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Abstract

This study expands the existing methods for non-destructively identifying the spatially varying

material properties of a structure using modal data. It continues a recently published approach

to this inverse problem that employed Bayesian inference in conjunction with the Karhunen-Loève

expansion to solve it. Here, we present two developments. Firstly, eigenvectors are used instead of

eigenvalues, improving the results significantly. Secondly, a generalized polynomial chaos surrogate

accelerates the inversion procedure. Finally, we develop a methodology for reusing the surrogate

model across inversion tasks. We demonstrate the efficacy and efficiency of this methodology via

the field of additive manufacturing and the fused deposition modeling process. The good results

promise profound computational cost saving potential for large-scale applications.

Keywords: material parameter identification, modal analysis, finite element method, generalized

polynomial chaos, Bayesian inference, Karhunen-Loève expansion, process-structure-property

relations, functionally graded material

1. Introduction

Non-homogeneous materials are receiving increasing attention from researchers. Owing to

advances in computational power, naturally non-homogeneous materials and those, where the
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manufacturing process induces unintentional non-homogeneity, see Gupta and Gupta [1], are being

regarded. On the other hand, functionally graded materials are being popularized, see Garcia5

et al. [2], which creates demand for corresponding testing methods. With functionally graded

materials, the material parameters are varied spatially with intent. Marzouk and Najm [3] develop

a method that is useful for characterizing such a material and Uribe et al. [4] apply a related

method successfully to the identification of spatially varying stiffness using static deflection data

of a structure.10

Sundararajan et al. [5] report that the material non-homogeneity significantly influences the

vibration behavior of functionally graded plates. As a response to this, Hoppe et al. [6] propose

a non-destructive resonance frequency method for identifying the spatially varying stiffness of

structures. Frequency response functions at several observation points improve the estimation of

the piece-wise non-homogeneous Young’s modulus. [7, 8] Batou and Soize [9] extend this procedure15

to account for continuously non-homogeneous materials in composite structures.

The framework by Marzouk and Najm [3] demands that the covariance of the spatially varying

material property is known. Sraj et al. [10] propose a procedure that eliminates the requirement

of having a priori knowledge of the covariance hyper-parameters using this established Bayesian

inference framework in conjunction with the Karhunen-Loève expansion and generalized polyno-20

mial chaos expansion. Siripatana et al. [11] accelerate this procedure by adding a second, nested

generalized polynomial chaos surrogate. However, these studies assume that the covariance hyper-

parameters of the unknown spatially varying quantity are notoriously intangible.

Indeed, the linkage between manufacturing process parameters and the properties of the man-

ufactured parts continues to elude researchers. The following paragraphs ponder why process-25

structure-property relations, that is the impact of process parameters on part properties, are so

hard to identify within the scope of additive manufacturing.

Complexity must be mentioned as the first inhibitor. Hashemi et al. [12] stress that the knowl-

edge of the underlying physics is incomplete. Non-linearity is notoriously hard to capture in the

context of additive manufacturing, and excitation as well as boundary conditions are not approx-30

imated well enough, see Gatsos et al. [13]. Not only are the process-structure-property relations

complex, so are the process parameters themselves [14, 15, 16]. On top of that, often more than

10 process parameters exhibit a relevant impact [12]. Models need to be harmonized across scales
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and time-scales [17]. In addition to being cost and time-intensive, the necessary experiment chains

and cohesive multi-scale approaches [18, 19] are prone to error propagation.35

Secondly, the completeness and lack thereof present a recurring theme in the literature. A

perpetual dichotomy seems to be present in the literature. It is often stated that a substantial

amount of work has been completed, but that significant gaps remain [18, 20]. Specifically, many

physical phenomena have yet to be examined, more materials and manufacturing processes should

be studied, and a broader range of process-structure-property relations are to be investigated, see40

Patham and Foss [21]. In general, more experimental and high-fidelity numerical data that are

transparent and accessible are needed [21].

Finally, process-structure-property relations are plagued by uncertainties. The lack of determin-

istic process-structure-property relations stems from the aleatory uncertainty that part properties

entail and the epistemic uncertainty connected to physics-based models [22, 23]. There exists con-45

siderable interest in the statistical information entailed by materials and their processing, where

the correlations of the process-structure-property relations have yet to be established [24].

The integrated computational materials engineering framework proposed by Horstemeyer and

Sahay [25] is a design approach that attempts to connect material models across different scales.

Ghosh [26] predicts that multi-scale modeling will accelerate the discovery of the correlations50

of process-structure-property relations within the integrated computational materials engineering

framework. They anticipate this to be achieved by the generation of large amounts of data and

the subsequent completion of process-structure-property relations via data-driven methods.

We suggest an abstraction that may serve as a remedy. While process-structure-property rela-

tions continue developing, we instead consider the random field length-scales of the manufacturing55

process and the manufactured part, respectively. A link between these two random field length-

scales is significantly easier to establish than a direct one between the corresponding parameters.

Especially when the material parameter is a linear, albeit unknown function of the process param-

eter, the length-scale of the latter as a Gaussian process propagates to the material parameter. We

leverage this link to accelerate the inference of spatially varying material parameters of parts de-60

signed to meet different requirements that are configured similarly. For the additive manufacturing

process fused deposition modeling [27, 28, 29], which uses plastics as a material, we train a surro-

gate for one set of hyper-parameters and then recycle this surrogate for modified configurations of
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the part.

This paper is organized as follows: Section 2 presents the theoretical preliminaries for our65

non-destructive material parameter identification workflow. These concepts are applied to the

identification of spatially varying stiffness given a structure’s modal data in Section 3. This section

demonstrates the novel methodology, where the surrogate used for stiffness identification is trained

using one configuration and recycled for the others. The results of this demonstrator are presented

in Section 4 and discussed in Section 5, where we also draw conclusions from our findings.70

2. Methods for Inferring Dimensionality-Reduced Random Fields Employing Surro-

gate Models

This section covers all relevant methods necessary for the generation of our results in Section 4.

Section 2.1 formulates the Bayesian inverse problem setup, Section 2.2 describes the reduction of the

random space via the Karhunen-Loève expansion, and Section 2.3 briefly covers how the generalized75

polynomial chaos surrogate is constructed on this dimensionality-reduced space. Finally, Section 2.4

details the transformation of the generalized polynomial chaos surrogate when the Karhunen-Loève

expansion, whose coefficients are the surrogate inputs, changes.

2.1. Inverse Problem Setup Using the Bayesian Approach

Consider an ideal forward model G

d = G(m)+ε, (1)

where d is the data, m are the model parameters, and ε is independent and ideally distributed

Gaussian measurement noise. Given the data d and the forward model, solving the inverse problem

is to estimate the unknown model parameters. One way of solving an inverse problem is the

Bayesian approach. Bayes’ rule reflects how new data updates our prior beliefs, formulated as the

prior probability distribution ρ(m), concerning the unknowns m. Expressing these quantities in

terms of probability densities produces Bayes’ theorem

πm(m) = ρ(m|d) ∝ ρ(d|m)ρ(m), (2)

stating that the posterior probability density ρ(m|d) of the model parameters given the data is

proportional to the product of likelihood and prior probability density. The likelihood

L(m) = ρ(d|m) = ρε(d−G(m)) (3)
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measures how likely an observation of the data d is, given the model parameters m.80

Sampling from the posterior distribution is often achieved with exploration algorithms. The

samples approximate the true posterior density and allow for the calculation of statistical moments.

A computationally cheaper strategy is finding the mode of the posterior probability density by

solving an optimization problem. This approach, which explicitly does not estimate the expected

value, is called the maximum a posteriori estimate:

mMAP = arg max L(m)ρ(m). (4)

2.2. Karhunen-Loève Expansion

When identifying the properties of homogeneous materials, the parameters are typically inter-

preted as random variables in the context of Bayesian inference. For non-homogeneous materials,

the material parameters are spatially varying and are considered as functions that live on the spatial

domain of the structure. Fine discretization of these functions yields a large number of unknowns

that have to be identified in the inversion procedure. This collection of random variables can be

described as a random field. Second order random fields are fully described by their mean and

covariance functions. The covariance function of two points x and x′ reads as

C(x,x′) =
K∑
i=1

λiφi(x)φi(x
′) with ‖φi‖ = 1 (5)

and is decomposable using its eigenvalues λi, eigenfunctions φi, and K terms.

Having to approximate a high-dimensional multi-variate distribution is detrimental to the in-

version procedure, as the inference must then traverse this high-dimensional space. Mercer’s theo-

rem 5[30], which the Karhunen-Loève expansion is based on, offers a remedy. The Karhunen-Loève

expansion of a random field coincides with a dimensionality reduction of the random space. Specif-

ically, the random dimensionality is decoupled from the spatial discretization and reduced to the

truncation order K. The truncated Karhunen-Loève expansion reads as

MK(x, ω) = µ(x) +
K∑
i=1

√
λiηi(ω)φi(x). (6)

Here, M is a Gaussian second order random field, µ is the mean function, and ηi are the Karhunen-

Loève coefficients. Now, ηi represent the new finite collection of random variables that encapsulate

the random field’s variability by means of the Karhunen-Loève expansion. They can be used to85

generate realizations of the random field when sampled from standard normal distributions.
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2.3. Dimensionality-Reduced Generalized Polynomial Chaos

Marzouk and Najm [3] pioneer the combination of the Karhunen-Loève expansion with gener-

alized polynomial chaos in the context of Bayesian inference. The use of generalized polynomial

chaos as a surrogate is beneficial when forward model evaluations are computationally expensive.90

This is especially relevant for methods employing Markov chains for the posterior’s exploration.

The goal of the generalized polynomial chaos expansion within this scope is to construct a

computationally less expensive surrogate for the forward model G(η). This surrogate employs

both, an expansion of the forward model inputs

η̂i = gi(ξ) =

NP1∑
k=0

aikΨk(ξ) (7)

and an expansion of the forward model outputs

Ĝi =

NP2∑
k=0

bikΨk(ξ). (8)

Here, the number of terms

Np + 1 =
(n+ p)!

n!p!
(9)

depends on the polynomial order p and the number n of input random variables ξ. When the

Karhunen-Loève coefficients comprise the model inputs, an optimal generalized polynomial chaos

expansion can be achieved by using Hermite polynomials for the polynomial basis Ψ, as the

Karhunen-Loève coefficients are standard normally distributed. After obtaining the generalized95

polynomial chaos coefficients a and b using stochastic collocation, drawing samples from ξ and

evaluating the generalized polynomial chaos surrogate Ĝ(ξ) accordingly yields response samples

that approximate the true model response.

2.4. Removing the Surrogate Model’s Dependence on the Random Field Hyper-Parameters

A new generalized polynomial chaos surrogate must be computed, when the parametrization100

of the Gaussian process prior on the quantity of interest changes. When the covariance hyper-

parameters of the random field change, so does its Karhunen-Loève expansion, as the eigenvalues

and eigenvectors are updated. Because the generalized polynomial chaos surrogate utilizes an ex-

pansion of the Karhunen-Loève coefficients to construct the generalized polynomial chaos expansion

of the model outputs, it must be trained anew. Sraj et al. [10] resolve this dependency and develop105
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a more flexible variant of the Karhunen-Loève expansion that need not be recomputed when the

covariance hyper-parameters change. In the following paragraphs, we briefly summarize the study

by Sraj et al. [10], as it is not uniformly known within the community.

The transformation from one parametrization of a covariance function to another by leveraging

the projection of their respective eigenfunctions onto each other lies at the core of their method.

It is the aim to transform from a reference covariance C(qr) = Cr with a set of reference hyper-

parameters qr to a covariance endowed with different hyper-parameters. After being projected

onto them, the new eigenfunctions Φi(q) can be expressed in terms of the reference eigenfunctions

Φi(q) =
∞∑
i′=1

bii′(q)φri′ with bii′ = (φri ,Φi′(q))X . (10)

These so-called scaled eigenfunctions are defined in the context of the target covariance as the

product of its eigenvalues and eigenfunctions

Φ(q)i =
√
λi(q)φi(q). (11)

The Karhunen-Loève expansion corresponding to the target covariance can now be expressed in

terms of the reference covariance as

MK(ω,q) =

K∑
i=1

Φi(q)ηi(ω) ≈
K∑
i=1

(
K∑
i′=1

bii′(q)φri′

)
ηi(ω) =

K∑
i=1

φri η
ct
i (ω,q). (12)

The transformed Karhunen-Loève coefficients

ηct
i (ω,q) =

K∑
i′=1

bi′i(q)ηi′(ω) (13)

are found using the reference Karhunen-Loève coefficients and the projection coefficients bii′ . They

read as

ηct(ω,q) = B(q)η(ω) (14)

in matrix form. Finally, a transformed surrogate is obtained, where the transformed generalized

polynomial chaos expansion of the inputs reads as

Gj(η, q) = Grj ≈ Ĝrj (ξ(η,q)) =

Np∑
i=0

ajiψi(ξ(η,q)) with ξ(η,q) = B̂(q)η, (15)
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where the B̂-matrix is defined as

B̂(q) =


Bkl(q)√

λrk
if

λrk
λr1
> κ with κ ≈ 1× 10−12,

0 otherwise.

(16)

This transformed surrogate is trained on the reference covariance, as it reuses the correspond-

ing generalized polynomial chaos coefficients and applies a transformation to the input random110

variables η. It may be used to approximate a system whose input random field is described by a

different covariance function, termed the target covariance.

The relative error εM between a random field M and its transformed representation M ct
K reads

as

εM (K,q) =
‖M(q)−M ct

K (q)‖L2(Ω,D)

‖M(q)‖L2(Ω,D)
, (17)

where

‖U‖2L2(Ω,D)
.
= E [(U,U)X ] . (18)

The left graph within Figure 1 shows this error for K = 15, a squared exponential kernel with

variance σ2 = 0.5, and varying parametrization q = l. The right graph shows the square root of

βmax(q), the largest eigenvalue of the covariance matrix Σ̂2(q) = B̂T (q)B̂(q).115
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Figure 1: Relative error εM and
√
βmax for a range of ratios between reference and transformed random field, following

Sraj et al. [10].
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3. Procedure

3.1. Preliminary Study and Proof of Concept: Dimensionality-Reduced and Generalized Polynomial

Chaos-Accelerated Inference of Young’s Modulus Using Mode Shape Data

In this section, we apply the accelerated and dimensionality-reduced inference procedure by

Marzouk and Najm [3] to the non-destructive identification of spatially varying stiffness given120

mode shape information.

We present our application as a preliminary study and proof of concept for our methodology

that will be introduced later. The quantity of interest is a random function defined on one spatial

dimension. It represents the Young’s modulus in x-direction Ex(x) of a beam measuring x×y×z =

450× 60× 9 mm with free-free boundary conditions. The numerical modal analysis is carried out125

in a python-based finite element method software [31] with a structured mesh and 5472 quadratic

elements. The first eigenvector of the structure obtained from performing numerical modal analysis

given the ground truth Young’s modulus makes up the synthesized measurement data. A signal-

to-noise ratio of 60 dB describes the simulated independent and identically distributed Gaussian

measurement noise. The reader is referred to Figure 2 for a visual representation of our procedure130

and especially the scope of the surrogate model.

η
Evaluation

of Ex

Numerical

modal

analysis

Mode shape L

Surrogate model

Bayesian inference

Figure 2: General procedure for reconstructing the reference random field given a mode shape and assuming the

covariance, priors, and measurement noise characteristics with Bayesian inference. The Karhunen-Loève coefficients

η are the quantities of interest. Within each step of the Bayesian inference sequence, the evaluation of the Karhunen-

Loève expansion with these coefficients yields Ex with the full spatial resolution. Numerical modal analysis is carried

out using this Ex assigned within the finite element model, yielding the beam’s first mode shape. The inference

uses a generalized polynomial chaos surrogate here that connects η to a probe grid for the first mode shape. Upon

comparison with the noisy measurement using the likelihood L, this step within the Bayesian inference is complete

and a new sample of η is drawn subsequently.
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The material’s statistical moments read as follows: The Young’s modulus Ex(x) is described

by a mean Ēx of 3 MPa and a standard deviation of σEx = 1% × Ēx. The material is modeled

as a random field over x and endowed with a Gaussian process prior with a Matérn covariance

kernel [32]

C(x,x′) = σ2 21−ν

Γ(ν)

(√
2ν|x− x′|

l

)ν
Kν

(√
2ν|x− x′|

l

)
, (19)

where Γ(ν) denotes the gamma function and Kν is a modified Bessel function [33]. The smoothing

parameter and correlation length are set to ν = 3/2 and l = L2 = 450 mm, respectively. The

second order generalized polynomial chaos expansion is used in conjunction with a Karhunen-Loève

expansion truncated to 5 terms. The Karhunen-Loève coefficients η are appropriately equipped

with standard normal prior distributions, since η ∼ N (0, 1). We use a non-normalized logarithmic

likelihood

l(Xmeas|η) = −1

2

N∑
j=1

(
Xmeasj − Ĝj(η)

)2

ε2j
, (20)

where N = 522 is the number of evaluation points at the top of the geometry within the finite

element model. Here, the likelihood variances are set equal to the measurement noise ε, which is

obtained by applying the signal-to-noise ratio to the deterministic ground truth simulation mode

shape data. The synthetic measurement is carried out 10 times in total.135

3.2. Application of the Methodology to Material Parameter Identification for Functionally Graded

Fused Deposition Modeling Parts

This section introduces the manufacturing process and the material models used in the academic

example. It describes the chosen part configurations used in the example, see Section 3.2.1, and the

process parameters together with the estimation of their length scales, see Section 3.2.2. Finally,140

Section 3.2.3 introduces uncertainty into the material parameters.

In the following, we demonstrate how, given a correlation between process and part parameter

length-scales, the knowledge of the former enables surrogate model recycling. This procedure

exhibits significant computation cost improvements over existing procedures as soon as a part is

designed for more than one configuration. It relies on the combination of the Karhunen-Loève145

expansion and generalized polynomial chaos within Bayesian inference. The novel interpretation

of the coordinate transformation described in Section 2.4 makes it possible to reuse a surrogate for

configurations other than the reference configuration.
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Figure 3: The figure shows the proposed novel methodology for recycling surrogate models connecting spatially

random materials to a structure’s mode shape. The recycling is employed based on length-scale correlations between

the manufacturing process parameters on the one hand and the resulting material properties on the other hand. This

procedure is embedded into the non-destructive material parameter identification that uses a Bayesian approach for

solving the inverse problem.
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3.2.1. Part Configurations

The goal for the considered manufacturing process is to produce three geometrically identical150

parts that are designed for distinct applications. In the context of large assemblies, interfaces

dominate the development cost. If the production volume is high, the production cost is equally

affected. The flexibility of application while maintaining the cost-sensitive compliance with in-

terface requirements is enabled through the functional grading realized with the fused deposition

modeling process and filaments A and B. The optimized, functionally graded parts offer surplus155

yield strength in regions with high equivalent stresses and reduce the yield stress in locations where

high strength is not a requirement. The theoretically resulting deterministic stiffness profiles im-

prove the minimum safety of the assembly for the functionally graded parts in comparison to the

homogeneous parts. On the one hand, this may be used to reduce weight while retaining the safety,

on the other hand, the safety-margin can be improved at constant part mass. The latter is pursued160

here, as keeping the overall part mass constant reduces the need for load bearing changes in the

overall assembly due to changes in the part mass, thus further lowering costs.

All configurations involve a structural beam with dimensions 450 × 60 × 9 mm. Each of the

three functionally graded beams is designed to meet the changing requirements posed by a different

application configuration. For the demonstration, we vary the external loads and the boundary165

conditions.

• Configuration 1, shown in Figure 4, is a cantilever beam with a clamping on the left side

and the load located on the right side at the free end. An equivalent one-dimensional and

homogeneous system exhibits a linear bending moment curve MB, as marked in the figure

with contrasting styling. Designing a material with properties appropriate for the stress170

decreasing together with the distance from the clamping requires a matching grading of the

yield stress. Choosing a linear yield stress curve leads to the largest length-scale considered

in this study.

• Configuration 2, shown in Figure 4, is a cantilever beam with a clamping on the left side

and a free tip, which is subject to a line load p. An equivalent homogeneous one-dimensional175

system exhibits a bending moment curve MB proportional to the trunk of a parabola, as the

contrasting line displays. Designing a material with an according grading of the yield stress

necessitates a decreasing yield stress with growing distance from the clamping. The volume
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fractions are endowed with a medium correlation length to assimilate half of a parabolic curve

in the material parameters.180

• Configuration 3, shown in Figure 4, involves a beam with the pinned boundary condition on

the left side and a roller bearing at the right end. Subjected to a line load, an equivalent

one-dimensional and homogeneous system possesses a parabolic bending moment curve MB

that is plotted with a contrasting color. Designing a material with an according grading of

the yield stress requires the maximum yield stress to be at the center between the bearings185

and the minimum yield stresses to be located at the bearings. Here, the smallest length-scale

investigated in this study is appropriate for the described yield stress distribution.

A B

PMB

configuration 1

A B

pMB

configuration 2

A B

pMB

configuration 3

Figure 4: Part design configurations: For configuration 1, the cantilever beam is clamped on the left side and subject

to a load located at the free end on the right. In configuration 2, the cantilever beam is clamped on the left side and

subject to a line load acting on the entire domain. In configuration 3, the beam is pinned on the left side and has a

roller bearing on the right side. Again, a line load acts on the entire domain.

As a reference for the virtual functionally graded parts, consider a virtual traditional homoge-

neous part made of a typical additive manufacturing thermoplastic, see Table 1, whose Young’s

modulus is expected as 3× 103 MPa. For the functionally graded parts, consider two materials,190

of which filament A is less stiff than the baseline material with 2.5× 103 MPa, while filament B

is stiffer than the baseline with 3.5× 103 MPa. The average stiffness and mass density of fila-

ments A and B are equal to that of the baseline material for the sake of comparability. This in
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turn necessitates also fictitious filaments, as no existing materials fulfill this equality constraint

perfectly.195

Homogeneous material

Name ABS

Young’s modulus 3× 103 MPa

Yield stress 48.3 MPa

Density 1190 kg m−3

Table 1: This table lists the characteristics of the exemplary homogeneous material that serves as the material

for the baseline parts and thus as a reference for the functionally graded parts. Specifically, the popular additive

manufacturing thermoplastic ABS is chosen to be the reference in terms of density and stiffness.

Filament A Filament B

Young’s modulus 2.5× 103 MPa 3.5× 103 MPa

Yield stress 40.3 MPa 56.4 MPa

Density 992 kg m−3 1390 kg m−3

Table 2: This table presents the Young’s modulus, yield stress, and density of the two exemplary materials used

in the fused deposition modeling process. Filament A has 5/6 of the homogeneous material’s stiffness and density,

while filament B has 7/6 of the homogeneous material’s stiffness and density. Filament A is thus the less stiff and

dense component and filament B provides higher stiffness at the drawback of increased density.

3.2.2. Fused Deposition Modeling

Our academic example is centered around fused deposition modeling, see Figure 5. Fused

deposition modeling is a multi-material additive manufacturing process categorized within material

extrusion. Thermoplastic polymers make up the most common stock material for this process.

Typically dual nozzle systems are employed, where a separate feed mechanism passes through the200

extrusion head for each of the two filaments. The building strategy consists of assigning a filament

type to each position on the build bed. Consequently, the smoothness of the functional grading at

the macro-scale depends on the spatial resolution of the building strategy [29].

For simplicity, we consider the positional volume fractions resulting from the building strategy

as the process parameters in this study and assume that their length-scales match those of the205

14



compound material parameters.

Figure 5: Sketch of the fused deposition modeling principle. The jet shown at the top of the image is capable of

producing a part, which is shown at the bottom, whose material distribution is functionally graded.

The building strategy involving filaments A and B tailors the part to the specific application

configuration via functional grading. Figures 6 and 7 show possible volume fraction designs for

both materials that need to be accomplished by the building strategy for all configurations. Here,

the material strength is shifted towards regions with high stresses, while the overall mass stays210

constant.
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Figure 6: Configuration 2 (reference): Here, the volume fraction corresponding to filament A decreases hyperbolically,

while that of filament B constitutes the remainder. These volume fractions represent the ideal deterministic volume

fractions that correspond to the ideal deterministic stiffness profiles and that are not manufacturable in practice.

In practice, the length-scale of the volume fractions is readily estimated with Gaussian process

regression while considering this length-scale to be uncertain. A näıve estimate thereof suffices

for this demonstration. The variability of the profile for configuration 1 is the smallest, while it

increases for configuration 2 and increases further for configuration 3. With this observation, we215
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(a) Configuration 1: Here, the volume fraction corresponding

to filament A decreases linearly, while that of filament B

increases linearly.
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(b) Configuration 3: Here, the volume fraction corresponding

to filament A follows a parabola opening downward, while

that of filament B follows a parabola opening upward.

Figure 7: The figures show the material volume fractions over the beams’ x-coordinate for the altered configurations.

These volume fractions represent the ideal deterministic volume fractions that correspond to the ideal deterministic

stiffness profiles and that are not manufacturable in practice.

arrive at the estimated length-scales reported in Table 3.

configuration 1 configuration 2 configuration 3

Length-scale L1 = 900 mm L2 = 450 mm L3 = 225 mm

Table 3: The table lists the näıve length-scale estimates for each configuration. The volume fractions’ length-scales

pose the optimal choice for the priors on the material parameter length-scales and care should be taken to correctly

identify them. For our academic problem, we assume these length-scales to be known by projecting the stiffness

profiles onto the eigenfunctions of a covariance function with the respective length-scale.

3.2.3. Assumption of the Manufacturable Stiffness Profiles as Realizations of Gaussian Processes

In theory, with a deterministic linear manufacturing process and deterministic materials, the

shown material volume fractions translate into Young’s modulus functions over x assuming a

linear volumetric Young’s modulus law. Figure 8a shows the corresponding stiffness profiles for220

configuration 1, configuration 2, and configuration 3. These present the ideal aggregated stiffness

profiles that raise the minimum safety-margin and retain the mass.

In practice, the properties of the manufactured parts are not deterministic. Instead, they are

subject to uncertainty. We model the manufacturable stiffness profiles as realizations of Gaus-
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sian processes. To achieve this, the ideal stiffness profiles are individually approximated with a225

Karhunen-Loève expansion with truncation order of K = 5, with the covariance from Eq. (19), and

the matching length-scales from Table 3. Figure 8b shows the manufacturable stiffness profile for

the reference configuration, while Figure 9 shows the corresponding profiles for configuration 1 and

configuration 3. The realizable stiffness for configuration 1 shows a close agreement throughout the

beam with the original stiffness, while the realizable stiffness for configuration 2 fails to capture the230

desired stiffness peak at the clamping. The chosen random space discretization overestimates the

minimum stiffness values at the beam’s boundaries for configuration 3. Overall, the characteristics

of the ideal profiles are captured well. The approximation of the configuration 1 profile being the

most accurate demonstrates that retaining more terms in the Karhunen-Loève expansion would

enable the projection to capture even more of the ideal profiles’ variance.235
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(a) Deterministic target design Young’s modulus profiles for

configuration 1, configuration 2, and configuration 3, respec-

tively. The solid line corresponds to configuration 1, the

dashed line corresponds to configuration 2, and the dashed-

dotted line corresponds to configuration 3.
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(b) Configuration 2 (reference): The target stiffness pro-

jected onto the first 5 eigenfunctions of a covariance with

L2 is indicated by the dashed line, while the solid line shows

the ideal stiffness.

Figure 8: Deterministic target design Young’s modulus profiles for all configurations and manufacturable stiffness

for the reference configuration.
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(a) Configuration 1: The deterministic target stiffness pro-

jected onto the first 5 eigenfunctions of a covariance with

L1 is indicated by the dashed line and the ideal stiffness is

marked with a solid line.
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(b) Configuration 3: Manufacturable stiffness profile subject

to uncertainty as the realization of a Gaussian process. The

dashed line marks the projection of the deterministic stiffness

onto the first 5 eigenfunctions of a covariance function with

length-scale L3. The solid line indicates the ideal stiffness.

Figure 9: Manufacturable stiffness profiles subject to uncertainty as Gaussian process realizations for configuration

1 and configuration 3.

4. Results

4.1. Dimensionality-Reduced and Generalized Polynomial Chaos-Accelerated Inference of Young’s

Modulus Using Mode Shape Data

The surrogate shortens the inversion procedure duration from more than 170 to less than 1.7

seconds on consumer-grade hardware. Now, the bulk amount of CPU time is spent evaluating the240

likelihood instead of the model, as is the case when using the full finite element model. The inference

results for the Young’s modulus Ex using maximum a posteriori estimation agree excellently with

the ground truth, see Figure 10. This clearly demonstrates the efficiency and efficacy of our

proposed method for identifying the spatially varying Young’s modulus of a structure using mode

shape data.245

4.2. Surrogate Recycling Results

This section first presents the effect of using the functionally graded material as opposed to

homogeneous material on the safety-margin within static loading. Following this, the spatially
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Figure 10: This figure shows the result of the dimensionality-reduced and generalized polynomial chaos-accelerated

inference of the beam’s Young’s modulus Ex. The beam’s first eigenvector at the upper surface area serves as the

model response and observation data. The solid line shows the ground truth Young’s modulus field M true and the

dashed line corresponds to the estimated Young’s modulus field M̃K attained via the maximum a posteriori estimate.

Here, the covariance function used to generate the ground truth is employed for training the surrogate and as prior

information on the a priori unknown spatially varying Young’s modulus. The identified field agrees excellently with

the ground truth field.

varying stiffness identification results obtained from the academic example are shown together

with metrics on the computational effort of our methodology.250

The three configurations undergo static analysis with the finite element method to assess the

effect of the functional grading in comparison with the homogeneous material. Here, a three-

dimensional volume model of a beam with the same geometry as used in Section 3.1 is created

using the commercial finite element method code COMSOL. The discretization using quadratic

tetrahedral serendipity elements yields 6,327 degrees of freedom. The boundary conditions and255

loads are applied uniformly across the width of the beam. The yield and von Mises stresses are

computed and the safety-margin is obtained as s = σy/σMises along the beam coordinate. Table 4

reports the percentage increases in terms of the minimum safeties smin of the functionally graded

material relative to the homogeneous material for all configurations. These results show that

the functional grading improves the safety in the critical regions. The functionally graded safety260

of configuration 1 exceeds that of the homogeneous part at the clamping, where both material

configurations exhibit smin. For configuration 2, the minimum safety lies at the clamping as well,

while the minimum safety for configuration 3 is located at the center of the beam. Using the
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functionally graded material results in a uniform increase in smin with respect to the homogeneous

material throughout the configurations.265

configuration 1 configuration 2 configuration 3

Relative increase of smin 16.7% 16.7% 16.3%

Table 4: The table compares the homogeneous parts with the functionally graded parts with respect to their minimum

safeties for each configuration. The minimum safeties corresponding to the functionally graded parts are higher than

those of their homogeneous counterparts throughout the configurations. The increase of the minimum safety is

calculated as the relative percentage deviation with the homogeneous configuration as reference.

Now, the stiffness is assumed as unknown. All configurations consequently undergo non-

destructive testing where the aim is to identify the stiffness. For configuration 2, the baseline

procedure described in Section 3.1 is applied. The mean value of the stiffness is assumed as

3× 103 MPa. The Young’s modulus is modeled as homogeneous in y and z direction and only

varies along the x-coordinate. The length-scale for the Karhunen-Loève expansion of the inference270

is chosen as L2 in accordance with Table 3. Here, the Karhunen-Loève truncation order is set to 5.

The finite element model is evaluated for random field realizations connected to the length-scale

of configuration 2 L2 = 450 mm. The generalized polynomial chaos surrogate is trained using

these finite element model evaluations. Presenting one of the main contributions of this study, the

stiffness identifications for configuration 1 and configuration 3 use a transformed version of the275

surrogate connected to configuration 2. No additional finite element model evaluations are neces-

sary. Merely the Karhunen-Loève expansion must be recomputed with the appropriate length-scale

from Table 3 in order to obtain the projection coefficients from Eq. (10) for the surrogate trans-

formation described in Section 2.4. The transformed surrogates following the scheme shown in

Figure 11 can now be used for the inference. Table 5 lists the amount of high-fidelity finite element280

forward model evaluations that are necessary for each inference. Note that only surrogate model

evaluations are necessary for the inference involving configuration 1 and configuration 3 with our

proposed procedure.

Figure 12 shows the agreement of the identified Young’s moduli with the a priori unknown

ground truth stiffness. The unknown ground truth stiffness is plotted using a solid line and the285

estimated stiffness uses a dashed style. For configuration 1, the estimation based on the recycled

surrogate correctly identifies the trend and character of the ground truth stiffness. However, there
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Surrogate recycling

configuration 3

Surrogate recycling

configuration 1

Figure 11: The generalized polynomial chaos surrogate is trained using finite element model evaluations based on

the stiffness covariance belonging to the functionally graded part designed for configuration 2. With the known

length-scales L1 and L3, but without new finite element model evaluations using stiffness samples based on these

length-scales, the surrogate trained on configuration 2 can be reused for both configuration 1 and configuration 3.

Forward model evaluations configuration 1 configuration 2 configuration 3

Proposed methodology 0 42 0

Conventional surrogate modeling 42 42 42

Table 5: Amount of necessary forward model evaluations comparing the proposed framework to conventional sur-

rogate modeling. The surrogate connects η to the beam’s first mode shape. Traditionally, the surrogate must be

recomputed when the length-scale L changes and consequently, new finite element model evaluations are necessary.

With the proposed workflow, no new finite element model evaluations are necessary and one set of evaluations suffices.

is an offset throughout the beam domain of order of magnitude 1× 102 MPa. The estimation

using the surrogate trained on L2 correctly identifies the trend and character of the ground truth

stiffness belonging to configuration 2. However, the inversion underestimates the beam stiffness290

near the clamping and overestimates it at x > 100 mm. Finally, the estimation for configuration

3 based on the recycled surrogate correctly identifies the trend and character of the ground truth

stiffness. The maximum stiffness at the center and the minimum stiffness values at the bounds are

overestimated by the order of magnitude 1× 101 MPa. Overall, the lowest error is achieved here.

Overall, the estimations agree well with the reference values. The shapes are excellently ap-295

proximated for all configurations, while the maximum errors at the respective x-coordinates lie

in the range of 1× 101− 1× 102 MPa. The smallest error over the beam domain is achieved for

configuration 3 and the largest error over the domain is attributed to configuration 1. The error

for configuration 2 lies in between the error connected to configuration 1 and configuration 3. This

is an unexpected result, as no surrogate recycling occurs here. Indeed, the error is proportional to300

the magnitude of the first two ground truth Karhunen-Loève coefficients and thus depends on the

application.
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(a) Configuration 1: result of the inference procedure using a

recycled surrogate model compared to the a priori unknown

ground truth stiffness.
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(b) Configuration 3: result of the inference procedure using a

recycled surrogate model (dashed) compared to the a priori

unknown ground truth stiffness (solid).

Figure 12: Bayesian inference results for the non-reference configurations: The a priori unknown ground truth

stiffness (solid) and the estimated stiffness (dashed) are compared with each other.

5. Discussion and Conclusions

5.1. Discussion

Scrutinizing the results reveals that the proposed stiffness identification procedure succeeded305

in identifying the stiffness in a mean sense for configuration 2 and configuration 3 with reasonable

accuracy, but failed to identify the stiffness correctly in the mean sense for configuration 1. One

way of identifying an erroneous offset in the identification results is to carry out a brief cross-check

between the mean of the identified stiffness and an experimentally determined eigenfrequency.

The proposed methodology cannot be applied when the geometry or the boundary conditions310

of the tested structure change. Other methods must be developed to cover these application areas.

Further, there exist scenarios, where employing the proposed method is not necessary. The

advantages thrive when forward model evaluations are computationally expensive. This is espe-

cially the case for complex geometries and the necessity of fine discretization. If a computationally

affordable and sufficiently accurate model exists, the construction of surrogates may not be neces-315

sary.

Our academic example uses only three different length-scales. However, the proposed methodol-

ogy provides more value when many process parameter length-scales are deployed during manufac-
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turing. The computational cost for constructing the reference surrogate can be viewed as fixed cost

in this context. Further, the fixed cost may be increasingly offset by inference procedures where the320

reference surrogate is recycled. Within this analogy, the computational overhead, mainly consist-

ing of Karhunen-Loève expansion computations and likelihood evaluations, corresponds to variable

cost.

5.2. Conclusions

This study used an accelerated method for non-destructively identifying the multi-dimensional325

spatially varying stiffness while considering its uncertainty. Here, the structure’s mode shapes

served as data. We conclude that

• the method delivers excellent results over the entire structure’s domain.

• the method exhibits a significant computational time speedup when compared with proce-

dures evaluating the finite element model at each inference step.330

Furthering the state of the art, we formulated a novel methodology for recycling the surrogate

model for the use in theoretically unlimited follow-up inference procedures. This methodology

was based on the estimation of the random field length-scale of filament volume fractions and an

assumption of the equivalence to the material property length-scales. We conclude that

• the methodology delivers excellent results when recycling a surrogate model.335

• the methodology scales well for an increasing number of process parameter length-scales and

thus delivers significant further computational cost saving potential for large-scale applica-

tions.

Future research should produce a database with process-structure-property relations, where

correlations between the parameters may be extracted such that our method can be employed340

with more confidence and the cumbersome integrated computational materials engineering may be

avoided.
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