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Abstract

In this thesis, three novel algorithms for offline reinforcement learning, as well as one
method to judge the suitability of a dataset for offline RL are presented. The algorithms
are evaluated on challenging, high-dimensional, continuous, partially observable as well
as stochastic environments and it is shown that they are able to produce well performing
policies from static datasets reliably, using model-based return estimation paired with
newly proposed methods for policy regularization. The final algorithm even exposes a
control parameter in order to allow users to tune the behavior of the policy to their per-
sonal preferences based on the desired proximity to the dataset generating policy. The
method thus naturally facilitates trust and allows users to find a better trade-off between
familiarity and estimated performance of the solution, ultimately also resulting in better
performance.

While deep reinforcement learning has seen a surge in popularity over the past decade,
it has not transformed the world in the way that many researchers had expected. This
falling short of expectations is largely due to the fact that classical reinforcement learn-
ing algorithms need to interact with the environment they are trying to find a policy
for. While this is not a problem for entirely virtual problems like playing Atari video
games, it is an issue for real world (physical) systems, since learning directly on them is
usually infeasible due to cost and safety concerns, and because accurate simulations as a
replacement are often not available. Thus there exists a natural need for algorithms that
can train policies not by interacting with the environment itself, but instead simply tak-
ing as input all the interaction data that has in the past been collected during ordinary
operation.

The first two proposed algorithms, MOOSE and WSBC, aim to make policy learning
possible from static pre-collected datasets by employing learned transition models as a
replacement for the environment, and regularizing the policy so that it remains in a re-
gion of the state-action space that is well represented in the dataset, since otherwise the
transition model predictions will not be accurate and the policy will upon deployment
perform much worse than estimated by the dynamics models. MOOSE (MOdel-based
Offline policy Search with Ensembles) performs the regularization of the policy in ac-
tion space, by training an extra variational autoencoder model of the dataset generating
policy and penalizing the target policy for actions that cannot be well reconstructed
under it. WSBC (Weight Space Behavior Constraining) on the other hand constrains
the policy directly in its parameter space, by training an MLP model of the generating
policy from the data, and then restricting the target policy to remain close to it in the
neural weight space. Experiments on the industrial benchmark and MuJoCo datasets
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Abstract

show that both approaches are valid and produce well performing policies on a variety of
tasks, and thus effectively enable policy learning without the need for direct environment
interaction. While the action space penalty appears to have advantages in the MuJoCo
tasks, WSBC generally performs better in the industrial benchmark domain, which is
likely due to the gradient-free policy search paired with the lower complexity policies re-
quired for these tasks. Finally, the third algorithm, LION (Learning in Interactive Offline
eNvironments), aims to integrate the user to find even better solutions: Since offline RL
algorithms cannot tune their most important hyperparameter - how strictly to regularize
the policy - due to the lack of permitted environment interaction, such algorithms prac-
tically always perform below their theoretically best option. To circumvent this problem,
LION trains policies that condition on a desired proximity to the data generating policy,
making it possible for a user to test out and find well performing trade-offs at runtime,
while at the same time regaining control over the system, increasing trust in the solution.

Comparing the proposed algorithms with a variety of prior and concurrently proposed
model-free as well as model-based offline RL algorithms, such as BCQ, BEAR, BRAC,
TD3+BC, CQL, MOPO & MOReL, this thesis provides a comprehensive overview on the
performance of the methods on a variety of benchmark datasets. The tasks and datasets
considered in this thesis cover low and high exploration settings, very bad as well as
close to expert generating policies, fully as well as partially observable and stochastic as
well as deterministic environments. Other (real world) tasks and datasets may however
still exhibit different characteristics and choosing the correct methods for the task at
hand thus must still be handled with great care. We find however that generally, model-
based offline RL, especially when coupled with proximity conditioned policies, is a very
promising path to more RL deployments in real world systems in the future.
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Zusammenfassung

In dieser Arbeit werden drei neue Algorithmen für Offline-Reinforcement Learning sowie
eine Methode zur Beurteilung der Eignung eines Datensatzes für Offline RL vorgestellt.
Die Algorithmen werden in anspruchsvollen, hochdimensionalen, kontinuierlichen, teil-
weise beobachtbaren sowie stochastischen Umgebungen evaluiert und es wird gezeigt, dass
sie in der Lage sind, zuverlässig leistungsstarke Policies aus statischen Datensätzen zu
erzeugen, indem sie modellbasierte Return Schätzungen mit neu vorgeschlagenen Meth-
oden zur Regularisierung der Policy kombinieren. Der letzte Algorithmus enthält sogar
einen Steuerparameter, mit dem Benutzer das Verhalten der Policy - basierend auf der
Nähe zur generierenden Policy - an ihre persönlichen Präferenzen anpassen können. Die
Methode schafft so auf natürliche Art und Weise Vertrauen und erlaubt es eine bessere
Abwägung zwischen Vertrautheit und geschätzter Leistung der Policy zu erzielen, was
sich am Ende auch in verbesserter Performanz auszahlt.

Obwohl das tiefe Reinforcement Learning im letzten Jahrzehnt einen Boom erlebt hat,
hat es die Welt nicht in dem Maße verändert, wie viele Forscher erwartet hatten. Dies liegt
hauptsächlich daran, dass klassische Reinforcement-Lernalgorithmen mit der Umgebung
interagieren müssen, für die sie eine Policy suchen. Während dies bei komplett virtuellen
Problemen wie dem Spielen von Atari-Videospielen kein Problem darstellt, tut es dies
bei realen (physischen) Systemen umso mehr, da das Lernen direkt an ihnen aufgrund
von Kosten und Sicherheitsbedenken oft nicht möglich ist und genaue Simulationen als
Ersatz meist nicht verfügbar sind. Daher besteht ein natürlicher Bedarf an Algorithmen,
die Policies nicht durch Interaktion mit der echten Umgebung trainieren, sondern als
Eingabe einfach alle Interaktionsdaten verwenden, die in der Vergangenheit während des
normalen Betriebs gesammelt wurden.

Die ersten beiden vorgeschlagenen Algorithmen, MOOSE und WSBC, sollen das Er-
lernen von Policies aus statischen, vorab gesammelten Datensätzen durch den Einsatz
gelernter Zustandsübergangsmodelle, als Ersatz für die Umgebung, kombiniert mit einer
Regularisierung der Policy möglich machen. Letztere soll dafür sorgen, dass sich die Poli-
cies in einem Bereich des Zustands-Aktionenraums aufhalten, der durch den Datensatz
abgedeckt ist, da ansonsten die Vorhersagen der Transitionsmodelle nicht genau genug
sind und die Policy bei der Auswertung in der echten Umgebung schlechter abschneiden
wird als durch die Dynamikmodelle geschätzt. MOOSE (MOdel-based Offline policy
Search with Ensembles) führt die Regularisierung der Policy im Aktionsraum durch, in-
dem es ein zusätzliches Variational Autoencoder-Modell der Datensatzerzeugungspolicy
trainiert und die Zielpolicy für Aktionen bestraft, die unter der Generierenden nicht gut
rekonstruiert werden können. WSBC (Weight Space Behavior Constraining) beschränkt
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Zusammenfassung

die Policy hingegen direkt in ihrem Parameterraum, indem es ein MLP-Modell der gener-
ierenden Policy aus den Daten trainiert und die Zielpolicy dann so einschränkt, dass
sie im neuronalen Gewichtsraum nahe daran bleibt. Experimente mit den industriellen
Benchmark- und MuJoCo-Datensätzen zeigen, dass beide Ansätze gültig sind und für eine
Vielzahl von Aufgaben leistungsstarke Policies erzeugen und somit erfolgreich das Erler-
nen von Policies ohne die Notwendigkeit direkter Umgebungsinteraktion ermöglichen.
Während die Aktionsraumbestrafung in MuJoCo Aufgaben Vorteile zu haben scheint,
schneidet WSBC im Allgemeinen in dem industriellen Benchmark-Bereich besser ab, was
wahrscheinlich auf die gradientenfreie Policysuche gepaart mit der niedrigeren Komplex-
ität der für diese Aufgaben erforderlichen Policies zurückzuführen ist. Schließlich zielt der
dritte Algorithmus LION (Learning in Interactive Offline eNvironments) darauf ab, den
Benutzer zu integrieren, um noch bessere Lösungen zu finden: Da Offline RL-Algorithmen
aufgrund des Fehlens von erlaubten Umgebungsinteraktionen ihren wichtigsten Hyperpa-
rameter - wie strikt die Policy zu regulieren ist - nicht einstellen können, schneiden solche
Algorithmen praktisch immer unter ihrer theoretisch besten Möglichkeit ab. Um dieses
Problem zu umgehen, trainiert LION bedingte Policies, die bedingt der gewünschten
Nähe zur Datensatzerzeugungspolicy den Return optimieren, was es dem Benutzer er-
möglicht, zur Laufzeit gut performende Werte für das Regularisierungsgewicht zu finden
und gleichzeitig Kontrolle über das System zurückzubekommen, was das Vertrauen in
die Lösung verbessert.

Indem die vorgeschlagenen Algorithmen mit einer Vielzahl von vorherigen und gle-
ichzeitig vorgeschlagenen modellfreien sowie modellbasierten Offline-RL-Algorithmen,
wie BCQ, BEAR, BRAC, TD3+BC, CQL, MOPO und MOReL, verglichen werden,
bietet diese Arbeit einen umfassenden Überblick über die Leistung der Methoden auf
einer Vielzahl von Benchmark-Datensätzen. Die in dieser Arbeit betrachteten Aufgaben
und Datensätze umfassen niedrige und hohe Explorationsszenarien, sehr schlechte sowie
quasi Expertenpolicies als generierende Policies, vollständig sowie teilweise beobachtbare
und stochastische sowie deterministische Umgebungen. Trotzdem können andere (reale)
Aufgaben und Datensätze abweichende Eigenschaften aufweisen, weshalb die Auswahl
der richtigen Methode für die konkrete Aufgabe weiterhin mit großer Sorgfalt behan-
delt werden muss. Jedoch finden wir, dass modellbasiertes Offline-RL, insbesondere in
Kombination mit bedingten Policies, ein sehr vielversprechender Weg für zukünftige RL-
Einsätze ist.
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1 Introduction

In reinforcement learning (RL), the goal of an agent is to find a control strategy that
maximizes a predefined reward function, only by interacting with the environment. Such
a control strategy is commonly referred to as a policy, and it maps perceived states of
the environment to actions that the agent will take. Agents need to carefully balance be-
tween exploring their environment and exploiting the knowledge they have gained about
it in order to maximize long term rewards - too little exploration results in not enough
knowledge, too much exploration results in behavior that can never fully unleash the
potential contained in the collected information [1].
Recently, RL algorithms have had tremendous success in solving tasks better than any
human could, such as Go, playing Atari video games, performing robotic locomotion,
and other continuous control tasks [2, 3, 4, 5, 6, 7]. These approaches usually rely on a
combination of classic reinforcement learning with function approximation by neural net-
works, enabling to tackle much larger (possibly infinitely large) state and action spaces
than before. Many of them belong to the category of model-free, actor-critic methods,
meaning they do not contain a model of the environment, but instead train a value func-
tion to use as a critic and judge the performance of the actor / policy. It has however
been found [8], that these methods are unable to learn from data that has not been
collected under the trained, or close to the trained policy, which appears to be a large
road blocker on the way to using RL methods in many real world, industrial applications.

While the achievements on the virtual environments mentioned above are tremendous,
it is often not the case in industrial applications that an agent may freely interact with its
environment, since that would include many downsides for the operation of the system:
At least in the beginning, the achieved performance of the agent needs to be assumed
very low compared to the one observed during ordinary operation, which implies a cost
of under performing. On top of that, in mechanical systems there always exists the risk
when performing exploratory actions during the initial phase of an algorithm that they
may damage equipment (e.g. abruptly changing mechanical steerings). Furthermore, in
some environments there exists even danger for human lives if exploratory actions are
taken (consider e.g. self-driving vehicles). It can thus usually be considered that learning
in the real system, directly, in an online fashion is at least impractical if the environment
is not virtual. Another reason for this is the sheer amount of data that many model-free
online algorithms, such as DDPG need in order to solve a task (hundreds of millions of
interactions are not uncommon).

There is thus a need for algorithms that are capable to learn policies offline, i.e. with-
out the possibility to collect any on-policy interactions and only with very limited data
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1 Introduction

provided in the form of a static, pre-collected dataset, where algorithms cannot assume
control over the collection process. While some batch RL algorithms have been pro-
posed over the past years [9, 10, 11, 12, 13, 14], most of them assume that the dataset
sufficiently covers the state-action space of the problem well (i.e. by collecting datasets
via random actions), which is in reality an unlikely assumption: In many areas, large
datasets have been passively collected during ordinary operation, meaning that often,
similar things have happened and that there definitely exist unrepresented areas. Very re-
cently, approaches have thus been proposed to mitigate this problem: Batch Constrained
Q-Learning (BCQ)[8], allows to only perform actions that have been reconstructed from
a model of the policy that generated the dataset, tweaking them for performance only
slightly in order to not deviate too far from the data coverage. While the proposed
method constitutes a successful first step on the path to offline RL methods, there are
arguably things to improve: BCQ is a model-free method, and as such considered to
have inferior data efficiency [15, 16, 17] compared to model-based ones. Since offline
RL is a problem where data is naturally scarce due to the inability to interact with the
environment, learned transition models are likely to improve the situation further. Fur-
thermore, model-based methods have been found to be more stable during training [18],
which is more important in offline RL since it is not possible to evaluate the performance
of intermediate policy candidates.

Throughout this thesis, we will consider a wind turbine as a running
example of the system / environment to optimize in. To illustrate the
above point again: If the wind turbine would generate during early phases
of learning only 75% of its normal electricity output, that would cost the
operator money immediately, which is undesired and one of the reasons

why offline RL is needed in practice.

While learning directly from offline datasets instead of online in the real system is one
of the most important aspects to bring reinforcement learning to the real world, it is
not the only issue remaining to do so. Since real world systems are usually directly or
indirectly controlled by users before an RL based policy can come into play, there is a
need to address users’ wishes about the newly derived policy as well, since it otherwise
will likely not make its way into deployment. Only few prior works address the issue
that users might want to influence the policy’s behavior if they dislike it or simply find
it unfamiliar: E.g. [19, 20] experiment with set valued policies in a medical treatment
RL setting, where clinicians can make a choice among the actions that were pre-selected
by the policy. For continuous control, a few works, such as [21, 22, 23] have derived
policies that remain adaptable in their objectives, i.e. users can later during deployment
specify a different reward function than during training. However, works that establish
the familiarity of the solution to the user as a dimension the user would like to influence
are to the best of our knowledge missing.

2



In this thesis, we will however start with an issue that arises even before offline RL
really starts: While the goal is clear once a task and dataset is given, in practice sit-
uations arise where practitioners have the choice of working on a variety of tasks and
datasets, but the necessary resources to work on all of them are simply not available.
To this end, in Chapter 4, we derive simple and computationally very cheap indicators
ERI (expected return improvement), EAS (Estimated Action Stochasticity), and COI
(Combined Offline Indicator), in order to assess the quality of the provided datasets in
terms of suitability for offline reinforcement learning. Of course, these indicators cannot
always accurately predict the success of an offline RL algorithm on the given dataset, but
we show empirically that if we need to select a subset of the given datasets that suits the
amount of resources we have available, the provided selection by the indicators is very
favourable.
Once the dataset to work with has been selected, the goal is to derive a policy that
performs as well as possible on the true system dynamics. In Chapter 5, we thus develop
two model-based algorithms, MOOSE (MOdel-based Offline policy Search with Ensem-
bles) & WSBC (Weight Space Behavior Constraining), to improve the data efficiency
& robustness over prior model-free and hybrid offline approaches. We show that they
reliably outperform prior algorithms over a range of relevant tasks and datasets, and
pay close attention to the robustness of the algorithms’ performance: Since future access
to the system may be denied if we underperform the prior controller, we analyze the
performance more from a worst case perspective instead of considering the average case.
In this context we examine how policy regularization can effectively be performed in a
model-based learning setup, by performing the regularization either in the action space
(MOOSE), or directly in the policy weight space (WSBC).
Finally, in Chapter 6 we address issues relevant to practitioners which will ultimately
use the trained policies: Since in offline RL contexts, we cannot evaluate the policy prior
to deployment in order to verify, its performance and whether the policy adheres to the
users’ wishes in terms of familiarity, we develop LION (Learning in Interactive Offline
eNvironments), an algorithm to train policies that condition on the proximity to the gen-
erating policy, enabling operators to influence the behavior of the final policy at runtime,
so that behavior that is not desired can immediately be corrected.

Comparing the derived algorithms MOOSE, WSBC, and LION to the existing prior
works BCQ, BEAR, BRAC, CQL (model-free), MOPO, and MOReL (hybrid) in the
offline setting, as well as to DDPG (off-policy, model-free) on nineteen datasets from
four different tasks (industrial benchmark as well as MuJoCo Swimmer, Hopper, and
Walker2D), we provide a comprehensive overview of the performance as well as robust-
ness and utility that model-based RL together with the right policy regularization can
accomplish. We conclude that the proposed algorithms can dramatically improve prac-
tical applicability and deployments in the real world.
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1 Introduction

1.1 Challenges for Reinforcement Learning Deployments in
Industrial Contexts

In [24], the authors identify nine major challenges that constitute the main roadblocks
on the path to more productive use of reinforcement learning technology in real-world
problems. The very first one they establish is “Training off-line from the fixed logs of an
external generating policy”, i.e. what is now known as offline RL. The authors explain
that the necessity for offline learning stems from the fact that simulations are for many
real-world applications simply not available since they are either too complex or too
large / varied and thus too expensive to be practically built. While superhuman perfor-
mance is already achievable on cheaply simulatable tasks such as Atari video games, the
corresponding training techniques cannot simply be used as is for offline learning, and
new techniques need to be found to enable learning from pre-collected datasets by some
unknown generating policy. Interestingly, the authors’ definition of the offline challenge
is more closely related to that of deployment efficient RL [25] than to the pure offline RL
setting, since they assume a scenario in which they can iteratively replace the previous
policy by learning from the batch of data that was generated by it. However, they also
identify the “warm start” phase as the most important challenge, meaning that the first
policy π0 that is learned on the first batch of data needs to achieve a minimum return,
since otherwise the access to the environment might in the future be denied due to lack
of trust in the method. The authors further state that one of the most pressing issues in
this context is the evaluation of policy performances without access to the real environ-
ment, since one of the most fundamental differences to regular supervised learning is that
we assume the data distribution to be different during training and evaluation: While
value functions or transition models are trained under the generating policy, we explicitly
want the target policy to do something different (hopefully better) than the generating
policy, resulting in a by design different data distribution. The resulting problem has
been termed “distribution shift”, and is recognized as one of the fundamental problems
in offline RL [26].

Additionally, the authors of [24] identify high-dimensional states and actions, partially
observable states, as well as delayed reward signals as key road blockers for practical
deployments. High-dimensional state and action spaces can be a problem since each
dimension exponentially increases the amount of data needed to cover the correspond-
ing state-action space. Especially high-dimensional actions can be problematic in reality
since prior existing controllers often do not sufficiently cover the options available. While
we do not explicitly include measures to deal with this issue, the experiments we make
are conducted on benchmarks that can be considered high-dimensional.
In order to deal with the partial observability of the industrial benchmark, we employ
the two most common counter measures: In MOOSE, we provide the policy as well as
the transition model with a history of the past 30 time steps, which should be enough to
“recover” the hidden state of the system. In WSBC and LION, we train recurrent neural
networks that directly learn to maintain a hidden state as a sequence of single-timestep

4



1.2 Contributions

input states is provided to them. In our experiments, the same measures appear to be
sufficient to also deal with the problem of delayed rewards.

Finally, [24] propose “System operators who desire explainable policies and actions”
as a key issue that is currently still preventing more real-world RL deployments. While
we generally agree, we believe this point is not complete: Since real world systems are
“owned and operated by humans”, we need to adhere to requirements they might have
about the policy, even if these requirements have nothing to do with its performance on
the real system. One of these requirements could be explainability: [18] develop ways to
find intuitively understandable policies in the form of fuzzy rules or simple algebraic equa-
tions, and [27] define their policies in a domain specific programming language. However,
explainability is not the only requirement users likely have in practice: Instead of only
understanding the policy, they will likely want to influence its behavior if it doesn’t act
appropriately. This desire for human control and oversight has formally been recognized
in the EU’s guidelines for trustworthy AI [28]. Researchers also argue that in order to be
useful, future AI systems need to adopt a more user-centric approach and behave more
like an intelligent tool that users can employ to achieve their goals [29, 30]. That way,
the best of both worlds would be combined, yielding both “high levels of human control
and high levels of automation”, which we aim to do with LION.

[24] also recognize “safety constraints that should never or at least rarely be violated”
as a major remaining challenge for RL deployments in real-world systems. While offline
learning is certainly related to safety, especially in the training phase (no exploration
means no random actions that are potentially unsafe), offline policy learning does not
directly solve the issue of hard safety constraints as they are given e.g. in autonomous
vehicles. Augmenting (offline) reinforcement learning methods by additional components
in order to provide probabilistic safety guarantees or even provably safe controllers, such
as explored in [31, 14, 32, 33, 34], is needed to make RL feasible in safety critical domains.
Since the focus of this thesis lies on making offline RL possible in general, constraint
satisfying efforts are not considered.

1.2 Contributions

In this thesis, three novel algorithms to derive policies from offline datasets, as well as
one method to evaluate the suitability of datasets for offline reinforcement learning are
proposed:

• The features ERI (Estimated Return Improvement), EAS (Estimated Action Stochas-
ticity), and their combination COI (Combined Offline Indicator) to assess whether
a dataset is promising for offline RL [A]

• The algorithms MOOSE (MOdel-based Offline policy Search with Ensembles) &
WSBC (Weight Space Behavior Constraining) to derive fixed policies from a pre-
collected static dataset, with better performance than prior offline algorithms [B,C,D]
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• The LION (Learning in Interactive Offline eNvironments) algorithm to derive adap-
tive policies that condition on the proximity to the generating policy from a pre-
collected static dataset, which enables users to tune the desired proximity-performance
trade-off at runtime [E,F]

When multiple datasets are available, the features derived in [A] assess dataset quality
in terms of potential return improvement over the generating policy when offline RL is
applied. This helps to decide which datasets to work on and in which order, effectively
enabling practitioners to save resources by identifying the best datasets to work on.

The offline RL algorithms MOOSE & WSBC can then be used to derive policies from
the selected datasets. Compared to a set of prior offline RL algorithms, these two achieve
better returns on most of the considered datasets. They also do so more reliably, making
them better candidates for offline policy search, and thereby improving operators chances
of deploying reinforcement learning based controllers in practical applications.

Since in offline RL, the policies cannot be tested until deployment, it is hard to tune
an algorithm’s hyperparameters. LION policies remain adaptable in the distance to the
generating policy after deployment, so that users may tune this arguably most impact-
ful hyperparameter after training has conceded. This enables them to tune the policy’s
trade-off between familiarity and return optimization, yielding even better performance
than MOOSE & WSBC, and improving the trustworthiness compared to prior works.

[A] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Measuring data quality for
dataset selection in offline reinforcement learning. In 2021 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2021 -

[B] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias
for robust offline deep reinforcement learning. Engineering Applications of Artificial In-
telligence, 104:104366, 2021 -

[C] Phillip Swazinna, Steffen Udluft, Daniel Hein, and Thomas Runkler. Behavior
constraining in weight space for offline reinforcement learning. European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning, 2021 -

[D] Phillip Swazinna, Steffen Udluft, Daniel Hein, and Thomas Runkler. Comparing
model-free and model-based algorithms for offline reinforcement learning. IFAC Confer-
ence on Intelligent Control and Automation Sciences, 2022 -

[E] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Towards user-interactive of-
fline reinforcement learning. NeurIPS 3rd Offline RL Workshop: Offline RL as a “Launch-
pad”, 2022 -

[F] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. User-interactive offline rein-
forcement learning. Accepted at ICLR 2023 - 11th International Conference on Learning
Representations, 2023
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Some works presented in this thesis are furthermore protected by the following patent:

• Phillip Swazinna, Steffen Udluft, Thomas Runkler: Verfahren zum Konfigurieren
eines Steuerungsagenten für ein Technisches System sowie Steuereinrichtung. Eu-
ropean Patent EP3940596A1. 2022-01-19. Siemens AG.

1.3 Thesis Outline

The contents of this thesis are structured as follows: At first, Chapter 2 introduces
the core concepts of reinforcement learning, presents the differences between model-
free and model-based approaches, and introduces the general problem setting of offline
reinforcement learning. Furthermore, Chapter 2 shows examples where prior algorithms
not specifically designed for the offline setting fail to perform and thus motivates the
need for new algorithms. Finally, it presents core techniques, such as particle swarm
optimization and variational autoencoders, which will be needed later in Chapter 5, and
introduces the offline RL algorithms that have been developed concurrently to this thesis
and are used as baselines in the experiments. Chapter 3 introduces the benchmarks that
the approaches are tested on, presents the derived datasets and the transition model
architectures used for the respective environments.
The main contributions of the thesis are then presented in Chapters 4-6: At first, we
develop indicators ERI, EAS, and COI to assess data quality for offline RL in Chapter 4.
We evaluate them empirically and show that they are capable to select a favourable subset
of datasets in which offline RL algorithms can actually improve. Chapter 5 then presents
two novel model-based offline algorithms, MOOSE and WSBC, that aim to derive well
performing policies more robustly than prior works. We examine their performance on
industrial benchmark and MuJoCo tasks more from a worst case perspective in order
to realistically assess their suitability for true offline settings. We compare their results
with a representative set of concurrently proposed offline algorithms. Chapter 6 then
introduces the LION algorithm, which extends the offline setting in the sense that users
need to be able to influence the policy’s behavior after training if it does not behave as
desired. To this end, LION trains proximity conditioned policies, which enable the user
to tune the familiarity of the solution to a level where they are content with both its
performance and familiarity. Table 1.1 provides a short overview over the algorithms’
characteristics and first appearances that are presented and proposed in this thesis. We
summarize and conclude our findings in Chapter 7.
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Model-free Model-based Hybrid Offline Adaptive Chapter

DDPG ✓ 5.1
BCQ ✓ ✓ 2.5

BEAR ✓ ✓ 2.5
BRAC ✓ ✓ 2.5
CQL ✓ ✓ 2.5

MOPO ✓ ✓ ✓ 2.5
MOReL ✓ ✓ ✓ 2.5
MOOSE ✓ ✓ 5.1
WSBC ✓ ✓ 5.2
LION ✓ ✓ ✓ 6

Table 1.1: Brief characterization of the proposed algorithms (bold) as well as the concurrently
developed prior works.
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2 Preliminaries

This Chapter presents the basic methodologies and approaches that lay the foundation
for the novel algorithms developed in this thesis, as well as prior offline RL algorithms
which are throughout this thesis used as baselines in experimental comparisons. Sections
2.1 as well as 2.2 provide a brief introduction to reinforcement learning and its basic
components and techniques. Since this thesis focuses on offline RL, Section 2.3 motivates
the necessity for learning from static datasets and introduces its additional challenges. To
show that the challenges need to be addressed with new methods, 2.4 shows how prior
algorithms (even “batch” or “off-policy” methods) fail when the static dataset doesn’t
cover the state-action space properly. Section 2.5 then introduces concurrently proposed
algorithm designs to mitigate the problems caused by offline learning. Finally, sections
2.6 (particle swarm optimization) and 2.7 (variational autoencoders) introduce methods
used in the novel algorithms that are proposed throughout this work.

2.1 Reinforcement Learning

Reinforcement Learning is a sub-field of machine learning inspired by the idea that biolog-
ical systems learn through interaction with their surroundings. As such, it is concerned
with computational approaches that can learn to achieve goals by interacting with an
environment. The interaction is usually taking place at discrete time steps, during which
the learning entity, commonly referred to as the agent, performs an action and then
perceives the new state of its environment. The agent is in this case never explicitly
told what to do - instead, it additionally receives a reward signal from the environment
which it seeks to maximize. This differentiates RL from the two other main areas of
machine learning: In supervised learning, the goal is to associate data points with the
correct labels as precisely as possible (a common example would be object recognition in
images). In unsupervised learning, the goal is to find structural similarities in collections
of unlabeled data (a common example would be document clustering). In reinforcement
learning however, the agent neither seeks to replicate a set of proposed actions, nor does
it try to uncover some hidden structure in the data (although methods from these areas
may also play a role). Instead, it tries to find a way of acting in its environment, such
that the expected cumulative reward signal over time is maximized.
Usually, the reward signal at a certain time step is in meaningfully difficult environments
not just influenced by the action proposed in that very step, but by the actions taken
in the past as well. Similarly, actions taken now influence rewards in the future, giving
rise to the credit assignment problem: The agent cannot easily tell which actions lead
to which rewards, since they can be arbitrarily delayed. Furthermore, the reward signal
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may in realistic scenarios be subject to noise patterns, or states may not be fully observ-
able, complicating the situation further. RL systems thus usually differentiate between
rewards (the reward of a single step) and returns (the cumulative rewards of an entire
interaction episode, consisting of arbitrarily many time steps), and try to maximize the
latter.

More formally, the environment in an RL problem is commonly formulated as a Markov
Decision Process (MDP)M =< S,A, T, r, γ, s0 >, where S is the set of states describing
the environment , A is the set of actions the agent can choose from to perform in the
environment, T (s′|s, a) : S×A×S → R is the transition function, specifying the dynamics
of how the underlying system moves from one state to the next, r(s, a, s′) : S×A×S → R
is the reward function, γ ∈ [0, 1] is the discount factor specifying how much future
rewards need to be discounted with respect to current rewards, and s0(·) : S → R is the
distribution of starting states.

In the wind turbine example, the state space could be composed of the
sensor readings corresponding to electrical power being generated, current
rotational speed, torque, orientation as well as angle of attack of the tur-
bine blades, measurements of the wind & its turbulence, and vibrations &
velocities of the blades. As actions, we can consider changes in the elec-

trical power generated as well as orientation and angle of attack of the blades. The
transition function will translate the actions to new states and the reward function is
likely the generated electrical power, possibly combined with a penalty for wear and
tear of components.

The agent and environment engage in an action - perception loop (seen in Fig. 2.1), and
produce trajectories of the form τ = (s0, a0, r0, s1, a1, r1, ..., sH−1, aH−1, rH−1), where
H is referred to as the horizon of the MDP. It may be a finite number, but horizons
might as well be infinitely long - or the environment has a set of terminal states after
which a trajectory automatically ends. When the future of a trajectory depends only
on the current state and future actions, the environment states are said to be Markov,
which is a common assumption in RL algorithms, however might not always be satisfied
(many partially observable environments exist). The discounted cumulative return of a
trajectory τ is defined as:

Rτ = γ0r0 + γ1r1 + ...+ γH−1rH−1 =
H∑
t=0

γtrt (2.1)

Note that discounting future rewards makes not only sense from an economical perspec-
tive (payments obtained in the future are commonly discounted by the so called risk-free
interest rate in economics, since the missed opportunity to earn interest needs to be ac-
counted for), but is also necessary when the horizon is potentially infinitely long: When
we assume individual rewards to be bounded, e.g. 0 ≤ rt ≤ α ∀t ∈ N, then the infinite
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Figure 2.1: Agent-environment interaction in a Markov decision process. Figure from [18].

sum describing the return also has a finite upper bound:

Rmax =

∞∑
t=0

γtα =
α

1− γ
(2.2)

Returns can not only be calculated for full trajectories, but also for partial ones, i.e.
Rk =

∑H
t=k γ

t−krt. These returns then have the property that they can be expressed in
terms their future returns, which is essential for theoretical foundations regarding value
functions, which we will introduce in the next section:

Rt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + ...

Rt = rt + γ(rt+1 + γrt+2 + γ2rt+3 + ...)

Rt = rt + γRt+1 (2.3)

The goal of an RL agent is to maximize its expected cumulative return by optimally
choosing the actions in the trajectories. To this end, the agent usually searches for a
mapping π(a|s) : S ×A → R, commonly referred to as policy. The expected return when
following policy π can then be written as:

Eπ[R] = Eπ

[ ∞∑
t=0

γtr(st, π(st))

∣∣∣∣∣ s0 ∼ s0, at ∼ π(st), st+1 ∼ T (st, at)

]
(2.4)

Policies can be represented in different ways, including lookup tables or parameterized
functions. Throughout this work, policies will always be considered to be a simple feed-
forward neural network with parameters θ. Furthermore, the algorithms developed in
this thesis all feature deterministic policies, i.e. at = πθ(st).

2.2 Model-free vs. Model-based Reinforcement Learning

One of the key distinctions between various reinforcement learning algorithms is whether
or not they feature a trained transition model T̂ that is supposed to replicate the true
transition function T . Methods that do train such a model are commonly referred to as
model-based, while those who do not are called model-free. Since many baselines consid-
ered in this thesis are model-free methods, and since RL has historically emerged from
these methods, this section starts with an introduction of the model-free RL paradigm.
Afterwards, we examine the key differences to model-based approaches to solving MDPs,
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and introduce a key distinction we make from popular literature by differentiating be-
tween methods that use only transition models and no value functions, and those that
use both (which we will refer to as hybrid methods).

2.2.1 Model-free

Model-free RL algorithms usually involve estimating a so called value function. In its
most basic form, a state-value function vπ(s) is supposed to provide the return that an
agent would obtain if the environment were currently in state st, and the agent would from
here on follow the policy π, i.e. ∀k ∈ N : at+k ∼ π(st+k) and st+k+1 ∼ T (st+k, at+k):

vπ(s) = Eπ [Rt|st = s] = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣∣∣ st = s

]
(2.5)

The state-value function thus basically tells the agent how good it is to be in a specific
state s, when the agent is following policy π. The agent can in turn use this to estimate
the expected return of a policy π:

Eπ[R0] = Eπ,s∼s0 [vπ(s)] (2.6)

which lays the basis to evaluate policies and finding better ones.
Similarly, the action-value function qπ(s, a) is defined as the expected return Rt when
the environment is in state st = s, the agent performs action at = a, and from then on
follows the policy π:

qπ(s, a) = Eπ [Rt|st = s, at = a] = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣∣∣ st = s, at = a

]
(2.7)

Again, just as the state-value function, the action-value function can thus be used to
estimate the expected return of a policy π:

Eπ[R0] = Eπ,s∼s0,a∼π(s)[qπ(s, a)] (2.8)
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Similarly to Equation 2.3, the state- and action-value functions can be expressed in
terms of a recursive relationship ensuring their consistency:

vπ(s) = Eπ[Rt|st = s]

= Eπ[rt + γRt+1|st = s]

=
∑
a

π(a|s)
∑
s′

T (s′|s, a)
[
r(s, a, s′) + γEπ[Rt+1|st+1 = s′]

]
=
∑
a

π(a|s)
∑
s′

T (s′|s, a)
[
r(s, a, s′) + γvπ(s

′)
]

(2.9)

qπ(s, a) = Eπ [Rt|st = s, at = a]

= Eπ [rt + γRt+1|st = s, at = a]

=
∑
s′

T (s′|s, a)

[
r(s, a, s′) +

∑
a′

π(a′|s′) γ Eπ[Rt+1|st+1 = s′, at+1 = a′]

]

=
∑
s′

T (s′|s, a)

[
r(s, a, s′) +

∑
a′

π(a′|s′) γ qπ(s′, a′)

]
(2.10)

Equations 2.9 and 2.10 are known as the Bellman Equations for MDPs.
Value functions impose a partial ordering on the set of policies: A policy π can be said
to be better than another policy π′, if it is expected to achieve a higher reward in any
possible state, i.e. ∀s ∈ S : π(s) ≥ π′(s). There always exists at least one policy that is
better than or equal to all other policies, which is commonly called the optimal policy
and denoted π∗, even though there can be many optimal ones. All policies π∗ share the
same state- and action-value functions v∗ and q∗, which can be defined as:

v∗(s) = max
π

vπ(s) ∀s ∈ S (2.11)

q∗(s, a) = max
π

qπ(s) ∀s ∈ S, a ∈ A (2.12)

For optimal value functions, Equations 2.9 and 2.10 can be written without specific
reference to a single policy π, by taking the maximum value over the set of possible
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actions A, yielding the Bellman Optimality Equations:

v∗(s) = max
a∈A

q∗(s)

= max
a∈A

Eπ∗ [Rt|st = s, at = a]

= max
a∈A

Eπ∗ [rt + γRt+1|st = s, at = a]

= max
a∈A

E [rt + γv∗(st+1)|st = s, at = a]

= max
a∈A

∑
s′

T (s′|s, a)
[
r(s, a, s′) + γv∗(s

′)
]

(2.13)

q∗(s, a) = Eπ∗ [Rt|st = s, at = a]

= Eπ∗ [rt + γRt+1|st = s, at = a]

= E
[
rt + γmax

a′∈A
q∗(s

′, a′)|st = s, at = a

]
=
∑
s′

T (s′|s, a)
[
r(s, a, s′) + γmax

a′∈A
q∗(s

′, a′)

]
(2.14)

In order to use value functions to find well performing policies, generally two things are
needed: (i) A method to compute the value function vπ given a policy π (in Dynamic
Programming literature this is referred to as policy evaluation), and (ii) a way to improve
a policy once its value function has been computed (referred to as policy improvement). It
can be shown that policy evaluation can be achieved by iteratively applying the Bellman
equation to an arbitrarily initialized (except terminal states, which need to have of value
of zero) estimate of a value function v0 or q0, i.e.:

vk+1
π (s) =

∑
a

π(a|s)
∑
s′

T (s′|s, a)
[
r(s, a, s′) + γvkπ(s

′)
]

(2.15)

qk+1
π (s, a) =

∑
s′

T (s′|s, a)

[
r(s, a, s′) +

∑
a′

π(a′|s′) γ qkπ(s′, a′)

]
(2.16)

Policy improvement can then be achieved by examining deviations from the current policy
π: If the agent is in state s, then it knows the value of the state if it follows π, however
maybe it would be better to perform an action anew ̸= π(s). The value of performing the
action anew and then following π again is given by q(s, anew), which can also be expressed
in terms of v(s):

qπ(s, a
new) =

∑
s′

T (s′|s, anew)
[
r(s, anew, s′) + γvπ(s

′)
]

(2.17)

If the value of qπ(s, anew) is greater than vπ(s), then a new policy π′(s) = anew has been
found, which is better than the prior policy, i.e. π′ ≥ π. It can be shown that if T and r
are known, iteratively applying policy evaluation and policy improvement, will converge
to the optimal policy π∗ as well as the optimal value function v∗. This procedure is
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known as policy iteration. Using the Bellman optimality equation, the policy evaluation
part may even be truncated to a single step (for each state) instead of performing it
iteratively until convergence. The approach is known as value iteration and can still be
shown to converge to the optimal value function v∗:

vk+1(s) = max
a∈A

∑
s′

T (s′|s, a)
[
r(s, a, s′) + γvk(s′)

]
(2.18)

Since we can generally not assume complete knowledge over T or r, and it is not explicitly
modeled in model-free reinforcement learning methods, algorithms need to learn primarily
from experience, i.e. they interact with the environment and learn only from the data that
has thereby been collected. Model-free algorithms mostly learn from the data by storing it
in a FIFO buffer B of fixed size, from which they sample to compute the expectations over
the transition dynamics. Furthermore, in large action spaces (possibly infinitely large in
the continuous case), the expectations are not calculated over all possible future actions,
but instead a few actions are sampled from the policy (if the policy is deterministic, a
single sample obviously suffices). That way, we may rewrite the Bellman Equations 2.9
and 2.10 as:

vπ(s) ≈ Es,a,s′∼B[r(s, a, s
′) + γvπ(s

′)] (2.19)
qπ(s, a) ≈ Es,a,s′∼B,a′∼π(s′)[r(s, a, s

′) + γqπ(s
′, a′)] (2.20)

While Monte-Carlo based methods would also be able to compute value functions without
knowledge over T or r, they would need to simulate trajectories until termination in order
to estimate values, which slows down learning, and has been empirically shown to be
much less data efficient than temporal difference (TD) methods, which use the Bellman
operator directly to bootstrap on the past estimate of the value function to obtain a
new one. TD methods aim to minimize the TD error in order to enforce a consistent
value function, and it has been shown that this leads to convergence to the correct value
function for the policy that is being evaluated:

vk+1
π (s) = argmin

v
Es,a,s′∼B

[
[(r(s, a, s′) + γvkπ(s

′))− v(s)]2
]

(2.21)

qk+1
π (s, a) = argmin

q
Es,a,s′∼B,a′∼π(s)

[
[(r(s, a, s′) + γqkπ(s

′, a′))− q(s, a)]2
]

(2.22)

Just as in the dynamic programming paradigm, where T and r are assumed to be known,
the estimated value functions can then be used in a policy- or value iteration based
algorithm style to obtain improving policies. The model-free algorithms considered in
this thesis all approximate both the value function as well as the policy by means of a
neural network, since the state and action spaces are continuous and thus a lookup table
would be infinitely large. The parameters of the neural networks representing the value
functions are optimized to minimize the TD-error, as shown in Equations 2.21 and 2.22,
using gradient descent (usually only the q-function is used). The policies are then also
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optimized via gradient descent to maximize their value:

πk+1(s) = argmax
π

Es∼B[v
k+1
πk

(s)] (2.23)

πk+1(s) = argmax
π

Es∼B,a∼π[q
k+1
πk

(s, a)] (2.24)

Due to the function approximation, the convergeance guarantees of the methods are
unfortunately lost. They have however been shown to still work well empirically, and
thus enable learning in continuous environments, which would otherwise not be possible.

2.2.2 Model-based

Model-based algorithms train a surrogate model T̂ , which is supposed to replicate the
true transition dynamics function T . Since the true dynamics function is unknown,
the surrogate needs be learned entirely from experienced interactions with the agent’s
environment. Once trained, a transition model predicts the future state s′ based on the
current state s and the action a chosen by the agent:

s′ ∼ T̂ (s, a) (2.25)

or

s′ = T̂ (s, a) (2.26)

if T̂ is deterministic. Throughout this thesis, transition models are considered to be
neural networks. They are generally trained on a batch of data B that contains N
tuples of states, actions, future states, and rewards that have been collected by the
agent or a different entity, by interacting with the environment. In order to optimize
the parameters ϕ of the transition model T̂ϕ’s prediction output, a maximum likelihood
approach is usually followed:

L(ϕ) =
N−1∏
i=0

[p(s′i|si, ai, ϕ)] (2.27)

ϕ∗ = argmax
ϕ

L(ϕ) (2.28)

For a probabilistic transition model, many prior works assume a network that predicts
mean µϕ and variance Σϕ of a Gaussian distribution. Since the product over many terms
leads to numerical instabilities, the logarithm of the likelihood is usually optimized, since
it transforms the product into a sum and doesn’t change the location of the optimum.
As gradient descent usually minimizes the target function, the negative log likelihood
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(NLL) is usually the standard loss function used in this setting:

Lprob(ϕ) = − log
N−1∏
i=0

[p(s′i|si, ai, ϕ)]

= −
N−1∑
i=0

[log p(s′i|si, ai, ϕ)]

= −
N−1∑
i=0

[
logN (s′i|µϕ(si, ai),Σϕ(si, ai))

]
= −

N−1∑
i=0

[
log

[
1√

2πΣϕ(si, ai)2
e
−

(s′−µϕ(si,ai))
2

Σϕ(si,ai)
2

]]

=
N−1∑
i=0

[
− log

[
1√

2πΣϕ(si, ai)2

]
+

(s′i − µϕ(si, ai))2

Σϕ(si, ai)2

]
(2.29)

For a deterministic model, the result is a little simpler since we assume Gaussian dis-
tributed errors with a fixed variance:

Ldet(ϕ) =
N−1∑
i=0

[
− log

[
1√
2πΣ2

]
+

(s′i − µϕ(si, ai))2

Σ2

]

=
N

Σ2
−N log

[
1√
2πΣ2

]
+

N−1∑
i=0

(s′i − µϕ(si, ai))2 (2.30)

Since the location of the optimum stays the same when a constant is added, the first
term may be omitted to yield the well known mean squared error:

ϕ∗det = argmin
ϕ

N−1∑
i=0

(s′i − µϕ(si, ai))2 (2.31)

To account for different batch sizes, in both cases the expected value is usually opti-
mized instead of the sum over all elements in the batch:

ϕ∗ = argmin
ϕ

EB[L(ϕ)] (2.32)

Instead of directly predicting the future state based on current state and action, tran-
sition models may as well try to predict the difference ∆s = s′− s. Prior work has found
that in some problems this quantity appears to be easier to model than the full state. In
any case, it is beneficial to normalize the target as well as the inputs by their observed
mean and variance in the batch, i.e. snorm = s−µs

σs
. Prior work has found that this can

have large effects on the performance of the model. In the notation above, we implicitly
consider the reward as a dimension of the state, however one may also learn an extra
model r̂(s, a, ŝ) on top of T̂ in order to predict the reward separately.
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When the state of an environment is not fully observable, i.e. there exist dimensions
that influence the future state and reward that are not part of the state that the agent
can perceive, it is often useful to include past states, in order to maintain an estimate of
the hidden state of the environment and still come up with accurate predictions. In this
case, recurrent neural networks (RNNs) are usually the model of choice: In addition to
the current state and action, they take as an input the learned hidden state ht at time
step t, and are trained so that ht reflects all the information necessary from the past
states in order to predict the future:

st+1 ∼ T̂ϕ(st, at, ht) (2.33)

or
st+1 = T̂ϕ(st, at, ht) (2.34)

Like a trained value function, a transition model T̂ can be used to evaluate the per-
formance of an RL policy π. Instead of simply evaluating the value function over the
set of starting states, the transition model is used to perform a “virtual”, or “imagined”
trajectory, by iteratively querying the policy for an action and the transition model for
a future state, starting with s0 ∈ s0:

R(π, T̂ ) = Es0∈s0

[
H−1∑
t=0

γtr(T̂ (ŝt, π(ŝt), ht−1))

]
(2.35)

Here, the reward is assumed to be either implicitly or explicitly part of the state, so that
r(·) simply denotes extraction of the reward output from the transition model. One may
however as well use an extra model for the reward, i.e.:

R(π, T̂ ) = Es0∈s0

[
H−1∑
t=0

γtr̂(ŝt, π(ŝt), s(T̂ (ŝt, π(ŝt), ht−1)))

]
(2.36)

Both times, ŝ denote the past state predictions of the model that are fed back into it
together with the maintained hidden state and new action.

Since both the transition model T̂ as well as the policy π are assumed to be differen-
tiable neural network models, it is possible to optimize the policy parameters θ by means
of gradient descent, however in this thesis we will also explore gradient-free options.

θ∗ = argmin
θ
−R(πθ, T̂ ) (2.37)

Using Eqs. 2.35 or 2.36 to assess policy performance and then directly optimize it with
Eq. 2.37 can be considered a special case of model-based RL methods that do not use
any value function. Often, when an algorithm is described as being model-based, there is
still a state- or action-value function involved, a paradigm that will be briefly introduced
in the next section.
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2.2.3 Hybrid Approaches

Many works that propose algorithms in the model-based domain do not directly use the
trained transition models to optimize the policy. Instead, a value function is additionally
trained to assess the policy’s performance. The policy is again optimized with respect to
the value function (like in the model-free setting), however the data that is collected by
the policy does not necessarily stem from the real environment. Instead, a percentage of
the interactions come from the transition model (up to 100%, i.e. no real environment
interaction any more). Throughout this thesis, such approaches will be called hybrid
since they apply methods from both worlds. One of the classic hybrid algorithms is the
so-called dyna architecture, in which the agent in each episode collects some experience
from the real environment, then performs a value function update with the collected
data, trains the transition model, and finally updates the value function for a number of
steps, but this time with simulated data from the transition model. Other, more recent
examples of hybrid approaches include [41, 42, 43].
Whether hybrid or not, model-based methods are generally regarded to be more data-
efficient, i.e. they need to collect fewer interactions with the true dynamics to arrive at
the same policy performance as model-free ones. This makes sense intuitively since the
same interaction is used multiple times (in each epoch of model training) and since the
information it represents is saved in the transition model, where it is re-used when new
data is generated. Another theory about why model-based methods are more efficient
concerns learned representation: Since the transition model needs to predict all state
dimensions as well as the reward, the supervision signal provided can be much more
helpful than when just trying to predict the value. Since offline RL is an inherently
data-scarce task, data efficiency is critical, and we are thus primarily concerned with
developing model-based algorithms throughout this thesis.

2.3 Batch and Offline Reinforcement Learning

While reinforcement learning has classically emerged from the assumption that the agent
is allowed to directly interact with its environment, some works have always explored al-
ternative settings, in which e.g. only a limited number of policy deployments was possible
(see [9, 44, 45]). These methods have been called semi-batch, or growing batch setting,
since the dataset the agent learns from is in this case not entirely static, but instead the
agent can collect additional data a certain number of times. At the same time, the set-
ting is also not entirely online any more, because the agent cannot change the collecting
policy arbitrarily often (in the extreme case after every update).
In the “batch” or “offline” setting, interaction with the real environment is entirely pro-
hibited until a final policy has been trained and is being deployed. The setting became
more popular recently, since it promises to enable learning control strategies purely from
static, previously collected datasets, that have been obtained via logging during ordinary
operation, which would alleviate many issues relating to safety: Most online methods at
least initially don’t act very goal oriented and need to take many random exploratory
actions that could in real-world scenarios result in damaged equipment or even be harm-
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ful for humans (e.g. nobody would want to train an RL policy for self driving cars from
scratch). However, most of the early batch RL methods, such as [46, 47, 11] assume that
the dataset was collected under an extremely exploring policy, e.g. uniformly random
actions at every time step. While this leads to models that generalize well everywhere
in the state-action space, it is not generally a realistic assumption in offline RL. Many
datasets contain only very limited exploration since most of the data is collected during
productive operation, where many times, similar events occur over and over.

In the most recent wave of offline RL works (e.g. [48, 49, 36]), datasets have been
considered that contain very narrow data distributions up to no exploration at all. Cor-
responding algorithms need to balance carefully between optimizing their policy for per-
formance and staying within the support of the dataset, since otherwise the trained policy
performs poorly once deployed on the real system, an issue that unadapted online algo-
rithms face, as will be shown in the next section. See Fig. 2.2 for a simplified comparison
between offline and online learning.

2.4 Fail Cases of Prior Methods on Offline Data

Prior works have shown that algorithms that are designed for the online setting cannot
directly be used for the offline setting, even if they are designed to learn from off-policy
data, i.e. interactions that weren’t collected under the same policy. In [8], the authors
train a DDPG (deep deterministic policy gradient, a widely used model-free algorithm [4])
agent online in a simulated environment until it reaches a certain performance. DDPG
uses a so called replay buffer, from which it samples interactions to learn from, so in
principle it should be possible to learn from offline datasets with DDPG, simply by
putting all interactions from the static dataset into the replay buffer and not allowing
any further collection. Their study however shows that this is not possible: They collect
different datasets, either by just evaluating the online trained agent in the environment
and recording the result or by recording all interactions during training of the online
agent (both can be augmented with action space noise). The DDPG agents then trained

Figure 2.2: Difference between commonly assumed online RL, and offline RL, where interaction
with the real environment is not possible for the agent, and behavior needs to be
learned only from recorded past interactions.
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on the resulting datasets however are unable to remotely replicate the performance,
even though some of them are trained on the exact same data. See Fig. 2.3 for a
visualization of the resulting training curves of online and offline trained DDPG agents.
The authors attribute the discrepancy between the performances of the two agents mostly
to a phenomenon they term extrapolation error, which occurs when during optimization
of the policy, the value function is evaluated for state-action pairs that it hasn’t seen in
the training data. In online algorithms, this would be corrected by collecting new data,
but in the offline case, there is no recovery.

Figure 2.3: Performance curves of online and offline learning DDPG agents. On the left, the
online agent directly trains in the environment with some additional action noise,
while the offline agent trains on the final dataset containing all transitions that
occurred during training of the online agent. On the right, the final trained online
agent is only being evaluated, and the recorded data is used for training of the
offline agent. Figure adapted from [8].

While DDPG is a model-free algorithm that fails in the offline context, we briefly
point out in this section that model-based approaches may suffer from the very same
phenomenon, since the transition models are also evaluated for state-action pairs that
haven’t been seen before if the trained policy deviates from the policy that collected the
data. In Fig. 2.4, we show that a naive model-based setup, such as the one discussed in
Section 2.2.2 fails to reproduce even the generating policy’s performance on a subset of
the industrial benchmark datasets (which we will introduce later in Chapter 3), which
exhibit little to no exploration. Throughout this thesis, it will be our goal to close
this gap, and find policies that perform better than the generating policy, by deriving
algorithms that can effectively learn from datasets even when they contain very little
exploration.
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Figure 2.4: A simple model-based policy optimization scheme exhibits similar issues as found
in the model-free setting. The trained policies evaluate the transition models in
areas of the state-action space that haven’t been seen in the datasets, causing high
extrapolation error and ultimately a performance below the generating policy.

In the wind turbine example, if an operator would like to train an RL
policy, because they hope to improve long term performance and thus rev-
enue of their system, they are faced with a variety of issues when trying to
do so: Classical online algorithms would need to learn on the turbine di-
rectly, which would due to many exploratory actions mean at least a likely

much lower performance in the beginning, possibly even damage of equipment due to
actions that lead the system to undesired states (e.g. high vibrations, too high rota-
tional speeds, etc.). Also, prior off-policy approaches cannot deal with just a batch of
past operational data without new system interaction, meaning a high likelihood of
under-performing the previous controller with no hope of improvement. The operator
thus has a natural need for algorithms that can learn a policy purely from historic
operational data, i.e. offline RL algorithms.

2.5 Concurrently Proposed Offline RL Algorithms

Before this thesis was started, the offline RL scenario was rather uncommonly encoun-
tered in academic literature. While a few batch / offline RL works existed, most of
them did not explicitly take into account the problem of the distribution shift, that oc-
curs when training policies that visit states and actions that have not been seen in the
dataset. Instead, many papers assumed a very well explored dataset, so that the extrapo-
lation error could be ignored. A notable exception to this was the paper “Off-Policy Deep
Reinforcement Learning without Exploration” [8], which has been claimed to propose the
first batch deep reinforcement learning algorithm. In it, the authors show that classic RL
algorithms fail when they are not allowed to interact directly with the environment, but
instead have to learn just from a previously collected dataset. During the preparation
of this thesis however, a plethora of methods have been proposed for offline learning for
continuous control. In this section, we aim to give a representative overview and details
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on the most popular methods, which will serve as baselines later on in the experimental
section. To this end, we mostly follow the summary provided in contribution [D]. The
overview however does not make any claims regarding completeness - since the field of
offline RL has taken on a huge amount of interest from academic and industrial players,
the amount of methods proposed is growing rapidly, rendering any ambitions for an ex-
haustive review extremely challenging.

The model-free, value function based paradigm is employed by the majority of of-
fline RL algorithms in the corresponding literature. One of the first methods to consider
policy learning without environment interaction, only from a static pre-collected dataset
with potentially insufficient amounts of exploration was Safe Policy Improvement under
Baseline Bootstrapping (SPIBB) [50]. It relies on the assumption that the dataset gen-
erating policy is known and made available to the algorithm in order to provide a safe
fallback option. Batch Constrained Q-learning (BCQ) [8] is the approach developed in
the above mentioned “Off-Policy Deep Reinforcement Learning without Exploration”. In
contrast to SPIBB, it does not rely on the availability of the generating policy (none of
the following approaches do), but instead learns a variational autoencoder (VAE) based
representation of it from the dataset. Despite the learned perturbation model in BCQ,
which tweaks sampled actions for better value in a predefined range, and could be viewed
as a parametric policy model, the authors chose to give it the “Q-learning” stamp since it
uses the Bellman optimality operator by taking the value-maximizing action among a set
of sampled actions from VAE model. Further, BCQ is likely the first offline RL method
designed for continuous state and action spaces. Expected Max Q-learning (EMaQ)
[51] considers a simplification of the BCQ approach by getting rid of the perturbation
model and only choosing the value maximizing action among a (larger) batch of sampled
actions. Bootstrapping Error Accumulation Reduction (BEAR) [52] is one of the first
offline methods to employ a closed-form policy: It learns by imposing a penalty based on
the maximum mean discrepancy (MMD) [53] between target and (learned) generating
policy actions. Behavior Regularized Actor Critic (BRAC) [54] is most similar to BEAR,
however pioneered the idea that not only the policy, but also the value function should
be penalized during training, meaning that the algorithm tries to assign lower values to
state-action pairs outside the known data distribution.
The Advantage weighted Behavior Model (ABM) [55] simply “keeps doing what worked”.
Basically, the algorithm can be seen as a sort of weighted behavior cloning, where behav-
ior that yielded high returns is weighted higher and is thus more likely to be replicated by
the trained policy. Similar approaches have been presented in Advantage Weighted Re-
gression (AWR) as well as Reinforcement Learning via Supervised Learning (RvS)[56, 57],
where a policy is conditioned on the expected return-to-go in an episode (RvS does not
even contain a value function). Best Action Imitation Learning (BAIL) [58], Critic Reg-
ularized Regression (CRR) [59], and Curriculum Offline Imitation Learning (COIL) [60]
also build on the idea of weighted behavior cloning: BAIL uses a state-value function
to imitate only well performing actions, CRR employs filtered policy gradients to only
imitate behavior with high Q-value actions, and COIL imitates only behavior of policies
adjacent to the currently trained one which exhibit higher estimated returns, since these
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can be more easily learned.
Many developed offline RL approaches build on the DICE (DIstribution Correction Es-
timation) framework introduced in [61]: AlgaeDICE [62], GenDICE [63], and Gradient-
DICE [64] all estimate the proportional discrepancy between the state-action visitation
distributions of the newly trained and the generating policy in order to correct the return
estimation. Similarly, in Policy Sampling Error Corrected TD-0 (PSEC-TD-0) [65] the
actions are re-weighted using importance sampling according to how likely the actions
are under the trained policy, instead of simply assuming the visitation frequency induced
by the dataset for value function training.
The algorithms REM (Random Ensemble Mixtures) [66], PEBL (PEssimistic ensemBLes
for offline deep reinforcement learning) [67], and O-RAAC (Offline Risk Averse Actor
Critc) [68] rely on learning to minimize some form of risk instead of directly regulariz-
ing the trained policy towards the generating one: REM requires the policy to perform
well on randomly selected members of the learned value function ensemble without an
explicitly added penalty term. By contrast, PEBL builds on the Double Deep Q-learning
(DDQ) algorithm as well as Soft Actor-Critic (SAC) [69, 7] to impose a value penalty
based on the prediction discrepancies among the bootstrap ensemble members. O-RAAC
also learns to be risk averse by employing pessimistic value estimates, which under some
predefined distributional shifts give the algorithm theoretical performance guarantees.
O-RAAC is shown to visit much fewer high risk states than prior offline methods.
The works presented in [70] and [71] (CQL - Conservative Q-Learning) both modify the
bellman backup to train a conservative action-value function (i.e. one that lower bounds
the true value of the corresponding action) and find an approximately optimal policy in
the space of policies explored by the dataset.
Other proposed algorithms include OPAL (Offline Primitive discovery for Accelerating
offline reinforcement Learning) [48], which aims to alleviate problems originating from
sparse rewards (a classically hard problem since credit assignment becomes cumbersome).
The algorithm builds a set of skills by imitating parts of trajectories, and then uses them
as a set of actions for a higher level policy which only chooses the skill to execute (the
step-wise skill execution is then performed by a lower level policy). This effectively short-
ens the horizon from the point of view of the algorithm and it is shown empirically to
greatly improve learning in sparse reward settings. [72] presents Deep Averagers with
Costs MDPs (DAC-MDPs), which introduce costs for exploiting under-represented parts
of the state-action space in the initial dataset. [73] introduces TD3+BC (Twin Delayed
Deep Deterministic policy gradient + Behavior Cloning), which is an adaptation of the
TD3 algorithm to the offline setting by only introducing minimal changes. Despite not
even modeling the generating policy, it still performs well on MuJoCo datasets.

Model-based methods have previously lead a niche existance in offline RL litera-
ture, but quickly catch on in popularity. Generally, model-based algorithms have been
attributed better sample efficiency than model-free algorithms (i.e., they achieve the
same returns with fewer environment interactions), while at the same time yielding lower
asymptotic performance due to model bias [15, 16, 17]. In the offline setting, the for-
mer seems much more important, and model-based methods are thus often motivated by
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highlighting their efficiency in limited data scenarios. As opposed to model-free methods,
these algorithms learn a model of the transition dynamics of the underlying MDP, by
predicting future states and rewards using prior states and actions as they were recorded
in the initial dataset. In which capacity this model is then used however wildly differs
among proposed algorithms. We will in the following differentiate methods by whether
they use the models for additional data generation and whether they additionally make
use of a value function. Basically, we identify two types of methods in the (offline) model-
based RL iterature:
The first type uses the learned transition model directly for policy training without any
extra models or data generation steps [11, 46, 74]. Usually, algorithms of this type per-
form imagined trajectories using the trained policy and the transition model instead of the
true environment. They then search for policies that maximize the resulting estimated
return in the imagined trajectories, possibly using gradients that are backpropagated
throughout all interaction steps.
MOReL (Model-based Offline Reinforcement Learning), MOPO (Model-based Offline
Policy Optimization), and COMBO (Conservative Offline Model-Based policy Optimiza-
tion) [42, 43, 41] belong to the second type of model-based methods. This type uses
the transition models not directly for policy training, but instead to generate additional
interaction samples to enrich the initial dataset. This larger dataset is then used for
offline value function learning and the policy is then still optimized with respect to the
value function. Hence, we will refer to these algorithms as being hybrid methods in this
thesis, as already outlined in Section 2.2.3. MOReL and MOPO both use their transi-
tion models to derive an uncertainty estimate, which is either used to penalize synthetic
rewards, or to stop data generation in areas of the state-action space that the models are
too uncertain about. The trained policy should thus be unable to exploit the transition
models in regions of the state-action space in which they are not sufficiently accurate.
COMBO also uses transition models for additional data generation. As the authors how-
ever observe that the accuracy of the generated data samples degrades the further away
from the true data points they are collected, they simply penalize distance to the initial
datapoints measured in time steps.

Baselines considered in this thesis: Among the above mentioned algorithms, we select
a subset to compare against the new contributions we make in Chapters 5 and 6. Among
them are the five model-free algorithms BCQ, BEAR, BRAC, CQL, and TD3+BC, as
well as the model-based hybrid methods MOPO and MOReL. On top of that, we include
a comparison with the popular (model-free) DDPG algorithm, which does not contain
any adaptations to the offline RL setting. In the following, we briefly present the key
characteristics of each algorithm.

Deep Deterministic Policy Gradient (DDPG) [4] trains a deterministic policy
to maximize its value function. As it is not specifically designed to work in an offline
setting, it samples interactions for its updates from a replay buffer B, which is assumed to
be regularly updated and filled with new samples that were collected under the currently
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trained policy by interacting with the real environment:

Q̂k+1 =argmin
Q

Es,a,s′,r∼B

[(
r + γQ̂k(s′, πk(s′))−Q(s, a)

)2]
(2.38)

πk+1 =argmax
π

Es∼D

[
Q̂k+1(s, π(s))

]
(2.39)

Batch Constrained Q-Learning (BCQ) [8] can be considered a special case on
the edge between Q-learning and actor-critic approaches: While Q-learning approaches
commonly use the Bellman optimality operator (i.e. the maximum over all actions)
to update the value function and then classically select the action greedily without an
explicit policy representation (originally, Q-learning is defined for discrete actions), actor-
critic approaches usually learn an explicit representation of the policy and alternatingly
use the ordinary Bellman operator (i.e. the expectation over actions) to estimate the
Q-function for that policy and then optimize the policy with respect to the Q-function.
BCQ trains a variational autoencoder (VAE) based representation G of the policy that
generated the dataset and then uses it during value function training (and later during
deployment) to sample actions that the generating policy would have taken given the
current state. It then considers the action that yielded the best value going forward.
However, the algorithm also learns a so called perturbation model ξ(s, a,Φ), which is
allowed to change the chosen action up to a value of Φ, so the method features parts of
both paradigms. Note that BCQ, as well as most other proposed algorithms, consider
the reward r at a certain time step as an explicitly saved and sampled feature from the
dataset:

Q̂k+1 =argmin
Q

Es,a,s′,r∼D

[(
r + γ max

a′∼G(s′)

[
Q̂k(s′, a′ + ξk(s′, a′,Φ))

]
−Q(s, a)

)2
]

ξk+1 =argmax
ξ

Es∼D;a∼G(s)

[
Q̂k+1(s, a+ ξ(s, a,Φ))

]
(2.40)

The final BCQ policy can then be written as:

π(s) = argmax
a∼G(s)+ξ(s,a,Φ)

Q(s, a+ ξ(s, a,Φ)) (2.41)

Bootstrapping Error Accumulation Reduction (BEAR) [52] can be much more
clearly categorized as being an actor-critic algorithm. It alternates between learning an
action-value function based on the dataset and the current policy and then updates
its explicit policy representation to maximize the value function. Since BEAR is not
constrained to only sample actions that were likely under the generating policy, it needs to
regularize the policy in a different way: In addition to maximizing it’s Q-value, the policy
is trained to minimize the maximum mean discrepancy (MMD) between the trained
policy and a similar VAE model G of the generating policy. In order to be able to do
so, the policy π is not a deterministic feed-forward neural network like the perturbation
model in BCQ, but instead a Gaussian policy, i.e. a network that predicts mean and
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standard deviation of a Gaussian distribution from which actions are then sampled.

Q̂k+1 =argmin
Q

Es,a,s′,r∼D;a′∼πk(s′)

[(
r + γQ̂k(s′, a′)−Q(s, a)

)2]
(2.42)

πk+1 =argmax
π

Es∼D

[
Q̂k+1(s, π(s))− λMMD(π(s), G(s))

]
(2.43)

Behavior Regularized Actor Critic (BRAC) [54] is a generalization of BEAR:
Instead of using a specific divergence metric, BRAC leaves open the choice of divergence
to use for regularizing the policy to stay close to the generating policy. Also, BRAC does
not use a VAE model of the generating policy, and instead models the generating policy
β with the same architecture as the trained policy π (which is a Gaussian feed-forward
network, like in BEAR). Further, BRAC introduces the idea that policy regularization
is not the only way to keep the policy close to the generating policy in actor-critic ap-
proaches: In BRAC-v, not only the policy, but also the action-value function is penalized
for state-action pairs unlikely under the generating policy. That means that Q-values
for state-action pairs that haven’t been observed are naturally lower and policy opti-
mization should thus prioritize behavior closer to the generating policy even when purely
maximizing value. The penalty coefficients α can of course be adjusted:

Q̂k+1 =argmin
Q

Es,a,s′,r∼D;a′∼πk(s′)

[(
r −Q(s, a) + γ

[
Q̂k(s′, a′)− αD(πk(s′), β(s′))

])2]
πk+1 =argmax

π
Es∼D

[
Q̂k+1(s, π(s))− αD(π(s), β(s))

]
(2.44)

The authors empirically find the KL-Divergence to perform best (i.e., in the above, re-
place D with KL). The standard values for α are 1. A variant which only penalizes
divergence during policy update is called BRAC-p and obtained by setting α = 0 in the
value update. BRAC-v is however found to perform better and thus used as a baseline
when we refer to BRAC.

Conservative Q-Learning (CQL) [71] picks up on the idea introduced in BRAC
to regularize the value function instead of the policy. The method aims to learn a Q-
function that lower-bounds the true action-value function, so that unregularized policy
updates to maximize the policy performance become feasible as they do not threaten to
cause extrapolation error any more. To do so, the Q-function backup is modified, so that
the Q-values are minimized for state-action pairs that have not been seen in the data:

Q̂k+1 = argmin
Q

[
α ·
(
Es∼D;a∼πk(s)[Q(s, a)]− Es,a∼D[Q(s, a)]

)
+

1

2
Es,a,s′,r∼D;a′∼πk(s′)

[(
r + γQ̂k(s′, a′)−Q(s, a)

)2]]
(2.45)

The terms multiplied by the regularization coefficient α are meant to minimize the value
of actions proposed by the policy if they are not sufficiently similar to the actions seen
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in the dataset - otherwise, the two terms offset. Policy updates are then performed by
simply maximizing the corresponding Q-values:

πk+1 = argmax
π

Es∼D

[
Q̂k+1(s, π(s))

]
(2.46)

Twin Delayed Deep Deterministic policy gradient + Behavior Cloning [73]
features a more simplistic approach towards offline RL: The authors start with an existing
RL algorithm, in this case TD3, and try to make only absolutely minimal changes in order
to make it work in the offline case. To this end, the algorithm contains an additional
behavior cloning term in the policy update, which penalizes squared differences between
policy and data actions:

πk+1 = argmax
π

Es,a∼D

[
λQ̂k+1(s, π(s))− (π(s)− a)2

]
(2.47)

Interestingly, even though the adaptation seems so simple, TD3+BC was able to perform
well on the D4RL benchmark datasets. Together with CQL, it is among the few offline
algorithms that do not need to train a model of the generating policy, reducing the
amount of screws and bolts involved, making the method less error prone. The Q-
function update is performed in the standard way, using the ordinary Bellman backup:

Q̂k+1 = argmin
Q

Es,a,s′,r∼D

[(
r + γQ̂k(s′, πk(s′))−Q(s, a)

)2]
(2.48)

Model-based Offline Policy Optimization (MOPO) [43] was one of the first
model-based offline RL methods proposed. As such, it trains stochastic transition models
T̂ (s′|s, a) to estimate the true transition dynamics T (s′|s, a). The networks are used to
predict mean and standard deviation of a Gaussian distribution for the future states.
Such a model can be trained by using the loss derived in Eq. 2.29. MOPO uses the
standard deviations predicted by the transition models to derive an uncertainty penalty
which is added on top of the reward for synthetic samples:

r̂(s, a) = r(T̂ (s, a))− λ max
i=1..M

||Σi(s, a)||F (2.49)

Where r(T̂ (s, a)) denotes the reward prediction of the dynamics model when executing
action a in state s, Σi denotes the predicted standard deviation of the future state distri-
bution by the ith transition model, and ||.||F is the frobenius norm. MOPO thus uses the
dynamics ensemble with M members to generate new synthetic data with conservatively
estimated rewards. A regular online, model-free algorithm can then be used on top of the
ensemble as if it were the true environment. MOPO uses well known Soft Actor-Critic
(SAC) [7] as an instance of such an algorithm.

Model-based Offline Reinforcement Learning (MOReL) [42] is conceptually
very similar to MOPO: The algorithm also trains an ensemble of transition models to
learn the dynamics from the interactions provided in the dataset. However, the transition
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models in MOReL are deterministic, so they are obtained using Eq. 2.31. Instead of
directly penalizing synthetic rewards, the algorithm then defines a so called Uncertain
State Detector (USD) by means of a model-disagreement approach:

USD(s, a) =

(
max
i,j

[
s(T̂i(s, a))− s(T̂j(s, a))

]2)
< ϵ (2.50)

where s(T̂i(·)) denotes the future state prediction of the ith ensemble member and ϵ is a
threshold parameter. The USD is used to identify when synthetically generated trajecto-
ries are reaching a part of the state-action space in which the transition models disagree
too strongly. MOReL simply stops trajectories once an uncertain state is detected, mak-
ing sure that synthetically generated data stays realistic. The algorithm uses TRPO [5]
or NPG [75] to solve the approximated MDP as if it were the true environment. As
outlined in Section 2.2.3 We thus call MOPO and MOReL hybrid methods instead of
simply model-based.

While this section provides an overview over the methods used as baselines in this
thesis, not all details are included. For example, most of the model-free algorithms
presented use ensembling as well as target networks for value functions and policies to
stabilize learning, MOPO and MOReL use model-free algorithms for which we didn’t
provide additional details, and we also left out some bells and whistles related to data
handling and normalization. For more details on all the algorithms, we refer to the
original papers.

2.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a method to optimize non-linear continuous func-
tions. The algorithm has been proposed specifically to optimize weights of artificial
neural networks and has been found through experiments with a simplified social behav-
ior model: The authors of [76] were originally intending to model the social behavior of
groups of animals, such as birds in a flock or fish in a swarm, when they discovered the
algorithm was performing optimization. PSO is a gradient-free optimization algorithm,
and is in Chapter 5 thus used as an alternative to the much more prominently used
gradient-based optimization procedures in most machine learning algorithms. Instead
of only maintaining a single candidate solution that is iteratively improved like in most
gradient based algorithms, PSO maintains a population of candidates, which are also
called particles. To substitute for the missing gradient information, PSO particles use
information from their neighbouring particles to effectively search the parameter space.
In our case, the parameter space will be the space of policies that can be expressed by a
feed-forward neural network with a certain architecture.

More formally, PSO is aiming to optimize a fitness function f : X → R, which maps
solution candidates from the parameter space x ∈ X to a scalar value. The parameter
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space itself is a real-valued vector space of dimensionality D, i.e. X = RD. For opti-
mization, PSO sustains a population of N candidates n = 0, ..., N − 1, each of which has
a position xn in the parameter space as well as a velocity vn that determines how the
particle moves in the parameter space. Through iteratively applying the velocity term
to the position, and then updating the velocity term, the particles move through the
parameter space in search of better fitness values. To denote the positions and velocities
at a specific iteration i of the algorithm, we use xin and vin. A particles fitness value yin at
a certain iteration i is obtained by evaluating the fitness function for its current position,
i.e. yin = f(xin). Each particle also knows the position bin, where it has received the best
fitness so far, as well as the best fitness that any of its neighbours, m ∈ N (n), have been
able to achieve so far: b̂in.

bin = argmax
{xjn|j∈0,...,i}

f(xjn) (2.51)

b̂in = argmax
{bim|m∈N (n)}

f(bim) (2.52)

Note that not all past {xjn|j ∈ 0, ..., i} need to be kept in memory to compute Eq. 2.51.
Instead, one simply updates bi+1

n using:

bi+1
n =

{
bin if f(bin) >= f(xi+1

n )

xi+1
n otherwise

(2.53)

The velocities and the positions of the particles are initialized using v0n = 0 and x0n ∼
U(xmin, xmax) [77], and are updated using the following Equations:

vi+1
n = vin + c1 · r1 · [bin − xin] + c2 · r2 · [b̂in − xin] (2.54)

xi+1
n = xin + vi+1

n (2.55)

Where c1 & c2 are acceleration constants and r1 & r2 are randomly drawn during each
iteration in order to add a stochastic element to the optimization process. Note that since
the parameter space is D-dimensional, most components of the Eqs. 2.54 & 2.55, i.e. vin,
xin, bin, r1, and r2 are all D-dimensional vectors. Consequently, the factors in r1 & r2 are
drawn independently for each of the d dimensions, i.e. ∀d ∈ 0, ..., D−1 : rd1 , r

d
2 ∼ U(0, 1).

Neighbourhoods The neighbourhood of each particle n: N (n) is defined a priori and
kept fixed throughout the optimization process, i.e. the neighbourhood doesn’t actually
have anything to do with low distances in the parameter space. Different topologies
of neighbourhoods affect the behavior of the optimization process: Broadly speaking,
more densely connected topologies (in the extreme case every particle is the neighbour
of every other particle) lead to faster convergence at the expense of diversity and with
the potential of prematurely converging to a local optimum [78]. On the other hand,
more sparsely connected topologies lead to slower convergence, but feature more diverse
solution candidates, which can help to find better performing particles in the end.
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Velocity clamping One problem that arises during PSO optimization as defined
above is that some particles may stray far away from their own as well as the neighbour-
hoods best observed positions (bn & b̂n). Consequently, these particles will obtain large
velocities, which causes erratic and sometimes diverging behavior since the particle gets
pulled back and forth by ever larger velocities. A simple measure to prevent this from
happening is velocity clamping [79]: One defines a maximum velocity magnitude vmax

and then clips all velocity values vin at any point to not exceed it, i.e.:

vin =


vmax if vin > vmax

−vmax if vin < −vmax

vin otherwise

(2.56)

Inertia Weighting Another adaptation to the PSO algorithms is discussed in [80]: In
order to obtain more robustly converging optimizations to well performing particles, the
authors introduce a weighting factor w to control how strongly the prior velocity should
be weighted when calculating the new one:

vi+1
n = w · vin + c1 · r1 · [bin − xin] + c2 · r2 · [b̂in − xin] (2.57)

While the hyperparameters for PSO, i.e. c1 & c2, xmin & xmax, vmax, and w are of
course problem dependent, the authors of [81] offer default values for some of them,
proposing to set c1 = c2 = 1.49618 and w = 0.7298.

2.7 Variational Autoencoders

Variational Autoencoders have been proposed in [82]. The assumed problem setting
is that N datapoints xi from a dataset D are given, and have been generated by a
stochastic process in which at first, some hidden latent variable zi is sampled from a
prior distribution p∗ω(z), and then the actual sample xi is produced by sampling from a
conditional distribution p∗ω(x|z). It is further assumed that both come from parametric
families of distributions pω(z) & pω(x|z). VAEs propose a solution to three problems
derived from this setting:

• approximating the parameters ω, which is essentially modeling the data generating
process, enabling the generation of synthetic data samples x̂ which come from the
same distribution as the samples from the dataset.

• approximate posterior inference of z given a data sample x, enabling compression
and representation learning.

• approximate marginal inference of x, i.e. the likelihood of datapoint x

VAEs consist of two networks: The encoder qψ(z|x) as well as the decoder pω(x|z).
Typically, the latent representation z has a much lower dimensionality than the actual
data samples x, so that a bottleneck network architecture is constructed, as shown in Fig.
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2.5. Ideally, one would like to maximize the marginal log likelihood log pω(xi) directly,
however it is intractable. Instead, one can derive a lower bound on the marginal, as
shown in [83] - we loosely follow the author’s derivation in the following. One starts with
the KL divergence (which is always non-negative) of the estimated and the true posterior
distribution:

KL(qψ(z|x), p(z|x)) = −
∫
p(z|x)

(
p(z|x)
qψ(z|x)

)
dz ≥ 0 (2.58)

By applying Bayes law, the posterior distribution p(z|x) can be written using the marginal
likelihood pω(x|z), as well as the probabilities of the latent as well as the sample p(z) &
p(x), ultimately enabling to write down an inequality with the marginalized log likelihood
on one side:

−
∫
qψ(z|x) log

(
p(z|x)
qψ(z|x)

)
dz ≥ 0 (2.59)

−
∫
qψ(z|x) log

(
pω(x|z)p(z)
qψ(z|x)p(x)

)
dz ≥ 0 (2.60)

−
∫
qψ(z|x)

[
log

(
pω(x|z)p(z)
qψ(z|x)

)
− log p(x)

]
dz ≥ 0 (2.61)

−
∫
qψ(z|x) log

(
pω(x|z)p(z)
qψ(z|x)

)
dz +

∫
qψ(z|x) log p(x)dz ≥ 0 (2.62)

−
∫
qψ(z|x) log

(
pω(x|z)p(z)
qψ(z|x)

)
dz + log p(x)

∫
qψ(z|x)dz ≥ 0 (2.63)

−
∫
qψ(z|x) log

(
pω(x|z)p(z)
qψ(z|x)

)
dz + log p(x) ≥ 0 (2.64)

log p(x) ≥
∫
qψ(z|x) log

(
pω(x|z)p(z)
qψ(z|x)

)
dz (2.65)

Rewriting Eq. 2.65 yields the well known evidence lower bound (ELBO), which can be
optimized as a tractable approximation to the marginalized log p(x):

log p(x) ≥
∫
qψ(z|x) log

(
p(z)

qψ(z|x)

)
dz +

∫
qψ(z|x) log pω(x|z)dz (2.66)

log p(x) ≥ −KL(qψ(z|x), p(z)) + Ez∼qψ(z|x) [log pω(x|z)] (2.67)

The KL term can here be seen as a regularizing prior on qψ(z|x), while the expectation
of the log likelihood is a reconstruction term. When Gaussian priors are chosen for the
latent variables p(z) as well as for the approximate distribution qψ(z|x), it is possible to
find a closed form solution for the ELBO:

ELBO =
1

2

[
1 + log σ2 − σ2 − µ2

]
+ Ez∼qψ(z|x) [log pω(x|z)] (2.68)

To optimize the VAE parameters ψ, ω, one can perform gradient descent on the negative
ELBO.
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Figure 2.5: Schematic of a variational autoencoder with encoder parameters ψ = {w0,w1} and
decoder parameters ω = {w2,w3}. y

(l)
i denotes the output of the ith neuron in

layer l. z are the latent space parameters. It is assumed that N1, the number of
parameters in the latent layer is much smaller than the dimensionality of the in-
and output or any other layer, and N3 = N since the output shape is the same as
the input shape.

Conditional Variational Autoencoders In order to obtain conditional VAEs, one
needs access to labels yi corresponding to the data points xi from the dataset. If available,
one may concatenate these to the latent space for the reconstruction model, i.e. the
decoder network now conditions not only on the latent encoding zi, but also on the label
yi: pω(xi|zi, yi), which enables the decoder model to later generate samples that belong
to a previously specified class. E.g., if the dataset consisted of images of cats and dogs,
with a regular VAE, one would be able to generate images of cats and dogs, but could
not specify which of the two, which becomes possible with a conditional VAE.
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3.1 Industrial Benchmark

The industrial benchmark (IB), introduced in [84], is a reinforcement learning environ-
ment motivated by industrial control problems, such as control of wind or gas turbines,
chemical reactors, manufacturing plants, as well as applications from process industry,
such as steel and paper production. Over the years, many academic benchmarks, such
as the classic cartpole balance and swingup, mountain car, and pendulum benchmarks,
as well as more advanced environments like Atari47 for video games, and MuJoCo for
robotic locomotion, have been proposed. While they have greatly contributed to the ad-
vancement of the scientific field, they lack some of the characteristics commonly observed
in real-world industrial applications like the ones listed above. For instance, the classi-
cal environments like cartpole, mountaincar, and pendulum have very low-dimensional
state and action spaces as well as deterministic state transitions. While the robotic Mu-
JoCo environments are much more complex since their state and action dimensionality is
larger, their transition dynamics are still deterministic. The video games in the Atari47
suite feature even higher dimensional states, since policies need to be learned directly on
pixel level, but their action space is discrete, and it is debatable how well results transfer
from a video game to real-world applications.
Since the goal of RL research is to find methods that generalize well across all sorts
of application domains, the IB has been proposed to bridge the gap between industrial
data, that is often unavailable to academic research teams, and the already existing
benchmarks that have been proposed in the literature. The industrial benchmark is not
designed to replicate the behavior of a single known system, but is instead inspired by
many different systems, and is designed to exhibit difficulties commonly encountered in
many such applications. It thus features multiple delayed reward components, partially
observable states, high dimensional as well as continuous state and action spaces, and
state-dependent, multi-modal as well as heteroscedastic stochasticity. In the following,
we provide a brief summary over the state and action space, as well as the transition
dynamics as they were presented in [84].

The observable state of the IB is comprised of 6 variables: The setpoint (p), the
three steerings velocity (v), gain (g), and shift (h), as well as the two conflicting reward
components fatigue (f) and consumption (c). The three-dimensional actions can be seen
as proposed changes to the steerings velocity, gain, and shift, i.e. a = (∆v,∆g,∆h).
Each action dimension is limited in [−1, 1] and the corresponding state variables are
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limited in [0, 100]. The actions translate to updated steering values in the following way:

vt+1 = max(min(vt + dv∆v, 100), 0) (3.1)
gt+1 = max(min(gt + dg∆g, 100), 0)

ht+1 = max(min(ht + dh∆h, 100), 0)

where dv = 1, dg = 10, and dh = 20sin(150)/0.9 ≈ 5.75. The IB’s reward is defined as a
simple weighted combination of the two components fatigue and consumption:

rt = −3ft − ct (3.2)

The benchmark exhibits three sub-dynamics that are not directly visible to the RL agent
since the corresponding state variables are not part of the observable state. These sub-
dynamics are: Mis-calibration, operational cost, and fatigue.

Operational cost: The first sub-dynamic is called operational cost θt, and is at each
time step t determined by the current values of velocity and gain, as well as the setpoint:

θt = exp

(
2pt + 4vt + 2.5gt

100

)
(3.3)

the operational cost is however not used further directly. Instead, it is meant to bring
a delayed as well as blurred component into the reward calculation, so the convolved
operational cost θct is defined as:

θct =
1

9
θt−5 +

2

9
θt−6 +

3

9
θt−7 +

2

9
θt−8 +

1

9
θt−9 (3.4)

Mis-calibration is the second sub-dynamic, and its behavior is influenced by the
setpoint p and the shift h. The mis-calibration dynamics are meant to make the problem
harder by requiring the optimal policy to oscillate in a specific frequency around a value
of h influenced by p. The effective shift he is calculated using:

het = max

(
−1.5,min

(
1.5,

ht
20
− pt

50
− 1.5

))
(3.5)

The effective shift in turn influences the three latent variables domain δ ∈ {negative,
positive}, response ψ ∈ {disadvantageous, advntageous}, and direction ϕ ∈ {−6,−5, ...,
5, 6}, which also influence each other. The mis-calibration m is then calculated using a
linearly biased Goldstone potential (we refer to [84] for a definition of ω):

mt = −αω(ρst , het )2 + βω(ρst , h
e
t )

4 + κρstω(ρ
s
t , h

e
t ) with ρst = sin

( π
12
ϕt

)
(3.6)

The mis-calibration mt, like the convolved operational cost θct , is however not directly
observable. Instead, both are combined to yield the modified operational cost ĉt:

ĉt = θct + 25mt (3.7)
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Finally, the consumption ct (which is an observable state variable as well as a direct
influence on reward) is calculated by applying heteroscedastic observation noise to the
modified operational cost:

ct = ĉt +N (0, 1 + 0.02ĉt) (3.8)

The update rules for the latent variables domain, response, and direction are a bit
more involved and provided in the following. We start by calculating potential values for
domain and response:

δ̂t+1 =

{
δt if |he| ≤ z
sgn(he) else

(3.9)

ψ̂t+1 =

{
1 if δt ̸= δt+1

ψt else
(3.10)

I.e., the domain δ is positive (which is also the default initial value) if the effective shift
he is a positive number, and negative if he is a negative number, except when he is in the
so called safe zone, i.e. he ∈ [−z, z], where z = sin(π · 15/180)/2 ≈ 0.1309. The response
ψ is advantageous if the domain has changed in the last time step, and otherwise stays
the same as before. The potential value for direction is defined as:

ϕ̂t+1 = ϕt +∆ϕt+1 (3.11)

with ∆ϕt+1 =


−sgn(ϕt) if |he| ≤ z
0 if |he| > z and ϕt = −6δ̂t+1

ψ̂t+1 · sgn(he) else

(3.12)

This means that the direction ϕ will always take a step towards zero if the effective shift
is in the safe zone. Otherwise it will take a step according to the product of the values of
domain and response, except when direction is at the negative edge of its defined bounds
(ϕt = −6δ̂t+1), where it will simply stay.

If the value for direction is after this update below −6 or above 6, i.e. would exceed
its defined bounds, the response enters the disadvantageous state and the direction is
turned towards zero:

ˆ̂
ψ =

{
−1 if |ϕ̂t+1| ≥ 6

ψ̂t+1 else
(3.13)

ϕt+1 =

{
12− ((ϕ̂t+1 + 24) mod 24) if |ϕ̂t+1 ≥ 6

ϕ̂t+1 else
(3.14)

Finally, if effective shift he has returned to the safe zone and direction ϕ has completed a
full circle back to zero, domain δ and response ψ are reset to their initial values positive
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Figure 3.1: Visualization of the mis-calibration penalty (blue=low, yellow=high) depending on
the value of the latent variables domain δ, response ψ, and direction ϕ, as well as
effective shift he. Figure from [84].

and advantageous:

δt+1 =

{
1 if ϕt+1 = 0 and |he| ≤ z
δ̂t+1 else

(3.15)

ψt+1 =

{
1 if ϕt+1 = 0 and |he| ≤ z
ˆ̂
ψt+1 else

(3.16)

An overview over the space of the latent variables and their influences is given in Figure
3.1.

Fatigue f is influenced by the same input variables as operational cost, namely the
velocity v, the gain g, and the setpoint p. The idea of the fatigue sub-dynamics is to
increase the penalty when the steerings velocity and gain are controlled to minimize
the operational cost, thereby creating two opposing reward components that need to be
carefully traded against each other. Fatigue is calculated as:

f = f b(1 + 2α)/2 (3.17)

with f b = max

(
0,

3000

5v + 100
− 0.01g2

)
(3.18)
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α depends on two latent variables µv and µg as well as two noise terms ηv and ηg:

α =

{
1

1+e−N (2.4,0.4) if max(µv, µg) = 1.2

max(ηv, ηg) else
(3.19)

Both the latents as well as the noise terms depend on the effective velocity ve and effective
gain ge, which are calculated by:

ve =
T v(v, g, p)− T v(0, 100, p)
T v(100, 0, p)− T v(0, 100, p)

(3.20)

ge =
T g(g, p)− T g(100, p)
T g(0, p)− T g(100, p)

(3.21)

with T v(v, g, p) =
g + p+ 2

v − p+ 101
(3.22)

T g(g, p) =
1

g + p+ 1
(3.23)

The latents µv and µg as well as the noise components ηv and ηg can then be calculated
using:

ηv = ηve + (1− ηve)ηvuηvbve (3.24)

ηg = ηge + (1− ηge)ηguηgbge (3.25)

µvt =


ve if ve ≤ 0.05

min(5, 1.1µvt−1) if ve > 0.05 and µvt−1 ≥ 1.2

0.9µvt−1 +
ηv

3 else

(3.26)

µgt =


ge if ge ≤ 0.05

min(5, 1.1µgt−1) if ge > 0.05 and µgt−1 ≥ 1.2

0.9µgt−1 +
ηg

3 else

(3.27)

where ηve, ηvb ∼ Binom(1, ve) and ηge, ηgb ∼ Binom(1, ge), while ηvu, ηgu ∼ U(0, 1).

3.1.1 Datasets

The datasets of the industrial benchmark that will be used throughout this thesis have
initially been proposed in contribution [B]. They are generated by three different base-
line policies π ∈ {πbad, πmediocre, πoptimized} mixed with varying degrees of ε-greedy ex-
ploration, with ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. This means, that the effective generating
policy πβ that generated a dataset is given by:

πβ(s) =

{
U(−1, 1)3 in (ε× 100)% of cases

πbaseline(s) otherwise
(3.28)
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The three baselines are provided in the following formulae:

πbad =


100− vt
100− gt
100− ht

πmed =


25− vt
25− gt
25− ht

πopt =


−ṽt−5 − 0.91

2f̃t−3 − p̃+ 1.43

−3.48h̃t−3 − h̃t−4 + 2p̃+ 0.81

The optimized baseline was in this case obtained by a Reinforcement Learning algorithm
called GPRL [13], which produces interpretable policies. The mediocre policy tries to
move to a fixed point in the space of the three steerings, however ends up alternating
around it in the dimensions gain and shift, since the factors dg & dh are not equal to one.
It can be seen as a simple controller that is standardly deployed in many systems. The
bad baseline deliberately steers the benchmark to an edge of the state space at which the
reward is particularly bad - it is a rather unrealistic generating policy in reality, however
it will be interesting to see how different algorithms cope when being exposed to such a
controller.

Each of the 16 resulting datasets (18 - 2, since the three 100% exploration datasets
would constitute the same setting) is comprised of 100 trajectories of length 1000,
where each state is a concatenation of the past 30 observable variables of the IB (see
how πoptimized uses observations that lie in the past). The setpoint p is never altered
and remains at a constant 70 throughout all episodes and datasets. Together, the
datasets allow a comprehensive overview over how an offline RL algorithm behaves in the
face of various encountered settings, such as narrow data distributions (0% exploration
datasets), classic controllers (mediocre), RL policies (optimized), as well as undirected
data (bad) and also larger amounts of exploration. The datasets have been made pub-
licly available at https://github.com/siemens/industrialbenchmark/tree/offline_
datasets/datasets under the Apache License 2.0.

3.2 MuJoCo

MuJoCo is a simulation environment for Multi-Joint Dynamics with Contact [85], that
is tailored specifically towards robotic simulation. A variety of robotic problems have
been proposed and implemented in OpenAI gym [86], facilitating easy access for RL
researchers. In this thesis, we will evaluate algorithms on a subset of the most popu-
larly used MuJoCo benchmarks in RL literature: Swimmer, Hopper, and Walker2D. In
comparison with the industrial benchmark, the MuJoCo environments feature no noise
in their transitions, however they are still very high-dimensional, complex, and provide a
different domain to evaluate algorithms in. See Figure 3.2 for a visualization of the three
robots. In the following we briefly describe each environment and provide an overview
over their action and observation spaces.

Swimmer The Swimmer has initially been introduced in [87]. The robot consists
of three segments that are connected with two rotor joints to form a linear chain. It
is placed in a 2D pool environment and its goal is to maximize the speed along the
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Figure 3.2: The three used MuJoCo environments, Swimmer, Hopper, and Walker2D.

x-axis by applying torques to the rotor joints and exploiting the fluids friction. The
robots initial position is roughly the same for each environment start, just slight random
deviations are applied. The reward consists of two components: (i) forward_reward,
which is basically a reward for moving to the right as fast as possible, and is calcu-
lated as forward_reward_weight × (x-position before action - x-position after action)/dt,
and (ii) ctrl_cost, which penalizes the robot for taking extreme actions: ctrl_cost =
ctrl_cost_weight ×sum(action2). The final reward for each step is then calculated as re-
ward = forward_reward - ctrl_cost. In the standard setting, the forward_reward_weight
is equal to 1, while the ctrl_cost_weight is 1× 10−4. The default dt is 0.04, due to the
default values for frame_skip (4) and frametime (0.01). Variations of the environment
exist with N segments and N − 1 rotors, however we will only consider the standard
variant. The observation and action spaces are described in Tables 3.1 and 3.2.

Index Description Joint Type Unit

0 Front tip angle Hinge radiants
1 First rotor angle Hinge radiants
2 Second rotor angle Hinge radiants
3 Tip velocity in x-direction Slide m/s
4 Tip velocity in y-direction Slide m/s
5 Front tip angular velocity Hinge rad/s
6 First rotor angular velocity Hinge rad/s
7 Second rotor angular velocity Hinge rad/s

Table 3.1: Observation space of the MuJoCo Swimmer environment.

Hopper The Hopper environment was introduced in [88], aiming to increase the com-
plexity and number of state and action dimensions compared to classic control bench-
marks like cartpole swingup or mountain car. The robot consists of four body parts:
The torso (top), the thigh, the leg, and the foot. Its goal is to make hops forward
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Index Description Joint Type Unit

0 First rotor torque Hinge N/m
1 Second rotor torque Hinge N/m

Table 3.2: Action space of the MuJoCo Swimmer environment. Both actions are constraint to
be between -1 and 1.

(along the x-axis) as fast as possible, and without falling over. The reward function
is similar to the one of the Swimmer, with the forward_reward and ctrl_cost compo-
nents designed exactly the same. Additionally, the Hopper is rewarded for every step
that it is “healthy”, i.e. has not fallen over, so that the final reward is calculated as:
reward = forward_reward + healthy_reward - ctrl_cost. The healthy_reward is given
whenever the Hopper height does not exceed the healthy_z_range, the torso angle does
not exceed the healthy_angle_range, and none of the other state variables exceed the
healthy_state_range. The default values for these ranges are (0.7,∞), (−0.2, 0.2), and
(−100, 100). The default healthy_reward is 1, the default ctrl_cost_weight is 0.001, and
the default forward_reward_weight is 1. The default dt is in this case 0.008, due to the
default values for frame_skip (4) and frametime (0.002). An overview over the state and
action space of the environment is provided in tables 3.3 and 3.4.

Index Description Joint Type Unit

0 Torso z-coordinate (Hopper height) Slide meters
1 Torso (top) angle Hinge radiants
2 Thigh joint angle Hinge radiants
3 Leg joint angle Hinde radiants
4 Foot joint angle Hinge radiants
5 Torso x-axis velocity Slide m/s
6 Torso z-axis velocity Slide m/s
7 Torso angular velocity Hinge rad/s
8 Thigh joint angular velocity Hinge rad/s
9 Leg joint angular velocity Hinge rad/s
10 Foot joint angular velocity Hinge rad/s

Table 3.3: Observation space of the MuJoCo Hopper environment.

Walker2D The Walker2D environment extends the Hopper environment by adding
a second leg. The environment thus consists of seven parts: One torso, and two in-
stances each of thigh, leg, and foot. Consequently there are also six rotor joints con-
necting the components, doubling the action space dimensionality. Again, the goal is
to move as fast as possible along the x-axis, without falling over and thus prematurely
ending the episode. The reward is calculated the same as for the Hopper environment,
i.e. reward = forward_reward + healthy_reward - ctrl_cost. Also most of the de-
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Index Description Joint Type Unit

0 Thigh rotor torque Hinge N/m
1 Leg rotor torque Hinge N/m
2 Foot rotor torque Hinge N/m

Table 3.4: Action space of the MuJoCo Hopper environment. Both actions are constraint to be
between -1 and 1.

fault values are the same, except for the ranges in which the Walker is considered to be
“healthy”: The healthy_z_range is (0.8, 2), the healthy_angle_range is (−1, 1), and the
healthy_state_range for the remaining observation dimensions is (−∞,∞). The state
and action spaces of the Walker2D environment are provided in Tables 3.5 and 3.6.

Index Description Joint Type Unit

0 Torso z-coordinate (Walker height) Slide meters
1 Torso (top) angle Hinge radiants
2 Right thigh joint angle Hinge radiants
3 Right leg joint angle Hinde radiants
4 Right foot joint angle Hinge radiants
5 Left thigh joint angle Hinge radiants
6 Left leg joint angle Hinde radiants
7 Left foot joint angle Hinge radiants
8 Torso x-axis velocity Slide m/s
9 Torso z-axis velocity Slide m/s
10 Torso angular velocity Hinge rad/s
11 Right thigh joint angular velocity Hinge rad/s
12 Right leg joint angular velocity Hinge rad/s
13 Right foot joint angular velocity Hinge rad/s
14 Left thigh joint angular velocity Hinge rad/s
15 Left leg joint angular velocity Hinge rad/s
16 Left foot joint angular velocity Hinge rad/s

Table 3.5: Observation space of the MuJoCo Walker2D environment.

For reproducibility, note that we use the third version (“-v3”) of all of the environments.

3.2.1 Datasets

To extract datasets from the three MuJoCo benchmarks, we use the “imperfect demon-
strations” setup introduced in [8]. For each of the environments, we train a DDPG agent
[4] through online interaction for 1,000,000 time steps, so that it can then act as an
“expert” policy πDDPG. To collect the datasets, we then evaluate the expert agent for
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Index Description Joint Type Unit

0 Right thigh rotor torque Hinge N/m
1 Right leg rotor torque Hinge N/m
2 Right foot rotor torque Hinge N/m
3 Left thigh rotor torque Hinge N/m
4 Left leg rotor torque Hinge N/m
5 Left foot rotor torque Hinge N/m

Table 3.6: Action space of the MuJoCo Walker2D environment. Both actions are constraint to
be between -1 and 1.

another 1,000,000 time steps and add two different sources of noise: (i) In 70% of cases,
we add Gaussian noise with a standard deviation of 0.3 on top of the action proposed by
the expert before it is executed. (ii) In the other 30%, we pick an action uniformly at
random. In the resulting (state, action, reward, future state)-tuples, the expert policy
is thus effectively buried under a lot of noise, which should make it hard for an offline
algorithm to recover its original performance.

πβ =

{
πDDPG +N (0, 0.3)d in 70% of cases

U(−1, 1)d else
(3.29)

Equation 3.29 formally shows how the generating policy πβ to collect the datasets is
formed. Here, d denotes the action space dimensionality, i.e. 2 for Swimmer, 3 for Hopper,
and 6 for Walker2D. During both random sampling phases, each action dimension is
sampled independently from the others.

3.3 Transition Models

Throughout this thesis, we will use transition models T̂ to imitate the true dynamics T
of the environment we are trying to solve. To this end, we use different kinds of neural
network models to predict both the future state and the reward, given the current state
of the environment as well as the control action provided by the policy. While in tabular
datasets, boosted decision trees still play a large role, neural networks are known to
perform well in the sorts of environments that we aim to solve: Continuous, smooth, and
in the case of MuJoCo also deterministic system dynamics. While different problems
may require other model classes, like Gaussian Processes (GPs) [15, 89, 90] or Bayesian
neural networks (BNNs) [11, 91], that would additionally to the prediction also provide a
quantification of the associated uncertainty, we will not consider them in our experiments,
since our focus lies on the regularization of the policy, and not on the modeling of the
environment. Further, the environments considered can already be solved with the multi-
layer perceptron (MLP) and recurrent neural network (RNN) models presented in this
section.
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3.3.1 Feedforward MLPs

Artificial neural networks (ANNs) are universal function approximators [92, 93], meaning
that given enough capacity, they are able to approximate any given function arbitrarily
accurate. The most common form of ANN is the multi layer perceptron (MLP), that
was proposed in [94]. In an MLP, multiple layers, each consisting of multiple neurons
are hierarchically connected in a directed acyclic graph, where a connection exists from
any neuron of one layer to every neuron of the immediately following layer. Each layer
only has one following layer and there are no skip connections. See Figure 3.3 for a
visualization. Each neuron effectively realizes a logistic regression, i.e.:

y = σ

(
N−1∑
i=0

xiwi + b

)
(3.30)

Were x is an N -dimensional input vector with components x0, ..., xN−1, σ is the sigmoid
function σ(x) = 1

1+e−x , w is the weight vector of the logistic regression model with com-
ponents w0, ..., wN−1 (one for each input dimension), and b is the bias.

Similarly, in a neural network, the output of a single layer l, y(l) can be computed
based on the output of the previous layer y(l−1) as follows:

y
(l)
i = f

N(l−1)∑
j=0

w
(l)
ij y

(l−1)
j + b

(l)
i

 (3.31)

where N (l) is the number of neurons in layer l, w(l)
ij is the weight connecting neuron

j in layer l − 1 with neuron i in layer l, b(l)i is the bias of neuron i in layer l, and f
is a nonlinear function. While the sigmoid σ could be used, modern neural networks
usually use the ReLU nonlinearity [95], or one of its variants, e.g. Leaky ReLU[96],
ELU[97], etc. due to their mitigation capabilities regarding the exploding and vanishing
gradient problems [98, 99]. For a visualization of a simple feed-forward MLP, see Fig. 3.3

Deterministic neural networks for state predictions are usually optimized by minimizing
the mean squared error (see Eq. 2.31). The set of all weights w(l)

ij and biases b(l)i is usually

represented by the set of all trainable parameters ϕ = {w(l)
ij |∀l, i, j} ∩ {b

(l)
i |∀l, i}. The

MSE can be calculated over all transition samples that have been collected in the dataset
D:

L(ϕ) = 1

K

K−1∑
k=0

d−1∑
i=0

(s′ik − y
(L−1)
i )2 (3.32)

where K is the number of samples contained in D, d is the dimensionality of a state, s′ik is
the future state dimension i as it was recorded in the dataset interaction with the index
k, and y(L−1)

i is the output of the final layer of the neural network in the same dimension.
We assume that the input of the neural network, i.e. the nodes going into the first layer,
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Figure 3.3: Visualization of a standard feed-forward MLP with an input layer (blue), a single
hidden layer (green), and an output layer (red). Nl denotes the number of neurons
in layer l.

were the concatenation of the recorded prior state and the associated action: [sk, ak].

Since the loss function and every component of the neural network is differentiable, we
can compute the analytical gradient of the loss w.r.t. the network parameters ∂L(ϕ)

∂ϕ and
use gradient descent to optimize the parameters ϕ to minimize the loss function L(ϕ).
In the experiments in the next Chapters, we always use the Adam optimizer [100] to do
so, i.e. we use the following update rules to compute the next set of network parameters
based on the current ones and their gradients:

ϕt+1 = ϕt − η
m̂t√
v̂t + ε

(3.33)

where η is the learning rate. Exponentially decaying estimates of the mean and squared
gradient maintained in the variables mt and vt:

mt = β1mt−1 + (1− β1)
∂L(ϕ)

∂ϕ
(3.34)

vt = β2vt−1 + (1− β2)
∂L(ϕ)

∂ϕ
(3.35)

Since m0 and v0 are initialized with zeros, unbiased estimates are computed using:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(3.36)

Note that mt, m̂t, vt, and v̂t are vectors, containing one element for each individual
parameter in ϕ, while β1, β2, and ε are scalars, with default values of 0.9, 0.999, and
10−8.

We take additional measures to improve the accuracy of the transition models. Weight
normalization [101] is a technique that decouples the neural weight directions from their
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norms to speed up convergence. To this end, the weight vector w of a single neuron is
reparameterized by a parameter vector v and a scaling factor g:

w =
g

||v||
v (3.37)

This reparameterization fixes the norm of w independently of v, i.e. w = g. Instead of
training w, the new parameters v and g are trained directly via gradient descent.

3.3.2 Recurrent Neural Networks

In sequence modeling, such as natural language in texts or state transitions in MDPs,
the next sequence element often does not only depend on the current one, but can also
depend on one or multiple elements further in the past. For example, the industrial
benchmark features the state dimension operational cost, which includes heavily delayed
components and influences the reward. In order to address this issue, different mea-
sures can be taken: (i) One may concatenate the G past states together and provide
this history of G time steps to the MLP transition model as an input instead of just
the last one. (ii) Alternatively, one may train a recurrent neural network, only provide
the latest state (and action), but have the network learn a hidden state that is carried
over in every forward pass and contains the information about the past that is necessary
and helpful to predict the future ([102] is one of the central works analyzing RNNs for
system identification). Both are valid approaches, however (i) has some shortcomings:
Augmenting the input space of the MLP requires knowledge about the environment, i.e.
how many steps into the past and which state dimensions could be important. Further,
it severely increases amount of parameters in the first layer (depending on how many
steps are added), while at the same time not benefiting from the underlying symmetry -
weights concerning the same state dimensions in different time steps should be similar,
but each weight needs to be learned separately. In (ii), the amount of parameters is also
larger than in the single-state-MLP, but the number is likely smaller than in (i), and it
may benefit from weight symmetry since for each state embedding, the same weights are
used. RNNs have consequently been used for reinforcement learning as well as system
identification [103, 104, 105]. See Fig. 3.4 for a visualization of a simple RNN.

A single recurrent layer in its simplest form works as follows: Instead of having only a
single input (usually the output of the prior layer), a recurrent layer has two inputs. One
is the output of the prior layer (or the actual input, i.e. the current state and action),
and one is its own output that was computed in the prior step, which was simply saved
for the next one. When we denote by h

(i)
t the ith dimension of the hidden state (i.e.

output of the recurrent layer), the computation of the next hidden state can be written
as follows:

h
(i)
t+1 = f

∑
j

whid
ij h

(j)
t + bhidi +

∑
j

w
(l)
ij y

(l−1)
j + b

(l)
i

 (3.38)

where whid, bhid, w(l), and b(l) are the two sets of weights and biases for the hidden and
embedding parts of the recurrent layer. Further we assume the previous layer to be the
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Figure 3.4: Simple recurrent neural network schematic with a hidden state of size H. The
additional weights compared to the MLP in Fig. 3.3 are highlighted in purple.

one with the index l − 1, so that y(l−1) is the result vector from the previous layer that
is going into the recurrent layer. The above may be rewritten in vectorized notation as:

ht+1 = f(whidht + bhid + w(l)y(l−1) + b(l)) (3.39)

h0 is usually initialized with zeros and f(·) is a nonlinearity (usually tanh, sometimes
ReLU). A prediction can then be made by building up the hidden state over a number G
of history steps, and then using the resulting hidden state hG to predict the next state
sG+1, i.e.:

sG+1 = f(w(l+1)hG + b(l+1)) (3.40)

The prediction can again be optimized via gradient descent on the mean squared error
and may as well reflect the delta state instead of the state directly.

In the context of RNNs, it has been shown that it is beneficial to train the transition
models on multiple future steps instead of just a single one. It appears that models that
are trained for just a single step often generalize poorly when they are rolled out for
longer into the future, so the prediction error may be accumulated over F future steps:

L(ϕ) =
F−1∑
i=0

(s′t+i+1 − T̂ϕ( ˆst+i, at+i, ht+i−1))
2 (3.41)

where ϕ = {whid, bhid}∩{w(l), b(l)|∀l}, T̂ has two output components hnew = h(T̂ hϕ (s, a, hold))

(by means of Eq. 3.39) and ŝ′ = s(T̂ϕ(s, a, hold)) (Eqs. 3.39 and 3.40). The hidden state
is built up over the first G steps using the real observed states, i.e. ht = h(T̂ (st, at, ht−1)),
and the predicted states ŝ are used afterwards for prediction as well as maintaining the
hidden state.
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Offline RL literature is mostly concerned with finding generally applicable algorithms
that can train well performing policies given a single static dataset of past interactions.
This Chapter takes a different perspective, and instead discusses different approaches
how to select promising datasets for offline RL from a pool of provided datasets.

4.1 Problem Setting

Offline RL algorithms have over the past couple of years significantly improved the appli-
cability of reinforcement learning techniques, as they make learning of control strategies
possible without any interaction with the actual environment. Before, online RL algo-
rithms had shown tremendous success on many simulated tasks or video games [2, 3, 106],
however application to physical systems was always limited due to safety concerns (most
online algorithms use some form of randomness to perform exploration), scalability is-
sues (online algorithms often train on many millions of interactions, and use massive
parallelism in order to make learning possible in a reasonable time, which is hardly pos-
sible to come by in physical systems), and opportunity cost (during training, the system
can likely not be productively used). Now, with offline RL algorithms, which regularize
the policy to stay in the support of the previously collected data, all three problems
have tremendously improved: Offline RL features no exploration, and algorithms exist
that derive deterministic policies, so that practitioners can closely examine a trained
policy before deployment, greatly improving the safety situation. Since the environment
is not used during training, both the scalability and the opportunity cost problems are
practically mitigated. Offline RL thus has the potential to actually bring reinforcement
learning to the real world.

In the offline RL setting, a new dilemma arises: Many companies have massive amounts
of data about many of their systems, for which they would now like to find better control
strategies with offline RL. However, how do they choose which dataset, i.e. which system
to start with? The easy solution would be to just do all of them, however in practice
there exist obvious limitations on the computational as well as the human resources side
- data needs to be curated, models need to be trained, hyperparameters need tuning,
sanity checks need to be performed, etc. On top of that, there are likely at least a few
test runs necessary on the real system before a policy can be used in production. Since
machine learning experts, domain experts, production environment stops for testing, po-
tentially damaged equipment, and compute cost together constitute a significant up front
investment, it would be great to be able to select the most promising datasets and appli-
cations among the available ones in order to increase chances of earning the investment
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Figure 4.1: Schematic of the newly proposed dataset selection problem in offline RL: In Figure
(a), the standard offline RL process is shown, where a single dataset is provided and
an agent is distilled from it via some learning algorithm, before it is finally deployed
in the real environment. In Figure (b) we are provided with many datasets from
different systems, introducing the problem of how to select the most promising
ones for offline RL. In a new step, a subset of the datasets is selected by calculating
quality metrics for all of them. Finally, the selected datasets are again used to train
policies which can be deployed.

back. Furthermore, offline RL algorithms for continuous control do not come with any
meaningful guarantees - no algorithm can with certainty say that it will improve over
the controller that was running during generation of the dataset by any percentage -
they cannot even guarantee that they will not become worse. This makes it even more
important to select the most promising datasets to make success as likely as possible:
In real projects, it is usually crucial when a new technology should be applied, that an
initial success story can be generated. If the first few datasets / systems that are chosen
to be tackled by offline RL turn out to perform worse than the previous controller, trust
in the technology might be lost, making future application of it much less likely.

For the example to work in this context, we assume now that the operator
from before not only has a wind turbine, but also a hydroelectric power
station, a nuclear power plant, a gas power plant, and possibly other kinds of
power generating facilities. While the operating company has datasets from
all of the power plants it owns, it only has a tiny data science department
consisting of a single person. Also, developing and deploying an offline RL
based control solutions for any of the plants requires an up front investment,
due to compute and expert time as well as some time during which the plant
cannot be (as) productively used. Due to the costs and since RL technology
is new to the company, they want to start optimizing only the power plant
that has the highest chances of improving its yield and thus the revenue
of the company. The question thus becomes: which dataset among the
available ones is most suitable for offline RL, i.e. which has the highest
data quality?
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A little more formally, we expect to be provided with N datasets of lengths Li, i ∈
0, ..., N − 1, each containing state, action, reward, and next state tuples resulting from
past interactions with some system: Di = {sj , aj , rj , s′j}, j ∈ 0, ..., Li − 1. Furthermore,
each task is associated with a specific cost of deployment Ci reflecting opportunity cost
when the system is not in productive use, domain experts time, and materials used. All
tasks also share a fixed cost F , reflecting compute cost and ML expert time. When
we select a dataset to train a policy and then test and deploy it, we need to pay the
corresponding Ci+F and observe a change in return ∆R = Rdata−Rnew. If this change
in return in positive, it has the potential to offset the investment over some horizon H:
Rmeta =

∑H
t=0 γ

t∆R− (Ci +F ) ≥ 0. Ideally we would like to select the datasets so that
Rmeta is maximized, however we do not want to pay Ci + F for all of the datasets, i.e.
simply try them all out. We term this the dataset selection problem.

4.2 Related Work

In supervised machine learning projects, researchers and practitioners have already rec-
ognized that data quality is crucially important to obtain the best possible results. Even
though most of the corresponding literature focuses on improving over existing or propos-
ing new algorithms, and earlier steps in the machine learning pipeline are traditionally
getting less attention, a variety of methods have been developed to define, assess and
improve data quality. Quality of datasets is classically defined along the dimensions ac-
curacy, completeness, consistency, and timeliness [107, 108]. When examining accuracy,
the concept of source trustworthiness [109] is important: [110] predict the same class
labels with features from two different sets of sensors that represent the same abstract
concepts, however the prediction accuracy is much lower with the low quality sensor
features. Similarly [111] use different camera systems to predict water turbidity and
find large gains in accuracy when the feature quality is improved. Finally, [112] find
large prediction quality differences when using different sensors for depth estimation.
Even when trustworthy sources are unavailable, techniques exist that combine many un-
trustworthy sources together to form a dataset which achieves better predictions [113].
Aside from accuracy, data validation tools such as Deequ, DaQL, DuckDQ, and TFX
[114, 115, 116, 117, 118] have been developed to address issues regarding completeness,
consistency, and timeliness by having practitioners express their beliefs about how the
data could possibly look like. Data cleaning techniques based on anomaly detection may
even improve data consistency without requiring any expert knowledge [119, 120, 121].
In the following we investigate how to measure data quality for offline RL, since it ap-
pears likely that the results in e.g. [110, 111, 112] extend to the reinforcement learning
domain and that data quality would likely also improve the performance of the policies
that can be found using offline RL algorithms. In order to extract information about
the usability for offline RL, we mainly focus on two very basic quality dimensions of the
datasets:

• the performance reached by the generating policy during the best trajectories com-
pared to the average
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• a rather classical notion of completeness often used in databases literature, where
it is defined as “ability of an information system to represent every meaningful
state of a real-world system” [107, 122]. For RL algorithms, this means that the
performance estimators will likely be able to evaluate the policy’s return accurately
anywhere in the state-action space

4.3 Relevant Dataset Features

In this section, we aim to find generally applicable indicators to assess dataset quality
in terms of suitability for use in offline RL to derive policies with as large as possible
Rmeta. Essentially, we deem two different basic scenarios as most beneficial for large
performance gains in offline RL:

• High return deltas: If the dataset contains trajectories with very high returns,
but the average returns are comparatively low, we would expect from an offline RL
algorithm that it can at least copy most of the good behaviors and avoid those that
yielded lower returns. This scenario essentially connects to the behavior cloning
portion contained in most offline RL algorithms. An exception to this assumption
would arise if the difference in returns is entirely due to environment stochasticity.

• Large action stochasticity: While one component of offline RL loss functions
usually contains a behavior cloning style regularizer, the other one aims to esti-
mate the performance of the trained policy. The question is how accurately this
component, no matter whether value function or transition model, can assess the
returns. Intuitively, this becomes much easier, the more exploration is contained
in the dataset: Essentially, the question is in this case how stochastic the action
distribution in the dataset is. The closer the action distribution is to uniform ran-
dom, the higher the entropy and the more information can be assumed to have
been gathered and learned by the performance estimating component.

We aim to find simple indicators that are generic and applicable not only to datasets
with specific characteristics, but rather anything from high dimensional and continuous
state and action spaces to low dimensional and discrete ones.

4.3.1 Estimating selective behavior cloning improvement

Identifying whether high return trajectories are present in the datasets is relatively sim-
ple: We can just sum up the discounted rewards of each trajectory and inspect the
resulting distribution:

Rdata =

{
Hi∑
t=0

γtr
(i)
t | i ∈ 0, ..., I − 1

}
(4.1)

where the dataset consists of I trajectories, Hi is the horizon of the ith trajectory and
r
(i)
t is the reward at time step t in trajectory i. For practitioners it could be interesting
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to inspect the entire distribution of Rdata, however for the sake of simplicity we will limit
ourselves to using the mean and maximum to come up with a quality metric. Intuitively,
if the offline RL algorithm copies more of the good behavior than of the bad, it should
easily be able to outperform the mean return present in the data. The hope would be to
get close to the maximum performance or even exceed it. As different datasets and tasks
have different reward scales, we propose in indicator that normalizes the expected return
improvement (ERI) as given by the difference between mean and max performance:

ERI =
max(Rdata)−mean(Rdata)

mean(Rdata) + ε
(4.2)

In order for the ERI indicator to yield consistent values, we need to assume returns to be
bounded by zero from below. If this is not the case, we need to normalize the values in
Rdata by adding the minimum return first. We assume that this quantity is either basic
knowledge about the environment that can be provided by a domain expert or can be
estimated from the data.

Looking at the ERI indicator as defined above, one might wonder whether it is not
overly simplistic, since offline RL algorithms should of course be able to do more than
just copy well performing trajectories and ignore others. Instead, they should be able to
intelligently combine skills, i.e. behaviors on a sub-trajectory level, that were observed in
different trajectories. ERI cannot account for such smart “stitching” together of trajectory
parts, but an extension would of course be possible by considering to define Rdata over
smaller horizons H than the full trajectory length. Since it is difficult to predict how
offline algorithms will combine sub-trajectory level skills, and since finding the correct H
is a hard to tackle hyperparameter problem, we will however not consider this extension
here.

4.3.2 Estimating the Amount of Exploration Present in the Data

Estimating the amount of exploration in the dataset is not quite as straightforward as
the reward improvement estimation before. Essentially, we would like to know how well
the state-action space has been explored by the dataset-generating policy. The idea is
that if it has been satisfactorily explored, the performance estimation method of choice
will likely be able to assess the performance of more policy candidates accurately, which
will help to find a well performing policy. One could try to estimate e.g. the density of
the states that have been visited in the dataset, work with pseudo-counts [123], or try to
calculate the convex hull of the visited states in order to answer the question of how well
the state space has been explored, however all of these options are rather cumbersome
and especially hard to scale to high-dimensional state spaces. Since exploration is usually
induced by an algorithm by taking random actions instead of the currently thought best
option in terms of return, we propose to estimate how random the action distribution of
the generating policy was. That way, the indicator for exploration will remain oblivious
of the state space, which makes it much easier to transfer it to a range of tasks & datasets.
We do not assume the generating policy to be known, since we often do not have a closed
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form representation of it in practice. Instead, human interactions with the system might
be mixed together with a variety of deterministic controllers that changed slightly over
time, noisy controllers, etc. Many sources of stochasticity and thus exploration exist,
including deterministic policies that live in a different state space than the one we can
observe (e.g. a different policy is used in the morning than in the evening, and time
of day is not a state dimension). In order to estimate the action stochasticity, we train
a tanh transformed Gaussian policy, whose mean and standard deviation are given by
neural networks fµ and fσ, both operating on the same features provided by another
neural network fz:

a ∼ tanh(N (fµ(fz(s)), fσ(fz(s))
2)) (4.3)

θ∗ = argmin
θ
−
∑
i

∑
t

log p(a
(i)
t |θ, s

(i)
t ) (4.4)

where θ is the joint set of parameters of fµ, fσ, and fz. The optimization of the Gaussian
policy can be performed with gradient descent, similarly to the Gaussian model via the
negative log likelihood as in Eq. 2.29. After training has conceded we define the action
stochasticities AS using the predicted standard deviations on the dataset:

ASf = {fσ(fz(s))|s ∈ D} (4.5)

Low values in ASf correspond to rather deterministic behavior, while higher values cor-
respond to good exploration. Similarly to the ERI feature, it can be beneficial to inspect
the entire distribution of ASf , however for simplicity, we will derive the expected action
stochasticity (EAS) indicator by taking the mean over ASf . This might overestimate the
exploredness in some regions of the state space, but as a heuristic it should suffice:

EAS = mean(ASf ) (4.6)

We further experimented with other ways to quantify exploration contained in the
dataset. [124] claim that environment stochasticity could be sufficient to explore the
state space, so an option could be to measure stochasticity in a trained transition model
instead of a policy model. We were however unable to show a meaningful connection
between the state transition stochasticity and the performance of an offline RL algorithm
and would also argue that it makes little sense intuitively: If a deterministic policy runs
on a stochastic environment and consequently sees a plethora of states, then a learner
cannot really benefit from this, since it cannot infer how to get to the different states
(it was purely chance) and it has only seen a single action per state, so it doesn’t know
about different options to take. We thus argue that to measure exploration it is mostly
important to look at action space stochasticity.

4.4 Estimating Suitability for Offline Learning

We analyze how the derived indicators ERI and EAS can help to select promising datasets
by evaluating them on the industrial benchmark datasets proposed in Chapter 3 and
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Figure 4.2: Data quality dimensions: Comparison of ground truth values and derived estimators
for return improvement and action stochasticity. Figure (a) shows expected relative
return improvement (ERI) over the true relative return improvement (TRI). Figure
(b) shows estimated action stochasticity (EAS) over true actions stochasticity. Rank
correlations are provided in Table 4.1

.

comparing how they align with actual offline RL algorithm performances as published
in contribution [B]. For the sake of these experiments, we pretend that each dataset
represents a completely different environment, since otherwise one could simply pool all
of the data together and obtain the obviously best dataset for offline RL since it contains
all the information. We analyze how well the ERI and EAS features help predict the
true relative return improvement (TRI):

TRI =
Ralgo −mean(Rdata)

mean(Rdata)
(4.7)

where Rdata is defined as for ERI and Ralgo is the reported performance achieved by the
offline algorithm based on the dataset. As mentioned in Section 4.3.1, we need to lower
bound the return values by zero. Since all returns on the IB are negative, we add 350 to
each of the returns to move them all to the positive domain (-327 is the lowest observed
return in any of the datasets, but potentially it can be even lower).

In Figure 4.2 we plot EAS and ERI against their ground truth values (for the true ac-
tion stochasticity, we use the percentage of actions that were chosen at random). While
the datasets do not reside on a line (which would not be expected), their ranks in the
ground truth values can be rather well estimated using the derived indicators. The ranks
and rank correlations of EAS and ERI with TRI are presented in Table 4.1. Generally we
can observe that the EAS feature has a lower rank correlation with the true performance
gain than the ERI feature. This is unsurprising since the effect of exploration on down-
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stream RL tasks is a little less direct: Even if a good amount of exploration is contained
in the data, it is unclear whether the most promising regions of the state-action space
have been seen. We also observe that for the datasets generated with the bad baseline,
EAS is actually inversely correlated with performance gains. This is due to the fact that
the bad baseline is so bad that random actions perform much better, which leaves less
room for improvement by the RL algorithm. We thus also examine the rank correlations
when the bad datasets are taken out of the equation - then, EAS is similarly predictive
of performance increases as ERI is (rank correlation improves from 0.13 to 0.83).

In order to combine both features together, we derive a combined offline indicator
(COI) by combining the ranks that the two features yield 2:1 (i.e. for the dataset bad-
0.8, the ERI rank is 12 and the EAS score is 14, so the COI score is 2×12+14 = 36, which
is the highest among any of the datasets, making it rank 15). With a rank correlation of
0.75 for all, and 0.86 for the more realistic set of datasets without the bad ones, we find
that COI can be an effective tool for selecting datasets for offline RL with minimal effort
/ up-front investment. While COI does not select the best dataset first, it almost com-
pletely correctly identifies the top half of datasets, with the exception of bad-0.0, however
this dataset can be considered an outlier - its TRI is only so good because anything is
better than sticking to the bad policy. So in a fictitious example where we would have
the resources to work on half of the datasets, COI would almost correctly identify all
datasets we would like to work on. Other selections like top-3 or top-1 would be less close
to the optimal solution, however it is also unrealistic to expect anything more from such
a basic heuristic to predict the algorithms outcome much better: After all, COI does not
know anything about the algorithm at hand, so the algorithm may have simply failed to
realize the potential that was actually present in the data. Also, both ERI and EAS have
a potential to be misleading: A dataset that contains a large span of returns could also
be collected by a deterministic policy and a very stochastic environment, which means
simply imitating the good trajectories will not help. Similarly, a well explored dataset
according to EAS could simply not include the most important state-action space regions
(random actions don’t necessarily bring the agent to the most interesting parts). Apart
from these special cases however, the proposed indicators should be helpful in practice,
especially when the available resources include working on more than just a single dataset.

Concluding, we propose a new view on offline RL which has so far not been discussed
by the corresponding literature: We assume multiple static datasets to be available for
offline learning instead of just a single one, and introduce the dataset selection problem
in which we need to assess which of the available datasets are likely most suitable for
offline learning in terms of the return improvement that can be expected. We propose
two very cheap indicators, EAS & ERI, as well as their combination COI, in order to do
so and evaluate them on the industrial benchmark datasets successfully. In the future,
we expect more efforts towards data quality in offline RL (which might include more
sophisticated indicators), as this has become a factor in other machine learning fields
already.
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Dataset ERI EAS COI TRI

bad-0.2 15 3 10 15
bad-0.4 14 5 11 14
bad-0.6 13 8 12 13
bad-0.0 8 0 5 12
bad-0.8 12 14 15 11
mediocre-1.0 11 12 13 10
mediocre-0.6 9 13 9 9
mediocre-0.8 10 15 14 8
optimized-0.8 6 11 8 7
mediocre-0.4 5 10 7 6
mediocre-0.2 7 6 6 5
optimized-0.4 2 7 3 4
optimized-0.0 0 1 0 3
optimized-0.2 1 4 1 2
optimized-0.6 3 9 4 1
mediocre-0.0 4 2 2 0

Spearman’s ρ to TRI 0.91 0.13 0.75
ρ w/o ’bad-*’ datasets 0.81 0.83 0.86

Table 4.1: Datasets together with their values for the derived indicators ERI, EAS, and COI
(=Combined Offline Indicator), and sorted by their ground truth return improvement
(TRI) from best to worst. The extra horizontal line in columns 2-5 separates the top
and bottom half of datasets in terms of their TRI. If we had a budget to work on
eight of the sixteen datasets, we would ideally like to select the top half. Bold values
indicate that corresponding feature would have placed the dataset in the correct half.
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5 Policy Regularization for Model-based
Offline Reinforcement Learning

In this Chapter, we present the offline reinforcement learning algorithms MOOSE &
WSBC, that were initially published in contributions [B & C]. As pointed out in sections
2.3 & 2.4, offline RL algorithms need to regularize the trained policy in such a fashion
that it only visits states and performs actions that are supported by the distribution
induced by the given dataset, so that the estimated policy performance is an accurate
reflection of what can be expected once it is deployed in the real environment. Both
algorithms are model-based, i.e. they train transition models based on the dynamics
data observed in the provided dataset, and use the models to evaluate the trained pol-
icy’s performance. The main difference among the two is the method used for policy
regularization: MOOSE regularizes the policy in the action space, by penalizing high
reconstruction losses of actions under a conditional variational autoencoder that was
trained to mimic the generating policy that generated the dataset. In contrast, WSBC
uses an approach that regularizes the policy in parameter space directly.

5.1 Regularization in Action Space by Penalizing
Reconstruction Error

Offline RL is a problem setting that is often encountered in practice: The only asset
upon project start is often just a batch of historic data that was passively collected via
logging sensor data and control signals during ordinary operation of some system. The
enormous successes that (online) deep reinforcement learning algorithms were able to
celebrate starting a few years ago [3, 4, 106] have so far not changed the world in the way
that was largely anticipated by machine learning researchers, mostly due to the sim2real
gap [125, 24, 126], meaning that policies trained in a simulation environment were un-
able to transfer their performance to the real problem, since the simulation turned out
to not be as accurate of a reflection of reality as expected. On the other hand, in many
domains (e.g. autonomous vehicles, turbine control, factories, or reactors) there exist
large quantities of data that have been collected over time, but both learning online as
well as building a simulation would be prohibitively expensive (either due to safety or
due to cost). Since we lack sufficiently accurate simulations of real-world problems for
policy training in many (some would argue in most of the interesting) problems, however
we most of the time do possess significant amounts of past interaction data, performing
policy optimization directly from the historic data has become a very promising direction
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of reinforcement learning research.

In online RL algorithms, a big research question is how to balance exploration (learning
about your environment) and exploitation (using what you know to get the best possible
outcome). In a sense, this dilemma does not transfer to offline RL, since we can by def-
inition not learn anything new about the environment. Offline RL may thus be seen as
purely exploiting algorithms. A major question in offline RL is instead how to regularize
algorithms so that they actually exploit only what they really know. Many of the early
works in offline RL, such as BCQ, BEAR & BRAC, but also more recent algorithms
such as TD3+BC rely on regularizing the trained policy in the action space, meaning
that they penalize the trained policy for performing actions that differ from actions that
the generating policy would have taken when in the same state. More formally, when in
state s, the trained policy π needs to choose an action a ∼ π(s), which is supported by
the distribution of actions induced by the generating policy β when in the same state, so
β(·|s). The key choices in this context are how to represent and learn β, since it cannot
generally be assumed to be given (especially when data was collected by human interac-
tions, like in cars or turbine operators, we usually cannot represent the policy in closed
form), and how to define “being supported by”. The previously mentioned algorithms all
propose different solutions to these two problems:
BCQ learns a conditional variational autoencoder model of the generating policy, which
enables it to sample likely actions from it, i.e. it learns β(·|s), and samples a set of candi-
date actions from it: a0, ..., aN ∼ β(·|s). Among candidates, BCQ then selects the most
promising one according to its Q-value, i.e. a = argmaxai Q(s, ai). Since the actions
were samples from the generating policy, it can be assumed that the final action is sup-
ported by the generating policy (BCQ slightly perturbs the actions afterwards, but the
concept remains the same). BEAR uses the same generating policy representation, but
it trains a closed form policy π, by penalizing the maximum mean discrepancy between
π and β, i.e. MMD[π(·|s), β(·|s)], meaning that actions sampled from π can be assumed
to also be supported by β. BRAC changes the representation of β to a regular Gaussian
policy and chooses the KL divergence instead of the MMD. TD3+BC comes without a
model of the generating policy and directly penalizes the squared distance in the action
space, i.e. (π(s)− a)2 s, a ∼ D.

All four algorithms are model-free, i.e. use an action-value function to estimate the
return of the trained policy. The goal of the here presented algorithm - Model-based
Offline Policy Search with Ensembles (MOOSE), is to bring the action space policy
regularization paradigm for offline learning to the model-based domain. This endeavour
is promising, since model-based RL algorithms have long been attributed superior sample
efficiency compared with their model-free counterparts [16, 11, 18, 15]. The effect is
usually explained by the fact that model-based algorithms use more of the available
information for training (future state as a target for the dynamics model versus return
only for the value function) and that they thus learn latent representations that generalize
better. Since offline RL is an innately data-scarce problem due to the lack of additional
data collection, it seems only natural to extend the action space regularization for offline
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RL to the model-based domain. An additional upside of transition models in offline RL
is that they are static (i.e. a change in policy does not mean that the model has to be
retrained) and that they can be examined by expert practitioners (do the state transitions
look meaningful / correct). Note that at the time of development of MOOSE, only BCQ
and BEAR were published, so MOOSE can be considered one of the first model-based
offline RL algorithms. MOPO and MOReL were proposed concurrently, they however
did not serve as inspiration for MOOSE and we were only made aware of them after [B]
was submitted for publication. Nevertheless, we include experimental comparisons with
them in Section 5.1.2.

5.1.1 Model-based Offline Policy Search with Ensembles (MOOSE)

The MOOSE algorithm builds on top of the model-based RL framework presented in
Section 2.2.2. Specifically, the algorithm trains an ensemble of K transition models
{T̂ k|k = 0, ...,K − 1} with parameters ϕ = {ϕk|k = 0, ...,K − 1}. The transition models
are deterministic, i.e. they each predict a single estimate of the future state ŝt+1 given
the current state st and action at. Depending on the environment, MOOSE either trains
the ensemble by minimizing the mean squared error between the future state and the
model output (i.e. Equation 2.31), or between the difference in states and the model
output (i.e. ∆st = st+1 − st).

L(ϕk) =
∑
t

||T̂ϕk(st, at)−
(st+1 − st)− µ∆s

σ∆s
||2 (5.1)

or

L(ϕk) =
∑
t

||T̂ϕk(
st − µs

σs
, at)−

st+1 − µs

σs
||2 (5.2)

For the model training, 10% of the data is left out as a validation set in order to assess the
models’ performance on unseen data. This allows choosing which of the two losses yield
the better result, as well as potentially other hyperparameter choices, however MOOSE
does not explicitly contain any hyperparameter tuning stage. MOOSE generally expects
a dataset of T transition tuples {(st, at, rt, st+1)|t = 0, ..., T − 1}, meaning that normally
the reward function is also learned by a separate set of reward models {r̂k|k = 0, ...,K−1}
parameterized by {ψk|k = 0, ...,K − 1}, which each predict a single reward estimate r̂t
based on the current state and action, i.e. r̂(k)t = r̂ψk(st, at). The training is in this case
analogous to the dynamics model training in Eq. 5.2 - even though generally possible,
MOOSE does not train on the difference in rewards:

L(ψk) =
∑
t

||r̂ψk(
st − µs

σs
, at)−

rt − µr

σr
||2 (5.3)

As can be seen in Equations 5.1 - 5.3, MOOSE normalizes inputs as well as outputs to
have zero mean and unit variance for better accuracy. Further, as outlined in Chapter
3, MOOSE uses weight normalization for faster convergence and employs Adam as an
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optimizer for its model parameters.

Since MOOSE was designed with real-world applications like turbine control or factory
solutions in mind, it trains deterministic policies π parameterized by θ in order to avoid
issues relating to safety that would arise from stochastic policies, such as those proposed
by common online algorithms [7], but even by recent offline algorithms such as BCQ
or BEAR [8, 52]. Policy evaluation is performed as outlined in Section 2.2.2, except
that MOOSE uses an ensemble of transition models to perform the imagined trajectories
instead of just a single one, i.e. multiple models predict the reward and the future state
in order to ultimately estimate the return R:

L(θ) =− 1

K

K−1∑
k=0

H−1∑
t=0

γtr̂ψk(ŝt, πθ(ŝt)) (5.4)

=− Eπ,T̂ 1..K ,r̂1..K [R]

Where γ is the discount factor of the respective MDP, H is the length of the considered
horizon, ŝt+1 = T̂ (ŝt, π(ŝt)) and ŝ0 = s0 is sampled from the dataset D. In Equation
5.4, the mean of the reward predictions is used to form the return estimate. In principle
however, different weighting schemes for the ensemble are possible. Similarly, different
methods exist for carrying forward the estimated future state: Each ensemble member
can use its own prediction for the next step “in isolation”, the mean of the predicted
states can be used for each of the members, or a random one can be chosen among the
predictions and then used in the next step for all members, etc.

If we could assume that the dataset sufficiently covers all possible state transitions
accurately, the above Equation could directly be used for policy optimization. Since
however, we cannot realistically make this assumption in the offline RL context, we now
move to the regularization part of the MOOSE algorithm, which will keep the policy in the
area of the state-action space sufficiently supported by the dataset, so that the transition
models can accurately assess the policy performance. MOOSE aims to minimize the
expected model bias in step t, bt, which is defined as the error in state transitions when
comparing trajectories that would be performed in the real environment e with imagined
trajectories through the ensemble members T̂ k:

bt = ||st+1 − ŝt+1||2 = ||e(st+1|st, at)− T̂ (ŝt, ât)||2 (5.5)

where the transition (st, at, rt, st+1) stems from the real environment and (ŝt, ât, r̂t, ŝt+1)
stems from the imagined trajectory through the transition model(s), where both tra-
jectories started in the same starting state ŝ0 = s0, and where both trajectories were
collected under the same policy π. The sum of biases in a trajectory is referred to as B:

B =
∑
t

bt (5.6)
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MOOSE aims to minimize the expected value of B, for which we need to know the state
visitation distribution for the policy π under the real environment e, µeπ:

E
s∼µeπ ,a∼π(s),ŝ∼µT̂π ,â∼π(ŝ)

[B] (5.7)

where µT̂π is the state visitation distribution under the transition model(s). While we can
estimate µT̂π by performing rollouts through T̂ , we cannot say much about µeπ since we
do not have access to the real environment transition e(·|s, a). The only policy for which
we can estimate it, is the generating policy β, i.e. we can sample from µeβ by sampling

from the dataset D. MOOSE thus aims to minimize the model bias under µeβ and µT̂π ,
which automatically moves π closer to β, as this is necessary for the bias to decrease:

θ∗ = argmin
θ

E
s∼µeβ ,a∼β(s),ŝ∼µT̂π ,â∼π(ŝ)

[B] (5.8)

Intuitively, it is clear that if we are in some imagined state ŝ and perform an action â
given by the trained policy π, we want the following two things in order to have low bias:

• The probability of the state ŝ under the true environment and the generating policy,
µeβ , should be as high as possible. Otherwise we will likely not have observed
a similar transition in the dataset before and cannot hope to have modeled it
accurately with T̂ .

• The probability of the action â under the given state ŝ should be likely under the
generating policy, since otherwise, similarly, we will likely not have encountered
such a transition in the dataset before.

Since we are only able to change the parameters θ of the policy π, we aim to allow a
large µT̂π (ŝ)π(â|ŝ) only if the probability µeβ(ŝ)β(â|ŝ) is also large. In order to reach this
goal of minimizing bias, MOOSE makes an assumption about how the probability of the
generating policy to have generated some sample (s,a) in the real environment influences
the error we can expect the transition models to make while predicting the successor
state of this sample (i.e. how large the bias is).

Assumption 1 The distribution of model errors e(s, a) − T̂ (s, a) has a variance that
is monotonically decreasing with increasing probability of having seen the imagined data
in reality, i.e., that the data sample (s, a) was generated under the original environment
dynamics e and the generating policy β:

e(s, a)− T̂ (s, a) ∼ N (0,− log pe,β(s, a)) (5.9)

Under this assumption, minimizing bias immediately translates to maximizing the proba-
bility of the state and action probabilities under the real environment and the generating
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policy, since the expectation of a squared Gaussian variable is its variance. Starting out
with the objective to minimize bias:

θ∗ = argmin
θ

E [B] (5.10)

= argmin
θ

E

[∑
t

bt

]

= argmin
θ

E

[∑
t

(e(ŝt, ât)− T̂ (ŝt, ât))2
]

= argmin
θ

Et [− log pe,β(ŝ, â)]

= argmax
θ

Et [log pe,β(ŝ, â)]

= argmax
θ

Et [pe,β(ŝ, â)]

= argmax
θ

Et
[
µeβ(ŝ)β(â|ŝ)

]
we quickly arrive at the desired maximization of the probability of state-action pairs

under the generating policy and the real environment.
It should be noted, that the MOOSE approach thus not only penalizes actions that were
unlikely under the generating policy (something that prior works, such as KL control
[127] have done in other settings before), but also penalizes states that were unlikely to
be visited under the true dynamics and the generating policy.

In order to derive a practical algorithm from the approach, MOOSE needs to find
a way to model µeβ(ŝ)β(â|ŝ), which is in this case achieved using a conditional varia-
tional autoencoder model (VAE, see Section 2.7) [82]. The VAE v with parameters ω
is trained to reconstruct actions based on the state-action pairs provided in the dataset,
which means that it will reconstruct actions better if the corresponding input state-action
pair has been seen in the provided dataset. By proxy, it thus models the likelihood of
µeβ(ŝ)β(â|ŝ), since both out-of-distribution actions given an observed state, as well as
out-of-distribution states, will lead to worse reconstructions. Since we only really mea-
sure the action reconstruction error though, MOOSE is said to employ an action-space
regularization. In order to optimize v, we optimize the evidence lower bound (ELBO)
and place a Gaussian prior on the latent space:

L(ω) = Eqω(z|s,a)[− log pω(a|s, z)] +DKL(qω(z|s, a)||p(z))
p(z) ∼ N (0, 1) (5.11)

Under standard assumptions (normally distributed modeling errors in Euclidean space),
the ELBO is minimized using a mean squared error reconstruction loss. In order to
minimize the bias during policy training, we will thus use it again to assess the probability
of a state-action pair: Low reconstruction errors correspond to high probabilities since
the model has learned to accurately reproduce the input, and vice versa. Similarly to
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Figure 5.1: Visualization of the MOOSE training procedure. First, a start state is sampled
from the dataset (black, top-left), and provided to the target policy (green) to
propose an action. This action is then given to the VAE (orange) together with the
current state to assess how well the action is represented in the data and calculate
the penalty. The target action and current state are then also provided to the
transition ensemble (blue) in order to predict the reward as well as the future state,
with which the procedure starts anew until the optimization horizon is reached.

the rewards, we accumulate the reconstruction errors to form a penalty term:

E[P ] =
∑
t

Eqω(z|s,a),(s,a)∼π,T̂ [− log pω(a|s, z)] (5.12)

=
∑
t

Epω(â|ŝ,z),qω(z|s,a),(s,a)∼π,T̂ [(a− â)
2] (5.13)

MOOSE then optimizes the policy π by extending the loss function in Equation 5.4, by
using a convex combination of the expected return estimate and the derived penalty:

L(θ) = −λE[R] + (1− λ)E[P ] (5.14)

See a visualization of the policy training procedure in Fig. 5.1. Additionally, MOOSE
biases the return estimate towards the minimum of the ensemble instead of the mean,
in order to incorporate a form of conservatism induced by the transition models. This
methodology is a generalization of a technique inspired by double Q-learning [8], where
the authors use two value functions and mix it (14 max+3

4 min) in order to obtain a more
conservative value estimate. Since the MOOSE ensemble may consist of more than two
members, the new return estimate is defined over the mean and the min:

E[R] =ηmin
k

{∑
t

γtr(st, πθ(st), fk(st, πθ(st)))

}
(5.15)

+ (1− η) 1
K

∑
k

[∑
t

γtr(st, πθ(st), fk(st, πθ(st)))

]
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where η, just like λ needs to be between 0 and 1. An overview over the MOOSE algo-
rithm is again provided in pseudocode in Algorithm 1. This concludes the formalization
of the idea as well as the practical derivation of MOOSE - one of the first model-based
offline RL algorithms, which aims to regularize the trained policy π by means of a VAE
induced reconstruction penalty in the action space. In the next section, we will show
experimental results of the approach on a variety of benchmark datasets, and compare
the algorithm’s performance with other state of the art offline RL baselines.

Algorithm 1 MOOSE
1: Require Dataset D, randomly initialized parameters θ, ϕ, ω, horizon H, number of

policy updates U
2: // dynamics and VAE models can be trained supervised and independently of other

components
3: train original policy model vω using D and Equation 5.11
4: train dynamics models T̂ k

ϕk
with D and Equation 5.1

5: for j in 1..U do
6: sample start states S0 ∼ D
7: estimate E[R] using T̂ k

ϕk
and Equation 5.15

8: estimate E[P ] using v and Equation 5.12
9: θj ← θj−1 − α∇θj−1

[−λE[R] + (1− λ)E[P ]]
10: return πθ;

5.1.2 Experimental Comparison of MOOSE with Prior Methods on the
Industrial Benchmark & MuJoCo

In order to empirically verify our approach, we evaluate the MOOSE algorithm on 19
datasets from the MuJoCo and the industrial benchmark domain. The 16 industrial
benchmark datasets have been collected under three different baseline policies (bad,
mediocre, optimized) mixed with varying degrees of ε-greedy exploration (0%, 20%,
40%, 60%, 80%, and one dataset with entirely random data). The MuJoCo datasets
have been collected from three different robotic locomotion environments (Swimmer,
Hopper, Walker2D), by adding Gaussian noise to a pretrained expert policy in 70% of
cases mixed with entirely random actions in 30% of cases. For a detailed description of
the datasets and environments, we refer to sections 3.2 & 3.1.

In the experiments, we aim to analyze the following points:
• Environment Generalization We aim to derive an algorithm that is generally

applicable across different domains. Thus, we test it on different robotic environ-
ments as well as the IB, which is inspired by applications such as turbine or reactor
control, in order to see whether MOOSE can derive effective offline policies across
a range of tasks.
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Swimmer Hopper Walker2D

DDPG -10.2 (1.8) 0.4 (4.5) -12.7 (3.9)
BRAC-v 25.9 (0.1) 134.0 (0.2) 17.1 (0.9)
BEAR 22.9 (0.1) 117.4 (1.3) -7.0 (3.8)
BCQ 24.8 (0.1) 132.0 (0.2) 91.9 (1.0)

TD3+BC 13.9 (0.1) 56.7 (0.1) 28.9 (0.5)
CQL 8.5 (0.2) 56.1 (0.1) 42.9 (0.3)

MOPO 8.3 (0.1) 4.2 (0.1) -8.8 (0.1)
MOReL 4.1 (0.1) 5.8 (0.1) -8.3 (0.1)
MOOSE 24.2 (0.1) 147.2 (0.2) 113.7 (0.6)

Table 5.1: Robust performance of the algorithms in the MuJoCo experiments. To assess robust-
ness, 10th percentile performance is shown together with its standard error. Final
10% of performance values across five seeds taken into account. MOOSE outper-
forms its model-free counter parts on Hopper and Walker, while BRAC performs
better on the Swimmer task.
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Figure 5.2: Mean performance ± standard deviation in MuJoCo experiments. Dashed line
represents original batch performance.

• Dataset Generalization MOOSE is supposed to work well, no matter how the
provided dataset was generated. The datasets thus represent a diverse set of base-
line policies (expert data, undirected data, mediocre attempts) and exploration
amounts (from none at all to pure exploration), so that we can test how the algo-
rithm performs when faced with various different settings.

• Performance Comparison Of course, we aim to answer the question whether
MOOSE can beat state of the art offline RL algorithms on the benchmark datasets,
i.e. whether the design choices including the model-based value estimation and the
VAE based action space regularization pay off.

• Learning Stability Last but not least, we care about the stability of the learning
process: In offline RL more so than in online RL, it is crucially important that the
algorithm produces a well performing policy reliably, and not only every 100 seeds,
since we cannot reliably evaluate the performance before deployment.
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Training curves for the experiments are provided in Figures 5.3 & 5.2, while final per-
formance values are given in Tables 5.2 & 5.1. The performance values are obtained as
follows: Since we do not know the true performance of a policy in the real environment
until actual deployment (can consequently cannot perform policy selection), we report
10th percentile performance of the final 10% of policies in order to get an understanding
of how an algorithm will do from a perspective that is closer to the worst case. Often,
practitioners will care more about not loosing performance than about gaining it (a bias
common in human nature), which is why this perspective is much more important for
real world deployments than average performance. As we work with limited computa-
tional resources, we cannot repeat all experiments another J times. Instead, we train
five seeds for each algorithm, and then collect the final 10% of policies obtained in these
trainings to add them to a pool of final policies. We then calculate the 10th percentile
performance on this larger policy pool. Strictly speaking, the assumption necessary for
this methodology to obtain correct results (independence of the policies) is not fulfilled,
however it is the best we can do with the limited amount of compute available. Also,
considering the final 10% of policies actually well reflects the early stopping problem in
offline RL: We do not know when to stop training, so ideally all policies close to the “end”
should be admissible. In order to provide an uncertainty estimate of the 10th percentile,
we assume policy performances to be normally distributed, calculate the standard error
of the mean, and multiply it by 1.7, since we find through Monte Carlo experiments that
the 10th percentile is about 1.7 times as uncertain as the mean for normally distributed
variables.

Experimental Details In accordance with prior literature we set the discount factor
γ to 0.99 for the MuJoCo and to 0.97 for the industrial benchmark datasets. We per-
form virtual rollouts of length 100 and evaluate on 10 trajectories of the same length.
MOOSE’s transition models and policies have two layers of 400 and 300 neurons and use
ReLU nonlinearities, except for the final layer, where the transition models do not em-
ploy any nonlinearity, and the policies use a tanh nonlinearity to normalize the outputs
between (−1, 1). The variational autoencoder models have two encoding layers of size
750, as well as two decoding layers of the same size. They also use ReLU nonlinearities,
except for the final layer. The latent space dimension is 2×action_dimensionality, since
it learns mean and variance separately. While the policies are trained with a batchsize of
100, the transition models and VAEs use batches of size 500. We use the Adam optimizer
[100] with standard parameters and learning rate 10−4 for transition and VAE models.
For the MuJoCo policies we decrease this value to 10−5 and for the IB policies we even
switch to vanilla SGD with a learning rate of 10−4, since we found that the momentum
style components of Adam hurt the rollout based optimization and induced too much
variance. Transition model outputs are furthermore clipped to stay inside the known
range of values to avoid extreme extrapolation mistakes.
We train MOOSE’s tranistion and VAE models for 50 full epochs, i.e. until each sample
has passed 50 times, and the policy for 5000 steps, except in the Hopper environment,
since the transition model predicts premature falling over of the robot after about 1000
steps. For the other algorithms, we stick to the standard set of hyperparameters, ex-
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Figure 5.3: Mean performance ± standard deviation in IB experiments. Dashed line represents
original batch performance.
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cept that we reduce the amount of compute since the amount of data is also lower, i.e.
we train BCQ, BEAR, BRAC, and TD3+BC for 10,000 steps on the IB datasets, and
similarly train 300 epochs instead of 3000 for CQL, and 100 epochs instead of 1000 for
MOPO. MOOSE is decreased from 5000 to 1000 steps. We choose the penalty-reward
mixture parameter λ at a very conservative 0.01, since we have no way of tuning it. The
ensemble size is always K = 4 and we use η = 0.5 to trade of between mean and min
estimated performances.

Table 5.2: Tenth percentile performances of evaluated Offline RL algorithms and their standard
error. Final 10% of performance values across five seeds taken into account. MOOSE
performs best on 9 out of 16 datasets, while CQL is best in three, MOPO and BCQ
in two, and TD3+BC takes the top spot on a single dataset.

ε = 0.1 0.2 0.4 0.6 0.8 1.0

B
ad

DDPG -326 (25) -383 (5) -383 (7) -383 (7) -383 (7)
BRAC -266 (8) -248 (8) -265 (8) -190 (5) -132 (4)
BEAR -322 (3) -180 (4) -129 (3) -98.3 (1.3) -88.7 (0.9)
BCQ -313 (1) -286 (2) -234 (5) -137 (4) -87.1 (1.2)

TD3+BC -326 (2) -289 (2) -230 (2) -173 (2) -113 (2)
CQL -292 (2) -327 (1) -326 (2) -323 (1) -271 (1)

MOPO -124 (5) -110 (4) -140 (8) -131 (5) -119 (5)
MOREL -144 (2) -327 (2) -327 (8) -327 (7) -327 (11)
MOOSE -322 (5) -126 (2) -109 (1) -90.3 (0.3) -73.3 (0.3)

M
ed

io
cr

e

DDPG -960 (34) -960 (36) -960 (37) -961 (24) -960 (48) -178 (3)
BRAC -114 (2) -103 (2) -112 (2) -99.0 (2.6) -101 (3) -107 (2)
BEAR -112 (1) -103 (5) -124 (3) -105 (3) -99.7 (1.6) -66.3 (0.2)
BCQ -103 (1) -77.1 (0.1) -72.7 (0.3) -75.9 (0.7) -107 (2) -69.2 (0.4)

TD3+BC -79.7 (0.6) -77.7 (0.1) -76.8 (0.1) -74.3 (0.1) -70.7 (0.1) -65.4 (0.1)
CQL -89.5 (1.2) -80.5 (0.2) -80.8 (0.2) -79.5 (0.2) -78.9 (0.2) -66.0 (0.2)

MOPO -102 (4) -119 (5) -81.4 (2.3) -86.1 (2.5) -92.5 (4.5) -105 (7)
MOREL -122 (2) -327 (6) -327 (4) -327 (7) -327 (1) -327 (12)
MOOSE -83.0 (0.3) -77.1 (0.1) -75.1 (0.1) -70.5 (0.2) -68.7 (0.3) -64.3 (0.1)

O
pt

im
iz

ed

DDPG -416 (24) -382 (11) -257 (21) -312 (30) -168 (3)
BRAC -113 (3) -77.3 (0.8) -158 (6) -89.2 (1.7) -116 (3)
BEAR -60.5 (0.3) -62.5 (0.1) -64.4 (0.2) -66.0 (0.3) -63.0 (0.1)
BCQ -60.1 (0.1) -60.9 (0.1) -62.7 (0.1) -63.6 (0.2) -72.4 (0.5)

TD3+BC -60.3 (0.1) -60.6 (0.1) -61.1 (0.1) -62.7 (0.1) -63.6 (0.1)
CQL -60.9 (0.1) -60.6 (0.1) -60.6 (0.1) -60.6 (0.1) -61.3 (0.1)

MOPO -126 (9) -102 (4) -72.0 (0.9) -80.6 (3.3) -90.3 (2.8)
MOREL -279 (8) -327 (8) -327 (1) -327 (1) -327 (7)
MOOSE -59.7 (0.1) -60.3 (0.1) -60.8 (0.1) -62.1 (0.1) -62.7 (0.1)

5.1.3 Discussion

In this section we develop the idea of the MOOSE algorithm: A purely model-based
offline RL algorithm that estimates policy returns based on virtual rollouts and does
not employ a value function. MOOSE instead adapts the idea of action space policy
regularization and is the first algorithm to employ it in a model-based context in order
to facilitate learning only from a single pre-collected static dataset.

In our comparison, MOOSE performs best on nine of the sixteen industrial benchmark
datasets in terms of robust (10th percentile) performance. Note that CQL & TD3+B
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were proposed much later than MOOSE, so that at the time of publication MOOSE
would even outperform the remaining algorithms on 13 out of the 16 IB datasets. On the
MuJoCo tasks, MOOSE performs best on the more complex Hopper and Walker tasks,
but is outperformed by BRAC and BCQ in the Swimmer environment. Overall, this
highlights MOOSE’s capability to produce well performing policies reliably, over a range
of different tasks and datasets, as well as in high dimensional state and action spaces.
Compared to most other algorithms in Figures 5.3 & 5.2, its performance curves are
much smoother, i.e. exhibit much lower variance, which is an important factor in offline
RL due to the lack of early stopping / policy evaluation possibility. We attribute most
of this gain to the fact that MOOSE is the only algorithm in the comparison which does
not use a value function for planning - an element which has in the past been known
for being unstable and hard to train. By instead optimizing directly on imagined tra-
jectories, combined with the novel action space penalty based on VAE reconstruction
error, MOOSE appears better suited for real world offline RL deployments. Further,
MOOSE, DDPG, and TD3+BC are the only algorithms in the comparison able to de-
rive deterministic policies (a requirement likely in real world systems, especially those
of mechanical nature due to safety concerns), and MOOSE far outperforms the other two.

It is no surprise that DDPG does not manage to train any decent policies since even
though it is off-policy it does not contain any adaptations for the offline setting, and it
was already shown in Section 2.4 that these algorithms fail when they are not trained
with at least close to on-policy data. Some of the other algorithm results however are a
little more surprising: BRAC-v performs well on the MuJoCo tasks, but badly on the IB
datasets. We hypothesize this to be due to (a) the Gaussian policy representation, which
suits the way the data was collected in the MuJoCo experiments much better, and (b) the
divergence estimation based on relatively few samples, leading to large variance. MOReL
is also performing rather badly on the IB datasets - in our experiments we observed that
the virtual rollouts were likely far too long: The uncertain state detector (USD) was
ending the episodes too late, and the value functions were thus trained on synthetic data
too far away from the training distribution (i.e. likely too inaccurate). MOPO seemed to
have similar issues, albeit on a much lower scale, since it only performs very short rollouts
- however since it performs new rollouts starting from the already imagined states, the
quality of data likely degrades over time. BCQ, TD3+BC, and CQL appear to be the
most promising alternatives to MOOSE - they are a bit conservative and thus lead to
lower performances especially when the baseline policy was bad, however that is part of
the concept.
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5 Policy Regularization for Model-based Offline Reinforcement Learning

5.2 Regularization in Weight Space with Population based
Policy Search

A key issue with MOOSE is the gradient based optimization of the policy by means
of imagined rollouts: Since MOOSE does not rely on any value function, the gradient
of the estimated return needs to be calculated with respect to the sum of individual
step rewards, which can be an issue due to two problems: (i) The gradient needs to
be propagated back through many steps, leading to potentially exploding or vanishing
gradients, a problem well known from very deep networks in language or vision models
[98, 99]. (ii) It is unclear whether the individual step gradients are the best way to
optimize the cumulative return, since they mutually influence each others - e.g. in the
Hopper environment, if one step yields a higher reward since the robot moved faster, the
policy might loose control over it in the next step, the robot falls over and the trajectory
ends. We thus seek to develop an alternative rollout based algorithm that can optimize
the policy without relying on the gradient information of the return estimated by the
transition model.

5.2.1 Weight Space Behavior Constraining (WSBC)

The key novel ingredient for the WSBC algorithm needs to be a new way to optimize
the policy with respect to the estimated performance and the penalty for diverging from
the known data distribution, since the optimization of Equation 5.14 in MOOSE is per-
formed using Adam, which is an advanced gradient descent method. Since we do not
fully trust the gradient to do exactly what we aim for (individual step rewards versus
global return), and since numerical stability issues may arise in the gradient setting due
to the long rollouts, we will replace the gradient based optimization with a gradient-free,
population based search algorithm.
Gradient-free optimization techniques, such as CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) or PSO (Particle Swarm Optimization) have been used in prior work
to tackle control problems [128, 129, 12]. [128, 130] found that training a policy gradient-
free required more environment interactions, since they were at the same time neither
using a value function nor a transition model in order to estimate policy performance. In
the offline setting with model-based value estimation, this result does not concern us too
much, since the limiting factor is usually not how often we can evaluate the transition
model to estimate the performance of the current policy. [13] developed an approach
to train neural policies in a gradient-free fashion for the industrial benchmark directly
from static datasets. In that case, the datasets contained 100% uniform random actions,
i.e. a lot of exploration, which didn’t require the authors to make any adjustments to
regularize the policy towards the data distribution. Instead, since the transition model
was able to learn properly about most parts of the state-action space, the PSONN (par-
ticle swarm optimization neural network) algorithm searches directly for neural policies
by assessing a particles fitness via trained transition models. Since the assumption of
uniformly random actions is not particularly realistic, we will in the following develop
a new offline RL algorithm by bringing together ideas from PSONN and MOOSE: The
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policy optimization needs to be performed gradient-free, but it also needs to be regular-
ized towards the data distribution.

Transition Models First, we introduce the transition models used in our algorithm,
Weight Space Behavior Regularization (WSBC). We take inspiration from the recurrent
networks developed for the industrial benchmark in [46]: The RNNs have a single RNN
cell with tanh nonlinearity, as introduced in Section 2.2.2, i.e. the hidden state is cal-
culated using Equation 3.39, by using the prior hidden state as well as the new input,
in this case the new state and action. The next environment state (and/or reward) is
then calculated based on the updated hidden state using Eq. 3.40. Since [46] found it
beneficial for the prediction error on a held out evaluation dataset, we train two separate
RNNs for consumption and fatigue on the IB. Further, the model for consumption does
not receive its past prediction for the consumption back as an input (see Section 3.3).
For the MuJoCo environments, we only use one RNN to predict both state and reward.
The loss function for training the transition models based on the initial dataset D thus
looks as follows (we omit explicit notation of modeling deltas instead of states):

L(ϕ) = Es0∼D

[
G+F∑
t=G

[s(T̂ϕ(ŝt, at, ht−1))− st+1]
2

]
(5.16)

with ŝt+1 =

{
st+1 if t < G

s(T̂ϕ(ŝt, at, ht−1)) else
and ht = h(T̂ϕ(ŝt, at, ht−1))

where s(·) describes the output portion of the transition model T̂ that contains the pre-
diction of the future state and h(·) describes the corresponding portion containing the
updated hidden state. For G steps, the model is fed the correct input states (and actions)
that were observed during the trajectory in the dataset in order to build the hidden state.
Afterwards, the model receives its own past prediction (if applicable) as “self input” and
still needs to predict the true labels for the next F steps. That way, the transition model
needs to stay accurate for many steps into the future instead of just a single one. We
again train an ensemble of K transition models.

Policy Search Similarly to MOOSE / PSONN, the return or fitness value of a policy
is estimated by performing imagined rollouts through the trained ensemble of transition
models. We search in the space of neural network policies π with parameters θ, that
provide an action based on the current state st and possibly more past states: at =
πθ(st, [st−1, ..., st−G]) (The IB is partially observable and benefits from a collection of
past timesteps taken into consideration, while this does not play a role in the MuJoCo
environments). We limit the dimensionality of the parameters θ by choosing low numbers
of neurons and only a single hidden layer, since every extra dimension exponentially
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increases the search space that needs to be covered by the gradient-free optimizer.

L(θ) = Eπ[R] =
1

|S|
∑
s0∈S

G+F∑
t=G

γtr(T̂ ktϕ (ŝt, πθ(ŝt[ŝt−1, ..., ŝt−G]), h
kt
t−1)) (5.17)

s.t. kt = argmin
k

r(T̂ kϕ (ŝt, πθ(ŝt[ŝt−1, ..., ŝt−G]), ht−1)) k ∈ {0, ...,K − 1}

with ŝt+1 =

{
s(T̂ ktϕ (ŝt, at, ht−1)) if t < G

s(T̂ ktϕ (ŝt, πθ(ŝt[ŝt−1, ..., ŝt−G]), h
kt
t−1)) else

and hkt =

{
h(T̂ kϕ (ŝt, at, h

k
t−1)) if t < G

h(T̂ kϕ (ŝt, πθ(ŝt[ŝt−1, ..., ŝt−G]), h
k
t−1)) else.

where r(·) describes the portion of the model’s output that corresponds to the reward
prediction, and kt denotes the index of the transition model that currently predicts the
lowest reward. During rollouts, the predicted state of that model is used to carry on with
the trajectory. Compared to MOOSE, this means a little more conservatism is embedded
into the reward estimation.

Instead of optimizing Eq. 5.17 w.r.t. the policy parameters θ by gradient descend, we
choose PSO [76, 80] to search for well performing policies. We vow for PSO over other
gradient-free algorithms due to its attributed robustness and the prior experiences on the
industrial benchmark published in related works. The algorithm maintains a population
of policies with their positions (parameter values) as well as velocities (changes in the
parameter space). In every iteration, all policies are evaluated using Eq. 5.17, and after-
wards their positions and velocities are updated. The velocity update contains a social
and a local component, leading policies to be pulled towards their personal best as well
as the best parameter values of their neighbours. See Section 2.6 for a more in-depth
introduction to PSO.

Behavior Constraining What remains is to constrain the policy search, such that
only policies that do not deviate too strongly from the dataset distribution can be found.
Naively, one might transfer the VAE based action space penalty from MOOSE over to
WSBC by augmenting Eq. 5.17 accordingly. However, contribution [C] found that it is
much more effective to penalize the search of the policy directly in neural weight space.
To this end, we train a model of the generating policy βψ(·) which has the exact same
architecture, and consequently the same parameters, as the policy πθ which we aim to
train. β is trained by minimizing the mean squared error on the dataset D with N
interactions:

L(ψ) =
1

N

∑
t

[βψ(st[st− 1, ..., st−G])− at]2 (5.18)

We then use the found parameters of the generating policy to constrain the search space
of PSO to a small region around the initial parameters ψ:

θ∗ = max
θ

Eπ[R] s.t. ∀i : ||θi − ψi|| < d. (5.19)
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Figure 5.4: Visualization of the WSBC training procedure. First, a fixed set of start states is
sampled from the dataset (black, top-left), and provided to the target policy (green)
to propose an action. This action is then provided to the transition ensemble (blue)
in order to predict the reward as well as the future state. The future state is then
used to start the procedure anew. In the end, the policy is regularized by only
searching in the space around the trained generating policy (orange+red).

Where d is the L1 distance threshold within which PSO is allowed to search. In order to
fulfill the constraint, WSBC augments the update rule in Equation 2.55, clipping particle
positions to lie within the allowed range:

θi+1
n = min(max(θin + vi+1

n , ψ − d), ψ + d) (5.20)

with
vi+1
n = vin + c1 · r1 · [bin − θin] + c2 · r2 · [b̂in − θin] (5.21)

Note that ψ−d & ψ+d are vectors and the min and max operations are applied element-
wise. See Fig. 5.4 for a visualization of the WSBC policy training and algorithm 2 for
pseudocode of the WSBC algorithm.

The idea of PSO and other population based optimization algorithms is to model
social behavior in the search for better solutions. Particles are in one way or the other
pulled towards solutions that have previously been found to perform well either by other
particles or by themselves. On the other hand, such algorithms need to feature some sort
of exploratory behavior, so that they do not immediately converge to the best particle
in the initial distribution. In PSO, velocities during the first few iterations build up to
become rather large, since the particles are spread throughout the entire search space.
Throughout the course of training, the exploratory behavior becomes less, i.e. in PSO
the velocities slowly degrade over the iterations, since particles focus more and more on
the regions around the previously best found solutions. The underlying assumption that
makes the search work is thus that good solutions lie in close proximity to other good
solutions in the parameter space - otherwise it would not make sense to pull particles
towards them.
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In WSBC, we employ a similar assumption to perform the needed policy regularization
to make the algorithm work in the offline setting: By simply constraining the parameter
space to a small region around the parameters of the generating policy, the algorithm
effectively only searches for solutions sufficiently close to the generating policy, so that
it can reasonably be assumed that the transition models are able to accurately predict
trajectories and returns resulting from applying the found solutions to the environment.
The assumption WSBC makes with regard to the search space is thus that particles with
similar parameters (i.e. those that lie within the proximity defined by d), also exhibit
similar behavior.
While prior algorithms like MOOSE, MOPO, BRAC, BEAR, etc. need to augment their
loss function / return computation and add a penalty term based on the action space
divergence between the policies, or the uncertainty in the transition models, WSBC can
effectively optimize the same objective as the corresponding online algorithm. Instead of
adding a regularization term to the loss, we have moved this critical part of offline RL
algorithms to be a constraint under which the objective can be optimized. The changes
necessary to adapt the online algorithm to become offline compatible can be considered
minimal: The loss function stays the same, and we only add a very simple to implement
(see Eq. 5.20) constraint.

Algorithm 2 WSBC
1: Require Dataset D, randomly initialized parameters θ, ϕ, ψ, horizon H, number of

PSO update epochs U , number of particles P , neighbourhood architecture
2: // dynamics and original policy models can be trained supervised and independently

of other components
3: train original policy model βψ using D and Equation 5.18
4: train dynamics models T̂ k

ϕk
with D and Equation 5.16

5: sample start states S0 ∼ D
6: initialize particle positions θ0p and velocities v0p, p ∈ 1, ..., P
7: for j in 1..U do
8: for p in 1..P do
9: update velocity vjp according to Eq. 5.21

10: update position θjp according to Eq. 5.20
11: init L(θjp) = 0
12: for t in 1..H do
13: calculate policy actions at = π

θjp
(st, λ)

14: rt, st+1 = T̂ k
ϕk
(st, at) s.t. k = argmink{r(T̂ kϕk(st, at))}

15: L(θjp)+ = γtλrt
16: update bjp and b̂jp
17: return particle θ with best overall observed return L(θ);
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5.2.2 Experimental Comparison of WSBC with Prior Methods on the
Industrial Benchmark & MuJoCo

Similarly to the experiments conducted for MOOSE, we examine the performance of
WSBC on the 16 industrial benchmark datasets as well as on the three MuJoCo tasks.
In Tables 5.4 and 5.3, we again report 10th percentile performance, and in Figures 5.6
and 5.5 we show the corresponding training curves.

The different regularization technique, constraining the neural weights of the target
policy to be close to those of the generating policy, appears to work rather well and ro-
bustly: On the industrial benchmark datasets, WSBC outperforms all other algorithms,
including MOOSE, on 11 out of the 16 datasets, mostly by significant margins. In the
MuJoCo tasks, WSBC does not perform as well, however still takes second place on the
Hopper and Walker benchmarks, outperforming all prior algorithms except for MOOSE.
In the Swimmer environment, WSBC also takes the rank behind MOOSE, meaning it is
also outperformed by BRAC & BCQ.
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Figure 5.5: Mean performance ± standard deviation in MuJoCo experiments. Dashed line
represents original batch performance.

Regarding the four main investigation issues, we find that WSBC appears to generalize
both over (i) different environments as well as (ii) different dataset modalities, since it
produces well performing policies in different tasks / environments as well as with vastly
different amounts of exploration contained in the corresponding datasets. While the (iii)
absolute performance seems to even surpass that of MOOSE, we note it goes hand in hand
with (iv) slightly worse stability of the learning process, exhibiting higher uncertainties
especially on the bad-0.0 & bad-0.2 datasets as well as an interesting underperforming
outlier on mediocre-0.6. Overall however we still assess WSBC’s stability as better than
that of most prior algorithms, likely due to the fact that like MOOSE, it does not employ
a value function for the return estimation.

Experimental Details The transition models used in WSBC are all simple RNNs
with a hidden dimensionality of 30 for the industrial benchmark experiments and 100 for
the MuJoCo tasks. The models were trained for up to 3000 epochs with a learning rate
of 1.25× 10−5, a learning rate decay of 0.95, a batchsize of 1024, and a patience of 128,
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Swimmer Hopper Walker2D

DDPG -10.2 (1.8) 0.4 (4.5) -12.7 (3.9)
BRAC-v 25.9 (0.1) 134.0 (0.2) 17.1 (0.9)
BEAR 22.9 (0.1) 117.4 (1.3) -7.0 (3.8)
BCQ 24.8 (0.1) 132.0 (0.2) 91.9 (1.0)

TD3+BC 13.9 (0.1) 56.7 (0.1) 28.9 (0.5)
CQL 8.5 (0.2) 56.1 (0.1) 42.9 (0.3)

MOPO 8.3 (0.1) 4.2 (0.1) -8.8 (0.1)
MOReL 4.1 (0.1) 5.8 (0.1) -8.3 (0.1)
MOOSE 24.2 (0.1) 147.2 (0.2) 113.7 (0.6)
WSBC 23.5 (0.1) 138.5 (0.2) 95.7 (1.5)

Table 5.3: Robust performance of the algorithms in the MuJoCo experiments. To assess robust-
ness, 10th percentile performance is shown together with its standard error. Final
10% of performance values across five seeds taken into account. While WSBC out-
performs the prior baselines on Hopper and Walker, it does not perform as well in
them as MOOSE. In the Swimmer environment, WSBC still performs well, but sim-
ilarly to MOOSE it is outperformed by BCQ and BRAC.

using the Adam optimizer. G = 30 history steps as well as F = 50 future steps were
used for the industrial benchmark, while G = 3 was used for MuJoCo. Even though the
latter environments are deterministic, models with a few history steps obtained higher
validation returns on the future predictions than those that only used the current state.

The generating policy model was a simple MLP model with a single hidden layer of
size 20 for the industrial benchmark and size 40 for the MuJoCo datasets. The policies
needed to have a lower amount of parameters since it makes learning without gradients
much easier (covering the parameter space needs exponentially more samples with each
additional dimension). However, we didn’t observe issues with this since both the re-
production of the generating policy was still sufficiently accurate and the target policies
of the same architecture were able to perform well despite their lower capacity. The
target policies were searched for using PSO with a population size of 200 particles for
100 epochs in the limited search space ψ ± 1.25 × 10−2 for the IB and ψ ± 6.25 × 10−3

for MuJoCo (the distance needs to be lower in MuJoCo due to the higher complexity
policies). During optimization, ring neighbourhoods of size 31 were employed, so that
each particle had 30 neighbours. Each particle used the same 200 starting states, since
sampling would expose PSO to noise, leading to “lucky” particles taking the top spots,
but not actually performing well in the real environment. The rollouts as well as the
evaluations were conducted for 100 steps with a γ of 0.97 for the industrial benchmark
and 0.99 for the MuJoCo datasets. ReLU activations were used everywhere except for
the hidden layer of the RNN, which employed a tanh function.
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Figure 5.6: Mean performance ± standard deviation in IB experiments. Dashed line represents
original batch performance.
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Table 5.4: Tenth percentile performances of evaluated Offline RL algorithms and their standard
error. Final 10% of performance values across five seeds taken into account. WSBC
outperforms all other algorithms including MOOSE on 11 out of 16 datasets, while
MOOSE & MOPO each take two, and CQL takes the top spot on a single dataset.

ε = 0.0 0.2 0.4 0.6 0.8 1.0
B

ad

DDPG -326 (25) -383 (5) -383 (7) -383 (7) -383 (7)
BRAC -266 (8) -248 (8) -265 (8) -190 (5) -132 (4)
BEAR -322 (3) -180 (4) -129 (3) -98.3 (1.3) -88.7 (0.9)
BCQ -313 (1) -286 (2) -234 (5) -137 (4) -87.1 (1.2)

TD3+BC -326 (2) -289 (2) -230 (2) -173 (2) -113 (2)
CQL -292 (2) -327 (1) -326 (2) -323 (1) -271 (1)

MOPO -124 (5) -110 (4) -140 (8) -131 (5) -119 (5)
MOREL -144 (2) -327 (2) -327 (8) -327 (7) -327 (11)
MOOSE -322 (5) -126 (2) -109 (1) -90.3 (0.3) -73.3 (0.3)
WSBC -134 (35) -118 (12) -102 (3) -84.9 (0.1) -70.0 (0.3)

M
ed

io
cr

e

DDPG -960 (34) -960 (36) -960 (37) -961 (24) -960 (48) -178 (3)
BRAC -114 (2) -103 (2) -112 (2) -99.0 (2.6) -101 (3) -107 (2)
BEAR -112 (1) -103 (5) -124 (3) -105 (3) -99.7 (1.6) -66.3 (0.2)
BCQ -103 (1) -77.1 (0.1) -72.7 (0.3) -75.9 (0.7) -107 (2) -69.2 (0.4)

TD3+BC -79.7 (0.6) -77.7 (0.1) -76.8 (0.1) -74.3 (0.1) -70.7 (0.1) -65.4 (0.1)
CQL -89.5 (1.2) -80.5 (0.2) -80.8 (0.2) -79.5 (0.2) -78.9 (0.2) -66.0 (0.2)

MOPO -102 (4) -119 (5) -81.4 (2.3) -86.1 (2.5) -92.5 (4.5) -105 (7)
MOREL -122 (2) -327 (6) -327 (4) -327 (7) -327 (1) -327 (12)
MOOSE -83.0 (0.3) -77.1 (0.1) -75.1 (0.1) -70.5 (0.2) -68.7 (0.3) -64.3 (0.1)
WSBC -71.1 (0.1) -68.5 (0.2) -68.8 (0.2) -243.1 (0.1) -62.9 (0.1) -63.8 (0.1)

O
pt

im
iz

ed

DDPG -416 (24) -382 (11) -257 (21) -312 (30) -168 (3)
BRAC -113 (3) -77.3 (0.8) -158 (6) -89.2 (1.7) -116 (3)
BEAR -60.5 (0.3) -62.5 (0.1) -64.4 (0.2) -66.0 (0.3) -63.0 (0.1)
BCQ -60.1 (0.1) -60.9 (0.1) -62.7 (0.1) -63.6 (0.2) -72.4 (0.5)

TD3+BC -60.3 (0.1) -60.6 (0.1) -61.1 (0.1) -62.7 (0.1) -63.6 (0.1)
CQL -60.9 (0.1) -60.6 (0.1) -60.6 (0.1) -60.6 (0.1) -61.3 (0.1)

MOPO -126 (9) -102 (4) -72.0 (0.9) -80.6 (3.3) -90.3 (2.8)
MOREL -279 (8) -327 (8) -327 (1) -327 (1) -327 (7)
MOOSE -59.7 (0.1) -60.3 (0.1) -60.8 (0.1) -62.1 (0.1) -62.7 (0.1)
WSBC -60.2 (0.3) -58.2 (0.1) -58.6 (0.1) -59.0 (0.1) -61.7 (0.1)

5.2.3 Discussion

In this section we introduced the WSBC algorithm and compared its performance, stabil-
ity, and generalization capabilities with prior offline RL algorithms as well as the newly
proposed MOOSE algorithm from the previous section. WSBC outperforms all other al-
gorithms considered in 11 out of the 16 industrial benchmark datasets, while exhibiting
slightly larger uncertainties than MOOSE, who takes the second place in most of these
datasets. Since WSBC also performs well in the MuJoCo domain, we assess it good
generalization capabilities when faced with different policy baseline and exploration sce-
narios as well as different environments and tasks. Overall, we thus deem WSBC to be
a good choice for offline RL in practice.

Looking at both algorithms proposed in this Chapter together, they perform best in
15 out of 19 datasets and take second place in the remaining four, making a strong case
for usability in real world offline tasks. While the differences in regularization techniques
appear to be significant and have their strengths in different environments, datasets or
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metrics (e.g. higher variance of WSBC in bad-0.0, bad-0.2 and underperformance in
mediocre-0.6, but overall higher performance on the other datasets; MOOSE with better
performance in the MuJoCo environments), we would like to point out that overall it
seems to be beneficial to use transition models in offline RL, and at the same time abstain
from employing a value function. In the experimental comparison, both the purely value
function based, as well as the hybrid approaches yielded higher variance and overall lower
10th percentile performance, likely in part due to the associated training instabilities.
While there exist environments / tasks e.g. with very long horizons for which model-
rollout based return estimation can become impractical, we find that for environments
in which they are feasible, they bring key advantages to the table.

For the wind turbine operator, MOOSE and WSBC constitute a large step
forward: Using these algorithms, no online learning phase is required, mean-
ing lower risk of damaged equipment and much lower risk of underperform-
ing the prior controler due to the lack of exploratory actions. Looking at
the results of MOOSE and WSBC, the algorithms rarely ever perform be-

low the generating policy (MOOSE slightly on mediocre-0.0, WSBC on mediocre-0.6),
meaning that the operator can confidently use them in order to improve the systems
electricity yield - in contrast, most other tested offline RL algorithms underperform on
some datasets. While real world datasets can look differently and the results are no
guarantee, the algorithms still significantly improve usability in real world scenarios.
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In this Chapter, we motivate and develop the idea of proximity conditioned policies,
i.e. policies that condition on the proximity to the generating policy. We devote two
separate sections 6.1 & 6.2 to the motivation of the concept, because it can be derived
in two completely separate ways. We will further examine the suitability of the resulting
policies for offline RL on the industrial benchmark and MuJoCo datasets presented in
Chapter 3 and compare their performances with those of other state of the art offline
RL algorithms presented in Chapters 2.5 & 5. Finally, we discuss potential use cases for
proximity conditioned policies and how to find good trade-offs between proximity and
performance. The material presented in this Chapter corresponds to the contributions
[E & F].

6.1 The Difficulty of Finding the Correct Hyperparameters
in Offline RL

Rather recently, offline RL algorithms have shown that it is possible to learn policies for
continuous control problems purely from static datasets and without any environment
interaction [8, 54, 52, 36, 43]. In doing so, they have already alleviated a large obstacle
on the path towards more deployments of RL policies in real-world (physical) systems,
because environment interaction is often an issue due to safety concerns, opportunity
cost, and scalability (many online RL algorithms simply require too many interactions
to be realistically collected by a single physical system).

However, offline RL algorithms also still face a major issue: They are generally unable
to perform hyperparameter tuning for most of their hyperparameters since no environ-
ment interaction is possible until final deployment. While model-based / hybrid algo-
rithms can at least tune the hyperparameters of their transition models since it is learned
entirely supervisedly, model-free approaches do not have any option to tune them. While
for some parameters reasonable guesses can be made, such as the policy architecture or
the gradient descent algorithm, one of the arguably most important hyperparameters in
offline RL is the regularization term that moves the trained policy closer to the gener-
ating policy and in doing so enables offline learning. Different techniques exist for this
regularization, but all offline RL algorithms have such a parameter: In BRAC it is the
α parameter that controls how large the penalty for high KL-divergences between gen-
erating and trained policy is, in BEAR, λ controls the magnitude of the MMD-based
penalty, in TD3+BC, α determines the strictness of the behavior cloning regularization,
in CQL, α decides how much to devalue state-action pairs that have not been seen in
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the dataset, in MOPO, λ settles how much the reward is decreased by the uncertainty
estimate, in MOReL, if the model-disagreement exceeds the value of ϵ the trajectories
will be terminated, in MOOSE, λ controls the influence of the VAE penalty, and in
WSBC, d is the maximum distance between generating policy and any policy candidate.
A small exception is BCQ, which features three immediate regularizing hyperparame-
ters: (1) Φ, which is the maximum value by which the perturbation model ξ is allowed
to change the selected action, (2) The number of actions sampled from the generating
policy model, and (3) the test-time maximum values of the standard deviation of the
VAE latent space parameters. The bottom line is that each offline RL algorithm features
at least one central hyperparameter that determines how strictly to regularize the policy
towards the generating policy. Many different names have been proposed for this, such
as conservatism, pessimism, risk-awareness, uncertainty-avoidance, etc. In the following,
we will refer to this concept as proximity, as in the proximity of the trained policy to the
generating policy.

Since prior work has found that offline RL algorithms can be rather sensitive with
respect to their hyperparameters [73], particularly the proximity regularizing parameter,
practitioners are in practical applications faced with a dilemma: How should they choose
the α / λ / ϵ / d / Φ, etc.? The standard hyperparameters may have worked on a set of
academic benchmark datasets, however the specific task / dataset at hand might exhibit
very different characteristics. The practitioners thus risk being either overly conservative
or too adventurous in their choice, both of which would be a problem: Overly liberal
hyperparameter choice would lead to the policy exploiting the return estimator, visit-
ing state-action pairs that cannot be accurately accounted for and ultimately performing
much worse in the real environment than expected. But also too conservative policies are
a problem since they cannot lead to significant improvements, which would in practice
likely result in discontinuation of the project due to lack of meaningful gains.

There is thus an obvious need for a way to tune hyperparameters in the offline RL
context, specifically the proximity of the new policy to the generating policy. One way
of addressing this need is by offline policy evaluation or offline policy selection (OPE
/ OPS): The idea is that not only the training process, but also the evaluation can be
performed entirely without environment interaction, by e.g. using a different kind of
transition model than the one used in training or by training a Q-function specifically for
the policy to be evaluated and correct for the discrepancy in state-action visitation via
importance sampling [131, 132, 133, 134, 135]. The main problem with these techniques
is that the issue of not knowing what they don’t know always remains: Some parts of the
state-action space are simply not (well) explored - if a policy enters this region then the
offline policy evaluation is likely equally inaccurate as the return estimator used during
training. Of course there exists something between unexplored and completely covered
by the generating policy, however it is unclear which general properties a return estima-
tor during evaluation should have that one during training cannot have. While entirely
offline tuning thus appears problematic, works such as [136, 137] can make OPE much
more viable once a budget for online evaluations exists. Similarly, works exist that adap-
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tively train the policy online after an offline pre-training phase [138, 139, 140]. Among
other ideas, meta reinforcement learning [141, 142, 143], which is mostly associated with
adapting quickly to new tasks, can in this context be used to quickly adapt the offline
policy to the online environment.

Since we assume that no actual online learning is admissible (domain experts should
have the ability to examine the policy before deployment in order to mitigate the associ-
ated risks), we propose to learn policies that condition on the proximity hyperparameter:
Instead of learning only a single trade-off between proximity and estimated return, which
might be the wrong one since regularization should be more or less strict, we aim to learn
a continuous spectrum of all possible trade-offs.

6.2 The Role of the User

One of the greatest obstacles on the path to more RL policy deployments in real (physi-
cal) systems besides learning without interaction is the fact that offline as well as online
RL algorithms for continuous control mostly ignore the presence of domain experts, or
operators, of the system they seek to optimize. These operators can be seen as users
of the final policy, so a solution should be appealing to them. Instead, most of (offline)
RL literature can be seen as trying to automate away domain experts. We believe that
it is the obligation of an AI system to provide utility and control to the user, not only
because they can be seen as gatekeepers in this scenario, but also because it is likely that
the combination of human expert together with the AI system can make better choices
than either of them alone. In other machine learning disciplines, it has already been
established that users are crucially important to solving a task [144, 145, 20, 19, 146]:
For example in medical diagnoses, even though many methods have shown to outperform
human experts on benchmark datasets for e.g. skin cancer recognition [147], few people
want to be diagnosed by a completely automated AI solution. As a consequence, methods
to team up human and AI have been developed, where medical images from past patients
together with their diagnoses can be retrieved that are similar to the current patient’s
image, thereby aiding the medical professional in their diagnosis [145]. Similarly, the
multi-target reinforcement learning framework can be used to provide users with control
about the goal the agent should be fulfilling at runtime [21, 22, 23]. Methods like these
are a great example of AI systems that behave more like an intelligent tool, and less like
a replacement for the user, which is a general theme that researchers have called for in
future AI systems [29, 30]. Ideally, human-AI teams should benefit from each others, by
combining the high level of automation that is provided by the AI system with the high
level of domain knowledge and control that the users can bring to the table. Resulting
methods should be more safe, transparent, and trustworthy than the ones we currently
have. Ideally, they will also lead to improved performance.

A whole other reason to adopt a more user centric approach for AI systems is that it
may in the future be required by law. The EU high level expert group on AI has already
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recognized human autonomy and oversight as key concepts in their ethics guidelines for
trustworthy AI [28]. Users of an AI system should thus have a right to act autonomously
and control the AI system, not vice versa. As the use of AI technologies in industry and
society grows, these concepts might be enforced by law, requiring change in perspective
and enabling the users to stay in control.

As a first step to providing the user with more control in the offline RL setting, we
propose to train adaptive policies that condition on the proximity hyperparameter of the
algorithm, which regularizes the trained policy towards the generating one. That way,
users can quickly adapt the behavior of the policy if it is not acting in a way that the
user would like to endorse. This “disliked” behavior does not need to manifest itself in
a lower return, but could simply be due to unfamiliarity or the concern that the policy
might enter a potentially dangerous state, which the user can recognize before. When the
proximity conditioned policy is trained, users can easily and quickly alter their degree
of conservatism based on what they observe, since no retraining of the policy is required
and any continuous step size is supported.

In the wind turbine example: While the operator already has good chances
of successfully deploying an offline RL policy built with MOOSE or WSBC,
a few pain points remain. While the operator is keen on using the new
technology, they do not really trust the fixed nature of the derived policies
- after all, there is no guarantee that the trained policy will outperform

the prior controller. Ideally, the operator would still like to be able to influence the
behavior of the policy after training if they don’t like it. With the idea of proximity
conditioned policies, this becomes possible: The operator can safely deploy the policy
and condition it so that it closely resembles the prior controller, and then gradually
give it more freedom to move away from it in order to improve the yield - if at any
point the operator sees behavior that is undesired (e.g. vibrations in the turbine, risky
high rotational speeds, or other things that are not necessarily directly reflected in the
reward function), they may immediately go back to a more constrained policy without
retraining.

6.3 Training a Discrete Number of Offline Policies to Cover
the Trade-off Space

At first, we look at a trivial solution to achieve the same goal as proximity conditioning:
Using an existing offline RL algorithm, and simply training not only with a single value
for the proximity hyperparameter, but instead with a discrete number of different pa-
rameters to span the space of possible trade-offs between proximity and performance. As
a well known offline RL algorithm, we choose MOPO to perform this initial experiment:
We choose a subset of three datasets from the industrial benchmark datasets and train
MOPO with uncertainty penalizing parameters λ = {0, 0.1, 0.2, ..., 2.5}, to see whether
this method could serve as a replacement for the proximity conditioned policies. Users
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Figure 6.1: Prior offline RL algorithms, such as MOPO do not necessarily behave consistently
when trained across a range of penalizing hyperparameters.

could be provided with the resulting collection of policies and switch between them in
order to stay closer to or stray further away from the generating policy. Two downsides
of the approach are immediately clear: (1) The computational complexity grows linearly
with the number of trade-off choices which we want to provide to the user because we
need to train an individual policy for each trade-off, and (2) since we only train a dis-
crete amount of policies we cannot be sure whether the desired trade-off by the user is
contained in the set of policies that we provide. Particularly the combination of both
issues becomes tricky because one could try to solve (2) by simply training more policies,
but then the complexity issue (1) becomes even worse and vice versa.

The result of our experiment can be seen in Figure 6.1: For each penalty factor λ, we
plot the mean and standard deviation of the resulting performance in the real environ-
ment. Note that low λ values correspond to unconstrained policies, while high λ values
correspond to policies more regularized towards the generating policy. The default value
in MOPO is λ = 1. Interestingly, we observe that the trade-offs are not at all consistent:
One would expect that the policies would all start rather low on the right side (i.e. the
constrained end), since they can pretty much only imitate the generating policy. Then,
one would at least in the bad-0.4 and optimized-0.6 datasets expect an increase in per-
formance the further the penalty is decreased, since enough exploration is contained in
these datasets, so that the return estimators should be able to improve on the baseline.
Then, more towards the left end of the low contraint values, one would expect degrading
or rapidly changing behavior since the return estimators cannot assess the performance
of the unconstrained policies accurately enough. Instead, what we observe is a constant
zigzag of significant magnitude across the range of trade-off parameters for all three
datasets, even with small changes in the parameter. We thus note a third downside to
this naive approach: When the policies are trained in isolation instead of jointly as a
single network that forces a smooth interpolation among them, the resulting collection
can be very inconsistent and thus not particularly useful for a user searching for a decent
trade-off.
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6.4 Enabling Users via Proximity Conditioning

The simplest method to find a likely very familiar policy for the user is to perform be-
havior cloning on the interactions in the dataset, however since there is no improvement
available in simply copying the behavior in the data, this method alone is of very limited
use. On the other extreme end would be unregularized reinforcement learning from data,
however as we have shown in Section 2.4, algorithms not explicitly built to regularize
policies to enable learning from static datasets usually fail when deployed in the real envi-
ronment. In between the two extremes lies offline reinforcement learning, which combines
RL with a regularization inspired by behavior cloning, moving the policy into a regime
where return estimators can (hopefully) accurately predict performance. However, the
problem still remains that there exists no general way to correctly choose the parameter
balancing the two components, because we are not allowed to evaluate on the real system
and because offline policy evaluation is still an open issue [131, 132, 133, 134, 135, 148].
We thus aim to develop a solution that can adaptively change the proximity hyperpa-
rameter at runtime in order to enable users to quickly find a well performing value.

As we have shown in the previous section, the simple solution of training many policies
with a prior offline RL algorithm on a discrete number of proximity hyperparameters has
at least significant downsides. We thus aim to develop a method that mitigates the exam-
ined disadvantages: Our solution should enable a continuous choice of hyperparameters,
should be computationally feasible, and most importantly it should be consistent over
the range of proximity values in order to enable a user to navigate the hyperparameter
landscape sufficiently. We term the approach LION - Learning in Interactive Offline
eNvironments.

6.4.1 Learning in Interactive Offline Environments (LION)

In LION, we train three components:

• A model of the generating policy βψ(s)

• An ensemble of K transition models {T̂ k
ψk
(s, a)|k = 0, ...,K − 1}

• A proximity conditioned policy πθ(s, λ), where lambda represents the desired prox-
imity of the target policy to the generating one.

The first two, the generating policy model βψ and the transition ensemble {T̂ k}, are
trained entirely in isolation and fully supervised. The generating policy βψ as well as the
target policy πθ are both deterministic MLPs, while the transition model architecture is
chosen according to the requirements of the environment, either as a recurrent network
or also as an MLP. The setup is thus in the beginning very similar to WSBC, i.e. the
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corresponding losses are given by:

L(ψ) =
1

N

∑
st,at∼D

[at − βψ(st)]2 (6.1)

L(ψ) =
1

N

∑
st,...,st+G, at+G+1∼D

[at+G+1 − βψ(st, ..., st+G)]2

and

L(ϕk) =
1

N

∑
st,at,st+1∼D

[
st+1 − T̂ kϕk(st, at)

]2
(6.2)

L(ϕk) =
1

N

∑
t∼D

F∑
f=1

[st+G+f+1 − T̂ kϕk(st, at, . . . st+G, at+G, . . . ŝt+G+f , at+G+f )]
2

where the first formulations in Equations 6.1 & 6.2 represent the case when no history of
states is considered and the latter ones the case where it is needed to estimate the hidden
state of the environment. We do not explicitly denote recurrence and the hidden state
of the RNN as in Eq. 5.16 in order to remove clutter, G is number of history steps used
to build the hidden state of the RNN, while F is the number of steps it needs to predict
into the future. During this stage of training, architecture and other components of the
models could be optimized by holding out a validation set from the original training data.

When generating policy model and transition ensemble are trained satisfactorily, the
algorithm moves on to train the adaptive policy: As before, the return estimation is
performed by sampling start states from the dataset D and then using the transition
model and the target policy to generate virtual rollouts and summing up the predicted
rewards by the transition models. The regularization part of the algorithm is more closely
related to MOOSE than to WSBC, since it is performed in the action space again, by
comparing the actions the target policy took with the ones the generating policy model
would have taken in the same situation and penalizing the mean squared distance between
the two, i.e. we define a penalty p(s, a) as:

p(s, a) =
1

D

D∑
d=0

(
a(d) − βψ(s)(d)

)2
(6.3)

where s(d) is the dth of D state dimensions. We will use the penalty to regularize the
policy towards the generating one. Further, we define the ensemble prediction e(s, a)
as the minimum reward predicted among the transition ensemble members in order to
estimate the trajectory return conservatively:

e(s, a) = argmin
k

r(T̂ kϕk(s, a)) (6.4)

where r(·) extracts the reward prediction from the transition model. Here, explicit nota-
tion of recurrence or state history is omitted - if required by the environment, Equations
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6.3 & 6.4 need to be augmented similarly to Equations 6.1 & 6.2. Once p() & e() are
defined, we can write the policy loss function as:

L(θ) = −
∑
s0∼D

∑
st∼T̂ , at∼π

γt[λe(st, at)− (1− λ)p(st, at)] at = πθ(st, λ) (6.5)

The crux of the matter is that here, λ is the hyperparameter that balances the two
components reward and penalty in the loss function, but is at the same time also an
input of the target policy that is being trained. This way, the policy is enabled to learn
the connection between desired proximity on the input side and the accordingly correct
behavior that optimizes the loss function for that specific value of λ. What is left is to
provide the policy with many different λ during training: During each policy update, we
sample not only the start states from D, but also randomly sample a different λ for each
individual trajectory from a beta distribution:

λ ∼ B(α, β) (6.6)

where α = β = 0.1 and consequently λ ∈ (0, 1). Similarly to [149], we find that the
weighting parameter should not be sampled from a uniform random distribution but
rather from one that puts more probability mass on the edges of the distribution. It
appears that emphasizing the edge cases of the desired behavior range is more important
and that interpolation between them is easier than learning the “extreme” behavior itself.
See Fig. 6.10 and Section 6.6.2 for a brief comparison of distribution parameters. Due
to this procedure, LION is optimized in a gradient based fashion similarly to MOOSE,
since if we were to adopt WSBC’s gradient-free optimization, we would either face severe
computational overhead or could only select a fixed, discrete set of λ values to train for.
See Fig. 6.2 for a visualization of the training process.

An advantage of formulating the return estimation in the proposed purely model-based
fashion without involving a value function is the stability during training: Since the tran-
sition model and the generating policy can be trained supervisedly in isolation, only the
policy parameters θ are trained in an unsupervised regime, meaning fewer moving parts
during this part of the optimization. If LION would instead use a value function to train
the policy, this value function would also need to be condition on λ, which would lead to
two conditional components that train in an intertwined process together, which seems
to lead to instabilities (see Section 6.6.2).

When the policy optimization is performed as so far proposed, we observe that the
generating policy is often not entirely accurately recovered when the final policy is eval-
uated with λ = 0. This is likely due to the inaccuracies compounding in the transition
and policy models during the virtual rollouts. In order to recover the generating pol-
icy accurately, we add a penalty term that regularizes the policy towards the dataset
interactions only at λ = 0:

L(θ) = −
∑
s0∼D

∑
st∼T̂ , at∼π

γt[λe(st, at)−(1−λ)p(at)] + η
∑
s,a∼D

[a−π(s, λ = 0)]2 (6.7)
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Figure 6.2: Schematic of the LION policy training: The generating policy (orange), as well as
the transition model (blue) have already been trained at this point. Now, the tar-
get policy (green) is trained: The initial start states are chosen from the provided
dataset (black), and used to generate an action from both the generating as well
as the target policy. The target action together with the state is used to predict
the step reward (yellow) as well as the future state (blue), and the generating and
target policy actions are used to compute the step penalty (red). This procedure
is repeated with the predicted future state as next starting point until the trajec-
tory horizon is reached. The proximity conditioning parameter λ (purple), which
controls the weighting between return and penalty, is in each trajectory sampled
from a Beta distribution and provided to the target policy, so that it can learn
the connection between desired proximity value and the respective behavior that
optimizes the loss.

Finally, an important factor in this context is normalization: While normalizing the
states to have zero mean and unit variance by employing the dataset mean and standard
deviation can be considered standard, we also need to normalize the rewards, so that they
live in the same magnitude as the penalties, in order to effectively enable weighting of the
two components. We assume actions to be in [−1, 1]E , with E being the dimensionality
of the actions, so that the penalty can be in [0, 4]. Summarizing this section, we provide
pseudocode for the LION algorithm in algorithm 3.

6.4.2 Deployment

At inference time, the operator who would have otherwise been in direct control of the
system, may now at each time observe the behavior of the system and choose to give
the policy more freedom to optimize or less freedom so that the behavior more closely
resembles the known controller that was in place before the LION policy deployment.
The control actions are then provided by the policy based on the current state and the
chosen proximity parameter:

at = πθ(st, λ) λ ∈ User(st). (6.8)
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Algorithm 3 LION
1: Require Dataset D, randomly initialized parameters θ, ϕ, ψ, lambda distribution

parameters Beta(α, β), horizon H, number of policy updates U
2: // dynamics and original policy models can be trained supervised and independently

of other components
3: train original policy model βψ using D and Equation 6.1
4: train dynamics models T̂ k

ϕk
with D and Equation 6.2

5: for j in 1..U do
6: sample start states S0 ∼ D
7: sample lambda values λ ∼ Beta(α, β)
8: initialize policy loss L(θ) = 0
9: for t in 0..H do

10: calculate policy actions at = πθ(st, λ)
11: calculate penalty term p(st, at) = [βψ(st)− at]2
12: rt, st+1 = T̂ k

ϕk
(st, at) s.t. k = argmink{r(T̂ kϕk(st, at))}

13: L(θ)+ = −γt[λrt − (1− λ)p(st, at)]
14: update πθ using gradient ∇θL(θ) and Adam
15: return πθ;

The user may observe the feedback after choosing λ and immediately change it if they
deem the current behavior as too conservative or too adventurous. Crucially, no time
is lost due to training a new policy from scratch or due to deployment related issues.
Instead, the policy can change immediately at runtime and apply not just pre-specified
values of λ, but rather any value on the continuous spectrum between 0 & 1. This
way, the user can tune the policy behavior to their personal taste even though these
preferences weren’t known at training time.
In real world deployments, it is likely best to start by setting λ = 0, in order to check
whether the policy is able to accurately recover the generating policy and since it poses
the lowest risk of underperforming or otherwise violating any constraints the users might
have. Then, depending on how much time the user wants to invest, how safety critical
the task is, or simply how quickly the user desires, they can slowly increase λ in order
to deviate more from the generating policy and let the policy try to actually optimize
the performance. The incline can be continued until the user starts to see undesired
behavior, and then immediately return to the last λ value where the behavior was still
suitable.

6.5 Evaluating LION on a toy 2D World

Before we move on to more interesting benchmarks, we evaluate LION on a very simple
2D world in order to perform a sanity check: Do LION policies behave as expected, in
the sense that they stick closely to the generating policy for λ = 0 and then deviate more
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Figure 6.3: (a) Original policy for data collection - color represents action direction (b) reward
distribution in the 2D environment - color represents reward value

and more from it in order to optimize return when λ is increased?

To this end, we propose the following 2D benchmark: The states of the environment
represent the x & y coordinates of the agent that is placed in it. The rewards are given
based on the distance of the agent to some fixed point in the 2D world: The closer the
agent is to [3, 6]T , the higher the reward obtained. The reward value decreases from
there based on the Gaussian density function, i.e. r(st) = 1

σ
√
2π
e−0.5((st−µ)/σ)2 , where

µ = [3, 6]T and σ = [1.5, 1.5]T . As a generating policy, we simply use an agent that either
moves to [2.5, 2.5]T or [7.5, 7.5]T , depending on which of the two points is closest upon
randomly spawning somewhere in the [0, 10]2 world. The actions correspond to proposed
changes in the agents position, with a limit of 1 in any direction, i.e. at ∈ [−1, 1]2.
Additionally, we augment the policy with 10% random actions in order to have some
exploration contained in the dataset so that the task becomes very easy for the transi-
tion models, since we only care about whether the policy behavior actually exhibits the
expected variety over the range of λ values. We collect 40 trajectories with a horizon of
25, i.e. 1,000 interactions. Figure 6.3 shows the generating policy without noise together
with the environment’s reward distribution.

We show the behavior of the policy for each state in the 2D world, similar to Fig.
6.3(a), over the course of different λ values in Fig. 6.4. Note that the color indicates
direction of the proposed policy action. In the policy maps, we can see that for λ = 0,
the policy approximately recovers the generating policy (note that 10% exploration were
contained in the data, so entirely accurate recovery is unlikely). In the first row, i.e.
up to λ = 0.3 we do not see much of a behavior change. Starting in row two however,
we can observe that in the region south-west of the [7.5, 7.5]T goal, the policy doesn’t
direct the agent to that goal any more, but instead has the agent move more often to
the [2.5, 2.5]T goal of the generating policy. This happens because the policy has more
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Figure 6.4: Policy maps for different λ values in the 2D environment: We move from λ = 0
(only behavior cloning) up to λ = 1 (entirely unregularized policy optimization) in
steps of 0.05. The policy slowly changes its behavior by first ignoring the top right
generating policy goal and rather moving the agent to the bottom left goal since
it is closer to the center of the reward distribution, achieving higher returns while
still maintaining some proximity to the generating policy. When λ is increased even
further, the policy moves the agent closer and closer to the reward center, until it
leads the agent straight on top of it at λ = 1. Note that the colors represent action
directions. The best solution is only obtained at λ = 1 since the environment and
dataset made it so simple - generally one expects the best performance somewhere
in between the extreme λ values.

freedom to deviate from the generating policy and wants to use it to increase returns,
which works because [2.5, 2.5]T is closer to the center of the reward distributing Gaussian
at [3, 6]T , than the other goal at [7.5, 7.5]T . Yet at the same time, the policy still needs
to adhere to the generating policy in a way, which is why it cannot yet move the agent
directly to [3, 6]T . This procedure of removing the [7.5, 7.5]T goal and only moving to
[2.5, 2.5] finishes around the λ = 0.7 / λ = 0.75 mark, where the policy is not entirely
free to optimize yet. Over the last few steps up to λ = 1, the policy moves the goal
destination slowly north, gradually improving the return as it moves from the generat-
ing policy [2.5, 2.5]T goal to the reward center at [3, 6]T , where it achieves the highest
possible return.

Of course, we do not always expect the policy to perform best at λ = 1, since this
represents entirely unregularized policy optimization. In this case however, the envi-
ronment was chosen to be sufficiently easy mainly for illustrative purposes. The simple
state transition and reward distribution as well as the exploration that spanned most
of the environment lead to the transition models well understanding the task and thus
providing the best solution when the policy is not regularized. This will of course change
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in the next section, where we move to more interesting benchmarks and datasets that
may not cover the state-action space sufficiently.

6.6 Experimental Comparison of LION with Prior Methods
on the Industrial Benchmark & MuJoCo

Since the sanity checks show that the LION policies generally seem to behave the way one
would expect, we now evaluate them on the industrial benchmark and MuJoCo datasets
introduced in Chapter 3. During the evaluation of LION on these benchmarks, we are
interested in examining the following issues:

• Do the LION policies outperform or at least match prior state of the art algorithms
on the datasets somewhere in the λ range?

• Is it possible for practitioners to find these well performing λ values easily? That is,
are the performance curves smooth and exhibit only a single global optimum or are
they as erratic as the discrete baseline with many ups and downs and corresponding
local mini and maxima?

• Is it possible for practitioners to tune λ so that the policy only exhibits behavior
that is desired, in the sense that it is for their taste not too far away from the
familiar solution? Ideally, the distance to the generating policy as a function of λ
should be monotonously increasing.

We train the policies as outlined in Section 6.4.1 and evaluate them on the real en-
vironments in steps of 0.05 for λ from 0 to 1 and plot mean and standard deviation
over five seeds in Figs. 6.5 - 6.7. To compare the results with prior state of the art
offline RL algorithms, the figures include the respective performances as dashed horizon-
tal lines: We compare LION to the model-free offline algorithms BCQ, BEAR, BRAC,
TD3+BC, and CQL, to the hybrid approaches MOPO and MOReL, as well as to the
purely model-based approaches so far presented in this thesis: MOOSE and WSBC.
Since the considered prior works do not train adaptive policies, their behavior and thus
performance remains the same everywhere on the spectrum. In principle, it is of course
possible to train different discrete policies with the baselines for many of their respective
proximity hyperparameters, however as we have shown in Section 6.3, this methodology
has significant downsides compared to the LION approach (computational effort would
be one of them: Training each baseline for each dataset for multiple seeds and for many
hyperparameter values would be infeasible here). Further it is not possible to map the
baselines’ respective proximity hyperparameters to the correct λ value, since they all fea-
ture different regularization approaches. Thus, we stick to the baselines being portrayed
as constant in Figs. 6.5 - 6.7. We further plot the distance of the evaluated target policy
to the generating policy.

Examining the shown performance curves we can see that LION policies behave very
much as one would expect them to: Starting with the 0% exploration datasets on the
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Figure 6.5: LION evaluation performance (top part of each graph) and distance to the gener-
ating policy (lower part of each graph) over the course of λ for each of the fifteen
industrial benchmark datasets with the generating baselines bad, mediocre, and
optimized. See Fig. 6.6 for the corresponding visualization on the 100% explo-
ration dataset. The offline RL baselines’ evaluation performances are represented
as dashed lines and appear constant over the course of λ since (a) the corresponding
policies are not adaptive, and (b) it is not possible to map their respective proxim-
ity hyperparameter to a single value of λ.

industrial benchmark, the policy performs only well close to λ = 0 in the mediocre and
optimized settings, which makes sense since the transition models have not learned much
about any other part of the state-action space, causing the policy return to be estimated
inaccurately when more freedom in the form of higher λ values is granted, ultimately
leading to steeply decreasing performances on the real environment. On the dataset with
the bad baseline, the policy still improves with increased freedom since almost anything
is better than copying the generating policy. Once more exploration is added to the
datasets, the λ range in which LION performs well extends further and further towards
the higher λ values, until in the 80% exploration datasets, the best performance is found
close to λ = 1 since the transition models in these cases have much better knowledge
about a larger part of the environment.
In thirteen of the sixteen industrial benchmark datasets, there exist parts of the λ spec-
trum where the evaluation return of LION is higher than that of any baseline, and on
the remaining three, LION can still achieve close to on par performance. Crucially, the
performance curves are very smooth and rise mostly monotonously towards their maxi-
mum value, making it as easy as possible for a potential user to navigate the λ landscape.
Furthermore, the distance to the generating policy curves are all monotonously increas-
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ing, making also the selection in terms of proximity feasible for a user wishing to tune
the policy behavior towards the edge of what they are willing to endure in terms of un-
familiarity of the new solution.
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Figure 6.6: LION results as pre-
sented in Fig. 6.5 for
the 100% exploration
dataset.

Looking at the MuJoCo performances in Fig. 6.7,
the smoothness of the curves becomes a bit of an issue:
Especially in the Walker task, the LION policy clearly
exhibits a local maximum after which the performance
drastically declines. Between global and local maxi-
mum, the policy degrades by roughly 25%. The reasons
for this may be plentiful: We can see from the transi-
tion model evaluation errors that the Walker environ-
ment is harder to model from a dynamics perspective.
Also, the environment features a higher dimensional
action space compared to the other environments, yet
the dataset provides the same amount of interactions
for learning. We hypothesize that due to the less accu-

rate model in combination with the more complex action space, which makes it harder
to interpolate between different λ values for the LION policy with limited capacity, the
LION policy in this environment was not able to produce as smooth of a performance
curve as the others. In the Swimmer environment, the local maxima are likely a product
of randomness, since for each λ, five random seeds are used to evaluate the policy in the
environment.
Putting smoothness aside, we find that the LION policies still achieve state of the art
performance in parts of the λ spectrum or achieve on par performance. Also, the fa-
miliarity curves are monotonously rising, making it still likely that a practitioner could
find a well performing policy that adheres to their maximum tolerated distance to the
generating policy.
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Figure 6.7: LION results as presented in Fig. 6.5 for the MuJoCo datasets. In this case, the
performance curves are less smooth (most notably for the Walker benchmark), likely
due to the higher dimensional and more complex action space. Nevertheless, The
LION policies achieve state of the art or close to on par performance somewhere
in the λ range and the distance to generating policy curves are still monotonously
rising. A practitioner would still likely be able to pick a policy that is both well
performing and suitable in terms of familiarity.
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Figure 6.8: Mean evaluation performances together with their standard deviation of the RvS
algorithm over a range of conditional return-to-go values for the same datasets as
in Fig. 6.1.

6.6.1 Finding Good Trade-offs with LION

In order to find well performing policies, we have already previously proposed to start
with λ = 0 and then slowly move towards higher values of λ. In this section, we formalize
and evaluate this strategy for illustrative purposes - however we emphasize that it is not
the goal of LION to find an automated strategy to find the “correct” λ value. Instead,
providing control and utility ot the user remains a goal in itself. The proposed strategy
is merely an example of how a user might choose to employ LION in reality. In order to
compare how this strategy performs, we choose two baselines:

1. The discrete baseline from Section 6.3: If instead of LION, a discrete “adaptive”
solution were built based on a prior algorithm such as MOPO, how would the
hyperparameter search by the user compare?

2. In another line of work, researchers have come up with the idea of return condi-
tioned policies. Algorithms such as Reinforcement Learning via Supervised Learn-
ing (RvS), or Decision Transformer (DT) [57, 150] condition on the return to go
during trajectories and employ neither value function nor transition model. Instead,
they model the policy for different targeted values of performance. We choose RvS
as one of the latest algorithms of this family for our comparison.

Each of the three methods has a hyperparameter that influences proximity to the gener-
ating policy and expected performance: For LION it is λ, the mixture parameter between
penalty and return estimate, for MOPO it is also called λ, just that here it means the
scale of the uncertainty based penalty and that we only have a discrete number of choices,
and for RvS, it is R̂, the conditioned return-to-go which the policy should aim to achieve.
In the last case, the connection to desired proximity is only implicit - one would however
expect that if the return value of the generating policy is chosen, that it is sufficiently
well recovered and thus the resulting distance to the generating policy would be low.
See a visualization of the RvS performances on the same datasets as the discrete MOPO
basline in Fig. 6.8.

The proposed strategy is to:
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1. start with very constrained policies: λ = 0 for LION, λ = 2.5 for MOPO, and
R̂ = mean(Rdata) for RvS. Record the initial performance as P best.

2. increase (decrease) the trade-off parameter in small steps: 0.05 for LION, 0.1 for
MOPO, and 5/1/0.5 (due to the different return ranges) for RvS, since the hyper-
parameter ranges of MOPO and RvS are very different. Observe new performance
P new

3. If the observed performance P new exceeds P best: Set P best = P new and go back to
step 2 to grant further optimization freedom. If P new < P best: Immediately stop
and go back to the last hyperparameter which generated P best.

When it is applied to the datasets bad-0.4, mediocre-0.0, and optimized-0.6 for which
we have also calculated the discrete baseline, the final hyperparameter values and cor-
responding evaluation returns of the three methods can be seen in Table 6.1. Due to
the more erratic behavior of the discrete MOPO and RvS baselines compared to LION,
the strategy is unable to identify the well performing hyperparameters, and consequently
LION performs best in the three scenarios with the given strategy. For example in the
bad-0.4 and mediocre-0.0 datasets, multiple hyperparameter values exist for MOPO that
perform better than any hyperparameter in LION, however due to the zigzag of the
performances, the strategy cannot find them. While users don’t necessarily employ this
strategy, we find it likely that similar ways of finding a well performing hyperparameter
will be rather common among practitioners in practice, and we thus deem LION as likely
more suitable for real world applications.

LION MOPO RvS LION MOPO RvS
Dataset Final λ Final λ Final R̂ Return Return Return

Bad-0.4 1.0 2.4 -198 -102.4 -107.2 -169.6
Mediocre-0.0 0.2 2.4 -75 -70.8 -87.8 -81.7
Optimized-0.6 0.35 2.5 -60.5 -58.9 -72.4 -61.8

Table 6.1: If a user adopts the simple strategy of moving in small steps (0.05 for LION, 0.1 for
MOPO , 5/1/0.5 for RvS) from conservative towards better solutions, immediately
stopping when a performance drop is observed, LION finds much better solutions
due to the consistent interpolation between trade-offs. Note that in MOPO, we start
with large λ = 2.5 since there it controls the penalty, while we start with λ = 0 in
LION, where it controls the return.

6.6.2 Additional Experiments

Hyperparameters Like any other newly proposed RL algorithm, our method intro-
duces hyperparameters implicitly or explicitly. Due to the purely model-based nature
of the LION algorithm, many of these can already be well tuned due to the supervised
nature of the training of the first two components: The model of the dataset generating
policy and the ensemble of transition dynamics models. Any hyperparameter related
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to these two, such as the model architecture, number of neurons per layer, optimizer,
learning rate, etc can be tuned by holding out a validation set from the original data, and
checking how well the trained model predicts actions or future states on the validation set.

Hyperparameters during offline policy training are notoriously hard to tune: Due to
the nature of the offline setting, we can by definition not evaluate the performance of our
hyperparameter choices. While offline policy evaluation approaches have been proposed
to mitigate the problem, they need to be handled with extreme care, and overall do not
seem to perform reliably yet. Especially the arguably most important hyperparameter,
the desired proximity of the target policy to the known generating policy, cannot really
be tuned with them since it involves knowing when the return evaluation method itself
cannot be trusted any more. This is one reason why we propose to use LION to find
well performing proximity hyperparameters instead of using OPE methods in practical
applications.

On top of the proximity hyperparameter, LION exposes other hyperparameters dur-
ing policy training, such as η, which controls how strictly the policy needs to stick to
the dataset actions when evaluated for λ = 0, and α & β, the parameters of the Beta
distribution from which λ is sampled during training. These parameters were not tuned,
since we use the same parameters as [149] for α & β, by sampling λ ∼ Beta(0.1, 0.1).
Similarly we choose η = 0.1 once and stick with it. However, these parameters of course
have an effect on the final policy, and one could argue that just choosing it according
to some literature could be a lucky guess and there should be a more principled way
of choosing them. While we of course cannot assess performance related impacts, these
two hyperparameters aren’t directly responsible for performance, which provides us with
an option to tune them at least to a degree even in the offline setting: η controls how
strictly π adheres to β at λ = 0, which is something we can measure without the real
environment: We can simply check how well π(·, λ = 0) reproduces dataset actions on
a held out validation set after training. Fig. 6.9(a) shows how this quantity changes
over the course of different η values. It appears that as long as a nonzero value is cho-
sen, it does not make much of a difference, which is why we remain 0.1 as a reasonable
value. Similarly, the α, β parameters determine how much weight to put on the edges
of the distribution, i.e. how often which λ values get seen in training. At least at the
edge that aims to learn the generating policy (i.e. λ = 0), we can again check whether
the endeavour has worked out fully offline by evaluating against the generating policy:
Fig 6.9(b) thus shows a similar evaluation for the α = β parameters, showing that by
putting less weight on the edges, the generating policy is less accurately learned at λ = 0.
α = β = 0.1 thus seems a sensible choice, since even lower values may result in numerical
instabilities.

Sampling λ A little counter-intuitively, λ is not sampled from a uniform distribution,
even though in theory we would like to put equal weight on learning every value in the
spectrum from generating policy to entirely free optimization. Interestingly however, the
edges of the spectrum appear harder to learn, since they are less accurately recovered
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Figure 6.9: Impact of η, α, and β parameters on learning the generating policy accurately. This
evaluation can be done entirely offline and requires no environment interaction,
making it possible to make sensible hyperparameter choices.

during evaluation. We show performance curves over the λ spectrum for different pa-
rameters of the Beta distribution in Fig. 6.10 in order to highlight the phenomenon.
We hypothesize that this is due to the averaging effect in neural networks: Since many
values around the mean of the distribution are seen, the network is biased towards it.
We observe this behavior also if the capacity is greatly increased and even in the simple
2D environment.

Effect of the transition ensemble We briefly analyze the effect the ensemble of
transition models has on the policy. In the LION experiments, four ensemble members
are used to ensure that the policy cannot simply exploit a single model with a potentially
bad seed. Additionally, the minimum among the members is used for future state pre-
dictions, adding an additional source of conservatism which is usually beneficial in the
offline setting. In Fig. 6.11, we show how the policy behavior over the range of λ changes
when we use the mean instead of the minimum as aggregation and what happens if just
a single model is used to perform the virtual rollouts instead of four.

The observable effect of the experiments is mostly as expected: While not much changes
in the bad baseline (probably since any policy improves upon the bad policy), on the
mediocre dataset with only a single model, the policy performance degrades sooner, i.e.
for lower values of λ than in the standard case, suggesting that the policy is exploiting the
model which is possible in the absence of corrections by other ensemble members. The
effect is even more significant in the optimized dataset: While the policy performance
only slightly degrades in performance towards the higher end of the λ spectrum in the
LION performances in Fig. 6.5, there is a significant performance drop roughly at λ = 0.5
in the mean aggregation experiment, showing that the extra measure of conservatism by
using the minimum aggregation helps in contexts where transition models are predicting
outside of their region of confidence. Similarly to the mediocre setting, the performance
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Figure 6.10: Beta distributions and resulting performances on the bad-0.2 dataset. Edge cases
become more accurate with increased probability mass, likely due to neural net-
works being biased towards the mean of the λ distribution.

drop is then moved towards even lower λ values when only a single ensemble member is
used (λ ≈ 0.3).

Model-free return estimation While our purely model-based approach poses a
plethora of advantages over model-free or hybrid approaches, such as increased stability
of the learning process, better data efficiency, and the possibility to tune corresponding
hyperparameters due to the supervised learning, there are reasons to extend the approach
to the model-free domain: E.g. depending on the horizon of the environment, purely roll-
out based approaches might not be feasible / not obtain the best returns. This is due to
error accumulation during the state prediction: When the future state predictions of the
transition models are used in the next step again to predict the future state afterwards
(and so forth), each time, small errors are made, which exponentially increase over the
prediction horizon. In settings of long horizons, model-free approaches thus can have
an edge over the rollout based approach since they only need to predict the value of a
state-action combination instead of all state dimensions.

Even though the intertwined training of policy and value function that are both con-
ditional on the λ parameter is obviously more complex and probably lacks stability, a
model-free variant of LION should be attainable. To this end, we choose TD3+BC as an
existing model-free offline RL algorithm and augment it by making both the Q-function
and the policy conditional on λ, sampling λ as in LION from a Beta distribution dur-
ing training, and altering the loss function so that λ influences the trade-off between
Q-value and action distance penalty. We choose TD3+BC for this endeavour since it is
a rather simple algorithm, making only minimal changes to move from the online TD3
to an offline algorithm with fewer models and implementational details than most other
offline RL algorithms. The original Q-function and policy updates are defined as follows
in TD3+BC:
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Figure 6.11: Results as presented in Fig. 6.5, but with mean aggregation over the ensemble
members (top row), or with only a single instead of four models used in the reward
estimation (bottom row).

Q = argmin
Q

Es,a,s′∼D
[
[Q(s, a)− (r + γQt(s′, π(s))]2)

]
,

where Qt denotes the slow moving target Q-function used for computing the Q-targets.
And:

π = argmax
π

Es,a∼D

[
α

1
N

∑
s |Q(s, π(s))|

Q(s, π(s))− (π(s)− a)2
]

In our extension, which we denote by λ-TD3+BC, we need to add λ as an input to the
policy as well as the Q-function and use the parameter to balance the two optimization
terms, similarly to the LION approach. The new objectives are then:

Q = argmin
Q

Es,a,s′∼D

[
[Q(s, a, λ )− (r + γQt(s′, π(s, λ ), λ )]2)

]
,

and:

π = argmax
π

Es,a∼D

[
λ

α
1
N

∑
s,a |Q(s, π(s, λ ), λ )|

Q(s, π(s, λ ), λ ) (6.9)

− (1− λ) (π(s, λ )− a)2
]
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Figure 6.12: Model-free experiments incorporating the LION approach. The trained policies
are unable to alter their behavior for different inputs of λ.

In Figs. 6.12 - 6.13, the results of the model-free variant on the industrial benchmark
and MuJoCo benchmark datasets are presented together with the LION results as a com-
parison, similarly to the visualizations in Figs. 6.5 - 6.7. Interestingly, on the industrial
benchmark datasets, the final policy is barely able to alter its behavior anywhere in the
λ range - instead, it appears that the training process is unstable and the policy collapses
to a single behavior no matter which λ is provided as input. While some of the resulting
performances are quite good, the solution is missing the entire point of the approach,
which is quite surprising. Even more intriguing, the same technique appears to work
much more according to the expectations on the MuJoCo datasets: While the proximity
curves on the bottom of Fig. 6.13 cannot be characterized as monotonous, there clearly
is a tendency of policies closer to the generating policy (thus better performing) for lower
λ values, and a tendency for larger deviations and consequently lower performance for
higher λ values, at least in the Hopper and Walker2D tasks. The performances for some
of the λ values are also much better than the non-adaptive basic TD3+BC algorithm (see
Fig. 6.7), suggesting that the standard parameters are likely not the best ones for these
datasets, and that users might be able to find better ones with our augmented version.
The question why λ-TD3+BC does not expose any significant behavior changes on the
industrial benchmark datasets yet remains - we hypothesize that the λ conditioned value
function based training might be too unstable in the presence of such a highly stochastic
benchmark, but ultimately it remains unclear and we leave investigations to future work.
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Figure 6.13: Model-free experiments incorporating the LION approach. Interestingly, the λ-
TD3+BC approach appears to work relatively well in the MuJoCo tasks even
though it fails to display significant behavior changes over the course of λ in the
industrial benchmark datasets.

6.6.3 Experimental Details

In LION, we use the same transition models as in WSBC, i.e. for the industrial bench-
mark datasets, we used recurrent neural networks with a hidden dimensionality of 30
for each of the two reward components. The batchsize was 1024, the learning rate
1.25× 10−5 and the employed optimizer was Adam. We trained for a maximum of 3000
epochs, while stopping early if the performance has not improved on a 10% held out
validation set for 128 epochs. We employed an exponentially decaying learning rate by
multiplying the current rate by 0.95 in every epoch. As outlined in [46], the output of
the fatigue model was fed back in as new input during prediction, while this was not
the case for the consumption model. The number of history steps G was 30 and the
number of future steps F was 50. For the MuJoCo tasks, we only have a single model
for both state and reward predictions with 100 neurons in the hidden RNN layer, and
we decrease the number of history steps G to 3, while F remains at 50. We use a lower
amount of history steps because the MuJoCo environments have deterministic transi-
tions and are fully observable, however we still observe better evaluation performance
if a low number of history steps is considered instead of just using the current state.
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Figure 6.14: Model-free experi-
ment on the ε =
100% IB dataset.

For the simple 2D environment, we trained simple MLP
dynamics models with a batchsize of 512, 24 neurons
in the hidden layer, a learning rate of 0.01, a patience
of 10, and a decay factor of 0.99 for up to 300 epochs.
While the models for the industrial benchmark and
MuJoCo predict the state delta, the 2D environment
models predict the next state directly. For the generat-
ing policy model, we employ again a simple MLP with
a single hidden layer of 20 neurons for the industrial
benchmark datasets and the 2D environment, and a
two-layer size 128 MLP for the MuJoCo tasks. Here
we employ no weight decay and the learning rate is set
to 3 × 10−4 for 50 epochs. The target policy needs to
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have a higher capacity since it needs to be able to represent many different behaviors
based on the conditioned λ value, so the target policy is a two layer MLP with 256 neu-
rons in each layer. The final policy is trained for 1000 policy updates, in each of which
we sample 200 starting states, build up the hidden state of the dynamics model for G
history steps and then perform virtual rollouts for 100 steps with a γ of 0.97 for the
industrial benchmark and 0.99 for the MuJoCo tasks and the 2D environment. As previ-
ously mentioned, η is always set to 0.1 as well as the parameters of the Beta distribution
α & β. For the model-free experiments we use the standard parameters of TD3+BC and
the same sampling parameters for λ as in LION. We use ReLU nonlinearities everywhere
except for the hidden layer of the RNNs, which employ a tanh function.

6.7 Discussion

In this Chapter, we introduced the notion of proximity conditioned policies in order to
provide utility value to the operator of the system to be controlled and in order to find
well performing proximity hyperparameters. We develop the LION algorithm which can
be seen as a natural extension of MOOSE and WSBC with the ability to condition the
policy on a desired parameter of proximity to the generating policy, by exposing the tar-
get policy to various different loss trade-offs between proximity and return. The result is
a broadly applicable method, which instead of optimizing away precious domain experts,
compliments them to form a human-AI team which is enabled to find better performing
policies on most of the considered datasets than would be possible with prior offline RL
algorithms. We find that the solution also facilitates trust due to the option to always
reduce the distance to the known generating policy for the expert, which should decrease
deployment risks & costs, and consequently lead to more deployments of RL policies in
real world systems.

Additionally, we show that the solution cannot be attained by simply training a prior
offline algorithm for many different discrete hyperparameter choices due to inconsis-
tent behavior as well as computational overhead. We provide an example strategy that
could be employed by a user in practice and evaluate how well it serves to find good
hyperparameters in practice, where we find that due to LION’s smooth and consistent
interpolation of behaviors over the λ spectrum, the operator has the best chances com-
pared to the baselines. Moreover, we develop and evaluate a model-free variant of the
proximity conditioned policy training, for which we augment TD3+BC with the same
proximity-return trade-off balancing as in LION: While the approach appears to be tech-
nically valid and produces promising results on the MuJoCo datasets, it fails to exhibit
significantly diverse behavior when evaluated on the industrial benchmark datasets.
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7.1 Conclusion

In this thesis, we considered the problem of learning reinforcement learning policies purely
from static datasets, where the algorithm has no control over the collection process which
generated the data, also known as offline reinforcement learning. We examined how suit-
able datasets can be selected for offline RL when many different datasets from different
systems are available, as well as how to derive policies that on top of being offline, enable
users to still influence and correct desired behavior after deployment. To this end, three
novel model-based offline RL algorithms, as well as one method to assess offline data
quality, were proposed.

The need for offline RL approaches naturally arises in industrial use cases that of-
ten involve physical systems: Due to safety concerns as well as large opportunity costs,
online learning is almost always impractical. While model-free as well as hybrid offline
approaches have been proposed before, the algorithms presented in this thesis are all
purely model-based, i.e. they do not involve training a value function. We favour this
setting since transition models have been observed to be more data efficient as well as
leading to improved stability during policy training, both of which can be considered
crucial elements in the offline setting. The common denominator of the three proposed
algorithms is thus that they (i) train a transition ensemble from the given dataset, (ii)
train another model which represents the data generating policy, (iii) perform policy
training by estimating returns using virtual rollouts through the transition models and
at the same time regularizing the policy to stay in some way close to the data generating
policy.

The algorithms are evaluated on 19 challenging benchmark datasets: Three different
generating policies of varying quality are combined with six levels of exploration on the
industrial benchmark, in order to assess whether policies are able to cope with different
degrees of knowledge available over the environment as well as different behaviors from
which they can learn. The industrial benchmark features high dimensional as well as
continuous state and action spaces, heteroscedastic as well as multimodal noise in the
transition dynamics, is only partially observable, and exhibits delayed as well as con-
tradicting reward components that require trading-off. Additionally, datasets from the
three very well known MuJoCo domains Swimmer, Hopper, and Walker2D are used to
examine how the algorithms cope with more complex transition dynamics.
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The first proposed method examines the suitability of datasets for offline reinforcement
learning by means of two simple indicators: The expected return improvement (ERI) and
the estimated action stochasticity (EAS). The first basically measures how well the top
performing trajectories in the dataset did compared with the average, so that it can be
assessed how well an approach would do that simply copied more of the good behavior
and would be able to discard most of the rest. The latter on the other hand aims to
assess exploration, i.e. the amount of knowledge about alternative behavior that is con-
tained in the dataset. The better an environment was explored, the more likely it is that
return estimators are able to provide accurate predictions for policies that deviate from
the baseline, making return improvements more likely. We find that the combination of
ERI and EAS, called COI (combined offline indicator) is able to identify more promising
datasets, albeit not perfectly, very well.

The first proposed offline RL algorithm to actually derive a policy from a dataset
is called MOOSE (MOdel-based Offline policy Search with Ensembles), and aims to
bring action-space based regularization penalties from the model-free world to the purely
model-based setting in order to improve data efficiency and stability of the learning pro-
cess. The performance is assessed in virtual rollouts through the transition models, and
the target policy regularization towards the data generating one is performed by means
of an additional variational autoencoder, which is trained to reconstruct actions based on
a provided state-action pair from the dataset. Since it reconstructs actions from known
state-action pairs better than unknown ones, it can be used to build a penalty term which
is added to the policy loss. Experiments show that MOOSE almost never underperforms
the data generating policy and provides better returns than prior algorithms on most
datasets, thus making learning from static datasets practical.

The second proposed algorithm examines whether regularization could actually be per-
formed in an entirely different way: Instead of regularizing the actions towards those the
data generating policy would have taken, WSBC (Weight Space Behavior Constraining)
constrains the target policy’s parameters directly in the neural weight space to remain
close to those of the generating one. To this end, WSBC trains a model of the generating
policy of the same architecture as the target policy, and searches the policy space by
means of gradient-free optimization using PSO (particle swarm optimization). WSBC
appears to perform better in the industrial benchmark domain, where it outperforms the
results of MOOSE, than in the MuJoCo domain, where it takes a second place among
the considered algorithms. This is likely related to the lower dimensional policies that
are sufficient for the industrial benchmark, but not in the three MuJoCo tasks.

Finally, the LION algorithm together with the idea of proximity conditioned policies
is proposed in Chapter 6. Instead of only choosing a single hyperparameter value for the
weight of the policy regularization towards the generating policy, LION learns policies
that condition on it and leave the concrete choice of value open until runtime. This
enables effective hyperparameter tuning of the most important hyperparameter in offline
reinforcement learning, as well as provides expert users with a utility, since they remain
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in control of the system and can immediately correct undesired behavior by constraining
the policy more heavily. We show that the best hyperparameter is a different one for each
considered dataset, highlighting the subobtimality of prior approaches that use a single
works-for-it-all solution. Using LION, we show that due to the smooth interpolation it
is possible to find close to optimal parameters for most datasets using simple strategies
and thus improve over the results in MOOSE and WSBC.

In summary, we can see that purely model-based offline RL methods, despite their
niche existence in literature, perform better and train policies more stably than model-
free or hybrid methods due to their improved data efficiency over model-free approaches
and their simplicity and stability compared to hybrid approaches. Further, we show
that for each conceivable dataset, different hyperparameters in terms of proximity to the
generating policy are required to train well performing policies, contrary to popular belief
with no one-works-for-it-all solution in sight. This makes policies that remain in some
way adaptive in this hyperparameter a necessity, and we expect future works to adapt
policy behavior using a combination of observed data quality dimensions and feedback
from the first few evaluations.

7.2 Future Work

One of the most straightforward extensions of the work presented in this thesis is to
transfer the idea of proximity conditioned policies to the model-free algorithm domain,
as outlined in Section 6.6.2. While we were unable to make the λ-TD3+BC approach
work properly on all of the considered benchmarks, we believe that it should generally
be possible to implement proximity conditioned policies in the model-free setting as well,
even though some additional measures in order to combat training instabilities of the two
intertwined models need to be developed. In environments in which horizons are even
longer than those considered in this thesis, this extension should lead to improved per-
formance over the purely model-based variant, since in very long horizons, model errors
compound and thus impair the policy performance through inaccurate return estimations.

Another interesting line of work would consist of using the proximity conditioned poli-
cies to automatically finding well performing or otherwise desirable parameters. While
we very briefly touched on this subject in Section 6.6.2, we explicitly leave hyperparam-
eter choice and tuning strategy to the expert user, since we assume they exist, are to be
provided with a utility, and possibly have an insider edge over any automated system.
While this is true in many industrial contexts, other systems may benefit from a more
automated solution since such an expert does not exist or has limited time for each in-
dividual system and would thus also welcome more automation. Also, in systems where
opportunity cost and safety concerns are low, automation might just be less expensive
than the expert’s time. In this case, selection strategies could be developed that based
on an online evaluation budget try to find the best proximity value with as few tries as
possible. For this, many prior works on hyperparameter search exist, such as Bayesian
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Optimization, Population Based Training, or Hyperband Optimization [151, 152, 153].
In order to derive interesting priors or heuristics for the best proximity value, the dataset
quality measurement techniques from Chapter 4 could be adapted in order to provide an
initial educated guess: E.g. if the EAS feature assesses low amounts of exploration con-
tained in the data, it is likely that low values of λ will lead to the best performing policies.

While three different types of regularizations for offline RL have been proposed in this
thesis, even though they all work well and produce useful policies, it remains unclear
which of them can be considered best. Of course, the best regularization could also be
another one proposed elsewhere, since every year, hundreds of papers related to offline
reinforcement learning are currently proposed. Likely, there exists not even just a sin-
gle best method, instead it could be a different one for any given dataset, similarly to
the results in Chapter 6 which show that each dataset has a different optimal value of
proximity to the generating policy. Since each regularization technique exhibits a differ-
ent proximity-like hyperparameter that has a different value range and offers a different
interpretation, it is quite hard to compare them. Additionally, as shown in Section 6.3,
many algorithms are proposed with a single default value of their proximity parame-
ter, however are not consistent or stable when evaluated over a broader range of values,
making the problem worse. The proximity conditioned policies framework however could
provide a unique opportunity to compare regularizations: When for each regularization,
a regularization parameter conditional policy is trained, it becomes possible to compare
the performance curves of the techniques and evaluate which finds the single best pol-
icy (peak), which is least hyperparameter sensitive and provides the best policy for most
concrete hyperparameter values (area under curve), or which is best suitable for hyperpa-
rameter search (smoothness of the curve). The main condition for this procedure would
be a way to align the ranges of different hyperparameters, which could be challenging
since some methods exhibit unlimited ranges while others have limits. However, it is
likely possible to produce limited versions in these cases by employing a similar convex
combination as proposed in the LION algorithm.

Even though one of the benchmarks considered in this thesis exhibits high amounts of
stochasticity, the corresponding models where simple RNNs, without explicit uncertainty
quantification as would be available in Gaussian Processes or Bayesian Neural Networks,
or even simple Gaussain output networks such as those employed in MOPO. Only slight
adaptations to the multimodal and heteroscedastic noise are performed, by employing
ensembles of models and biasing the predictions towards the minimum of the members.
In future works, it could be evaluated which model class is actually best suitable to deal
with the stochastic element. Compared with the other future research paths proposed
in this section, this one should be comparatively simple, since training of the models
and comparison of the resulting uncertainty estimates should be possible in a supervised
fashion.
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