly used random assignment in batch aggregation methods [161, 157].
Although the random tree construction in Algorithm 5.1 reduces the complexity of up-

dates, it barely affects the complexity of predictions since the direct evaluation of (5.1)
and (5.2) with M denoting the set of leaf nodes still exhibits a linear complexity in the
number of training samples. In order to achieve a low complexity of predictions as well, we
propose to enforce a small number of active models at each input using the remaining design
parameters ωm. Since a typical condition for these parameters requires their sum to equal
one, a straightforward choice is to set them equal to the marginal probabilities P (z ∈ Dm)
of the leaf nodes, i.e., ωm = P (z ∈ Dm). The marginal probabilities of a leaf m with
depth hm can be determined by multiplying the conditional probabilities on the branch
Am = {(sm1 , bm1), . . . , (smhm , bmhm)}, where sm1 = 1, bmi = 1, . . . ,K denotes the child index of the
subsequent node and smi denotes the sequence of nodes before reaching leaf m. Therefore,
we can express the marginal probability of a leaf as

ωm =
hm∏

i=1
p
bmi
smi

(z). (5.13)

It is straightforward to see that the computation of a marginal probability requires only local
information of nodes along the branch but is independent of other branches. This indepen-
dence of the branches is the keystone for a reduction of the computational complexity of
predictions: a conditional probability pb

m
i
smi

(z) = 0 allows to omit determining the following
conditional probabilities pb

m
j

smj
(z), j > i, since ωm = 0 holds regardless of their values. To-

gether with the structure of (5.1), (5.2), this allows to spare the computation of individual
GP predictions with a zero conditional probability on the branch, which can be efficiently
exploited through recursive tree search algorithms as depicted in Algorithm 5.2.
Due to this property, the conditional probabilities pn(z) effectively control the computa-

tional complexity of predictions: when only a few children of every node can have a positive
conditional probability pnk(z) > 0, the recursion can often stop early, and only a few indi-
vidual GP predictions have to be performed. Thus, the maximum number of active children
with pnk(z) > 0 should be kept small in each node n in order to achieve a low computational
complexity. This in turn induces a notion of proximity of points z, in which two points z, z′
can be considered close to each other if pnk(z) > 0 and pnk(z′) > 0. Hence, the conditional
probabilities can be considered as localizing probability functions.
A simple class of conditional probabilities pn(z) inducing spatial locality are saturating

linear functions

ξnk (z) =





0 if xjn
k
< snk −

onk
2

xjn
k
−snk
on
k

+ 1
2 if snk −

onk
2 ≤ xjn

k
≤ snk + onk

2

1 if snk + onk
2 < xjn

k
,

(5.14)

where jnk defines a splitting dimension, snk denotes the position of the splitting hyperplane,
and onk is the overlapping ratio, which determines the size of the region in which two individual

105

5 Efficient Learning via Gaussian Process Model Aggregation

Algorithm 5.2. Prediction recursion for a LoG-GP called for a node n with test input z
1: if Current node n is a leaf then
2: Compute µn(z), σ2

n(z) using (5.12), (5.11)
3: return ψ̂ω = ψω(µn(z),σ2

n(z)), ω̂ = 1
4: else
5: Ψω ← [], ω ← []
6: for all child nodes n′ ∈ {i = 1, . . . ,K : pni (z) > 0} do
7: Determine Ψ̂ω, ω̂ by calling the predict recursion for child node n′
8: Ψω ← [Ψω Ψ̂ω], ω ← [ω pnj (z)ω̂]
9: end for
10: if n is root node then
11: return µ̃(z), σ̃2(z) based on (5.1), (5.2)
12: else
13: return Ψ̂ω = Ψω, ω̂ = ω
14: end if
15: end if

models have a non-zero probability. The interpretation of these parameters is illustrated in
Fig. 5.1. Based on (5.14), the conditional probabilities can be defined as

pnk(z) =





ξnk (z)
K−1∏

j=1,j 6=k
(1− ξnj (z)) k < K

K−1∏
j=1

(1− ξnj (z)) k = K.
(5.15)

This parameterization allows straightforward heuristics for choosing the parameters jnk , snk , onk
of the saturating linear functions ξnk (·), such that the goal of equal division of existing train-
ing sets during the updating step as motivated before can be approximately achieved, too.
For example, one option to choose jnk is the maximum spread of the inputs z in the individual
sets Dn, a simple choice for snk is the mean in the dimensions jnk , and the overlapping ratio
onk can be designed as a constant fraction of the spread. As demonstrated in [198], other
computationally efficient approaches also often lead to satisfying results, and a PCA-based
definition of the parameters is straightforward as well [199]. Therefore, it is easily possible
to achieve the goal of a balanced tree and the desired limitation of the active number of
children in each node.
Remark 5.1. While the proposed approach can be used in combination with other regres-
sion techniques as a meta framework, the improvement in computational efficiency can be
significantly smaller. However, locally growing random trees have the potential to improve
the performance of many regression methods in non-stationary problems, where localization
methods have been shown to be useful. Since this problem is not the focus of our work,
we leave the combination of the proposed approach with other regression methods for future
research.

5.1.4. Complexity Guarantees
In this section, we formalize the intuitive conditions for achieving low computational com-
plexities discussed in the previous sections. In order to define the meaning of an approxi-

106

5.1 Computationally Efficient Online Learning with Error Bounds

mately equal splitting of data in nodes, we introduce the following assumption, which poses a
condition on the relationship between the conditional probabilities pn(·) and the probability
density q(z) of the input training data.

Assumption 5.1. There exists a constant c1 ∈ R+, such that the conditional assignment
probabilities pn(z) satisfy

c1 ≤
∫

Rd
q(z) pb

m
hm
sm
hm

(z) H
(
hm−1∏

i=1
p
bmi
smi

(z)
)

dz (5.16)

for all leaves m ∈ M with depths hm and branches Am, where H : R → {0, 1} denotes the
unit step function.

The right-hand side of (5.16) corresponds to the marginal conditional probability that a
training sample is assigned to leaf m, given the prior assignment to node smhm . Therefore,
this assumption prevents nodes from never receiving training data. In practice, this can
easily be achieved through a data-based design of the conditional probabilities as outlined
in Section 5.1.3.
Based on Assumption 5.1, it is straightforward to analyze the complexity of LoG-GP

updates using the theory of random split trees [197]. A random split tree T is defined
through the parameters K, N̄ , s0, s1, p and N . The parameter N describes the number
of balls in the tree, while N̄ denotes the maximum number of balls in a node of the tree.
The number of children of each node is given by K. Each internal (non-leaf) node has s0
balls, while each leaf node has at least s1 balls. The split probability is described by p. The
distribution of balls is done iteratively. Starting at the tree, a ball is assigned to a child by
drawing from the random distribution p until a leaf node is reached. If this leaf has already
reached its capacity, then the tree is extended, and s1 balls are assigned to each child. The
remaining N̄+1−Ks1−s0 balls are finally assigned according to the random distribution p.
It can be clearly seen that the tree construction of LoG-GPs is identical to that of a

random split tree with s0 = 0, s1 = 0 and input dependent pn(z). Due to Assumption 5.1,
this allows us to bound the height of the tree in LoG-GPs by the height of a random split
tree with c1 ≤ pi ≤ 1−Kc1 for all i = 1, . . . ,K. This is exploited to bound the complexity
of updates in LoG-GPs in the following theorem.

Theorem 5.1. The update of a LoG-GP with conditional assignment probabilities pn(·)
satisfying Assumption 5.1 requires Op(log(N)) computations.

Proof. The tree of LoG-GPs is a random split tree in the sense of [197]. Assumption 5.1
ensures that in any split of the tree, data is distributed approximately equally to both sides in
the sense that no child gets all the data almost surely. Hence, it follows from [197, Theorem
1] that the height of the tree, i.e., the maximum depth of any leaf, grows logarithmically in
probability. Moreover, it is trivial to see that the updating complexity of LoG-GPs depends
linearly on the height of the tree, which proves the result.

In order to bound the complexity of predictions using LoG-GPs as well, an additional
assumption on the maximum number of children with positive conditional probabilities along
a branch is necessary. This is formalized as follows.

107

5 Efficient Learning via Gaussian Process Model Aggregation

Assumption 5.2. There exist constants c2, c3 ∈ R+, such that the conditional assignment
probabilities pn(·) satisfy

hm∑

i=1
H
(
1− pb

m
i
smi

(z)
)
H
(
p
bmi
smi

(z)
)
≤ log(c2h

m + c3) (5.17)

for all leaves m ∈M with depths hm and branches Am.

Since this condition can individually be checked for every branch during the generation of a
new layer, it can directly be included in the specification of the conditional probabilities pn(·)
during the generation of a new layer, e.g., through the adaptation of the overlapping ratio om
in (5.14). Therefore, this assumption is not restrictive in practice. In combination with As-
sumption 5.1, it allows the following bound on the computational complexity of predictions.

Theorem 5.2. Mean and variance predictions of LoG-GPs with conditional assignment
probabilities pn(·) satisfying Assumptions 5.1 and 5.2 require Op(log2(N)) computations.

Proof. It is trivial to see that the prediction of a single branch requires O(hm) operations,
such that Theorem 5.1 guarantees a complexity of Op(log(N)) for a single branch. Moreover,
the number of leaves m in the tree of a LoG-GP depends linearly on the number of training
samples N , i.e., |M| ∈ O(N). Therefore, we have to show that only Op(log(N)) leaves m
have a positive marginal probability ωm and must be evaluated. It immediately follows from
Assumption 5.2 that no more than K log(c2hm+c3) leaves can be active, which implies that the
number of active leaves behaves as O(hm). Therefore, a prediction requires O((hm)2), which
concludes the proof using Theorem 5.1.

Remark 5.2. Although the maximum number of samples N̄ has a strong impact on the com-
putation time, it merely acts as a constant factor on the asymptotic complexities. Therefore,
we drop it for clarity of presentation.

5.1.5. Uniform Regression Error Bounds
Since LoG-GP predictions rely on the aggregation of exact GP mean functions, it is straight-
forward to extend the probabilistic uniform prediction error bounds derived in Section 2.2
and Section 2.3. For this extension, we require the following assumption on the admissible
aggregation structures.

Assumption 5.3. The distributed GP mean can be expressed as

µ̃(z) =
∑

m∈M
wm(z)µm(z), (5.18)

where wi : Rd → R0,+ is a weighting function satisfying ∑m∈Mwm(z) = 1, ∀z ∈ Rd.

It can be trivially checked that both the mixture of experts (5.3), (5.4) and the generalized
product of experts approach (5.6), (5.6) in combination with weights ωm following from the
LoG-GP approach (5.13) satisfy this condition. Hence, this assumption does not severely
restrict the class of possible approaches for aggregating GP predictions but allows to sum
up the individual uniform error bounds for the mean functions µm(·), which is the core idea
in the following theorem.

108

5.1 Computationally Efficient Online Learning with Error Bounds

Theorem 5.3. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
satisfying Assumption 2.6, and training data sets Dm with observation noise ε(n), n =
1, . . . ,N , such that Assumption 2.1 individually holds for all data sets Dm. If Assump-
tions 2.7 and 5.3 hold, then, for every δ ∈ (0, 1) and τ ∈ R+, the aggregated mean func-
tion µ̃(·) defined in (5.1) admits a uniform error bound

η(z) =
∑

m∈M
wm(z)

(
β̃σm(z) + Lfτ

pf + Lµmτ
pµ + β̃Lσmτ

pσ
)

(5.19)

with probability 1− δ on the compact set S ⊂ Rdz , where

β̃ =

√√√√2 log
(
M(τ ,S)|M|

δ

)
. (5.20)

Proof. Since the assumptions of Proposition 2.2 are satisfied, it holds with probability of at
least 1− δ/|M| for each individual model that

|f(z)−µm(z)| ≤ β̃σm(z) + Lfτ
pf + Lµmτ

pµ + β̃Lσmτ
pσ (5.21)

with β̃ defined in (5.20). Moreover, we have

|f(z)− µ̃(z)| =
∣∣∣∣∣∣
f(z)−

∑

m∈M
wm(z)µm(z)

∣∣∣∣∣∣
(5.22)

=
∣∣∣∣∣∣
∑

m∈M
wm(z)(f(z)− µm(z))

∣∣∣∣∣∣
(5.23)

≤
∑

m∈M
wm(z)|f(z)− µm(z)|, (5.24)

where the second line follows from Assumption 5.3 and the third line follows from the triangle
inequality. Finally, the result follows from the union bound, such that (5.21) holds jointly
for all m ∈M, which concludes the proof.

This theorem straightforwardly extends Proposition 2.2 to LoG-GP models requiring no
additional conditions except for Assumption 5.3. Due to the assumed structure of the admis-
sible aggregations, (5.19) effectively constitutes the sum of individual GP error bounds, such
that we need to consider the Hölder coefficients and the standard deviations of individual
GP models. This structure can also be obtained for RKHS-based uniform error bounds, as
shown in the following theorem.
Theorem 5.4. Consider an unknown function f(·) ∈ HS

k satisfying Assumption 2.4 and a
prior Gaussian process GP(0, k(·, ·)). Moreover, assume that the observation noise of each
data set Dm individually satisfies Assumption 2.5. Then, for every δ ∈ (0, 1), the posterior
mean function µ(·) defined in (5.1) using an aggregation scheme satisfying Assumption 5.3
admits a uniform error bound

η(z) = β
∑

m∈M
wm(z)σm(z) (5.25)

with probability 1− δ on the compact set S ⊂ Rdz , where

β = Γ +
√

2σ̃on

σon

√√√√√1
2 + log



√√√√det

(
IN + 1

σ2
on
K

)
+ log

(
|M|
δ

)
. (5.26)

109

5 Efficient Learning via Gaussian Process Model Aggregation

Proof. Since the assumptions of Theorem 2.1 are satisfied, we have for each local model that

|f(z)− µm(z)| ≤ βσm(z) (5.27)

with probability of at least 1− δ/|M| for β defined in (2.56). By exploiting (5.24) and applying
the union bound, we finally obtain the result analogously to the proof of Theorem 5.3.

These theorems demonstrate that extensions of the results in Sections 2.2 and 2.3 can be
straightforwardly obtained for LoG-GPs. Due to the structural equivalence of the uniform
error bounds for exact GP models and LoG-GPs, this allows the direct application of LoG-
GPs while retaining theoretical guarantees proven in the previous chapters.

5.1.6. Evaluation on Real-World Data
In order to demonstrate the computational efficiency and the prediction performance of LoG-
GPs2, we compare them to several state-of-the-art GP approximations for online learning
and evaluate the performance on three real-world data sets. As an example for a relatively
small data set, we employ the SARCOS data [22] containing 44484 samples of the dynamics
of a robotic manipulator (d = 21), a widely used example for comparing GP approximations.
Moreover, we employ the buzz in social media data set [200], which consists of 583250 samples
with d = 77 features, and the individual household electric power consumption data set [201]
composed of 2048380 measurements with d = 11. The data is preprocessed following [202].
The LoG-GP is evaluated using mixture of experts (MoE), generalized product of ex-

perts (gPoE) and robust Bayesian committee machine (rBCM) aggregations and condi-
tional probabilities (5.15). We compare to incremental sparse spectrum Gaussian processes
(ISSGP) [51], local Gaussian processes [142], streaming sparse GPs (SSGP) [170], and the
robust Bayesian committee machine [157] using the implementation of [196]. The following
parameters are used in these methods:

• LoG-GP: each node n has K = 2 children. The probabilities pn(·) are defined through
(5.14), (5.15), where jnk is the dimension of the maximum spread of the local data set,
snk is the mean of the data in this dimension and

ok = maxz,z′∈Dk ‖z − z′‖
100(hn10 + 1)

(5.28)

with hn being the height of node n. Moreover, each local model can contain a maximum
of N̄ = 100 training samples. For the MoE and gPoE aggregation schemes, we use
(5.13), while we define

ωm = log(k(z, z))− log(σ2
m(z))

2

hm∏

i=1
p
bmi
smi

(z). (5.29)

for the rBCM aggregation, where the first factor is the differential entropy between the
prior and the posterior distribution as proposed in [157].

• ISSGP: as suggested in [51], we use D = 200 random Fourier features. Hence, the
kernel matrix has a size of 400× 400.

2Matlab and Python code is online available at https://gitlab.lrz.de/online-GPs/LoG-GPs.

110

https://gitlab.lrz.de/online-GPs/LoG-GPs

5.1 Computationally Efficient Online Learning with Error Bounds

• local GPs3: the maximum number of training samples of a local model is set to N̄ =
100. Moreover, a threshold of 0.9 is used to determine if a new model is generated.

• SSGP4: the method is used with 100 inducing points, but no online optimization of
hyperparameters and inducing points to reduce computational complexity. Since the
method does not allow iterative updates, we update it using mini-batches of size 300 as
proposed in the original publication [170]. This means that we determine the prediction
error on 300 training samples before we update the model using these data samples.
This method is implemented in Python.

• rBCM5: the maximum number of samples in a local model is set to N̄ = 100. The data
is randomly distributed to the local models. Since the method does not allow iterative
updates, we recompute the model each time after observing 1000 new samples using
the data observed up to this time.

All GPs use an ARD squared exponential kernel, and the hyperparameters are fitted using
the first 1000 training samples for all methods in order to ensure that poor hyperparameters
are excluded throughout all simulations. This is done using the well-documented MATLAB
internal routine whenever possible. For the Python implementation of SSGPs, hyperparam-
eter optimization is based on the GPflow toolbox6 [203]. The computations for all methods
are performed on a single computation unit. Note that the evaluation of the local models
of LoG-GPs can be parallelized similarly as proposed by [157] by distributing the active
models to multiple computation units. The data used for hyperparameter optimization is
added to the GP approximations before they are evaluated in a sequential setting, in which
we iterate between prediction for an input z(i) and update of a model using (z(i), y(i)). All
simulations are executed on a cluster computer with Intel(R) Core(TM) i9-9900X CPU and
128GB DDR4 RAM. The code is run using MATLAB R2019a when not stated differently.
As performance metrics, we use the average prediction and update times. Moreover, we

evaluate the regression performance based on the standardized mean squared error (SMSE)
and the mean standardized log loss (MSLL) [22] in a sequential interpretation, e.g.,

SMSEk =
∑k
i=1(µ̃k−1(z(k))− y(k))2

ks2
y

, (5.30)

where s2
y denotes the empirical variance of the targets y(i) and µ̃k−1(z(k)) the prediction after

observing k − 1 training samples.
The resulting computation times averaged over 20 runs are depicted in Fig. 5.2. These

simulation results, which are additionally summarized in Table 5.1, show that computation
times of LoG-GPs are more strongly varying compared to existing methods, which is a
consequence of the continuously changing size of the local models. Moreover, the logarithmic
growth of the computation time is not visible since the overlapping ratio ok was chosen small,
such that the average number of active models is almost constant as illustrated in Fig. 5.3 for
the MoE-LoG-GP trained on the SARCOS data set. Since the depth of the tree is practically

3The code is available at https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/
Miscellaneous.

4The code is available at https://github.com/thangbui/streaming_sparse_gp.
5The code is available at https://github.com/LiuHaiTao01/GRBCM.
6The code is available at https://github.com/GPflow/GPflow.

111

https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/Miscellaneous
https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/Miscellaneous
https://github.com/thangbui/streaming_sparse_gp
https://github.com/LiuHaiTao01/GRBCM
https://github.com/GPflow/GPflow

5 Efficient Learning via Gaussian Process Model Aggregation

·104

10−4

10−3

10−2

10−1

t u
p

a) SARCOS

,MoE-LoG-GP ,gPoE-LoG-GP ,rBCM-LoG-GP ,Local GPs ,ISSGP ,SSGP ,rBCM

·105

10−4

10−3

10−2

10−1
b) buzz in social media

·106

10−4

10−3

10−2

10−1
c) electric

0 1 2 3 4
·104

10−4

10−3

10−2

10−1

Iteration

t p
re

d

0 2 4
·105

10−4

10−3

10−2

10−1

Iteration
0 0.5 1 1.5 2

·106

10−4

10−3

10−2

10−1

Iteration

Figure 5.2.: Plots of average update time tup (top) and the average prediction time tpred
(bottom) on a) SARCOS b) buzz in social media and c) electric data sets.
Due to the high computation times, the SSGP could only be applied to the
SARCOS, while the rBCM could not be evaluated on the electric data set.
Computation times of LoG-GP approaches are more noisy than those of existing
methods due to the strongly varying size of local models. However, they are
generally smaller, in particular for computing model updates.

not relevant, almost constant computation times can be achieved with LoG-GPs, which is in
strong contrast to batch methods such as SSGPs or the rBCM leading to a quickly growing
complexity. While state-of-the-art real-time learning methods such as ISSGPs can yield a
similar prediction rate, LoG-GP approaches significantly outperform all existing methods in
terms of model update times. Therefore, these simulation results clearly demonstrate the
computational advantages of LoG-GP approaches.
Remark 5.3. Note that the difference in the used programming languages has an effect on
the absolute computation time but not on the behavior. While the computation time for
updates of LoG-GPs in a Python implementation increases to approximately 5 ms on the
SARCOS data set, it does practically not change with a growing number of training samples.
Therefore, LoG-GPs remain advantageous compared to SSGP regardless of the employed
programming language.
Table 5.2 displays the standardized mean square error and mean standardized log loss

averaged over 20 simulation runs together with the corresponding standard deviations, whose
evolution over the number of training samples is illustrated in Fig. 5.4. These results clearly
show that LoG-GP approaches outperform state-of-the-art online learning methods regarding
the overall prediction error for data sets with medium and high dimensional input domains
such as the SARCOS and buzz in social media data. For low dimensional input domains such
as in the house electric data set, ISSGPs provide slightly better performance. The weaker
performance of ISSGPs for high dimensional input domains is a direct consequence of the
strong dependence of the kernel approximation error on the input dimension as discussed in
Section 5.1.1.

112

5.1 Computationally Efficient Online Learning with Error Bounds

Table 5.1.: Average update and prediction times in ms with the corresponding standard
deviation in brackets for the SARCOS, buzz in social media and electric data
sets. LoG-GP methods outperform state-of-the-art methods for streaming data
regarding the computation time: updates are up to 10 times faster, and they
achieve state-of-the-art prediction rates. SSGP and rBCM are greyed out as
they allow only batch updates.

computation time sarcos buzz electric
(ms) tpred tup tpred tup tpred tup

MoE-LoG-GP 0.12 (0.09) 0.17 (0.21) 0.19 (0.09) 0.18 (0.20) 0.12 (0.05) 0.15 (0.15)
gPoE-LoG-GP 0.12 (0.08) 0.16 (0.21) 0.19 (0.10) 0.18 (0.20) 0.13 (0.50) 0.16 (0.16)
rBCM-LoG-GP 0.12 (0.08) 0.16 (0.20) 0.17 (0.08) 0.17 (0.15) 0.13 (0.05) 0.16 (0.15)
ISSGP 0.17 (0.03) 1.6 (0.27) 0.19 (0.03) 1.7 (0.28) 0.16 (0.02) 1.9 (0.07)
local GPs 0.94 (0.11) 1.1 (0.18) 1.5 (0.66) 1.9 (0.67) 1.1 (0.03) 0.91 (0.03)
SSGP 19 (7.48) 16 (9.69) > 20 > 20 > 20 > 20
rBCM 2.5 (1.4) 4.3 (2.6) 17 (9.1) 10 (6.6) > 20 > 10

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

1

2

3

Iteration

#
ac

tiv
e

m
od

el
s

Figure 5.3.: The low computation times for predictions are achieved by a low number of
active models, which is on average less than 2 for the MoE-LoG-GP on the
SARCOS data set. The comparatively high standard deviation of the number
of active models illustrated by the error bars contributes to noisy prediction
times of LoG-GPs. The observed maximum number of active models is 12 on
the SARCOS data set.

The poor performance of local GPs, which is significantly worse than originally presented
by [142], is a result of not tuning the threshold for generating new models for each data set.
While tuning this parameter could improve the performance, this would conflict with the
principle of online learning: for tuning the parameter, a significant amount of training data
is necessary, while the online learning paradigm assumes little or even no data in advance.
Moreover, tuning must be done by hand, which is time-consuming. Therefore, we choose the
value 0.9 for the threshold empirically such that many local models are generated, yet not
too many to keep the computation time tractable.
Table 5.2 shows that LoG-GP approaches result in the best MSLL values, merely marginally

outperformed by ISSGPs for the first half of the electric data set as illustrated in Fig. 5.4.
This emphasizes the high reliability of the epistemic uncertainty estimate provided by LoG-
GP approaches, which is crucial in safety-critical applications due to the dependence of
uniform error bounds on the posterior standard deviations. Therefore, even a small im-
provement over existing methods is highly beneficial in practice.
While it might be surprising that rBCMs provide poor predictive distributions as indi-

cated by the high MSLL values, this effect has already been observed in [196], where it is

113

5 Efficient Learning via Gaussian Process Model Aggregation

·104

10−1.5

10−1

10−0.5

SM
SE

a) SARCOS

,MoE-LoG-GP ,gPoE-LoG-GP ,rBCM-LoG-GP ,ISSGP ,Local GPs ,SSGP ,rBCM

·105

10−1

100

b) buzz in social media
·106

10−2

10−1

c) electric

0 1 2 3 4
·104

0

5

Iteration

M
SL

L

0 2 4
·105

−2

0

2

4

6

Iteration
0 0.5 1 1.5 2

·106

−3

−2

−1

0

Iteration

Figure 5.4.: Plots of the SMSE (top) and MSLL (bottom) on a) SARCOS, b) buzz in social
media, and c) electric data sets. Due to the high computation times, the SSGP
could only be applied to the SARCOS, while the rBCM could not be evaluated on
the electric data set. LoG-GP approaches achieve at least a comparable perfor-
mance to existing methods with slight advantages in high dimensional problems.

Table 5.2.: Average standardized mean squared error and average mean standardized log
loss with the corresponding deviation in brackets for the SARCOS, buzz in
social media, and electric data sets. LoG-GP approaches show advantages in
problems with medium and high dimensional input domains, while ISSGPs
exhibit advantageous performance on low dimensional problems.

sarcos buzz electric
SMSE (·10−3) MSLL SMSE (·10−3) MSLL SMSE (·10−3) MSLL

MoE-LoG-GP 31.3 (0.85) −1.87 (0.02) 88.0 (12.9) −1.34 (0.02) 5.0 (0.56) −2.86 (0.02)
gPoE-LoG-GP 30.3 (0.75) −1.88 (0.02) 89.2 (10.4) −1.34 (0.02) 4.8 (0.60) −2.86 (0.03)
rBCM-LoG-GP 30.7 (0.85) −1.89 (0.02) 101.4 (27.0) −1.33 (0.04) 5.2 (0.44) −2.86 (0.03)
ISSGP 30.9 (1.4) −1.68 (0.05) 100.1 (16.0) −1.14 (0.11) 3.4 (0.24) −2.84 (0.03)
local GPs 276.0 (64.5) −0.18 (0.07) 744.0 (35.9) −0.15 (0.05) 450.9 (87.9) −0.03 (0.15)
SSGP 35.9 (2.4) 7.17 (2.61) — — — —
rBCM 29.0 (1.3) 78.2 (10.8) 124.9 (42.4) 375 (11.7) — —

shown that the rBCM asymptotically becomes overconfident. Similarly, the relatively weak
performance of the SSGP can be explained by the slight differences in the simulation setup
we use. While the inducing points and hyperparameters are updated in every mini-batch in
the original publication [170], we refrain from doing so in order to achieve the lowest possible
computation times.
Note that the additional online adaptation of the hyperparameters with SSGPs does not

change the general observation of a beneficial regression performance of LoG-GP compared
to SSGPs as demonstrated in Fig. 5.5. For a fair comparison, we perform a single gra-
dient step for log-likelihood maximization in LoG-GPs after a data point is added, and
the performance is compared using a pre-training of hyperparameters with 1000 and 100
data points. It can be clearly seen that for 1000 pre-training samples, the MSLL of SS-

114

5.1 Computationally Efficient Online Learning with Error Bounds

·104

10−2

10−1

100
SM

SE

,MoE-LoG-GP w opt (1000)
,MoE-LoG-GP w/o opt (1000)
,MoE-LoG-GP w opt (100)
,SSGP w opt (1000)
,SSGP w/o opt (1000)
,SSGP w opt (100)

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

5

Iteration

M
SL

L

Figure 5.5.: Online hyperparameter optimization has a weak impact on the SMSE. The
MSLL of the SSGP improves through hyperparameter optimization, but it re-
mains significantly worse than the MSLL of LoG-GP approaches. When the
number of pre-training samples is reduced to 100, both approaches suffer from
a deteriorated prediction performance.

GPs benefits enormously from the online hyperparameter optimization, while the SMSE is
barely affected. The regression accuracy and the quality of the predictive distributions of
LoG-GPs remain almost unchanged. Moreover, both methods exhibit an inferior regression
performance when the number of pre-training samples is reduced to 100 despite the online
hyperparameter training. Overall, LoG-GPs still yield lower SMSE and MSLL values with
online hyperparameter optimization, but the gap between SSGPs and LoG-GPs becomes
smaller. Therefore, the advantageous regression performance of LoG-GPs is not limited to
scenarios with fixed hyperparameters.

Remark 5.4. Since LoG-GPs have the same principled structure as distributed GPs pro-
posed by [157], the hyperparameter optimization approach can be employed to optimize the
hyperparameters of LoG-GPs. If a separate process is spawned to perform the required op-
timization after batches of data while data is continuously added to the LoG-GP, existing
hyperparameter optimization approaches can be executed online without a crucial impact on
the computational complexity. This approach allows a batch adaptation of hyperparameters
similar to SSGPs.

5.1.7. Application to Event-Triggered Learning Control
In order to demonstrate the straightforward applicability of LoG-GPs for control with accu-
racy guarantees, we employ them in the event-triggered online learning approach for com-
pensating an unknown nonlinearity presented in Section 4.3.3. For this purpose, we consider
once more the example setting in Section 3.1.4, such that we have a linear closed-loop system
described by

Acl(θ) =
[

0 1
−kcθ̃ −kc − θ̃

]
b =

[
0
1

]
, (4.80 revisited)

115

5 Efficient Learning via Gaussian Process Model Aggregation

−10 −5 0 5 10

−5

0

5

x1

x
2 ,x(t)

,xd(t)

Figure 5.6.: The system properly tracks the desired outwards spiral trajectory after an initial
transient phase.

which is perturbed by the nonlinear input perturbation f(x) = 1−sin(2x1)+1/(1+exp(−x2)).
The control gains are chosen as kc = 10 and θ̃ = 1 and define the reference trajectory xref(·)
as an outwards spiral by setting

xref,1(t) =
(

1 + 9
1 + exp(−0.1(t− 100))

)
sin(0.5t), (5.31)

xref,2(t) = ẋref,1(t), (5.32)
r = ẋref,2(t). (5.33)

For online learning, we employ a MoE-LoG-GP with N̄ = 100, K = 2 and conditional
probabilities pn(·) defined through (5.15). In the local GP models, an ARD squared expo-
nential kernel is used, whose hyperparameters are fixed and manually chosen as σf = 5 and
l1 = l2 = 0.5. The observation noise standard deviation is set to σon = 10−3.
Since real-world continuous-time control systems are run on computers with finite process-

ing power, controllers must be applied in a sampled-data sense in practice. Our simulation
reflects this by running the control loop with 1kHz rate and using zero-order hold digital to
analog conversion. The triggering condition (4.92) with ē = 7.5 · 10−3 is sampled with the
same rate, such that the event-triggered model updates effectively cause a time-triggered
learning scheme in the worst case of permanent triggering. Therefore, data efficiency is en-
sured whenever the desired tracking error bound ē is satisfied. Moreover, a probabilistically
bounded tracking error directly follows from Theorem 4.4 and, e.g., Theorem 5.3, as well
as the continuity of the closed-loop dynamics with a LoG-GP model. Note, however, that
this tracking error bound can generally be larger than ē used in the trigger condition (4.92),
even though the difference can be made arbitrarily small for ē satisfying the conditions of
Theorem 4.5 by increasing the rate of the control loop. Hence, this simple approach com-
bines the theoretical advantages of event-triggered and time-triggered online learning in a
practical method.
To demonstrate the computational advantages of LoG-GPs in such an application, we

compare it to an exact GP model as used in Section 4.3.5. The resulting trajectory for
learning with a LoG-GP model during the time interval t ∈ [0s, 200s] is illustrated in Fig. 5.6,
and it can be seen that it closely follows the reference trajectory. This is a result of a frequent
triggering of the learning event at the beginning until ≈ 12s as illustrated in Fig. 5.7. At this
time, the system state has converged to the reference trajectory, and sufficient data of the

116

5.1 Computationally Efficient Online Learning with Error Bounds

0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s
10−4

10−3

10−2

t

‖e
‖ ,triggered events

,tracking error
,desired error

Figure 5.7.: Update events are frequently triggered at the beginning and when changing the
radius of the reference trajectory in order to ensure the desired tracking error ē.
Once a stationary behavior has been reached, very few events are triggered.

10−4

10−2

100

t u
p/

∆
t e

ve
nt

0s 50s 100s 150s 200s

10−4

10−2

100

t

t p
re

d/
∆

t e
ve

nt

,exact GP
,LoG-GP
,real-time cond.

Figure 5.8.: The ratio between training/prediction and inter-event time keeps growing for the
exact GP and eventually exceeds the real-time threshold 1, while it stagnates
after some time for the LoG-GP despite a slight growth in the added training
samples (951 vs. 1662).

inner circular motion has been collected. Afterward, barely any new data is sampled until
the radius of the reference starts to increase at ≈ 45s. Then, the model is again frequently
updated until the learning has finished after 185s. Most importantly, it can be observed
that the stationary tracking error is upper bounded by 8 · 10−3, while most of the time, the
desired error bound ē used for defining the triggering condition (4.92) is satisfied.

While the exact GP only requires 951 training samples in this approach, the update
event is triggered 1662 times for the MoE-LoG-GP. However, this slight reduction in data
efficiency is necessary in order to meet the real-time constraints as depicted in Fig. 5.8. In
contrast to the exact GP model, where the prediction and update times tpred and tup start to
exceed the inter-event time ∆tevent after ≈ 125s and ≈ 110s, respectively, LoG-GPs remain
fast enough to satisfy this condition. Therefore, LoG-GPs can enable the straightforward
application of Gaussian processes in control problems with performance guarantees under
real-time computation constraints.

117

5 Efficient Learning via Gaussian Process Model Aggregation

5.2. Data-Efficient Learning for Cooperative Control
of Multi-Agent Systems

While the LoG-GP approach exploits the aggregation of local models for GP-based online
learning with low computational complexity, it is limited to tree-structured computation
architectures. However, in many large-scale systems ranging from energy networks [204] over
vehicle platooning [205] to swarms of autonomous robots [206], more general computation
graphs are required to deal with available communication topologies.
Several learning techniques based on GP regression have been proposed in recent years

to enable distributed learning in such multi-agent systems. Addressing the issues faced
when GPs are scaled to large data sets, early approaches only distribute the inference in
local models to multiple agents but employ a central coordinator for their aggregation [157].
This limitation is overcome by computing various summary statistics for the individual GPs,
which can be combined using consensus protocols [207, 208]. Through an online optimization
of hyperparameters and summary statistics, this can even be extended for implementing
online learning [143]. While these distributed GP approaches have shown strong empirical
performances, probabilistic uniform error bounds similar to those for exact GP regression
have not been derived.
Therefore, independent GP models in each agent are commonly used for the control of

multi-agent systems. For example, a distributed model predictive control method, which
allows to cooperatively solve optimal control problems with Gaussian process models as
dynamics, is developed in [209]. In [210], GP models are employed to design control laws
for formation control, while a similar approach is used for flocking control in [211]. Even
though these approaches follow cooperative control principles, they employ merely local
data of each agent [209, 210, 211], such that an agent’s performance crucially depends on
its local data set. While this limitation can be mitigated by aggregating predictions with
direct neighbors [212], such an approach does not transfer the cooperative control paradigm
to model learning problems. Therefore, model knowledge is generally not disseminated
through the communication network when control performance guarantees are required,
such that existing approaches for GP-based learning for cooperative control are generally
data-inefficient.
In this section, we address this weakness of current methods by proposing distributed

learning-based feedback linearizing tracking control laws for leader-follower consensus of
multi-agent systems. We focus here on systems with a single control input for simplicity of
exposition, but the extension to systems with multiple control inputs is straightforward. To
this end, we first present a novel, fully distributed GP approach for predicting unknown dy-
namics, which straightforwardly extends centralized approaches of the form (5.1) to arbitrary
computation graphs by employing dynamic average consensus algorithms [213]. Based on
the probabilistic uniform error bounds for GP regression presented in Chapter 2, we derive
explicit, distributed regression error bounds for the proposed method, which are, to the best
of our knowledge, the first of their kind for fully distributed GP predictions. We then make
use of the proposed distributed learning approach to predict partially unknown dynamics
shared by all agents. Subsequently, we present a novel cooperative tracking control law,
which incorporates the proposed distributed learning approach, and show that the designed
control law achieves tracking consensus with guaranteed tracking accuracy.
The remainder of this section is structured as follows. After the problem statement is

118

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

provided in Section 5.2.1, a novel method for computing distributed GP predictions is in-
troduced in Section 5.2.2. Section 5.2.3 presents the proposed cooperative tracking control
law employing distributed predictions and provides an analysis of the tracking error. Fi-
nally, in Section 5.2.4, numerical simulations are given to demonstrate the effectiveness of
the proposed approaches.

5.2.1. Problem Setting
In order to demonstrate the effectiveness of the GP model aggregation approach for dis-
tributed control problems, we extend the example system (3.53) from Section 3.2 to the
multi-agent scenario. For this purpose, we considerN possibly heterogeneous follower agents,
for simplicity referred to as agents in the following, whose dynamics can be described by
single-input systems in the controllable canonical form

ẋm,1 = xm,2, · · · ẋm,d = im(xm) + gm(xm)um + f(xm), (5.34)

for m = 1, . . . ,M , where xm(t) = [xm,1(t) xm,2(t) . . . xm,dx(t)]T ∈ Rdx denotes the state
of agent m, xm(0) = x0

m is the initial state, um : R0,+ → U ⊂ R is the control input for
agent m, im : Rdx → R and gm : Rdx → R are known functions that describe the individual
dynamics of agent m, and f : Rdx → R represents an unknown nonlinearity shared by all
agents such as, e.g., hydrodynamic forces due to ocean currents affecting the dynamics of a
fleet of underwater vehicles [14].
In order to ensure the global controllability of each agent, we require that each func-

tion gm(·) satisfies Assumption 3.7, which is a standard prerequisite for the design of feedback
linearizing control laws [113, Defintion 13.1] and ensures that each agent’s dynamics exhibits
a relative degree dx. Thereby, global controllability is ensured, and the existence of internal
dynamics is excluded. Although this assumption restricts the considered system class, the
focus of this work is on distributed learning for cooperative tracking control. Therefore, we
leave the extension to larger system classes for future research.
The goal of the agents is to follow a virtual leader with state xl(t) ∈ Rd, which satisfies

the following properties.

Assumption 5.4. The leader state xl(t) describes a reference trajectory for the agents,
which has the form

ẋl,1 = xl,2, ẋl,2 = xl,3, · · · ẋl,dx = rref (5.35)

where rref : R+ → R is a continuous reference signal, such that xl(t) ∈ S for all t ≥ 0 and
some compact set S ⊂ Rdx, and |rref(t)| ≤ r̄ for some constant r̄ ∈ R+.

This assumption effectively defines the leader as a reference trajectory with the structure
defined in (3.3). Since the reference signal rref(·) is a design choice, the assumption of
continuity is not restrictive in practice. Moreover, practical problems usually involve tasks
in compact state spaces, such that the assumption of a bounded reference is typically not
an issue. Therefore, this assumption can frequently be found in literature, e.g., [32, 34], in
order to ensure that the agents are capable of following the leader.
As multi-agent systems may comprise a large number of agents in real-world applications,

we consider a restricted communication between agents. This communication topology is

119

5 Efficient Learning via Gaussian Process Model Aggregation

described by an undirected graph G = (V , E), where V = {1, . . . ,M} denotes the set of
agents, which correspond to the vertices of the graph, and E ⊆ V ×V is the set of edges. An
edge (m,m′) ∈ E represents that agent m′ can receive information from agent m, and vice
versa. The edges of a weighted graph can be compactly represented through the weighted
adjacency matrix Aad ∈ RM×M , with elements Aad

mm′ > 0 if (m′,m) ∈ E . Throughout this
section, we assume a fixed topology, i.e., Aad is constant, and a self-connectivity element
Aad
mm = 0. Moreover, we assume that only a few agents can communicate with the leader as

expressed by the diagonal matrix Bl = diag(bl1, . . . , blM) ∈ RM×M , whose diagonal elements
satisfy blm = 1 if agent m has access to the leader state, and bm = 0 otherwise. In order to
allow a cooperative tracking control design, we require the following common assumptions
on the communication topology.

Assumption 5.5. The communication graph G among the agents is undirected and con-
nected. Moreover, at least one agent is connected to the leader, i.e., there existsm = 1, . . . ,M
such that bm = 1.

Assumption 5.6. The weighted adjacency matrix Aad ∈ RM×M of the graph G is weight
balanced, i.e., 1TAad = Aad1 = 1.

Assumption 5.5 guarantees that information about the leader state is directly transmitted
to some agents and propagates through the network to all agents since they have at least
indirect access through paths starting at the leader. This assumption is a crucial prerequisite
to track the leader with all agents [214]. Finally, Assumption 5.6 ensures that information
of each agent is equally treated in the network [215].
In order to be able to infer a model of the unmodeled nonlinearity f(·) exhibiting a proba-

bilistically uniformly bounded model error, we exemplarily consider training data satisfying
the requirement of Proposition 2.2 as stated in the following.

Assumption 5.7. Each agent m has a training data set

Dm = {(z(n)
m = x(n)

m , y(n)
m = f(x(n)

m) + ε(n))}Nmn=1, (5.36)

such that the observation noise ε(n) in each Dm individually satisfies the requirements of
Assumption 2.1.

This assumption reflects the fact that agents are often able to collect data on their own,
without sharing data amongst them. While it does not allow the splitting of a large data
set into M subsets based on the observations ym, assigning samples using the measured
states xm is admissible. Hence, a wide range of assignment strategies is admissible, e.g.,
based on proximity to the agents’ initial states xm(0) and a random distribution of data to
the agents.
Based on these assumptions, we consider the problem of designing a distributed, feedback

linearizing controller of the form

um(t) = 1
gm(xm(t))(−im(xm(t))− f̂m(xm(t)) + πlin(εm(t))), m = 1, . . . ,M , (5.37)

where f̂m : Rdx → R is a model of the unknown nonlinearity f(·) obtained from data, which
will be specified later, and πlin : Rdx → R is a linear control law depending on the local

120

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

consensus error7

εm(t) = −
M∑

i=1
Aad
m,i(xm(t)− xi(t))− bm(xm(t)− xl(t)). (5.38)

Remark 5.5. We consider a common control law πlin(·) in all agents merely for notational
simplicity. An extension to heterogeneous linear control laws πlin,m(·), m = 1, . . . ,M , is
straightforward.

The goal of the distributed, feedback linearizing controllers is to track the state of the
leader xl(t) with the agent states xm(t). While it would be straightforward to employ a
model f̂m(·) based merely on the local data set Dm in the cooperative controller (5.37) and
prove a probabilistically bounded tracking error as defined in Definition 3.1 [210], such an
approach crucially relies on training data being evenly-distributed among the agents. In
practice, this requirement can possibly lead to poor tracking performance as each agent
typically has only data from a small portion of the state space, which we demonstrate in
Section 5.2.4. In order to overcome this issue, we consider the problem of designing a
cooperative control law of the form (5.37) with distributedly computed models f̂m(·), such
that the tracking accuracy is improved and a probabilistically bounded tracking error is
guaranteed.

5.2.2. Consensus-Based Aggregation of Gaussian Process
Predictions

In order to address the problem of a distributed computation of models f̂m(·), we exploit
the structure of GP aggregation schemes

µ̃(z) = ψµ


∑

m∈M
ωmψω(µm(z),σ2

m(z))

 , (5.1 revisited)

where we have z = x due to form of the training data stated in Assumption 5.7. This
expression requires a centralized evaluation since all GP predictions are needed, but we can
formulate the argument of ψµ(·) as a dynamic average pav(t) = ∑M

m=1
pm(t)/M of the local

reference signals

pm(t) = ωmMψω(µm(x(t)),σ2
m(x(t))) (5.39)

when time-varying inputs x(t) are considered. The dynamic average pav(t) can straight-
forwardly be determined in a distributed fashion using consensus algorithms such as the
first-order method

χ̇m = −kp
M∑

i=1
Aad
mi(χm − χi) + ṗm, (5.40a)

χm(0) = ωmMψω(µm(x(0)),σ2
m(x(0))), (5.40b)

7Since each agent has to obtain information about the reference trajectory through the leader, the local
tracking control laws cannot use it as a feedforward term and are consequently time-independent in this
section.

121

5 Efficient Learning via Gaussian Process Model Aggregation

where χm(t) denotes the local consensus state of agent m and kp ∈ R+ is a constant control-
ling the consensus convergence rate. We leave the extension to more sophisticated consensus
algorithms open for future research. The local consensus state χm(t) provides each agent
with a local estimate of the dynamic average consensus value pav(t). Therefore, each agent
can directly approximate the aggregated mean (5.1) via

µ̂m(x(t)) = ψµ (χm(t)) . (5.41)

Due to the strong theoretical foundations of consensus algorithms, the approximated aggrega-
tion µ̂m(x(t)) inherits the probabilistic uniform error bounds Theorem 5.3 and Theorem 5.4
from centralized aggregation schemes. In order to show this, we define the Laplacian ma-
trix of the graph G as L = D −Aad, where D is a diagonal matrix with elements Dmm =∑M
i=1A

ad
mi. Moreover, the eigenvalues λ1(L), . . . ,λM(L) of the Laplacian matrixL are ordered

by magnitude, i.e., λ1(L) = 0 < λ2(L) ≤ · · · ≤ λM(L). Based on these definitions, we extend
Theorem 5.3 to the distributed aggregation (5.41) as shown in the following proposition.

Proposition 5.1. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
with Lipschitz continuous, stationary kernel satisfying Assumption 2.6, and training data
sets Dm, such that Assumption 5.7 holds. Moreover, consider an aggregation scheme (5.1),
which meets the conditions of Assumption 5.3 and is defined using continuous maps ψµ(·)
and ψω(·, ·) with Lipschitz constants Lψµ and Lψω , respectively. Assume that the agents can
communicate according to a topology satisfying Assumptions 5.5 and 5.6 and that Assump-
tion 2.7 and (2.75) hold for each individual GP model. If x(t) ∈ S for all t ∈ R0,+ and there
exists a finite F ∈ R+ such that

sup
t′≥0
‖ẋ(t′)‖ < F , (5.42)

then, for δ ∈ (0, 1) satisfying (2.74), it holds that

P (|f(x(t))− µ̂m(x(t))| ≤ η̃(x(t)), ∀t ∈ R0,+,m = 1, . . . ,M) ≥ 1− δ, (5.43)

where

η̃(x(t)) = η(x(t)) + η̃tr(t) + Lµ̃F

λ2(L)kp
, (5.44)

η(x) = 2β
M∑

m=1
wm(x)σm(x), (5.45)

η̃tr(t) = Lψµe−λ2(L)kpt
∥∥∥∥
(
IM −

1
M

11T
)
p(0)

∥∥∥∥ (5.46)

for β defined in (5.20), Lµ̃ denoting the Lipschitz constant of the aggregated mean µ̃(·), and
p(0) = [pT1 (0) · · · pTN(0)]T .

Proof. In order to prove this theorem, we apply the triangle inequality to the left-hand side
of (5.43), such that we obtain

|f(x(t))− µ̂m(x(t))| ≤ |f(x(t))− µ̃(x(t))|+ |µ̃(x(t))− ψµ(χm(t))| .

122

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

Since the assumptions of Theorems 2.2 and 5.3 are satisfied, it follows that the first summand
satisfies

|f(x(t))− µ̃(x(t))| ≤ η(x(t)) (5.47)

with probability of at least 1− δ. By exploiting the Lipschitz continuity of ψµ(·), we obtain

|µ̃(x(t))− ψµ(χm(t))| ≤ Lψµ

∥∥∥∥∥χm(t)−
M∑

m=1
wmψω

(
µm(x(t)),σ2

m(x(t))
)∥∥∥∥∥ .

This bound corresponds to the consensus error, which is well-known to be bounded for
connected communication graphs with weight-balanced weighted adjacency matrix Aad, see,
e.g., [213]. More precisely, if ‖ṗ(t)‖ = ‖[ṗT1 (t) · · · ṗTM(t)]T‖ is bounded for all t ≥ 0, we
obtain the consensus error bound
∥∥∥∥∥χm(t)−

M∑

m=1
wmψω

(
µm(x(t)),σ2

m(x(t))
)∥∥∥∥∥ ≤ (5.48)

e−λ2(L)kpt
∥∥∥∥
(
I − 1

N
11T

)
p(0)

∥∥∥∥+ 1
λ2(L)kp

sup
0≤t′≤t

‖ṗ(t′)‖,

where λ2(L) is the smallest nonzero eigenvalue of L. This condition is satisfied due to the
definition of pn(t) in (5.39), the Lipschitz continuity of ψω(·) guaranteed by assumption,
the Lipschitz continuity of µm(·) and σ2

m(·) guaranteed by Lemma 2.2 and Corollary 2.6,
respectively, and the assumed boundedness of ẋ(t). Therefore, we have ‖ṗ(t)‖ ≤ Lµ̃F/Lψµ ,
where Lµ̃ denotes the Lipschitz constant of µ̃(·), such that (5.48) yields

|µ̃(x(t))− ψµ(χm(t))| ≤ η̃tr(t) + Lµ̃F

λ2(L)kp
, (5.49)

where η̃tr(·) is defined in (5.46). Finally, the summation of (5.47) and (5.49) concludes the
proof.

While global Lipschitz continuity is a restrictive assumption, violated, e.g., by the gPoE
aggregation, local Lipschitz continuity of ψµ(·) and ψω(·, ·) on their relevant input domains
is sufficient for Proposition 5.1. Common aggregation schemes such as gPoE usually satisfy
this property since the posterior variance σ2

m(·) is guaranteed to be positive and bounded for
GPs trained using finite data sets. Therefore, this assumption is not restrictive in practice.
Similarly, the assumption on the boundedness of the temporal derivative ẋ(t) is not a severe
restriction since it merely requires x(·) to evolve continuously over time. When x(t) is the
state of a control system, this assumption crucially depends on the specific control law. We
will show in Section 5.2.3 that the proposed cooperative tracking control law guarantees
(5.42) and admits the straightforward computation of the constant F .
Based on these unrestrictive assumptions, Proposition 5.1 decouples the different compo-

nents of the error bound in an intuitive way. In addition to the error bound resulting from a
centralized aggregation η(·), it considers the transient behavior of the consensus algorithm
in η̃tr(·), and bounds the stationary consensus error using Lµ̃F/(λ2(L)kp). While the tran-
sient error bound η̃tr(·) is almost negligible in practice due to the exponential decrease, the
stationary error bound Lµ̃F/(λ2(L)kp) can become large if F is large. In order to reduce this
component of the bound, the connectivity of the communication graph G can be increased,

123

5 Efficient Learning via Gaussian Process Model Aggregation

such that λ2(L) grows [215]. Analogously, one can increase the consensus gain kp, such that
an arbitrarily small stationary consensus error can be guaranteed in principle. Due to [213,
Theorem 2], it is in fact straightforward to see that η̃(x(t)) converges to the centralized
prediction error bound η(x(t)) if x(·) converges to a constant value.
Even though (5.40) admits a straightforward derivation of error bounds, it is impractical

for an implementation as it requires the derivatives ṗm(t) and consequently ẋ(t), which can
be a strong restriction. This can be overcome via a simple change of variables χm = pm−χ̃m,
which directly yields the new consensus system

˙̃χm = kp
M∑

i=1
AAd
mi(pm − pi − χ̃m + χ̃i), (5.50)

with initial state χ̃m(0) = 0. Based on the new consensus state χ̃m(t), the prediction can be
computed using µ̂m(x(t)) = ψµ (pm(t)− χ̃m(t)). Since merely a linear change of variables
is employed for adapting the consensus algorithm, it is straightforward to see that Proposi-
tion 5.1 immediately extends to the consensus scheme (5.50). Thereby, this scheme combines
practical applicability and strong theoretical guarantees.

5.2.3. Cooperative Tracking Control using Distributed Gaussian
Processes

In order to demonstrate the effectiveness of the distributed aggregation scheme (5.41), we
employ it in a feedback linearizing controller to compensate for unmodeled nonlinearities.
Before starting with the derivation of this cooperative tracking control law, we represent
the multi-agent system in a compact form to simplify notation. The dynamics (5.34) of all
agents can be jointly described by

ẋ1 = x2, · · · ẋd = iii(x) +G(x)u+ f(x), (5.51)

where

iii(x) =




i1(x1)
...

iM(xM)


 , G(x) =




g1(x1) · · · 0
...
0 · · · gM(xM)


 , f(x) =




f(x1)
...

f(xM)


 , (5.52)

and xj = [x1,j . . . xM ,j]T , j = 1, . . . , dx, x = [xT1 . . . xTM]T , u = [u1 . . . uM]T . Similarly,
the leader dynamics (5.35) can be augmented, which yields

ẋ1
l = x2

l , ẋ2
l = x3

l , · · · ẋdxl = rref1, (5.53)

and we define the joint consensus error in the j-th dimension as εj = [ε1,j ε2,j . . . εM ,j]T ∈ RM .
Using this notation, we introduce the filtered state ν = [ν1 · · · νM]T in analogy to standard
feedback linearizing control as ν = E [θ̃1 · · · θ̃dx−1 1]T ∈ RM , where E = [ε1 · · · εdx] ∈ RM×dx

and θ̃i, i = 1, . . . , dx−1, are filter coefficients defining a Hurwitz polynomial. It can easily be
checked that the local filtered states νm can be computed purely based on the local consensus
error εm, such that we can define the linear control law πlin(·) in (5.37) as

πlin(εm) = kcνn +
dx−1∑

i=1
θ̃iεm,i+1, (5.54)

124

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

where kc ∈ R+ is a constant control gain. In order to completely specify the feedback
linearizing control law (5.37), it remains to define the compensation f̂m(·) of the unmod-
eled nonlinearity f(·). For this purpose, we employ the distributed GP prediction scheme
proposed in Section 5.2.2, yielding the control law

um(t) = 1
gm(xm(t)) (−im(xm(t))− ψµ(χm(t)) + π(εm(t))) , (5.55a)

χ̇m = −kp
M∑

i=1
Aad
mi(χm − χi) + ˙̃pm, (5.55b)

p̃m(t) = wmMψω(µm(xm(t)),σ2
m(xm(t))), (5.55c)

χ̃m(0) = wmMψω(µm(xn(0)),σ2
m(xm(0))). (5.55d)

For proving a probabilistically bounded tracking error of the multi-agent system controlled
by (5.55), inspired by [214], we define a Lyapunov function

V (ν,E1) = 1
2ν

Tν + 1
2tr

(
E1PET1

)
, (5.56)

where E1 =
[
ε1 ε2 · · · εdx−1

]
∈ RM×(dx−1) and P ∈ R(dx−1)×(dx−1) is a positive definite,

symmetric matrix. The dynamics of the filtered state ν can be described by

ν̇ = −L̃
(
iii(x) +G(x)u+ f(x)− rref1

)
+




∑dx−1
i=1 θ̃iε1,i+1

...∑dx−1
i=1 θ̃iεM ,i+1


 , (5.57)

where L̃ = L+Bl. From the definition of the filtered state ν, it follows that

Ė1 = E1Θ̃T + νlT , (5.58)

where l = [0 0 · · · 1]T ∈ Rdx−1, and

Θ̃ =
[0(dx−2)×1 Idx−2

−θ̃1 −θ̃2 · · · − θ̃dx−1

]
. (5.59)

Since the second summand of the Lyapunov function (5.56) depends on E1, (5.58) allows us
to relate the decrease of the Lyapunov function along system trajectories to the weights of
the linear control law (5.54) described by Θ̃. Analogously to the augmented Laplacian L̃,
the matrix Θ̃ can be employed to define a positive definite matrix. For this definition, we
employ the fact that Θ̃ is a Hurwitz matrix, such that P is chosen to be the solution to the
Lyapunov equation

Θ̃TP + P Θ̃ = −Q, (5.60)

where Q is an arbitrary, positive definite, symmetric matrix.
Before starting with the stability analysis of the multi-agent system controlled by (5.55), we

introduce the following lemma, which extends the prediction error bound in Proposition 5.1
by expressing the impact of the usage of local states xm(t) in (5.55c) in terms of ν and E1.

125

5 Efficient Learning via Gaussian Process Model Aggregation

Lemma 5.1. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
with Lipschitz continuous, stationary kernel satisfying Assumption 2.6, and training data
sets Dm, such that Assumption 5.7 holds. Moreover, consider an aggregation scheme (5.1),
which meets the conditions of Assumption 5.3 and is defined using continuous maps ψµ(·)
and ψω(·, ·) with Lipschitz constants Lψµ and Lψω , respectively. Assume that the agents can
communicate according to a topology satisfying Assumptions 5.5 and 5.6 and that Assump-
tion 2.7 and (2.75) hold for each individual GP model. If x(t) ∈ S for all t ∈ R0,+ and there
exists a finite F ∈ R+ such that

max
m=1,...,M

sup
t′≥0
‖ẋm(t′)‖ < F , (5.61)

then it holds with probability of at least 1− δ for all t ∈ R0,+, x(t) ∈ SN = S× · · · × S that

‖f(x(t))−ψµ(χ(t))‖ ≤
√
Mη̃(xl(t))+

(√
MLµ̃+Lf

)

λ(L̃)
(
‖ν(t)‖+(1+‖Θ̃‖F)‖E1(t)‖F

)
, (5.62)

where ψµ(χ(t)) =
[
ψµ(χT1 (t)) · · · ψµ(χTM(t))

]T
.

Proof. In order to prove this lemma, we first bound the difference between ψµ(χn(t)) and
the corresponding centralized aggregation, which yields analogously to Proposition 5.1

|ψµ(χm(t))− µ̌m(x(t))| ≤ η̃tr(t) + Lµ̃F

λ2(L)kp
, (5.63)

where

µ̌m(x(t)) = ψµ

(
M∑

m=1
wmψω

(
µm(xm(t)),σ2

m(xm(t))
))

. (5.64)

Due to Lipschitz continuity of ψµ(·), ψω(·, ·), µm(·) and σ2
m(·), we can bound the distance to

the aggregated prediction for xl(t) by

|µ̌m(x(t))− µ̃(xl(t))|2 ≤ L2
ψµL

2
ψω

M∑

i=1
(L2

µi
+ L2

σ2
i
)‖xl − xi‖2. (5.65)

For obtaining a bound in terms of E(t) and ν(t), we make use of the Cauchy-Schwarz and
the triangle inequality to get

‖µ̌(x(t))− µ̃(xl(t))‖2 ≤ML2
µ̃

M∑

i=1
‖xl(t)− xi(t)‖2, (5.66)

where µ̌(x(t)) and µ̃(xl(t)) are the concatenations of µ̌m(x(t)) and µ̃(xl(t)), respectively. By
reordering the summands, it can be seen that ∑M

i=1 ‖xl(t)−xi(t)‖2 = ∑dx
i=1 ‖xil(t)−xi(t)‖2,

such that we have

‖µ̌(x(t))− µ̃(xl(t))‖ ≤
√
MLµ̃

λ(L̃)
(
‖ν(t)‖+ (1 + ‖Θ̃‖F)‖E1(t)‖F

)
(5.67)

126

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

due to εj(t) = −L̃(xj(t) − xjl (t)),
∑dx
i=1 ‖εi(t)‖2 = ‖ε1(t)‖2 + ‖Ė1(t)‖2

F and (5.58). By
applying the triangle inequality, we finally obtain

‖f(x(t))−ψµ(χ(t))‖ ≤ ‖f(x(t))− µ̃(xl(t))‖+
√
Mη̃tr(t) +

√
MLµ̃F

λ2(L)kp
(5.68)

+
√
MLµ̃

λ(L̃)
(
‖ν(t)‖+ (1 + ‖Θ̃‖F)‖E1(t)‖F

)
, (5.69)

which directly yields the result due to Theorems 2.2 and 5.3 and a linearization of f(·)
around xl(t).

Lemma 5.1 theoretically justifies our approach of employing the local agent states for
computing the local predictions: the smaller the consensus error is, the lower the impact
on the prediction error bound with local states. This is particularly beneficial since the
feedback control πlin(·) dominates the control law (5.55) for large consensus errors regardless
of the prediction error, such that a small consensus error can typically be ensured. In fact,
due to the linear relationship between consensus error and prediction error bound, it is even
possible to recover Proposition 5.1 in the limit of vanishing consensus errors.
Note that Lemma 5.1 requires a bound F for the agents’ state derivative, which depends

on the control law (5.55) and consequently on the distributed predictions. Due to the
boundedness of GP predictions, we can provide a closed-form bound F as shown in the
following lemma.

Lemma 5.2. Consider a multi-agent system (5.34) withM agents satisfying Assumption 3.7
and an unmodeled nonlinearity f(·) satisfying Assumption 2.6. Consider a leader of the form
(5.35). Moreover, assume that a control law (5.55) with a distributed prediction is employed,
which meets the conditions of Assumption 5.3 and is defined using continuous maps ψµ(·)
and ψω(·, ·) with Lipschitz constants Lψµ and Lψω , respectively. If the state of every agent
remains in a compact set S for all t ∈ R0,+, then we have

max
m=1,...,M

sup
t′≥0
‖ẋm(t′)‖ ≤ F (5.70)

for

F = f̄ + µ̄+
(

1 + (kc + 1)
√
‖Θ̃‖2

F − dx + 3
)

max
x,x′∈S

‖x− x′‖ (5.71)

where f̄ = maxx∈S |f(x)|, and µ̄ = maxxm∈S,m=1,...,M |ψµ(∑M
m=1 ωmψω(µm(xm),σ2

m(xm)))|.

Proof. By substituting the control law (5.55a) into (5.34), we obtain

ẋn,d = f(x(t))−ψµ(χ(t)) + πlin(εn). (5.72)

Due to the compactness of S and the linearity of πlin(·) in εn, we have

|πlin(εn)| ≤ (kc + 1)
√
‖Θ̃‖2

F − dx + 3 max
x,x′∈S

‖x− x′‖. (5.73)

127

5 Efficient Learning via Gaussian Process Model Aggregation

Due to continuity of ψω(·, ·), ψµ(·), µm(·), and σ2
m(·), it follows that ψµ(χm(t)) is bounded

by µ̄ on the compact domain S. Since f(·) is continuous, there exists a finite upper bound
f̄ on the compact set S. Hence, it directly follows that

|f(xm(t))− ψµ(χm(t))| ≤ f̄ + µ̄. (5.74)

Exploiting the compactness of S one more time, we finally obtain supt≥0 ‖ẋm‖ ≤ F for F
defined in (5.71), such that Lemma 5.1 holds.

Since the derivative state not only depends on the distributed prediction but also on
the linear control law πlin(·), the bound (5.71) depends linearly on the control gain kc.
This introduces a linear dependency of the prediction error bound in Lemma 5.1 on kc
due to (5.44), which can be compensated by the reciprocal dependency on the prediction
gain kp. Therefore, the prediction gain kp should be chosen greater than the control gain kc,
which intuitively resembles the fact that convergence of the prediction is necessary before a
consensus of the agent states can be achieved.
Using these auxiliary results, we quantify the tracking error bound for multi-agent systems

controlled by (5.55) as shown in the following.

Theorem 5.5. Consider an unknown function f(·), a prior Gaussian process GP(0, k(·, ·))
with Lipschitz continuous, stationary kernel satisfying Assumption 2.6, and training data
sets Dm, such that Assumption 5.7 holds. Moreover, consider an aggregation scheme (5.1),
which meets the conditions of Assumption 5.3 and is defined using continuous maps ψµ(·)
and ψω(·, ·) with Lipschitz constants Lψµ and Lψω , respectively. Assume that the agents can
communicate according to a topology satisfying Assumptions 5.5 and 5.6 and that Assump-
tion 2.7 and (2.75) hold for each individual GP model. Choose a control gain kc ∈ R+ such
that Υ � 0, where

Υ =
[

kcλ(L̃)− ι − ι
2(1 + ‖Θ̃‖F)− 1

2 λ̄(P)
− ι

2(1 + ‖Θ̃‖F)− 1
2 λ̄(P) 1

2λ(Q)

]
, (5.75)

ι = ‖IN − L̃‖‖θ̃‖+ (
√
MLµ̃ + Lf)λ̄(L̃)

λ(L̃)
(5.76)

for P , Q defined in (5.60) such that λ(P) ≥ 1. Then, the tracking error e = [eT1 · · · eTM]T
admits a probabilistic bound υ(·), if Bυ(t)(xl(t)) ⊂ S holds for all t ∈ R0,+, where υ(·) is
defined through

υ(t) =
√
Mλ̄(L̃)

√
λ̄(P)(1 + ‖Θ̃‖F)

λ(Υ)λ(L̃)

(
sup

0≤t′≤t
η̃(xl(t′)) + r̄

)
. (5.77)

Proof. We prove this theorem by showing that the temporal derivative of the Lyapunov
function (5.56) is decreasing except for a small ball around ε = 0. Let V1(ν) = 1

2ν
Tν denote

the first summand of (5.56). Due to (5.57), the temporal derivative of V1(·) is given by

V̇1(ν) = νT


−L̃

(
iii(x) +G(x)u+ f(x)− ẋdxl

)
+




∑dx−1
i=1 θ̃iε1,i+1

...∑dx−1
i=1 θ̃iεM ,i+1





 . (5.78)

128

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

Substituting the control law (5.55a) yields

V̇1(ν) = −kcνT L̃ν − νT L̃
(
f(x)−ψµ(χ)−ẋdxl

)
+ νT

(
IN−L̃

)



∑dx−1
i=1 θ̃iε1,i+1

...∑dx−1
i=1 θ̃iεM ,i+1


 . (5.79)

It can be easily seen that



∑dx−1
i=1 θ̃iε1,i+1

...∑dx−1
i=1 θ̃iεM ,i+1


 = Ė1θ̃ (5.80)

with θ̃ = [θ̃1 · · · θ̃dx−1]T . Therefore, we have due to (5.58) that

νT
(
IN − L̃

)



∑dx−1
i=1 θ̃iε1,i+1

...∑dx−1
i=1 θ̃iεM ,i+1


 = νT

(
IN − L̃

) (
νlT + E1Θ̃T

)
θ̃, (5.81)

such that we can bound V̇1(ν) by

V̇1(ν) ≤
(
−kcλ(L̃) + σ̄(IN − L̃)‖θ̃‖

)
‖ν‖2 + ‖IN − L̃‖‖θ̃‖‖Θ̃‖F‖ν‖‖E1‖F

+ λ̄(L̃)
(
‖f(x(t))−ψµ(χ(t))‖+

∥∥∥ẋdxl
∥∥∥
)
‖ν‖. (5.82)

Boundedness of ‖xdxl ‖ holds by Assumption 5.4, such that ‖ẋdxl ‖ ≤
√
Mr̄. For bounding

‖f(x(t)) − ψµ(χ(t))‖ we employ Lemma 5.1 and Lemma 5.2, such that we can substi-
tute (5.62) in (5.82) to get

V̇1(ν) ≤
(
−kcλ(L̃) + ι

)
‖ν‖2 + ι(1 + ‖Θ̃‖F)‖ν‖‖E1‖F + λ̄(L̃)

√
M (η̃(xl)‖+ r̄) ‖ν‖, (5.83)

where ι is defined in (5.76). For bounding the temporal derivative of the second sum-
mand of (5.56) denoted as V2(E1) = 1

2tr
(
E1PET1

)
we proceed similarly, such that it follows

from (5.58) and (5.60) that

V̇2(E1) ≤ −1
2λ(Q) ‖E1‖2

F + λ̄(P) ‖ν‖ ‖E1‖F . (5.84)

Combining (5.83) and (5.84), and writing it in a quadratic form yields

V̇ (ν,E1) ≤ −
[
‖ν‖ ‖E1‖F

]
Υ
[
‖ν‖
‖E1‖F

]
+
[√
Mλ̄(L̃) (η̃(xl) + r̄) 0

] [‖ν‖
‖E1‖F

]
, (5.85)

where Υ is defined in (5.75). By employing Sylvester’s criterion, it is straightforward to see
that there exist a kc, such that Υ is positive definite. Then, we have

V̇ (ν,E1) ≤ 0, for all ν,E1 :
∥∥∥
[
‖ν‖ ‖E1‖F

]∥∥∥ ≤
√
Mλ̄(L̃) (η̃(xl) + r̄)

λ(Υ) . (5.86)

129

5 Efficient Learning via Gaussian Process Model Aggregation

As V (·) has a quadratic form and λ(P) ≥ 1, (5.86) implies that

∥∥∥
[
‖ν(t)‖ ‖E1(t)‖F

]∥∥∥ ≤
√
λ̄(P)

√
Mλ̄(L̃) (η̃(xl(t)) + r̄)

λ(Υ) (5.87)

for sufficiently small initial values ν(0), E1(0). Due to∑dx
i=1 ‖εi‖2 = ‖ε1‖2+‖Ė1‖2

F and (5.58),
the total consensus error can be bounded in terms of ν and E1, which leads to

‖ε(t)‖ ≤
√
λ̄(P)

√
Mλ̄(L̃)(1 + ‖Θ̃‖F) (η̃(xl(t)) + r̄)

λ(Υ) . (5.88)

Finally, the cooperative tracking error ε satisfies the identity εi = −L̃(xi − xil), such that
‖x− xl‖ ≤ ‖ε‖/λ(L̃).

Theorem 5.5 exhibits several intuitive properties. A high connectivity of the graph G
augmented by the leader node, as measured through the eigenvalues of L̃, implies compar-
atively large eigenvalues of Υ. This has the effect that a high connectivity allows a lower
control gain kc for ensuring positive definiteness of Υ. Moreover, since the ultimate tracking
error bound (5.77) is reciprocal to λ(Υ), it can be reduced by increasing the connectivity
of the graph G augmented by the leader node. In addition to an increase in connectivity, a
large control gain kc is the main parameter for guaranteeing small tracking errors. In fact,
arbitrarily small ultimate tracking error bounds υ(t) can be achieved through a suitable
value of kc. In order to see this, note that λ(Q) can be chosen arbitrarily large as positive
definiteness of Υ can always be ensured through a suitable control gain kc. Moreover, it is
trivial to check that λ(Υ) → 1

2λ(Q) for kc → ∞. Since the ultimate bound is reciprocal
to λ(Υ), this implies that arbitrarily small tracking errors can be guaranteed.

Remark 5.6. Theorem 5.5 extends the ideas of Corollary 3.2 to multi-agent systems. There-
fore, the discussion in Remark 3.1 transfers to Theorem 5.5, such that we can investigate
the effective behavior of the tracking error bound for small time intervals using the heuristic

υ̃(t) =
√
Mλ̄(L̃)

√
λ̄(P)(1 + ‖Θ̃‖F)

λ(Υ)λ(L̃)
(η̃(xl(t)) + r̄) . (5.89)

5.2.4. Numerical Evaluation
We evaluate our proposed approach in two simulations. First, we illustrate the prediction
errors and error bounds of the proposed distributed GP approach. Afterward, we demon-
strate the effectiveness of employing distributed predictions in a cooperative control scheme
applied to a system with unmodeled nonlinearities.

Distributed Predictions for Dynamical Systems

In this section, we investigate the performance of the distributed GP approach proposed in
(5.40), (5.41) for learning the nonlinear function

f(x) = sin(x1) + 1
2(1 + exp(x2

10)) . (5.90)

130

5.2 Data-Efficient Learning for Cooperative Control of Multi-Agent Systems

−1 0 1

−1

0

1

x1
x

2

,D1
,D2
,D3
,D4
,x(t)

Figure 5.9.: Each Gaussian process is trained with data Dn from a single quadrant, while
the trajectory x(·) passes through all quadrants.

We consider a system with M = 4 GP models, each of which is based on a SE kernel
(2.18) with signal standard deviation σf = 0.5 and length scales li = 0.5, i = 1, 2. Train-
ing data is uniformly distributed on the domain [−1, 1] × [−1, 1], and training targets are
perturbed by zero mean Gaussian noise with σon = 0.1. Each of the GP models is trained
using N = 500 training samples from a single quadrant, as illustrated in Fig. 5.9. For the
distributed aggregation of the predictions, we employ the PoE scheme (5.6) and assume a
circular communication graph described by the adjacency matrix

Aad = 1
2




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 . (5.91)

The predictions are aggregated along the trajectory x(t) = xl(t) for rref(t) = − sin(t) using a
prediction consensus gain kp = 1000. The prediction error is uniformly bounded with δ = 0.1
and τ = 0.01, and the Lipschitz constants for ψµ(·) and ψω(·, ·) required for (5.44) are nu-
merically approximated along x(t).
We compare the prediction error |µ̂m(x(t)) − f(x(t))| and error bound η̃(x(t)) of the

proposed method to the prediction error |µm(x(t)) − f(x(t))| and error bounds ηloc(x(t))
of the standard approach employing only local predictions. As depicted in Fig. 5.10, the
distributed predictions yield errors, which are almost identical to the best available individual
prediction. While the individual predictions achieve these small errors only for a small
period of time, the distributed predictions constantly maintain this high accuracy. A similar
behavior can be observed for the uniform prediction error bounds, where the distributed GP
approach guarantees an almost constant prediction accuracy, while the local error bounds
strongly vary over time. This clearly demonstrates the advantages of distributed predictions.

Cooperative Tracking Control with Unmodeled Nonlinearities

In order to demonstrate the efficiency of the cooperative control law proposed in (5.55), we
extend the previously introduced simulation setting to the control of a multi-agent system.
For this purpose, we define im(x) = 0 and gm(x) = 1 for m = 1, . . . , 4 and x ∈ R2.
Moreover, we choose the diagonal matrix Bl = diag(1, 0, 1, 0), such that two follower agents
are connected to the leader. In the feedback linearizing control law, we employ θ̃ = 7

4 ,

131

5 Efficient Learning via Gaussian Process Model Aggregation

10−4

10−2

100

proposed method local prediction|f
(x

)−
µ̂

m
(x

)|

agent 1

,pred. error (distr. aggreg.) ,pred. error (local) ,error bound (distr. aggreg.) ,error bound (local)

agent 2

0 2 4 6 8

10−4

10−2

100

t

|f
(x

)−
µ̂

m
(x

)|

agent 3

0 2 4 6 8

t

agent 4

Figure 5.10.: The prediction errors |µ̂m(x(t)) − f(x(t))| observed when using the proposed
distributed prediction aggregation method are small for the whole trajectory
x(t), while the errors |µm(x(t))−f(x(t))| resulting from the standard approach
based on local predictions are only small for states x(t) close to the training
data of the corresponding model. The theoretical error bounds for distributed
predictions η̃(x(t)) and individual predictions ηloc(x(t)) exhibit the same be-
havior.

kc = 1000, and use kp = 50000 as gain for the prediction consensus. Finally, we determine
the heuristic tracking error bound υ̃(x(t)) based on Q = 600.
We compare the simulation results of our proposed cooperative tracking control law em-

ploying distributed GP predictions to the same control law using only the individual predic-
tions of the agent, no compensation of the unknown nonlinearity, and an exact model of f(·).
As illustrated in Fig. 5.11, employing only the local model of each agent in the control law
yields an improvement compared to the absence of any model. However, it performs signifi-
cantly worse than the proposed control law with distributed predictions, which even achieves
tracking errors almost identical to those of the control law with exact knowledge of f(·). Even
though the corresponding tracking error bound heuristics υ̃(x(t)), which can be obtained for
local predictions and exact model knowledge through a straightforward adaptation of [214],
are conservative, they analogously reflect this behavior. These results underline the im-
provement in control performance resulting from the application of distributed predictions
in cooperative tracking control.

5.3. Discussion
As we demonstrate in this chapter, the aggregation of GP models is an effective approach for
addressing many problems in control systems. This is due to the straightforward extension
of uniform error bounds for exact GP regression for many aggregation schemes, which allows
the application of aggregated GP predictions instead of exact GP models when performance
guarantees are required. When employing GP aggregations for online learning using iter-

132

5.3 Discussion

10−2

10−1

‖e
‖

,distributed
,local
,none
,exact

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

t

υ̃
(x

(t
))

Figure 5.11.: Tracking errors ‖e(t)‖ and probabilistic error bound heuristic υ̃(t) for cooper-
ative control with distributed learning are significantly smaller than with local
learning and without learning.

atively constructed trees, as proposed in Section 5.1, they allow computationally efficient
model updates and predictions. Thereby, learning in control loops at high rates with ac-
curacy guarantees is enabled. Even though the computational efficiency achieved with the
proposed method is often sufficient for the practical realization of online learning control,
the necessary computation times are growing logarithmically. Hence, they will always ex-
ceed constraints on the computation time eventually, such that the method is not directly
applicable to continual learning [216]. Moreover, the achievable uniform error bounds can
be easily lower bounded due to the restriction to data sets with constant size in each local
model. While we have found these limitations to be not practically relevant for our consid-
ered applications due to their relatively short execution time, they certainly need to be kept
in mind when applying LoG-GPs in long-lasting experiments.
While LoG-GPs, as proposed in Section 5.1, address practically relevant issues for im-

plementing GP-based learning for real-world control systems, they remain to have critical
limitations. Most importantly, the memory complexity remains high. In fact, the results for
learning from more than 500000 training samples using LoG-GPs require more than 50GB
of RAM when implemented using MATLAB. Even though this requirement can be met in
an academic setting for implementing online learning controllers, it probably exceeds any
reasonable computing infrastructure available for controllers in commercial applications. In
addition, suitable kernel hyperparameters are required a priori for achieving a high regres-
sion performance, which is at least a controversial assumption considering online learning
problems. This requirement can be partially mitigated through gradient steps for the hy-
perparameters in each update iteration as demonstrated in Section 5.1.6, but we have found
that a decent initial guess remains necessary to ensure a competitive regression performance.
Finally, the simultaneous activity of multiple models ensured using (5.15) ensures the conti-
nuity of aggregated predictions, but the Lipschitz constant of aggregated mean functions can
be high if few data samples are available at the boundary between local GP models. While
this issue can often be mitigated by adding training samples to all active models during
the model update step, an increased computational effort is required. Since these are only
a few example limitations experienced when working with LoG-GPs, it is clear that many
application-specific problems still need to be addressed. Therefore, the need for GP approx-

133

5 Efficient Learning via Gaussian Process Model Aggregation

imations fitting the needs of specific control applications definitely remains an interesting
problem for future research.
This is similarly true for the proposed distributed aggregation method in Section 5.2, which

can merely be seen as the first step towards an extension of GP regression to multi-agent
systems considering control-theoretic requirements. Our method provides a significant im-
provement over the state-of-the-art approach of employing individual GP model predictions
in each agent, but it strongly relies on the convergence of each agent to the leader state.
It seems reasonable that the proposed consensus-based distributed GP aggregation can be
extended to approaches such as formation control and flocking, but a direct extension might
potentially require an additional consensus state for each agent, which would significantly
increase the communication load in the network. Furthermore, no improvement of the uni-
form error bound over the best local model is possible with the employed MoE and gPoE
aggregation schemes, such that it remains unclear how efficient distributed online learning
strategies can be designed. Therefore, this chapter clearly demonstrates the potential of GP
model aggregations for learning in control systems, but additional research might be required
to apply it to specific problems.

134

Architectures for Practical Con-
trol with Gaussian Processes 6.

When faced with the problem of realizing a learning-based control law in practice, the
previous chapters provide a theoretical and algorithmic foundation for the design of spe-
cific components, but they do not give suggestions on the architectural composition in a
real-world implementation. The design of such architectures is related to applied control
problems, for which we often employ architectures composed of multiple cascaded control
loops in practice [1]. This enables the consideration of both practical and theoretical needs
in the implementation of sub-systems, e.g., by using different sampling rates, such that
slowly evolving dynamics can be controlled with computationally more demanding control
techniques, while parametric controllers are used for quickly changing processes.
For employing GP models in real-world control loops, such considerations must also be

taken into account to address practical deviations from the previously considered theoretical
settings. For example, the assumed noise-free state measurements are often not available
since sensors are noisy and observers are frequently employed to estimate signals. More-
over, the computation time of GP model updates and predictions often keeps occasionally
exceeding the sampling times of modern control loops despite the application of GP ap-
proximations such as LoG-GPs. Finally, small autonomous systems do often not only have
computational limitations, but also a small memory. Therefore, they are not capable of
storing large, memory-demanding GP models. Some of these challenges can be straightfor-
wardly addressed, e.g., by adding a separate, slowly adapting layer for learning to the control
architecture [217], and not all of them are always present, e.g., when control loops run at
sufficiently low sampling rates to allow the direct integration of GP approximations [27, 191].
However, there exist many cases when this is not possible, such that a thorough development
and analysis of implementation architectures for GP-based control is necessary.
In this chapter, we formalize three different architectures, demonstrate their practical ap-

plicability, and analyze the effect of design choices on previously derived guarantees. We
start by considering a popular architecture currently used in experiments [26, 27, 28] in
Section 6.1, which corresponds to the direct implementation of GP-based control laws. We
refer to this approach as synchronous architecture in the following. Under the assumption
of negligible computation times, the only practical deviation in this setting corresponds to
the unavailability of noise-free state measurements. Therefore, this scenario allows us to
straightforwardly analyze the effect of state measurement disturbances on derived tracking
error bounds, which we show to be bounded. The practical effectiveness of the synchronous
architecture is demonstrated in experiments with a robotic manipulator. Since the com-
putation time of GP model evaluations restricts the sampling time of controllers in this
architecture, we propose an asynchronous strategy for model evaluations in Section 6.2. In
this novel architecture, the model-based control law holds the GP prediction until a new
one is available, such that pure error feedback components of the controller can run at in-

135

6 Architectures for Practical Control with Gaussian Processes

unknown
system

model-based
control law

GP model

dy
na

m
ics

pr
ed

ict
io

n
control inputs

m
easurem

ents

reference

Figure 6.1.: Illustration of the synchronous online learning control architecture with GP
models. The GP model is directly included in the control loop, such that it is
evaluated at the same rate as the model-based control law.

dependent and higher update rates. We exemplarily investigate the effect of the delayed
predictions on the derived tracking accuracy guarantees and demonstrate the applicability
in a human-robot interaction experiment. Additionally, we address the high memory require-
ments of GP models by proposing a networked learning architecture in Section 6.3. This
architecture exploits a reachability analysis to iteratively determine irrelevant data, which
is sent to a cloud storage, such that local memory constraints can be satisfied. We show
that the reduction of local training data does not affect the control performance guarantees
and demonstrate the adherence to resource constraints in a robotic rehabilitation simulation.
Finally, the results of this chapter are discussed in Section 6.4.

6.1. Synchronous Online Learning from Disturbed
State Measurements

Currently, the predominantly used architecture for practical GP-based control relies on a
synchronous evaluation of the GP model and the pure error feedback components of the
control law [26, 27, 28] as illustrated in Fig. 6.1. Since the GP model is employed exactly
like a parametric model, it resembles the natural extension of classical control architectures.
This requires the sufficiently fast evaluation of the GP model to achieve the high sample
rates of typical control loops, such that frequently GP approximations [28] or a time-varying
data set of constant size are applied [26, 27]. However, the synchronous architecture effec-
tively coincides with the idealized setting considered in the derivation of theoretical results.
Therefore, it allows the straightforward evaluation of theoretical guarantees in experiments,
which explains its popularity.
The major difference in the practical application of the synchronous architecture to the

commonly considered theoretical setting lies in the absence of exact state measurements.
Inaccuracies in state measurements can result from a variety of sources ranging from quan-
tization errors in sensors [218] to errors caused by numerical differentiation [219] and ob-
servers [220]. Since disturbed measurements are a problem not limited to control applica-
tions, noisy states have been investigated in different scenarios. In early works, Gaussian
distributed states are employed for the approximate propagation of uncertainty in discrete-
time, GP state space models [221, 222]. A key idea in these approaches is the linearization
around a nominal state, which can also be used for the development of approaches for dealing

136

6.1 Synchronous Online Learning from Disturbed State Measurements

with noise on training inputs [169, 223].
While these approaches require a modification of GP regression to deal with disturbed

training inputs, we prove that even with the standard GP model, disturbed state mea-
surements merely require a marginal modification of the uniform error bound derived in
Corollary 2.3. Thereby, we show that our guarantees for GP-based control extend to real-
world scenarios. In simulations, we investigate the dependency of the tracking error for an
online learning GP-based controller on the magnitude of disturbances, which reveals an al-
most linear relationship between them. Therefore, this controller can safely be implemented
on systems with decent measurement noise levels using the synchronous architectures, which
we demonstrate in a real-world experiment with a robotic manipulator.
The remainder of this section is structured as follows. The problem of online learning

control with GP models trained using data with disturbed state measurements is described
in Section 6.1.1. In Section 6.1.2, we prove the boundedness of the tracking error despite
disturbed state measurements. The dependency of the tracking accuracy on the disturbance
magnitude is illustrated in Section 6.1.3 before the real-world applicability of the synchronous
learning-based control architecture is demonstrated in an experiment in Section 6.1.4.

6.1.1. Problem Setting
For investigating the synchronous learning-based control architecture and the dependency of
the employed GP models on state measurement disturbances, we consider again the setting
in Section 3.1. Therefore, the system dynamics are given by

ẋ = Ax+ b(u+ f(x)), (3.2 revisited)

where f : X→ R is an unknown, scalar perturbation of the linear system. While the consid-
ered dynamics remain unchanged, we assume that the true state x(t) cannot be measured,
but instead, only the disturbed signal

x̃(t) = x(t) + εx(t) (6.1)

is available, where εx : R0,+ → Rdx is an unknown disturbance. The disturbance func-
tion εx(·) can be the realization of a stochastic process representing measurement noise,
or a deterministic function caused by, e.g., unobserved latent dynamics. In order to limit
the effect of disturbed state measurement on the control performance, we assume bounded
disturbances εx(t) as formalized in the following.

Assumption 6.1. The state measurement disturbance εx : R0,+ → Rdx is bounded by a
constant ε̄x, i.e., ‖εx(t)‖ ≤ ε̄x for all t ∈ R0,+.

While this assumption requires bounded disturbances εx(t), they can be arbitrarily large.
Therefore, this assumption admits practically relevant effects, such as measurement noise and
disturbances caused by sensor offsets, such that it does not severely restrict the applicability
of the derived theory to real-world applications.
Due to the restriction to disturbed measurements x̃(t), the control law (3.4) cannot be

directly employed, but instead, we have to use

u(t) = θT (x̃(t)− xref(t)) + rref(t)− f̂(x̃(t)). (6.2)

137

6 Architectures for Practical Control with Gaussian Processes

In order to infer the model f̂ : Rdx → R of the unknown input perturbation f(·), we
employ a time-triggered online learning scheme with sampling time Ts ∈ R+ as presented in
Section 4.3.2. This leads to a time-varying data set

D(t) =
{
x̃(n) = x(nTs) + εx(t(n)), y(n) = f(x(n)) + ε(n)

y

}b t
Ts
c

n=1
, (6.3)

which contains disturbed state measurements x̃(n) in contrast to the data set (4.81) originally
considered in Section 4.3.2. For a consistent analysis, we also assume bounded target noise
denoted as ε(n)

y for clarity of exposition, i.e., we require Assumption 2.3. If similar sensors
or techniques as for state measurements are employed for the target observations, this is a
natural requirement. Using the data set D(t), we can update a GP model online and use the
mean function µ(·) as model f̂(·).
In a practical implementation, performing these computations takes time. Due to the

consideration of the synchronous learning-based control architecture, we assume that the
necessary computation time is small in comparison to the sampling time of the control
system, such that we can ignore it in practice. This is formally stated in the following
assumption.

Assumption 6.2. The computation times of GP model updates and evaluations are negli-
gible.

Using GP approximations such as the proposed LoG-GP method in Section 5.1, the compu-
tation times required for model updates and evaluations can be reduced to a few milliseconds
with suitable hardware. Therefore, this assumption is not restrictive for moderately fast and
slow control loops operating at sampling rates lower a few hundred Hz.
Based on this assumption and the control law (6.2), we consider the problem of extending

the previously derived tracking error bound in Theorem 4.4 to the synchronous learning-
based control architecture with noisy state measurements. This requires the derivation of
an upper bound for the solution e(·) of the closed-loop error dynamics given by

ė = Acl(θ)e+ b(f(x)− f̂(x̃)) + bθTεx, (6.4)

where Acl(θ) = A− bθT .

6.1.2. Learning Control with Disturbed State Measurements
Since the training data set D(t) defined in (6.3) does not have noise-free training inputs
as considered for the derivation of uniform error bounds in Chapter 2, our previous results
cannot be directly used to analyze the synchronous learning-based control architecture with
disturbed state measurements x̃(t). Therefore, we first extend the uniform error bound in
Corollary 2.3 to the considered setting before we investigate the tracking error itself.
For the extension of Corollary 2.3, the restriction to bounded disturbances εx(t) is crucial,

since it directly allows us to project the disturbance of training inputs to the targets for
continuous functions f(·). This is exploited for the derivation of the following result.

Lemma 6.1. Consider an unknown, Lipschitz continuous function f(·) ∈ HS
k satisfying

Assumption 2.4 and a prior Gaussian process GP(0, k(·, ·)). Moreover, assume that the

138

6.1 Synchronous Online Learning from Disturbed State Measurements

noise εx(t(n)), ε(n)
y , n = 1, . . . ,N , satisfies Assumption 2.3 and Assumption 6.1. Then, the

posterior mean function µ(·) defined in (2.26) admits a uniform error bound

η(x) = βσ(x) (6.5)

for

β = Γ +
√
N(ε̄y + Lf ε̄x)

σon

√
‖K(K + σ2

onIN)−1‖ (6.6)

with probability 1 on the compact set S ⊂ Rdx.

Proof. In order to derive a uniform error bound with noise on the training inputs, we project
the noise ε(n)

x on the training targets y(n). Due to the Lipschitz continuity of f(·), for each ε(n)
x ,

there exists a value ε̃(n)
y with

|ε̃(n)
y | ≤ Lf‖εx(t(n))‖+ |ε(n)

y | (6.7)

such that

f
(
x(n)

)
+ ε(n)

y = f(x̃(n)) + ε̃(n)
y . (6.8)

This allows us to equivalently consider training pairs (x(n), f(x̃n) + ε̃(n)
y), which exhibit mea-

surement noise only on the training targets. Therefore, we can directly employ Corollary 2.3
to obtain a uniform error bound since ε̃(n)

y ≤ Lf ε̄x + ε̄y.

While this lemma requires the restriction to Lipschitz continuous functions, this is not
a severe limitation since a bounded RKHS norm Γ as required for RKHS-based uniform
error bound directly yields Lipschitz constants for many kernels k(·, ·), [224]. Therefore, this
assumption does not pose a relevant additional restriction but enables the straightforward
projection of training input disturbances εx(t(n)) on the training targets. Since this projection
is generally biased, a growing data set is not guaranteed to reduce the error bound, and
a stationary learning error can remain. This is reflected by the

√
N factor in (6.6), which

causes a comparatively fast-growing scaling factor β in (6.5). Therefore, the choice of suitable
training inputs as discussed in Section 4.2 becomes crucial with disturbed state measurements
x̃(t) in order to achieve a small posterior standard deviation σ(·) where necessary.
Since the uniform error bound in Lemma 6.1 keeps the same structure as the bounds

considered in previous chapters, the tracking error analysis presented in Section 4.3.2 can
be straightforwardly extended to the synchronous learning architecture with disturbed state
measurements x̃(t). This is shown in the following proposition.

Proposition 6.1. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (6.2) is applied to track a reference trajectory with bounded derivative ẋref(·). Assume
that a Gaussian process GP(0, k(·, ·)) with stationary, Lipschitz continuous kernel k(·, ·) is
employed to learn a model f̂(·) = µ(·) of the unknown input perturbation f(·) satisfying
Assumption 2.4 online from a data set (6.3), for which Assumptions 2.3 and 6.1 hold. If
the computation times satisfy Assumption 6.2 and Bῡ(xref(t)) ∈ S holds for all t ∈ [0,T],
T ∈ R0,+, where

ῡ = −‖U‖‖U
−1b‖

λ̄(Acl(θ))
(
LηFTs + ηTs + (Lµ + ‖bθT‖)ε̄x

)
(6.9)

139

6 Architectures for Practical Control with Gaussian Processes

for ηTs defined in (4.85), then, the tracking error is bounded by υ(·) = ῡ during the time
interval [0,T] for initial states X0 = {xref(0)}.
Proof. Due to the Lipschitz continuity of the kernel k(·, ·), it follows from Lemma 2.2 that
the GP mean µ(·) is Lipschitz continuous. Therefore, we obtain

|f(x)− µ(x̃)| ≤ |f(x)− µ(x)|+ Lµε̄x. (6.10)

Since the assumptions of Lemma 6.1 are satisfied, this directly implies

|f(x)− µ(x̃)| ≤ η(x) + Lµε̄x. (6.11)

Since we can additionally bound the effect of the state measurement disturbance εx(·) on
the control law (6.2) by

|bθTεx(t)| ≤ ‖bθT‖ε̄x (6.12)

due to Assumption 6.1, we obtain

‖e(t)‖ ≤‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′)
(
η(x(t′)) + (Lµ + ‖bθT‖)ε̄x

)
dt′. (6.13)

analogously to (4.89). By bounding η(x(t)) for time-triggered data measurements defined
in (6.3) using (4.90), the result directly follows from the proof of Theorem 4.4.

Due to the structure of the tracking error bound (6.9), Proposition 6.1 can be interpreted
as the analog of Theorem 4.4 for disturbed state measurements x̃(t). A direct comparison
reveals merely one critical difference: The measurement disturbance εx(·) has a direct im-
pact on the feedback control, such that we have an additional term (Lµ + ‖bθT‖)ε̄x in (6.9).
This term prevents the reduction of the tracking error bound ῡ to arbitrarily small values by
simply increasing the control gains θ since an increase of −λ̄(Acl(θ)) is accompanied by an
increase of ‖bθT‖. Therefore, a trade-off between noise amplification and reduction of the
effect of unmodeled nonlinearities is required, which is a well-known necessity in the prac-
tical application of control laws. While the GP model is also affected by the measurement
disturbance εx(·), the Lipschitz constant Lµ is not particularly affected by state measure-
ment disturbance εx(·). Hence, an improvement of the model accuracy and, consequently,
a decrease of the uniform error bound ηTs almost immediately reduces the tracking error.
Thereby, the GP model enables the reduction of the tracking errors to values which would
not be possible for a controller without nonlinearity compensation regardless of the control
gains θ. This clearly motivates the practical application of GP models in real-world prob-
lems, which can be straightforwardly achieved using the synchronous learning-based control
architecture.

6.1.3. Numerical Evaluation
To investigate the performance of GP-based control with disturbed state measurements, we
revisit the setting in Section 4.3.5. Therefore, our closed-loop dynamics are described by

Acl(θ) =
[

0 1
−kcθ̃ −kc − θ̃

]
, b =

[
0
1

]
(4.80 revisited)

140

6.1 Synchronous Online Learning from Disturbed State Measurements

0 1 2 3 4 5 6

10−4

10−3

10−2

t

‖e
‖ ,observed error

Figure 6.2.: Examplary evolution of the tracking error norm ‖e(·)‖ with time-triggered online
learning from states with measurement disturbance bounded by ε̄x = 0.01.

10−4 10−3 10−2 10−1 100
10−4

10−2

100

ε̄x

‖e
‖

,observed error
,standard deviation
,error bound
,bound (noise component)

Figure 6.3.: Maximum tracking error and its bound ῡ in dependency of the state measure-
ment noise bound ε̄x for time-triggered online learning.

with a nonlinear input perturbation f(x) = 1−sin(2x1)+1/(1+exp(−x2)). The control gains
are set to kc = 10 and θ̃ = 5, a sinusoidal trajectory with period time 2π is tracked, and
training data is generated and processed online with a sample time of Ts = 0.01. In order to
straighten the evaluation, we set ε̄x = ε̄y and sample disturbances from uniform distributions
εy ∼ U([−ε̄y, ε̄y]), εx ∼ U([−ε̄x, ε̄x]2). The RKHS norm is approximated as proposed in [74]
and multiplied with 1.5 to obtain the upper bound Γ required for the GP uniform error
bound. Moreover, the direct dependency of the uniform error bound is partially avoided
by choosing the observation noise standard deviation parameter σon in GP regression as
σon = ε̄x(Lf + 1)

√
N(T).

An exemplary evolution of the tracking error realized by the learning-based synchronous
control architecture in this setting is illustrated for ε̄x = 0.01 in Fig. 6.2. Due to the
disturbed state measurements, the tracking error exhibits a clearly visible noisy behavior,
but it maintains a low value on average in the depicted period of the reference trajectory.
When investigating the dependency of the maximum tracking error on the magnitude of
the measurement disturbance ε̄x, we average over 10 runs to account for the randomness
caused by the uniformly sampled measurement disturbances. The resulting curve, which is
depicted in Fig. 6.3, shows an increasing behavior closely following the growth rate of the
noise component

ῡnoise = −‖U‖‖U
−1b‖

λ̄(Acl(θ))
(Lµ + ‖θ‖)ε̄x (6.14)

of the tracking error bound (6.9). Since this relationship is linear in ε̄x, a small measurement
disturbance bound ε̄x is practically almost negligible, while large values also lead to a low
tracking accuracy in the simulations. Therefore, it is possible to safely apply GP models in

141

6 Architectures for Practical Control with Gaussian Processes

q1

q2

robotic
system

CTC
policy

PD
controller

inverse
dynamics

LoG-GP
model

−

tk

−

qref
q̇ref
q̈ref

q
q̇
q̈

u

û

xk

yk

Figure 6.4.: Left: the robotic manipulator CARBO used for demonstrating the practical ap-
plicability of the synchronous online learning architecture in control problems.
The graphic is adopted from [27]. Right: schematic of the used synchronous
learning-based control architecture. A combination of CTC policy, PD con-
troller, and GP-based compensation of unknown nonlinearities is employed for
control, while simultaneously, a mapping between joint angles, velocities, and
accelerations to torques is learned.

practical control problems without a significant impact on derived theoretical guarantees, as
long as existing state measurement disturbances are small.

6.1.4. Experimental Demonstration in Control of Robotic
Manipulators

We demonstrate the real-world applicability of the synchronous learning-based control archi-
tecture by implementing it on the CARBO robotic manipulator illustrated on the left side
of Fig. 6.4. For this purpose, we employ the augmented computed torque control (CTC)
law proposed in [34] to track a sinusoidal reference trajectory. This leads to the architec-
ture illustrated on the right side of Fig. 6.4, which employs a combination of CTC policy,
PD controller, and GP-based compensation of unknown nonlinearities. The CTC policy
is defined using approximate robot parameters following the standard approach in robotics
control [225]. We define the PD controller with proportional gain kp = [4 3]T and differential
gain kd = [20 20]T . The model is learned online using LoG-GPs with N̄ = 50 as presented
in Section 5.1 from joint angles, velocities, and accelerations as training inputs and torque
errors as training targets. The hyperparameters of the LoG-GP model are tuned offline
using log-likelihood maximization from a previously recorded data set generated by tracking
the considered reference trajectory. Since the learning-based controller is implemented using
a synchronized architecture, the CTC policy, the PD controller, and the LoG-GP model
updates and evaluations are all computed at a rate of 200Hz.
An example trajectory of the two joint angles and velocities of the CARBO robotic manip-

ulator are depicted together with the corresponding reference trajectories in Fig. 6.5. While
the measured joint angles look smooth, bounded measurement noise is clearly visible in the
angular velocities due to numerical differentiation. Therefore, the CARBO robot control
problem reflects the problem setting formulated in Section 6.1.1. Due to the very small

142

6.1 Synchronous Online Learning from Disturbed State Measurements

−0.5

0

0.5

jo
in

t
an

gl
e

,joint 1
,joint 2
,reference 1
,reference 2

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

t

an
gu

la
r

ve
lo

ci
ty

Figure 6.5.: Measured joint angles and angular velocities together with their reference values
for the CARBO manipulator controlled by a CTC controller augmented by an
online learned LoG-GP model. Even though measurement noise in the veloc-
ity measurements is clearly visible, the tracking of the reference trajectory is
approximately achieved.

0 50 100 150 200 250
0

0.2

0.4

t

‖e
‖ ,tracking error

Figure 6.6.: Due to the online learning of LoG-GP models for control, the tracking error of
the CARBO manipulator reduces over time, but the state measurement noise
prevents its vanishment.

control gains kp and kd, a remaining tracking error is visually perceivable for the angles and
velocities of both joints, but the synchronous online learning control architecture is generally
capable of steering the robot along the reference trajectory.
While the sampling rate of 200Hz limits the achievable tracking accuracy using the online

learning paradigm, the repetitive behavior of sinusoidal reference trajectories effectively al-
lows a periodic improvement, similar as discussed in Section 4.3.4 for episodic learning. This
effect can indeed be observed when running the experiment for a longer time, as illustrated
in Fig. 6.6. In the beginning, the imprecise LoG-GP model is not capable of compensat-
ing for the unknown nonlinearity well. After ≈ 50s, which corresponds to 4 periods, the
model accuracy has significantly improved, and decent tracking performance can already be
achieved. While the tracking error keeps getting smaller over time afterward, the decrease
in every period shrinks. However, due to the state measurement disturbances, it does not
vanish but instead converges to a small value.
Despite this apparent lower bound on the achievable tracking error through the GP-based

compensation of unknown nonlinearities, the synchronous learning-based control architec-
ture enables an eventual improvement over a controller without a GP model but significantly

143

6 Architectures for Practical Control with Gaussian Processes

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8
·10−2

t

‖e
‖ ,GP-based controller

,pure CTC controller

Figure 6.7.: When learning a model online using LoG-GPs, the augmented CTC controller
achieves a better tracking accuracy than a pure CTC controller with significantly
higher gains after a certain number of periods.

higher control gains, as depicted in Fig. 6.7. This figure depicts the tracking error after 22
periods of online learning in comparison to a control law without a GP model but with
increased proportional gains kp = [40 30]T . While there are short intervals of time dur-
ing which the tracking error with the online learning control law is larger, the controller
without learning exhibits a lower tracking accuracy on average. Therefore, our experimen-
tal evaluation demonstrates the practical applicability and effectiveness of the synchronous
learning-based control architecture.

6.2. Asynchronous Online Learning with
Computational Delays

While the synchronous learning control architecture provides a straightforward approach for
evaluating theoretical results in real-world experiments, it crucially requires the computa-
tion of GP model updates and evaluations at the same rate as other parts of the control
loop. This is a challenging and limiting requirement since GP models are computationally
demanding. Even though it is possible to reduce their complexity, it remains questionable
if the rates of modern control loops, which often require sampling times as low as 0.1ms,
can ever be achieved. Moreover, the computation time for different operations of GP models
strongly differs as updates generally exhibit a significantly higher complexity than predic-
tions. In addition, GP approximations such as LoG-GPs can cause occasional spikes in the
computation times. This can be catastrophic in control loops if GP model computations
lead to the delayed application of control inputs.
This is a problem not limited to GP models but can also be found with other learning

techniques. For example, when employing deep learning [17] in control, model updates take
a considerable amount of time. In order to enable online updates despite this limitation, they
can be executed in separately spawned processes [226], such that they run asynchronously.
Since GP models additionally suffer from comparatively slow model evaluations, this idea
can be extended to compute GP predictions asynchronously as fast as possible [227]. While
these examples demonstrate the awareness of the problem, the existing literature does not go
beyond conceptual solutions. Thus, the formalization of a clear architecture addressing the
problem of high computation times often coming along with learned models is an open issue.
Moreover, theoretical foundations for the validity of such proposed asynchronous learning
approaches are missing.

144

6.2 Asynchronous Online Learning with Computational Delays

unknown
system

model-based
control law

GP modelZOH
converter

dy
na

m
ics

pr
ed

ict
io

n

control inputs

m
easurem

ents

reference

GP evaluation
sampled data

control

learning

Figure 6.8.: Illustration of the asynchronous online learning control architecture with GP
models. The necessary computations for updating and evaluating GP models
are decoupled from the control loop through a zero-order hold converter and a
sampling approach. This prevents large computation times in the GP model
from slowing down the remaining control loop.

We address this gap by proposing the online learning control architecture depicted in
Fig. 6.8. This architecture decouples the necessary computations for GP models from the
remaining control loop in order to allow high-frequency updates for the pure error feedback
components. In order to achieve this, GP model evaluations are kept constant through a
zero-order hold (ZOH) converter until a new prediction has been computed. Moreover, new
test and training inputs are only admitted when the previous update and evaluation com-
putations have been finished, such that potential older data is discarded. While this can
lead to delayed model evaluations, we exemplarily show that the effect of this delay on the
tracking error can be bounded. Numerical simulations and real-world experiments involving
human participants demonstrate the practical effectiveness of the proposed asynchronous
online learning architecture.
The remainder of this section is structured as follows. In Section 6.2.1, the problem set-

ting with non-negligible computational delays is formalized. The tracking error bound for
linear systems with unknown input perturbation is adapted to the asynchronous setting in
Section 6.2.2. We numerically investigate the effect of the computational delay on the track-
ing accuracy achieved by the asynchronous online learning architecture in Section 6.2.3. In
Section 6.2.4, which is based on [40], we finally demonstrate the practical robustness and
effectiveness of this architecture in a real-world experiment that employs human participants
as unknown disturbances.

6.2.1. Problem Setting

In order to analyze the tracking error guaranteed when using the asynchronous online learn-
ing control architecture, we exemplarily consider the setting in Section 3.1, such that the
system dynamics can be described by

ẋ = Ax+ b(u+ f(x)), (3.2 revisited)

145

6 Architectures for Practical Control with Gaussian Processes

where f : X→ R is an unknown, scalar perturbation of the linear system. For compensating
this nonlinearity using a control law, we learn a GP model online from a data set

D(t) =
{
x(n) = x(nTs), y(n) = f(x(n)) + ε(n)

}b t
Ts
c

n=1
, (4.81 revisited)

generated using a time-triggered sampling scheme. Since the computation of GP model
updates and evaluations can take a considerable amount of time, the GP mean function
µ(x(t)) for a state x(t) is generally not available at time t, but at a later time t + T cm > t,
where T cm ∈ R0,+ denotes the m-th computation time. Moreover, we consider a single
computing unit, such that no other operations can be performed with the GP model during
the interval [t, t+ T cm). Due to the asynchronous architecture, this requires us to adapt the
control law (3.4) to obtain

u(t) = −θT (x(t)− xref(t)) + rref(t)− µ

x



M(t)∑

m=1
T cm




 , (6.15)

where

M(t) = max
M∈N

M − 1 (6.16)

such that
M(t)∑

m=1
T cn ≤ t (6.17)

denotes the previous number of numerical operations, e.g., model evaluations, performed
with the GP model. The sum ∑M(t)

m=1 T
c
m in (6.15) defines the time at which the computation

of the currently used prediction has been started. Therefore, GP model evaluations are only
available at discrete time instances, whereas the linear feedback components are continuously
evaluated. This corresponds to a practical scenario in which the control loop is operated at
sampling rates that are significantly higher than admissible for online learning with GPs.
In order to quantify the effect of non-negligible computation times T cm on the tracking

accuracy in the asynchronous control architecture, we make the following assumptions

Assumption 6.3. While GP model updates and evaluations are computed, no other oper-
ations can be executed with the GP model. The execution time T cm ∈ R+ of these m ∈ N
operations is upper bounded by a constant T̄ c ∈ R+, i.e., T cm ≤ T̄ c for all m ∈ N.

Assumption 6.4. The sampling time for online data generation and GP model updates is
larger than the computation time, i.e., Ts > T̄ c.

Assumption 6.3 ensures that the GP model evaluation is available after a finite amount
of time, which is a natural requirement for any algorithm. Since this assumption does not
pose an upper bound on the admissible computation times, it is not restrictive in practice.
Assumption 6.4 allows that all training samples (x(n), y(n)) can be processed and used for GP
model updates since it ensures that there is at least one time instant t, at which numerical
operations are performed with the GP model, between two sample times t(n), t(n+1). If
this assumption is not satisfied, data can be dropped, which effectively leads to a reduced
sampling time Ts in the time-triggered data generation scheme. Therefore, the presented
subsequent analysis can simply be executed using the effective sampling time, such that
Assumption 6.4 is not restrictive.

146

6.2 Asynchronous Online Learning with Computational Delays

Based on these assumptions, we consider the problem of extending the tracking accu-
racy guarantees derived in Theorem 4.4 to the asynchronous online learning architecture.
Therefore, we need to derive an upper bound for the solutions e(t) of the closed-loop error
dynamics

ė = Acl(θ)e+ b
(
f(x)− µ

(
x

(
M∑

m=1
T cm

)))
, (6.18)

where Acl(θ) = A− bθT .

6.2.2. Accuracy Guarantees with Delayed Predictions
Since the asynchronous evaluation and update of GP models merely lead to a bounded delay
in the nonlinearity compensation of the control law (6.15), we can directly employ the derived
bound on the state derivative ẋ(t) in Lemma 5.2 to quantify the caused model inaccuracy.
This approach is employed in the following proposition.

Proposition 6.2. Consider a system (3.2) satisfying Assumption 3.1, to which a control
law (6.15) is applied to track a reference trajectory with bounded derivative ẋref(·). Assume
that a Gaussian process GP(0, k(·, ·)) with stationary kernel k(·, ·) is employed to learn a
model f̂(·) = µ(·) of the Lipschitz continuous input perturbation f(·) online from a data
set (4.81), such that Assumption 3.2 holds on a compact set S ⊂ X with a uniform error
bound η(·) which admits a Lipschitz constant Lη. If the computation times T cm and the
sampling times Ts satisfy Assumptions 6.3 and 6.4, respectively, and Bῡ(xref(t)) ∈ S holds
for all t ∈ [0,T], T ∈ R0,+, where

ῡ = −‖U‖‖U
−1b‖

λ̄(Acl(θ))
(
(LηTs + 2Lf T̄ c)F + ηTs

)
, (6.19)

then, a probabilistic tracking error bound υ(·) = ῡ is ensured during the time interval [0,T]
for initial states X0 = {xref(0)}.

Proof. It is straightforward to see that the definition of M(t) in (6.16) and (6.17) together
with Assumption 6.3 implies that

t−
M(t)∑

m=1
T cm ≤ 2T̄ c. (6.20)

Therefore, it follows from a slight adaptation of Lemma 5.2 to the control law (6.15) that
∣∣∣∣∣∣
f


x



M(t)∑

m=1
T cm




− f(x(t))

∣∣∣∣∣∣
≤ 2LfFT̄ c. (6.21)

This directly yields

‖e(t)‖ ≤‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′)


η



M(t)∑

m=1
T cm


+ 2LfFT̄ c


 dt′. (6.22)

147

6 Architectures for Practical Control with Gaussian Processes

analogously to (4.89). Due to Assumption 6.4, at most one training sample is added between
two computation operations, such that

M(t)∑

m=1
T cm − t(n) ≤ Ts (6.23)

holds for the sampling times t(n). This implies

‖e(t)‖ ≤‖U‖‖U−1b‖
t∫

0

eλ̄(Acl(θ))(t−t′)
(
η
(
t(n)

)
+ LηFTs + 2LfFT̄ c

)
dt′, (6.24)

such that the result directly follows from the proof of Theorem 4.4.

This proposition shows that the computational delays T cm have a similar impact on the
tracking accuracy guarantees in the asynchronous online learning control architecture as the
sampling time for model updates Ts. Moreover, we can observe that for a vanishing upper
bound T̄ c, (6.19) asymptotically converges to the tracking error bound for the theoretical
setting derived in Theorem 4.4. This intuitively corresponds to the fact that T̄ c → 0 implies
negligible computation times, which is a key requirement for synchronous learning as stated
in Assumption 6.2. Therefore, Proposition 6.2 theoretically shows that the proposed asyn-
chronous architecture illustrated in Fig. 6.8 is a natural extension of synchronous learning-
based control implementations and provides a theoretical foundation for its application in
real-world control problems.

6.2.3. Numerical Evaluation
We exemplarily investigate the behavior of the proposed asynchronous online learning con-
trol architecture for varying computational delay bounds T̄ c in the example setting from
Section 4.3.5. Hence, we consider a linear dynamical system with closed-loop dynamics
described by

Acl(θ) =
[

0 1
−kcθ̃ −kc − θ̃

]
, b =

[
0
1

]
(4.80 revisited)

and a nonlinear input perturbation f(x) = 1−sin(2x1)+1/(1+exp(−x2)). The control gains are
set to kc = 10 and θ̃ = 5, and training data is generated and processed online with a sample
time of Ts = 0.01. In order to slightly simplify the simulation, we use constant computational
delays T cm = T̄ c for all m ∈ N.
An example trajectory of the tracking error for a computational delay of T̄ c = 0.001 is

depicted in Fig. 6.9. Due to the small computational delay, the control performance is barely
deteriorated, such that a high tracking accuracy can be observed. This behavior can also
be seen in Fig. 6.10, where the dependency of the tracking error averaged over 10 random
simulations is visualized in dependency on the computation time T̄ c. When T̄ c is large,
the effective sampling time is reduced, such that a performance deterioration by a factor
≈ 10 is visible. When reducing the computation time T̄ c below the nominal sampling time
Ts = 0.01, this effect quickly disappears, and practically no performance difference is visible
in the range T̄ c ∈ [0.001, 0.0001]. While at a conservative level, this behavior can also be
observed in the probabilistic tracking error bound ῡ defined in (6.19).

148

6.2 Asynchronous Online Learning with Computational Delays

0 1 2 3 4 5 6

10−4

10−3

10−2

t

‖e
‖ ,observed error

Figure 6.9.: Examplary evolution of the tracking error norm ‖e(·)‖ with time-triggered online
learning using the asynchronous learning control architecture for computational
delay T̄ c = 0.001.

101 102 103 104

10−2

100

102

1/T̄ c

‖e
‖

,async. learning
,sync. learning
,standard deviation
,error bound (async.)

Figure 6.10.: Maximum tracking error and its bound ῡ in dependency of the computational
delay T̄ c for time-triggered online learning with the asynchronous learning con-
trol architecture.

The advantages of the asynchronous learning control architecture become apparent in a di-
rect comparison with the synchronous integration of GPs, which is also depicted in Fig. 6.10.
When the computational delay is small, the performance of both architectures is almost iden-
tical. However, a significant reduction of the tracking error can be seen for computational
delays T̄ c ≈ Ts. In fact, for large computation times T̄ c, the synchronous architecture seems
to cause an unstable closed loop due to the delayed application of the linear feedback com-
ponents. This clearly demonstrates the practical advantages of the proposed asynchronous
online learning control architecture.

6.2.4. Experimental Demonstration in Human-Robot Interaction
Scenario

We demonstrate the straightforward applicability of the asynchronous online learning control
architecture in a human-robot interaction experiment, where the human imposes an unknown
perturbation on the nominal robot dynamics. Here, human-induced dynamics are chosen
due to their inherently non-parametric and unknown behavior, which requires expressive
online-learning methods for a successful control adaptation. First, the experimental setup is
explained in detail before the proposed asynchronous online learning architecture is compared
to a manually tuned controller in a user study. Thereby, we demonstrate its ability to learn
the dynamics of different human operators online and adapt the controller accordingly.

149

6 Architectures for Practical Control with Gaussian Processes

reference
position

visual
feedback

actual
position

(not visible)

reference trajectory
(not visible)

Figure 6.11.: Left: example photo of a participant performing the experiment task with the
linear axis setup. Right: depiction of the task design of the experimental user
study. The rounded rectangle drawn with the gray dashed line represents the
reference trajectory of the green circle, which the participant is instructed to
track. Instead of the actual current position, depicted by the gray circle, the
subject can only see the polar angle shown by the orange line.

Experiment Setup and Task Design

The experiments are executed on a manipulandum with two degrees of freedom, which
consists of two orthogonally mounted single rail stages (Copley Controls Thrustube Module),
each driven by linear servo motors. Both rail stages are equipped with optical encoders that
measure the position of a cart on the upper rail with 1 µm precision. Additionally, a six degree
of freedom force-torque sensor (JR3-75M25) is mounted below the handle, through which the
human interacts with the system, to measure forces in the horizontal plane. The force-torque
sensor is strictly required to operate the device and is not used for the computation of control
policies. Additionally, an inherent output force limitation is integrated as a safety measure,
which guarantees that the interaction force applied to the human remains in safe regions,
therefore, enabling experiments with aggressively tuned controllers. For control, we employ
the CTC-based approach illustrated on the right side of Fig. 6.4 in two configurations: the
full controller with a GP model and a version without learning. The decoupling between
the control loop and numerical operations on the GP model is implemented by running
them in separate processes connected via a UDP communication. The GP model is learned
online using LoG-GPs with N̄ = 50 data points per local model. The hyperparameters of
the local GP models are adapted online via log-likelihood maximization, which is executed
using one step of the RPROP algorithm [228] every time a sample is added to a local model.
This method is employed since it has been demonstrated to exhibit lower computational
complexity compared to other gradient-based optimization schemes [229]. This approach
allows us to run the control loop at a rate of 4 kHz, while we sample training data for model
updates at a rate of 200 Hz.
The task itself is designed as follows: Standing in front of the apparatus and facing the

screen, the subjects are instructed to track a green dot by moving the handle on top of the
cart as illustrated on the left side of Fig. 6.11. In addition, the participants are informed that
different controllers will support them during task execution. The provided visual feedback
is artificially modified, therefore, limiting the participants’ ability to successfully perform
the task. Specifically, the subjects do not see their current position in the task space en-

150

6.2 Asynchronous Online Learning with Computational Delays

PD GP
0

20

40

60
su

m
of

ab
s.

er
ro

r
[m

]

individual

PD GP

user study
,PD individual
,PD user study
,GP individual
,GP user study
,standard deviation

Figure 6.12.: Mean and standard deviation of the summed absolute error for one surrogate
participant (left) and the complete user study (right).

tirely, but instead, only the angle from the origin is visualized through a pointer. However,
their tracking performance is evaluated on the Cartesian position error despite the limited
feedback. The task design and the visual feedback are depicted on the right side of Fig. 6.11.
Each run of the experiment begins at the same starting position for the green circle and
consists of five repetitions of the reference trajectory.
The complete experimental procedure is split into two parts; first, a training phase, fol-

lowed by a test phase. During the initial training phase, the participants get accustomed
to the task by performing one experiment run with both the GP-based and non-learning
controller. Subsequently, the test phase begins, which consists of four experiment runs per
controller. At every run, a random controller variation is selected. If, during any trial, the
workspace limit is reached, the device shuts down as a safety precaution, and the run is
evaluated as a failure. The failed runs are not repeated subsequently.

Comparison to Tuned PD Controller

In order to demonstrate the benefits and flexibility of the proposed learning control architec-
ture, we conducted a user study with nine healthy, right-handed participants and compared
to different controller variations. First, a so-called tuned PD variation is evaluated, which
uses a combination of CTC and PD control law without online learning in the control loop.
Due to the lack of a better procedure for adaptation in human-robot interaction, the gains
of the PD controller are tuned manually to balance the applied forces and the resulting
tracking performance. As practical considerations prevent a tuning with all participants,
one individual is chosen instead. However, since the PD controller needs to be safe for all
users, cautious tuning is preferred, which tends to result in lower control gains. The best
trade-off is obtained for the parametrization

kp,tuned =
[
35
35

]
, kd,tuned =

[
3.5
3.5

]
. (6.25)

Second, a GP variation is investigated, which uses the proposed asynchronous online learning
control architecture with the same CTC policy as in the PD variation. Here, small gains

kp =
[
1
1

]
, Kd =

[
0.1
0.1

]
(6.26)

are chosen for the PD control parametrization.
The effect of online learning on the control performance, as measured through the mean

and standard deviation of the summed absolute error, is significant, as illustrated in Fig. 6.12.

151

6 Architectures for Practical Control with Gaussian Processes

PD GP
0

10

20

in
tr

a-
su

bj
ec

t
va

ria
tio

n
[m

]

PD GP
0

10

20

in
te

r-
su

bj
ec

t
va

ria
tio

n
[m

]

,tuned-gain user study
,GP user study

Figure 6.13.: Left: Average of intra-subject standard deviation in tracking error. Right:
Inter-subject standard deviation of participant-specific average tracking error.

Table 6.1.: Tree structure parameters and computation times for a LoG-GP model at the
end of the experiments of one participant.

pred. time upd. time tree depth num. leafs points/leaf

av. 0.16ms 1.56ms 59.5 294 25.65
max. 1.07ms 13.69ms 60 295 49

On the left-hand side, it can be seen that for the individual, the two controllers perform
comparably well with regard to tracking performance, with the GP controller leading to
slightly better tracking. However, the observed difference in tracking error is insignificant
since it lies within the statistical variation and can be attributed to the cautious tuning of the
PD controller. Therefore, the PD gains are appropriately tuned to ensure a fair comparison.
When deploying the tuned PD controller to previously unobserved individuals and comparing
the performance to the learning-based GP controller in a user study, as shown in Fig. 6.12 on
the right, it can be seen that the tuned PD controller performs significantly worse. Similarly,
the GP controller, on average, results in higher tracking errors in the user study than for the
surrogate individual. However, the increase in mean tracking error is larger for the tuned
PD controller, with a substantial growth in the standard deviation. Therefore, the tuned
PD controller leads to inconsistent tracking results, which can be attributed to the different
levels of task proficiency of the participants.
This becomes even clearer when looking at the intra- and inter-subject variation of the

tracking error as depicted in Fig. 6.13. While on the left-hand side of Fig. 6.13, each par-
ticipant exhibits a similar variation of the tracking error among the experiment runs for
both controllers, the variation of the tracking error between different subjects is significantly
larger for the tuned PD controller as seen on the right side. This is due to the inability of the
tuned PD control law to adapt to the large variation in the induced dynamics exhibited by
the participant pool. In contrast, the GP controller is able to compensate for the complex
and varying dynamics caused by the different participants.
While this beneficial control performance can be attributed to online learning control

with GP models in general, the strength of the asynchronous architecture becomes clear
at a timing and structural analysis of the LoG-GP models as depicted in Table 6.1 for one
exemplary participant. Since ≈7500 training samples are generated during each experiment,
the tree becomes quite large. In combination with the nature of the observed task, this causes
a strong variation of the tree depth, with some branches exhibiting a depth of 60. Due to
the dependency of the complexity of model updates and predictions on the tree depth, this
variation directly transfers to varying computation times. For the model evaluations, this
does not cause any problems since the maximum prediction time remains below 5ms, which

152

6.3 Networked Online Learning under Resource Constraints

is the sampling time corresponding to the update rate of 200 Hz. In contrast, a few (≈1.42%)
update times exceed this threshold. However, due to the asynchronous architecture, these
violations are no problem in practice since the control loop is not slowed down, and thus,
no catastrophic deterioration of the control performance occurs. Hence, this experiment
demonstrates the robustness of the asynchronous online learning architecture against real-
time violations in GP model updates and predictions.

6.3. Networked Online Learning under Resource
Constraints

While the learning-based control architectures in Sections 6.1 and 6.2 enable the relatively
straightforward transfer of theoretical guarantees to real-world applications, their design is
strongly tailored to this purpose. This has the effect that the implementation of these archi-
tectures is generally resource intensive, e.g., powerful computing units and large memories
are required. In practice, many reasons exist why providing these resources is undesirable
and challenging. For example, weight and space limitations can prevent the installation of
powerful computing devices on autonomous robots, and large local data storages may be too
costly for industrial products. Therefore, there is a need for fundamentally different archi-
tectures which are tailored toward resource constraints arising in real-world applications.
A flexible way to achieve this is by exploiting the increasing possibilities arising from

cloud computing for networked learning, similarly as proposed for control [230, 231]. Cloud
computing generally offers massive computational and memory resources through remote
servers. These servers can be accessed via network connections and are usually shared by
multiple users [232]. However, cloud computing is not just the simple time-sharing of a
remote resource as in classic server-client architectures. Without noticing it, a client in
cloud computing often communicates with many servers simultaneously, which themselves
can exchange information with each other [233]. This ensures that the computational load
can be efficiently distributed among computation units, which allows us to abstract clouds
as a powerful computing service.
We exploit this service by proposing a cloud-based online learning control architecture,

which is capable of ensuring the satisfaction of memory and computational constraints on
local devices while retaining theoretical guarantees. Since realistic communication network
restrictions such as time delays and limited bandwidth prevent the full externalization of the
online model inference to the cloud, we employ it only partially for determining and storing
GP models. Our approach, which is illustrated in Fig. 6.14, transmits data to the remote
computing system, where a LoG-GP model is maintained and iteratively updated. This LoG-
GP model can ensure a bounded tracking error when used in model-based control. We use
this accuracy information to determine the local GP models which need to be communicated
back to the resource-constrained system via a sampling-based reachability analysis. Thereby,
only a small amount of data remains on the local device, such that predictions and model
updates can be computed locally without relevant delays. Moreover, we ensure the timely
availability of required data on the local system using an effective transmission scheme. This
scheme provides insight into fundamental trade-offs between bandwidth, time delays, local
memory, and achievable tracking error. The effectiveness of the developed networked online
learning architecture is demonstrated in simulations of a robotic exoskeleton as an example

153

6 Architectures for Practical Control with Gaussian Processes

Figure 6.14.: Overview of the proposed networked online learning architecture: The LoG-
GP predicts the unknown dynamics, e.g., of a wearable robot, for a measured
state. For computing these predictions, it can only access GP model data in
the local memory. Measurements of the system are continuously stored in the
local memory and regularly sent to the cloud, where necessary models for a
future reference trajectory are determined using a sampling-based approach,
and corresponding data is sent to the local memory.

of a wearable robotics application.
The remainder of this section is structured as follows. In Section 6.3.1, the problem

setting is formalized together with the considered resource constraints. The sampling-based
reachability analysis for determining relevant local GP models is presented in Section 6.3.2.
In Section 6.3.3, a delay-aware transmission scheme for irrelevant training data is proposed.
Finally, the obedience of the proposed architecture to resource constraints is numerically
demonstrated in Section 6.3.4.

6.3.1. Problem Setting
Similar to the previous sections, we investigate the networked online learning control archi-
tecture by exemplarily considering the setting in Section 3.1. This means that our system
dynamics are described by

ẋ = Ax+ b(u+ f(x)), (3.2 revisited)
where f : X→ R is an unknown, scalar perturbation of the linear system. In order to track
a given reference trajectory (3.3) with this system, we employ a control law

u(t) = −θT (x(t)− xref(t)) + rref(t)− f̂(x(t)), (3.4 revisited)

where f̂ : X→ R is a model of the unknown nonlinear perturbation f(·). We use LoG-GPs
as proposed in Section 5.1 to learn this model f̂(·) in a time-triggered fashion from a data
set

D(t) =
{
x(n) = x(nTs), y(n) = f(x(n)) + ε(n)

}b t
Ts
c

n=1
. (4.81 revisited)

154

6.3 Networked Online Learning under Resource Constraints

Since this data set continuously grows over time, the LoG-GP model must be permanently
updated. In order to ensure that these updates can indeed be executed online, they must
be computed at higher rates than training samples are generated. Under the assumption
of negligible computation times for predictions, this requirement can be formalized as the
computational constraint

T cm ≤ Ts ∀m ∈ N, (6.27)

where T cm denote the computation time of the m-th model update and Ts is the sampling
time of the data set (4.81). Additionally, the continuous stream of data generated by event-
triggered sampling leads to a steadily growing size of the data set D(t). Therefore, the amount
of generated data will eventually reach the memory limitations, which are unavoidable in all
real-world systems. Formally, this can be modeled via the memory constraint

|Dloc(t)| ≤ N̄mem, (6.28)

where Dloc(t) denotes the data set stored in the memory of the technical system and N̄mem ∈
N represents the memory limitations. Since this restriction can crucially limit the achievable
control performance due to the derived results in Chapter 4, we consider that data can be
transferred to a cloud via a network connection, effectively extending the overall memory
capacity. The available memory in the cloud is usually significantly larger than on the local
system, such that we assume it to be infinite for simplicity. However, the data transfer
between the cloud and the local system takes non-negligible time in practice due to effects
such as network delays Td ∈ R+ and finite bandwidth Bcom ∈ R+. Therefore, data sent to
the cloud cannot be immediately accessed by the local system, but the time Taccess between
requesting data D and using it has to satisfy the network constraint

Taccess ≥
|D|
Bcom

+ Td. (6.29)

In order to develop a networked online learning control architecture under these restrictions,
we make the following assumption on the closed-loop system without constraints.

Assumption 6.5. The closed-loop system

ė = Acl(θ)e+ b(f(x)− µ̃(x)), (6.30)

where Acl(θ) = A − bθT and µ̃(·) denotes the aggregated mean function of the LoG-GP
model defined in (5.1), admits a probabilistic tracking error bound υ : R0,+ → R0,+.

If the conditions of Theorem 5.3 or Theorem 5.4 are satisfied, this assumption immediately
follows from Theorem 3.1. Therefore, Assumption 6.5 is not restrictive and merely used
to streamline the presentation in this section, such that we can focus on the problem of
developing a networked online learning control architecture for inferring a highly accurate
LoG-GP model of the unknown dynamics f(·) under computational, memory and network
constraints.

155

6 Architectures for Practical Control with Gaussian Processes

6.3.2. Reachability-Based Local Model Selection
Since the time delay Td prevents externalizing the online learning, we propose the networked
online learning approach outlined in Fig. 6.14, which performs inference locally but transfers
unnecessary data to the cloud. In order to transmit data to the cloud without performance
loss, we exploit the modular structure of LoG-GPs whose aggregated mean function (5.1)
can be expressed as

µ̃(x) = ψµ


∑

l∈M
ωl(x)ψω(µl(x),σ2

l (x))

 , (6.31)

where M denotes the set of local GP models in the leaf nodes and ψµ : Rdψ → R, ψω :
R2 → Rdψ are nonlinear functions. In this equation, we emphasize the state dependency
of the weights ωl : Rdx → R0,+ because they define the regions in which a local model l
is active (ωl(x) 6= 0) and consequently is necessary for the computation of the aggregation
µ̃(·). This property can be straightforwardly combined with the probabilistic tracking error
bound ensured by Assumption 6.5, such that a sampling-based reachability analysis can be
used to determine necessary models for computing (6.31).
In detail, the setW of potentially active models during a time window I = [t1, t2], t1, t2 ∈ R,

t2 > t1, is defined through the intersections between active regions Xl = {x : ωl(x) > 0} of
local models l ∈M and the tube

Tt2t1 = {x ∈ Rdx : ∃t ∈ I,x ∈ Bυ(t)(xref(t))} (6.32)

based on balls

Bυ(t)(xref(t)) = {x ∈ Rdx : ‖x− xref(t)‖ ≤ υ(t)} (6.33)

with radius given by Assumption 6.5. Therefore, the set W is formally defined as

W = {l ∈M : Xl ∩ Tt2t1 6= ∅}, (6.34)

which is illustrated in Fig. 6.15. Since the computation of the intersections Xl∩Tt2t1 requires an
explicit representation of the active regions Xl of local models l ∈M, which LoG-GPs do not
provide, the definition ofW in (6.34) cannot be directly used in practice. We follow a different
idea exploiting the implicit representation of the active regions Xl via the weights ωl(·), which
allows us to directly compute the set of active models

Wx = {l ∈M : ωl(x) > 0} (6.35)

for a given state x. Therefore, we can alternatively represent the set of potentially active
models during the time window I via

W =
⋃

t∈I
⋃
x∈Bυ(t)(xref(t))

Wx. (6.36)

By approximating the unions over uncountable sets via discretization and random sampling
as outlined in Algorithm 6.1, we can over-approximate the set W via Ŵ and obtain

µ̃Ŵ(x) = ψµ


∑

l∈Ŵ
ωl(x)ψω(µl(x),σ2

l (x))

 . (6.37)

If sufficiently many samples are used in Algorithm 6.1, this approximation yields identical
predictions as shown in the following result.

156

6.3 Networked Online Learning under Resource Constraints

Tt2t1

xref(t2)

xref(t1)

Bξ
Xl ∩ Tt2t1 = ∅

Figure 6.15.: A local model l ∈M is inactive if its active region Xl does not intersect with the
tube Tt2t1 induced by the tracking error bound υ(t) as illustrated for the region
in the top right. The set of active models Ŵ is found by over-approximating the
tube Tt2t1 with balls Bξ, from which random samples x(i) are drawn to determine
the active models Wx(i) at these states.

Algorithm 6.1. Determining active models
1: Ŵ← ∅
2: compute ζ using (6.38)
3: for j = 0 : d t2−t1

Tdis
e do

4: for i = 1 : Ns do
5: Determine active models Wx(i) for input x(i) ∼ U(Bζj(xref(t)))
6: Ŵ← Ŵ ∪Wx(i)

7: end for
8: end for

Theorem 6.1. Consider a dynamical system (3.2), to which a controller (3.4) is applied
to a Lipschitz continuous reference trajectory (3.3), such that Assumption 6.5 is satisfied.
Choose

ζj = 2ζ + Lxref

Tdis

2 + υ(t1 + jTdis) (6.38)

for constants ζ,Tdis ∈ R+. Then, for Ns ∈ N random samples and NI = d(t2−t1)/Tdise time
discretization steps, it holds that

P (µ̃Ŵ(x(t)) = µ̃(x(t)), ∀t ∈ [t1, t2]) ≥ 1− |M|NI

(
1− min{rdxmin, cdx}

ζ̄dx

)Ns
, (6.39)

where rmin denotes the radius of the largest ball contained in the smallest active region of a
leaf node l ∈M and ζ̄ = maxj=0,...,NI ζj.

Proof. Due to Assumption 6.5, at each time t, the tracking error e is bounded by υ(t).
Since xref(·) is assumed to be Lipschitz continuous, this implies

‖e(t)‖ ≤ ζ̃j, ∀t ∈
[
t1 + 2j − 1

2 Tdis, t1 + 2j + 1
2 Tdis

]
(6.40)

157

6 Architectures for Practical Control with Gaussian Processes

for ζ̃j = LxrefTdis/2 + υ(t1 + jTdis). Consequently, we have

Tt2t1 ⊂
NI⋃

j=1
Bζ̃j(xref(t1 + jTdis)). (6.41)

Therefore, it remains to show that the set of active models for time t1 + jTdis defined as

Wt1+jTdis =
⋃

x∈Bζ̃j

Wx (6.42)

is overapproximated by Algorithm 6.1. For this purpose, choose any model l ∈ Wt+jTdis .
Then, the intersection between the active region Xl of this model and the ball Bζj has a
volume of at least πdx/2(min{rmin, ζ})dx/Γ(dx2 + 1), where Γ : R+ → R+ denotes Euler’s
gamma function [234]. Therefore, the probability of a sample x(i) ∼ U(Bζj) being in the
active region of model l can be bounded by

P (ωl(x(i)) > 0|l ∈Wt1+jTdis) ≥ min{rdxmin, ζdx}/ζdxj . (6.43)

The probability of none of the Ns samples falling into the active region Xl is consequently
upper bounded by (1 − P (ωl(x(i)) > 0|l ∈ Wt1+jTdis))Ns , such that (6.39) follows from the
union bound over all NI time steps and all models l ∈M.

Since this theorem ensures that (6.31) and (6.37) are identical with probability greater
than (6.39), it ensures that using µ̃Ŵ(·) as model in the control law (3.4) yields no reduction
in control performance with high probability. Therefore, it allows us to determine irrelevant
data for a time interval I, which we exploit in the following section for transmitting data to
the cloud, thereby reducing the local memory occupation.

6.3.3. Delay-Aware Local Model Transmission
Due to the non-negligible time required for a data transfer, the transmission to and from
the cloud must be carefully scheduled in order to ensure that the necessary data is always
available locally. For simplicity, we consider that data is transmitted at regularly spaced time
instances jTtrans, j = N, such that each time interval Ij = [(j−1)Ttrans, jTtrans] has a length of
Ttrans ∈ R+. During each time interval Ij, we propose the transmission scheme illustrated in
Fig. 6.16, where the idea is that the memory is divided into two parts. During each interval
Ij, half of the memory is used for updating the local data set with data from the cloud, while
the other half contains the data set Dj necessary for computing the mean predictions µ̃Ŵ(·)
during time interval Ij according to the potentially active models Ŵj. To identify the data for
updating the local memory, the data set Dj−1 from the previous interval Ij−1, which contains
newly measured training samples as well as data from the cloud, is sent to the cloud. Once
this transmission has been completed, the cloud contains the complete data set D(j−1)Ttrans

obtained until time (j − 1)Ttrans, such that Algorithm 6.1 can be employed to determine the
possibly active models Ŵj+1 for the next time interval Ij+1 in the cloud. The corresponding
data set Dj+1 is sent to the local memory, such that it is available for t ≥ (j + 1)Ttrans.
It is straightforward to see that this transmission scheme can ensure the satisfaction of

the network constraint (6.29) for a fixed data set Dj, if Taccess = Ttrans/2 is sufficiently large.
However, due to the online generation of data during system operation, it generally cannot

158

6.3 Networked Online Learning under Resource Constraints

jTtrans (j + 1)Ttrans (j + 2)Ttrans

local

network

cloud

Dj

Dj+1

Dj−1

Dj+1

Dj

Dj+2

D(j−1)Ttrans DjTtrans

Figure 6.16.: During each interval Ij = [jTtrans, (j + 1)Ttrans], the previously necessary data
Dj−1 is sent to the cloud and the data Dj+1 for the next interval Ij+1 is
fetched. While these data sets occupy memory during the interval Ij, parts
of Dj−1 and Dj+1 are in transmission and not available on the local system.
Therefore, these data sets cannot be used for prediction, which is highlighted
through the dotted pattern. The data in the cloud is updated with incoming
transmissions, such that it contains the complete data set D(j−1)Ttrans up to the
end of the previous interval j − 1.

Algorithm 6.2. Data transfer scheme: cloud
1: for n = 1, . . . ,∞ do
2: if nTs ≥ jTtrans then
3: j ← j + 1
4: Receive data set Dj−1
5: Determine active model set Ŵj+1 using Algorithm 6.1
6: generate data set Dj+1 according to Ŵj+1 and transmit it
7: end if
8: end for

be ensured that the data sets Dj have a bounded size, such that the fixed time Ttrans might
eventually not be sufficient to finish the transmission within the time interval Ij. Therefore,
the learning with data generated online during system operation has to be stopped eventually
at some interval IN̄com , N̄com ∈ N in order to upper bound the size of all sets Dj. This leads
to the data transfer scheme outlined in Algorithm 6.2 for the cloud and in Algorithm 6.3
for the local system, for which it is straightforward to prove the satisfaction of the network
constraint (6.29) as shown in the following result.

Lemma 6.2. Choose Ttrans ≥ N̄mem
B

+ 2Td and N̄com ∈ N such that the memory con-
straint (6.28) is satisfied. Then, Algorithms 6.2 and 6.3 ensure the satisfaction of the network
constraint (6.29).
Proof. Satisfaction of the memory constraint (6.28) implies that the transmission of Dj,
j ∈ N, can be achieved with time N̄mem

2Bcom
+Td since it can contain at most half of the memory

capacity N̄mem. Since two sets need to be transmitted, the overall transmission time per
time interval Ij can be bounded by

T̄trans ≤
N̄mem

Bcom
+ 2Td. (6.44)

159

6 Architectures for Practical Control with Gaussian Processes

Algorithm 6.3. Data transfer scheme: local system
1: for n = 1, . . . ,∞ do
2: if nTs ≤ N̄comTtrans then
3: sample data pair (x(n), y(n)) and update Dloc

t

4: end if
5: if nTs ≥ jTtrans then
6: j ← j + 1
7: transmit updated data set Dj−1
8: delete data set Dj−1
9: receive necessary data set Dj+1 for next interval
10: end if
11: end for

Due to the construction of the transmission interval length Ttrans, this immediately implies
the satisfaction of the network constraint (6.29).

In order to apply this lemma in a real-world system, it remains to develop an approach for
enforcing the memory constraint (6.28) by choosing a suitable value of N̄comm. In practice,
this value can be selected online using heuristics such that learning can be stopped, e.g.,
when the number of active models exceeds a threshold. Moreover, when the reference xref(·)
is periodic, we can determine N̄comm based on the data sets from previous periods, as shown
in the following theorem.

Theorem 6.2. Assume the reference trajectory is periodic with period Tp = cTtrans for
Ttrans ≥ N̄mem/Bcom + 2Td and c ∈ N. Let

N̄com = c+ min
|Dj |> N̄mem−2m̄

2

j, m̄ = max
j∈N
|D(j+c)| − |D̂j| ≤

⌈
Tp
Ts

⌉
. (6.45)

Then, Algorithms 6.2 and 6.3 ensure the satisfaction of the memory constraint (6.28) and
network constraint (6.29).

Proof. Since the cardinality of Dj+c can be bounded by |Dj+c| ≤ |Dj| + m̄, memory con-
straints are satisfied as long as |Dj| ≤ N̄mem/2 − c̄. Therefore, N̄com as defined in (6.45)
ensures that the memory constraint (6.28) is satisfied, which implies the satisfaction of the
network constraint (6.29) due to Lemma 6.2.

This theorem allows us to determine online when to stop adding new training samples to
the LoG-GP by checking if |Dj| > N̄mem

2 −m̄, which can be performed with low complexity and
can be directly implemented. Moreover, it provides valuable insight into the interrelations
between achievable tracking accuracy, memory constraint N̄mem, time delay Td and limited
bandwidth Bcom. In order to see this, note that the data set size |Dj| usually grows almost
linearly with the interval length Ttrans. Since an increase in bandwidth Bcom admits smaller
Ttrans, learning can continue up to higher values of N̄com in general. Therefore, a higher data
density can be achieved, which in turn yields a lower GP variance as shown in Chapter 4, thus,
guaranteeing a smaller tracking error. In contrast, an increase in local memory N̄mem admits
larger data set sizes |Dj|, but in turn requires longer intervals Ttrans, such that the achievable
data density and consequently the tracking accuracy are barely affected. Finally, a reduction

160

6.3 Networked Online Learning under Resource Constraints

Figure 6.17.: Visualization of the upper-limb human-exoskeleton simulation and trajectory
tracking task. The green circles depict discrete points along the elliptic refer-
ence trajectory, which must be followed with the hand.

of the delay Td allows smaller values of Ttrans and thereby also leads to an improvement in
achievable control performance. Therefore, available bandwidth Bcom for data transmission
and time delay Td are crucial for the achievable tracking accuracy when using the networked
online learning control law, while finite local memory N̄mem only has secondary relevance to
enable implementation of the transmission scheme using Algorithm 6.2 and 6.3. This insight
can be beneficially used for the design of autonomous systems in practice since it allows a
reduction of local memory when sufficient bandwidth for data transmission is available.

6.3.4. Numerical Evaluation in Exoskeleton Control
In order to evaluate the applicability of the proposed networked online learning control
architecture for resource-constrained systems1, we employ it for the control of an upper-
limb exoskeleton assisting a user in tracking a reference trajectory, which is simulated in
Julia [235], a modern programming language for accelerating physics simulations. Since the
exoskeleton is intended to be used in a portable manner, this scenario resembles an example
of a wearable robotic system with memory and computational constraints. These constraints
are particularly challenging for the control of the exoskeleton as human user data is required
in practice to infer models allowing for personalized assistance.
For the simulation, we assume a rigid kinematic coupling between the human and ex-

oskeleton arm, which allows the modeling of both as one kinematic chain consisting of four
degrees of freedom. The exoskeleton model is based on the design described in [236], whilst
the model parameters for the human are chosen according to anthropometric tables [237].
Here, the reference is set to 70 kg and 1.75 m. As illustrated in Fig. 6.17, the goal is to track
an elliptic trajectory with the hand of the human by employing the learning-based feedback
linearizing control law (3.76), such that the tracking error bound υ(·) can be determined
using Corollary 3.2. Each period of the ellipse takes Tp = 6s, the simulation runs at 1kHz,
and we consider a memory constraint of N̄mem = 4000 data pairs for the local memory.
Streaming data for online learning is generated with noise standard deviation σon = 0.05 at
a sampling rate of 100Hz, i.e., Ts = 10ms. Each local GP model can contain a maximum
of N̄ = 100 training points, and the hyperparameters are set to σf = 1, li = 1/li = 3 for
inputs corresponding to joint angles/angular velocities. Algorithm 6.1 is run with temporal
discretization Tdis = 10ms and Ns = 1000 random samples. Finally, the control gains are set
to kc = 400 and θ̃ = 1.

1Open-source code conceptually demonstrating the proposed method is available at https://gitlab.lrz.
de/online-GPs/cloud-GPs.

161

https://gitlab.lrz.de/online-GPs/cloud-GPs
https://gitlab.lrz.de/online-GPs/cloud-GPs

6 Architectures for Practical Control with Gaussian Processes

Table 6.2.: Bandwidth B, time delay Td, state measurement standard deviation σx and re-
sulting time when learning is stopped Ts

low medium high large
bandwidth bandwidth bandwidth delay

B [samples/s] 1500 3000 10000 10000
Td [s] 0.1 0.1 0.1 1.0
Ts [s] 44.67 60.04 — 30.81

0 10 20 30 40 50 60 70 80 90
0

2,000

4,000

6,000

t

lo
ca

lm
em

or
y

oc
cu

pa
tio

n ,low bandwidth
,medium bandwidth
,high bandwidth
,large delay
,N̄mem

Figure 6.18.: The higher the bandwidth B, the longer the LoG-GP can learn before the
number of training pairs in the local memory reaches the limitations. Large
time delay Td causes a significantly earlier stopping of learning, as indicated by
the arrows.

In order to investigate the dependency of the tracking accuracy and memory occupation
on the network bandwidth B and time delay Td, we compare networked LoG-GP controllers
under different simulation conditions as outlined in Table 6.2. Moreover, we employ a LoG-
GP without memory constraints, i.e., N̄mem =∞, as a baseline to illustrate the absence of a
performance loss of the networked LoG-GP when a sufficiently high bandwidth is available.
The average update time for the LoG-GP is 0.3ms < Ts in all simulations, and the resulting
curves for the evolution of the local memory occupation are depicted in Fig. 6.18. Since
the LoG-GP has low accuracy during the first period, the tracking error bound υ(·) is large
during the first 6s, such that all data is required on the local system. After this period,
the different curves exhibit the behavior discussed in Section 6.3.3: the lower the bandwidth
Bcom, the faster the local memory consumption grows. Moreover, an increase in time delay Td
causes a significantly faster growing memory occupation. Due to the limited local memory,
this leads to an early stop in learning at the times depicted in Table 6.2, after which the
memory occupation stagnates.
The stagnation has an immediate effect on the evolution of the tracking error, as illustrated

in Fig. 6.19. While online updates are executed, the feedback linearizing control law (3.76)
with networked LoG-GP model achieves the same improvement in tracking accuracy as
with the unconstrained LoG-GP. After the updates stop, the tracking performance ceases to
improve and effectively remains constant. Due to the continual learning of the networked
LoG-GP with a high bandwidth connection, the evolution of the tracking error is visually
identical to the curve resulting from the LoG-GP without memory constraint. This clearly
demonstrates that the proposed approach allows a transfer of data to the cloud without
any loss in performance when sufficient transmission bandwidth is available. Moreover, even
when online learning has to be stopped early, it still yields a significant improvement in
tracking accuracy compared to the baseline case without model learning, where a stationary

162

6.4 Discussion

0 10 20 30 40 50 60 70 80 90

3 · 10−5

5 · 10−5

1 · 10−4

2 · 10−4

t

tr
ac

ki
ng

er
ro

r
,low bandwidth
,medium bandwidth
,high bandwidth
,large delay
,LoG-GP

Figure 6.19.: When the memory limitation is reached and the learning process stops, the
tracking error stagnates. Since higher bandwidths B allow learning for a longer
time, larger values of B yield lower tracking errors eventually. While learning
continues, networked LoG-GPs ensure the same tracking accuracy as LoG-GPs
without memory constraints. Overall, online learning significantly improves
the tracking accuracy over the baseline case without model learning, which is
not depicted since it permanently exceeds 2 · 10−2.

error of ≈ 2 · 10−2 rad has been observed. This strongly underlines the practical advantages
of the networked online learning control architecture by enabling the inference of GP models
for control despite resource constraints.

6.4. Discussion
In this chapter, we discuss, to the best of our knowledge, for the first time, different archi-
tectures for implementing learning-based control with GP models. While the synchronous
architecture discussed in Section 6.1 resembles merely the direct implementation of theo-
retical approaches for integrating GP models into control loops, it can allow a fast realiza-
tion of learning-based controllers due to its conceptual simplicity. Since the GP model is
confronted with state measurement disturbances in real-world experiments, the achievable
control performance in practice is lower than in a theoretical analysis without this effect.
We demonstrate that our derived guarantees can be adapted to this more realistic scenario
as shown through Proposition 6.1, but the purpose of this analysis is a conceptual demon-
stration of the flexibility of our theory. Therefore, there remain many open questions, such
as an analysis of the asymptotic behavior and the effect of GP-based learning on the optimal
control gains with disturbed state measurements, which we do not address because the focus
of this chapter lies on the architectures for learning-based control. However, our results
should serve as a motivation to deepen the research in this area in order to provide a the-
oretical understanding of effects observed in real-world experiments and potentially enable
new approaches in applied control [238].
While the synchronous architecture can be straightforwardly implemented, executing it

on a real device can be challenging. As demonstrated in Section 6.1.4, it is possible to run
it with 200Hz on the CARBO robotic manipulator, but higher sampling rates are yet to
be achieved. Moreover, an increase of the sampling time occasionally resulted in unstable
behavior of the robot. This example illustratively demonstrates the weakness of the syn-
chronous architecture caused by the direct coupling of the learning and control components.
The asynchronous architecture presented in Section 6.2 effectively overcomes this issue and
allows the robust integration of GP models into control loops. Due to the decoupling of learn-

163

6 Architectures for Practical Control with Gaussian Processes

ing and control, different types of GP approximations can be seamlessly exchanged without
the necessity to perform any changes in the control loop itself. This significantly simpli-
fies the development process, which is an additional practical benefit. At the same time,
the decoupling complicates the theoretical analysis since it requires the consideration of de-
layed model evaluations. The required analysis is rather straightforward for time-triggered
sampling schemes as demonstrated through Proposition 6.2, but it is, in fact, also possible
to adapt event-triggered strategies to this scenario [239]. Therefore, the asynchronous on-
line learning control architecture offers an effective way to implement control laws with GP
models in practice but potentially requires a slight adaptation of the theoretically derived
guarantees.
Since the synchronous and asynchronous architectures directly run on local devices, they

require considerable computational and memory resources on the controller hardware. This
limitation is used as the motivation for the networked architecture proposed in Section 6.3,
which offloads requirements to the cloud. Due to the necessary coordination of multiple
coupled processes on physically separated computing units, the implementation of this ar-
chitecture is generally challenging. However, it also provides the potential for significant
improvements over purely local architectures since the cloud infrastructure can enable the
application of computationally demanding methods. The presented realization of the net-
worked architecture in Section 6.3 should only be understood as an initial framework in
this context, which still admits plenty of opportunities for improvement. This begins at
the simple realization of continual learning by avoiding the termination of data generation,
which can already be achieved by transmitting only the most important data samples back
to the local devices as selected, e.g., through the insights gained from Chapter 4. Moreover,
advanced ideas like hierarchical structures can be envisioned, which combine accurate GP
models with large transmission delays from the cloud with imprecise local models with low
latency. Hence, the networked online learning control architecture exhibits a huge potential
for future research.

164

Conclusion and Outlook on Fu-
ture Research Directions 7.

Gaussian process regression has received growing attention in the control community over
the last decade. On the one hand, many researchers focus on control-theoretical properties
of closed-loop systems containing GP models, such that formal performance guarantees for a
variety of control laws exist today. On the other hand, there is a great interest in the execu-
tion of GP-based control laws on real-world systems, which is frequently realized through a
fallback to GP approximations, whose theoretically relevant properties for control are often
unknown. Due to a usually control-oriented approach, both theoretical and applied research
additionally often fail to capture and exploit the data-driven nature of GP models, such that
they are employed as a static model.
In this thesis, we aim to overcome these limitations of existing research by developing a

framework that covers the whole process from data generation, over control performance
guarantees, to the implementation of GP-based control laws on real-world systems. This is
achieved through the following key contributions.

7.1. Summary of the Contributions
In Chapter 2, we derive a Bayesian uniform error bound for GP regression. Since the evalua-
tion of this bound requires a Lipschitz constant of the function to be learned, we exploit the
GP distribution to derive a probabilistic Lipschitz constant. Moreover, we demonstrate that
all other required parameters of the Bayesian uniform error bound can be easily computed,
which enables its straightforward usage in control.
Based on the GP error bound, we analyze the tracking accuracy for two classes of control

systems employing GP models in Chapter 3. We start with the illustrative example of
linear systems with an unknown input perturbation, which is compensated using a GP
model. We show that a tracking error bound for this system class can be formulated as a
dynamical system whose input depends on the model accuracy along the reference trajectory.
In order to investigate the tracking accuracy for a broader class of dynamics, we leverage
ideas from Lyapunov stability theory. This allows us to derive a relatively tight error bound
by expressing it as an optimization problem, while the linearization around a reference
trajectory allows a closed-form expression, which can be interpreted as an extension of the
result for linear systems. As this analysis merely requires GP-based control laws to nominally
stabilize the system defined through the GP mean function, it can be applied to a broad
range of control design techniques.
In order to prove the promise of improving control performance with an increasing number

of training samples, we develop data generation strategies during closed-loop control for
achieving arbitrarily small tracking errors in Chapter 4. For this purpose, we analyze the

165

7 Conclusion and Outlook on Future Research Directions

decay of the posterior GP variance and correspondingly uniform error bounds with growing
data sets. This analysis yields a novel, kernel-specific data density measure, directly relating
uniform error bounds to the available training data. Using this measure, we straightforwardly
derive tracking error convergence rates for growing data sets if a GP model is used to
compensate for input perturbations in linear dynamical systems. Moreover, we demonstrate
that the necessary accuracy of GP models for achieving desired tracking error bounds is
generally state-dependent in nonlinear control systems. We exploit the gained knowledge
about the role of training data for the control performance to develop three strategies for
learning during closed-loop operation. Firstly, an episodic approach is developed, which
relies on an iteration between rolling out a GP-based control law and updating it offline
with sampled data. For this strategy, we prove that sufficiently fast sampling of training
data guarantees an arbitrarily high tracking accuracy after a finite number of episodes.
Secondly, the time-triggered sampling of data is proposed, for which we show a vanishing
tracking error in the limit of continuous model updates, i.e., zero sampling time. Finally,
an event-triggered data generation strategy is developed, which samples data points on a
per-need basis to keep the tracking error below a desired threshold. We demonstrate that
this event trigger can generally not ensure arbitrary tracking accuracies but derive bounds
for the admissible desired errors.
In order to be capable of realizing these online learning schemes in practice, we develop

a computationally efficient GP approximation in Chapter 5, which inherits uniform error
bounds from exact GP regression. Our method, called LoG-GP, iteratively constructs a
tree whose leaf nodes contain locally active GP models. We show that the construction
of this tree and, thereby, also the computation of model updates has a logarithmic com-
putational complexity. For determining predictions, we aggregated multiple individual GP
model evaluations. Our method ensures that only a small number of GP models needs to be
evaluated simultaneously, such that predictions can be determined with a squared logarith-
mic complexity. The employed aggregation schemes for GP models effectively correspond
to a weighted summation of mean functions, such that uniform error bounds from exact
GP regression directly extend. In addition to online learning, we show that aggregation
schemes also enable scalable, distributed GP models in multi-agent systems. We propose
a consensus-based aggregation of GP models, such that the strong theoretical foundations
of consensus algorithms straightforwardly allow to extend prediction error bounds. This
distributed model is employed in a cooperative tracking control law, for which the model
accuracy guarantees allow the derivation of tracking error bounds.
Finally, we address the problem of the implementation of GP-based control laws in real-

world applications in Chapter 6. Since state measurements of real systems are commonly
disturbed, e.g., by sensor noise, we first show that this deviation from our previous the-
ory does not invalidate our derived guarantees. This allows us to develop and analyze two
architectures for learning-based control, which address specific limitations of GP-based con-
trollers. We begin with an asynchronous architecture in which the sampling rates of GP
models and the remaining control loop are decoupled. This allows the less frequent compu-
tation of GP predictions and thereby accounts for their comparatively high computational
complexity, even when approximations are employed. Moreover, we propose a networked
online learning architecture with LoG-GP models, which enables learning on systems with
resource constraints such as memory limitations. The idea for achieving this relies on the
fact that only a few models are usually necessary to evaluate a LoG-GP model. Therefore,

166

7.2 Implications of Derived Results

we can perform a reachability analysis using previously derived tracking error bounds to
determine relevant models. Irrelevant models are sent to the cloud, such that local resource
constraints can be satisfied without sacrificing control performance. The real-world appli-
cability of the proposed online learning control architectures is demonstrated in simulations
and robotics experiments.

7.2. Implications of Derived Results
The contributions of this thesis have a direct impact on the challenges in learning-based
control with GP models. These implications are discussed in the following.

Challenge 1 is addressed by the uniform error bounds for GP regression. These bounds
are shown to be valid in two fundamentally different settings. In Section 2.2, the considered
set of unknown functions is restricted by an upper bound on the RKHS norm. This allows
us the derivation of uniform error bounds for various assumptions on the observation noise
and is exploited to bound the effect of disturbed training inputs on the regression error in
Section 6.1.2. In Section 2.3, a Bayesian perspective is taken, which admits straightforwardly
computable error bounds for GP regression. Moreover, this approach allows to provide
accuracy guarantees for individual GP model components, e.g., when kernels with an additive
structure are employed for regression.

Challenge 2 is addressed by the derivation of tracking error bounds for two classes of
control laws in Chapter 3. While our time-varying bounds for linear systems are limited to a
relatively narrow class of linear control laws, the derived results for controllers designed using
the certainty equivalence principle cover many practically found control design techniques.
Therefore, existing proofs for performance guarantees of many GP-based control laws can
be considered as special cases of our results.

Challenge 3 is met by the development of a kernel-specific measure for the density of
training data in GP models, which establishes a direct relationship between the training data
and our derived control performance guarantees. Our analysis clearly shows that data can
be of different importance for performance certificates, which offers a new degree of freedom
in the design of learning-based control laws. By proposing three different techniques for
learning during closed-loop control, we demonstrate how this new flexibility can be exploited
to improve the tracking accuracy through learning with GPs.

Challenge 4 is addressed by the introduction of GP model aggregation for enabling on-
line learning and learning in multi-agent systems. We theoretically analyze the computa-
tional complexity of the proposed LoG-GP method and demonstrate its capability for online
learning in numerical simulations and real-world experiments. Moreover, the inheritance of
uniform error bounds from exact GP models is formally proven. This proof is extended for
the consensus-based aggregation, such that scalable GP models in multi-agent systems are
enabled.

167

7 Conclusion and Outlook on Future Research Directions

Challenge 5 is met by the development of online learning control architectures tailored
towards the restrictions on real-world systems. The proposed asynchronous architecture
ensures high robustness against time-varying computation times of GP model evaluations
and is demonstrated to work excellently in a physical human-robot interaction scenario
experimentally evaluated on 9 participants. The networked control architecture alleviates the
high memory requirements of GP-based online learning while leaving performance guarantees
unaffected.

7.3. Future Directions
While this thesis addresses many crucial challenges to enable the theoretically supported
application of GP-based control laws on real-world systems, several important open problems
remain to be solved in future works.

GP-based observer and filter design Even though state measurements are a common
requirement for many control design techniques, they are often not available in practice.
This makes it crucial to estimate the system states from the available sensor measurements,
which requires filters and observers frequently developed using model-based design tech-
niques. Since accurate models are not available when employing GP-based control laws, this
necessitates the development of learning-based state estimators. While initial steps have
been taken towards the GP-based observer and filter design [240, 241], these results are tai-
lored to specific problems. Moreover, fundamental problems such as suitable training data
generation schemes have not been investigated. Therefore, the field of GP-based observer
and filter design remains a relevant and challenging problem for future research.

Learning-based control with state constraints Due to the tracking accuracy guar-
antees, our derived results can enable the satisfaction of state constraints together with a
planner providing suitable reference trajectories. However, this might not be an optimal
solution, such that the problem of designing learning-based controllers for ensuring state
constraints is far larger. Often referred to as safety, the satisfaction of state constraints
in learning-based control systems has experienced massive attention in the last few years,
but methods capable of permanently preventing constraint violations with high probability
are limited to specific constraint formulations. GP models can play a crucial role in these
problems, and the principled strength of probabilistic models for deriving flexible safety
guarantees has been demonstrated [242]. Nevertheless, the development of a complete theo-
retical and practical framework for GP-based control with state constraints remains an open
problem.

Life-long learning with GPs In order to learn models in everyday life situations, it
is probably not sufficient to simply continue updating the same GP model. For example,
environmental conditions often change suddenly and spontaneously, and physical contacts
can cause instantaneous modifications of system dynamics. Thus, there is a need for a form
of knowledge representation that selects models, decides upon the necessity of new models,
and merges old ones when situations are considered sufficiently similar. GP models are
particularly suitable for such a knowledge representation since their probabilistic nature can

168

7.3 Future Directions

enable the detection of sudden situation changes, and models can be easily updated using
new data. Therefore, the connection of GP models with suitable knowledge representations
has great potential to pave the way from machine learning to true artificial intelligence in
physical systems.

169

Appendix A.

A.1. Fundamental Results from Linear Algebra
In this thesis, we use several identities from linear algebra to reformulate matrix inverses.
While the employed equalities can be found in many reference books on linear algebra, we
follow the notation and presentation of [243]. The most important result is known as the
Woodbury matrix inversion lemma.

Lemma A.1 ([243, Corollary 3.9.8]). Let A ∈ Rd1×d1, B ∈ Rd1×d2, C ∈ Rd2×d1 and
D ∈ Rd2×d2 be arbitrary matrices. If A, D + CA−1B, and D are non-singular, then,
A+BD−1C is nonsingular and

(A+BDC)−1 = A−1 −A−1B
(
D−1 +CA−1B

)−1
CA−1. (A.1)

Based on the Woodbury matrix inversion lemma, several important equalities for special
cases can be straightforwardly shown. One of them is the matrix push through identity.

Corollary A.1 ([243, Fact 3.20.6]). Let A ∈ Rd1×d2 and B ∈ Rd2×d1 be arbitrary matrices.
Assume that I +AB is non-singular, then,

(I +AB)−1A = A(I +BA)−1. (A.2)

In addition to the matrix push through identity, the Sherman-Woodbury-Morrison formula
is a direct consequence of the Woodbury matrix inversion lemma.

Corollary A.2. [243, Fact 3.21.3] Let A ∈ Rd×d and u,v ∈ Rd be an arbitrary matrix and
vectors, respectively. If A is non-singular, then,

(A+ uvT)−1 = A−1 − A
−1uvTA−1

1 + vTA−1u
. (A.3)

A.2. Lyapunov Stability Theory
Even though we do not directly employ results from Lyapunov stability theory, the proofs
follow similar ideas, and many concepts are adopted in this thesis. Therefore, a brief intro-
duction to Lyapunov’s direct method for stability analysis is provided here, which closely
follows the presentation in [113]. Lyapunov’s direct method is concerned with autonomous
dynamical systems

ẋ = f(x), (A.4)

171

A Appendix

where f : Rdx → Rdx is a continuous function. An equilibrium of an autonomous system is
defined as a state x ∈ Rdx , such that f(x) = 0. Without loss of generality, we assume that
the origin is an equilibrium in the following, i.e., f(0) = 0. Note that this assumption does
not pose a relevant restriction since a change of variables can always be used to ensure it.
Lyapunov stability theory investigates the asymptotic behavior of solutions x(·) of dy-

namical systems (A.4) in the neighborhood of equilibria. Important types of behaviors are
formalized using the concept of stability as defined in the following.

Definition A.1 ([113, Definition 4.1]). The equilibrium point x = 0 of (A.4) is

• stable if, for each c1 ≥ 0, there is c2 > 0 such that

‖x(0)‖ < c2 ⇒ ‖x(t)‖ ≤ c1, ∀t ∈ R0,+; (A.5)

• asymptotically stable if it is stable and c2 can be chosen such that

‖x(0)‖ < c2 ⇒ lim
t→0
x(t) = 0; (A.6)

• unstable if it is not stable.

Since we generally cannot determine closed-form solutions for nonlinear dynamical sys-
tems (A.4), directly using the conditions in Definition A.1 is not possible. Therefore, the
behavior of a proxy function V : Rdx → R0,+, the so called Lyapunov candidate, is in-
vestigated. The theoretical foundation of this approach, which is commonly referred to as
Lyapunov’s direct method, is given by the following theorem.

Theorem A.1 ([113, Theorem 4.1]). Let x = 0 be an equilibrium point of (A.4) and S ⊂ Rdx

be a domain containing x = 0. Let V : Rdx → R0,+ be a continuously differentiable function
such that

V (0) = 0, V (x) > 0,∀x ∈ Rdx \ {0} (A.7)
V̇ (x) ≤ 0,∀x ∈ S. (A.8)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0,∀x ∈ S \ {0}, (A.9)

then, x = 0 is asymptotically stable.

Once a Lyapunov candidate has been chosen, this theorem provides stability conditions
that can be directly evaluated. However, the results are only qualitative due to the definition
of the stability concepts.
In order to obtain quantitative guarantees for the evolution of the system state x(t) in

the proximity of an equilibrium, comparison functions can be employed. We define them as
follows.

Definition A.2 ([113, Definition 4.2]). A continuous function α : [0, a)→ [0,∞) is said to
belong to class K if it is strictly increasing and α(0) = 0.

172

A.2 Lyapunov Stability Theory

In our introduction of a Lyapunov candidate in Definition 3.2, we employ class K functions
to ensure V (0) = 0 using the requirement

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Rdx . (3.35 revisited)

Moreover, they allow us to quantify the impact of model errors on the tracking accuracy
guarantees. In Lyapunov stability theory, they are similarly used to derive convergence rates
for state trajectory x(·) to the equilibrium 0. This is exemplarily shown using the following
theorem, which is a marginal adaptation of [113, Theorem 4.8].

Theorem A.2. Let x = 0 be an equilibrium point of Eq. (A.4) and S ⊂ Rdx be a domain
containing x = 0. Moreover, assume there exists a Lyapunov candidate V : Rdx → R0,+ and
class K functions α1,α2,α3 : R0,+ → R0,+, such that

∇TV (x)f(x) ≤ −α3(x) (A.10)

and (3.35) hold for all x ∈ S. Then, the equilibrium x = 0 is asymptotically stable. More-
over, if there exists a Euclidean ball around the origin, which is contained in S, the state
trajectories satisfy

‖x(t)‖ ≤ α̃(‖x(0)‖, t) (A.11)

in a neighborhood of the equilibrium, where α̃ : Rdx ×R0,+ → R0,+ is a continuous function,
which is increasing in its first argument, decreasing in its second argument and α̃(0, t) = 0,
for all t ∈ R0,+, limt→∞ α̃(‖x‖, t) = 0 for all x ∈ Rdx.

173

Notation

Acronyms and Abbreviations
ARD automatic relevance determination

GP Gaussian process

i.i.d. independently and identically distributed

RKHS reproducing kernel Hilbert space

SE squared exponential

Conventions & Operators
z,Z lower/upper case bold symbols for vectors/matrices

zi, zij i-th column/ element in column i and row j of a matrix Z

zi i-th element of a vector z

dz dimension of a vector z ∈ Rdz

0 vector/matrix of zeros of proper dimensions

1N ∈ RN vector containing only ones

(0, 1) open unit interval

[0, 1] closed unit interval

a|b random variable a conditioned on b

·T transpose of a vector or matrix

·−1 inverse of a scalar or matrix

·(n) n-th training data point

ż derivative of z with respect to time

| · | absolute value of a real number or cardinality of a set

‖ · ‖ Euclidean norm of a vector or spectral norm of a matrix

175

Notation

‖ · ‖k norm of a function in the reproducing kernel Hilbert space attached to a
kernel

‖ · ‖∞ infinity norm of a function

∇ Nabla operator

< ·, · > inner product

◦ Hadamard product

arg max arguments of the maximum of a function

arg min arguments of the minimum of a function

det(·) determinant of a matrix

diag(·) operator, which arranges the elements of its argument into a diagonal matrix

E[·] expectation operator, which returns the mean value of its argument

exp(·), e· exponential function of a scalar or matrix

F [·] Fourier transform of a function

f(·) shorthand notation to denote a function f : Rd → R

f(Z),F (Z) concatenation of all evaluations of a scalar function f : Rd → R/ vector field
f : Rd1 → Rd2 at inputs zi

· ∼ GP(·, ·) random function follows a Gaussian process distribution with mean and
covariance function

I(·, ·) mutual information between two random variables

IN ∈ RN×N identity matrix

inf infimum of a function

Lf Lipschitz constant of function f(·)

log(·) natural logarithm of a positive scalar

M(τ ,S) τ -covering number of a set S

max maximum of a function

min minimum of a function

· ∼ N (·, ·) random variable follows Gaussian distribution with mean and variance

Nk(%,S) %-packing number of a set S with respect to a kernel

O(·) big O notation describing the asymptotic behavior of functions

176

Notation

Op(·) big O in probability notation describing the probabilistic asymptotic
behavior of functions

P(·) probability of an event

p(·) probability density function

· ∼ U(·, ·) uniform distribution

sup supremum of a function

λ(·), λ̄(·) minimal and maximal real parts of the eigenvalues of a matrix

· ∼ χ2
N random variable follows a chi-square distribution with N degrees of freedom

Sets & Spaces
Am graph branch for leaf m

Br(c) ⊂ Rd Euclidean ball with radius r and center c

D training data set

Dloc data set stored in the memory of the technical system

DN training data set with N data pairs

H0 linear span of feature functions defined by a kernel

Hk reproducing kernel Hilbert space attached to a kernel

H completion of H

I time interval

Kh(z) subset of D, which excludes training samples with a negative effect on the
considered bound

Lp function space consisting of all p-fold integrable functions

G (undirected) graph

V graph vertices

E graph edges

M set of leaves in a graph

N,N+ set of non-negative/ positive integer numbers

R,R+,R0,+ set of real/ postive real/ non-negative real numbers

177

Notation

S ⊂ Rd compact subset of Rd

T tube

U set of control inputs

W set of potentially active models during a time window

X set of states

X0 set of initial states

Xl set active subsets of input data

Functions
f : Rd → R general scalar function, refer to definition

f : Rd1 → Rd2 general vector field, refer to definition

f : X× U→ Rdx general dynamics

G : X→ U scaling of the control input for a control affine system

g : X→ R scaling of the control input for a single input control affine system

H : R→ {0, 1} unit step function

h : Rd → R+ density measure

k : Rd × Rd → R0,+ positive definite kernel

k : Rd → RN kernel vector with elements k(·, z(n)) for N ∈ N training samples
z(n) ∈ Rdz , n = 1, . . . ,N

Ntrig : R0,+ → N number of triggering instances up to time t

pav : R0,+ → Rd dynamic average of local reference signals

pm : R0,+ → Rd local reference signal (for agent m)

pn : Rd1 → [0, 1]d2 vector-valued conditional probability

V : Rd → R0,+ generic Lyapunov function

xref : R0,+ → X reference trajectory

xl : R0,+ → X leader state/ reference trajectory for agents

εx : R0,+ → Rd measurement disturbance of state x

η : Rd → R0,+ (Gaussian process) error bound

178

Notation

η̃loc : Rd → R0,+ individual/local (Gaussian process) model error bound

η̃tr : Rd → R0,+ (Gaussian process) transient consensus error bound

µ : Rd → R posterior Gaussian process mean function, model of unknown
function

µ̃ : Rd → R aggregated posterior Gaussian process mean function, model of
unknown function

µ̌ : Rd1 → Rd2 exact GP aggregation based on local information

ξ : R0,+ → R solution of a differential equation defining the tracking error
bound

µ : Rd1 → Rd2 posterior mean functions of multiple GPs concatenated as vector

µ0 : Rd → R prior Gaussian process mean function

µN : Rd → R posterior Gaussian process mean function given N training
samples

πlin : X→ U linear control law

π : X× R0,+ → U control law

σ2 : Rd → R0,+ posterior Gaussian process variance function with unspecified
number of training samples

σ̃2 : Rd → R0,+ aggregated posterior Gaussian process variance function with
unspecified number of training samples

σ2 : Rd1 → Rd2
0,+ posterior variance functions of multiple GPs concatenated as

vector

(σN)2 : Rd → R0,+ posterior Gaussian process variance function given N training
samples

υ : R0,+ → R0,+ tracking error bound

φ : Rd1 → Rd2 finite dimensional feature vector

Φ : Rd1 → Rd2 concatenation of finite-dimensional feature vectors

φ : Rd1 → Rd2 finite dimensional feature vector

χ : R0,+ → Rd consensus state for distributed GP aggregation

ψ : Rdψ → R scalar function for model aggregation

ψω : R2 → Rdψ vector-valued map of individual model mean and variance for
aggregation

179

Notation

Variables
A state transition matrix

Acl closed-loop system state transition matrix

Aad weighted adjacency matrix

Bcom finite bandwidth

Bl augmentation of leader states in graph Laplacian

b input vector

c general constant, refer to definition

e tracking error

F bound on ‖ẋ(t)‖

hm graph depth of leaf m

h fill distance

i general integer, refer to definition

j general integer, refer to definition

K gram matrix of kernel k(·, ·)

kc scalar gain

N number of training data points

N̄ data capacity limit

N̄mem memory capacity limit

n general integer, refer to definition

L graph Laplacian

LK lower triangular matrix in Cholesky factorization

L̃ augmented Laplacian

Lf Hölder/Lipschitz continuity coefficient for function f(·)

li kernel length scale

M number of nodes in a graph

pf Hölder continuity order for function f(·)

P solution of the continuous-time Lyapunov equation

180

Notation

Q positive definite (weighting) matrix

Taccess time for accessing data

T̄ c upper bound for execution time

Td network delay time

Tdis temporal discretization time

T cm execution time for node m

T̄ cm computational delay bound for node m

Tp period time

Ts sampling time

Ttrans data transmision time

t time

U matrix obtained via eigendecomposition Acl = UΛU−1

u,u scalar/ multi-dimensional control input

r, r scalar/ multi-dimensional reference signal

w weight for linear regression

x,x scalar/ multi-dimensional state

y training target

y concatenation of training targets

Z concatenation of training inputs

z (training) input

α solution vector of a linear system of equations

β scaling factor for posterior standard deviation in uniform error bounds

im control input for agent m

Γ bound on norm in the reproducing kernel Hilbert space

γN maximum information gain after N training samples

δ violation probability

ε observation noise

ε̄x input disturbance bound

181

Notation

ε̄y output disturbance bound

ε̃ total (input and output) disturbance

εm consensus error of agent m

εjm joint consensus error in j-th dimension of agent m

Em joint consensus error in all dimensions of agent m

ι parameter of the consensus tracking error bound

θ control gain vector

θ̃ hurwit gain vector

ϑ hyperparameter vector

µ0 mean data vector

µw,µNw posterior mean of weights w

µ0
w prior mean of weight w

ν filtered state for cooperative tracking control

ρ log ratio for assessing data density

Σw, ΣN
w posterior variance of weights w

Σ0
w prior variance of weight w

σ2
f kernel signal variance

σ2
on observation noise variance

σ̃2
on scaling constant of sub-Gaussian distribution assumed for the observation

noise

τ virtual grid constant

ῡ constant tracking error bound

Υ positive definite matrix in consensus tracking error bound

182

List of Figures

2.1. Prior and Posterior GP distribution for a SE kernel. 12
2.2. Illustration of the derivation of upper bounds for covering numbers. 26

3.1. Tracking error bound for general linear systems as a dynamical system. . . . 39
3.2. Tracking error bound for feedback linearized systems as a dynamical system. 43
3.3. Snapshots of a simulated trajectory with tracking error bound. 44
3.4. Tracking and uniform error bounds for GP-based nonlinearity compensation. 44
3.5. Illustration of the linearization-based Lyapunov approach. 54
3.6. Snapshots of the Lyapunov derivative bound for feedback linearization. . . . 56
3.7. Tracking error and Lyapunov candidate bound for feedback linearization. . . 56
3.8. Snapshots of the Lipschitz-based tracking error bound for feedback linearization. 57
3.9. Lipschitz-based error bound in comparison to the infinitesimal limit case. . . 57

4.1. Illustration of geometrically simple subsets of Kh(z). 68
4.2. Asymptotic relationship between tracking error and data density. 77
4.3. Asymptotic relationship between tracking error and system eigenvalues. . . . 77
4.4. Required data densities for GP-based feedback linearization. 78
4.5. Training data mismatch for GP-based feedback linearization with grid data. 78
4.6. Illustration of online learning with GPs. 79
4.7. Illustration of episodic learning with GP models. 80
4.8. Examplary evolution of the tracking error with time-triggered online learning. 90
4.9. Tracking error in dependency of the sampling time for time-triggered learning. 90
4.10. Examplary evolution of the tracking error with event-triggered online learning. 91
4.11. Tracking error in dependency of the prescribed error for event-triggered learning. 91
4.12. Inter-event time depending on the prescribed error for event-triggered learning. 92
4.13. Example tracking error bounds for the episodic learning approach. 93
4.14. Tracking error decay ensured by episodic learning. 93
4.15. Maximum eigenvalues and sampling times required by Algorithm 4.3. 94

5.1. Iterative model tree construction using LoG-GPs. 104
5.2. Comparison of average update and prediction times for GP approximations. 112
5.3. Illustration of the average number of active models used in LoG-GPs. 113
5.4. Comparison of the average regression performance for GP approximations. . 114
5.5. Regression performance comparison with online hyperparameter optimization. 115
5.6. Reference and example trajectory for event-triggered online learning. 116
5.7. Control accuracy achieved through event-triggered learning with LoG-GPs. . 117
5.8. Comparison of inter-event and computation times for exact and LoG-GPs. . 117
5.9. Training data distribution and reference trajectory for distributed learning. . 131
5.10. Comparison of model errors for local predictions and distributed aggregation. 132
5.11. Tracking errors using distributed model predictions in control. 133

183

List of Figures

6.1. Synchronous online learning control architecture with GP models. 136
6.2. Examplary evolution of the tracking error with state measurement disturbance.141
6.3. Tracking error in dependency of the state measurement noise bound. 141
6.4. Depiction of the CARBO manipulator and schematic of control architecture. 142
6.5. Joint angles and velocities of the CARBO robot for a GP-based control law. 143
6.6. Decrease of the measured tracking error on the CARBO robot. 143
6.7. Performance improvement due to learning in comparison to high gain controller.144
6.8. Asynchronous online learning control architecture with GP models. 145
6.9. Examplary evolution of the tracking error for asynchronous learning control. 149
6.10. Tracking error in dependency of the computational delay. 149
6.11. Demonstration of the experimental setup. 150
6.12. Control performance for a surrogate participant and the user study. 151
6.13. Intra- and inter-subject standard deviations of average tracking errors. . . . 152
6.14. Overview of the proposed networked online learning architecture. 154
6.15. Illustration of the reachability-based determination of active models. 157
6.16. Illustration of the data transmission between cloud and local system. 159
6.17. Visualization of the human-exoskeleton simulation and trajectory tracking task.161
6.18. Dependency of the local memory occupation on the network parameters. . . 162
6.19. Dependency of the tracking error on the network parameters. 163

184

List of Tables
5.1. Overview of average update and prediction times for GP approximations. . . 113
5.2. Overview of average regression performance for GP approximations. 114

6.1. Computational parameters for LoG-GP at the end of experiments. 152
6.2. Parameter configurations used in networked online learning. 162

185

List of Algorithms
4.1. Time-triggered online learning for GP-based control 82
4.2. Event-triggered learning for GP-based control 85
4.3. Episodic learning with arbitrary accuracy guarantees 87
5.1. Updating of a LoG-GP with K-ary tree T using data (z, y) 104
5.2. Prediction recursion for a LoG-GP called for a node n with test input z . . . 106
6.1. Determining active models . 157
6.2. Data transfer scheme: cloud . 159
6.3. Data transfer scheme: local system . 160

187

Bibliography
[1] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and De-

sign, 2nd ed. New York, NY: John Wiley & Sons, 2005.

[2] N. H. A. Hamid, M. M. Kamal, and F. H. Yahaya, “Application of PID Controller in
Controlling Refrigerator Temperature,” in Proceedings of the International Colloquium
on Signal Processing and Its Applications, 2009, pp. 378–384.

[3] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei, “A Survey of Distributed Optimization and Control Algorithms for Electric
Power Systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[4] K. J. Astrom, “Theory and Applications of Adaptive Control,” Automatica, vol. 19,
no. 5, pp. 471–486, 1983.

[5] K. J. Åström and B. Wittenmark, “A Survey of Adaptive Control Applications,” in
Proceedings of the IEEE Conference on Decision and Control, 1995, pp. 649–654.

[6] Qin, S. Joe and Badgwell, Thomas A, “A Survey of Industrial Model Predictive Control
Rechnology,” Control Engineering Practice, vol. 11, pp. 733–764, 2003.

[7] K. J. Åström and P. R. Kumar, “Control: A perspective,” Automatica, vol. 50, pp.
3–43, 2014.

[8] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, “A
Survey on Robotic Devices for Upper Limb Rehabilitation,” Journal of Neuroengineer-
ing and Rehabilitation, vol. 11, no. 3, pp. 1–29, 2014.

[9] R. Gassert and V. Dietz, “Rehabilitation Robots for the Treatment of Sensorimotor
Deficits: A Neurophysiological Perspective,” Journal of NeuroEngineering and Reha-
bilitation, vol. 15, no. 1, pp. 1–15, 2018.

[10] H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, “Human-Robot Interaction Control of
Rehabilitation Robots with Series Elastic Actuators,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1089–1100, 2015.

[11] D. Zhang, T. H. Guan, F. Widjaja, and W. T. Ang, “Functional Electrical Stimulation
in Rehabilitation Engineering: A Survey,” in Proceedings of the International Conven-
tion on Rehabilitation Engineering and Assistive Technology in Conjunction with 1st
Tan Tock Seng Hospital Neurorehabilitation Meeting, 2007, pp. 221–226.

[12] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A Simple Learning Strategy
for High-Speed Quadrocopter Multi-Flips,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2010, pp. 1642–1648.

189

Bibliography

[13] M. Guiggiani, The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road
and Race Cars, 2nd ed. Cham, Switzerland: Springer International Publishing, 2018.

[14] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, 2011.

[15] B. H. Wang, D. B. Wang, Z. A. Ali, B. Ting Ting, and H. Wang, “An Overview
of Various Kinds of Wind Effects on Unmanned Aerial Vehicle,” Measurement and
Control, vol. 52, no. 7-8, pp. 731–739, 2019.

[16] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar,
R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, and P. Van den Hof, “Systems
& Control for the Future of Humanity, Research Agenda: Current and Future Roles,
Impact and Grand Challenges,” Annual Reviews in Control, vol. 43, pp. 1–64, 2017.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-Level Control through Deep Reinforcement Learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the Game of Go with Deep Neural Networks
and Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous Control with Deep Reinforcement Learning,” in Proceedings
of the International Conference on Learning Representations, 2016.

[21] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of Real-World
Reinforcement Learning,” in ICML Workshop on Real-Life Reinforcement Learning,
2019. [Online]. Available: http://arxiv.org/abs/1904.12901

[22] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
Cambridge, MA: The MIT Press, 2006.

[23] M. P. Deisenroth, “Efficient Reinforcement Learning using Gaussian Processes,” Ph.D.
dissertation, Karlsruher Institut für Technologie, 2009.

[24] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model Learning with Local Gaussian
Process Regression,” Advanced Robotics, vol. 23, no. 15, pp. 2015–2034, 2009.

[25] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal Kernels,” Journal of Machine Learn-
ing Research, vol. 7, pp. 2651–2667, 2006.

190

http://arxiv.org/abs/1904.12901

Bibliography

[26] M. K. Helwa, A. Heins, and A. P. Schoellig, “Provably Robust Learning-Based Ap-
proach for High-Accuracy Tracking Control of Lagrangian Systems,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1587–1594, 2019.

[27] J. Umlauft, T. Beckers, A. Capone, A. Lederer, and S. Hirche, “Smart Forgetting for
Safe Online Learning with Gaussian Processes,” in Proceedings of the Conference on
Learning for Dynamics and Control, 2020, pp. 160–169.

[28] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and M. N. Zeilinger,
“Data-Driven Model Predictive Control for Trajectory Tracking With a Robotic Arm,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3758–3765, 2019.

[29] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust Constrained Learning-
based NMPC enabling Reliable Mobile Robot Path Tracking,” International Journal
of Robotics Research, vol. 35, no. 13, pp. 1547–1563, 2016.

[30] A. Gahlawat, P. Zhao, A. Patterson, N. Hovakimyan, and E. A. Theodorou, “L1-GP:
L1 Adaptive Control with Bayesian Learning,” in Learning for Dynamics & Control,
2020, pp. 1–15.

[31] J. Umlauft and S. Hirche, “Feedback Linearization based on Gaussian Processes with
Event-Triggered Online Learning,” IEEE Transactions on Automatic Control, vol. 65,
no. 10, pp. 4154–4169, 2019.

[32] M. Greeff and A. P. Schoellig, “Exploiting Differential Flatness for Robust Learning-
based Tracking Control using Gaussian Processes,” IEEE Control Systems Letters,
vol. 5, no. 4, pp. 1121–1126, 2021.

[33] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian Nonparametric
Adaptive Control using Gaussian Processes,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 3, pp. 537–550, 2015.

[34] T. Beckers, D. Kulić, and S. Hirche, “Stable Gaussian Process based Tracking Control
of Euler-Lagrange Systems,” Automatica, vol. 103, no. 23, pp. 390–397, 2019.

[35] A. Lederer, J. Umlauft, and S. Hirche, “Uniform Error Bounds for Gaussian Pro-
cess Regression with Application to Safe Control,” in Advances in Neural Information
Processing Systems, 2019, pp. 659–669.

[36] ——, “Episodic Gaussian Process-Based Learning Control with Vanishing Tracking
Errors,” 2023. [Online]. Available: http://arxiv.org/abs/2307.04415

[37] A. Lederer, A. Capone, J. Umlauft, and S. Hirche, “How Training Data Impacts Per-
formance in Learning-based Control,” IEEE Control Systems Letters, vol. 5, no. 3, pp.
905–910, 2021.

[38] A. Lederer, A. Ordonez Conejo, K. Maier, W. Xiao, J. Umlauft, and S. Hirche, “Gaus-
sian Process-Based Real-Time Learning for Safety Critical Applications,” in Interna-
tional Conference on Machine Learning, 2021, pp. 6055–6064.

191

http://arxiv.org/abs/2307.04415

Bibliography

[39] A. Lederer, Z. Yang, J. Jiao, and S. Hirche, “Cooperative Control of Uncertain Multi-
Agent Systems via Distributed Gaussian Processes,” IEEE Transactions on Automatic
Control, vol. 68, no. 5, pp. 3091–3098, 2023.

[40] S. Tesfazgi, A. Lederer, J. F. Kunz, A. J. Ordóñez Conejo, and S. Hirche, “Model-
Based Robot Control with Gaussian Process Online Learning: An Experimental
Demonstration,” To appear in Proceedings of the IFAC World Congress, 2021.
[Online]. Available: https://arxiv.org/pdf/2110.00481.pdf

[41] A. Lederer, M. Zhang, S. Tesfazgi, and S. Hirche, “Networked Online Learning for Con-
trol of Safety-Critical Resource-Constrained Systems based on Gaussian Processes,” in
Proceedings of the IEEE Conference on Control Technology and Applications, 2022, pp.
1285–1292.

[42] N. Cressie, Statistics for Spatial Data, 2nd ed. Hoboken, New Jersey: John Wiley &
Sons, 2015.

[43] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series.
Cambridge, Massachusetts: MIT Press, 1949.

[44] A. N. Kolmogorov, “Interpolation und Extrapolation von stationären zufälligen Fol-
gen,” Izvestiya Akademii Nauk SSSR, vol. 5, no. 1, pp. 3–14, 1941.

[45] R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General
Gaussian Processes. Institute of Mathematical Statistics, 1990.

[46] Z. Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence,” Nature,
vol. 27, pp. 452–459, 2015.

[47] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY: Springer
Science+Business Media, 2006.

[48] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design, 1st ed.
Birkhäuser Boston, 1996.

[49] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. Cambridge, Massachusetts: The MIT Press,
2002.

[50] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-
Vidal, “Sparse Spectrum Gaussian Process Regression,” Journal of Machine Learning
Research, vol. 11, pp. 1865–1881, 2010.

[51] A. Gijsberts and G. Metta, “Real-Time Model Learning using Incremental Sparse
Spectrum Gaussian Process Regression,” Neural Networks, vol. 41, pp. 59–69, 2013.

[52] D. K. Duvenaud, “Automatic Model Construction with Gaussian Processes,” Ph.D.
dissertation, University of Cambridge, 2014.

[53] G. Evangelisti and S. Hirche, “Physically Consistent Learning of Conservative La-
grangian Systems with Gaussian Processes,” in Proceedings of the IEEE Conference
on Decision and Control, 2022, pp. 4078–4085.

192

https://arxiv.org/pdf/2110.00481.pdf

Bibliography

[54] M. A. Álvarez, L. Rosasco, and N. D. Lawrence, “Kernels for Vector-valued Functions:
A Review,” Foundations and Trends in Machine Learning, vol. 4, no. 3, pp. 195–266,
2011.

[55] A. Lederer, A. Capone, T. Beckers, J. Umlauft, and S. Hirche, “The Impact of Data on
the Stability of Learning-Based Control,” in Proceedings of the Conference on Learning
for Dynamics and Control, vol. 144, 2021, pp. 623–635.

[56] J. Kirschner, M. Mutný, N. Hiller, R. Ischebeck, and A. Krause, “Adaptive and Safe
Bayesian Optimization in High Dimensions via One-Dimensional Subspaces,” in Pro-
ceedings of the International Conference on Machine Learning, 2019, pp. 5959–5971.

[57] S. Sundararajan and S. S. Keerthi, “Predictive Approaches for Choosing Hyperpa-
rameters in Gaussian Processes,” Neural Computation, vol. 13, no. 5, pp. 1103–1118,
2001.

[58] A. van der Vaart and H. van Zanten, “Information Rates of Nonparametric Gaussian
Process Methods,” Journal of Machine Learning Research, vol. 12, pp. 2095–2119,
2011.

[59] Z. M. Wu and R. Schaback, “Local Error Estimates for Radial Basis Function Inter-
polation of Scattered Data,” IMA Journal of Numerical Analysis, vol. 13, no. 1, pp.
13–27, 1993.

[60] R. Schaback, “Improved Error Bounds for Scattered Data Interpolation by Radial
Basis Functions,” Mathematics of Computation, vol. 68, no. 225, pp. 201–217, 2002.

[61] H. Wendland, Scattered Data Approximation. Cambridge University Press, 2004.

[62] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur, “Gaussian
Processes and Kernel Methods: A Review on Connections and Equivalences,” pp.
1–64, 2018. [Online]. Available: http://arxiv.org/abs/1807.02582

[63] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge,
UK: Cambridge University Press, 2004.

[64] S. Mendelson, “Improving the Sample Complexity using Global Data,” IEEE Trans-
actions on Information Theory, vol. 48, no. 7, pp. 1977–1991, 2002.

[65] L. Shi, “Learning Theory Estimates for Coefficient-based Regularized Regression,”
Applied and Computational Harmonic Analysis, vol. 34, no. 2, pp. 252–265, 2013.

[66] E. T. Maddalena, P. Scharnhorst, and C. N. Jones, “Deterministic Error Bounds for
Kernel-based Learning Techniques under Bounded Noise,” Automatica, vol. 134, p.
109896, 2021.

[67] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-Theoretic Re-
gret Bounds for Gaussian Process Optimization in the Bandit Setting,” IEEE Trans-
actions on Information Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

193

http://arxiv.org/abs/1807.02582

Bibliography

[68] S. R. Chowdhury and A. Gopalan, “On Kernelized Multi-armed Bandits,” in Proceed-
ings of the International Conference on Machine Learning, 2017, pp. 844–853.

[69] C. Fiedler, C. W. Scherer, and S. Trimpe, “Practical and Rigorous Uncertainty Bounds
for Gaussian Process Regression,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2021, pp. 7439–7447.

[70] B. Laurent and P. Massart, “Adaptive Estimation of a Quadratic Functional by Model
Selection,” The Annals of Statistics, vol. 28, no. 5, pp. 1302–1338, 2000.

[71] J. Mercer, “Functions of Positive and Negative Type, and their Connection with the
Theory of Integral Equations,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 209, no. 441-458, pp. 415–446,
1909.

[72] N. Aronszajn, “Theory of Reproducing Kernels,” Transactions of the American Math-
ematical Society, vol. 68, no. 3, pp. 337–404, 1950.

[73] I. Steinwart, “Reproducing Kernel Hilbert Spaces cannot contain all Continuous
Functions on a Compact Metric Space,” pp. 1–2, 2020. [Online]. Available:
http://arxiv.org/abs/2002.03171

[74] P. Scharnhorst, E. T. Maddalena, Y. Jiang, and C. N. Jones, “Robust Uncertainty
Bounds in Reproducing Kernel Hilbert Spaces: A Convex Optimization Approach,”
IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 2848–2861, 2023.

[75] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Springer US, 2004.

[76] B. C. Csaji and B. Horvath, “Nonparametric, Nonasymptotic Confidence Bands With
Paley-Wiener Kernels for Band-Limited Functions,” IEEE Control Systems Letters,
vol. 6, pp. 3355–3360, 2022.

[77] R. Vershynin, High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge, UK: Cambridge University Press, 2018.

[78] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H. Gillula, and C. J.
Tomlin, “Reachability-based Safe Learning with Gaussian Processes,” in Proceedings
of the IEEE Conference on Decision and Control, 2014, pp. 1424–1431.

[79] Y. Wang, C. Ocampo-Martinez, and V. Puig, “Robust Model Predictive Control based
on Gaussian Processes: Application to Drinking Water Networks,” in Proceedings of
the European Control Conference, 2015, pp. 3292–3297.

[80] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tom-
lin, “A General Safety Framework for Learning-Based Control in Uncertain Robotic
Systems,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2737–2752,
2019.

194

http://arxiv.org/abs/2002.03171

Bibliography

[81] V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control Barriers in
Bayesian Learning of System Dynamics,” IEEE Transactions on Automatic Control,
vol. 68, no. 1, pp. 214–229, 2023.

[82] A. Capone, A. Lederer, and S. Hirche, “Gaussian Process Uniform Error Bounds with
Unknown Hyperparameters for Safety-Critical Applications,” in Proceedings of the In-
ternational Conference on Machine Learning, 2022, pp. 2609–2624.

[83] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate Uncertainties for Deep Learning us-
ing Calibrated Regression,” in Proceedings of the International Conference on Machine
Learning, 2018, pp. 4369–4377.

[84] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms. New York, NY: Cambridge University Press, 2013.

[85] M. Omainska, J. Yamauchi, A. Lederer, S. Hirche, and M. Fujita, “Rigid Motion
Gaussian Processes With SE(3) Kernel and Application to Visual Pursuit Control,”
IEEE Control Systems Letters, vol. 7, pp. 2665–2670, 2023.

[86] S. Curi, F. Berkenkamp, and A. Krause, “Efficient Model-Based Reinforcement Learn-
ing through Optimistic Policy Search and Planning,” in Advances in Neural Informa-
tion Processing Systems, 2020.

[87] R. M. Dudley, “The Sizes of Compact Subsets of Hilbert Space and Continuity of
Gaussian Processes,” Journal of Functional Analysis, vol. 1, no. 3, pp. 290–330, 1967.

[88] S. Grünewälder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor, “Regret Bounds for
Gaussian Process Bandit Problems,” Journal of Machine Learning Research, vol. 9,
pp. 273–280, 2010.

[89] M. Talagrand, “Sharper Bounds for Gaussian and Empirical Processes,” The Annals
of Probability, vol. 22, no. 1, pp. 28–76, 1994.

[90] S. Ghosal and A. Roy, “Posterior Consistency of Gaussian Process Prior for Nonpara-
metric Binary Regression,” The Annals of Statistics, vol. 34, no. 5, pp. 2413–2429,
2006.

[91] S. Särkkä, “Linear Operators and Stochastic Partial Differential Equations in Gaussian
Process Regression,” in Proceedings of the International Conference on Artificial Neural
Networks and Machine Learning, 2011, pp. 151–158.

[92] L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman, “A Survey of Con-
strained Gaussian Process Regression: Approaches and Implementation Challenges,”
Journal of Machine Learning for Modeling and Computing, vol. 1, no. 2, pp. 119–156,
2020.

[93] J. Umlauft, A. Lederer, and S. Hirche, “Learning Stable Gaussian Process State Space
Models,” in Proceedings of the American Control Conference, 2017, pp. 1499–1504.

195

Bibliography

[94] W. Xiao, A. Lederer, and S. Hirche, “Learning Stable Nonparametric Dynamical Sys-
tems with Gaussian Process Regression,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1194–
1199, 2020.

[95] E. Schulz, M. Speekenbrink, and A. Krause, “A Tutorial on Gaussian Process Re-
gression: Modelling, Exploring, and Exploiting Functions,” Journal of Mathematical
Psychology, vol. 85, pp. 1–16, 2018.

[96] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe Controller Optimization for
Quadrotors with Gaussian Processes,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, 2016, pp. 491–496.

[97] C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning Functions and Uncertainty Sets
Using Geometrically Constrained Kernel Regression,” in Proceedings of the IEEE Con-
ference on Decision and Control, 2022, pp. 2141–2146.

[98] J. Kocijan,Modelling and Control of Dynamic Systems Using Gaussian Process Models.
Springer International Publishing, 2016.

[99] M. Liu, G. Chowdhary, B. Castra Da Silva, S. Y. Liu, and J. P. How, “Gaussian Pro-
cesses for Learning and Control: A Tutorial with Examples,” IEEE Control Systems,
vol. 38, no. 5, pp. 53–86, 2018.

[100] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively Learning Gaussian Process
Dynamics,” in Learning for Dynamics and Control, 2020, pp. 1–11.

[101] A. Capone, G. Noske, J. Umlauft, T. Beckers, A. Lederer, and S. Hirche, “Localized
Active Learning of Gaussian Process State Space Models,” in Learning for Dynamics
and Control, 2020, pp. 490–499.

[102] J. Umlauft, L. Pöhler, and S. Hirche, “An Uncertainty-Based Control Lyapunov Ap-
proach for Control-Affine Systems Modeled by Gaussian Process,” IEEE Control Sys-
tems Letters, vol. 2, no. 3, pp. 483–488, 2018.

[103] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious Model Predictive Control using
Gaussian Process Regression,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 6, pp. 2736–2743, 2020.

[104] F. Berkenkamp and A. P. Schoellig, “Safe and Robust Learning Control with Gaussian
Processes,” in Proceedings of the European Control Conference, 2015, pp. 2496–2501.

[105] A. von Rohr, M. Neumann-Brosig, and S. Trimpe, “Probabilistic Robust Linear
Quadratic Regulators with Gaussian Processes,” in Proceedings of the Conference on
Learning for Dynamics and Control, 2021, pp. 324–335.

[106] J. Umlauft, T. Beckers, and S. Hirche, “Scenario-based Optimal Control for Gaussian
Process State Space Models,” in Proceedings of the European Control Conference, 2018.

[107] A. Marco, P. Hennig, S. Schaal, and S. Trimpe, “On the Design of LQR Kernels for
Efficient Controller Learning,” in Proceedings of the IEEE Conference on Decision and
Control, 2017, pp. 5193–5200.

196

Bibliography

[108] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig, “Gaussian Process Based
Predictive Control for Periodic Error Correction,” IEEE Transactions on Control Sys-
tems Technology, vol. 24, no. 1, pp. 110–121, 2016.

[109] C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning-enhanced Robust Controller Syn-
thesis with Rigorous Statistical and Control-theoretic Guarantees,” in Proceedings of
the IEEE Conference on Decision and Control, 2021, pp. 5122–5129.

[110] A. Capone and S. Hirche, “Backstepping for Partially Unknown Nonlinear Systems
Using Gaussian Processes,” IEEE Control Systems Letters, vol. 3, no. 2, pp. 416–421,
2019.

[111] J. Lunze, Regelungstechnik 2: Mehrgößensysteme, Digitale Reglung, 8th ed. Heidel-
berg, Germany: Springer Vieweg, 2014.

[112] L. Perko, Differential Equations and Dynamical Systems, 3rd ed. Springer, 2006.

[113] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice-Hall,
2002.

[114] D. Sun, M. J. Khojasteh, S. Shekhar, and C. Fan, “Uncertainty-aware Safe Exploratory
Planning using Gaussian Process and Neural Control Contraction Metric,” in Proceed-
ings of the Conference on Learning for Dynamics and Control, 2021, pp. 728–741.

[115] F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath, “Gaussian Process-
based Min-norm Stabilizing Controller for Control-Affine Systems with Uncertain In-
put Effects and Dynamics,” in Proceedings of the American Control Conference, 2021,
pp. 3683–3690.

[116] G. S. Lima, S. Trimpe, and W. M. Bessa, “Sliding Mode Control with Gaussian Pro-
cess Regression for Underwater Robots,” Journal of Intelligent and Robotic Systems:
Theory and Applications, vol. 99, no. 3-4, pp. 487–498, 2020.

[117] H. Mania, S. Tu, and B. Recht, “Certainty Equivalence is Efficient for Linear Quadratic
Control,” in Advances in Neural Information Processing Systems, 2019, pp. 10 154–
10 164.

[118] M. Korda and I. Mezic, “Optimal Construction of Koopman Eigenfunctions for Pre-
diction and Control,” IEEE Transactions on Automatic Control, vol. 65, no. 12, pp.
5114–5129, 2020.

[119] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian Optimization with Safety
Constraints: Safe Automatic Parameter Tuning in Robotics,” Machine Learning, pp.
1–35, 2021.

[120] A. Lederer, A. Capone, and S. Hirche, “Parameter Optimization for Learning-based
Control of Control-Affine Systems,” in Proceedings of the Conference on Learning for
Dynamics and Control, vol. 120, 2020, pp. 465–475.

197

Bibliography

[121] Y. Pan and E. A. Theodorou, “Data-driven Differential Dynamic Programming using
Gaussian Processes,” in Proceedings of the American Control Conference, 2015, pp.
4467–4472.

[122] F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath, “Pointwise Feasi-
bility of Gaussian Process-based Safety-Critical Control under Model Uncertainty,” in
Proceedings of the IEEE Conference on Decision and Control, 2021, pp. 6762–6769.

[123] A. Lederer, A. Begzadić, N. Das, and S. Hirche, “Learning-Based Control of Elastic
Joint Robots via Control Barrier Functions,” To appear in Proceedings of the IFAC
World Congress, 2023. [Online]. Available: http://arxiv.org/abs/2212.00478

[124] P. Jagtap, G. J. Pappas, and M. Zamani, “Control Barrier Functions for Unknown
Nonlinear Systems using Gaussian Processes,” in Proceedings of the IEEE Conference
on Decision and Control, 2020, pp. 3699–3704.

[125] A. Krause, A. Singh, and C. Guestrin, “Near-optimal Sensor Placements in Gaussian
Processes: Theory, Efficient Algorithms and Empirical Studies,” Journal of Machine
Learning Research, vol. 9, pp. 235–284, 2008.

[126] P. Hennig and C. J. Schuler, “Entropy Search for Information-efficient Global Opti-
mization,” Journal of Machine Learning Research, vol. 13, pp. 1809–1837, 2012.

[127] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging. Springer Science
& Business Media, 1999.

[128] R. Beatson, O. Davydov, and J. Levesley, “Error Bounds for Anisotropic RBF Inter-
polation,” Journal of Approximation Theory, vol. 162, no. 3, pp. 512–527, 2010.

[129] M. Scheuerer, R. Schaback, and M. Schlather, “Interpolation of Spatial Data - A
Stochastic or a Deterministic Problem?” European Journal of Applied Mathematics,
vol. 24, no. 4, pp. 601–629, 2013.

[130] S. Shekhar and T. Javidi, “Gaussian Process Bandits with Adaptive Discretization,”
Electronic Journal of Statistics, vol. 12, pp. 3829–3874, 2018.

[131] M. Opper and F. Vivarelli, “General Bounds on Bayes Errors for Regression with
Gaussian Processes,” Advances in Neural Information Processing Systems, pp. 302–
308, 1999.

[132] C. K. I. Williams and F. Vivarelli, “Upper and Lower Bounds on the Learning Curve
for Gaussian Processes,” Machine Learning, vol. 40, pp. 77–102, 2000.

[133] W. Wang and B. Haaland, “Controlling Sources of Inaccuracy in Stochastic Kriging,”
Technometrics, pp. 1–13, 2018.

[134] S. Gershgorin, “Über die Abgrenzung der Eigenwerte einer Matrix,” Bulletin de
l’Academie des Sciences de l’URSS. Classe des sciences mathematiques et na, no. 6,
pp. 749–754, 1931.

198

http://arxiv.org/abs/2212.00478

Bibliography

[135] F. Vivarelli, “Studies on the Generalisation of Gaussian Processes and Bayesian Neural
Networks,” Ph.D. dissertation, Aston University, 1998.

[136] A. Lederer, J. Umlauft, and S. Hirche, “Posterior Variance Analysis of Gaussian
Processes with Application to Average Learning Curves,” 2019. [Online]. Available:
http://arxiv.org/abs/1906.01404

[137] ——, “Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control,” 2021. [Online]. Available: http:
//arxiv.org/abs/2101.05328

[138] M. Greeff, A. W. Hall, and A. P. Schoellig, “Learning a Stability Filter for Uncertain
Differentially Flat Systems using Gaussian Processes,” in Proceedings of the IEEE
Conference on Decision and Control, 2021, pp. 789–794.

[139] A. Capone, A. Lederer, J. Umlauft, and S. Hirche, “Data Selection for Multi-Task
Learning under Dynamic Constraints,” IEEE Control Systems Letters, vol. 5, no. 3,
pp. 959–964, 2021.

[140] A. Capone, A. Lederer, and S. Hirche, “Confidence Regions for Predictions of Online
Learning-Based Control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 983–988, 2020.

[141] A. Capone and S. Hirche, “Anticipating the Long-term Effect of Online Learning in
Control,” in Proceedings of the American Control Conference, 2020, pp. 3865–3872.

[142] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local Gaussian Process Regression for
Real Time Online Model Learning and Control,” in Advances in neural information
processing systems, 2009, pp. 1193–1200.

[143] T. N. Hoang, Q. M. Hoang, K. H. Low, and J. How, “Collective Online Learning
of Gaussian Processes in Massive Multi-Agent Systems,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 7850–7857, 2019.

[144] T. Beckers, L. J. Colombo, S. Hirche, and G. J. Pappas, “Online Learning-Based Tra-
jectory Tracking for Underactuated Vehicles with Uncertain Dynamics,” IEEE Control
Systems Letters, vol. 6, pp. 2090–2095, 2022.

[145] F. Solowjow, D. Baumann, J. Garcke, and S. Trimpe, “Event-Triggered Learning for
Resource-Efficient Networked Control,” in Proceedings of the American Control Con-
ference, 2018, pp. 6506–6512.

[146] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An Introduction to Event-
triggered and Self-triggered Control,” in Proceedings of the IEEE Conference on De-
cision and Control, 2012, pp. 3270–3285.

[147] J. Jiao, A. Capone, and S. Hirche, “Backstepping Tracking Control Using Gaus-
sian Processes with Event-Triggered Online Learning,” IEEE Control Systems Letters,
vol. 6, pp. 3176–3181, 2022.

199

http://arxiv.org/abs/1906.01404
http://arxiv.org/abs/2101.05328
http://arxiv.org/abs/2101.05328

Bibliography

[148] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic LQR Tuning
based on Gaussian Process Global Optimization,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 2016, pp. 270–277.

[149] K. P. Wabersich and M. N. Zeilinger, “Cautious Bayesian MPC: Regret Analysis and
Bounds on the Number of Unsafe Learning Episodes,” IEEE Transactions on Auto-
matic Control, vol. 68, no. 8, pp. 4896–4903, 2023.

[150] F. Castañeda, J. J. Choi, W. Jung, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Probabilistic Safe Online Learning with Control Barrier Functions,” 2022. [Online].
Available: http://arxiv.org/abs/2208.10733

[151] A. G. Bottero, C. E. Luis, J. Vinogradska, F. Berkenkamp, and J. Peters, “Information-
Theoretic Safe Exploration with Gaussian Processes,” in Advances in Neural Informa-
tion Processing Systems, 2022, pp. 1–13.

[152] M. Capotondi, G. Turrisi, C. Gaz, V. Modugno, G. Oriolo, and A. De Luca, “An
Online Learning Procedure for Feedback Linearization Control without Torque Mea-
surements,” in Proceedings of the Conference on Robot Learning, 2019.

[153] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian Process Meets Big Data:
A Review of Scalable GPs,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 11, pp. 4405–4423, 2020.

[154] M. S. Fadali and A. Visioli, Digital Control Engineering Analysis and Design Second
Edition. Waltham, MA: Academic Press, 2012.

[155] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks. Prince-
ton, New Jersey: Princeton University Press, 2009.

[156] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoel-
lig, “Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement
Learning,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, pp.
411–444, 2022.

[157] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian Processes,” in Proceedings of
the International Conference on Machine Learning, 2015, pp. 1481–1490.

[158] V. Tresp, “Mixtures of Gaussian Processes,” Advances in Neural Information Process-
ing Systems, 2001.

[159] S. Masoudnia and R. Ebrahimpour, “Mixture of Experts: A Literature Survey,” Arti-
ficial Intelligence Review, vol. 42, no. 2, pp. 275–293, 2014.

[160] Z. Liu, L. Zhou, H. Leung, and H. P. Shum, “Kinect Posture Reconstruction based
on a Local Mixture of Gaussian Process Models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 11, pp. 2437–2450, 2016.

[161] Y. Cao and D. J. Fleet, “Generalized Product of Experts for Automatic and
Principled Fusion of Gaussian Process Predictions,” pp. 1–5, 2014. [Online]. Available:
http://arxiv.org/abs/1410.7827

200

http://arxiv.org/abs/2208.10733
http://arxiv.org/abs/1410.7827

Bibliography

[162] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. M. Allen, V. D. Lam, A. Be-
wley, and A. Shah, “Learning to Drive in a Day,” in Proceedings of the International
Conference on Robotics and Automation, 2019, pp. 8248–8254.

[163] O. Andersson, M. Wzorek, and P. Doherty, “Deep Learning Quadcopter Control via
Risk-aware Active Learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2017, pp. 3812–3818.

[164] D. Nguyen-Tuong and J. Peters, “Incremental Sparsification for Real-time Online
Model Learning,” Journal of Machine Learning Research, vol. 9, pp. 557–564, 2010.

[165] S. Lee, H. Choi, and K. Min, “Reduction of Engine Emissions via a Real-Time Engine
Combustion Control with an EGR Rate Estimation Model,” International Journal of
Automotive Technology, vol. 18, no. 4, pp. 571–578, 2017.

[166] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and Dynamic Ve-
hicle Models for Autonomous Driving Control Design,” in Proceedings of the IEEE
Intelligent Vehicles Symposium, 2015, pp. 1094–1099.

[167] J. Schreiter, D. Nguyen-Tuong, and M. Toussaint, “Efficient Sparsification for Gaussian
Process Regression,” Neurocomputing, vol. 192, no. May, pp. 29–37, 2016.

[168] M. F. Huber, “Recursive Gaussian Process: On-line Regression and Learning,” Pattern
Recognition Letters, vol. 45, no. 1, pp. 85–91, 2014.

[169] H. Bijl, T. B. Schön, J.-W. van Wingerden, and M. Verhaegen, “System Identification
through Online Sparse Gaussian Process Regression with Input Noise,” IFAC Journal
of Systems and Control, vol. 2, pp. 1–11, 2017.

[170] T. D. Bui, C. V. Nguyen, and R. E. Turner, “Streaming Sparse Gaussian Process
Approximations,” in Advances in Neural Information Processing Systems, 2017, pp.
3300–3308.

[171] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes for Big Data,” in
Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2013.

[172] M. Mutný and A. Krause, “Efficient High Dimensional Bayesian Optimization with
Additivity and Quadrature Fourier Features,” in Advances in Neural Information Pro-
cessing Systems, 2018, pp. 9005–9016.

[173] E. Snelson and Z. Ghahramani, “Local and Global Sparse Gaussian Process Approxi-
mations,” Journal of Machine Learning Research, vol. 2, pp. 524–531, 2007.

[174] A. G. Wilson and H. Nickisch, “Kernel Interpolation for Scalable Structured Gaus-
sian Processes (KISS-GP),” Proceedings of the International Conference on Machine
Learning, ICML 2015, vol. 3, pp. 1775–1784, 2015.

[175] G. Pleiss, J. R. Gardner, K. Q. Weinberger, and A. G. Wilson, “Constant-time Pre-
dictive Distributions for Gaussian Processes,” in Proceedings of the International Con-
ference on Machine Learning, 2018, pp. 6575–6584.

201

Bibliography

[176] L. Csató and M. Opper, “Sparse On-line Gaussian Processes,” Neural Computation,
vol. 14, no. 3, pp. 641–668, 2002.

[177] A. Koppel, “Consistent Online Gaussian Process Regression Without the Sample Com-
plexity Bottleneck,” in Proceedings of the American Control Conference, 2019, pp.
3512–3518.

[178] H. Bijl, J. W. van Wingerden, T. B. Schön, and M. Verhaegen, “Online Sparse Gaus-
sian Process Regression using FITC and PITC Approximations,” IFAC-PapersOnLine,
vol. 48, no. 28, pp. 703–708, 2015.

[179] T. Le, K. Nguyen, V. Nguyen, T. D. Nguyen, and D. Phung, “GoGP: Fast Online
Regression with Gaussian Processes,” in Proceedings of the IEEE International Con-
ference on Data Mining, 2017, pp. 257–266.

[180] A. Ranganathan and M.-h. Yang, “Online Sparse Matrix Gaussian Process Regression
and Vision Applications,” in Proceedings of the European Conference on Computer
Vision, 2008, pp. 468–482.

[181] A. Ranganathan, M. H. Yang, and J. Ho, “Online Sparse Gaussian Process Regression
and its Applications,” IEEE Transactions on Image Processing, vol. 20, no. 2, pp.
391–404, 2011.

[182] J. Harrison, A. Sharma, and M. Pavone, “Meta-Learning Priors for Efficient Online
Bayesian Regression,” in Proceedings of the Workshop on the Algorithmic Foundations
of Robotics, 2018.

[183] R. Camoriano, S. Traversaro, L. Rosasco, G. Metta, and F. Nori, “Incremental Semi-
parametric Inverse Dynamics Learning,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, 2016, pp. 544–550.

[184] A. Rahimi and B. Recht, “Random Features for Large-scale Kernel Machines,” in
Advances in Neural Information Processing Systems, 2008, pp. 1–8.

[185] Q. Lu, G. Karanikolas, Y. Shen, and G. B. Giannakis, “Ensemble Gaussian Processes
with Spectral Features for Online Interactive Learning with Scalability,” in Proceedings
of the International Conference on Artificial Intelligence and Statistics, 2020, pp. 1910–
1920.

[186] E. Angelis, P. Wenk, B. Schölkopf, S. Bauer, and A. Krause, “SLEIPNIR: Deterministic
and Provably Accurate Feature Expansion for Gaussian Process Regression with
Derivatives,” 2020. [Online]. Available: http://arxiv.org/abs/2003.02658

[187] Y. Gal and R. Turner, “Improving the Gaussian Process Sparse Spectrum Approxima-
tion by Representing Uncertainty in Frequency Inputs,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2015, pp. 655–664.

[188] M. van der Wilk, “Sparse Gaussian Process Approximations and Applications,” Ph.D.
dissertation, University of Cambridge, 2018.

202

http://arxiv.org/abs/2003.02658

Bibliography

[189] M. K. Titsias, “Variational Model Selection for Sparse Gaussian Process Regression,”
University of Manchester, Tech. Rep., 2009.

[190] C. A. Cheng and B. Boots, “Incremental Variational Sparse Gaussian Process Regres-
sion,” in Advances in Neural Information Processing Systems, 2016, pp. 4410–4418.

[191] F. Meier and S. Schaal, “Drifting Gaussian Processes with Varying Neighborhood Sizes
for Online Model Learning,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2016, pp. 264–269.

[192] S. M. Omohundro, “Five Balltree Construction Algorithms,” Science, vol. 51, no. 1,
pp. 1–22, 1989.

[193] J. W. Ng and M. P. Deisenroth, “Hierarchical Mixture-of-Experts Model
for Large-Scale Gaussian Process Regression,” 2014. [Online]. Available: http:
//arxiv.org/abs/1412.3078

[194] V. Tresp, “A Bayesisan Committee Machine,” Neural Computation, vol. 12, pp. 2719–
2741, 2000.

[195] D. Rullière, N. Durrande, F. Bachoc, and C. Chevalier, “Nested Kriging Predictions
for Datasets with a Large Number of Observations,” Statistics and Computing, vol. 28,
no. 4, pp. 849–867, 2018.

[196] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, “Generalized Robust Bayesian Committee Ma-
chine for Large-scale Gaussian Process Regression,” in Proceedings of the International
Conference on Machine Learning, 2018, pp. 3131–3140.

[197] L. Devroye, “Universal Limit Laws for Depths in Random Trees,” SIAM Journal on
Computing, vol. 28, no. 2, pp. 409–432, 1998.

[198] A. Lederer, K. Maier, J. Umlauft, A. J. Ordonez Conejo, W. Xiao, and S. Hirche,
“Real-Time Regression with Dividing Local Gaussian Processes,” 2020. [Online].
Available: https://arxiv.org/pdf/2006.09446.pdf

[199] N. Terry and Y. Choe, “Splitting Gaussian Process Regression for Computationally-
Efficient Regression,” Plos One, vol. 16, no. 8, p. e0256470, 2021.

[200] A. Douzal-chouakria, E. Gaussier, E. Dimert, A. Douzal-chouakria, E. Gaussier, and
E. D. Pr, “Prédictions d’activité dans les réseaux sociaux en ligne,” in 4ième conférence
sur les modèles et l’analyse des réseaux : Approches mathématiques et informatiques,
2013, p. 16.

[201] D. Dua and C. Graff, “UCI Machine Learning Repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[202] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep Kernel Learning,” in
Proceedings of the International Conference on Artificial Intelligence and Statistics,
vol. 51, 2016, pp. 370–378.

203

http://arxiv.org/abs/1412.3078
http://arxiv.org/abs/1412.3078
https://arxiv.org/pdf/2006.09446.pdf
http://archive.ics.uci.edu/ml

Bibliography

[203] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-
Villagrá, Z. Ghahramani, and J. Hensman, “GPflow: A Gaussian Process Library using
TensorFlow,” Journal of Machine Learning Research, vol. 18, no. 40, pp. 1–6, 2017.

[204] M. Yazdanian and A. Mehrizi-Sani, “Distributed Control Techniques in Microgrids,”
IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2901–2909, 2014.

[205] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, “Heavy-duty
Vehicle Platooning for Sustainable Freight Transportation: A Cooperative Method to
Enhance Safety and Efficiency,” IEEE Control Systems Magazine, vol. 35, no. 6, pp.
34–56, 2015.

[206] A. E. Turgut, H. Çelikkanat, F. Gökçe, and E. Şahin, “Self-organized Flocking in
Mobile Robot Swarms,” Swarm Intelligence, vol. 2, no. 2-4, pp. 97–120, 2008.

[207] Z. Yuan and M. Zhu, “Communication-aware Distributed Gaussian Process Regression
Algorithms for Real-time Machine Learning,” in Proceedings of the American Control
Conference, 2020, pp. 2197–2202.

[208] P. Budde gen. Dohmann, A. Lederer, M. Dißemond, and S. Hirche, “Distributed
Bayesian Online Learning for Cooperative Manipulation,” in Proceedings of the IEEE
Conference on Decision and Control, 2021, pp. 2888–2895.

[209] V.-A. Le and T. X. Nghiem, “Gaussian Process Based Distributed Model Predictive
Control for Multi-agent Systems using Sequential Convex Programming and ADMM,”
in Proceedings of the IEEE Conference on Control Technology and Applications, 2020,
pp. 31–36.

[210] T. Beckers, S. Hirche, and L. Colombo, “Safe Online Learning-based Formation Con-
trol of Multi-Agent Systems with Gaussian Processes,” in Proceedings of the IEEE
Conference on Decision and Control, 2021, pp. 2197–2202.

[211] T. Beckers, G. J. Pappas, and L. J. Colombo, “Learning Rigidity-based Flocking Con-
trol using Gaussian Processes with Probabilistic Stability Guarantees,” in Proceedings
of the IEEE Conference on Decision and Control, 2022, pp. 7254–7259.

[212] Z. Yang, S. Sosnowski, Q. Liu, J. Jiao, A. Lederer, and S. Hirche, “Distributed Learning
Consensus Control for Unknown Nonlinear Multi-Agent Systems based on Gaussian
Processes,” in Proceedings of the IEEE Conference on Decision and Control, 2021, pp.
4406–4411.

[213] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez,
“Tutorial on Dynamic Average Consensus: The Problem, its Applications, and the
Algorithms,” IEEE Control Systems Magazine, vol. 39, no. 3, pp. 40–72, 2019.

[214] H. Zhang and F. L. Lewis, “Adaptive Cooperative Tracking Control of Higher-order
Nonlinear Systems with Unknown Dynamics,” Automatica, vol. 48, no. 7, pp. 1432–
1439, 2012.

204

Bibliography

[215] R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks of Agents with
Switching Topology and Time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520–1533, 2004.

[216] S. Thrun, “A Lifelong Learning Perspective for Mobile Robot Control,” in Proceedings
of the IEEE International Conference on Intelligent Robots and Systems, 1994, pp.
23–30.

[217] M. Khosravi, C. König, M. Maier, R. S. Smith, J. Lygeros, and A. Rupenyan, “Safety-
Aware Cascade Controller Tuning Using Constrained Bayesian Optimization,” IEEE
Transactions on Industrial Electronics, vol. 70, no. 2, pp. 2128–2138, 2023.

[218] S. J. Orfanidis, Introduction to Signal Processing. Pearson Education, 2016.

[219] M. Mboup, C. Join, and M. Fliess, “A Revised Look at Numerical Differentiation with
an Application to Nonlinear Feedback Control,” in Proceedings of the Mediterranean
Conference on Control and Automation, 2007.

[220] A. Radke and Z. Gao, “A Survey of State and Disturbance Observers for Practitioners,”
in Proceedings of the American Control Conference, 2006, pp. 5183–5188.

[221] A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith, “Gaussian Pro-
cess Priors with Uncertain Inputs - Application to Multiple-step Ahead Time Series
Forecasting,” Advances in Neural Information Processing Systems, pp. 545–552, 2003.

[222] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and Data-Efficient
Approach to Policy Search,” in Proceedings of the International Conference on Machine
Learning, 2011, pp. 465–472.

[223] A. McHutchon and C. E. Rasmussen, “Gaussian Process Training with Input Noise,”
in Advances in Neural Information Processing Systems, 2011, pp. 1–9.

[224] I. Steinwart and A. Christmann, Support Vector Machines. New York, NY: Springer
Science+Business Media, 2008.

[225] R. M. Murray, Z. Li, and S. Shankar Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[226] M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian Networks: Using Physics as
Model Prior for Deep Learning,” Proceedings of the International Conference on Learn-
ing Representations, pp. 1–17, 2019.

[227] B. Wilcox and M. C. Yip, “SOLAR-GP: Sparse Online Locally Adaptive Regression
Using Gaussian Processes for Bayesian Robot Model Learning and Control,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2832–2839, 2020.

[228] M. Riedmiller and H. Braun, “A Direct Adaptive Method for Faster Backpropaga-
tion Learning: The RPROP Algorithm,” in Proceedings of the IEEE International
Conference on Neural Networks, 1993, pp. 586–591.

205

Bibliography

[229] M. Blum and M. Riedmiller, “Optimization of Gaussian Process Hyperparameters us-
ing RPROP,” in Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2013, pp. 339–344.

[230] G. Hu, W. P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Challenges and Ap-
plications,” IEEE Network, vol. 26, no. 3, pp. 21–28, 2012.

[231] Y. Xia, “Cloud Control Systems,” IEEE/CAA Journal of Automatica Sinica, vol. 2,
no. 2, pp. 134–142, 2015.

[232] L. Qian, Z. Luo, Y. Du, L. Guo, X. Ave, and X. District, “Cloud Computing: An
Overview,” in Proceedings of the Conference on Cloud Computing, 2009, pp. 626–631.

[233] B. Hayes, “Cloud Computing,” Communications of the ACM, vol. 51, no. 7, pp. 9–11,
2008.

[234] M. Abramowitz and I. A. Segun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1965.

[235] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to
Numerical Computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

[236] E. Trigili, S. Crea, M. Moise, A. Baldoni, M. Cempini, G. Ercolini, D. Marconi,
F. Posteraro, M. Carrozza, and N. Vitiello, “Design and Experimental Characteri-
zation of a Shoulder-Elbow Exoskeleton with Compliant Joints for Post-Stroke Reha-
bilitation,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1485–1496,
2020.

[237] R. Drillis, R. Contini, and M. Bluestein, “Body Segment Parameters: A Survey of
Measurement Techniques,” Artificial Limbs, vol. 8, pp. 44–66, 1964.

[238] T. Beckers, L. J. Colombo, M. Morari, and G. J. Pappas, “Learning-based Balanc-
ing of Model-based and Feedback Control for Second-order Mechanical Systems,” in
Proceedings of the IEEE Conference on Decision and Control, 2022, pp. 4667–4673.

[239] X. Dai, A. Lederer, Z. Yang, and S. Hirche, “Can Learning Deteriorate Control?
Analyzing Computational Delays in Gaussian Process-Based Event-Triggered Online
Learning,” in Proceedings of the Conference on Learning for Dynamics and Control,
2023, pp. 445–457.

[240] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Joint State and
Dynamics Estimation with High-gain Observers and Gaussian Process Models,” IEEE
Control Systems Letters, vol. 5, no. 5, pp. 1627–1632, 2020.

[241] A. J. Ordóñez-Conejo, A. Lederer, and S. Hirche, “Adaptive Low-Pass Filtering using
Sliding Window Gaussian Processes,” in Proceedings of the European Control Confer-
ence, 2022, pp. 2234–2240.

[242] S. Curi, A. Lederer, S. Hirche, and A. Krause, “Safe Reinforcement Learning via
Confidence-Based Filters,” in Proceedings of the IEEE Conference on Decision and
Control, 2022, pp. 3409–3415.

206

Bibliography

[243] D. S. Bernstein, Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formu-
las, revised and expanded ed. Princeton, New Jersey: Princeton University Press,
2018.

207

	Introduction
	Challenges in Gaussian Process-Based Control
	Main Contributions and Outline

	Gaussian Process Regression and Prediction Error Bounds
	Fundamentals of Gaussian Process Regression
	Parametric Regression in Feature Spaces
	Non-Parametric Regression using the Kernel Trick
	A Function Space View for Model Decomposition
	Multi-Output Gaussian Process Regression
	Hyperparameter Optimization

	Uniform Error Bounds for Learning in Reproducing Kernel Hilbert Spaces
	Guarantees through Prior Parameter Bounds
	From Parameter Bounds to Reproducing Kernel Hilbert Space Norms

	Bayesian Uniform Error Bounds
	Continuity-Based Error Bounds for Non-Parametric Regression
	Uniform Error Bounds for Function Components
	Hölder Continuity of Mean and Variance Functions
	Probabilistic Lipschitz Constants for Sample Functions

	Discussion

	Tracking Control with Gaussian Process Models
	Compensating Nonlinear Perturbations in Linear Control Systems
	Problem Setting
	General Linear Tracking Control Systems
	Approximately Feedback Linearized Systems
	Numerical Evaluation

	Certainty Equivalence Approaches for Lyapunov-Based Control Design
	Problem Setting
	General Lyapunov-Based Tracking Error Bounds
	Linearization-Based Time-Varying Accuracy Guarantees
	Numerical Evaluation

	Discussion

	Learning for Control with Arbitrary Accuracy Guarantees
	Data Dependency of Uniform Error Bounds
	Problem Setting
	Asymptotic Bounds for the Learning Error
	Asymptotic Bounds for the Posterior Variance
	Conditions for Specific Kernels

	The Role of Data for Control-Theoretic Guarantees
	Problem Setting
	Asymptotic Tracking Error Bound
	Lyapunov-Based Quality Assessment
	Numerical Evaluation

	Closed-Loop Data Generation for Tracking Accuracy Guarantees
	Problem Setting
	Time-Triggered Learning
	Event-Triggered Learning
	Episodic Learning
	Numerical Evaluation

	Discussion

	Efficient Learning via Gaussian Process Model Aggregation
	Computationally Efficient Online Learning with Error Bounds
	Existing Approaches for Gaussian Process-based Online Learning
	Problem Setting
	Locally Growing Random Trees of Gaussian Processes
	Complexity Guarantees
	Uniform Regression Error Bounds
	Evaluation on Real-World Data
	Application to Event-Triggered Learning Control

	Data-Efficient Learning for Cooperative Control of Multi-Agent Systems
	Problem Setting
	Consensus-Based Aggregation of Gaussian Process Predictions
	Cooperative Tracking Control using Distributed Gaussian Processes
	Numerical Evaluation

	Discussion

	Architectures for Practical Control with Gaussian Processes
	Synchronous Online Learning from Disturbed State Measurements
	Problem Setting
	Learning Control with Disturbed State Measurements
	Numerical Evaluation
	Experimental Demonstration in Control of Robotic Manipulators

	Asynchronous Online Learning with Computational Delays
	Problem Setting
	Accuracy Guarantees with Delayed Predictions
	Numerical Evaluation
	Experimental Demonstration in Human-Robot Interaction Scenario

	Networked Online Learning under Resource Constraints
	Problem Setting
	Reachability-Based Local Model Selection
	Delay-Aware Local Model Transmission
	Numerical Evaluation in Exoskeleton Control

	Discussion

	Conclusion and Outlook on Future Research Directions
	Summary of the Contributions
	Implications of Derived Results
	Future Directions

	Appendix
	Fundamental Results from Linear Algebra
	Lyapunov Stability Theory

	Notation
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

