Severity-Aware Prioritization of System-Level
Regression Tests in Automotive Software

Roland Wuersching”
Technical University of Munich
Munich, Germany

Alexander Pretschner
Technical University of Munich
Munich, Germany

Georg Grueneissl
MAN Truck & Bus SE
Munich, Germany

Abstract—In automotive software engineering, system-level
regression testing is crucial to ensure proper integration of often-
times safety-critical components. Due to the inherent complexity
of such systems and components, testing is commonly performed
manually and in a black-box manner, which is particularly
costly and leads to slow feedback cycles between testers and
developers. Regression Test Prioritization (RTP) aims to reduce
feedback time by ordering tests to reveal faults earlier during
the testing process. However, most prior RTP research does
not incorporate varying fault severity, which must be taken
into account when evaluating and designing appropriate RTP
approaches for safety-critical automotive software systems. In
this work, we present a case study at our industry partner
MAN, a leading international provider of commercial vehicles.
We design and instantiate a domain-specific, severity-aware RTP
assessment model and comparatively assess state-of-the-art RTP
approaches. Our results indicate that simple and partly well-
known heuristics based on test history and test costs have the
best cost-effectiveness, achieving between 85% and 90% of the
maximum possible feedback time reduction. On the other hand,
search-based and machine-learning-based RTP approaches do
not perform better, especially if available test history is sparse.

Index Terms—Regression test prioritization, manual testing,
automotive software, system-level testing

I. INTRODUCTION

Regression testing is regularly performed on software sys-
tems to ensure that existing system behavior is not inad-
vertently affected by changes. However, with increasingly
large test suites and shorter software (delivery) life-cycles, the
need to reduce feedback time during development arises [1]].
Regression Test Prioritization (RTP) aims to reduce feedback
time for developers by running those tests earlier that are
more likely to reveal faults. Yet, since testers cannot know
in advance if a test case fails or not, surrogates are used to
order tests.

RTP approaches using different kinds of surrogates have
been proposed in the past two decades: existing approaches

©2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
“Both authors contributed equally

Daniel Elsner”
Technical University of Munich
Munich, Germany

Fabian Leinen
Technical University of Munich
Munich, Germany

Tobias Vosseler
MAN Truck & Bus SE
Munich, Germany

Thomas Neumeyr
MAN Truck & Bus SE
Munich, Germany

harness white-box information such as code coverage [2]-[6],
(textual) test case similarity [7]], [8]], program changes and test
code [9]-[[12]], or code quality metrics [|12]], [[13]; or black-box
information such as test input diversity [6], version control
system metadata [[12]], [14]-[/16]], or failure history [16]]-[19].

In the automotive domain, system-level regression testing
is particularly complex, as test cases typically require the
interplay of (embedded) hardware and software components
in order to be successfully executed [20]. As a result, testing
is commonly performed manually, making it especially costly.
Often, system-level testing is further done in a black-box
manner, since neither code artifacts nor information about
components from external suppliers is available to testers [20],
[21f]. These characteristics naturally limit the applicability
of RTP approaches that use information beyond black-box
information.

Numerous RTP studies investigate the effectiveness of
black-box RTP approaches [6], [[16], [17], [19], [20], [22]-
[24]. However, there are several limitations with these studies
in the automotive domain. First, test failures are typically
regarded as equally severe. Yet, in the given context, this
assumption does not hold true: a failure of a test case that
covers safety-critical requirements is more severe than of a
test covering no such requirements. Second, availability or
absence of historical data can pose significant challenges
to the design and evaluation of RTP approaches [21]. For
instance, if historical test plans are not available, defining
a realistic baseline other than random test ordering is non-
trivial. Last, several RTP approaches rely on Machine Learning
(ML) algorithms requiring significant amounts of training data
which cannot be guaranteed to be available. Also, these ML-
based RTP approaches are rarely compared to search-based
and heuristics-based approaches in an industrial context, even
though the latter have been shown to work well, for instance,
in the context of Continuous Integration (CI) [16], [[17].

To address these limitations, this case study investigates the
effectiveness of several RTP approaches in an industrial setting

for system-level regression testing at MAl\ﬂ Particularly,
we apply a set of purely black-box RTP approaches that
are suitable even if only little historical test execution data
are available. We further design and instantiate a domain-
specific, severity-aware RTP assessment model, which allows
us to account for varying failure severity. Also, we generate
context-specific RTP baselines to realistically reflect the test
prioritization performed manually by testers.

We then comparatively evaluate the baselines and RTP
approaches on an industrial system-level regression test suite
at MAN. The results of our study indicate that (1) well-
known RTP surrogates based on historical failures work well
and improve with increasing amount of historical data, (2)
domain-specific failure severity models are required to produce
adequate test orderings in the context of automotive software
engineering, (3) neither multi-objective nor advanced ML-
based RTP approaches provide significant benefits compared
to simple, single-objective approaches.

In summary, our work makes the following contributions:

o Severity-aware RTP assessment model for system-level
regression testing in the automotive domain

« Empirical evaluation of state-of-the-art black-box RTP
approaches, both severity-unaware and severity-aware

o Industrial case study demonstrating how RTP tech-
niques can reduce testing feedback time in automotive
software engineering at MAN

II. SYSTEM-LEVEL TESTING IN AUTOMOTIVE SOFTWARE
ENGINEERING AT MAN

At our industry partner MAN, system tests are performed
with each new major release, which are planned for every
three months. The system test cases are assigned to certain
vehicle functions, e.g., a system test case might verify proper
functioning of the illumination of the direction indicator lights.
There are between 12 and 58 test cases for each of the vehicle
functions examined in this work (see [Sec. IV). Some of the
test cases are partly automated, but the majority has to be
executed manually.

Test cases and results from their execution are organized
in proprietary tools. The test cases are described in natural
language and contain preconditions, test execution steps with
expected observable results, as well as setup or tear-down
procedures. In addition, each test case can be linked to re-
quirements. Some of these requirements are legally- or safety-
relevant and therefore particularly important. Furthermore,
several test cases are manually marked as smoke tests, i.e., they
cover core functionality and their failure may block more in-
depth testing. Test results in this context can be either passed,
failed, or inconclusive. We expect passed and failed verdicts
to be generally known. The inconclusive verdict signifies that
there were problems with the test execution because the test
case was not described in sufficient detail or due to problems
with the test infrastructure. Sometimes faults can be inferred

IMAN Truck & Bus is one of the leading international providers of
commercial vehicles.

from this result, which is why inconclusive verdicts are more
relevant for testers than passed verdicts, since they could
indicate a bug in the system. Due to the technical complexity
of instrumenting various (third-party) hardware and software
components, execution information, such as coverage data, is
not collected, which is common in the automotive domain
and for manual (system-level) testing in general [21]. The
execution times of the individual test cases are currently also
not tracked.

As the regression testing process can take up to several
weeks, receiving feedback about introduced regression bugs
early is crucial to prevent last minute bug fixes. Despite
these rather long testing periods, limited testing capacities still
sometimes prohibit executing each test case for every release.
Prioritization of test cases is thus essential for delivering
high quality software given the time constraints. However,
prioritization and selection of test cases is currently mainly
based on expert knowledge and a few simple heuristics, which
we explain in more detail in Therefore, our goal for
this work was to find more systematic RTP approaches which
minimize the feedback time for system-level regression testing
and operate on the readily available data at MAN.

III. PRIORITIZING SYSTEM-LEVEL REGRESSION TEST
CASES

Most RTP studies target unit-level testing whereas this study
focuses on system-level regression testing. We have motivated
why RTP approaches that merely use black-box metadata are
often more suitable for system-level regression testing, given
that static and dynamic program analysis results are either
not available, limited to a single system or programming
language, or may induce prohibitive overhead in production
deployments [[16f], [21]], [25]-[27]. This study aims to compare
existing techniques and develop new approaches for RTP in
system-level regression testing in an industrial context, more
specifically for embedded automotive software at MAN.

In the following, we first outline single-objective black-
box RTP techniques from prior research together with the
widespread Average Percentage of Faults Detected (APFD)
evaluation metric for RTP. Second, we introduce multiple, pos-
sibly competing objective functions for RTP in the given con-
text and the idea behind the cost-cognizant Average Percentage
of Faults Detected (APFD(), an extension of the APFD metric
by Elbaum et al. [28]], that incorporates varying test costs and
fault severities. Last, we describe solution approaches, such
as genetic algorithms, for the resulting severity-aware multi-
objective RTP problem.

The introduced RTP techniques are then comparatively
evaluated with respect to APFD and APFD¢ in our case study

in [Sec. TVl

A. Single-objective Black-box RTP

1) Evaluating RTP with the APFD Metric: Rothermel et
al. [29]] and Elbaum et al. [30] were among the first to use the
APFD metric to compare and evaluate test suite orderings with
respect to how early faults are detected in the testing process.

The intuition behind the APFD metric is explained by the
illustration in where two test suite orderings, 7 and
T, are compared. The area under these so-called gain curves
reflects the APFD metric and can range from 0 to 1. A random
ordering of test cases has an expected value of 0.5. Here, since
T’ has a larger area under the curve, it is preferred over T, as
it reveals faults earlier in the testing process. The APFD metric
thus measures the rate of fault detection, which is the single
objective that is optimized for by numerous proposed white-
box and black-box RTP approaches. We partially discuss these
approaches in the next section and in

100 % /
% of faults detected 7
80 | |— 1" 1
I T - e
60
40 | <
20 | =
% of test suite executed

20 40 60 80 100

Fig. 1: Illustration of the intuition behind the APFD evaluation
metric

Notably, the computation of the APFD metric is only
possible, if at least one fault is detected by the test suite.
There is another caveat in practice when information about
detected faults is not available, but merely observed failures
are reported—a so-called failure-to-fault mapping is missing.
In these cases, prior RTP research makes the assumption of
a one-to-one failure-to-fault mapping [10], [16[], [31], [32],
meaning that there is one distinct fault for every failure. Then,
the APFD metric can be interpreted as the average percentage
of detected failures. However, since multiple test failures can
occur due to the same underlying fault, this assumption might
distort RTP evaluation results [[10], [16]].

2) Single-objective RTP Surrogates from Black-box Meta-
data: 1f system-level testing is performed manually, transfer-
ability of RTP approaches is often hindered by the fact that
required analysis data, e.g., code coverage or static dependency
graphs, are not available [21]]. Similarly, for automated black-
box system-level regression testing typically only metadata
such as the failure history, the observed test execution costs,
or textual information from the test case specification are
available [20]], [23]l. While using such metadata for RTP has
been shown to work well in automated CI testing [[16f], [[17],
there are only few studies that use them in optimizing black-
box system-level testing.

At MAN, failure history data and test case specifications
are readily available for system-level regression tests. Hence,
the following surrogates can be computed, which have been

used in prior studies to prioritize tests to optimize for early
fault detection, i.e., obtain high values of the APFD metric:

o Historical failure frequency: Number of times a test
failed in the past divided by how often it was exe-
cuted [10], [16]]

o Test flip rate: Number of times a test transitioned from
one test result to another result divided by how often it
was executed [33]]

o Test executions since last failure: Number of test
executions since the last time the test failed [[17]

o Test size: Since data on test execution duration are
missing [[16], we take the number of test case steps to
approximate test size

Each of these surrogates is based on a failure hypothesis
(see Elsner et al. [[16] for details), e.g., to execute tests
first that have been more failure-prone in the past (historical
failure frequency). The surrogates can either be directly used
as heuristics to rank tests in ascending or descending order,
or they can be fed into statistical models. These predict a
value between 0 and 1 indicating the chance that a test fails
in the next run. We follow the methodology proposed by
Elsner et al. [16]] and compare each surrogate individually as
a heuristic and additionally apply the three ML models (1)
logistic regression, (2) random forest and (3) Support Vector
Machine (SVM). The models use all four surrogates as input,
i.e., as predictors for test failures.

B. Multi-objective Black-box RTP

1) Evaluating RTP with the APFD¢c Metric: The execution
costs of different regression tests can vary due to manifold
reasons: A test may require certain (limited) infrastructure
capabilities or take longer to execute due to a large number of
assertions or a vast amount of tested functionality. Similarly,
faults—or failures, if a one-to-one mapping is assumed—may
have different severities. For instance, a fault may be safety-
related and block the software release due to the implied risk
for the users. Therefore, Elbaum et al. [28|] extended the APFD
metric by incorporating varying test case and fault costs (i.e.,
severity) into the APFD< metric. In contrast to the traditional
APFD metric illustrated in for the APFD¢ metric the
y-axis depicts the percentage of total fault severity and the
z-axis reflects the percentage of total test cost incurred.

Having a cost-aware (or severity-aware) metric for RTP
evaluation raises concerns regarding the usefulness of the
single-objective RTP approaches discussed in the previous
section. If the objective of RTP is no longer limited to the rate
of fault detection, adequate prioritization strategies must also
take into account test costs and fault severity aspects. This
demands optimization for multiple objectives at once [34],
[35]], which we describe next.

2) Competing Test Objectives at MAN: RTP can be per-
formed with multiple objectives, instead of simply detecting
any fault early. Below, we list objectives that are relevant in
the context of MAN and for which data points are already
available.

o Failure revealing history: This objective is based on
the same hypothesis as the surrogates introduced in
it prioritizes tests that have failed before over
tests that have never failed [20]

« Requirements coverage: Tests that cover more require-
ments are preferred, as more potentially erroneous func-
tionality might be covered

« Safety-critical/Legal coverage: Tests that cover safety-
critical or legal requirements are preferred, as a corre-
sponding bug might block the release

o Development/Smoke tests: Tests that are labelled as
smoke tests are particularly development-related and
therefore should be executed earlier, since if they fail,
they might block the execution of other tests

o Test specification size: Tests with fewer test steps are
preferable, as they are often faster to execute and could
give faster feedback than tests with more test steps

To properly account for these objectives when evaluating
RTP approaches, we need to adjust the APFD¢ metric ac-
cordingly.

In the context of MAN, we define the costs for the APFD¢
metric as the number of test steps in a test case, due to the lack
of other data to approximate test execution cost. For modeling
the severity of a test failure (we assume a one-to-one failure-
to-fault mapping), we define ¢ to be a test case from the test
suite 7. R is defined as a subset of 7' containing all safety-
or legally-relevant tests and S is defined as a subset of T
containing all smoke tests:

teT
RcCT
ScT

We define the properties s, r¢, and v; of test case ¢ in a given
release as:

1, iftesS 1, ifteR
S+ = Ty =
! 0, otherwise ! 0, otherwise
0, if passed

vy = ¢ 1, if inconclusive
2, if failed

Using these specifications and the context-specific model
parameters p and o, we define our severity assessment model
for the failure severity f; of test case ¢ as

fe=0+(p-s)+(0-11)) v

The base failure severity is 1, which is increased if the test
case is a smoke test (p - s¢) or if it is linked to a safety-
critical or legal requirement (o - ;). The exact amount of
severity that is added on top of the base severity depends
on the context-specific model parameters p and . We then
multiply the severity with an integer value, v;, representing
the severity of the test verdict.

After thorough discussion with MAN engineers, we instan-
tiate the model with p = 2 and ¢ = 1 in the case study

TABLE I: Summary of test verdicts across the six vehicle
functions

#Test Executions

Function #Test Cases | Total Passed Failed Inconclusive
Fy 58 411 222 27 162

Fo 51 413 276 17 120

F3 34 315 186 11 118

F4 30 192 151 19 22

Fs5 28 245 239 6 0

Fg 12 48 47 1 0

Total 213 ‘ 1624 1121 81 422

described in [Sec. TVl The choice of these values was based
on the engineers’ view that certain aspects of a test case are
qualitatively more significant than others, and should therefore
have a greater impact on the severity of a failure.

3) Optimizing for Multi-objective RTP: To find suitable
test orderings that optimize several of the outlined objectives
to achieve better results in terms of APFD¢, prior research
suggests the use of search-based optimization techniques,
such as genetic algorithms [34]], [36], ML models [23]], or
combined, multivariate heuristics [10].

To get a rough understanding of which group of techniques
might be suitable in the given context, we apply two genetic
algorithms (NSGA-II, TAEA), three ML models (multivariate
linear regression, random forest regression, SVM regression),

and several combined heuristics (see [Sec. IV-B3).

IV. EVALUATION & CASE STUDY

To evaluate the RTP approaches presented in [Sec. III} we
analyze historical test data from different vehicle functions
that use system-level regression testing as provided by our
industrial partner MAN. Our research endeavour is steered by
the following Research Questions (RQs):

e RQ;: How well do RTP approaches solely based on fail-
ure history perform in automotive system-level regression
testing?

e RQ;: How does domain-specific failure severity assess-
ment affect results compared to traditional RTP assess-
ment?

o RQj3: How do severity-aware, multi-objective approaches
compare to single-objective RTP approaches?

A. Experimental Setup

1) Dataset: The dataset provided by MAN comprises 213
test cases covering six vehicle functions. As shown in
the functions differ strongly both in terms of the existing test
cases (from 58 to 12) and the actual test executions (from 413
to 48). The test cases are executed as the development of the
vehicle function progresses for each release, although not all
test cases are executed in each release due to time constraints.
We use the results of 12 releases covering roughly three years
of development as there is a new major release every three
months.

The distribution of test verdicts for each release is shown
in It is noticeable that the number of failures and

175 - Test Verdict
BN FAILED
mmm INCONCLUSIVE
150 1 mmm PASSED
125
100
75
50
25 -

Ri R2 R3 Ry Rs Rsg R; Rg Rg Rig Rz Rp
Release Number

Fig. 2: Number of test executions and distribution of verdicts
per release

inconclusive test results decreases as the development period
progresses.

As outlined in some particularly important test
cases are labelled as smoke tests. Our dataset contains 62 such
smoke tests. Regarding the linked requirements, in total 18
test cases in our dataset cover at least one of the particularly
important legal or safety-critical requirements.

2) Rolling Evaluation: To make the best use of the avail-
able data and to show the progression over time of the different
RTP approaches, we use a rolling evaluation setup. Starting
with the second releaseﬂ we successively evaluate each RTP
approach on each of the remaining releases. Approaches that
use historical test verdicts only have access to test results from
the previous releases. This allows us to simulate how such
RTP approaches would have performed at a particular point
in time [16]. Notably, for ML approaches, this implies that
when evaluating a given release, we use all previous releases
as the training set for the learning algorithm.

In addition to the evaluation across all vehicle functions, we
report the results for a single function as well. We select Fa
for this purpose (see [Table I)), since it has the highest number
of test executions and there is at least one failure for every
release available.

Since several of our approaches are not entirely determin-
istic due to inherent randomness, we repeat the experiments
multiple times and report the mean across 30 runs [37].

B. Compared RTP Approaches

An overview of the 18 applied RTP approaches is shown
in[Table TI} All presented RTP approaches are black-box tech-
niques, since they do not utilize any source code information.
The approaches can be grouped into baselines, heuristics, ML
models, and search-based algorithms.

2Since most RTP approaches need at least one historical test execution, the
first release cannot be used here.

1) Baselines: The first group are baseline approaches. Since
we have no information regarding the actual order in which
the test cases were run, we employ the following baselines:

o B runs the test suite in the optimal order by sorting the
tests in descending order of the failure severity score, as
defined in[Sec. TII-B2] Note that this is not a realistic RTP
approach in practice, since the severity formula contains
the current test’s verdict, which is unknown before exe-
cuting the test. Nevertheless, this baseline returns the best
prioritization that could have been achieved in theory, and
therefore serves as a reference for the other approaches.

o B; executes the tests in a random order. Any RTP
strategy should outperform random ordering in order to
be considered useful.

o Bs runs tests in alphabetical order of the test case names.
This strategy is more common in practice than random
ordering (and often the default in test management tools),
since it is always deterministic and easy to implement.

e B3 is an expert prioritization baseline, derived from
discussions with MAN experts about the crucial factors
for test ordering decisions. With this strategy, tests that
cover legal or safety-critical requirements are executed
first, then tests labeled as smoke tests are executed, and
then all others. Tests that cover legal or safety-critical
requirements have the highest priority in this approach,
since the effects of a failure can be enormously expensive,
because they can delay legal approval, for example.
Smoke tests find potential errors that are particularly
relevant for developers and could impede further testing,
which is why they are executed second.

o B, executes tests in ascending order of the fest size ,
(16]. With this approach, it is assumed that small and
cheap are correlated variables and one achieves better
cost-effectiveness by running the small tests (i.e., tests
with the lowest number of steps) early.

2) Heuristics: The history-based surrogates presented in

[Sec. TIT-A2] can be used as prioritization heuristics, by ordering

the tests in descending order of the respective value:

o H; uses the historical failure frequency
o Hy uses the flip rate
o Hj3 uses the number of executions since the last failure

Additionally, we include two more heuristics:

e H, is a modified version of Hj; it divides the failure
frequency by the test cost (i.e., the number of test steps),
and orders tests based on that failure-frequency-to-cost
ratio.

o Hj is an exponential smoothing strategy proposed by Kim
and Porter [38]]; it also considers the historical failure
frequency, but recent failures are weighted higher than
older ones. P, denotes the probability that a certain test
will fail in release k. This value is recursively computed
via the following scheme:

Py=hy

Po=ahy+(1—a)Pry, 0<a<l,k>1

TABLE II: Overview of prioritization approaches grouped by baselines, heuristics, ML models, and search-based algorithms

Type of Information
ID Description History-based Cost-based | Multi-objective
Bo Optimal order: descending order of failure severity v
B1 Random order
Bo Alphabetical order by test case name
B3 Expert order: (1) tests with critical requirements, (2) smoke tests, (3) others
By Ascending order of test cost (number of test steps) v
Hi Descending order of historical failure frequency v
Ho Descending order of flip rate v
Hs Ascending order of time (number of executions) since last failure v
Hy Descending order of historical failure frequency divided by test cost v v v
Hs Descending order of failure history with exponential smoothing [38] v v v
M1 | Descending order of predicted failure probability (logistic regression) v v
Mgz | Descending order of predicted failure probability (random forest) v v
M3 | Descending order of predicted failure probability (SVM) v v
My | Descending order of predicted failure severity (linear regression) v v v
Ms | Descending order of predicted failure severity (random forest regression) v v v
Mg | Descending order of predicted failure severity (SVM regression) v v v
S1 Pareto optimal order computed by NSGA-II v v v
Sa Pareto optimal order computed by TAEA v v v

Here, hj is 1 if the test failed in release k, and 0
otherwise. The constant o acts as an exponential decay
factor; with higher values, recent failures are prioritized
higher. Similar to Hy, the failure probability is also
divided by the test cost.

If no historical data are available for a test case yet, these
heuristics are initialized with their maximum value of 1.0 in
order to prioritize tests executed for the first time.

3) Machine Learning Models: The surrogates which we use
as heuristics can also be used as input features for (statistical)
ML models. In general, there are two ways to formulate a
supervised ML problem for RTP: first, we can formulate it
as a binary classification problem, where a failure probability
between 0 and 1 is predicted. Similar to prior work, we use
three binary classifiers [[15], [16], [39]]; a logistic regression
model (M;), a random forest (M) and an SVM (Mj).
Second, we can also directly attempt to predict the failure
severity, which can be formulated as a regression problem. By
using a regression model targeting the failure severity, rather
than a binary classification model, the model can learn to
better discriminate between severe (high score) and uncritical
(low score) test failures. We employ the three models linear
regression (M), random forest regression (M5) and SVM
regression (Mg).

All models are trained on the same dataset containing four

features, namely the surrogates we introduced in

failure frequency, flip rate, time to last failure, and test size.

4) Search-Based Optimization: Multiple objectives can be
optimized together by finding Pareto optimal solutions [34],
[35]. A solution is called Pareto optimal if no objective can
be improved without deteriorating another objective. Genetic
algorithms are a popular choice for this type of optimization
problem [20]. We first employ a widely used, standard ge-
netic algorithm called NSGA-II [40]. We also apply a second
algorithm called TAEA [41], which addresses some of the
limitations of NSGA-II and has been used for regression test
optimization in the past [36]], [42]. These algorithms (S;, S2)
use the five objectives defined in to generate Pareto
optimal solutions:

e failures: run tests with a high historical failure fre-
quency first

e all_regs: run tests with many linked requirements first

e relevant_regs: run tests with safety-critical/legal
requirements first

e smokes: run smoke tests first

e size: run tests with a low number of test steps first

C. Results

1) RQ, — History-Based Prioritization: To answer RQq,
we evaluate the performance of the five baselines (Bg — By)
against the single-objective approaches based on failure history
(see [Table TI). These include the heuristics H; — H3 and the
ML models M; — Mgs. This part of the evaluation uses the
APFD metric, in which all tests are assumed to have the same
execution costs, and the failure severity is treated equally for

Bo —Ta

Bi A el

B> 1 —H .

—— median

B3 1 I & mean

B4 1 —1 T 1+

Hy 1 — R’

H; 4 or—

Hy 4 +—T B " 1+—

M; A — T

My 4+ — T 1+

M3 4 +——— Lol —

0.4 0.5 0.6 0.7 0.8 0.9

AFPD

(a) APFD across all functions

Bo 1 —Tro 1+
B1 A HH
B> 4 <

2 —— median
R, I— o mean
B —I&
Hi A H
H; 4 — B —
Hs 1 — R
M; A =1
M, T F—
M; t L

0.3 0.4 0.5 0.6 0.7 0.8 0.9
AFPD

(b) APFD on function Fo

Fig. 3: Performance of the RTP approaches with the APFD
over all releases

all failing tests. We thus consider inconclusive or failed tests
as equally severe.

shows the performance distribution of the investigated
RTP approaches over all releases. Recall that B is a reference
baseline representing the best possible prioritization. The most
noticeable observation is that the failure frequency heuristic
(H;) and the ML model (M;) clearly outperform all other
approaches, with an average APFD between 0.72 and 0.79. In
comparison, the other two heuristics based on flip rate and time
to last failure attain lower scores, between 0.52 and 0.61. With
an APFD of 0.49 across all functions or 0.47 on the single
function Fo, the baseline that replicates the experts’ strategy
(B3) performs poorly and does not reach the score 0.50 of
the random prioritization. The remaining baselines By and
B4 are also not better than the random ordering. Overall, the
simple and well studied heuristic (H;) and the ML approaches
(M;-M3) perform well, indicating that the historical failure
frequency is a useful predictor for future failures.

In certain cases, the testing capacity can be limited and
testers may not be able to execute all regression tests before a
release. Therefore, we also report what fraction of the test suite
needs to be executed to detect 90% of the failures (cf. Elsner
et al. [16]). shows the percentage of test cases needed
to detect at least 90% of all failures across all functions; we
compare only the two best history-based approaches (H; and

1.0 4
0.8 A
]
=]
2 0.6
[0}
g
G
X 0.4 1
—— Baselines (B; - By)
02— History-based (Hy, M;)
' = Optimal Order (Bo)

R3 Ra Rs Re R7 Rg Re Rio Rz R
Release Number

Fig. 4: Percentage of test suite required to detect at least 90%
of all failures

M;) to the baselines. The highest number of test cases is
required by the baselines B3 (expert order) and By (test cost).
The logistic regression model (M;) and the failure frequency
heuristic (H;) achieve the best average percentage of 58%,
meaning that on average 42% of the test suite can be skipped
while still detecting 90% of all failures. As more historical
data become available over time, the history-based approaches’
performance improves, while the four realistic baselines show
no such improvement. For the last five releases, the history-
based algorithms can detect 90% of all failures with on
average merely 38% of all test cases, resulting in a significant
reduction in testing effort. Note that the remaining test cases
are not permanently excluded from the test suite; they can
still be executed in larger intervals. shows a noticeable
spike of the required testing effort in R;0. By inspecting the
verdict distribution across releases (see we notice a
considerable increase in the number of inconclusive verdicts
in Ry, which could explain this behavior.

RQ; We find that RTP approaches based on test fail-
ure history outperform our baseline approaches. The
baselines, even the one mimicking the experts’ strat-
egy, perform poorly, comparable to random ordering.
For history-based approaches, both the failure frequency
heuristic and the ML models perform similarly well. In a
capacity-constrained scenario, on average only 58% of
all test cases need to be executed to still detect 90% of
all failures.

2) RQ> — Domain-Specific Failure Severity: To answer
RQ., we assess how the evaluation results change if we use
the severity-aware APFD¢ metric, based on the test execution
costs (i.e., the sum of test steps) and the domain-specific
failure severity model (see [Sec. II-B)). [Table 11| shows the
severity-aware (APFD() and severity-unaware (APFD) perfor-
mance for all baselines, heuristics, and ML models considered
in RQ;. The reported numbers represent the average across all
releases from the rolling evaluation.

TABLE III: Mean APFD/APFD¢ scores across all functions
and for function Fy (results for RQs and RQ3)

All functions Single function (2)
Approach | APFD APFD. | APFD APFD¢
By 0.86 0.92 0.85 0.89
B 0.50 0.50 0.50 0.51
B2 0.58 0.54 0.53 0.44
B3 0.49 0.56 0.47 0.56
B4 0.53 0.68 0.39 0.55
Hy 0.76 0.70 0.79 0.73
Ho 0.61 0.61 0.56 0.53
Hs 0.52 0.49 0.52 0.48
Hy 0.72 0.76 0.76 0.77
Hs 0.73 0.78 0.78 0.80
My 0.72 0.65 0.78 0.70
Ms 0.70 0.66 0.71 0.67
M3 0.66 0.71 0.76 0.70
My 0.66 0.68 0.73 0.73
Ms 0.61 0.67 0.58 0.62
Mg 0.63 0.69 0.71 0.71
S1 0.66 0.72 0.69 0.72
Sa 0.63 0.70 0.58 0.69

Not surprisingly, the experts’ prioritization baseline (Bgs)
performs better in the severity-aware setting compared to the
APFD, since both the expert strategy and the evaluation metric
take the same factors into account; smoke tests and tests with
critical requirements contribute more to the failure severity
than the other tests. Likewise, the result for the test cost
baseline (B4) improves, due to the fact that the APFD¢ metric
takes execution costs into account. For the alphabetical order
(B32), the performance deteriorates slightly across all functions,
and noticeably on the single function Fy. Alphabetical sorting
can result in similar tests being grouped together, which can
lead to a worse performance than random sorting.

The three single-objective heuristics (H; — Hs) perform
worse in the severity-aware evaluation than in the severity-
unaware evaluation. This is because all three heuristics take
neither the cost nor the failure severity into account.

The three single-objective ML models (M; — M3) almost
always perform worse in the severity-aware setting; the ex-
ception is M3, which shows a slight improvement across all
functions. This lower performance with the APFDc metric
is expected, as these RTP approaches do not incorporate any
notion of test cost or failure severity.

RQ: All investigated RTP approaches that do not take
domain-specific knowledge into account perform worse in

TABLE IV: Mean APFD. scores obtained by NSGA-II for
the top ten objective subsets and for all objectives (across all
functions and releases)

Objectives | APFDc
size, failures 0.72
size, relevant_reqgs 0.67
failures, relevant_regs 0.67
size, failures, smokes 0.66
size, failures, relevant_regs 0.64
size, failures, all_regs 0.64
size, relevant_regs, smokes 0.61
size, failures, relevant_reqgs, smokes 0.60
failures, smokes 0.60
failures, relevant_reqgs, smokes 0.60
All Objectives 0.55

the severity-aware evaluation. Our two baselines making
use of the test cost (By) and the failure severity (Bs)
benefit from the severity-aware evaluation.

3) RQs — Multi-Objective Optimization: We also investi-
gate the performance of approaches that target optimization of
multiple domain-specific objectives as described in Sec. III-B

As indicated in these approaches are

e H, and Hs, two heuristics which seek to minimize the
test cost

e My—Mg, three ML models which predict the failure
severity instead of the failure probability

e S; and S, two genetic algorithms which aim to find a
Pareto optimal prioritization satisfying all objectives

The performance of genetic algorithms can deteriorate as
the number of objectives increases [43]. Since some of our
objectives might be less relevant for a good prioritization,
we first perform an exhaustive evaluation of all subsets of
objectives for NSGA-II. Since we are considering five different
objectives, there are 26 objective subsets with at least two
elements. shows the APFD¢ scores of the best
ten objective subsets obtained by NSGA-II. For comparison,
the last row shows the performance of all five objectives
together. The subset (size, failures) outperforms all
others with an average score of 0.72, and is better than the
set of all five objectives, which achieves only 0.55. This
matches our expectation, since our APFD< metric evaluates
the detected failure severity against the test cost: The most
intuitive objectives would be to prioritize tests with high failure
frequency and low test size.

Based on the results of the subset selection, we use only the
best objective subset (size, failures) for the genetic algorithms.
shows the severity-aware performance comparison
of the multi-objective approaches, for all functions and on
Fs. Among the multi-objective approaches, the heuristics Hy
(failure-frequency-to-cost ratio) and Hg (weighted failure his-
tory) achieve the best APFD¢ scores between 0.76 and 0.80,
even outperforming all single-objective approaches. Compared
to the optimal baseline B, which represents the theoretically

best prioritization, Hs achieves 85% of the best possible
APFD¢ across all functions on average, and 90% on Fs. The
genetic algorithms perform comparably to the ML models, yet
worse than the two heuristics. NSGA-II (S1) was able to reach
higher scores than TAEA (S2). All multi-objective techniques
show at least a slight improvement in the severity-aware setting
(APFD() compared to the traditional APFD metric.

RQ3 Simple multi-objective heuristics, such as the
failure-frequency-to-cost ratio (Hy) and the weighted
failure history (Hs) are among the best approaches,
achieving up to 90% of the maximum possible cost-
effectiveness. Multi-objective RTP with genetic algo-
rithms performs on par with the ML models and the
baseline approaches, with NSGA-II (S1) slightly outper-
forming TAEA (S2). The genetic algorithms obtain the
best results when using two objectives, (1) minimizing
the test size and (2) maximizing the historical failure

frequency.

D. Discussion

1) Run Time of Prioritization: For large test suites, we need
to consider the run time of the different RTP approaches. Since
the goal of RTP is to optimize the regression testing process,
computing the test ordering must not be prohibitively expen-
sive. In our evaluation, the genetic algorithms have the longest
execution time, followed by the ML models. The heuristics and
baselines were the fastest. The good performance of the two
heuristics failure frequency (H1) and weighted failure history
(Hs) suggests that more sophisticated techniques, such as ML
models or search-based techniques, might not be beneficial in
practice, given their comparatively high run time.

2) Failure-to-Fault Mapping: The goal of regression testing
is to detect as many faults as possible as early as possible and
not to produce as many test failures as possible. As discussed
in in most cases, no mapping of failures to faults is
available and, therefore, a one-to-one failure-to-fault mapping
is commonly assumed [10]], [16]]. In our context, there are
incomplete data about the underlying faults: although a bug
ticket should be created in case of a failure, this happens
irregularly. In total, tickets have been created for 30 of the 81
failed test cases, and for 6 of the 422 inconclusive results. Due
to these irregularities and missing consistency in the dataset,
we refrain from using linked bug ticket information to assign
faults to failures.

E. Threats to Validity

We identify several internal and external factors which could
adversely affect the validity of our evaluation.

First, the cost of a test execution can consist of several fac-
tors, such as the execution time, the setup time, and technical
resource costs. However, we currently only have access to the
number of test steps, which we use to approximate the test
costs. Since the durations of these steps are not equal, and can
vary across different test runs, they might not be an accurate
estimation of the true test costs.

Non-deterministic tests, also called flaky tests, are a well-
known problem in automated testing. However, a recent de-
veloper survey has shown that flaky tests can also be present
in manual test suites [21]]. Since many of the RTP approaches
used in this work utilize past test verdicts, the presence of
flaky tests could diminish our evaluation results.

Another threat to validity is the randomness inherent in
some of the approaches we apply, e.g., genetic algorithms, ML
models, and random prioritization. To mitigate this threat and
make our evaluation more robust, we repeated the experiments
multiple times and reported the mean across 30 runs.

In our evaluation, we limit ourselves to reporting results
from a few ML models, such as linear and logistic regression,
SVMs, and random forest models. The rationale behind this
limited set of algorithms is that prior research has found that
differences between models are often insignificant [[16]] and we
experienced similar trends during our experiments. We also
did not yet incorporate reinforcement learning models in our
evaluation, which might improve the results [[12f], [[19].

Last, the failure severity model defined in was
instantiated with values derived from discussions with domain
experts from MAN. We assume that these values are context-
specific to MAN data and might not generalize to other auto-
motive software systems. Nevertheless, our evaluation does not
require a specific severity model and can easily be extended
to support any other failure severity formula or instantiation
of our severity model.

V. RELATED WORK

Several RTP approaches have been proposed over the past
two decades. In the following, we discuss related work and
outline the research gaps with respect to automotive system-
level regression testing.

Rothermel et al. [29] and Elbaum et al. [30] were among the
first to study different RTP approaches and coined the APFD
metric to evaluate these approaches. The traditional APFD
metric was then extended to a cost-cognizant variant, APFD¢,
which incorporates varying test costs and fault severities [28]].

While these early studies discussed purely white-box,
coverage-based RTP techniques on C programs, Kim and
Porter [38|] were the first to study history-based RTP, which
uses statistical ranking models for tests based on past-fault
coverage, i.e., test history, and function coverage. In 2014,
Elbaum et al. [[I7] reported that even simpler history-based
RTP techniques that merely rank tests based on how long ago
they last failed, performed remarkably well in CI environments
at Google. These results were, however, diminished later by
Leong et al. [33]], who discovered that many of the detected
test failures were in fact caused by flaky tests. Elsner et al. [[16]]
empirically evaluate the cost-effectiveness of heuristics and
ML models based on readily available information from CI
and Version Control System (VCS). They show that simple
heuristics such as the ones proposed by Elbaum et al. [17]
often outperform more sophisticated ML models. Yu et al. [44]]
evaluate multiple black-box techniques for prioritizing auto-
mated UI tests and find that history-based heuristics are among

the best approaches in terms of APFD.. Najafi et al. [45]]
investigate how history-based techniques can be leveraged for
both selection and prioritization; they identify the association
between failures as the most valuable information in the test
history. The compared baseline models in our work are also
partially taken from Peng et al. [10], who empirically study
RTP approaches based on information retrieval techniques,
first proposed by Saha et al. [9].

Yoo and Harman [34], [35], [46], [47] propose a paradigm
shift to formulate RTP as a multi-objective problem to respect
different (competing) testing objectives (e.g., structural and
functional testing) instead of a single-objective problem (e.g.,
code coverage). They further suggest to incorporate various
kinds of costs, such as resource costs or test duration, into
the optimization process to select tests or to find suitable test
orderings [34]. Also, they propose to use search algorithms,
such as genetic algorithms, to find Pareto optimal solutions,
with respect to multiple objective functions. Several ideas in
this paper are taken from their works, specifically the idea of
prioritizing by historical fault revelation. Epitropakis et al. [36]
apply multi-objective RTP techniques in an empirical study
on six programs with mostly seeded faults. They use the three
objective functions: statement coverage, fault history coverage,
and execution cost (approximated by number of executed
instructions). The comparison to traditional greedy coverage-
based RTP indicates that multi-objective evolutionary algo-
rithms significantly outperform these single-objective RTP
approaches in 14 out of the 22 studied software versions across
programs. In a case study at Cisco, Wang et al. [48]] compare
seven different search algorithms to approach their resource-
aware multi-objective RTP problem, where they construct their
fitness function from four cost-effectiveness measures. They
find that the best performing genetic algorithm reduces the
time for test resource allocation and test execution by on
average 40.6% compared to the state-of-practice.

The research on RTP in system-level testing is relatively
sparse. Haas et al. [21]] report that especially if system-level
testing is performed manually, few attempts have been started
to transfer existing regression test optimization techniques to
(manual) system-level testing [22], [49]. We consider Lach-
mann et al. [20]] the closest to our work: although their ultimate
goal is test selection rather than prioritization, their study,
similar to ours, targets the automotive software engineering
domain. They use seven different objective functions based
on black-box metadata; we use several of them as well (see
[Sec.). In contrast to our work, they permute the set of
selected tests using genetic algorithms to find Pareto optimal
subsets of the entire test suite, while we permute the orderings
of tests. They further evaluate their test selection with respect
to precision and recall in failure detection. We incorporate a
failure severity model into the APFD¢ metric to evaluate test
orderings, which allows more domain-specific investigation of
trade-offs between multiple objectives.

In summary, we are not aware of any prior work that dis-
cusses multi-objective RTP in the context of automotive soft-
ware engineering and evaluates RTP techniques using domain-

specific failure severity models. Moreover, most existing work
compares against random ordering baselines, whereas we use
domain-specific baseline orderings, based on safety-critical
requirements and development relevance of test cases.

VI. CONCLUSION

In this study, we discuss aspects of how RTP approaches
need to be designed and evaluated in the context of system-
level regression testing for automotive software systems. Con-
trary to most existing research, we incorporate varying fault
severities into the evaluation of RTP approaches and attempt
to derive realistic RTP baselines. We present a case study at
our industry partner MAN, where we comparatively assess
single- and multi-objective RTP approaches with respect to
severity-aware and traditional evaluation metrics. We find that
simple history-based RTP heuristics perform considerably well
in both the severity-aware and the severity-unaware setting.
ML-based and search-based multi-objective RTP approaches
do not outperform simple heuristics and only achieve compet-
itive performance once sufficient historical test verdicts are
available. Hence, even if only relying on readily available
black-box information, RTP reduces the feedback time at
MAN compared to the current testing strategies while retaining
failure detection.

VII. ACKNOWLEDGEMENTS

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “Q-SOFT,
01IS22001B”. The responsibility for this article lies with the
authors.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing Verification and Reliability,
vol. 22, no. 2, pp. 67-120, 2012.

[2] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
Test Cases for Regression Testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929-948, 2001.

[3] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in Proceedings of the International Conference on
Automated Software Engineering, 2009, pp. 233-244.

[4] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based test case prioritisation: An industrial case study,” in Proceedings
of the International Conference on Software Testing, Verification and
Validation, 2013, pp. 302-311.

, “Coverage-based regression test case selection, minimization and
prioritization: A case study on an industrial system,” Software Testing,
Verification and Reliability, vol. 25, no. 4, pp. 371-396, 2015.

[6] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon, “Compar-
ing white-box and black-box test prioritization,” in Proceedings of the
International Conference on Software Engineering, 2016, pp. 523-534.

[7]1 Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test
cases with string distances,” in Automated Software Engineering, vol. 19,
no. 1, 2012, pp. 65-95.

[8] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST
approaches to scalable similarity-based test case prioritization,” in Pro-
ceedings of the International Conference on Software Engineering, 2018,
pp. 222-232.

[91 R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in Proceedings of the International Conference on Software
Engineering, 2015, pp. 268-279.

[5]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Q. Peng, A. Shi, and L. Zhang, “Empirically Revisiting and Enhancing
IR-Based Test-Case Prioritization,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2020, pp. 324-336.

T. Mattis and R. Hirschfeld, “Lightweight Lexical Test Prioritization for
Immediate Feedback,” The Art, Science, and Engineering of Program-
ming, vol. 4, no. 3, pp. 12:1-12:32, 2020.

A. Bertolino, A. Guerriero, R. Pietrantuono, S. Russo, B. Miranda, and
R. Pietran-Tuono, “Learning-to-Rank vs Ranking-to-Learn: Strategies
for Regression Testing in Continuous Integration,” in Proceedings of
the International Conference on Software Engineering, 2020, pp. 1-12.
S. Wang, J. Nam, and L. Tan, “QTEP: Quality-aware test case prior-
itization,” in Proceedings of the Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2017, pp. 523-534.

E. Knauss, M. Staron, W. Meding, O. Soder, A. Nilsson, and M. Castell,
“Supporting Continuous Integration by Code-Churn Based Test Selec-
tion,” in Proceedings of the International Workshop on Rapid Continu-
ous Software Engineering, 2015, pp. 19-25.

A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan,
“FastLane: Test Minimization for Rapidly Deployed Large-Scale Online
Services,” in Proceedings of the International Conference on Software
Engineering, 2019, pp. 408—418.

D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically Evalu-
ating Readily Available Information for Regression Test Optimization in
Continuous Integration,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2021, pp. 491-504.

S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the International Symposium on the Foundations of
Software Engineering, 2014, pp. 235-245.

T. B. Noor and H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data,” in Proceedings of the
International Symposium on Software Reliability Engineering, 2016, pp.
58-68.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, ‘“Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2017, pp. 12-22.

R. Lachmann, S. Schulze, M. Felderer, C. Seidl, M. Nieke, and I. Schae-
fer, “Multi-objective black-box test case selection for system testing,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
Association for Computing Machinery, 2017, pp. 1311-1318.

R. Haas, D. Elsner, E. Juergens, A. Pretschner, and S. Apel, “How can
manual testing processes be optimized? Developer survey, optimization
guidelines, and case studies,” in Proceedings of the Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1281-1291.

H. Hemmati, Z. Fang, and M. V. Mintyl4, “Prioritizing manual test
cases in traditional and rapid release environments,” in Proceedings
of the International Conference on Software Testing, Verification and
Validation, 2015, pp. 1-10.

R. Lachmann, M. Nieke, C. Seidl, I. Schaefer, and S. Schulze, “System-
level test case prioritization using machine learning,” in Proceedings of
the International Conference on Machine Learning and Applications,
2016, pp. 361-368.

R. Lachmann, “Machine Learning-Driven Test Case Prioritization Ap-
proaches for Black-Box Software Testing,” in Proceedings of the Euro-
pean Test and Telemetry Conference, may 2018, pp. 300-309.

A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across JVM boundaries,” in Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2017, pp. 809-820.

M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test
Selection,” in Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice, 2019, pp. 91-100.

D. Elsner, R. Wuersching, M. Schnappinger, A. Pretschner, M. Graber,
R. Dammer, and S. Reimer, “Build System Aware Multi-language
Regression Test Selection in Continuous Integration,” in Proceedings
of the International Conference on Software Engineering: Software
Engineering in Practice, 2022, pp. 87-96.

S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying
test costs and fault severities into test case prioritization,” in Proceedings
of the International Conference on Software Engineering, 2001, pp. 329—
338.

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: an empirical study,” in Proceedings of the International
Conference on Software Maintenance. 1EEE Computer Press, 1999,
pp. 179-188.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2000, pp. 101-112.

T. Mattis, F. Diirsch, and R. Hirschfeld, “Faster feedback through lexical
test prioritization,” in Companion of the International Conference on Art,
Science, and Engineering of Programming, 2019, pp. 1-10.

A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating
Test-Suite Reduction in Real Software Evolution,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2018, pp.
84-94.

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco,
“Assessing Transition-Based Test Selection Algorithms at Google,” in
Proceedings of the International Conference on Software Engineering:
Software Engineering in Practice, 2019, pp. 101-110.

M. Harman, “Making the case for MORTO: Multi objective regression
test optimization,” in Proceedings of the International Conference on
Software Testing, Verification, and Validation Workshops, 2011, pp. 111-
114.

S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proceedings of the International Symposium on Software
Testing and Analysis. ACM Press, 2007, pp. 140-150.

M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical
evaluation of Pareto efficient multi-objective regression test case priori-
tisation,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2015, pp. 234-245.

A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the International Conference on Software Engineering, Honolulu, HI,
2011, pp. 1-10.

J. M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proceed-
ings of the International Conference on Software Engineering, 2002, pp.
119-129.

T. B. Noor and H. Hemmati, “Studying test case failure prediction for
test case prioritization,” in Proceedings of the International Conference
on Predictive Models and Data Analytics in Software Engineering, 2017,
pp. 2-11.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm
for constrained multiobjective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 23, pp. 303-315, 4 2019.

S. Yoo, M. Harman, and S. Ur, “Gpgpu test suite minimisation: search
based software engineering performance improvement using graphics
cards,” Empirical Software Engineering, vol. 18, pp. 550-593, 6 2013.
K. Praditwong and X. Yao, “A new multi-objective evolutionary opti-
misation algorithm: The two-archive algorithm,” in 2006 International
Conference on Computational Intelligence and Security. 1EEE, 11 2006,
pp. 286-291.

Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian,
“TERMINATOR: Better automated Ul test case prioritization,” in
Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 883-894.

A. Najafi, W. Shang, and P. C. Rigby, “Improving Test Effectiveness
Using Test Executions History: An Industrial Experience Report,” in
Proceedings of the International Conference on Software Engineering:
Software Engineering in Practice, 2019, pp. 213-222.

S. Yoo and M. Harman, “Using hybrid algorithm for Pareto efficient
multi-objective test suite minimisation,” Journal of Systems and Soft-
ware, vol. 83, no. 4, pp. 689-701, 2010.

S. Yoo, R. Nilsson, and M. Harman, “Faster Fault Finding at Google
Using Multi Objective Regression Test Optimisation,” in Proceedings of
the International Symposium on the Foundations of Software Engineer-
ing, 2011.

S. Wang, S. Ali, T. Yue, O. Bakkeli, and M. Liaaen, “Enhancing test
case prioritization in an industrial setting with resource awareness and
multi-objective search,” in Proceedings of the International Conference

on Software Engineering. 1EEE Computer Society, may 2016, pp. 182—
191.

[49] D. Elsner, D. Bertagnolli, A. Pretschner, and R. Klaus, “Challenges in
Regression Test Selection for End-to-End Testing of Microservice-based
Software Systems,” in Proceedings of the International Conference on
Automation of Software Test, 2022, pp. 1-5.

	Introduction
	System-level Testing in Automotive Software Engineering at MAN
	Prioritizing System-level Regression Test Cases
	Single-objective Black-box RTP
	Evaluating RTP with the APFD Metric
	Single-objective RTP Surrogates from Black-box Metadata

	Multi-objective Black-box RTP
	Evaluating RTP with the APFDC Metric
	Competing Test Objectives at MAN
	Optimizing for Multi-objective RTP

	Evaluation & Case Study
	Experimental Setup
	Dataset
	Rolling Evaluation

	Compared RTP Approaches
	Baselines
	Heuristics
	Machine Learning Models
	Search-Based Optimization

	Results
	RQ1 – History-Based Prioritization
	RQ2 – Domain-Specific Failure Severity
	RQ3 – Multi-Objective Optimization

	Discussion
	Run Time of Prioritization
	Failure-to-Fault Mapping

	Threats to Validity

	Related Work
	Conclusion
	Acknowledgements
	References

