
Deep Learning for

Blood Cell Image Analysis

Agnieszka Tomczak





TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Computation, Information and Technology

Deep learning for blood cell image analysis

Agnieszka Maria Tomczak

Vollständiger Abdruck der von der TUM School of Computation, Information
and Technology der Technischen Universität München zur Erlangung des
akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:: Prof. Dr. Julien Gagneur
Prüfer*innen der Dissertation:

1. Prof. Dr. Nassir Navab
2. Prof. Dr. Nasir Rajpoot
3. Prof. Dr. Shadi Albarqouni

Die Dissertation wurde am 22.02.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and
Technology am 17.07.2023 angenommen.





Abstract

The chemical staining of samples in haematology is one of the crucial com-
ponents of blood analysis. The dye components, such as methylene azure
and eosin, allow the colouring of the white blood cell, enhancing structures
otherwise invisible to the human eye. After staining, the cytoplasm has a pink
to violet shade, the granules visibly differing in size and shape. The nucleus is
suddenly pronounced, and the nucleoli are visible inside it. All these features
allow the haematologist to classify the white blood cell, leading to diagnosing
infections and diseases as severe as leukaemia or lymphoma. However, what
would happen if we could replace the chemical process with a digital one?
Instead of a time- and chemicals-consuming process, an unstained sample
could be captured and artificially stained. It would reduce the effort and waste
put into the process of chemical staining on daily bases. This thesis investigates
if such change is possible.

The images of unstained white blood cells were captured with a Differential
Inference Contrast microscope and stained with multiple deep learning-based
techniques. After the same samples were chemically stained and captured
with a traditional Bright-field microscope, we could evaluate the algorithms
and the staining they produced against the respective chemically stained cells.
This work documents the creation of multiple algorithms for artificial staining
of both paired and unpaired data sets, the tools for estimating uncertainty
connected with such process, and at the end, clinical validation and feasibility
of eliminating the chemical staining of blood cells from laboratory pipeline.

We discover the dependency between image generation, classification and
segmentation tasks, showing how the segmentation influences structure preser-
vation and classification enhances class-relevant features during the image
translation in unpaired datasets. We also show that having even partially
paired images in the presence of multiple domains significantly improves the
image quality of the generated images and classification results. Furthermore,
we investigate the style-structure disentanglement in haematological images
based on pseudo-segmentation masks and show its effectiveness. We use
the disentangled structure and style representations to present the possible
ways of calculating the confidence of the generated image by exploring its
latent representation. We show that such a confidence score correlates with
the quality of the generated image. Additionally, we analyse the confidence
score in the context of the downstream segmentation task on the target domain,
showing that when the segmentation networks perform well, the segmentation
results correlate with the quality of latent representation in the generative
model. Lastly, we present a study with haematology experts, showing that
paired dataset with additional class information is a promising approach to
introducing artificial staining in the clinical set-up.

This thesis investigates whether we can use deep learning to discover new
possibilities in analysing the physical world. Is chemical staining necessary to
correctly identify the blood cells? Or could the automated networks analyse
the information seemingly invisible to the human eye and discover overlooked
patterns?

iii





Zusammenfassung

Die chemische Färbung von Proben in der Hämatologie ist eine der wichtigsten
Komponenten der Blutanalyse. Die Farbstoffkomponenten, wie Methylenazer
und Eosin, ermöglichen die Färbung der weißen Blutkörperchen und heben
Strukturen hervor, die für das menschliche Auge sonst unsichtbar sind. Nach
der Färbung hat das Zytoplasma einen rosa bis violetten Farbton, die Körnchen
unterscheiden sich sichtbar in Größe und Form. Der Zellkern ist plötzlich aus-
geprägt, und die Nukleoli sind in seinem Inneren sichtbar. All diese Merkmale
ermöglichen es dem Hämatologen, die weißen Blutkörperchen zu klassifizie-
ren, was zu einer Diagnose von Infektionen und so schweren Krankheiten wie
Leukämie oder Lymphomen führt. Doch was wäre, wenn wir den chemischen
Prozess durch einen digitalen ersetzen könnten? Anstelle eines zeit- und che-
mieaufwändigen Prozesses würde eine ungefärbte Probe erfasst und künstlich
angefärbt. Dies würde den Aufwand und die Verschwendung verringern, die
mit der täglichen chemischen Färbung verbunden sind. In dieser Arbeit wird
untersucht, ob eine solche Änderung möglich ist.

Die Bilder von ungefärbten weißen Blutkörperchen wurden mit einem Dif-
ferentialinferenzkontrastmikroskop aufgenommen und dann mit mehreren auf
Deep Learning basierenden Verfahren gefärbt. Nachdem dieselben Proben mit
einem herkömmlichen Hellfeldmikroskop gefärbt und aufgenommen wurden,
konnten wir die Algorithmen und die von ihnen erzeugten Färbungen anhand
der jeweiligen chemisch gefärbten Zellen bewerten. Diese Arbeit dokumentiert
die Entwicklung mehrerer Algorithmen für die künstliche Färbung sowohl
gepaarter als auch ungepaarter Datensätze, die Werkzeuge zur Abschätzung
der mit diesem Prozess verbundenen Unsicherheit und schließlich die klinische
Validierung und Machbarkeit der Eliminierung der chemischen Färbung von
Blutzellen aus der Laborpipeline.

Wir entdecken die Abhängigkeit zwischen Bilderzeugung, Klassifizierung
und Segmentierungsaufgaben und zeigen, wie die Segmentierung die Struk-
turerhaltung beeinflusst und die Klassifizierung die klassenrelevanten Merk-
male während des Bildübersetzungsprozesses in ungepaarten Datensätzen
verbessert. Wir zeigen auch, dass selbst teilweise gepaarte Bilder bei Vorhan-
densein mehrerer Domänen die Bildqualität der generierten Bilder und die
Klassifizierungsergebnisse deutlich verbessern. Darüber hinaus haben wir die
Stil-Struktur-Entflechtung in hämatologischen Bildern auf der Grundlage von
Pseudo-Segmentierungsmasken untersucht und ihre Effektivität gezeigt. Wir
verwenden die entwirrten Struktur- und Stilrepräsentationen, um die mög-
lichen Wege zur Berechnung des Vertrauens des generierten Bildes durch
die Erforschung seiner latenten Repräsentation aufzuzeigen. Darüber hinaus
analysieren wir den Konfidenzwert im Kontext der nachgelagerten Segmen-
tierungsaufgabe auf der Zieldomäne und zeigen, dass bei guter Leistung der
Segmentierungsnetzwerke die Segmentierungsergebnisse mit der Qualität der
latenten Repräsentation im generativen Modell korrelieren.

Schließlich stellen wir eine Studie mit Hämatologieexperten vor, die zeigt,
dass gepaarte Datensätze mit zusätzlichen Klasseninformationen ein vielver-
sprechender Ansatz für die Einführung künstlicher Färbungen in der klinischen
Praxis sind.
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In dieser Arbeit wird untersucht, ob wir mithilfe von Deep Learning neue
Möglichkeiten für die Analyse der physischen Welt entdecken können. Ist eine
chemische Färbung notwendig, um die Blutzellen richtig zu identifizieren?
Oder könnten die automatisierten Netzwerke die Informationen analysieren,
die für das menschliche Auge unsichtbar sind, und übersehene Muster ent-
decken?
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1
Introduction

A blood smear examination is one of the most common procedures during
a medical check-up. It is fundamental in diagnosing a plethora of disorders
and diseases. It consists of counting and identifying red and white blood cells
in the peripheral blood smear. The number of different kinds of white blood
cells is a vital determining factor indicating our condition and allowing for a
potential diagnosis.

One of the first steps to complete the blood cell examination is the chemical
staining of the blood smear. Haematological laboratories stain blood samples
with chemical agents to enhance specific white blood cell structures not easily
visible by the human eye. Replacing this procedure with a digital one would
substantially facilitate the diagnostic process.

Since differential inference contrast microscopy can capture images of
unstained blood cells, it opens the possibility of replacing the chemical staining
process with a digital one. Such change would be a potential breakthrough
for haematology laboratories, as chemical staining is expensive and time-
consuming. Additionally, once a sufficiently extensive common database was
created, it would help to eliminate the staining artefacts and to unify staining
protocols between laboratories. The current developments in the field of
artificial intelligence offer multiple tools that can be employed to automatically
generate an image of stained blood cells.

This thesis presents a building stone in this direction, investigating whether
a deep-learning-based model can approximate a complicated chemical process
well enough to be used in a clinical setup.
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Chapter 1: Introduction

1.1 Objectives

Given the motivation outlined, my objective was to digitally stain a leukocyte
(white blood cell). In other words, to automatically transform an image of an
unstained blood cell into its stained version. As simple as it sounds, there are
certain challenges connected to this objective: the class characteristics must be
preserved and generated during the staining process, and for the comfort of
haematologists working with the images, the artificially stained cells must be
indistinguishable from chemically stained ones.

Considering the requirements, my first task is to develop a method for
generating a stained image conditioned on its unstained counterpart and to
investigate the applicability of Generative Adversarial Networks [39] both for
paired and unpaired datasets in this domain. Additionally, I explore using the
class information during the generation process and employing the segmenta-
tion masks to preserve the blood cell structure, as cycle-consistency loss does
not constrain it explicitly.

In the dissertation’s second part, we focus on estimating the network’s
confidence during the generation process. In clinical practice, the usage of
neural networks is often corrupted by the lack of confidence evaluation, which
would allow reason about the trustworthiness of the prediction. To address this
concern, we assume that a more stable latent representation leads to a better
quality of a generated image. Additionally, we investigate the relationship
between such confidence measure and the downstream segmentation task.

The final objective was to present the study of the applicability of Gen-
erative Adversarial Networks for this problem. To this end, together with
the clinical partners, we conducted a validation study on artificially stained
images that indicated the possibility of using such a pipeline in clinical practice.

To sum up, the objectives of this work are the following:

• digitally stain a leukocyte (white blood cell), preserving its structure and
key characteristics;

• estimate confidence of the network generating a given image;

• validate the applicability of the new staining process during a study with
clinical partners.

1.2 Contributions

To fulfil the objectives listed in the previous section, we develop several meth-
ods that have the following contributions:
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1.2 Contributions

• Multi-task, multi-domain framework for digital staining with structure
preservation for unpaired data. I propose a novel method to simul-
taneously generate the staining on unstained images captured with a
differential inference contrast microscope and classify the images of white
blood cells according to the types defined by haematologists. The model
builds on an intuition that features necessary for staining and classifying
can benefit from each other once the gap between the domains of the in-
put data is closed. We analyse how auxiliary tasks such as segmentation
and pair-wise reconstruction influence the quality of generated images in
terms of fine-grained details and well-defined structures. Furthermore,
we construct domain-agnostic latent space so that the features extracted
in an unsupervised manner can be used for the downstream classification
task.

• A style-structure disentanglement algorithm for unpaired data. I
present a disentanglement technique for the style and structure of haema-
tological cell images by having multiple encoders constrained differently
during the training phase. We take advantage of the fact that the structure
can be easily defined in the images of white blood cells by considering
the shape of the nucleus and cytoplasm. Therefore, we can use pseudo-
segmentation masks of the cells and their intracellular structures to guide
the network to generate the desired structures. Moreover, we can do it
independently of generating the style. We use these separate representa-
tions to analyse the generated image components.

• Confidence estimation method for disentangled representations and
full images. We estimate the confidence of the latent representation to
recognize poorly generated samples, both in terms of style and structure,
as in terms of the whole image. We present a noise injection technique
that allows generating multiple outputs Quantifying the differences be-
tween these outputs provides a confidence score that can be used to
determine the uncertain parts of the generated image, the quality of the
generated sample, and some extent, result on a downstream task. We in-
vestigate this technique, corrupting the disentangled latent representation
of structure and style and the whole image’s latent representation.

• A validation study with medical experts confirming the possibility of
practical use of GANs in a clinical setup. We develop and evaluate
a GAN-based model to generate realistic-looking stained images by
preserving morphological cell features. This model allows the recognition
of normal blood cells and the identification of severe haematological
diseases. We conduct a detailed qualitative study of the samples with
clinical experts. We show that humans and convolutional neural networks
can correctly classify most artificially stained samples.
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1.3 Outline

This section provides a brief overview of each of the subsequent chapters.
Most of the methods and materials of this thesis are published or are under
submission for a major conference or journal. Therefore, we provide the work
related to each chapter and encourage the interested reader to consult the
online material for presented methods.

Chapter 2 We first provide the theoretical foundation upon which this thesis
is built. In particular, we outline the theoretical deep learning background
focusing on image-to-image translation with Generative Adversarial Networks.
In addition, we describe the imaging modalities used to collect data for this
work.

Chapter 3 This chapter presents the process of chemical staining that this the-
sis aims to substitute. After summarising the procedure, we list the considered
leukocytes together with their characteristics, challenges and corresponding
graphical representations. After this overview, I comment on the clinical
relevance of the white blood cell classification.

Chapter 4 In this chapter, we detail the problem statement and its challenges.
We comment on the related work that aimed to approach similar problems
and introduce the construction process of the dataset for digital staining and
evaluation metrics used in this work.

Chapter 5 Here we build upon the concepts presented in Chapter 4 and
employ them for multi-domain multi-task learning. We propose a method
for image-to-image translation developed on three domains that simultane-
ously generates an image from the target domain, classifies it and uses the
segmentation module to preserve cells structure. The related work is:

• Tomczak, A., Ilic, S., Marquardt, G., Engel, T., Forster, F., Navab, N.,
Albarqouni, S.: Multi-task multi-domain learning for digital staining and
classification of leukocytes. IEEE Transactions on Medical Imaging (2021).
doi: 10.1109/TMI.2020.3046334

Chapter 6 We now switch focus to the more challenging problem of uncer-
tainty estimation for the generative process. In this chapter, we propose an
approach to disentangle the generator’s latent space and corrupt such latent
representations with noise to estimate the confidence of the generation process.
The related work is:

• Tomczak, A., Ilic, S., Marquardt, G., Engel, T., Navab, N., Albarqouni, S.:
Digital staining of white blood cells with confidence estimation
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Chapter 7 Next, we extend the latent space corruption approach to the whole
image, showing that the method generalizes well using a different dataset. The
related publication is:

• Tomczak, A., Gupta, A., Ilic, S., Navab, N., Albarqouni, S.: What can
we learn about a generated image corrupting its latent representation?
MICCAI (2022)

Chapter 8 While all methods described so far were focused on the advance-
ment of algorithms for artificial staining, in this chapter, we report a study
conducted with clinical experts to assess the feasibility of artificial staining in
the clinical pipeline. The related publication is:

• Tomczak, A., Boldu, L., Brock, J.P., Merino, A., Engel, T., Marquardt, G.:
Diagnosing artificially stained images of peripheral blood cells. Interna-
tional Symposium on Technical Innovations in Laboratory Hematology
(2022)

Chapter 9 Finally, we summarize our findings and lay out directions for
future research in a concluding chapter.
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2
Fundamentals

This chapter gives an overview of the required technical fundamentals, includ-
ing the neural networks, specifically convolutional neural networks and how
to apply them to problems such as classification and segmentation. Next, we
explain the concept of Generative Adversarial Networks and their conditional
version. Finally, we summarize the characteristics of imaging modalities upon
which this thesis is based.

2.1 Deep Learning

Deep learning is a subset of machine learning dating back to the 1960s [96, 54],
when the first components of today’s systems were introduced, such as the
multilayer perceptron and ways to compute gradients in such models. However,
the idea fully formed in the 1980s in three parallel works [68, 85, 97]. Although
it was computationally not feasible to take full advantage of the theories
developed at that time, the fact is that the core ideas behind modern networks
have not changed substantially since then.

2.1.1 Neural Networks

The quintessential part of deep learning is research focused on designing and
developing neural networks. Neural networks [11] are a tool used to model
functional nonlinear dependence between given input and output. They are de-
fined by a set of consecutive transformations: linear layer transformations and
nonlinear functions called activations [11, 38]. They are optimized for a defined,
differentiable loss function through forward- and back-propagation [97]. The
optimization process is not much different than any other machine learning
gradient descent-based optimization. In principle, the biggest difference is the
introduction of the nonlinearity layer, which can cause the optimization process
to become nonconvex, as opposed to models such as linear regression or Sup-
port Vector Machines (SVM). There were many improvements and refinements
introduced to improve the optimization process of neural networks, such as
momentum [109], gradient clipping [77], normalized weight initialization [36],
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Chapter 2: Fundamentals

Adam optimizer [62], or batch normalization [52]. In this thesis, we used most
of these refinements.

2.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) [69] are a type to neural networks
designed to process grid-like data, such as images that can be interpreted as a
2D grid of pixels. CNNs are largely responsible for the success of deep learning
for the computer vision applications. The main idea is to use convolution,
a specialized type of linear transformation, instead of matrix multiplication.
This is a big change, because instead of optimizing all the parameters of a
fully connected layer that represents the matrix multiplication, convolutional
neural network optimizes primarily the parameters of the convolutional kernels.
Other layer that had been proposed in CNNs is a pooling layer that changes
dimensions of the input data grid. The most popular is the use of max-polling
proposed in [137]. Convolutional Neural Networks are one of the key models
in deep learning. They are, to a great extent, responsible for its popularisation,
as they have significantly broadened the range of applications. The main
interest was sparked in 2012 when a competition on object recognition was
won by [65]. Since then, CNNs have been the bases for many more specialized
models, built to accommodate the growing datasets and challenges such as
object recognition, semantic segmentation, object pose estimation, registration,
and many more.

2.1.3 Classification with supervised deep learning

Neural networks for classification try to find the most optimal mapping f (x) =
y from input x to a category y. They are trained by minimizing a certain
loss function with respect to a set of parameters θ to find an approximation
f (x; θ) = y. The most common loss for classification is optimizing the Cross-
Entropy (CE) function:

CE = −
N

∑
c=1

yo,clog(po,c) (2.1)

where N is the number of classes in our problem, y is an indicator (0 or 1) if
the class c is correct for observation o, and p is the predicted probability of
class c. In a supervised setting, we have access to labelled training examples.

2.1.4 Semantic segmentation with supervised deep learning

Supervised segmentation can be defined as a pixel-based classification. This
means that to each pixel from an image x, we want to assign a category y. The
task can be optimized by minimization of a combination of CE (see Eq. 2.1)
and a DICE coefficient [78]. The DICE coefficient is defined as:

D =
2 ∑N

i xiyi

∑N
i x2

i + ∑N
i y2

i
(2.2)
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2.2 Image-to-image translation

where xi and yi represent corresponding pixels in prediction mask and the
ground truth mask. The denominator considers the total number of pixels
present in both sets, and the numerator considers only the overlap between
them. It combines the global and local information about the prediction in
context of the ground truth.

2.2 Image-to-image translation

The task of transforming an image from one domain such that it has the style
and characteristics of images from another domain is commonly called image-
to-image translation. That could mean changing the structure’s appearance in
the image (style transfer) or changing its attributes (changing a serious face
to a smiling face). In a biological setting, it could mean making an image
captured with one modalit look like it was captured with a different modality,
or in context of haematology, staining normalization or staining generation.

2.2.1 Generative Adversarial Networks

The direct Image-to-image translation problem was addressed with conditional
Generative Adversarial Networks [39] (GANs). Before introducing them, let’s
focus on traditional GAN. The most basic GANs are models designed for image
synthesis, where two separate networks, Generator and Discriminator, compete
against each other. In practice, GANs for image generation consist of two
convolutional neural networks; a generator that maps a vector sampled from a
normal distribution to an image and a discriminator which learns to recognize
if a given image is real or fake. Both networks are trained competitively in a
minimax fashion. The training is based on the adversarial loss:

Ladv = log(x) + log(1− D(G(z)) (2.3)

where G is the generator network, D is the discriminator network, x is an
image from real data distribution and z is a noise vector. The generator G is
optimized to minimise this loss, and the discriminator D maximises it. During
the optimization process, the network weights are updated in turns.

2.2.2 Conditional Generative Adversarial Networks

In principle, the output of a generative adversarial network can be conditioned
on, amongst others, class, text, image or features. Instead of taking a noise
vector as input, a conditional GAN uses the provided information (in the form
of, for example, an image). Conditional image generation aims to solve the
image-to-image translation problem. One of the first proposed approaches
to conditioning the generation process on an input image was Pix2Pix [53],
where the network transformed edges into photos and day images into night
images. It takes an image from one domain, for example, an image of an
unstained cell, and transforms it into the target domain to look like a stained
cell. The optimization process is, in this case, based on pixel-wise loss -
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most frequently, L1− or L2−distance, sometimes a combination thereof. The
drawback here is the strong requirement for precisely matched image pairs. In
reality, such datasets are rare due to costly preparation, which usually includes
constraints on image acquisition or very precise image registration, to obtain
pixel-wise correspondences. Therefore, there are not many works addressing
this problem.
The recent works concentrate on improving the quality of the style of generated
objects, making them to a great extent unrecognizable as fake, and enhancing
the resolution, which leads to beautiful images with high definition. For a
simple image-to-image translation, Pix2PixHD [123] was proposed to define a
new standard with a multi-scale generator and multiple discriminators that
allow translation of high-resolution images.

However, what should we do when image pairs are unavailable? The
solution to this problem was proposed by J. Zhu et al. in [138]. In this work,
they introduced cycle consistency. The idea here is to translate the image first
from the source to the target domain and then back to the source. So given
an image x ∈ XA, image y ∈ XB, generator GA translating from domain A
to domain B and generator GB translating from domain B to domain A, the
reconstruction cycle loss term is:

Lcycle = L1(x, GB(GA(x)) + L1(y, GA(GB(y)) (2.4)

and it penalizes the differences between the original image and its translation
to the target domain and back to the original domain. This proved to provide
sufficient constraint to train a network successfully changing the appearance
of an image. However, it should be mentioned here that this loss comes with
a limitation. It provides virtually no control over what features define the
appearance of a given domain. It provides both changes in the style and
in the structure of a given image unless constrained further. The idea of
unpaired image-to-image translation was further extended to multi-domain
image translation by StyleGAN [56] and StyleGAN2[57] (alternative generator
architecture), SPADE [84] (introducing new spatially adaptive normalization)
model and StarGANv2 [23] (including style encoding network next to generator
and discriminator) which I elaborate on further in Section 4.3.

The models that work on unpaired data are used mostly to generate dif-
ferent attributes and are not directly concerned with the faithfulness of the
structure transfer. However, this is crucially important for medical applications.
As shown by Cohen et al. in [24], the distribution matching losses (so cycle-
consistency loss) can hallucinate features. In medical imaging, that can also
mean generating tumours that have not been present in the original image or
failing to generate ones that exist. Of course, from a clinical point of view, the
second scenario can have catastrophic consequences, hindering such losses in
a medical setting.

On the other hand, the models that learn direct mapping require many
paired data points. The paired and unpaired data can be mixed in real-life
scenarios, as just part of the data was processed to calculate the pixel-wise
alignment.
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2.2.3 Adventages and disadvantages of GANs

Generally speaking, GANs can generate high-quality samples and learn the
underlying distribution. They are also very flexible when it comes to archi-
tecture. However, there are additional limitations to using GANs, the most
significant being the training instability that is a direct consequence of the
minimax training fashion. One of the results is the so-called mode collapse,
where G degenerates and only synthesises images from one mode of distribu-
tion. There were many works addressing this limitations: WassersteinGAN [4],
WassersteinGAN with gradient penalty [42], Hinge loss [15, 132], Progressive
training strategy [55]. In this thesis, we use the Wasserstein gradient penalty
[42] for all the optimization tasks based on the cycle loss.

2.3 Imaging modalities

There are different ways to capture images of peripheral blood, depending
on whether we are interested in stained or unstained samples. Here, we will
briefly introduce the two types of microscopy we used to collect data for this
work.

2.3.1 Bright-field microscopy

Bright-field microscopy (BF) is considered one of the most straightforward
optical microscopy illumination techniques. Sample illumination is transmitted
(i.e., illuminated from below and observed from above). The attenuation of
the transmitted light in dense areas of the sample causes white light and
contrast. Bright-field microscopy uses a condenser lens that focuses light from
the light source onto the sample. It receives light from the light source and
concentrates the light rays on the object. However, bright-field microscopy
typically has low contrast on most biological samples because only a few
absorb light significantly. Therefore, staining is often required to increase the
contrast [14].

CellaVision System One of the examples of commercial systems based on
BF microscopy is the CellaVision system [83]. As an input, the system requires
a fixed glass with a stained blood sample; as an output, it produces 360x360
image crops containing blood cells, together with their corresponding labels.
However, in the case of pathological specimens, these labels need to be double-
checked by a haematologist.

2.3.2 Differential Inference Contrast microscopy

There is also another type of microscopy that would allow the taking of images
of low-contrast structures. Differential Inference Contrast (DIC) microscopy
produces a distinctive, shadow-cast appearance to capture images of unstained
blood cells. The DIC microscope uses dual-beam interference optics, trans-
forming local gradients in the optical path length of an object into regions of
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contrast in the object image. The transformation is based on polarized light
and two crystalline beam-splitting devices. In DIC microscopy, the specimen,
which is in our case blood, is sampled by pairs of closely spaced rays generated
by a beam splitter. Suppose the members of a ray pair traverse a phase object in
a region with a gradient in the refractive index or thickness. In that case, there
will be an optical path difference between the two rays upon emergence from
the object, which is translated into a change in amplitude in the image. Since
an optical path difference corresponds to a relative phase difference between
the two rays, phase gradients are present in a DIC image [80].

In the following thesis, I will use the discussed techniques on the data
collected with described modalities, aiming to mitigate their drawbacks via the
new methods that we propose.
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3
Chemical Staining

The current laboratory pipeline relies on the process of chemical staining
that enhances features allowing interpretation of the samples. This chapter
includes a detailed description of the workflow, specifically the staining part of
it, highlights the features relevant to each blood cell class, outlines challenges
connected to classifying each of them and finally, comments on the clinical
relevance of the correct white blood cell classification.

3.1 Blood film preparation and examination

Some requirements must be fulfilled before obtaining the blood sample and
performing the blood cell count. The steps should be performed carefully
so that no artefacts are introduced during these procedures. After diligently
checking the subject’s identity, a qualified person performs a venepuncture
(usually in the antecubital fossa) using a needle and draws a blood sample into
a syringe or an evacuated tube. Next, the blood specimen is mixed either in a
mechanical rotating mixer or by manual inversion. The next step is preparing
the blood film - it is to be prepared and examined on only a small part of the
specimen. A drop of blood is placed near one end of the glass slide, which
was thoroughly cleaned before. Then it can be spread either manually (with a
smooth, steady motion) or automatically with a mechanical spreader integrated
into a staining machine or an automated blood counter. Spread blood film is
subsequently air-dried and fixed in absolute methanol for 10-20 minutes. After
the sample is fixed, the actual staining procedure can start.

Staining. The staining process begins with stain mixture preparation. The
laboratories differ in the exact stain composition used to prepare a blood film
for microscopic examination [5]. Most of the institutions in Europe, including
the laboratory processing samples used in this thesis, use May-Grünwald-
Giemsa (MGG) stain, which is a mixture of:

• a methylene azure which conveys a blue-violet to nucleic acids and
nucleoprotein, to the granules of basophils and slightly less, to the
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granules of neutrophils,

• eosin which brings a red or orange colour to haemoglobin and the
eosinophil granules and contributes to the colour of the stained nucleus.

The MGG staining allows humans to see features such as granulation,
cytoplasm and nucleus which are indispensable to correctly identify the cell
type, as shown in Fig. 3.1.

Figure 3.1: Leukocyte example.

However, there can be a variance in the outcome of the staining, depending
on the protocol. The staining protocols differ across hospitals and countries.
It is the root cause of the lack of standardisation between samples stained
in different places. It introduces a lot of challenges for automatizing the
procedures. Namely, models trained on data stained with one protocol will
underperform on samples stained according to a different protocol. Moreover,
even often within laboratories, the staining can differ as it is not immune
to human impreciseness. All these changes make it impossible to guarantee
the results of the algorithms trained in different centres. This significantly
complicates the problem of collecting data and creating quality datasets that
could be used to train deep learning models.

3.2 Types of white blood cells

In this work, we were interested in distinguishing up to 14 classes of leukocytes,
artefacts and nucleated red blood cells. We list them here together with the
reference images, characteristic features enhanced by the chemical staining
that allow their identification [5] and the main challenges one faces during the
classification process:

• Segmented neutrophil (see Fig. 3.2) Their size is around 1015 microns, the
nucleus has coarse, clumped chromatin and 35 segments. The cytoplasm
is pink to colourless with moderate to plentiful, very fine violet granu-
lation. The SNEs are one of the most common classes - they comprise
around 60%-70% of all white blood cells in the healthy blood sample.
The main challenge is distinguishing them from their predecessor - Band
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Neutrophils (Fig. 3.3). Although difficult, some haematology experts
agree that this differentiation has no clinical significance.

Figure 3.2: Segmented neutrophils (SNE).

• Band neutrophil (see Fig. 3.3) Their size is around 1015 microns, the
nucleus is band-shaped, has clumped chromatin and no nucleoles. The
cytoplasm is pink to colourless with plentiful, very fine violet granulation.
The main challenge is to distinguish them from their successor, segmented
neutrophils. The differentiating quality is the number of segments of the
nucleus - although already banded, it remains one segment.

Figure 3.3: Band neutrophils (BNE).

• Basophil (see Fig. 3.4) Their size is around 1015 microns, the nucleus
is diffused, has clumped chromatin and 34 poorly defined segments.
Cytoplasm is plentiful, pale pink to colourless, with plentiful, unevenly
sized, round, bluish-black granulation. The most important feature is
characteristic granulation.
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Figure 3.4: Basophils (BA).

• Eosinophil (see Fig. 3.5) Their size is around 1015 microns, the nucleus
has coarse, clumped chromatin and 23 segments. Cytoplasm is nearly
invisible, pale, pink to colourless with plentiful, large, round, brick-red
granulation. The most important feature is characteristic granulation.

Figure 3.5: Eosinophils (EO).

• Monocyte (see Fig. 3.6) Their size is around 1224 microns, and the nucleus
is kidney-shaped, bulging or segmented. Cytoplasm has vacuoles, is
plentiful, dirty grey, with powder-fine, violet granulation. The most
significant features for the classification are the nucleus’ shape and the
vacuoles. In more complex cases - to distinguish them from certain types
of blasts - the colour and texture of the cytoplasm are crucial.

• Lymphocyte (see Fig. 3.7) Their size is around 78 microns, and the nucleus
is round to oval, with condensed chromatin and no nucleoles. Cytoplasm
is a light to dark blue band with few bright violet granulations. The
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Figure 3.6: Monocytes (MO).

identifying features are the shape and colour of the nucleus and the colour
of the little cytoplasm that is present. It can be difficult to distinguish
them from their pathological versions - reactive and atypical lymphocytes.

Figure 3.7: Lymphocytes (LY).

• Smudge (see Fig. 3.8) Smudges are cells destroyed during the smearing
or staining procedures. The destruction may be caused by mechanical
factors or diseases such as leukaemia that weaken the cells. The main
challenge in classifying smudges is to differentiate them from the cell
classes they used to be before, which may be difficult depending on the
level of impairment. They are clinically significant if they result from the
pathological weakening of the cells. This can be generally defined based
on their number in the smear.

• Promyelocyte (see Fig. 3.9) Their size is around 1224 microns, the nucleus
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Figure 3.8: Smudges (SMU).

is oval, possibly bulging, eccentric with coarse chromatin and 34 nucleoles.
Cytoplasm is plentiful and pale blue with moderate to plentiful, unevenly
sized, violet granulation. The main challenge is to distinguish them from
their successors - myelocytes.

Figure 3.9: Promyelocytes (PMY).

• Myelocyte (see Fig. 3.10) Their size is around 1018 microns, and the
nucleus is round to oval, eccentric with coarse, condensed chromatin. Cy-
toplasm is plentiful, pink to colourless, sometimes bluish with moderate
to dense, very fine, violet, pink or black granulation. The challenge is dis-
tinguishing them from their predecessors - promyelocytes and successors
- metamyelocytes.

• Metamyelocyte (see Fig. 3.11) Their size is around 1016 microns, and
the nucleus is indented with coarse, clumped chromatin and no nucle-
oles. Cytoplasm is pale pink to colourless with plentiful violet, pink or
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Figure 3.10: Myelocytes (MY).

black granulation. The main challenge is to distinguish them from their
predecessors - myelocytes.

Figure 3.11: Metamyelocytes (MMY).

• Blast (see Fig. 3.12) Their size is around 1020 microns, the nucleus is large,
round to oval with evenly stained chromatin and 15 nucleoles. There is
a small amount of blue cytoplasm with a clear zone next to the nucleus
and no granulation. Blasts are pathological cells that are normally found
in the bone marrow. Their presence in the blood smear is indicative of
a disease. Blasts are predecessors of most other classes, and the main
challenge is not to confuse them with their successors - promyelocytes,
monocytes and lymphocytes.

• Atypical lymphocyte (see Fig. 3.13) Their size is around 915 microns, the
nucleus is oval or bulging with looser chromatin and no nucleoles. Cyto-
plasm is plentiful, colourless to light blue, with few bright violet granules.
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Figure 3.12: Blasts (BL).

The main challenge is not to confuse them with normal lymphocytes.

Figure 3.13: Atypical lymphocytes (ALC).

• Reactive lymphocyte (see Fig. 3.14) Their size is around 1530 microns,
and the nucleus is round, oval, folded or lobulated with no to multiple
nucleoles. Cytoplasm is plentiful, grey to blue, darker in the periphery
and lighter near the nucleus with no granulation. The main challenge is
not to confuse them with normal lymphocytes and blasts.

• Plasma cell (see Fig. 3.15) Their size is around 715 microns, and the nu-
cleus is round, eccentrically with compact chromatin. Cytoplasm is dark
blue with occasional vacuoles and no granulation. Their most character-
istic qualities are an abundance of cytoplasm and basophilic granulation.
The main challenge results from the fact that they are very rare, which in
the context of deep learning is unequivocal to underrepresented in the
data set.
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Figure 3.14: Reactive lymphocytes (RL).

Figure 3.15: Plasma cells (PC).

• Nucleated red blood cell (see Fig. 3.16) Their size is around 810 microns,
and the nucleus is small, round to oval with coarse chromatin. The
cytoplasm is pink with no granulation. Although technically, they are not
leukocytes; their appearance often causes them to be detected as ones. In
contrast to normal red blood cells, they possess a nucleus. [!h]

• Artifact (see Fig. 3.17) This class does not represent a blood cell type
but a broad category that includes all types of artefacts created during
the staining procedure. Although clinically insignificant, must be dif-
ferentiated from white blood cells, as common detection models often
erroneously include them as cells.

As presented in the Fig. 3.2-3.17, the most significant features are the size
of the cell, the colour of the cytoplasm, size and colour of the granulation,
shape and colour of the nucleus and visible nucleolus. These features allow
for the correct classification of a sample. A successful staining preserves and
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Figure 3.16: Nucleated red blood cells (NRBCs).

Figure 3.17: Artifacts (ART).

enhances all of these features so that the white blood cell can be identified
after the processing. However, the aforementioned changes in the staining
protocol or procedure lead to variations in the appearance of the cells and can
contribute to misclassifications. The main challenge of the classification is that
all the white blood cells come from a single root. As the cells mature, they
change class, for example, the promyelocyte matures into a myelocyte and
later into a metamyelocyte. The boundaries between them are not completely
strict. We present the development stages of different blood cells in Fig. 3.18.
This complexity of the classification problem also outlines one of the main
challenges for artificial staining: identification and preservation of the relevant
features.
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Figure 3.18: Development stages of white blood cells. The tree-like structure
illustrates the interdependence between cells and underlines how challenging
correct classification is.
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3.3 Clinical significance of correct identification of
white blood cells

It is critical in clinical practice to correctly identify types of the present
white blood cells. In general, they can be divided into two categories: non-
pathological and pathological. The non-pathological classes include segmented
neutrophils, band neutrophils, basophils, eosinophils, monocytes and lympho-
cytes. Although just the presence of such classes does not indicate a disorder, an
unbalance in the proportions considered normal is indicative of a pathological
condition. For example, an increased number of neutrophils hints at bacterial
or fungal infection; a rise in eosinophils means allergy, parasite, autoimmune
disease or, in certain cases, spleen or central nervous system disease; an increase
in basophils is a response to allergens and invaders; more monocytes than
usual can signify infection or, in more severe cases, leukaemia. On the other
hand, the presence of classes such as promyelocyte, myelocyte, metamyelocyte,
blast, atypical lymphocyte, reactive lymphocyte, and plasma cell is a sign of a
severe disorder. Promyelocytes signify acute promyelocytic leukaemia; myelo-
cytes - chronic myeloid leukaemia; metamyelocytes and blasts - cancers such as
myelodysplastic syndrome and myelogenous leukaemia. Further, atypical and
reactive lymphocytes are signs of diseases such as mononucleosis, hepatitis A,
B, and C, toxoplasmosis and acute lymphocytic leukaemia. Plasma cells in the
blood smear indicate multiple myeloma. The severity of these diseases points
to the severity of misclassifications, in particular, the false negative predictions
that would result in the misdiagnosis of diseases where time is of the essence.

To summarize, the correct identification of white blood cells allows for
the diagnosis of a wide range of disorders, from infections to cancer types.
Mistakes in the predictions carry severe clinical significance.
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In this chapter, we start with the definition of the digital staining problem
and the challenges it poses. Next, we present the research work related to
the problem: the deep learning algorithms already used in haematology, the
disentanglement techniques for neural network’s latent representation, the
methods to preserve structure on a generated image, the multitask learning
set-up and the uncertainty estimation for image generation. Finally, we present
the process of constructing the datasets used in this thesis and the evaluation
metrics we used to analyse our results.

4.1 Problem statement

The problem I wanted to solve in this work is transforming an image of an
unstained white blood cell into its stained version while preserving all the
features relevant for classifying the blood cell. Namely, to take an image of
an unstained cell captured with a DIC microscope and transform it to look
like a stained cell captured with a BF microscope. To put it in the context
of computer vision: it is a problem of image-to-image translation, where our
source domain is an unstained set of cells, and our target domain is a stained
set of cells. Our downstream task is image classification, so certain features,
for example, size and shape, have to be preserved. Additionally, the colours
need to be adequately generated.
We can separate such three parts of the problem:

• Building the most suitable data set and designing models that use the
available information to the maximum.

• Development of methodologies preserving the features during the trans-
lation process and considering the probabilistic nature of the output.

• Answering the question if there exists a real possibility for haematologists
to work with digitally stained images instead of chemically stained ones.

All these parts have different complexity and pose distinct challenges.
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4.2 Challenges

We can divide the main challenges of this problem into three groups: data-
driven, problem-driven and nature-based.

• Data-driven: the first part is mainly connected to the technical side of
the problem: how to create the best quality dataset? The distribution of
the classes prevents the full control of the class balance in the dataset.
Additionally, to the fact that some cell types are extremely rare, there
exists variability within a given cell class, as different diseases can in-
fluence the same classes. There is also the challenge of creating a fully
pixel-wise aligned dataset - it would provide better results because of
approximating the direct mapping between cells, but with a price of
elaborate preprocessing. These challenges need to be addressed as deep
learning is a data-driven approach, and dataset construction is crucial to
the final result.

• Problem-driven: how to preserve all the classification relevant features
mentioned in Section 3.2, namely the granulation, cell and nucleus shape
and the correct colour scheme? Even slight variations in any of these
qualities may lead to a wrong prediction in terms of classification. This
challenge needs to be addressed with a specific methodology. Addition-
ally, knowing the possibility of the features not being present on the
unstained images, we also need to answer a question: how confident the
network was while generating the images?

• Nature-based: challenges can also come from the fact that assigning
the right class to the most demanding examples is difficult even for
haematologists. We can attribute it to the fact, that different classes come
from a single stem cell as pictured in Fig. 3.18. It makes the classification
problem naturally difficult.

All these challenges are part of this thesis and we address them with a mix of
algorithmic and methodological solutions.

4.3 Related work

In this thesis, I tackle multiple problems connected to image classification and
image-to-image translation. I will now comment on using deep learning for
haematology, multi-domain and multi-task learning, latent space disentangle-
ment, structure preservation and uncertainty estimation. These subjects are
relevant to the methodologies presented later in this work.

4.3.1 Deep Learning for haematology

Many deep learning based-algorithms have been explored in the domain of
haematology in terms of the classification of blood cells, staining generation
and staining normalization.
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Blood cell classification Early works on WBC classification used classical
machine learning methods like the k-Nearest Neighbor (KNN) algorithm [127],
Bayesian classifiers [35] or Support Vector Machines (SVM) [26][105]. Those
works are based on small datasets using handcrafted colour, intensity, shape
and texture features. Depending on the data used, the classification accuracies
oscillate in a range of 83-99%. Recently, deep learning-based approaches
have been successfully applied to leukocyte classification [75, 107, 113, 122,
89, 71, 79, 44] [82]. In [51][108], ANNs and CNNs outperform SVMs on WBC
classification when applied to the same data. Yildirim et al. [129] used a
dataset with four classes (excluding Basophils) and compared different neural
network architectures: AlexNet [64], DenseNet201 [49], GoogLeNet [110] and
ResNet50 [46], achieving the highest accuracy of 83.44% with a DenseNet201.
Almezhghwi et al. [3] compared a VGG, ResNet and DenseNet on a five-
class dataset achieving accuracy up to 98.8%. Their findings showed that
models with pre-trained weights on the CIFAR-100 dataset perform better than
models with random weight initialization. Other works used ResNets for WBC
classification [45, 66, 121]. They achieved test accuracies between 88.29 % and
99.84%. Additional works used VGG-16, InceptionNet-v3 and ResNeXt or other
CNN based architectures obtaining similar results [2][76][102]. On the other
hand, Liang et al. proposed a Recurrent Neural Network (RNN) architecture
combined with a CNN to exploit long-term dependence relationships in WBC
images [72]. They outperformed their CNN baseline by around 2% to achieve
a test accuracy of 90.79% using four classes in the dataset. They stacked the
RNN and CNN network in parallel, merging the features with an attention
mechanism for a final linear classification layer. Most of these approaches rely
on the blood cells of healthy donors, which lack the difficulty present in the
dataset we used. All of these methods are applied to private in-house datasets,
all with a different number of classes included and posing different challenges.
They all work with stained white blood cells.

Staining normalization GANs for image-to-image translation are also present
in histopathology. Previous works have demonstrated great effectiveness of
GANs for the problem of intra-/inter-scanner variability and stain normaliza-
tion [131, 30, 101, 93, 9, 98]. Although making the algorithms more efficient on
a different kind of staining, as well as on data coming from multiple institu-
tions, it does not eliminate the staining process from the laboratory pipeline,
remaining more of a bandage than a remedy. Interestingly, the authors in [30]
noticed the problems with structure preservation, and later D. Mahapatra et al.
in [74] approached it with self-supervised learning. Recent works focus on the
correct structure preservation while using cycle-consistency loss [74].

Staining generation Recently, some works [94, 90] have successfully applied
adversarial generative models to digital staining in histology to generate the
staining for unstained samples. Two works, which are closely relevant to
ours, transfer the knowledge of staining to unstained sample, Rivenson et
al. [94] to quantitative phase images using Pix2Pix [53] and matching pairs of
images. Rana et al. [90] to unstained whole slide images using CycleGAN [138].
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However, neither of these works tackles the problem of a mixed dataset con-
taining both paired and unpaired data or performing any additional task, like
classification.

4.3.2 Multidomain learning

Multi-domain classification problem has been addressed by domain adaptation
methods, such as DANN [32], DADA [87], MADA [86], MuLANN [100],
MDAN [136] and SIFA [18]. Most of these methods rely on Generative
Adversarial Networks (GANs). Those image translation methods produce
realistically-looking images that preserve the target domains’ image style with-
out explicitly preserving the structure. In contrast, our application requires
the structure to be preserved because haematologists are trained to identify
distinctive landmarks, such as shape, size, and granules in the cytoplasm.

4.3.3 Multitask learning

Multiple works tackle the problem of multi-task learning, where the data
representation is built using autoencoders or GANs[48, 92, 34, 99]. Ghifary et
al. propose in [34] an autoencoder-based neural network, with the additional
use of a middle feature map for cross-domain object recognition, whereas
Sankaranarayanan et al. in [99] uses GAN-based network to construct a hidden
feature map that can be later used for classification. Remi et al. [92] uses
GAN conditioned on segmentation map for cross-view image synthesis. In
the context of histology data, Bashir et al. [6] proposed a model for simul-
taneous detection and classification of cells on a smear, later Graham et al.
[40] presented a solution for simultaneous classification and segmentation of
a histology image. Song et al. [106] investigated simultaneous detection and
classification.

4.3.4 Disentanglement

One of our goals through this work is to disentangle the style and structure of
an image. It would allow us to preserve the structure and only change the style
while translating an image. The style of an image can be defined in multiple
ways: from the art style of a painting, through the type of the animal, up to the
lightning of the image. Most works consider attributes such as hair colour or
facial expression style characteristics. The content of the images is even more
complicated: from the strict definition provided by semantic segmentation to
the angle at which a person is facing the camera. However, independently of
the definition, there is joint agreement that the unsupervised image translation
may contain significant entanglement of content and style, causing changes
in the constitution of a given object that appear during the translation pro-
cess. An example of this is hallucinating cancer tumours in MRI images, as
mentioned [24]. Therefore, many works concentrate on disentanglement of the
content and style, which could potentially adapt the style without losing the
crucial structural characteristics of the objects. Both DRIT++[70] and [139] in-
vestigate using distinctive style and content codes for image generation, using
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an image of a different domain as a reference instead of explicitly learning the
content code. [59] proposed SC-GAN using features from a pre-trained VGG
network to disentangle content and style. [63] explored the use of fixpoint
disentanglement loss for content and style in the context of artistic style trans-
fer. [37] proposed a model enforcing representation disentanglement through
several losses and a Gradient Reversal Layer. The problem of content-style
disentanglement was tackled not only in GANs setting but also for the VAEs
[134, 29, 124]. These works study unsupervised disentanglement of structure
and style rather than using a semi-supervised approach with a pre-trained
segmentation network as we do, possibly due to the more complex structures
of the considered objects.

4.3.5 Structure preservation

Another set of works concentrates directly on the structure preservation for
the end task (segmentation or style transfer). The structure of an image is
understood as its semantic segmentation mask or extracted edges. Not all
works consider it necessary to disentangle the latent space to preserve the
structure and treat the structure preservation simply as one of the desirable
characteristics of a model. [17] propose a Domain Invariant Structure Extrac-
tion framework with multiple encoders and a discriminator with a goal of
successful semantic segmentation across domains. Both [112] and [21] use an
additional Edge Generator Network or Edge Detector, respectively, to preserve
the semantic information in a generated image. On the other hand, [125]
proposes a model composed of two autoencoders and two transformers to
preserve the geometrical information in an image. Another area of research
concerned with preserving structural information is semantic image synthesis
[84, 25, 73, 111].

4.3.6 Uncertainty estimation

The methodologies for estimating uncertainty and confidence in deep neural
networks mainly focus on classification problems [12, 31, 67, 60, 88]. These
methods are, unfortunately, not applicable for quantifying generator confidence
in GANs. Over time, many metrics have been proposed to evaluate GANs
[8, 41, 13, 104], some being image quality measures and others focused on how
well the learned distribution reflects the real one. However, few works have
explored the confidence related to the generated images. Indeed, such measures
would be particularly interesting in medical applications as suggested by [7].
In one of the recent works, U. Upadhyay et al. propose modelling per-pixel
heteroscedasticity as generalized Gaussian distribution [119] and using it to
guide a progressive GAN [120] for PET to CT translation.

4.4 Dataset

For this project, we collected the data and built our in-house dataset. Here I
will describe all the steps taken to construct it.
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Figure 4.1: Example of a cropped white blood cell in three different domains
(from the left): DIC, BF, CV.

Blood samples collected in EDTA were semi-automatically prepared using
the slide maker HemaPrep (CellaVision [1]). Digital images of blood cells were
acquired with the automated LeicaDMi8 microscope in three different imaging
modes: (described in Section 2.3)

• Differential inference contrast (DIC) technology, a high contrast strain-free
imaging technique to capture unstained images of blood cells

• Brightfield (BF) microscopy to capture stained images of blood cells.
Smears were stained with May Grünwald-Giemsa.

• Commercial CellaVision system (CV).

We show examples of cell images belonging to all three domains in Fig. 4.1.
To obtain the cell crops, big field images (2,064x1,544 pixels, see Fig. 4.2) were
acquired with DIC and BF microscopy and processed further.

4.4.1 Dataset structure

Our dataset consists of leukocyte images acquired by three scanners from 24
healthy donors. As reported in Table 4.1, our training set contains white blood
cell images from three different domains coming from 20 healthy patients. DIC
domain has images of unstained cells captured with high contrast stain-free
imaging technique. BF domain includes images of the same blood cells, but
after the staining process, captured with a brightfield microscope. CV domain
contains images of blood cells from the same patients, captured and auto-
matically labelled with the CellaVision system and later validated by experts.
This is the only almost completely labelled domain (6951 labelled images out
of 7017 available images). Since the data comes from the same patients, a
complete overlap exists between domains DIC and BF, and a partial overlap
exists between DIC and CV. Because of the overlap, we were able to transfer
part of the labels from CV to both DIC and BF. We classify the white blood cells
into the seven most common classes for healthy donors: Basophil, Eosinophil,
Monocyte, Neutrophil, Lymphocyte, Artifact, and Smudge. The classes are
heavily unbalanced. We account for it, oversampling the underrepresented
classes. Our testing set consists of leukocyte images from DIC coming from
four different patients. For evaluation of the digital staining, we have 545
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Table 4.1: Structure of our dataset. It composes of three domains: XDIC
(unstained images), XCV (stained images captured with CellaVision system)
and XBF (stained images captured with brightfield microscopy) with a different
number of samples and labels.

Training set
- XCV

Training set
- XDIC, XBF

Testing set
- classification

Testing set
- staining

ART 609 2 50 1
BA 40 15 21 7
EO 136 24 40 9
LY 2051 691 680 14
MO 310 94 150 28
SNE 3239 59 1611 339
SMU 566 1098 257 147
No. of labels 6951 1983 2809 545
No. of cells 7017 11227 2809 545
No. of patients 20 4

matching images from DIC, CV, and BF. For evaluating the domain agnostic
classifier, we utilize 2809 unstained leukocyte samples from DIC. The labels
were obtained by transferring from paired images in BF provided by an expert.

4.4.2 Data preparation for digital staining

We detected the white blood cells using the YOLO detector [91] on origi-
nal histological brightfield microscopy images (example shown in Fig. 4.2).
Next, we aligned the brightfield images, and unstained DIC images using
Enhanced Correlation Coefficient (ECC) maximization [28] and transferred the
detected bounding boxes to the unstained images. Based on the bounding box
coordinates, we cropped 256x256 patches from stained and unstained images.

4.4.3 Data preparation for classification

The labels for classification were automatically generated by the CellaVision
system and only validated by a haematologist. However, since the overlap
between the images in the domain CV and DIC is not large, we could transfer
just a fraction of the labels from CV to DIC (1983 out of available 6951 labels).
Since we want to classify unstained images for which a human annotator
cannot provide the labels, the alternative would be to have someone manually
label the stained brightfield images. Compared to this option, we significantly
reduced the labeller workload. The lack of labels in the domains DIC and BF
and the tedious process of labelling by experts is the primary motivation for us
to build domain agnostic feature representation capable of performing good
classification regardless of the domain from which the data are coming from.
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Figure 4.2: Example of an original unstained (top) and stained (bottom) whole-
slide image.
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4.4.4 Data preparation for segmentation

We need pseudo-labels for the segmentation task to help with structure dis-
entanglement, so we trained a U-net segmentation network on a different
set of 1239 manually labelled images from the domain with three classes:
Background, Nucleus, and Cytoplasm. The fourth class - red blood cell - was
obtained with thresholding. These images were not part of our training or
testing set.

4.5 Evaluation

We approach the evaluation of digital staining from the side of image quality
and in context of classification. Classification can be evaluated both directly
and indirectly. In this section we describe all of the metrics used in this thesis
and comment on their limitations.

4.5.1 Direct evaluation

Image quality. To evaluate the quality of digitally stained images, we use
well-established metrics: Mean Squared Error (MSE), Structural Similarity
Index (SSIM), Fréchet Inception Distance (FID) [47] and Learned Perceptual
Image Patch Similarity (LPIPS) [133]. MSE and SSIM are traditional metrics
quantifying similarity between images in terms of exact pixel values (MSE) and
mean, variance and covariance (SSIM). As shown by [133], they do not always
manage to capture a perceptual similarity. Therefore, we additionally use two
"deep learning" metrics based on the differences in the features extracted by
networks pre-trained on the ImageNet dataset. FID score measures the distance
between the distributions of two sets of images. LPIPS is another perceptual
metric that uses the L1 norm to calculate the differences between the features
extracted by all the network layers.

Classification and segmentation. To evaluate the classification performance,
we use accuracy and confusion matrices. We use the defined earlier (please see
Eq. 2.2) DICE coefficient to evaluate the segmentation performance.

4.5.2 Comments on image quality evaluation metrics

The image quality metrics described above have theirs limitations. The tradi-
tional metrics such as MSE and SSIM do not fully capture the complexity of
perceptual image similarity. On the other hand, while using the perceptual
metrics such as FID and LPIPS, we have to consider them with a grain of salt
as well, since the pretrained models used to extract the compared features
were trained of natural images dataset.
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4.5.3 Indirect evaluation

As a means of indirect evaluation, we have chosen automatic classification of
artificially stained images - namely, applying models trained on stained data
to the artificially stained samples. Of course, this comes with its limitations -
there is no way of specifying whether the model misclassified a cell because
significant features were not preserved or because the overall quality of an
image was too poor.

4.5.4 Human evaluation

Lastly, we considered human evaluation, when haematologists themselves
classify the artificially stained images or determine an image to be of quality
too poor to be identified. This evaluation is especially important for clinical
applications and ultimately validates the quality of the generated staining.
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Part III

Multidomain Multitask
Learning
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5
Simultaneous image

translation and classification

In this chapter, we explore the possibilities of combining multi-task multi-
domain learning for haematology, as every used modality provides data that
differ significantly. We take advantage of labels automatically provided for
one of the domains and use segmentation pseudo-mask to improve the image
generation process.

Our model is confronted with data belonging to multiple domains, as
described in Section 4.4. We propose a model with two objectives: (1) automat-
ically classify unstained images and (2) digitally stain them so that they can
be verified by the haematologists, who are used to working with stained im-
ages. In our setting, most classification labels come from the CellaVision (CV)
system and are verified by experts. Therefore, the domain CV is completely
labelled. The second domain consists of stained images captured with Bright
Field Microscope (BF). And finally, the third domain includes unstained DIC
images. Images of all three domains, DIC, CV and BF, come from the same
patients. Due to a partial overlap between CV and BF smears, part of the labels
can be transferred from CV to BF data. Next, the BF labels are transferred
to corresponding DIC images relying on the image alignment. With such a
data setup, we developed a method that fulfils two objectives: multi-domain
classification and digital staining.

5.1 Motivation for multidomain multitask learning

Image-to-image translation methods, in principle, are not designed to pro-
duce domain-invariant features suitable for multidomain image classification.
Both StarGAN [22] and StarGANv2 [23] address the problem of image transla-
tion for multiple domains, but they ignore structure preservation and focus
on style transfer and domain diversification. We are less interested in the
variety of generated outputs and more in structure preservation. Since the Star-
GANv2 [23] model is excellent at generating diverse images and not concerned
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with structure preservation, we build our method on the original StarGAN [22]
architecture. We enforce structure preservation crucial for the digital staining
and keep the latent space feature domain agnostic. We add an auxiliary seg-
mentation task and, optionally, reconstruction for a limited number of matched
images to achieve this. Segmentation enforces that the network learns to gen-
erate the correct nucleus and cytoplasm shape, and reconstruction enforces
reliable translation between the images of the matched domains. The segmen-
tation masks used for training were outputs of a pre-trained network. Even
though they are weak labels, they contributed to a significant improvement.

The domain-agnostic latent space is essential for us. Auxiliary classification
task helps accurately classify the samples regardless of the scanning protocol.
Compared to StarGAN [22], where the target domain labels are fed together
with the input, we provide them directly to the generator. The auxiliary
classification task forces the encoder to learn how to extract features from all
three domains independently of the target staining. It results in a robust and
domain-invariant representation. Despite having fewer convolutional layers
aware of the target domain, such change does not significantly influence image
reconstruction quality. Furthermore, in this way, the encoder is compelled
to produce a uniform representation for all the domains in the bottleneck.
After investigating the latent space, it was evident that the representation
built by the original StarGAN was dependent on the target domain label only.
With domain-agnostic latent space, the class information can be efficiently
transferred from stained to unstained images, enabling us to train a model on
annotated and unannotated data.

The proposed model builds on an intuition that the features necessary for
staining and classification can benefit from each other once the gap between the
input data domains is closed. The contributions of this chapter are as follows:

• Novel combination of image generation with auxiliary tasks such as
segmentation and pair-wise reconstruction. Demonstration of their in-
fluence on the quality of generated images in fine-grained details and
well-defined structures.

• Auxiliary classification and construction of a domain agnostic latent
space to use the features extracted in an unsupervised manner for the
classification task.

• Quantitative and qualitative evaluation comparing our method to the
state-of-the-art methods, an exhaustive ablation study and discussion of
the approach.

5.2 Methodology

Given a dataset X = {XDIC, XCV , XBF}, which consists of three domains, each
having a variable number of labeled (L) and unlabeled (U) images, XDIC =
{(x1, y1), . . . , (xL, yL), xL+1, . . . , xL+U} with x ∈ RH×W×3 being an RGB image,
and y ∈ RC is the corresponding class label, our objective is to train a model
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Figure 5.1: Overview of our framework: The body consists of the domain-
invariant encoder and generator followed by a multi-head discriminator. The
left and right wings are segmentation and classification networks, respectively.

f (·) which maps an input xS from a source domain XS, to a domain-agnostic
hidden representation hS, before mapping it to the target domain x̂T ∈ XT -
unstained to stained image. Additionally, the model learns the mapping of the
hidden representation hS to the class label y independently on the input image
domain xS.

We propose a framework consisting of two main task modules, as depicted
in Fig. 5.1. First, the digital staining task transfers the unstained input images
to virtually stained ones for clinical examination. Second, a domain-agnostic
classification task transfers the knowledge acquired on stained images to the
unstained ones. Two auxiliary tasks are introduced to improve the quality of
the virtually stained images and hence their hidden representations, namely
pair-wise image reconstruction and segmentation tasks.

5.2.1 Digital staining

As shown in Fig. 5.1, the main body of our network is a module responsible for
the digital staining, which consists of three main parts; encoder E, generator
(decoder) G, and discriminator D. Our architecture is similar to StarGAN [22];
however, in contrast to their approach, the label of the target domain is fed into
the bottleneck rather than along with the input image. We hypothesize that
feeding it in the bottleneck yields a domain-agnostic feature representation.
Next, we briefly explain the task of each component and the associated objective
functions.

The encoder E embeds the high-dimensional input image xS to a lower
dimensional feature vector as hS = E(xS; θE), while the generator G maps
the given hidden representation hS together with the given label of the target
domain cT to the image space as x̂T = G(hS, cT ; θG). We broadcast the target
domain labels cT to the middle feature map dimensions and concatenate in
the channel axis with the generator’s input (see Fig. 5.1). The generator G
is trained to fool i) the discriminator Dsrc parametrized by θCR by generating
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images that are indistinguishable from real images as

Ladv(θE, θG) = ExS [log Dsrc(xS; θCR)]

+ExS ,cT [log(1− Dsrc(G(hS, cT ; θG)); θCR)],
(5.1)

and ii) the discriminator Dcls(·) parametrized by θCL which is a simple domain
classifier trained to distinguish between different target domains,

L f
cls(θE, θG) = ExS ,cT [− log Dcls(cT |G(hS, cT ; θG); θCL)]. (5.2)

Similar to [22, 138] approaches, a cycle-consistency loss is introduced to
minimize the discrepancy between the input image and its recovered version
as

Lcyc(θE, θG) = ExS ,cT ,cS [||xS − G(G(hS, cT ; θG), cS; θG)||1]. (5.3)

The discriminators are trained to i) distinguish between real and fake
images by maximizing the negative, adversarial loss of Eq. (5.1) with respect to
the parameter θCR , and ii) distinguish between different target domains as

Lr
cls(θCL) = ExS ,cS [− log Dcls(cS|xS; θCL)]. (5.4)

5.2.2 Domain agnostic classifier

The critical component of our model is the domain-agnostic latent space which
allows for more effective transfer learning. The aim is to classify unstained
images of leukocytes, while the labels are provided for stained samples. Instead
of directly enforcing the representation to be independent of the domain, as it
could be done with a discriminator or Gradient Reverse Layer [32], we pass
the target domain labels right after the bottleneck of the network, which allows
the encoder to extract features relevant for the reconstruction task that are
independent of the input domain (see Fig. 5.1). These features are later used
for effective classification and segmentation. We broadcast the target domain
labels to the middle feature map dimensions and concatenate them in the
channel axis with the domain-agnostic classifier’s input (DAC). To build a
DAC, we feed the classifier with the latent representation hS and minimize the
cross-entropy loss,

LDAC(θE, ψ) = −ExS ,yS [yS log DAC(hS; ψ)]. (5.5)

5.2.3 Auxiliary tasks

We designed two auxiliary tasks to improve the quality of the translated images.
First, we employ a direct pair-wise reconstruction loss for the domains where
paired images are available as

Lrec(θE, θG) = ExT ,xS ,cT [||xT − G(hS, cT ; θG)||1]. (5.6)

Second, we employ a segmentation task enforcing the network to focus and
encode fine-grained details in the white blood cells, for example, granulation in
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the cytoplasm or shape of the nucleus, which is crucial for both digital staining
and classification tasks. To realize this, weakly annotated images are utilized
to minimize the following cross-entropy loss,

Lseg(θE, ϕ) = −ExS ,YS [YS log S(hS; ϕ)], (5.7)

where S(·) is the segmentor, and YS is the pixel-wise annotation of the input
image xS.

5.3 Experiments

To validate the importance of auxiliary tasks and domain-agnostic latent space,
we conduct experiments measuring generated image quality and classification
accuracy of our model.

5.3.1 Implementation details

Our model was implemented in PyTorch 1.3. The size of the input and output
image is 256x256 pixels. We present the overview of the framework in Fig. 5.1.
For all the experiments, we followed the StarGAN [22] in replacing Eq. (5.1)
with Wasserstein GAN [4] objective with the gradient penalty.

5.3.2 Training procedure

The training procedure of this model is relatively complex. The model is
first trained as an original StarGAN, with a low learning rate of 10−6 for 50k
iterations, to avoid mode collapse. After this unsupervised pre-training phase,
the learning rate increases to 10−5 for the subsequent 150k iterations until the
model converges and the losses saturate. After that, we add the reconstruction
loss Eq. (5.6) and turn to supervised learning by adding the classification and
segmentation parts of the network for the final 100k iterations.

As in standard GAN training, the generator and discriminator networks are
trained competitively in a minimax fashion. During training, images from all
three domains are input into the network. A single training iteration consists
of four steps as described in Algorithm 1:

1. Five passes through the discriminator network (Step 3 of Algorithm 1)
alternating with one pass through the encoder and generator (Step 8 of
Algorithm 1), with input data consisting of both real and generated data.
The discriminator outputs for each data point a vector specifying if it is a
real or fake image and to which domain it belongs. The discriminator
is optimized to maximize the probability of distinguishing between the
domains and between real and fake samples. The following steps are
done after each fifth training epoch and after the first 200 training epochs.

2. A single pass through the encoder and the domain agnostic classifier
(Step 11 of Algorithm 1). The input data is passed to the domain-agnostic
classifier as feature maps extracted by the encoder. The network outputs
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Algorithm 1 Training procedure

Require: N: number of training iterations, k: batch size
1: for for t in 1 : N do
2: Sample k images randomly from domains XDIC,XCV ,XBF
3: Pass through the real/fake image discriminator Dsrc and domain dis-

criminator Dcls with input data consisting of both real and generated
images

4: Update image discriminator weights θCL and domain discriminator
weights θCR according to Eq. (4) and negative, adversarial loss of Eq. (1)

5: if t%5 = 0 then
6: if t < 200 then
7: Pass k images with their permuted labels as target domains through

the G
8: Update encoder θEn and generator θG weights according to Eq.

(1)(2)(3)
9: else

10: Pass through the domain agnostic classifier DAC
11: Update encoder θEn and agnostic classifier ψ weights according to

Eq. (5)
12: Pass through the segmentation module S
13: Update encoder θEn and segmentation module θS weights according

to Eq. (7)
14: Pass k images with their permuted labels as target domains through

the generator G
15: Update θEn, θG according to Eq. (1)(2)(3)(6)
16: end if
17: end if
18: end for
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Table 5.1: The results of the experiments validating the order of passes in a
training iteration.

Target
domain

Discriminator
→ Classifier
→ Generator
→ Segmentor

Discriminator
→ Segmentor
→ Generator
→ Classifier

Ours: Discriminator
→ Classifier
→ Segmentor
→ Generator

FID ↓ XCV 64.504 ±1.208 67.344 ±0.874 57.394 ±0.736
XBF 63.610 ±0.998 66.019 ±1.020 53.439 ±0.836

RMSE ↓ XCV 0.180 ±0.003 0.181 ±0.003 0.180 ±0.004
XBF 0.129 ±0.003 0.135 ±0.003 0.121 ±0.003

SSIM ↑ XCV 0.590 ±0.006 0.589 ±0.005 0.616 ±0.006
XBF 0.607 ±0.005 0.586 ±0.006 0.653 ±0.008

Accuracy - 0.901 ±0.003 0.917 ±0.012 0.912 ±0.012
F1-score - 0.902 ±0.015 0.904 ±0.012 0.903 ±0.012
AUC - 0.988 ±0.003 0.989 ±0.004 0.989 ±0.002

a prediction to which class the given cell belongs. The domain agnostic
classifier is trained with cross-entropy loss.

3. A single pass through the segmentation module optimized with a cross-
entropy loss (Step 12 of Algorithm 1). The output is a segmentation
map.

4. A single pass through the generator (Step 14 of Algorithm 1). The
input data consists of the images and labels of target domains (the ones
to which we want to transfer our images). The output is images of
the same size as the input but in the style of the target domain. The
generator is optimized to minimize the probability that the discriminator
can differentiate between real and fake images and minimize the distance
between input and output images transferred back to the original domain.
Suppose an exact match between an input and target domain is available.
In that case, the generator has an additional loss term that minimizes the
distance between the transferred input and its direct match in the target
domain.

We validated this order of passes through the network during the optimization
process with an experiment. Table 5.1 includes its results. Changing the order
of forward passes can potentially disturb the training process; it happens if
the pass-through classifier comes after the pass-through generator. Placing
the segmentation optimization step before the generator improves the results
the most. This order was motivated by the fact that we wanted to direct
the attention of the generator to the segmented structures, not the other way
around. Besides, the classifier should help the generator recognize the correct
class and generate associated features.

The presented approach results in training a network that can digitally stain
and classify white blood cells based on a ground truth from multiple domains.
During inference, we use images from only one domain (namely, the unstained
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Table 5.2: Comparison with state-of-the-art in image-to-image translation and
an ablation study on our model, in XCV domain. After disabling different
network parts, we conclude that all the additional modules are necessary for
the good quality of the reconstructed image and for closing the classification
domain gap.

Target domain XCV RMSE ↓ SSIM ↑ FID ↓
StarGANv2 [23] 1.330±0.012 0.418±0.008 25.821±0.347
Pix2PixHD [123] 1.393±0.013 0.606±0.005 31.084±0.179
StarGAN [22] 0.194±0.006 0.593±0.007 78.027±0.857
Ours 0.180±0.006 0.616±0.006 57.394±0.736
StarGAN+RecXDIC ,XCV ,XBF

+DAC+S
0.182±0.004 0.599±0.007 60.349±0.925

Ours -RecXDIC ,XCV ,XBF
-DAC-S 0.194±0.004 0.592±0.007 79.983±0.853

Ours-RecXCV ,XBF
-RecXDIC ,XBF -DAC-S 0.192±0.004 0.581±0.007 58.342±0.863

Ours-RecXDIC ,XCV
-RecXCV ,XBF -DAC-S 0.211±0.004 0.600±0.006 71.684±0.639

Ours-RecXDIC ,XCV
-RecXDIC ,XBF -DAC-S

0.199±0.004 0.590±0.007 73.118±0.883

Ours-DAC-S 0.191±0.004 0.598±0.008 58.935±0.684
Ours-S 0.193±0.004 0.580±0.007 81.729±0.938
Ours-DAC 0.189±0.005 0.591±0.008 76.157±0.854

white blood cells) to take a step closer to the elimination of the blood samples’
chemical staining and, at the same time, retain the ability to classify them and
give the medical experts a possibility for to inspect the blood cells visually.

5.3.3 Comparison with state-of-the-art

In our application, there are two main objectives in mind: (1) digital staining
and (2) domain adaptation. We address digital staining as an image translation
problem. In our medical application of leukocyte classification, it is crucial to
transfer the structure of the cells used by the pathologist as landmarks, like the
nucleus, cytoplasm, and granularity, for the classification task. In this regard,
the variety of generated outputs is less appreciated than structure preservation.
To compare our method to the related approaches, we perform quantitative
evaluation and compare the image-to-image translation results of different
methods. The second objective is domain adaptation, e.g. producing domain
invariant feature representation. For example, unstained images get correctly
classified given the weak labels from other domains, e.g. stained images. We
quantify this by comparing our approach to other domain adaptation methods
regarding classification accuracy.

Image to image translation In terms of image reconstruction, we compare
our model against StarGAN [22], StarGANv2 [23], and Pix2PixHD [123]. As
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Table 5.3: Comparison with state-of-the-art in image-to-image translation and
an ablation study on our model, in XBF domain. We disable different network
parts to validate their significance. The trends observed in Table 5.2 also hold
here.

Target domain XBF RMSE ↓ SSIM ↑ FID ↓
StarGANv2 [23] 1.738±0.024 0.443±0.007 16.867±0.276
Pix2PixHD [123] 0.782±0.067 0.639±0.006 22.986±0.218
StarGAN [22] 0.158±0.005 0.569±0.008 73.725±0.895
Ours 0.121±0.003 0.653±0.008 53.439±0.836
StarGAN+RecXDIC ,XCV ,XBF

+DAC+S
0.146±0.004 0.612±0.008 58.334±0.994

Ours -RecXDIC ,XCV ,XBF
-DAC-S 0.160±0.004 0.566±0.006 76.333±0.947

Ours-RecXCV ,XBF
-RecXDIC ,XBF -DAC-S 0.1343±0.005 0.619±0.008 55.745±0.739

Ours-RecXDIC ,XCV
-RecXCV ,XBF - DAC-S 0.142±0.004 0.572±0.007 74.270±0.717

Ours-RecXDIC ,XCV
-RecXDIC ,XBF -DAC-S

0.148±0.004 0.578±0.007 70.894±0.894

Ours-DAC-S 0.131±0.004 0.633±0.008 55.439±0.590
Ours-S 0.154±0.004 0.561±0.007 80.762±0.962
Ours-DAC 0.148±0.005 0.570±0.009 75.887±0.892

shown in Tables 5.2 (XCV domain) and 5.3 (XBF domain), our method has the
lowest reconstruction error measured with RMSI and the highest SSIM of all
methods. It shows that our method performed very well on the reconstruction
task regarding structure preservation thanks to the auxiliary tasks of segmen-
tation and pair-wise reconstruction (available for a limited number of matched
images). However, the method falls short regarding the FID score, which
reflects the perceived quality of images. It outlines the problem of choosing
the right metrics when employing GANs in medical applications as discussed
in [13, 104, 41]. Of course, having realistic crisp and sharp images is of high
interest. However, as mentioned before, it can have severe consequences in
a biomedical setting if the structures are not preserved, leading to wrong
classification and diagnosis. Having this in mind, we prioritize maintaining
the shapes of generated objects. We believe domain adaptation in the image
space for medical applications needs an additional metric that would consider
current limitations. As Cohen et al. [24] outlined, networks can hallucinate
features on the generated images. Without additional metrics accounting for
this specific problem of structure preservation, we cannot straightforwardly
employ the models cannot be in a medical setting.

The qualitative results comparing our method and different related meth-
ods are shown in Fig. 5.2 (image translation form the domain of unstained
images XDIC to CellaVision images of the domain XCV) and Fig. 5.3 (image
translation form the domain of unstained images XDIC to Bright Field Mi-
croscopy images of the domain XBF). It is also evident that the methods are
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Table 5.4: Distances between the latent space representations of either two
samples from different domains with the same target domain or the same
sample with different target domains.

Source domains Target domain Cosine similarity ↑

StarGAN [22]

XDIC, XBF XBF 0.349
XDIC, XBF XDIC 0.493
XBF XDIC, XBF 0.672
XDIC XDIC, XBF 0.619

Ours XDIC, XBF - 0.782

excellent in style preservation, like StarGANv2. These good-looking output
images are impossible to distinguish from the real images, but sometimes they
are completely wrong regarding the preserved cellular structure. It means they
are not usable in our application, where correct classification, either by experts
or an automated system, is the priority.

Domain Adaptation We compare the classification results against three mod-
els: DANN [32], DADA [87], and StarGAN [22] augmented with all the
improvements we proposed, so the additional reconstruction loss, the seg-
mentation network, and the domain agnostic classifier. Table 5.5 includes the
results. Our model outperforms previous approaches in the classification of
unstained white blood cells coming from domain XDIC, most efficiently closing
the gap between the annotated domain XBF and the XDIC and XCV .

5.3.4 Ablation studies

For ablation study, we follow such notation: DAC - domain agnostic classifier,
S - Segmentor and RecXi ,Xj - additional reconstruction loss (Eq. 5.6) on domains
Xi and Xj.

Domain Agnostic Latent Space. To facilitate the domain adaptation process,
we construct domain-agnostic latent space by feeding target domain labels
after the bottleneck of the encoder, so directly to the generator. It differs from
the original StarGAN approach, where the labels are provided together with
the input. Feeding the target domain labels to the generator forces the Encoder
to learn how to extract features from all three domains independently of the
target staining, resulting in a robust and domain-invariant representation. We
validate this idea by measuring the cosine similarity between feature vectors
from the latent space. As shown in Table 5.4, Cosine Similarity for our approach
is the highest. The Cosine Similarity in the latent space of StarGAN between
two images of the same instance, but coming from different domains and
having the same target domain, is significantly lower than the one measured
between the same images with different target domains. It indicates the high
dependence of StarGAN’s representations on the target domain.
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Table 5.5: Comparison with state-of-the-art in classification problem in terms
of accuracy (Acc.), F1-score (F1) and AUC. The additional reconstruction loss
together with changing the way the target domain label is passed to the model
lead to more effective closure of the domain gap.

StarGAN [22] + S
+ RecXDIC ,XCV ,XBF + DAC

Ours - RecXDIC ,XCV ,XBF Ours

Acc. XDIC 0.825 ±0.011 0.839 ±0.008 0.912 ±0.012
Acc. XCV 0.967 ±0.010 0.973 ±0.008 0.970 ±0.010
Acc. XBF 0.890 ±0.011 0.938 ±0.009 0.937 ±0.010
F1 XDIC 0.815 ±0.009 0.820 ±0.009 0.903 ±0.012
F1 XCV 0.956 ±0.009 0.962 ±0.009 0.964 ±0.010
F1 XBF 0.878 ±0.010 0.924 ±0.010 0.935 ±0.010
AUC XDIC 0.958 ±0.004 0.961 ±0.003 0.989 ±0.002
AUC XCV 0.997 ±0.004 0.997 ±0.003 0.997 ±0.002
AUC XBF 0.990 ±0.006 0.996 ±0.003 0.996 ±0.003

Pair-wise Reconstruction Loss. Since we have available matching pairs for
the samples from XDIC, XBF, and partially XCV , in addition to the cycle-
consistency loss, we use direct reconstruction loss (Eq. 5.6). Tables 5.2 (XCV
domain) and 5.3 (XBF domain) show the effect it has on the reconstruction
quality. We observe that adding direct matches between two domains (XDIC
and XBF) improves the quality of image reconstruction of the third domain
(XCV). Adding the auxiliary reconstruction loss term improves the latent space
of all three domains, even though it is optimized only on two of them.

Classification We performed several experiments considering the classifica-
tion part of the model and included the results in Table 5.5. First, we compare
against state-of-the-art: DANN [32], and DADA [93]. Next, we divide the
models by manner of introducing the target domain label; for example, di-
rectly with an image or afterwards, only to the generator part of the network.
Looking at the difference in accuracy score between the testing set composed
of unstained images XDIC and the same stained images XBF, we observe a
consistent improvement in XDIC, together with closing the gap in between the
domains. We also noticed that jointly training all the parts is the best training
strategy, and the classification and image reconstruction greatly benefit from
using the segmentation module.

Segmentation We evaluate the segmentation task on four classes (Back-
ground, Red Blood Cell, Cytoplasm, and Nucleus) against the ground truth
labels on 545 unstained images. We obtained an IoU of 0.9139, 0.8281, 0.5902,
and 0.7109, respectively. We show in Fig. 5.6, Fig. 5.7 and in Table 5.6 how it
positively influences the quality of generated images by helping to preserve
such features as the shape of the nucleus.
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Table 5.6: Comparison of RMSE average values from domains XB and XC
for models with and without segmentation module. We notice the biggest
improvement in the artefact (ART), monocyte (MO) and smudge (SMU) classes,
so the ones where the size of the cell is the greatest.

Ours - S Ours
ART 0.237 ±0.004 0.196 ±0.003
BA 0.153 ±0.004 0.141 ±0.004
EO 0.154 ±0.003 0.131 ±0.003
LY 0.142 ±0.004 0.120 ±0.004
MO 0.178 ±0.003 0.131 ±0.003
SMU 0.200 ±0.004 0.155 ±0.003
SNE 0.150 ±0.003 0.125 ±0.003

Table 5.7: Comparison of simplified models. We show that truncation of specific
tasks leads to deteriorated performance. Combining segmentation and image
generation overloads the decoder which results in worse quality of images
in terms of RMSE, SSIM and FID. Combining classifer and discriminator, as
proposed in [81], results in worse classification rate and quality of digital
staining.

Target
domain

Truncated
D and DAC

Truncated
G and S

Ours

FID ↓ XCV 75.376 ±0.863 78.382 ±1.392 57.394 ±0.736
XBF 70.196 ± 0.714 74.028 ±0.992 53.439 ±0.836

RMSE ↓ XCV 0.195 ±0.003 0.205 ±0.004 0.180 ±0.004
XBF 0.129 ±0.003 0.130 ±0.003 0.121 ±0.003

SSIM ↑ XCV 0.574 ±0.006 0.567 ±0.007 0.616 ±0.006
XBF 0.630 ±0.008 0.617 ±0.008 0.653 ±0.008

Accuracy - 0.897 ±0.055 0.888 ±0.128 0.912 ±0.012
F1-score - 0.891 ±0.013 0.884 ±0.013 0.903 ±0.012
AUC - 0.986 ±0.003 0.985 ±0.003 0.989 ±0.002

Tasks truncation We performed an additional ablation study to check if
we could simplify the architecture of the proposed model. We tested two
other architectures: one combining the discriminator D and classifier C (as
proposed in [81]), and one combining the segmentation module S and generator
G. Table 5.7 shows the results and demonstrates that the truncation of a
specific task leads to deteriorated performance. Combining segmentation and
image generation overloads the decoder, resulting in worse image quality
regarding RMSE, SSIM, and FID. Combining classifier and discriminator, as
proposed in [40], leads to a worse classification rate and deteriorated quality of
digital staining. For these reasons, we use several parallel tasks. The features
needed to perform them complement each other without deteriorating the
performance. Namely, the information about the leukocyte class will improve
image generation. Suppose the extracted features differ for each class (which
the classifier requires to output correct prediction). In that case, it will be easier
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for the generator to avoid changing the cell type during the staining process,
which is crucial for diagnostic purposes. Likewise, if the extracted features are
used later for segmentation, it concentrates the attention on specific structures
(nucleus, cytoplasm).

5.4 Discussion

In this section, I will first discuss the annotation efficiency, then the agnostic
latent space, the choice of evaluation metrics, the failure cases, the choice of
the backbone network architecture and finally, the scalability of our model.

Annotation efficiency. Image translation for medical imaging is a complex
problem that exceeds usual domain adaptation requirements. The exact and
truthful transfer of structures is crucial for a correct outcome that could be
utilized later in a medical setting. The variety of generated outputs is less
appreciated than structure preservation. The auxiliary task of segmentation
is beneficial in this regard. It enforces that the network learns to generate
the correct nucleus shape. Even though the segmentation masks used can
be considered weak, as they were automatically generated, they introduced
significant improvement.

Agnostic Latent Space is one of the critical elements of the proposed model.
It allows for efficient classification of the samples regardless of the scanning
protocol. It was not enforced directly but built by changing where the generator
obtains information to which domain the target image should belong. Despite
having fewer convolutional layers aware of the target domain, such change
does not significantly influence the image reconstruction quality. Furthermore,
in this way, the encoder is compelled to produce a uniform representation
for all the domains in the bottleneck. Without a powerful domain-agnostic
representation, the generator could not reconstruct the image with only three
convolutional layers. After investigating the latent space, it was apparent
that the representation built by the original StarGAN was dependent on the
target domain label when fed together with the input (see Table 5.4). This way,
the class information can be efficiently transferred from stained to unstained
images, enabling us to train a model on annotated and unannotated data.

Failure cases. For some cases, all of the existing models fail (see Fig. 5.4
and 5.5). The granulation of the cytoplasm seems to be the most problematic
element to generate in a stained image correctly. It can have two possible
causes: first of all, in the segmentation mask, the cytoplasm is labelled as
a uniform class, discouraging any particular variations. It could be solved
by adding a granulation class for the segmentation task. Secondly, heavy
granulation is, to a different extent, only present in Basophil and Eosinophil
classes. It may be underrepresented in the dataset. On the other hand, any
physical artefacts result in the wrongly generated image as well (see the last
row of Fig. 5.4 and Fig. 5.5). The factors of influence include camera focus
and the illumination of the samples. Variation in one of these parameters can
confuse the model, poor reconstruction quality, and incorrect classification.

Network backbone. We decided to base our model on StarGAN [22]. The
StarGANv2 [23] model was designed to generate diverse images. For our
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application, it is only partially applicable since it is not our goal to generate
diverse images but to have a faithful reconstruction. It underlines the problem
of lack of structure preservation in the medical domain while using only cycle
loss (as presented in [24]). We show that even a few matching pairs improve the
reconstruction quality and help preserve semantic consistency. The other aspect
is the style generated. We augmented the original StarGANv2 model with
additional modules and trained it with and without diversification loss terms.
Unfortunately, we cannot control what is encoded in the ’style code’ injected
in the network’s bottleneck. It dominates the final result of the generated
image. So even though the segmentation network converges, the structure is
not preserved. In this case, the direct reconstruction loss alone is not enough to
enforce the correct shape of the cell, although the SSIM improves with respect
to the original StarGANv2. The results will remain unsatisfactory without
ensuring that the ’style network’ is, in reality, only encoding the style of the
given domain and not the object’s structure.

Scalability. The last point to consider is the technical side of these models.
For instance, StarGANv2 [23] requires 1.5x more parameters than our model
because of additional style encoding networks. On the other hand, our model
requires a more sophisticated training procedure with an engineered learning
rate schedule. Pix2PixHD [123] approach would not be scalable to multiple
domains since it assumes training two networks per domain pair, and the
number of required models would grow exponentially whenever a new domain
(for example additional staining scheme) is introduced. Moreover, Pix2PixHD
uses pairs of images, which would be impossible to map a different kind of
staining since each sample can be stained only once. Our approach extends
easily to multiple domains, which can be useful while having data with
different staining protocols.

5.5 Conclusions

This chapter presents a novel method for handling a multi-domain database to
digitally stain unstained microscopic images of white blood cells and build a
domain-agnostic classifier. Our additional auxiliary tasks have demonstrated
their effectiveness: incorporating the segmentation task enhances the digital
staining process by enforcing attention on the structure transfer. Combining the
cycle loss with direct reconstruction for the images where matches are available
improves the image-to-image translation. Furthermore, by not providing the
target label with the input image but feeding them directly to the generator
and adding an auxiliary target domain classifier, our encoder learns to output
domain-agnostic feature space, significantly improving the multi-domain clas-
sification results. We performed an exhaustive ablation study that supports our
choice of architecture and the validity of the proposed training procedure. We
compared our results to state-of-the-art methods in image-to-image translation
and multi-domain classification.
For further research, combining the benefits of enforced structure transfer by
incorporating the additional segmentation information with better perceptual
style generation would be interesting. Since there were still some failure cases,
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it would be interesting to investigate if additional information in the segmenta-
tion masks, like an additional class for granulation, could help overcome this
problem. To support the clinical applicability, we should consider a quality
assessment of digitally stained images by medical experts. It would include
their impression of the image quality and the possibility of working directly
with digitally stained images of blood cells to classify them. The final improve-
ment would include uncertainty estimation of generated images, allowing for
automatic quality assessment and minimising the probability of erroneous
blood cell classification. We tackle this problem in the next chapter.
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Figure 5.2: Comparison of four methods for image translation from the un-
stained image domain XDIC to the CellaVision image of the domain XCV . From
the left: input, ground truth, Pix2PixHD [123], StarGAN [22] StarGANv2 [23]
and Ours. Even though the images generated by StarGANv2 are incredibly
crisp, it fails to preserve the cell’s structure, generating the nucleus’s wrong
shape.
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Figure 5.3: Comparison of four models for image translation from the unstained
image domain XDIC to the Bright Field Microscopic image domain XBF. From
the left: input, ground truth, Pix2PixHD [123], StarGAN [22], StarGANv2 [23]
and Ours. Here as well, StarGANv2 generated crisp images with the nucleus’s
wrong shape. The images generated by Pix2PixHD preserve the structure, but
the network could not learn the correct colour scheme.
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Figure 5.4: Comparison of four models on failed cases for domain XCV . From
the left: input, ground truth, Pix2PixHD [123], StarGAN [22], StarGANv2 [23]
and Ours. For some of the cells, all four models failed.

Figure 5.5: Comparison of four models on failed cases for domain XBF. From
the left: input, ground truth, Pix2PixHD [123], StarGAN [22], StarGANv2 [23]
and Ours. For some of the cells, all four models failed.
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Figure 5.6: Comparison of the models with and without segmentation module
in XCV domain. From the left: input, ground truth, Ours without segmentation
module, Ours, Segmentation output. It illustrates how the auxiliary segmenta-
tion task helps to preserve the structures on generated images. Especially the
shape of the nucleus and cytoplasm is better maintained.
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Figure 5.7: Comparison of the models with and without segmentation module
in XBF domain. From the left: input, ground truth, Ours without segmentation
module, Ours, Segmentation output. It illustrates how the auxiliary segmenta-
tion task helps to preserve the structures on generated images. Here also, the
shape of the nucleus and cytoplasm is better maintained.
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6
Uncertainty estimation on

disentangled latent
representation

Most current state-of-the-art image-to-image translation and style transfer meth-
ods concentrate on creating increasingly realistic-looking images or diversifying
the generator’s output [53, 123, 22, 23]. However, in medical applications, there
is another factor to consider. Changes in structures and texture between the
input and generated images could alter the class label. For example, during
the digital staining, an image containing a blood cell of a healthy patient could
be converted to a pathological sample or, more critically, a pathological sample
converted to a healthy one. In practice, a lack of preservation of certain features
may lead to misclassifications and erroneous diagnoses, as shown by Cohen
et al. [24], where the network hallucinates brain tumours, or as we have seen
in the Chapter 5, where the model relying on standard cycle-consistency loss
changes the classes of white blood cells. We want to estimate how confident
the generator is during the digital staining to prevent such cases.

To successfully digitally stain a white blood cell, we need to correctly
map the colour scheme of chemical staining and faithfully preserve its critical
structural components, such as the nucleus’s shape and the cytoplasm’s colour,
so that the haematologist or automated system can classify it. We developed a
model consisting of two interdependent steps to fulfil these requirements. In
the first step, we disentangle the style and structure of the generated images.

The disentanglement is necessary to easily trace the effect of changes in
a given latent representation. Otherwise, what influences different parts of
the finally generated image is unclear. In the second step, we estimate the
confidence of the latent representation to recognize poorly generated samples
in terms of style and structure. We disentangle the style and structure by
constraining encoders differently during training. We estimate the confidence
of the generated structure and style based on the robustness of the structure
and style representations. We corrupt the latent representations with noise
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and measure the similarity between the generated samples to estimate the
confidence.

We take advantage of the fact that we can define the structure in the images
of white blood cells straightforwardly by considering the shape of the nucleus
and cytoplasm. Therefore, we can use pseudo-segmentation masks of the cells
and their intracellular structures to guide the network to generate the desired
structures. Moreover, we can do it independently of generating the style. In
practice, I implemented it using three different modules as depicted in Fig. 5.1.
The structure module is responsible for learning the representation of white
blood cells, optimized so that the segmented nucleus and cytoplasm have the
same shape as those in the input image. The background module is responsible
for the background generation, optimized again with segmentation masks, but
this time using segmentation masks of red blood cells and the background.
Finally, the style module learns the style representation. Unlike previous
approaches, our method proposes a semi-supervised way of disentangling the
image components [70, 139, 59, 63, 37]. Unlike Pix2Pix [53], and Pix2PixHD
[123], which require matching image pairs from the source and target domains,
our method does not require it, as long as the pseudo-segmentation masks for
both domains are provided. The main reason for keeping separate foreground
and background encoders is that we mainly need the representation for a
clinically more significant foreground part of the image designating white
blood cells. However, we do this without sacrificing the quality of background
reconstruction, so the haematologists can still be comfortable working with
such images.

This separate encoding of white blood cell let us estimate the confidence
of a generation of this part of the image; thus, the score is not corrupted with
background information.

6.1 Disentanglement of image components in the
latent space

Our methodology consists of two steps: first, building a network that generates
images based on disentangled style and structure representations and second,
generating multiple samples with perturbed style and structure representations
to estimate the model’s confidence. The disentanglement representations are
constructed with the help of segmentation masks obtained from a pre-trained
U-Net. Given image x ∈ X and domain y ∈ Y, we assume hidden latent
representation s, t for style and structure, respectively. We randomly sample
latent code zs and zt from a normal distribution for structure and style gen-
eration. Our model consists of (1) a style module, (2) a background module
and (3) a WBC structure module depicted in Fig. 6.1. The style module is com-
posed of style mapping network MS(zs; θMS) and style encoder EnS(x; θEnS).
The WBC structure module is composed of WBC structure mapping network
MT(zt; θMT ) and WBC structure encoder EnT(x; θEnT ). Finally, the background
module is the main generation module and is composed of background en-
coder EnB(x; θEnB), generator G(x, s, t; θG)), and discriminator D(x; θD). The
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Figure 6.1: Overview of the architecture of our model. The network consists of
three encoders, two blocks mapping sampled code into latent representations,
a bottleneck and a generator.

first step of our method is building an adversarial neural network. The gen-
erator receives three different latent representations: one of the white blood
cell, one of the background and one of the styles in which the sample is to be
generated. We propose a model optimized with several objectives to obtain
such three distinct representations.

Adversarial loss During the training, we randomly sample a target domain
ỹ ∈ Y = {1, 2}, style latent code zs and latent structure code zt. They are used
to generate structure code t̃ = MT(zt) and a target style code s̃ = MSỹ(zs). The
Sỹ indicates the head of the style mapping network MS, choosing the one that
corresponds to domain ỹ as indicated in Fig. 6.1. The generator G can produce
three kinds of outputs. It takes an image x, latent code for style s̃ and structure
t̃ as inputs and learns to generate:

• G(x, s̃, t̃): an image belonging to the distribution with generated style
and structure,

• G(x, s, t̃): an image with original style and generated structure and

• G(x, s̃, t): an image with generated style and original structure.

We constrain the model in multiple ways to generate these three different
outputs. The first training objective is minimizing the classical adversarial loss
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on all of the three generated samples:

Ladv(θD, θG, θMT , θMS , θEnT , θEnS , θEnB) = Ex,y[logDy(x)]

+Ex,ỹ,zs ,zt [log(1− Dỹ(G(x, s̃, t̃)))]

+Ex,ỹ,zt [log(1− Dỹ(G(x, s, t̃)))]

+Ex,ỹ,zs [log(1− Dỹ(G(x, s̃, t)))]

(6.1)

where θ are the parameters of the given subnetwork, the style mapping
network MS provides style code s̃ for target domain ỹ and the structure
mapping network MT provides structure code t̃ likely for the input image x.

Style reconstruction The second objective is constraining the style generation.
Generator G utilized the style code s̃ to produce the images with the original
structure and generated style and both style and structure. We enforce the
style reconstruction by punishing the difference between the output of style
encoder Enx for generated images and the output of style mapping network
for a given domain MSỹ .

Lsty(θG, θMT , θMS , θEnT , θEnB) = Ex,ỹ,zs [||s̃− Ens(G(x, s̃, t))||1]
+Ex,ỹ,zs ,zt [||s̃− Ens(G(x, s̃, t̃))||1]

(6.2)

Structure reconstruction The third objective is to preserve the structural
information of the input. To this end, we use pseudo-segmentation masks
obtained from pre-trained U-Net and thresholding. They are obtained on
stained images xmatch and transferred to unstained images using transforma-
tions obtained by a pixel-accurate alignment between stained and unstained
images. These segmentation masks are the only use of the matching image
pairs produced by pixel-accurate image alignment. We define four segmen-
tation classes: background (b), red blood cells (r), cytoplasm (c) and nucleus
(n). For all the outputs, we penalize if the generated cell segmentation mask
deviated from the input segmentation mask in terms of background and red
blood cells. Additionally, we punish the nucleus and cytoplasm segmentation
classes for the output where the white blood cell structure is to be preserved.
Our objective is to minimize cross-entropy loss.

Lstr(θG, θMT , θMS , θEnT , θEnB) = CEi∈b,r,c,n(Seg(xmatch),

Seg(G(x, s̃, t))) + CEj∈b,r(Seg(xmatch), Seg(G(x, s̃, t̃))
(6.3)

where CE is Cross Entropy loss, and Seg is a pre-trained segmentation network
(U-Net). The gradients from this loss function are propagated through this
segmentation network, but their weights are not updated. It only influences
the weights of WBC structure encoder EnT , background encoder EnB and
generator (G).

Diversification As we don’t want to lose the possibility of generating diverse
outputs, we follow StarGANv2 ([23]) and include the diversification loss where
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the distance between images generated with two different style codes s̃1 and
s̃2, as well as two different structure codes t̃1 and t̃2 is maximized.

Lds(θG, θMT , θMS , θEnT , θEnB) = λ
(

Ex,ỹ,zs ,ẑs [||G(x, s̃1, t)−

G(x, s̃2, t))||1] + Ex,ỹ,zt ,ẑt [||G(x, s, t̃1)− G(x, s, t̃2))||1]

+Ex,ỹ,zs ,ẑs ,zt ,ẑt [||G(x, s̃1, t̃1)− G(x, s̃2, t̃2))||1]
) (6.4)

As the diversification of outputs can be an issue, we introduce an λ regulariza-
tion term that allows us to weigh it appropriately.

Preserving source characteristics For the preservation of other domain in-
variant characteristics, we use standard cycle consistency loss:

Lcyc(θG, θMT , θMS , θEnT , θEnB) = Ex,y,ỹ,zs ,zt(||x− G(G(x, s̃, t̃), s, t)||1]
+Ex,y,ỹ,zs(||x− G(G(x, s̃, t), s, t)||1]
+Ex,y,ỹ,zt(||x− G(G(x, s, t̃), s, t)||1]

(6.5)

6.2 Confidence estimation using latent representa-
tion

The second part of our method tackles confidence estimation. We use the
disentangled style and structure representations to estimate how confident the
network is about its generated image. We generate k samples (g1, ..., gk) with
the structure code corrupted with Gaussian noise and k samples (h1, ..., hk) with
the style code corrupted with Gaussian noise, where the standard deviation
used to generate the noise can be regulated by factors α and β as multiples of
the standard deviation of the latent representation: σt = αΩ(t) and σs = βΩ(s̃).

η1,...,k ∼ N (0, σ2
t )

ψ1,...,k ∼ N (0, σ2
s )

g1, ..., gk = G(x, s̃, t + η1), ..., G(x, s̃, t + ηk)

h1, ..., hk = G(x, s̃ + ψ1, t), ..., G(x, s̃ + ψk, t)

(6.6)

Next, we use the Mutual Information (MI) to quantify the differences
between the digitally stained target sample xtrg = G(x, s̃, t) where the original
structure is enforced and noisy generated images (g1, ..., gk) and (h1, ..., hk):

δ =
1
k

k

∑
i=1

(
MI(xtrg, gi) +MI(xtrg, hi)

)
(6.7)

and interpret the score δ as the confidence of the network of generated image
xtrg. We encapsulated the whole procedure as Algorithm 2.

We assume that the more robust the style and structure representations are,
the more confident the network is in its generated output. The score measures
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Algorithm 2 Confidence estimation procedure

Require: x: input image, k: number of corrupted outputs, α: style noise
regularizer, β: structure noise regularizer, MI(): function calculating
mutual information between images, Ω(): standard deviation

1: t← Ent(x)
2: s̃← MSỹ(zs)

3: xtrg ← G(x, s̃, t)
4: δ← 0
5: for i← 1 to k/2 do
6: ηi ∼ N (0, (α(Ω(t)))2)
7: gi ← G(x, s̃, t + ηi)
8: ψi ∼ N (0, (β(Ω(s̃)))2)
9: hi ← G(x, s̃ + ψi, t)

10: δ← δ +
(
MI(xtrg, gi) +MI(xtrg, hi)

)
11: end for
12: δ← 1

k ∗ δ
13: return Confidence score δ

the information contained between images when their structure and style
representations are corrupted. We chose the mutual information (MI) here as
it is not as biased by the structural information as Structure Similarity Index
(SSIM) and not as detail-oriented as Mean Squared Error (MSE). Intuitively
speaking, MI measures the dependence of the outputs. Therefore, after
sampling outputs with corrupted structure or style representations, we measure
how much information is retained between them. It captures how much the
corruption of style and structure representation influences the output image,
so how robust these representations are.

6.3 Implementation and experiments

Our model was implemented in PyTorch 1.7. The input and output image
size is fixed to 128x128 pixels (resized from 256x256 crops). The overview of
the framework is presented in Fig. 6.1. For all the experiments, we follow the
StarGAN [22] in replacing Eq. (6.1) with Wasserstein GAN[4] objective with the
gradient penalty. We used mixed-precision training for all of the experiments.
We introduce λ term that weights the diversity part of our objective function
(Eq. (6.4)) and set it to 3, based on the ablation study reported in Table 6.1.
We define parameters α and β that regulate the amount of noise added to
generate noisy samples and k that represents the number of noisy samples for
confidence estimation. We set α = 3, β = 7, and k = 20 based on ablation study
reported in 6.4. We train our model for 200k iterations. The style representation
is introduced to the generator using the AdaIN layer as in StyleGAN[56], and
structure representation is introduced using SPADE[84] as it contains structural
information.
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Table 6.1: Comparison of diversity measured with LPIPS and quality values
quantified with SSIM for different values of the regularization weight λ used
in the Eq. (6.4). The quality deteriorates as the diversity increases. Note that
for small values λ (e.g. 1 and 2), the network only generates samples belonging
to the most numerous classes, namely LY and SNE. For the rest of experiments
we fixed the λ value to 3 as a good balance between quality and diversity.

λ LPIPS ↑ SSIM ↑
1 0.256 (0.254) ± 0.078 0.839 (0.829) ± 0.041
2 0.332 (0.329) ± 0.082 0.838 (0.820) ± 0.044
3 0.393 (0.391) ± 0.099 0.838 (0.812) ± 0.064
4 0.420 (0.417) ± 0.100 0.811 (0.810) ± 0.069
5 0.423 (0.420) ± 0.102 0.782 (0.773) ± 0.070

Dataset For this part of the work, we used a subset of the dataset described
in section 4.4, namely the two domains: DIC and BF. We chose this subset
because of the accessibility of the segmentation masks for the stained images
and the complete known correspondences between images in both domains.

Evaluation In this chapter, we calculate FID in two ways: (1) for the generated
images and the stained ground truth test set images (FIDtest) and (2) for the
generated images and the stained part of the train set (FIDtrain). It captures the
discrepancy between learning well the train set and test set distributions while
having a patient-wise split. We also use LPIPS in two ways; first, to evaluate
image quality, we extract features from pre-trained AlexNet and calculate the
difference between the features of the generated image and its stained ground
truth version. In this case, the lower the value, the better. Secondly, we use
LPIPS to evaluate the diversity of generated outputs. In this case, we generate
20 images with sampled style and structure codes and calculate the feature
difference between them. In this case, the greater the LPIPS value, the more
diverse the network’s outputs are.

6.3.1 Image quality

First, to make sure our network generates good-quality images, we compare
our results in terms of image quality to state-of-the-art style adaptation and
image translation networks: Pix2PixHD, StarGANv2, CycleGAN, DRIT++ and
U-GAT-IT (see Tables 6.2 and 6.3, and Fig 6.5). We chose the Pix2PixHD
model to represent the upper bound for this translation problem, as it uses the
matched image pairs. In more realistic scenarios, such pairs are not always
available due to the costly preprocessing needed to obtain them. As our model
was trained without direct reconstruction loss, we also compare our method
to networks that work with unmatched data. The CycleGAN is the most
widespread baseline. StarGANv2 offers the possibility of transferring between
multiple domains. Although not included in our application, it is particularly
interesting for haematological images, as different staining protocols could be

69



Chapter 6: Uncertainty estimation on disentangled latent

representation

Figure 6.2: Visualisation of generated cells used for confidence estimation.
Examples include cells generated with noisy style representation. We present
the input to the network, its corresponding ground truth image and a generated
sample with the original structure preserved and sampled style G(x, s̃, t). Next,
we show four samples generated with corrupted style representation (see
equation 6.6). This illustrates with what samples the style part of the confidence
score is calculated.

represented. The DRIT++ relies on style-structure disentanglement, and the
U-GAT-IT model uses an attention mechanism to preserve significant features.
StarGANv2, CycleGAN, DRIT++, and U-GAT-IT are style transfer networks;
they learn the distribution perfectly, generating realistically looking images
and achieving low FID scores compared with the training set. However, they
do not preserve the class-specific details, resulting in changing the cell type
during the generation, making the results clinically inadmissible, which can be
seen in Fig. 6.4, and low FID score for the test set. For a fair comparison, we
generate 20 samples with StarGANv2 and compare the average score among
the 20 samples and the minimum value of MSE, LPIPS and maximum SSIM.
We do it to accommodate the possibility of a well-generated sample among the
diverse outputs. Still, even the best possible option does not score as well as
competitors. Additionally, to the best of our knowledge, there is no way to
predict a priori which sample would be most faithful to the input. Pix2PixHD
is an image-to-image translation network benefiting from the direct supervision
of paired images. It performs best in terms of MSE, SSIM and LPIPS; however,
it depends on the pixel-wise alignment that, in practice, is a very expensive pre-
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Figure 6.3: Visualisation of generated cells used for confidence estimation.
Examples include cells generated with noisy structure representation. We
present the input to the network, its corresponding ground truth image and
a generated sample with the original structure preserved and sampled style
G(x, s̃, t). Next, we show four samples generated with corrupted structure
representation (see equation 6.6). This illustrates with what samples the
structure part of the confidence score is calculated.

processing step. Also, it does not correctly learn the distribution representation
that we can measure with FID (wrt. DRIT++ when compared to the training
set, and wrt. our model when compared to the testing set), and it offers very
little flexibility not representing staining variations. Our model performs en
par with Pix2PixHD in terms of structure preservation (SSIM), slightly worse
comparing MSE and LPIPS (which is expected as we do not use the matching
pairs straightforwardly but only to obtain the segmentation masks) and better
when it comes to distribution modelling achieving the best FIDtest score.

Next, we confirm we are still able to generate diverse samples. We conduct
an ablation study on a regularisation term λ that decides on the magnitude
of the diversity loss term. The results are presented in Table 6.1. As the
regularisation term, λ, increases, the diversity of generated samples increases.
For values lower than three, we have observed mode dropping, with the
generator being able only to produce cells belonging to the most numerous
classes: SNE and LY. For values greater than three, the quality of images
starts to deteriorate, as the values of diversity term dominate the total loss. To
preserve the quality of generated images but not give up on the possibility
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Figure 6.4: Comparison of the images generated by our model to related ap-
proaches StarGANv2 [23], DRIT++ [70], U-GAT-IT [61], CycleGAN [138] and
Pix2PixHD [123]. We present the translation results on all classes in the test set.
StarGANv2, DRIT++, U-GAT-IT and CycleGAN change the shape and intracel-
lular structures of the white blood cell, making it impossible to differentiate
classes of generated outputs. Pix2PixHD and our model successfully stain the
samples from well-represented classes such as LY, SNE, SMU, MO and ART,
but both fail for underrepresented BA and EO.

of generating diverse samples, we set the λ to be equal to three. We also
investigate diversity qualitatively. Fig. 6.2 and 6.3 present the cells with
sampled style and structure. We can see slight differentiation in colours and
sharpness between images in the sample styles, representing our training
set. However, it also happens that the shape of the nucleus differs slightly,
especially when it is not visible on the unstained input image. The main reason
to include the corrupted style representation in the confidence score is that
when there is not enough structural information available, the network uses
the style code to compensate for it.

We validated our style-structure disentanglement by training a network
without structure preservation loss (the structure modelling component is not
optimised). We report the results in Tables 6.3 and 6.2. We evaluate it by
comparing the ground truth stained cell with the images generated with the
original image structure code. We notice that the SSIM of a network trained
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Table 6.2: Comparison of the quality of generated samples with other models
in terms of MSE and SSIM. We report Mean (Median) ±Std for all values. We
mark the best result in bold and underline the second best. Our model performs
similarly to Pix2PixHD, although we do not rely on direct reconstruction with
paired images.

Model MSE ↓ SSIM ↑
CycleGAN 0.007 (0.006) ±0.004 0.798 (0.821) ±0.081
DRIT++ 0.009 (0.008) ±0.006 0.774 (0.791) ±0.079
U-GAT-IT 0.007 (0.006) ±0.004 0.787 (0.802) ±0.072
StarGANv2-min/max 0.008 (0.007) ±0.003 0.743 (0.751) ±0.061
StarGANv2-average 0.021 (0.016) ±0.013 0.596 (0.600) ±0.108
Ours (without Eq. 6.2) 0.013 (0.013) ±0.004 0.595 (0.596) ±0.045
Ours (without Eq. 6.3) 0.009 (0.008) ±0.004 0.755 (0.770) ±0.066
Ours (without Eq. 6.4) 0.008 (0.007) ±0.003 0.708 (0.716) ±0.057
Ours 0.0044(0.004) ±0.003 0.838 (0.812) ±0.064
Pix2PixHD 0.003 (0.003) ±0.003 0.846 (0.869) ±0.074

Figure 6.5: Box plot presenting image quality results comparison in terms of
MSE, SSIM and LPIPS, with median marked in orange and outliers in red. The
Pix2PixHD model defines our upper bound, while our method outperforms
all the baselines trained on unpaired data.

without the additional loss term is comparable to the original StarGANv2 and
significantly lower than when the structure preservation loss term is used,
proving the necessity for this part of the model.

Finally, we validated the two loss terms responsible for learning the style
distribution in terms of style code and style diversification. We report the
numbers in Table 6.3. Without the style learning component (Eq.6.2), the
network cannot correctly represent a sample’s staining, resulting in poor
performance in terms of MSE, SSMI and LPIPS. On the other hand, without
the diversification term (Eq.6.4), the staining distribution is not represented, as
reflected in very poor FID scores on both the training and test sets.
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Table 6.3: Comparison of the quality of generated samples with other models
in terms of LPIPS and FID. We calculate FID both with the train and test set.
We report Mean (Median) ±Std for all values. We mark the best result in bold
and underline the second best.

Model LPIPS ↓ FIDtrain ↓ FIDtest ↓
CycleGAN 0.125 (0.112) ±0.059 126.172 146.274
DRIT++ 0.143 (0.129) ±0.063 80.695 203.292
U-GAT-IT 0.178 (0.173) ±0.058 265.851 301.027
StarGANv2-min/max 0.141 (0.131) ±0.054

110.640 218.041
StarGANv2-average 0.222 (0.217) ±0.082
Ours (without Eq. 6.2) 0.206 (0.193) ±0.077 434.123 413.562
Ours (without Eq. 6.3) 0.166 (0.155) ±0.055 231.666 245.876
Ours (without Eq. 6.4) 0.176 (0.160) ±0.081 536.000 629.508
Ours 0.115 (0.099) ±0.062 152.011 134.854
Pix2PixHD 0.090 (0.076) ±0.051 127.425 150.649

Figure 6.6: Line plots depicting the influence of the number of samples on
the correlation of confidence and LPIPS. The overall correlation increases
while more samples are drawn. However, looking more closely at the class
dependence (plot on the right), we can see that this is the trend of the most
numerous classes (LY, SMU, SNE). Classes with fewer samples (MO, ART)
peak at 50 samples and decrease when 100 samples are drawn. In the case
of underrepresented classes (BA, EO), the correlation is much weaker and
unstable.

6.3.2 Confidence estimation

We generate multiple samples with corrupted style and structure representation
to estimate the confidence. We present some examples in Fig. 6.2 and 6.3. We
can see changes introduced by injecting the Gaussian Noise into the latent
representation. Our intuitive assumption is that the more robust the latent
representation is to the noise, the more mutual information (MI) is retained
between corrupted samples. Therefore, by measuring the MI between our
target sample (one with stained style and original structure) and its noise-
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Table 6.4: Correlation of confidence (δ from Eq. 6.7) and LPIPS. We show how
the correlation value changes with increasing noise corruption of style com-
ponent α, structures component β (see Eq. 6.6) and the number of generated
sample k. The more samples are drawn for the estimation, the stronger the
correlation between confidence value and LPIPS score.

α\k 2 5 10 20 50 100
1 0.490 0.567 0.630 0.640 0.644 0.660
3 0.459 0.561 0.648 0.672 0.680 0.703
5 0.392 0.503 0.612 0.652 0.675 0.704

β\k 2 5 10 20 50 100
1 0.592 0.610 0.615 0.618 0.609 0.617
3 0.637 0.656 0.667 0.669 0.661 0.671
5 0.646 0.671 0.681 0.682 0.676 0.686
7 0.645 0.667 0.687 0.688 0.682 0.692
10 0.634 0.669 0.688 0.688 0.685 0.695

Table 6.5: Comparison of the image quality and the absolute value of correlation
between confidence (δ from Eq. 6.7) and image quality metrics per class.

Image quality MSE ↓ SSIM ↑ LPIPS ↓
ART 0.019 0.829 0.155
BA 0.015 0.842 0.155
EO 0.021 0.808 0.163
LY 0.017 0.828 0.142
MO 0.017 0.830 0.152
SNE 0.018 0.830 0.149
SMU 0.018 0.824 0.147

Correlation MSE vs. δ SSIM vs. δ LPIPS vs. δ

ART 0.282 0.378 0.709
BA 0.620 0.449 0.636
EO 0.596 0.655 0.487
LY 0.421 0.439 0.693
MO 0.519 0.579 0.710
SNE 0.534 0.429 0.732
SMU 0.447 0.449 0.713
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corrupted versions, we can quantify the confidence of our structure encoder
and style mapping network. To evaluate the confidence estimation quality,
we first correlate it with image quality score MSE, SSIM and LPIPS values,
calculated for the generated stained image and the ground truth stained image.
The results are presented in Table 6.5. The most important metric, in this case,
is LPIPS, as it captures the similarity of the deep features. As shown by [133],
it cannot be fooled by changes in sharpness, contrast or noise. The Pearson
Correlation Coefficient between the confidence δ and LPIPS score across all
the classes is 0.71. We can see a higher correlation between the confidence
score and with LPIPS metric in the well-represented classes, such as LY, SMU
and SNE. The correlation is lower for underrepresented classes, which is to be
expected, as the few samples present in the test set do not allow fair estimation.
We also investigated the correlation between MSE and SSIM metrics, but it was
quite weak. The possible reason for it is that MSE is too fine-grained to be
representative, and SSIM is, by definition, susceptible to changes in brightness
and contrast, which occur when sampling the style (see Fig. 6.2 and 6.3).

Secondly, we perform an ablation study varying the number of samples k
needed and the scaling of the standard deviation (α for structure and β style
from section 6.2) of the Gaussian noise needed for confidence estimation. We
investigate the influence of the structure standard deviation scaling factor β
varying the values from 1 to 10 and the style standard deviation scaling factor
α ranging from 1 to 5. The greater values introduced too much corruption for
the results to be analysed. We present the results in Table 6.4. As the number of
samples k increases, so does the Pearson Correlation Coefficient, and this trend
is independent of the standard deviation of injected noise. The best values are
obtained with k = 100. However, sampling more than 100 samples per data
point is time-wise not feasible. We analyzed the influence and dependence
of the number of samples on the correlation. Fig. 6.6 shows the results. With
10 to 20 samples, the correlation almost reaches its maximum value for 100
samples, and the increase between 20 and 100 can be neglected. It shows that
using 10 samples per data point, which is less computationally demanding, is
enough to obtain a reliable estimation. Also, the optimal number of samples
depends on how well the given class was during training. For underrepresented
classes (BA, EO), the correlation is unstable independently of the number of
drawn classes (also seen on scatter plots in Fig. 6.7). Nevertheless, this could
potentially change for more complex pathological cell classes. Therefore, we
set the parameters α = 3, β = 7 and k = 20 (due to time efficiency).

6.3.3 Latent space

To better understand what kind of information is encoded in the structure
encoder EnT and the style encoder EnS we plot T-SNE embeddings in Fig. 6.8
of both structure and style representations extracted from the test samples.
Although they are not clustered w.r.t. the ground truth classes, we can see
some agglomerations of SMU and MO in the structural representation and
SMU in the style representation. It is promising because these cell types differ
significantly in structural information. Smudges do not have an apparent
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nucleus, and Monocytes are significantly bigger than the other cell types.
Obtaining a more pronounced clustered representation w.r.t. ground truth
classes cannot be expected. A correct classification would need both, style
information, such as the colour of the cytoplasm and granulation, and structural
information, such as the shape of the nucleus and size of the cell.

6.3.4 Discussion

As promising as the approach is, certain limitations are to be considered. The
first and most significant one is the definition of the structure. We used the help
of a segmentation network to specify components of the image. Potentially, the
approach could work just as well for different images, as long as the structure
is as easily definable as on the microscopic images, where the perspective and
lighting are fixed. There are also unsupervised ways to disentangle structure
and style, but since the method in this paper is significantly dependent on the
disentanglement quality, any hindrance on that side would undoubtedly be
reflected in the proposed confidence score. Following this thought, we could
conclude that better quality segmentation masks, with additional classes, for
example, granulation and nucleoli (a small structure inside the nucleus), would
lead to improved confidence estimation.
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Figure 6.7: Scatter plots showing the correlation between LPIPS and confidence
score δ. As the overall correlation is 0.7, we could consider all the generated
samples with δ < 2.50 low quality. From the detailed class-specific plots, we
can see it would work for well and middle-represented classes (ART, LY, MO,
SMU, SNE), but the correlation is practically nonexistent in the unrepresented
classes (BA, EO).
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Figure 6.8: TSNE-embbeding images of Structure Encoder (top) and Style
Encoder (bottom).
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7
Corrupting latent

representation with noise

After the encouraging results on the white blood cell dataset described in
Chapter 6, we set to investigate whether the concept also holds for a less
constrained problem. To this end, we let go of the assumption that we can
disentangle the latent space to style and structure representations. Additionally,
we decide to test the idea on different datasets containing CT and MRI scans.
Visual adaptation of CT images to MRI is a problem essentially the same
as digital staining of blood cells, which remains of primary interest in this
thesis: the same object is captured with different modalities, and preserving its
anatomical features while translating the image from one domain to another is
critical.

CT-MRI translation has also been addressed as an image-to-image transla-
tion problem [19, 135, 27, 20, 33, 128]. Some of the approaches concentrate on
shape consistency and the preservation of anatomical features [130, 135, 27, 33]
and others proposed a multimodal approach to address the scalability con-
cerns [126, 50, 103]. Nevertheless, determining when a generative adversarial
network can faithfully preserve the structure remains the main challenge. This
issue considerably impacts the medical field, where generated images with
fabricated features have no clinical value. Upadhyay et al. [120] tackled this
problem by predicting the output images with the corresponding aleatoric
uncertainty and then using it to guide the GAN to improve the final output.
This method requires many changes in the optimization process (additional
loss terms) and network architecture (additional output). They showed that
uncertainty guidance improves the generated image quality. However, they did
not address the point that in medical imaging, the visual quality of images does
not always transfer to the performance on a downstream task. Our goal was to
examine this problem from a different perspective and test the hypothesis: the
more robust the image representation, the better the quality of the generated
output and the result.

Similarly to the method introduced in Chapter 6, here we aim to estimate
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Figure 7.1: Method overview. Multiple noise injections into the latent space
enable the generation of multiple outputs.

the confidence of the latent space representation. However, this time using the
whole image, omitting the disentanglement step. In such a case, we opt to use
a binary mask on the latent space representation to filter out the changes in
image space that do not concern the object. It is trivial to do on CT and MRI
images, as the background is black. We aim to estimate the confidence of the
generated structure in the target domain and investigate it in the context of an
end task - segmentation.

7.1 Method of injecting the noise into latent repre-
sentation

We design a method to test further the assumption that the stronger the latent
representation, the better the quality of a generated image. To check the validity
of this statement, we again corrupt the latent representation of an image with
noise drawn from a normal distribution and see how it influences the generated
output image. However, we do not have access to the pseudo-segmentation
masks this time, so we use the whole latent representation, as depicted in
Fig. 7.1. In other terms, given an image x ∈ X, domain y ∈ Y and a Generative
Adversarial Network G, we assume a hidden representation h = E(x) with
dimensions n, m, l, where E stands for the encoding part of G and D for the
decoding part. We denote the generated image as x̂. Next, we construct k
corrupted representation latent codes ĥ, adding to h noise vector η:

η1,..,k ∼ N (0, ασ2
h1,...,l

) (7.1)

where σ2
h1,...,l

is channel-wise standard deviation of input representation h. As
opposed to the previous method in Section 6.2, taking the standard deviation
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channel-wise helps to control the noise level. We can further adjust it with
factor α.

Another additional step is eliminating the background noise before the
noise injection using the bin operation: masking it with zeros for all the
channels where the output pixels are equal to zero so they do not contain any
information.

bin(h) = h[x̂ > 0]

ĥ1,...,k = h1 + bin(h1)η1, ..., hk + bin(hk)ηk
(7.2)

Having multiple representations for a single input image, we pass them to
decoder D and generate multiple outputs:

x̂1,...,k = D(ĥ1), ..., D(ĥk) (7.3)

Next, we use the multiple outputs to quantify the uncertainty connected with
the representation of a given image. We calculate two scores: the variance (the
average of the squared deviations from the mean) γ of our k generated images

γ = Var(x̂1, .., x̂k) (7.4)

and, as in the previous section 6.2, the Mutual Information (MI) between the
multiple outputs and our primary output x̂ produced without noise injection.

MI(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)

δ =
1
k

k

∑
0

MI(x̂, (x̂i))

(7.5)

We interpret the γ and δ as the measures of the representation quality. The
variance γ can be considered an uncertainty score - the higher the variance of
generated outputs with the corrupt representations, the more uncertain the
encoder is about producing representation. On the other hand, the MI δ score
can be interpreted as a confidence score, quantifying the information preserved
between the original output x̂ and the outputs produced from corrupted
representations x̂1, ..., x̂k. We calculate the MI based on a joint (2D) histogram,
with a number of bins equal to ⌊

√
n/5⌋, where n is a number of pixels per

image as proposed by [16].
We conducted several experiments using state-of-the-art architectures to

demonstrate the effectiveness of our proposed method and confirm our hypoth-
esis that the stronger the latent representation, the better and more reliable the
image quality - also using the whole images, and not only after disentangling
the latent space, as described in Chapter 6. We evaluate this method on two
publicly available datasets, namely CHAOS [58] and LiTS [10] datasets.

7.2 Network architectures and implementation de-
tails

TarGAN As our primary baseline, we use the TarGAN [19] network, which
uses a shape-consistency loss to preserve the shape of the liver while trans-
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lating an image from one modality to another. We trained the model for 100
epochs. We kept all the parameters unchanged as in the official implementation
provided by the authors of TarGAN. We use PyTorch 1.10 to implement all the
models and experiments. During inference, we constructed k = 10 corrupted
representation with noise level α = 3 and used them to evaluate our method.

UP-GAN We adopted the UP-GAN network from [120] to run on an unpaired
dataset as shown in [118]. UP-GAN uses an uncertainty-guided loss along
the standard cycle loss during training. The uncertainty loss defined for UP-
GAN was used in every component of cycleGAN - identity loss and cycle
loss for the training of both generators. We kept the learning rate at 10−4

for T1 to T2 transfer and at 10−3 for CT to T1 and T2 transfer. We tuned the
hyperparameters in the following manner: 0.5 for each discriminator loss. At
the same time, the generators had a factor of 1 with their cycle losses, 0.01 with
the uncertainty cycle loss and factors of 0.1 and 0.0015 with identity losses. We
trained all three models for 100 epochs.

Datasets. We use data of each modality (CT, T1 and T2) from 20 patients
provided by the publicly available CHAOS19 dataset [58]. We randomly
selected 50% of the dataset as the training set and used the rest for testing.
We followed [19] in setting the liver as the target area, as the CT scans in the
CHAOS19 dataset only have liver annotations.

Additionally, we used LiTS [10] dataset to evaluate our method on the
pathological samples. The dataset contains CT scans of patients with liver
tumours and corresponding segmentation masks. We resized all images to the
size of 256× 256.

7.3 Identification of uncertain parts of synthesised
images

First, we conduct a sanity check experiment by blacking a random 50× 50
pixel patch from the input images (we refer to it as perturbed input) and mea-
suring the proposed uncertainty and confidence scores on the corresponding
synthesised images. Table 7.1 reports the mean, median and variance of both
uncertainty score (γ in eq.7.4) and confidence score (δ in eq.7.5) on both the
original and perturbed images. Perturbed input has significant variance and
low confidence compared to the original input. Fig. 7.2 shows such a case,
where the confidence scores of the perturbed corrupted images are much lower
than the corresponding ones for the original images. It demonstrates the effec-
tiveness of our proposed method in detecting uncertain parts of synthesised
images. The results suggest the possibility of finding a potential confidence
threshold to eliminate uncertain synthesised images; however, such a threshold
would always be dataset-specific. Surprisingly, the model could synthesise per-
turbed images hallucinating and replacing the masked regions with reasonably
healthy tissues. Nevertheless, the uncertainty heatmaps captured the missing
parts as shown in Fig. 7.3.
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Figure 7.2: Histograms of confidence values for original and corrupted by
blacking 50x50 pixel square images. We can see a significant drop in confidence
for the corrupted inputs in all target modalities.

Table 7.1: The variance of multiple outputs with corrupted representation
increases as we introduce a black patch on the input.

Variance (γ)
Source→ Target Original input Perturbed input
CT→ T2 0.018 (0.018)±0.002 0.020 (0.020)±0.002
T2→ CT 0.016 (0.016)±0.001 0.020 (0.020)±0.003
T1→ T2 0.002 (0.002)±0.000 0.003 (0.003)±0.001
T2→ T1 0.005 (0.004)±0.001 0.010 (0.012)±0.005
T1→ CT 0.018 (0.018)±0.002 0.019 (0.019)±0.003
CT→ T1 0.057 (0.057)±0.003 0.068 (0.067)±0.007

Confidence (δ)
Source→ Target Original input Perturbed input
CT→ T2 2.261 (2.274)±0.052 1.940 (1.953)±0.094
T2→ CT 2.733 (2.741)±0.035 2.272 (2.168)±0.382
T1→ T2 2.028 (2.002)±0.070 1.823 (1.836)±0.174
T2→ T1 2.265 (2.257)±0.036 1.929 (1.864)±0.230
T1→ CT 2.774 (2.797)±0.059 2.112 (2.083)±0.381
CT→ T1 2.181 (2.182)±0.052 1.722 (1.694)±0.112

To validate the proposed method in a more realistic clinical setting, we also
run the inference on the LiTS dataset, which consists of CT scans with tumours.
While we expected to see high uncertainty for input images with tumours as
out-of-distribution samples, we only observed this for the translation from
CT to T1 and only for small tumours (see first two columns in Fig. 7.5).
More extensive tumours (third column) and CT to T2 translation (last two
columns) did not increase the uncertainty value. It seems that the network was
confidently preserving such tumours with the T1 target modality and all of
the pathologies with the T2 target modality. On the other hand, small lesions
in translation from CT to T1 - the ones that were not generated and probably
filtered out as artefacts - caused a spike in the uncertainty value.

Visualisation of corrupted representations in the latent space. To better
understand the noise-corrupted representations, we visualise the latent space
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Figure 7.3: Samples generated using input with randomly blacked out 50× 50
pixel patch. We can see on uncertainty heat maps the lack of confidence when
generating this part of the images. The output image does not reflect it.

of the GAN network, including the original representation and the corrupted
ones with different noise levels α = {1, 3, 5}. Fig. 7.4 shows how the corrupted
representations stay in the proximity of the original representations. The higher
the noise level, the wider the distribution of corrupted representations spread.
We expected such observation as the noise level injection happens into the
bottleneck representations.

7.4 Improving the quality of a synthesised image

Our next experiment involved injecting noise into latent representation during
training to check if it would create a more robust representation and conse-
quently improve image quality. As shown in Table 7.2, injecting a small amount
of noise (α=0.5) into half of the synthesised samples during the training process
slightly improved the final image quality. Nevertheless, it did not seem to
translate to the end task: segmentation accuracy did not improve. Also, we
found that introducing excess noise (α > 0.5) or corrupting most samples
during training leads to deteriorated performance.

7.5 Confidence score and the performance on the
downstream task

To address this question, we train three U-Net [95] networks to perform liver
segmentation on three imaging modalities, namely CT, T1 and T2, and then
run the inference on both the same imaging modality and the transferred
synthesized ones and report the results in Table 7.3. On the diagonal, we
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Figure 7.4: Latent space visualisation with different noise levels corrupting the
representations. We can see approximately which corrupted representations
are passed to the decoder to calculate the confidence. The assumption is that
confident, well-represented samples will not be influenced by corrupting their
latent representation as much as poorly represented samples.

Table 7.2: Slightly corrupting the latent representation in GANs bottleneck
leads to improved image quality. The lower the FID score, the better.

Image Quality [FID]

Source→ Target TarGAN
TarGAN
(α = 0.5)

TarGAN
(α = 0.8)

TarGAN
(α = 1.0)

T1→ CT 0.065 0.061 0.062 0.044
T2→ CT 0.148 0.150 0.170 0.179
CT→ T1 0.065 0.051 0.058 0.056
T2→ T1 0.120 0.114 0.128 0.145
CT→ T2 0.047 0.047 0.060 0.065
T1→ T2 0.060 0.055 0.058 0.067

present the scores for the original modality, which range from 0.95 for CT to
0.82 for T1, which are slightly different from the ones reported in [19] due
to the fact of using a standard 2D U-Net and no enrichment technique [43].
Nevertheless, the segmentation results are acceptable for the CT to T1, CT to
T2 and T1 to CT transferred images. However, the performance deteriorates for
images where T2 scans are the source modality. It is reflected in the correlation
scores as well (cf. Table 7.3 and Table 7.4). There is a correlation around
and higher than 0.5 for translations where the segmentation network worked
well. It suggests that our method can be used most efficiently in cases where
the generated images are of good enough quality in the first place for the
downstream task network to perform well. If the generated images are of such
a low quality that the segmentation network fails (DICE < 0.5), the confidence
value does not correlate with the DICE score.

7.6 Other uncertainty estimation techniques

We compare our method to the existing way of estimating aleatoric uncertainty,
described in UP-GAN [120]. We measure the quality of generated images with
FID scores and the correlation between the DICE coefficient and the mean of
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Figure 7.5: CT slides from LiTS dataset containing tumour pathologies. From
top to bottom, we show the input CT slice, corresponding tumour segmentation
map, generated T1 or T2 images, the segmentation mask, and the uncertainty
heat map.

the estimated aleatoric uncertainty values as defined in [118]. The FID scores
are slightly lower than those of a TarGAN because the shape-optimizing loss
term is not a part of UP-GAN. Furthermore, the aleatoric uncertainty does not
correlate well with the DICE score, indicating that even though the aleatoric
uncertainty might help improve image quality, as demonstrated in the paper,
it does not translate directly into the downstream task of segmentation and
cannot be used to indicate unsuitable samples. We also emphasize that our
method only affects the inference stage and can be used with any architecture.
The UP-GAN model involves significant differences in the architecture (extra
outputs of the network) and the optimization process (additional loss terms
requiring parameter tuning).

Table 7.3: Segmentation results on original input images (diagonal) and images
transferred with TarGAN.

Segmentation quality [DICE]
from\to CT T1 T2
CT 0.951 (0.971)±0.100 0.681 (0.732)±0.223 0.730 (0.753)±0.169
T1 0.690 (0.855)±0.374 0.828 (0.958)±0.313 0.527 (0.667)±0.406
T2 0.409 (0.532)±0.365 0.509 (0.530)±0.366 0.835 (0.954)±0.278
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Table 7.4: The image quality evaluated with FID score and the absolute value
of a correlation between the confidence score and DICE coefficient for our
method and UP-GAN [120].

Noise injections UP-GAN [120]
Source→ Target FID Correlation FID Correlation
CT→ T1 0.065 0.542 0.202 0.003
T1→ CT 0.065 0.544 0.162 0.219
CT→ T2 0.047 0.495 0.156 0.254
T2→ CT 0.148 0.254 0.654 0.001
T1→ T2 0.060 0.055 0.140 0.102
T2→ T1 0.120 0.311 0.166 0.083

7.7 Conclusions

To summarize, a robust latent representation results in a higher quality of a
generated image and higher performance on a downstream segmentation task.
There are indicators that the quality of latent representation corresponds to the
final quality of a generated image. If the downstream task network performs
well, it correlates weakly with the latent representation’s quality. We also
showed that small noise injections during the training phase produce a more
robust representation and slightly higher image quality. However, this does
not translate to better segmentation results. We compared the noise injections
to the aleatoric uncertainty estimation method proposed by [118]. Although
our approach has a more negligible impact on image quality, it indicates
performance on downstream tasks more accurately. Our method is easier to
incorporate as it does not require changes in the model’s architecture or the
optimization process. To place this chapter in the context of the whole thesis:
we observed that the noise injection technique could also be used without the
latent representation disentanglement. The method also generalizes well, as
it can be used on different types of data than the microscopic images of the
blood cells. Unfortunately, as the dataset was completely unpaired, it was
impossible to investigate the correlation between the image quality and the
confidence score on this task. However, we saw that it could be indicative of
the downstream task performance. structural
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8
Clinical validation study

To conclude this work, we present the results of a validation study conducted
with haematology experts. We wanted to address whether there is a real
possibility of replacing the chemical staining with an artificial one. Could the
generated white blood cell images be correctly classified by a haematologist?

8.1 Clinical setup and dataset

This study was designed to prove the concept of artificial staining. Through the
years of this project’s progress, significant changes were introduced both on
the hardware and software side, resulting in better quality DIC images and an
efficient processing pipeline. These changes resulted in a new, more elaborate
dataset, captured fully with the updated version of the DIC microscope that
contained both healthy and pathological cells from hundreds of donors. The
dataset is completely aligned and paired and fully labelled by haematologists,
providing a new value for the data-driven deep learning models. We used this
sophisticated dataset to prove the concept of digital staining.

The main objective of this study was to design an image-to-image translation
system that could potentially replace chemical staining. The reason to generate
artificially stained blood cells in clinical practice instead of directly classifying
the unstained images is twofold: (1) the first step in the morphological review
of the peripheral blood smear is to highlight through staining those relevant
features to characterise the different cell types, and (2) the clinical pathologist
could classify the cell images to predict a diagnosis, or these images could be
uploaded into a system to obtain the assistance of automatic classification. The
system development and assessment involve two main stages:

1. In the first stage, we develop a GAN-based model to automatically gener-
ate artificially stained images of 10 cell groups: neutrophils, eosinophils,
basophils, monocytes, lymphocytes, reactive lymphocytes, immature
granulocytes (promyelocytes, myelocytes and metamyelocytes), blasts
(myeloblasts and lymphoblasts), abnormal lymphoid cells and erythrob-
lasts.
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2. Based on the results obtained when testing this model, in the second
stage, we evaluate the quality of the artificial staining using a manual
classification by two clinical experts and an automatic classification with
a neural network.

The remaining part of this section will describe the most relevant issues of
the GAN model development, including the used image database and how to
evaluate the model.

8.1.1 Dataset acquisition

For this study, we constructed a new, much more elaborated dataset consisting
of DIC images and corresponding stained images captured with a BF micro-
scope. The data processing pipeline followed the one described in Section 4.4.
The only difference was the crop size which was increased to 360x360 pixels
following a request of the clinical experts.

8.1.2 Dataset preparation

Pathologists classified stained blood cell crops according to their morphological
characteristics. We considered these labels the ground truth for training and
evaluating the models. As the dataset consists exclusively of paired images,
the labels of the stained cells could be easily transferred to the unstained
cells. Without alignment, preparing the ground truth for the unstained crops
would be nearly impossible. We used a dataset containing paired unstained
and stained images of 92 healthy donors and 92 patients with haematolog-
ical diseases. Pathological samples were shipped from Spain to Germany,
which caused a delay in the scanning procedure. Therefore, some patholog-
ical samples resulted in bad quality, and we excluded them from the study.
The final dataset was arranged with 92 healthy donors from the Hospital of
Erlangen and 83 patients compiled during the daily work in the Hospital
Clinic of Barcelona, including patients with viral infections and patients with
myeloproliferative, patients with acute leukaemia and patients with lymphoid
neoplasia. Table 1 details the number of images corresponding to the different
cell classes in training and testing sets. Images were grouped into 12 classes
for each dataset: neutrophils, eosinophils, basophils, monocytes, lymphocytes,
reactive lymphocytes, immature granulocytes (promyelocytes, myelocytes and
metamyelocytes), blasts (myeloid and lymphoid blasts), abnormal lymphoid
cells (ALC), erythroblasts, smudges, and artefacts. This dataset consisted of 22
thousand cell images distributed into the above interest groups. The training
set was arranged with 19.5 thousand images from 162 samples (85 normal and
77 pathological samples). The testing set for the final assessment included
28 thousand cell images from 13 samples (seven normal and six pathological
samples).
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Table 8.1: The table shows the structure of full dataset. It contains images from
both healthy donors and diseased patients. There are five normal cell types:
Neutrophils, Eosinophils, Basophils, Monocytes, Lymphocytes, six patholog-
ical types: Reactive lymphocytes, Immature granulocytes, Blasts, Abnormal
lymphoid cells, Erythroblasts, Smudges, and always present Artifacts.

Number of samples
Cell type Training Testing
Neutrophils 105440 16217
Eosinophils 4221 778
Basophils 1497 280
Monocytes 11496 1334
Lymphocytes 40350 4713
Reactive lymphocytes 9152 1373
Immature granulocytes 2172 341
Blasts 6050 597
Abnormal lymphoid cells 449 125
Erythroblasts 1170 541
Smudge 12138 1518
Artifacts 1219 171
Total 195354 27988

8.2 Adapted model

The baseline GAN architecture for image-to-image translation problems on
paired datasets is Pix2PixHD [53]. Our dataset contains high-resolution images,
so we chose its state-of-art extension for fixed view one-to-one translation prob-
lems: Pix2PixHD [123]. Moreover, to introduce additional class information
to the training process, we followed the auxiliary classifier-GAN (AC-GAN)
approach of including in the discriminator an additional fully connected layer
[81] to perform classification. The discriminator gives a probability distribution
over the generated image and the class label. The objective of the discriminator
is to maximize how similar is the generated image to the original image and
how likely it belongs to the correct class. It is a way to optimize the generator
to preserve the cell class-specific features.

Implementation details We trained our model for 100 epochs until full con-
vergence, using cross-entropy as a loss function, jointly with the standard
adversarial loss. We compared the output of our augmented PIx2PixHD to
the baseline model in terms of image quality and classification results using
an automated classifier. Additionally, we used data augmentation techniques
such as random cropping and image resizing during training. We abstained
from using random flips and rotations because an underlying, gradient-based
structure within unstained images could be distorted while flipping or rotating.
We adopted the following training strategy to address the imbalanced class
distribution problem. Firstly, we ensured that each image came from a different
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Table 8.2: Class-wise evaluation of generated image quality.

Cell class MSE SSIM LPIPS
Neutrophils 0.002 0.903 0.044
Eosinophils 0.002 0.912 0.036
Basophils 0.003 0.873 0.056
Monocytes 0.002 0.891 0.042
Lymphocytes 0.002 0.902 0.044
Reactive lymphocytes 0.003 0.881 0.038
Immature granulocytes 0.003 0.881 0.055
Blasts 0.002 0.914 0.059
Abnormal lymphoid cells 0.001 0.922 0.051
Erythroblasts 0.003 0.880 0.047
Smudge 0.003 0.882 0.069
Artifacts 0.008 0.749 0.118
Model
Ours 0.002 0.898 0.046
Pix2PixHD 0.003 0.891 0.047

cell class in each training batch (batch size of six). In addition, in the first
80 epochs, we let the network converge without class balancing, whereas fre-
quency balancing was used in the last 20 epochs. Our model was implemented
using PyTorch 1.10 and trained on four Nvidia Titan X GP102 GPUs.

Evaluation To evaluate the quality of artificially stained images, we earlier
discussed metrics (for details, please see Section 4.5): Mean Squared Error
(MSE), Structural Similarity Index (SSIM) and Learned Perceptual Image Patch
Similarity (LPIPS) [133].

8.3 Image quality

All the image quality metrics slightly improved when using additional class
information during the optimization process, as shown in Table 8.2. This means
the network can generate images of higher visual quality if trained to recognize
the class they belong to. The most problematic classes from the point of image
quality are Basophils, Immature granulocytes (Promyelocytes, Myelocytes and
Metamyelocytes), Reactive lymphocytes and Blasts. Now, we will have a closer
look at the results by analyzing the classes separately:

• Basophiles are generated poorly in terms of all the metrics: pixel-wise,
structure-wise and feature-wise. It is probably caused by the problems
with the generation of the basophilic granules, the most significant feature
of the Basophils, that is unfortunately not always captured on the DIC
images.

• Immature granulocytes are also generated poorly according to all the
metrics. The main problem is generating the right colour of the cytoplasm,
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which can differ significantly. We suppose there is insufficient information
on the DIC images to learn the mapping correctly.

• Reactive lymphocytes have a high pixel-wise error and low SSIM and one
of the lowest LPIPS scores. Although the cells are not generated precisely
in terms of accuracy and structure, most features are preserved.

• Blasts results are opposite to reactive lymphocytes: very good MSE and
SSIM scores but one of the highest LPIPS. The perceptual features are
not preserved, so it may be difficult to classify the generated cells.

• Smudges have a high LPIPS score which means some of the features may
be difficult to generate properly, for example, the border of the smudged
cell, which is not always marked strongly in DIC images.

• Artifacts are the class with the worst metrics performance. However, they
are not diagnostically significant. Where does this poor result come from?
Most artefacts are created during staining, and there is no indication in
the DIC images. Therefore, the network generates arbitrary artefacts that
usually are not similar to the original one when measuring the similarity
against it. This causes a huge discrepancy between generated images and
ground truth.

• The best class in terms of image quality metrics is Eosinophiles. It
is a distinct class with specific features preserved on the DIC images
(pronounced granulation).

• The two other well-generated classes are Segmented neutrophils and
Lymphocytes. The better quality here is probably due to the dominating
number of samples in the train set, so the dataset has better distribution
coverage of these classes.

Overall, the image quality results show the absolute dominance of the pair-
based image-to-image translation over the cycle-consistency-based methods.
The effort to create a well-tailored dataset was rewarded with images of
superior quality. We present stained cell samples in Fig. 8.1 and 8.2. In some
cases (as in the fourth row of Fig. 8.1), we can observe how the artificial
staining mitigated variability in the stain that is so characteristic of the process
of chemical staining.

8.4 Clinical experts validation results

To answer the question of whether artificially stained images could be used
in clinical practice, we conducted a study with two experts that agreed to
label the cells stained by our model. Additionally, we used an automatic
classifier with ResNet architecture trained on stained images to classify the
artificially stained cells. We present the percentage-wise and instance-wise
results in Tables 8.3 and 8.4. We also included the detailed expert’s confusion
matrices in Tables 8.5 and 8.6. Overall accuracy higher than 85% was obtained
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Figure 8.1: Sample artificial staining on normal cells. From left to right: the
unstained image captured with interference contrast (DIC), the brightfield
(BF) image stained with May Grünwald-Giemsa also serving as ground truth
(GT), and the corresponding artificially stained image, From top to bottom: (A)
Neutrophil, (B) Eosinophil, (C) Basophil, (D), Monocyte, (E) Lymphocyte.
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Figure 8.2: Sample artificial staining on abnormal cells. From left to right:
the unstained image captured with interference contrast (DIC), the brightfield
(BF) image stained with May Grünwald-Giemsa also serving as ground truth
(GT), and the corresponding artificially stained image, From top to bottom:
(F, G), Immature granulocytes, (H) Blast, (I) Abnormal lymphoid cell, and (J)
Erythroblast. Blasts and monocytes appeared difficult to distinguish because
of their morphological similarities. It was challenging to artificially generate
the characteristic granulation of immature granulocytes and basophils.
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Figure 8.3: Samples of failed artificial staining. Both experts rejected only 1%
of artificially stained images because of their quality. From the left: input,
chemically stained cell, digitally stained cell.
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Table 8.3: Classification of artificially stained images results (percentage-wise)
by experts and an automatic classifier.

Expert 1 Expert 2 Automatic
Overall accuracy 94.5% 85.9% 87.2%
Neutrophils 97.1% 97.5% 96.6%
Eosinophils 97.8% 97.8% 93.5%
Basophils 41.6% 46.8% 40.3%
Monocytes 74% 58.6% 70.1%
Lymphocytes 95.5% 74.2% 77.4%
Immature granulocytes 52.1% 53.3% 59.4%
Blasts 56% 31.5% 81.5%
Abnormal lymphocytes 93.5% 94.4% 68.4%
Erythroblasts 94.1% 95.9% 92.4%
Smudge 82.7% 89.9% 85.6%

for every one of the three ways of classification, with expert 1 reaching an
impressive 94.5%. The highest accuracy values were obtained for Segmented
neutrophils, Eosinophils and Erythroblasts. The experts also had no problem
with Atypical lymphocytes, even though they proved difficult for the automatic
model, where we can observe a 25% accuracy drop with respect to the experts’
scores. Lymphocytes were classified correctly by Expert 1, reaching 95%
accuracy. However, they were challenging for Expert 2 and the Automatic
model, with their accuracy values oscillating around 75%. In the confusion
matrix of Expert 2 (Table 8.6) we can see that they were mostly confused with
Atypical Lymphocytes.

One of the classes that proved the hardest to classify was Basophils, with
an accuracy of classification between 40 and 45%. The low accuracy values
obtained for Basophils could be explained by the challenging basophilic gran-
ulation generation, which is one of the most characteristic features. The low
accuracy scores are consistent with the previously observed low performance
in image quality metrics. As we can see in the confusion matrices, experts
frequently confused Basophiles with Lymphocytes, which supports the claim
of the failure of artificially generating the basophilic characteristic granules.
Moreover, from our observation during these years working on the project,
the granules of Basophiles can be washed out when chemically staining the
smears. This means that in the training set, we have images of Basophiles
without prominent and characteristic basophilic granules, which could also
explain the results of the testing set, where the prominent granulation was not
generated. The resulting artificially stained image is a cell with a nucleus with
mature chromatin, which seems to have slightly basophilic granulation but
could be misclassified as a Lymphocyte.

Overall, only 1% of the generated images were classified by the experts as
poor quality (PQ) (see Tables 8.5 and 8.6), which underlines the great quality
of the samples. We present the failed cases in Fig. 8.3.
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Table 8.4: Classification of artificially stained images results done by both
experts and an automatic. Reporting exact numbers.

Expert 1 Expert 2 Automatic
Overall accuracy 94.5% 85.9% 87.2%
Neutrophils 3,428/3,530 3,440/3,530 3,409/3,530
Eosinophils 45/46 45/46 43/46
Basophils 32/77 36/77 31/77
Monocytes 270/365 214/365 256/365
Lymphocytes 2,275/2,383 1,767/2,383 1,845/2,383
Immature granulocytes 127/244 130/244 145/244
Blasts 459/821 259/821 669/821
Abnormal lymphocytes 386/413 390/413 275/413
Erythroblasts 160/170 163/170 157/170
Smudge 587/710 638/710 608/710

Table 8.5: Confusion matrix detailing classification results of Expert 1.

SNE EOS BAS MO LY ALC BL IG NRBC SMU PQ
SNE 97.1 0 0.34 0.7 0.3 0.03 0.03 0.7 0 0.1 0.6
EOS 2.2 97.8 0 0 0 0 0 0 0 0 0
BAS 9.1 1.3 41.6 7.8 15.6 0 0 0 0 1.3 23.3
MO 0.6 0 0 74 13.4 1.4 2.2 1.5 0 4.4 2.5
LY 0.1 0 0 1.7 95.5 1 0.13 0.04 0 0.8 0.6
ALC 0 0 0 1.5 4.1 93.5 0 0 0 0 0.7
BL 0.5 0 0.2 4 35.9 0.4 55.9 1.3 0 0 1.8
IG 20.1 0 0.4 10.3 12.7 0 1.6 52.1 0 0.4 2.4
NRBC 0 0 0 0.6 4.1 0 0 0 94.1 0 0.6
SMU 3.2 0.1 0 0 4.7 0.1 0.3 0 3.2 82.7 1

Table 8.6: Confusion matrix detailing classification results of Expert 2.

SNE EOS BAS MO LY ALC BL IG NRBC SMU PQ
SNE 97.5 0 0.4 0.2 0.3 0.1 0 0.6 0 0.5 0.4
EOS 2.2 97.8 0 0 0 0 0 0 0 0 0
BAS 7.8 0 46.8 3.9 20.8 3.9 0 1.3 0 6.5 9
MO 0.3 0 0 58.6 9.6 17 0.6 4.3 0 6.3 3.3
LY 0.1 0 0 0.9 74.2 23.1 0 0.4 0 0.8 0.5
ALC 0 0 0 0.2 4.1 94.5 0 0 0 0.5 0.5
BL 0.5 0 0.9 2.3 10 51.4 31.6 1.5 0 0 1.8
IG 22.5 0 1.1 2.9 6.6 6.2 3.3 53.3 0.4 0.4 3.3
NRBC 0 0 0 0 1.8 0 0 1.8 95.9 0.5 0
SMU 2.7 0 0 0 3 0.7 0.1 0.1 2.5 89.9 0.7
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8.5 Limitations and conclusions

There are still some limitations to this method which need to be considered
and improved. The first and most significant one is the quality of the definition
of the nucleus and cell structure. From what we have seen in previous models,
we can assume that additional structural constraints with high-quality seg-
mentation masks for the nucleus, cytoplasm, granulation, and nucleoli would
lead to improved results. Another important limitation is a still lack of colour
faithfulness in the generated staining, which is essential for properly assessing
blood cells (immatureness of the chromatin, presence or absence of cytoplasmic
granulation, basophilia of the cytoplasm).

To sum up, the proposed model revealed the possibility of haematologists
working directly with artificially stained blood cell images. It has been proven
to properly preserve most of the normal cell features and pathological cell
features. It could provide standardization of the staining protocol among
clinical laboratories worldwide, reducing tedious work, chemical residues,
costs and environmental impact.

103



Chapter 8: Clinical validation study

104



Part VI

Conclusion and Outlook

105





9
Conclusion

Here I will summarize our methods and findings, analyze their advantages and
limitations, propose directions for future research, and outline the potential
clinical impact.

9.1 Summary

In this work, we proposed multiple approaches to staining and classifying
white blood cells. We showed how segmentation pseudo-masks help to pre-
serve the structure during image-to-image translation and that even partial
matches between domains significantly improve the domain adaptation and
final classification result. Next, we designed a method to estimate the gener-
ated image quality based on the analysis of the latent space. We introduced
a technique of noise injections into the latent space, which allows to generate
multiple outputs. Quantifying the similarities between these outputs gave us
a confidence score correlated with generated image quality. Additionally, we
showed how to disentangle white blood cells image components in terms of
style and structure using segmentation pseudo-masks and how to use such
disentangled structure and style representation for more interpretable genera-
tor confidence estimation. Furthermore, we demonstrated that the method of
injecting noise into latent representation to estimate the confidence of the gen-
erator also holds for the whole images without latent space disentanglement
and for different modalities. We analysed its correlation with the downstream
task of segmentation. Last but not least, we conducted a validation study with
clinical experts, where we leveraged an elaborate white blood cell dataset with
pairs of unstained and stained images. Additionally, we used provided class
information to improve generated image quality. We showed that there exists
indeed a possibility of replacing the chemical staining process with a digital
one and integrating such change into clinical workflow.

107



Chapter 9: Conclusion

9.2 Limitations and future Work

While the main focus of our work has been to develop the concepts and
methods that allow for efficient and realistic image-to-image translation, this
problem is also limited by the imaging modalities used. At the current stage, it
seems that not all of the features relevant for classification are captured with
DIC microscopy. Although there was a huge improvement in data quality
throughout this project, further advances would also surely be reflected in
the quality of generated images, especially in pathological samples. Moreover,
time is also a limiting factor for this approach. Scanning a blood smear with
the current method takes around forty minutes, which needs to be significantly
reduced before entering clinical practice. Forty minutes is still close to the time
required for staining, so only the dye cost and waste reduction would be the
benefits in this case.

What is more, although the current method of confidence estimation cor-
relates with image quality, it translates only slightly to a correlation with the
downstream task of segmentation. Further investigation into more sophis-
ticated manners of noise corruption could enhance this technique. Another
aspect is the disentanglement approach which relies on strong assumptions
about the structure of the cell. On the one hand, it would make the method
generalize better if disentanglement was achieved in an unsupervised fashion.
On the other hand, better segmentation masks, including classes such as nucle-
oli and granulation, would allow for more targeted noise corruption and more
precise estimation at the end.

Furthermore, there still exists a significant gap between the results obtain-
able on paired and unpaired datasets. In reality, paired datasets are rather
rare, mostly because of the constrains they impose during the data collection
phase and the required processing. However, the undeniable image quality
improvement such a dataset offers makes it a preferred option for this prob-
lem. In most cases, no parts of the blood cells were either added or omitted
while training using the direct reconstruction loss on a large dataset. The gap
between models trained with direct reconstruction loss and those trained with
cycle-consistency loss can be partially closed by additional constrained (for
example, the segmentation module for structure preservation) but not fully
eliminated. As a sample cannot be stained twice, this problem will persist for
translation from one staining protocol to another.

Therefore, future work should be concentrated on further improvement of
the imaging aspect and developing robust methodologies for image-to-image
translation that can additionally output their confidence in the correctness of
the generated image. In a broader view, investigating unstained red blood
cells could also be of interest to confirm whether diagnosing diseases such as
anaemia and malaria would be feasible with unstained cells. Also, applying
digital staining to histology data would indicate if chemical staining can be
eliminated from the laboratories.
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9.3 Potential clinical impact

If we could replace the chemical staining of blood cells with digital processing,
it would change the world of haematology, open the door to transforming
histology, and revolutionize diagnostics.

It is difficult to imagine how much would change with a detailed and
successful analysis of unstained blood samples. First, the examination would
no longer be limited to the laboratories. It would allow ambulatory blood
analysis, which would speed the diagnosis significantly.

What is more, it would reduce costs on many levels. First, the costs of
the staining equipment and dyes. Secondly, the work force of laboratory staff
would no longer be required to execute the tiring staining procedure. Finally,
it would reduce chemical waste and the costs of disposing of it. Consequently,
the overall cost reduction would significantly increase the availability of blood
examinations.

Increased availability opens the door to creating a big database of blood
cell images, including rare diseases. In general, people seem less resistant to
sharing their blood samples for research than, for example, whole-body scans,
which could potentially lead to a dataset including millions of patients. The
diagnostic benefits would be enormous.

Current systems such as CellaVision [1] concentrate mostly on healthy cells
and still fail in many cases in the presence of diseases. The system presented
in this thesis considered pathological classes of blood cells. We showed there
potentially, it would be possible to diagnose patients with digitally stained
cells. With confidence estimation algorithms in place, the experts would have
to manually examine the cells only in special cases.

To conclude, a system automatically classifying and staining white blood
cells could help to normalize quick blood cell tests and significantly speed up
the diagnostics process.
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9.4 Epilogue

The methods presented in this thesis have proven to be a real possibility for the
future of haematology. We believe that perfecting these methods and collecting
more exhaustive datasets leads to replacing the process of chemical staining
with a digital one. Although the exciting journey taken to reach these last lines
of the dissertation is now coming to an end, we believe that the developed
methodology and obtained results will serve as a stepping stone for future
research and, ultimately, for making precise and realistic artificial staining of
any white blood cell possible.
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