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Abstract—A nonlinear perturbation model for fiber-optic chan-
nels is used to analyze achievable rates of combined space-
division multiplexing (SDM) and wavelength-division multiplex-
ing (WDM). The analysis shows that, for a large number S of
SDM channels, the power of the nonlinear interference is at most
quadratic in S and cubic in the launch power. The achievable
rates scale at least as the cubic root of S and linearly with the
optimized launch power for large S. The expressions are verified
numerically for systems with up to 16 SDM channels and 5 WDM
channels.

Index Terms—Achievable rate, space-division multiplexing,
optical fiber, regular perturbation.

I. INTRODUCTION

Space-division multiplexing (SDM) can significantly in-
crease the information rates of fiber optic channels [1]. Ex-
periments with multi-mode and multi-core fiber reaching up to
10 petabits/s have been reported [2], [3]. An upper bound [4],
[5] and several lower bounds [6]–[13] on the achievable rates
have been derived in the literature. The lower bounds are
usually obtained by using auxiliary (or mismatched) channel
models and simulation. The fiber nonlinearity causes cross-
phase modulation that limits the lower bounds [6]. Moreover,
the nonlinear coupling between SDM channels [14], [15]
lowers the peak rate per channel as the number of spatial
modes increases [12], [13].

This paper addresses the rate and power scaling in terms
of the number of SDM channels. The motivation is that, in
analogy to massive multi-input multi-output (massive MIMO)
for wireless channels [16], one can anticipate that massive
SDM offers advantages in addition to large capacity, namely
small energy consumption per information bit and simplified
modulation and detection.

To assess performance, we use the regular perturbation (RP)
analysis of [13] to derive analytic expressions for the nonlinear
interference (NLI) power of SDM systems. The results show
that the NLI power is cubic in the launch power and at most
quadratic in the number of SDM channels. Upon optimizing
the launch power, the information rate grows asymptotically
linearly with the total launch power and with at least the third
root of the number of SDM channels. Simulations with up to
16 SDM channels show that the achievable rates match the
analytic expressions reasonably well.
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II. REGULAR PERTURBATION FOR SDM
Consider S SDM channels for which the propagating signal

vector is

u(z, t) =
⇣
u[1](z, t), . . . , u[S](z, t)

⌘
(1)

where u[s](z, t) is the complex-alphabet signal of SDM chan-
nel s at distance z and time t. Unlike [13], we here count
each polarization as a different SDM channel, so for example
a dual-polarization system has S = 2. The SDM propagation
equations in the strong-coupling regime from [14], [15] are

@u

@z
= �j

�2

2

@2u

@t2
+ j�g(z) kuk2 u+

np
g(z)

(2)

where �2 is the dispersion coefficient, � is the nonlinear
coefficient,  is a factor related to the strength of the cou-
pling between the SDM channels [15, Eq. (39)], and g(z)
includes the loss and amplification profile. In the absence of
nonlinearity, the entries n[s](L, t) of the noise vector n(L, t)
are independent and identically distributed (i.i.d.) circularly-
symmetric complex Gaussian (CSCG) processes with autocor-
relation function (ACF)
D
N [s](L, t)N [s],⇤(L, t0)

E
= NASEBASE sinc (BASE (t� t0))

(3)
where BASE is the receiver bandwidth and NASE is the noise
spectral density at the receiver.

We study wavelength-division multiplexing (WDM) with
center angular frequencies ⌦c indexed by an integer c. The
channel of interest (COI) c = 0 has ⌦0 = 0. The symbols x[s]

m

and b[s]c,m, c 6= 0, represent the modulation values transmitted
over SDM channel s at time m and over the wavelengths
of the COI and WDM channel c, respectively. All SDM
and WDM channels use the same unit-energy pulse shape
s(t) and all SDM channels of the same WDM channel have
the same delay ⌧c. If the receiver uses chromatic dispersion
compensation (CDC) and a sampled matched filter, the first-
order RP analysis [13] of (2) gives the discrete-time model

y[s]m = x[s]
m + w[s]

m +�x[s]
m (4)

where the noise samples w[s]
m are i.i.d. CSCG and the NLI is

�x[s]
m = j

X

s0

X

n
k,k0

Sn,k,k0x[s]
n+mx[s0]

k+mx[s0],⇤
k0+m

+ j
X

s0

X

c 6=0

X

n
k,k0

(1 + �s,s0)Dc;n,k,k0x[s]
n+mb[s

0]
c,k+mb[s

0],⇤
c,k0+m

+ j
X

r 6=s

X

c 6=0

X

n
k,k0

Dc;n,k,k0x[r]
n+mb[s]c,k+mb[r],⇤c,k0+m (5)
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where �s,s0 is 1 if s = s0 and 0 otherwise. The coupling
coefficients are

Sn,k,k0 = D0;n,k,k0 (6)

Dc;n,k,k0 = �

Z L

0
dz g(z)

Z 1

�1
dt s⇤(z, t)s(z, t� nT )

s(z, t� ⌧c � kT + �2⌦c)s
⇤(z, t� ⌧c � k0T + �2⌦cz). (7)

Expression (5) is from equations (12) and (31) of [13] that
we write compactly by interpreting different polarizations as
different SDM channels. If one uses digital back-propagation
(DBP) of the COI instead of CDC then the self-phase modu-
lation (SPM) terms with Sn,k,k0 are not present.

III. ACHIEVABLE RATE OF THE RP MODEL

A. NLI Power

Suppose x[s]
m and b[s]c,m are zero-mean, i.i.d., proper, and have

(normalized) moments

E =

⌧���X [s]
m

���
2
�

=

⌧���B[s]
c,m

���
2
�

(8)

⌫4 =

⌧���X [s]
m

���
4
�

E2
=

⌧���B[s]
c,m

���
4
�

E2
(9)

⌫6 =

⌧���X [s]
m

���
6
�

E3
. (10)

We have E = PT where P is the transmit power in one
wavelength and one SDM channel and T is the symbol period.
The variance of the random noise samples W [s]

m in (4) is thus
NASE [13].

We now take a different approach from [13] and treat the
conditional mean of �X [s]

m as phase noise while the other NLI
terms are treated as additive interference. The desired mean
conditioned on x[s]

m is
D
�X [s]

m

���x[s]
m

E
= jx[s]

m

⇣
✓ + ✓̃[s]m

⌘
(11)

where ✓ and ✓̃[s]m are real and given by

✓ = E(1 + S)

0

@
X

k

S0,k,k +
X

c 6=0

X

k

Dc;0,k,k

1

A (12)

✓̃[s]m =

✓���x[s]
m

���
2
� 2E

◆
S0,0,0. (13)

Define

�x̃[s]
m = �x[s]

m � jx[s]
m ✓ (14)

and substitute (14) in (4) to write the RP approximation

y[s]m = x[s]
m + jx[s]

m ✓ +�x̃[s]
m + w[s]

m

⇡ x[s]
m ej✓ +�x̃[s]

m + w[s]
m . (15)

The receiver can thus remove ✓ by multiplying by e�j✓. The
mean of �X̃ [s]

m is zero and the variance is
⌧����X̃ [s]

m

���
2
�

=

⌧����X [s]
m � jX [s]

m ✓
���
2
�
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⌧����X [s]
m

���
2
�
� 2✓=

⇣D
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m
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m

���
2
�
� E✓2 � 2✓E2 (⌫4 � 2)S0,0,0 (16)

where we used the theorem of total expectation to write

D
X [s],⇤

m ·�X [s]
m

E
=

⌧D
X [s],⇤

m ·�X [s]
m

���X [s]
m

E

X[s]
m

�

(a)
=
D
X [s],⇤

m

⇣
jX [s]

m ✓ + jX [s]
m ✓̃[s]m

⌘E

= jE✓ + jE2 (⌫4 � 2)S0,0,0 (17)

where h·iX is a conditional expectation random variable that
is a function of X and where step (a) follows by (11).

Using (5), (12), and (13) in (16), and E = PT , the variance
of the NLI after a lengthy calculation is

⌧����X̃ [s]
m

���
2
�

=
�
⌘2S

2 + ⌘1S + ⌘0
�
EP2 (18)

for coefficients ⌘2, ⌘1, ⌘0 that do not depend on P or S. We
compute

⌘2 = T 2
X

n 6=0

������

X

k

Sn,k,k +
X

c 6=0

X

k

Dc;n,k,k

������

2

. (19)

The coefficients ⌘1 and ⌘0 have very long expressions. We
approximate them by neglecting all NLI coefficients except
Sn,k , Sn,k,n+k and Dc;n,k , Dc;n,k,n+k, which dominate
the others [7]. The result is

⌘1 = T 2

2

4
X

n,k

|Sn,k|2 + (⌫4 � 2)
X

k

|S0,k|2

+2
X

c 6=0

X

n,k

|Dc;n,k|2 + (⌫4 � 2)
X

c 6=0

X

k

|Dc;0,k|2
3

5 (20)

⌘0 = T 2

2

4
X

n,k

|Sn,k|2 + 3(⌫4 � 2)
X

k

|S0,k|2 +

+ (⌫4 � 2)
X

n

|Sn,n|2 + (⌫6 � 9⌫4 + 12) |S0,0|2

+2
X

c 6=0

X

n,k

|Dc;n,k|2 + 3(⌫4 � 2)
X

c 6=0

X

k

|Dc;0,k|2
3

5 .

(21)

Note that ⌘1 = ⌘0 if the input is CSCG, i.e., ⌫4 = 2 and
⌫6 = 6. We have |⌘2| ⌧ |⌘1| because (19) does not include
any Sn,k,n+k or Dc;n,k,n+k. This means that the quadratic
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behavior of the NLI power (18) is relevant only for very large
S. From (7) we have

1X

k=�1
Dc;n,k,k = �

Z L

0
dz g(z)

Z 1

�1
dt s⇤(z, t)s(z, t� nT )

·
1X

k=�1
|s(z, t� ⌧c � kT + �2⌦cz)|2 . (22)

For the sinc pulse s(t) =
p
B sinc(Bt) with T = 1/B, the

second line of (22) is constant, and the integral over time is
zero for n 6= 0, yielding ⌘2 = 0.

B. CDC Rates

We use a memoryless auxiliary channel model [17]:

y[s]m = x[s]
m ej✓ + z[s]m (23)

where the Z [s]
m are i.i.d. CSCG random variables with variance

�2
Z = NASE +

⌧����X̃ [s]
m

���
2
�
. (24)

Let x and y be two sequences of S·M transmitted and received
symbols with M symbols in each SDM channel. A lower
bound on the capacity (per SDM symbol) of (15) based on
the model (23) is

R(S,P) =
�hlog2 qY (Y)i+

⌦
log2 qY|X (Y|X)

↵

M

= � 1

M

X

s,m

*
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1

⇡ (E + �2
Z)

e
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m |2
E+�2

Z

+

+
1

M

X

s,m

*
log2

1

⇡�2
Z

e
� |Y [s]

m �X
[s]
m ej✓|2

�2
Z

+

= S log2
E + �2

Z

�2
Z

+

P
s
m

⌧���Y [s]
m

���
2
�

M (E + �2
Z)

�

P
s
m

⌧���Y [s]
m �X [s]

m ej✓
���
2
�

M�2
Z

(a)
= S log2

✓
1 +

E

�2
Z

◆
. (25)

where qY|X and qY are the auxiliary channel and output
distributions. In (a) we used the following equality derived
from (14) and (17) for CSCG inputs:

D
X [s],⇤

m �X̃ [s]
m

E
= jE2(⌫4 � 2)S0,0 = 0. (26)

Substituting (18) and (24) in (25) yields

R(S,P) = S log2

 
1 +

P
NASE
T + (⌘2S2 + ⌘1S + ⌘0)P3

!
.

(27)
The rate (27) is a lower bound on the capacity under the
RP approximations and the approximations (20)-(21). The
rate (27) is not necessarily a lower bound on the true capacity
but we will see in Sec. IV that the predictions are reasonable.
The per-channel power and total power that maximize (27) are

Popt(S) =

✓
NASE/T

2 (⌘2S2 + ⌘1S + ⌘0)

◆1/3

(28)

Ptot(S) = SPopt(S) (29)

and the maximum rate is

R(S) = S log2

 
1 +

1

3

✓
4T 2

N2
ASE (⌘2S

2 + ⌘1S + ⌘0)

◆1/3
!
.

(30)

C. DBP Rates

For DBP all terms with Sn,k,k0 in (19)-(21) vanish. More-
over, if we keep only the Dc;0,k,k coefficients in (20) and (21)
then we obtain

⌘1 = ⌫4r� (31)
⌘0 = (3⌫4 � 4) r� (32)

where

r� = T 2
X

c 6=0

X

k

|Dc;0,k,k|2 ⇡ �2LT
X

c 6=0

1

|�2⌦c|
. (33)

The approximation in (33) is valid for large accumulated
dispersion [18]. The rate (27) becomes

log2

 
1 +

P
NASE
T + (⌘2S2 + [⌫4(S + 3)� 4] r�)P3

!
. (34)

For example, for S = 1 we can neglect ⌘2 and obtain the same
rate as in [7, Eq. (116)]:

log2

0

B@1 +
P

NASE
T + 4�2LT (⌫4 � 1)P3

P
c 6=0

1
|�2⌦c|

1

CA . (35)

D. Asymptotic Analysis

For ⌘2 > 0 and S ! 1 we have

R(S) ⇠ log2 e

3
3

s
4T 2

N2
ASE⌘2

S1/3 ⇠ 2T log2 e

3NASE
Ptot(S) (36)

where f(S) ⇠ g(S) means that limS!1[f(S) � g(S)] = 0.
The total capacity of the massive SDM system thus grows
linearly with the total power or, equivalently, with S1/3. When
using sinc pulses we have ⌘2 = 0 and the asymptotics are

R(S) ⇠ log2 e

3
3

s
4T 2

N2
ASE⌘1

S2/3 ⇠ 2T log2 e

3NASE
Ptot(S). (37)

The following upper bound on (30) is linear in S:

R(S)  S log2

 
1 +

1

3

✓
4T 2

N2
ASE (⌘2 + ⌘1 + ⌘0)

◆1/3
!
. (38)

This upper bound is tight for small S and large signal-to-
interference-and-noise ratio. Fig. 1 shows R(S), the asymp-
totes (36) and (37) and the upper bound (38) for a 1000-
km link using CDC with the parameters in Table I and two
different pulses: a sinc pulse and a root raised cosine (RRC)
pulse with roll-off factor 0.1. The values of ⌘2, ⌘1 and ⌘0 for
this system are given in Table II. We see that the growth of
R(S) is close to linear in S for small and intermediate S and
reduces to S2/3 (sinc) or S1/3 (RRC) for large S.
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Fig. 1. SDM rates for the COI. Left plot: sinc pulse. Right plot: RRC pulse.

TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value
Dispersion coefficient �2 �25.25 ps

2/km
Nonlinear coefficient � 0.835 W

�1
km

�1

Noise spectral density NASE 5.902 · 10�18
W/Hz

Channel bandwidth B 50 GHz
Channel spacing ⌦

(1)/(2⇡) 50 GHz
RRC roll-off factor 0.1

TABLE II
NLI-SDM COEFFICIENTS OF (27) FOR THE SYSTEM IN TABLE I

Sinc pulse RRC pulse
Coeff. in Watt�2 DBP CDC DBP CDC

⌘2 0 0 1.46 · 10�5 0.0104
⌘1 = ⌘0 10190 19288 11134 22170

Fig. 2 plots R(S) against the total launch power Ptot(S).
The asymptotic linear growth of R(S) with power appears at
large S while for smaller S the growth seems to be faster.

Fig. 3 plots the coefficients ⌘2, ⌘1 and ⌘0 as a function of
the channel bandwidth B. The coefficients scale approximately
as 1/B2 due to the averaging effect that reduces the NLI when
the accumulated dispersion is long.

IV. NUMERICAL RESULTS

We simulated systems with L = 1000 km and the param-
eters shown in Table I. There are 5 WDM channels and the
COI is the center channel. The transmitters use sinc pulses
and i.i.d. CSCG symbols with the optimal launch power (29).
Table II lists the coefficients ⌘2, ⌘1, ⌘0 that were computed
using (19)-(21). The receiver isolates the COI using a bandpass
filter and then applies either CDC or joint DBP of all SDM
channels, followed by a matched filter and sampler.

We compute R(S) by using one of two auxiliary channel
models: an additive white Gaussian noise (AWGN) model and
an (impractical) receiver that uses particle filtering and the
Markov phase noise model in [11]. The receiver processes
each SDM channel separately and ignores the memory of the
additive NLI, i.e., there is no whitening filter as in [11]. We
compare the simulated rates with the rates computed with
R(S,P) in (27) and with the upper bound from [4], [5]:

R(S,P)  S log2

✓
1 +

P
NASE/T

◆
. (39)
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Fig. 2. SDM rates vs. total launch power for the COI. Left plot: sinc pulse.
Right plot: RRC pulse.
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Fig. 3. Bandwidth dependence of ⌘2, ⌘1, ⌘0 in (27) for sinc and RRC pulses.
Note that ⌘2 = 0 for the sinc pulse.

The results are shown in Fig. 4. Subfigures (a) and (b) show
the rates as a function of S and Ptot(S). The rate scaling for
these small S is faster than the asymptotic S2/3 and Ptot(S).
Subfigures (c) and (d) show the normalized rate R(S)/S and
the optimal power Popt(S) as a function of S. Both should
scale as S�1/3 for large S.

Observe that the R(S) in Fig. 4 are closer to the rates of the
Markov phase noise model than the rates of the AWGN model.
For CDC the AWGN model does not reach R(S,P). This may
be due to the model mismatch, or because (27) is an achievable
rate of the RP approximation (15) and not necessarily of the
optical channel. In the simulations, the peak rate of DBP is
approximately 1.04 times1 larger than that of CDC while the
power (28) is 1.24 times larger. The larger power factor makes
the CDC curves lie above the DBP curves in subfigure (b).

V. CONCLUSION

The RP analysis for optical fiber channels in [13] was used
to show that the power of the NLI is at most quadratic in
the number of SDM channels and cubic in the launch power.
The RP rates grow linearly with the total launch power and
at least with the cubic root of the number of SDM channels.

1This factor ranged from 1.036 to 1.041 in the simulations.
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Fig. 4. SDM rates and optimized launch powers for sinc pulses and the COI.

The RP rates are close to the rates achieved by simulated SDM
systems with up to 16 SDM channels.
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