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Abstract

To reach the goals of limiting global warming, the embodied greenhouse
gas (GHG) emissions of new buildings need to be quantified and optimized
in the very early design stages, during which design decisions significantly
influence the success of projects in achieving their performance goals. Se-
mantically rich building information models (BIM) enable to perform an
automated quantity take-off of the relevant elements for calculating a whole
building life cycle assessment (LCA). However, imprecise type and property
information often found in today’s BIM practice hinders a seamless process-
ing for downstream applications. At the same time, the early design stages
are characterized by high uncertainty due to the lack of information and
knowledge, making a holistic and consistent LCA for supporting design deci-
sions and optimizing performance challenging. In assessing this often vague
information, it is essential to consider different levels of element and mate-
rial information for matching BIM to LCA data. For example, the structural
properties of concrete are not yet defined in early design stages and should
instead be considered as a range of material options due to different com-
pressive strength classes.

This paper presents a novel methodology for automatically matching the
coarse information available in BIM models of the early design stages to the
respective entries in LCA databases as a basis for a fully automated calcula-
tion process of the embodied GHG emissions of new buildings. This approach
solves the existing gap in the automation process of manually enriching BIM
models and adding information of LCA data and missing layers of vague mod-
els. In more detail, the proposed method is based on Natural Language Pro-
cessing (NLP), using different strategies to increase performance in matching
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elements and materials from a BIM model to a knowledge database to en-
rich environmental indicators of commonly used elements’ materials. The
knowledge database contains all missing information for LCAs and has dif-
ferent levels of information for a range of several potential design options of
elements and materials, including their dependencies. Accordingly, this pa-
per investigates multiple NLP techniques and evaluates the performance of
state-of-the-art deep learning models such as GermaNet, SpaCy, or BERT.
Following this, the most performant NLP approach is used to provide an au-
tomatic workflow for matching Industry Foundation Classes (IFC) elements
to the knowledge database, facilitating a seamless LCA in the early stages
of design. For five different case studies, the performances of the proposed
matching method are analyzed. Finally, one case study is selected to compare
the embodied emissions results to those of the conventional process.

Keywords: BIM, NLP, Model Healing, Early Design Stage, LCA

1. Introduction1

According to the United Nations, the construction industry, specifically2

through the production of materials for building construction, is responsible3

for 11% of the global energy-related carbon emissions [1]. In order to reach4

the international goals of the Paris Agreement and reduce the environmen-5

tal impacts, Green House Gas (GHG) emissions of new buildings must be6

significantly reduced. To assess the Global Warming Potential (GWP) of7

buildings, life cycle assessment (LCA) is an established method for calcu-8

lating environmental indicators along the whole life cycle. At its core, it is9

based on environmental impact datasets for individual materials, typically10

provided through dedicated databases. During the design phase, a careful11

LCA of the different design options is required in order to identify the main12

drivers and optimize the building design accordingly. However, in conven-13

tional projects in today’s practice, the main focus is still on improving the14

economic performance of buildings, while environmental qualities are usually15

not prioritized or even considered.16

Until recently, LCA has mainly been calculated manually, which is time-17

consuming, especially when it comes to quantifying the building elements18

and matching them to environmental datasets, which have a different clas-19

sification system and ontology. BIM combines geometry and semantics and20

thus facilitates deriving consistent and automated quantity take-off of the21
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relevant elements for calculating whole building LCA. Using and enriching22

the semantic information of e.g., materials has great potential to completely23

automate the calculation of whole building LCA [2].24

In early design stages, significant decisions are taken that have a major25

impact on the carbon footprint of the building to be realized. This is a pri-26

mary reason for conducting a holistic multi-criteria variant analysis in the27

early design stages. At the same time, the early design stages are charac-28

terized by a high degree of uncertainty due to the lack of information and29

not-yet-taken decisions, making a holistic and consistent LCA for supporting30

design decisions and optimizing performance challenging [3]. In more detail,31

in the rough BIM models of early design stages, materials are typically de-32

fined by material groups rather than specific types, which allows a wide33

range of possibilities for each material group. Furthermore, several materials34

or element layers might not yet be defined, which gives the opportunity to35

explore and compare different design options. While several approaches for36

BIM-LCA integration exist, they are limited in implementing a fully auto-37

mated workflow with open BIM models, in particular when it comes to early38

design phases [4]. A major challenge lies in the fact that imprecise type and39

property information in BIM models hinder a seamless processing for LCA40

applications.41

To overcome this issue of vague model information in early design phases42

resulting in labor-intensive processes with additional manual input, we in-43

troduce the concept of ”semantic healing” for automatically calculating em-44

bodied greenhouse gas (GHG) emissions. In doing so, we propose a novel45

automated method of matching LCA and BIM data on the element level by46

using Natural Language Processing (NLP). This gap of a fully automated47

matching process has not been filled yet [2], while research on NLP has re-48

cently advanced significantly and has strong potential for solving problems49

in the AEC industry [5].50

This paper focuses on supporting decision-making in the early design51

phases. To support the decision-making in these phases, decisions for more52

detailed phases are also anticipated and analyzed. Based on the current53

approaches in the literature, the findings are considered to further extend54

the approach in the sense of a holistic analysis that is adaptable for further55

sustainability criteria.56

The main contribution of this paper to the previously described problem57

involves a novel approach for semantically healing conceptual BIM models to58

assist the calculation of a holistic LCA, informing design decisions to detail59
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the design further. The model healing process is conducted by enriching all60

necessary information to the model by automatically matching elements from61

BIM models to a knowledge database (discussed in detail in section 4) using62

Natural Language Processing (NLP).63

In summary, this paper aims to answer the following research question:64

Is automated semantic healing of BIM models possible in a way that allows65

assigning correct element types and materials to the respective model elements66

such that a reliable LCA can be calculated?67

It is structured as follows: Section 2 provides the relevant background in68

the field of BIM, classification systems, NLP, and its application with BIM.69

Afterwards, Section 3 focuses on the state of the art of BIM-based LCA and70

discusses existing literature reviews, highlighting their limitations. Section 471

presents the methodology for enriching BIM models for LCA and proposes72

a new methodology for the semantic model healing process. The proposed73

methodology is then evaluated in Section 5 through different real-world case74

studies, where the potential, as well as limitations, are highlighted. Finally,75

Section 6 presents our conclusions and recommendations for future research.76

2. Background77

This Section describes multiple fundamental topics about BIM, level78

of development, classification systems, and Natural Language Processing79

(NLP), providing the necessary background for the following Sections.80

2.1. Level of Development (LOD) and Building Development Level (BDL)81

As building design is a progressive process in which initially vague infor-82

mation is further detailed, also BIM models gain more accuracy and reliabil-83

ity along the modeling process. level of development (LOD) represents the84

degree of completion, maturity, or elaboration [6]. While the BIMforum, the85

US chapter of buildingSMART International, has defined individual LOD [7],86

they have not been adopted as an international standard, yet. Defined in the87

European standardization effort EN 17412, level of information needs (LOIN)88

describes similar content like LOD, such as geometric and alphanumerical in-89

formation [6], but specifies a particular use-case and milestone it is supposed90

to be applied for.91

In Germany, LOD is known as the aggregation of level of geometry (LOG),92

specifying the geometric detailing, and level of information (LOI), represent-93

ing the extent of alphanumerical information. Borrmann et al. discuss that94
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LOI is highly dependant on the project and client, so they can not be gen-95

eralized. In BIM practice, LOI is often described with ”Type-and-attribute96

tables” (TAT) specifying object types and attributes [8]. Additionally, build-97

ingSMART International proposed the Information Delivery Specifications98

(IDS). ”The main goal of IDS is to provide a simple yet comprehensive way99

to author and validate nongeometrical [Information Requirements]”, for ex-100

ample specifying material or classifications [9].101

Abualdenien and Borrmann developed a meta-model approach where102

multi-LOD data represent buildings at different design phases [10]. It is103

based on the BIMForum’s LOD definitions and introduces a new concept,104

building development level (BDL). While LOD defines specific components,105

the BDL concept defines the maturity of the overall building with multiple106

LODs for each component.107

LOIs and LOGs are of great importance for BIM-based LCA as they108

provide a means to specify the required information, or in turn, allow to109

take into account the vagueness and uncertainty of information provided in110

early design phases. Since less information is available in early design phases,111

generic datasets are used and missing material layers have to be assumed.112

During construction, on the other hand, product-specific data sets can be113

included in the calculation depending on the components used.114

2.2. Open BIM and open formats115

The design and construction of a building is a collaborative process that116

incorporates multiple disciplines. Each expert, such as the architect and117

structural engineer, uses different authoring tools and requires specific in-118

formation to be present in the model to support a particular type of simu-119

lation and analysis. With the increasing specialization of the stakeholders,120

the building industry requires a high level of interoperability. The US Na-121

tional Institute of Standards and Technology (NIST) [11], as well as many122

researchers and case studies [12, 13, 14] have confirmed the difficulties and123

high annual costs resulting from the lack of interoperability between the AEC124

industry software systems.125

The Industry Foundation Classes (IFC) schema [15] is an open data ex-126

change format developed and maintained by buildingSMART with the goal127

of enabling interoperability across the AEC industry. It provides a common128

data model for lossless geometric as well as semantic data exchange. IFC is a129

free vendor-neutral standard and includes a large set of building information130
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representations, including a variety of different geometry representations and131

a large set of semantic objects modeled in a strictly object-oriented manner.132

Since 2009, the exchange format Green Building XML (gbXML) has been133

established as a public, non-profit schema [16] focusing on exchanging build-134

ing information for operational energy simulations. Initially developed by135

Green Building Studio and later acquired by Autodesk, it is currently not136

maintained by an official standardization body. The extension markup lan-137

guage (XML) schema does not intend to describe a complete BIM model138

but represents the relevant building’s environmental and geometric informa-139

tion. Often, the reduced BIM model is referred to as building energy model140

(BEM). The schema provides a container denoted as ”campus” for one or141

several buildings, each of which has a closed building envelope described by142

surfaces. The surfaces have a type specification (e.g., ”InteriorWall”), B-Rep143

geometry, references to adjacent spaces, which are referenced to zones, and144

assigned openings.145

The gbXML format is used for LCA in early design stages, e.g., us-146

ing CAALA software, considering both embodied and operational emissions.147

Nevertheless, the details about specific element layers and materials are not148

represented and therefore, not suitable for accurately matching environmen-149

tal datasets on material level.150

2.3. Classification systems151

The classification of elements in BIM models enables the project-wide,152

uniform structuring of information in order to be read and used in an uniform153

and automatic manner. Applying ”a classification system for component154

types in a digital building information model” enables all stakeholders ”to155

have a common understanding of the information contained in the building156

model and, in conjunction with a system for model development, enables the157

realization of a high degree of automation for the processes to be operated158

by them” [17].159

In the international context, the classification systems Omniclass and160

Uniclass are among the most widespread. In Germany, due to the lack of a161

full-scale classification system, the most common classification systems are162

DIN 276 for cost groups [18] and DIN 277 for room usage types[19]. Accord-163

ing to German standards for calculating LCA, e.g., certification systems like164

DGNB or BNB, the classification system of the cost groups of DIN 276 is165

used [20, 21].166
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For the LCA context, DIN V 18599, focusing on the Energetic evaluation167

of buildings 1, has been recently established [22].168

For LCA of buildings, a uniform classification of building elements de-169

fines the system boundary, especially for the manufacturing phase (A1-A3)170

as well as the end of life cycle (C3-C4) and module D. Thus, it is part of171

the ”target and investigation framework” according to DIN EN ISO 14040172

[23]. In German certification systems, according to Deutsches Gütesiegel173

Nachhaltiges Bauen (DGNB) and Bewertungssystem Nachhaltiges Bauen für174

Bundesgebäude (BNB), the classification of cost groups is carried out accord-175

ing to DIN 276 [18], taking into account the building elements for the cost176

groups KG 300 ”Building - Structures” (see 8.3). The system boundary for177

the operational phase, in particular the energy consumption during operation178

(B6), on the other hand, refers to DIN 18960, which however is not relevant179

to this paper. For the classification of relevant areas, on the other hand, the180

net room area (NRF) according to DIN 277 is used [19].181

2.4. Natural language processing (NLP)182

Natural language processing allows computers to analyze and ”under-183

stand” text created by human authors. At its core, natural text is trans-184

formed into a computer-readable representation through various techniques,185

including tokenization, lemmatization, and vectorization. Those techniques186

convert each word to its original/dictionary form and represent each word187

with a numerical value, describing the semantic similarity through their dis-188

tance (e.g., the word window has a smaller distance to door than to a tree).189

Semantic similarity is a key feature of the matching process described in this190

paper.191

As in other domains, artificial intelligence revolutionized its advancement.192

In this regard, long short-term memory (LSTM) and recurrent neural net-193

works (RNN) dominated NLP as they learn bidirectional links between the194

vector representations of words and sentences to capture the overall mean-195

ing. Recently, those networks were outperformed by transformer-based mod-196

els. One example of a pretrained deep bidirectional transformers is BERT197

by Google [24]. The structure of transformers consists of an encoder and a198

decoder, and transformer-based models themselves consist of multiple layers199

1Full title: Energetic evaluation of buildings in the context of the energy consumption
in the use phase (B6) relevant for the life cycle assessment in accordance with DIN EN
15643-2
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of transformers [25]. This enables learning the contextual representations of200

input data.201

2.5. NLP application in AEC202

Locatelli et al. investigated in their scientometric analysis the synergies203

between NLP and BIM [5]. Beside the field of Automatic Compliance Check-204

ing, they also identified Information Retrieval from BIM models and Infor-205

mation Enrichment of BIM objects as a further fields of relevant application.206

Wang et al. developed a query-answering (QA) system for BIM information207

extraction (IE) by using NLP and achieved high accuracy scores in their eval-208

uation [26]. Xie et al. introduced a method for matching real-world facilities209

to BIM using NLP for word segmentation and keyword extraction by adopt-210

ing the LTP word segmentation module [27]. For the matching method itself,211

matching matrices based on HiTree paths are evaluated using the highest de-212

gree of matching with the natural language feature vector. Reitschmidt pro-213

posed an matching method of IFC materials to the LCA database Ökobaudat214

based on tokenization of material names and a distinct matching or via Lev-215

enshtein distance [28]. Nevertheless, automated matching of LCA and IFC216

data on the element level using NLP has not been developed yet [2]. Finally,217

Zahedi et al. proposed an NLP approach for documenting design decisions218

by searching building codes and request for proposal documents [29].219
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3. State of the Art of BIM-based life cycle assessment (LCA)220

This Section focuses on a literature review of the current approaches of221

BIM-based LCA. First, existing literature reviews are compared. Based on222

this, a structured literature analysis is conducted by analyzing each publica-223

tion according to several topics. Finally, the findings and limits of conven-224

tional and current BIM-based LCA methodologies are shown.225

3.1. Existing literature reviews226

Before presenting the literature analysis, existing ones are analyzed to227

prevent repetition. The focus is primarily on embodied emissions and energy228

rather than operational emissions or energy. Nevertheless, the aspect of229

multi-criteria approaches will be investigated too, for example, a combination230

of embodied and operational energy with life-cycle costs (LCC). Analyzing231

eleven publications from 2013 to 2015, the literature review of the BIM-232

based LCA method by Soust-Verdaguer et al. differentiates between Data233

input (BIM-LOD, LCA goal & scope, stages, and inventory), Data analysis234

(BIM software, Energy Consumption Calculation, LCA tool) and Outputs235

and communication of results (Environmental impact indicators, sensitivity236

analysis, embodied and operational CO2 emissions) [30].237

In 2019, Wastiels and Decuypere classified existing approaches and iden-238

tified five different strategies for BIM-LCA integration [31]. Later literature239

reviews base their findings on these five strategies, which contain Bill of240

Quantities (BOW) export, IFC import of surfaces, BIM viewer for linking241

LCA profiles, LCA plugin for BIM software, and LCA-enriched BIM objects.242

Potrč Obrecht et al. classified in their literature review all analyzed meth-243

ods according to the five strategies by Wastiels and Decuypere [32]. In the244

second step, they differentiated between manual, semi-automated, and auto-245

mated approaches. In 2020, several other literature reviews were published246

focusing on different aspects. Roberts et al. identified in their literature247

review about LCA in building design process three different trends: inte-248

gration of LCA into BIM, combining LCA and LCC, and using parametric249

approaches [33].250

Cavalliere et al. concentrate on the capabilities of the combination of251

BIM and parametric-based tools, analyzing 25 different publications between252

2013 and 2018 [34]. Most of the analyzed methods focused on BIM and253

only a few had a parametric approach included. Hollberg and Ruth were254

the first ones to develop a parametric-based LCA (PLCA) in 2016, using255
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visual programming language (VPL) but no BIM integration [35]. Llatas256

et al. focus in their systematic literature review on life cycle sustainability257

assessment (LCSA) and add, besides LCA and LCC, also sLCA in their258

investigation approach [36]. In total, they reviewed 36 papers about BIM-259

LCSA integration, but only six methods included LCA and LCC and none260

sLCA. Tam et al. analyzed in their critical review on BIM and LCA 61261

articles by using content analysis method [37]. Furthermore, they identified262

several unaddressed issues, for example, the lack of a standardized structure263

between BIM and LCA data.264

3.2. Literature analysis265

Based on the findings of existing literature reviews in the field of BIM-266

based LCA, a systematic literature analysis was conducted. After review-267

ing more than 60 publications in this field, published in 2018-2022, 25 were268

selected and analyzed. In the following, the main findings are described.269

The main focus of several approaches is on detailed design stages such as270

[38, 39, 40]. However, optimization of the building design can be achieved271

in early design stages, when information is still uncertain. Therefore, Rezaei272

et al. are suggesting a workflow that is based on Autodesk Revit but doesn’t273

include an optimization process [41]. Only a few methodologies implemented274

uncertainties in their approach [42, 39, 41].275

As previously shown, Wastiels and Decuypere classified five different inte-276

gration strategies. The two mainly implemented approaches of the analyzed277

publications are the one which uses authoring tools for getting the bill of278

quantities (BoQ), which was analyzed by [32]. The second primary strategy279

is using BIM objects enriched with property set (Pset)s [39, 43, 44, 45]. A280

new approach by Lee et al. suggests BIM templates for authoring tools to281

avoid data loss due to exchange formats [46]. Only a few of the analyzed282

publications use existing LCA Plugins for Autodesk Revit, such as Tally,283

eToolLC, or One Click LCA [47, 48, 49, 50, 51]. As most of the approaches284

use the BIM model only for downstreaming LCA-related information, only285

one includes a computer-readable feedback communication process of the286

calculated results back to the BIM model [52].287

Most of the analyzed approaches used the open BIM format, mainly IFC,288

such as [53, 52, 43, 38, 40]. Nevertheless, another open BIM exchange format289

specialized in energy simulation is Green Building Extensible Markup Lan-290

guage (gbXML), which was used by [51]. Other approaches use the closed291
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BIM approach with software tools like Autodesk Revit [54, 53, 55] or addi-292

tionally in combination with the VPL tool Autodesk Dynamo [56, 57, 58, 59,293

60]. Another used VPL tool is McNeel’s Rhino and Grasshopper, which was294

used by [61, 62, 63], which is not considered as a BIM tool just as little as295

Trimble’s Sketchup, used by [64].296

Although this publication focuses on LCA, the framework allows it to297

be extended to multiple criteria for design optimization. Only a few ana-298

lyzed approaches show a few more criteria, which can be included in their299

workflows. While Kiamili et al. focus only on embodied energy of heating,300

ventilation, air conditioning (HVAC) systems [58], other approaches include301

both the embodied emissions of building construction and HVAC [42, 40].302

In a next step, further publications even include operational energy besides303

embodied energy [65, 53, 51]. Besides LCA, Life Cycle Costs (LCC) and304

social Life Cycle Assessments (sLCA) are further relevant criteria to con-305

sider in the field of LCSA. A few approaches include both LCA and LCC306

Abu-Ghaida and Kamari, Eleftheriadis et al., Figl et al., Santos et al.. Llatas307

et al. propose the only approach, which considers all three criteria of LCSA,308

while the main focus of sLCA is on working hours [43]. Nevertheless, there is309

no methodology that integrates embodied emissions of building construction310

and HVAC, as well as operational emissions in early design phases.311

As a functional unit of the approaches, most of the analyzed publica-312

tions focus on the whole building. Global Warming Potential (GWP) was313

considered by all approaches, while other publications also considered fur-314

ther environmental impact categories such as acidification potential (AP),315

eutrophication potential (EP), ozone depletion potential (ODP), and pho-316

tochemical creation potential (POCP) [47, 64, 66, 44, 45]. Depending on317

the country of the publication, several different international life cycle inven-318

tory (LCI) databases were used, such as German Ökobaudat, or ecoinvent319

and KBOB from Switzerland, and sometimes even product-specific Environ-320

mental Product Declaration (EPD)s. Palumbo et al. investigated the chal-321

lenge of using EPDs in early design stages to obtain accurate LCA results322

[66].323

As a result of the literature analysis, there is great potential for including324

LCA calculations in an optimization process in early design stages using open325

BIM models. Furthermore, most of the analyzed publications focused only326

on the criterium of LCA, extending the focus on multiple criteria such as327

LCC is also becoming more relevant. Nevertheless, the process of matching328

LCA and IFC data on element and material levels is still manual, and an329
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automated approach is not developed or solved yet.330

3.3. Limits of conventional BIM-based LCA calculation331

As the findings of the literature review showed, there are still challenges332

and opportunities in the field of BIM-LCA integration. In this Section, the333

limits of conventional BIM-based LCA approaches will be critically investi-334

gated using a case study.335

Safari and AzariJafari stress in their publication out that a major focus336

will be in early design stages, considering LODs and uncertainties in future337

approaches [2]. Zimmermann et al. showed in their investigation of industry338

practice and needs different challenges, such as manual workflows, matching339

model data with LCA data, quality in models, and many more [67].340

Nevertheless, in conventional projects in practice, the main focus is still on341

the economic performance of buildings, while environmental qualities are not342

widely spread yet. This is the reason to approach the holistic multi-criteria343

variant analysis, in the early design stages, based on existing approaches of344

BIM-integration strategies for LCA. Current approaches still have limits of345

fully automated workflow with open BIM models [4]. Scherz et al. propose in346

their methodology of hierarchical reference-based know-why models design347

support for several sustainability criteria focusing on building envelopes [68].348

Nevertheless, BIM integration is only envisioned in their future work.349

The main scope of this paper focuses on the early design phases. To350

support the decision-making at these phases, detailing decisions from more351

detailed phases are additionally analyzed. Based on the current approaches352

in the literature analysis, the findings are considered to further extend the353

approach in the sense of a holistic analysis that is adaptable for further354

criteria, for example, LCC or similar.355
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4. Methodology for semantic model healing for early BIM models356

for LCA calculation357

The aim of this paper is to develop a framework for calculating ranges358

of embodied emissions of building designs based on element-specific design359

variants to support decision-making in early design phases. The method-360

ological approach includes open BIM data exchange in early design stages,361

environmental impacts of construction, operation, and End-of-Life phase of362

buildings), as well as an automated matching of relevant information from363

the model. Therefore a robust implementation should take different mod-364

eling approaches (model authors & software products) into consideration.365

Furthermore, the framework provides flexibility to add economic impact or366

individual cost benchmarks and the calculation of further criteria.367

As shown in the previous Section 3.3, the BIM-integration of LCA lacks368

an approach for early design stages, which fully automatically matches all369

information from BIM models to LCA datasets and considers uncertainties370

and missing information in early design stages. Therefore, the proposed371

methodology focuses on the following key features:372

• Semantic model healing by using an LCA knowledge database (LKdb)373

• Automated matching of IFC elements to the elements of LKdb using374

pretrained NLP models375

• Calculation of LCA result ranges according to the early design uncer-376

tainties377

The details of the method are described in the following Sections. First,378

the general framework is introduced, followed by more detailed descriptions of379

each part, such as semantic model healing, LKdb, and the matching method.380

4.1. Proposed methodology381

To perform multi-criteria analyses using BIM, engineers need a set of382

information to be present in the BIM model. Usually, in early design stages,383

some of the required information is uncertain or even completely missing,384

which has a significant influence on analysis or simulation results. For this385

reason, the concept of a knowledge database is introduced, which provides all386

relevant information and default values in the case that relevant information387

is missing.388
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As this paper focuses on embodied GHG emissions, the database is filled389

with LCA-relevant information. Nevertheless, the database can be easily390

extended to cover other criteria as well. In case of missing or uncertain391

information, such as elements or properties, the LKdb provides a set of pos-392

sible options or ranges of values. Furthermore, several design variants can393

be explored in these cases, and their performances can be evaluated accord-394

ing to the influence of the incorporated uncertainties on the environmental395

qualities.396

In the proposed methodology, design decisions are made by selecting one397

of these variants. To implement the conducted selections in the design,398

these are communicated back to the BIM authoring software. The proposed399

methodology follows the open BIM approach to support a wide range of au-400

thoring tools. Therefore, it uses Industry Foundation Class (IFC) and BIM401

Collaboration Format (BCF) as exchange data formats.402

4.1.1. General Framework403

Figure 1: General Framework of NLP-based semantic model healing of early BIM models
for LCA calculation

Figure 1 presents the different steps of the proposed methodology, which404

was briefly described above. In the first step (1), the BIM model is exported405

from the authoring tool as an IFC file. In the next step (2), the IFC data406

are pre-processed for the following analyses. This is split into the Quantity407

Take-Off (2.a) and the NLP-based matching method (2.b), which is explained408

in more detail in the upcoming Section 4.1.2. The Quantity Take-Off (QTo)409

contains information about the element type, the classification, the sum of410

all type-specific element areas, the area unit, the amount of type-specific411

elements, the element-specific materials, and the thicknesses of the material412

layers. In terms of the multi-criteria analyses to be performed in the next413

step, the focus is on the LCA calculation in this publication (3.a). The final414
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step consists of visualizing the results (4.a), supporting the selection process,415

and communicating the design decisions and changes back to the BIM author416

(4.b). In this regard, this publication concentrates on the visualization of the417

LCA result ranges, including relevant benchmarks.418

4.1.2. Semantic model healing419

The semantic model healing process is performed to add all relevant but420

missing information for the model-based LCA calculation. The first step in421

this process is to collect all available and relevant information from the IFC422

model. Based on this information, the second step focuses on how exist-423

ing techniques of NLP help to match IFC elements to those of a knowledge424

database. Different strategies are used for the NLP-based healing process to425

increase the performance of the matching element from an ”imperfect” BIM426

model to this knowledge database. In the last step, all missing element infor-427

mation is added by those of the matched knowledge database. The knowledge428

database contains all missing information for LCA and has different levels429

of detail for a range of several potential design variants of elements and ma-430

terials, including their dependencies. The semantic model healing process is431

performed when the incomplete IFC element data are matched to the most432

similar element in the LCA knowledge database (LKdb) and afterwards en-433

riched by all missing element information provided by the LKdb.434

4.2. LCA knowledge database (LKdb)435

The LCA knowledge database, based on elements, layers, and materi-436

als, will contain all information that is relevant for the holistic calculation437

of different criteria and is typically not provided in the IFC model. This438

database is similar to the recently published ”EarlyData knowledge base” by439

Schneider-Marin et al., which has a similar purpose of calculating reliable440

LCA results in early design stages considering uncertainties [71]. Neverthe-441

less, the focus of their database was not focusing on using it for testing a442

robust matching approach. This LCA knowledge database is linked with443

different external databases, for example, databases for environmental cri-444

teria, such as Oekobaudat [72] (Figure 2). The main aim of the LKdb is445

to provide all necessary input information for a holistic and correct LCA446

calculation and analysis, which is typically missing in early design phases.447

Another aim is to combine several external databases with different input in-448

formation on different levels of information. International databases can be449
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Figure 2: UML diagram of the proposed LCA Knowledge database with different hierar-
chies, such as elements, material categories and material options, and external databases
such as BNB life cycle [69] or Ökobaudat [70]

added to the database using this methodology. Material and product-specific450

Environmental Product Declarations (EPD) can be linked, too.451

The database provides additional information on different levels, which452

are needed for a sufficient LCA calculation, such as the lifespan of an element,453

End-of-Life scenarios if missing in the original external dataset, or densities.454

Due to the German LCA classification standard according to cost groups, the455

database itself is structured similarly to the classification system of DIN 276456

on the third level but provides a material-specific level of different element457

layers. Other criteria information like cost values or U-values (if missing in458

the model) for calculating operational energy can be stored in the database459

as well but are out of scope in this publication. This ensures that a change460

in the variants leads to a change in all criteria calculations and shows the461

complex dependencies of the multi-criteria design decision process. A first462

extension, including LCC, was tested recently [73].463

The general structure of the proposed LCA LKdb consists of three dif-464

ferent levels: element, material category, and material option. As the LCI465

database, Ökobaudat was chosen [70]. The main reason for this decision is466

that the selected case studies are located in Germany. Thus the BIM mod-467

els use German terminology for components and properties. Furthermore,468

Ökobaudat is the official LCI database for German certification systems and469
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consists of more than 1400 datasets specifically for building products.470

Every single dataset of Ökobaudat has as keys the Universally Unique471

Identifier (UUID) and the relevant life cycle modules (A1-A3, C3, C4, D). All472

datasets from Ökobaudat consist of several environmental impact categories,473

such as Global Warming Potential (GWP), Acidification Potential (AP), Eu-474

trophication Potential (EP), Ozone Depletion Potential (ODP), Photochem-475

ical Creation Potential (POCP), Primary Energy Renewable (PERE) and476

many more. Nevertheless, the quality of some datasets is not sufficient for477

a holistic LCA, as there are some End-of-Life scenarios missing. Therefore,478

generic End-of-Life (EoL) datasets from Ökobaudat have to be manually479

matched to those datasets, which are lacking this information. For this rea-480

son, up to two UUIDs are linked to the material option dataset of the LKdb:481

one for the production phases and, if necessary, one for the End-of-Life sce-482

nario. Stenzel conducted in her master thesis this manual mapping as well483

as a classification of all UUID according to German cost groups using DIN484

276 [74]. This information is used for the prototypical implementation of485

the LKdb. All material options have a name and classification as their keys,486

which is derived from the German name in Ökobaudat. Further entries are487

the classification, UUID, included Modules, and the encoded NLP vectors of488

the name (spans and tokens), which are stored because of calculation perfor-489

mance reasons.490

According to the structure of Ökobaudat, every material is classified ac-491

cording to specific material categories. As there are three different levels of492

categories, only the most specific one is used for material classification in the493

LKdb. Every material category is mapped to potential cost groups of the494

German classification system [18]. This is necessary to map the service life495

of building components on this level, according to [69]. This external input496

is named ”BNB life cycle” and contains an ID, the lifespan in years, the re-497

placement rate according to 50-year buildings life, and an element or material498

name according to its own classification. The key for material categories is499

the name and the classification. Additional information is the encoded NLP500

vectors of the material category name (spans and tokens) due to calculation501

performance reasons.502

For setting up element layers, material options and categories are used503

in the next level. Elements themselves can consist of one or multiple ele-504

ment layers. Both elements and element layers have a default maximum and505

minimum thickness. The material layer corresponds to the third level of the506

German cost group system [18]. As the material layer can consist of compos-507

17



ite materials, different mix ratios need to be defined. For monolithic layers,508

the ratio is 100%. As an example of composite materials in one element layer,509

reinforced concrete consists of different materials, such as concrete and rein-510

forcement steel. Every element layer has a unique material position, which511

describes the order of the material in the specific element. For the element512

levels, every entry gets a unique ID as a key. Due to calculation performance513

reasons and also for the elements, the encoded NLP vectors of the element514

names (spans & tokens) are stored in the LKdb.515

All entries for elements are inserted due to common domain knowledge.516

The most typical construction types were considered and modeled using the517

proposed schema. Due to the versatility of constructions, the database is518

continuously updated and has no claim to be ever completed.519

4.3. Matching method520

In later design stages, conventional methods rely on manually matching521

each IFC material to a UUID of external databases and store this information522

as a Pset attribute in ”PSetEnvironmentalImpactIndicators” and ”PSetEn-523

vironmentalImpactValues” according to [75] or self-defined Psets, such as524

”Plca Lca” according to [40]. To avoid the laborious manual work of match-525

ing elements and materials of the BIM models to the related ones in the526

LKdb, an automated matching method is proposed in this paper. Another527

approach by Reitschmidt also follows automated matching on material level528

[28]. In contrast, in early design stages, information about the materials is529

missing or incomplete. For this reason, the proposed method is matching on530

an element-level, so this vague or missing information about material layers531

can be added using the LKdb.532

The main challenge of this method is to automatically and correctly match533

IFC and LKdb elements and materials so that calculation and analysis re-534

sults are also reliable. In early design stages, materials are often defined in a535

more general way and not as specific as in LCA databases, e.g., ”concrete”536

rather than ”concrete C20/25”. Sometimes, for some elements, material in-537

formation is completely missing, while in the element naming, some material538

information is included, for example ”brick wall”. Furthermore, the proposed539

methodology aims to be a robust approach, which also considers poor model540

quality due to multiple ways of modeling BIM models and exporting them541

as IFC files. As the structure and nomenclature of elements and materials542

in IFC and the used LCI database Ökobaudat differ, the goal is to find the543

semantically most similar pairs on material and element level.544
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Figure 3: General steps for an automated method of matching elements of IFC models to
those of the LCA knowledge database (LKdb)

Figure 3 shows the proposed matching method, which is divided into545

three steps:546

1. Filtering of element classification547

2. Similarity analysis using NLP548

3. Element selection549

First, IFC elements are filtered according to their classification type. This550

classification, according to the German cost group schema [18], is an exchange551

requirement (ER) and is stored as ”IfcRelAssociatesClassification”. If the552

element does not comply with the ER and no classification is available, the553

method can also classify the IFC element using its ”IfcProduct” class types554

(e.g., IfcWall, IfcColumn, IfcSlab, etc.) and properties (e.g., IsExternal,555

IsLoadBearing, etc.) according to [76].556

In the second step, every IFC element and its properties are analyzed and557

semantically compared according to its similarity with the filtered element558

variants in the LKdb. Not only the element expressions but also the material559

expression is analyzed according to the NLP technique used. In order to560

measure semantic similarity, every expression needs to be converted from561

text to a vector representation. In this case, a vector is a list of numerical562

values, and the combination of them represents the overall meaning [77].563

Afterwards, the similarity between two different vectors A and B can be564

calculated using the cosine similarity, while n is the dimension of the vector:565

cosine− similarity := cos(θ) =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1B

2
i

(1)
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In the following Sections, these three main steps of the matching method566

are explained in more detail, as shown in Figure 4. The choice of NLP567

technique will be investigated in Section 5.2.4.568

Figure 4: Detailed workflow for matching IFC elements to LKdb elements using Natural
Language Processing (using BERT language model) and cosine similarity on different levels
of information (element, material category, and material option)

4.3.1. Element filtering569

The starting point is iterating through each element type from the IFC570

model. Each element type consists of an element name, its classification571

according to DIN 276, and its material name. Based on the classification, a572

list of LKdb elements is filtered to compare similarities with the IFC element.573

For performing a robust matching method, the elements are compared on574

material and on element levels. Therefore, the IFC element name is compared575
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to the filtered list of LKdb elements. And furthermore, the IFC material is576

compared to the material categories and material options which are contained577

in the filtered element list. The differentiation between material category578

and material options is required due to the fact that the matching method579

considers different LOIs for the naming of materials (see Section 4.3.2).580

4.3.2. Similarity calculation581

In the calculation of semantic similarities, three couples of IFC and LKdb582

are considered: on element level, material level comparing with the material583

category, and comparing with the material option. Each of these three cou-584

ples is split into calculating the whole span and all tokens. To this end, the585

word encoding or vectorization is conducted for twelve different words per586

every iteration step, while the tokens themselves are also iterated. For each587

token set, only the maximum token is considered in the following selection588

process. The calculation of the cosine similarity is conducted six times per589

iteration step and is stored in a list for the following selection process:590

• element tokens591

• element spans592

• material category tokens593

• material category spans594

• material option tokens595

• material option spans596

After the calculation of all cosine similarities, the most similar element597

and material are identified. The maximum similarity of all element tokens598

and element spans are compared for the most similar element. Accordingly,599

the maximum similarity of all material category tokens and spans, as well as600

material option tokens and spans, are derived for the most similar material.601

4.3.3. Element selection602

In the next step, the final element selection is performed based on the603

previously derived most similar element and material. Therefore, the two604

cosine similarities of the most similar element and most similar material605

are compared. If the similarity of the material is higher, the corresponding606
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element of the material is searched and selected. In case the similarity of607

the element outperforms the one of the material, this element is selected if608

its cosine similarity is higher than a threshold. As a threshold, 80% was609

set, according to the material similarity analyses using the BERT model610

in Section 5.2.3. If this threshold is not reached, the default element of the611

classification group is chosen, as the identified element similarity is too low to612

ensure the quality of this matching method. For IFC elements with multiple613

material layers, the steps of the previously explained workflow are derived614

for every material layer. Nevertheless, in the end, the different results have615

to identify only one selected element. For this, the different elements of616

each layer are counted, and their cosine similarities are summed up. Finally,617

the element with the highest summed-up cosine similarity is selected as the618

overall multi-layer matched element.619

4.4. LCA calculation of LKdb elements620

This paper focuses exclusively on embodied emissions. For this reason,621

for the LCA calculation, the operational part B6 is omitted. This study does622

not focus on different environmental impact potentials but on the reliability623

of the calculation process. The system boundaries of the LCA include the life624

cycle phases production (A1-A3), maintenance and replacement (B4), and625

End-of-Life (C3, C4, D).626

Generally, the Environmental Impact Potential (EIPco) of the construc-627

tion phase (c) for each element (e) is the sum of the production phase (Pe),628

recovery and disposal phase (De), and the maintenance and replacement629

(Me) in a reference period (tD). As in the LKdb, different material options630

for one material layer exist. The element-specific environmental impact po-631

tential can consist of a range of results rather than a single value. In the632

following, the different steps are described for calculating the Environmental633

Impact Potential of one specific option set (o). The final LCA result ranges634

are derived by the different options and can be clustered on element or cost635

group level or determined for the whole building.636

EIPco =
n∑
eo

Peo +Deo +Meo

tD
(2)

The maintenance and replacement Meo of each element are calculated by637

the frequency of replacement (nreplacement,e) and the sum of the production638

Peo and recovery and disposal phase Deo , while the frequency of replacement639
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depends on the ratio of the reference period tD and the service life of the640

element (te).641

Meo = nreplacement,e ∗ (Peo +Deo) (3)

nreplacement,e = roundup(
tD
te
)− 1 (4)

The production Pe of each element is the sum of the product of each layer-642

specific dataset for the production phase (EIPA1−A3
eo,i

) and element-specific643

quantities (feo,i,x) over each element layer (i) of the element-specific maximum644

amount of layers (meo). The recovery and disposal Deo is, accordingly, just645

taking the datasets for different life cycle phases into account (C3-C4, D).646

Peo =

meo∑
i=0

EIPA1−A3
eo,i

∗ fei,x (5)

Deo =

meo∑
i=0

EIPC3−C4,D
eo,i

∗ fei,x (6)

The datasets EIPA1−A3
ei

or EIPC3−C4,D
ei

are stored in the LKdb. De-647

pending on the functional unit (x), the quantity of each dataset can either648

be area ae, length le, volume depending on the layer-specific thickness deo,i ,649

mass depending on the material-specific density ρo,i, or amount se.650

feo,i,a = ae (7)

feo,i,l = le (8)

fko,i,v = ae ∗ deo,i (9)

feo,i,m = ae ∗ deo,i ∗ ρo,i (10)

feo,i,s = se (11)

Depending on the level of the matching and available attributes of the651

IFC elements, different quantities can be used for this calculation step. The652

total area, length, and amount of all IFC elements of one specific object type653
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are always derived by the Quantity Takeoff. If no material information is654

available in the IFC element and the matching is performed on the element655

level, the default quantities, such as thicknesses and densities, from the LKdb656

are used. If the matched element is based on most similar materials, the657

material layer information of the IFC element is used for the LCA calculation.658

This is also valid if, for a multi-layer element, only a few materials were659

identified in the matched element. For these matched materials, the material660

layer thicknesses of the IFC element are used, while for the missing ones,661

the default values are used according to LKdb. This selection ensures that662

all available and relevant information of the IFC model is used for LCA663

calculation. The LKdb provides all geometric and semantic information of664

the material layers, which are not modeled in the IFC model but are crucial665

for a holistic LCA calculation.666
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Figure 5: Selected case studies for validating the proposed matching method (Picture of
case study 1: [78], case study 3 [79]

5. Evaluation and results667

In this Section, we first briefly introduce five case studies, which are used668

to evaluate the proposed methodology. In the first evaluation, the best-669

performing language model is identified by testing three different models670

(GermaNet, spaCy, BERT) using the manually matched couples (IFC-LKdb)671

of case study 1. In the following Subsection, the whole element match-672

ing workflow is evaluated on all five case studies. Case study 2 is used for673

evaluating the whole procedure, including the LCA calculation using Global674

Warming Potential (GWP) as environmental impact category. Finally, we675

discuss the limitations of the proposed methodology based on the evaluations.676

5.1. Case studies677

To validate the proposed matching method, five case studies from real-678

world projects were selected, as shown in Figure 5 and Table 1. They are679

all office buildings, so the performance of the proposed approach is compa-680

rable but from different modelers and designers. Nevertheless, the quality681

of material and element naming, as well as the modeled BDL and classifica-682

tion, differ in all five case studies and need to be taken into account in the683

following analysis.684

In Figure 6, the element distributions of the 2nd and 3rd levels of the685

German classification system according to DIN 276 are shown. Case studies686

25



Case
study
number

Net floor area
(sqm)

Total amount
of elements

Total surface area
of all elements
(sqm)

1 ca. 11.870 2.110 68.949,39
2 ca. 1.950 307 5.823,82
3 ca. 35.300 13.966 85.193,77
4 ca. 11.390 7.144 118.155,97
5 ca. 8.710 5.822 117.562,25

Table 1: Information about the five case studies considering net floor area, total amount
of elements, and total surface area of all elements

Figure 6: Overview of elements’ classification distribution of the five case studies
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2, 4 and 5 do not have elements in classes 320 (foundations) and 360 (roofs).687

5.2. Evaluation of different NLP techniques for material matching688

Following this, this publication investigates multiple NLP techniques and689

evaluates the performance of state-of-the-art deep learning models such as690

GermaNet, SpaCy, or BERT. They will be introduced in the following Sec-691

tions and are the basis for the previously introduced matching method. The692

best-performing NLP technique is applied for the prototypical implementa-693

tion and validation.694

For comparing the three different NLP techniques and the performance695

of their workflows as well as calculating the whole building LCA, case study696

1 was chosen, which was presented in Section 5.1. This real-life project guar-697

antees that the material naming is not optimized but according to current698

industry standards so that the matching performances are tested under re-699

alistic conditions. In total, the IFC model of case study 1 consists of 2110700

individual elements, which are summed up to 133 unique elements from the701

same families. Those consists of 59 unique IFC materials, which were man-702

ually matched to LCA material options and categories.703

5.2.1. GermaNet704

GermaNET is a Lexical-Semantic Net for the German language and is also705

known as the German version of the Princeton WordNet [80, 81]. GermaNet706

relates German nouns, verbs, and adjectives semantically by grouping lexical707

units that express the same concept into synsets and by defining semantic708

relations between these synsets (sets of synonyms). It can be represented709

as a graph whose nodes are synsets and its edges its semantic relations [82].710

Therefore, the similarity is not measured using cosine similarity but graph-711

related shortest path similarity, which is equal to the inverse of the shortest712

path length between two synsets. There are other path-related similarity713

analyses, such as Wu-Palmer similarity [83] or Leacock-Chodorow similarity714

Leacock and Chodorow [84], which are not considered in this paper.715

As the workflow of the GermaNet differs partially from the other two NLP716

techniques, the identification rate of the material token’s synsets needs to be717

analyzed before analyzing the shortest path similarity. After the tokeniza-718

tion of the IFC material names, material options, and their related material719

categories of the LKdb, synsets are identified to calculate the shortest path720

similarity. Nevertheless, not for every token set, synsets could be identified.721

As shown in Figure 7, only for 20.3% of the material category tokens and722
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Figure 7: Identification rate of material token synsets using GermaNet for case study 1

40.7% of the material option tokens, a pair of synsets with the IFC material723

could be identified.724

Figure 8: Shortest path similarity of identified, pre-matched material couples (IFC-LKdb)
using GermaNet for case study 1

Nevertheless, the shortest path similarities of the identified pairs of synsets725

show promising results (Figure 8). The median of the similarity of material726

option tokens is 87.1%, and of the material category tokens, even 98.6%,727

both with little deviation. However, including the low synset identification728

rate of both material options and material categories from the LKdb, the729

total similarity are very low and not sufficient for being used in the proposed730

28



matching methodology.731

5.2.2. spaCy732

SpaCy is a pretrained neural network model and a promising implemen-733

tation of the state of the art in the field of NLP [85]. Its large German model734

(”de core news lg”) includes 500k unique vectors in its corpus and repre-735

sents every word or expression with a vector of 300 dimensions. As sources736

for training data, existing corpi were used, such as e.g., TiGer Corpus [86].737

For the results of spaCy and BERT, the vectorization of both tokens and738

whole spans of the material options and material categories are compared.739

Figure 9: Cosine similarity of pre-matched material couples (IFC-LKdb) using spaCy for
case study 1

As shown in Figure 9, the ranges of the cosine similarity of all different740

comparisons, according to Section 4.3.2, differ a lot. Generally, the similari-741

ties of IFC materials to the material option spans have the worst performance,742

with the median being 13.6%. The tokenization improves the performance743

of matching the material performances up to a median of 60.0%. Also, the744

spans of the material categories are much better (median at 44.4%). The to-745

kenization of the material categories improves the performance results by up746

to 60.3%. As an additional performance result, the maximum similarity of all747

comparisons (material option spans and tokens, as well as material category748
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spans and tokens) is calculated. Its median is 74.4%, but also the quartile749

ranges improved compared to all other ranges. In general, the results are not750

sufficient for further usage in the proposed framework but show a promising751

strategy for getting the maximum similarity of every option.752

5.2.3. BERT753

BERT stands for Bidirectional Encoder Representations from Transform-754

ers and was released by Google in 2018 [24]. Transformers-based pretrained755

models are currently state of the art and are capable of solving a wide range756

of tasks as they “can represent the characteristics of word usage such as757

syntax and how words are used in various contexts” [5]. BERT represents758

each word or expression with a vector of 768 dimensions, which is signifi-759

cantly higher compared to spaCy and makes the similarity calculation more760

time-consuming.761

Figure 10: Cosine similarity of pre-matched material couples (IFC-LKdb) using BERT for
case study 1

For the NLP technique BERT, the same similarity comparisons using762

cosine similarity are calculated as previously shown with spaCy. Figure 10763

is showing the results as ranges of the material option spans and tokens and764

material category spans and tokens according to the workflow described in765

Section 4.3.2.766
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Generally, all result ranges differ much less compared to the results us-767

ing spaCy. Additionally, all medians are between 79.2% (material category768

spans) and 87.2% (material option tokens). Also, the strategy of getting the769

maximum similarity of every option is improving the promising general re-770

sults (median 87.7%). In addition, the minimum values of each result range771

show that BERT generally performs much better than spaCy.772

5.2.4. Conclusions regarding NLP-based matching performance773

It was possible to apply all three NLP techniques to the case study, al-774

though their language body was not specifically trained for material expres-775

sions in the construction industry. While GermaNET shows promising results776

in the ranges of shortest path similarity, the identification rate of synsets is777

too low. Therefore, using GermaNET for the proposed matching methodol-778

ogy is not pursued further.779

The NLP library spaCy shows that different strategies of calculating the780

cosine similarity of material option spans and material category spans are781

improving the results. Furthermore, the tokenization of both material op-782

tions and material categories, as well as choosing the maximum similarity783

of every calculated option, improve the result ranges significantly. However,784

the ranges are deviating too much and are generally too low, so further con-785

sideration for implementation is not planned.786

The NLP technique BERT showed the most promising results. Low devi-787

ations of the result ranges and high cosine similarity of all strategies lead to788

applying it for the matching approach. Nevertheless, due to its large vectors789

with 786 dimensions, the calculation time is significantly higher than with790

spaCy and needs to be considered for further optimization.791

5.3. Evaluation of element matching method792

In this Section, the proposed matching method is tested with real-world793

case studies. In the first step, five office buildings were chosen, consisting of794

the required model information, such as element classification according to795

DIN 276 and materials. In the next step, the performance of the previously796

proposed matching method on element level using the best-performing NLP797

model, BERT, is analyzed for all case studies. In the last step, the ratio798

of correctly matched versus complete set is evaluated for each case study799

depending on their specific model quality.800

According to the proposed matching method, as shown in Section 4.3,801

all elements and their materials are filtered and encoded, the similarities are802
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calculated, and finally, the most similar element is selected. To evaluate the803

performance of the proposed matching method, all matched elements are804

evaluated according to correctness. If not matched correctly, the reason for805

wrong matching is recorded. For validation, a manual element matching is806

set as ground truth, also using the same LKdb.807

Besides correct and wrong element matching, there are other reasons why808

correct matching was not possible. As the LKdb is just taking the most com-809

mon elements into account, it is not covering all potential element structures.810

Therefore, one of the reasons for incorrect matching is the insufficient amount811

of available elements. Another reason for incorrect matching is that there812

is no valid cost group classification according to the German classification813

system DIN 276 available for the element to be matched. As a result, the814

algorithm cannot filter the relevant list of elements in LKdb, and no de-815

fault element can be selected. Furthermore, also wrong classifications of the816

model’s elements can lead to incorrect matching. This reason will be de-817

scribed in more detail in the following Sections. Finally, incorrect matching818

can also occur if the element’s name and material’s name are too generic or819

not existing. In this case, the default element of the classification group is820

matched according to the proposed matching method. In total, there are five821

different error clusters:822

a) correctly matched823

b) no correct matching element available in LKdb824

c) wrong element classification825

d) no valid element classification826

e) too little information/ details827

f) wrong matching828

Figure 11 shows the matching performance of all case studies summed up,829

once weighted by the amount of individual elements (left) and, on the other830

hand, weighted by the element areas (right). The area-weighted result shows831

the influence of wrong matching according to the LCA relevant quantities,832

while the element-weighted results show the performance compared to the833

manual matching step.834

The total element-weighted matching performance results show a correct835

matching of 78.1% for all five case studies. The biggest drivers of incor-836

rect matching are due to too little information/ details (8.62%), no correct837

matching element available in LKdb (5.65%), and wrong element classifica-838

tion (5.50%). Nevertheless, the different ratios between element-weighted839
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Figure 11: Total element matching performance of all case studies according to correct
matches or matching error cluster, weighted by the amount of elements (left) and area of
elements (right)

and area-weighted matching performances differ so widely that wrong ele-840

ment classification is 32.96%, and only 62.97% of the elements are correctly841

matched. Therefore, the results need to be analyzed in more detail and842

case-study-specific in the following.843

As shown in Figures 12 and 13, there are major differences in the error844

clusters between the different case studies and the weighting scenario. When845

looking at the element-weighted incorrectly matched elements of case study846

2, the main error is no valid element classification with more than 25.0%,847

which is mainly due to a different classification nomenclature for windows848

(”B20” instead of ”334”). For weighting the scenario using the areas of the849

elements, the error is only 3.42%, and the correctly matched elements show850

the best performance of all case studies. Similar differences can be seen for851

case study 3, where the main error is due to clusters b) (11.68%) and e)852

(16.04%) in element weighting. In the area-weighted performance, these two853

clusters seem less significant compared to cluster c) (40.6%). This is due to854

the fact that the amount of elements is a different weighting factor. Never-855

theless, as in case studies 4 and 5 are more columns modeled, which do not856

have the quantity of area but only length, the area-weighted performance re-857

sults become significantly worse, although the element-weighted performance858

seems satisfying.859

Generally, the matching performance shows satisfying results as, in total,860

86,72% of the elements were correctly matched, or due to too little informa-861

tion, the default element was matched. 11,15% of the total elements were862
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Figure 12: Case-study-specific element matching performance according to correct matches
or matching error clusters, weighted by the amount of element

Figure 13: Case-study-specific element matching performance according to correct matches
or matching error clusters, weighted by the area of elements
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wrongly matched as there are not sufficient classifications available. For only863

0,83% of the total elements, the matching method results in wrong matches.864

The performance results differ due to model complexity and the quality of865

correct element classification according to DIN 276 of each real-world case866

study. The quality of LOD, sufficient amount of elements in LKdb, and wrong867

matching due to the proposed methodology and chosen NLP model seem to868

have a minor influence on the matching performance. There can be different869

matching performances depending if the total amount of matched elements870

or their areas are considered, which is mainly driven by influences of columns871

without area quantity sets. Considering the fact that tested IFC models were872

not optimized for this use case, the performance results prove the proposed873

matching method for real-world projects. The performance can be further874

increased by checking the model requirements of the elements’ classification.875

5.4. Evaluation of LCA result range calculation876

Next, we chose one case study to validate the whole semantic healing877

process by evaluating the calculation of the embodied GHG emissions. As878

case study 2 shows in the area-weighted performance the best results, we879

select it for calculating the LCA results. The results will then be compared880

to a manual calculation, focusing on GWP as the main impact indicator.881

For the conventional LCA calculation, we chose the German LCA calculation882

tool eLCA [72]. Furthermore, only the total sum of all life cycle phases (A1-883

A3, B4, C3-C4, D) is considered to directly compare the final results of the884

examples. The reference period for this office building is 50 years, according885

to DGNB and BNB standards. The main goal of this evaluation is to show the886

results of the entire semantic healing workflow and its advantages compared887

to conventional processes. The optimization of element-specific LCA results888

itself is not the focus of this Section.889

Figure 14 shows the GWP results clustered by cost groups (KG) and the890

total sum of the case study. Generally, the results show that the specific891

values of the conventional calculation following the manual, conventional892

workflow using eLCA are in the same range as the result ranges using the893

proposed methodology, including the matching method and the LKdb. The894

total manual result of 3,04 kg CO2-eq./ sqm*a calculated with eLCA is895

slightly lower than the range calculated by the proposed methodology and896

LKdb (Minimum 2,56, Median 3,25, Maximum 3,89 kg CO2-eq./sqm*a). To897

evaluate the difference in more detail, the element-specific results have to be898

analyzed.899
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Figure 14: Total and cost group-specific results of Global Warming Potential (GWP) of
case study 2 in [kg CO2-eq./ sqm*a]

Figure 15: Element-specific results of Global Warming Potential (GWP) for selected ele-
ments of each classification group and different materials of case study 2 in [kg CO2-eq.]
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Figure 15 shows the GWP results of the most relevant elements for each900

class according to the total sum of GWP over all life cycle phases. For each of901

the five chosen elements, on the left side, the results of the manual calculation902

using eLCA are shown, and on the right side, the automated calculated903

results using the matching method and LKdb are shown. The shown IFC904

elements consist of different element types, such as single- and multi-layer905

solid elements, windows and doors, or elements with composite materials.906

For the element with the cost group 331 and 351, reinforced concrete was907

matched, which consists of the materials reinforcement steel and concrete.908

While for the reinforcement steel, only one material option is available, for909

the concrete, there are several according to the specific compressive strength,910

which hasn’t been specified in this early design phase yet. These different911

material options lead to a range of results for the total GWP.912

In comparison, for the element of the cost group 341, the monolithic brick913

wall was chosen, while only one material option of brick is available in this914

case. For this reason, both results of eLCA and LKdb are identical and do915

not differ. For the selected door (KG 344), different EPDs are used in the916

LKdb, while for the manual selection, only one EPD was chosen. Usually, the917

LCA calculation of windows needs different quantity inputs as solid elements,918

as the functional units for the window frame are the length of the perimeter919

and the area for the transparent glass. The only varying material for the920

implemented LKdb windows is the frame material, which is, in this matched921

case, wood. In the LKdb, glass was implemented as only one material option922

per element, either single, double, or triple pane, and is therefore not varying.923

The total GWP range is not varying a lot due to a few different wood-based924

frame options, but also close to the manual calculation results.925

Finally, the interior wall (KG 342) consists of a multi-layer element of926

plasterboard and mineral wool. In the IFC model, the element consists of927

four different layers of plasterboard, while in the LKdb, there are only two.928

Therefore, the different thicknesses were summed up so that the total thick-929

ness for plasterboard layers is the same. Nevertheless, also in this case, there930

are 26 different material options for plasterboard, which leads to a range for931

the total GWP results.932

In general, the evaluation of the whole process shows reliable GWP results933

compared to manual calculation using eLCA. The results depend on the934

different element types and the level of information, which was decisive for935

the matching. Another aspect is that with the manual workflow in early936

design stages, the total GWP results of this case study seem to be lower than937
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the average of the result range derived from the proposed methodology. This938

underlines the need for a semantic healing process to enable more realistic939

LCA result ranges based on this uncertain information.940

5.5. Limitations941

The authors had to make a couple of assumptions to validate the proposed942

methodology, which led to certain limitations. For implementing the LKdb943

and its embodied emissions values, the German database Ökobaudat was944

used, as all the applied case studies are located in Germany, and German945

material naming was used. An extension using other databases and mapping946

them to elements and material options can be easily realized and has been947

prototypically tested [73]. Nevertheless, the implemented elements in the948

LKdb only cover the most common element structures. Specific element949

structures for special cases need to be included in future work. So far, neither950

operational energy simulation nor life-cycle cost calculation is included in951

the database, as the focus of this publication is solely on embodied GHG952

emissions. Although we only discussed GWP results for evaluating the LCA953

calculation, other environmental impact metrics have been calculated, too,954

such as AP, EP, POCP, and ODP, as well as energy-related impact metrics.955

The results of the element matching of five case studies presented in Sec-956

tion 5.3 show that a correct classification is crucial to match the IFC element957

to realistic LKdb elements. However, the German classification system DIN958

276 was used, which cannot be directly transferred to other countries’ clas-959

sification systems. If IFC models have no or a lot of incorrectly classified960

cost group elements, the LCA results will differ significantly and are not961

meaningful.962

Furthermore, the NLP model BERT employed here was not specifically963

trained for the application in the AEC context. Nevertheless, the results from964

the material and element matching showed that this circumstance does not965

affect the results due to the robust selection process of the matching method.966

Nonetheless, the bidirectional trained model leads to a high amount of vector967

dimensions for each expression and, as a result, a time-intensive computation968

process. A specific trained model could decrease the computational effort969

while providing similarly satisfying results as with BERT. For training such970

a model, a high amount of real-world data from different companies and971

designers is needed, which is difficult to collect due to privacy issues.972
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6. Conclusions and future research973

To enable the calculation of embodied emissions of buildings in early974

design phases, automated workflows based on BIM models can be used to975

compare different design alternatives and find those solutions that have a976

minimal environmental impact. However, the uncertainties in these stages977

are unavoidable and missing information can lead to erroneous LCA results.978

Therefore, enriching vague models is crucial for calculating meaningful re-979

sults, which are usually a range of results rather than single values. Among980

the most challenging boundary conditions is the fact that early-stage BIM981

models often lack precise specifications of object types and material proper-982

ties. Instead, a wide range of mixed terminology is used, and some informa-983

tion remains completely unprovided. With this unstructured data, however,984

finding correct LCA information from the respective databases is almost im-985

possible.986

To overcome this issue of manual material matching and vague model in-987

formation, in this paper, we propose a novel approach for automated semantic988

healing of BIM models. The proposed method allows assigning correct LCA989

information of element types and materials to the respective model element990

such that a reliable and holistic LCA can be calculated in early design stages.991

For the semantic healing process, an NLP-based method is used to enrich the992

model by automatically matching elements of an LCA Knowledge database993

(LKdb) to close the missing gap of the automation process of enriching LCA994

datasets to IFC materials and elements, and adding missing layer information995

of imprecise model elements. This LKdb contains all relevant information996

for the LCA calculation process, including LCA datasets on material level997

and different design alternatives, such as element variants of the same clas-998

sification group or different material options of each element layer. Missing999

element layers are added to ensure reliable and consistent LCA results. The1000

elements are matched by the most similar material or element names using1001

the cosine similarity of the pre-trained NLP model vectors.1002

In an initial evaluation, different NLP models were compared by aligning1003

the results of pre-matched materials of a case study. BERT was identified as1004

having the best-performing results and proved to be suitable for the element-1005

matching method. In a second evaluation, the proposed matching method1006

was tested using five real-world BIM models, and their performances were an-1007

alyzed. Generally, the proposed matching method proved to be satisfactory,1008

correctly matching the majority of the IFC elements (86,72% success rate in1009
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total) to the corresponding LKdb elements. Nevertheless, the importance of1010

correct classification of the IFC models is a relevant requirement for correct1011

element matching. The success rate depends on the semantic model quality,1012

mostly on correct and valid element classification for the initial filtering step.1013

In a third evaluation, one of the five case studies was selected to calculate1014

the embodied emissions focusing on global warming potential of each element1015

and summing the resulting ranges up for the whole building. These results1016

were compared to a manually calculated LCA using the tool eLCA, showing1017

that the manual results are in the range of the results using the proposed1018

method.1019

Finally, answering the research question raised, it can be confirmed that1020

the proposed automated semantic healing methodology is sufficient for cal-1021

culating embodied emissions based on early design BIM models. The main1022

limitations are the processing time of the prototypical implementation using1023

large NLP vector dimensions and the correct element classification, which1024

can be error-prone in a manual workflow.1025

In our ongoing research, we plan to investigate the visualization of the1026

results and selection process of element variants or specific material options.1027

Using the geometric BIM model as an interactive representation and mapping1028

the LCA results as color ranges has great potential for the visualization and1029

selection process. Furthermore, the developed methodology and the LCA1030

Knowledge database will be extended according to other element groups,1031

such as HVAC, as well as further criteria, such as for operational energy1032

simulation, LCC calculation, or circularity aspects. These criteria will also1033

be included in the visualization and selection process.1034
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8. Appendix1039

8.1. Acronyms1040

AP acidification potential1041

BDL building development level1042

BIM building information modeling1043

BNB Bewertungssystem Nachhaltiges Bauen für Bundesgebäude1044

BoQ bill of quantities1045

DGNB Deutsches Gütesiegel Nachhaltiges Bauen1046

EoL end of life1047

EP eutrophication potential1048

EPD Environmental Product Declaration1049

gbXML Green Building Extensible Markup Language1050

GHG greenhouse gas1051

GWP global warming potential1052

HVAC heating, ventilation, air conditioning1053

IFC Industry Foundation Classes1054

LCA life cycle assessment1055

LCC life cycle costs1056

LCI life cycle inventory1057

LCSA life cycle sustainability assessment1058

LKdb LCA knowledge database1059

LOD level of development1060

LOG level of geometry1061
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LOI level of information1062

LOIN level of information needs1063

MEP mechanical electric plumbing1064

NLP natural language processing1065

ODP ozone depletion potential1066

POCP photochemical creation potential1067

Pset property set1068

RNN recurrent neural networks1069

sLCA social life Cycle Assessment1070

UUID universally unique identifier1071

VPL visual programming language1072
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8.2. Nomenclature for equations1073

ae Area of element (e)1074

Deo Recovery and disposal phase (C3-C4, D) of each element’s (e) material1075

option (o)1076

deo,i Thickness of element’s (e) material option’s (o) layer (i)1077

e Element1078

EIPco Environmental Impact Potential of the construction phase (c) for each1079

element (e)1080

eo Element’s material option1081

feo,i,x Quantities of each element’s (e) material option’s (o) layer (i) accord-1082

ing to its dataset’s functional unit (x)1083

le Length of element (e)1084

meo Maximum amount of element’s (e) material option’s (o) layers1085

Meo Maintenance and replacement phase (B4) of each element’s (e) material1086

option (o)1087

n Maximum amount of element’s (e) material options (o)1088

nreplacement,e Frequency of replacement of each element (e)1089

o Material option1090

Peo Production phase (A1-A3) of each element’s (e) material option (o)1091

ρo,i Density of material option’s (o) layer (i)1092

se Amount of element (e)1093

tD Reference period of the whole building [years]1094

te Service life of the element (e)1095

x Functional unit of a dataset, either area (a), length (l), volume (v), mass1096

(m), or amount (s)1097
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8.3. Classification according to DIN 276 cost groups1098
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Nr. 2nd Level Nr. 3rd Level
320 Foundations
330 External walls

331 Load-bearing external walls
332 Non-load-bearing external walls
333 External columns
334 External doors and windows
335 External cladding units
336 Internal wall linings (of external walls)
337 Prefabricated facade units

340 External walls
341 Load-bearing interior walls
342 Non-load-bearing interior walls
343 Interior columns
344 Interior doors and windows
345 Interior cladding units
346 Elemental interior wall constructions

350 External walls
351 Ceiling constructions
352 Ceiling openings
353 Ceiling coatings
354 Ceiling claddings
355 Elemental ceiling structures

360 Roofs

Table 2: Classification of LCA relevant cost group 300 (Structure - construction works)
according to DIN 276 cost groups
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