
Technische Universität München
TUM School of Engineering and Design

Hybrid modelling and simulation approaches for the solution
of forward and inverse problems in engineering by combining

finite element methods and neural networks

Rishith Ellath Meethal

Vollständiger Abdruck der von der TUM School of Engineering and
Design der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Priv.-Doz. Dr.-Ing. habil. Stefan Kollmannsberger

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Prof. Dr.-Ing. habil. Roland Wüchner
3. Prof. Riccardo Rossi, Ph.D.

Die Dissertation wurde am 23.02.2023 bei der Technischen Universität
München eingereicht und durch die TUM School of Engineering and
Design am 08.11.2023 angenommen.

Schriftenreihe des Lehrstuhls für Statik TU München

Band 60

Rishith Ellath Meethal

Hybrid modelling and simulation approaches for the solution
of forward and inverse problems in engineering by combining

finite element methods and neural networks

München 2023

Abstract

Executable Digital Twins (xDTs) assist engineers in assessing the current
and future state of a physical component, product, or system and have become
an essential part of the modern-day industry. An xDT describes the behavior
and provides functionalities to optimize operation and service. It also evolves
along the real system by making use of currently available knowledge about it.

An xDT utilizes different simulation models to describe a system and
provide optimal operation and service functionalities. The first contribution
in this dissertation is an algorithm for a hybrid simulation model which can be
used in xDTs for real-time simulation. The neural network-based novel hybrid
model is constructed by combining the conventional finite element method
(FEM) and state-of-the-art neural network resulting in a physics-aware neural
network. The residual from FEM and custom loss from the neural network
are used for the hybrid model. The model is deployed along with a FEM
framework to quantify the error associated with each prediction as the FEM
residual. The approach is generalizable to any physics and geometric domain.

The model’s suitability and scalability with respect to the different number
of training samples, geometry, and neural network architecture are investigated
for examples of varying complexity. The proposed hybrid model’s advantages
are also compared and quantified with state-of-the-art models like Physics
Informed Neural Networks (PINN).

Constant updating of the Executable Digital Twin (xDT) model with
currently available knowledge is essential to accurately represent and asses the
physical component, product, or system. The hybrid model developed in the
first contribution is extended for inverse problems in the second contribution
of this dissertation. The unknown parts of the system are modelled using a
neural network. The neural network surrogate prediction is then assembled
in the system matrix and the residual obtained is used in the training. The
unsupervised nature of the hybrid model is novel in this field. In contrast
to the existing approaches, the presented hybrid model utilizes the existing
frameworks without falling into the problem of matrix inversion. This novel
aspect makes the hybrid model comparatively easily scalable to other models.

The inverse model is tested on the bearing parameters identification problem
of rotordynamic systems. The robustness is tested on simple examples of Single
Degree of Freedom (SDOF) and Multiple Degrees of Freedom (MDOF) systems
with respect to different numbers of samples and a random initial guess. The
scalability is tested by utilizing the model on the data from a rotordynamics

iii

test bench for the dynamic fluid bearing parameter identification. In the tests,
the hybrid model proved to be the best approach to utilizing neural networks for
modeling unknown physics and capturing changes to the system parameters.

One of the major setbacks faced by simulation or neural network community
is the independent development of both areas and the need for a common
framework is an absolute necessity. The Kratos-neural network application
developed as part of this dissertation serves this purpose. It serves the common
purposes like data creation and training of the neural network along with the
interface to use a trained model in any multiphysics simulation. The suitability
of the framework to perform a multiphysics simulation is demonstrated with
the help of a Fluid Structure Interaction (FSI) benchmark simulation.

iv

Acknowledgments

First on the list, I wish to express my gratitude to Prof. Dr.-Ing. Kai-Uwe
Bletzinger, for the opportunity provided to me to work on this topic at
the Chair of Structural Analysis. The continuous support, guidance, and
encouragement helped me to finish this work without many hurdles. I sincerely
thank Prof. Dr.-Ing. habil. Roland Wüchner for his supervision in organizing
my research and the continuous motivation he provided. Numerous discussions
I had with him have helped me to organize the research and complete it on
time.

I would like to thank my advisors from Siemens Technology, Mrs. Birgit
Obst and Dr. Mohamed Khalil, for their constant guidance and feedback.
Without their encouragement and support, this thesis might have never
reached an end. They quickly answered my queries because I never felt I was
working alone on the problem for the whole time. They were also readily
available to review my works, journal and conference submissions even at the
late hours of the submission deadline. I appreciate the patience they had.
Further, I thank Dr. Christoph Heinrich for offering me a chance to work on
the topic in his group. His and the group’s simulation expertise has always
guided me in this research.

I am also grateful to colleagues from the Chair of structural analysis
TUM for their contribution and continuous support. This includes but is
not limited to Dr. Aditya Ghantasala, Philipp Bucher, and Anoop Kodakkal.
Their collaboration has been vital in the journey and made my life easier
by supporting me in planning, implementing and testing different ideas.
Along with them I also thank Daniel Andres Arcones for contributing and
collaborating in the form of his master thesis.

Last but not least, I would like to thank my family for their motivation and
emotional support, which kept me going through the hard times. First among
them is my wife, Sariga Premanand, whose constant reliance on a daily basis
was inevitable during the whole period. She supported and encouraged me
during the time when I was feeling low at work. My parents, Kunhikrishnan
TP and Vijayi, were my strength the whole time. They are inspirational and
supportive of my personal and professional life. And my sister Rishitha Ellath
Meethal, whose motivational support and encouragement are invaluable, not
only during my doctoral studies but throughout my life. Munich is my home
away from home. I want to thank my friends (known by the acronym JGM)
for their support in different phases of the last years. Their presence was
crucial in overcoming the boredom caused by Corona lockdowns.

v

And this thesis is dedicated to my grandmother Janaki Kelappan, who
has motivated my parents, me, and many in the family toward academics.
Unfortunately, she departed us last year due to Corona. But she always
encouraged me to further my education and has been doing that in my
thoughts even after she left.

Rishith Ellath Meethal
Technische Universität München
February 2023

vi

Contents

Contents vii

1 Introduction 1
1.1 Outline of the thesis 5

2 Research Outline 7
2.1 Digital Twin 7

2.1.1 Executable digital twin (xDT) 8
2.2 Numerical Simulations 10
2.3 Artificial Intelligence to Neural Networks 13
2.4 Artificial Neural Network and its applications 13

2.4.1 Deep learning . 17
2.5 Neural Networks for simulation 19

2.5.1 How simulation and neural networks comple-
ment each other . 21

2.5.2 How simulation and neural networks differ . . . 22
2.6 Informed machine learning 23

2.6.1 Physics informed neural networks 25
2.7 Problem statement 27

2.7.1 Contributions . 29

3 State of the art 31
3.1 Artificial intelligence 31
3.2 Artificial neural networks 33
3.3 Simulation and neural networks 34
3.4 Informed machine learning 36

3.4.1 Physics informed neural networks 36

vii

Contents

3.5 Inverse problems 38
3.6 State of the art for applications 39

3.6.1 Wind load on High-rise buildings 39
3.6.2 Bearing parameter identification 40

4 Neural network training 43
4.1 Introduction 43
4.2 Neural network architecture 44

4.2.1 Neurons . 44
4.2.2 Activation functions 45
4.2.3 Fully connected neural network 46
4.2.4 Convolutional neural network 47
4.2.5 U-Net . 47
4.2.6 Long Short-Term Memory (LSTM) network . . 47

4.3 Parameter Initialization 48
4.3.1 Xavier initialization 48
4.3.2 He initialization . 48

4.4 Optimization 49
4.4.1 Optimizers . 50

4.5 Backpropagation 52
4.6 Bias-Variance tradeoff 52
4.7 Overfitting and underfitting 53

4.7.1 Dropout . 53
4.7.2 Regularization . 54
4.7.3 Early stopping . 54

4.8 Batch normalization 55
4.9 Vanishing and exploding Gradients 55
4.10 Hyperparameter tuning 56

5 FEM informed neural network 59
5.1 Introduction 59
5.2 Algorithm 60
5.3 Inverse problems 66
5.4 Variants of the FEM-NN algorithm 70

5.4.1 Transient solver . 70
5.4.2 Physics guided timeseries predictor 71
5.4.3 PINN and FEM-NN hybrid learning 72

viii

Contents

6 Kratos neural network application 75
6.1 Neural network application 77

6.1.1 Data generation . 77
6.1.2 Neural network training 78
6.1.3 Deployment . 81

6.2 Examples using Kratos NN application 83
6.2.1 Static non-linear diamond shape 83
6.2.2 Fluid-Structure Interaction problems 85

7 Numerical study 97
7.1 Forward solving of PDEs 97

7.1.1 Convection diffusion simulations 97
7.1.2 Truss . 107
7.1.3 Transient structural simulation 109

7.2 Inverse problems 113
7.2.1 SDOF with spring and mass 113
7.2.2 SDOF with spring, mass and damper 117
7.2.3 MDOF Jeffcott rotor 119

7.3 Complete rotordynamic system 123

8 Industrial examples 131
8.1 Wind load on high-rise building 131
8.2 Fluid bearing parameter identification 137

8.2.1 Bearing parameter identification 143

9 Conclusions and outlook 149

A Gradient calculation for complex numbers 153

List of Figures 157

List of Tables 161

Bibliography 163

ix

List of Abbreviations

AI Artificial Intelligence. ix, 3, 9, 10, 13,
21, 22, 28, 30–34

ALE Arbitrary Lagrangian Eulerian. ix, 86

ANN Artificial Neural Networks. ix, 13, 14

BC Boundary condition. ix

BEM Boundary Element Method. ix, 11

CAARC Commonwealth Advisory Aeronautical
Council. ix, 132

CFD Computational Fluid Dynamics. ix,
34, 35, 39, 40, 76, 95

CNN Convolutional Neural Network. ix, 18,
34, 35, 47, 80, 89

CSM Computational Solid Mechanics. ix, 76

DOF Degrees of Freedom. ix, 110, 112, 113,
138, 140, 143, 144

DT Digital Twin. ix, 3, 7, 8, 22

xi

List of Abbreviations

FDM Finite Difference Method. ix, 11

FEM Finite Element Method. ix, 11, 12, 27,
28, 59, 64, 71, 72, 99, 100, 109, 112,
113, 126, 135, 136, 138, 149

FEM-NN Finite Element Method enhanced Neu-
ral Network. ix, 59, 61, 70, 71, 73,
99–101, 109, 112, 116, 118, 122, 126,
128, 134–138, 140, 143, 145–147, 151,
159, 160

FSI Fluid Structure Interaction. iv, ix, 75,
76, 85, 88–90, 92–94, 131, 132, 150, 158

FVM Finite Volume Method. ix, 11

HPC High-performance computing. ix, 12

IC Initial condition. ix

KPI Key Performance Indicator. ix, 2, 4

LBFGS Limited memory Broy-
den–Fletcher–Goldfarb–Shanno
algorithm. ix, 17

LSTM Long Short-Term Memory. ix, 18, 34,
35, 47, 80, 89, 90, 112

MDOF Multiple Degrees of Freedom. iii, ix,
34, 113

xii

List of Abbreviations

ML Machine Learning. ix, 13, 22, 34, 35

MOR Model Order Reduction. ix, 9, 35

NLP Natural Language Processing. ix, 13

NN Neural Networks. ix, 27, 28, 37, 64,
100, 103, 112, 149, 150

PDE Partial Differential Equation. ix, 7, 10,
12, 25, 26, 29, 34–36, 38, 59–61, 64,
150

PINN Physics Informed Neural Networks. iii,
ix, 6, 23, 36–38, 72–74, 101, 103, 105

RDS Rotor dynamic system. ix

ResNet Residual Networks. ix, 18

RNN Recurrent Neural Network. ix, 18, 34,
47

SDOF Single Degree of Freedom. iii, ix, 34,
113

SGD Stochastic gradient descent. ix, 16, 17

xDT Executable Digital Twin. iii, ix, 3–5,
7–9, 35, 149, 157

xiii

Those who can imagine
anything, can create the
impossible.

Alan Turing

C
h

a
p

te
r

1
Introduction

Humankind has shown an attraction toward different natural phenomena
from ancient times. The curiosity developed over such phenomena has
led to continuous observations and conclusions. One notable example
from history is the evolution of astronomy. Observing the night sky,
stars, and moons over the years led to the beginning of astronomy. Such
observations of different phenomena around us were the beginning of
all sciences. In general, science is the knowledge produced by people
in the form of testable explanations and predictions. In the early
days, continuous observations and data recordings were used to derive
such explanations, conclusions, and predictions. Over the years, data-
based prediction became difficult due to the large amount of collected
data. It gave rise to the concept of modeling. Modeling refers to a
simplified representation of complex reality which captures the most
important aspects of your system to a great extent. Often, scientific
models are the solutions people come up with for explaining different
phenomena. A scientific model represents objects, phenomena, and
physical processes in a consistent and logical way. Rackauckas et al.

1

1 Introduction

[84] state ”In the context of science, the well-known adage a picture
is worth a thousand words might well be a model is worth a thousand
datasets.” A model encapsulates all existing information in such a way
that it can reliably predict the future state of the system. The scientific
models developed and modified over the years have proven successful
in providing reasonable explanations for natural phenomena around
us. They were also valuable in providing reliable predictions. Later
on, the scientific models have become a practice in most science and
engineering problems.

When it comes to engineering, it all starts with the mathematical
modeling of the physical system of interest. Research over decades or
centuries has created mathematical models based on experiments and
observations. Such models also evolve based on new findings. Depending
on the resulting model’s complexity, it is either solved analytically (which
is possible only for simplified models) or with the help of numerical
methods. For years, numerical methods and simulations have been
conventionally used to analyze engineering problems. Computers and
computational methods have taken numerical methods to new heights,
enabling the study of more significant problems in a shorter time. The
use of simulations is common in the design phase. However, the primary
purpose of simulations was the design and optimization in the last
century. The simulation predicts different Key Performance Indicators
(KPIs) of the problem at hand. A redesign may be required based on
the KPIs obtained. Once design iterations are completed, the product is
manufactured. In the whole process, a small amount of data is used for
benchmarking and calibration of the mathematical model or simulation.
Figure 1.1 illustrates the simulation as a design tool paradigm. Iterations
between design and simulation can be many, based on the requirement
of the problem and the simulation results.

In the last few decades, the scenario has changed drastically. The
requirement of model-based systems engineering has evolved from en-
gineering and manufacturing phases to operation and services phases.
Along with the product, the product’s performance also plays an im-
portant role nowadays. In contrast to the approximate model and
data available at the design phase, the system interacts with real data
in real time to enable us to monitor and predict system performance.
The introduction of the Digital Twin concept was the breakthrough

2

1 Introduction

Figure 1.1: Simulation as a tool for product design

in this direction in the last few decades. As per Boschert et al. [10],
Digital Twin (DT) refers to a comprehensive physical and functional
description of a component, product, or system, which includes more
or less all information that could be useful in all—the current and
subsequent—lifecycle phases. One of the several characteristics of a DT
is that it evolves along with the real system throughout the life cycle
and integrates the currently available knowledge about it. The core
part simulation along with the latest developments in the Internet of
Things (IoT) and Artificial Intelligence (AI) are driving DTs forward.
The ubiquitous presence of DTs in the industry has given rise to its
self-contained realization called the Executable Digital Twin (xDT).

The xDTs enable better monitoring and decision-making for the
system by making the engineering knowledge available throughout the
entire life cycle of the product. The simulation acts as the core, while
the changes to the physical system are captured with the help of sensors
to update the xDTs. Figure 1.2 illustrates an xDT and how simulation
plays an essential role. The simulation predicts the future state of the
system and is then used for various decisions regarding the system.
These could be decisions like stopping the system for a potential failure
or changing operational parameters for improved performance. Such

3

1 Introduction

Figure 1.2: xDT and simulation

applications demand prediction in real-time. The prediction needs to
be accurate along with the real-time prediction. The system undergoes
many changes over time after the design phase, due to degradation or
manufacturing deviations. The parameters of the system considered
during the design phase may only be an approximation of the real
case. Therefore, updating the system from time to time is also an
indispensable characteristic of an xDT.

In the process of this dissertation project, two main characteristics
of an xDT are addressed. The first one is the real-time simulation of
the systems. Although real-time is relative, it means predicting useful
KPIs for taking a prompt decision for performance improvement. For
example, predicting a failure using the present state of the system before
the failure happens can be considered as a real-time simulation. The
second aspect considered in this dissertation is the model updating. A
physical asset may differ from its designed state for many reasons. The
changing environmental conditions, wear and tear over time are two
primary causes of it. This also needs to be considered when having an
executable digital twin. Actual environmental conditions and changes

4

1.1 Outline of the thesis

of the system over time are incorporated with the help of sensor data
collected in an xDT. Parameter identification and updating it in the
digital model is one topic that is as relevant in this direction. Most of
the existing models are not real-time due to the complexity associated.
Hence, a real-time and edge-device deployable models are needed.

1.1 Outline of the thesis

• CHAPTER 2 takes the reader through the research outline. This
chapter analyses both numerical simulation and AI paradigms
with respect to their strengths and weaknesses for real-time en-
gineering simulations for enabling digital twins. The chapter
further discusses the directions in which simulation and AI can be
combined. Then the state-of-the-art informed machine learning
methods are analysed. The chapter concludes with the problem
statement the dissertation addresses and the contributions.

• CHAPTER 3 begins with the history of numerical simulations
and AI. A journey through the history reveals the similarities
and differences between both. This leads to the discussion on the
hybrid models and methodologies combining both. The chapter
also details the state-of-the-art in this direction and then discusses
the research in the direction of inverse problems. Furthermore,
the chapter concludes with a discussion on the recent research on
the two applications considered.

• CHAPTER 4 discusses different aspects of neural network training.
This chapter begins by explaining different components of neural
network and then proceeds to different aspects of its training. The
chapter then details different points to consider for achieving a
converged model in the training. Hyperparameter tuning, which
is used to automate the architecture and parameter selection of
neural networks, is discussed in the last part.

• CHAPTER 5 introduces a novel algorithm combining numerical
methods and neural networks. The first part discusses the algo-
rithm for forward solving of the engineering problems whereas the
second half discusses the version of the algorithm for the inverse

5

1 Introduction

problems. The chapter also discusses different versions of the
algorithm, such as those combined with Physics Informed Neural
Networks (PINN), are discussed.

• CHAPTER 6 introduces the framework created for the integration
of AI and simulation. The requirement of having such a platform
and the designed architecture are detailed here. The integration
of the introduced novel algorithm and other state-of-the-art algo-
rithm within the framework is explained. Additionally, the chapter
also contains some benchmark results using the framework.

• CHAPTER 7 examines the novel algorithm with the help of
numerical examples. The method is compared with conventional
and state-of-the-art methods and results are discussed. Examples
for both forward and inverse problems are studied in detail.

• CHAPTER 8 explores the applicability of the novel algorithm to
industrial real-world applications. The simulation of the wind-
load on high-rise buildings is taken as the example for forward
problems. The bearing parameter identification of a fluid bearing
in a rotor-dynamic system is considered for the inverse problem.

• CHAPTER 9 concludes the dissertation. The potential of the
algorithm for various kinds of problems and the limitation of the
algorithm observed are discussed in this chapter.

The following footnotes are used in the thesis to reference the original
publications and to mark literal transposition.1 2 3

1 The following section is based on [72]. The main scientific research as well
as the textual elaboration of the publication were performed by the authors of this
work

2 The following section is based on [6, 70]. The main scientific research as well
as the textual elaboration of the publication were performed by the authors of this
work

3 The following section is based on [54]. The main scientific research as well
as the textual elaboration of the publication were performed by the authors of this
work

6

Mathematics is the key and
door to the sciences.

Galileo Galilei

C
h

a
p

te
r

2
Research Outline

As stated in Chapter 1.1, two significant requirements of an xDT
are addressed in this dissertation. One is the real-time simulation of the
system under consideration using forward solving of Partial Differential
Equations (PDEs), and the other is the model updating of the system
using inverse problems. In this chapter, we outline the essential basics,
developments, and the present-day shortcomings in both the directions
and conclude with the contributions of this dissertation.

2.1 Digital Twin

The term Digital Twin (DT) has revolutionized the industry in the
last decade by becoming one of the most promising technologies for
enabling smart manufacturing and Industry 4.0. Even though there are
many definitions for DT, one of the widely accepted definition from the
simulation viewpoint is from Boschert et al. [10]. It states

7

2 Research Outline

“ The Digital Twin refers to a description of a component,
product or system by a set of well aligned executable models
with the following characteristics:

• The Digital Twin is the linked collection of the relevant
digital artefacts including engineering data, operation
data and behaviour descriptions via several simulation
models. The simulation models making-up the Digital
Twin are specific for their intended use and apply the
suitable fidelity for the problem to be solved.

• The Digital Twin evolves along with the real system
along the whole life cycle and integrates the currently
available knowledge about it.

• The Digital Twin is not only used to describe the be-
haviour but also to derive solutions relevant for the real
system, i.e. it provides functionalities for assist systems
to optimize operation and service. Thus, the Digital
Twin extends the concept of model-based systems engi-
neering (MBSE) from engineering and manufacturing
to the operation and service phases.

”

As evident from the listed characteristics, simulation plays an integral
role in DTs. Along with simulation, optimization and decision-making
in the digital version, with the help of the data collected on the physical
asset, are essential in creating a DT.

2.1.1 Executable digital twin (xDT)
Executable DT refers to the self contained realizations of DTs. It is a
software where DT is encapsulated to run on a restricted hardware. One
major intention of having an xDT is to take DTs outside the premises
of the creator of DT. This enables the non-expert use of DTs. Major
advantages of an xDT are,

8

2.1 Digital Twin

• Non-experts can use DTs

• Protection of intellectual property

• Running DTs on restricted hardware like edge devices can enable
real time decisions.

As mentioned in Section 1.1, the simulation serves as the core in
xDT. Physics-driven numerical methods and data-based simulations are
the two directions practiced for performing simulations. The process of
determining unknown primary variables from the known input condi-
tions is called forward simulations. Physics-based simulation methods
for forward simulations are evolved over the years and provide robust
solutions. Nevertheless, the time taken for simulation and hardware
requirements limits its use in xDTs. The selection of the simulation
methodology varies depending upon the need and model complexity.
Most of the time, the simplified physical models are used to achieve
the real-time nature required for the xDT. The Model Order Reduction
(MOR) is also a highly appreciated way to achieve real-time simula-
tions. Simulation of physical assets in real-time using AI is also gaining
attention among researchers due to the success of AI in different ar-
eas. In contrast to numerical simulations, they are faster and easily
deployable on edge devices. However, the black-box nature of many
AI algorithms poses a threat to the system due to the unexplainability
and incomprehensibility of the predictions. This naturally paves the
way for combining explainable physics-based simulation models and
unexplainable AI algorithms for forward simulations.

Along with simulation, the real data from sensors also plays a vital
role in xDTs. The data can be used either as an input to simulation
models or to update simulation models. Updating models is essential
to track the changes in the system and environment in real-time. The
modeled systems for forward simulations needed to be updated to reflect
the changes. Finding out unknown or changed system parameters is
called inverse problems. There are different methods in numerical meth-
ods for inverse problems. However, complexities like matrix inversion
and preconditioning make the process challenging. At the same time,
the data-based methods have shown partial success in inverse problems.
Since both have approaches have shortcomings (which will be discussed

9

2 Research Outline

later), the hybrid model is a good direction for inverse problems as well.
In the following, we go into the details of numerical simulation and AI
based surrogates to assess their strengths and weaknesses in the context
of engineering problems. Only neural networks based AI surrogates
are considered as they have shown great success in recent studies. The
discussion covers both forward and inverse problems.

2.2 Numerical Simulations

Physical systems in engineering applications are mathematically mod-
eled for their detailed analysis. Mathematical models help to predict
the future states or analyze the past events of the system.

Figure 2.1: Problem definition

L(u) = 0 on Ω
u = ud on ΓD

∂ u

∂ n̂
= g on ΓN

(2.1)

Consider a PDE governing a physical system defined on the domain Ω
together with the Dirichlet (ΓD) and Neumann (ΓN) boundary conditions
as in Equation 2.1. Here, L(u) is any partial differential operator and
u = u (x , t) is the exact solution field. However, the calculation of
exact solution field u is not possible if an analytical solution does

10

2.2 Numerical Simulations

Figure 2.2: Problem definition with FEM grid

not exist for the complex mathematical model at hand. Such models
are typically solved with the help of numerical methods. Numerical
methods are techniques to approximate mathematical procedures. A
mathematical model is converted to a discretized model using the process
of discretization in numerical methods. This discretized model is solved
for the unknowns in the system. Solving a discretized model results in
discrete solution instead of the actual continuous physical variable under
consideration. Methods such as Finite Difference Method (FDM) [31],
Finite Volume Method (FVM) [115], Finite Element Method (FEM)
[135] and Boundary Element Method (BEM) [18] are the commonly
used numerical methods in Engineering. As an example, Figure 2.2
shows the FEM grid for the general problem given in Figure 2.1.

Figure 2.3: Errors in a numerical model

11

2 Research Outline

Although each of the numerical methods has its own advantages
and disadvantages, we limit our discussion to FEM for the rest of the
dissertation. The FEM decomposes the domain of interest into a finite
number of subdomains called elements. The weak form of the governing
equation is then integrated element-wise and results in an algebraic
equation. Analytical integration of the equations is complex or infeasible
in most of the PDEs. This demands the use of numerical quadrature.
The algebraic equations from every element are then assembled to form
the global system. The resulting global equations system is then solved
using linear solvers for the unknowns. The variable û will be used
for the discretized solution from FEM in the rest of the dissertation.
The accuracy of the solution increases upon increasing the number of
elements. But this increases the size of the global system to be solved.
It demands the use of more expensive iterative solvers instead of direct
solvers.

Different steps, from modeling to solving using the numerical method,
introduce different kinds of errors in the final solution. Figure 2.3 shows
the steps followed in approximating a physical system to obtain a discrete
solution of the variables of interest. The error associated with each of
the idealization, discretization, and solution steps plays a critical role
in simulation and its application. In terms of magnitude, the modeling
error is considered the largest, followed by discretization and solution
errors. These errors are one of the major drawbacks associated with
numerical methods. Even though many of the numerical methods in
use produce results meeting the demands of the present engineering
regime, higher consistency between numerically simulated and actual
values is always desirable.

Numerical methods play an important role in modern-day engineer-
ing. In the earlier days, they were used as a design tool. Different
design alterations can be made and analyzed with the help of numerical
methods. Nowadays, they are used in the entire life-cycle of a product.
It is used for preventive and predictive maintenance and operation
recommendations. This demands faster simulation methods. However,
complex engineering problems like a simulation of a wind turbine, simu-
lation of thermal distribution inside a motor, etc., are computationally
intensive. They take hours, if not weeks, even in High-performance
computing (HPC) environments.

12

2.3 Artificial Intelligence to Neural Networks

2.3 Artificial Intelligence to Neural Networks

In general, AI is the ability of digital systems to perform tasks normally
performed by intelligent beings. Automation, Machine Learning (ML),
Natural Language Processing (NLP), robotics, and self-driving technol-
ogy are some of the fields that encompass AI methods. Though the
general term AI is used everywhere, there are many subcategories of AI
which are relevant in this work. It is explained with the help of 2.4.

Figure 2.4: Artificial intelligence and branches

ML is the branch of AI which learns a task from data. Normally,
ML results in a model based on given data to perform a given task. A
simplified diagram representing a ML pipeline is given in Figure 2.5.
Neural networks are a set of ML algorithms and deep learning is a
subset of neural networks. In the following section we go into the details
of neural networks and deep learning as we are focusing on those two
subcategories of AI in this dissertation.

2.4 Artificial Neural Network and its applications

The hypothesis that models inspired by biological neural networks may
help machines solve intelligent tasks gained attention among scientists
in the late 40’s. It resulted in Artificial Neural Networks (ANN). ANNs
are computational models with interconnected smaller processing units.

13

2 Research Outline

Restricted | © Siemens 2020 | Rishith Ellath Meethal | T RDA SDT MSO-DE |2020-12-18Page 92

Raw data
Machine

Learning
InferencePre processing Post processing

Figure 2.5: Machine learning process using data

They have become popular in the last decade after showing their success
in many disciplines. ANN techniques are used in multiple domains such
as computing, science, engineering, medicine, environmental, agricul-
ture, mining, technology, climate, business, arts, and nanotechnology
[1]. Neural-network models such as feed-forward and feedback prop-
agation artificial neural networks perform better in their application
to human problems. ANN showed promising results for classification,
clustering, pattern recognition, speech recognition, language processing,
and prediction problems in many disciplines.

Nowadays, ANNs are primarily used for universal function approx-
imation in numerical paradigms because of their excellent quality in
self-learning, adaptivity, fault tolerance, nonlinearity, and advancement
in input-to-output mapping [1]. Two significant properties exhibited by
neural networks make them attractive to any discipline.

• Universal approximation theorem: The universal approximation
theorem states that a neural network with a single hidden layer
having sufficient number of neurons can approximate any contin-
uous function to a reasonable accuracy. It was George Cybenko
[22] who showed that a continuous feedforward neural networks
with only a single internal, hidden layer and any continuous sig-
moidal nonlinearity can be used to approximate decision regions
arbitrarily well. Kurt Hornik [42] applied this to all activation
functions (Explained in detail in Section 4.2.2).

• Overcomes the curse of dimensionality Neural network has shown
success in finding out relevant information from the given data.
This property is normally useful as data might contain a lot of

14

2.4 Artificial Neural Network and its applications

relevant and irrelevant details. This property was one major step
in the history of AI which reduced the human intervention that
was essential for feature engineering.

Simplest form of a neural network is explained with the help of Figure
2.6. Here a fully connected neural network is mapping input variables
x= [x1, x2, ...xn] from domain X to output variables y= [y1, y2, ...ym] of
domain Y . The input layer is connected to the output layer by L
number of layers in between, called hidden layers. Each hidden layer
receives input from the previous layer and outputs ol = [o 1

l , o 2
l , ..., o k

l].
The wl ∈ Rnl×nl+1 matrix represents the weights between layer l and
l +1 and the vector bl of size nl represents the bias vector from layer l .
Here, nl represents the number of neurons in each layer of the neural
network. The output from any layer is calculated using the Equation
2.2.

zl =wl ol−1+ bl (2.2)

A nonlinear activation function σ(.) is applied to each component
of the transformed vector zl before sending it as an input to the next
layer.

ol =σ(zl) (2.3)

Following this sequence for all the layers, the output of the entire
neural network can be written as

y(θ) =σL (zLσ2(z2.σ1(z1(x)))) (2.4)

where y is the output vector for the given input vector x, and
θ = {wl , bl }Ll=1 is the set of trainable parameters of the network.

During the training process the output vector predicted by neural
network y(θ) is compared against the actual value ŷ. It is done by
formulating it as a minimization problem. The objective function for
minimization can be any function of y(θ) and ŷ and is known as loss
function. One of the most used loss function is the mean squared error
(MSE) between them.

δ=
1

n

n
∑

i

(yi(θ)− ŷi)
2 (2.5)

15

2 Research Outline

Figure 2.6: Artificial neural network

The loss δ is reduced by updating the learnable parameters θ of the
network. The process of updating the learnable parameters is called
backpropagation [40] and is performed using different optimization
algorithms such as Stochastic gradient descent (SGD). In the classical
SGD procedure, each learnable parameter wl and bl are updated as
below.

wl =wl −η
∂ δ

∂ wl

bl = bl −η
∂ δ

∂ bl

(2.6)

The parameter η is called learning rate and chosen by the user.
For any optimizer of choice the derivatives of loss with respect to the
learnable parameters ∂ δ

∂ wl
and ∂ δ

∂ bl
are required. They are calculated

using the chain rule.

16

2.4 Artificial Neural Network and its applications

∂ δ

∂ wl
=
∂ δ

∂ y

∂ y

∂ wl

∂ δ

∂ bl
=
∂ δ

∂ y

∂ y

∂ bl

(2.7)

Here, the first term ∂ δ
∂ y depends on the chosen loss function. In the case

of a MSE loss function,

∂ δ

∂ y
= 2

1

n

∑n

i=i
(yi− ŷi) (2.8)

The second term of the equation 2.7 is again calculated using chain rule.
In this case the chosen architecture of the network, chosen activation
function etc contributes. In any modern neural network software, the
derivative of any element’s output with respect to its input is readily
available. In addition to SGD, different optimization algorithms are used
for updating the parameters. Some of them are Adam [52], Adadelta
[129] and Limited memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (LBFGS) [63].

In the case of simulation, primary variable is represented as u in this
dissertation. The neural network prediction of the primary variable will
be represented using ũ. The actual value for training the neural network
can either come from simulation result û or measured using sensors on
the physical system. The measured values from sensors are much closer
to the actual physical values. Hence, they will be represented using u.

2.4.1 Deep learning
The term ”deep” in the deep learning refers to the depth of neural
networks, represented by the number of layers within neural networks.
Conventionally, a neural network with three or more layers is considered
a deep learning algorithm. Deep learning is a subset of ML. Different
processes which were done with manual interventions became automatic
with the introduction of deep learning. One notable example is the
feature extraction. Compared to ML, deep learning differs in two
aspects. First one is the type of data and second is the method in which

17

2 Research Outline

it learns. Conventional ML algorithms require structured, labeled data
to make predictions. In another words, even if ML uses unstructured
data, it goes through some pre-processing steps to organize the data into
structured format. However, DL can digest and process unstructured
data like images, text, speech and automates the pre-processing steps
like feature extraction. DL determines by itself which features are
important. Many of the modern day neural network architectures fall
under the category of deep learning. Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), Residual Networks (ResNet) to name a few.

Approximation errorGeneralization errorOptimization error

Total error

Figure 2.7: Errors in a neural network model

Similar to the numerical methods, the error analysis for neural
network based models is given in Figure 2.7. Here approximation error
refers to the error between real solution and the solution that a neural
network of a particular architecture can result. This error can be large
or small based on the function approximation capability of the chosen
architecture for the function to be approximated. So, by choosing
a suitable neural network this error can be reduced. Presently it is
done empirically based on experience. Various parameters deciding
the architecture of the neural network can be used as hyperparameters
in the parameter tuning algorithms as well. However, it’s practically
infeasible to perfectly train a very large network, resulting in a certain
level of approximation error always persisting. To make the neural
network work on unseen data, bias-variance trade-off is made. Bias is
the model’s ability to make good prediction for all the data points. Low
bias refers to the good prediction by the model. However, low bias may

18

2.5 Neural Networks for simulation

result in a state where model learns the given data very well and gives
large error on an unseen data. This refers to the high variance of the
model. This bias-variance trade off leads to generalization error. And
the last part optimization error is the error caused by not achieving the
minimum in the minimization process.

2.5 Neural Networks for simulation

Figure 2.8: Pipeline of conventional neural network

The success of neural network in different scientific and real-life
applications opened its way to simulations. Neural network can be
used to perform simulation using the given data. In the initial days,
even continued today, the focus were on creating surrogate models for
simulation. The data required for training the network were either
created by running a large number of simulations or measured from the
respective real experiment. The process is given in Figure 2.8.

An example in this category is the prediction of flow field around an
airfoil given the initial conditions, boundary conditions and geometry
of airfoil. Here X represents the initial conditions, boundary conditions
and geometry of airfoil. This can be in the form of images, as neural
networks have been successful in image processing. An example of the
same is given in Figure 2.9. This example is an experiment following
the work of Thuerey et al. [103]. The Y represents the pressure and
velocity field around the airfoil. The data pair (xn , yn) are the data
generated by running simulation with different input variables and

19

2 Research Outline

creating solution fields. Final solution will result in a neural network
surrogate, which is also a function f (x), which can predict flow around a
given airfoil. The results of 750 simulation trials run using OpenFOAM
is used as the training data. Training took a total of 1516 seconds
for 250 epochs on a laptop using Tensorflow-GPU (NVIDIA GeForce
940MX). The prediction of pressure and velocity fields using the trained
neural network is given in Figure 2.10. It can be observed in Figure 2.10
that the difference between predicted velocity and ground truth velocity
is as high as 0.01 m/s in the case of x-direction and 0.006 m/s in the
case of y-direction. It is observed that the accuracy of results were
not consistent. Predictions for some other input scenarios had error
percentage of 18.75% for x-direction velocity and 6.25% for y-direction.
The major advantage of such a surrogate is the speed at which it predicts
the flow fields. However, it can be observed that the error associated
with it is also significant. The error is more worrying when it becomes
non-physical, like non-zero velocity on the airfoil surface.

Another category in the use of neural network in simulation is the
replacement of a part of the simulation pipeline with a neural network.
It occurs at places where a mathematical model is difficult to obtain.
For example, experimental data regarding a material can be used to

Figure 2.9: Input output data pair for predicting flow-field around an airfoil

20

2.5 Neural Networks for simulation

Figure 2.10: Predicted and actual flow-field around an airfoil using U-net neural
network architecture

create a surrogate model. This surrogate model can be used instead of
the mathematical constitutive model in the simulation.

2.5.1 How simulation and neural networks complement each
other

Though developed independently over the years, the overlap between
both these fields can be observed in many methods. One can consider
simulation as part of the big spectrum of AI. Conventionally simulation is
expert driven, whereas AI can be historic data driven or a combination of
historic data and expert driven. The most important similarity between
both these fields is that, they can be used for predicting the future
state of the system under consideration. In the case of simulations for
engineering problems, the main focus of simulation is to do experiments
without hardware cost. In design phase to find the right design, in
operation to optimize the operation or to do what-if scenarios for decision
making and to compare expected behavior with observed behavior for
failure detection. Whereas, AI methods are used to predict the future
state of a system based on the model it learned from historical data. A
classical example where AI is used for prediction is the stock market
prediction.

21

2 Research Outline

Researchers worldwide are exploring how AI methods and simulations
can leverage each other for better prediction of system state. Even
though there are studies with promising results combining AI and
simulation, there is no standard approach. One can see the combination
in two different directions. The first one is for simulating a physical
asset in the digital world in real-time. Real-time simulations are the
need of the hour to enable the DTs for different components in industrial
applications. Since each domain has its strength and weakness, there is
great potential for AI and simulation to take advantage of each other’s
strengths. The second direction in which simulation and AI can work
hand in hand to achieve digital twin is in the model updating. In this
approach, one can use combined AI and Simulation to update the digital
version of the physical asset according to the real changes. The real
changes can be captured using sensors and other measurements.

2.5.2 How simulation and neural networks differ
As explained in previous sections, numerical methods or neural networks
can be used for simulating a physical system. It is also possible to use
both of them to develop hybrid models by complementing each other. A
few of the directions are given in Section 2.5.1. However, there are major
differences between these two approaches that are to be considered while
developing hybrid models. A summary of the major differences is given
in Table 2.1.

Even though ML methods have shown great success in many areas,
they fail when dealing with insufficient data. Simulating physical sys-
tems with the help of machine learning methods is one such area. The
generation of a large amount of quality data using numerical simulation
is computationally intensive. Generating data by means of experiments
also faces the same challenge. Another drawback when using machine
learning in a conventional nature to physical systems is the ”black-box”
nature of the methods. The resulting model may not necessarily follow
the laws governing the physical system. The informed machine learning
methods have shown success in dealing with the above drawbacks. In
this approach, the prior knowledge is integrated in the learning process
of the machine learning model. The prior information can be algebraic
equations, differential equations, invariances, and logic rules. This helps

22

2.6 Informed machine learning

Table 2.1: Comparison of numerical methods and neural networks for simulation

Numerical methods Neural networks

Physics

embedding
Discretized equation

No physics embedding,

(Only loss function based on data)

Solver Linear/Non-linear solvers Gradient based optimizer

Error
Modeling, Discretization,

and solution

Optimization, generalization

and approximation

Solution Point values weights and biases

Approximating function
Piecewise

polynomials
Parametric

Mesh Yes
No

(Possible with mesh based

data also)

Generalization
Extrapolates

really well

May result in nonphysical

results

Model Theory based Data based

the model to train with less amount of data as well as to follow the rules
in the form of prior knowledge. The following section details informed
machine learning and one of the famous approach in this direction called
PINN.

2.6 Informed machine learning

The feature that purely data-driven methods fit well for the given obser-
vations is not sufficient when it comes to engineering simulations. The
simulation predictions should be physically consistent. This drawback
along with the lack of sufficient training data led to the ”teaching”
of ML using governing physical laws. The informed machine learning
paradigm coined in Von Rueden et al. [116] refers to the integration
of prior knowledge into the machine learning pipeline. Figure 2.11
represents the distinction between conventional machine learning and
informed machine learning.

23

2 Research Outline

Figure 2.11: Pipeline of an Informed machine learning (adapted from Von Rueden
et al. [116])

Conventional machine learning comes with a single information
whereas informed machine learning can have more than one. The second
information comes in the form of prior-knowledge and integrated into
the machine learning pipeline via interfaces. The prior-knowledge can
be logic rules, invariances, probabilistic relations, differential equations,
algebraic equations or even expert knowledge. For example, if one is
trying to learn relationship between mass and energy in a system’s rest
frame, he can use the algebraic equation 2.9 as the prior information
about the data.

E =m · c 2 (2.9)
where E is the energy, m is the mass and c the speed of light. Simi-
larly differential equations governing the relationship between different
physical quantities can be used as the prior information.

Similar to the form of the knowledge, how they are integrated
into the machine learning pipeline can be of different types. Simplest
way is to use the prior knowledge to create more data and augment
the existing data with this created data. Another approach is the
modification of neural network’s architecture according to the prior
knowledge. Use of convolutional neural network for examples where
location and translation invariances must be preserved falls under this
category. Another prominent approach involves incorporating prior
knowledge directly into the learning algorithm, as demonstrated by
Von Rueden et al. [116]. This entails modifying the loss function of the

24

2.6 Informed machine learning

learning algorithm to reflect the available prior knowledge. Such an
approach has demonstrated significant success in recent years. In these
instances, the loss function can be expressed as follows

f = a r g mi n (λi L (f (xi), yi)+λ j R (f)+λk Lk (f (xi), xi)) (2.10)

Here, L represents the conventional labeled data-based loss function as
explained in Section 2.4 and R is the regularizer. The new term, Lk

represents the penalty from violating the given prior-knowledge. Such
an extended loss, if it measures the inconsistencies w.r.t to physical
laws, is called physics-based loss.

There is numerous research in the direction of physics-based loss
functions. However, the physics informed neural network explained in
Section 2.6.1 offers an easy way to integrate any type of PDE, integer-
order PDEs, integro-differential PDEs, fractional PDEs, or stochastic
PDEs, into the loss functions of neural networks.

2.6.1 Physics informed neural networks
Physics informed neural networks (PINNs) introduced by Raissi et
al. [85] integrate different forms of PDE into the loss function of a
neural network using automatic differentiation [66, 78]. Consider a
parameterized partial differential equation of the form

f (x , t , u ,
∂ u

∂ t
,
∂ u

∂ x
, ...,λ) = 0, x ∈Ω, t ∈ [0, T],

u (x , t0) = g0(x), x ∈Ω, t = 0,

u (x , t) = gΓ (x , t), x ∈ Γ , t ∈ [0, T],

(2.11)

where x is the spatial coordinate and t is the time. u represents
the actual solution of the equation and ∂ u

∂ t and ∂ u
∂ x are the gradient of

solution with respect to spacial and temporal coordinates. Note that
the gradient can be higher order terms like ∂ 2 u

∂ x 2 depending the equation
under consideration. The function f represents the residual of the PDE
with parameters λ= [λ1,λ2, ..,λn]. The initial and boundary conditions

25

2 Research Outline

governing the PDE are given by g0(x) and gΓ (x , t), respectively. Bound-
ary condition gΓ on the boundary Γ can be Dirichlet, Neumann or
mixed boundary conditions.

Figure 2.12: Training of a PINN model

In PINNs, a neural network is deployed to model the solution of the
PDE. The network takes space and time coordinates x , t as the input
and predicts an approximate solution ũ as the output. As explained in
Section 2.4, the approximate solution can be written as ũ = fn (x , t ,θ)
where θ represents trainable parameters such as weights and biases.
The approximated solution is found out by treating the problem as
an optimization task where a loss function is minimized by iteratively
updating θ . The loss term is given by

L = L f + LM S E (2.12)

where

L f =
1

Nf

Nf
∑

i=1

‖ f (x i
f , t i

f , u i
f , ...)‖2 (2.13)

LM S E =
1

Nu

Nu
∑

i=1

‖ũ (x i
u , t i

u)−u i ‖2 (2.14)

26

2.7 Problem statement

The term L f enforces the governing equation 2.11 at a finite set
of points called collocation points. The term LM S E is imposed to
satisfy known data points, initial and boundary conditions. The model
parameters θ are optimized using optimizers such as Adam, SGD,
L-BFGS (details regarding optimizers are given in Section 2.4). As
per different researchers around the world, the present generation of
PINNs are not as accurate or efficient as numerical solvers [49, 85].
However, they are efficient for inverse problems. More details on the
state-of-the-art is given in Section 3.4.1.

2.7 Problem statement

The earlier developments in combining neural network and simulation
were focused on creating surrogate models out of simulation data. The
method proved to be inefficient due to lack of enough data and loss
of physics conformity of the resulting model. The idea to include
more physics information in the learning process is the state-of-the-
art. However, it can be observed that most of the developments in
creating neural network models tend to rely on pure data-based methods
while giving minimal consideration to physics and numerical methods.
Many of the existing informed machine learning models are resulting
in ill-posed system of equations. Despite the success that numerical
methods like FEM have shown over the years, hybrid models combining
numerical methods in their original form with neural networks directly
have not been extensively explored by the research community. To this
end, following problems are addressed,

Conceptualize and develop a hybrid model, that is general-
izable to any physics, combining finite element method and
neural network for predicting primary variables along with
an error estimate.

The steps followed to achieve this goal are:

• Couple FEM and Neural Networks (NN) framework for the train-
ing of an informed neural network based on FEM

27

2 Research Outline

• Develop an optimization problem for the neural network which
addresses an exact problem rather than an ill-posed one.

• Develop method to increase the accuracy, reliability and safety of
neural network predictions by integrating it with existing numeri-
cal frameworks

The modeled physics may not completely represent a physical system
under consideration. There is also possibility that the model parameters
change over the time due to the environmental conditions or degrada-
tion. Different numerical methods struggle in this regard due to high
computing time, matrix inversion, large number of possible solutions etc.
More details regarding state-of-the-art and its limitations are given in
3.5. The second part of this dissertation focuses on the inverse problems.
The goal is to:

Update numerical models used for the real-time simulation
with the help of hybrid models combining FEM and NN for
reducing the uncertainty in the modeling by means of sensor
data.

On walking through the demands and interests of the industry, it can
be observed that there is an increased demand for real-time simulation
methods and the updating of models than ever. The increased demand is
partially catalysed by the success of AI in different areas of digitalization.
A large number of methods (including the one in this dissertation) are
proposed and being investigated now. One of the major challenge in
developing and deploying new methods and models is the independent
development of the numerical and data-based simulation worlds. It is
imperative at this moment to have a framework which encourages the
development, testing and deployment of new AI models coupled with
the existing simulation frameworks. This goal of this dissertation is
aimed at this shortcoming,

Architecture and develop a framework which enables seamless
integration of numerical simulation and neural networks to
facilitate and accelerate data generation, model construction
and model usage in a multiphysics setting.

28

2.7 Problem statement

The steps followed to achieve this goal are:

• Develop user friendly, intuitive and flexible methods for data
generation.

• Integrate the neural network training process as part of the existing
numerical framework so that an existing user can make use of it
as any other feature in the framework.

• Develop interfaces to deploy neural network models independently
or integrated with rest of the features in a multiphysics framework.

2.7.1 Contributions

1. Algorithm for forward solving of parameterized PDEs
In this scope of the thesis, the aim is to come up with a neural
network-based surrogate model for simulation. However, this
model should also use the knowledge from the FEM discretized
domain as in Figure 2.2. Informed machine learning has been
gaining attention these days to use neural networks along with the
prior knowledge we have. The process of training those networks
involves including the prior knowledge into the loss function of the
neural network. In this way, the neural network is trained against
the equation, inequality, or conservation laws. This research
proposes to use a discretized version of our PDE using a FEM
mesh inside the loss function for the training. Using the FEM
package along with the deployment of the neural network enables
the verification of the prediction. This also helps to identify
unphysical predictions from the network.

2. Algorithm for model updating and parameter identification It is
well known that numerical methods based predictions are often
challenged when they are compared with test results. This arises
due to multiple reasons. Uncertainty in the concerned governing
equation and uncertainty in the model parameters are the most
addressed.
Updating a numerical model by using data acquired from the
physical asset is important for predicting the future states. This

29

2 Research Outline

requirement gave rise to the field of model updating. The area
model updating is concerned with the correction of numerical
model/simulation models by processing records of operation data
from the physical asset. This includes the reconstruction of data
that are unavailable due to sensor placement.
In this scope, the aim is to extend the algorithm developed for
forward problems to inverse problems. Here the measured data
from real machines are used to calculate the unknown parameter
of the digital model. It is common in industry that the parameters
of the model change over time due to different wear and tear. So,
the parameter identification is relevant to update the digital model
according to the physical model.

3. Framework for the seamless integration of neural networks in
simulation
Recent developments in the field of computational mechanics have
introduced methods combining conventional numerical methods
with state-of-the-art AI. These methods roughly involve two steps.
First creating a surrogate for the numerical model. Second is to
use the generated surrogate in place of the numerical model or
along with other numerical models as a replacement to a part of
multiphysics simulations. Both approaches demand integration
of AI related packages into existing simulation workflows. The
Neural Network Application developed in Kratos [23] is one such
an application which enables the user to use neural networks in
combination with Finite Element Methods (FEM). The appli-
cation includes a general interface developed with the help of
CoSimulation Application of the Kratos framework. This includes
routines to interact with the widely-used software package for AI
applications Tensorflow. Multiphysics problems present a good
case to test the above developed methodology as individual numer-
ical models of the simulation can be replaced by already generated
surrogate models from AI to perform the multiphysics simulation.
To this extent, a Fluid-Structure Interaction (FSI) problem is
chosen. This contribution discusses different properties of the
surrogate effecting the outcome of the simulation and methods to
improve the stability and error in the estimates from the surrogate.

30

Research is creating new
knowledge

Neil Armstrong

C
h

a
p

te
r

3
State of the art

As stated in Chapter 2, this dissertation focuses on combining
simulation methods and AI with the help of neural networks. This
chapter surveys the main contributions of combining simulation and AI.
Since the focus is on neural networks, developments in other sub-fields
of AI, especially the recent ones, are not discussed in detail. After the
survey on AI, the evolution of the neural network over time with a
focus on informed machine learning is surveyed. Recent developments
in Informed machine learning are analyzed for their strengths and
weaknesses. Finally, application-specific surveys on bearing parameter
identification and high-rise building simulation are performed at the
end of the chapter.

3.1 Artificial intelligence

After the emergence of machines, there were attempts to mimic human
actions with the help of machines. The term Artificial Intelligence (AI)
originated following these attempts, refers to the intelligence demon-

31

3 State of the art

strated by machines as opposed to the natural intelligence human beings
and animals display. The history of AI travels way back to 1940s where
American Science Fiction writer Asimov [7] introduced three laws of
robotics. The one stating “A robot must obey orders given it by hu-
man” received the attention of the scientific world. Later in 1950s,
Alan Turing [111, 112] explained how to create intelligent machines and
introduced a method to test their intelligence. The test later known
as “Turing test” is still considered as benchmark to test AI systems.
As per Turing test, if an evaluator fails to distinguish whether a task
is performed by an human or a machine, the machine is considered to
pass the test. Another contribution in the same period is from Hebb
[39], where Hebbian Learning replicates the process of neurons in the
human brain was introduced. Hebbian learning later led to the creation
of Artificial Neural Networks (ANN). Initial works in the Game AI also
occurred in 1950s. The AI based machine for playing Nim [87] was one
of the first in this direction.

Initial researches such as the ones listed above made more interest
towards AI among scientists. Dartmouth Summer Research Project on
Artificial Intelligence hosted by Marvin Minsky and John McCarthy in
1956 united researchers from various fields to build machines that are
capable of simulating human intelligence. The event is marked as the
beginning of the AI spring. The conference followed a lot of research in
the field of AI. One of the many notable contribution following this is
the natural language processing tool ELIZA [119] developed at MIT.
But, most of the works in the direction of AI and ANN stagnated due to
the insufficient processing power of computers and this resulted financial
setbacks for AI research. However, one contribution came during this
time in 1974; backpropagation in Werbos [120] introduced a more
practical method for training ANNs. The backpropagation distributed
error term to different parameters in the network. Backpropagation is
the major driving force behind neural network even today.

Although there has been further developments, the next major
milestone happened in 1997. The world chess champion and grand
master Gary Kasparov was defeated by IBM’s Deep Blue [17]. It was
based on expert systems where a collection of rules assumed human
intelligence can be represented as a series of ‘if-else’ statements. However,
such expert systems failed when tried to learn such rules by themselves.

32

3.2 Artificial neural networks

This led to a complete paradigm shift from expert systems to computers
discovering rules by themselves. The concept of intelligent agents
gained attention during this time. An intelligent agent is a system that
perceives its environment and takes actions which maximize its chances
of success. Later in the early years of 2000’s, the success of AI was found
in areas like natural language processing, human emotion detection,
image recognition etc. Those developments hinted that machines could
address many problems human face.

The availability of large amount of data and the introduction of
highly efficient computer graphics card processors enabled AI to grow
further. One of the notable examples in this direction is the ImageNet
dataset [24]. The dataset motivated researchers around the world
to compete for object recognition algorithms. The success of object
recognition paved way for researchers to attempt more complex tasks
like generating captions for scripts, image generation, etc. Artificial
neural networks came back with the help of Deep learning (DL) [59] in
2015. A program developed by DeepMind was able to beat the world
champion in the game of Go [95]. Within years, AI has become an
essential part of our daily life. Examples like autonomous cars, natural
language processing, image recognition, language processing, consumer
behavior are some of the successful applications of AI that are seen
today.

3.2 Artificial neural networks

The threshold logic by McCulloch et al. [68] from 1943 marks the
beginning of artificial neural networks. But it took another three decades
for neural networks to get traction until the use of backpropagation
in neural networks in 80s. It was Paul Werbos [120] who realised the
potential of backpropagation in neural networks. Backpropagation along
with gradient descent form the backbone of modern day neural networks.
This paper described the construction of a system that recognizes hand-
printed digits, using a combination of classical techniques and neural-net
methods.

Neural networks and their application has seen exponential growth
from there onward. The Neural network recognizer for hand-written

33

3 State of the art

zip code digits [25] was first among them. It is also to be noted that
the first hidden layer of this neural net was convolutional. Many of the
modern day elements of neural networks originated between 1990-2000.
This include but not limited to CNN, RNN, LSTM and so on.

In the last decade, neural network has been successful in many
more application fields. These include computer vision [98], speech and
language processing [47], drug discovery [13, 57], genomics [61], computer
games [28], animation [33], robotics [51], and many more. Similarly, AI
has also made a large number of contributions to computer games [27,
75, 125]. An important direction in this field is game physics, where
physical effects such as smoke and fluid flows for computer graphics
are simulated with neural networks. Tompson et al. [108] proposed a
data-driven solution to the inviscid-Euler equations that is faster than
traditional methods used in computer graphics animations. Similar to
the developments in game physics, different AI methods have found
their application in solving PDE for physical problems.

3.3 Simulation and neural networks

One of the first works using neural networks for simulation is dated way
back to 1989. The work by Adeli et al. [3] used the perceptron (basic unit
of a neural network) for the design of a beam. Later, Vanluchene et al.
[114] trained neural networks on simple benchmarks such as prismatic
beams, simple truss structures and plates. In the following years, more
research on using neural networks for structural engineering has been
witnessed. A summary of major works can be seen in Adeli [2]. Recent
works also address different complexities in the structural simulation.
Wu et al. [122] presented a deep CNN approach for the prediction
of transient vibration response of Single Degree of Freedom (SDOF)
and Multiple Degrees of Freedom (MDOF) systems using multilevel
perceptron and CNN. Their ML model forecasts displacement in SDOF
systems while taking velocity, acceleration and excitation as inputs. It
is observed that the CNN based network could work even with the noise
in the input data.

Similar to structural mechanics, the use of neural network can be
seen in other simulations fields like Computational Fluid Dynamics

34

3.3 Simulation and neural networks

(CFD), thermal and electromagnetic. Surrogate modeling using neural
network was more attractive to CFD due to the expensiveness of the
numerical simulation. One of the beginner in this direction is the steady
flow approximation using CNN by Guo et al. [35]. They showed that
CNN can estimate the velocity field two orders of magnitude faster
than a GPU-accelerated CFD solver and four orders of magnitude
faster than a CPU-based CFD solver at a cost of a low error rate.
Thuerey et al. [103] investigated the accuracy of deep learning methods
for Reynolds-Averaged Navier-Stokes solutions. Pressure and velocity
distributions around airfoils are predicted after training a model U-
net architecture the training data. They achieved an mean relative
error of less than 3% for unseen airfoil profiles. They highlight that a
physical understanding of the problem helps to convert the problem to
non-dimensional formulation which significantly improves the training
results. In contrast to using neural networks for directly predicting
the primary variables, there has been an interest in the community
to model pressure projection or turbulence modeling required for the
fluid simulation. Tompson et al. [108] proposed the use of CNN for
the approximation of pressure projection step by using divergence
free condition directly for the training of the model. This way the
problem is unsupervised in nature. Jiang et al. [46] introduced an
interpretable framework of data-driven turbulence modeling using deep
neural networks. The framework resulted in models that exhibit good
generalization across two- and three- dimensional flows. There are also
other successful researches in modeling turbulence using neural networks
such as Ling et al. [62], Yin et al. [126], and Zhu et al. [131]

A conventional method in accelerating the forward solving of PDEs,
especially in xDTs, is the use of model order reduction techniques. Data
driven methods for MOR also gained attention of the ML community.
Recently the neural network based algorithms has found its place in
MOR as well. Mohan et al. [73] used LSTM neural network for success-
fully modeling turbulent flow control. Zhuang et al. [134] introduced
Runge-Kutta neural networks which learn the derivative of system state
and predict the new state as a numerical integrator. Zhuang et al. [133]
also introduced a method for active learning which makes the sampling
of training data for MOR smarter using neural networks.

35

3 State of the art

However, most of the works mentioned above follow the pure data-
driven path proposed by the machine learning community. The approach
faces two major challenges, lack of enough data and lack of physics
conformity. This gave rise to the direction of informed machine learning.

3.4 Informed machine learning

The umbrella term informed machine learning introduced by Von Rueden
et al. [116] refers to different approaches on the explicit integration of
prior knowledge into machine learning pipelines. They structure different
approaches according to the three above analysis questions about the
knowledge source, knowledge representation and knowledge integration.
In another work, Willard et al. [121] provides an overview of approaches
which integrate traditional physics based modeling techniques with ML.
The authors categorize these approaches into five classes; (i) Physics-
guided loss function, (ii) Physics-guided initialization, (iii) Physics
guided design of architecture, (iv) Residual modeling, and (v) Hybrid
physics-ML models.

Among the many approaches in this direction, the Physics Informed
Neural Networks gained the interest of most the researchers in the last
few years. In the following section we detail the state-of-the-art in this
direction.

3.4.1 Physics informed neural networks
The PINN introduced by Raissi et al. [85] is one of the widely accepted
methods falling under the category of informed machine learning. PINNs
embed the physics in the form of the PDE into the loss function of
the neural network using automatic differentiation. More details about
PINN is given in Section 2.6.1. PINNs are successfully demonstrated
for different application fields in the last few years, fluid dynamics [15],
thermodynamics [16], solid mechanics [36], electromagnetics [110] to
name but a few examples. Eventhough PINNs present a differentiable,
mesh-free approach and avoid the curse of dimensionality, the researchers
found that the numerical grid-based conventional approaches outperform
PINNs in forward problems. However, PINNs were found useful for
parameterized PDE in low data regime or inverse problems. Some of the

36

3.4 Informed machine learning

contributions of PINN in inverse problems are system identification in
Yuan et al. [128], inverse scattering problems in photonic metamaterials
[20], and seismic inversion problems Zhu et al. [132].

Recently, Zhang et al. [130] applied a multiLSTM neural network
which maps the excitation force to the response of the system. They
couple custom model architecture and loss functions to represent the
underlying physics resulting in a model which outperforms conventional
data driven LSTM models in terms of robustness and accuracy. Latterly,
Wang et al. [117] devise and present a Knowledge-Enhanced Deep
Learning (KEDL) algorithm which trains a NN to predict response of a
system for a specific excitation. The authors used both input output
data and prior knowledge in the form of equations into the NN’s training
loss function.

One of the main observation on PINNs failure when solving complex
problems is that the soft regularization used in PINNs makes the
problems ill-conditioned [55]. Krishnapriyan et al. [55] state that PINNs
learn good model for relatively trivial problems and fails for complex
problems. A detailed study on when and why PINNs fail is performed
by Wang et al. [118] with the help of neural tangent kernal theory. One
of the major observations they made is that fully-connected PINNs not
only suffer from spectral bias, but also from a remarkable discrepancy
of convergence rate in the different components of their loss function.
Similar observations related to the multiple terms in the loss functions
are made by more researchers. Bischof et al. [9] observed the need
of correctly weighing the combination of multiple loss functions and
introduced a self-adaptive loss balancing method. Xiang et al. [124]
also observed that weighted combination of competitive multiple loss
terms play an important role in the training of PINNs and introduced
a self-adaptive loss balanced PINN.

As a summary, inverse problems are handled well by PINNs, whereas
PINNs struggle to perform well for forward problem. As stated in
the initial work on PINNs by Raissi et al. [85], PINNs should not be
viewed as replacements of classical numerical methods for solving partial
differential equations. More details on the scenarios where PINN may
be advantageous can be found in Karniadakis et al. [49]. And latest
developments hint at revisiting the loss terms or using a method to

37

3 State of the art

balance different loss terms in the PINN to avoid the problem becoming
an ill-posed. However this also posses different difficulties as pointed
out in Xiang et al. [124].

3.5 Inverse problems

Inverse problems deal with finding out the factors which caused the
given observations. Historically, the discovery of planet Neptune from
Uranus is the first in this direction. Systematic and formal study of
inverse problems began in 20th century. Gladwell [29], Potthast [81],
and Sabatier [91] discuss the directions explored and the obtained
results in inverse problems in the 20th century. As per Sabatier [91], a
mathematical model M enables us to predict the result of any possible
measurement ε by giving the parameters C . Giving the model M
explicitly is called direct problem. Going back from ε to C is called the
inverse problems. The terminology inverse problem appeared first in the
1960s to designate the unknowns in the geophysics equations through
experiments. Today it is widely used as the best possible reconstruction
of missing information such as the loads (source identification) or the
value of the undetermined parameters (model parameter identification).

Most of the works till 1970s were empirical in nature. The work
of G. Backus and of F. Gilbert Backus et al. [8] introduced the use of
numerical methods for the inverse problems. In 1980s Tarantola came
up with the idea of using probabilistic models like Bayesian approach for
the inverse problems. Tarantola authored several books on this subject
[100, 101]. Later on different approaches like functional analysis [58],
Regularization of Ill-Posed Problems [104], Bayesian inversion are used
for inverse problems. Recent decade has seen a lot of research into the
inverse problems with the help of machine learning methods. Raissi
et al. [85], in the second part of the famous paper on PINN, introduced
a method for inverse problems. The unknown parameters of a PDE are
estimated from the measured data by backpropagating the residual of
the equation.

Roehrl et al. [88] introduced a physics-informed neural ordinary
differential equations (PINODE), a hybrid model that combines first
principle models and data driven models. They integrated prior physics

38

3.6 State of the art for applications

knowledge where it is available and used function approximations like
neural networks—where it is not. The results on simple cart pendulum
system show the advantages resulting from hybrid approach. Since we
are dealing with the inverse problems in the rotordynamics systems,
more state-of-the-art specific to the subject are given in section 3.6.2.

3.6 State of the art for applications

There are two engineering application examples are considered in this
dissertation. The the state-of-the-art in these two applications are
discussed here. In the first part, some of the major studies in the
direction of wind load on high-rise buildings are discussed. In the
second part, parameter identification methods developed for the fluid
bearings are discussed.

3.6.1 Wind load on High-rise buildings
Conventionally the wind load on high-rise buildings are analysed with
the help of wind tunnels (Building codes and standards are also used
for the same. However, building codes and standards are made from
wind tunnel tests). The three commonly used wind tunnel test types
are high-frequency balance (HFB), high-frequency pressure integration
(HFPI), and aeroelastic techniques. The use of numerical methods
gained its attention later due to the high cost associated with those
wind tunnel tests.

Thordal et al. [102] details the practical application of CFD for the
determination of the wind load on high-rise buildings. Though the
results were not matching with the wind tunnel experiments, this study
highlighted the importance CFD can play in the analysis of wind load
on high-rise buildings. Recently Hou et al. [43] reviewed the past studies
in this direction and provided information on identification techniques.
In the study of Buffa et al. [12] a Lattice-Boltzmann-based Large-Eddy
Simulation approach for wind load prediction is proposed. A very good
agreement has been obtained with experimental data at all validation
levels using a well suited grid resolution along with a well calibrated
Synthetic Eddy Method.

39

3 State of the art

Different uncertain environments cause long term damages to the
high-rise buildings. The terrain at a location and the wind are two major
contributors of uncertainty. The uncertainties associated with them
need to be studied to study the uncertainty of the load on the buildings.
Different studies are done to estimate the uncertainty in the load and the
displacement of the building. Tosi et al. [109] used ensemble averaging
techniques for the uncertainty quantification of the CFD predictions
in wind engineering problems. Kodakkal et al. [53] proposed a novel
approach to risk-averse shape optimization of tall building structures
using site-specific uncertainties. The study highlights the importance
of fine tuned optimal design for different predominant wind directions.
It also discusses the need for reducing the overall computational cost.

Recently, the use of machine learning has gained the attention of
the community due to the faster prediction time using trained models.
Wind-induced pressures on a building surface are predicted using neural
network in Dongmei et al. [26] based on wind tunnel experimental
data. As this method still demanded the use of wind tunnel tests, it is
costly in nature. A multi-fidelity machine learning approach has been
proposed by Lamberti et al. [56] to predict the rms pressure coefficient
on a highrise building based on LES data. The proposed framework
can significantly reduce the number of LES simulations needed for the
design. Eventhough machine learning based methods are giving good
results, there are a lot of problems we need to address. In the review
paper on machine learning for wind-problems [123], Wu et al explains
that the explainability and uncertainty quantification are the important
research gaps that need to be addressed in ML-based wind engineering.

3.6.2 Bearing parameter identification
Rotating system are in use for centuries. They were the main driving
force for factories and systems throughout the world. Hence they were
one of the main system under study from ancient times. Most of the
time, the corresponding industry was leading the study due to the
advantage it provide in the applications. In the initial days, the effects
like wirling were studied [86]. Later the studies were moved towards
the stability of the system. The conditions leading to nonsynchronous
precession in a rotor system are explained in Gunter Jr [34].

40

3.6 State of the art for applications

In 1957 the role of fluid film bearing in rotor dynamics was explained
in a graphical way by Newkirk Newkirk [76]. Tiwari et al. provided
a detailed review of the conventional methods of bearing parameter
estimation in [60]. This include methods based on incremental static
load, dynamic load, excited load, unbalance mass [60], impact hammer
[83], impulse [83, 106] etc. Most of the methods either used bearings in
isolation or a rigid shaft. In 2002, Tiwari et al. [107] introduced a method
treating shaft as flexible for the identification of speed-dependent bearing
parameters. Normally such methods do not consider the foundation
flexibility, and its contribution is not estimated. The method also
requires matrix inversion, which demands the consideration of the
condition number of the matrix and methods to improve the condition
number. Another problem associated with the method is that the data
corresponding to each speed has to be considered independently to
estimate the parameter corresponding to the particular speed. A model
mapping speed to parameters was not possible with such methods.

A Kalman filter based approach was developed by Kang et al. [48] for
the dynamic bearing coefficient identification in which displacement of
the shaft is measured only at one location. Kalman filter was employed
to estimate displacements of the shaft at bearings locations. The
method provides a more practical approach for the estimation of bearing
parameters but still uses the conventional least-square method for
calculating bearing parameters from the calculated displacement at
bearing locations. Least-square methods may not guarantee global
optimum, especially when noise or other uncertain factors are present.
Kriging surrogate model and Differential Evolution (DE) algorithm was
employed in parameter identification of rotor-bearing system in Han
et al. [37]. It is found that the Kriging surrogate model is more robust
to the noise and costs less time but at the cost of generating a dataset
prior to the initial surrogate model creation.

A neural network based approach was introduced in Pavlenko et al.
[80] for learning bearing parameters against rotational speed. They
used a numerically simulated dataset of possible parameters and the
corresponding critical speeds. Then a neural network surrogate was
created to predict bearing parameters given the critical speed. It was
observed that the neural network approach resulted in more accurate
results compared to conventional regression methods. They attribute

41

3 State of the art

this mainly to the universal approximation capacity of neural networks.
However, this method demands the creation of a dataset prior and hence
is costly in nature.

42

The key to artificial
intelligence has always been
the representation

Jeff Hawkins

C
h

a
p

te
r

4
Neural network training

4.1 Introduction

An introduction to neural networks is given in Section 2.4. This chapter
focuses on detailed information on the neural network with a focus on
training. Even though neural networks have shown success in many
fields, their training is still highly empirical in nature. Hence, funda-
mental knowledge of different aspects helps achieve an accurate and
generalizable model. The training process of a typical neural network
model has the following steps

1. Select the architecture of the neural network

2. Initialize the weights and biases of the neural networks.

3. Perform the forward pass on the input dataset x and obtain the
predictions y

43

4 Neural network training

4. The loss function is calculated from the ground truth values y
and the predictions ŷ .

5. Calculate derivatives of the loss function with respect to the
parameters of the network using backpropagation.

6. Update weights and biases of the network using the calculated
derivatives and selected optimization algorithm.

7. Repeat steps 2 to 6 until a convergence criterion is fulfilled or a
set number of iterations (epochs) are evaluated.

The basics of each of the above steps are explained in this chapter.

4.2 Neural network architecture

A neural network is a complex structure consisting of neurons. Neurons
are said to mimic the biological behavior of a brain. A typical neural
network consists of an input layer, hidden layers, and output layers
(Section 2.6). Every layer consists of several neurons interconnected
with the neurons of other layers. Wide varieties of neural network
architecture are possible depending on the connection type, number of
neurons in each layer, or number of layers. The selected architecture
of the network plays an essential role in approximating the unknown
relation between input and output. The following part details major
concepts in creating a neural network and some of the neural network
architectures used in the dissertation.

4.2.1 Neurons
Neurons are fundamental units of a neural network. It is mathematically
described by the function

N (x) =σ(x T w + b) (4.1)

where x is the input vector, w the weight vector and b the bias. The
function σ is a non-linear function known as activation function.

44

4.2 Neural network architecture

Figure 4.1: Activation functions Sigmoid, Tanh, ReLu and LeakyReLU

4.2.2 Activation functions
It is a function used in the neural network to decide if the incoming
information is important or not in achieving the final goal of the network.
Most activation functions map the input to a range of input [−1, 1]
depending on the usefulness. It helps the artificial neural networks to
use important information while suppressing irrelevant. A few of the
widely used activation functions are detailed below and shown in Figure
4.1.

• Perceptron It is one of the first activation functions and an algo-
rithm. Its range goes from 0 to 1 with a strong discontinuity at
0. Perceptron is better suited for classification problems as the
results are binary. The strong discontinuity generates problems
in training, as the derivatives are poorly defined at that point.

45

4 Neural network training

• Sigmoid Similar to perceptron, it has a range from 0 to 1. However,
the sigmoid provides a soft slope that removes the discontinuity.
Sigmoid is also generally used for classification problems, but
continuity allows its use for regression.

• Tanh Tanh activation function evaluates the hyperbolic tangent
of the input data. It gives a smooth function ranging between −1
and 1. It is the most flexible of those presented here but also the
most expensive to evaluate.

• ReLU The Rectified Linear Unit or ReLU is defined as the maxi-
mum between 0 and the input value. It does not allow negative
values in the output, and those in the input result in 0 inde-
pendently of their value. This can be problematic when used in
the first layers of a model. It is one of the most used activation
functions and has benefits like sparseness at the activation that
helps accelerate the training process. Nonetheless, the lack of
differentiability at zero generates uncertainties in the training
if the values are close to 0. This has promoted the appearance
of similar functions with smoother behavior around 0, such as
LeakyReLU and SmoothReLU.

• LeakyReLU It is an activation function based on ReLU, but having
a small slope for negative values instead of a flat slope.

A few of the neural network architectures used in this dissertation
are given below.

4.2.3 Fully connected neural network
Fully connected neural networks are the simplest form of neural network
that resembles Figure 2.6. It connects every neuron in one layer to every
neuron in the other layer, hence the name fully connected. They are
known as “structure agnostic”, as no particular assumptions are needed
to prepare the input. It is broadly applicable to any problems with the
drawback of weaker performance compared to special networks.

46

4.2 Neural network architecture

4.2.4 Convolutional neural network
Convolutional networks [5, 77] are used with grid structure input data,
or input has to be converted to a grid structure to use the CNN
architecture.

The main component of a CNN architecture is the filter(kernel) of a
specific dimension applied to the input layer in the grid structure to pro-
duce a new grid as output. There can be more than one filter generating
those many output grids from a single input grid. In comparison to fully
connected, they have three significant advantages: sparse interactions,
shared parameters, and produce equivariant representations [32]. These
three properties make CNN very efficient if data can be structured into
a grid. They are very efficient in capturing geometrical information from
the given data, hence are widely used among the simulation community
as well.

4.2.5 U-Net
U-net [89] is a CNN architecture initially developed for biomedical image
segmentation task. It consists of one contracting path and an expanding
one. The Contracting path consists of repeated application of convo-
lutional layers, reducing the grid structure’s spatial information while
increasing the features. The expanding path consists of up-convolutions
and concatenations via skip connections, resulting in expanding grid
structures. The contracting and expanding structure results in the name
U-net. Better performance and fewer data requirements make U-net an
attractive option for simulations.

4.2.6 Long Short-Term Memory (LSTM) network
LSTM[127] neural networks are mainly used for sequences of data.
They have succeeded in sequence data analysis for applications like
machine translation, robot control, and speech recognition. LSTMs
were developed to solve the vanishing gradient problem (Section 4.9) that
was encountered with the traditional RNNs [69]. The architecture of
LSTM allows the gradient to flow unchanged and prevents the vanishing
and exploding gradient problems.

47

4 Neural network training

All the networks mentioned above can take different final architec-
tures based on the number of layers, the number of neurons in each layer,
activation functions used, batch normalization, and dropout percentage.
The final architecture is obtained with the help of hyperparameter
tuning as explained in Section 4.10.

4.3 Parameter Initialization

After selecting the neural network architecture, the next step is to
initialize the parameters of the network. The initialization step can be
critical to the final performance of the model. For example, initializing
with constant values results in poor performance. Constant initialization
makes all the neurons in a layer have an identical contribution to the loss
term and hence identical gradients. This makes those neurons evolve
similarly during training and prevent the neural network from learning.
Whereas initializing with very large or very small values results in diver-
gence or slow convergence of the network. These also causes exploding
and vanishing gradient problems (detailed in Section 4.9). In order
to prevent from above problems, appropriate initialization is required.
Making the mean of the activation zero and keeping variance similar in
every layer prevents the networks from resulting in vanishing/exploding
gradients [50]. This can be achieved by picking initialization values
from the normal distribution. A few of the widely used initialization
methods are Xavier initialization and He initialization.

4.3.1 Xavier initialization
Xavier Glorot and Yoshua Bengio proposed an initialization method
called Xavier in their paper [30] in 2010. In this method, all the weights
of a layer l are picked randomly from a normal distribution with a mean
µ = 0 and variance σ2 = 1

n l−1 . All the biases are initialized with zeros.
However, it is observed that Xavier initialization performs well with
tanh activation functions in comparison to other activation functions.

4.3.2 He initialization
He initialization [38] is commonly used while using ReLU activation
functions. The weights are initialized by multiplying by 2 the variance

48

4.4 Optimization

of Xavier initialization in the He initialization. There are variants like
He uniform and He normal initialization depending on the distribution
from which values are selected.

4.4 Optimization

The process of optimizing the network starts after the selection of the
neural network architecture and the initialization. This section details
the basic optimization concept with a focus on neural networks.

The process of minimizing or maximizing any mathematical expres-
sion is called optimization. Optimization problems have the form,

mi ni mi z e f0(θ)

s u b j e c t t o fi (θ)≤ bi , i = 1,, m
(4.2)

The function f0 : R n → R is the objective function and functions
fi : R n → R , for i = 1, ..., m , are the constraint functions having limits
or bounds b1, ..., bm . The input to the objective function θ = (θ1, ...,θn)
is the optimization variable of the problem. A vector θ ∗ is called the
solution of the problem 4.2, if it gives the smallest value for the objective
and also satisfy the constraints.

There are two main classes of optimization problems convex opti-
mization and non-convex optimization problems. Both the objective
and constrain functions are convex in the case of convex optimization
problems, which means

fi (αθ +βγ)≤α fi (θ)+β fi (γ) (4.3)

When talking about optimization in the context of neural networks, we
are discussing non-convex optimization. Convex optimization involves a
function which there is only one optimum, the global optimum. Whereas,
the non-convex optimization involves a function which has more than one
optima, only one of which is the global optima. It can be very difficult
to locate the global optima depending on the loss surface we define.
The problems like getting stuck at local optima, too small learning
rate, or loss surface morphology changes can occur while performing

49

4 Neural network training

optimization. Optimizers are algorithms or methods used to change
the parameters θ = (θ1, ...,θn) to minimize f0. How one should change
θ is defined by the optimizers you use. Optimization algorithms are
responsible for minimizing f0 and to provide the most accurate results
possible.

4.4.1 Optimizers
Over the years different optimizers are being developed to work with
neural networks. A few of the widely used ones are explained below.

• Gradient Descent: It is an optimization algorithm used to find
minimum or maximum of a given differentiable function. A func-
tion f (θ) decreases fastest in the direction of the negative gradient
of f at the given point θ . The updated value for θ is given by

θn+1 = θn −γ∇ f (θ) (4.4)

where n and n +1 represents the iteration number. And γ repre-
sents the learning rate. Learning rate decides how big a step is
taken towards the optimum.

• Stochastic Gradient Descent (SGD): Gradient Descent has a dis-
advantage that it requires a lot of memory to load the entire
dataset of n-samples at a time to compute the derivative of the
loss function. In the SGD algorithm derivative is computed taking
one sample at a time. In comparison to the gradient descent it is
faster but the convergence rate is low.

• Mini Batch Stochastic Gradient Descent (MB-SGD): It is a varia-
tion of SGD algorithm where the training data is split into small
batches. The model error, gradient and model update are per-
formed for one batch at a time. It is a balance between the
robustness of SGD and the efficiency of gradient descent. It avoids
the situation of having all data in the memory as well as com-
putationally efficient due to the use of batches. It is the most
commonly used implementation of gradient descent.

• Adaptive Gradient Descent (AdaGrad): The learning rate is same
for every dimension in the case of SGD algorithms. But it could

50

4.4 Optimization

be small in some direction and large in another. The AdaGrad
[65] algorithm adaptively scale the learning rate for each of the
dimension by following the update rule

θn+1 = θn −
γ

p

εI +d i a g (Gn)
∇ f (θ) (4.5)

where Gn is given by

Gn =
n
∑

T=1

∇t∇T
t (4.6)

Hence, AdaGrad adaptively scales the learning rate at each itera-
tion in each dimension with respect to the accumulated squared
gradient.

• RMSProp: RMSProp is an extension to the gradient descent
optimization algorithm with the concepts of AdaGrad. It uses the
decaying average of partial gradients in the adaptation of the step
size for each parameter. It is introduced by Hinton in his lecture
titled ”rmsprop: Divide the gradient by a running average of its
recent magnitude” [41].

• SGD with momentum: Momentum [82] helps to accelerate SGD
in the relevant direction with the following update rule

νn =ηνn−1+γ∇ f (θ)

θ = θ −νn
(4.7)

It does this by adding a fraction ν of the update vector of the
past time step to the current update

• Adaptive Moment Estimation (Adam): The Adam [52] optimizer
is described as a combination of AdaGrad and RMS prop. The
adam also makes use of the average of the second moment of the
gradients for updating the learning rate. The algorithm calculates
an exponential moving average of the gradient and the squared
gradient.

51

4 Neural network training

4.5 Backpropagation

Backpropagation [90] is the widely used algorithm for training neural
networks. Every optimizer described in Section 4.4 uses the gradient of
the loss function δ (One of the widely used loss function is the mean
squared error given at 2.5) with respect to the weights and biases of
the neural network ∂ δ

∂ wl
and ∂ δ

∂ bl
.

Backpropagation computes the gradients with the help of the chain
rule. The required gradient ∂ δ

∂ wl
can be written as

∂ δ

∂ wl
=
∂ δ

∂ ŷ

∂ ŷ

∂ wl
(4.8)

Here the first term ∂ δ
∂ ŷ represents the derivative of the loss function δ

with respect to the output ŷ of the network. The second term ∂ ŷ
∂ wl

is
the derivative of network output ŷ with respect to the weights wl . This
term can be further divided into smaller parts by using different layers
and network activation function details.

∂ ŷ

∂ wl
=
∂ ŷ

∂ wl+1

∂ wl+1

∂ wl
(4.9)

Neural network training is the process of updating the network
parameters by performing optimization using the backpropagation algo-
rithm. A few practical considerations for successful training are detailed
in the following sections.

4.6 Bias-Variance tradeoff

Ideally, one needs to train a model that accurately captures training
data and generalizes well to unseen data. Bias and variance are two
sources of errors that prevent a model from generalizing beyond the
training data. Bias is the difference between the average prediction of
our model and the actual values we are trying to predict. A high-bias
model makes poor training and test data predictions. Hence, a low bias
is desirable. At the same time, a model with high variance predicts
well on the training data but performs poorly on unseen data. So a low

52

4.7 Overfitting and underfitting

Figure 4.2: Underfit, perfect fit, and overfit models for the same dataset

variance is also preferred. However, reducing the bias increases variance.
So, in any training, a bias-variance tradeoff is optimum. A model with
very low bias and high variance is said to be overfitted to the training
data. Similarly, a model with high bias and low variance is underfitted.
Figure 4.2 shows an underfit, perfect fit and overfit models for the same
dataset.

4.7 Overfitting and underfitting

Two significant concepts one needs to consider during training neural
network models are overfitting and underfitting. Overfitting is a situa-
tion in data science when the statistical model exactly fits the training
data and performs poorly on new data. Data augmentation, regulariza-
tion, dropout, and early stopping are methods to prevent overfitting in
neural network training. Underfitting is the situation where the model
is unable to capture the relationship between input and output data.
There will be a high error in training and testing for an underfit model.

4.7.1 Dropout
As explained in Section 4.7, overfitting is a severe problem faced by
deep neural networks. Dropout [96] is a technique introduced to ad-
dress this problem. The idea is to drop neurons randomly along with
their connections from the neural network during training. This ar-
tificially creates different networks to be trained every epoch, which

53

4 Neural network training

would have a different prediction for a given input. During testing,
units are not dropped, and the network gives the average prediction of
all the ”dropout” networks considered during training. The dropout
significantly reduces overfitting and gives major improvements over
other regularization methods. Srivastava et al. in [96] showed that
dropout improves the performance of neural networks on supervised
learning tasks in vision, speech recognition, document classification,
and computational biology, obtaining state-of-the-art results on many
benchmark data sets.

4.7.2 Regularization
Neural networks work well for predicting outputs from inputs in the
training dataset, but accurate prediction on other datasets can be
challenging. The process of increasing the accuracy of predictions from
inputs with a small variation from those in the training dataset is called
regularization.

There are many regularization techniques that act on potential
errors. One of those possible sources of error can be the overfitting of
the network. An option is to apply a penalty to the loss function, called
L1 and L2 regularization. This method penalizes having large values
for the model weights, which typically increases the variability of the
predictions. The cost function δ with regularization L1 and penalty
factor λ results into

δ̃=δ+λ‖w ‖1 (4.10)

where ‖·‖1 is the first norm of all the weights used in the neural network.
similarly, with regularization L2

δ̃=δ+
λ

2
w T w (4.11)

4.7.3 Early stopping
It is a regularization method used in iterative method-based training
such as gradient descent. Every iterative method updates model param-
eters to improve its performance in each iteration. Early stopping stops

54

4.8 Batch normalization

Error
Validation set

Training set

Early stopping Iterations

Figure 4.3: Early stopping identification

the training when parameter updates no longer improve the performance
of the model on the validation set.

4.8 Batch normalization

Batch normalization [44] is an algorithm that makes the training of
neural networks faster and more stable. The training process becomes
complicated as each layer’s input changes during training, as the previous
layer change. This slows down the training and demands a lower learning
rate. Batch normalization normalizes the output of hidden layers with
the mean and variance of the present batch. A batch normalization
layer determines the mean and the variance of the activation values
across the current batch; then, it normalizes the activation vector to
result in the neuron’s output following a standard normal distribution
across the batch. This normalization process allows the usage of much
higher learning rates.

4.9 Vanishing and exploding Gradients

Vanishing and exploding gradients are significant problems while training
a neural network using gradient-based learning methods and backpropa-

55

4 Neural network training

gation. The gradient of weights and biases becomes vanishingly small in
vanishing gradient problems. In contrast, the gradients become larger
and accumulate, resulting in huge updates to weights and biases in the
case of exploding gradients.

Vanishing gradients mainly occur in deep networks. When the
network is more profound, the gradient gets multiplied again and again
and approaches zero. It results in unchanged weights and biases and
hence an unchanged model. One way to eliminate the vanishing gradient
problem is to change from sigmoid activation to ReLU activation.

Exploding gradients are the problem of large gradient accumulation
and large updates of the network parameters. This result in an unstable
network which does not minimize the loss term. Methods such as
gradient clipping [19] and weight regularization (Section 4.7.2) are used
to fix the exploding gradients problem.

4.10 Hyperparameter tuning

Neural network parameters like weights and biases are adjusted to result
in an optimum network that minimizes the loss. However, parameters
like the number of layers and neurons in each layer are selected before
feeding the data for training. Such parameters which are set for a
given algorithm are called hyperparameters. Different hyperparameters
result in different models for a given data set. Hyperparameter tuning
finds a set of optimal hyperparameter values for an algorithm while
applying this optimized algorithm to the given data set. Some of the
hyperparameters in neural network training are

• number of layers: Making our network small with less number
of layers makes it simple and generalizable. However, we may
need to use deep networks with 10 or more layers for complex
physics. It is recommended to start with 4−6 layers and increase
or decrease according to the accuracy.

• number of neurons: Even though the universal approximation
theorem suggests having a larger number of neurons in a single
layer, it is not possible to have too many neurons in a single layer.

56

4.10 Hyperparameter tuning

Furthermore, having a large number of neurons makes the network
memorize the data and results in poor prediction of new data.

• Learning rate: Learning rate controls how much the parameters
like weights or biases change in each iteration. Keeping the
learning rate low results in longer training time. At the same time,
keeping its value high results in missing the minimum. Hence, we
need to find the tradeoff between larger and smaller learning rates
for the given problem.

• Dropout percentage: Dropout (Section 4.7.1) increases the gener-
alization power of our neural network. A value between 20−50%
is generally used. A small value has no impact, and a high value
will result in the underlearning of the network.

• Activation function: Activation functions also play an important
role in the learning capacity of a network. Even though ReLU
and Tanh are the commonly used activation functions, it is better
to run them through hyperparameter search as some problems
work well with only ReLu or Tanh.

It is also possible to add parameters like batch size, number of epochs,
or momentum as a hyperparameter.

Different methods exist to find hyperparameters for a given problem
and data set. Some of them are

• Grid search: A grid of possible discrete hyperparameter values is
created, and the model is fitted with every possible combination.
The model’s performance for each set is recorded, and the one
with the best performance is chosen. It is time-consuming, along
with high computation requirements.

• Random search: Random search tries a random combination of
hyperparameters and selects the one giving the best performance.
It is appropriate when the number of hyperparameters has rela-
tively large search domains. Random search typically requires less
time than grid search to return a comparable result. Its drawback
is that the resulting hyperparameters may not be the best possible
combination.

57

4 Neural network training

• Bayesian optimization: Grid and random searches are inefficient
as they do not consider the results of previous iterations. The
bayesian optimization [94] considers the hyperparameter search
as an optimization problem. It applies a probabilistic function
to select the combination that will probably yield better results
based on the previous iteration’s results.

58

Essentially, all models are
wrong, but some are useful

George Box

C
h

a
p

te
r

5
FEM informed neural network

5.1 Introduction

As mentioned in Section 2.2, the number of elements used for discretiza-
tion increases the cost of a numerical simulation. Solving the linear
system of equations is the most time-consuming step in the Finite Ele-
ment Methodology. It increases cubically against the number of degrees
of freedom. Most linear solvers have a complexity between O (n 2) and
O (n 3). Avoiding this step can increase the computational speed and can
be used in situations where computational efficiency is critical, like real
time simulations and executable digital twins. Hence, it is imperative
that this step be avoided in such applications.

In the following, we discuss an algorithm that combines residual
information from FEM to train a neural network for PDEs. We refer to
the resulting surrogate model as the Finite Element Method enhanced
Neural Network (FEM-NN).

59

5 FEM informed neural network

5.2 Algorithm

The proposed algorithm results in a surrogate model for a parameterized
PDE. Consider the general PDE that represents a physical problem, as
given in Equation 2.1, for a general domain Ω, as illustrated in Figure
5.1.

Figure 5.1: Physical problem in domain Ω with boundary Γ

The equation may include constant values for material properties,
initial conditions, or boundary conditions. Considering some or all of
them as parameters of the equation allows Equation 2.1 to be converted
into

L(u ,λ) = 0 on Ω
u = ud on ΓD

∂ u

∂ n̂
= g on ΓN

(5.1)

60

5.2 Algorithm

Here, λ may or may not include the Dirichlet and Neumann conditions.
Depending on the requirements and complexity, some of the other
options for λ include

• Geometrical properties: Examples are length of a structural beam,
radius of a circular heat source or height of a high-rise building

• Material properties: Examples are density, specific heat, Young’s
modulus, or damping coefficient

• Initial conditions: Examples are initial temperature of the domain
or initial velocity field

• Boundary conditions: Examples are inlet velocity, convection heat
source at the boundary or fixed points of the structure

The block diagrams for training and deployment of the proposed
hybrid surrogate model for the parameterized PDE are shown in Figure
5.2 and 5.3. The algorithm combines FEM and neural network to result
in a surrogate model, that we refer to as FEM enhanced neural network
hybrid model (FEM-NN). The training process before deploying it as
a surrogate model for simulation is depicted in Figure 5.2. During
the training process, the variables for simulation are taken as input
parameters. This includes the parameters of the parametric PDE (λ),
parameters of the neural network (θ) and constants of simulation (C).
The input parameters are processed by both the neural network and
the FEM library.

The neural network predicts the primary variable

ũ= fn (λ,θ) (5.2)

for a given sample the prediction is

ũi = fn (λi ,θ) (5.3)

where λi is the i t h set of values for the parameters of the PDE for the
given sample. The neural network outputs ũi after the forward pass

61

5 FEM informed neural network

𝒖𝑖 = 𝑓𝑛(𝜆𝑖 , 𝜃)

Figure 5.2: Training of FEM enhanced neural network

through the chosen network architecture. The output of the network is
the discrete solution field vector ũi given as,

ũi =

















ũ1

ũ2

...

ũn

















i

(5.4)

The parameters λi and other constants required for a simulation are
inputted into the simulation unit to derive and extract resulting stiffness
matrix and force vector.

K i = fk (λi , C) (5.5)

Fi = f f (λi , C) (5.6)

Here, K i and Fi are the stiffness matrix and force vector for the
parameters λi of the given sample. The C represents other constant
values required for the simulation framework such as mesh size, number
of nodes and time-step.

The residual r is calculated using the prediction ũi from the neural
network and K i and Fi from FEM. Loss for the neural network prediction
is defined as Euclidean norm of the residual vector ri.

δ= ||ri||2 (5.7)

62

5.2 Algorithm

where ri is given by

ri = K iũi− Fi

=

















k1,1 k1,2 · · · k1,n

k2,1 k2,2 · · · k2,n

...
...

...
...

kn ,1 kn ,2 · · · kn ,n

















i

















ũ1

ũ2

...

ũn

















i

−

















f1

f2

...

fn

















i

=

















k1,1ũ1+k1,2ũ2+ ..+k1,n ũn − f1

k2,1ũ1+k2,2ũ2+ ..+k2,n ũn − f2

...

kn ,1ũ1+kn ,2ũ2+ ..+kn ,n ũn − fn

















i

(5.8)

This gives loss δ as,

δ= ‖ri‖2

=
Æ

(k1,1ũ1+ ..+k1,n ũn − f1)2+ ...+ (kn ,1ũ1+ ..+kn ,n ũn − fn)2

=
s

∑n

j=1

∑n

i=1
(K j ,i ũi − f j)2

(5.9)

As explained in Section 2.7, the learnable parameters θ are updated
using the backpropagation algorithm to minimize the loss. Backpropa-
gation calculates the gradients of the loss with respect to the learnable
parameters θ . Since we use a custom loss function specific to FEM,
we need to calculate the second part of the Equation 2.7, ∂ δ∂ y , for the
custom loss used here. In the case of a hybrid model, the output y of
the neural network is the predicted discrete solution field ũi.

y=

















ũ1

ũ2

...

ũn

















i

63

5 FEM informed neural network

The gradient has to be calculated with respect to each member of the
output. ∂ δ∂ y becomes,

















∂ δ
∂ ũ1

∂ δ
∂ ũ2

...
∂ δ
∂ ũn

















i

=
1

2δ











k1,1ũ1+k1,2ũ2+ ..+k1,n ũn − f1

...

kn ,1ũ1+kn ,2ũ2+ ..+kn ,n ũn − fn











T

















k1,1 k1,2 · · · k1,n

k2,1 k2,2 · · · k2,n

...
...

...
...

kn ,1 kn ,2 · · · kn ,n

















which gives
∂ δ

∂ y
=

rT
i K i

δ
(5.10)

where rT
i is the transpose of the residual vector ri and K i is the stiffness

matrix of the i t h sample. We can train the network against the residual
of the differential equation with the implementation of the above in the
machine learning frameworks. A sample code for the implementation
in the PyTorch framework is given in code 5.1. The second part of the
Equation 2.7 is readily available in all the neural network frameworks
like PyTorch or Tensorflow.

Once trained, the neural network is deployed using a similar hybrid
approach for a new set of input parameters. The deployment process is
depicted in Figure 5.3. The input variables are the parameters λi of
the parametric PDE for the given sample, the learned parameters θ ∗
of the neural network and the constants for simulation C . The trained
neural network predicts the output ũi and the FEM gives K i and Fi.
For a given sample the prediction is

ũi = fn (λi ,θ ∗) (5.11)

where θ ∗ is the optimized NN parameters resulted after training the
neural network

64

5.2 Algorithm

In a conventional way of deployment of networks, the prediction
accuracy is not measurable. However, here the output is used along
with the stiffness matrix K i and force vector Fi from FEM to calculate
the residual ri in Equation 5.8. The residual ri is a measure of how much
the output deviates from the actual solution of the governing equation.
This way, prediction accuracy of FEM-neural network is quantifiable.

𝒖𝑖 = 𝑓𝑛(𝜆𝑖 , 𝜃
∗)

𝑲𝑖 = 𝑓𝑘(𝜆𝑖 ,𝐶)
𝑭𝑖 = 𝑓𝑓(𝜆𝑖 ,𝐶)

𝒓 = 𝑲𝑖𝒖𝑖 − 𝑭𝑖

𝒖𝑖

Figure 5.3: Deployment of FEM enhanced neural network

1 import torch
2 from torch.autograd import Function
3 import numpy as np
4
5 class Linear_residual_loss(Function):
6 @staticmethod
7 def forward(ctx, u:torch.tensor, K:torch.tensor, F:torch.

tensor):
8 """
9 Forward pass of calculating residual

10 Parameters:
11 u: Output of your neural network
12 K: Stiffness matrix
13 F: Force vector
14 """
15 n_samples = u.shape[0]
16 R = K.matmul(u) - F
17 loss = torch.norm(R) / n_samples
18 ctx.save_for_backward(K, R, loss)
19 return final_loss
20

65

5 FEM informed neural network

21 @staticmethod
22 def backward(ctx, grad_output:torch.tensor):
23 """
24 Backward pass of residual which return the gradient
25 Parameters:
26 grad_output: gradient till this function in the

computational graph
27 """
28 K, R, loss = ctx.saved_tensors
29 g_input = grad_output = None
30 R_t = R.permute(0,2,1)
31 g_output_c = R_t.matmul(K)/ loss
32 g_out = g_output_c.permute(0,2,1)
33 n_samples, shape_2 = g_out.shape[0], g_out.shape[1]
34 g_out2 = g_out.reshape(n_samples, shape_2) / n_samples
35 return g_input, g_out2, None, None

Listing 5.1: Implementation of forward and backward for residual based loss in
PyTorch

The procedure for training and prediction are detailed in Algorithms
1 and 2.

5.3 Inverse problems

The algorithm introduced in Section 5.2 has been extended for inverse
problems as well. Forward problems estimate the results for a defined
cause, whereas inverse problems typically estimate the cause for the
observed results. In such cases, the inverse problem is formulated as
a parameter identification problem, where the unknown parameters of
the forward problem are determined by minimizing an appropriate cost
function. The estimation of unknown parameters results in correcting
or updating the mathematical model used.

In the case of inverse problems for Equation 5.8, the primary variable
ũ is known, whereas forces F or stiffness matrix K can have unknown
parts. We consider the category where a stiffness matrix has unknown
parts for the rest of the discussion. It is also possible to have unknown
forces and its calculation also falls under the category of inverse problems.
A problem having unknown parts in stiffness matrix can be described
using the following equation

66

5.3 Inverse problems

Algorithm 1: FEM-NN training for forward problems

1

Read simulation parameters λ, C
Select neural network architecture
Initialize weights and biases
Let L be the number of layers in the neural network
Initialize FEM Package with C
K i← fk (λi , C) and Fi← f f (λi , C) for all samples
create K and F by assembling all K i and Fi

while not Stop Criterion do
ũi← fn (λi ,θ)
Compute the residual r← Kũ− F
Compute the loss δ= ||r||2
Compute the derivative ∂ δ

∂ u =
rT ×K
δ

for all l ∈ {1, . . . , L} do
∂ δ
∂ wl
← ∂ δ
∂ ũ

∂ ũ
∂ wl

∂ δ
∂ bl
← ∂ δ
∂ ũ

∂ ũ
∂ bl

Update weights and biases
wl =wl −η ∂ δ∂ wl

bl = bl −η ∂ δ∂ bl

end for
end while

Algorithm 2: FEM-NN deployment for forward problems

1

Initialize FEM Package
Compute the system matrices K and F
Predict ũ← fn (λi ,θ ∗) using the trained neural network
Compute the Residual r= Kũ− F
return ũ and r

67

5 FEM informed neural network





K k K ku

K uk K u









uk

uu



=





Fk

Fu



 (5.12)

where K k is the known part and K u the unknown part of the system
matrix. K ku and K uk are the contribution of unknown part to the
remaining DOFs of the system matrix. They are zero unless there is any
physical connection between them. In cases having physical connections,
those parts of the system also fall under the unknown category. Similarly,
uu are the responses corresponding to the unknown part of the system
matrix and uk are the responses at the rest of the system. It is to be
noted that the responses are known in advance in contrast to the neural
network prediction in the case of forward algorithm. Similar to the
forward algorithms, the loss for the neural network prediction is defined
as the Euclidean norm of the residual vector r.

δ= ||r||2 (5.13)

where r is given by

r= Kũ− F

=





K k K ku

K uk K u









ũk

ũu



−





Fk

Fu





=





K kũk+ K kuũu− Fk

K ukũk+ K uũu− Fu





(5.14)

This gives loss δ as,

δ=
�

�|r|
�

�

2

=
Æ

(K kũk+ K kuũu− Fk)2+ (K ukũk+ K uũu− Fu)2
(5.15)

In the case of inverse problems, the unknown part of the matrix is
predicted using neural network. Hence,

K u = fn (λ,θ) (5.16)

68

5.3 Inverse problems

Algorithm 3: FEM-NN training for inverse problems

1

Read known simulation parameters λ and C
Select neural network architecture
Initialize weights and biases
Initialize FEM Package
Let L be the number of layers in the neural network
while not Stop Criterion do

Compute the matrices and vectors K k, K ku, K uk, Fk, Fu, Uk

and Uu

K u← fn (λ,θ)
assemble known and unknown matrices to result K
Compute the residual r= K U − F
Compute the loss δ= ||r||2
Compute the derivative
∂ δ
∂ K u
= 1
δ (K uk Uk+ K u Uu− Fu)Uu

for all l ∈ {1, . . . , L} do
Compute the derivative using chain rule
∂ δ
∂ wl
= ∂ δ
∂ K u

∂ K u
∂ wl

Update trainable parameters (weights and biases)
wl =wl −η ∂ δ∂ wl

bl = bl −η ∂ δ∂ bl

end for
end while

Algorithm 4: FEN-NN deployment for inverse problems

1

1: Initialize FEM Package
2: Predict K u

3: Assemble to result in system matrix K
4: Use K for forward simulation or other analysis

69

5 FEM informed neural network

Similar to the calculation performed for forward problems, we need to
calculate the derivative of the residual with respect to neural network
prediction to perform the backpropagation. In the case of Equation
5.15 it is ∂ δ

∂ K u
.

∂ δ

∂ K u
=

1

δ
(K ukũk+ K uũu− Fu)ũu (5.17)

Equation 5.17 is used along with the second part of the Equation
2.7 to update the neural network parameters during training the neural
network to identify the unknown part of the matrix. The procedure for
training and prediction for inverse problems is detailed in Algorithms 3
and 4.

5.4 Variants of the FEM-NN algorithm

5.4.1 Transient solver
The simulation of transient problems are conventionally started from
the initial condition. Then the next time values for primary variables
are calculated using any time stepping scheme like Runge-Kutta or
Euler. The FEM-NN algorithm introduced in section 5.2 is extended
to transient problems as well. For example an explicit time-integration
scheme will result an equation of the form

Aũt+1 = ũt

here the residual can be written as

r= Aũt+1− ũt (5.18)

The loss is given by
δ= ||Aũt+1− ũt||2 (5.19)

Neural network surrogates can be trained for transient problems
using the above loss function. However in practice the training is much
harder to converge as the values at times t +1 and t are neural network
predictions. Examples for transient problems using the Equation 5.19
is given in Section 7.1.3.

70

5.4 Variants of the FEM-NN algorithm

5.4.2 Physics guided timeseries predictor
The second algorithm explores the possibility of conducting the transient
simulation using a neural network after completing n timesteps via
numerical methods.

The algorithm for training the system is illustrated in Figure 5.4.
Initially, the simulation runs for the first n timesteps using FEM, during
which the corresponding stiffness matrix K and force vector F for each
timestep are recorded. The input Z to the system comprises both the
system parameters and numerical method specific parameters of the
problem. A subset of these parameters, which varies for each timestep,
along with the responses of the system for the last three timesteps,
serve as the input to the neural network. The matrices from FEM and
prediction x from the neural network is utilized in the FEM-NN loss
function to train the model. The algorithm employs an equation akin
to Equation 5.19, with the difference being that data for timestep t is
known and only the data for timestep t +1 is predicted. Once trained,
the model is deployed to predict the simulation from timestep n + 1
onwards (Figure 5.5). Further details of the algorithm can be found at
Meethal et al. [72]. Examples utilizing this algorithm are provided in
Section 7.1.3.

Input data Z
(System + numerical method
parameters for the timestep)

Constant parameters of
the numerical method

Variable parameters at
each timestep

Numerical model Neural network

Matrices K and F Prediction x

Custom loss using K, F and x

Loss L
<

tolerance

Trained model

Figure 5.4: Training of physics guided timeseries predictor

71

5 FEM informed neural network

Trained model

Transient iterations of
the numerical method

Input to the system

Predict system
response x

Loss L
<

tolerance

End

Previous
predictions

Figure 5.5: Deployment of physics guided timeseries predictor

5.4.3 PINN and FEM-NN hybrid learning
Consider the physical problem governed by a partial differential equation
in domain Ω as in Figure 5.1. The PINN introduced by Raissi et al in
[85] embed the physics in the form of the PDE into the loss function
of the neural network using automatic differentiation. In PINNs, the
solution to the equation 5.1 is approximated by a feed-forward neural
network Ū (x , t ,λ;θ) using the loss function in Equation 2.12. The loss
term L f enforces the equation given by 5.1 on a set of random points
called collocation points {t i

f , x i
f }

Nf

i=1 and loss term LM S E enforces the
initial and boundary training data {t i

b , x i
b , u i

b }
Nb

i=1. Figure 5.6 shows the
collocations and boundary points for the general physical problem under
PINN.

The collocation points and boundary points can be connected to
form a mesh as in Figure 5.7, that can be used for deriving FEM
formulation. In another words, the nodes from an FEM can be treated
as the collocation and boundary points for the PINN training.

72

5.4 Variants of the FEM-NN algorithm

Figure 5.6: Physical problem in domain Ω with collocations and boundary points
for PINN training

Figure 5.7: Physical problem in domain Ω with internal and boundary nodes for
FEM formulation

In this PINN and FEM-NN hybrid learning approach, we combine
the FEM-NN loss along with other two loss terms for a neural network
training. We call the FEM-NN loss term as L r

L r = ||Kũ− F ||2 (5.20)

73

5 FEM informed neural network

In order to achieve this, one needs to predict the solution at nodal
points of the discretization of the numerical method used. We can
achieve this by selecting nodal points as the collocation points of PINN
training. Total loss for training the neural network is

L = Lp + L r

L = L f + LΓ + L r

=
1

Nf

Nf
∑

i=1

|L(ũ i)|+
1

Nb

Nb
∑

i=1

|ũ (t i
b , x i

b)−u i
b |

+ ||Kũ− F ||2

(5.21)

Adding the third loss term which is based on the discretized physics
helps the PINNs to learn quickly and accurately. The ill-posedness of
PINNs is addressed with this third term. The examples and advantages
of this combination are given in Chapter 7.

74

The purpose of software
engineering is to control
complexity, not to create it

Pamela Zave

C
h

a
p

te
r

6
Kratos neural network application

Developments combining simulation and neural networks raise the op-
portunity to introduce neural network models in coupled multiphysics
simulations. Coupled multiphysics simulations appear in many engi-
neering designs and are one of the challenging areas for engineers. Some
notable examples where coupled multiphysics systems analysis is essen-
tial are wind turbines, flutter of airplane wings, bridge excitation and
collapses due to wind, and risers in offshore applications. Some known
problems associated with simulations of such coupled multiphysics prob-
lems, especially Fluid Structure Interaction (FSI), are the accuracy,
stability, computational cost, and more considerable computing time.
Introducing neural network models to replace one or more coupled
solvers can significantly reduce the computing time and, hence, become
cheaper. Neural network surrogates can also be used to model part of
the simulation that lacks a mathematical model but has enough data.

In this contribution of the dissertation, a software application as
part of Kratos multiphysics [23] solver to use neural network models for

75

6 Kratos neural network application

coupled multiphysics simulations is developed. To avoid conflicts with
other parts of the simulation, an interface for the coupling of neural
network-based surrogate models with other solvers is implemented. The
framework also supports the generation of training data from simulation
as well as training neural network models using some of the famous
libraries. The implemented methodologies for data generation and
training are tested on Computational Solid Mechanics (CSM) and CFD
problems and the interface is tested on FSI benchmark problems.

A framework to enabling all the above mentioned points need the
software to follow the design principles of software development. We
made sure that the framework avoid rigidity, fragility and immobility.
For example, one major rigidity aspect that occur is the dependency
on any neural network package. But the software is designed in such
a way that any new neural network package can be easily integrated
to the current framework. Presently both Keras [21] and PyTorch [79]
frameworks are integrated. The developed application has three parts
data generation, neural network training and cosimulation interface
(Figure 6.1). They all are implemented under the neural network
application in Kratos.

Kratos neural network application

Kratos is an open-source finite element based code developed in collab-
oration of Chair of Structural Analysis, TU Munich and International
Center for Numerical Methods in Engineering (CIMNE) of the Poly-
technic University of Catalonia, BarcelonaTech. It is “a framework
for building parallel, multi-disciplinary simulation software, aiming at
modularity, extensibility, and high performance” [23]. The term multi-
disciplinary refers to the different applications for different physical
problems. An example application is the FSI application in the Kratos.
Implementation of new finite element applications and interaction be-
tween them on a common platform is possible with Kratos with little
effort due to the modularity structure it offers.

76

6.1 Neural network applicationKratos Neural Network application

Restricted | © Siemens 2020 | Rishith Ellath Meethal | T RDA SDT MSO-DE |2020-12-18Page 61

Kratos NN

application

Data

generation

NN

Training
CoSimulation

Figure 6.1: Parts of the neural network application in Kratos

6.1 Neural network application

6.1.1 Data generation
One of the evident applications of combining simulation and Neural
networks are the data generation for neural networks using simulation.
So, a data generation process is created as part of this application to
generate training data. The generated data can be used by Kratos or
any external application.

The data generation process starts by creating a standard Kratos
simulation of interest and adding an extra process to the simulation.
This additional process is called the data generation process and it
enables the user to define different aspects of data generation. Users
can select the part of the model for which input or output data is to
be generated. Users can also provide the distribution from which input
data is generated. Presently distributions like normal and binomial are
supported. New algorithms for sampling can be easily added to the
framework. Both input and output data can be either the nodal values
or any process data that Kratos supports. An example of nodal value
is the force applied on a structure at a given location. An example
for a process data is the inlet velocity of a fluid simulation which is
defined as “inlet velocity process” in Kratos. Similar to the input data,
output data can also be specified as nodal or process. Nodal output
value can be the displacement or pressure at a given node. The process

77

6 Kratos neural network application

output value can be the drag coefficient resulting from the “calculate
drag coefficient process”. The algorithm followed by the data generation
process is explained in the algorithm 5.

Algorithm 5: Data generation process in Kratos NN application

1

1: Procedure - DATA GENERATION:
2: Initialize Analysis
3: Initialize Perturbation
4: Select input model part/s from all available model parts
5: Select input data source(solution step, nodal value, or pro-

cess)
6: Select output model part/s from all model parts
7: Select output data source(solution step, nodal value, or

process)
8: d , dv ← input variable distribution and its parameters
9: While not End of simulations do
10: New input and save input variables
11: Initialize FEM analysis
12: u← calculate outputs
13: f ← calculate derived outputs
14: save output variables
15: end While

The Figure 6.2 shows the simulation of a cantilever beam exerted by
force on top. A surrogate model giving the displacement of the tip of
the beam for the given force on top is of interest. The data required for
that are generated using the “data generation process” by giving force
as input and tip displacement of point A as output. The distributions
of the input data sampled from normal and uniform distributions are
given in Figure 6.3.

6.1.2 Neural network training
Neural network training is the second part of the neural network ap-
plication in Kratos. The core part of the neural network training is
the neural network analysis implemented in Neural network application.
Neural network analysis contains the preprocessing, setting up model,

78

6.1 Neural network application

F

Figure 6.2: Cantilever beam with fixed support and point load

(a) Normal (b) Uniform

Figure 6.3: Input data generated using normal and uniform distribution

training, testing and post-processing parts. An overview of the neural
network analysis and its different parts and functionalities are given in
Figure 6.4.

The data generated from data generation process or other source
are to be pre-processed first. The data pre-processing part in the neural
network application can perform three functionalities normalisation,
masking and look back setup. Normalisation takes care of normalising
the input data to the prescribed range of [0, 1] or [−1, 1]. It is also
possible to define custom ranges like [0.2, 0.8] to handle outliers easily.
This is since there can be situations in multiphysics simulation where the
data during prediction is not falling in the trained region. Normalisation
helps the optimization algorithms to converge faster.

There can be situations where the output vector has a few identical
elements for any given input. For example, the Dirichlet boundary
condition we assign is known in prior and can be same in every output.
Such elements can be masked so that neural network need not predict

79

6 Kratos neural network application

N
eu

ra
l n

et
w

or
k

an
al

ys
is

Preprocessing

Model setup

Training

Testing

Post processing

• Normalisation
• Masking
• Lookback

• PyTorch
• Tensorflow

• With tuner
• With chosen

parameters

• Mapping
• Plotting
• Interfacing

• Test data
• Physic laws

Figure 6.4: Components of neural network analysis inside Kratos neural network
application

them. This is done with the help of the masking process in the pre-
processing. Such masking process helps the neural network to learn the
rest of the output better and faster. The purpose of lookback setup is
to deal with time-series data. Normally we use last n-timestep values
for timeseries analysis and model training. The lookback setup is used
for such purposes by specifying number of timesteps to look back.

After preprocessing the data, neural network is setup with the help
of standard libraries. Presently both Keras and PyTorch libraries are
supported. But the application is designed such a way that the addition
of a new library can easily be done. User can also select what kind of
network to use and select the parameters accordingly. For examples,
one may use LSTM for time-series prediction or CNN for predicting

80

6.1 Neural network application

the velocity distribution in a domain. Once the model setup is done
we can train the model using training process. In the training process
once can either train using a known set of parameters for number of
neurons in each layer, filter size, depth of the network, learning rate
and dropout. If the parameters needed to be tuned, the tuner process
can be employed. The tuner process uses the Keras tuner or Optuna
tuner based on the user input.

After the training, testing and post-processing can also be done with
the help of neural network analysis. In the testing, conventional neural
network testing methods can be done using the test data prepared.
Neural network application plots the prediction and corresponding error
on the test data to inspect the training accuracy. Figure 6.5 shows the
prediction and the corresponding error for the cantilever beam example.
One also have the opportunity to cross-validation with the help of the
framework. The integrated nature with the Kratos help to verify the
physical conformity of the results if the network is designed to predict
the complete solution on every nodes. Then corresponding stiffness
matrices are constructed and solution accuracy is tested by calculating
the residual associated.

In the post-processing part, different metrics are plotted to analyse
the training process. User can choose to visualise different metrics
to verify the stability of training process. There are also options like
plotting the Fast Fourier Transform (FFT) of the prediction to better
analyse the prediction for cases like fluid simulations. It is also possible
to map the prediction results onto the geometry with the help of Kratos
modules. This enables the visualisation and other post processing with
the help of softwares such as paraview and GiD accessible. Interfacing
the results to use along with other Kratos applications is also possible.
This part is detailed in the deployment section below.

6.1.3 Deployment
The generated neural network from the training can be directly used
to predict output for the corresponding inputs. As an example one
can train a surrogate against inlet velocity and coefficient of drag and
use the trained model to predict coefficient of drag for an unseen inlet
velocity.

81

6 Kratos neural network application

(a) x-direction displacement prediction (b) y-direction displacement prediction

(c) x-direction displacement prediction er-
ror

(d) y-direction displacement prediction er-
ror

Figure 6.5: Prediction and error from the trained neural network for cantilever
beam

But, when it comes to simulation, especially in multiphysics simula-
tion, the purpose is to use it along with other elements of the simulation.
One use case of such generated network will be to simulate a single
physics simulation against time. In that case we need to predict the
output for a particular position for the entire duration of the simulation.
Another use case will be the use in a multiphysics simulation. In a
partitioned multiphysics simulation, neural network receives input from
the other simulation solvers and need to output data to them. To enable
the smooth and flexible use of neural network surrogate, we use it as
a black box solver for the particular physics. This way, we can use
it along any existing physics just by calling neural network solver. A

82

6.2 Examples using Kratos NN application

workflow explaining the use of the surrogate model as a solver is shown
in Figure 6.6.

In Section 6.2 we discuss some of the examples using the Kratos
neural network application. Only few examples are considered here,
detailed study can be found in [6].

6.2 Examples using Kratos NN application

6.2.1 Static non-linear diamond shape
In this example we consider a static non-linear diamond shape as given
in Figure 6.7. The features of the example also helps in understanding
how we can use neural network models for symmetric problems. The
analytic solution for the benchmark is provided in Mattiasson [67] and
the implementation in Kratos multiphysics, which is used for generating
the data, is validated in Sautter [92]. The data generation follows the
procedure detailed in section 6.1.1. The input variable is the load F and
the output variables are displacements u and v . The forces are acted on
the top and bottom corners of the structure with a magnitude of 2F . The
beam parameters are E = 210×109N /m 2, ρ = 7850k g /m 3, A = 0.01m 2

and Iz = Iy = 0.00001m 4. A total of 500 data points are gathered with
values of F varying from 0 kN to −7 kN. Only half of the system is used
the structural simulation utilizing the symmetry condition. For testing,
the data is again generated using a random normal distribution with
mean 0 and standard deviation 0.1. The neural network architecture is
a fully connected network with 128, 64, 16, 4, 2 number of neurons from
second to output layers. In the data generation process, the load is
recorded in both the nodes where displacements u and v are observed.
This results in duplicated data with opposite signs. The duplication
could be avoided with a redefinition in the geometry file of the part
we use for training. Instead of the redefinition, the masking process
implemented in the data preprocessing is used in this example.

The results obtained in this benchmark are close to the ground
truth values (see Figures 6.8). Both the u and v predictions follow
the benchmark curve for the whole test region. The error is very small
compared to the actual displacement. It can also be observed that the
use of symmetry for the problem has no effect on the neural network

83

6 Kratos neural network application

O
rig

in
a

l s
o

lv
e

r

Initialize analysis

Initialize tim
estep

S
olve tim

estep

F
inalize tim

estep

F
inalize analysis

Repeat

Input data
distribution

N
eural N

etw
ork

T
raining D

ata for

Input data

O
utput data

data
preprocessing

S
et up m

odel

m
odel training

m
odel testing

N
eu

ral n
etw

o
rk an

alysis

hyperparam
eter

 tuning

N
eural N

etw
ork

S
urrogate m

odel
(trained+

validated)

D
e

s
tin

a
tio

n
 s

o
lv

e
r

Initialize analysis

Initialize tim
estep

S
olve tim

estep

F
inalize tim

estep

F
inalize analysis

Repeat

Figure
6.6:

W
orkflow

ofneuralnetw
ork

application
for

a
coupled

sim
ulation

84

6.2 Examples using Kratos NN application

Figure 6.7: Diamond shaped non-linear structure

results. It also reiterates that the neural network only consider the
data it is trained with. Which is a strength and weakness of the pure
data driven approach. Depending on the use case, this lack of physics
understanding can be alarming.

6.2.2 Fluid-Structure Interaction problems
In this example1 we consider the deployment of the neural network
application for a multiphysics coupled problem. We consider an FSI
problem with either of the fluid or structural solver replaced with the

1 The following section is based on [6, 70]. The main scientific research as well
as the textual elaboration of the publication were performed by the authors of this
work

85

6 Kratos neural network application

(a) x-direction displacement (b) y-direction displacement

(c) x-direction prediction error (d) y-direction prediction error

Figure 6.8: Prediction and error for the non-linear diamond shape structure

neural network model. We consider the standard Mok’s [74] benchmark
problem to demonstrate the ability of Kratos neural network application
for simulating multiphysics problems.

Mok’s benchmark consists of a flexible wall in a channel flow. The
flexible wall is fixed at its base and is displaced by the force of the fluid
flow. The fluid is modeled using an Arbitrary Lagrangian Eulerian (ALE)
formulation, where the wall displacement is reflected as a modification
of the fluid domain boundary conditions. The velocity and pressure
of the fluid are affected by the fluid near the interfaces. Significant
interactions exist between the convergent flow and the flexible wall as
a result of having the same order of magnitude for the densities. It
results in a strongly coupled FSI problem. The first reference solution
to this problem is provided by Mok (2001) [74]. More refined studies are
conducted by Valdés [113] in 2007. This particular benchmark problem
is already implemented in Kratos and the results obtained are closer to

86

6.2 Examples using Kratos NN application

Figure 6.9: Mok’s benchmark of flexible wall structure in a convergent fluid
channel

the results from Valdés. This implementation in Kratos is used as the
basis to validate our tests using neural network application.

In the benchmark, the inlet velocity has a parabolic profile with

v (y , t) = 4v̄ y (1− y) (6.1)

Where v̄ = 0.06067
2

�

1− cos πt
10

�

m/s in the first 10 seconds (the ramp-up
phase) and v̄ = 0.06067 m/s otherwise. The fluid domain is considered
with a Newtonian law having a density of ρ = 956 kg/m3 and a kinematic
viscosity of ν= 0.145 m2/s. The structure follows the linear elastic plane
stress constitutive law with density ρ = 1500 kg/m3, Young’s modulus
E = 2.6×106 Pa and Poisson’s ratio ν= 0.45. A timestep of 0.1 seconds
is chosen for the 20.0 seconds simulation.

The results are recorded for the two points at the fluid-structure
interface. Point A is at the top of the structure, and Point B is in the
center (shown in figure 6.9). The Gauss-Seidel scheme is used to test
both the weak or explicit coupling and the strong or implicit coupling
cases. The structure’s surface is defined as the interface for information
exchange. The reaction from the fluid is synchronized as the load on
the structure. The structure displacement is correspondingly coupled
with the mesh displacement of the fluid. Both the fluid and structural
solvers use identical timescales. The fluid and structure domains have
coinciding meshed at the interface. Each fluid node has a coincident
node from the structure at the same position.

87

6 Kratos neural network application

Structural surrogate
In this case, we replaced the structural solver with a neural network-
based surrogate model. Similar to conventional FSI, the forces on the
interface from the fluid model are mapped to the structural model.
Instead of solving the whole structural problem with the corresponding
solver, here the neural network solver reads the loads and predicts
the displacements at the nodes. The loads at the nodes are taken as
input after preprocessing them. The predicted displacement from the
neural network solver is also stored at the nodes. Afterwards, the new
coupling step maps the node displacements of the structure model part
as the fluid mesh displacements. The data for training (point loads
and displacements) are generated from structural model following the
method explained in 6.1.1.

Px,t Py,t dx,t-1 dy,t-1

tim
es

te
ps

nodes

Conv3D
Kernel: 5x1x4

128 Filters
Same padding

ReLU activation

Shape: 10x4x203
(timesteps x variables x nodes)

dx,t dy,t

no
de

s

Conv3D
Kernel: 5x1x4

256 Filters
Valid padding

ReLU activation

Average3DPooling
Pool: 1x1x256

LSTM Layers
Layer 1: 128 units
Layer 2: 64 units

Dense Layers
Layer 1: 512 units, ReLU
Layer 2: 404 units, Linear

Shape: 203x2
(nodes x variables)

Figure 6.10: Neural network architecture for structural surrogate

The final neural network architecture after hyperparameter tuning
is shown in Figure 6.10. The loads and previous timestep displacements

88

6.2 Examples using Kratos NN application

at each node in x− and y− directions are taken as input. The variables
[PX ,t , PY ,t , dX ,t−1, dY ,t−1] represents the load at the given timestep Pt and
the displacement of previous timestep dt−1. A total of 200 data points
with 10 lookback timestpes makes the final input shape (200, 10, 4, 203).
Hence, a 3D-CNN LSTM was used as the neural network surrogate. The
output tensor is composed of the displacements dt in both directions.
The neural network is trained as explained in Section 6.1.2.

The Figures 6.11a and 6.11b shows the displacement of points A and
B on the flexible wall. The displacement prediction from the benchmark
is compared against both strong and weak coupling using the neural
network surrogate. It can be observed that the displacement predictions
are close to the benchmark in both cases. The error in the strong
coupling is smaller than the error in the weak coupling. Both the points
A and B follow the same behaviour.

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at top

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(a) Point A

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at middle (B)

Original FSI

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(b) Point B

Figure 6.11: Comparison of displacement of points A and B on the wall for FSI
Mok benchmark using structural surrogate

In contrast to the trend in predicting displacement, the pressure
prediction showed more error when comparing with the benchmark.
The structural surrogate model when used with strong coupling results
in significant instabilities in the pressure. The pressure can be seen
fluctuating around the benchmark results. This can be attributed to the
unphysical displacements predicted by the neural network for the wall.
It is also observed that the instability increased after the ramp-up phase
and diverges later. In general, LSTM layers are suitable for transient

89

6 Kratos neural network application

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0

2

4

6

8

10

12

P
re

ss
u
re

[P
a
]

Pressure at top
FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(a) Point A

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0

2

4

6

8

10

12

14

16

P
re

ss
u
re

[P
a
]

Pressure at middle (B)

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(b) Point B

Figure 6.12: Comparison of pressure at points A and B on the wall for FSI Mok
benchmark using structural surrogate

and oscillatory signals, but they introduce errors when the input and the
output vary relatively little. These errors are accumulated with time,
leading to an eventual loss of convergence. However, this instability is
not present in weak coupling. But there is a pressure drop of upto 14%
at the point A when compared with benchmark.

Fluid surrogate
In this second case, we replace the fluid with a surrogate model. Since
fluid simulations are computational intensive, this approach is more
promising than replacing the structural model. Similar to the structural
model, we start with generating the input-output data required for train-
ing the neural network. The velocity at the inlet and the displacement
at the fluid-structure interface are the relevant boundary conditions that
vary at every timestep. This is taken as input to the model to predict
the reaction forces at the interface. The predicted reaction forces are
mapped afterwards to the structural model.

The neural network architecture after the hyperparameter tuning
is similar to the structural surrogate. As shown in Figure 6.13, it is
a combination of 2D-convolutional layer with LSTM layers. Since the
input data are coming from two model parts (inlet and interface), it is
not possible to group them using nodes. They are simply combined and

90

6.2 Examples using Kratos NN application

Conv2D
Kernel: 5x4
256 Filters

Same padding
ReLU activation

tim
es

te
ps

dn,t-idn,t-i

...

u2,t-iu1,t-i

2 x nodesinterface + nodesinlet

Dense Layers
Layer 1: 512 units, ReLU
Layer 2: 203 units, Linear

LSTM Layers
Layer 1: 128 units
Layer 2: 64 units

Px,t Py,t

no
de

s

Shape: 203x2
(nodes x variables)

Average3DPooling
Pool: 1x1x256

Figure 6.13: Neural network architecture for fluid surrogate model

used as input to the network. This results in an input tensor of shape
(10, 854), with the total training dataset shape being (200, 10, 854).

The displacement of points A and B can be observed in Figure
6.14a and 6.14b. Both the Weak and strong coupling schemes using
a fluid surrogate is analysed. The results are close to the benchmark
in both the cases and for both points. However, there is an oscillatory

91

6 Kratos neural network application

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at top (A)

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(a) Point A

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at middle (B)

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(b) Point B

Figure 6.14: Comparison of displacement at points A and B on the wall for FSI
Mok benchmark using fluid surrogate

behavior when using weak coupling in the stabilization phase. The
solution loop is run only once per timestep with weak coupling, which
amplifies any inaccuracy produced by the neural network. In such a
case, the variation in the loads causes oscillations in the system, giving
results to the pattern observed. When it comes to the prediction of
point load, the difference is very high for point A. This result might
be due to the inaccuracies in the displacement as the point loads are
affected by the rotation of the structure. This conclusion is supported

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
o
in

t
lo

a
d

[N
]

Absolute Point Load at top (A)

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(a) Point A

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
o
in

t
lo

a
d

[N
]

Absolute Point Load at middle (B)

FSI - Strong coupling

CNNLSTM - Weak coupling

CNNLSTM - Strong coupling

(b) Point B

Figure 6.15: Comparison of point load at points A and B on the wall for FSI Mok
benchmark using fluid surrogate

92

6.2 Examples using Kratos NN application

by the point load prediction plot for point B. Point B predictions are
more accurate in both strong and weak coupling. It is to be noted that,
there is no significant difference between the point loads in weak and
strong coupling. This might be due to the reason that they are a direct
result of the predictions of the neural network which is trained using
strong coupling data.

Comparison between structural and fluid surrogates

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at top (A)

Original FSI

Surrogate structure

Surrogate fluid

(a) Point A with weak coupling

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at top (A)

Original FSI

Surrogate structure

Surrogate fluid

(b) Point A with strong coupling

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at middle (B)

Original FSI

Surrogate structure

Surrogate fluid

(c) Point B with weak coupling

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
is

p
la

c
e
m

e
n
t

[m
]

Absolute displacement at middle (B)

Original FSI

Surrogate structure

Surrogate fluid

(d) Point B with strong coupling

Figure 6.16: Comparison of displacement of points A and B on the wall for FSI
Mok benchmark

This section compares displacements of the interface and the total
time taken for simulation for the surrogate model-based simulations

93

6 Kratos neural network application

against the benchmark. A comparison between the structural surrogate
and the fluid surrogate is made in this section.

Figure 6.16 shows the displacements of points A and B from the
surrogates and the benchmark. In general, the surrogate models predict
values close to the benchmark. Structural surrogate models are closer to
the benchmark, whereas fluid surrogates result in undesirable oscillations.
It is to be noted that the weak coupling results from the surrogate for
point A are more accurate than the benchmark result due to the training
data we used.

Table 6.1 shows the simulation time taken for different FSI simu-
lations. The simulation time taken with the structural and the fluid
surrogate is compared against the benchmark for both the weak and
strong coupling scenarios. It is observed that replacing the structure
increases the simulation time instead of decreasing it. In conventional
FSI, the structural solver takes much less time than the fluid solver.
The neural network predictions may not be accurate, and more iter-
ations may be needed for convergence. However, the weak coupling
simulation is faster than the original conventional strong coupling one
with a negligible loss in accuracy. Nevertheless, it has to be remem-
bered that the neural network surrogate was created using the strongly
coupled simulation data. So, this approach can be used to create faster
simulation models without losing accuracy (One time training time of
the surrogate model is not considered).

Table 6.1: Simulation times for different configurations on Mok’s benchmark.

Model
Time weak coupling

simulation [s]

Time strong coupling

simulation [s]

Full FSI 90.34 181.42

Surrogate structure

3DCNNLSTM
104.43 280.03

Surrogate fluid

2DCNNLSTM
40.45 44.65

94

6.2 Examples using Kratos NN application

The simulation time improves significantly when replacing the fluid
model with a surrogate model. The time taken reduces to less than half
for weak coupling and less than a quarter in the case of strong coupling.
The percentage improvements are 55.2% and 75.4%, respectively. Hence,
replacing the fluid solver with the surrogate model is recommended for a
nearly real-time simulation. However, this transition entails the necessity
of training a neural network with a sizable dataset, incurring costs
from two primary facets: the time required to execute numerous CFD
simulations and the duration of hyperparameter tuning and training.
This can vary from weeks to months depending on the complexity of
the problem and the data required for a successful training.

95

Everything around you is
mathematics. Everything
around you is numbers

Shakuntala Devi

C
h

a
p

te
r

7
Numerical study

In this chapter, we analyse the suitability of the introduced hybrid
model and approach to different numerical problems. The algorithm is
tested on one-dimensional and two-dimensional thermal and structural
problems. Both steady state and transient problems are analysed.

7.1 Forward solving of PDEs

7.1.1 Convection diffusion simulations
Convection diffusion equations describe the physics of the distribution
of particles, energy, or other particles inside a domain due to convection
and diffusion. Convection diffusion in general form is given by

∂ c

∂ t
=∇· (D∇c)−∇· (vc)+R (7.1)

97

7 Numerical study

where, c is the variable of interest. It can be mass, density, temper-
ature etc. D represents diffusivity and v the velocity. R represents the
source or sink term. In the following examples we consider temperature
T as the variable. The Equation 7.1 for one-dimensional convection
diffusion of temperature is given by

∂ T

∂ t
+u
∂ T

∂ x
= k
∂ 2T

∂ x 2
+S (7.2)

where T is the temperature, u the convection velocity, k the thermal
diffusion coefficient and S (x) the heat source.

Case 1

In the first case1, we consider a steady one-dimensional convection
diffusion problem. The equation becomes

u
∂ T

∂ x
= k
∂ 2T

∂ x 2
+S

T (0) = T1

T (1) = T2

(7.3)

We consider the boundary conditions T1 and T2, source S , thermal
diffusivity k and convection velocity u as the input parameters to obtain
the nodal temperature values as output.

The parameters for the neural network T (x) are learned by minimiz-
ing the FEM-based loss. A standard Adam optimizer [52] is applied
to minimize the loss function based on the residual of the discretized
equation. In this particular example, the residual is

δ=
1

N

∑N

i=i
||K i Ti− Fi||22 (7.4)

where K is the stiffness matrix for the given input, F is the force
vector, T is the output from the neural network and N is the total

1 The following section is based on [71]. The main scientific research as well
as the textual elaboration of the publication were performed by the authors of this
work

98

7.1 Forward solving of PDEs

0.0 0.2 0.4 0.6 0.8 1.0
X-axis [m]

20

35

50

65

80

95

Te
m

pe
ra

tu
re

 [°
C]

FEM
 FEM-NN

(a)

0.0 0.2 0.4 0.6 0.8 1.0
X-axis [m]

25

27

29

31

33

35

Te
m

pe
ra

tu
re

 [°
C]

FEM
 FEM-NN

(b)

0.0 0.2 0.4 0.6 0.8 1.0
X-axis [m]

60

85

110

135

160

185

Te
m

pe
ra

tu
re

 [°
C]

FEM
 FEM-NN

(c)

0.0 0.2 0.4 0.6 0.8 1.0
X-axis [m]

0

35

70

105

140

175

210
Te

m
pe

ra
tu

re
 [°

C]

FEM
 FEM-NN

(d)

Figure 7.1: Distribution of temperature along x-axis for the steady state
convection diffusion example for cases (a) T1 = 100, T2 = 20, k = 10, u = 20,S = 100 (b)
T1 = 25, T2 = 35, k = 10, u = 3,S = 1 (c) T1 = 65, T2 = 178, k = 6, u = 11,S = [5, 2, 3, 4, 5, 1] and

(d) T1 = 0, T2 = 200, k = 10, u = 30,S = [5, 2, 3, 4, 5, 1]

number of samples used for training. Equation 7.4 helps the neural
network to learn the physics rather than mere data. The trained
surrogate model is used to predict the temperature distribution for
different input combinations. Figure 7.1 compares the prediction from
FEM-NN with the exact solution calculated using conventional FEM.

It can be observed from the predictions that the neural network
learns the physics well. It is able to predict the temperature distribution
accurately in different scenarios. The four sub-figures of Figure 7.1 shows
the prediction for different combinations of k , u and S . The average
absolute error between FEM results and FEM-NN results are 0.616,

99

7 Numerical study

102 103 104

Samples [Nos]

0

1000

2000

3000

4000

M
ea

n
sq

ua
re

 e
rro

r [
°C

]

FEM-NN
NN

Figure 7.2: Error comparison of conventional neural networks and FEM-NN

0.022, 0.352, and 0.642 degree Celsius for Figures 7.1a, 7.1b, 7.1c and
7.1d respectively.

In the first two cases, Figures 7.1a and 7.1b, a constant heat source
was applied on every node. Whereas, Figures 7.1c and 7.1d have
different and random values for the heat source on each node. All four
examples use random values for other input parameters. The parameters
used are, T1 = 65, T2 = 178, S = [5, 2, 3, 4, 5, 1], u = 11, k = 6 for Figure
7.1c. Similarly, the parameters for the Figure 7.1d are T1 = 0, T2 = 200,
S = [5, 2, 3, 4, 5, 1], k = 1, and u = 1. It can be observed that the model
generalizes quite well in predicting the distribution of temperature even
for such complicated cases.

One of the main advantage of this hybrid algorithm is that it does
not use any target value during the training. Since it uses the system
matrix and vector from FEM, it saves the computational time in the
linear solvers. Hence, it does not fall under supervised learning and can
be regarded as a semi-supervised or unsupervised learning approach.

The accuracy of FEM-NN is compared against standard NN in Figure
7.2. The loss is the L2 of the difference between the prediction and the
actual solution of 50, 000 samples. The actual solution of 50, 000 samples
is created using a standard FEM method. It can be observed that the
error is similar to that of the conventional neural network, whereas the

100

7.1 Forward solving of PDEs

time taken for conventional neural network training, including data
creation, is more than the introduced FEM-NN.

Case 2

In this case, we consider a unsteady one dimensional convection diffusion
problem. This case is used to demonstrate the strength of the introduced
algorithm in comparison to state-of-the-art methods like PINN. The
hybrid model introduced in Section 5.4.3 is used for training the model.
The hybrid model is compared with the conventional PINN to compare
the strengths and weaknesses. Similar to a conventional PINN, the
spatial and temporal coordinates are the input and primary variable is
the output.

We consider an unsteady 1D convection equation of the form,
∂ φ

∂ t
=−U0

∂ φ

∂ x
(7.5)

in the domain x ∈ [0, 2π] with a periodic boundary condition. The
initial condition for this problem is given by

φ(x , t = 0) = s i n (x) (7.6)

In transient problems, the numerical residual loss takes different
form as that of Equation 5.9. For example, applying central difference
scheme for spatial discretization and an implicit Euler scheme for time
integration results in an equation of the form

AΦt+1 =Φt (7.7)
where Φ is the vector containing all the nodal values of φ. Here the
residual can be written as

r= AΦt+1−Φt (7.8)

The Euclidean norm of this residual vector r can be used as the
numerical residual loss.

L r = ||AΦt+1−Φt||2 (7.9)

101

7 Numerical study

x-

0
1

2
3

4
5

6

Time(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.00

-0.50

-0.00

0.50

1.00

0.5

0.0

0.5

(a)
E

xact

x-

0
1

2
3

4
5

6

Time(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.01

-0.48

0.05

0.57

1.10

1.0

0.5

0.0

0.5

1.0

(b)
H

ybrid

x-

0
1

2
3

4
5

6

Time(s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.00

-0.50

-0.00

0.50

1.00

0.5

0.0

0.5

(c)
P

IN
N

Figure
7.3:

U
nsteady

1D
convection

equation
solution

using
different

m
ethods

102

7.1 Forward solving of PDEs

Both the vectors Φt+1 and Φt are predicted using a NN and substi-
tuted in Equation 7.9 to calculate the residual. It is backpropagated
along with other two loss terms while learning the neural network.

Figure 7.3 shows the results of simulation and prediction from dif-
ferent models after 5000 epochs. A comparison between exact solution,
hybrid model and conventional PINN is made. In this example, exact
solution is calculated by using numerical method having 50 grid points
along the x−axis and using an Implicit Euler time integration method.
A timestep of 10−3s is used for the time integration. The hybrid model
is able to predict the results matching with that of exact solution. How-
ever, the conventional PINN predictions are not matching with exact
solution except at the initial timesteps. Solution along the x−axis for
different number of timesteps from start is plotted in Figure 7.4. The
results show that PINN is only able to predict the results in the initial
timesteps, whereas the hybrid model is able to predict for longer time
duration.

Case 3

Here we consider a two-dimensional Poisson problem on a rectangular
domain as in Figure 7.5. The numerical grid and the corresponding
collocation points used for PINN training are shown. Dirichlet boundary
conditions governing the problem are u (x , y) = g (x , y) for x ∈δΩ.

∂ 2u

∂ x 2
+
∂ 2u

∂ y 2
= 0

u = 0.5 a t x =−1

u = 1.0 a t x = 1

u =−2.0 a t y = 1

u =−1.0 a t y =−1

(7.10)

In a first case, the domain is divided into 50 nodes in both x and
y directions. The hybrid model converges to actual solution after
training for 3000 epochs. Similar to a conventional PINN, the spatial
and temporal coordinates are the input and primary variable is the
output. On the other hand, the conventional PINN failed to reach
convergence within 3000 epochs. Figure 7.6 shows the prediction from

103

7 Numerical study

0 1 2 3 4 5
x-axis

0.9

0.6

0.3

0.0

0.3

0.6

0.9
Ti

m
e

(s
)

PINN
Hybrid
Exact

(a) Initial condition

0 1 2 3 4 5
x-axis

0.9

0.6

0.3

0.0

0.3

0.6

0.9

Ti
m

e
(s

)

PINN
Hybrid
Exact

(b) 1000 timesteps

Figure 7.4: Unsteady 1D convection equation solution using different methods at
different timesteps

104

7.1 Forward solving of PDEs

(a) Numerical grid (b) Collocation points

Figure 7.5: Domain for two dimensional Poisson problem

hybrid methodology along with the actual solution. The exact solution
is calculated by taking 500 nodal points in each direction. The figure
shows that the exact and predicted solutions are almost the same. Mean
squared error between exact and predicted is 0.844.

Figure 7.7 shows the prediction using conventional PINN after 3000
epochs. A comparison with actual solution shows that the solution has
not converged. The error with exact solution is high throughout the
domain. Mean squared error between exact and predicted is 1.7285.

The optimum model was found out using hyperparameter tuning.
Similar to other example, Optuna [4] tuner was used to obtain the best
parameters for number of layers, units per layer and learning rate. The
final model used 2 layers with 155 neurons in each layer. A learning
rate of 0.001199 was used with the Adam optimizer.

In Table 7.1, a comparison between exact solution and prediction
from different models are compared. Nodes of numbers 20, 30 and 50
in each direction are considered. It can be seen that hybrid model
performs better upon increasing the number of nodes. However, the
increase is minimal compared to the computational time increase it
results.

105

7 Numerical study

(a) Exact (b) Hybrid

(c) Error

Figure 7.6: Two-dimensional Poisson Equation solution and absolute error using
hybrid methodology

Table 7.1: Comparison of the accuracy for different numerical grids

Number of nodes Accuracy

50 x 50 0.702

30 x 30 0.840

20 x 20 0.844

106

7.1 Forward solving of PDEs

(a) Exact (b) PINN

(c) Error

Figure 7.7: Two-dimensional Poisson Equation solution and absolute error using
PINN

7.1.2 Truss
For a linear elastic prismatic bar under axial force (T), the equilibrium
of forces is given by,

AE
d u (x)

d x
= T (7.11)

where A, E are the cross-sectional area and modulus of elasticity of the
material. Taking the derivative of Equation 7.11 with respect to local
coordinate x

107

7 Numerical study

d

d x

�

AE
d u (x)

d x

�

= 0 (7.12)

E1, A1

x

y

z

24 m

2 m

P1 P2 P3 P4 P5 P6

E2, A2

E1, A1

Figure 7.8: Sudret truss

In this example, we consider a 23-member, simply-supported truss
structure example taken from [97]. The geometrical dimensions of
the truss structure are given in Figure 7.8. Young’s modulus of the
horizontal bars is given by E1 and for inclined bars E2. Similarly, the
horizontal bars have a cross-sectional area of A1 and inclined bars have
A2. The truss is loaded by vertical forces P 1− P 6. All of these 10
variables are taken as an input for the neural network to predict the 39
nodal displacements for the 13 nodes of the truss.

Table 7.2: Input parameters for the 23-bar truss problem

Input variable Distribution Low High

Horizontal cross-section area Ah (m 2) Uniform 1.0×10−3 1.0×10−4

Inclined cross-section area Av (m 2) Uniform 2.0×10−3 2.0×10−4

Horizontal Young’s modulus Eh (P a) Uniform 2.1×1011 2.1×1010

Inclined Young’s modulus Ev (P a) Uniform 2.1×1011 2.1×1010

Inclined forces P 1−P 6(N) Uniform −5.0×105 5.0×104

108

7.1 Forward solving of PDEs

0 5 10 15 20 25
x (m)

60

40

20

0
di

sp
la

ce
m

en
t (

m
m

)
FEM
FEM-NN

Figure 7.9: Vertical displacement of the nodes of the structure

The parameters used for training the model are given in Table 7.2.
The system is modelled using Kratos Multiphysics and is then coupled
with FEM-NN algorithm for training the model. The input parameters
are given to both the Kratos and neural network to generate matrices
and neural network prediction. We train the model as explained in the
Algorithm 1.

Figure 7.9 shows the predicted and actual results for the input
parameters E1 = 2.1×1011, E2 = 2.32×1011, A1 = 9.2×10−4, A2 = 1.89×10−3,
P1 = −5.2× 104, P2 = −5.2× 104, P3 = −5.4× 104, P4 = −3.6× 104, P5 =
−6.5× 104 and P6 = −4.4× 104. It can be observed that the prediction
matches closely with the actual FEM based simulation results. The
mean error associated with the prediction is 4.1× 10−4. As expected
the prediction of z−direction displacements from the neural network
are all close to zero. They all fall in the range of 10−6m, which can be
considered as zero considering the machine precision that limits the
convergence of the neural network training.

7.1.3 Transient structural simulation
In this example, we consider a transient structural simulation using the
variant of the FEM-NN model explained in Section 5.4.2. In structural
dynamics, the equation of motion of a multi degree of freedom system
(MDOF) is given by

M
d 2 X

d t 2
+ C

d X

d t
+ K X = F (t) (7.13)

109

7 Numerical study

0 2 4 6 8 10
Time (s)

0.10

0.05

0.00

0.05

0.10

1x
, 4

x,
 5

y,
 7

y,
 9

x,
 9

y
di

sp
la

ce
m

en
t (

m
)

1x
5y
4x
7y
9x
9y

Figure 7.10: Response of MDOF system under external excitation

where, M , C and K are the global mass, damping and stiffness
matrices and F is the external force on the system. Here X represents
the collection all degrees of freedoms of the system. We use a 20 DOF
system to demonstrate the model. Each DOF in this system is either
the x−direction or the y−direction displacement of one of the 10 masses
in the system. The external force applied is F (t) = s i n (1.25× 2πt)N
on all masses. The displacement of the masses of the system for the
first 10 seconds is given in Figure 7.10. It is calculated using FEM
with generalized alpha time integration scheme. We used a timestep of
∆t = 10−3s. Only selected DOFs are plotted in the figure.

The Figure 7.10 shows the displacements of different Degrees of
Freedoms (DOFs) in the system. The displacement of first mass in x−
direction is represented with the label 1x and similarly the y−direction
displacement is represented using 1y . It can be observed that each
DOF behaves differently according to the properties of the system and
applied force. This makes the training process of the neural network
harder.

110

7.1 Forward solving of PDEs

5 6 7 8 9 10

Time (s)

0.006

0.004

0.002

0.000

0.002

0.004

0.006

1
x

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(a) 1x

Time (s)
5 6 7 8 9 10

0.06

0.04

0.02

0.00

0.02

0.04

0.06

4
x

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(b) 4x

5 6 7 8 9 10

Time (s)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

5
y

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(c) 5y

5 6 7 8 9 10

Time (s)

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

6
x

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(d) 6x

5 6 7 8 9 10

Time (s)

0.004

0.002

0.000

0.002

0.004

0.006

6
y

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(e) 6y

5 6 7 8 9 10

Time (s)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

7
y

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(f) 7y

5 6 7 8 9 10

Time (s)

0.10

0.05

0.00

0.05

0.10

9
x

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(g) 9x

5 6 7 8 9 10

Time (s)

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

9
y

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN
Absolute Error

(h) 9y

Figure 7.11: Plots of predicted displacement for the selected DOFs 111

7 Numerical study

This example used a three-layer LSTM network with 200 hidden
units as the NN hybrid model. The training used the first 5000 time
steps from the simulation. After the successful training, the trained
model was used to predict the displacements of the remaining part of
the simulation. An Adamax optimizer with a learning rate of 1e −4 and
dropout value of 0.3 was used for optimization. The beta parameters
for the optimizer were β1 = 0.9 and β2 = 0.99.

In Figure 7.11, the accuracy of prediction from the FEM-NN hybrid
model is compared against the FEM based solution. The FEM solu-
tion is calculated using a Generalized Alpha time integration scheme.
Displacements from both FEM-NN and FEM are plotted for the time
interval between 5s and 10s . The displacement of only a few selected
DOFs are plotted in the Figure. The prediction from FEM-NN is closely
matching with the exact solution with minimal error. The error associ-
ated with each prediction is also shown for a better comparison. Even
though the displacements of different DOFs differ in scale and pattern
across time, the model maintained the prediction accuracy reasonably.
Even though the prediction is error is close to zero for all DOFs, there

5 10 15 20 25 30

Time (s)

0.10

0.05

0.00

0.05

0.10

9
x

d
is

p
la

ce
m

e
n
t

(m
)

FEM
FEM-NN

Figure 7.12: 9x displacement for longer time

112

7.2 Inverse problems

is high error close to the crest and trough of the displacement curves.
The high gradient of the displacement might be the reason for this.
However, solving this by training on more epochs results in overfitted
model which fails to generalize for future timesteps. Since the force F
is changing over time sinusoidally, using it also in the input might solve
this problem.

MDOF prediction for longer duration The trained network is tested to
predict the solution of the simulation for much longer time duration as
well. The displacement from 5s to 30s were predicted using the model
and compared against the standard FEM based model. Interestingly, the
model was able to predict the displacement accurately. The displacement
for the DOF 9x is shown in Figure 7.12. The model maintains same
level of accuracy at 30s as that of 5s . This shows the potential of the
model to generalize well.

7.2 Inverse problems

Numerical study is performed on different examples with varying com-
plexity in the following section for the inverse problems. We consider a
rotordynamic system as the industrial example in Chapter 8. Hence, we
start with a simplified model of a rotordynamic system and increase the
complexity in the following examples. We start with a SDOF system
with a spring and a mass. Then, we add a damper also to the problem.
After the analysis on SDOF system, we consider MDOF. Finally we
analyse a complete rotordynamic system modeled using the open-source
software ROSS rotordynamics [105].

7.2.1 SDOF with spring and mass
Many of the systems of practical importance can be reduced to a
SDOF system for dynamic analysis. A few of the examples in the rotor
dynamics are shown Figure 7.13.

Figure 7.13a shows a rotor with mass m supported by two flexible
springs having stiffnesses k1 and k2. The effective stiffness can be
assumed to be ke f f = k1+k2. Figure 7.13b considers a rotor supported
by a flexible shaft but with pin supports. In this case the effective

113

7 Numerical study

stiffness is ke f f =
48E I

l 3 . Here E is Young’s modulus of the shaft and I is
the moment of inertia. The moment of inertia is calculated using the
diameter of the shaft d using the expression I = πd 4

64 . Similarly for a
flexible hanging shaft in Figure 7.13c the effective stiffness is ke f f =

3E I
l 3 .

Here also E and I represents the Young’s modulus and moment of
inertia respectively. Figure 7.13d represents the SDOF approximation
of a rigid shaft under rotation. The effective rotation stiffness is given by
ke f f =

G J
l . G is the modulus of rigidity (shear modulus) of the material

and J is the torsion constant. J = πd 4

32 for a shaft with uniform circular
cross section with diameter d .

(a) (b)

(c) (d)

Figure 7.13: SDOF approximation for different systems

After the approximation, an SDOF with mass and spring is repre-
sented by the equation

m ü +k u = f (7.14)

114

7.2 Inverse problems

u u

u

Figure 7.14: SDOF problem and the corresponding free body diagram

where m is the effective lumped mass, k the effective stiffness and
f the force acting on the system. The primary variable u represents
the displacement of the mass. For a rotordynamic system under study
the force f is modeled as an unbalance in the system. Let mb be the
unbalance mass, e the distance of unbalance from centre of gravity, and
ω the frequency of rotation. Then the unbalance force f is,

f =mb e w 2s i n (w t) (7.15)

which results in

m ü +k u =mb e w 2s i n (w t) (7.16)

One approach to solve systems in rotordynamics is to convert the
equation to frequency domain by the use of Fourier transform. Let us
assume that the solution of this equation is given by, u =U sin(ωt),
where U is the amplitude of vibration. Then ü =−ω2U sin(ωt). Hence,
transforming equation 7.16 to frequency domain gives,

(−mω2+k)U =mb e w 2 (7.17)

115

7 Numerical study

Here (−mω2+k) can be considered as the effective system stiffness
K , and mb e w 2 as the force F . Hence the residual of the equation will
take the form

R = K U − F

= (−mω2+k)U −mb e w 2 (7.18)

The stiffness k can be constant or a function of some operating(or
environmental) variable depending on the system model we are using.
At first we consider k as constant, which resemble the conditions of
using a ball bearing. When considering constant k , we model it as a
learnable parameter instead of treating it as a function of any variable.

Constant spring stiffness

In the first case we consider a constant value for the spring stiffness.
Different parameters used for the experiment is given in table 7.3. Both
vibration and force data are generated assuming the stiffness value of
13000 N /m . Then the generated data is used to calculate the assumed
stiffness using the FEM-NN algorithm for inverse problems explained
in 5.3.

Table 7.3: Experimental parameters for SDOF system with spring

Parameters Value

Mass m (kg) 10

Eccentricity e(m) 0.02

Spring coefficient k (N/m) 13000

We start with a random initial guess for the unknown stiffness in the
inverse problem. The residual calculated using the assumed stiffness
value is then optimized using the FEM-NN inverse algorithm. Here the
assumed stiffness is declared as a variable for the optimizer to optimize.
Figure 7.16 shows the prediction of spring stiffness against number
of iterations in the training loop. Five different initial values for the
stiffness are assumed and training was performed. It is observed that

116

7.2 Inverse problems

the training converges to the assumed stiffness value for any of the
initial guess we make.

7.2.2 SDOF with spring, mass and damper
An increased complexity from the basic spring mass system is the
addition of a damper. Adding a damper to the system results in the
equation of the form

m ü + c u̇ +k u =me w 2s i n (w t) (7.19)

where c is the damping coefficient. Converting to frequency domain
following the solution assumption of u =U s i n (ωt) gives,

(−mω2U + j cωU +kU)sin(ωt) =meω2 sin(ωt)

(−mω2+ j cω+k)U =meω2
(7.20)

The actual response with respect to time u (t) is given by:

u (t) =U sin(ωt)

u (t) =

�

�

�

�

meω2

k + j c w −mω2

�

�

�

�

sin(ωt)
(7.21)

0 5 10 15 20

Epochs

10000

11000

12000

13000

14000

15000

S
ti

ff
n
e
ss

(N
/
m

)

(a) Stiffness prediction

0 5 10 15 20

Epochs

0

50

100

150

200

250

300

350

L
o
ss

(b) Loss curve

Figure 7.15: Stiffness prediction and corresponding loss curve during training for
spring, mass system

117

7 Numerical study

0 5 10 15 20

Epochs

5000

10000

15000

20000

25000

30000

S
ti

ff
n
e
ss

(N
/
m

)
100

1000

10000

20000

30000

Figure 7.16: Robustness of the method against different initial values for the
unknown stiffness

The assumptions result in effective stiffness K and force F as follows

K = k + j c w −mω2

F =meω2
(7.22)

Hence the residual which is to be optimized is

R = (k + j c w −mω2)U −meω2 (7.23)

The values for different parameters for this experiment are given in
Table 7.4. Similar to the previous experiments, vibration and force data
are created using a stiffness value of 13000 N /m . An initial guess is
made for the stiffness and is optimized using the FEM-NN algorithm.
Major difference this example has compared to the previous one is the
presence of damper and the resulting complex equations. The gradient
calculation and optimization algorithms must consider this into account.
Details on this can be found in Appendix A.

118

7.2 Inverse problems

Table 7.4: Experimental parameters for SDOF system with spring and damper

Parameters Value

Mass m (kg) 10

Eccentricity e (m) 0.02

Spring coefficient in k (N/m) 13000

Damping coefficient (Ns/m) 5

0 200 400 600 800 1000

Epochs

12000

13000

14000

15000

16000

17000

18000

19000

20000

L
o
ss

(a) Stiffness prediction

0 200 400 600 800 1000

Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L
o
ss

×109

(b) Loss curve

Figure 7.17: Stiffness prediction and corresponding loss curve during training for
spring, mass and damper system

The Figure 7.17 shows the stiffness prediction and the corresponding
loss curve. It can be seen that model is able to find exact value without
any difficulty.

7.2.3 MDOF Jeffcott rotor
Jeffcott rotor is the simplified lumped parameter model used to solve a
complete rotordynamic system. The Jeffcott rotor is a single disk sym-
metrically mounted on a uniform elastic shaft. The shaft is considered
massless and disc having a mass m . It is also possible to include the
mass of the shaft by including half of the total mass of the shaft (ms)
along with the mass of the disc (md).

119

7 Numerical study

m =md +
ms

2
(7.24)

We start with the equations of motion,

mx üx + c u̇x +kx ux =mx eω2 cos(ωt)

my ü y + c u̇ y +ky u y =my eω2 sin(ωt)
(7.25)

Table 7.5: Experimental parameters for Jeffcott rotor

Parameters Value

Mass m (kg) 10

Eccentricity e (m) 0.02

Spring coefficient in

x-direction kx (N /m)
13000

Spring coefficient in

y-direction ky (N /m)
10000

Damping coefficient (Ns/m) 5

The amplitudes of vibration in x− and y−directions are given by,

Ux =

�

mxω
2e

p

(kx −mω2)2+ (cω)2

�

Uy =

myω
2e

Æ

(ky −mω2)2+ (cω)2

! (7.26)

The actual response of the system in x− and y−directions with
respect to time are given by:

120

7.2 Inverse problems

ux (t) =

�

mxω
2e

p

(kx −mω2)2+ (cω)2

�

cos(ωt −φ)

u y (t) =

myω
2e

Æ

(ky −mω2)2+ (cω)2

!

sin(ωt −φ)
(7.27)

when converting into frequency domain and rewriting

K1 = kx + j c w −mxω
2

K2 = ky + j c w −myω
2

(7.28)

F1 =mx eω2

F2 =− j w my eω2
(7.29)

The same equation system can be written in matrix form as





mx 0

0 my









üx

ü y



+





cx 0

0 cy









u̇x

u̇ y



+





kx 0

0 ky









ux

u y



=





mx eω2 cos(ωt)

my eω2 sin(ωt)





(7.30)

Converting the equation to frequency domain results in




−mxω
2+ j cx w +kx 0

0 −myω
2+ j cy w +ky









Ux

Uy





=





mx eω2

− j w my eω2





(7.31)

121

7 Numerical study

0 1000 2000 3000 4000 5000

Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
ti

ff
n
e
ss

(N
/
m

)

×106

(a) Stiffness in x-direction

0 1000 2000 3000 4000 5000

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

S
ti

ff
n
e
ss

(N
/
m

)

×107

(b) Stiffness in y-direction

Figure 7.18: Stiffness prediction of Jeffcot rotor along the training

0 1000 2000 3000 4000 5000

Epochs

0

2500

5000

7500

10000

12500

15000

17500

20000

L
o
ss

Figure 7.19: Loss curve of Jeffcott rotor stiffness prediction using FEM-NN
algorithm

The equation 7.31 is used to calculate the residual and use for optimiza-
tion process. The values for different parameters for this experiment are
given in table 7.5. Similar to the previous experiments, vibration and
force data are created using assumed stiffness values of kx = 106 N /m
and ky = 108 N /m . Then initial guesses are made for the stiffnesses
and is then optimized using the FEM-NN algorithm.

122

7.3 Complete rotordynamic system

7.3 Complete rotordynamic system

So far we have considered simplified examples of rotordynamic systems.
Here we consider a real-scale model of a rotordynamic system modelled
using the open source software called ROSS [105]. Before going in
the details of the complete model, we first consider the basics of fluid
bearings and how they are modeled in rotating systems as we are
considering a fluid bearing example in Chapter 8.

Industrial bearings on which load is supported by a thin layer of fluid
are called fluid bearing. They are of mainly two types i) Hydrostatic,
and ii) Hydrodynamic. Hydrostatic fluids have pressurised fluid with
the help of a pump. whereas hydrodynamic bearings have the pressure
generated with the speed of the shaft. We discuss about hydrodynamic
bearings in the rest of the dissertation. Consider the mathematical
model of a hydrodynamic bearing given in Figure 7.20.

Restricted | © Siemens 2020 | Rishith Ellath Meethal | T RDA SDT MSO-DE |2020-12-18Page 91

𝑢

𝑣

Bearing centre

Locus curve

Journal center at one particular

Equilibrium position

(𝑢0, 𝑣0)

∅

𝜔

Figure 7.20: Mathematical model of a fluid bearing

The total reaction forces at the centre of bearing are given by Rx

and Ry

Rx =Ru0
+Kx x ux +Kx y u y +Cx x u̇x +Cx y u̇ y +mx x üx +mx y ü y (7.32)

Ry =Rv0
+K y x ux +K y y u y +Cy x u̇x +Cy y u̇ y +my x üx +my y ü y (7.33)

123

7 Numerical study

here

Rx = fx −m ẍ (7.34)

Ry = fy −m ÿ (7.35)

The stiffness and damping coefficients are defined as

Kx y =

�

∂ Rx

∂ y

�

(u0,v0)

(7.36)

Cx y =

�

∂ Rx

∂ ẏ

�

(u0,v0)

(7.37)

mx y =

�

∂ Rx

∂ ÿ

�

(u0,v0)

(7.38)

In a nutshell we can arrive at the following observations from mod-
eling the hydrodynamic bearings

• Equation is a complete form of linearized fluid-film dynamic equa-
tion and it contains twelve stiffnesses, damping and added-mass
coefficients.

• The coefficients depend on the equilibrium position (u0, v0) which
depends on the dimensionless Sommerfeld number S

S = µΩR L
W

�

R
cr

�2 � L
D

�2,

• The coefficients can also depend on external excitation frequency
ω

• So, bearing coefficients are a function of the form f (Ω,ω). The
stiffness and damping coefficients can be numerically obtained by
a finite difference solution of the perturbed Reynolds equation
[64].

124

7.3 Complete rotordynamic system

Figure 7.21: Experimental setup for rotordynamic bearing study

• Damping coefficients are symmetric but stiffnesses are not.

• Although the load–displacement characteristics of a journal bear-
ing is non-linear, the concept of linear dynamic coefficients is
still used for modern rotor dynamic calculations for unbalance re-
sponse, damped natural frequencies and stability since experience
has demonstrated the usefulness of the coefficients (Applicable
only if the amplitude of vibration is small)

In Chapter 8, we consider a rotordynamic test-bench as given in
Figure 7.21. In this system, a motor is driving a shaft on which two
discs are mounted. The shaft is supported by two fluid bearings at
the driving end (DE) and non-driving end (NDE). In order to create
forces on the system, known unbalance masses are attached to the
discs at known distance from the disc centre. The discs have uniformly
distributed mass and do not result in unbalance unless an external mass
is attached.

Figure 7.22 represents the model of the system given in Figure 7.21.
The system consists of l number of nodes from driving to non-driving
end. The nodes nb 1 and nb 2 represents the nodes where bearing is
attached. Nodes nd 1 and nd 2 represents the locations where discs are

125

7 Numerical study

Figure 7.22: A general rotordynamic system with two bearings and two discs

attached. nl is the node at the end of the shaft and also the total
number of nodes in the system. The M in Figure 7.22 represents the
motor which drives the system at a rotational frequency of ω.

The equation of motion of the system in frequency domain is given
below

�

−ω2 M + jω(Gω+ C)+ K
�

U = F

D U = F
(7.39)

where M , G , C and K are the mass, gyroscopic, damping and stiffness
matrices respectively. U is the displacement vector and F is the force
vector in the frequency domain. D =

�

−ω2 M + jω(Gω+ C)+ K
�

is
called dynamic stiffness matrix.

The parameters used for modeling the shaft and discs of the system
in ROSS [105] are given in Table 7.6. The bearing coefficients of the
modelled fluid bearing follows as in Figure 7.24. All 8 coefficients
(stiffness and damping) are functions of the rotational speed.

First part of this experiment generates the data required for the
algorithm to train on. A FEM based model of the system is created
using the open-source software ROSS rotordynamics [105]. Different
unbalance configurations are created and corresponding forces on the
system are recorded. The displacements at each node of the system
are also recorded. This is done numerically modeling the fluid bearing.
After creating the data, we also create the matrices of the FEM system
without having bearings in the system. The FEM-NN algorithm is

126

7.3 Complete rotordynamic system

Table 7.6: Parameters of the rotordynamic system modelled using ROSS

Part Dimension Value in SI unit

Shaft Length 0.25m

Diameter 0.05m

Density 7800kg/m3

Disc Inside diameter 0.05m

Outside diameter 0.28m

Width 0.07m

Density 7800kg/m3

Bearing Inlet pressure 105Pa

Outlet pressure 0Pa

Density of the fluid 860kg/m3

Viscosity of the fluid 860kg/m3

Outer diameter 0.05m

Inner diameter 0.049m

Width 0.03m

Static load 525N

tested on the created data to calculate the bearing coefficients that we
modeled. The training for bearing coefficients follow the pipeline given
in Figure 7.23.

Initially both the displacement and force signals generated are con-
verted to the frequency domain and their amplitudes are calculated.
Mass, gyroscopic, damping and stiffness matrices of the rotordynamic
system without fluid bearings are created. Bearing coefficients of the
fluid bearings are predicted using a neural network which takes the ro-
tational speed as the input. The predicted coefficients are assembled at

127

7 Numerical study

FEM-NN
algorithm

Force, Vibration
from ross

rotordynamics

Transfer to
frequency
domain

Matrices from
ross

rotordynamics

Calculated
bearing

parameters

Figure 7.23: Bearing identification process using simulated data

200 400 600 800 1000

Speed (rpm)

−4

−2

0

2

4

6

S
ti

ff
n
e
ss

(N
/
m

)

×107

kxx
kxy

kyx

kyy

(a)

200 400 600 800 1000

Speed (rpm)

−2

−1

0

1

2

3

4

D
a
m

p
in

g
c
o
e
ffi

c
ie

n
t

(N
s/

m
)

×106

cxx
cxy

cyx

cyy

(b)

Figure 7.24: Speed dependent bearing coefficients of the hydrostatic bearing
modeled using ROSS rotordynamics

the respective positions of the global system matrix and then optimized
using the FEM-NN algorithm.

Figures 7.25 and 7.26 show the prediction from the neural network
after the training process. It can be observed that the prediction is able
to capture the relation between speed and coefficients pretty well.

128

7.3 Complete rotordynamic system

0 1000 2000 3000 4000 5000 6000

Rotation speed (RPM)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

S
ti

ff
n
e
ss

(N
/
m

)
×107

Actual

FEM-NN

(a)

0 1000 2000 3000 4000 5000 6000

Rotation speed (RPM)

1

2

3

4

5

S
ti

ff
n
e
ss

(N
/
m

)

×107

Actual

FEM-NN

(b)

Figure 7.25: Speed dependent bearing stiffness of the hydrostatic bearing actual
vs learned

0 1000 2000 3000 4000 5000 6000

Rotation speed (RPM)

0

100000

200000

300000

400000

500000

600000

D
a
m

p
in

g
(N

s/
m

)

Actual

FEM-NN

(a)

0 1000 2000 3000 4000 5000 6000

Rotation speed (RPM)

0

1

2

3

4

5

6

7

D
a
m

p
in

g
(N

s/
m

)

×106

Actual

FEM-NN

(b)

Figure 7.26: Speed dependent bearing damping coefficients of the hydrostatic
bearing actual vs learned

Once a model is trained for the unknown coefficients, we can use the
trained model in the forward simulations. Such an experiment is also
conducted using the trained neural network to predict the vibrations at
different points on the shaft. Figure 7.27 shows the comparison between
the predicted vibration using the learned coefficients and the actual
vibration based on the fluid bearing numerically modeled in the ROSS
rotordynamics.

129

7 Numerical study

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Time (s)

−6

−4

−2

0

2

4

6

D
is

p
la

c
e
m

e
n
t

(m
)

×10−7

Actual

Predicted

(a) x -direction displacement of the disc node

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Time (s)

−6

−4

−2

0

2

4

6

D
is

p
la

c
e
m

e
n
t

(m
)

×10−7

Actual

Predicted

(b) y -direction displacement of the disc node

Figure 7.27: Predicted vs actual displacement of the disc node of the
rotordynamic system

130

Scientists study the world
as it is; engineers create the
world that has never been

Theodore von Karman

C
h

a
p

te
r

8
Industrial examples

8.1 Wind load on high-rise building

Wind load on different structures, such as wind turbines, bridges and
buildings, has been a major concern for engineers during its design
and operational phase. It is said that 70−80% of economic losses due
to natural disasters in the world are caused by wind related hazards
[99]. FSI simulations are performed in the design phase for the accurate
understanding and prediction of the impact of fluid force on such systems.
The wind load on high-rise buildings is extensively studied during the
design of buildings as the wind can cause vibration and structural
damage to the buildings. Additionally, the effect of wind also plays an
important role in the serviceability and habitability of buildings. Hence,
the effect of wind is an important and challenging issue in building and
structural engineering field. Altogether, the field of structural wind
engineering is concentrated on studying the effects of wind load on
structures.

131

8 Industrial examples

The FSI approach is generally employed to predict the flow-induced
vibration and estimate the forces exerted by the wind flow. However, FSI
simulations are not always easy and feasible due to their considerably
complicated algorithm and communication scheme, which sometimes
require high computational resources. In this example, we perform the
multi-physics study of wind-structure interaction in a simpler manner.
We implement the wind flow in a relatively simple yet comprehen-
sive fashion, followed by the assessment of design criteria of highrise
structures from the structural engineering and design perspective

The Commonwealth Advisory Aeronautical Council (CAARC) [11]
building geometry is used for the study as it is widely used in literature
for benchmarking. The CAARC is a parallelopiped building with
the dimensions listed in Table 8.1. The parameters of the building
height(H), width(B) and length(D) are given in Table 8.1. In this study,
we do not attempt a full model analysis as it becomes numerically
expensive. Alternatively, we model the building as an Euler-Bernoulli
beam described by the following equations.

∂ 2

∂ y 2
(E I
∂ 2ux (y)
∂ y 2

) = f (x)

∂ 2

∂ y 2
(E I
∂ 2uz (y)
∂ y 2

) = f (z)

(8.1)

The variables ux (y) and uz (y) denotes the deflection of the beam
in the x and z directions at some position y . E is the elastic modulus
and I is the second moment of area of the cross section. The forces in
x and z directions are generated by the wind load on the building. The
wind-load on the building is calculated using the mean wind velocity
ur e f and roughness length y0. The static wind load f at each height of
the building is calculated as

f =
ρa i r V (y)2ACd

2
(8.2)

132

8.1 Wind load on high-rise building

H

Du(yref)
y

y
x

z

0

D

B

F
M

mi

Figure 8.1: Wind load on a building

where ρa i r is the air density, A is the reference area and Cd the
drag coefficient for the cross section of the building. V (y) represents
the wind velocity at height y calculated using an assumed profile for
the wind.

The calculation of wind profile starts with the calculation of the
friction velocity using the mean velocity um .

u∗ =
umκ

l o g ((yr e f + y0)/y0)
(8.3)

133

8 Industrial examples

Table 8.1: Details of the building - geometry and structural

Parameters Values

Height (H) 180 m

Width (W) 45 m

Length (D) 30 m

Frequency (f) 0.2 Hz

Density (ρ) 160 kg/m3

Damping ratio (ζ) 0.01

The friction velocity is then used to calculate the velocity at each
height y using

u y =
u∗
κ

l n (
y

y0
+1) (8.4)

where, κ is the Von-karmann constant with a value 0.41. Using the
velocity u y , the force at the height y is calculates as

fy = 0.5×1.2×u 2
y ×45 (8.5)

This force is then used along with the Equation 8.1 to calculate
the displacement of the structure. Among all the parameters, the
uncertainty in wind and the terrain affect the long term performance
of the structure. Hence, the uncertainty in these parameters and their
effects has to be studied. The effect of uncertainty in the wind load on
the horizontal displacement at the top of the building is studied in this
example. Figure 8.1 shows the schematic diagram of the approximation
of the high-rise building and the wind load on it.

In this experiment, a surrogate model for the structural simulation of
the high-rise building is developed using the FEM-NN algorithm. The
surrogate model takes the mean wind velocity u (yr e f) and roughness
length y0 as the input to predict the displacement of the building at
different nodal points. The surrogate model is trained by generating
training data by choosing different values for the mean velocity and

134

8.1 Wind load on high-rise building

Table 8.2: Details of uncertain wind parameters

Uncertain

parameters
Distribution Values

Mean wind

velocity u(yr e f)
Weibull

Mean= 40 m/s

Shape parameter = 2

Roughness

length, y0

Uniform [0.1, 0.7]

roughness length. The mean velocity is sampled from a Weibull dis-
tribution and the roughness length from a uniform distribution. The
parameters used for the distribution are given in Table 8.2.

The trained model is used to run a large of number of simulations.
Such simulation results are then used for the Monte Carlo uncertainty
analysis. The Monte Carlo-based analysis is a widely used uncertainty
analyses method that we can now see in almost all engineering fields
[45]. This analysis expresses the quantity of interest as a complementary
cumulative distribution function (CDF). The results from simulations
are used for the probability distributions of the targeted variable. In
conventional Monte Carlo method, a large number of computation-
ally expensive simulations are required for generating the probability
distributions. By using a surrogate model made of limited number
of simulations, we reduce the total number of expensive simulations
required for the analysis.

In our experiment, the displacement of the topmost point is the
quantity of interest. Figure 8.2 illustrates the probability distribution
using the FEM-NN surrogate model in comparison to a conventional
FEM bases analysis. A total of 2000 samples were utilized for the
training of the neural network. A fully connected network with 200
hidden units and 4 layers were used. A Monte Carlo method with 5000
samples were used for the FEM based solution. Figure 8.2 (a) shows
the probability distribution of the top displacement of the building and
Figure 8.2 (b) shows the cumulative distribution function. It can be

135

8 Industrial examples

0.000 0.399 0.798 1.196 1.595 1.994 2.393
Displacement [m]

0.000

0.685

1.369

2.054

2.739

3.423

4.108

FEM
FEM-NN

(a) PDF trained region

0.000 0.399 0.798 1.196 1.595 1.994 2.393
Displacement [m]

0.061
0.217
0.374
0.530
0.687
0.843
1.000

 FEM
FEM-NN

(b) CDF trained region

0.025 0.589 1.153 1.717 2.280 2.844 3.408
Displacement [m]

0.000

0.143

0.286

0.428

0.571

0.713

0.856

 FEM
FEM-NN

(c) PDF untrained region

0.025 0.589 1.153 1.717 2.280 2.844 3.408
Displacement [m]

0.001

0.167

0.334

0.500

0.667

0.833

1.000

 FEM
FEM-NN

(d) CDF untrained region

Figure 8.2: PDF and CDF in trained region in (a) and (b) and untrained region
in (c) and (d)

observed that the FEM-NN is able to reproduce the results obtained
using FEM with reasonable accuracy. In this case, the input parameters
were taken from the same distribution as that used for training.

Figures 8.2 (c) and (d) are the results of an analysis with different
distribution of input parameters than that used for training. The statis-
tical quantities of the analysis for both cases are given in Table 8.3. It
can be observed that the FEM-NN was able to produce accurate results
in both the cases. Hence, it can be concluded that the FEM-NN can
be used to run Monte Carlo uncertainty analysis with lesser number
of samples and faster. Running a large number of simulations using a
neural network only takes seconds in contrast to to the conventional
FEM. However, the training time and hyperparameter tuning efforts of
neural network are not considered.

136

8.2 Fluid bearing parameter identification

Table 8.3: Statistical quantities of Monte-Carlo analysis

Trained region Untrained region

mean
standard

deviation
skewness kurtosis mean

standard

deviation
skewness kurtosis

FEM 0.183 0.199 2.679 12.278 1.016 0.470 0.667 0.717

FEM-NN 0.181 0.197 2.706 12.555 1.004 0.468 0.693 0.790

8.2 Fluid bearing parameter identification

In this example, we test the FEM-NN inverse algorithm on the data col-
lected from the experimental setup in Figure 7.21. The typical workflow
for the bearing parameter identification on an industrial rotordynamic
system is given in Figure 8.3. The same workflow is applicable to any
industrial settings with slight modification in the data acquisition or
preprocessing.

The workflow begins with the vibration measurements at different
feasible points on the system. The measured signals are preprocessed

FEM-NN
algorithm

calculated
bearing parameters

xDT

FEM model

Displacement and force
values of all DOFS

FEM based
system matrices

FEM based system matrices (known)

vibration
prediction

Figure 8.3: Bearing parameter identification workflow for the rotordynamic
system experimental setup

137

8 Industrial examples

Table 8.4: Different unbalance configurations used for the experiment

Unbalance

configuration

Disc 1 Disc 2

Radial Angular Radial Angular

Unbalance 1

Unbalance 2 Out 1

Unbalance 3 Out 1

Unbalance 4 Out 1 Out 1

Unbalance 5 Out 14 Out 1

Unbalance 6 Out 9 Out 1

Unbalance 7 Out 5 Out 1

to remove noise and other vibrations contributed from nearby machines.
Then the vibration values for DOFs which are not measured are recon-
structed. The force values for each configuration is also recorded using
the known unbalance configuration. At the same time, an FEM model
of the system is constructed using any software which permits the access
to the system matrices and vectors. Then the FEM-NN algorithm for
inverse problem is executed to calculate the bearing coefficients. Known
coefficients are then used for the prediction of the future state of the
system.

In the following each of the above steps are detailed

Data acquisition

Data acquisition is performed by attaching known unbalance mass on
the disc at different radial distances from the centre and at different
angles from the reference position. The diagram of the disk with the
holes positions for attaching the unbalance is given in Figure 8.4. Two
of such discs are attached to the shaft. Different configurations used for
the data acquisition are given in Table 8.4.

138

8.2 Fluid bearing parameter identification

1 2
3

4

5

6

7

8
91011

12

13

14

15

16

17
18

Figure 8.4: Discs on the rotating shaft with the provisions for attaching
unbalance mass

In each of the configurations, five sensors are used at the locations
motor drive end (Motor), drive end z-direction (S_DE_Z), non-drive
end z-direction (S_NDE_Z), drive end y-direction (S_DE_Y) and
non-drive end y-direction (S_NDE_Y). The experiments are performed
with rotating speed ranging from 10 to 60 Hz with an interval of 10
Hz. The measured signals from two of the configurations are given in
Figures 8.6 and 8.7.

Data cleaning

Vibration sensors mounted on the system collect vibrations over time
at 5 different locations on the system. However, due to the sensor
precision and environmental effects, the collected raw data contains
noisy values. Appropriate data cleaning is to be performed to eliminate
noisy data from the measurement. Since the vibration follows the
rotating speed of the system, we used different filtering techniques for
the data cleaning. Figure 8.5 shows the workflow of the data cleaning
process. A Butterworth filter is used for the filtering of noises from the
measured signal. The Butterworth filter is a type of signal processing
filter designed to have a frequency response, that is as flat as possible
in the range of frequencies. We used a range of 2 Hz around the

139

8 Industrial examples

Raw
signal

Speed,
band,

frequency

Butter
bandpass
of order 6

Cleaned data

Second
order

section
filter

Figure 8.5: Workflow for cleaning the measured data

rotating frequency as the band. Rotating speed, band and frequency
of measurement are used to create a butter bandpass. The created
bandpass is used as a second order section filter on the raw signal
to get the cleaned data. Second order section filters the data along
one dimension using cascaded second-order sections. More details on
butterworth filter is available in [14, 93]. Figures 8.6 and 8.7 show the
raw data and cleaned data using the data cleaning process in Figure
8.5.

Data synchronisation

The measurements of vibrations were conducted on different days by dif-
ferent people, making it difficult to maintain the same starting position
of the shaft for all measurements. Hence, a position on the shaft was
marked and a sensor was used to detect the mark on each revolution.
The signal before the first occurrence of that mark needs to be removed
to keep the initial position of the shaft the same for all measurements.
We took the hundredth instead of the first occurrence to allow the initial
dynamics to dampen.

Data reconstruction

The proposed FEM-NN algorithm uses the primary variables and force
vector corresponding to all DOF for running the inverse problems. Due
to the practical limitations for sensor placement, we can only measure

140

8.2 Fluid bearing parameter identification

(a
)

U
nc

le
an

ed

(b
)

cl
ea

ne
d

Fi
gu

re
8.

6:
D

at
a

fr
om

un
ba

la
nc

e
co

nfi
gu

ra
ti

on
5

w
it

h
ru

nn
in

g
fr

eq
ue

nc
y

20
H

z

141

8 Industrial examples

(a)
U

ncleaned

(b)
C

leaned

Figure
8.7:

D
ata

from
unbalance

configuration
5

w
ith

running
frequency

40H
z

142

8.2 Fluid bearing parameter identification

vibration at few DOFs. Due to nature of the experimental setup, it is
possible to reconstruct the rest of the DOFs using the reformulation of
the equation of motion for the rotordynamic system.

Consider the model given in Figure 7.22. The system of equations
representing the dynamics can be written as





D R ,ii D R ,ib

D R ,bi D R ,ii+ D B ,bb









UR ,i

UR ,b



=





F R

0



 (8.6)

Here the elements of the dynamics system matrix D are grouped
into different submatrices. The D R ,ii represents the part of the matrix
that belongs to the rotor but not containing bearings. The subsystem
D R ,ii+ D B ,bb represents the part contributed to by bearing nodes. This
part can be divided into two subparts; the contribution on bearing nodes
from the rotor D R ,ii, and the contribution from bearing D B ,bb. The
subsystems D R ,ib and D R ,bi represent the cross-coupling terms between
rotor and bearings. Since the bearing does not contribute to those
terms, they are completely known from rotor design. Correspondingly,
the displacements UR ,i and UR ,b represent the displacement of rotor
at non-bearing and bearing locations. Since we only have sensors at
bearing locations, the UR ,i is unknown on the right-hand-side, the forces
are only acting on the discs. Hence, the forces on the bearing locations
are 0 and on the rest of the system are calculated/known from the
known unbalance configuration.

Modifying results from Equation 8.6 as

UR ,i = D−1
R ,ii[F R − D R ,ib UR ,b] (8.7)

More details on this reconstruction can be found in [107].

8.2.1 Bearing parameter identification
Once the displacement vector and force vector are available, the FEM-
NN inverse algorithm can be used for identifying the unknown coef-
ficients D R ,bb of the dynamic stiffness matrix. Since the bearing we

143

8 Industrial examples

use is a hydrostatic fluid bearing, we assume the parameters as func-
tions of speed. For example, different stiffness coefficients and damping
coefficients can be written as





kx x kx y

ky x ky y



= f (ω,θ) (8.8)





cx x cx y

cy x cy y



= f (ω,θ) (8.9)

where, ω is the speed and θ is the neural network parameters. We use
a neural network which predicts the bearing parameters (stiffness and
damping coefficients) by taking rotating speed as input. The predicted
parameters are assembled into the dynamic system matrix as explained
in Algorithm 4. In contrast to the example discussed in Section 7.3,
we do not know the actual values for the bearing coefficients in this
case. Hence, we predict the vibration for a few of the experiments
using the predicted bearing coefficients and compare it with the actual
vibration data collected. Figure 8.8 shows the predicted and measured
amplitudes of vibration for the unbalance setting 2 given in Table 8.4
with a rotational speed of 20Hz. Figures 8.8(a) and 8.8(b) show the real
and imaginary parts of the complex amplitude for each of the nodes.
It can be observed that the model is able to capture the amplitude
pretty well for most of the nodes. However, at the bearing nodes the
amplitudes are not perfectly captured and have high error in comparison
to rest of the nodes. This can be attributed to the error accumulated
from the different processes involved in the pipeline, starting from data
collection to the model training.

Figures 8.9 and 8.10 show the vibration of each node in the time
domain. Figure 8.9 shows the transient response of the disc nodes. The
predictions are having amplitudes more than that of the measured. The
difference between the prediction and error is on an average of 20% for
the disc nodes. Figure 8.9 shows the transient response of some other
DOFs in the system. It can be observed that the error is as low as 3%
in these cases.

144

8.2 Fluid bearing parameter identification

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

N
o
d
e

−
0
.0

4

−
0
.0

2

0
.0

0

0
.0

2

0
.0

4

Realcoefficientofamplitude

A
c
tu

a
l

P
re

d
ic

te
d

(a
)

R
ea

l
pa

rt

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

N
o
d
e

−
0
.0

1

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

Realcoefficientofamplitude

A
c
tu

a
l

P
re

d
ic

te
d

(b
)

Im
ag

in
ar

y
pa

rt

Fi
gu

re
8.

8:
M

ea
su

re
d

vs
pr

ed
ic

te
d

am
pl

it
ud

es
of

th
e

ro
to

rd
yn

am
ic

sy
st

em
us

in
g

th
e

F
E

M
-N

N
ca

lc
ul

at
ed

be
ar

in
g

pa
ra

m
et

er
s

145

8 Industrial examples

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(a) First disc x-direction

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(b) First disc y-direction

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(c) Second disc x-direction

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(d) Second disc y-direction

Figure 8.9: Predicted and actual transient response of disc nodes after calculating
bearing parameters using FEM-NN

146

8.2 Fluid bearing parameter identification

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(a) DOF 10

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−4

−2

0

2

4

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(b) DOF 11

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−3

−2

−1

0

1

2

3

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(c) DOF 150

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

−3

−2

−1

0

1

2

3

D
is

p
la

c
e
m

e
n
t(

m
)

×10−6

Actual

Predicted

(d) DOF 151

Figure 8.10: Predicted and actual transient response of random nodes after
calculating bearing parameters using FEM-NN

147

C
h

a
p

te
r

9
Conclusions and outlook

Conclusions

The xDT provides functionalities for operation and service optimization
in industries with the help of real-time simulations. The xDTs constantly
evolve along with a system to represent the current state of the system. A
hybrid model combining FEM and NN is presented in this dissertation to
support xDTs. This hybrid approach is a highly effective and reliable way
of creating and using a surrogate model. The developed hybrid approach
offers a general workflow for creating a neural network surrogate for
any given physics and geometry. It also provides an efficient way to
update the system parameters.

The fundamentals behind simulations using numerical methods and
neural networks are examined to identify their strengths and weaknesses.
Furthermore, the limitations of existing approaches combining simu-
lation and neural networks are studied in detail. The state-of-the-art
neural networks and neural networks for forward and inverse problems

149

9 Conclusions and outlook

are thoroughly examined to analyze the research gap. As a result, a
novel algorithm for training a physics-aware neural network and the
concept of the hybrid model are introduced to realize faster simulation
surrogate models. The discretized form of the governing PDE is used as
the custom loss in the neural network for training. During training, the
residual associated with the discretized form is backpropagated through
NN. Deploying the resulting neural network with the numerical frame-
work allowed us to verify the correctness of the prediction and discard
if the residual is high. The same algorithm is extended to deal with
inverse problems as well. Here the unknown part of a system is modeled
as a neural network and assembled into the system matrix. This novel
way of training is unsupervised as we use the governing PDE instead
of the target data. The introduced algorithm and hybrid model are
analyzed using examples of increasing complexity from different physics
and geometry. The hybrid model is tested on thermal and structural
problems in one-dimensional and two-dimensional problems of varying
complexity. Both steady-state and transient problems were analyzed.
The proposed method outperformed state-of-the-art neural network-
based methods in terms of accuracy, speed, and reliability. Compared
to many state-of-the-art methods, the introduced method results in
a well-posed optimization problem representing the exact problem at
hand and results in an accurate solution, provided the training has
converged.

Along with the hybrid models, an application called Kratos neural
network application is developed as part of the dissertation. As there
is increasing interest in combining simulation and neural networks, a
platform that enables easier integration of both worlds was necessary.
The developed application can be used for simulation data generation,
neural network training, and for using surrogate models along with
other solvers in a multiphysics simulation. The feasibility of the appli-
cation for running a multiphysics simulation was tested by running an
FSI benchmark problem by replacing either fluid or structural with a
surrogate model. The approach resulted in much less simulation time,
provided we omitted the computational time and effort to train the
surrogate.

150

9 Conclusions and outlook

Outlook

The introduced FEM-NN offers further research opportunities for the
simulation and the neural network communities to improve aspects like
training time. Some of them are beyond the scope of this thesis and
are indicated in this section.

As pointed out in Chapters 6.2 and 8, one major challenge in train-
ing a neural network is hyperparameter tuning. Finding the right
architecture, which represents the relation between input variables and
primary output variable distribution in the domain, is time-consuming.
Currently, the design of effective architecture is done empirically by
researchers. Some parts of the hyperparameter tuning are now autom-
atized using different hyperparameter tuners. However, such tuners
also have various parameters to choose manually, starting from the
sampling algorithm. This is one research area that the community must
focus on to create an immediate impact. Even after finding the suitable
architecture, the training part is expensive, and options like transfer
learning must be explored with the given algorithm to speed up the
training. A similar observation has also been made for inverse problems
in Section 7.2. The amount of data required can be significantly re-
duced with the help of transfer learning approaches. Different transfer
learning approaches are already quite successful in image processing.
When it comes to physical problems, new algorithms that describe the
underlying physics must be developed.

Another major issue when using neural network-based surrogates for
physical problems is the need for a metric to measure their correctness.
This dissertation proposed using the numerical grid to map the neural
network surrogate solution and calculate the associated residual as a
measure of correctness. However, this also demands the calculation
of system matrices during the deployment. This contrasts with the
advantage of using neural network surrogates for predicting in real-time.
Hence, other methods are required to verify the correctness of neural
network predictions.

151

Appendix A

Gradient calculation for complex
numbers

There can be situations where complex numbers are used as input/-
variables in a neural network training. The rotor dynamic example
we considered in Section 8.2 belong to this. However, the final loss is
always a real number.

Consider the gradient for a real cost function δ(z) defined on complex
plane with argument z = x + i y

153

A Gradient calculation for complex numbers

∇=
∂ δ

∂ x
+ i
∂ δ

∂ y

=
∂ δ

∂ z

∂ z

∂ x
+
∂ δ

∂ z ∗
∂ z ∗

∂ x
+ i

�

∂ δ

∂ z

∂ z

∂ y
+
∂ δ

∂ z ∗
∂ z ∗

∂ y

�

=2
∂ δ

∂ z ∗

=2

�

∂ δ

∂ z

�∗

(A.1)

When it comes to the parameters of a neural network, the derivative
after backpropagation can be written as (similar to Equation 2.7)

∂ δ

∂ wl
=
∑ ∂ δ

∂ wl+1

∂ wl+1

∂ wl
+
∂ δ

∂ w ∗
l+1

∂ w ∗
l+1

∂ wl
(A.2)

∂ δ

∂ bl
=
∑ ∂ δ

∂ bl+1

∂ bl+1

∂ bl
+
∂ δ

∂ b ∗l+1

∂ b ∗l+1

∂ bl
(A.3)

When the function is differentiable, the second term in both Equa-
tions A.2 and A.3 vanishes and results an expression similar to that
of real numbers. However, we need to take the conjugate in contrast
to that of real numbers. This particular implementation is missing in
most of the currently used neural network packages.

An example with the default PyTorch version and the effect of
implementing above mentioned Equation A.1 is demonstrated below.
We consider learning the complex number 1 j beginning with the real
number 1. In every iteration, a loss function calculates the error between
the assumed complex number and the target. The mean squared error
is backpropagated and the assumed complex number is adjusted using
Adam optimizer implemented in PyTorch. In a second case, the Adam
optimizer is modified according to Equation A.1 using the following
change in the code.

1 exp_avg_sq.mul_(beta2).addcmul_(grad,grad.conj(),value=1-beta2)

Listing A.1: Change in Adam optimizer

154

A Gradient calculation for complex numbers

A detailed discussion on the above topic is available at
https://github.com/pytorch/pytorch/issues/59998

1 import torch as t
2 from matplotlib import pyplot as plt
3
4 complex_param = t.tensor([1],dtype=t.complex64, requires_grad=

True)
5
6 # We will optimize on the mean squared error from a 1j
7 target = 1j
8
9 def calc_loss(x):

10 return t.abs(x - target)**2
11
12 optimizer = t.optim.Adam([complex_param], lr=0.001)
13
14 n = 10000
15 values = t.zeros(n, dtype=t.complex64)
16 for i in range(n):
17 optimizer.zero_grad()
18 loss = calc_loss(complex_param)
19 loss.backward()
20 optimizer.step()
21 values[i] = complex_param.detach()
22
23 # Plot the results
24 plt.plot(values.real, label='Real Part')
25 plt.plot(values.imag, label='Imaginary Part')
26 plt.legend()
27 plt.xlabel('Iteration')
28 plt.ylabel('Complex Parameter')
29 plt.title('Optimization Progress with as-implemented Adam')
30 plt.show()

Listing A.2: Code snippet to test complex gradient implementation in PyTorch

155

https://github.com/pytorch/pytorch/issues/59998

A Gradient calculation for complex numbers

Figure A.1: Optimization progress with unresolved PyTorch error

Figure A.2: Optimization progress with modification in PyTorch

156

List of Figures

1.1 Simulation as a tool for product design 3
1.2 xDT and simulation . 4

2.1 Problem definition . 10
2.2 Problem definition with FEM grid 11
2.3 Errors in a numerical model . 11
2.4 Artificial intelligence and branches 13
2.5 Machine learning process using data 14
2.6 Artificial neural network . 16
2.7 Errors in a neural network model 18
2.8 Pipeline of conventional neural network 19
2.9 Input output data pair for predicting flow-field around

an airfoil . 20
2.10 Predicted and actual flow-field around an airfoil using

U-net neural network architecture 21
2.11 Pipeline of an Informed machine learning (adapted from

Von Rueden et al. [116]) . 24
2.12 Training of a PINN model . 26

4.1 Activation functions Sigmoid, Tanh, ReLu and LeakyReLU 45
4.2 Underfit, perfect fit, and overfit models for the same dataset 53
4.3 Early stopping identification . 55

5.1 Physical problem in domain Ω with boundary Γ 60
5.2 Training of FEM enhanced neural network 62
5.3 Deployment of FEM enhanced neural network 65
5.4 Training of physics guided timeseries predictor 71

157

List of Figures

5.5 Deployment of physics guided timeseries predictor 72
5.6 Physical problem in domain Ω with collocations and

boundary points for PINN training 73
5.7 Physical problem in domain Ω with internal and boundary

nodes for FEM formulation . 73

6.1 Parts of the neural network application in Kratos 77
6.2 Cantilever beam with fixed support and point load 79
6.3 Input data generated using normal and uniform distribution 79
6.4 Components of neural network analysis inside Kratos

neural network application . 80
6.5 Prediction and error from the trained neural network for

cantilever beam . 82
6.6 Workflow of neural network application for a coupled

simulation . 84
6.7 Diamond shaped non-linear structure 85
6.8 Prediction and error for the non-linear diamond shape

structure . 86
6.9 Mok’s benchmark of flexible wall structure in a convergent

fluid channel . 87
6.10 Neural network architecture for structural surrogate . . . 88
6.11 Comparison of displacement of points A and B on the

wall for FSI Mok benchmark using structural surrogate . 89
6.12 Comparison of pressure at points A and B on the wall

for FSI Mok benchmark using structural surrogate 90
6.13 Neural network architecture for fluid surrogate model . . 91
6.14 Comparison of displacement at points A and B on the

wall for FSI Mok benchmark using fluid surrogate 92
6.15 Comparison of point load at points A and B on the wall

for FSI Mok benchmark using fluid surrogate 92
6.16 Comparison of displacement of points A and B on the

wall for FSI Mok benchmark . 93

158

List of Figures

7.1 Distribution of temperature along x-axis for the steady
state convection diffusion example for cases (a) T1 =
100, T2 = 20, k = 10, u = 20,S = 100 (b) T1 = 25, T2 = 35, k =
10, u = 3,S = 1 (c) T1 = 65, T2 = 178, k = 6, u = 11,S =
[5, 2, 3, 4, 5, 1] and (d) T1 = 0, T2 = 200, k = 10, u = 30,S =
[5, 2, 3, 4, 5, 1] . 99

7.2 Error comparison of conventional neural networks and
FEM-NN . 100

7.3 Unsteady 1D convection equation solution using different
methods . 102

7.4 Unsteady 1D convection equation solution using different
methods at different timesteps 104

7.5 Domain for two dimensional Poisson problem 105
7.6 Two-dimensional Poisson Equation solution and absolute

error using hybrid methodology 106
7.7 Two-dimensional Poisson Equation solution and absolute

error using PINN . 107
7.8 Sudret truss . 108
7.9 Vertical displacement of the nodes of the structure 109
7.10 Response of MDOF system under external excitation . . . 110
7.11 Plots of predicted displacement for the selected DOFs . . 111
7.12 9x displacement for longer time 112
7.13 SDOF approximation for different systems 114
7.14 SDOF problem and the corresponding free body diagram 115
7.15 Stiffness prediction and corresponding loss curve during

training for spring, mass system 117
7.16 Robustness of the method against different initial values

for the unknown stiffness . 118
7.17 Stiffness prediction and corresponding loss curve during

training for spring, mass and damper system 119
7.18 Stiffness prediction of Jeffcot rotor along the training . . . 122
7.19 Loss curve of Jeffcott rotor stiffness prediction using

FEM-NN algorithm . 122
7.20 Mathematical model of a fluid bearing 123
7.21 Experimental setup for rotordynamic bearing study 125
7.22 A general rotordynamic system with two bearings and

two discs . 126
7.23 Bearing identification process using simulated data 128

159

List of Figures

7.24 Speed dependent bearing coefficients of the hydrostatic
bearing modeled using ROSS rotordynamics 128

7.25 Speed dependent bearing stiffness of the hydrostatic bear-
ing actual vs learned . 129

7.26 Speed dependent bearing damping coefficients of the
hydrostatic bearing actual vs learned 129

7.27 Predicted vs actual displacement of the disc node of the
rotordynamic system . 130

8.1 Wind load on a building . 133
8.2 PDF and CDF in trained region in (a) and (b) and

untrained region in (c) and (d) 136
8.3 Bearing parameter identification workflow for the rotor-

dynamic system experimental setup 137
8.4 Discs on the rotating shaft with the provisions for attach-

ing unbalance mass . 139
8.5 Workflow for cleaning the measured data 140
8.6 Data from unbalance configuration 5 with running fre-

quency 20Hz . 141
8.7 Data from unbalance configuration 5 with running fre-

quency 40Hz . 142
8.8 Measured vs predicted amplitudes of the rotordynamic

system using the FEM-NN calculated bearing parameters 145
8.9 Predicted and actual transient response of disc nodes

after calculating bearing parameters using FEM-NN . . . 146
8.10 Predicted and actual transient response of random nodes

after calculating bearing parameters using FEM-NN . . . 147

A.1 Optimization progress with unresolved PyTorch error . . 156
A.2 Optimization progress with modification in PyTorch . . . 156

160

List of Tables

2.1 Comparison of numerical methods and neural networks
for simulation . 23

6.1 Simulation times for different configurations on Mok’s
benchmark. 94

7.1 Comparison of the accuracy for different numerical grids 106
7.2 Input parameters for the 23-bar truss problem 108
7.3 Experimental parameters for SDOF system with spring 116
7.4 Experimental parameters for SDOF system with spring

and damper . 119
7.5 Experimental parameters for Jeffcott rotor 120
7.6 Parameters of the rotordynamic system modelled using

ROSS . 127

8.1 Details of the building - geometry and structural 134
8.2 Details of uncertain wind parameters 135
8.3 Statistical quantities of Monte-Carlo analysis 137
8.4 Different unbalance configurations used for the experiment 138

161

Bibliography

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada,
N. A. Mohamed, and H. Arshad. “State-of-the-art in artificial
neural network applications: A survey”. In: Heliyon 4.11 (2018),
e00938.

[2] H. Adeli. “Neural networks in civil engineering: 1989–2000”. In:
Computer-Aided Civil and Infrastructure Engineering 16.2
(2001), pp. 126–142.

[3] H. Adeli and C Yeh. “Perceptron learning in engineering design”.
In: Computer-Aided Civil and Infrastructure Engineering 4.4
(1989), pp. 247–256.

[4] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama.
“Optuna: A Next-generation Hyperparameter Optimization
Framework”. In: Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. 2019.

[5] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding
of a convolutional neural network”. In: 2017 international
conference on engineering and technology (ICET). Ieee. 2017,
pp. 1–6.

[6] D. Arcones, R. Meethal, B. Obst, and R. Wüchner. “Neural
Network-Based Surrogate Models Applied to Fluid-Structure
Interaction Problems”. In: Collection of papers presented at the
WCCM-APCOM 2022, Yokohama, July 31 to August 5, 2022.

[7] I. Asimov. “Runaround”. In: Astounding science fiction 29.1
(1942), pp. 94–103.

163

BIBLIOGRAPHY

[8] G. E. Backus and J. F. Gilbert. “Numerical applications of a
formalism for geophysical inverse problems”. In: Geophysical
Journal International 13.1-3 (1967), pp. 247–276.

[9] R. Bischof and M. Kraus. “Multi-objective loss balancing for
physics-informed deep learning”. In: arXiv preprint
arXiv:2110.09813 (2021).

[10] S. Boschert and R. Rosen. “Digital twin—the simulation aspect”.
In: Mechatronic futures. Springer, 2016, pp. 59–74.

[11] A. L. Braun and A. M. Awruch. “Aerodynamic and aeroelastic
analyses on the CAARC standard tall building model using
numerical simulation”. In: Computers & Structures 87.9-10
(2009), pp. 564–581.

[12] E. Buffa, J. Jacob, and P. Sagaut. “Lattice-Boltzmann-based
large-eddy simulation of high-rise building aerodynamics with
inlet turbulence reconstruction”. In: Journal of Wind
Engineering and Industrial Aerodynamics 212 (2021), p. 104560.

[13] R. Burbidge, M. Trotter, B Buxton, and S. Holden. “Drug
design by machine learning: support vector machines for
pharmaceutical data analysis”. In: Computers & chemistry 26.1
(2001), pp. 5–14.

[14] S. Butterworth et al. “On the theory of filter amplifiers”. In:
Wireless Engineer 7.6 (1930), pp. 536–541.

[15] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis.
“Physics-informed neural networks (PINNs) for fluid mechanics:
A review”. In: Acta Mechanica Sinica (2022), pp. 1–12.

[16] S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis.
“Physics-informed neural networks for heat transfer problems”.
In: Journal of Heat Transfer 143.6 (2021).

[17] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. “Deep blue”. In:
Artificial intelligence 134.1-2 (2002), pp. 57–83.

[18] G. Chen and J. Zhou. Boundary element methods. Vol. 92.
Academic press London, 1992.

164

BIBLIOGRAPHY

[19] X. Chen, S. Z. Wu, and M. Hong. “Understanding gradient
clipping in private SGD: A geometric perspective”. In: Advances
in Neural Information Processing Systems 33 (2020),
pp. 13773–13782.

[20] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro.
“Physics-informed neural networks for inverse problems in
nano-optics and metamaterials”. In: Optics express 28.8 (2020),
pp. 11618–11633.

[21] F. Chollet et al. “Keras: Deep learning library for theano and
tensorflow”. In: URL: https://keras. io/k 7.8 (2015), T1.

[22] G. Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systems 2.4
(1989), pp. 303–314.

[23] P. Dadvand, R. Rossi, and E. Oñate. “An object-oriented
environment for developing finite element codes for
multi-disciplinary applications”. In: Archives of computational
methods in engineering 17.3 (2010), pp. 253–297.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
“Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition.
Ieee. 2009, pp. 248–255.

[25] J. Denker, W Gardner, H. Graf, D. Henderson, R Howard,
W Hubbard, L. D. Jackel, H. Baird, and I. Guyon. “Neural
network recognizer for hand-written zip code digits”. In:
Advances in neural information processing systems 1 (1988).

[26] H. Dongmei, H. Shiqing, H. Xuhui, and Z. Xue. “Prediction of
wind loads on high-rise building using a BP neural network
combined with POD”. In: Journal of Wind Engineering and
Industrial Aerodynamics 170 (2017), pp. 1–17.

[27] C. Fairclough, M. Fagan, B. Mac Namee, and P. Cunningham.
Research directions for AI in computer games. Tech. rep. Trinity
College Dublin, Department of Computer Science, 2001.

[28] J. D. Funge. Artificial intelligence for computer games: an
introduction. CRC Press, 2004.

[29] G. M. Gladwell. “Inverse problems in vibration”. In: (1986).

165

BIBLIOGRAPHY

[30] X. Glorot and Y. Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: Proceedings of
the thirteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings.
2010, pp. 249–256.

[31] S. Godunov and I Bohachevsky. “Finite difference method for
numerical computation of discontinuous solutions of the
equations of fluid dynamics”. In: Matematičeskij sbornik 47.3
(1959), pp. 271–306.

[32] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT
press, 2016.

[33] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. “Neuroanimator:
Fast neural network emulation and control of physics-based
models”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. 1998, pp. 9–20.

[34] E. J. Gunter Jr. Dynamic stability of rotor-bearing systems.
Tech. rep. 1966.

[35] X. Guo, W. Li, and F. Iorio. “Convolutional neural networks for
steady flow approximation”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and
data mining. 2016, pp. 481–490.

[36] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes.
“A physics-informed deep learning framework for inversion and
surrogate modeling in solid mechanics”. In: Computer Methods
in Applied Mechanics and Engineering 379 (2021), p. 113741.

[37] F. Han, X. Guo, and H. Gao. “Bearing parameter identification
of rotor-bearing system based on Kriging surrogate model and
evolutionary algorithm”. In: Journal of Sound and Vibration
332.11 (2013), pp. 2659–2671. doi:
10.1016/j.jsv.2012.12.025.

[38] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

166

https://doi.org/10.1016/j.jsv.2012.12.025

BIBLIOGRAPHY

[39] D. O. Hebb. The organization of behavior: A neuropsychological
theory. Psychology Press, 2005.

[40] R. Hecht-Nielsen. “Theory of the backpropagation neural
network”. In: Neural networks for perception. Elsevier, 1992,
pp. 65–93.

[41] G. Hinton, N. Srivastava, and K. Swersky. “Neural networks for
machine learning lecture 6a overview of mini-batch gradient
descent”. In: Cited on 14.8 (2012), p. 2.

[42] K. Hornik. “Approximation capabilities of multilayer
feedforward networks”. In: Neural networks 4.2 (1991),
pp. 251–257.

[43] F. Hou and M. Jafari. “Investigation approaches to quantify
wind-induced load and response of tall buildings: A review”. In:
Sustainable Cities and Society 62 (2020), p. 102376.

[44] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In:
International conference on machine learning. PMLR. 2015,
pp. 448–456.

[45] H. Janssen. “Monte-Carlo based uncertainty analysis: Sampling
efficiency and sampling convergence”. In: Reliability Engineering
& System Safety 109 (2013), pp. 123–132.

[46] C. Jiang, R. Vinuesa, R. Chen, J. Mi, S. Laima, and H. Li. “An
interpretable framework of data-driven turbulence modeling
using deep neural networks”. In: Physics of Fluids 33.5 (2021),
p. 055133.

[47] D. Jurafsky. Speech & language processing. Pearson Education
India, 2000.

[48] Y. Kang, Z. Shi, H. Zhang, D. Zhen, and F. Gu. “A novel
method for the dynamic coefficients identification of journal
bearings using Kalman filter”. In: Sensors 20.2 (2020), p. 565.

[49] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang. “Physics-informed machine learning”. In:
Nature Reviews Physics 3.6 (2021), pp. 422–440.

[50] K. Katanforoosh and D. Kunin. “Initializing neural networks”.
In: DeepLearning. ai (2019).

167

BIBLIOGRAPHY

[51] M. Kawato, Y. Uno, M. Isobe, and R. Suzuki. “Hierarchical
neural network model for voluntary movement with application
to robotics”. In: IEEE Control Systems Magazine 8.2 (1988),
pp. 8–15.

[52] D. P. Kingma and J. Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[53] A. Kodakkal, B. Keith, U. Khristenko, A. Apostolatos,
K.-U. Bletzinger, B. Wohlmuth, and R. Wuechner. “Risk-averse
design of tall buildings for uncertain wind conditions”. In: arXiv
preprint arXiv:2203.12060 (2022).

[54] A. Kodakkal, R. E. Meethal, B. Obst, and R. WUCHNER. “A
Finite Element Method-Informed Neural Network For
Uncertainty Quantification”. In: 14th WCCM-ECCOMAS
Congress 2020. Vol. 800. 2021.

[55] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and
M. W. Mahoney. “Characterizing possible failure modes in
physics-informed neural networks”. In: Advances in Neural
Information Processing Systems 34 (2021).

[56] G. Lamberti and C. Gorlé. “A multi-fidelity machine learning
framework to predict wind loads on buildings”. In: Journal of
Wind Engineering and Industrial Aerodynamics 214 (2021),
p. 104647.

[57] A. Lavecchia. “Machine-learning approaches in drug discovery:
methods and applications”. In: Drug discovery today 20.3 (2015),
pp. 318–331.

[58] L. P. Lebedev, I. I. Vorovich, and G. M. L. Gladwell. Functional
analysis: applications in mechanics and inverse problems.
Vol. 41. Springer Science & Business Media, 2012.

[59] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In:
nature 521.7553 (2015), pp. 436–444.

[60] A. Lees. “Identification of dynamic bearing parameters: a
review”. In: The Shock and Vibration Digest 36.2 (2004),
pp. 99–124.

168

BIBLIOGRAPHY

[61] M. W. Libbrecht and W. S. Noble. “Machine learning
applications in genetics and genomics”. In: Nature Reviews
Genetics 16.6 (2015), pp. 321–332.

[62] J. Ling, A. Kurzawski, and J. Templeton. “Reynolds averaged
turbulence modelling using deep neural networks with
embedded invariance”. In: Journal of Fluid Mechanics 807
(2016), pp. 155–166.

[63] D. C. Liu and J. Nocedal. “On the limited memory BFGS
method for large scale optimization”. In: Mathematical
programming 45.1 (1989), pp. 503–528.

[64] J. Lund and K. Thomsen. “A calculation method and data for
the dynamic coefficients of oil-lubricated journal bearings”. In:
Topics in fluid film bearing and rotor bearing system design and
optimization 1000118 (1978).

[65] A. Lydia and S. Francis. “Adagrad—an optimizer for stochastic
gradient descent”. In: Int. J. Inf. Comput. Sci 6.5 (2019),
pp. 566–568.

[66] C. C. Margossian. “A review of automatic differentiation and its
efficient implementation”. In: Wiley interdisciplinary reviews:
data mining and knowledge discovery 9.4 (2019), e1305.

[67] K. Mattiasson. “Numerical results from large deflection beam
and frame problems analysed by means of elliptic integrals”. In:
International journal for numerical methods in engineering 17.1
(1981), pp. 145–153.

[68] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical
biophysics 5.4 (1943), pp. 115–133.

[69] L. R. Medsker and L. Jain. “Recurrent neural networks”. In:
Design and Applications 5 (2001), pp. 64–67.

[70] R. E. Meethal, A. Ghantasala, P. Bucher, R. Wüchner,
C. Heinrich, and K.-U. Bletzinger. “Co-Simulation of
Multiphysics Problems with Data Driven SurrogateModels”. en.
In: WCCM-ECCOMAS. Virtual, 2021.

169

BIBLIOGRAPHY

[71] R. E. Meethal, A. Kodakkal, M. Khalil, A. Ghantasala, B. Obst,
K.-U. Bletzinger, and R. Wüchner. “Finite element
method-enhanced neural network for forward and inverse
problems”. In: Advanced Modeling and Simulation in
Engineering Sciences 10.1 (2023), p. 6.

[72] R. E. Meethal and L. S. P. R. Kondamadugula. “Generalized
physics-informed machine learning for numerically solved
transient physical systems”. In: AAAI MLPS 2021,
https://ceur-ws.org/Vol-2964/ (2021).

[73] A. T. Mohan and D. V. Gaitonde. “A deep learning based
approach to reduced order modeling for turbulent flow control
using LSTM neural networks”. In: arXiv preprint
arXiv:1804.09269 (2018).

[74] D. P. Mok. Partitionierte Lösungsansätze in der
Strukturdynamik und der Fluid-Struktur-Interaktion. 2001.

[75] A. Nareyek. “AI in computer games”. In: Queue 1.10 (2004),
pp. 58–65.

[76] B. Newkirk. “Varieties of shaft disturbances due to fluid films in
journal bearings”. In: Transactions of the American Society of
Mechanical Engineers 78.5 (1956), pp. 985–987.

[77] K. O’Shea and R. Nash. “An introduction to convolutional
neural networks”. In: arXiv preprint arXiv:1511.08458 (2015).

[78] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
“Automatic differentiation in pytorch”. In: (2017).

[79] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al.
“Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems
32 (2019), pp. 8026–8037.

[80] I. Pavlenko, V. Simonovskiy, V. Ivanov, J. Zajac, and J. Pitel.
“Application of artificial neural network for identification of
bearing stiffness characteristics in rotor dynamics analysis”. In:
Design, Simulation, Manufacturing: The Innovation Exchange.
Springer. 2018, pp. 325–335.

170

BIBLIOGRAPHY

[81] R. Potthast. “A survey on sampling and probe methods for
inverse problems”. In: Inverse Problems 22.2 (2006), R1.

[82] N. Qian. “On the momentum term in gradient descent learning
algorithms”. In: Neural networks 12.1 (1999), pp. 145–151.

[83] Z. Qiu and A. Tieu. “Identification of sixteen force coefficients
of two journal bearings from impulse responses”. In: Wear 212.2
(1997), pp. 206–212.

[84] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov,
R. Supekar, D. Skinner, A. Ramadhan, and A. Edelman.
“Universal differential equations for scientific machine learning”.
In: arXiv preprint arXiv:2001.04385 (2020).

[85] M. Raissi, P. Perdikaris, and G. E. Karniadakis.
“Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational
physics 378 (2019), pp. 686–707.

[86] W. M. Rankine. “On the centrifugal force of rotating shafts”. In:
Van Nostrand’s Eclectic Engineering Magazine (1869-1879) 1.7
(1869), p. 598.

[87] R. Redheffer. “A machine for playing the game nim”. In: The
American Mathematical Monthly 55.6 (1948), pp. 343–349.

[88] M. A. Roehrl, T. A. Runkler, V. Brandtstetter, M. Tokic, and
S. Obermayer. “Modeling system dynamics with
physics-informed neural networks based on lagrangian
mechanics”. In: IFAC-PapersOnLine 53.2 (2020), pp. 9195–9200.

[89] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International
Conference on Medical image computing and computer-assisted
intervention. Springer. 2015, pp. 234–241.

[90] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088
(1986), pp. 533–536.

[91] P. C. Sabatier. “Past and future of inverse problems”. In:
Journal of Mathematical Physics 41.6 (2000), pp. 4082–4124.

171

BIBLIOGRAPHY

[92] K. B. Sautter. “Dynamic simulation of rock-fall protection nets:
implementation and validation of large deformation finite
elements in an open-source code”. In: (2017).

[93] I. W. Selesnick and C. S. Burrus. “Generalized digital
Butterworth filter design”. In: IEEE Transactions on signal
processing 46.6 (1998), pp. 1688–1694.

[94] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. De Freitas. “Taking the human out of the loop: A review of
Bayesian optimization”. In: Proceedings of the IEEE 104.1
(2015), pp. 148–175.

[95] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. “Mastering the game of
Go with deep neural networks and tree search”. In: nature
529.7587 (2016), pp. 484–489.

[96] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. “Dropout: a simple way to prevent neural
networks from overfitting”. In: The journal of machine learning
research 15.1 (2014), pp. 1929–1958.

[97] B. Sudret. “Uncertainty propagation and sensitivity analysis in
mechanical models–Contributions to structural reliability and
stochastic spectral methods”. In: Habilitationa diriger des
recherches, Université Blaise Pascal, Clermont-Ferrand, France
147 (2007), p. 53.

[98] R. Szeliski. Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[99] Y. Tamura and R. Yoshie. Advanced environmental wind
engineering. Springer, 2016.

[100] A. Tarantola. Inverse problem theory and methods for model
parameter estimation. SIAM, 2005.

[101] A. Tarantola, B. Valette, et al. “Inverse problems= quest for
information”. In: Journal of geophysics 50.1 (1982), pp. 159–170.

172

BIBLIOGRAPHY

[102] M. S. Thordal, J. C. Bennetsen, and H. H. H. Koss. “Review for
practical application of CFD for the determination of wind load
on high-rise buildings”. In: Journal of Wind Engineering and
Industrial Aerodynamics 186 (2019), pp. 155–168.

[103] N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. “Deep learning
methods for Reynolds-averaged Navier–Stokes simulations of
airfoil flows”. In: AIAA Journal 58.1 (2020), pp. 25–36.

[104] A. N. Tikhonov, V. J. Arsenin, V. I. Arsenin, V. Y. Arsenin,
et al. Solutions of ill-posed problems. Vh Winston, 1977.

[105] R. Timbó, R. Martins, G. Bachmann, F. Rangel, J. Mota,
J. Valério, and T. G. Ritto. “ROSS - Rotordynamic Open
Source Software”. In: Journal of Open Source Software 5.48
(2020), p. 2120. doi: 10.21105/joss.02120.

[106] R Tiwari and V Chakravarthy. “Simultaneous identification of
residual unbalances and bearing dynamic parameters from
impulse responses of rotor–bearing systems”. In: Mechanical
systems and signal processing 20.7 (2006), pp. 1590–1614.

[107] R Tiwari, A. Lees, and M. Friswell. “Identification of
speed-dependent bearing parameters”. In: Journal of sound and
vibration 254.5 (2002), pp. 967–986.

[108] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin.
“Accelerating eulerian fluid simulation with convolutional
networks”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 3424–3433.

[109] R. Tosi, M. Núñez, J. Pons-Prats, J. Principe, and R. Rossi.
“On the use of ensemble averaging techniques to accelerate the
Uncertainty Quantification of CFD predictions in wind
engineering”. In: Journal of Wind Engineering and Industrial
Aerodynamics 228 (2022), p. 105105.

[110] M. von Tresckow, S. Kurz, H. De Gersem, and D. Loukrezis. “A
Neural Solver for Variational Problems on CAD Geometries
with Application to Electric Machine Simulation”. In: Journal of
Machine Learning for Modeling and Computing 3.1 (2022).

[111] A. M. Turing. “Computing machinery and intelligence”. In:
Parsing the turing test. Springer, 2009, pp. 23–65.

173

https://doi.org/10.21105/joss.02120

BIBLIOGRAPHY

[112] A. M. Turing and J Haugeland. “Computing machinery and
intelligence”. In: The Turing Test: Verbal Behavior as the
Hallmark of Intelligence (1950), pp. 29–56.

[113] J. G. Valdés Vázquez. “Nonlinear Analysis of Orthotropic
Membrane and Shell Structures Including Fluid-Structure
Interaction.” In: (2007).

[114] R. Vanluchene and R. Sun. “Neural networks in structural
engineering”. In: Computer-Aided Civil and Infrastructure
Engineering 5.3 (1990), pp. 207–215.

[115] H. K. Versteeg and W. Malalasekera. An introduction to
computational fluid dynamics: the finite volume method. Pearson
education, 2007.

[116] L. Von Rueden, S. Mayer, K. Beckh, B. Georgiev,
S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick,
R. Ramamurthy, et al. “Informed Machine Learning–A
Taxonomy and Survey of Integrating Knowledge into Learning
Systems”. In: arXiv preprint arXiv:1903.12394 (2019).

[117] H. Wang and T. Wu. “Knowledge-enhanced deep learning for
wind-induced nonlinear structural dynamic analysis”. In: J.
Struct. Eng 146.11 (2020), p. 04020235.

[118] S. Wang, X. Yu, and P. Perdikaris. “When and why PINNs fail
to train: A neural tangent kernel perspective”. In: Journal of
Computational Physics 449 (2022), p. 110768.

[119] J. Weizenbaum. “ELIZA—a computer program for the study of
natural language communication between man and machine”. In:
Communications of the ACM 9.1 (1966), pp. 36–45.

[120] P. Werbos. “Beyond regression:” new tools for prediction and
analysis in the behavioral sciences”. In: Ph. D. dissertation,
Harvard University (1974).

[121] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar.
“Integrating physics-based modeling with machine learning: A
survey”. In: arXiv preprint arXiv:2003.04919 1.1 (2020),
pp. 1–34.

174

BIBLIOGRAPHY

[122] R.-T. Wu and M. R. Jahanshahi. “Deep convolutional neural
network for structural dynamic response estimation and system
identification”. In: Journal of Engineering Mechanics 145.1
(2019), p. 04018125.

[123] T. Wu and R. Snaiki. “Applications of machine learning to wind
engineering”. In: Frontiers in Built Environment 8 (2022).

[124] Z. Xiang, W. Peng, X. Zheng, X. Zhao, and W. Yao.
“Self-adaptive loss balanced physics-informed neural networks
for the incompressible navier-stokes equations”. In: arXiv
preprint arXiv:2104.06217 (2021).

[125] G. N. Yannakakis. “AI in computer games : generating
interesting interactive opponents by the use of evolutionary
computation”. PhD thesis. University of Edinburgh, UK, 2005.

[126] Y. Yin, P. Yang, Y. Zhang, H. Chen, and S. Fu. “Feature
selection and processing of turbulence modeling based on an
artificial neural network”. In: Physics of Fluids 32.10 (2020),
p. 105117.

[127] Yu, Y. Jianxun, X. Si, C. Hu, and Zhang. “A review of recurrent
neural networks: LSTM cells and network architectures”. In:
Neural computation 31.7 (2019), pp. 1235–1270.

[128] F.-G. Yuan, S. A. Zargar, Q. Chen, and S. Wang. “Machine
learning for structural health monitoring: challenges and
opportunities”. In: Sensors and smart structures technologies for
civil, mechanical, and aerospace systems 2020 11379 (2020),
p. 1137903.

[129] M. D. Zeiler. “Adadelta: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701 (2012).

[130] R. Zhang, Y. Liu, and H. Sun. “Physics-informed multi-LSTM
networks for metamodeling of nonlinear structures”. In:
Computer Methods in Applied Mechanics and Engineering 369
(2020), p. 113226.

[131] L. Zhu, W. Zhang, J. Kou, and Y. Liu. “Machine learning
methods for turbulence modeling in subsonic flows around
airfoils”. In: Physics of Fluids 31.1 (2019), p. 015105.

175

BIBLIOGRAPHY

[132] W. Zhu, K. Xu, E. Darve, and G. C. Beroza. “A general
approach to seismic inversion with automatic differentiation”. In:
Computers & Geosciences 151 (2021), p. 104751.

[133] Q. Zhuang, D. Hartmann, H. J. Bungartz, and J. M. Lorenzi.
“Active-learning-based non-intrusive Model Order Reduction”.
In: arXiv preprint arXiv:2204.08523 (2022).

[134] Q. Zhuang, J. M. Lorenzi, H.-J. Bungartz, and D. Hartmann.
“Model order reduction based on Runge–Kutta neural networks”.
In: Data-Centric Engineering 2 (2021).

[135] O. Zienkiewicz and R. Taylor. The Finite Element Method, The
Basis. The Finite Element Method. Wiley, 2000. isbn:
9780470395042.

176

177

Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten
Elementen und ein allgemeines Konzept zu ihrer Vermeidung,
2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimiza-
tion of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen - Math-
ematische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-
walled Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmod-
elle auf Basis des Kraftflusses als Anwendung plattformunab-
hängiger Prozesskopplung, 2006.

7 Roland Wüchner, Mechanik und Numerik der Formfind-
ung und Fluid-Struktur-Interaktion von Membrantragwerken,
2006.

8 Florian Jurecka, Robust Design Optimization Based on Meta-
modeling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des
Entwurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Interaction of Wind and
Membrane Structures by Numerical Simulation, 2009.

178

Band Titel

11 Bin Yang, Modified Particle Swarm Optimizers and their
Application to Robust Design and Structural Optimization,
2009.

12 Michael Fleischer, Absicherung der virtuellen Prozesskette
für Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic
Membranes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke in
einer numerisch generierten atmosphärischen Grenzschicht,
2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures,
2010.

16 Thomas Gallinger, Effiziente Algorithmen zur partition-
ierten Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal De-
sign of Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerw-
erksstrukturen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und
der Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in
Isogeometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design
and Control of Piezoelectric and Lightweight Smart Struc-
tures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design
and Analysis for Tensile Structures, 2014.

179

Band Titel

23 Rupert Fisch, Code Verification of Partitioned FSI Environ-
ments for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Prob-
lems Including Fields and Signals, 2014.

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion -
Sensitivitätsanalyse für die Formoptimierung auf Grundlage
des partitionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization
for shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for
Shape Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of
Pressurized Bulkheads as Components of Aircraft Structures,
2015.

30 Armin Widhammer, Variation of Reference Strategy - Gen-
eration of Optimized Cutting Patterns for Textile Fabrics,
2015.

31 Helmut Masching, Parameter Free Optimization of Shape
Adaptive Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Problems
in Geophysical Systems by Applying Finite Element Method
and Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment
and Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis
of Shell Structures, 2016.

180

Band Titel

35 Önay Can, Functional Adaptation with Hyperkinematics using
Natural Element Method: Application for Articular Cartilage,
2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear
Structural Behavior in the Design, Analysis and Verification
of Lightweight Structures, 2017.

37 Michael Andre, Aeroelastic Modeling and Simulation for the
Assessment of Wind Effects on a Parabolic Trough Solar
Collector, 2018.

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled
Structures on Multipatch Surfaces in Fluid-Structure Inter-
action, 2018.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD-
Integrated Shape Optimization in Fluid-Structure Interaction,
2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexible
Membrane Wind Turbine Blades, 2017.

41 Reza Najian Asl, Shape optimization and sensitivity analy-
sis of fluids, structures, and their interaction using Vertex
Morphing Parametrization, 2019.

42 Ahmed Abodonya, Verification Methodology for Computa-
tional Wind Engineering Prediction of Wind Loads on Struc-
tures, 2020.

43 Anna Maria Bauer, CAD-integrated Isogeometric Analysis
and Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind
Structure Interaction of Slender Civil Engineering Structures
Including Vibration Systems, 2020.

181

Band Titel

45 Franz-Josef Ertl, Vertex Morphing for Constrained Shape
Optimization of Three-dimensional Solid Structures, 2020.

46 Daniel Baumgärtner, On the Grid-based Shape Optimization
of Structures with Internal Flow and the Feedback of Shape
Changes into a CAD Model, 2020.

47 Mohamed Khalil, Combining Physics-based models and ma-
chine learning for an Enhanced Structural Health Monitor-
ing,2021.

48 Long Chen, Gradient Descent Akin Method, 2021.

49 Aditya Ghantasala, Coupling Procedures for Fluid-Fluid and
Fluid-Structure Interaction Problems Based on Domain De-
composition Methods, 2021.

50 Ann-Kathrin Goldbach, The Cad-Integrated Design Cycle
for Structural Membranes, 2022.

51 Iñigo Pablo López Canalejo„ A Finite-Element Transonic
Potential Flow Solver with an Embedded Wake Approach for
Aircraft Conceptual Design, 2022.

52 Mayu Sakuma, An Application of Multi-Fidelity Uncertainty
Quantification for Computational Wind Engineering, 2022.

53 Suneth Warnakulasuriya, Development of methods for Finite
Element-based sensitivity analysis and goal-directed mesh
refinement using the adjoint approach for steady and transient
flows, 2022.

54 Klaus Bernd Sautter, Modeling and Simulation of Flexible
Protective Structures by Coupling Particle and Finite Element
Methods, 2022.

55 Efthymios Papoutsis, On the incorporation of industrial con-
straints in node-based optimization for car body design, 2023.

182

Band Titel

56 Thomas Josef Oberbichler, A modular and efficient imple-
mentation of isogeometric analysis for the interactive CAD-
integrated design of lightweight structures, 2023.

57 Tobias Christoph Teschemacher, CAD-integrated constitutive
modelling, analysis, and design of masonry structures, 2023.

58 Shahrokh Shayegan, Enhanced Algorithms for Fluid-Structure
Interaction Simulations – Accurate Temporal Discretization
and Robust Convergence Acceleration, 2023.

59 Ihar Antonau, Enhanced computational design methods for
large industrial node-based shape optimization problems, 2023.

183

	Contents
	Introduction
	Outline of the thesis

	Research Outline
	Digital Twin
	Executable digital twin (xDT)

	Numerical Simulations
	Artificial Intelligence to Neural Networks
	Artificial Neural Network and its applications
	Deep learning

	Neural Networks for simulation
	How simulation and neural networks complement each other
	How simulation and neural networks differ

	Informed machine learning
	Physics informed neural networks

	Problem statement
	Contributions

	State of the art
	Artificial intelligence
	Artificial neural networks
	Simulation and neural networks
	Informed machine learning
	Physics informed neural networks

	Inverse problems
	State of the art for applications
	Wind load on High-rise buildings
	Bearing parameter identification

	Neural network training
	Introduction
	Neural network architecture
	Neurons
	Activation functions
	Fully connected neural network
	Convolutional neural network
	U-Net
	Long Short-Term Memory (LSTM) network

	Parameter Initialization
	Xavier initialization
	He initialization

	Optimization
	Optimizers

	Backpropagation
	Bias-Variance tradeoff
	Overfitting and underfitting
	Dropout
	Regularization
	Early stopping

	Batch normalization
	Vanishing and exploding Gradients
	Hyperparameter tuning

	FEM informed neural network
	Introduction
	Algorithm
	Inverse problems
	Variants of the FEM-NN algorithm
	Transient solver
	Physics guided timeseries predictor
	PINN and FEM-NN hybrid learning

	Kratos neural network application
	Neural network application
	Data generation
	Neural network training
	Deployment

	Examples using Kratos NN application
	Static non-linear diamond shape
	Fluid-Structure Interaction problems

	Numerical study
	Forward solving of PDEs
	Convection diffusion simulations
	Truss
	Transient structural simulation

	Inverse problems
	SDOF with spring and mass
	SDOF with spring, mass and damper
	MDOF Jeffcott rotor

	Complete rotordynamic system

	Industrial examples
	Wind load on high-rise building
	Fluid bearing parameter identification
	Bearing parameter identification

	Conclusions and outlook
	Gradient calculation for complex numbers
	List of Figures
	List of Tables
	Bibliography

