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Abstract

Walrasian or competitive equilibria are the preferred solution concept in many markets
and auctions, due to their preferable properties, like welfare maximization, envy-freeness,
and core stability. The existence of such equilibria is, however, a highly nontrivial prob-
lem. Classical results from microeconomic theory give a positive answer to the existence
question in convex markets. In such markets, goods are assumed to be perfectly divisi-
ble. However, in many high-stakes auctions observed in practice, goods are indivisible,
so these classical results cannot be applied. In markets with indivisible items, very
strong assumptions on the structure of the biddersŠ valuation functions have to be made
to ensure a the existence of Walrasian equilibrium. From a computational perspective,
the problem of Ąnding a Walrasian equilibrium in indivisible markets is a nonlinear dis-
crete optimization problem. Such problems are usually considered to be much harder to
solve than their continuous counterparts. Another problem, particularly in single-round
auctions, is the biddersŠ communication complexity of reporting their preferences to the
auctioneer: the number of all possible bundles of items is exponential in the number
of different goods sold. Thus, providing an explicit list of values for all those bundles
is only possible in markets where the number of items is very small. This dissertation
focuses on the problems of computing Walrasian equilibrium prices and dealing with the
communication complexity in markets with indivisibilities.

The Ąrst contribution of this dissertation surveys known conditions for the existence of
Walrasian equilibria in markets with indivisibilities, focusing on the gross and strong
substitutes conditions, which have been established as a quasi-standard assumption in
the Ąeld. We explain connections to notions from convex analysis. We also provide a new
perspective on a well-known iterative clock auction format by giving an interpretation
as a primal-dual algorithm.

Several bid languages have been proposed to solve the communication problem in sealed-
bid auctions. A bid language speciĄes a format bidders must use to report their pref-
erences and aims to satisfy two often conĆicting goals: on the one hand, it should be
possible to express a large class of valuation functions. On the other hand, the commu-
nication complexity should be low, and the language should be intuitive to understand.
In the second contribution of this dissertation, we study the Assignment Messages bid
language, which was speciĄcally designed to express strong substitutes preferences. We
prove that the expressiveness of this bid language does not suffice to express all strong
substitutes valuations.
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In our third contribution, we jointly consider the two problems of equilibrium computa-
tion and preference communication. We propose a new algorithm to compute Walrasian
equilibrium prices in markets with strong substitutes bidders, where bidders report their
preferences in the Strong Substitutes Product-Mix Auction (SSPMA) bid language. This
bid language has originally been developed by Paul Klemperer for the Bank of England
during the 2007 Ąnancial crisis. It is the only known one that can precisely express all
strong substitutes preferences. Our algorithm is based on a novel duality result and uses
methods from DC (difference of convex functions) programming. We also provide new
geometric insights into strong substitutes valuation functions.

While this dissertation focuses on the results achieved in the Ąeld of Walrasian equilib-
rium computation, the author has also worked on the problem of computing Bayes-Nash
equilibria in auction games and the equilibrium problem with budget-constrained buyers.
We brieĆy discuss our results in these areas.
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Zusammenfassung

Walrasianische Gleichgewichte sind das bevorzugte Lösungskonzept in vielen Märkten
und Auktionen aufgrund ihrer vorteilhaften Eigenschaften, wie Wohlfahrtsmaximierung,
Envy-Freeness und Core-Stabilität. Die Existenz solcher Gleichgewichte ist jedoch ein
höchst nicht-triviales Problem. Klassische Ergebnisse aus der Mikroökonomie geben eine
positive Antwort auf die Existenzfrage in konvexen Märkten, wobei angenommen wird,
dass die Güter perfekt teilbar sind. In vielen Auktionen, wie sie in der Praxis durch-
geführt werden, sind die Güter jedoch unteilbar, so dass diese klassischen Ergebnisse
nicht anwendbar sind. Auf solchen Märkten müssen sehr starke Annahmen über die
Struktur der Präferenzen der Bieter getroffen werden, um die Existenz eines Walrasia-
nischen Gleichgewichts zu gewährleisten. Aus algorithmischer Sicht ist die Berechnung
eines Walrasianischen Gleichgewichts in Märkten mit unteilbaren Gütern ein nichtlinea-
res diskretes Optimierungsproblem. Derartige Probleme gelten als wesentlich schwieriger
zu lösen als ihre kontinuierlichen Gegenstücke. Ein weiteres Problem, insbesondere bei
einstuĄgen Auktionen, ist die Kommunikationskomplexität der Bieter beim Übermitteln
ihrer Präferenzen an den Auktionator: Die Anzahl aller möglichen Bündel von Gütern
ist exponentiell in der Anzahl der verschiedenen verkauften Güter. Eine explizite Liste
von Werten für alle diese Bündel anzugeben ist daher nur in Umgebungen möglich, in
denen die Anzahl der Güter sehr gering ist. In dieser Dissertation betrachten wir die
Probleme der Berechnung von Walrasianischen Gleichgewichtspreisen und der Kommu-
nikationskomplexität in Märkten mit unteilbaren Gütern.

Der erste in dieser Publikation vorgestellte Forschungsbeitrag gibt einen Überblick über
bekannte Bedingungen für die Existenz Walrasianischer Gleichgewichte in Märkten mit
Unteilbarkeiten und konzentriert sich dabei auf die Gross- und Strong-Substitutes Be-
dingungen, die sich als Quasi-Standardannahme in diesem Bereich etabliert haben. Wir
zeigen Verbindungen zu Begriffen aus der konvexen Analysis auf. Weiterhin liefert die
Interpretation als primal-dualer Algorithmus eine neue Perspektive auf ein bekanntes
Clock-Auktionsformat.

Mehrere Bietsprachen wurden in der Literatur vorgeschlagen, um das Kommunikations-
problem bei Ein-Runden-Auktionen zu lösen. Eine Bietsprache speziĄziert ein spezielles
Kommunikationsformat, das die Bieter verwenden, um dem Auktionator ihre Präferen-
zen mitzuteilen. Sie zielt darauf ab, zwei oft widersprüchliche Ziele zu erfüllen: Einerseits
soll sie ermöglichen, eine möglichst große Klasse verschiedener Präferenzen auszudrücken.
Andererseits soll die Kommunikationskomplexität gering und die Sprache intuitiv zu ver-
stehen sein. Im zweiten in dieser Dissertation vorgestellten Artikel untersuchen wir die
Bietsprache der ŞAssignment MessagesŤ, die speziell für die Kommunikation von Strong-
Substitutes Präferenzen entwickelt wurde. Wir beweisen, dass die Ausdruckskraft dieser
Gebotssprache nicht ausreicht, um alle Strong-Substitutes Präferenzen auszudrücken.
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In der dritten Publikation betrachten wir die beiden Probleme der Gleichgewichtsbe-
rechnung und der Präferenzkommunikation gemeinsam. Wir entwickeln einen neuen
Algorithmus zur Berechnung von Walrasianischen Gleichgewichtspreisen auf Märkten
mit Strong-Substitutes Bietern, bei dem die Bieter ihre Präferenzen mithilfe der Strong-
Substitutes Product-Mix Auction (SSPMA) Bietsprache kommunizieren. Diese Bietspra-
che ist die einzige bekannte, die die Eigenschaft hat, alle Strong-Substitutes Präferenzen
ausdrücken zu können. Unser Algorithmus basiert auf einem neuartigen Dualitätsergeb-
nis und verwendet Methoden der DC-Programmierung (Difference of Convex Functions).
Außerdem präsentieren wir neue geometrische Einsichten in die Strong-Substitutes Be-
dingung.

Während sich diese Dissertation auf die Ergebnisse im Bereich der Berechnung von Wal-
rasianischen Gleichgewichten konzentriert, hat sich der Autor dieser Dissertation auch
mit dem Problem der Berechnung von Bayes-Nash-Gleichgewichten in Auktionsspielen,
sowie dem Gleichgewichtsproblem mit budgetbeschränkten Käufern beschäftigt. Wir dis-
kutieren kurz unsere Ergebnisse in diesen Bereichen.
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1 Introduction

Walrasian or competitive equilibria, named after the French economist and pioneer of

general equilibrium theory Léon Walras (Walras 1874), are particularly desirable out-

comes of markets, as they simultaneously capture multiple economic design desiderata.

In a Walrasian equilibrium, prices for goods are such that the demand of the buyers

participating in the market is equal to the available supply of goods. Notably, prices in

a Walrasian equilibrium are linear and anonymous, meaning that the price for a bundle

of goods is equal to the sum of prices of the individual goods, and prices are the same

for each market participant. Moreover, Walrasian equilibria are strongly connected to

efficient outcomes of the market. An outcome is efficient when the goods are distributed

in a way that maximizes the social welfare of all market participants. It is well-known

that the equilibrium states of a market precisely coincide with its efficient outcomes.

Classical competitive equilibrium theory considers convex markets (Arrow and Debreu

1954; McKenzie 1959), where goods are assumed to be perfectly divisible. In many

real-world markets, however, one cannot justify the assumption of perfect divisibility.

Important examples include spectrum auctions (Bichler et al. 2014), electricity markets

(Liberopoulos and Andrianesis 2016), truckload transportation (Caplice and Sheffi 2003),

industrial procurement (Bichler et al. 2005), and markets for bus routes (Cantillon,

Pesendorfer, et al. 2005). These applications are all instances of combinatorial auctions,

where a central decision maker, the auctioneer, collects information about the biddersŠ

preferences and then decides on a suitable assignment of bundles to bidders, together

with the prices they have to pay for them. The importance of understanding such

auctions has recently been emphasized by the Nobel prize in economics, awarded to

Paul Milgrom and Robert B. Wilson in 2020 for Şimprovements to auction theory and

inventions of new auction formatsŤ (Committee for the Prize in Economic Sciences in

Memory of Alfred Nobel 2020).

Since preferences in markets with indivisibilities are deĄned on a subset of the integer

lattice instead of a convex set, we cannot apply classical existence results on Walrasian
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1 Introduction

equilibria. Consequently, the existence of Walrasian equilibria in markets with indivis-

ibilities is highly non-trivial, and one has to make strong assumptions on the buyersŠ

preference structure to ensure it. In the 1980s, the Ąrst general existence condition,

called the gross substitutes condition, was introduced by Kelso and Crawford (1982).

Intuitively, a bidder has gross substitutes preferences if a price increase of some items

does not lead to a decrease in demand for other items. In particular, it does not al-

low for complementarities between goods. Several generalizations of this condition have

been proposed since then. For example, the strong substitutes condition (Milgrom and

Strulovici 2009) covers multi-unit markets, and the gross substitutes and complements

condition (Sun and Yang 2006; Teytelboym 2014) allows for complementarities between

goods.

Quite simultaneously, there have been signiĄcant advances in the theory of nonlinear

discrete optimization, generalizing results from matroid theory to more general classes

of functions that one can efficiently optimize over the integer lattice. In particular, this

resulted in the deĄnition of two types of discrete convex functions, called M ♮-convex

and L♮-convex, that share well-known properties like duality and conjugacy with ŞusualŤ

convex functions (Fujishige and Murota 2000; Murota 2003; Murota and Shioura 1999).

Surprisingly, the notions of gross substitutes valuations and M ♮-concave functions turn

out to be equivalent (Fujishige and Yang 2003), providing a new perspective on the

gross substitutes condition. This insight inspired the development of faster algorithms

for solving the equilibrium computation problem Ű state-of-the-art algorithms are based

on ideas from classical convex optimization, like subgradient descent or cutting plane

methods (Leme and Wong 2020; Shioura 2017).

Apart from the equilibrium existence question, the preference elicitation problem is a

crucial bottleneck when deploying combinatorial auctions (Parkes 2005). To determine

a reasonable outcome of an auction, the auctioneer must, of course, collect information

about the biddersŠ preferences. There are two fundamentally different methods of how

this can be done. On the one hand, single-round auctions can be understood as a simple

two-stage process. First, bidders report their full preferences over bundles of items to

the auctioneer. Based on these reported preferences, the auctioneer then determines

an outcome. On the other hand, iterative auctions consist of multiple repeated rounds,

where in each round partial information about the preferences is requested, for example,

the biddersŠ most preferred bundles at given prices (Segal 2005). The communication

complexity of such an iterative auction is relatively low compared to sealed-bid auctions.
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Still, there are also downsides: iterative auctions may require many rounds and can thus

take weeks or months to terminate. As a recent example, the 3.45 GHz spectrum auc-

tion conducted by the Federal Communications Commission of the United States of

America took three months for 151 auction rounds (Federal Communications Commis-

sion 2022). This also gives bidders more time for potential collusion (Klemperer 2008;

Klemperer 2010). A main drawback of single-round auctions is, on the other hand, that

it is impractical or even impossible for the buyers to communicate their preferences by

explicitly reporting the monetary values they have for every possible bundle of items, as

this list grows exponentially in the number of goods sold. A bid language aims to make

this communication more efficient, allowing bidders to report primitive bids that express

their valuations over bundles more compactly. There are general-purpose bid languages

that usually aim at letting bidders express all possible preferences while making the rep-

resentation of ŞcommonŤ preferences compact (Goetzendorff et al. 2015; Nisan 2005).

In contrast, other bid languages try to express a speciĄc class of valuation functions as

compactly and intuitively as possible. For the gross substitutes condition and its vari-

ants, several bid languages have been proposed (Baldwin and Klemperer 2019; HatĄeld

and Milgrom 2005; Klemperer 2010; Milgrom 2009). While they all have the property

that each valuation expressed in these bid languages satisĄes the gross or strong sub-

stitutes condition, there is only one known bid language, called the Strong Substitutes

Product-Mix Auction (SSPMA) bid language, allowing bidders to express all strong

substitutes preferences (Baldwin and Klemperer 2021). The SSPMA is a generalization

of an auction invented by Paul Klemperer for the Bank of England to quickly sell loans

to private Banks during the 2007 Ąnancial crisis and is still in use (Klemperer 2008;

Klemperer 2010).

Contribution

In this dissertation, we mainly consider the question of computing Walrasian equilibria

in markets with indivisibilities. As mentioned, the fact that goods are indivisible makes

the existence question much harder to answer. In Publication 1 included in this dis-

sertation, we survey different conditions for existence from the literature. We focus on

markets where the biddersŠ valuations fulĄll the strong substitutes preferences. A nat-

ural iterative auction mechanism for determining a Walrasian equilibrium, introduced

by Ausubel (2006), exists in this setting. We present a novel interpretation of this iter-

3



1 Introduction

ative auction as a primal-dual algorithm for solving the winner determination problem,

making it more accessible to experts in linear programming.

In Publications 2 and 3, we consider markets with strong substitutes bidders, where the

preferences are expressed via a speciĄc bid language.

In Publication 2, we analyze the expressive power of Assignment Messages, a bid lan-

guage introduced by Milgrom (2009), where bidders report preferences in terms of a

linear program with structured side conditions. We prove that strong substitutes valu-

ations exist that are not expressible via Assignment Messages. To do so, we provide a

novel interpretation of Assignment Messages as min-cost Ćow problems.

In Publication 3, we study the SSPMA bid language, the only known bid language

that can express precisely all strong substitutes preferences. We provide a new algo-

rithm for computing Walrasian equilibria when bidders report their preferences in this

bid language. The algorithm uses methods from DC (difference of convex functions)

programming. It is based on a novel duality result, expressing the welfare in terms

of SSPMA bids in a natural way. We also derive new geometric insights into strong

substitutes valuation functions.

Beyond Walrasian Equilibria

The publications included in this thesis focus on questions regarding Walrasian equilibria

in indivisible markets. Within the scope of the authorŠs Ph.D. project, research on

different but related topics was also conducted.

Most existence results on Walrasian equilibria with indivisible goods not only require a

particular structure of the biddersŠ preferences. They also implicitly assume that bidders

can pay an arbitrarily large amount for their preferred bundle of goods. In many real-

world scenarios, however, bidders have a limited budget. In our paper ŞCore-Stability

in Assignment Markets with Financially Constrained BuyersŤ (Batziou et al. 2022), we

consider the case where bidders have hard budget constraints. We study assignment

markets, where each bidder is interested in winning at most one good, and a different

seller sells every good. Even in this simple market setting, Walrasian equilibria do

generally not exist Ű the best one can hope for is to Ąnd a market outcome satisfying

some of the desirable properties of Walrasian equilibria. We propose a new auction

format that always terminates in a core-stable outcome. Under additional assumptions,

this outcome is also welfare-maximizing among all core outcomes. Moreover, we prove
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that without further assumptions, the problem of maximizing welfare among all core-

stable outcomes is NP-complete.

While in larger markets, the assumption that bidders report their preferences truth-

fully is often justiĄed, strategic considerations of individual bidders signiĄcantly impact

the outcome of auctions with only a few participants. In these settings, a Bayes-Nash

equilibrium analysis is more appropriate to predict the outcome of an auction. The

famous result by Daskalakis et al. (2009) states that even in standard two-player matrix

games, the computation of a Nash equilibrium is PPAD-hard. Exact Nash equilibrium

solvers are thus not applicable to auction games due to their high dimensionality. We

must rely on more heuristic methods that do not necessarily converge in all games. We

use techniques from online learning to approximate Bayes-Nash equilibria in auction

games. In ŞLearning Equilibria in Symmetric Auction Games Using ArtiĄcial Neural

NetworksŤ (Bichler et al. 2021a), we propose the NPGA (Neural Pseudo-Gradient As-

cent) algorithm, which uses neural networks and a pseudo-gradient method to model the

biddersŠ strategy spaces. In ŞComputing Bayes Nash Equilibrium Strategies in Auction

Games via Simultaneous Online Dual AveragingŤ (Fichtl et al. 2022), we present the

SODA (Simultaneous Online Dual Averaging) algorithm. In contrast to other existing

approaches, this algorithm uses the space of distributional strategies (Milgrom and We-

ber 1985), which allows bidders to randomize over the bid they submit. Experimental

results of both approaches are encouraging: in a broad class of different auction games,

convergence to a Bayes-Nash equilibrium can be observed. Our experimental results

are in sharp contrast to the negative results on the convergence of learning dynamics

in general games (see, e.g., Daskalakis et al. (2010) and Vlatakis-Gkaragkounis et al.

(2020)).

Outline

This dissertation is structured as follows. Chapter 2 introduces the necessary notation

and deĄnitions of auctions and markets. Next, we discuss Walrasian equilibria in mar-

kets with indivisibilities and their equivalence to efficient market outcomes. Afterward,

we turn to the question of the existence of Walrasian equilibria and present the gross

and strong substitutes conditions, which are very commonly used in the literature on

indivisible markets. We further give a brief overview of algorithmic methods to compute

Walrasian equilibria and discuss common bid languages for gross and strong substitutes

valuation functions that are used to reduce the biddersŠ communication complexity. In
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1 Introduction

Chapter 3 of the dissertation, we present our project on the existence and computation

of Walrasian equilibria from a linear programming perspective. The next project, which

studies the expressive properties of a particular bid language, called Assignment Mes-

sages, is included in Chapter 4. Chapter 5 contains our work on computing Walrasian

equilibria in markets where bidders use the SSPMA bid language. We conclude this

dissertation by discussing our results and possible future research directions in Chapter

6.
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2 Theoretical Background

2.1 Markets with Indivisibilities

Auctions, as they are studied in this dissertation, are mechanisms where a single seller

(or auctioneer) sells a given bundle of items (or goods) to interested bidders (or buyers).

We assume that the number n of bidders participating in the auction is Ąxed and write

I = ¶1, . . . , n♢ for the set of bidders. Items can be categorized into m different types,

where items of the same type are considered to have equal value for all buyers. We denote

the set of different types of goods by K = ¶1, . . . , m♢. A bundle of items containing s(k)

units of item k will be represented as a vector s = (s(1), . . . , s(m)) ∈ Zm
≥0. We denote

the bundle of items sold in the auction by t ∈ Zm
≥0, which we call the target supply.

The goal of an auction is to determine an assignment S = (s1, . . . , sn) of bundles si ∈ Zm
≥0

to bidders i, together with prices the bidders have to pay for their bundles. Of course,

the total number of goods assigned to bidders cannot be larger than the supply of goods,

and we call an assignment S with
∑

i∈I si ≤ t a feasible assignment. In this dissertation,

the relations ≤ and ≥ for vectors are always meant to hold coefficient-wise. A price

vector p = (p(1), . . . , p(m)) ∈ Rm
≥0 comprises the per-unit prices p(k) for all available

items k ∈ K. We will always assume that prices are linear, meaning that bundle s ∈ Zm
≥0

costs
∑

k∈K p(k)s(k) = ⟨p, s⟩. Prices will also be anonymous, i.e., the same price vector

p is observed by all agents. We call a tuple (S, p) consisting of an assignment S and a

price vector p an outcome of the auction.

To determine a ŞgoodŤ outcome, the bidders must report information about their pref-

erences to the auctioneer. A bidderŠs preference is modeled by a valuation function

v : Zm
≥0 → R ∪ ¶−∞♢, sometimes only called valuation, mapping bundles s to values

v(s). This value can be interpreted as the maximum amount of money the bidder is

willing to pay for receiving s. Throughout this dissertation, we will make the following

assumptions on valuation functions v.

7



2 Theoretical Background

1. The value for the empty bundle is 0, i.e., v(0) = 0.

2. Monotonicity: if s ∈ dom vi and r ≤ s, then v(r) ≤ v(s).

3. The effective domain dom v = ¶s ∈ Zm
≥0 : v(s) > −∞♢ is bounded or, equivalently,

Ąnite: ♣dom v♣ <∞.

Note that by Property 1, the effective domain of a valuation function is never empty.

Property 3 simpliĄes our exposition in some places. For our purposes, it is without loss

of generality: since the target supply t consists of a Ąnite number of items, it makes no

sense for the bidders to report values for bundles containing more items than t. Our

deĄnition of valuation functions implicitly assumes that a bidderŠs value only depends

on the bundle s they receive, and neither on the values other bidders have for this bundle

nor on the bundles other bidders receive. Valuations with this property are referred to

as independent private valuations in the literature.

If a bidder receives bundle s and prices are set to p, their utility is equal to their value

for bundle s minus the price they have to pay for it:

π(s, p) = v(s)− ⟨p, s⟩.

This utility model is called the quasi-linear model in the literature. Given any price

vector, one or more bundles maximize the buyerŠs utility. The demand set consists of

exactly those utility-maximizing bundles:

D(p) = argmax
s∈Zm

≥0

π(s, p).

We say that s is demanded at prices p if s ∈ D(p). The indirect utility denotes the

bidderŠs utility for receiving one of the bundles in their demand set:

u(p) = max
s∈Zm

≥0

vi(s)− ⟨p, s⟩.

Whenever we consider multiple bidders, we will write vi for bidder iŠs valuation function

and similarly πi, ui, and Di for their (indirect) utilities and demand sets.

Example 1. A well-studied type of valuation functions are unit-demand valuations. A

bidder with a unit-demand valuation is interested in winning at most one good: if they

8



2.2 Desiderata of Auctions and Markets

get assigned bundle s, their value for s is equal to the maximum value of one of the

items contained in s. Formally, there exists a vector w ∈ Rm
≥0, such that

v(s) = max
k : s(k)=1

w(k)

if s ̸= 0, and v(0) = 0, where dom v = ¶0, 1♢m. One can check that

u(p) = max
{

0, max
k∈K

w(k)− p(k)
}

.

A market with only unit-demand bidders can be visualized as a weighted bipartite graph

between bidders and items, where the edge between bidder i and item k has weight vi(ek),

ek denoting the k-th standard unit vector. Since assigning more than one item to each

bidder does not make sense, outcomes of such markets can be interpreted as matchings

between bidders and items. Markets, where all bidders have a unit-demand valuation

are called assignment markets.

2.2 Desiderata of Auctions and Markets

This section brieĆy discusses some typical design desiderata for auctions and markets.

The notation mainly follows Bichler (2017) and Blumrosen and Nisan (2007).

By running an auction, the auctioneer aims to determine an outcome that fulĄlls some

speciĄc objective as well as possible. In many applications, the goal is to maximize

social welfare, which is deĄned as the sum of all biddersŠ valuations: the assignment

S = (s1, . . . , sn) generates social welfare
∑

i∈I vi(si). Social welfare can also be expressed

in terms of the utilities of all market participants, including the seller. Assuming that

the sellerŠs utility is the total amount of money received from the buyers, the sum of

utilities of all agents is equal to

〈

p,
∑

i∈I

si

〉

+
∑

i∈I

πi(si, p) =

〈

p,
∑

i∈I

si

〉

+
∑

i∈I

vi(si)− ⟨p, si⟩ =
∑

i∈I

vi(si).

The optimization problem of maximizing social welfare is often called the Winner De-

termination Problem (WDP):

9



2 Theoretical Background

max
∑

i∈I

vi(si)

s.t.
∑

i∈I

si(k) ≤ t(k) ∀k ∈ K (WDP)

si ∈ Zm
≥0 ∀i ∈ I.

Definition 2.2.1 (Efficiency). An allocation S is called efficient if it maximizes social

welfare, i.e., it is an optimal solution to the (WDP).

Since the biddersŠ valuation functions are their private information and are not known by

the auctioneer in advance but are reported during the auction process, the auctioneer has

to rely on the reported information to be truthful. To incentivize the truthful behavior of

the agents, a typical design desideratum of an auction mechanism is strategyproofness,

meaning that bidders can never increase their utility by reporting wrong information

about their preferences. We must use a slightly more general notation than in Section

2.1 for a formal deĄnition. A mechanism M is described by a function f , taking as

input the biddersŠ reported valuations (v1, . . . , vn), and returning an assignment S of

bundles to bidders, together with a payment q ∈ Rn
≥0, qi denoting the amount of money

bidder i has to pay.1 By abuse of notation, denote by πi(vi; f(v′
1, . . . , v′

n)) = vi(si) − qi

the utility obtained by bidder i, if iŠs true valuation is vi and bidders report valuations

(v′
1, . . . , v′

n).

Definition 2.2.2 (Strategyproofness). A mechanism M is strategyproof, if for all bid-

ders i, all valuation proĄles (v1, . . . , vn) and all valuation functions v′
i it holds that

πi(vi; f(v1, . . . , vn)) ≥ πi(vi; f(v1, . . . , vi−1, v′
i, vi+1, . . . , vn)).

Strategyproof mechanisms are also equivalently called dominant-strategy incentive-

compatible.

Bidders are assumed to be interested in maximizing their utility. Thus, an outcome

(S, p) of an auction might be considered unfair if bidders receive bundles si that are

1Such a mechanism is usually called a direct revelation mechanism in the literature, as bidders directly
report their preferences. We restrict our attention to such mechanisms here for simplicity. Generally,
a mechanism can be defined as functions taking some general actions of the bidders as input.
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2.2 Desiderata of Auctions and Markets

suboptimal at given prices, meaning that si ̸∈ Di(p). In particular, they might envy

other bidders for the bundles they receive.

Definition 2.2.3 (Envy-freeness). An outcome (S, p) is called envy-free if all bidders i

receive a bundle in their demand sets, i.e., si ∈ Di(p) for all i ∈ I.

The fourth design desideratum of auction mechanisms we want to introduce here is core-

stability. Let I0 = I ∪ ¶0♢ denote the set consisting of all buyers and the 0-th agent,

representing the seller. For any subset C ⊆ I0, called a coalition, deĄne the coalitional

value w(C) to be the maximal social welfare that the agents in C can generate on their

own: if 0 ̸∈ C, there are no goods to be distributed among the buyers, so w(C) = 0.

Otherwise, if the auctioneer is part of the coalition C, w(C) is just the objective value of

the (WDP) where the set of all bidders I is restricted to the bidders in C \ ¶0♢. We say

that a payoff vector π = (π0, . . . , πn) ∈ Rn+1
≥0 , assigning a payoff to every agent i ∈ I0,

lies in the core, or is core-stable, if the following two conditions hold. First, the payoff
∑

i∈C πi of every coalition C ⊆ I0 must be as least as high as the maximal social welfare

w(C) the coalition can generate on its own. Second, the sum of all payoffs
∑

i∈I0
πi

cannot be larger than the social welfare w(I0) all agents generate together. The core

thus comprises all possible ways of distributing the jointly generated welfare among all

agents, such that no subcoalition C could proĄt from ŞignoringŤ the agents that are not

in C.

Definition 2.2.4 (Core). The core is the following set of payoff vectors.

Core(I0, w) =







π ∈ Rn+1
≥0 :

∑

i∈C

πi ≥ w(C)∀C ⊆ I0 and
∑

i∈I0

πi = w(I0)







.

According to this deĄnition, we call an outcome (S, p), consisting of an assignment S

and linear prices p, a core outcome, if

(〈

p,
∑

i∈I

si

〉

, π1(s, p), . . . , πn(s, p)



∈ Core(I0, w).
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2.3 Walrasian Equilibria

A Walrasian equilibrium is a market state where the total demand for items equals

the target supply t of available items. After giving a formal deĄnition, we will present

the essential properties of Walrasian equilibria, explaining why such market states are

particularly desirable.

Definition 2.3.1. A Walrasian equilibrium is an outcome (S, p), where S is a feasible

assignment and p is a price vector, such that
∑

i∈I si = t and si ∈ Di(p) for all i ∈ I.

By deĄnition, Walrasian equilibria are envy-free. In the following, we will explain the

relation between Walrasian equilibria and the other desiderata introduced in Section

2.2.

It turns out that Walrasian equilibria are inherently connected to the marketŠs efficient

outcomes. Indeed, the famous welfare theorems state that the set of Walrasian equilibria

is equal to the set of solutions of the (WDP) whenever the set of Walrasian equilibria is

not empty.

To formally state the welfare theorems, we need to introduce a well-known linear pro-

gramming relaxation of the (WDP): recall that we assume the sets dom vi to be Ąnite.

For each s ∈ dom vi, introduce the variable xi(s) ∈ ¶0, 1♢, indicating whether bidder

i wins bundle s. Relaxing the constraints to xi(s) ∈ [0, 1], we get the following linear

programming relaxation of the winner determination problem (RWDP):

max
∑

i∈I

∑

s∈Bi

vi(s)xi(s)

s.t.
∑

i∈I

∑

s∈dom vi

s(k)xi(s) ≤ t(k) ∀k ∈ K (RWDP)

∑

s∈dom vi

xi(s) ≤ 1 ∀i ∈ I

xi(s) ≥ 0 ∀i ∈ I ∀s ∈ dom vi.

The First Welfare Theorem states that every Warasian equilibrium maximizes the

(RWDP). Since assignments S are always integral, this implies that there is an opti-

mal integral solution to the (RWDP). In particular, if a Walrasian equilibrium exists,
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2.3 Walrasian Equilibria

the objective values of the (WDP) and (RWDP) are equal. Blumrosen and Nisan (2007)

state the welfare theorems for single-unit markets with indivisible goods, which can

directly be extended to the multi-unit setting.

Theorem 2.3.2 (First Welfare Theorem). Let (S, p) constitute a Walrasian equilibrium.

Then S = (s1, . . . , sn) is an optimal solution to the winner determination problem. More-

over, by setting xi(si) = 1, we obtain an optimal integral solution to the (RWDP).

The Second Welfare Theorem states that every integral optimal solution of the (RWDP)

is a Walrasian equilibrium.

Theorem 2.3.3 (Second Welfare Theorem). Suppose there exists an integral optimal

solution of the relaxed winner determination problem (RWDP) and let S be the induced

assignment, where every buyer receives the unique bundle si with xi(si) = 1. Then there

exists a price vector p, such that (S, p) is a Walrasian equilibrium.

The welfare theorems imply that a Walrasian equilibrium exists if and only if the inte-

grality gap of the (WDP) is zero.

Having established the efficiency properties of Walrasian equilibria, it is also a folklore

result that they lie in the core.

Theorem 2.3.4. Every Walrasian equilibrium is core-stable.

The reverse direction is not true: generally, not every payoff vector that lies in the core

can be implemented by a Walrasian equilibrium Ű for example, there may exist core

outcomes where bidders pay different prices for identical items (Kaneko 1976).

While Walrasian equilibria are at the same time efficient, envy-free, and core-stable,

mechanisms implementing a Walrasian equilibrium are, in general, not strategyproof, as

can be seen as follows.

Example 2. Consider a market with two identical goods to be sold and two buyers. Buyer

1Šs valuation function is deĄned by v1(0) = 0 and v1(1) = 3, while buyer 2Šs valuation

function is given by v2(0) = 0, v2(1) = 2 and v2(2) = 4. It is easy to see that the unique

equilibrium price is p = 2 Ű at a lower price, the bidders demand 3 items in total, while

for p > 2, bidder 2 does not demand any item, and bidder 1 demands at most 1 item.
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At p = 2, both bidders receive one item, bidder 1 obtaining a utility of v1(1) − 2 = 1,

and bidder 2 obtaining a utility of 0. Now suppose that bidder 2 reported the valuation

v′
2(0) = 0, v′

2(1) = 1 and v′
2(2) = 2, instead. Then the unique equilibrium price for v1

and v′
2 is p = 1, where again both bidders receive one item. Note that bidder 2Šs utility

is now v2(1)− 1 = 1. Thus, by misreporting, bidder 2 can increase their utility.

Nevertheless, it can be shown that with increasing market size, i.e., a larger number of

bidders, the potential of a single bidder to manipulate prices becomes arbitrarily small,

so that Walrasian equilibria are ŞalmostŤ strategyproof in large markets. For precise

statements on the approximate strategyproofness of Walrasian equilibria in large mar-

kets, we refer to Azevedo and Budish (2018), Jackson and Manelli (1997), and Roberts

and Postlewaite (1976).

2.4 Existence of Walrasian Equilibria

As demonstrated above, Walrasian equilibria have many advantageous properties. The

question of the existence of a Walrasian equilibrium, however, is highly non-trivial when

goods are indivisible. It is easy to construct examples where no Walrasian equilibrium

exists.

Example 3. Consider a market with two bidders, two types of items, and target supply

t = (1, 1). Bidder 1 is a unit-demand bidder with v1(1, 0) = 1, v1(0, 1) = 2 and v1(1, 1) =

2. Bidder 2 is only interested in winning both items: v2(1, 1) = 2 and v(s) = 0 for

s ̸= (1, 1). It is easy to see that an optimal solution to the (WDP) is given by s1 = (0, 0)

and s2 = (1, 1) with objective value 2. However, the solution x1(1, 0) = x1(0, 1) =

x2(1, 1) = 0.5 and all other variables xi(s) = 0 is feasible for the (RWDP) and has

objective value 0.5(1 + 2 + 2) = 2.5 > 2. Thus, the (WDP) has a non-zero integrality

gap, so a Walrasian equilibrium does not exist by the welfare theorems.

To ensure the existence of Walrasian equilibria, additional structural assumptions on

the biddersŠ valuation functions have been extensively studied in the literature. The

so-called gross substitutes condition, introduced by Kelso and Crawford (1982), and its

multi-unit extension called strong substitutes condition (Milgrom and Strulovici 2009),

have been established as a quasi-standard in the literature. Since it is also the underlying

assumption of the work presented in this dissertation, we will give a more detailed
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2.4 Existence of Walrasian Equilibria

overview of these conditions in Section 2.4.1 before brieĆy describing further existence

conditions in Section 2.4.2.

2.4.1 Gross and Strong Substitutes

The gross substitutes condition has been developed for single-unit markets, where ex-

actly one unit of each item is available, i.e., the target supply equals t = (1, . . . , 1).

Consequently, we consider valuation functions v with effective domain dom v ⊆ ¶0, 1♢m.

It is often more natural to interpret bundles s ∈ ¶0, 1♢m as subsets: we identify A ⊆ K

with the vector eA ∈ ¶0, 1♢m whose k-th entry is 1, if and only if k ∈ A. For singleton

sets ¶k♢, we write ek instead of e¶k♢. Intuitively, the gross substitutes condition states

that whenever the price for one or more items is raised, the demand for all other items

does not decrease.

Definition 2.4.1 (Gross substitutes). A valuation function v : ¶0, 1♢m → R≥0 ∪ ¶−∞♢

satisĄes the gross substitutes condition, if for every pair of price vectors p ≤ q, and for

all A ∈ D(p), there exists B ∈ D(q) with ¶k ∈ A : p(k) = q(k)♢ ⊆ B.

Simple examples of gross substitutes valuation functions are unit-demand valuations

that we introduced in Section 2.1, and additive valuation functions, which are of the

form v(s) = ⟨w, s⟩ for some Ąxed w ∈ Rm
≥0. Weighted matroid rank functions give a

more sophisticated example, generalizing the aforementioned types of valuations. Let I

be the family of independent sets of a matroid on K. Then

v(s) = max ¶⟨w, eA⟩ : A ∈ I, eA ≤ s♢

is a gross substitutes valuation function for any Ąxed w ∈ Rm
≥0 (Shioura and Tamura

2015).

Gul and Stacchetti (1999) give equivalent characterizations of the gross substitutes con-

dition, providing additional intuition.

Theorem 2.4.2. Let v be a single-unit valuation function. Then the following state-

ments are equivalent:

• v satisfies the gross substitutes condition.
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• v has the single improvement property: For every price p and every bundle A ⊆ K

with A ̸∈ D(p), there exists a bundle B with ♣A \ B♣ ≤ 1 and ♣B \ A♣ ≤ 1, such

that π(B, p) > π(A, p).

• v satisfies the no complementarities property: For every price p, all bundles A, B ∈

D(p) and every bundle X ⊆ A, there exists a bundle Y ⊆ B such that (A\X)∪Y ∈

D(p).

Kelso and Crawford (1982) prove that if all buyers have gross substitutes valuation

functions, a Walrasian equilibrium exists.

Theorem 2.4.3. Suppose that the single-unit valuation functions vi satisfy the gross

substitutes condition for all buyers i ∈ I. Given that for each item k ∈ K there is some

bidder i with vi(ek) > −∞, there exists a Walrasian equilibrium for the target supply

t = (1, . . . , 1).2

Importantly, as was shown by Gul and Stacchetti (1999), the class of gross substitutes

valuations is maximal in this regard. If we add any additional single-unit valuation

function to the set of gross substitutes valuations, the equilibrium existence property

from Theorem 2.4.3 is violated.

Theorem 2.4.4. Let v1 : ¶0, 1♢m → R≥0 be a single-unit valuation function violating the

gross substitutes condition. Then there exist ℓ − 1 buyers3 with unit-demand (and thus

gross substitutes) valuation functions v2, . . . , vℓ : ¶0, 1♢m → R≥0 such that a Walrasian

equilibrium does not exist for the target supply t = (1, . . . , 1).

The gross substitutes condition has a straightforward generalization to multi-unit mar-

kets introduced by Milgrom and Strulovici (2009) (see also Murota (2016) for the def-

inition we give here). Let v : Zm
≥0 → R≥0 ∪ ¶−∞♢ be an arbitrary valuation func-

tion and µ ∈ Z≥0 be such that dom v ⊆ [0, µ]m. We can transform v into a single-

2In their original paper, Kelso and Crawford (1982) only consider the case where dom v = {0, 1}m. We
also allow dom v ⊊ {0, 1}m here for technical reasons. This slightly more general statement follows,
for example, from Murota (2003, Theorem 11.13).

3The proof by Gul and Stacchetti (1999) implies that ℓ ∈ O(m).
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unit valuation, where each unit of each good is considered as a separate good: deĄne

ṽ : ¶0, 1♢µm → R≥0 ∪ ¶−∞♢ by

ṽ (s(1, 1) . . . , s(1, µ), . . . , s(m, 1), . . . , s(m, µ)) = v





µ
∑

j=1

s(1, j), . . . ,
µ
∑

j=1

s(m, j)



 .

Definition 2.4.5. A valuation function v : Zm
≥0 → R ∪ ¶−∞♢ satisĄes the strong

substitutes condition if its single-unit representation ṽ satisĄes the gross substitutes

condition.

Milgrom and Strulovici (2009) show that the equilibrium existence result directly extends

to strong substitutes valuations. When all buyers have strong substitutes valuations, a

Walrasian equilibrium exists for every target supply t ∈
∑

i∈I dom vi.

The deĄnitions of gross and strong substitutes provided above are in rather ŞeconomicŤ

terms, requiring that the biddersŠ demands behave in a certain way. As the welfare

theorems from Section 2.3 suggest, however, there is an alternative approach that is

rooted in discrete optimization. The theory of discrete convex analysis transfers notions

and methods from convex analysis, like duality and optimization algorithms, to functions

deĄned on the integer lattice Zm. For an extensive presentation of discrete convex

analysis, we refer to Murota (2003). For a survey focusing on economical applications,

see also Murota (2016). Central to discrete convex analysis are different notions of

discrete convexity, called M ♮-convexity and L♮-convexity, which are dual to each other.

They were originally introduced in Fujishige and Murota (2000) and Murota and Shioura

(1999). For a vector x ∈ Zm, deĄne supp+(x) = ¶i : x(i) > 0♢ and supp−(x) = ¶i :

x(i) < 0♢.

Definition 2.4.6 (M ♮-convexity). A function f : Zm → R∪¶+∞♢ is called M ♮-convex,

if for all x, y ∈ Zm and for all i ∈ supp+(x − y) there exists a j ∈ supp−(x − y) ∪ ¶0♢

such that

f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej)

where e0 = (0, . . . , 0) ∈ Zm.
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Definition 2.4.7 (L♮-convexity). A function g : Zm → R ∪ ¶+∞♢ is called L♮-convex,

or discrete midpoint convex, if for all p, q ∈ Zm we have

g(p) + g(q) ≥ g



p + q

2

⌋

+ g

⌈

p + q

2

⌉

.

The operators ⌊·⌋ and ⌈·⌉ are understood coefficient-wise.

Similar to ŞusualŤ convex analysis, we can deĄne the discrete convex conjugate of f by

f∗(p) = sup
x∈Zm⟨p, x⟩ − f(x). Central to the theory of discrete convex analysis is the

discrete duality theorem: if f : Zm → Z ∪ ¶+∞♢ is proper, integer-valued and M ♮/L♮-

convex, its discrete conjugate f∗ is L♮/M ♮-convex, and f∗∗ = f . We remark that these

results can be extended, such that the assumption of integer-valued functions is not

required (Murota 2003). Discrete convex functions also share other characteristic prop-

erties with continuous convex functions: M ♮-convex functions are closed under inĄmal

convolution, while L♮-convex functions are closed under addition. For computational

purposes, it is important to note that both types of discrete convex functions can be

minimized efficiently via steepest descent algorithms (Shioura 2017).

As usual, we say that a function f : Zm → R ∪ ¶−∞♢ is M ♮- or L♮-concave, if −f is

M ♮- or L♮-convex. The following theorem, which was originally proven by Fujishige and

Yang (2003) for gross substitutes valuations, is the central connection between discrete

convex analysis and strong substitutes valuations.

Theorem 2.4.8. A valuation function v : Zm
≥0 → R∪¶−∞♢ is strong substitutes if and

only if it is M ♮-concave.

Using discrete duality, this also implies that if a valuation function v : Zm
≥0 → Z≥0 ∪

¶−∞♢ is strong substitutes, its indirect utility function u(p) is L♮-convex (see Murota

(2003, Chapter 11) and Publication 1 for details). This allows us to use minimization

algorithms for L♮-convex functions to solve the equilibrium computation problem. We

provide more details in Section 2.5.

The strong substitutes condition also has an intuitive geometric interpretation, as pre-

sented by Baldwin and Klemperer (2019), that we brieĆy want to sketch here. Given a

valuation function v, deĄne the Locus of Indifference Prices (LIP) by L = ¶p ∈ Rm
≥0 :

♣D(p)♣ > 1♢, consisting of the set of all prices where more than one bundle of items is

demanded. Since every price p ∈ L satisĄes v(s)− ⟨p, s⟩ = v(r)− ⟨p, r⟩ for at least two
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p1

p2

(0, 1)

(1, 0)

(0, 0)

(1, 1)

Figure 2.1: The LIP of a strong substitutes valuation function divides the price spaces
into connected regions where a unique bundle is demanded. The normal
vectors (gray) are all multiples of (1, 0), (0, 1) or (1,−1).

different bundles s ̸= r, one can show that L is a union of parts of (m− 1)-dimensional

hyperplanes, splitting the price space Rm
≥0 into disjoint regions (see Figure 2.1). It is

possible to characterize strong substitutes valuations by the set of normals of L. We say

that v : Zm
≥0 → R≥0 ∪ ¶−∞♢ is concave-extensible if there exists a concave function on

Rm
≥0 coinciding with v on every integral point s ∈ Zm

≥0.

Theorem 2.4.9 (Baldwin and Klemperer (2019), Proposition 3.10). A valuation v :

Zm
≥0 → R≥0 ∪ ¶−∞♢ is strong substitutes, if and only if v is concave-extensible and all

normal directions of L can be scaled to lie in the set

¶±ek : k ∈ K♢ ∪ ¶ek − el : k ̸= l♢.

2.4.2 Further Conditions for Existence

A generalization of the gross substitutes condition, which is called the (generalized) gross

substitutes and complements (GSC) condition and allows for certain types of complemen-

tarities between goods has been proposed by Sun and Yang (2006) and was generalized

by Teytelboym (2014). Intuitively, a valuation function satisĄes the GSC condition if
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one can split the items into two groups, where items of the same group are substitutes

and items of different groups are complements. One can show that if all bidders have

valuations of this type, a Walrasian equilibrium exists. As for strong substitutes pref-

erences, there exists an alternative characterization of such valuation functions in terms

of twisted M ♮-concavity (Ikebe and Tamura 2015).

The geometric interpretation of strong substitutes preferences from above can be general-

ized, providing a complete characterization of valuation functions admitting a Walrasian

equilibrium (Baldwin and Klemperer 2019). Let D ⊆ Zm
≥0 be a set of non-zero primitive

vectors with −D = D. A valuation v is of demand type D if every facet of its LIP L has

a normal vector in D. A demand type is called unimodular if every linear independent

subset of vectors in D can be extended to a basis of integer vectors of Rm with determi-

nant ±1. The Unimodularity Theorem by Baldwin and Klemperer (2019) states that a

Walrasian equilibrium exists for any target supply t ∈
∑n

i=1 dom vi if the biddersŠ valu-

ations v1, . . . , vn are concave-extensible, and they all have the same unimodular demand

type D. On the other hand, if D is not unimodular, there exists a Ąnite set of agents

with concave-extensible valuation functions vi, such that no equilibrium exists for some

t ∈
∑

i∈I dom vi.

So far, all presented results on equilibrium existence deĄne a class of valuation functions

and show that Walrasian equilibrium exists whenever all valuations are contained in the

respective class. Another stream of literature studies existence conditions given that the

exact form of the biddersŠ valuation functions is known.

Of course, one way to evaluate whether a Walrasian equilibrium exists when the valuation

functions are known is to check if the (RWDP) has an integral optimal solution. This

approach is originally due to Bikhchandani and Mamer (1997). Ma (1998) provides

another existence condition based on the core: they suitably transform the market and

prove that a Walrasian equilibrium exists in the original market if and only if the core

of the transformed market is nonempty. Since this condition takes the form of a set

of linear inequalities, it provides another algorithmic existence test. Finally, Baldwin

and Klemperer (2019) use methods from tropical geometry to prove their Intersection

Count Theorem. They show that the existence of an equilibrium can be checked by only

counting speciĄc intersection points of the biddersŠ LIPs. Since the precise statement is

very technical, we omit further details here.
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2.5 Computation of Equilibria

A straightforward way to compute a Walrasian equilibrium, implied by the welfare the-

orems, is to solve the (RWDP) directly. However, due to a large number of variables,

this is only feasible for relatively small instances. We will brieĆy overview more efficient

methods and focus on algorithms for gross and strong substitutes preferences.

The original proof of equilibrium existence for gross substitutes bidders by Kelso and

Crawford (1982) is constructive and thus provides an algorithm to compute a Walrasian

equilibrium. This algorithm can be interpreted as an iterative auction. We present

a simpliĄed version of this auction, which has been introduced by Leme (2017). The

auction starts with a price vector p = (0, . . . , 0) and the assignment S assigning all items

to bidder 1. Subsequently, as long as some buyer i receives a bundle si ̸∈ Di(p), a bundle

ri ∈ Di(p) with ri ≥ si is determined. By removing the respective items from the other

biddersŠ assignments, bidder i gets assigned bundle ri, and the prices for all items in

ri − si are raised by a small real number δ. Due to the properties of gross substitutes

valuations, this process is well-deĄned and can be shown to terminate in a Walrasian

equilibrium.

While this algorithm is quite intuitive, it is not computationally efficient. Leme

(2017) provides the upper bound of nM/δ price increases in the algorithm, where

M = maxi∈I maxs∈¶0,1♢m vi(s). Thus, this algorithm is, in general, not polynomial.

More efficient algorithms are based on solving the (RWDP) and deploy methods from

convex analysis to make the computation more efficient. By inspecting the dual of the

(RWDP), one can show that the set of solutions of the convex minimization problem

min
p∈Rm

≥0

L(p) =
∑

i∈I

ui(p) + ⟨p, t⟩

coincides with the set of Walrasian equilibrium prices, given that an equilibrium exists.

For a formal derivation of this equivalence, we refer to Publication 1. The convex

function L(p) is often called the Lyapunov function in the literature (Ausubel 2006).

Efficient algorithms for Walrasian equilibrium computation often minimize L(p) instead

of solving the primal (RWDP).
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Equilibrium computation algorithms can be classiĄed by their access to biddersŠ pref-

erences. A standard assumption in the literature is that the algorithm has access to a

demand oracle, meaning that the algorithm can request a bundle in Di(p) for any price

vector p ∈ Rm
≥0. Another common assumption is that the algorithm has access to a

value oracle, which returns vi(s) for any bidder i and bundle s. Importantly, bundles

that bidders demand at a certain price can be interpreted as subgradients of the indi-

rect utility function: it holds that conv Di(p) = −∂ui(p) (see Publication 1 for details).

Thus, given bundles si ∈ Di(p) for every bidder i, we have that t−
∑

i∈I si ∈ ∂L(p).

Based on this observation, Leme and Wong (2020) present the Ąrst polynomial-time

algorithm for computing a Walrasian equilibrium that only uses an aggregate demand

oracle, that is, an oracle returning an arbitrary element s ∈
∑

i∈I Di(p). Their algo-

rithm combines a cutting plane method (Lee et al. 2015), that approximately minimizes

arbitrary convex functions in polynomial time, with structural results on the set of

Walrasian equilibria to solve the (RWDP) exactly. Note that their algorithm works

for general markets with indivisibilities and does not make further assumptions on the

structure of valuations functions. In addition, the authors provide optimized variants of

the algorithm for gross substitutes preferences.

For markets with strong substitutes bidders, specialized steepest descent algorithms

exist. To simplify the exposition, we assume that the biddersŠ valuations are integer-

valued, i.e., are of the form v : Zm
≥0 → Z≥0 ∪ ¶−∞♢.

If all agents have integer-valued strong substitutes valuations, the function L is L♮-

convex. This implies that the functions q 7→ L(p + q) − L(p) and q 7→ L(p − q) −

L(p) are submodular for every Ąxed price vector p ∈ Zm
≥0 (Murota 2003). Hence, a

direction of steepest descent of L at p can be found in polynomial time by a submodular

minimization algorithm (see, for example, Chakrabarty et al. (2017), Iwata et al. (2001),

and Schrijver (2000)). This leads to the following algorithm. First, initialize prices by

p = (0, . . . , 0). In each iteration, Ąnd a minimizer q∗ ∈ ¶0, 1♢m of q 7→ L(p + q)−L(p),

and update p ← p + q∗. While each iteration of the algorithm can be executed in

polynomial time, the algorithm requires O (min ¶∥p∗∥∞ : p∗ ∈ argmin L♢) iterations in

the worst case (Shioura 2017). This makes the runtime only pseudo-polynomial. Note

that values of L are not directly accessible via demand or value oracles. However, as

Shioura (2017) points out, it is still possible to minimize L(p + q) − L(p) with the

help of a demand oracle and a membership oracle. Given a bundle s and a price p,

a membership oracle answers whether s ∈ Di(p) in constant time. Under different
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assumptions on the available oracles, it is possible to make the algorithm more efficient

by using larger step sizes: Baldwin et al. (2020) provide a polynomial-time version of the

steepest descent algorithm, given that bidders express their valuations via the SSPMA

bid language (see Section 2.6 below). An advantage of the steepest descent algorithm is

its natural interpretation as an ascending auction. This auction has been introduced by

Ausubel (2006), who also provides a strategyproof version of it.

2.6 Bid Languages for Substitutes Valuations

In single-round auctions where many different items are sold simultaneously, efficient

communication of the biddersŠ preferences becomes a signiĄcant challenge. If there are m

types of items to be sold, the number of all bundles of items is 2m even in the single-unit

case. Thus, communicating preferences by reporting vi(s) for every bundle s ∈ dom vi

becomes practically impossible. A bid language is a formalized way for bidders to report

their valuation functions to the auctioneer. In this formalized communication process,

bidders submit one or multiple bids to the auctioneer, each containing a logical unit of

information about the preferences. There is an apparent trade-off between the simplicity

of a bid language and the complexity of the preferences it can express.

Example 4. Recall that unit-demand preferences are deĄned as v(s) = maxk : s(k)≥1 w(k)

for all s ̸= 0. Thus, a simple bid language for unit-demand preferences would be to

report the m numbers w(1), . . . , w(m). The communication complexity is much lower

than explicitly reporting the values v(s) for each bundle s ∈ ¶0, 1♢m. However, it enables

buyers to express only a small set of valuation functions.

Due to their practical and theoretical importance in indivisible markets, various sugges-

tions for bid languages that express gross or strong substitutes preferences have been

made. In the following, we present Endowed Assignment Valuations for gross substi-

tutes, as well as Assignment Messages and the Strong Substitutes Product-Mix Auction

(SSPMA) bid language for strong substitutes valuations. While every preference ex-

pressible via those bid languages is always a gross or strong substitutes valuation, only

the SSPMA can express all strong substitutes preferences.

Endowed Assignment Valuations, introduced by HatĄeld and Milgrom (2005), deĄne a

class of single-unit valuation functions (i.e., with domain dom v = ¶0, 1♢m). They were

initially motivated by a hospital having a set of jobs J to Ąll and an initial endowment
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of doctors T . There is an additional set K of doctors that the hospital can hire. Each

doctor-job pair (d, j) has a weight w(d, j), describing how well doctor d performs in job j.

The value for a subset of doctors S ⊆ K is the maximum weight of a matching from the

doctors in T ∪ S to the jobs J , minus the maximum weight of a matching from T to J

(so that the value of the empty set S = ∅ is 0). Consequently, an Endowed Assignment

valuation can be reported by providing the (♣T ♣+ ♣K♣)× ♣J ♣-matrix of weights w(d, j).

While the set of Endowed Assignment valuations has a very intuitive meaning and it

is quite efficient to report to the auctioneer, Ostrovsky and Leme (2015) prove that

it captures only a strict subset of gross substitutes preferences, i.e., there exist gross

substitutes preferences that one cannot express in this way.

Assignment Messages, introduced by Milgrom (2009), form a class of strong substitutes

valuations for multi-unit markets. A formal deĄnition of Assignment Messages would go

beyond the scope of the discussion here. On a high level, Assignment Messages deĄne

valuation functions by linear programs where the constraints have a tree-like structure.

As we explain in Publication 2, an Assignment Message valuation can alternatively be

interpreted as a min-cost Ćow problem. Like Endowed Assignment valuations, they are

quite efficient to report to the auctioneer. Milgrom (2009) shows that all valuations

expressible via Assignment Messages are strong substitutes valuations. However, as we

prove in Publication 2, there are strong substitutes valuations not expressible this way.

The SSPMA bid language was originally introduced by Klemperer (2008) during the

2007 Ąnancial crisis for the bank of England for auctioning loans to private banks. In

the original version of the Product-Mix Auction, a bid is a tuple (v(1), . . . , v(m); q),

where v(1), . . . , v(m) ∈ R≥0 and q ∈ Z≥0. Such a bid describes the willingness to buy

at most q units of goods, where one unit of good k has the value v(k). Each bidder can

submit an arbitrary number of bids. To evaluate a bidderŠs valuation v(s) for bundle

s, distribute the items in s among the bids, such that the total value is maximized

subject to the quantity constraints. More precisely, suppose a bidder submits the bids

(vb(1), . . . , vb(m); qb) for b ∈ B. Then their value for bundle s is

v(s) = max
∑

b∈B

∑

k∈K

vb(k)xb(k)

s.t.
∑

k∈K

xb(k) ≤ qb ∀b ∈ B

∑

b∈B

xb(k) ≤ s(k) ∀k ∈ K

xb(k) ≥ 0 ∀b ∈ B ∀k ∈ K.
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Figure 2.2: Left: LIP of a positive bid at (3, 2). Center: Positive bids at (2, 0), (0, 2) and
(4, 4). Right: Adding a negative bid at (2, 2) removes the respective parts
of the LIP generated by the positive bids. Positive bids are indicated with
black dots, and the negative bid with a gray dot.

Unfortunately, expressing all strong substitutes preferences is impossible with these

bids alone. For this reason, additional negative bids are introduced. These are bids

(v(1), . . . , v(m); q) where the quantity q ∈ Z<0 is negative. Bidders can use negative bids

to cancel some part of the demand that positive bids have created. For more intuition

and a formal treatment of negative bids, we refer to Publication 3. The distinguishing

property of the SSPMA bid language is that the set of valuation functions expressible

via SSPMA bids is exactly equal to the set of all strong substitutes valuation functions

(Baldwin and Klemperer 2021). In the worst case, exponentially many bids are required

to express a given strong substitutes valuation function. One can, however, argue that

ŞtypicalŤ valuations only require a small number of bids (see Publication 3).

SSPMA bids have an intuitive geometric interpretation in terms of the Locus of Indif-

ference Hyperplanes introduced in Section 2.4.1 (see also Baldwin and Klemperer (2019)

and Publication 3). For simplicity, consider a market with 2 different types of goods,

where each bid is of the form (v(1), v(2); q). Let us consider the LIP generated by such

bids (Figure 2.2a). Each bid, positive or negative, can be interpreted as a star-like shape

in price space, with three rays emanating from the point (v(1), v(2)). Given a collection

of positive bids, the LIP generated by those bids is just the union of these shapes (Figure

2.2b). A negative bid, on the other hand, removes those parts of the LIP that coincide

with the shape of the bid (Figure 2.2c).
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Abstract

An ideal market mechanism allocates resources efficiently such that welfare is max-
imized and sets prices in a way so that the outcome is in a competitive equilibrium
and no participant wants to deviate. An important part of the literature discusses
Walrasian equilibria and conditions for their existence. We use duality theory to
investigate existence of Walrasian equilibria and optimization algorithms to describe
auction designs for different market environments in a consistent mathematical
framework that allows us to classify the key contributions in the literature and open
problems. We focus on auctions with indivisible goods and prove that the relaxed
dual winner determination problem is equivalent to the minimization of the Lya-
punov function. This allows us to describe central auction designs from the literature
in the framework of primal-dual algorithms. We cover important properties for exis-
tence of Walrasian equilibria derived from discrete convex analysis, and provide
open research questions.

KEYWORDS

duality, primal–dual algorithms, Walrasian equilibrium

1 INTRODUCTION

Many markets match supply and demand for multiple goods
or services (which we also refer to as items) via optimization.
Typically, the auctioneer computes an allocation and linear
(i.e., item-level), anonymous prices. Linear and anonymous
competitive equilibrium prices are often referred to as Wal-
rasian prices in honor of Léon Walras, a French mathematical
economist, who pioneered the development of general equi-
librium theory. Prominent examples include financial mar-
kets (Klemperer, 2010), day-ahead electricity markets (Meeus
et al., 2009; Triki et al., 2005), environmental markets (Bich-
ler et al., 2019), logistics (Caplice & Sheffi, 2003; Bichler
et al., 2006; Ağralı et al., 2008) or spectrum auctions (Bich-
ler & Goeree, 2017). In some of these markets the auctioneer
computes prices that are in a competitive equilibrium with

linear and anonymous prices (aka. a Walrasian equilibrium),1

in others Walrasian prices even lead to efficiency losses
(Özer & Özturan, 2009; Lessan & Karabatı, 2018; Bichler
et al., 2018; Meeus et al., 2009; Madani & Van Vyve, 2015).
This raises the question, which market characteristics admit
Walrasian equilibria.

While this is an established and central question in the
economic sciences, there have been a number of significant
contributions in computer science, economics, and operations
research in recent years. The literature on auction algorithms
initiated by Bertsekas (1988) is one of the early examples of
the fruitful interplay between optimization and equilibrium

1There are also competitive equilibria with nonlinear prices (Bikhchandani
& Ostroy, 2002). However, some authors only use competitive equilibrium
to refer to one with linear and anonymous prices.
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theory. In this paper, we survey the literature and describe
established and more recent results. We primarily draw on
convex analysis and linear programming duality, and provide
a consistent mathematical optimization framework to position
and explain the key results of this broad literature.

1.1 Competitive equilibrium

Early in the study of markets, general equilibrium theory
was used to understand how markets could be explained
through the demand, supply, and prices of multiple com-
modities or objects. The Arrow–Debreu model shows that
under convex preferences, perfect competition, and demand
independence there must be a set of competitive equilibrium
prices (Arrow & Debreu, 1954; McKenzie, 1959; Gale, 1963;
Kaneko, 1976). Market participants are price-takers, and they
sell or buy goods in order to maximize their value subject to
their budget or initial wealth in this model. The results derived
from the Arrow–Debreu model led to the well-known wel-
fare theorems, important arguments for markets as efficient
or welfare-maximizing ways to allocate resources. Stability
in the form of competitive equilibria where each participant
maximizes his utility at the prices is central to this theory.
More specifically, the theory focuses on Walrasian equilib-
ria where there is one equilibrium price per good (aka. linear
prices) and the price is the same for all bidders (aka. anony-
mous prices). The first theorem states that any Walrasian
equilibrium leads to a Pareto efficient allocation of resources.
The second theorem states that any efficient allocation can be
attained by a Walrasian equilibrium under the Arrow–Debreu
model assumptions.

However, general equilibrium theory assumes divisible
goods and convex preferences, and the results do not carry
over to markets with indivisible goods and complex (noncon-
vex) preferences and constraints. Also, in general equilibrium
models money does not have outside value and bidders max-
imize value subject to a budget constraint (Cole et al., 2016).
More importantly, bidders are assumed to be nonstrategic
price-takers. Based on the work by Vickrey (1961), atten-
tion in economics shifted to auction theory, which focuses on
small and imperfectly competitive markets, where strategic
players can influence prices. These bidders have a quasi-
linear utility function, that is, they aim to maximize payoff
(i.e., value minus price) (Krishna, 2009). Bayesian Nash
equilibria (rather than competitive equilibria) are the cen-
tral equilibrium solution concept in the auction literature, a
branch of noncooperative and incomplete information game
theory which led to remarkable results. Most importantly, the
Vickrey–Clarke–Groves (VCG) mechanism was shown to be
incentive-compatible, and truthful bidding to be a dominant
strategy for bidders (Vickrey, 1961).

Many markets that have been implemented for trading
financial products, electricity, or environmental access rights
as discussed earlier are large markets involving many items
and many market participants. Participants want to maximize

payoff, but they might not be able to influence prices on such
markets. As a consequence, much of the literature is based on
a complete-information game-theoretical analysis where bid-
ders are price-takers rather than an incomplete-information
game (Baldwin & Klemperer, 2019). Competitive equilib-
ria are the main design desideratum. Unfortunately, it is
well known that in many of these markets linear (i.e.,
block-level) prices might not allow for a welfare-maximizing
trade and that there might not be competitive equilibria
(Meeus et al., 2009; Madani & Van Vyve, 2015b).

Such new markets have led to a renewed interest in the ques-
tion of existence and computation of competitive equilibria
(Kim, 1986; Bikhchandani & Mamer, 1997; Bikhchandani &
Ostroy, 2002; Baldwin & Klemperer, 2019; Leme, 2017). The
problem is fundamentally rooted in mathematical optimiza-
tion, as we will show. In this survey, we will focus on central
and recent results in competitive equilibrium theory and mul-
tiobject auction design and reformulate them in the language
of optimization, specifically duality theory and primal-dual
algorithms.

1.2 Outline

There are various ways how surveys are written. Some arti-
cles collect and categorize a larger number of papers in a
new and emerging field (Herroelen & Leus, 2005; Galindo
& Batta, 2013; Olafsson et al., 2008), others provide a guide
to a larger literature and introduce important concepts in a
unified framework. Examples include a survey on bilevel pro-
gramming by Colson et al. (2005) or a survey on the gross
substitutes condition in economics by Leme (2017). We fol-
low the latter path and discuss competitive equilibrium theory
using duality theory and linear programming as a frame-
work. While most of the literature on this subject is published
in economics journals, key insights of this literature can be
introduced conveniently using the mathematical framework
of optimization. Fundamentally, auctions are algorithms for
optimal resource allocation and there are plenty of questions
where the OR community can contribute as we discuss in the
last section.

The survey starts with markets for divisible goods and
shows that the concave conjugate to the aggregate value
function of all bidders yields prices, and that the mini-
mizer of the Lyapunov function results in Walrasian prices
if the aggregate value function is concave. A condition
for concavity of the aggregate value function is concav-
ity of the individual value functions, which is equivalent
to diminishing marginal returns. The Lyapunov function is
convex so that a simple subgradient algorithm finds the min-
imum efficiently. This algorithm has an interpretation as an
auction.

We will next show that the same principles from duality
theory carry over to markets with indivisible objects. For
this, we describe the allocation problem as a binary program.
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Whenever the linear programming relaxation of this binary
program has integer solutions, then the dual variables of
the capacity constraints have an interpretation as Walrasian
prices for the respective resources. We prove that the dual
of the linear programming relaxation of this binary program
is equivalent to the Lyapunov function. Economic literature
discusses conditions on individual value functions that allow
for Walrasian equilibria. This is the case if the convolution
of these individual functions results in a discrete concave
aggregate value function.

As in the continuous case with divisible goods, we can
use a steepest descent algorithm to find the minimizer of the
Lyapunov function, which is equivalent to determining Wal-
rasian prices for the market. This is exactly what the auction
mechanism by Ausubel (2005) does, a central contribution
to auction design. Primal-dual algorithms are well-known
algorithms to solve linear programs, and they have a nice
interpretation as a market with an auctioneer and the bidders
optimizing alternatively. The steepest descent algorithm that
minimizes the Lyapunov function is equivalent and we show
the connections.

We contribute the equivalence of the Lyapunov function
and the dual linear programming relaxation of the alloca-
tion problem in markets with indivisible goods, as well as
the equivalence of primal-dual algorithms with central auc-
tion designs for selling multiple indivisible goods. These two
results allow us to organize the material and use duality theory
to discuss the literature on existence of Walrasian equilib-
ria, and linear programming algorithms to discuss auction
designs leading to Walrasian equilibria if it exists. The survey
helps scholars with a background in mathematical optimiza-
tion to understand central results in competitive equilibrium
theory and draws important connections between competitive
equilibrium theory, mathematical optimization, and discrete
convexity.

In Section 2 we introduce the notation and standard
assumptions in the economic literature for readers from oper-
ations research. Then we introduce important concepts for the
understanding of Walrasian equilibria such as the Lyapunov
function for markets with divisible goods in Section 3. The
same concepts play a role for markets with indivisible goods
and discrete value functions in Section 4. In Section 5 we use
primal-dual algorithms and show that these are equivalent to
important auction designs discussed in economics. Finally,
we provide a research agenda and discuss open research
problems for the operations research community.

2 NOTATION AND ECONOMIC

ENVIRONMENT

In the auction market, there are m types of items or
goods, denoted by k ∈  = {1, … ,m}, and n bidders
i∈ = {1, … , n}. In the multi-unit case, we have s ∈ Zm

≥0

units available, that is, s(k) homogeneousunits for each of

the heterogeneous m items k ∈ . A bundle for bidder i is
described by a vector xi ∈ Zm

≥0. In case of single-unit supply
the vector is binary, that is, xi ∈ {0, 1}m. We will sometimes
omit the subscript i for convenience. Each bidder i has a value
function vi ∶ Zm

≥0 → Z≥0 over bundles of items or objects
xi. We assume integer-valued functions vi as it will be more
convenient to analyze the optimality of auction algorithms.
Moreover, integer-valued functions vi allow to use integral
prices in ascending auctions without losing efficiency.

Unless stated otherwise this paper we assume that bidders
have preferences described via a valuation function with the
following properties:

• Pure private values: Bidder i’s value vi(xi) does not change
when she learns other bidder’s information.

• Quasilinearity: Bidder i’s (direct) utility from bundle xi is
given by 𝜋i(xi, p) = vi(xi)− ⟨p, xi⟩, where ⟨⋅, ⋅⟩ is the dot
product.

• Monotonicity: The function vi ∶ Zm
≥0 → Z≥0 is weakly

increasing with vi(0) = 0 and, if xi ≥ xi
′, then vi(xi)≥ vi(xi

′).

An auctioneer wants to find an allocation of items to bid-
ders. Such an allocation is feasible when the supply suffices
to serve the aggregate demand of the bidders. Furthermore,
the auctioneer aims for allocative efficiency. This means
the auctioneer wants to maximize social welfare which is the
sum of the utilities of all participants (the bidders and the
auctioneer). Maximization of welfare is also referred to as
a utilitarian welfare function. In case of quasilinear utility
functions, prices cancel and the social welfare is defined as∑

i∈vi(xi).
For the remainder of this survey we assume that the auc-

tioneer’s valuation for all items is zero. As a consequence,
the auctioneer would sell items to bidders for a price of zero.
In some auction scenarios, however, the auctioneer may want
to set reserve prices which are the minimum prices at which
the auctioneer would be willing to sell the goods. Often these
reserve prices can be implemented by introducing a dummy
bidder who simply bids the reserve prices on behalf of the
auctioneer in the auction. In case the dummy bidder wins any
items in the auction, these items remain unsold.

The goal of the auctioneer is to find an efficient alloca-
tion that yields linear (i.e., item-level) and anonymous market
clearing prices p = {p(k)}k∈ ∈ Rm. The linearity of prices

refers to the property that individual prices are set for each
item k ∈ ; the price for a bundle x is then simply the sum
of the prices of its components, that is, it is given by the dot
product ⟨p, x⟩. Anonymity means that the resulting prices p are
the same for all bidders and there is no price differentiation.
Furthermore, prices p are market clearing when the aggregate
demand of all bidders at the given prices p meets the supply s.

With linear and anonymous prices p = (p(1), … , p(k),
… , p(m)), the bidder’s indirect utility function is defined as

ui(p) = max
x∈Zm

≥0

{vi(x) − ⟨p, x⟩}.
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The indirect utility function is widely used in economics and
returns the maximal utility that bidder i can obtain for any
bundle at prices p. The demand correspondence Di(p) is the
set of bundles that maximize the indirect utility function at
prices p, that is,

Di(p) = arg max
x∈Zm

≥0

{vi(x) − ⟨p, x⟩}.

If in an outcome (consisting of an allocation and prices) all
bidders are allocated a bundle from their demand set, then the
outcome is envy-free. No bidder would want to get another
bundle, as a bidder cannot increase her utility at these prices.
Envy-free prices always exist. For example, if prices were
higher than the valuations, then every bidder would only want
the empty set. If in addition to envy-freeness all items are
allocated,

∑
i∈xi = s, then the outcome is a competitive

equilibrium.

Definition 1 (Competitive equilibrium, CE).
A price vector p* and a feasible allocation
(x1, … , xn) form a competitive equilibrium if∑

i∈xi = s and xi ∈ Di(p*) for every bidder
i∈.

If there were unsold items, an auctioneer could always add
unsold units to the allocation of a bidder without decreas-
ing welfare as bidders are assumed to have monotone value
functions vi.

In our setting with linear and anonymous prices, a com-
petitive equilibrium is also called a Walrasian equilibrium.
If there exists a Walrasian price vector p* such that p* ≤ p′

for any other Walrasian price vector p′, then p* is called the
bidder-optimal Walrasian price vector. For Walrasian equilib-
ria the well-known welfare theorems hold:

Theorem 1 First and second welfare

theorem (following Blumrosen and Nisan
(2007)) Let x = (x1, … , xn) be an equilibrium

allocation induced by a Walrasian equilibrium

price vector p, then x yields the optimal social

welfare. Conversely, if x is a Pareto efficient

allocation, then it can be supported by a Wal-

rasian price vector p so that the pair (p, x)

forms a Walrasian equilibrium.

3 WALRASIAN EQUILIBRIA WITH

DIVISIBLE GOODS AND CONJUGACY

In this article, we focus on markets with indivisible goods.
However, for instructive purposes, we briefly consider the
case of divisible goods to introduce relevant concepts. These
can then be transferred to the indivisible case. Our aim is to
give an intuitive graphical and analytical interpretation of how
the aggregate valuation function is connected to the indirect
utility function, the Lyapunov function and the market prices.

We consider a market with multiple bidders i∈ and mul-
tiple divisible goods k ∈  with | | = n and || = m. The
aggregate value function v is defined as the supremum con-
volution of concave functions vi ∶ Rm

≥0 → R where vi is the
value function of the ith bidder.

v(s) = max
{xi}i∈

{
∑

i∈

vi(xi) | xi ∈ Rm
≥0 and

∑

i∈

xi = s

}
.

By compactness and continuity, the maximum exists. Con-
cavity implies that vi((1− 𝛼)x+ 𝛼y)≥ (1− 𝛼) vi(x)+ 𝛼 vi(y)
with x, y∈R≥0 and 𝛼 ∈ (0, 1). The economic interpretation
of a concave valuation function is that it exhibits decreasing
marginal valuations. Since every function vi is concave, also
their convolution v is concave.

The aggregate indirect utility is defined as u(p) =
∑

iui(p)

and the aggregate demand set is given by the Minkowski sum
D(p) =

∑
iDi(p).

For the sake of simplicity of the following graphical inter-
pretation of indirect utility and the concept of conjugacy, we
consider a market with multiple bidders but only a single
divisible good x∈R≥0. However, our explanations carry over
directly to markets with multiple goods. It is also worth men-
tioning that in the presence of only a single bidder i the aggre-
gate valuation function v becomes the individual valuation
function vi of the single bidder. Thus, even though the follow-
ing example illustrates the aggregate valuation and indirect
utility function of multiple bidders, it similarly applies to the
valuation and indirect utility function of an individual bidder.

In our example, we assume v(x) = ln(x+ 1). It is well
known that for concave functions v local optimality implies
global optimality and this yields efficient optimization algo-
rithms.

At a given price, every rational bidder i∈ only demands
a quantity of good x which maximizes her utility at this price.
The utility of such a quantity is described by the indirect util-
ity function ui(p) = maxx{v(x)− ⟨p, x⟩}, which is convex as
it is the maximum of affine linear functions. As the aggregate
indirect utility function u(p) is a sum of convex functions, it
must also be convex.

A quantity x* is demanded at prices p if and only if
v(x*)− ⟨p, x*⟩≥ v(x)− ⟨p, x⟩ for all x∈R. When rearrang-
ing terms to v(x*)+ ⟨p, x− x*⟩≥ v(x), it becomes clear
that the left-hand side of the inequality describes the tan-
gent at v(x*) (see Figure 1). In other words, a quantity x*

is demanded at prices p whenever the slope of the tangent at
v(x*) equals the price p. The aggregate utility of quantity x*

is given by 𝜋(x*, p) = v(x*)− ⟨p, x*⟩. As x* ∈D(p), the
aggregate utility 𝜋(x*, p) equals the aggregate indirect utility
u(p). The graphical interpretation of the aggregate indirect
utility function u(p) is the intercept of the tangent at v(x*)
with the ordinate.

We can now compute the quantity of good x that gen-
erates maximum utility at prices p. In our illustrative
example with v(x) = ln(x+ 1), the aggregate utility 𝜋(x,
p) = ln(x+ 1)− ⟨p, x⟩ at given prices p is maximized when
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FIGURE 1 Graphical representation of v (x) = ln(x+ 1) with tangent at

v (x*)

𝜕𝜋 /𝜕x = 1/(x+ 1)− p = 0. This means, at a price of p = 1/3
for example, the total utility 𝜋 is maximized for a demand
of x* = 2. Thus, the aggregate indirect utility function at
prices p = 1/3 equals u(1/3) = 𝜋(2, 1/3) = ln(3)− 2/3.
The concave conjugate (or Legendre transformation) of v

is defined as v•

(p) = minx{⟨p, x⟩ − v(x)}, which is the

aggregate indirect utility function multiplied by −1. We also
note that convex and concave conjugates are connected via
v•

(p) = −(−v)

∗(−p), so u(p) = (−v)*(−p). From these
results, we can make the following connection: In order to
construct the concave conjugate v•


(p) of v(x) = ln(x+ 1) for

a fixed p, we must calculate the minimum of ⟨p, x⟩− ln(x+ 1).
Taking the derivative, we see that a minimizing x must solve
x = 1/p− 1, so we get v•


(p) = 1− p+ ln(p) and consequently

u(p) = −v•

(p) = p − ln(p) − 1. For a given price of p = 1/3

the reader may verify that the bidders’ aggregate indirect util-
ity equals u(1/3) = 1/3− ln(1/3)− 1 = ln(3)− 2/3, which is
in line with our calculations above.

Unlike in this single-item example, the price p is not known
in an auction setting. Instead, the auctioneer tries to find a
price vector p* for which the supply s is a maximizer of the
aggregate utility function 𝜋(x, p*). Note that such a p* is
a Walrasian equilibrium price vector, because s maximizes
𝜋(s, p*) = v(s)− ⟨p*, s⟩ and the aggregate demand of the
bidders equals the supply s.

We will now return to a market with multiple divisible
goods k ∈ . First, we introduce important notions from
convex analysis.

Definition 2 Let f :Rd
→R∪ {+∞} be a

convex function. The subdifferential of f at x is
the set of all tangents of f at x:

𝜕f (x) = {y ∈ Rd|f (x′) ≥ f (x) + ⟨y, x′ − x⟩∀x′ ∈ Rd
}.

Any element of 𝜕f (x) is called a subgradient. The convex

conjugate or Legendre transform of f is the convex function

f ∗(y) = sup
x∈Rd

⟨y, x⟩ − f (x).

Under additional mild assumptions on the convex func-
tion f , the conjugate of the conjugate is again f , f ** = f ,
and subdifferentials of f and f * are connected in the follow-
ing way: y ∈ 𝜕f (x) ⇔ x ∈ 𝜕f *(y). For more details, we refer
to Rockafellar (2015). The concave conjugate defined above
and the convex conjugate are related as follows: If g is con-
cave, then g•(y) = −(−g)*(−y). In particular, we have for
the indirect utility function u(p) = (−v)*(−p). We make
the following important observation: The bundle x is in the
demand set D(p), if and only if v(x)− ⟨p, x⟩≥ v(x′)− ⟨p,
x′⟩ for all x′ ∈ R||. By rearranging terms we see that this
is equivalent to −v(x′)≥−v(x)+ ⟨−p, x′ − x⟩ and thus to
−p∈ 𝜕(−v)(x). Convex analysis tells us that this is equivalent
to x∈ 𝜕(−v)*(−p) = − 𝜕u(p). Consequently, demand sets
are equal to subdifferentials of the indirect utility function—a
fact that allows us to interpret auctions as descent algorithms.

The Lyapunov function was a central concept already in
the early literature on general equilibrium theory (Arrow &
Hahn, 1971). The same function plays a central role in more
recent auction designs for markets with indivisible goods
(Ausubel, 2006). Since this function plays such a central role,
we introduce it in detail for the continuous case.

Definition 3 (Lyapunov function). The Lya-

punov function is defined as L(p) =
∑

i∈ui(p)+

⟨p, s⟩, where s is the supply and ui(p) is the indi-
rect utility function of bidder i∈ at prices p.

The Lyapunov function has its roots in the dynamical sys-
tems literature (La Salle & Lefschetz, 2012). Since the indi-
rect utility ui(p) is convex in p, also the Lyapunov function is
convex, because it is the sum of convex functions. For con-
vex functions such as L(p) the vector p* minimizes L iff 0 is
a subgradient at p*. The first-order condition for L(p) yields
−
∑

i∈xi + s = 0, where xi ∈ Di(p).
∀i∈. In words, the prices are minimized when supply

equals demand:

Proposition 1 A vector p* ∈Rm is a Wal-

rasian equilibrium price vector for supply s if

and only if it is a minimizer of the Lyapunov

function L(p) = u(p)+ ⟨p, s⟩.

Proof If there is a Walrasian equilibrium, then∑
i∈xi = s and xi ∈ Di(p*) need to hold. The

minimizer p* of L(p) requires that 𝜕L(p) =

s −
∑

i∈xi = 0, which is equivalent to the
first condition of a Walrasian equilibrium. Also,
when L(p) =

∑
i∈maxxi

{vi(xi) − ⟨p, xi⟩} +

⟨p, s⟩ attains the minimum, then each bidder is
assigned a bundle xi that maximizes her util-
ity vi(xi)− ⟨p, xi⟩. This implies xi ∈ Di(p*) for
all i, so that the second condition of a Wal-
rasian equilibrium is fulfilled. Thus, if L(p) is
minimized then both conditions of a Walrasian
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equilibrium are satisfied. By reversing the argu-
ment it becomes evident that any price vector p*

supporting s in a Walrasian equilibrium is also
a minimizer for L(p). ▪

Similar results can be found in Ausubel and Mil-
grom (2006) or later in Murota (2016). One way to find
Walrasian equilibria is now to minimize the Lyapunov func-
tion. Since we can interpret the subdifferential of ui at price
p as the demand set at this price—for an auction setting it is
natural to utilize standard subgradient methods for (approx-
imately) minimizing L(p)—computing subgradients is then
equivalent to asking bidders for their demand sets at a given
price. Note that it is in general not possible to compute exact

minimizers to general convex functions—algorithms for min-
imizing a convex function f can in general only provide
complexity bounds for finding an 𝜀-approximate solution x′,
in the sense that

f (x′) ≤ 𝜀 + min
x

f (x).

Note that in general x′ does not even have to be close to the
true minimizer x without additional assumption on f . Since
the aim of our treatment of divisible economies is mainly to
motivate the ideas in the indivisible case, we will not go into
more detail here. If no additional regularity assumptions on
L are imposed, it can be shown that finding 𝜀-approximate
solutions has a worst-case running time of Θ(1/𝜀2) (Nes-
terov, 2018). Interestingly, for markets with indivisible goods
where Walrasian equilibria exist, we will show that the Lya-
punov function equals the dual of the allocation problem.

Central results of convex economic theory with divisi-
ble goods are reasonable approximations to large economies
where nonconvexities vanish in the aggregate (Starr, 1969).
However, most markets are such that indivisibilities and non-
convexities matter. As one would assume, the analysis of
markets with indivisible items has proven much harder.

4 EXISTENCE OF WALRASIAN

EQUILIBRIA WITH INDIVISIBLE GOODS

In this section, we discuss sufficient and necessary condi-
tions for the individual value functions of bidders such that
Walrasian equilibria exist in markets with indivisible goods.

4.1 Conditions on aggregate value functions

A simple multi-item market with remarkable properties is the
assignment market by Shapley and Shubik (1971). In assign-
ment markets each bidder can bid on multiple items but wants
to win at most one (aka. unit-demand). As a consequence,
the allocation problem reduces to an assignment problem,
that is, the problem of finding a maximum weight match-
ing in a weighted bipartite graph. On an aggregate level, the
LP relaxation of the assignment problem is always integral.
This is a consequence of the unit demand on an individual

level and the resulting total unimodularity of the constraint
matrix, and this is a sufficient condition for the existence
of Walrasian prices. The environment of assignment mar-
kets allows for incentive-compatible auctions. Besides, sim-
ple ascending clock auctions yield bidder-optimal Walrasian
prices (Demange et al., 1986).

4.1.1 The allocation problem

Let us first extend the assignment market to a more general
multi-item, multi-unit market which allows for package bids.
Let i ⊆ Zm

≥0 denote all bundles for which bidder i submit-
ted a bid. For simplicity, we make the natural assumption that
every bidder submits a bid with value 0 for the empty bun-
dle. Let zi(x) ∈ {0, 1} be a binary decision variable denoting
whether bidder i wins bundle x ∈ i. The allocation or win-
ner determination problem WDP can then be written as an
integer program as follows:

max
∑

i∈

∑

x∈i

vi(x)zi(x) (WDP)

s.t.
∑

x∈i

zi(x) ≤ 1 ∀i ∈  (𝜋i)

∑

i∈

∑

x∈i

x(k)zi(x) ≤ s(k) ∀k ∈  (p(k))

zi(x) ∈ {0, 1} ∀i ∈ ,∀x ∈ i

For a given supply s the WDP determines an allocation of
bundles to bidders maximizing social welfare. The LP relax-
ation RWDP in standard form replaces zi(x) ∈ {0, 1} by
zi(x) ≥ 0 and introduces additional slack variables. We use the
standard form with slack variables (ai, bk) because it will be
helpful in our algorithmic treatment of the subject.

max
∑

i∈

∑

x∈i

vi(x)zi(x) (RWDP)

s.t.
∑

x∈i

zi(x) + ai = 1 ∀i ∈  (𝜋i)

∑

i∈

∑

x∈i

x(k)zi(x) + bk = s(k) ∀k ∈  (p(k))

zi(x), ai, bk ≥ 0 ∀i ∈ ,∀x ∈ i,∀k ∈ 

In contrast to the assignment problem where bidders have
unit demand, the RWDP does not yield integer solutions in
general.

Example 1 Consider a market with three
items  = {A,B,C} and two bidders with val-
uations v1 and v2

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v1(x) 0 1 2 1 2 2 2 2

v2(x) 0 1 2 2 3 2 3 3

The optimal solution of the RWDP
given these valuations is fractional:
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z1(xB) = z1(xAC) = z2(xC) = z2(xAB) = 0.5 with
all other decision variables set to 0. The opti-
mal value of the RWDP with respect to this
fractional solution is 4.5. An optimal integral
solution (e.g., assigning bundle xAC to the first
and xB to the second bidder) only leads to a
social welfare of 4.

Let us also introduce the dual DRWDP of the RWDP.

min
∑

i∈

𝜋i +
∑

k∈

s(k)p(k) (DRWDP)

s.t. 𝜋i +
∑

k∈

x(k)p(k) ≥ vi(x) ∀i ∈ ,∀x ∈ i (zi(x))

𝜋i ≥ 0 ∀i ∈  (ai)

p(k) ≥ 0 ∀k ∈  (bk)

We will draw on these models in the subsequent sections.

4.1.2 Integrality of the linear program

Bikhchandani and Mamer (1997) describe a multi-item,
single-unit market. Their central theorem shows that there
exist clearing prices for the indivisible single-unit problem if
and only if the RWDP has an integer solution. In this case, the
set of equilibrium prices is the set of solutions to the dual LP
projected to the price coordinates. The result can be proven
via the strong duality theorem in linear programming (Blum-
rosen & Nisan, 2007). As was already noted by Bikhchandani
and Mamer (1997), the result for multi-item, multi-unit mar-
kets also directly follows from their result, by considering
each of the multiple units as separate items. As the proof is
a particularly nice application of duality theory, we provide
a direct proof in the Appendix. Note that this theorem proves
the welfare theorems from general equilibrium theory (see
Theorem 1).

Theorem 2 Walrasian prices exist for the

supply s if and only if the RWDP has an optimal

integral solution.

The proof can be found in Appendix A.
As indicated, the RWDP typically does not yield an inte-

gral solution, and there can be a significant integrality gap
between the objective function value of the RWDP and that
of the optimal integer program WDP. In the next sections,
we will discuss conditions on the individual value functions,
which yield integral solutions of the RWDP and Walrasian
prices.

Before we do this, let us return to the Lyapunov function
that has proven so helpful in our analysis of markets with
divisible goods. A minimizer to this function yielded the
Walrasian prices in Section 3, where we analyzed markets
with divisible goods. It turns out that the Lyapunov func-
tion is actually equivalent to the DRWDP, as we show in the
following proposition.

Proposition 2 A vector p* ∈Rm minimizes

the DRWDP if and only if it is a minimizer of the

Lyapunov function L(p) = u(p)+ ⟨p, s⟩.

Proof We can substitute the utilities 𝜋i in
the dual objective function min

∑
i∈𝜋i +∑

k∈s(k)p(k) by the tight dual constraints 𝜋i =

vi(x) −
∑

k∈x(k)p(k) of the optimal DRWDP
and get the following convex function:

min
p

∑

i∈

max
x∈Zm

≥0

[
vi(x) −

∑

k∈

x(k)p(k)

]
+
∑

k∈

s(k)p(k). (4.1)

Note that this is equivalent to mini-
mizing the Lyapunov function L(p) =∑

i∈ui(p) + ⟨p, s⟩. Obviously, ⟨p, s⟩ in L(p)
is equal to

∑
k∈s(k)p(k), and ui(p) equals

max
x∈Zm

≥0

[
vi(x) −

∑
k∈x(k)p(k)

]
for every bid-

der i. Since the equivalence of the Lyapunov
function and the DRWDP holds for any price
vector p, minimizing prices of the Lyapunov
function also constitutes a minimal solution to
the DRWDP and vice versa. ▪

In summary, both the Lyapunov function and the LP
approach yield equilibrium prices, and such prices are min-
imizers of both problems. We will leverage this insight,
when we analyze auction algorithms to solve the RWDP in
Section 5.

4.2 Conditions for individual value functions

In practical applications a market designer often wants to
understand which assumptions on the individual value func-
tions vi allow for integer solutions of the LP relaxation and
Walrasian prices. Discrete convex analysis identifies classes
of convex functions defined on a subset of the discrete lat-
tice Zm, which allow for integrality and efficient optimization
algorithms.

First, we discuss single-unit, multi-item auctions. There
are several classes of integrally convex functions such as
separable-convex functions on Zm or gross substitutes set
functions on {0, 1}m, which yield a discrete concave aggre-
gate value function v and integral solutions of the RWDP,
such that Walrasian equilibria exist.

4.2.1 Single-unit multi-item auctions

Let us first define monotonicity and submodularity, two
well-known properties of set functions that allow for efficient
function minimization.

Definition 4 For a finite set  of items, the
set function v ∶ 2

→ R is

• monotone if v(S)≤ v(T) for all S,T ⊆  with
S⊆T ,
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• submodular if v(S ∪{k})− v(S)≥ v(T
∪{k})− v(T) for all S,T ⊆  with S⊆T and
for all k∉T .

In the above definition, submodularity can be understood
as diminishing marginal values. Alternatively, submodularity
can be defined as v(S)+ v(T)≥ v(S ∪ T)+ v(S ∩ T) for all
S, T . The vector notation v : {0, 1}m

→R in the single-unit
case maps a set S to a vector x ∈ {0, 1}m by setting x(k) = 1
whenever k ∈ S and x(k) = 0 otherwise.

It is well-known that the minimization of unconstrained
submodular functions can be done in polynomial time, for
example via the ellipsoid method (Grötschel et al., 1981).
The ellipsoid method is notoriously slow in practice. How-
ever, there are also more effective algorithms such as the
Fujishige-Wolfe algorithm (Chakrabarty et al., 2014) and
specialized subgradient methods (Chakrabarty et al., 2017).
Unfortunately, even when submodularity and monotonicity
are satisfied, this does not guarantee the integrality of a
welfare maximization problem such as the RWDP.

Example 2 The reader may verify that the
valuation functions of both bidders in example 1
satisfy monotonicity and submodularity. How-
ever, the optimal solution of the RWDP is not
integral.

The subset of submodular valuations called gross substi-
tutes valuations, however, has this desirable property. Gross
substitutes roughly means that a bidder regards the items as
substitute goods or independent goods but not complementary
goods.

Definition 5 (Gross substitutes, GS). Let p

denote the prices on all items, with item k

demanded by bidder i if there is some bundle
S, with k ∈ S, for which S maximizes the util-
ity vi(S

′) −
∑

j∈S′p(j) across all bundles S′ ⊆ .
The gross substitutes condition requires that, for
any prices p′ ≥ p with p′(k) = p(k), if item
k ∈  is demanded at the prices p then it is still
demanded at p′.

The definition includes both substitute goods and indepen-
dent goods, but rules out complementary goods.2

Example 3 Consider a market with three
items  = {A,B,C} and a single bidder with a
valuation function v fulfilling the gross substi-
tutes condition

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v(x) 0 1 2 3 3 3 5 5

2Sometimes the word “gross” used by Kelso and Crawford (1982) is omitted,
but it is useful to distinguish the single-unit case from substitutes valuations
in other environments, such as the strong substitutes definition that we will
introduce later.

At prices p = (0, 1, 2) the bidder’s indirect
utility is u(p) = 2 and the bidder’s demand set
is given by D(p) = {xAB, xBC, xABC}, that is,
items A, B, and C are demanded as for each item
there exists at least one bundle in the demand
set containing the item. If the price for item A

is raised to 1 but stays constant for items B and
C, then the gross substitutes condition implies
that items B and C must still be demanded at
the new prices p′ = (1, 1, 2). This is obviously
true as the demand set at the new prices p′ is
given by D(p′) = {xBC}. Note that price vectors
p and p′ were only chosen for illustrative pur-
poses. In fact, valuation function v satisfies the
gross substitutes condition for any price vectors
p, p′ ∈ R3

≥0 with p′ ≥ p.

Kelso and Crawford (1982) show that if all agents have
GS valuations, then a Walrasian equilibrium always exists,
which implies that the RWDP has an optimal integral solu-
tion. Ausubel and Milgrom (2002) prove that a bidder has
GS valuations if and only if the indirect utility function u is
submodular. Gross substitutes appear to be a rather restricted
type of valuations, but it contains important subclasses such
as unit-demand valuations (Shapley & Shubik, 1971) and
additive valuations. Gul and Stacchetti (1999) show that GS
excludes complementarity between goods and show equiva-
lence with the so called single improvement property. The
latter property states that whenever a bundle is not opti-
mal at the given prices, then a better bundle can be found
which is derived from the original one by performing any
of the following operations: removing an item, adding an
item, or doing both. Leme (2017) provides a survey of the
extensive literature on the gross substitutes condition and
its alternative definitions for multi-item, single-unit markets,
and show that additive valuations ⊂ GS⊂ submodular valu-
ations⊂ subadditive valuations. We also refer to Shioura and
Tamura (2015) for an extensive survey of GS.

Sun and Yang (2006) identify the gross substitutes and
complements (GSC) condition, which also guarantees for
Walrasian equilibria in single-unit, multi-item markets. It
describes an exchange economy with two classes of goods,
where each class only contains substitutes, but there are com-
plements across these classes of goods. Teytelboym (2014)
generalizes the GSC condition in the sense that goods are par-
titioned into more than two classes. His generalized version
of the GSC condition is satisfied if it is possible to partition
goods into several classes so that whenever considering the
bidders’ valuations for items contained in only two of these
classes in isolation, there exist some bidders for which these
valuations satisfy the GSC condition.

4.2.2 Multi-unit ulti-item auctions

Let us now concentrate on more general conditions for x ∈

Zm
≥0 rather than x ∈ {0, 1}m. A⊂Zm is integrally convex if
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A= (conv A)∩Zm. First, we define the convex closure f of f as

f (x) = sup
p∈Rm

,𝛼∈R
{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ Zm

}.

Geometrically, the epigraph of f is the convex hull of the
epigraph of f . If the convex closure coincides with f on the
set of integer vectors, that is, if f (x) = f (x) for all x∈Zm, f is
called convex-extensible. In the same way, we can define the
concave closure of f by−(−f ). The definition can be restricted
to the integral neighborhood of a bundle x∈Rm and is then
referred to as a local convex extension f̃ of f (Murota, 2003,
Chap. 3). Formally, set N(x) = {y ∈ Zm | ⌊x(k)⌋ ≤ y(k) ≤

⌈x(k)⌉∀k = 1, … ,m}. Then the local convex extension is
given by

f̃ (x) = sup
p∈Rm

,𝛼∈R
{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ N(x)}.

Definition 6 A function f :Zm
→R is called

integrally convex if the local convex extension
of f is convex, or integrally concave if the func-
tion − f is integrally convex.

Integrally convex functions share with convex functions
the property that local minima are also global minima
(Murota, 2016). We have already seen in the divisible case
that concavity of the valuation functions is necessary for equi-
librium prices to exist. We also want to make this connection
here in the indivisible case, by explaining how convexity is
related to integrality of the WDP—which is necessary and
sufficient for the existence of equilibrium prices. To start
with, consider the aggregate valuation function v(s), given
by the value of the WDP for the supply s, and the “relaxed”
aggregate valuation function ṽ(s), given by the value of the
RWDP at s. Note ṽ is well-defined for all real supply vec-
tors s≥ 0 and attains finite values at each such s. A central
observation is the following: ṽ is the concave extension of
v . This shows that v is concave-extensible, and thus vI = ṽ

if and only if for every integral supply vector s, the RWDP
has an integral solution, which—as we have seen—is equiva-
lent to the existence of equilibrium prices. While the stronger
assumption of integral concavity is not necessary for the exis-
tence of equilibrium prices, it is not hard to imagine, that this
property is of importance for the algorithmic problem of com-
puting equilibrium prices. Loosely speaking, since the value
of the concave extension can then be evaluated at any point s

by considering an easy to characterize neighborhood of s, the
computation of subgradients of v gets much simpler. Unfor-
tunately, concave extensibility, and even integral concavity of
the individual valuation functions does not suffice to guaran-
tee concave extensibility of the aggregate valuation function,
or equivalently, existence of equilibrium prices. It is thus of
central importance to identify conditions on the individual
valuations that imply concave extensibility of the aggregate
valuation, or equivalently integrality of the RWDP.

Definition 7 A function f :Zm
→R∪ {∞} is

said to be M♮-convex if for x, y ∈ domf and
j ∈ supp+(x − y)

(i) f (x)+ f (y)≥ f (x−1j)+ f (y+1j) or
(ii) f (x)+ f (y)≥ f (x−1j +1k)+ f (y+1j −1k)

for some k ∈ supp−(x − y).

A function f is M♮-concave if the function −f

is M♮-convex. A set X ⊆Zm is an M♮-convex set
if its indicator function 𝛿X is M♮-convex.

Here 1j denotes the jth unit vector, whereas the posi-
tive and negative support are defined as supp+(x) = {k ∈

|x(k) > 0} and supp−(x) = {k ∈ |x(k) < 0}, respec-
tively. The effective domain is domf = {z ∈ Zm|f (z) ≠

∞}. An M♮-convex function is integrally convex, and thus
convex-extensible (Murota, 2003, Theorem 6.42). Since the
exchange property (ii) is closely related to the exchange axiom
of a matroid, the M stands for “matroid”. It means that if we
add the jth unit-vector to one point x and exchange it with
the ith unit vector of another point y, then the function value
decreases or stays the same. Fujishige & Yang, 2003 showed
that for the single-unit case the GS condition is equivalent to
M♮-concavity.

Theorem 3 (Fujishige and Yang (2003)). A
value function v : {0, 1}m

→R satisfies the GS
condition if and only if it is an M♮-concave
function.

This equivalence extends to multi-unit extensions of the
gross substitutes property. Milgrom and Strulovici (2009)
distinguish between weak and strong substitutes. The weak
substitutes condition can be seen as the natural extension of
the original gross substitutes property to the multi-unit set-
ting by simply quantifying the demand for every item. Note
however, that weak substitutes do not correspond to M♮ func-
tions anymore (Shioura & Tamura, 2015). The strong sub-
stitutes condition, on the other hand, transforms a multi-unit
to a single-unit valuation function by treating each copy of
a good as an individual item. Whenever the corresponding
single-unit valuation function fulfills the original gross substi-
tutes property (as defined by Kelso and Crawford (1982)), the
multi-unit valuation function satisfies the strong substitutes
condition.

Definition 8 (Strong substitutes, SS). Let
 = {k1, k2, … , km} be the set of items with
di ∈N denoting the number of units available
of item ki. Treating each copy of a good as an
individual item leads to the definition of a set
s = {(ki, z)|ki ∈ , 1 ≤ z ≤ di}. A multi-unit
valuation function v ∶ Nm

0 → R can then be
transformed to a single-unit valuation function
vs ∶ {0, 1}s → R by setting vs(xs) = v(x)
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for xs ∈ {0, 1}s where x(i) =
∑di

z=1 xs(ki, z).
The valuation v fulfills the strong substitutes
condition if vs is a gross substitutes valuation
function.

There exist many equivalent definitions of the strong substi-
tutes condition, among them the binary single-improvement
property as shown by Milgrom and Strulovici (2009).

Danilov et al. (2001) and Milgrom and Strulovici (2009)
show that a Walrasian equilibrium exists for every finite set
of strong substitutes valuations. Ausubel (2006) shows that in
case of strong substitutes valuations the Lyapunov function is
submodular which ensures the existence of a bidder-optimal
Walrasian price vector. While the strong substitutes property
is a sufficient condition for the existence of Walrasian equi-
libria, it is not a necessary one and alternatives exist.

Shioura and Yang (2015) extend the gross substitutes and
complements (GSC) condition to a multi-unit and multi-item
economy with two classes of items, where units of the same
type are substitutable, whereas goods across two classes are
complementary. When there is only one class of indivisible
goods, their generalized gross substitutes and complements
(GGSC) condition becomes identical to the strong-substitute
valuation of Milgrom and Strulovici (2009). Further, if each
type of good has only one unit, it becomes the gross substitute
condition of Kelso and Crawford (1982).

Baldwin and Klemperer (2019) provide an innovative
approach characterizing preferences where Walrasian equilib-
ria exist. Instead of working with the value functions, their
framework is based on properties of the geometric structure of
the regions in the price space where a bidder demands differ-
ent bundles. A demand type is defined by a list of vectors that
give the possible ways in which the individual or aggregate
demand can change in response to a small price change. Intu-
itively, given a valuation vi, consider the set i = {p|Di(p)| >
1} of all prices at which more than one bundle is in the
bidder’s demand set. i can be shown to form a so-called
polyhedral complex, and in particular is a union of hyper-
planes, which splits price space into multiple full-dimensional
regions where a unique bundle is demanded, which are called
unique demand regions (UDRs). Now given a set of integral
vectors, vi is of the demand type defined by  if all normals
of all hyperplanes in i are integral multiples of vectors in
.

3 We say that the demand type defined by  is unimodu-

lar if any linear independent subset of vectors in  can be
extended with integral vectors to a basis with determinant
in {−1, 1}. It can be shown, that if participants’ valuations

3The normals of these hyperplanes have the following economic meaning:
Consider a path in price space starting in some UDR. Each time the path
crosses an indifference hyperplane, and thus entering another UDR, the
demanded bundle changes by the normal vector of the crossed hyperplane,
which points into the opposite direction of the price path. In Figure 2 for
example, if the price path goes from the UDR (0, 1) to the UDR (1, 0) in a
straight line, we cross the hyperplane with normal (1, −1), and of course (1,
0) = (0, 1) + (1, −1).

(0,0)

(1,1)
(0,1)

(1,0)

1

2

FIGURE 2 Illustration of i (gray). For each indifference hyperplane, we

indicate one of the two normal vectors associated with this hyperplane. We

can directly see that these normals all lie in  as defined in Example 4. The

tuples (x1, x2) indicate the bundles that are demanded in the respective UDRs

are concave and all have the same unimodular demand type
, then a Walrasian equilibrium exists. There are several
proofs for the unimodularity theorem, see Baldwin and Klem-
perer (2019); Danilov et al. (2001); Tran and Yu (2015). The
authors further show that an equilibrium is guaranteed for
more classes of pure complements than of pure substitutes
preferences. Note that while all agents being drawn from an
equal certain valuation type (SS, GGSC, pure complements)
allows for Walrasian equilibria, agent valuations drawn from
a mixture of these types in general do not allow for one. Uni-
modularity of the demand types is a sufficient condition for
the existence of Walrasian equilibria. Remarkably, it is also
necessary: Given valuations of the agents, there exist equilib-
rium prices for every given supply if and only if the agents’
demand types are unimodular. Again, whenever the unimod-
ularity condition holds, the optimal solution to the RWDP is
integral.

Example 4 Consider a market with two items
 = {A,B} and a single bidder with a valuation
function v, given by the following table

xø xA xB xAB

x (0, 0) (1, 0) (0, 1) (1, 1)

v(x) 0 2 3 4

The set  is shown in Figure 2. We can see
that v is of the demand type given by  =

{±(1, 0),±(0, 1),±(1,−1)}. It can be checked
that  is actually unimodular.

4.2.3 From individual to aggregate value functions

We now want to understand when we can expect individ-
ual value functions vi to yield aggregate value functions
v that are integrally concave. The aggregation of value
functions is referred to as convolution (see Section 3).
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FIGURE 3 For a market with two units of a single indivisible item x, the

figure shows the aggregate valuation function v (x), the aggregate utility

function u , and the Lyapunov function L (p). The Lyapunov function is

minimized at p = 2, denoting the Walrasian equilibrium prices. Note that

p = 2 is also the supergradient of v (x) at x = 2

Murota (2016)[p. 196] shows that if the individual value
functions vi of all bidders i∈ are M♮-concave, also their
convolution is M♮-concave. Similarly, one can define the
aggregate demand correspondence D(p), which is equal to
the Minkowski sum

∑
i∈Di(p).

For M♮-concave functions there is a supergradient at any
point that determines a Walrasian price p. To show this,
let us consider an arbitrary bounded, integrally convex set
A ⊂ Zm

≥0. Let v : A→Z be an M♮-concave valuation on
this set. A bundle x ∈ A is demanded at price p∈Rm iff
v(x)− ⟨p, x⟩≥ v(x′)− ⟨p, x′⟩ ∀ x′ ∈A, which is equivalent
to v(x)+ ⟨p, x′ − x⟩≥ v(x′) ∀ x′ ∈A (as for divisible goods
in Section 3). Figure 3 now illustrates an integrally concave
value function on the left and the resulting indirect utility
function u(p) as well as the Lyapunov function L(p) for a
single item on the right.

With indivisible items and an integrally concave aggregate
value function v , bundle x is demanded at p if and only if p

is a supergradient of v at x. The superdifferential 𝜕v(x) of
an integrally concave function v ∶ Zm

≥0 → R ∪ {−∞} at
x∈ dom v is defined as

𝜕v(x) = {p ∈ Rm
≥0 | v(y) − v(x) ≤ ⟨p, y − x⟩ ∀y ∈ Zm

≥0}.

The individual and aggregate value functions are nondecreas-
ing such that the gradient p* of the superdifferential is p* ≥ 0.
With an integrally concave value function v there exists an
integral equilibrium price vector p* (Murota et al., 2016).
The integrality of the prices follows from the fact that an
integer-valued M♮-concave function v on Zm

≥0 has an inte-
gral subgradient at every point x in dom v . As both v(x) and
the subgradient at x are integral, the tangent at v(x) has an
integral slope p, which can be verified in Figure 3.

An underlying assumption in the study of competitive
equilibria is that agents are price-takers, that is, agents

honestly report their true demand in response to prices in
each round of an auction. Mechanism design, a line of
research initiated by Hurwicz (1972), wants to understand
how such markets perform when agents are strategic about
their demands. Unfortunately, Gul and Stacchetti (1999)
showed that even if goods are substitutes, Walrasian markets
are not incentive-compatible. The assignment market, where
bidders have unit-demand is an exception where straightfor-
ward bidding is actually an ex post equilibrium (Shapley &
Shubik, 1971; Demange et al., 1986).

5 ALGORITHMIC AUCTION MODELS

Auctions can be understood as algorithms to solve a welfare
maximization problem. Some algorithms provide models that
allow us to understand when an auction can be expected to be
efficient and when it yields a Walrasian equilibrium.

The auction proposed by Ausubel (2005) for strong substi-
tutes valuations follows a greedy steepest descent algorithm to
minimize the (integrally convex) Lyapunov function (Murota
& Tamura, 2003). This algorithm has an intuitive interpreta-
tion as an ascending auction: subgradients of the Lyapunov
function at p are oversupplies at this price: 𝜕L(p)= s−D(p).4

Knowing that the Lyapunov function is equivalent to the
DRWDP (see Proposition 1), the overall auction can now be
described as a primal-dual algorithm to solve the RWDP. For
the price minimization, both algorithms require all subgradi-
ents at each point, that is, the entire demand set needs to be
revealed. A specific version of a primal-dual algorithm yields
the same steps.

We focus on primal-dual algorithms as a consistent algo-
rithmic framework to model Walrasian auction mechanisms.
Let us first describe the auction by Ausubel (2005) as a
steepest descent algorithm before we introduce the overall
primal-dual auction framework.

5.1 The auction by Ausubel (2005)

The auction algorithm starts with an arbitrary price vector p

below the bidder-optimal Walrasian prices, possibly p(k) = 0
for all k ∈ . The algorithm then searches iteratively in
each round t ∈ T for a subset of goods S ⊆  such that
L(pt)−L(pt +1S) is maximized. Here, pt denotes the prices
in round t. This is equivalent to determining the direction of
steepest descent to find the global minimum of this function:

4Note that subgradient and steepest descent algorithms for convex minimiza-
tion are equivalent for differential functions but not for the minimization of
discrete functions as in the case of markets with indivisible goods. The dif-
ference between the two algorithms is that the steepest descent algorithm
evaluates all subgradients at a point, while subgradient algorithms use only a
single subgradient. This is equivalent to eliciting the entire demand demand
correspondence or only a single bundle from the demand correspondence. As
a result, the primal-dual algorithm needs fewer iterations to converge to the
exact solution (de Vries et al., 2007).
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FIGURE 4 A primal-dual algorithm following Papadimitriou and Steiglitz (1998)

(i) At pt the auctioneer asks each bidder i∈

for her entire demand set Di(pt).
(ii) For all potential price update vectors p̃ ∈

{1S ∶ S ⊆ } the auctioneer determines
each bidder’s decrease of the indirect
utility. The auctioneer chooses the price
update p̃ ∈ {1S ∶ S ⊆ } such that the
Lyapunov function is decreased the most,
that is, L(pt) − L(pt + p̃) is maximized. In
case there are multiple such minimizers,
the p̃ with the smallest number of posi-
tive entries is selected. This price vector is
referred to as the minimal minimizer and is
guaranteed to be unique.

(iii) If no nonempty subset S can be found
satisfying L(pt)−L(pt +1S)> 0, then the
submodularity of the Lyapunov function
guarantees that pt is the bidder-optimal
Walrasian price vector and the algorithm
terminates. Otherwise the price pt+1 is set
to pt + p̃ and the algorithm continues.

With integer valuations, L(p) decreases by at least 1 in each
iteration and therefore converges after finitely many steps.
Murota et al. (2016) analyze the convergence and number of
iterations of this steepest descent algorithm. In particular, if
the auction algorithm is initialized with p(k) = 0 for all k ∈ 

and p* is the minimal equilibrium price, the algorithm termi-
nates in exactly ||p∗||∞ = maxk∈|p∗(k)| iterations. The price
update step described in this subsection can now be inter-
preted as an operation in a primal-dual algorithm to solve the
WDP, as we show next.

5.2 The primal-dual auction framework

Let us now describe the auction by Ausubel (2005) in
the context of the more general primal-dual framework.
Primal-dual algorithms (Papadimitriou & Steiglitz, 1998) can
be used to compute solutions of the RWDP and DRWDP (see
Section 4.1.1). Based on a feasible solution of the DRWDP,
one derives a restricted primal RP that determines whether
supply equals demand at these prices or not. If this is not
the case, the dual restricted primal DRP determines the price
increment, which is then added to the current price vec-
tor of the dual DRWDP, before a new restricted primal is

computed. The overall process is illustrated in Figure 4. There
is some flexibility in choosing each iteration’s direction of
price adjustment. In this primal-dual auction framework, we
compute the price update that yields the steepest descent of
the DRWDP.

Instead of solving the RWDP and the DRWDP directly,
the primal-dual algorithm replaces these linear programs by
a series of other linear programs known as the restricted pri-
mal RP and the dual of the restricted primal DRP. As the
primal dual algorithm follows the same price trajectory as
Ausubel’s auction as we will show below, exactly ||p*||∞
iterations must be executed where p* is the minimal equi-
librium price vector (Murota et al., 2016). In each iteration
two linear programs (the RP and DRP) must be solved which
both are of exponential size in the number of goods. Clearly,
the primal dual algorithm does not give any runtime bene-
fits over solving the RWDP and DRWDP directly. However,
executing the primal-dual algorithm instead of solving the
RWDP and DRWDP directly allows to interpret the auc-
tion by Ausubel (2005) in terms of a primal-dual framework.
Moreover, unlike the solution obtained by solving the RWDP
and DRWDP directly, the allocation and prices computed by
the primal-dual algorithm are guaranteed to constitute the
Walrasian equilibrium with bidder-optimal prices.

Let us discuss the algorithm in more detail. In an ascending
auction the components of the initial price vector are set to
p(k) = 0 for all k ∈ . To obtain an initial feasible dual solu-
tion, the dual is solved with these prices to find initial values
for the indirect utility 𝜋i of every bidder i.

With a feasible dual solution, one can exploit the com-
plementary slackness conditions to derive an optimal primal
solution which defines a welfare-maximizing allocation of
bundles to bidders. Naturally, not every feasible dual solu-
tion allows for an optimal primal solution. To check this, one
solves an optimization problem known as the restricted primal
RP problem.

max−
∑

i∈

𝜆ici −
∑

k∈

𝜇kdk (RP)

s.t.
∑

x∈i

zi(x) + ai + ci = 1 ∀i ∈ (𝜋i)

∑

i∈

∑

x∈i

x(k)zi(x) + bk + dk = s(k) ∀k ∈ (p̃(k))

zi(x), ai, bk ≥ 0 ∀zi(x) ∈ z,∀ai ∈ a,∀bk ∈ b

zi(x) = 0, ai = 0, bk = 0 ∀zi(x) ∉ z,∀ai ∉ a,
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∀bk ∉ b

ci, dk ≥ 0 ∀i ∈ ,∀k ∈ 

Given a feasible dual solution for the DRWDP, any tight
dual constraint 𝜋i ≥ vi(x) −

∑
k∈x(k)p(k) corresponds to

a bundle x that maximizes the utility of bidder i at prices
p. Thus, the set of tight dual constraints z corresponds to
the bidders’ demand sets. In case the given dual solution is
optimal, the complementary slackness conditions mandate
that whenever the dual constraint has slack, that is, 𝜋i >

vi(x) −
∑

k∈x(k)p(k), the corresponding primal variable zi(x)
defining whether bidder i is allocated bundle x equals zero.
The interpretation of this is that a bidder is never allocated
a bundle not being part of her demand set. Of course, if the
given dual solution is not optimal, there might not exist an
allocation such that each bidder receives a bundle from her
demand set. Therefore, additional slack variables ci and dk are
introduced to the RP that measure by how much the comple-
mentary slackness conditions are violated. A violation may
either occur due to bidder i not being allocated a bundle from
her demand set (ci > 0) or an item k remaining (partially)
unsold (dk > 0). The restricted primal problem tries to find an
allocation in which these violations are minimized. In fact,
when the optimal solution of the RP equals 0, the comple-
mentary slackness conditions are fulfilled so that the current
primal and dual solution constitute a Walrasian equilibrium.
Otherwise, the price of some items needs to be raised.

Complementary slackness conditions must also hold for
the dual constraints 𝜋i ≥ 0 and p(k)≥ 0. We denote the set of
tight dual constraints by a and b respectively. Due to com-
plementary slackness, the primal variable ai must equal zero
whenever the corresponding dual constraint 𝜋i ≥ 0 has slack.
In other words this means that whenever a bidder’s indirect
utility is positive, she must be allocated a nonempty bun-
dle from her demand set. Similarly, complementary slackness
implies that when a price of an item k ∈  is greater than
zero, then slack variable bk must equal zero, which guarantees
that all units of item k are allocated in an optimal solution.

In the primal-dual framework of Papadimitriou and Stei-
glitz (1998) all coefficients 𝜆i and 𝜇k in the objective function
of the restricted primal RP equal 1. Note that as long as 𝜆i

and 𝜇k are chosen to be strictly positive, their specific values
do not influence the termination criterion of the primal-dual
algorithm as one only checks whether the objective equals
zero. However, the particular choice of 𝜆i and 𝜇k affects the
constraints in the dual of the restricted primal DRP, and we
will take advantage of this to find a particular price update
vector when solving the DRP.

In case the RP objective does not equal zero, the current
dual solution of the DRWDP is updated using the solution to
the dual of the restricted primal DRP. Solving the DRP essen-
tially means computing a direction 𝜋, p̃ in which the dual
objective function can be improved the most. We set 𝜋, p̃ such
that it minimizes the function

∑
i∈(𝜋i+𝜋i)+

∑
k∈s(k)(p(k)+

p̃(k)). This is equivalent to finding a subgradient to the Lya-
punov function as we will show below.

As there may exist multiple potential directions (𝜋, p̃) that
minimize the Lyapunov function, we need to make small
adaptions to the DRP such that the gradient found by the
DRP is equivalent to the minimal minimizer in Ausubel’s
auction. For this purpose we introduce additional constraints
0 ≤ p̃(k) ≤ 1 for all k ∈ . As proven in Ausubel (2005),
the Lyapunov function restricted to the unit ||-dimensional
cube {p + p̃ ∶ 0 ≤ p̃(k) ≤ 1 ∀k ∈ } is minimized on the
vertices of this cube. Thus, limiting price updates p̃(k) to the
interval [0, 1] for all k ∈  ensures that the same potential
price updates as in Ausubel’s auction (i.e., {1S ∶ S ⊆ }) are
considered. Note that this also implies that in each iteration of
our primal-dual auction framework the respective prices and
price updates are integer valued.

Another adaption to be made is to chose 𝜆i suitably large
for all i∈ so that the decrease of utility for each bidder i is
unrestricted when raising prices. To guarantee that the gradi-
ent found by the DRP is not only a minimizer of the Lyapunov
function but a minimal minimizer, price penalties 𝜏k > 0 are
added to the objective function that are small enough so that
their impact on the objective value is negligible.

min
∑

i∈

𝜋i +
∑

k∈

(s(k) + 𝜏k)p̃(k) (DRP)

s.t. 𝜋i +
∑

k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z (zi(x))

𝜋i ≥ 0 ∀i ∶ ai ∈ a (ai)

𝜋i ≥ −𝜆i ∀i ∶ ai ∉ a (ci)

p̃(k) ≥ 0 ∀k ∶ bk ∈ b (bk)

p̃(k) ≥ −𝜇k ∀k ∶ bk ∉ b (dk)

0 ≤ p̃(k) ≤ 1 ∀k ∈ 

In the following we make the connection between the DRP
and the price update step of Ausubel’s ascending auction
explicit by demonstrating how to transform one approach into
the other. Recall that in Ausubel (2006) the goal is to find a
p̃ ∈ {1S ∶ S ⊆ } leaving all entries of p + p̃ nonnegative
and minimizing

L(p + p̃) − L(p).

Ausubel (2006) shows that for a fixed p̃ it holds that

L(p + p̃) − L(p) =
∑

i∈

max
x∈Di(p)

{
−
∑

k∈

x(k)p̃(k)

}

+
∑

k∈

s(k)p̃(k).

The term maxx∈Di(p)

{
−
∑

k∈x(k)p̃(k)
}

is clearly equal to

min 𝜋i

s.t. 𝜋i ≥ −
∑

k∈

x(k)p̃(k) ∀x ∈ Di(p)

Consequently, by adjusting notation and noting that z rep-
resents the demand set Di(p), we can rewrite the problem of
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minimizing L(p + p̃) − L(p):

min
∑

i∈

𝜋i +
∑

k∈

s(k)p̃(k)

s.t. 𝜋i +
∑

k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z

p(k) + p̃(k) ≥ 0 ∀k ∈ 

0 ≤ p̃(k) ≤ 1 ∀k ∈ 

As argued above, all price updates and consequently also the
prices are integral in each step of our primal-dual auction
framework. Hence, the second last set of inequalities can be
replaced by

p̃(k) ≥ 0 ∀k ∶ bk ∈ b

since b represents all indices where p(k) equals 0.
The only remaining difference to the DRP is that we are

missing the inequalities 𝜋i ≥ 0 for ai ∈ a. From the
definition we see, however, that ai ∈ a if and only if the util-
ity of bidder i at price p is 0. But this means that the empty
bundle is in her demand set. Hence, 𝜋i ≥ 0 is actually one of
the constraints 𝜋i +

∑
k∈x(k)p̃(k) ≥ 0. As a result we get that

one step of the Lyapunov minimization approach is exactly
the same as one step of the primal-dual algorithm.

We restricted our attention so far on explaining the
relationship between the primal-dual algorithm and the
ascending version of the tâtonnement process described by
Ausubel (2005). However, similar observations can also be
made for the descending version. The only adaptions to be
made in our argument concern the formulation of the DRP.
Instead of applying positive price penalties 𝜏k in the objective
function, negative ones have to be used to ensure that a max-
imal minimizer is found in each iteration. Furthermore, the
price updates p̃(k) need to be bounded to the interval [−1, 0]
instead of [0, 1]. Of course, this also implies that 𝜇k must be
chosen suitably large, that is, 𝜇k ≥ 1, in order to allow for price
updates of −1.

While the auction described by Ausubel (2005) requires
the bidders’ valuations to satisfy the strong substitutes con-
dition, the primal-dual algorithm also works for other envi-
ronments, in particular for economies where the preferences
of the bidders fulfill the more general GGSC condition. Sun
and Yang (2006) propose the dynamic double-track auction

(DDT) that terminates in a Walrasian equilibrium if bidders
bid straightforwardly and have GSC valuations. Given two
sets S1 and S2 describing two classes of goods, the auction-
eer announces start prices of zero for items in S1 and suitable
high start prices in S2 such that items in S1 are overdemanded
while items in S2 are underdemanded. In the course of the
auction the auctioneer simultaneously adjusts prices of items
S1 upwards but those of items in S2 downwards.

Shioura and Yang (2015) introduce the generalized

double-track auction which is an extension of the DDT to
multi-item multi-unit economies where bidders’ valuations
satisfy the GGSC condition. Their auction starts with an arbi-
trary integral price vector and then proceeds in two phases.

While in the first phase the auctioneer adjusts prices of items
in S1 upwards and prices in S2 downwards, the price update
directions are reversed in the second phase.

Similar to the auction proposed by Ausubel (2005),
the price updates in the generalized double-track auction
correspond to the steepest descent direction of the Lya-
punov function, which can be embedded into a primal-dual
algorithm. Essentially, the primal-dual algorithm for the gen-
eralized double-track auction combines the DRP adaptions
for the ascending and descending version of the auction by
Ausubel (2005) as described above. Let the set S1 and S2

denote the set of items with an upward and downward moving
price trajectory, respectively. While price updates for items
in S1 are bounded to the interval [0, 1], they are restricted to
interval [−1, 0] for items in S2. Similarly, the price penalties
in the objective of the DRP are positive for items in S1 and
negative for items in S2. Once the generalized double-track
auction moves from the first to the second phase, the price
trajectories of items in S1 and S2 are inverted so that the adap-
tions made to the DRP for items in S1 now apply for items in
S2 and vice versa.

5.3 Allocation of items

While our paper focuses on the process of determining equi-
librium prices, of course, the auctioneer must determine an
equilibrium allocation as well. That is, given a target supply
s and an equilibrium price vector p*, we must find alloca-
tions xi ∈ Di(p*) for every bidder, such that

∑
i∈xi = s. Since

we assume access to demand oracles, that is, each bidder i

reports her whole demand set Di(p*) in each iteration of the
auction, and as demand sets only contain integer points, we
could just try every of the finitely many combinations of allo-
cations xi ∈ Di(p*) in order to match the target supply. This
approach is however not very efficient: the number of com-
binations we possibly have to check is Πi∈ |Di(p*)|, which
can clearly be exponential.

The allocation problem can also be interpreted as a flow
problem: Consider the directed graph G= (V , A) consisting of
|| ⋅ || vertices bi(k), describing bidder i’s demand of good
k, and || vertices t(k), describing the total supply of good
k. For each i∈ and k ∈ , there is an arc pointing from
t(k) to bi(k). Now consider a flow x on this graph, where xi(k)
denotes the amount of flow from vertex bi(k) to vertex t(k).
We interpret xi(k) as the number of units of good k bidder i

receives. As usually, given a flow x, and a node v in the graph,
the excess at node v is the difference of the flow entering the
node and the flow leaving the node:

𝜕x(v) =
∑

(w,v)∈A

x(w, v) −
∑

(v,w)∈A

x(v,w).

We call the vector 𝜕x the boundary of x. In our above defined
graph, we have 𝜕x(bi(k)) = xi(k) and 𝜕x(t(k)) = −

∑
i∈xi(k).

The total number of goods of type k should be equal to the sup-
ply of good k. Hence, we have the constraint 𝜕x(t(k)) = −s(k).
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Also, each bidder should receive an allocation in her demand
set Di(p*), so (𝜕x(bi(1)), … , 𝜕x(bi(||)) ∈ Di(p

∗) should
hold. Thus, the allocation problem can be interpreted as find-
ing a feasible flow with respect to these constraints on the
boundary. In the case of strong-substitutes valuations, the
demand sets Di(p*) are all M♮-convex, so this is an instance
of the M-convex submodular flow problem. Polynomial-time
algorithms have been developed for this problem, many
of them are based on well-known algorithms for min-cost
flows. For an overview, see for example (Murota, 2003,
Ch. 10).

6 SUMMARY AND RESEARCH AGENDA

A number of assumptions are crucial for the existence of
Walrasian equilibria. Apart from (a) integral concavity of the

aggregate value function, (b) the bidders’ valuations need to

be independent of each other, and all bidders need to be pure
payoff maximizers, that is, have a (c) quasilinear utility func-

tion. Also, we assume that (d) the bidders are price-takers and

truthfully reveal their demand correspondence in each round.
With these assumptions we can guarantee Walrasian equilib-
ria. However, these are strong assumptions, which might not
hold in the field.

(i) Bidder valuations in real-world auctions
include complements and substitutes such
that Walrasian equilibria might not even
exist. Competitive equilibria with nonlin-
ear and personalized prices always exist in
ascending auctions under the assumptions
above.5

(ii) Quasilinearity is not always given as
there might exist budget constraints, spite-
fulness, or market-power effects. For
example, if bidders have financial con-
straints, quasilinearity is violated, and
ascending auctions with budget con-
strained bidders have only been analyzed
recently (Gerard van der Laan, 2016; Yang
et al., 2018). Even if one tries to set bud-
get constraints endogenously for bidders,
it might not always be possible to imple-
ment an efficient outcome via an auction
(Bichler & Paulsen, 2018).

(iii) Finally, bidders might not bid straightfor-
ward in a simple clock auction and behave
strategically. A number of papers discusses

5For example, Sun and Yang (2014) introduces an ascending and
incentive-compatible auction in markets with only complements using
non-linear and anonymous prices. Ausubel and Milgrom (2002), Parkes and
Ungar (2000) and de Vries et al. (2007) discuss ascending auctions for
markets where bidders have substitutes and complements and allow for dis-
criminatory and non-linear prices. These auctions are incentive-compatible
if the bidders’ valuations were gross substitutes.

variations or extensions of simple clock
auctions, which yield incentive compati-
bility (Ausubel, 2006). These are, however,
quite different from the simple clock auc-
tions we see in the field.

The assumptions (i)–(iii) above also lead to corresponding
research challenges for the operations research community.

1. Most resource allocation problems analyzed
in operations research (e.g., scheduling
or packing problems) do not satisfy the
assumptions that allow for Walrasian equi-
libria. Duality breaks for nonconvex integer
programming problems and new concepts
for competitive equilibrium prices need to be
derived. The literature on integer program-
ming duality can provide useful insights
and guidance how to derive equilibrium
prices for such nonconvex allocation prob-
lems (Wolsey, 1981).

2. Budget constraints play a major role in many
markets. We need to understand equilibria in
markets where bidders maximize payoff, but
are financially restricted. Very recent results
suggest that budget constraints have a sub-
stantial impact on the computational com-
plexity of the allocation and pricing problem
and require bilevel integer programs which
are known to be Σ

p

2-hard (Bichler & Wald-
herr, 2019). Overall, it will be useful to
analyze utility models different from the
standard quasi-linear utility function as they
have been observed in advertising and other
domains where bidders might not maximize
payoff but their net present value or return
on investment (Fadaei & Bichler, 2017;
Baisa, 2017; Baldwin et al., 2020). Effective
ways to compute market equilibria in such an
environment still need to be developed.

3. Finally, incentive-compatibility plays an
important role in small markets where par-
ticipants can influence the price. Recent
research tries to design simple ascend-
ing auction and pricing rules that are
incentive-compatible (Baranov, 2018).
Incentive-compatibility is very restric-
tive in most environments. For example,
in markets with purely quasilinear utili-
ties, the Vickrey–Clarke–Goves mechanism
is unique (Green & Laffont, 1979). For
larger markets it can also be useful to
understand weaker notions of robustness
against strategic manipulation (Azevedo &
Budish, 2018).
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Overall, competitive equilibrium theory is closely related
to mathematical optimization and it provides a rich field for
operations research to contribute.
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APPENDIXA.

Proof of Theorem 2. First, let {z∗
i
(x)}i∈,x∈i

be an opti-
mal solution to the RWDP and ({𝜋∗

i
}i∈ , {p∗(k)}k∈) be an

optimal solution to the DRWDP. By assumption, the optimal
value of the WDP is equal to the one of the RWDP, so we may
assume that all z∗

i
(x) are in {0, 1}. We may further assume

without loss of generality that for each bidder i, there exists
exactly one x with z∗

i
(x) = 1: If z∗

i
(x) = 0 for all x ∈ i, we

can just set z∗
i
(0) = 1, where 0 is the empty bundle, without

altering the value of the WDP, since vi(0) = 0. Similarly, if for
some k ∈ ,

∑
i∈

∑
x∈i

x(k)z∗
i
(x) < s(k), we may distribute

the remaining items of type k arbitrarily among the agents.
This does not decrease the value of the WDP because of
monotonicity of the agents’ valuations. The (possibly altered)
variables z∗

i
(x) thus constitute an allocation where the whole



BICHLER ET AL. 513

supply is distributed among the agents—so the first criterion
of a Walrasian equilibrium is satisfied. Let us now check that
every bidder receives a bundle in her demand set: If z∗

i
(x) = 1,

that is, bidder i receives bundle x, we have by complementary
slackness 𝜋i = vi(x) −

∑
k∈x(k)p∗(k). Since 𝜋∗

i
is part of an

optimal solution,

𝜋∗
i
= max

x∈i

vi(x) −
∑

k∈

x(k)p∗(k).

Otherwise, we could decrease 𝜋∗
i
, making the value of the

DRWDP smaller. Consequently, vi(x) −
∑

k∈x(k)p∗(k) =

maxx∈i
vi(x) −

∑
k∈x(k)p∗(k), so x is in the demand set

of bidder i at prices {p∗(k)}k∈. The second condition of a
Walrasian equilibrium is thus satisfied, and {p∗(k)}k∈ are
equilibrium prices.

For the other direction, let {p∗(k)}k∈ be equilibrium prices
together with an allocation, described by binary variables
{z∗

i
(x)}i∈,x∈i

. Let x be the bundle with z∗
i
(x) = 1. Set 𝜋∗

i
=

vi(x)−
∑

k∈x(k)p(k). Since x is in the demand set of bidder i,
𝜋∗

i
≥ vi(x)−

∑
k∈x(k)p(k) for all bundles x, so ({p∗(k)}, {𝜋∗

i
})

is feasible for the DRWDP (𝜋∗
i
≥ 0 follows from choosing

x = 0 in the above inequality). By definition of the Wal-
rasian equilibrium, {z∗

i
(x)} is also feasible for the (R)WDP.

All inequalities in the WDP actually hold with equality—so
complementary slackness of the primal problem is trivially
fulfilled. From the choice of 𝜋∗

i
we also directly see, that

complementary slackness is satisfied for the dual problem. It
follows that the optimal value of the WDP equals the optimal
value of the DRWDP.
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1. Introduction

Strong substitutes valuations are an important class of val-
uation functions for indivisible markets, guaranteeing existence
of a Walrasian equilibrium. They were introduced by Milgrom
and Strulovici (2009) as a multi-unit generalization of the gross
substitutes condition for single-unit markets (Kelso and Crawford,
1982).

In sealed-bid auctions where bidders may be assumed to have
strong substitutes preferences, it is of major practical impor-
tance that bidders can efficiently report their preferences to the
auctioneer. Thus, there is need for a bidding language, allowing
bidders to express their preferences in a compact and intuitive
way, while not further restricting the class of expressible valua-
tions. Milgrom (2009) introduces integer assignment messages, in
the following only called assignment messages, and proves that
every valuation function expressible via assignment messages
fulfills the strong substitutes condition. However, the question if
bidders can express arbitrary strong substitutes valuations with
assignment messages remained open. In this note we give a
negative answer by proving that there are strong substitutes
valuations not expressible via assignment messages. Our proof
follows the lines of Ostrovsky and Paes Leme (2015), who showed
that a related bidding language, called endowed assignments, for
single unit markets cannot express arbitrary gross substitutes
valuations.

As has recently been shown by Baldwin and Klemperer (2021)
the Strong Substitutes Product-Mix Auction (SSPMA) (Klemperer,
2008, 2010; Baldwin and Klemperer, 2019) is capable of ex-
pressing arbitrary strong substitutes preferences. Thus, our result
implies that the SSPMA remains the only known bidding lan-
guage that allows bidders to express all such (and only such)
preferences.

E-mail address: max.fichtl@tum.de.

2. Economic setting

We consider a market with n ≥ 2 types goods i ∈ {1, . . . , n}. A
bundle q ∈ Zn contains qi items of good i, where a negative value
of qi expresses a willingness to sell. Bidders’ preferences are given
by valuation functions v : Q → R, where Q ⊂ Zn is a finite set of
feasible bundles with 0 ∈ Q. For a price vector p ∈ Rn, pi denotes
the cost per unit of good i. Given p, bidders seek to maximize
their quasi-linear utility by choosing a bundle from their demand
set

D(p) = argmax
q∈Q

v(q) − ⟨p, q⟩.

The utility of receiving such a bundle is called the indirect utility
and is denoted by

u(p) = max
q∈Q

v(q) − ⟨p, q⟩.

3. Assignment messages

An integer assignment message (Milgrom, 2009) expresses a
bidder’s valuation via a linear program. It is determined by a set
of m ∈ N variables xj for j ∈ J = {1, . . . ,m}, where each variable
is associated with one of the n ≥ 2 types of goods kj ∈ {1, . . . , n},
and with a value vj ∈ R. We assume that for each good i there is
at least one variable associated with it — if not, introduce dummy
variables with a value of 0. We define Ri = {j ∈ J : kj = i} as
the set of all variables associated with good i. Additionally, the
bidder provides a set I ⊂ P(J) of inequalities. Each inequality
I ∈ I is a subset of the variables J and is associated with integral
upper and lower bounds u(I) ≥ 0, ℓ(I) ≤ 0, describing the linear
constraint ℓ(I) ≤ x(I) ≤ u(I), where x(I) =

∑

j∈I xj. The value v(q)
for a bundle q ∈ Q is given by

v(q) = max

m
∑

j=1

vjxj (VAL)

https://doi.org/10.1016/j.econlet.2021.110051

0165-1765/© 2021 Elsevier B.V. All rights reserved.
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s.t. ℓ(I) ≤ x(I) ≤ u(I)∀I ∈ I

x(Ri) = qi ∀i = 1, . . . , n.

Here, Q ⊂ Zn is the set of all q for which (VAL) has a feasible
solution. The indirect utility u(p) = maxq∈Q v(q) − ⟨p, q⟩ can be
expressed via

u(p) = max

n
∑

i=1

∑

j∈Ri

(vj − pi)xj (IU)

s.t. ℓ(I) ≤ x(I) ≤ u(I)∀I ∈ I.

The demand set D(p) of maximizers of v(q) − ⟨p, q⟩ is the set
of all q ∈ Q that can be written as qi = x(Ri) where x is an
integral solution to (IU). The set of inequalities I may not be
chosen arbitrarily, but must possess a certain tree structure. The
following two definitions are taken from Milgrom (2009).

Definition 1. A nonempty subset T ⊆ P(J) is called a tree, if
for any K , L ⊆ T with K ∩ L ̸= ∅ there holds K ⊆ L or L ⊆ K .
For K ∈ T , we call the inclusion-minimal set L ∈ T with L ⊋ K
the predecessor of K , if such L exists. Conversely, we call each K ,
such that L is the predecessor of K , a successor of L. We write
sT (L) = {K : L predecessor of K in T } for the set of successors
of L in T .

Definition 2. The variables J and inequalities I define an assign-
ment message, if I = T0 ∪· · ·∪Tn is the union of n+1 trees, such
that

• for i = 1, . . . , n, Ti only contains inequalities in variables
associated with good i: Ti ⊆ P(Ri). Furthermore, Ri ∈ Ti and
{j} ∈ Ti for all j ∈ Ri.

• J ∈ T0 and {j} ∈ T0 for all j ∈ J . We also write R0 = J .

For each tree Ti there is a unique element Ri ∈ Ti without
predecessor, called the root of the tree. The only elements in Ti

that are no predecessors of any other element are the singletons
{j}, which we also call the terminal nodes. In the following, we
write si(L) := sTi

(L) for the set of successors of L.

Since n ≥ 2, the trees can always be chosen such that they
intersect only in terminal nodes.

4. Strong exchangeability

Ostrovsky and Paes Leme (2015) show that there are gross
substitutes valuations that are not expressible via endowed as-
signments (Hatfield and Milgrom, 2005). They observe that all
endowed assignment valuations satisfy a certain property, called
strong exchangeability, and provide a gross substitutes valuation
that is not strongly exchangeable, which is then consequently not
expressible via endowed assignments. For two vectors q and r,
denote by supp+ q − r the set of indices i with qi − ri > 0.

Definition 3 (Single-Unit Strong Exchangeability (Ostrovsky and
Paes Leme, 2015)). A valuation v : {0, 1}n → R satisfies strong
exchangeability, if for every price vector p and all bundles q, r ∈
D(p) with a minimal number of items, i.e.,

∑

i qi =
∑

i ri =
minq′∈D(p)

∑

i q
′
i , there is a bijection σ : supp+ q−r → supp+ r−q,

such that q − ei + eσ (i) ∈ D(p) and r − eσ (i) + ei ∈ D(p) for all
i ∈ supp+ q − r.

Theorem 4.1 (Ostrovsky and Paes Leme, 2015). There are gross
substitutes valuations not satisfying strong exchangeability.

Our proof follows the same lines: first, we provide a multi-unit
extension of strong exchangeability, and then we show that all
valuations induced by assignment messages satisfy this property.

Definition 4 (Multi-Unit Strong Exchangeability). A valuation v :
Q → R satisfies strong exchangeability, if for every price vector

p and all bundles q, r ∈ D(p) with a minimal number of items,

there is a correspondence σ ∈ supp+ q − r × supp+ r − q, such

that

1. For each (i, j) ∈ σ , q− ei + ej ∈ D(p) and r+ ei − ej ∈ D(p)

2. For each i ∈ supp+ q − r and j ∈ supp+ r − q, we have

1 ≤ |{j′ : (i, j′) ∈ σ }| ≤ qi − ri and 1 ≤ |{i′ : (i′, j) ∈ σ }| ≤
rj − qj.

Remark. In single-unit markets Property 2 says that for every

i ∈ supp+ q − r, there is exactly one j ∈ supp+ r − q such

that (i, j) ∈ σ and vice-versa. Thus, σ represents a bijection

σ : supp+ q − r → supp+ r − q, so for single-unit markets

Definitions 3 and 4 are equivalent.

In order to prove that every assignment message satisfies

strong exchangeability, we show that computing the indirect

utility of an assignment message valuation can be interpreted as

a min-cost flow problem. Given the tree structure of assignment

messages from Definitions 1 and 2, we can transform the indirect

utility problem (IU) by variable substitution as follows: for each

I ∈ I introduce a variable yI representing yI = x(I). Note that

since {j} ∈ I for all j ∈ J , there are variables y{j} corresponding to

the variables xj. If I ∈ Ti is not a singleton, I is the disjoint union

of all its successors K ∈ Ti, so

yI = x(I) =
∑

K∈si(I)

x(K ) =
∑

K∈si(I)

yK .

Similarly, we have

yR0 = x(R0) =

n
∑

i=1

x(Ri) =

n
∑

i=1

yRi .

The constraints ℓ(I) ≤ x(I) ≤ u(I) translate to ℓ(I) ≤ yI ≤
u(I). Using these observations, one can see that Problem (IU) can

equivalently be formulated as

min

n
∑

i=1

∑

j∈Ri

(pi − vj)y{j} (MCF)

s.t. yI −
∑

K∈s0(I)

yK = 0∀I ∈ T0 \ {{j} : j ∈ R0} (1)

∑

K∈si(I)

yK − yI = 0∀I ∈ Ti \ {{j} : j ∈ Ri} ∀i = 1, . . . , n (2)

n
∑

i=1

yRi − yR0 = 0 (3)

ℓ(I) ≤ yI ≤ u(I)∀I ∈ I (4)

where instead of maximizing the objective function of (IU), we

minimize the negative objective function to be consistent with

literature on min-cost flows. The following lemma is a simple

consequence of our variable substitution, so the proof is omitted.

Lemma 1. Let v : Q → R be an assignment message. Then q ∈ D(p)

if and only if there is an integral solution to (MCF) with qi = yRi for

all i ≥ 1.

One can check that each variable yI for I ∈ I appears exactly

twice in the set of equality constraints of (MCF), once with coeffi-

cient 1, and once with coefficient −1. For example, consider I ∈ Ti

with i ≥ 1 and I ̸= Ri not a singleton. Since I is no singleton, yI
appears with negative sign in Eq. (2). On the other hand, I is the

successor of exactly one element, so yI also appears with positive

sign exactly once in (2). All other I ∈ I can be checked similarly.

2
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Fig. 1. Directed graph from Example 4.1. The labels on the vertices indicate the

equality constraint in (MCF) they correspond to.

Hence, if we collect the variables yI in the vector y = (yI )I∈I
and write constraints (1)–(3) in matrix form as Ay = 0, A is

the incidence matrix of a directed graph, where I is the set of

arcs, and each of the constraints from (1)–(3) corresponds to a

vertex in the graph. For any such vertex, I is an ingoing arc if yI
appears with coefficient 1, and an outgoing arc if it appears with

coefficient −1. Consequently, Problem (MCF) is a min-cost flow

problem where yI denotes the flow along arc I .

Example 4.1. Suppose a bidder submits an assignment mes-

sage in four variables J = R0 = {1, 2, 3, 4}, where R1 =
{1, 2, 3} and R2 = {4}. The submitted inequalities induce the trees

T0 = {R0, {2, 3, 4}, {1}, . . . , {4}}, T1 = {R1, {1, 2}, {1}, . . . , {3}}
and T2 = {R2}. The directed graph corresponding to the incidence

matrix A is shown in Fig. 1.

We recall some properties of min-cost flows.

Lemma 2 (Properties of Flows (Ahuja et al., 1993)). Let G = (V , A)

be a directed graph with vertex set V and arc set A. Let f : A → Z
be a flow on G.

1. If f is balanced at every vertex, i.e.,
∑

a=(w,v)∈A

fa −
∑

a=(v,w)∈A

fa = 0∀v ∈ V ,

then f can be decomposed into finitely many cycles: there

are subsets C1, . . . , Cm ⊆ A of arcs, such that each Ck is an

undirected cycle in G, and balanced flows ck : Ck → {−1, 1},
such that f =

∑m

k=1 c
k. Moreover, we have cka > 0 ⇒ fa > 0

and cka < 0 ⇒ fa < 0 for all a ∈ A and all k = 1, . . . ,m.

2. Suppose f is an optimal solution to the min-cost flow problem

min
∑

a∈A

wafa

s.t.
∑

a=(w,v)∈A

fa −
∑

a=(v,w)∈A

fa = s(v)∀v ∈ V

ℓ(a) ≤ fa ≤ u(a)∀a ∈ A

for some given weights wa, supplies s(v) and bounds ℓ(a), u(a).

Then f does not contain any negative cycle: for C ⊆ A an

undirected cycle and a balanced flow c : C → Z such that

f + c is feasible, we have
∑

a∈A waca ≥ 0.

Remark. In their book, Ahuja et al. (1993) consider only non-

negative flows, as arbitrary flow problems can be easily trans-

formed into non-negative ones. For the sake of brevity, we allow

negative flows here. Note that the proofs given in their book

for the mentioned flow properties do actually not require non-

negativity. Property 1 follows from the construction in the proof

of Theorem 3.5 in their book, while Property 2 follows from

Theorem 3.8.

We now prove our main result.

Theorem 4.2. Let v be a valuation induced by an assignment

message. Then v satisfies the strong exchangeability property.

Proof. Let q, r ∈ D(p) be bundles containing a minimal number

of goods and yq, yr corresponding integral solutions to (MCF)

with qi = y
q

Ri
and ri = yrRi

for all i. We are going to construct

a correspondence σ satisfying the properties from Definition 4.

Since yq and yr are balanced, i.e., Ayq = Ayr = 0, so is yq − yr,

and we can write yq − yr = c1 + · · · + cm where each ck is

supported on a cycle Ck by Lemma 2. The flows ck have the

following properties:

(i) yr + ck and yq − ck are optimal solutions to (MCF) for every

k.

(ii) |{i ≥ 1 : ckRi
= 1}| = |{i ≥ 1 : ckRi

= −1}| ∈ {0, 1} for

every k.

To see (i), we first note that yr + ck is feasible for Problem (MCF):

as yr and ck are balanced, so is yr + ck. Concerning the inequality

constraints (4), if ckI > 0, then it follows from Property 1 in

Lemma 2 that u(I) ≥ y
q

I ≥ yrI +ckI > ℓ(I). With a similar argument

we can treat the case ckI < 0. Consequently, by Property 2, we

have

n
∑

i=1

∑

j∈Ri

(pi − vj)c
k
{j} ≥ 0.

With the same argument applied to yq − ck, we get

n
∑

i=1

∑

j∈Ri

(pi − vj)c
k
{j} ≤ 0,

so
∑n

i=1

∑

j∈Ri
(pi−vj)c

k
{j} = 0. Hence, the objective values in (MCF)

of the flows yq, yr, yr + ck and yq − ck are all equal and thus

optimal.

Let us now prove (ii). To that goal, note that, since q and r are

bundles with a minimum number of elements, we have y
q

R0
= yrR0

,

so by Property 1 of Lemma 2 we have ckR0
= 0 for all k. Consider

the flow of ck through the vertex corresponding to constraint (3),

i.e., representing the equality

n
∑

i=1

ckRi − ckR0 = 0.

As ck is supported on a cycle, at most two of the appearing

variables ckRi
can be nonzero. Thus, since ckR0

= 0, either no or

exactly two of the cRi are nonzero, and since their sum equals 0,

one must be 1, and the other must be −1.

Now define σ ∈ supp+ q − r × supp+ r − q by

σ =

{

(i, j) : ∃k : ckRi = 1 ∧ ckRj = −1

}

.

σ has the required properties from Definition 4: let (i, j) ∈ σ .

Then there is some ck, such that ckRi
= 1, ckRj

= −1 and ckRl
= 0

for l ̸∈ {i, j}. From observation (i) above we have that yr + ck

is an optimal solution to problem (MCF), and the demanded

bundle corresponding to that solution is r + ei − ej. Similarly,

the requested bundle corresponding to yq − ck is yq − ei + ej,

so Property 1 from Definition 4 is satisfied.

For Property 2 from Definition 4, let i ∈ supp+ q− r. We need

to show that 1 ≤ |{j′ : (i, j′) ∈ σ }| ≤ qi − ri. Since qi > ri and

yq − yr = c1 + · · · + cm, there must be some k with ckRi
= 1.

3
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Consequently, there is some j with ckRj
= −1, which proves the

lower bound. Moreover, by Property 1 of Lemma 2, there is no

flow ck with ckRi
= −1. Thus, there are at most qi − ri flows with

ckRi
= 1, proving the upper bound. □

Theorem 4.2 together with Theorem 4.1 directly imply that as-

signment messages do not cover all strong substitutes valuations.

Corollary 1. There are strong substitutes valuations that are not

representable via assignment messages.

Proof. Each assignment message satisfies the strong exchange-

ability property from Definition 4. However, by Theorem 4.1

by Ostrovsky and Paes Leme (2015), there exist gross substitutes

valuations that are not strongly exchangeable. Since gross sub-

stitutes valuations are a subset of strong substitutes valuations,

and Definitions 3 and 4 are equivalent for single-unit markets,

the result follows. □
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1 Introduction

This paper shows that for an important and widely-studied class of problems–those

for which agents have strong substitutes valuations over multiple units of multiple

differentiated goods–competitive-equilibrium prices can be found by considering two

linear programs. Specifically, we relax resource constraints on both programs in the

same way, and find the relaxation that minimizes the difference between the objectives

of the two programs; the dual prices of one of these relaxed programs are compet-

itive equilibrium prices. We derive this result by using the geometric representation

of preferences provided by the Strong Substitutes Product-Mix Auction (SSPMA)

bidding language. This then allows us to develop an efficient algorithm to find the

competitive equilibrium prices when preferences are represented this way. Since, as

we detail below, the SSPMA language is a natural way for agents to express their

preferences, our algorithm is a practical way to find competitive equilibrium prices

for strong substitutes.

Our paper also provides a novel algorithm to find the prices in an SSPMA, since

these are prices that would be competitive equilibrium prices for the given aggregate

supply if bidders had bid their actual values.1 Participants in SSPMAs make bids that

express “strong-substitutes” preferences for multiple units of multiple, differentiated,

indivisible goods. Strong substitutes preferences are those that would be ordinary

substitutes preferences if every unit of every good were treated as a separate good

[35]. They are an extension of gross substitutes preferences [25] from single-unit

to multi-unit, multi-item markets, and are equivalent to M♮-concavity [17, 37, 45].

They have many attractive properties. In particular, all agents having strong substitutes

preferences is a sufficient condition for the existence of competitive equilibrium prices

in markets with indivisible goods.

Furthermore, even though strong substitutes are a small subset of the set of all possi-

ble valuation functions of a bidder, they are practically relevant for various applications

such as auctions used by the Bank of England [26, 28]. So a significant amount of theo-

retical literature has been devoted to markets where participants have these valuations

[4, 8, 38, 41].

Importantly, valid bids in the SSPMA bidding language permits the specification

of precisely the set of preferences that are strong substitutes, and indeed is the only

language that is known to do this.2 As we will see, it is also parsimonious, or “compact”,

in that many valuations can be expressed using only a small number of simple bids.3

Finally, it expresses valuations in a natural way, which can be understood and analyzed

1 Product-Mix Auctions give envy-free allocations to bidders who express their valuations truthfully. The

auctioneer can express its own preferences, and if all the bidders and the auctioneer express their true

valuations (the Bank of England does in its role as a product-mix auctioneer, and bidders approximate this

if no one bidder is too large) then the auction yields a competitive equilibrium.
2 See [7, 9]. By contrast, [40] show [22]’s endowed assignment messages cannot express all strong substitute

valuations, [18] likewise shows [34]’s (integer) assignment messages cannot express all strong substitute

valuations, and [48] shows that it is not possible to express all strong substitute valuations as combinations

of weighted ranks of matroids on a ground set bounded by the number of goods.
3 See [19] for a discussion of compactness.
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geometrically; we show aggregate demand is the Minkowski difference between two

easily identified demand sets.

1.1 The strong substitutes product-mix auction (SSPMA)

There is significant literature on computing competitive equilibria with strong substi-

tutes valuations. See, for example, [4, 11, 13, 21, 25, 35, 38, 39, 41, 42].4 The interest

in strong substitutes is due to the fact that it captures practically relevant valuations

for indivisible goods, but the allocation problem can be solved in polynomial time

and Walrasian competitive equilibrium prices always exist, which is not the case for

general valuations [14].

Prior literature requires either value oracles for exponentially many bundles, or

demand oracles. Demand oracles can be understood as indirect or iterative mecha-

nisms, where bidders reveal their demand correspondence for a set of prices specified

by the auctioneer. So in a large market with many goods that is organized as a sealed-

bid auction, the auctioneer needs to perform an exponential number of value queries

for each bidder before the allocation algorithm can be run. Such enumerative (XOR)

bid languages are used in spectrum auctions, but can lead to “missing bids” problems,

which can significantly affect prices, and also create efficiency losses [12].5

The SSPMA was developed by [26] for the Bank of England to provide liquidity to

financial institutions by auctioning loans to them. The SSPMA is neither based on a

value nor a demand oracle.6 A collection of bids specifies a large number of package

values, which mitigates the missing bids problem. This type of preference elicitation

permits efficient ways to compute Walrasian prices, and allows us to uncover new

properties of strong substitutes valuations.

Each bidder makes a set of bids, each of which is a vector b, incorporating an integer

weight w(b). Each bidder’s set of bids is interpreted as specifying a quasi-linear utility

function over multiple units of each of n goods plus money. A bid in which w(b) > 0

(a “positive” bid) is simply interpreted as a bid for up to, but not more than, w(b)

units, in total, of the goods i = 1, . . . , n, in which the expressed value of receiving xi

units of good i is xi · bi .

Example 1 A bidder might be interested in 2 units, and be willing to pay up to price

2 for each unit of good 1, but only up to price 1 for each unit of good 2. These

preferences can be implemented by a single bid b = (2, 1) with w(b) = 2. Figure 1

shows how the bid b divides price space into three regions: for example, if the price

vector p = (p1, p2) lies in the region labeled as “(2, 0) demanded” then, at this price

vector, receiving the bundle (2, 0) maximizes the bidder’s utility among all feasible

4 [42] provides the fastest algorithm for value oracles and a new algorithm for aggregate demand queries.

However, the latter is different in spirit to our paper which addresses a market design for applications such

as the Bank of England’s.
5 Bidders who do not submit the very large number of bids required to fully specify their valuations are

treated as if they place no value on the packages they fail to bid for.
6 If a demand oracle is what is available, a conversion to SSPMA is available via [20]’s algorithm which

computes the (unique) list of bids corresponding to a bidder’s demand preferences, given access to either a

demand or a valuation oracle.
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Fig. 1 Example of using a single

bid to represent preferences in a

Product-Mix auction. The single

bid with weight 2 implements

the preferences of Example 1.

The total demand generated by

the bid is indicated in each

region of price space

Fig. 2 Example of using positive

and negative bids to represent

preferences in a Product-Mix

auction. The set of bids

implements the preferences of

Example 2. The sizes of the bids

($millions) are shown next to the

black and white circles that

represent the positive and

negative bids, respectively. The

total demand generated by the

complete set of bids, ($millions

of weak, $millions of strong), is

indicated in each region of price

space

bundles. The black lines mark the borders at which the demanded bundle changes. If

prices lie exactly on the boundary of two or more regions, then the set of demanded

bundles is given by the discrete convex hull of the bundles demanded in the adjacent

regions. For example, if p = (2, 4), the bidder demands bundles (0, 0), (1, 0) or (2, 0).

Bids in which w(b) < 0 (“negative” bids) are interpreted as “cancellation” bids that

cancel part of the demand created by positive bids. But this means that all bids can be

treated by the auctioneer in exactly the same way: a bid is accepted whenever at least

one of its prices exceeds the corresponding auction price and, if it is accepted, then it

is allocated the good on which its price exceeds the corresponding auction price by

most.7 The following example from [26, 27] demonstrates the potential usefulness of

negative bids in the context of the Bank of England’s auctions, in which the different

goods were “weak collateral” and “strong collateral”, and the prices were the interest

rates that the winning bidders paid:8

7 Note that negative dot bids cannot be understood as offers to sell–an offer to sell would be accepted

whenever its price is sufficiently low, whilst a negative bid cancels a purchase whenever one of its prices is

sufficiently high.
8 Although negative bids were offered as an option to the Bank of England in [26], its Product-Mix auctions

have not used them. Prior to 2014, bidders could make any set of positive bids, and the auctioneer (the Bank

of England) expressed its own preferences using a supply function that was equivalent to using any set

of positive bids (see Appendix E1 of [28]). Since 2014, the auctions run by the Bank have allowed the
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Example 2 A bidder might be interested in $100 million of weak collateral (good 1)

at up to a 7% interest rate, and $80 million of strong collateral (good 2) at up to a 5%

interest rate. However, even if prices are high, the bidder wants an absolute minimum

of $40 million (see Fig. 2). These preferences can be implemented by making all of

the following four bids:

I $100 million of weak at 7%.

II $80 million of strong at 5%.

III $40 million of {weak at maximum permitted bid OR strong at maximum permitted

bid less 2%}.

IV minus $40 million of {weak at 7% OR strong at 5%}.

Note that the bids lead to an arrangement of hyperplanes, at each of which the

agent is indifferent among more than one bundle. Bids (I) and (II) together generate

the demand shown in the three quadrants to the left of (7, 0) and/or below (0, 5), but

would on their own imply zero demand in the top right quadrant. Adding the high

positive bid, (III), at (k, k − 2), in which k is the maximum permitted bid on either

good (we assume k is large), would add demand of $40 million of weak everywhere

above the 45 deg diagonal line through (2, 0), and $40 million of strong everywhere

below this line; the negative bid, (IV), at (7, 5) then cancels this bid everywhere to the

left of, and below, (7, 5).

Preferences of the kind illustrated in Example 2 are very natural for a liquidity-

constrained bidder, but cannot be accurately represented without the use of a negative

bid.9 However, with positive and negative bids, valid bids in the bidding language can

precisely represent any “strong substitutes” preferences.10 Moreover, the way in which

positive and negative bids define demand sets has a nice geometric interpretation as

Minkowski differences, as we will show. And, importantly, as we discuss below, in

practical settings expressing valuations with SSPMA bids is likely to be much more

compact than listing valuations explicitly as assumed in [13] or subsequent literature.

For all these reasons, the SSPMA is a natural choice for applications.

To make practical use of SSPMAs, however, requires that we can find competitive

equilibrium prices among participants using the bid language.11 That is, given the

auctioneer to use richer preferences than this, but have restricted to bidders to sets of bids “on the axes”

(that is, to sets of bids each of which has bi > 0 for only one i).
9 One way to understand a negative bid for a unit is that it is the highest price at which you would cancel a

bid for one unit. Reducing your purchases only at low prices makes no sense on its own. However, in two

dimensions, for example, it does make sense in conjunction with a positive bid north-east of the negative

bid which gives higher prices at which you would buy (and that the negative bid therefore cancels when

prices are low) and also other bids to the west and south of it, at least one of which is accepted when the

cancellation operates (and without which there would be no reason for the cancellation).
10 [27] stated this result for the case of multiple units of each of two goods. [7] and [9] show the general

result, and also show that any preferences represented by this language that are valid (i.e., the demand for

a good cannot decrease if its price falls while no other price changes–see discussion below Definition 2)

must be strong substitutes.
11 Bidders in a Product-Mix auction simultaneously make sets of bids that express their preferences. The

auctioneer then chooses the aggregate supply and allocates each participant its competitive-equilibrium

allocation at competitive-equilibrium prices, assuming that all the expressed preferences are accurate.

Ties between bids can be broken arbitrarily, since participants who express their preferences accurately are
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collection of the sets of bids made by all the participants, we need to be able to find a

price vector at which any given quantity vector of goods would be exactly demanded

if all the bids expressed participants’ actual preferences.

If all the bids are positive, the competitive equilibrium price vectors are just the

shadow price vectors in the solution to a simple linear program, more specifically

a network flow problem, in which the number of variables is linear in the number

of bids and distinct goods. The reason is that competitive equilibrium maximizes

social surplus in our setting, so the relevant linear program allocates the bids among

participants to maximize the sum of their surpluses, subject to allocating exactly the

available supply.12 With negative bids, however, the allocation problem cannot be

modeled with only a single linear program, and the computation of prices is then more

challenging.

1.2 Our contribution

We study characteristics of strong substitutes by using the SSPMA language. First,

we show that the positive and negative bids in the SSPMA allow us to interpret strong

substitutes as Minkowski differences between sets that are easy to identify. This gives

new insight into the geometric structure of strong substitutes, a valuation class that is

difficult to characterize. We then illustrate the SSPMA language’s expressiveness using

[40]’s notorious example of strong substitutes that other languages cannot represent.

We also explain that the language is compact for realistic settings, since the bidder

need not explicitly give a value for every bundle which it might be allocated.

Our main contribution is an equivalence result for different mathematical formu-

lations of the pricing problem. We show that minimizing the difference between the

maximum social surpluses attained by solving certain pairs of allocation problems–

each of which is a simple problem–provides the information we need to compute the

equilibrium prices. Specifically, the correct quantity of negative bids, s, accepted by

the auctioneer minimizes the difference between the objective function of the linear

program that would be solved to allocate the available supply increased by s if only the

positive bids were available (we call this the “positive program”), and the objective of

a corresponding linear program that would be solved to allocate a quantity of s using

only the negative bids (the “negative program”). Moreover, the competitive equilib-

rium price vectors are the shadow price vectors for the positive program for this value

of s.13 We prove these results by showing that minimizing the difference between

the positive and negative programs is dual to minimizing a Lyapunov function L(p).

More precisely, we show that the Toland-Singer dual [33, 47] of L(p) is the minimum

difference between the positive and negative linear programs.

indifferent. If there are multiple competitive equilibria, the Bank of England’s Product-Mix auctions choose

the best one for bidders (this is uniquely defined–see discussion below Definition 2). See [26, 27] for more

details.
12 This is the solution method currently used by the Bank of England’s Product-Mix program, which does

not allow bidders to use negative bids.
13 These shadow price vectors are a subset (often a proper subset) of the shadow price vectors for the

negative program for this s.
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[6] have recently shown that a standard steepest-descent algorithm based on the

Lyapunov function (following [38]) can solve the SSPMA pricing problem, but their

method takes only limited advantage of the special features of the geometric repre-

sentation.14 By taking fuller advantage of the structure of strong substitutes analyzed

in this paper, we find an alternative to steepest descent on the Lyapunov function. Our

algorithm draws on DC (difference of convex functions) programming.15 Steepest

descent algorithms on the Lyapunov function are known to be very efficient. But we

find that the DC algorithm is at least similarly fast in all our experiments. Neither algo-

rithm is consistently faster, and in environments with only a low number of negative

bids (which we conjecture are the most likely ones in practice–see Section 2.3), the DC

algorithm is the faster one. So, while both algorithms terminate in a few seconds even

for large problem instances, the DC algorithm provides an valuable new alternative

by taking advantage of the structural properties of strong substitutes.

1.3 Outline

We proceed as follows. Section 2 introduces the SSPMA bidding language. We illus-

trate its expressiveness, and explain that it is a compact language that expresses all

strong substitutes valuations (and no others) as the Minkowski difference of positive

and negative bids. Section 3 proves that the pricing problem can be solved by mini-

mizing the difference between the objectives of the two linear programs, by showing

that this is dual to minimizing the Lyapunov function. Section 4 takes advantage of

this result to use “DC programming” (difference of convex functions programming)

to specify an algorithm to solve the problem, and uses numerical experiments to com-

pare our algorithm to a steepest-descent algorithm based on the Lyapunov function.

Section 5 concludes. All proofs are in the Appendix.

2 The SSPMA bid language

2.1 Formal description of the SSPMA language

In the SSPMA, each of m bidders j ∈ {1, . . . , m} submit an arbitrary number of

bids for distinct goods i ∈ {1, . . . , n}. A bid is a vector b = (b1, . . . , bn; bn+1) ∈

Zn
≥0 × (Z \ {0}). Here, for i = 1, . . . , n, coordinate bi gives the value for good i .

The final coordinate bn+1 ∈ Z \ {0} is the weight of the bid; we write w(b) for the

projection to this final coordinate. We refer to positive and negative bids according to

the sign of w(b). Prices p = (p1, . . . , pn) ∈ Rn are linear. Our bundles of indivisible

goods will be written x, y ∈ Zn
≥0. We write ei for the coordinate vectors i = 1, . . . , n

in Zn .

14 Unlike [6] we focus on the structural properties of strong substitutes that arise from the SSPMA bid

language as well as the economic interpretation of the Toland-Singer dual of the widely used Lyapunov

function.
15 Minimizing the difference between two M♮-convex functions is in general N P-hard [29, 32]: the dif-

ference between the positive and negative programs is neither convex nor concave. However, this specific

problem can be solved in polynomial time, as is clear from the relationship to the Lyapunov function.
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A positive bid b expresses the willingness of the bidder to pay at most bi for units

of good i = 1, . . . , n, and for up to w(b) units in total. It defines a valuation vb on

the domain Δw(b) of bundles of at most w(b) units, that is, Δw(b) = {y ∈ Zn
≥0 :

∑n
i=1 yi ≤ w(b)}, with vb(y) =

∑n
i=1 bi yi . The utility associated with this bid is

quasi-linear, vb(y) − 〈p, y〉, so the indirect utility associated with such a bid is just

ub(p) = w(b) max
i∈{1,...,n}

(bi − pi , 0), (1)

where we include 0 because the bid may instead be rejected. Any combination of w(b)

units of utility-maximizing goods is acceptable, as are fewer units when ub(p) = 0,

so the demand set is

Db(p) :=

{

y ∈ Δw(b) :

n
∑

i=1

yi (bi − pi ) = ub(p)

}

. (2)

This set comprises all integer bundles in the convex polytope in which the bundles

w(b)ei , where i maximizes bi − pi ≥ 0, are vertices, and 0 is also a vertex if

maxi∈{1,...,n}(bi − pi , 0) = 0. If Db(p) contains more than one bundle, we say all

goods i = 1, . . . , n maximizing bi − pi are marginal for bid b at p. If {0} ⊊ Db(p)

then we say the bid is marginal to be accepted. If Db(p) = {0} we say the bid is

rejected.

Now consider a multiset B of positive bids, which could be all those placed by

a single bidder, or could, for example, be all bids from all bidders. The aggregate

indirect utility uB(p) is just the sum of indirect utilities: uB(p) =
∑

b∈B ub(p), and

the aggregate demand set DB(p) is the Minkowski sum of demand sets DB(p) =
∑

b∈B Db(p).

However, we also allow negative bids: those for which w(b) < 0. These do not

represent a meaningful economic valuation on their own, but do so in “valid” combi-

nations with positive bids. Given a collection B of bids, write respectively B+ and B−

for the positive and negative bids in B. Write |b| for the bid (b1, . . . , bn; |w(b)|), and

write |B−| for the set of bids |b| where b ∈ B−. Now the aggregate indirect utility is

an appropriately signed sum of indirect utilities:

uB(p) :=
∑

b∈B+

ub(p) −
∑

b∈|B−|

ub(p). (3)

We say that the set B is valid when the indirect utility uB is concave. (See Theorem

1 of [6]; further discussion of this notion is given below after Definition 2.)

To define the aggregate demand set with positive and negative bids, first define the

demand Db(p) associated with an individual negative bid b as Db(p) = −D|b|(p) =

{−x | x ∈ D|b|(p)}. Let Q comprise all price vectors q in a small neighborhood of

p, and such that Db(q) = {xb(q)} are singletons for all b ∈ B. Then the aggregate
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demand set is equal to the discrete convex hull

DB(p) = conv

{

∑

b∈B

Db(q) : q ∈ Q

}

∩ Zn .

In particular, if Db(p) is a singleton for all b ∈ B, then DB(p) is just
∑

b∈B Db(p) =
∑

b∈B+
Db(p)−

∑

b∈|B−| Db(p): negative bids are used to “cancel” part of the demand

arising from positive bids. We cannot extend this rule to prices at which the demand

set is non-unique simply by taking the Minkowski sum of demand sets associated with

all bids; negative bids which are marginal between goods must be treated consistently

with positive bids marginal on those same goods.16 However, if the bids B j of each

bidder j = 1, . . . , m are valid, then the full aggregate demand set DB(p) defined by

B =
⋃m

j=1 B
j is indeed the Minkowski sum: DB(p) =

∑m
j=1 DB j (p).

WhenB contains only positive bids, we can aggregate the simple valuations implied

by individual bids, to obtain the aggregate valuation vB : ΔW → Z, where W =
∑

b∈B w(b):

vB(y) = max

{

∑

b∈B

n
∑

i=1

xibbi :
∑

b∈B

xib ≤ yi ∀i and

n
∑

i=1

xib ≤ w(b)∀b ∈ B

}

. (4)

As usual, the relations uB(p) = maxx∈Zn
≥0

vB(x)−〈p, x〉 and vB(x) = minp∈Rn uB(p)

+〈p, x〉 hold. The latter equation also gives us an indirect way to identify the aggregate

valuation if B is a valid set of positive and negative bids. However, one of our main

results, which is also the starting point to our equilibrium pricing algorithm, is a

purely primal expression for the aggregate valuation in the presence of negative bids

(Theorem 1).

The valuation implied by such bids is for strong substitutes:

Definition 1 (Ordinary and strong substitutes, [8] and [35]) A valuation v is ordinary

substitutes, if for any price vectors p′ ≥ p with singleton demand sets Dv(p
′) = {x′}

and Dv(p) = {x}, we have x′
k ≥ xk for all k with p′

k = pk . A valuation v is strong

substitutes, if, when we consider every unit of every good to be a separate good, v is

ordinary substitutes.

The SSPMA only expresses preferences of this kind, and can express any strong

substitutes valuation [7, 9]17. It is, to our knowledge, the only bidding language that

provably has this feature.

In an SSPMA such as the Bank of England’s, total supply is not pre-determined;

the auctioneer represents its preferences as supply schedules, and the auction finds

competitive equilibrium given the auctioneer’s and bidders’ expressed preferences.

16 For example, (140, 40) is not in the demand set at p = (3, 1) in the right-hand side of Figure 1; the bids

for −40 and 40 units must be treated consistently.
17 [27] stated this result for the case of multiple units of two goods. [31] describes how any valuation can

be analyzed tropical-geometrically and can be decomposed into a combination of simpler pieces, but if the

valuation is not strong substitutes, these simpler pieces do not correspond to positive and negative bids.
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However, the auctioneer can equivalently auction the maximum quantity of each good

that it would ever sell at any price vector, and place appropriate bids to buy back

quantities at lower prices.18 So we index the auctioneer as agent 0 and include its bids

in the set B of all bids from all bidders. This paper therefore addresses the following

problem:

Definition 2 (Equilibrium pricing problem) Given a valid set B of all bids from all

bidders (including the auctioneer) and a target supply t, find a price vector p ∈ Rn ,

such that t is demanded at p, that is, t ∈ DB(p). Such a price vector is called an

equilibrium price.19

It is well-known that a competitive equilibrium does indeed exist, given our assump-

tions of strong substitutes and a seller who will retain units of any underdemanded

good at a price of zero [17, 35]. Indeed, this also implies that equilibrium price in

Rn
≥0 exists. The set of equilibrium prices forms a lattice with respect to the Euclidean

ordering [21, 36], i.e., for any valuations v1, · · · , vm , if p and p′ are equilibrium prices

for such valuations, then p ∧ p′ and p ∨ p′ are also equilibrium prices. This implies

that there exists an unique minimal equilibrium price vector. It is possible to modify

the algorithm we will develop to find the minimal equilibrium price vector rather than

an arbitrary price vector.

To understand the “validity” of bids in the SSPMA, we briefly outline some geo-

metric ideas from [8]. First, the collection B of bids induces a set of prices at which

the aggregate demand is not unique: the “locus of indifference prices” (LIP), notated

LB := {p : |DB(p)| > 1}. For a price p to be in the LIP, at least one bid must be

marginal, so some equality of the form bi = pi or bi − pi = b j − p j must hold, where

i, j ∈ {1, . . . , n} and j 
= i . Therefore, LB consists of a union of pieces of hyper-

planes with normals in {ei , ei −e j : 1 ≤ i < j ≤ n}. These pieces of hyperplanes are

known as facets. To each facet F , we assign a weight w(F), given by the sum of the

weights of bids that are marginal at a price in the relative interior of F . Facets always

have nonzero weight; if the sum of weights of marginal bids is zero then one may see

that demand is in fact unique.

The LIP LB splits price space into multiple unique demand regions (UDRs) at

which a unique bundle is demanded. Let p be a price vector in an UDR for which the

demand is known (for example, for p large, the demand is 0). If the price p changes

along a curve, and crosses a facet F ofLB, then the demand changes by w(F)n, where

n is the normal of F pointing into the opposite direction of the path. For an illustration,

see Fig. 3. Thus, the LIP fully encodes the aggregate demand at every UDR-price, and

so – by taking convex hulls – at every price.

Now, a negative-weighted facet cannot arise from a quasi-linear preference relation:

when the price of one good decreases, the demand for that good must not also decrease.

18 [28] (Appendix E1) illustrates how the auctioneer can do this for general supply schedules; for the

special case in which it just wishes to sell a bundle t = (t1, . . . , tn) at any non-negative prices, it will

simply auction supply t and enter a bid (0, . . . , 0;
∑

i ti ) into the auction.
19 This paper takes competitive behavior as given; we do not address the extent to which bidders may

distort their preferences. In an SSPMA it is rational for bidders whose demand is not too large relative to

aggregate demand to make bids that approximately reflect their true preferences. Throughout this article,

we assume that bids reflect true preferences.
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Fig. 3 Finding demand in each UDR of a LIP. The black circles represent positive bids with weight 1,

namely (2, 2; 1), (1, 0; 1) and (0, 1; 1); the white circle represents a negative bid, (1, 1; −1). Note that all

facets emanating from this negative bid are canceled by parts of facets arising from positive bids. A curve

which determines demand in every UDR is shown as a dashed line. The curve starts at a high price, where

the demand is (0, 0). The vectors where the path intersects the LIP indicate the correctly oriented normals

of the facets with respect to the path. For example, inspecting the crossings of facets reveals that the demand

at (0.5, 0.5) is 1 · (1, 0) + 1 · (−1, 1) + 1 · (1, 0) = (1, 1)

So negative bids must be placed in such a way that, in the resulting collection of facets,

no facet has a negative weight. This condition is equivalent to concavity of the indirect

utility function.20 From now on we assume that our bid collections are always valid.

Note that if each individual bidder’s bid set is valid, then so is the set of all bids from

all bidders.

The following two subsections discuss geometrical interpretations and properties

of this bid language. While they do not contribute directly to our main Theorem 1

and the algorithm, they provide useful background on the role of negative bids in the

SSPMA and intuition for the overall approach.

2.2 Interpretation via Minkowski differences

There appears to be a contrast between the intuitive definition of the aggregate demand

set when all bids are positive (so the aggregate demand set is just the Minkowski sum

of the individual demand sets) and the more involved definition when negative bids

are present. Recall from Sect. 2.1 that in this case we defined the aggregate demand

set to be the discrete convex hull of bundles which are demanded uniquely when we

slightly change the price vector p. We cannot simply take Minkowski sums because

we must ensure that negative bids are treated in a valid way with their associated

positive bids (see the discussion after Definition 2). However, if B is valid, then we

can provide a more parsimonious novel definition by using the Minkowski difference

operation. We recall that A − B consists of all points x ∈ Rn , such that x + B ⊆ A.

20 See [6] Theorem 1, which shows that, at any price, the sum of the weights of bids marginal between any

pair of goods, or between any good and being rejected, must be non-negative. The failure of this condition

is equivalent to the existence of a negative-weighted facet.
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x y

Fig. 4 The Minkowski sum A + (−B) and Minkowski difference A − B of rectangle A and a triangle B.

Left: the rectangle A (in gray); four instances of a + (−B), in which a ∈ A and −B is the triangle (dashed

line and its interior); and A + (−B) (black line, including its interior). Right: the same rectangle A (in

gray); six instances of a + B. For five of these, such as a = x , we have a + B ⊆ A and so a ∈ A − B, but

y + B � B and so y /∈ A − B. The full set A − B is given by the black line and its interior

The geometric effect of this operation is illustrated in Fig. 4. Note in particular that in

general A + (−B) 
= A − B.

Proposition 1 Let B be a valid collection of bids in an SSPMA. Then for every price

vector p the demand set DB(p) is equal to DB+
(p) − D|B−|(p).

We prove this result in Appendix A.1.

2.3 Expressiveness and compactness of the SSPMA

To illustrate the expressive power of negative bids, we consider [40]’s notorious

example of a valuation, vr , that shows that prior bid languages such as the endowed

assignment valuations by [22] are strictly less expressive than the set of gross substi-

tutes (and so also strong substitutes) valuations.21 (We discuss the construction of vr

in Appendix A.2.) However,

Proposition 2 The valuation vr in [40] can be represented by 8 positive and 6 negative

SSPMA bids.

This proposition illustrates [9]’s more general result that all strong substitutes valua-

tions can be depicted in the SSPMA. We prove Proposition 2 without relying on this

general result by explicitly providing the list of SSPMA bids.

Moreover, an important feature of the SSPMA language is that it is parsimonious:

the valuations that are most used in practice can be expressed very simply, using far

fewer bids than the number of different bundles valued. Let W :=
∑

b∈B w(b). Note

that W equals the maximum number of units that a bidder who makes bids b ∈ B is

interested in. Then SSPMA bids can assign a “non-trivial” value to Ω(W n) bundles:

Proposition 3 Consider an SSPMA with n goods, and suppose a bidder makes bids B.

Let D :=
⋃

{DB(p) : p ∈ Rn} and let W :=
∑

b∈B w(b). Then D = ΔW and so

|D| =
(

n+W
n

)

≥ (1 + W/n)n .

21 [18] uses the same example to show [34]’s (integer) assignment messages cannot express all strong

substitute valuations.
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Moreover, bidders in practical applications are likely to need to make far fewer bids

than Proposition 3 suggests: Expressing a demand function for each good indepen-

dently is trivial–it just requires providing a separate list of bids for each i with, for

each i , b j = 0 for all j 
= i . In many settings these bids will express much of the

information about bidders’ valuations.

At a second, higher, level of complexity, any bid which selects the “best value”

among any number of goods can be expressed using only positive bids. Observe that

W is the maximum number of bids that a bidder who is interested in winning at most

W units, and who uses only positive bids, needs to make—and if any of her bids have

greater weight than 1, she will need fewer bids. So such a bidder can express her

valuations of all possible bundles with only a few bids.

More complex features of preferences require negative bids to express, but these

features seem less likely to arise frequently. Example 2 is one example, and there

are others,22 but we expect most bidders would be unlikely to have to handle more

than a very small number of these special issues. In fact, in the Bank of England’s

auctions, bidders showed relatively little interest even in bids of the “second level” of

complexity, and they used such bids only rarely–perhaps because they are only very

important to banks in times of real crisis.23 So bidders are unlikely to need many

negative bids in most practical auction settings.24 The number of bids needed by a

bidder who is interested in winning at most W units, and who needs only a small

number of negative bids, cannot much exceed W . Moreover, such a bidder will need

to use many fewer than W bids unless most or all of her bids are of weight only 1. So

these bidders, too, are likely to be able to express their full valuations with only a few

bids.

The number of bundles valued by a set of bids of mixed sign can be much smaller

than the lower bound on the number of bundles valued by the same number of bids

that are all positive.25 But we expect the SSPMA bidding language will be much more

“compact” 26 in most practical cases than—say—listing valuations for all bundles

explicitly.

22 For example, choosing the best N1 out of N2 options requires the use of negative bids if N2 > N1 > 1.
23 The need for “second-level” bids is likely to grow, however, as technology develops–they are most useful

for banks who can coordinate different parts of their operations in a sophisticated way, and “big investment

programmes are already underway in many [banks], to ensure that [they] have real-time information on

the collateral they have available globally across all their business lines, that the collateral they deliver is

cost effective, and that the cost of delivering (and financing) that collateral is factored into their risk and

business decisions. These programmes involve sometimes relatively advanced technology; indeed, as some

of our contacts remark, somewhat alarmed, ‘for the first time in living memory, pointy heads are sitting on

the repo desk’.” (Andrew Hauser [Executive Director of the Bank of England], 2013) [23].
24 Moreover, [28] shows how to enhance the SSPMA with additional “words”, each of which refers to a

particular configuration of positive and negative bids. This can greatly reduce the number of bids required

to express special situations. For example, our Example 2 could be expressed by a single “word” from

a parameterised class of words. Preferences of the kind described in note 22 could also be expressed as

“words”.
25 Of course, no language can express every possible valuation using fewer pieces of information than

the number of bundles that can be independently valued. However, in extreme cases the number of bids

required to express a full valuation for up to W units in the SSPMA can exceed the number of different

possible bundles of up to W units.
26 See [19] for a discussion of compactness.
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So in the settings that we believe are most likely to arise, bidders can probably

build up their valuations bit by bit through adding individual bids. We expect most of

these bids will be positive; moreover, software can make entering negative bids easier,

by checking feasibility and by allowing the bidding of “words,”27, and by checking

feasibility.28

At least with human participants, it seems less likely that a valuation function with

all exponentially many package values would be available, but in this case the prices

can be computed directly, using steepest descent or linear programming algorithms.

Alternatively, bidders could use [20]’s algorithm to generate bids from an arbitrary

value function.29

3 The SSPMA pricing problem

With only positive bids, our equilibrium pricing problem (Definition 2) can be solved

via a simple linear program that maximizes the total welfare given the target bundle t.

We know that t ∈ ΔW , where W is the total weight of bids placed, by our assumption

about the bids of the auctioneer. But recall from Equation (4) that, given the collection

B of all bids of all bidders, the aggregate valuation of any bundle t ∈ ΔW is given -

in LP notation - by

vB(t) = max
∑

b∈B

∑

i∈[n]

bi xbi (LP)

s.t.
∑

i∈[n]

xbi ≤ w(b) ∀b ∈ B (πb)

∑

b∈B

xbi = ti ∀i ∈ [n] (pi )

xbi ≥ 0 ∀b ∈ B, i ∈ [n].

Here πb and pi denote the respective dual variables. This program always has an

integral optimal solution, as may be seen either by properties of strong substitutes

valuations, or by recognizing that it is an instance of the min-cost flow problem. The

number of constraints and variables is polynomial in the number of bids and goods,

in contrast to the formulation of [13]. The set of equilibrium prices can be computed

directly:

27 See note 24.
28 In more complex cases, we can use the [20] algorithm to generate bids from an arbitrary value function.
29 [20]’s algorithm has linear query complexity for preferences that require positive bids only. (An asymp-

totic lower bound of Ω(B log M) queries are required to learn a list of B positive bids, where M is the

magnitude of the bid vectors w.r.t. the L∞-norm.) It has exponential query complexity in the worst case

when negative bids are required. (The query complexity of learning bid lists corresponding to strong sub-

stitutes demand has a rate of growth of Θ(B log M + Bn).) However, if the number of goods is not too

large, the algorithm still performs well, even though [31] observe that breaking a general valuation up into

constituent simpler parts can be NP-hard.
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Proposition 4 In an SSPMA with only positive bids, the equilibrium prices for the

target supply t are the optimal dual variables p = (p1, . . . , pn) of the network linear

program (LP) which can be solved in polynomial time in the number of goods and

bids.

Proposition 4 simply follows from writing down the complementary slackness

conditions of (LP), so we do not provide an explicit proof. If B also contains negative

bids, the problem of efficiently computing equilibrium prices is less obvious. One

route, taken by [6], is to minimize the Lyapunov function L : Rn → R [4], defined

for target t as

L(p) = uB(p) + 〈p, t〉

where aggregate indirect utility uB(p) is as defined in Eq. (3). The set of minimizers of

L coincides with the set of equilibrium prices, and structural properties of L allow for

polynomial-time steepest descent algorithms to find these minima [6, 36, 42]. However,

this approach works by invoking a rather generic submodular function minimization

algorithm, under the assumption that a demand oracle is available.

By contrast, with only positive bids we can build upon much more specialized

algorithms to solve network linear programs. And, as we now show, taking advantage

of the economic structure of the problem allows us to incorporate negative bids into

this approach:

Recall that the total allocation in an SSPMA is equal to that assigned to positive

bids minus that assigned to negative bids. So, to assign t units in total, we must assign

t + s units to positive bids and s to negative bids, for some “supplementary” bundle s.

Recall also that we write B+ for the positive bids in B, and |B−| for the negative bids

b ∈ B endowed with weights |w(b)|. We introduce two additional SSPMAs: that with

bids B+ and target t + s, which we call the “positive auction”; and that with (positive)

bids |B−| and target s, which we call the “negative auction”. Write W+ and W− for the

total weights of bids in these respective auctions, so that ΔW+ and ΔW− are the sets of

bundles that may be sold by each of them. Note that for each t ∈ ΔW and s ∈ ΔW− ,

t + s lies in ΔW+ (see Appendix Lemma 4).

If we pick s correctly, then this is equivalent to allocating t units in the auction with

bids B. Moreover, since both B+ and |B−| are sets of positive bids, their respective

aggregate valuations and equilibrium prices can be evaluated using the linear program

above. We now show how to find s:

Theorem 1 If B represents all bids from all bidders, then the aggregate valuation at

the target supply t ∈ ΔW can be written as

vB(t) = min
s∈ΔW−

(

vB+
(t + s) − v|B−|(s)

)

.

Moreover, given a minimizer s̄, each equilibrium price p̄ of the auction with bids B+

and target supply t + s̄ is an equilibrium price for the auction with bids |B−| and

target supply s̄, and also for the complete auction with bids B and target supply t.
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We prove Theorem 1 in Appendix A.4.

To understand the economic intuition underlying Theorem 1 assume that the set of

equilibrium prices is n-dimensional and consider a price p in its interior. (Although the

SSPMA would choose the minimum of the equilibrium prices, choosing an interior

price simplifies the intuition.) Let s̄ be the vector of negative bids accepted in the

equilibrium. Initially set the target s of the negative auction to be s̄, which means that

p is an equilibrium price for both the positive and negative auctions.

Consider the effect of changing p on the weighted sum of bids accepted in these

two auctions. Recall that the full set B of positive and negative bids in the original

SSPMA is valid. So for any price at which additional negative bids are marginal to

be accepted, positive bids with at least as great a weight must also be marginal to be

accepted–see the discussion of validity of B at the end of Sect. 2.1. (The converse does

not hold: positive bids can be marginal at prices at which no negative bid is marginal.)

So, any change in price from p would alter the total weight of bids accepted in the

positive auction by weakly more than it would alter the total weight of bids accepted

in the negative auction.

Now consider an increase in one coordinate of the supplementary bundle, from s̄

to s ≥ s̄, in both the positive and negative auctions. The additional bids that will be

accepted in the positive auction with target t+s will, because of our observation above,

have weakly greater value than the additional bids accepted in the negative auction.

That is, vB+
(t + s) − vB+

(t + s̄) ≥ v|B−|(s) − v|B−|(s̄). Similarly, if we decrease one

coordinate to s ≤ s̄, then bids which are now rejected from the positive auction will

have weakly lower value than the bids rejected from the negative auction. So, again,

vB+
(t+s)−vB+

(t+ s̄) ≥ v|B−|(s)−v|B−|(s̄). General changes in s may be understood

as a sequence of these two operations.

It follows that s̄ can be identified by minimizing vB+
(t + s) − v|B−|(s).

The formal proof of Theorem 1 rests on applying a version of Toland-Singer duality

[47] to the valuations in the positive and negative auctions, and relating this to the

Lyapunov function L(p). [33] provide a theoretical treatment of discrete DC-functions,

establishing (their Theorem 4.6) Toland-Singer duality in discrete DC-functions.

First recall that, for a function f : dom f → R, where dom f ⊆ Rn , the convex

conjugate f ∗ : dom f ∗ → R is defined by f ∗(p) = supx∈dom f (〈p, x〉− f (x)), where

dom f ∗ ⊆ Rn comprises those p at which f ∗(p) is finite-valued. The subdifferential

of f is the set-valued function

∂ f (x) = {p ∈ Rn : 〈p, y〉 − f (y) ≤ 〈p, x〉 − f (x) ∀y ∈ Rn}.

The domain dom ∂ f of the subdifferential consists of all points x ∈ dom f with

∂ f (x) 
= ∅. It turns out that in our application the convex conjugates and subdiffer-

entials have an intuitive economic meaning.

Lemma 1 Let B be a collection of positive bids. Then −vB can be naturally extended

to a convex function f : dom f → R with the following properties:

1. dom ∂ f = dom f = conv ΔW and dom ∂ f ∗ = dom f ∗ = Rn

2. f ∗(q) = uB(−q) and ∂ f ∗(q) = conv DB(−q)

3. ∂ f (x) = −{p ∈ Rn : x ∈ conv DB(p)}.
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We will use the following version of Toland-Singer duality, which allows for

restricted domains:

Theorem 2 (Toland-Singer duality) Let f : dom f → R and g : dom g → R
be proper convex lower semi-continuous functions with closed and convex domains

dom f ⊆ dom g ⊆ Rn and such that dom g∗ ⊆ dom f ∗ ⊆ Rn . If one of the differences

f (x) − g(x) and g∗(y) − f ∗(y) has a minimum in dom f , respectively dom g∗, the

other difference also has one, and

min
x∈dom f

f (x) − g(x) = min
y∈dom g∗

g∗(y) − f ∗(y).

Moreover, if x̄ minimizes f (x) − g(x), then any ȳ ∈ ∂g(x̄) minimizes g∗(y) − f ∗(y).

Conversely, for any minimizer ȳ of g∗(y) − f ∗(y), any x̄ ∈ ∂ f ∗(ȳ) minimizes f (x)

− g(x).

For a proof see [46, Theorem 1]. We will apply Theorem 2 to the convex extensions

of −v|B−| and −vB+
(to the convex hulls of their domains).

4 The pricing algorithm

Using Theorem 1, we can approach the pricing problem by minimizing the difference

vB+
(t + s)− v|B−|(s). While the valuations vB+

and v|B−| can be extended to concave

functions, and can efficiently be evaluated with linear programs at any given pair

of bundles, their difference is in general neither concave nor convex. Moreover, as

recently shown by [29], minimizing the difference between two M♮-convex functions

is an NP-hard optimization problem. However, there is a class of algorithms on the

difference of convex functions (DC algorithms; see [2, 46]), that find at least local

minima of such problems and are often very fast in practice.

4.1 A DC auction algorithm

By Theorem 1, we seek s̄ minimizing vB+
(t + s)− v|B−|(s). We will approach this by

minimizing f (s)− g(s), where f (s) and g(s) are the convex extensions of −v|B−|(s),

respectively −vB+
(t + s), to the convex hulls of their domains. A necessary condition

for such s̄ is that it gives a stationary point, that is, s̄ ∈ dom ∂ f with ∂ f (s̄)∩∂g(s̄) 
= ∅.

To interpret this in our context, if q ∈ ∂ f (s̄) ∩ ∂g(s̄) then p = −q is a price at which

t + s̄ is demanded in the positive auction, and s̄ is demanded in the negative auction

(see Lemma 1).

The DC Algorithm 1 finds a stationary point for two convex functions f : dom f

→ R and g : dom g → R with dom ∂ f ⊆ dom ∂g and dom ∂g∗ ⊆ dom ∂ f ∗ [46].

Our functions f and g, defined above, satisfy these conditions: By Appendix Lemma

4, dom f = conv ΔW− ⊆ conv{s ∈ Zn : t + s ∈ ΔW+} = dom g, dom g∗ = Rn

= dom f ∗, and by Lemma 1 the domains of the respective functions coincide with

the domains of their subdifferentials.
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Algorithm 1: A DC-algorithm

Input: Convex functions f : dom f → R, g : dom g → R with dom ∂ f ⊆ dom ∂g and

dom ∂g∗ ⊆ dom ∂ f ∗

Output: Stationary points s̄ ∈ Rn of f − g and q̄ of g∗ − f ∗

1: Choose an initial q0 ∈ Rn

2: for k = 0, 1, . . . do

3: Choose sk ∈ ∂ f ∗(qk )

4: Choose qk+1 ∈ ∂g(sk )

5: if g∗(qk+1) − f ∗(qk+1) = g∗(qk ) − f ∗(qk ) then

6: return (sk , qk )

7: end if

8: end for

However, s̄ being a stationary point for f and g is not a sufficient condition for

s̄ to globally minimize f − g. So we check whether a corresponding p is a local –

and hence global – minimizer of the Lyapunov function L . If it is, then it is indeed

an equilibrium price. If not, we go one step in the direction of steepest descent of

the Lyapunov function and then restart the DC-algorithm. This is Algorithm 2 (where

lines 1–8 are exactly Algorithm 1 with expressed in their economic interpretation; see

Lemma 1 for more details).

Algorithm 2: DC auction algorithm

Input: Valid set B of SSPMA bids

Output: Equilibrium price p and supplementary bundle s̄

1: Choose an initial price p0

2: for k = 0, 1, . . . do

3: Choose a bundle sk demanded at price pk in the negative-bids auction

4: Choose an integral price vector pk+1 at which t + sk is demanded in the positive-bids auction

5: if L(pk+1) = L(pk ) then

6: return (sk , pk )

7: end if

8: end for

9: if there exists e ∈ ±{0, 1}n with L(pk + e) < L(pk ) then

10: Restart the algorithm with p0 := pk + e

11: end if

The value of L(pk) decreases by at least one in every iteration 2–8 of the algorithm

until the termination criterion in Step 5 is satisfied (we refer to Appendix A.5 for

details). Whenever the algorithm is restarted in Step 10, L also decreases by at least

one. Since there exists a minimizer for L , the algorithm terminates:

Theorem 3 Algorithm 2 always terminates in a Walrasian equilibrium price.

Algorithm 2 does not specify how to choose bundles sk and prices pk+1. Determin-

ing bundles sk is particularly simple when valuations are expressed in the SSPMA -

we just allocate each bid with utility maximizing goods. For finding prices pk+1, an

instance of (LP) must be solved. We use a min-cost flow solver to do so. Appendix

A.6 explains our implementation in more detail.
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Obtaining sharp worst-case bounds for Algorithm 2 is challenging due to the very

generic nature of the DC-Algorithm 1. Note that the class of functions representable

as a difference of convex functions is very large - for example, it contains all functions

with continuous second derivative [24]. Also recall that [29] shows that minimizing

the difference of two general M♮-convex functions is NP-hard. Intuitively, we expect

Algorithm 2 to perform particularly well when the number of negative bids is small.

For example, when there are no negative bids at all, the algorithm boils down to solving

the min-cost flow problem (LP). For the general case, we provide the following simple

bound for Algorithm 2 by the number of negative bids.

First, observe that we may implement Step 3 to choose a bundle sk which is uniquely

demanded at some price–and indeed we do so in our practical implementation, because

the vertices of demand sets D|B−|(p
k) have this property. We also assume that prices

in Step 4 are chosen deterministically – for the same bundle, the algorithm always

returns the same price.

Second, observe that if sk+1 = sk , then the chosen prices in Step 4 are also equal, so

the termination criterion 5 is satisfied. After a possible restart, the algorithm also can

never reach this bundle again – this would contradict the strict monotonicity properties

as we explain in the Appendix (Lemma 6). So in the worst case, after each restart of

the algorithm, we directly choose bundles s0 = s1 in the first two iterations which

immediately causes another restart. It follows that every possible bundle uniquely

demanded in the negative auction is chosen at most twice in Step 3 of the algorithm.30

If there is only one single negative bid, these are exactly n + 1 bundles, and so the

number of iterations, by which we mean the total number of iterations through the

loop from Step 2 to Step 8, of Algorithm 2 is in O(n). Note that after each restart, we

iterate at least once through the for loop, so the number of restarts is also in O(n).

More generally, Proposition 3 shows that
(

n+|B−|
n

)

bundles are demanded in total in the

negative auction if the weights of all negative bids are equal to one. Since the number of

uniquely demanded bundles does not change if we increase weights,
(

n+|B−|
n

)

bounds

the number of uniquely demanded bundles in general negative auctions. This therefore

provides an upper bound on the number of bundles demanded uniquely in this auction,

so on the number of iterations of Algorithm 2.

Proposition 5 Algorithm 2 requires at most O
(

(

n+|B−|
n

)

)

iterations for solving the

equilibrium pricing problem.

This analysis gives a rather pessimistic worst-case bound for the algorithm, but it

suggests that the algorithm performs particularly well with a low number of negative

bids. In fact, in our experimental evaluation, we find that the DC algorithm is even

faster than steepest descent in these environments.

When there are only positive bids, Algorithm 2 boils down to solving a single

linear program, which can be formulated as a min-cost flow problem on a graph

with |V | = O(n + |B|) vertices and |E | = O(n|B|) edges (see Appendix A.6). The

enhanced capacity scaling algorithm [1] finds an optimal integral solution in

30 Moreover, if the same bundle is chosen twice, it is unnecessary to repeat step 4 – the most computationally

costly part of the algorithm – so checking for sk+1 = sk provides a practical runtime improvement, although

it does not alter the complexity class.
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O(|E | log |V |(|E | + |V | log |V |))

iterations, which implies that the pricing problem can be solved in time

O(n2|B|2 log2(n + |B|)) = Õ(n2|B|2)

this way. On the other hand, [6] provide the worst-case bound O(n2|B|2 log M

+n|B|T (n)) for the steepest descent algorithm, where M = maxb∈B‖b‖∞ is the max-

imal price of a bid vector and T (n) is the complexity of minimizing an n-dimensional

submodular function. Note that the total asymptotic runtime of the network flow

formulation coincides with the first summand n2|B|2 log M of the steepest descent

formulation up to a logarithmic factor. However, we may expect the second summand

n|B|T (n) to dominate the runtime. To the best of our knowledge, the best known

weakly polynomial worst case bound for minimizing a general integral submodular

function is O(n2 log(nU ) · E O + n3 logO(1)(nU )), where U is an upper bound for

the maximal value of the submodular function [16, 30]. Thus, the worst-case bound

for n|B|T (n) cannot be better than O(n4|B| log(nU )) using known methods. Hence,

in particular when the number of goods increases, we may expect the min-cost flow

formulation to outperform the steepest descent formulation in the absence of negative

bids.31

[42] present a polynomial time algorithm for computing competitive equilibrium

prices for bidders with general preferences and provide a specialization of their algo-

rithm for gross substitutes valuations, which is the fastest algorithm for this setting

currently known. They provide the worst-case bound

mn · TV + O(mn log m + n3 log(mnM) + n3 logO(1)(mnM))

= Õ(mn · TV + n3)

for the runtime of their algorithm, where n is the number of goods, m is the number

of bids, M is the maximum value a bid has for a bundle and TV is the runtime of

the value oracle. So the worst-case runtime of [42]’s algorithm grows linearly in the

number of bidders, while the worst-case runtime of our algorithm (when all its bids are

positive) grows quadratically.32 However, our algorithm performs much better than

[42]’s as we increase the number of units available without changing the number of

goods (when all the SSPMA bids are positive), because its worst case is unaffected,

whilst [42]’s worst case is cubic in the number of units because they must treat each

additional unit as an additional good.33 Moreover, even when there are only small

31 [6]’s algorithm’s worst case also depends on M , while our algorithm’s does not, so our algorithm is more

robust to increases in the precision with which valuations can be expressed (e.g, expressing valuations in

cents rather than dollars multiplies M by 100).
32 We assume that the runtime TV of a value query is constant, and that the total number of SSPMA bids

grows linearly in the number of agents.
33 The worst-case bounds suggest our algorithm also performs better as we increase the number of goods, but

this comparison is less clear. The analysis of our algorithm is for bidders with strong substitutes preferences

expressed via positive SSPMA bids, and bidders may submit more SSPMA bids in markets with more

goods. Although a bid in [42]’s algorithm describes the entire valuation function of a bidder with general
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Table 1 Runtimes of the DC and the steepest descent (SD)-algorithm for instances where the number of

negative bids is low

#pos. bids #neg. bids #goods Time DC (ms) Time SD (ms)

1020 20 10 31 394

1020 20 30 105 410

1020 20 50 206 665

3020 20 10 115 1152

3020 20 30 445 1278

3020 20 50 970 1366

numbers of units available of each distinct good, we expect the use cases for the two

algorithms to be different: in a setting where fast direct access to bidders’ valuations is

possible, we expect applying [42]’s algorithm would be preferable to first computing

the corresponding SSPMA bids for every bidder and then applying our algorithm. On

the other hand, when preferences are provided by bidders in the SSPMA bid language,

we expect it is faster to use our algorithm directly, rather than translating the SSPMA

bids into value oracles first and then using [42].

4.2 Experimental evaluation

We implemented both the DC auction algorithm and a steepest descent algorithm

based on the Lyapunov function. The Lyapunov approach and the restart step in the

DC algorithm require the minimization of a submodular function. As in [6], we use the

Fujishige-Wolfe algorithm [15], which in practice often outperforms other submodular

minimization algorithms.

In our experimental evaluation we solved problems with 10-50 goods, 1020/1200/

1500/3020/3500 positive and 20/200/500 negative bids. We drew on a specialization of

the algorithm by [5] to randomly generate valid groups of bids, each group consisting of

3 positive and 1 negative bids. Algorithm 3 in Appendix A.7 describes this procedure,

and Table 2 in Appendix A.8 gives our results.

The DC algorithm appears to be faster if there are not too many negative bids (less

than 200, in our experiments). Table 1 shows a selection of our results for the case of

20 negative bids. So if the number of negative bids is small, which we consider the

most likely scenario (see Sect. 2.3), our DC algorithm is a particularly good choice.

However, the main conclusion from Table 2 is that both algorithms are very fast,

solving even the largest problems in our experiments in less than 3 seconds. Exper-

iments with up to 50 goods and 10,000 bids can also be solved in a few seconds

only.34

Footnote 33 continued

gross substitutes preferences, the runtime TV of a value query may depend on the number of goods. Ignoring

both these effects, our algorithm’s worst case depends quadratically on the number of goods, while [42]’s

has cubic dependence.
34 Obviously our results are sensitive to the details of the implementations. In particular, in a first, textbook-

style implementation, the steepest descent algorithm was much slower beyond 50 goods and 4000 bids.

123



E. Baldwin et al.

5 Conclusion

Strong substitutes valuations are of central importance for both theory and practical

applications. We have developed a new algorithm for computing competitive equi-

librium prices when agents’ preferences are expressed using the Strong Substitutes

Product-Mix Auction bidding language, a compact language that permits the expres-

sion of all strong substitutes valuations (and no other valuations). By contrast with a

previous approach of using a standard steepest-descent algorithm that tests candidate

solutions in turn, we began from the economics of the problem. We used the fact that

the shadow prices of two separate linear programs that maximize value for “positive”

and “negative” bids, respectively, must be equal, and proved that our model formula-

tion is dual to the Lyapunov function. We also used the bidding language to provide

new insight into the geometric structure of strong substitutes valuations.
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A Appendix: Additional proofs

A.1 Proof of Proposition 1

We need the following simple Lemmas.

Lemma 2 (See, e.g. [44] Lemma 3.1.11) Let A, B ⊆ Rn be convex. Then (A + B)

− B = A.

Lemma 3 Suppose (conv A) ∩ Zn = A and (conv B) ∩ Zn = B. Then (conv A

− conv B) ∩ Zn = A − B.

Proof If x ∈ (conv A − conv B) ∩ Zn then x ∈ Zn and x + conv B ⊆ conv A, so

x+(conv B)∩Zn ⊆ (conv A)∩Zn , and therefore x+B ⊆ A. So x ∈ A−B. Conversely,

Footnote 34 continued

However, an additional pre-processing step led to significant improvements in the steepest descent algorithm,

and we report the results for this improved steepest descent algorithm. With this improvement in the steepest

descent algorithm, the differences between the algorithms seem likely to be small in most applications.

123



Strong substitutes: structural properties, and a new algorithm...

1

2

4

3

6

5

Fig. 5 Graph used to construct the valuation vr from [40]

if x ∈ A−B then x ∈ Zn , and x+B ⊆ A implies conv(x+B) = x+conv B ⊆ conv A.

⊓⊔

Proof of Proposition 1 By the strong substitutes property, the sets DB+
(p) and

D|B−|(p) are equal to the set of integer points of their respective convex hull, as by defi-

nition is DB(p). So if we can show that conv DB(p)+conv D|B−|(p) = conv DB+
(p),

this implies by Lemma 2 that conv DB(p) = conv DB+
(p) − conv D|B−|(p) and by

Lemma 3 consequently that DB(p) = DB+
(p) − D|B−|(p).

But, as B is a valid set of bids, we know by [6] Theorem 2.3 that uB is the indirect

utility of a strong substitutes valuation v such that Dv(p) = DB(p) for all p ∈ Rn . It

follows that each vertex x of DB(p) is the unique element of DB(q) for a price q close

to p and such that x minimizes (q−p)·x′ for x′ ∈ DB(p). But similarly the minimizers

of (q−p)·x′ for x′ ∈ DB+
(p) and x′ ∈ D|B−|(p) are, respectively, the unique elements

of DB+
(q) and D|B−|(q). By definition, we have DB(q) = DB+

(q) − D|B−|(q), so

DB(q)+D|B−|(q) = DB+(q). As this holds for all extreme points of DB(p), it follows

that conv DB(p) + conv D|B−|(p) = conv DB+
(p), as required. ⊓⊔

A.2 The valuation vr from [40]

We now explain the construction of vr from [40]. Let G = (V , E) be an undirected

graph with 4 vertices and 6 edges E = {1, . . . , 6}, such that every vertex is connected

to every other vertex by an edge (see Figure 5).

A subset H of E is called independent if it contains no cycles. For any H ⊆ E , the

rank of H is the maximal cardinality of an independent subset contained in H :

rank (H) = max
{

|H ′| : H ′ ⊆ H is independent
}

.

The rank function induces the valuation vr : {0, 1}6 → Z given by vr (x) =

rank ({i : xi = 1}). As [40] show, vr is strong substitutes. However, it does not sat-

isfy the property of strong exchangeability which, as [40] show, is a characteristic of

every endowed assignment valuation. Consequently, it is not possible to express vr

by endowed assignment messages. We demonstrate, however, that it can be expressed

using the SSPMA. Note that valuations induced by SSPMA bids are always defined

on a scaled simplex ΔW for some total weight W ∈ Z≥0. We thus naturally extend vr

to Δ6 ⊇ {0, 1}6 by assuming free disposal: vr (x) = rank({i : xi ≥ 1}).
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Proof of Proposition 2 Given H ⊆ E , we write bH :=
∑

i∈H ei . We make the follow-

ing bids:

0. Place a bid b∅ with w(b∅) = 3.

1. For all H ⊆ E with |H | = 3 and H c is a cycle in G, make a bid bH with

w(bH ) = 1.

2. For all H ⊆ E constituting a cycle of length 4, make a bid bH with w(bH ) = 1.

3. For all H ⊆ E with |H | = 5 make a bid bH with w(bH ) = −1.

4. Make a bid bE with w(bE ) = 2.

Denote by vr (x) = rank({i : xi ≥ 1}) for x ∈ Δ6 the valuation induced by the rank

function, and by vB(x) the valuation induced by the above bids. Our goal is to show

vB = vr . Note that bid 0 only ensures that the domains of vr and vB are equal, and

does not “contribute” to the valuations apart from this. So let us check that indeed

dom vB = Δ6. There is 1 bid of type 0, 4 bids of type 1, 3 bids of type 2, and 1 bid of

type 4. So summing up the weights of these bids gives W+ = 12. On the other hand,

there are 6 bids of type 3, so W− = 6, and consequently dom vB = Δ12−6 = Δ6.

We have ur (p) = maxx∈Δ6 vr (x)−〈p, x〉 and uB is defined by Equation (3). Recall

from Section 2.1 that, for i ∈ {r ,B}, we have vi (x) = minp∈R6 ui (p) + 〈p, x〉, where

one can check that p �→ ui (p) + 〈p, x〉 always possesses a non-negative minimizer p

for x ∈ Δ6. So in order to prove Proposition 2, it suffices to show that ur (p) = uB(p)

for all p ∈ R6
≥0. By L♮-convexity of ur and uB [36], both are determined uniquely

on R6
≥0 by the values ur (p) and, respectively, uB(p) for p ∈ Z6

≥0. Moreover, given

p ∈ Z6
≥0, define p̃ by p̃i = pi if pi ≤ 1 and p̃i = 1, otherwise. Since the marginal

value of any good is at most 1 for vr , and no bid in B has any value greater than 1,

allocating a good i with p̃i = 1 can never increase utilities, so we have ur (p) = ur (p̃)

and uB(p) = uB(p̃). So our problem reduces to showing that ur (p) = uB(p) for all

p ∈ {0, 1}6. For H ⊆ {1, . . . , 6}, denote by pH ∈ {0, 1}6 the price vector with pH
i = 1

if and only if i ∈ H . We will show that ur (p
H ) = uB(pH ) for all H ⊆ {1, . . . , 6}.

We claim that ur (p
H ) = rank(H c). To see this, let x be a bundle with ur (p

H )

= vr (x) − 〈pH , x〉 = vr (x) −
∑

i∈H xi . Let P = {i : xi ≥ 1}. Then

ur (p
H ) = rank(P) − |P ∩ H | ≤ rank(P ∩ H c) + rank(P ∩ H) − |P ∩ H |

≤ rank(P ∩ H c) + |P ∩ H | − |P ∩ H |

≤ rank(H c) = vr

(

∑

i∈H c

ei

)

− 0 ≤ ur (p
H )

by properties of matroid rank functions. Consequently, equality must hold everywhere,

so ur (p
H ) = rank(H c).

Regarding the indirect utility of our bids, we observe that at prices pH , the bid bH̃

generates a utility of w(bH̃ ) if and only if H̃ ∩ H c 
= ∅, i.e., if and only if bH̃ has

positive value for at least one good not in H . Otherwise it generates utility 0.

We now consider all subsets H ⊆ {1, . . . , 6} and show that in each case, ur (p
H )

= uB(pH ).
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First, for price vectors pH with |H | < 3, all bids are accepted, since every placed

bid has positive values for at least 3 goods. There are 4 bids of type 1, 3 bids of type

2, 6 bids of type 3 and 1 bid of type 4. In total, we get

ub(p
H ) = 4 · 1 + 3 · 1 + 6 · (−1) + 1 · 2 = 3.

On the other hand, one can see from Fig. 5 that every subset containing at least 4

edges contains a cycle-free subset of cardinality 3, and there is no cycle-free subset

with more than 3 elements. Consequently, ur (p
H ) = rank(H c) = 3.

Now consider pH with |H | = 3. Obviously, all bids on more than 3 edges get

accepted. A bid bH̃ with H̃ = 3 is rejected, if and only if H = H̃ . In this case, H c is a

cycle of length 3, so ur (p
H ) = rank(H c) = 2. We then also clearly have uB(pH ) = 2,

since exactly one bid is rejected, and all others are accepted.

On the other hand, if |H | = 3 and no bid is rejected, H c is cycle free, so ur (p
H ) =

rank(H c) = 3 = uB(pH ).

Next, suppose |H | = 4, so ur (p
H ) = rank(H c) = 2, because 2 edges cannot form

a cycle. Regarding the bids, if H is a cycle of length 4, one bid of type 2 is rejected.

In this case, H c consists of two non adjacent edges. Consequently, there is no i ∈ H

such that {i} ∪ H c is a cycle. Equivalently, for no H̃ ⊆ H with |H̃ | = 3 we have that

H̃ c is a cycle, so no bid of type 1 is rejected, and uB(pH ) = 2.

If, otherwise, H has no cycle of length 4, H c consists of two adjacent edges. Thus,

there is a unique e ∈ H with {i}∪ H c being a cycle, so a single bid of type 1 is rejected,

which means that again uB(pH ) = 2.

Concerning |H | = 5, since the graph is complete, we can assume by symmetry

that H = {1, 2, 3, 4, 5}. Then the bids bH̃ with

H̃ ∈ {{1, 2, 5}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}

are rejected, and uB(pH ) = 2 ·1+2 ·1+5 · (−1)+1 ·2 = 1 = rank(H c) = ur (p
H ).

Finally, for H = E , all bids are rejected, so uB(pH ) = ur (p
H ) = 0.

We have shown that for all p ∈ {0, 1}6, uB(p) = ur (p), which proves our statement.

⊓⊔

A.3 Proof of Proposition 3

Proof of Proposition 3 We will show that D = ΔW = Zn ∩ WΔ, where Δ is the

standard simplex in dimension n, spanned by 0 and the standard unit vectors ei . Since

WΔ contains exactly
(

n+W
n

)

integer points [10, Theorem 2.2], the remaining results

follow.

By the strong substitutes property, D = (conv D) ∩ Zn , so it suffices to show that

conv D = WΔ. To that goal we note that if we set pi = −1 and p j very large for

j 
= i , then D(p) = {W ei }, since every bid b is allocated with w(b) items of good i

and the total weight of all bids is W . Also, for a very large price (in every coordinate)

p, we have DB(p) = {0}. Consequently, conv D ⊇ WΔ. To see the reverse inclusion,

note that any demanded bundle cannot contain strictly more than W items, as some bid
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would have to be allocated with more than w(b) items otherwise. The lower bounds

come from the basic inequality
(

m
k

)

≥ (m/k)k . ⊓⊔

A.4 Proof of Theorem 1

Proof of Lemma 1 The linear program (LP) of Sect. 3 is clearly defined for any

x = t ∈ conv ΔW , and we can use this to assign a real value to ṽB(x) for x ∈ conv ΔW

and set f = −ṽB. Since f is a polyhedral convex function according to [43, p. 172], its

subdifferential is nonempty at every point of dom f [43, Theorem 23.10], so dom ∂ f

= dom f = conv ΔW . Let us consider the convex conjugate f ∗ of f (x) = −ṽB(x).

By definition, f ∗(q) = maxx∈conv ΔW
〈q, x〉 + ṽB(x), or in LP-form:

f ∗(q) = max
∑

b∈B

∑

i∈[n](bi + qi )ybi

s.t. xi =
∑

b∈B ybi∀i ∈ [n]
∑

i∈[n] ybi ≤ w(b)∀b ∈ B

ybi ≥ 0∀b ∈ B, i ∈ [n].

Note that since the set of feasible solutions x is compact, f ∗(q) attains a finite value

for all q ∈ Rn , so dom ∂ f ∗ = dom f ∗ = Rn , since f ∗ is also polyhedral convex. Let

us now derive the expressions for ∂ f and ∂ f ∗. To that goal, note that x maximizes

the above linear program if and only if x ∈ ∂ f ∗(q), which is in turn equivalent to

q ∈ ∂ f (x) [43, Theorem 23.5]. It is not hard to see from Equations (1) and (2) that

the variables ybi constitute an optimal solution for the above linear program, if and

only if for every fixed b the vector (ybi )
n
i=1 lies in conv Db(−q), which can be seen

to be equivalent to x ∈ conv DB(−q) (recall that in the case of only positive bids, the

aggregate demand set is just the Minkowski sum of the individual demand sets). It now

directly follows that ∂ f ∗(q) = conv DB(−q) and ∂ f (x) = −{p : x ∈ conv DB(p)}.

⊓⊔

Lemma 4 Let B be a valid collection of bids. Let t ∈ ΔW and s ∈ ΔW− . Then

t + s ∈ ΔW+ . Consequently, for the convex extensions f of s �→ −v|B−|(s) and g

of s �→ −vB+
(t + s) we have that dom f = conv ΔW− ⊆ conv{s ∈ Zn : t + s ∈

ΔW+} = dom g.

Proof As t ∈ ΔW , we have
∑n

i=1 ti ≤ W . Similarly,
∑n

i=1 si ≤ W−. Since W =

W+ − W− it follows that
∑n

i=1(ti + si ) ≤ W+, so t + s ∈ ΔW+ . This directly implies

the second part of the Lemma. ⊓⊔

Proof of Theorem 1 Let f be the convex extension of s �→ −v|B−|(s) and g the convex

extension of s �→ −vB+
(t + s). Then dom f = conv ΔW− ⊆ dom g and dom g∗ =

Rn = f ∗ by Lemmas 1 and 4. From Lemma 1 we know that f ∗(q) = u|B−|(−q).

Similarly, g∗(q) = uB+
(−q) − 〈q, t〉. So we can apply Theorem 2 to f − g and get

min
s∈conv ΔW−

ṽB+
(t + s) − ṽ|B−|(s) = min

q∈Rn
uB+

(−q) − u|B−|(−q) − 〈q, t〉,
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if any of the two problems has a solution. By substituting p = −q, we can rewrite the

problem on the right as

min
p∈Rn

uB+
(p) − u|B−|(p) + 〈p, t〉 = min

p∈Rn
uB(p) + 〈p, t〉.

The expression uB(p) + 〈p, t〉 is exactly the Lyapunov function L(p) introduced in

Section 3. For strong substitutes valuations, the Lyapunov function always attains a

minimum, and the set of minimizers is equal to the set of equilibrium prices for the

target t [3]. Consequently, the problem mins∈conv ΔW−
ṽB+

(t + s)− ṽ|B−|(s) also has a

solution s ∈ conv ΔW− , and the values of both minimization problems are equal. There

exists at least one integral solution s̄ ∈ ΔW to this problem: Let p be a minimizer of

the Lyapunov function. By Theorem 2, each s ∈ ∂ f ∗(−p) = conv DB(p) minimizes

ṽB+
(t+s)−ṽ|B−|(s), so in particular each s̄ ∈ DB(p) 
= ∅ does so. Since the valuations

vB+
and v|B−| coincide on integral bundles with ṽB+

and ṽ|B−| by construction,

min
s∈ΔW−

vB+
(t + s) − v|B−|(s) = min

s∈conv ΔW−

ṽB+
(t + s) − v|B−|(s) = min

p∈Rn
L(p).

Finally, again by Theorem 2, if s̄ ∈ ΔW− is a minimizer, each p with −p̄ ∈ ∂g(t + s)

= −{p ∈ Rn : t + s̄ ∈ conv DB+
(p)} minimizes L . In other words, each equilibrium

price for t + s for the positive auction is an equilibrium price for the complete auction

as well. ⊓⊔

A.5 Proof of Theorem 3

We now prove Theorem 3 which states that our DC-algorithm always terminates in a

global minimum. First, we collect some properties of the DC-algorithm.

Proposition 6 Algorithm 1 has the following properties:

1. The sequences f (sk) − g(sk) and g∗(qk) − f ∗(qk) are decreasing. Furthermore,

f (sk)−g(sk) ≤ g∗(qk)− f ∗(qk) and g∗(qk+1)− f ∗(qk+1) ≤ f (sk)−g(sk). The

sequence g∗(qk) − f ∗(qk) is strictly decreasing until the termination criterion is

met.

2. If the algorithm terminates with (sk, qk), then sk ∈ ∂ f ∗(qk) ∩ ∂g∗(qk) and qk ∈

∂ f (sk) ∩ ∂g(sk). Furthermore, f (sk) − g(sk) = g∗(qk) − f ∗(qk).

Proof A proof can be found in [46, Theorem 3]. The sequence g∗(qk) − f ∗(qk) is

strictly decreasing because the algorithm terminates as soon as g∗(qk) − f ∗(qk) =

g∗(qk+1) − f ∗(qk+1). ⊓⊔

Next, we show that we can always restart the DC algorithm from a computed

stationary point.

Lemma 5 Suppose that in Algorithm 2 the termination criterion in line 5 is met with

supply s and price vector p. If p is no equilibrium price, then there exists a descent

direction e ∈ ±{0, 1}n of the Lyapunov function at p. If we restart the algorithm

with p̃0 := p + e, we have for all elements (p̃k, s̃k) of the new sequence that L(p̃k)

≤ L(p) − 1.
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Proof If the returned price p is no equilibrium price, then it is no minimizer of the

Lyapunov function [4]. It follows by L♮-convexity of L that there exists e ∈ ±{0, 1}n

with L(p + e) ≤ L(p) − 1 [36]. By Property 1 in Proposition 6 we have that L(p̃k)

≤ L(p) − 1 for the sequence of prices generated after the restart with initial price

p̃0 = p + e. Since L possesses a minimizer [4] and after each restart the value of the

Lyapunov function decreases by at least 1, the algorithm terminates with an equilibrium

price. ⊓⊔

This completes the proof of Theorem 3: In each step of the main loop, the value of

L(pk) strictly decreases by an integer amount, and if we leave the main loop, we either

restart with a price vector of a strictly smaller value, or we terminate, if we are at a

global minimum already.

Lemma 6 Suppose that the prices pk+1 in Step 4 of Algorithm 2 are chosen deter-

ministically. Let R ∈ Z≥0 be the number of restarts of the algorithm and let

Sr = (s0
r , s1

r , . . . , s
|Sr |
r ) denote the sequence of iterates generated in Step 3 after

the r-th restart for r = 0, . . . , R (S0 is the sequence before the first restart). Then for

r1 
= r2, Sr1 and Sr2 do not contain any common bundle. Moreover, for each r the

bundles s0
r , . . . , s

|Sr |−1
r are pairwise distinct.

Proof Suppose that sk
r1

= sl
r2

for some r1 ≤ r2 and k, l. Then we have for the computed

prices in Step 4 that pk+1
r1

= pl+1
r2

, so L(pk+1
r1

) = L(pl+1
r2

). This can only happen if

r1 = r2, since otherwise L(pl+1
r2

) ≤ L(pk+1
r1

) − 1 by Lemma 5. Now suppose that

r1 = r2 = r and k ≤ l. Then again L(pk+1
r ) = L(pl+1

r ). By Property 1 of Proposition

6, it follows that k = l − 1 and the termination criterion is satisfied in iteration l, so

l = |Sr | and the bundles s0
r , . . . , s

|Sr |−1
r are pairwise distinct. ⊓⊔

A.6 DC algorithm

For the DC algorithm, reformulating the (LP) as a min-cost flow problem comes with

a significant computational advantage as compared to solving it with a generic LP-

solver. We briefly describe the general min-cost flow problem. For more details, we

refer to [1]. Given a directed graph, an arc is a tuple (v, w) where v and w are nodes
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of the graph. We denote by u(v, w) ≥ 0 the maximum capacity of this arc and by

c(v, w) ∈ R the cost per unit flow along (v, w). For a node v, we denote by β(v) ∈ R
the supply at node v. Depending on the sign of β(v), a total flow of |β(v)| must leave

(positive sign) or enter (negative sign) v. If the supply is 0, the inflow must equal the

outflow. A flow f assigns a value f (v, w) ∈ R to each arc, the amount of flow from

v to w. It is feasible, if 0 ≤ f (v, w) ≤ u(v, w) for each arc (v, w) in the network,

and
∑

w f (v, w) −
∑

w f (w, v) = β(v) for all nodes v, where the sums run over all

w such that (v, w), respectively (w, v) is an arc in the network. The cost of the flow

is equal to
∑

(v,w) c(v, w) f (v, w). The objective of the min-cost flow problem is to

find a feasible flow with minimal cost.

The linear program (LP) is used to solve Step 4 in Algorithm 2 where we need to

compute a price vector pk+1 at which the bundle t+sk is demanded. A straightforward

network flow model for (LP) is illustrated in Fig. 6. For each good i ∈ {1, . . . , n} there

is a node gi , and for each of the m = |B+| positive bids indexed by j ∈ {1, . . . , m}

there is a node b j . Finally, there is a destination node d. In our flow network, there is

an arc (gi , b j ) from each good i to each bid j with unlimited capacity u(gi , b j ) = ∞

and cost c(g j , bi ) = −b
j
i , i.e., the negative value of bid j for good i . The arcs

(b j , d) from the bids to the destination node have capacity u(b j , d) = w(b j ) and cost

c(b j , d) = 0. In Step 4 of Algorithm 2, a supply of t + sk must be distributed among

the bids. We set the supply of node gi to β(gi ) = ti + sk
i and the supply of node d

to β(d) = −
∑n

i=1 ti + sk
i . Finally, the supply of node b j is set to β(b j ) = 0. Since

t+sk ∈ ΔW+ (Appendix Lemma 4),
∑n

i=1 ti +sk
i ≤

∑m
j=1 w(b j ), so a feasible flow f

exists. Moreover, since the capacities and supplies are all integral, an integral optimal

flow exists. Note that the proposed flow network contains arcs with negative cost. If

required by a specific solver, it can however easily be transformed into a network with

only non-negative costs [1, p. 40].

We assume that the applied min-cost flow solver provides us with an integral optimal

flow f , as well as with an integral optimal dual solution, consisting of node potentials

π(v) ∈ R for each node v in the network. These satisfy the following complementary

slackness conditions [1, Theorem 9.4].

1. If c(v, w) + π(v) − π(w) > 0, then f (v, w) = 0.

2. If 0 < f (v, w) < u(v, w), then c(v, w) + π(v) − π(w) = 0.

3. If c(v, w) + π(v) − π(w) < 0, then f (v, w) = u(v, w).

From the complementary slackness conditions it is not hard to deduce that p defined

by pi = π(gi ) − π(d) is an equilibrium price vector for the supply t + sk , so we can

choose pk+1 = p in Step 4 of the algorithm.

Let us finally consider Step 3 of Algorithm 2, where a bundle sk must be chosen

that is demanded at price pk ∈ Zn in the negative auction. This is particularly easy to

do in the Product-Mix Auction (see also [6]): For each bid b in the negative auction,

choose a bundle s(b) ∈ Db(p). By Equs. (1) and (2), this can be done in linear time in

the number of different goods. Then set sk =
∑

b∈|B−| s(b). In our implementation,

we choose a bundle sk which is a vertex of D|B−|(p). This can be achieved by suitably

perturbing p: Let q = p + Δ be a price such that D|B−|(q) ∩ D|B−|(p) 
= ∅ and
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|D|B−|(q)| = 1. For example, Δ = (ε, 2ε, . . . , nε) works for ε > 0 small enough.

Then simply choose the unique s(b) ∈ D|B−|(q) and construct sk as above.

A.7 Generating valid bid groups

Algorithm 3: Algorithm for generating valid groups of positive and negative bids,

used for experiments.

Input: Random parameters a0, . . . an ∈ Z>0, a random permutation σ ∈ Sn , weight w ∈ Z>0,

displacement parameter c ∈ Zn
≥0.

Output: Group of 3 positive and 1 negative bids.

1: Generate 2 vectors v1, v2 ∈ Zn
≥0:

2: for i ∈ {1, 2} do

3: Set vi
j
= 0 for all j with σ( j) ≤ 2 and σ( j) 
= i .

4: Set vi
j
= a j if σ( j) = i .

5: Otherwise, choose v
j
i

∈ {0, a j } uniformly at random.

6: end for

7: Place positive bids at v1, v2.

8: Place a negative bid at the coefficient-wise maximum v1 ∧ v2.

9: Let J = { j : v1
j


= v2
j
}. Place a positive bid at v1 ∧ v2 + a0eJ .

10: Assign weight w to all these bids and shift them by c.

A.8 Experimental results

See Table 2.

Table 2 Runtimes of the DC- and the steepest descent (SD)-algorithm. For each experimental setting, we

generated 15 sample auctions. The indicated runtimes are the averages over the respective 15 samples

#pos. bids #neg. bids #goods Time DC (ms) Time SD (ms)

1020 20 10 31 394

1020 20 20 63 352

1020 20 30 105 410

1020 20 40 133 505

1020 20 50 206 665

1200 200 10 60 502

1200 200 20 157 478

1200 200 30 288 522

1200 200 40 453 620

1200 200 50 597 791

1500 500 10 128 649

1500 500 20 313 664
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Table 2 continued

#pos. bids #neg. bids #goods Time DC (ms) Time SD (ms)

1500 500 30 562 682

1500 500 40 916 775

1500 500 50 1163 962

3020 20 10 115 1152

3020 20 20 252 1116

3020 20 30 445 1278

3020 20 40 592 1225

3020 20 50 970 1366

3200 200 10 175 1303

3200 200 20 413 1236

3200 200 30 628 1226

3200 200 40 1082 1421

3200 200 50 1649 1588

3500 500 10 244 1620

3500 500 20 606 1559

3500 500 30 983 1509

3500 500 40 1642 1575

3500 500 50 2803 1919
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6 Discussion and Conclusion

Due to their preferable properties, Walrasian equilibria are the desired outcomes in

many markets and auctions. In real-world applications, it is essential that auctions can

be conducted in a time-efficient way, raising the problems of efficiently communicating

preferences and computing an outcome of the auction. These two central problems are

the main subject of study in this dissertation. We presented scientiĄc contributions on

the existence of Walrasian equilibria, the analysis of bid languages, and how we can

leverage a speciĄc bid language to design new efficient algorithms.

In the Ąrst publication included in this dissertation, we survey existing conditions on the

biddersŠ preferences that guarantee the existence of a Walrasian equilibrium and explain

how these conditions are related to notions of discrete convexity. For the case of gross

substitutes bidders, we give a new interpretation of the iterative ascending auction of

Ausubel (2006) in terms of the primal-dual algorithm. Publication 1 also points to three

major open questions in competitive equilibrium theory.

First, usual assumptions on the biddersŠ valuation functions, like the gross substitutes

condition, to guarantee the existence of a Walrasian equilibrium are often not satisĄed

in real-world markets. It is, therefore, necessary to come up with generalized, weaker

notions of equilibria to deal with such markets. Connected to this problem is the design

of new iterative auctions for computing these outcomes.

The quasi-linear utility model is the second strong standard assumption of competitive

equilibrium theory that is usually not met in practice. Quasi-linear utilities imply, in

particular, that bidders do not face any Ąnancial constraints: no matter how high the

price is, bidders can always afford their preferred bundle. If we deviate from this model

and assume that bidders face a hard upper limit on how much money they can spend, it

is easy to construct examples where a competitive equilibrium does not exist Ű even in

one of the most basic market environments, namely assignment markets. Recent results

suggest that computing outcomes that satisfy a subset of the properties of Walrasian
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6 Discussion and Conclusion

equilibria Ű namely core-stability and welfare-maximization Ű are computationally very

hard: in Batziou et al. (2022) we prove that this problem is already NP-complete in

assignment markets, while Bichler and Waldherr (2022) show that the very general

setting of combinatorial exchanges, where bidders are allowed to have arbitrary valuation

functions, is even Σp
2-hard.

On the other hand, the question of equilibrium existence has a positive answer in settings

with weak budget constraints (Baldwin et al. (accepted) 2022), under conditions on

the valuation functions that are generalizations to those from the quasi-linear setting.

In the model with weak budget constraints, a bidderŠs utility for a bundle decreases

continuously to −∞ as the price approaches the budget constraint, in contrast to hard

budget constraints, where the utility has a jump discontinuity as soon as the budget

is exceeded. However, no algorithms have been developed for computing competitive

equilibria in this setting, and little is known about the computational complexity of this

problem.

Third, incentive-compatibility is a major issue, particularly in smaller markets. As was

demonstrated in Section 2.3, Walrasian equilibria can generally not be implemented

by a strategyproof mechanism. With quasi-linear utilities, it is well-known that the

Vickrey-Clarke-Groves (VCG) mechanism is essentially the unique strategyproof mech-

anism yielding a welfare-maximizing assignment. In contrast to Walrasian equilibria,

the VCG mechanism uses non-linear and non-anonymous prices. Several variants of

iterative auctions have been proposed for computing VCG-outcomes, see for example

Ausubel (2006), Baranov (2018), and de Vries et al. (2007). VCG-outcomes, however,

have their own disadvantages. For example, they are prone to collusion and bid shilling.

They also often provide low revenue for the seller Ű in particular, the revenue is gener-

ally non-monotone in the number of participating bidders (Ausubel and Milgrom 2006).

As mentioned in Section 2.3, an alternative approach is to consider relaxed notions of

strategyproofness for large markets, as done by Azevedo and Budish (2018), Jackson

and Manelli (1997), and Roberts and Postlewaite (1976). We think that both questions

Ű the design of incentive-compatible iterative auctions, and developing weaker notions of

strategyproofness Ű are far from being answered satisfactorily. This is particularly the

case when considered jointly with other deviations from the standard assumptions, like

Ąnancially constrained bidders.

In Publication 2, we study the expressiveness of Assignment Messages, a bid language

for expressing strong substitutes preferences. We prove that there are strong substitutes
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preferences that cannot be expressed in this bid language. This is done by giving a new

interpretation of Assignment Messages as min-cost Ćow problems, leading to the con-

clusion that all valuations described by Assignment Messages satisfy a strictly stronger

property called strong exchangeability.

Our result naturally raises the question of the exact relation between Assignment Mes-

sages and strong substitutes valuations. It would be interesting to understand if As-

signment Messages form a ŞnaturalŤ subset of strong substitutes. In particular, it is

unknown whether Assignment Messages can express all strongly exchangeable valuation

functions. Connected to this, we might also ask whether there is a generalization of As-

signment Messages capable of expressing a larger set of strong substitutes preferences.

A related question concerns the translation of Assignment Messages to SSPMA bids.

Note that the reverse direction is impossible for arbitrary SSPMA bids since they can

express every strong substitutes valuation function. Whether Assignment Messages or

SSPMA bids are more intuitive for a bidder is likely to depend on the particular structure

of their valuation function. Thus, a tool for translating one bid language into the other

can ease the biddersŠ process of reporting their valuations. There exist algorithms that

convert arbitrary strong substitutes valuation functions into the corresponding SSPMA

bids (Lock et al. 2022), which can also be used to convert Assignment Messages. These

algorithms are, however, notoriously slow, and we may hope for signiĄcantly faster al-

gorithms when taking into account the structure of Assignment Messages.

In Publication 3, we develop a novel algorithm for computing Walrasian equilibrium

prices when bidders express their preferences via SSPMA bids. The algorithm is based

on a novel duality result, relating the Lyapunov function to the welfare difference of

the positive-bids and negative-bids auction. While the observed number of iterations

of the algorithm until convergence is very low, it turns out to be very hard to give a

good theoretical worst-case estimate. Note that minimizing the difference of two general

strong substitutes valuation functions is NP-hard (Kobayashi 2015), so a good upper

bound for our problem would necessarily strongly depend on the additional structure

provided by the SSPMA bid language. We believe that research in this direction will

deepen the understanding of the strong substitutes condition in general.

As part of this Ph.D. project, the author also conducted research on learning Bayes-Nash

equilibria in auction games (Bichler et al. 2021a; Fichtl et al. 2022). The developed al-

gorithms show excellent experimental performance in a large class of practically relevant

auction games. However, there are almost no theoretical results regarding the conver-
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gence of these algorithms. The only known results consider second-price auctions and

Ąrst-price auctions with two bidders and particular assumptions on the biddersŠ prior

distributions (Feng et al. 2020). Our experiments suggest that convergence holds for

much more general auction settings, and we conjecture that it holds indeed globally

in many scenarios. Besides theoretical questions, there is also space for algorithmic im-

provements of our methods. While the SODA algorithm outperforms NPGA in instances

with few (up to 3− 4) bidders, the execution time becomes infeasible for larger numbers

of bidders and interdependent prior distributions. Natural approaches for improving the

algorithms running time include adaptive discretization of the biddersŠ strategy spaces

and a sampling-based method for approximating the gradients.
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