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Stefan Hörmann Tianlin Kong Torben Teepe Fabian Herzog Martin Knoche Gerhard Rigoll
Technical University of Munich

s.hoermann@tum.de

Abstract

State-of-the-art face recognition (FR) approaches have
shown remarkable results in predicting whether two faces
belong to the same identity, yielding accuracies between
92% and 100% depending on the difficulty of the protocol.
However, the accuracy drops substantially when exposed to
morphed faces, specifically generated to look similar to two
identities. To generate morphed faces, we integrate a simple
pretrained FR model into a generative adversarial network
(GAN) and modify several loss functions for face morphing.
In contrast to previous works, our approach and analyses
are not limited to pairs of frontal faces with the same eth-
nicity and gender. Our qualitative and quantitative results
affirm that our approach achieves a seamless change be-
tween two faces even in unconstrained scenarios. Despite
using features from a simpler FR model for face morphing,
we demonstrate that even recent FR systems struggle to dis-
tinguish the morphed face from both identities obtaining an
accuracy of only 55-70%. Besides, we provide further in-
sights into how knowing the FR system makes it particularly
vulnerable to face morphing attacks.

1. Introduction
Drawing from the impressive results of generative ad-

versarial networks (GANs), face manipulation tasks have
been investigated more frequently in the research commu-
nity. Face manipulation is employed in multiple applica-
tions, e.g., face swapping [24, 25, 30], face attribute ma-
nipulation [15], face beautification [5, 10], and (anti-)aging
[15, 26, 33]. Face swapping targets substituting the iden-
tity of a face with the identity in a target image, maintaining
background, head pose, and facial expression of the original
image. Thus, identity features must be extracted and disen-
tangled from the remaining information and introduced into
the source image.

In contrast to face swapping, face morphing aims to cre-
ate a seamless transition between two faces, X1 and X2,
which involves identity, attributes, head pose, and back-
ground. Hence, when considering the information from

Face
Morphing
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Figure 1. Example of a face morphing attack: The morphed face
Xm is created given X1 and X2 from different identities. The
objective is to determine whether an FR system classifies Xm to
have the same identities as X ′

1 and X ′
2 despite X ′

1 and X ′
2 being

from different identities.

both faces equally, the morphed face Xm looks similar to
X1 and X2, as depicted in Fig. 1. To ensure that security-
sensitive applications such as automatic border control or
access control are not exposed to morphed faces, the em-
ployment of face recognition (FR) systems is typically ac-
companied by prior deepfake detection systems [34, 46]
with the objective of detecting such tampered images. One
popular approach in unlocking mobile phones is consid-
ering an additional infrared image, which makes it partic-
ularly challenging to create a suitable morphed face that
matches the owner’s infrared signature. However, if deep-
fake detection is not part of the FR system or fails to detect
the morphed faces, it is crucial to determine how susceptible
state-of-the-art FR systems are to such attacks.

Recent FR systems [8, 9, 22] report face verification re-
sults exceeding 99.5% on the arguably simple labeled faces
in the wild (LFW) dataset [17], yet also reach 92% under
more challenging cross-age and cross-pose scenarios. First
analyses of FR performance under morphing attacks have
been published before [23, 27, 35, 37, 39, 40, 44]. However,
their results are limited as they only evaluate on frontal im-
ages with same gender and ethnicty [27, 35, 37, 39, 40, 44],
only replace face parts [27, 35], or do not evaluate state-of-
the-art FR methods [23, 27, 35, 37, 39]. To the best of our
knowledge, no analysis has been published revealing the
vulnerability of state-of-the-art FR systems on challenging
datasets comprising images taken in the wild.
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Our contributions can be summed up as follows:

• We show how a pretrained FR model can be employed
for face morphing as an encoder in a GAN with losses
specifically adapted to face morphing. Our network
gradually morphs two faces depending on a single pa-
rameter α yielding remarkable results.

• In our exhaustive analysis, which emphasizes on faces
taken in the wild, we demonstrate how the accuracy of
an FR system is affected by morphed faces and how
the knowledge of the FR system influences the results.

2. Related Work
2.1. Face Manipulation

An early face manipulation approach used multi-scale
inputs and supervised the generation with an additional il-
lumination loss [24]. With the success of GANs in real-
istic image synthesis, a generator with an encoder-decoder
structure is leveraged by the majority of the methods [5,
10, 15, 26, 29, 30, 33, 41] to obtain photo-realistic results.
To generate a face with the desired attributes, a conditional
GAN [28] structure can be employed, in which the genera-
tor is provided with additional information and the discrim-
inator also acts as a classifier. E.g., Diamant et al. [10] in-
corporated a beauty score, while He et al. [15] used a binary
attribute vector to guide the image synthesis in the decoder.

In face swapping or mapping the attributes of one face to
the other face, the generator’s input comprises two images.
For this task, Chen et al. [5] disentangled makeup and non-
makeup latent vectors to generate a new face containing the
makeup of one face with the remaining properties (identity,
background, attributes) of the other face. Nirkin et al. [30]
proposed a face swapping GAN, which contains multiple
generators for reenactment, segmentation, inpainting, and
blending. In FaceShifter [25], face identity and attribute
features are extracted separately and induced into the de-
coder at different resolutions. The Mask-Guided GAN [41]
further trains a mask to control the region where the features
are modified. To combine face identity and face attribute
features, the latter two approaches [25,41] employ spatially
adaptive normalization (SPADE) [32], which renormalizes
feature maps based on a learn transformation from the fea-
tures. Ngô et al. [29] decomposed the face to adjust the head
pose, light, and facial expression separately while maintain-
ing identity and background information.

2.2. GAN Inversion

The objective of GAN inversion is to find the most accu-
rate latent vector, which allows a pretrained GAN to recover
the input image. Then, by altering the latent vector, the face
can be manipulated. Thus, in contrast to the face manipula-
tion methods mentioned above, GAN inversion only trains

the encoder in the generator, whereas the decoder is a pre-
trained GAN.

Recently, multiple approaches for image synthesis based
on latent vectors have been proposed, among which the
BigGAN [4] and StyleGAN [20, 21] are most popular. In
both StyleGAN versions, Karras et al. [20,21] incorporated
adaptive instance normalization (AdaIn) [11,18] – a similar
mechanism to SPADE [32] – to introduce the information
of the so-called style vectors into the generator at multiple
depths. With the employment of attention as first introduced
by Self-Attention GAN [43], the realism and variety of the
generated images were further improved [4, 7].

Optimization-based GAN inversion methods [1, 2] first
select a random initial latent vector, which then is opti-
mized through gradient descend to produce the desired out-
put image. In their analyses, Abdal et al. [1, 2] demon-
strated many possibilities with impressive results, including
even a smooth transition between two face halves of differ-
ent identities [2]. Multi-Code GAN [12] utilizes N latent
codes to generate N intermediate feature maps, which are
then combined, weighted by their adaptive channel impor-
tance scores, to recover the output image. In order to in-
vert GANs comprising attention mechanism, Daras et al. [7]
proposed to employ the discriminator’s attention layer. Af-
ter GAN inversion, localized and semantic-aware edits can
be performed by disentangling and clustering the semantic
objects in activation maps [6] or leveraging SVMs in the la-
tent space [16, 38]. Venkatesh et al. [40] applied the GAN
inversion technique from Image2StyleGAN [1] to face mor-
phing by averaging the latent vectors.

Learning-based GAN inversion approaches train a sepa-
rated encoder, which can be applied to all images and thus
dispenses with the need of applying backpropagation to ob-
tain the corresponding latent vector for every image. Zhu
et al. [49] used a domain-guided encoder as a regularizer
to preserve the latent vector within the semantic domain
of the generator. The StyleGAN Encoder [36] builds an
encoder to extract the feature maps of images and subse-
quently trains a mapping network to transform the feature
maps into layer-specific style vectors, which control the im-
age generation in StyleGAN. Based on the same principle,
Xu et al. [42] introduced a spatial alignment module into the
encoder structure to better capture the spatial information
from the input image. By incorporating an iterative refine-
ment mechanism, Alaluf et al. [3] drew from the iterative
manner of optimization-based methods while maintaining
efficiency as no backpropagation is performed. Zhang et
al. [44] trained a ResNet-50 as a backbone to predict the la-
tent vector and then obtain morphed faces by averaging the
latent vectors corresponding to both input faces. Despite re-
markable high-quality results, their analysis is restricted to
frontal faces and not applicable to faces that are taken in the
wild.
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Figure 2. Our approach for face morphing: Face features of two faces X1 and X2 are extracted by a ResNet-50. Then, the face morphing
network utilizes face features f and a single feature map to transform a trainable weight Z into a morphed face Xm.

3. Methodology

3.1. Network Architecture

As illustrated in Sec. 2, there are two different architec-
ture choices in training a face morphing network. We opted
for a traditional approach not involving GAN inversion. In
this way, we can employ a pretrained FR network to encode
facial features from which the morphed face Xm is gener-
ated. This allows us to investigate how knowledge of the FR
system (white-box attack) affects the success rate of a face
morphing attack. Due to the task definition, the network
must further be invariant to the order of the inputs, i.e., as-
suming equal weights of X1 and X2, swapping the inputs
must yield the same morphed faceXm.

Fig. 2 depicts our approach to face morphing. The fea-
tures f and intermediate feature maps F of two real faces
X1 andX2 are extracted by a face feature extractor. Then,
the morphed face Xm is generated by passing the previ-
ously extracted features (maps) through modified adaptive
attentional denormalization (AAD) residual blocks [25].

3.1.1 Feature Extractor

The face feature extractor Egen(·) is used to extract a repre-
sentation f ∈ R256 of the face. We use a ResNet-50 [14],
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Figure 3. The elements of an adaptive attentional denormalization
(AAD) residual block (left) following Li et al. [25] together with
our modified AAD block (right).

which is pretrained on face identification tasks with soft-
max cross-entropy loss. Even though additive angular mar-
gin (ArcFace [8]) is widely employed nowadays, we de-
cided to use a simpler approach for the face generation in
order to demonstrate that even more powerful models, such
as those trained with ArcFace, can be deceived by simpler
approaches.

3.1.2 Face Morphing

Our face morphing network is inspired by FaceShifter [25],
with several adaptions for face morphing. The face morph-
ing network starts with a trainable latent variable Z of size
7×7×512, which represents the initial feature maps and is
deterministic in contrast to StyleGAN [20].

Then, the latent variable Z is propagated through a se-
ries of five AAD residual blocks (cf . Fig. 3 (left)) with up-
sampling in between, similar to FaceShifter [25]. While
the first AAD residual block is fed with Z and the feature
maps F [4]

1 ,F
[4]
2 ∈ R7×7×1024, all subsequent blocks have

the upsampled output of the previous blocks and the feature
vectors f1,f1 as inputs. Moreover, the first AAD residual
block maintains the number of feature maps and therefore
uses a skip connection as the upper path, whereas the re-
maining AAD residual blocks halve the number of feature
maps to reach 32 after the last one. We resize the feature
maps with bilinear interpolation as upsampling to reduce
checkerboard artifacts, which are frequently introduced by
transposed convolutions [31]. Then, the face morphing net-
work is concluded with a 3×3 and 1×1 convolution fol-
lowed by clipping to obtain the output with the same di-
mensions and value range as the inputs.

The crucial component of the face morphing network is
the AAD block, as illustrated by Fig. 3 (right) for f as input.
First, the input feature map H is normalized with a batch
normalization layer yielding H̄ . Based on the normalized
input H̄ , a convolutional layer with sigmoid activation is
employed to compute a mask M , which indicates the acti-
vations in the feature maps to be changed within the AAD



block. Besides the mask prediction, every feature map of
the normalized input H̄ is de-normalized yielding

A = γH̄ + β, (1)

with the target mean β and variance γ, which are obtained
by passing f through a fully connected layer, whose num-
ber of neurons match the number of feature maps of H̄ .

In the first AAD residual block with F [4] as input, the
input is flattened before applying the fully connected layer.
We found that usingF [4] instead of f is crucial to obtain the
smooth transition of both images as additional rough spatial
information is provided through F [4].

Information about the faces X1 and X2 are encoded in
A1 and A1 as distinct de-normalizations of H̄ . Unlike in
FaceShifter [25], we want to smoothly transition between
the faces X1 and X2. Hence, we define a scalar parameter
α ∈ [0; 1], which globally balances the influence from A1

andA2 in every AAD block. Then, the outputHout consti-
tutes the element-wise multiplication of the mask M with
the balanced encoded face features

Hout = M ⊗ [αA1 + (1− α)A2]. (2)

With our modifications to the original AAD block [25],
we obtain invariance with respect toX1 andX2 by design.
This is achieved by sharing the weights of the face feature
extractor and the fully connected layers within every AAD
block, which are used to compute γ and β. Moreover, every
AAD decides with its own mask M which values of the
current feature map to manipulate.

3.2. Loss Functions

To train our face morphing model, we use a weighted
sum of several losses

LG = λadvL
G

adv + λidLid + λperLper + λstyleLstyle, (3)

where λadv, λid, λper, and λstyle denote scalars used to bal-
ance the losses.

Similar to most image manipulation approaches in which
realism plays a vital role, we utilize the face morphing net-
work as a generator in a GAN structure and train with an
adversarial loss. In this way, the face morphing network
must generate a photo-realistic face to deceive the discrim-
inator, whereas the discriminator tries to discern real faces
X1 or X2 from the synthetically generated morphed face
Xm. We implement a global discriminator D(X) compris-
ing four convolutional layers – the first two with stride two,
which are concluded by a fully connected layer and sigmoid
activation function denoting the probability of the input im-
ageX being real. Then, the adversarial losses are

L G
adv = − log(D(Xm)), (4)

L D
adv = − log(1−D(Xm))− 1

2

2∑
i=1

log(D(Xi)). (5)

Similar to [25,40,44], we employ an identity loss, which
forces the face morphing network to generate the face Xm
that matches X1 and X2. The parameter α indicates how
much information the AAD block utilizes from X1 com-
pared to X2. Thus, this influence is also reflected in the
identity loss

Lid = αdcos (fm,f1) + (1− α)dcos (fm,f2) , (6)

where dcos(·, ·) denotes the cosine distance between two
feature vectors. To further guide the face morphing network
to output a face Xm containing information from both in-
puts, we adapt the perceptual Lper and style loss Lstyle from
Johnson et al. [19] by incorporating α

Lper =

5∑
i=4

α

N [i]

∥∥∥F [i]
1 − F

[i]
m

∥∥∥
1

+
(1− α)

N [i]

∥∥∥F [i]
2 − F

[i]
m

∥∥∥
1
,

(7)

with N [i] being the number of elements in F [i]. Besides
the adversarial loss to ensure photo-realistic results, percep-
tual loss [19] is widely employed to ensure matching feature
maps [5, 10, 12, 26, 29, 30, 36, 42].

The style loss Lstyle uses the Gram matrix of every fea-
ture map and was modified from [19] accordingly. Both
latter losses ensure that the transition of Xm from X1 to
X2 is visible in the feature maps. In contrast to other works
on face morphing [40, 44], we decided to compute Lper and
Lstyle based on rather deep feature maps F [4] and F [5] as
they do contain less spatial information and thus less ambi-
guity, i.e., the network is not forced to generate two noses
if their corresponding activations are at different locations
in shallower feature maps. Moreover, we employ a feature
extractor trained on faces to increase the meaningfulness of
such feature maps.

4. Experiments
4.1. Training Details

To demonstrate that the morphed face not only deceives
the feature extractor used for face morphing Egen(·), we
also utilize a more sophisticated feature extractor trained
with ArcFace lossEarc(·) and apply it on a different dataset.
Both feature extractors were trained with facial images of
size 112×112, which were aligned utilizing the landmarks
obtained by MTCNN [45]. While we use VGGFace2 to
train Egen(·), the refined MS-Celeb-1M was utilized for
Earc(·) [8, 13].

Next, the weights of Egen(·) are fixed and the face mor-
phing network is trained with LG (λadv = 1, λid = 2,



λper = 0.5, and λstyle = 120) in an alternating manner with
the discriminator L D

adv. To ease convergence, we first train
with X1 = X2 for 5 epochs and finetune with X1 6= X2

for another 10 epochs using Adam optimizer. Every batch
comprises 32 faces from exactly 16 different identities. We
found that the face morphing network improves very slowly
and thus only use every fourth batch to train the discrim-
inator. Moreover, the learning rates of the face morphing
network and the discriminator are set to 10−4 and 10−5,
respectively. Both are decayed by a factor of 0.5 every
third epoch. For the parameter α, we implement two ver-
sions: 1) fixed at α = 0.5 throughout the training; and 2)
α = 0.5 during pretraining and a truncated Gaussian distri-
bution with mean µ = 0.5 and variance σ = 0.2 for fine-
tuning to ensure that also faces morphed with α 6= 0.5 are
realistic.

4.2. Benchmark Details

Typical benchmarks for face verification can be seen as
a list of triplets T = (X1,X2, y) with y = 1 denoting that
X1 and X2 have the same identity (id(X1) = id(X2))
and y = 0 if not. For our task, we want to obtain the
accuracy Accmorph of a face feature extractor Etest(·) cor-
rectly classifying Xm if Xm was generated from two faces
with different identities, i.e., the desired classification is
id(Xm) 6= id(X1) and id(Xm) 6= id(X2). Formally,
Accmorph is computed as

Accmorph = 1− 1

Ndiff
|{∀ T | dcos (fm,f1) < t & y = 0 &

dcos (fm,f2) < t}|, (8)

with Ndiff denoting the number of imposter pairs (y = 0)
and t the threshold, which is computed to maximize the
traditional accuracy of the respective verification protocol.
Thus, Accmorph can also be referred to as the failure rate of
a face morphing attack onto a FR system. We further com-
pute Eq. (8) for y = 1, i.e., genuine pairs, to affirm that the
morphed face generated by using two faces from the same
identity is perceived as another image of that identity.

Since we have designed our face morphing network to al-
low a gradual change from X1 and X2, Xm always looks
similar to both input faces X1 and X2. Therefore, we ex-
tended the triplets in the benchmark to quintuples by adding
two images X ′1 and X ′2, which match the identities of
X1 and X2, respectively.1 Thus, id(X1) = id(X ′1) and
id(X2) = id(X ′2). Then, Xm is still created based on X1

andX2, yet the features ofX ′1 andX ′2 are used for evalua-
tion and to compute the threshold t. This quintuple protocol
is denoted by † in our analysis.

For our analysis, we use the LFW [17] dataset together
with the cross-age and cross-pose extensions CALFW [48]

1The protocol is available under: https://github.com/
stefhoer/FaceMorph
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Figure 4. The accuracy Accmorph of ArcFace for different α when
distinguishing faces morphed by the model trained with Gaussian-
distributed α and without Lstyle. Faces are morphed based on the
LFW benchmark with imposter pairs and Accmorph is computed
also separately for every X1 and X2.

and CPLFW [47]. All three benchmark datasets contain
6000 pairs (3000 imposter and 3000 genuine pairs) and
are evaluated using 10-fold cross-validation. Even though
nowadays the LFW dataset is not very helpful in evaluating
face verification accuracy due to its obvious imposter pairs,
it fits our purpose since other datasets ensure that imposter
pairs have the same gender and ethnicity, which eases de-
ceiving the FR system. By using X1 and X2 to generate
Xm, we maintain the properties (cross-age and cross-pose)
of the CALFW and CPLFW dataset, whereas the thresh-
old t computation is based on X ′1 and X ′2 to ensure that
the same threshold is used to distinguishX ′1 fromX ′2, and
Xm from X ′1, X ′2. However, our method does not guaran-
tee an age or a pose difference between the newly selected
X ′1 andX ′2 as in the original CALFW and CPLFW bench-
marks. Still, the same gender and ethnicity are maintained
as defined in the original protocols.

The extension from triplets to quintuples requires modi-
fications to the original LFW protocol as many identities in
the LFW dataset only have a single image. 1165 genuine
and 2736 imposter pairs were replaced, reducing the num-
ber of identities covered by the benchmark from 3158 to
1648. For CALFW and CPLFW, no pairs were substituted
as at least two images per identity were available. Despite
the inherent reduction of generalization due to fewer identi-
ties in the quintuples LFW, the frequent differences of eth-
nicity and gender in imposter pairs still render it particularly
interesting.

4.3. Quantitative Results

Fig. 4 illustrates the change in accuracy Accmorph as in-
troduced in Eq. (8) together with the accuracies per identity.
It is apparent that our approach provides a smooth transition
between two faces in the feature space f . While α ≈ 0 re-
sults in a morphed face Xm, which is never classified to
have the same identity asX1 resulting in an accuracy close
to 100%, it contains enough information to be classified as

https://github.com/stefhoer/FaceMorph
https://github.com/stefhoer/FaceMorph


Table 1. Ablation study: Accuracy Accmorph [%] of the FR system Etest(·) when classifying morphed faces Xm on LFW, CALFW, and
CPLFW datasets. Same and diff denote whether the input images have the same identity and † indicates that different images were used
for evaluation than for morphing.

LFW CALFW CPLFW

Etest(·) = Egen(·) Etest(·) = Earc(·) Etest(·) = Earc(·)Features for
face morphing Lstyle α same diff same diff same † diff † diff diff † diff diff †
f

√
0.5 0.0 1.1 0.2 32.2 2.1 72.9 19.0 71.7 19.1 73.9

f ,F [3],F [4] √
0.5 0.0 0.5 0.1 19.7 0.8 62.8 7.7 58.9 19.2 71.4

f ,F [4] √
0.5 0.0 0.0 0.1 18.2 0.9 62.7 6.4 59.4 15.3 68.3

f ,F [4] 0.5 0.0 0.0 0.1 19.2 0.9 62.2 6.4 58.5 16.5 68.2
f ,F [4] √

N (0.5, 0.2) 0.0 4.3 0.0 19.6 0.6 60.8 5.2 54.5 16.2 69.7
f ,F [4] N (0.5, 0.2) 0.1 0.8 0.1 19.5 0.7 61.1 4.7 54.2 16.1 68.7

id(X2) and fool the system. For α ≈ 1, this behavior is
inverted. The lowest accuracy of rejecting Xm for at least
one identity Accmorph = 19.5% is achieved for α ≈ 0.5,
where the information from X1 and X2 to generate Xm
is considered equally. Still, the network classifies Xm as
either id(X1) or id(X2) in 89.8% of the cases.

Tab. 1 depicts the results of our approach for different
configurations. When considering genuine pairs (same), it
is evident that the morphed face Xm is always classified as
the identity – even in the more challenging scenario when
the faces used for morphing and evaluation differ (†).

In the more applicable scenario of morphing faces from
imposter pairs (diff), the differences between the configu-
rations become apparent. Morphing a face solely based on
two 256-dimensional identity vectors f yields inferior re-
sults on all protocols. This demonstrates that the spatial in-
formation present in F [4] is crucial for achieving satisfying
results. Incorporating feature mapsF [3] with a resolution of
14×14 leads to worse results. We conjecture that including
F [3] confuses the network in many cases as information in
F [3] is more ambiguous due to the larger resolution.

According to the results reported in Tab. 1, utilizing style
loss Lstyle in addition to the perceptual loss Lper cannot
be considered beneficial. Independent of α, not employ-
ing Lstyle results in a slight improvement, which becomes
more noticeable on the more challenging and relevant cases
with quintuples (†). Gaussian-distributed α lowersAccmorph
most noticeably on CALFW.

The inferior accuracies Accmorph on CALFW compared
to LFW confirm the suitability of LFW for this analysis
since imposter pairs in CALFW were selected to have the
same gender and ethnicity, which facilitates face morphing.
Even when morphing faces with large head poses variations
as in CPLFW, the face morphing network deceives Earc(·)
with a success rate of over 30%. Still, varying head poses
represent one of the biggest challenges in face morphing,
which is also affirmed by visual inspection of the feature
distances in Fig. 5. When using an operating threshold
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Figure 5. Cosine feature distances between Xm, generated by the
model trained with Gaussian-distributed α and without Lstyle, and
X ′

1, X ′
2 extracted with ArcFace. Operating thresholds maximiz-

ing the traditional accuracy (black) or obtaining a false accept rate
FAR = 0.1% (red) indicate the decision boundaries. Thus, dis-
tances lying in the bottom left quadrant were misclassified.

typical in security-sensitive applications corresponding to a
false accept rate FAR = 0.1%, only 1.3% of the morphed
faces can fool the FR system. Still, one must note that this
behavior is expected in challenging scenarios and leads to
relatively low true accept rates rendering the whole system
impractical.

Our analysis also highlights the dependency on the eval-
uation protocol. When considering a white-box attack, i.e.,
using the same feature extractor for morphing and evalua-
tion Etest(·) = Egen(·), the face morphing network learns to
fool this specific system limitingAccmorph to≈ 0% for most
models, even if different identities are morphed. However,
if a more sophisticated model Earc(·) is employed for test-
ing, the FR system detects morphed faces with Accmorph >
18%. This is reasonable as the morphed face was not gen-
erated to deceive Earc(·), which focuses on different face
features due to its distinct loss and training dataset. For
the most practical and challenging scenario of using dif-
ferent faces for morphing and evaluation (†), the accuracy
Accmorph exceeds 60%. Nevertheless, being able to fool the
system in 30-45% of the cases, depending on the gender and
pose of both faces, clearly demonstrates the susceptibility of
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Figure 6. Morphed faces Xm generated from X1 and X2 by models trained with different parameters following Tab. 1. X1 and X2 are
selected from LFW dataset and Xm is computed for α = 0.5.
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Figure 7. Gradual change of morphed faces Xm generated by the model trained with Gaussian-distributed α and without Lstyle.

state-of-the-art methods to face morphing. Besides, if one
would want to fool a system using frontal faces of similar
ethnicity and gender would be an obvious choice, which re-
sults in a success rate of up to 45.8%.

4.4. Qualitative Results

Many morphed faces Xm in Fig. 6 display noticeable
artifacts, making it easy for a human to spot that the face
must have been manipulated. Still, with the rise of auto-
matic border control or automatic access systems, missing
realism is only a small disadvantage if plausibility checks

are not employed. Moreover, the last two rows, i.e., em-
ploying Gaussian-distributed α during training, showed the
most realistic results in accordance with Tab. 1. Particularly
interesting results are further shown by the model only pro-
vided with features f1 and f2. Here, the absence of spatial
information causes the model to generate always frontal-
ized Xm, which further demonstrates that certain informa-
tion such as accessories are not encoded into f1 and f2 in
the first place. Fig. 7 visually confirms the quantitative anal-
ysis in Fig. 4 in that our face morphing network achieves a
seamless change between two faces.



5. Conclusion
This paper presents a method of using an existing pre-

trained FR model to generate morphed faces. The FR model
is used to extract face identity features and feature maps,
which guide the decoder in generating a morphed face. By
adapting the AAD block and multiple losses to face mor-
phing, we achieve a seamless transition between two faces
– visually and in the feature space. Compared to previous
approaches, we also encompass pairs of faces with varying
head poses, different gender, or ethnicity. Our exhaustive
analysis demonstrates that state-of-the-art FR are vulnera-
ble to morphed faces even if a relatively simple FR model
is employed to generate the morphed face. Besides, we an-
alyze the influence of knowing the FR model (white-box at-
tack) and show that morphed faces with extreme head poses
are less likely to be misclassified. Overall, our work high-
lights the necessity of using deepfake detection – particu-
larly when employing FR in security-sensitive scenarios.

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2StyleGAN: How to Embed Images Into the StyleGAN
Latent Space? In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4432–4441,
2019. 2

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2StyleGAN++: How to Edit the Embedded Images. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8296–8305, 2020. 2

[3] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. ReStyle:
A Residual-Based StyleGAN Encoder via Iterative Refine-
ment. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6711–6720, 2021. 2

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
Scale GAN Training for High Fidelity Natural Image Syn-
thesis. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019. 2

[5] Hung-Jen Chen, Ka-Ming Hui, Szu-Yu Wang, Li-Wu Tsao,
Hong-Han Shuai, and Wen-Huang Cheng. BeautyGlow: On-
Demand Makeup Transfer Framework With Reversible Gen-
erative Network. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1, 2, 4

[6] Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk.
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