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Introduction

In this thesis, we study different phenomena for long-range percolation. The thesis is
based on the following four papers, where one of them is joint work with Noam Berger.

[7] Johannes Baumler. Distances in m percolation models for all dimensions. arXiv

preprint arXiv:2208.04800, 2022.

[8] Johannes Biaumler. Behavior of the distance exponent for —-; long-range perco-

lz—y[>4
lation. arXiv preprint arXiv:2208.04793, 2022.

[9] Johannes Baumler and Noam Berger. Isoperimetric lower bounds for critical expo-
nents for long-range percolation. arXiv preprint arXiv:2204.12410, 2022.

[10] Johannes Béumler. Recurrence and transience of symmetric random walks with
long-range jumps. arXiv preprint arXiv:2209.09901, 2022.

Large parts of the thesis are identical to the papers, where part I contains the material
of [7,8], part II contains the results [9], and part III is mostly identical to [10]. Each of the
three parts contains a specific introduction to its topic and is mostly self-contained. Before
going to the individual parts of the paper, we outline the setup and the main results of
this thesis.

In part I and II of the thesis, we will consider independent percolation only. For this,
consider a graph G = (V, E) with weighted edge set. Let J : E' — [0, +0c] be the weight.
Let 8 > 0 be a parameter. An edge e € F is either open or closed, where the edge e is
open with probability p(8,e) = 1 — e~B7(e) independent of all other edges. We denote
the resulting measure by Pg. We define 0 - (+-00) := 400, so in particular for all 5 > 0,
an edge e with J(e) = 400 is open almost surely. With this definition of percolation, one
can recover many models of percolation that have been studied a lot over the last decades.
For example, for

V=2,E= {{x,y}:x,yeZd,Hx—yHg = 1}, and J(e) =1 forall e € E,

this gives the model of nearest-neighbor percolation on the d-dimensional integer lattice.
Here, an edge is open with probability 1 — e™?. So for 5 = 0, all edges are closed almost
surely, whereas for § — oo, the probability that an edge is open goes to 1. Another
example of percolation is the Erdds-Rényi random graph model. For this, define

V={1,....n},E={{x,y} :z,y e V,x #y}, and J(e) =1 for all e € E.

Again, an edge is open with probability p = 1 — e ? on this graph, so this gives us
a reparametrization of the classical Erdos-Rényi model. In this thesis, we are mostly
interested in the case where

V=2"E={{z,y} e,y e Ve #y}, and J ({z,y}) = O (o —y[| ™)

for some s > 0. Depending on the value of s, there are several different phases. For
example for 8 > 0, the resulting graph will almost surely be locally finite for s > d,
whereas each vertex has an infinite degree for s < d almost surely. This shows that the
value s = d is critical for the local finiteness of the graph. In part I of this thesis we



investigate the chemical distances on such random graphs. For two points z,y € Z%, the
chemical distance, also called graph distance or hop-count distance, is the length of the
shortest open path between them; we denote it by D(x,y). Also note that D(z,y) = +o00
is possible, in the case where x and y are not connected by an open path. In order to
circumvent this, we will always assume that p (3, {u,v}) = 1 for all 8 > 0 and all u,v € Z¢
with |[ju — v|| = 1. Assume that p (5, {u,v}) = © (||lu — v[|~%). It was known before that
for s € (d,2d) the graph distance D(z,y) between x and y grows polylogarithmically in
the Euclidean distance ||z — y|| [18], whereas the graph distance D(zx,y) grows linearly in
the Euclidean distance ||z — y|| for s > 2d [17]. This shows that the value s = 2d is a
critical value for the growth of the chemical distances. In part I of the thesis, we study
the chemical distances for s = 2d. For this, we will assume that

1
(5. o) = 1 for fu—oll = 1and p (3, fuso}) = P+ 0 (i )

Let u € Z% be a point with ||u]s = n. We will show that both the graph distance D(0, u)
between the origin and u and the diameter of the box {0,...,n}? grow like n?, where
0 = 6(d,B) € (0,1], with 6(d,5) = 1 if and only if # = 0. For fixed dimension d, we
will also discuss how the function 6(38) = 6(d, 3) depends on 3. Here, we determine the
asymptotic behavior of 6(3) for large 8, we prove that 6(3) is continuous and strictly
decreasing in 3, and we show that 0(3) = 1 — 8+ o(8) for small 8 in dimension d = 1.

Let us assume that the weight J is translation invariant, in the sense that J({u,v}) =
J({0,v — u}) for all distinct u,v € Z9. In this case it is clear that the distribution of the
resulting random graph is also invariant under translations. We also write J(u) = J({0,u})
for u € Z%. When removing the assumption that J({u,v}) = +oo for nearest-neighbor
edges {u,v}, the resulting open subgraph can have infinite components or not, depending
on the weight function J and the value of 5. For fixed # and J, this probability will be
either 0 or 1, by Kolmogorov’s 0-1-law. Whenever }_, .74\ (o} /(1) < 00, one can show that

-1
the resulting open clusters are almost surely finite for 5 < (ZueZd\ o7 (u)) . On the

other hand, when J(u) = O (||u|| =) for some s € (1,2] in dimension d = 1, respectively
for some s > d in dimension d > 2, it is known that for large enough 5 there will almost
surely be an infinite open subgraph [84]. As this property is monotone in 3, there exists a
critical value . at which this change of behavior occurs. We write Ky for the open cluster
containing the origin, and we write s = d 4+ «. There are several critical exponents which
describe the behavior of the random graph for S = .. We study two of them in part 11
of this thesis, namely the critical exponent of the clustersize § and the two-point function
exponent 2 — 7. These two exponents are defined by

0 = lim —log(n) and 2 —np = lim log (Ps. (0 ¢ 2))

i +d.
n—oe log (Pg, (|[Ko| > n)) zo0 log({|z]])

Provided these exponents exist, we show that

6>d+(a/\1)

= d 2—mn>aANl.
“d—(an1) ™ =

The lower bound on ¢ is believed to be sharp ford = 1,a € [%, 1) and ford = 2,a € [%, 1],
whereas the lower bound on 2 — 17 is sharp for d = 1, € (0, 1), and for o € (0, 1] for d > 1,
and is not believed to be sharp otherwise. Our main tool is a connection between the
critical exponents and the isoperimetry of cubes inside Z¢. The reason why a A 1 shows



up in our lower bounds above is because the value a = 1, respectively s = d + 1, is the
critical value for the isoperimetry of cubes inside Z¢.

In part IIT of this thesis, we study random walks on percolation clusters, and long-
range random walks on the integer lattice. Let X1, Xo,... be i.i.d. random variables with
values in Z? satisfying P (X1 = z) = P(X; = —2) = O (||| ~*) for some s > d. We show
that the long-range random walk defined by S, = >";_; X} is recurrent for d € {1,2}
and s > 2d, and transient otherwise. This also shows that for an electric network in
dimension d € {1,2} the condition ¢,y < C|lz — y[|7? implies recurrence, whereas
Clay) = cllz—y||7° for some ¢ > 0 and s < 2d implies transience. This shows that the value
s = 2d is critical for the recurrence of long-range random walks. The underlying reason
why the value s = 2d is critical for recurrence of random walks in dimension d € {1,2} is
because the random variables X; have a mean in dimension d = 1 if and only if s > 2, and
they have a finite variance in dimension d = 2 if and only if s > 4. This fact about the
recurrence and transience of long-range random walks was already previously known, but
we give a new proof of it that uses only electric networks. When one considers independent
long-range percolation on Z% with J({z,y}) = m and 8 > 3., the return properties of
the simple random walk have been studied by Berger in [16]. He proved that the simple
random walk in dimension d € {1,2} is recurrent for s > 2d and transient for s € (d, 2d).
The same questions can be asked for the weight-dependent random connection model,
which is a model for dependent percolation. Random walks on this model were studied
recently by Gracar et al. [49]. We use the results about the long-range random walk S,
to show the recurrence of simple random walks on several new classes of two-dimensional
weight-dependent random connection models. For some classes of the random connection
model, our newly obtained results show the recurrence for critical cases, whereas for other
classes, it is not completely clear yet, what the critical case for recurrence or transience of
the simple random walk on such a random graph is.
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Chemical distances

1 Introduction

Consider independent long-range bond percolation on Z¢ where all edges {u,v} with ||u —
V||oo = 1 are open and an edge {u,v} with ||u — v||s > 2 is open with probability

P8 {u,v)) = 1= e v Tyt

where C = [0, 1)d and f > 0. We call the corresponding probability measure Pz and
denote its expectation by Eg. The resulting graph is clearly connected and the graph
distance D(u,v) between two points u,v € Z? satisfies D(u,v) < [[u — v||oo. We are
interested in the scaling of the typical distance of two points u,v € Z% and the scaling
of the diameter of boxes {0,...,N}%. In [27] it is proven that the typical diameter of
some box grows at most polynomially with some power strictly smaller than 1. More
precisely, Coppersmith, Gamarnik, and Sviridenko proved that for all 8 > 0 there exists
an exponent ' = 6'(5) < 1 such that limy_, Pg (Diam ({O,...,N}d) < N9/> = 1.
However, the authors do not give any polynomial lower bound for dimensions d > 2. An
analogous lower bound was already conjectured in [12,18], and an exact lower bound was
later proven to hold in one dimension: In [33] Ding and Sly showed that for the connection
probability p(8, {u,v}) given by p(53, {u,v}) = ﬁ/\l for j[u—v| > 2 and p(S, {u,v}) =1
for |u — v| = 1 the typical distance between the two points 0,n € N and the diameter of
{0,...,n} both grow like n? for some 6 € (0,1], where # = 1 if and only if 3 = 0. More
precisely, they proved that

n? ~p D(0,n) ~p Diam ({0, ...,n}) ~p E[D(0,n)]

where the notation A(n) ~p B(n) means that for all € > 0 there exist 0 < ¢ < C' < o0
such that P (cB(n) < A(n) < CB(n)) > 1 — ¢ for all n € N. In this thesis, we prove an
analogous result for all dimensions.

1.1 Main results

Theorem 1.1. For all dimensions d and all 5 > 0, there exists an exponent § = 0(d, 3) €
(0,1) such that

[ull® ~p D (0,u) ~p Eg[D(0, u)] (1)
and

k? ~p Diam ({o, o k;}d) ~p Eg [Diam ({o, o k;}d)] . (2)

We write O for the vector with all entries equal to 0 and the notation A(u) ~p B(u)
means that for all € > 0 there exist 0 < ¢ < C' < oo such that Pg (¢cB(u) < A(u) < CB(u)) >
-8 fquC v4C mdxdy

1 — ¢ for all u € Z?. The inclusion probability p(8, {u,v}) =1 —e
is only one possible choice for a function which asymptotically grows like W. In sec-

tion 7, we will show the same results for other possible choices of such functions. Examples
B

of inclusion probabilities we consider are W Aland 1 —e [u—vl?®
The exponent § = 0(5) defined in Theorem 1.1 arises through a subadditivity argument

(see section 2.2 below) and its precise value is not known to us. However, for fixed
dimension d, we determine the asymptotic behavior of the function 6(3) for large £.

10



Theorem 1.2. For all dimensions d, there exist constants 0 < ¢ < C' < 0o such that

c C
oa(3) <0(B) < )

(3)

for all B > 2.

Furthermore, we study several other properties of the dependence of the distance
exponent 6(5) on 5. For d = 1, it is well-known that 6(/3) > 1 — 3, see for example [27,33].
In section 9, we show that for small 3 this lower bound is indeed a good approximation

for 0(5).
Theorem 1.3. Ford =1, the right-hand derivative of the distance exponent %9(6) exists
at B8 =0 and furthermore one has %9(6) 50 = —1. This yields that 6(8) =1 — B+ o(5)

as B — 0.

It is clear that the function #(3) is monotonically decreasing in f3, as for f; < f2 we
can couple the respective measures in such a way that the set of edges resulting from Pg,
is a subset of the edge-set sampled from Pg,. In section 10, we show that 6(3) is even
strictly decreasing.

Theorem 1.4. The distance exponent 6 : R>o — (0, 1] is strictly monotonically decreasing.

The main tool in the proof of Theorems 1.3 and 1.4 is Lemma 8.1, which can be seen
as a version of Russo’s formula for expectations. Finally, in section 11 we show that 6(5)
is a continuous function.

Theorem 1.5. The distance exponent 6 : R>g — (0, 1] is continuous in f3.

So in particular, Theorem 1.5 together with the facts limg_,06(3) = 6(0) = 1 and
limg_,oc 0(8) = 0 show that #(3) interpolates continuously between 0 and 1, as 3 goes
from +o00 to 0. The continuity of the distance exponent is also used for the comparison
with different inclusion probabilities in section 7.

1.2 The continuous model

For 8 > 0, the described discrete percolation model has a self-similarity that comes from
a coupling with the underlying continuous model, that we will now describe for any di-
mension. This will also explain our, at first sight complicated, choice of the connection

probability. Consider a Poisson point process € on R? x R? with intensity W. Define
2

the symmetrized version € by £ == {(t,s) € R x R%: (s,t) € E} UE. For u,v € Z¢ with
|lu — v]|eo > 1 we put an edge between u and v if and only if ((u+C) x (v +C)) NE # 0,
where we use the notation C = [0,1)%. The cardinality of ((u+C) x (v+C))N¢E is a
random variable with Poisson distribution and parameter fu vc Jose stdt. Thus,
by the properties of Poisson processes, the probability that u ~ v equals

P((utC)x w+C)nE=0)=P((u+C)x w+C)NE=0)’
_ <€ Juve Jore Qt_ﬁs“wdet>2 —e Juve Jore stdt —1—p(8, {uﬂ)})

which is exactly the probability that u ~ v under the measure Pg. Note that for {u, v} with

|u—v]oo = 1 we have [ . [ ¢ stdt = 00. So we really get that all edges of the

11



form {u,v} with ||u — v|[|cc = 1 are open. The construction with the Poisson process also
implies that the presence of different bonds is independent and thus the resulting measure
of the random graph constructed above equals Pg. The chosen inclusion probabilities
have many advantages. First of all, the resulting model is invariant under translation and
invariant under the reflection of coordinates, i.e., when we change the i-th component
pi(z) of all z € Z¢ to —p;(z). Furthermore, the model has the following self-similarity:
For some vector u = (p1(u),...,pa(u)) € Z¢ and n € N=g we define the translated boxes
Vo= Hle{pi(u)n, oo (pi(u)+1)n =1} =nu+ H?zl{(), ...,n—1}. Then for all points
u,v € Z%, and all n € Ny one has

Ps(Vi e Vi) =[] Tl Bs@=w)= ] ] ¢ Jase Jyve imgaadadt

ern yGVn LBGVn er"
B Je]
—e ZwGVz? Zerﬁ Jove y+C |t—s|2d dsdt —e fnu+[o,n)d fnv+[0,n)d lt—s)2d dsdt
*fu+c vtC . 2q dsdt
—e llt—sll = Pﬁ (u ~ ’U)

which shows the self-similarity of the model. Also observe that for any o € R+ the process
af = {(:U,y) e R% x R?: (éx, éy) S g} is again a Poisson point process with intensity

2[lz—yl[>*"

1.3 Notation

We use the notation e; for the i-th standard unit vector in R¢. For a vector y € R%, we
write p;(y) for the i-th coordinate of y, i.e., p;(y) = (e;,y). We also use the notation 0
for the vector with all entries equal to 0 and the notation 1 for the vector with all entries
equal to 1. We use the symbol C for the box [0,1)%. When we write ||u| we always mean
the 2-norm of the vector u. For k € N, we define the sets

Sk = {:1: €2 ||z)o = k:} and S>j, = {a: €Z%: ||zl > k}

For the closed ball of radius 7 around z € Z¢ in the co-norm we use the notation B, (z),
ie., By( {y €Z: ||z — Yoo < r} For a vector v € Z¢ and n € N, we write

d
VJl:n-u—i—{O,...,n—1}d:H{npi(u),...,npl-(u)+n—1}

for the box of side length n shifted by nu. When we want to emphasize that we work
on certain subgraphs A C Z¢, we will write D4 (z,y) for the graph distance inside the
set A, i.e., when we consider edges with both endpoints inside A only. Whenever we
write Diam(A) for some set A C Z? we always mean the inside diameter of this set,

e., Diam(A) = max, yea Da(x,y). The percolation configuration is a random element
w € {0, l}E, where we say that the edge e exists or is open or present if w(e) = 1. For
w € {0,1}” and e € E we define the elements w®",w®™ by

1 & = 0 5 —
wet () :{ °T° and we(é):{ c=°
(& e

so this are the edge sets when we insert, respectively delete, the edge e. When we look
at a (possibly random) subset of the edges that is defined by some w € {0,1}¥ we also

12



write D(u,v;w) for the graph distance between u and v in the environment represented
by w. For some edge e = {u,v} we write |e| = |[{u,v}| = ||u — v||oo for the distance in the
oo-norm between the endpoints. We use the notation log(z) for the natural logarithm, i.e.,
the logarithm to the base e. We define the indirect distance D*(A, B) between the sets
A, B C 74 as the graph distance in the environment where we removed all edges between
A and B, which is the distance when we only consider paths between A and B that do
not use an edge e = {u,v} with u € A,v € B.

1.4 Related work

The scaling of the graph distance, also called chemical distance or hop-count distance, is
a central characteristic of a random graph and has also been examined for many differ-
ent models of percolation, see for example [1,6,12,17-20,27,31-33, 36,45, 54,59, 82]. For
all dimensions d, one can also consider the long-range percolation model with connection
probability asymptotic to ﬁ When varying the parameter s, there are a total of 5 dif-
ferent regimes, with the transitions happening at s = d and s = 2d. The value of the first
transition s = d is very natural, as the resulting random graph is locally finite if and only

if s > d. For s < d the graph distance between two points is at most [%} [14], whereas

for s = d, the diameter of the box {0,...,n}? is of order % [27,96]. In [12,18-20]
the authors proved that for d < s < 2d the typical distance between two points of Eu-
clidean distance n grows like log(n)®, where A~! = log, (%) The behavior of the typical
distance for long-range percolation on Z% also changes at s = 2d. The reason why s = 2d
is a critical value is that for s = 2d the graph is self-similar, as described in section 1.2. For
s > 2d the graph distance grows at least linearly in the Euclidean distance of two points,
as proven in [17]. In [33] it is shown that the typical distance for d = 1, s = 2 grows like n’
for some 6 € (0,1). For d > 2 and s = 2d the authors in [27] proved a polynomial upper
bound on the graph distance, but no lower bound. In this thesis, we show a matching

polynomial lower bound for all dimensions d, similar to the results of [33] in one dimension.

Another line of research is to investigate what happens when one drops the assump-
tion that p(5,{u,v}) = 1 for all nearest neighbor edges {u, v}, but assigns i.i.d. random
variables to the nearest neighbor edges instead. For d = 1, there is a change of behavior
at s = 2. As proven by Aizenman, Newman, and Schulman in [4,84,91], an infinite open
cluster can not emerge for s > 2 and for s = 2, 5 < 1, no matter how small P (k = k + 1)
is. See also [41] for a new proof of these results. On the other hand, an infinite cluster can
emerge for s < 2and s = 2,5 > 1 (see [84]). In [4] the authors proved that there is a discon-
tinuity in the percolation density for s = 2, contrary to the situation for s < 2, as proven
in [16,65]. For models, for which an infinite cluster exists the behavior of the percolation
model at and near criticality is also a well-studied question (cf. [11,16, 22,30, 65,69, 70]).
It is not known up to now how the typical distance in long-range percolation grows for
s = 2d and p(B,{u,v}) < 1 for nearest-neighbor edges {u,v}, but we conjecture also a
polynomial growth in the Euclidean distance, whenever an infinite cluster exists.

For d = 1, the behavior of the mixing time is also a property that exhibits a transition
at s = 2, as proven in [13]. On the line segment {0, ...,n} the mixing time grows quadratic
in n for s > 2 and is of order n*~! for 1 < s < 2. The behavior of the mixing time for
s = 2 is still open, but we conjecture a similar behavior to that of the chemical distance,
namely that the mixing time interpolates between n and n?, as 8 goes from +oo to 0.
A better understanding of the mixing time is useful to study the heat kernel and under-
stand the long-time behavior of the simple random walk on the cluster. In [28,29] Crawford

13



and Sly give bounds on the heat kernel and prove a scaling limit for the case s € (d,d + 1).

Also the Ising model on the one-dimensional line with interaction energy J ({z,y}) =
|z — y|~* is a well-studied object. In [42] the author considers the case where s < 2,
but there are also many results for the critical case s = 2, see for example [3,44,72]. In
particular, the authors in [3] proved a discontinuity of the magnetization.

2 Asymptotic behavior of the distance exponent for large

In this chapter, we prove Theorem 1.2. On the way, in section 2.1, we prove several
elementary bounds on connection probabilities between certain points and boxes in the
long-range percolation graph that will also be used in the following sections. In section
2.2, we prove a submultiplicative structure of the expected distance between two points,
leading to the existence of a distance exponent, and also to the inverse logarithmic upper
bound in Theorem 1.2. In section 2.3, we show that vertices inside a box are not connected
to more than one box that is far away, typically. This is necessary in order to prove strict
positivity of the distance exponent #(3) in section 2.4, and the lower bound on #(3) in
Theorem 1.2.

2.1 Bounds on connection probabilities

Lemma 2.1. For all >0, all n € N, and all u,v € Z¢ with ||u — v||e > 2, one has the
upper bound

22d5
P ~) =P (VI V) < —— 4
) = By (V7 ~ V) € o (4)
and one has the lower bound
4d) 24 1
Py (un o) =Py (V2 ~ V) 2 P L (5)

T lu—vf3 2
For all k > 2 one has
Py (0 ~ S>p) < 507k, (6)

and for m € N, any vertex x € V§", and a box V. with ||w||s > 2 one has

42d
Py (o~ Vi) < —2

— 7
= Tl v
Proof. The equality Pg(u ~v) = Pg (V] ~ V') is clear from the discussion about the
underlying continuous model in section 1.2. We start with the proof of (4). Applying
the inequalities 1 —e ™ < z and || - |2 > || - ||oo, We get that for two vertices u,v with
(K| g

_ 1 dxd 1
Ps(u~v)=1—ce B lute Jore omypradedy ﬂ/ / T g drdy
u+C Jv+C llz —yll

1 ﬁ 22d5
< /3’/ / ————dady < < : (8)
wre Jose 1z —yl12 (JJu = vlloo — 1)** ~ llu—vl|3

14



In order to bound the connection probability between v and v from below, first observe
that ||z||2 < ||z]l1 < d||z]|e for all z € RY. Thus we have

1 1
/ / 2ddsdt> d—2 / s dsdt
ure Jore ([t =5 wrc Joye [t — 5[5
1

> d-2 / / dsdt > (2d) 72 ——
wte Juic (]\u—v\\oo+1)2d |u —v||2d

and this already gives

_(Qd)fzd B8 - (4d)—2dI8
P ~v)>1-— lu—vl2d > "7/ 7 A~
um)zize = Tu—o2 " 2

as 1—e™® > Z AL for all 2 € Rxg. So we showed (5).

For each point © € S = {z € Z? : ||2]|oc = k}, at least one of its coordinates p;(x)
equals —k or +k. All other coordinates can be any integer between —k and +k. Thus we
can bound the cardmality of the set |Sy| by |Sk| < 2d(2k + 1)?~1. In (8) we showed that
Ps (0~ ) < W This already implies that for k > 2

)
5(0~8k) < ) P30~z < 7ZL§2d(2k+1)d_lL

TESK 2E€S) (lzlloo = 1) (k—1)%
and thus also
- )L B
2
< Z 2d3d d 1 ﬁ 62461 Z —d—1 < B50dk d (9)

which already proves (6). For m € N, a vertex = € Vg", and a box V)" with [|w|. > 2,
we have for all z € V" that || — z||c > (||w]lcc — 1)m. This implies

m 22d6 22d6 /842d
Pg(z ~Vy Z E Z <

2o To =22 = 22, (wloe — D)™~ TwlEm®

which shows (7). O

We will often condition on the event that two blocks V', V' are connected. So if we
write X for the number of edges between them, we condition on the event X > 1. This
conditioning clearly increases the expected number of edges between V' and V', but by
at most +1, as shown in the next lemma.

Lemma 2.2. Let u,v € Z% with u # v and let X be the number of edges between the blocks
Vit and V,'. Then for all § >0

Es[X|X >1] < 1+Eg[X]

Proof. The random variable X is a sum of independent Bernoulli random variables and
we prove the statement for all random variables of this type. We use the notation X =
o, X, where m € N, and (Xi)ieq1,..,my are independent Bernoulli random variables.
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For i € {1,...,m}, let A; be the event that X; =1 and X; =0 for all j € {1,...,i—1}.
As {X > 1} implies that there is a first index 4 such that X; = 1, we get that

(X>1} = |i| A,
=1

where the symbol | | means a disjoint union. On the event A;, we know that all the random
variables X; with j < 4 equal 0, but we have no information about random variables X;
with j > 4. Thus we get that

E5 [XﬂAz‘] = &
s j=it1 j=it1

Multiplying by Pz (A4;) on both sides of this inequality we get that Eg [X14,] < Pg (4;) (1 4+ Eg [X]).
As the events (A;)ic(1,.. m} are disjoint, we finally get that

Es [X1x>y) Y0 Es[X1a)]

Eg [X|X >1] =

Ps(X>1)  Pg(X=>1)
>im1 Pa(Ai) 1+ Eg[X])
< == By (X5 1) —14+Ez[X].

2.2 Submultiplicativity and the upper bound in Theorem 1.2

In this section, we prove the submultiplicative structure in the model in Lemma 2.3. This
allows us to define the distance growth exponent 6(3) and also helps to prove the upper
bound on #(3) in Theorem 1.2.

Lemma 2.3. For all dimensions d and all 3 > 0 the sequence

A(n) = A(n,p) = max Eg [DVO" (u,v)] +1 (10)
u,we{0,...,n—1}4

1s submultiplicative and for all 8 >0

) o (A 8)

Proof. We show (10) using a renormalization argument. As before, we define V' =
Hle {pi(u)n, ..., (p;(u) + 1)n — 1}. The graph G’ obtained by identifying all the vertices
in V' to one vertex r(u) has the same connection probabilities as the original model. For
xz,y €40,...,mn — l}d, say with z € V' and y € V], we create a path from z to y as fol-
lows. First we consider the shortest path P = (r(ug) = r(u), r(u1), ..., r(w—1),7(w) = r(w))
from r(u) to r(w) in G’, where | = D¢ (r(u), r(w)) is the distance between r(u) and r(w) in
the renormalized model. Inside V!, we first fix two vertices z; and v; such that z; ~ Vi,
and v; ~ Vuni+1; for ¢ = 0 set z9g = x and for ¢ = [ set vy = y. In case there are several
such vertices z; and v;, we choose the one with smallest coordinates, where we weigh the
coordinates in decreasing order (any deterministic rule that does not depend on the en-
vironment would work here). For each i, there clearly is a path between z; and v; that

is completely inside V;'. As no information has been revealed up to now about the edges
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with both endpoints inside V;!, the expected distance between v; and z; inside V! is at
most

E [D . ,b}:A B)— 1.
e (a,b) (n, B)
Now we glue all these paths together to get a path from x to y. To bound the total
distance between x and y note that we have [ +1 sets Vi in which we need to find a path

between two vertices. Additionally, we need to add +I for the steps that we make from
Vi to Vit fori=0,...,1 —1. Thus we get that

Ui41

Eg [Dygn(2,y) | Der(r(u),r(w)) =1] < (1+1) abe{éna)éil}d Eg [Dyp(a,b)] + 1.

Taking expectations on both sides of this inequality yields

Eg [Dvdmn (x, y)]

< (Eg [Der (r(u), r(w))] + 1)ab€{?§i_l}d Eg [Dyg(a,b)] +Eg [Dar (r(w), r(w))]

= (Eg [Dg (r(u), r(w))] + 1) ( max g [Dy;p(a,b)] + 1) -1
a,be{0,...,n—1}

= (Eg [Dyge (u, w)] 4 1) ( max Eg [Dyp(a,b)] + 1) -1
a,be{0,...,n—1}4

< A(m)A(n) — 1.
As z,y € {0,...,nm — l}d were arbitrary we obtain
A(mn) < A(m)A(n), (11)

and as the sequence is submultiplicative we can define

log (A(2k,6)) '

6=06(8) = Fmvoo log(2%)

Actually, this limit exists not just along dyadic points of the form 2%, for k € N, but even
when taking a limit along the integers, i.e.,

6 =6(8) = lim M

n—oo  log(n)

Y

which follows from Lemma 4.1 below. As a next step, we want to show that A(n) > nf
for all n. We do this using a proof by contradiction. So assume the contrary, i.e., there
exists a natural number N and a ¢ < 1 with A(N) = c¢NY. Using (11) we get that for
every integer k

A(NF) < A(N)F = FNOF

and thus
log (A(N*, log(cFN%) 1 log(N
f = lim —og( ( ﬁ)) < limsup og(c ) = og(c) +0 og( ) <46
koo log(NF) koo log(NF) log(N)

which is a contradiction. Knowing this already gives us that for all positive numbers K
we have loa( A loa(A log(A

0 lim 08Am) . log(A(n) . . log(A(n)) (12)

n—oo log(n) n>2 log(n) n>K log(n)

O]
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This lemma and its proof already have several interesting applications. First, we
emphasize that A(mn,3) > A(n,pB) for all m,n € N5y. This holds, as for arbitrary
z,y € Vg', the distance Dy (u,v) between u € V" and v € V" is at least the distance
between r(z) and r(y) in G'. Using the self-similarity and taking expectations we thus get
that

Eg [Dygn(u,v)] > Eg [Der(r(x),m(y))] = Eg [Dyg (2, y)]

which shows our claim. For n = 3, we have for all u,v € {0,1,2}¢ with u # v, and for all
8 > 0 that

Eg [D[w]d(u,v)] =1-Pg(u~v)+2-Pglu~v) <2

and this already implies that A(3) =: 3 < 3 for some ¢’ = 0'(3) < 1. Inductively, with a
renormalization at scale 3, we get that

ABFN) < AB)FA(N) = 3F A(N) (13)

for all k&, N € Nyg. This inequality already gives the upper bound in expectation for
s = 2d, that was already observed in [27] with a very similar technique. Next, we do
a renormalization at scale %77 instead of scale 3 in order to get the inverse logarithmic
upper bound stated in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. We want to show that for each dimension d
there exists a constant C' < co such that for all § > 2

As the connection probability Ps (u ~ v) between any two vertices u,v € 74 is increasing
in B, the distance exponent 6 : R>o — [0, 1] is clearly decreasing by the Harris coupling,
see for example [62]. Thus it suffices to show the upper bound for § large enough with
%/B € N. For such a 8 and all u,v € {0,..., /B — 1}¢, we have for all y € u + C and
x € v+ C that

d
|z — y]2? < a2z -y < a2 /B = a8 (14)

and this already implies

1 1
— _dady > ——.
/u+c /U+c [l =y d?13

Inserting this into the definition p(f, {u,v}) and using that 1 —e™ > & for all 2 < 1 we
get that for large enough 3 that satisfy ﬁ < 1 we already have
) 7d_2d

_ 1 (14
]P)B(u ~ ’U) —1—e¢ Bfu-’rc v+C Hz,yHQddmdy 2 1—e

> %d*d > @) (15)
for all u,v € {0,..., /B — 1}%. Next, we bound the expected graph distance between
u and v. We do this by comparing the distance to a geometric random variable. Let
(u = ug,uq,...,ur = v) be a deterministic self-avoiding path from u to v inside VOQW,
with k < %/8 and ||u; — u;—1]|ec = 1 for all 4 € {1,...,k}. Starting from this, we build a
shorter path between u and v as follows. We start at ug = u. Then for ¢ =0,...,k— 1,

18



if u; ~ v, directly go to v. If u; ~ v, then go to u;y1. This gives a path P between u
and v, and for [ € {1,...,k} this path has length of at least [ if and only if u; ~ v for all

i €{0,...,0l—2}. As the connections between v and different u;-s are independent we get
that
k k
Elg |:DV02W(U7U):| = ;Pg <DV02%(U,U) Z l> S ZZ;]P)g (ul ~ v for all 7 S [ — 2)
(15) F -1 1
< 1—(2d)72) < = (2d)*
<> (1-eo™) SToa o — 29

This already implies that A ( 3B, ﬁ) (2d)*! + 1 < (3d)??. Applying the submultiplica-
tivity of A iteratively we get that

0(3) = lim o8 <A(2Wk?ﬁ)) < limsup log( (WE.5) )
e log ( Q\Cl/Bk) k=300 log < )
_ log (A ( /B, 6)) < log ((3d)2d) _ 4d? log (3d)

log ( 2\"Z/B) - ﬁ log(B) log(3)

which finishes the proof. O

2.3 Spacing between points with long bonds

In this section, we investigate certain geometric properties of the cluster inside certain
boxes. Mostly, we want to get upper bounds on the probability that a vertex is connected
to two different long edges. As we will need it at a later point, namely in section 5.1,
we will prove the statements for ||z — y||«c < 1 instead of z = y. This does not cause
major difficulties, as for each point = € Z%, there are only 3¢ many points y € Z¢ with
lr — yllo < 1. We start with showing that the probability that two vertices x,y with
|z — y|lco <1 are both connected to far away boxes is very low.

Lemma 2.4. For blocks V,J*, V', V. with |[u—v||so, ||[v—w]||ec > 2, there exists a constant
Cy < oo such that for all 5 >0

]P),B (31:7y€‘/2)m Hx_y”oo < 1,I'NV Yy~ Vm) < Qde—UHggmd'

Proof. By translational invariance we can assume that v = 0, and thus ||u||~, [|[w]||c > 2.
For each x € Vg™ there are at most 3¢ vertices y € V§" with ||z — y||oo < 1. For z,y € V{®

the probability that y ~ V" is bounded by Hw[\gé#nﬁ’ and the probability that x ~ V" is
bounded by by % by (7). Thus

42d
Pa(Ee,y € V§' o — gl < Lo~ Vg~ VD < Y Balon V3o
o]
484 <7) 484 42d 21000¢
2dB d Z Pg (2 ) < Qdﬁ dmd BQd a= ﬂzd 2d,d
~ [lwl2dm e wlzém® " [JullZ8m® = [[w||52]|ul|3¢m
which finishes the proof. O
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Lemma 2.5. For blocks V", V,™, Vo' with [|[v — w|le > 2 and ||[u — v||ec = 1, there exists
a constant Cyq < oo such that for oll 3 >0
CafB[ 5] log(m) _
P (E|$ ceym. ||.73 o || <1l.z~V™ 4y~ Vm) < [ﬁv—w|H§gm fOT d=1
B Y v Ylloo = 1, w Y w = Cdﬁ(ﬁ

l[o—wl|3gm

ford>2 "~

Proof. By translational invariance we can assume that v = 0, and thus ||ul|c = 1, ||w]|cc >
2. For each x € V§" there are at most 3¢ vertices y € V§" with ||z — y|lo < 1. For each

vertex y € Vg" the probability that y ~ V" is bounded by quﬂ%#m by (7). Thus

42d
Ps(Fz,y € Vo' i ||z —ylloe S Lz~ V" y ~ V') < Z Ps (2 ~ V™) 34 B

2dynd
eV [w|[3dm
4843
= TwlEmd > Py~ V). (16)
o0 zeVi®

As |lul|o = 1 we have Dy (z, V") < m for all z € Vg", where Dy is the distance with
respect to the co-norm. We furthermore have the inequality

Hr € V§": Do (2, V,)") = k}| < 64ma—1

for all £ € N. This is clear for k£ > m, as the relevant set is empty in this case. For k < m
the set {z € Z? : Dy (2, V;™) = k} is just the boundary of the box

d
H{pi(u)m — ko (pi(w) + D)m — 1+ k}

which is a box of side length m + 2k < 3m. Thus the boundary has a cardinality of at
most 2d(3m)?1 < 64m?=!. Using this observation we get that

m m
REACIIOES DI DI NI GORS) S HESNPRR-WY
zeVg" k=1 zeVg™: k=1
Doo(z, V™) =k
(6) " d=1] 4007 for d =1
< gdmd-1 +6dmd—lzﬁ50dk—d < m X og(m)d[m or ' (17)
pet ~1[B31400 for d > 2
Inserting this into (16), we get that
/842d
Psg(Br,y e Vg" i [z =yl < Lz ~ V" y ~ V, Z]P’,@ )3 s
20000¢3[ 8] log(m) for d =1
< § 200031
=) 20000
W for d 2 1
which finishes the proof. O

Lemma 2.6. Let m € NI € {1,...,3% — 1}, and let vy, v1,...,v41 € Z¢ be distinct
with ||vig1 — Villeo = 1 for all i € {0,...,1}, ||vi — volloc = 1 for all i € {0,...,l} and
i1 — volleo = 2. Then there exists a constant Cq < 0o such that the two probabilities

Ps (Eli e{l,....,1}3x,y € V" with |z — yllo < Lz ~ V" Ly~ V" (y+526%>) ,

Vi1
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P (31' € {1,....[}3e,y € V" with & — ylleo < Lz ~ VI Ly ~ V" 0 (y+526%))

are both bounded by M for d =1, respectively by /ﬂ for d > 2.

Proof. By a union bound we have that

P <3¢ e{l,...,[}3,y € V" with |z — ylloo < Lz ~ V" ,y ~ V" <y+526%))

Vi1
> X Bs(e~ iy~ 0 (v+San)
i€{l,...l} wyeVy:
lz—ylloa <1

> > P <$NVZ[L_1>PB (yN (erSZGmd))
i€{l,...,l} =yeV T
z—ylloo<1

<55d< ) > Y Pe(a~mn)
e,

<o0t () S Y me(envi)

ie{l,...l} zeV?

The sum ) im Pg (ac ~ Vv’ﬁl) was already upper bounded in (17). Using this upper

bound, I < 3%, and inserting this into the line above we get that

BI81(6410°) log(m)

5150d( ) SOy (e~ < " ford =1

i€{1L,...,1} zeVn for d > 2

m

which finishes the proof for the first item in the statement of the lemma. The estimate for
the second term works analogously. O

2.4 The lower bound in Theorem 1.2

Finally, we developed all the necessary techniques in order to show the lower bound in
Theorem 1.2, i.e., that there for all dimensions d, there exists a constant ¢ > 0 such that
0(p) > log( y for all B> 2.

Proof of the lower bound in Theorem 1.2. Inequality (5) and Lemma 2.4 show that for all
dimensions d there exists a constant Cy < oo such that for all 8 > 2 and all u, v, w with
[ = vlloo; lv — wlleo > 2

2
Ps(Fz eV iax~n Vo~ VI |V~ VI~ Vi) < Cafs

<oa (18)

Analogously, Lemma 2.5 shows that there exists a constant Cy < oo such that for all g > 2
and all u, v, w with |[|[u — v|lec > 2 and |[v — W|lec =1

2
Ps(Gz eV iz~ Vo~ VI [V~ VI~ V) < Cals

<o (19
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where we also used that % =0 (m_l/ 2). Lemma 2.6 implies that for every [ €
{1,...,3¢—1} and vg,v1, ..., v, € Z¢ distinct with ||v;11 —v;|lec = 1 foralli € {0,...,1},
|lvi —volleoc = 1 for all i € {1,...,1}, and ||vi41 — vo|lec = 2, one has the bound

Caf?
Pﬁ(ﬂl‘l,...,xl:xiE%T,VU?Nl‘lN.ﬁgN...NZ‘lN‘/;)T;j_l) < .Y

(20)

as a path from Vy, to V,,, inl+1 < 3¢ steps needs to contain at least one edge {x;, z; 11}
with ||z; — Zi+1]|co > 3% and thus x; ~ x; + S>md in this case. We will now show that
—6

Es [Dypur (0, (mM — 1)er)] > <1 + 3d1+4> Es Dy (0.4~ Den)] ()

4d
for m > (2000 - [8]33%1Cy) (3*) and all large enough M. We will see later where this
condition on m comes from. To see (21), we use a renormalization. For u € V§, we
identify the blocks V™ to vertices r(u) and call the resulting graph G’. Then we will prove
that

B3 [Dygr 0. (01 = en)] 2 (1+ 35 ) Ea[Dev (r0) (01 = )]

for large enough M. This implies (21), as the random graphs G’ and Vg have the same
distribution, as shown in section 1.2. Now we condition on the graph G, i.e., we already
have the knowledge which blocks of the form V" are connected in the original graph.
Let P’ = (r(vg),...,7(vg)) be a self-avoiding path in G’ starting at the origin vertex,
ie., vg=0. Let k > 393, Let | = L%J For j € {0,...,1}, we call the subsequence

R; = (r(v2j3d), 7(Vgj3d41); - - - ,’I“(’U(2j+2)3d)) separated if there does not exist a sequence

i+2).39_
(xz)g;;gr)lil ! such that 2; € Vor for all i € {2734 +1,...,(2j +2)3? — 1} and

m m
VU. d ~ .Tj3d+1 ~ .1'j3d+2 ~oLLL Y .T(j+2)3d_1 ~V

73 V23t

For a given self-avoiding path P’ C G’ and different values of j € {0,...,l}, it is inde-

pendent whether the subsequences (T(Ungd), 7(Vgj3d11)5 - - - ,r(v(2j+2)3d)> are separated,
and the probability that a specific subsequence (T(U2j3d), 7(Vgjzd11); - - - ,T(U(2j+2)3d)) is
not separated is bounded by ijjg, as for every sequence <v2j3d, Vojgdy1s - -5 U(2j +2)3d) at

least one of the situations of (18),(19) or (20) holds, as we will argue below. Here we say
that the situation of (18) holds if there exists an index i € {273% +1,...,(2j +2)3¢ — 1}
such that ||v; — vit1]lco, ||V — vi—1|lee > 2, the situation of (19) holds if there exists an
index i € {23 +1,...,(2j + 2)3% — 1} such that [|[v; — vit1lleo = 1, |vs — vi1lee > 2
or [|[v; — vi—1llee = 1,]|vi — vit1]lo > 2, and the situation of (20) holds if there ex-
ists 1 € {1,...,3% — 1} such that |[vis1 — villeo = 1 for all i € {2539,...,253% + 1},
i — vy 3alloe = 1 for all i € {23% +1,...,243% + [} and [vgjza1y11 — Vgjzdllec = 2. If
none of the situations in (18),(19) holds, then the path makes only nearest neighbor-jumps
within the subsequence R;. However, as that there are only 3¢ — 1 many points v € Z¢
with [|v — vg 34[l00 = 1, the situation of (20) must occur within the subsequence R; for
some [. So in total we see that

Caf?

ml/2’

Pg (Rj not separated ‘ G’) <
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The reason why we consider separated subsequences is that in a separated subsequence,
the walk on the original graph VOmM needs to take at least one additional step. For a fixed
path P’ C G’ of length k and [ = L%J we have that

l
Ps <|{j € {0,...,1} : R; not separated}| > B | G')

=Pg U {R; not separated for all j € U} ’ G’

Uc{o,...,l}
|U|>1/2

C 52 /2
< Z Ps <{Rj not separated for all j € U} ‘ G/> <2 ( d ) .

1/2
m
Uc{o,...,l}

U|>1/2

Next, we want to bound the expected degree of vertices in the long-range percolation
graph from above. With the bound on the connection probability Pg(0 ~ u) (4), we get
that

i~ 92d > 92d
Byldeg() = 3. Pa0~w 3+ Y T <ata Y vk )it n
u€ezd\{0} k=2 u€Sy, k=2
<304 p23¥37 Yy "t <374 g3t < []37, (22)

k=2

Let P}, be the set of self-avoiding paths in G’ starting at (0). With a comparison to the
case of a Galton-Watson tree inequality (22) already gives that Eg [|P;|] < (5] 35d)k. As

K
Lgd%J < L3d;1J, we see that

Pg (EIP/ € P}, with less than | separated subpaths Rj>

5072

=Eg [}P’g <EIP’ € P;. with less than L separated subpaths Rj’G'>]

k
57

<o o (62) 7] < o (6

ml/2 ml/2

K 1
< (181%3%) 2°Ch— <o0.01*

m3id

by the choice of m > (2000 - 3%Cy[51?) (5, Next, we want to translate this bound on
the probability of certain events to bounds on the expectation of the distances. For this,
let Gy be the event that all self-avoiding paths P’ C G’ starting at the origin and of length
k > k contain at least Lgd%J separated subpaths ;. With the preceding inequality we
directly get Ps(Gg) > 1 — 0.1%. On the event Gi, each path P C V" starting at the
origin, for which the loop-erased projection on G’ goes through k + 1 different blocks of

the form V™, needs to have a length of at least k + Lsd%J > (1+ :ﬂ%) k. Furthermore,
if we have D¢y (r(0),7 (M — 1)ey)) = k, then every path connecting 0 to (mM — 1)e; in
the original model V™™ goes through at least k + 1 different blocks of the form V™, with
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u € VM. So we get that

e}

Eg [Dygus (0, (mM = Der)| > 3" By [Dygon (0, (mM = 1)e2) L, (r0) (M -1)er))=k)
f=3d+3
oo
> ) Eg [DvomM (0, (mM —1)e1) ]]-{DG/(r(O),r((M—l)e1)):k:}]lgk:|
fe=3d+3
> 1
> ) B ["/‘ <1 + 3d+3> ﬂ{DGmr(ow((M—l)el))k}ﬂgk]
k=3d+3
= 1
> > (EB {’f (1 + 3d+3> H{DG/<r<o>7r<(M—1>e1)>—k}] —Ep [Q’fﬂggD
k=3d+3
= (-
3d+3

L _ R,
S TR B> ol
1
-

) Eg [DVM (0, (M — 1)61)} — 3itip, (DVOM (0, (M — 1)er) < 3d+3) 1

> (1 "
1
1+ = ) Es [DVOM (0, (M — 1)61)}
where the last inequality holds for all large enough M, as for all K € N the probability
of the event {DVOM (0,(M —1)e1) < K} tends to 0 as M — oo. Say that it holds for
d
all M > m", where m = [(2000 - 3%y (ﬂ]3)(34 )-‘ The important property about the

choice of m is, that its size is polynomial in 5. This already implies that

log (Eﬁ [DV(;n” (0, (m" — 1)61)]> log ((1 + 3dﬁ)”*N)

0 > i > i
(8) = a8 log (m™) = oo log (m™)
_ log (1 + :Sd%) S c
log(m)  — log(p)
for some small ¢ > 0 and all 5 > 2. O

3 Connected sets in graphs

The expected number of open paths in the long-range percolation model, of length &k, and
starting at 0, grows at most like E [deg(O)]k, which can be easily proven by a comparison
with a Galton-Watson tree. However, it is a priori not clear how the number of connected
subsets of Z% containing the origin grows. In particular, because the maximal degree of
vertices is unbounded. In this chapter, we prove several results about the structure of
connected sets in the long-range percolation graph. Mostly, we want to prove that with
exponentially high probability in k, all connected sets of size k in the graph have not too
many edges. First, we need to define what we mean by a connected set. Formally, we
define the a connected set as follows. For a graph G = (V| F) we say that a subset Z C V
is connected if the graph (Z, E') with edge set E' = {{z,y} € E : 2,y € Z} is connected.
As a first step, we bound the expected number of connected sets of certain size in Galton-
Watson trees. This counting of connected sets plays an important role in sections 5 and
11 below.
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Figure 1: In the above tree, the process (Yi’)ie{1 .9} 1s writ-
ten inside the vertices and the process (Yi);cry 15y is writ-
ten above the vertices. For this tree we have (aj,...,a14) =

(d,d,u,d,u,u,d,d,d,u,u,d,u,u).

Lemma 3.1. Let X be a countable set with a total ordering and a minimal element, let
X be a countable sum of independent Bernoulli-distributed random variables over this set,
i.e., X =) icp Xi, and let p be the expectation value of X. Say that q(k) = P(X}, = 1).
Let T be a Galton-Watson tree with offspring distribution L(X). We denote the set of all
subtrees of T of size k containing the origin by Tr. Then

E[|T%]] < 4% uF.

Proof. The choice of the set X and the total ordering on it do not influence the outcome,
so we will always work with X = N from here on. We can think of the Galton-Watson tree
as a model of independent bond percolation on the graph with vertex set L = (J; Ly,
where L, = N" and with edge set S = {{v, (v m)} : v € L,m € N} where some edge of the
form {v, (v m)} is open with probability ¢(m). Note that the graph G = (L, S) is a tree, so
in particular there exists a unique path from the origin () to every vertex; this tree is also
known as the Ulam-Harris tree. For a vertex v € L, the number of open edges of the form
{v, (v m)} has the same law as X and thus we can identify the open cluster connected to
the root () with a Galton-Watson tree with offspring distribution £(X). So in particular,
the expected number of subtrees of the Galton-Watson tree T' of size k is the same as the
expected number of connected sets of size k in (L, S). For a vertex v € L, we call the
vertices of the form (v m) that are connected to v by an open bond the children of v. Vice
versa, we say that v is the parent of the vertex (v m), if (v m) is connected to v. For a
connected set L' C L of size k, we now describe an exploration process (Y;),c (1,0 2k—1} of
it:

0. Start with Y7 = 0.
1. Fori=1,...,2k—1

(a) If there exists m € N for which (¥; m) € L’ and Y; # (Y; m) for all j < i, let
m’ be the minimal among those m € N and set Y; 11 = (Y; m/).

(b) If such an m does not exist, let Y;11 be the parent of Y;.
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An example of this procedure is given in Figure 1. This exploration process traverses
every edge exactly twice in opposite directions and starts and ends at the origin of the
tree. We also say that the exploration process Y; goes (one level) down if (a) occurs
in the algorithm above and otherwise we say that the process goes (one level) up. We
also define a different process (Y}),. (1,..k}> Where Y/ is the unique point ¥; such that
{Y1,...,Yi_1}| <iand |{Y1,...,Y;}| =i. So the process (Y;/)z’e{l,...,k} is like a depth-first
search from left to right in the tree. We can encode all information contained in the
subtree L' by the two sequences (ay, ..., ao_2) € {u,d}?*=2 and (mq,...,myu_1) € N1,
The first sequence (ai,...,a_2) encodes whether the process Y; goes one level up or
down at a certain point. Here a; = u if the process goes one level up after Y;, i.e., if Y;41
is the parent of Y;. Otherwise we set a; = d, i.e., if Y11 is a child of Y;. The sequence
(mq,...,mp_1) encodes the direction of the process, where the i-th coordinate gives the
direction when the walk goes down for the i-th time. This happens when it touches the
vertex Yy, for the first time. So if v is the parent of Y}, |, then Y/, = (v m;).

For fixed @ = (a1,...,a06_2) € {u,d}?*=2, we want to upper bound the expected
number of subtrees containing the origin with exactly this up-and-down structure. As-
sume that the exploration process Y; visits exactly [ children of some vertex Yj’ . Then
the expected number of ways to choose these [ children among the children of Yj’ in an
increasing way is given by

Z q(ma1) Z q(ma) --- Z q(my) < pt.

m1EN mo EN: mieN:
m2>mi my>my_1

We have this choice for all vertices Yj’ in the tree. The sum over the number of children
of all the vertices is k — 1, as every vertex, except the origin (), is the child of exactly one
vertex. Thus the expected number of trees with a specified up-and-down structure can be
bounded from above by

k—1
> o Tatm) =i

m1€EN my_1€EN i=1

Up to now, we considered a fixed up-and-down-structure. However, there are at most
‘{u, d}2k*2} = 2%2¢=2 possible up-and-down structures (ai, ..., asx_2) (In fact there are
significantly fewer combinations, as one has additional constraints like a; = d). So in
total, we get

E[|7:]] < Z uFl < (221%2) pF=l < gk gk
de{u,d)2k-2

O]

We now want to use the above lemma about the Galton-Watson tree in order to get
results about the average degree of connected subsets of the long-range percolation graph.
For this, we define the average degree of some set finite Z C Z¢ by

|Z| Zdeg

veZ

deg(Z
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One elementary inequality we will use in the following controls the exponential moments
of certain random variables. Assume that (U;),.y are independent Bernoulli random
variables and U = )72, U;. Then

E [eU] -k [ezz'eN Ui] — g}E [eUi] < g (1+€eE[U;)) < geeE[Ui} _ cEU] (23)

and this already implies, by Markov’s inequality, that for any C' > 0

(23)
P(U >CE[U]) =P (eU > eCE[U]> <E [eU] e~ ORI "< ple=CIE[], (24)
Lemma 3.2. Let CSy = CSy, (Zd) be all connected subsets of the long-range percolation
graph with vertex set Z%, which are of size k and contain the origin 0. We write pg for

Eg [deg(0)]. Then for all § >0
Pg (HZ € CSy, :d?zg(Z) > QOMg) < e~ Hkns

Proof. Consider percolation on the tree L = (J0°, Ly, where L, = (Z¢\ {0})", the edge
set is given by S = {{v, (v m)} : v € L,m € Z?\ {0}} and an edge of the form {v, (v m)}
is open with probability p (3,{0,m}). A total ordering on Z?\ {0} is given by considering
an arbitrary deterministic bijection with N. From Lemma 3.1, we know that the expected
number of connected sets of size k in L is bounded by 4kul§. We want to project a finite

tree T C L of size k down to Z¢. Remember the notation (Yi/)ie{l,...,k} for the depth-
first search from left to right in the tree. The information contained in the structure of
the tree can be represented by the vectors a = (a1,...,a9_2) € {u,d}**=2 and m =
(ma,...,myu_1) € (Z\ {0})k_1. We now define a subgraph (Z(T'), E(T)) of the integer

lattice and an exploration process (X;),. (1, as follows:
0. Start with X] =0, E1(T) = 0.

1. Fori=2,...,k:
Let j < i be such that Y] = (Y] m) for some m € 74\ {0}. Set X! = X +m and

Ey(T) = E;_1(T) U {{X;,X;}}

2. Z(T) = UL, {X/} and E(T) = Ex(T)

See Figure 2 for an example of this projection. The graph (Z(T), E(T)) is clearly
connected, but it is not necessarily a tree, as there can be i # j with X = X ]’-, in which
case there exists a loop containing X/. We call both the graph (Z(T), E(T)) and the tree
T admissible if (Z(T), E(T)) is a tree. We also write T .Aj, for the set of admissible trees
T C (L, S) of size k. For a tree T' C (L, S) of size k, the condition T' € T A, is equivalent
to |Z(T)| = k, as every connected graph with k vertices and k — 1 edges is a tree. Assume
that the graph (Z(T'), E(T)) is admissible. Then the probability that all edges exist in the
random graph equals Hf:_ll p(B,{0,m;}), which is exactly the probability that all edges
of the tree T exist inside (L, S). Every connected set Z C Z? has a spanning tree. Thus
there exists a tree T' C L with Z = Z(T) such that all edges in E(T") exist. This and the
result of Lemma 3.1 imply that

Egs [‘CSk(Zd)‘] < Z Ps (all edges in E(T) exist) = Z Ps (T € Ty)
TeT Ay TeT Ax

< Eg [|Tel] < 4" (25)
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Figure 2: A tree T with 5 vertices, (ai,...,ag) =
(dyu,d,d,u,d,u,u), (my,...,my) = (—=2,1,—2,2), and its projec-
tion on Z. The vertices with thick boundary {—2,—1,0,1,3} C Z
are the set Z(T') and the thick edges between them are the set
E(T). Note that (Z(T'), E(T)) really is a tree for this example.

For an admissible tree 7', the degree of each vertex v € Z(T') is the sum of an inside degree
and an outside degree, which we will now define. The inside degree deg () (v) of a vertex
v € Z(T) is defined by

degZ(T) (v) = Z ﬂ{{v,u}eE(T)}
ueZ(T)
which is just the number of edges in E(T") containing v. Note that for a given admissible
tree T', the inside degree is purely deterministic and does not depend on the environment.
Also note that, by the handshaking lemma,

Y degyr(v) =21E(T)| =2(12(T)| - 1), (26)
veZ(T)

where the last equality holds as (Z(T), E(T)) is a tree. Now let us turn to the outside
degree deg (1o (v) of a vertex v € Z(T), which we define by

degzrye(v) = Y w{vu}).
u€Z\{v}:
{uv} g E(T)

The outside degree depends on the random environment w and is a non-constant random
variable, contrary to degyy(v). Now we want to get bounds on the random variable
> vezr) degzrye(v). Note that {u,v} ¢ E(T) does not imply that u ¢ Z(T'), but
only that u and v are not neighbors in the graph induced by 7. The random variable
> vez(r) degz(rye(v) is not the sum of independent Bernoulli random variables, as we
might count some edges twice. But as one can count every edge at most twice in this sum,
one has the bound

1
5 Z degZ(T)C(U) < Z w ({u,v}) (27)
veZ(T) {u,w}¢ E(T):
{u,v}NZ(T)#£0
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where the expression on the right-hand side is a sum of independent Bernoulli random
variables with expectation at most |Z(T')|ug. So for each admissible tree T' we always
have

Z deg(v Z degZ(T) Z deg (e (v) < 2|Z(T)| 2 Z w ({u,v}).

veZ(T veZ(T veZ(T {u,v}¢E(T):
{u,vINZ(T)#0

We use the notation

U=U(T) = Z w({u,v}).
{u,v}¢E(T):
{uw}NZ(T)#£0

For a given finite admissible tree T', we have that

Py (deg(Z(T)) > 20pg) =Pz | > deg(v) > 20|Z(T)|ug | <Py (2U > 18|T|pp)
veZ(T)

(24)
=Ps(U>9T|ug) < E [eU] e NTls < eelTlnp =N Tlip < o=6ITlns (28)

So far we only got this bound for a fixed admissible tree ' C (L,S). Remember that
every connected set Z € CSy has a spanning tree and there exists a tree T' C (L, .S) so
that (Z(T), E(T)) is exactly this spanning tree. Again, we use the notation 7 A, for the
set of admissible trees T C (L, S) of size k. With the observation from before we get that

Py (3Z € CSk : deg(Z) > 20p3) < Y Py (deg(Z(T)) > 203, all edges in E(T) exist)
TeT Ay

< Z Ps (U(T) > 9kug, all edges in E(T) exist)
TeT A

= Y Py (U(T) = 9%kpus)Ps (all edges in E(T) exist)
TeT A

(28)
< e7Okus Z Ps (all edges in E(T") exist)

TeT Ay

(25)

where we used that ;g > 2 in the last inequality. This holds for long-range percolation
with our parameters, as each vertex is always connected to its nearest neighbors. The final
inequality is exactly the result that we wanted to show and thus finishes the proof. O

4 Distances in V'

In this section, we give several bounds on the distribution of the graph distances between
points, respectively sets, inside of certain boxes. In section 4.1, we determine several
different properties of the function (z,y) — Eg [DV(;L (z,y)]. It is intuitively clear that the
expression is large when z,y also have a big Euclidean distance, for example when z = 0
and y = (n — 1)1. This intuition is made rigorous in Lemma 4.2. In section 4.2, we upper
bound the second moment of random variables of the form Dygn(x,y). Then, in section
4.3 we use these results in order to bound the distance between certain points and sets in
the long-range percolation graph.
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4.1 Graph distances of far away points

From the definition of A(n, #) in (10) it is not clear which pair u, v maximizes the expected
distance and how the expected graph distances can be compared for different graphs V'
and V(?'. In Lemma 4.1, we construct a coupling between the long-range percolation graph
on Vg for different n. In Lemma 4.2, we show that, up to a constant factor, the maximum
in the definition of A(n, 3) gets attained by the pair {0, (n — 1)e;} or {0, (n —1)1}.

Lemma 4.1. Let § > 0 and n’,n € Nsg with n’ < n. For u,v € V§ define v/ =

L%uj = L%UJ, where the rounding operation is componentwise. There exists a coupling
of the random graphs with vertex sets Vg' and VO”/ such that both are distributed according
to Pg and

Dvgl

/(u',v") < 3Dy (u,v) (29)
for allu,v € V§'. The same holds true when one considers the graph 7% instead of Vo' and
this also implies that

Diam(Vg") < 3Diam(Vg"). (30)

Proof. We prove the statement via a coupling with the underlying continuous model. As
the claim clearly holds for § = 0 or for u = v, we can assume § > 0, and u # v from
here on. Let £ be a Poisson point process on R% x R¢ with intensity W and define

&= {(t, s) €RIx RE: (s,t) € é‘} U €. Remember that this point process has a scaling
invariance, namely that for a constant a > 0 the set a€ has exactly the same distribution
as £. We now define a random graph G = (V, E): For u,v € Vj = V we place an edge
between u and v if and only if (u + C) x (v + C) NnE # 0. We have already seen in
section 1.2 about the continuous model that this creates a sample of independent long-
range percolation where the connection probability between the vertices v and v is given by

p(B,lv—u|)=1—e Jure Juve ”f*illzd ¥ We can do the same procedure for V' == V¥ and
n’'E to get a random graph G’ = (V’, E’). Formally, we place an edge between two vertices
u',v" € V' if and only if (v +C) x (v/+C)Nn'E # 0. We now claim that for any two vertices
u,v € V with u # v and v/, v" defined as above one has D¢ (v/,v") < 2D¢(u,v) 4+ 1, which
already implies (29). Assume that (xg = u,x1,...,2; = v) is the shortest path between u
and v in G, where | = Dg(u,v). Then for all ¢ = 1,...,1 there are points

(y(i,0),y(i,1)) € (zi—1 +C) x (x; +C) Nné.

In particular one has

ly(i = 1,1) = y(i,0)[o <1
for all i = 2,...,1, ||[y(1,0) — ullsc < 1, and |ly(l,1) — v|[jec < 1. For all i = 1,...,1
and j € {0,1} define /(4,j) = %ly(i,j), which implies (y/(7,0),v'(¢,1)) € n'E. With this
definition one clearly has

Iy (i = 1,1) = y'(4,0) ]l < 1
for all i« = 2,...,1, ||¥/(1,0) — %/UHOO < 1, and ||y/(1,1) — %/UHOO < 1. Soin G’ we
can use the path from «’ to v’ that uses all the edges {|v/(¢,0)], [¢'(¢,1)|} and in the
case where |y'(i — 1,1)] # [¥/(4,0)] holds, respectively the analogous statement for v’
or v' holds, we can use the nearest neighbor edge between those vertices, which exists as
ly'(i — 1,1) — ¥'(4,0)]]c0 < 1. So for each vertex that is touched by the shortest path
between v and v in G one one needs to make at most one additional step for the path
between v’ and v' in G’, which implies that D¢/ (u',v") < 2Dg(u,v) + 1. If one does not
restrict to the sets V = V§" and V' = V({l/, but works on the graph with vertex set Z¢
instead, the same proof works. ]
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Lemma 4.2. For all 3 > 0, n € Ny, and u,v € V', we have
Eg [Dyp (u,v)] < 6dEg [Dyp(0, (n—1)e1)] (31)

and
Es [Dyg (0. (n — Der)] < 6E5 [Dyp (0. (n — 1)1)]. (32)

This lemma already has two interesting implications, that we want to discuss before
going to the proof.

Remark 4.3. Combining (31) and (32) already implies that for A(n, ) = maxy vevy Eg [Dvon (u,v) ]+
1 one has

Es [Dyg (0, (n — 1)e1)] +1 < A(n, 8) < 6dEg [Dyg (0, (n— 1)er)] +1 and
Eg [Dyp(0,(n—1)1)] +1 < A(n, 8) < 36dEg [Dyg (0, (n —1)1)] + 1.

Remark 4.4. For all bounded sets K C R>q there exists a constant 0* > 0 such that for
all B € K and all M, N large enough one has

A(MN,B) > M” AN, B).

Proof. Remark 4.3 together with (21) already show the existence of such an 6* along a
subsequence of numbers of the form M = m*. Lemma 4.1 shows the result for all large
enough M. O

Proof of Lemma 4.2. Using the triangle inequality and linearity of expectation we get for
all u,v € V' that

Eg [Dyg (u,v)] < Eg [Dyg(u,0)] +Eg [Dyz(0,v)]
and thus, in order to prove (31), it suffices to show that
Eg [Dyp(0,v)] < 3dEg [Dyp(0, (n—1)e1)] (33)

for all v € V§'. By symmetry, we can assume that p;(v) > pa(v) > ... > pg(v). For
k € {0,...,d}, we define the vector v(k) € Vg by

k

v(k) = Zpi(v)ei,

=1

i.e., the first k£ coordinates of v(k) equal the corresponding coordinates of v and all other
coordinates are 0. By the triangle inequality and linearity of expectation we clearly have

d—1 d—1
Es [Dvg(0,0)] <Es | Dyp(v(i),v(i+1)| = > Eg [Dyg (v(i), v(i +1))] .
i=0 i=0

So in order to show (33), it suffices to show that
EB [l)v(;1 (U(i), U(i + 1))] < BEB [Dvon (0, (n — 1)61)] (34)

for all i € {0,...,d — 1}. For each such index i, the cube

Bi =TT i) = pisa(®), s (@)} X {0, -, piga ()}
j=1
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Figure 3: Let v = (6,3) € V. The points in the gray area are the
set V§. The points in the hatched area are Bj.

is contained in the cube V" and contains both points v(i) and v(i41), which lie on adjacent
corners of the cube. See figure 3 for an example. Allowing the geodesic to use less edges
clearly increases the distance between two points, which implies Dygn(v(i),v(i + 1)) <
Dg,(v(i),v(i+ 1)) as B; C V{§'. As the model is invariant under changing the coordinates
and under the action e; — —e; we already get for all i € {0,...,d — 1}

Eg [Dp,(v(i),v(i + 1)) = Eg DVS,Z.H(U)H(O,piH(v)el) < 3Eg [Dvon(O, (n— l)el)] ,

where we used Lemma 4.1 for the last inequality. This shows (34) and thus finishes the
proof of (31). Now let us go to the proof of (32). Define y € Z¢ by p1(y) = 1, pi(y) = —
for i > 2 and define the cube Bby B = {n —1,...,2n — 2} x {0,...,n — 1}¢~1. By the
triangle inequality we have

DV()2n71 (0, (2TL - 2)61) < DV(;L (0, (n — 1)1) + DB((TL - 1)1, (2n - 2)61). (35)
Observe that (2n —2)e; = (n — 1)1+ (n —1)y. The pairs of vertices 0 and (n — 1)1 lie on
opposite corners of the cube Vg'. The vertices (n — 1)1 and (2n — 2)e; also lie on opposite
corners of the cube B. The two cubes V' and B differ by a translation only; in particular,
they have the same side length. As the long-range percolation model is invariant under

translation and reflection of any coordinate the two terms in the sum (35) have the same
distribution which implies that

Eg [Dvgn,1<o, (2n — 2)61)] < 2 [Dyz (0, (n — 1)1)].
Using Lemma 4.1, we finally get
Eg [Dys (0, (n — 1)er)] < 3Eg [Dvogn,l(o, (2n — 2)61)} < 6Eg [Dyz (0, (n — 1)1)]

which shows (32). O
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4.2 The second moment bound

The next lemma relates the second moment of the distances to their first moment. We
use a technique that has already been used in [33] before in a slightly different form for
dimension d = 1 only. As we need the result in a uniform dependence on § in section 11
below, we directly prove the uniform statement here. The uniformity does not cause any
complications for d > 2, but it causes minor technical difficulties for d = 1. So we give a
separate proof for dimension d = 1 in section 12 below. The situation for d > 2 is easier,
as there are no cut points, in the sense that for every u,v € Vg there exist two disjoint
paths between v and v. For d = 1, and in particular for 8 < 1, such a statement will
typically not be true.

Lemma 4.5. For all 8 > 0, there exists a constant Cg < oo such that for all n € N, all
e €1[0,1] and all u,v € Vg

Egte [Dyg(u,v)?] < CsA(n, B +¢). (36)

Proof of Lemma 4.5 for d > 2. Fix > 0. We will prove that for all £ € [0,1], all m,n €
N, and all u,v € Vg™

Egye [Dygon (u,v)?] < 170m*A(n, 8 4 €)* + 170 max Eg,. [Dyg(w,2)?] . (37)

,2€Vg

Iterating over this inequality one gets for some large enough N that

max Egy. |:DvomkN (u, U)Q}

k
u,veVg™ N

k
< 170m* 3 170°A(mP N, B+ €)? + 170" max_Eg,. [DVON(u,v)ﬂ

i—0 u,vGVON
k . .
< 170m* > "1T0°A(m* N, B + £)? + 170" N2, (38)
=0

for all £ € N. By Remark 4.4 there exists 6* = 6*(3) > 0 such that for all € € [0, 1], and
all m,n € N large enough one has

A(mn,B+¢e)= max Eg,. [Dygn (u,v)] +1
o

u,vEV,

> m? ( max Egy. [Dyg(u,v)] + 1) =m? A(n, B +¢).

u,veVy

Take m large enough so that also 170m=2¢" < % is satisfied. Inserting this into (38) gives

k
max, Egye |:DankN(u7’U)2i| < 170m* Z 170°'A(mF "N, B + ) + 170" N2
u,vGVom N 0 i=0
k . .
< 170m* Y " 170'm " A(mFN, B+ €)® + N2A(mFN, B + €)
1=0

< (340m* + N?) A(m"N, B + ¢)?

for large enough N. This shows (36) along the subsequence N,mN,m?N,... . For
general n € N, the desired result follows from Lemma 4.1. So we are left with show-
ing (37). For this, we use an elementary observation, that was already used in [33].
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Assume that Xi,..., Xy are independent non-negative random variables and let 7 =
arg max;e(q,.. ) (Xi). Then

2
E [ <max Xl->
iET

We still need to show inequality (37), i.e., that

<E ixi > X :iZE[Xi]E[Xj]§rh2m?xE[Xi]2. (39)

i=1 j#i i=1 j#i

Egye [Dvomn (u, U)Q] < 170m*A(n, B+ €)? + 170 max, Ege [DV(;L (w, z)z] )
w,z€V]

Let u,v € Vg, say with u € V;',v € V!, where x,y € Vg". Inequality (37) clearly
holds in the case where x = y. For the case x # y, let 9 = x,21,...,2; = y and
x = x,,...,x, =y be two completely disjoint and deterministic paths between = and
y inside Vg™ that are of length at most m + 1 and use only nearest-neighbor edges, i.e.,
lzi — zi—1]lo = 1 and ||a} — x}_;||cc = 1 for all suitable indices i. By completely disjoint
we mean that {z1,...,z-1} N {},...,2},_;} = 0; the starting point z = 2y = z{, and
the end point y = x; = z}, already need to agree by the construction. Now we iteratively
define sequences (L;, R;)!_, and (L, R;)é/:o as follows:

0. Set Lo =u, R = v.

1. Fori=1,...,l, choose R; 1 € V!  and L; € V! such that ||R;_1 — Li||cc = 1.

1
Analogously, we define (L}, R})}_, by
0. Set L = u, R}, = v.

1. Fori=1,...,l', choose R;_, € V"

i—1

and L € Vo such that ||R,_; — L[| = 1.

The choice of these algorithms in step (1.) is typically not unique. If there are several
possibilities, we always choose the vertices with some deterministic rule that does not
depend on the environment. By construction we have L;, R; € V! and L, R e V7 for all

i €{0,...,1}, respectively i € {0,...,I'}. Define

X, = DVI”,(LivRi) for i € {1,...,l — 1} and
X =Dyn(Lj,R;) for i € {1,...,1' — 1}.

This are at most [ — 1+ 1’ — 1 < 2m random variables and they are independent, as the
boxes V) and V. are disjoint. We order the random variables {X; :7 € {1,...,l—1}} U
{X]:i 61{1, ...,I" = 1}} in a descending way and call them Y7,Y5,... Y 9. The idea
in finding a short path between u and v is now to avoid the box where the maximum of
the Y;-s is attained. Assume that the maximum of them is one of the X;-s, ie., X; = Y;
for some ¢ € {1,...,1 — 1}. Then we consider the path that goes from L{ = v to R}
and from there to L}, and from there we go successively to R;, = v. Otherwise, we have
X! =Y for some i € {1,...,I'’—1}. In this situation, we consider the path that goes from
Ly = v to Ry, from there to L1, and successively to R; = v. In both cases we have have
constructed a path between u and v. The length of this path is an upper bound on the
chemical distance between v and v and thus we get

Dygn(u,v) < Dyn (Lo, Ro) + Dy (Lg, Ry) + Dyn(Ly, Ry) 4 Dy (Ly, Ryy) +mYz + (m + 1),
(40)
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where the summand (m + 1) arises as one still needs to go from R; to L;+q for all i €
{0,...,1 =1}, or from R; to Lj  for all i € {0,...,I" — 1}. But by assumption one has
I,/ <m+1, so one needs at most m + 1 additional steps. From (39) we know that

Egie [Y5] < 4m? max Eg,. [Dvon(w,z)]z. (41)

w,zEVO"
For the distance between Lo and Ry one clearly has

Egte [Dvp(Lo, Ro)’] < max Eg. [Dyg(w,2)’]

w,zeVg

and the same statements hold for Dy (Lg, Ry), Dy (Li, Ry), and Dy (L, Ry,). Using the

2
elementary inequality <Z?:1 ai> <36 Z?:1 a? that holds for any six numbers a1, ...,ag €
R for the term in (40), we get that
Ege [DVOm” (u, U)2]
< 36Es,c [DV,J?(LO: Ro)® 4+ Dyp(Ly, Ry)? + Dyp(Li, Ri)? + Dy (Ly, Rp)? + m?Ys + (m + 1)2]
<4-36 max Epgic [Dyg (w,2)?] +36m*Egye [Y5'| +6(m + 1)°
w,z€Vg

(41)
< 170 max Eg. [Dyg (w, z)Q] + 170m*A(n, B + €)?

w,z€Vy
which shows (37) and thus finishes the proof. O

Corollary 4.6. Iterating this technique one can show that for all k € N of the form k = 2!
and for all B > 0 there exists a constant Cg < oo such that for alln € N, and all u,v € V'

Es [DV(;L (U,U)k} < CsA(n, B)". (42)
Then, one can extend this bound to all k € R>o with Holder’s inequality.
Proof of Corollary 4.6 for d > 2. For r > 0, define the quantity

A"(8,m) = max Ep [Dvg (z,y)"]

and assume that A"(38,n) < CA(B,n)" for some constant C' and all n € N. Using the same
notation as in (40) above we get that for any w,v € Vg™, say with u € V' and y € Vs

Dygrn(u,v) < Dyp(Lo, Ro) + Dy (Lo, Rg) + Dy (Ly, Ry) + Dyp(Ly, Ry) + mYa + (m + 1),
and thus we also get that
Dy (u, v)%" < 62 (DV;(LO, Ro)* + Dy (Lh, Ry)>
+ Dy (Ly, R)* + Dy (L, Ry + (mYa)™ + (m + 1)2’”).
We have that

Eg [(ng)QT] =m*Eg [(Y{)Q} <m* max Eg [Dvon (w,z)”]2 <m*C?A(B,n)"

w,zeVy'
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and from here the same proof as in Lemma 4.5 shows that A%"(3,n) < C(r)A(8,n)?" for
some constant C(r) < oo. Inductively, we thus get that for all » = 2¥, with & € N one has
A"(B,n) < C(r)A(B,n)". Whenever r > 0 is not of the form r = 2¥ for some k € N, let k
be large enough so that r < 2¥. Then we get that

AT(B,n) = Eg [Dyn(z,y)"] < Es [Dvg (2,9)* ] < CA(Bn)
(B,n) nax, s [Dvg (x7y)}_mfgg‘>/<on s | Dvg (@, y) < CA(B,n)

for some constant C'. O]

4.3 Graph distances between points and boxes

So far, we only considered distances between two different points in a box. In this section,
we investigate the distance between certain points and boxes. For n € N and 0 < ¢ < %

we define the boxes L := [0,:n]? and R := [n — 1 —wn,n — 1]%. This are boxes that lie
in opposite corners of the cube V', where L} lies in the corner containing 0 and R}’ lies
in the corner containing 1. The next lemma deals with the graph distance of these two
boxes. A similar statement of Lemma 4.7 for the continuous model and d = 1, was already
proven in [33]. We follow the same strategy for the proof of this lemma. Again, we prove
it uniformly for S in some compact intervals, as we will need this uniform statement in
section 11. The uniformity does not make any complications in this proof here.

Lemma 4.7. For all § > 0, there exists an ¢ > 0 such that uniformly over all € € [0, 1]
andn € N

Epse [Drg (L1, BD] 2 5Esie [Dyp (0, (n = D1)], (43)

and there exists ¢* > 0 such that uniformly over all € € [0,1] and n € N

1
Paie <DVOn (L2, ) = 7Eg4e [Dg (0, (n — 1)1)]) > ¢, (44)

Proof. The statement clearly holds for small n, so we focus on n € N large enough from
here on. Let x € L} and y € R be the minimizers of Dy (L}, R}), i.e., Dyp (L}, R}') =
Dyy (z,y). If the minimizers are not unique, pick arbitrary ones in some fixed way not
depending on the environment. The choice of z,y, and the distance Dy (L}, R?) depend
only on edges with at least one endpoint in Vg' \ (L] U R}). The distances Drn(0,x),
respectively Dgn (y, (n—1)1), depend only on edges with both endpoints in L}, respectively
R}. Thus we get that

Egie [Dyy (0, (n —1)1)] < Egie [Drp(0,z)] + Egpe [Dyp (LY, RY)| +Epye [Drp(y, (n —1)1)]
< 2A(lin), B+¢) +Egye [Dyp (L), R} -

For ¢ small enough and n large enough, we get uniformly over ¢ € [0, 1] that
1\
A(?’L,ﬁ—i-f) Z ([/) A(I_Lnjaﬂ_‘_é')

for some ¢’ > 0 by Remark 4.4. So by Lemma 4.2, respectively Remark 4.3, we can choose
¢ small enough so that uniformly over n € N large enough and ¢ € [0, 1]

2A([in],B+¢e) < %EﬁJrg [DVO" (0, (n — 1)1)] )
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and this implies that
Este [Dvp (L7, RY)] > Egqe [Dyp(0, (n— 1)1)] — 2A([en], 8 +¢)
1
> JEgye [Dyp (0, (n = 1)1)]

which proves (43). For such an ¢, define A = {DVO" (L?, R") > Egy. [Dvon (0,(n—1)1)] }.
By the Cauchy-Schwarz inequality we have

Egie [Dyp(0,(n—1)1)] < 2Eg;. [Dyp (L}, RY)]
=2E3. [Dvp (L], RY)1 gc] + 2Es4c [Dyp (L}, R} )1.4]
1
< 5Ep+e [Dyp (0, (n — 1)1)] + 2B [Dyg (0, (n —1)1)?] 2 Pgye (A)

< %Eﬁ—i-a [Dyz (0, (n —1)1)] + C'Eg. [Dyp(0, (n — 1)1)] /Pgic (A),

where the last inequality holds for some C’ < oo, by Lemma 4.2 and Lemma 4.5. Solving
the previous line of inequalities for Py, (A) shows (44). O

Lemma 4.8. For all 5 > 0 and all dimensions d, there exists a constant c¢; > 0 such that
uniformly over alln € N and all z € S,

Es [Dp,(0)(0,2)] > c1Es [Dyg (0, (n — 1)1)] (45)

and the constant c1 can be chosen in such a way so that it only depends on the dimension
d and the value v > 0 in (43).

Proof. Let v € S, be one of the minimizers of y — Eg [D B, (0)(0, y)] among all vertices
y € Sp. By reflection symmetry, we can assume that all coordinates of v are non-negative.
With the notation eg = e; we define the vectors vg,...,vq_1 by

(ej,vi) = (€i+j mod d» V)

which are just versions of the vector v, where we cyclically permuted the coordinates. By
invariance under changes of coordinates, we have

Es [Dp,(0)(0,v)] = Eg [Dp, (0)(0,v;)]

for all i € {0,...,d—1}. Define the vertices uo,...,uq by u; = Zgzl v;. By our construc-
tion we have ug = 0 and ug = Zle v; = N1 for some integer N > n. The balls B, (u;)
are all contained in the cube Y = {—n,..., N +n}? for all i € {0,...,d}. Thus we have

QU

1
Es[Dy(0,N1)] < » Eg[Dy(ui-1,ui—1 +vi1)] < dEg [Dp, (0y(0,v)]
1

-
Il

and by translation invariance we also have for the cube Y1 = {0,...,2n + N}¢
Eg [Dy, (n1, (n+ N)1)] < d Eg [Dg,0)(0,v)] .

Using the triangle inequality, we see that for all £k € N the expected distance between nl
and (n + kN)1 inside the cube Yy = {0,...,2n 4+ kN}? is upper bounded by

Eg [Dy, (n1,(n+kN)1)] < k-dEg[Dp,0)(0,v)] .
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But Lemma 4.1 also gives that for s = ;515 and wy = [snl],wy = [s(n + kN)1]
Eg [Dyp (w1, w2)] < 3k-d Eg [Dg, 0)(0,v)] .

As N > n, for each fixed ¢ > 0 we can choose k large enough so that w; € L} and wy € R}
and thus Eg [Dyg (w1, ws)] > Eg [Dygp (L}, R}')]. Then we get by the lower bound on the
expected distance between the boxes L} and R}' (43) that for such a k

1
Eg [Dvg (L, R}')]

Eg [Dp,(0)(0,v)] > ﬁEﬁ [Dvg (w1, w2)] = 2
< LEB [Dyz(0, (n —1)1)]
~ 6kd A
which finishes the proof, as v € &, was assumed to minimize the expected distance
Egs [DBH(O)(O, y)} among all vertices y € S,. O

Lemma 4.9. For all dimensions d and all 3 > 0, there exists an n € (O, %) such that
uniformly over alln € N and all z € S,

Es [Dp, 0) (Byn(0), Byu(@))] = SA(n. 8) (46)
where ¢y is the constant from (45) and there exists a constant ca such that
Py (D, 0) (Ban(0), Byn(@)) = A, B)) = c2. (47)
Furthermore, for each B > 0 there exist constants c3 > 0 such that
Py (D (Ba(0), Ba(0)°) = S A, ) = 5 (48)

uniformly over all n € N.

Note that in the above lemma, for x € S, the box By,(x) is not completely con-
tained inside By, (0), but from the definition of Dp, (g) (-, "), we only consider the part that
intersects By, (0).

Proof. Given the results of Lemma 4.8, the proof of (46) and (47) works in the same way
as the proof of Lemma 4.7 and we omit it. Regarding the statement of (48), we will first
prove that for n > 0 small enough

Py (D (Byu(0), Ba(0)€) = A1, 8)) = ca (49)

for some constant ¢4 > 0 and uniformly over all n € N. For this, we use the FKG
inequality, see [62, Section 1.3] or [43,56] for the original papers. We can cover the set
U.es, Byn(x) with uniformly (in n) finitely many sets of the form By, (z). For example,
we have

U Bm() c | Bpml(2)

TESn: zeF
(.Z’,t’:‘l):n

where F' = {nel +Zf:2 kie; : ki € {—{ﬁ],..., (%1} for all 7 € {2,...,d}}, and all

other faces of the set | J s, Byn(¥) can be covered in a similar way. Suppose that A;, C S,
is a sequence of finite sets with sup,, |A}| = A’ < oo such that

U Bin(z) = |J Bynl(2)

€S, z€Al
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for all n € N. So in particular we have

{DBTL(O) (Bnn(o)ann(x)) > %A(n,,@) for all x € Sn}
= {DBn(O) (Byn(0), Bpn(x)) > %A(n,ﬁ) for all x € A;} :

The events {DBn(O) (Byn(0), Byn(z)) > 4 A(n, B)} are decreasing for all € S, in the
sense that they are stable under the deletion of edges. Thus the FKG inequality and (47)
imply that that

c
Ps (DBH(O) (Byn(0), Byn(x)) > ZIA(n,B) for all x € Sn>

~Ps (Dp,(0) (Bun(0), Bya(@)) = SA(, ) for all z € 4;) > &) > ¢y
Assume that there is no direct edge from [—(n — nn), (n — nn)]? to Z4\ [-n, n]%. This has
a uniform positive probability in n and is also a decreasing event. Then any path from

By (0) to B, (0)¢ goes through at least one box By, () N B, (0) for some z € S,,. So with
another application of the FKG inequality we get that

Py (D (Byn(0), Ba(0)€) > %A(n,ﬁ)) > cs

for some c5 > 0 and uniformly over all n € N. Next, let A, C B,(0) be a sequence of sets
such that (J,c 4. Byn(®) = Bn(0) and sup,, |A,| = A < oo. Then D (B,(0), B2,,(0)¢) <
4 A(n, B) already implies that there exists a point « € A, such that D (B, (z), By(2)°) <
GA(n,B). By another application of the FKG inequality we have

Py (D (Ba(0), Ban(0)°) = 2
> Py (D (Byn(@), Ba(@)°) 2
which proves (48). O
Lemma 4.10. For all 8> 0 and all € > 0, there exist 0 < ¢ < C < oo such that
Ps (cA(n,B) < D (0,B,(0)°) < CA(n,B8)) >1—¢ (50)
for alln € N.

Similar statements for one dimension and the continuous model were already proven
in [33]. We follow a similar strategy here.

Proof. By the inequality D (0, B,(0)¢) < DVOn+2 (0,(n+1)1) we get that

Eg [D (0, B.(0)°)] < A(n+2,8) < An, B) + 2.
Using Markov’s inequality we see that

_Amp)+2

Ps (D(0, B,(0)€) > CA(n,B)) < A )

and thus the probability P (D(0, B, (0)¢) < CA(n, 8)) can be made arbitrarily close to
1 by taking C' large enough. We will also refer to this case as the upper bound. The
probability of the lower bound Pg (cA(n, 8)) < D(0, B,(0)¢) can be made arbitrarily close
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to 1 for small n by taking ¢ small enough. So we will always focus on n large enough from
here on. Fix K, N € N5 such that the function ¢ — A (KziN, B) is increasing in ¢. This
is possible by Remark 4.4. We now consider boxes of the form Bpyzix(0). The probability
of a direct edge from Bjezi-1)5(0) to Bg2in(0)¢ equals the probability of a direct edge
between 0 and Bg2(0)¢, and is by (6) bounded by 3509K 2. So the probability that there
is some i € {1,...,K} for which there is a direct edge from Byaq-1)5(0) to By (0)
is bounded by B509K~!. We denote the complement of this event by A. Conditioned
on the event A, where there exists no edge between Byaq-1)5(0) and Baiy(0)€ for all
i€ {l,...,K}, each path from Bx(0) to Bger n(0) needs to cross all the distances from
Bieai-1)5(0) to B2K2(i—1)N(O)C. For odd 7, these distances are independent. Remember
that 7 — A (K 2N, ﬁ) is increasing in i. So conditioned on the event A we have the bound

P; (D (0, Beax 4 (0)°) < A N, 8) ‘A)

<Py (D (BKQ(Z-_UN(O),BQKz(i_UN(O) ) <A (K200, 8)¥i e {1,.... K} odd(A)

H Py (D (Byeain(0), Bagaion (0)) < S (K208, 8) |4)

i odd

H Pg ( (Bi2i-1)5(0), Byjeaii-1  (0)) < %A (KQ(FUN, ﬁ)) < (1—e)lz),
i odd

where the second last inequality holds because of FKG, as events of the form {D(-,-) < x}
are increasing and A is decreasing, and where c3 is the constant from (48). Thus we have
that

Ps (D (0, Bax  (0)°) < %A(N 5))
<Py (D (0, Bieasn(0)€) < AN, B)|A) + Py (A7) < (1= o) B + 0K

and this quantity can be made arbltrary small by suitable choice of K. To finish the proof,
remember that A(N, 3) and A (K?X N, 3) are off by a factor of at most KK, as

A(N,B) < A(K*!N,B) N (K*%,8) AN, B) < K*MA(N,B).
Thus we have

Ps (D (0, Byeai (0)°) <

4K2KA(K2KN 5)) <P (D (0, Byeare (0)) < %A(N, 5))
< (1-eg)l2) 4 50K

Now, for fixed € > 0, take K large enough so that (1 — 63)L§J + 50K ! <e. ForneN
large enough with n > K2X let N be the largest integer for which K26 N < n. We know
that K25XN < n < K?5X2N and this also yields, by Lemma 4.1, that

A(n, B) < 3A (K*K2N, B) < 6A (K*KN, )
which already implies
Py (D (0. B(0)°) < 517 ( B)) <Py (D (0, Ba0)°) < 5 AUKZEN, 9))

<Pg (D (0, Beare (0)€) < A(K?KN, 5)) <(1-cg)l2) + 850K < e

4K2K
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The previous lemma tells us that for fixed 3 > 0 all quantiles of D (0, B,,(0)“) are of or-
der A(n, B). We want to prove a similar statement for the quantiles of D (Bn(O), Bgn(O)C).
However, an analogous statement can not be true, as there is a uniform positive proba-
bility of a direct edge between B, (0) and B, (0)¢. But if we condition on the event that
there is no such direct edge, the statement still holds.

Lemma 4.11. Let L be the event that there is no direct edge between B, (0) and Ba,(0)C.
For all B >0 and all € > 0, there exist 0 < ¢ < C' < 0o such that

Ps (cA(n, B) < D(B,(0), B2, (0)°) < CA(n,B) | £) >1—¢ (51)
for allm € N.

Proof. From Markov’s inequality we know that

Es [D(Ba(0), B2n(0))] < Eg [D(n1, (20 + 1)1)]
< Eg [Dyn(nl,(2n —1)1)] +2 < A(n, B) + 1,

and thus the probability Pg (D (B, (0), B2,(0)¢) < CA(n, ) | L) can be made arbitrarily
close to 1 by taking C' large enough. For the lower bound, we first consider integers of
the form N = M¥ Ny, where we fix M € N first. Let M be the smallest natural number
such that M > 100 and A(M, ) < 1—]\6[. The inequality A(M,3) < % holds for large
enough M, as A(M, 3) asymptotically grows like a power of M that is strictly less than
one, see section 2.2. As [ is fixed for the rest of the proof, we simply write A(n) for
A(n, ). We write C,, for the annulus Bs,(0) \ B,(0). Let As denote the event that for
all vertices x € Cyyn for which there exists an edge e = {x,y} with ||z — y|jloo > N one
has D (x, C](\’}N; we_) > 0A(MN). We will now show that the probability of the event 4
converges to 1 as 6 — 0. Remember that A(MN) and A(N) differ by a factor of at most
M. Let us first consider the event that for some d; > 0 there exists a vertex incident
to a long edge in one of the boundary regions of thickness 61N of Cj;n, Formally, for
01 € (O, %), we define the boundary region 9% Cysy of Casn by

0 Crrn = {Burn+6,5(0) \ Barn(0)} U {Banrn (0) \ Banrn—s,n(0)} -

The set 9° Cyrn has a size of at most 4dd; N (5MN)d_1, as one needs to fix one of the coor-
dinates within the interval (M N, M N + 61 N|, respectively in the interval (2M N — 61N, 2M NJ,
or one of the reflections of these intervals, and then has at most 4M N + 1 possibilities for
each of the remaining d — 1 coordinates. Combining this gives

‘a‘schN’ < (4d8; N)(AMN + 1)%! < 4d§; N(5MN)d-1,

The probability that a vertex is incident to some edge of length > N is proportional to
5. as shown in (6). So together with (6) we get that

N4
P (Elm € 9 Cuyn,y € By_1(z)C : & ~ y) < 4d5;N(5MN)?"'P4 (0 ~ Ss )
< &1 - 4d(5MN)*850¢N 4 < 5, - 8 (10°M)°.

Furthermore, the expected number of points x € Cyn which are incident to a long edge
is bounded by

Eg H{xECMN::cNBNA(l‘)C}H < Z Z Ps(z ~y)

2€CpN y€Bn-1(2)¢
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<|Cunl ). Ps(0~vy) % (5MN)4B50IN~4 < 5(250M)<. (52)

y€BN_1(0)¢

—~
=

where the second last inequality holds as |Cysy| < (4MN +1)¢ < (5M N)4, and because
the sum ZyeBN,l(O)C P5(0 ~ y) can be upper bounded by 50¢N~% in the exact same
way as in (9). As the existence of an edge {z,y} with |{z,y}| > N and the distance
D (x, BglN(x)C;w{x’y}_) are independent random variables, we get with a union bound
that

Ps (EIJ: € Cyn,y € Bn_1(2)¢ iz ~y, D (x, BglN(m)C;w{a”yF) < 5A(MN)>

< > > Pyl ~y)Ps (D (z, Bsyn(2)¢) < SA(MN))

z€CMN yEBN_1(x)C

< B(250M)Pg (D (0, Bs,n(0)°) < SA(MN))
where we used (52) for the last inequality. Thus we also get that
Pg (Ag) =Pg (Elx € Cun,y € By 1(x)¢ :z~y, D (x,C]?/[N;w{x’y%) < (5A(MN))
<Pg (El:n € 0610MN,y € BN_l(:E)C Cx o~ y)
+Pg (Eiac € Cun,y € By 1(x)¢ :z~y, D <x,B51N(w)C;w{I’y}*> < 5A(MN))
< 518 (10°M)" + B(250M)*P5 (D (0, Bs, n(0)C) < SA(MN)) (53)

and this converges to 0 as 6 — 0, for an appropriate choice of ¢1(d), by Lemma 4.10
uniformly over N € N. We write f(§) for the supremum of Pg (A§) over all N € N and
for A,B C V, we write D* (A, B) for the indirect distance between A and B, i.e., the
length of the shortest path between A and B that does not use a direct edge between A
and B. Now assume that D* (Ban(0), Boyn(0)¢) < SA(MN). We now consider the
path between Bjsn(0) and Bapy N(O)C that achieves this distance. Either this path uses
some long edge (of length greater than N — 1), or it only jumps from one block of the form
V.N to directly neighboring blocks. The probability that there exists a point x € Cysn
and a long edge e incident to it such that D (x, C$ns we_) < 0A(MN) is relatively small
by (53). Any path that does not use long edges can only do jumps between neighboring

!

L
blocks of the form V;V. Say the path uses the blocks (V;}],V ) . Consider the loop-erased

1=0
trace of this walk on the blocks, i.e., say that the path uses the blocks (%jy)fzo C Cun
with [|v; — vi—1]loc = 1 and never returns to V¥ after going to V,Y. . There need to be

Vit1®
at least % transitions between blocks of the form V;Y and V' with [|u; — wi[|c = 2 and
u;, w; € {vo,...,vr}, as the path needs to walk a distance in the infinity-norm of at least

MN. So in particular we have

[M/3]

Z DEM\IN(O) (Vuy’vﬁ) < EQMN(O) (BMN(O)7BQMN(0)C)
=1

M
< SA(MN, B) < SA(M, B)A(N, B) < TOM(N’ﬂ)
where we used our assumption on M for the last step. So in particular there need to be at

least two transitions between Vujj and VUJJ\[ that satisfy Dp,,, \(0) (Vujj , Vu]]\if ) < OA(N, ).
In fact, there need to be some linear number in M many such transitions, but two are
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sufficient for our purposes here. All these transitions need to be disjoint, as shortest paths
never use the same edge twice. Thus we get by the BK inequality (see [62, Section 1.3]
or [15,87]) that

[M/3]

M , 2
By | D Dhyyywioy (Vi s Vi) < To0AN) | < M1 <mim19>5 (Do) (Vi Vi) < 6A(N)>> .

=1

For each combination of vectors w;, w; with ||u; — w;||c = 2, we can translate and rotate
the boxes V) and VY to boxes T (V;Y) and T (V;)Y) in such a way that T' (V,Y) € By (0)
and T (Vg ) C Byn(0)¢. By translational and rotational invariance of our long-range
percolation model, this already implies that

min P (D*B o (VN V) < 5A(N)> <Pg <D*BQN(O) (Bn(0), Ban (0)€) < 6A(N)> .
There are at most ( (5M )d)! choices for possible choice of vertices vy, v1, . .., v, as there are

at most (5M)? possibilities for vg and (5M)% — 1 possibilities for v; and so on. Overall we
see that the probability that there exists an indirect path between Byn(0) and Boprn(0)¢
of length 0A(MN), which jumps between neighboring blocks of the form VUN only, is
bounded by

2
(5007)10%Pg (D, o) (Bw(0), Ban (0)°) < GA(N)) .
We write S for the constant (5Md)!M2. Thus we get that
Ps (D*BQMN(O) (Bun(0), Baarn (0)° < 5A(MN)))
2
< SPB (DTBQN(O) (BN(0)7 BZN(O)C) < 5A(N)) + Pﬁ (‘A&C) )
We define the sequence (ay,)nen by
ap = Ps (DBM o) (Bn(0), Bay (0)°) < 5A(N))
and a,41 = Sa2 + f(5). Inductively it follows that
for all k € N. For f(6) < [, the equation a = Sa® + f() has the two solutions

1+ /1—-45f(
a_ = and ay = + J

28 28 25

For ap € [0,a4), and thus in particular for ay € [0, 25] the sequence a,, converges to

a_ = 17 V14570 ~ f(6) and thus we get

1—/1—45f(9)

lim sup P3 (D;MN(O) (Basen(0), Bopren (0)°) < 5A(M’“N)) <a_ .

k—ro0
For fixed N € N, the requirement
1
25
is satisfied for small enough & > 0 and this shows (51) along the subsequence Ny = M*N.

To get the statement for all integer numbers, one can use Lemma 4.1 and the fact that
A(n) < A(mn) < mA(n) for all integers m,n. O

ag = Ps (ng(o) (B (0), Byn(0)€) < SA(N ))
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With the same technique as above one can also prove that the indirect distance between
V§ and the set B, (V)¢ = {z €Z%: Doo(,V§) > n} = Uuezd:ju)o>2 Vu' scales like
A(n, B). B

Corollary 4.12. For all >0 and € > 0 there exist 0 < ¢. < Cz < 00 such that

By (ceAln.8) < D* (Vg B (V§)°) < Ceh(n. 9)) > 1~ < .

5 The proof of Theorem 1.1

We first give an outline of the proof of Theorem 1.1. In Lemma 4.10, we showed that
D <0, B, (O)C> ~p A(n, ), and Lemma 4.2 shows that A(n, ) ~ Eg Dy (0, (n — 1)e1)],
meaning that the ratio of these two expressions is uniformly bounded from below and
above by constants 0 < ¢ < C' < co. In Lemma 5.5 below we prove supermultiplicativity
of A(n, B). Together with the submultiplicativity proven in Lemma 2.3 this shows that for
each > 0 there exists cg > 0 such that cgA(m, B)A(n, ) < A(mn, B) < A(m, B)A(n, ).
We define a; = log (A(Qk , 6)) The sequence is subadditive and thus

_ o log(A(2K,B) a .. a
608) = lim == @ A ek i e

exists, where the last inequality holds because of Fekete’s Lemma. On the other hand, the
sequence by, = log(cgA(2F, B)) satisfies

bt = log(cgA (28T, B)) > log(csA (28, B)csA (2], B)) = by, + by
and thus

- log(cgA(28,8)) _ bk by
= lim BN P)) — sup —F .
6(5) hyoo log(2F) P log(2)k i‘ég log(2)k

This already implies that
k6(8) k —19k6(8)
2 <A(2%,8) < o 2

for all k& € N. These two inequalities can be extended from points of the form 2* to all
integers with Lemma 4.1. So there exists a constant 0 < C,g < 0o such that for all n € N

1
Fne(ﬁ) < A(n, B) < CénG(ﬂ)_
B
which shows (1). So we still need to prove supermultiplicativity of A(+, ) in order to prove
the first item in Theorem 1.1. The second item of Theorem 1.1, i.e., the bounds on the
diameter of cubes (2), we show in section 5.3.

5.1 Distances between certain points

In this chapter, we examine the typical behavior of distances between points that are
connected to long edges. In Lemma 5.1, we consider the infinity distance between such
points. Using a coupling argument with the continuous model, we compare the situation to
the situations occurring in Lemma 2.4 and Lemma 2.5. Then, in Lemma 5.2 we translate
these bounds on the infinity distance into bounds on the typical graph distance between
points that are incident to long edges.

Fix the three blocks V', V)’ and V' with |luls > 2. The next lemma deals with the
infinity distance between points x,y € Vi with x ~ V', y ~ V]
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Lemma 5.1. For all <& < 1 and u,w € Z%\ {0} with |lulls > 2 one has
Pg(ﬂx,y eVg iz —ylloo <enyx ~ V5 y~V) ‘ Vol ~ V5 Vg ~ Vu’}) < 0&61/2 [612
where C!y is a constant that depends only on the dimension d.

Proof. Let £ be the symmetrized Poisson process constructed in subsection 1.2 about the

continuous model, i.e., € is a Poisson process on R% x R? with intensity W and & is

defined by £ = {(s, t) e RIx R?: (t,5) € S}Ué Now we place an edge between z,y € Z%
if and only if

(x+C)x (y+C)NnE #D
and call this graph G = (V, E). The distribution of the resulting graph is identical to Pg
by the dilation invariance of £. We can do the same procedure for Lé —1]&, i.e., place
an edge between z/,7’ € Z¢ if and only if

1
(@ +C) % (4 +C)N b?—qg?e@
and call the resulting graph G’ = (V/, E’). Now assume that in the graph G there exist
z,y € Vg' with || — y||cc < en such that x ~ V' and y ~ V! in G. Then there exist

Te €x+C,uc € nu+ [O,n)d,yc ey+C,w. € nw + [O,n)d

with (2, uc), (Yo, we) € nE. We also have ||z. — yelloc < en+ 1 < 2en. Now we rescale

1
the process from size n to size |~ — 1]. For (d;,u.) = %(mc,uc) and (Ye, W) =

1
%(yc, w.) we have

(Ze, Ue) € blan_”x—i- -0, Lzlan_J>d X (

e ([ e o ) Yo (|2 o o 2 -)) ) ) o -

From the rescaling we also have [|Z. — U¢||c0 < 25Lﬁ — 1| < 1. So in particular there
i 1

are vertices x’,y’ € {0,...,{% —-1] - l}d with 2/ ~ VULQE 1J,y’ ~ VwL2€ Yin G’, and

2" — ¢/|loc < 1. Write N = |5 — 1]. From (18) and (19) we get

]P’g(Elx,yG VY = ylle < Lz~ VY y ~ VY VONNVHN,V0N~V§>

Ci[B12  CulA)? ,
o~ 1z djﬂuz < G187

IN

for some C; < co. With the coupling argument from before we thus also get

Ps (3z,y € Vg i lz —ylloo Senaz ~ V3 y ~ Vi | Vg ~ ViR, Ve ~ Vi)
<Py (Eia:,y eVg iz —ylloo < Lw~ VN y ~ VT ‘ Vol ~ VY, Vg~ vj) < Che'2[87.

O]
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Lemma 5.2. For all dimensions d and all 8 > 0, there exists a function gi(e) with

g1(¢) " 1 such that for all u,w € Z4\ {0} with ||uls > 2 and all large enough n > n(e)
e—

Ps (DVO" (z,y) > eA(n,B) for all x,y € V§' withx ~ V', y ~ V! { Vit~ Vgt~ Vu’}) > q1(e).

Proof. We write ]P’g’w (+) for the conditional probability measure IP’g( . ‘ Vil ~ Vgt ~ Vu’j)
As (5 is fixed throughout the rest of the proof, we write A(n) for A(n, ). We define the
event

A(K,e1,e) ={||z — ylloo > e1n for all z,y € Vg with z ~ V', y ~ V'}
N{Dyy (=, Bgln(ac)c) >el(n) forall z € Vg with z ~ V') N{[{z € Vg’ : 2 ~ V}}| < K}
and observe that

{Dyg(x,y) > eA(n) for all z,y € Vg’ with z ~ V', y ~ Vi } D {A(K,e1,¢)}.

Thus it suffices to show that Py (A(K, e1,¢€)) converges to 1 as e — 0 for an appropriate
choice of K = K(e),e1 = €1(¢). Respectively, we want to show that ]P’Z’w (A(K,e1,2)9)
converges to 0. We have that

A(K,e1,6)¢ ={{{z € V§": 2 ~ VY| > K}

U{]|z — ¥|loo < e1n for some z,y € Vy' with z ~ V', y ~ V.'}

U ({DVO" (2, Beyn(2)%) < eA(n) for some z € V§ with z ~ V2 } N {|{z € V' 12 ~ VJ'} < K})
and thus we get with Lemma 5.1 that

Py (A(K,e1,6)C) <P ({z € Vi oo~ VY > K) + Chey (8]

+ IP’ZJ“’ ({Dyy (m,BEln(:z:)C) < eA(n) for some z € Vg with z ~ V' } n{[{z € V§' : 2 ~ V'}| < K})
<PYY ({z € Vg 1o~ V2 > K) + Ciey*[B1% + KPg (D (0, B2, (0)€) < eA(n)) .

The expression Py ([{z € Vg : @ ~ V;'}| > K) converges to 0 for K — oo, by Markov’s
inequality, as one has the bound

Eg[{z e Vg',z € V' tx~ 2} = ZZPg (x ~ z) ZZ e
zEVP zeVp zeVD zeVp (lx — Z”OO -1)
522(1 2d
7= 2
<2 21 3 Sz <

eV seVy IIUIloo —1)n)*

We need an upper bound on this quantity for expectation with respect to the conditional
measure ]P’Z’w. Lemma 2.2 then gives that

B [{z e Vo i~ VIH <Eg® [{z € Vg, z € V' : o~ 2z} <p2¥ 41

and this upper bound does not depend on n or uw. Using Lemma 4.10, we see that for
fixed &1 > 0 the term Pg (D (0, B:,,(0)¢) < eA(n)) converges to 0 as ¢ — 0 and thus we
can take K = K (¢) and €1 = ¢1(¢) that converge to 400, respectively 0, slow enough such
that KPg (D (0, B,,,(0)¢) < eA(n)) also converges to 0 for € — 0. O

We want a similar function for the indirect distance between boxes. Such a function
exists by Corollary 4.12.
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Definition 5.3. Let g2(e) be a function with go(e) " 1 such that the indirect distance
E—
D* between the sets V& and B, (V{)© satisfies

By (D" (Vg Ba (V)7) > A, 8)) > ga(c)
for all n > n(e) large enough.

Consider long-range percolation on Z¢. We split the long-range percolation graph into
blocks of the form V", where v € Z?. For each v € Z%, we contract the block V.* C Z4
into one vertex r(v). We call the graph that results from contracting all these blocks
G' = (V',E'). For r(v) € G', we define the neighborhood N (r(v)) by

N (r(v) ={r(w) € G": |lv — ulls <1},
and we define the neighborhood-degree of (v) by
degV(r(v)) = > deg(r(u)).
r(u)eN(r(v))

We also define these quantities in the same way when we start with long-range percolation
on the graph V", and contract the box V' for all v € Vj*. The next lemma concerns
the indirect distance between two sets, conditioned on the graph G’.

Lemma 5.4. Let W(e) be the event

W) =< D* [V, U V| > eA(n, B)

u€EZ:||u—vl|oo>2

For all large enough n > n(e) one has

Py (W(e) | &) < 3%deg" (r(0)) (1 - g1(e)) + (1 — ga(e)) -

Proof. By translation invariance we can assume v = 0. We define the set 7' = Vj' U
Uuezd:|ju)o>2 Vu'» and we define the events Wi (e) and Wa(e) by

Wi(e) = {Ela, b2,y € Z% with |lalls = 1, [la — blloo > 2,2 € VP, y € V" -
e ={x,y} open, D(z,T;w") <eA(n), D(y, T;w") < 5A(n)}
and

Wha(e) = {There is an open path P of length at most eA(n) from Vg to U Vi
u€Z:||uf| 00 >2

V{z,y} € P there exist a,b € Z¢ with z € V", y € Vi, ||a — b||oo < 1}.

We will now show that W(g)® € Wy (e)UWs(e). Assuming that W(e) holds, there exists
an open path P from Vg’ to UuEZd:||u||OOZ2 with length < eA(n), and this path does not use
a direct edge between these two sets. The path P can either be of the form as described
in the event Wh(e), or it contains an edge e = {x,y} such that x € V',y € V;* with
llalloo = 1, ||la — b|loc > 2. Let us assume that this path P is not of the form as described
in the event Wh(e). As the length of the path is at most ¢A(n), the distance from the
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endpoints z,y of such an edge to the set T is at most eA(n), even when the edge {x,y} is
removed. This holds, as the path P starts at V{j', then uses the edge e, and then arrives
in the set (J,cza. l[ufloo>2 V.. Also note that y € T is possible, in which case the distance
between y and T equals 0. However, we see that W (¢) holds. Combined, we showed that
W(&)C C Wl(ﬁ) @] WQ(&).

The event Wh(e) is independent of G’, which implies that Pg (Wa(e)|G') = Pg (Wha(e)) <
1 — g2(e). Suppose that ||a||ec =1 and ||a — bl > 2, with V' ~ V;*. Assume that there
exists a path P from Vg to U,cza.y) .. >2 With length < eA(n), that uses an edge e = {z, y}
with z € V', y € V;". The path needs to get to x, and it enters the box V" from some box
V' with |le||oo < 1. Say that the path enters the box V. through the vertex z € V' with
z ~ V. The chemical distance between x and z can be at most eA(n,3). There are 3¢
such vectors e, so the probability that there exists such a path is bounded by 3%(1 — g1 (¢)),
as ||a — bl|so > 2. With a union bound we get that

Ps (W1(8)’G’) < Z Z Pg (Elx eVryeViia~y D@ T;w) < aA(n))
a:llaflc=1 billa—b||>2,V~Vy

< Z deg(r(a))3%(1 — g1(c)) < degV (r(0))3%(1 — g1(e))
a:l|allco=1

and thus we finally get that
Py (W(e)?) < Pg(Wi(e)) + Bg Wa(e)) < degV (r(0))3%(1 — g1(e)) + (1 — ga(e)).

5.2 Supermultiplicativity of A(n, )

In this section, we prove the supermultiplicativity of A(n, 3). Our main tools for this are
the results of the previous section and Lemma 3.2. We also use the the same notation as
in Lemma 3.2, i.e., ug = Eg[deg(0)] and deg(Z) = ﬁ Y vez deg(v).

Lemma 5.5. For all 8 > 0, there exists a constant ¢ > 0 such that for all m,n € N
A(mn, B) = cA(n, B)A(m, B). (54)

Proof. Inequality (54) holds for all small m or n € N for some ¢ > 0, so it suffices to
consider m and n large enough. We split the graph Vg"" into blocks of the form V',
where v € Vy". For each v € V", we contract the block V' C Vg"" into one vertex. We
call the graph that results from contracting all these blocks G’ = (V’, E'). The graph G’
has the same distribution as long range percolation on V" under the measure Pz. By r(v),
we denote the vertex in G’ that results from contracting the box V,'. We also define an
analogy of the infinity-distance on G’ by ||r(u) —7(v)]|co = ||t —¥]|co. Our goal is to bound
the expected distance between the vertices 0 and (mn — 1)e; from below, conditioned on
the graph G’. For this, we consider all loop-erased walks P = (r(vg),r(v1),...,7(vg))
between r(0) and r((m — 1)e1) in G'. In the following we always work on a certain event
H:, which is defined by

He=) {ycsk (@] < 10%2} N () {deg(2) < 20p5VZ € CSi (G') }.

k>t k>t

Note that, by Lemma 3.2, (25), and Markov’s inequality one has

ZIP’B (lesi (6&')] > 10°u5) + 3Py (37 € €Sy () + deg(2) > 20p)
k=t
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o0 [e.e] o)
<> 04F )y etk <y 05k =227 (55)
k=t k=t k=t

Let P' = (r(vp),...,m(vg)) be a self-avoiding path in G’ starting at the origin vertex, i.e.,
vg = 0. Assume that k is large enough (which will be specified later) and let € be small
enough such that

(27d50u5(1 —gi(e)) +2(1 - 92(5))> 30902005 < 201%. (56)

We will see later on, where this condition on € comes from. We will now describe what
it means for a block V! to be separated; we will also say that the vertex r(v;) € G’ is
separated in this case. Intuitively, a block being separated ensures that a path in the
original model that passes through this block needs to walk a distance of at least eA(n, ).
Formally, let P be a path in the original graph V" between 0 and (mn — 1)e;, such that
this path goes through the blocks corresponding to r(ug),r(u1),...,r(ux) in this order.
Let P’ = (r(vp),...,7r(vr)) be the loop-erasure of the path (r(ug),r(u1),...,r(uk)). So
in particular, P’ is self-avoiding. Suppose that ||v; — vi+1]|cc > 2. Then we call the block
r(v;) separated if

DVJ? (1:7?/) > 5A(n’ﬁ) for all T,y € ‘/v?j with z ~ ‘/1)?+17y ~ VJ)L,U) ¢ {Uiavi-i-l}‘

If ||v; — vit1]leo = 1, we call the block r(v;) separated if

A A U Ve | > eAn, B).
r(w)EG":||w—v;||oc >2

Next, we want to upper bound the probability that a block 7(v;) is not separated, given the
graph G’. Assume that [|v; — vi11]|oc > 2. Conditioned on the graph G’, the probability
that r(v;) is not separated is bounded by deg (r(v;)) (1 — g1(¢)) for large enough n. Assume
that ||v; — vi+1]|ec = 1. Given the graph G’, we have that

P | Dy (Vv’j, U V;L) <eh(n,B) | &

r(@) lo—villoe 22
< 3%deg" (r(v:)) (1 — g1(e)) + (1 — g2(e))

for all large enough n, by Lemma 5.4. No matter whether ||v; — viti|loc = 1 or |Jv; —
Vit+1]lco > 1, in both cases we have that

Ps (r(v;) not separated | G) < 3¢ deg (r(v3)) (1 — g1(€)) + (1 — ga(e)).

We define the set
k—1

Rk = U N(T(’UZ)) .

=0

The set Ry, is a connected set in G/, containing the origin r(vg), and its size is bounded
from above and below by

k < |Rg| < 3%.

49



Assuming that the event H, holds, we get that the average degree of the set Ry, is bounded
by 20pgk. A vertex r(v) can be included in several sets N (r(v;)) for different ¢, but in at
most 3¢ many. So in particular we have

ZdegN ) < 3% Ry.|20u5k < 992015
and thus there can be at most % many indices i € {0,...,k— 1} with deg (r(v;)) > 99504.
We now define a set of special indices ZND(P') C {1, ...,k —1} via the algorlthm below.

For abbreviation, we will mostly just write ZN'D for ZN'D(P’), but one should remember
that the indices really depend on the chosen path P’.

0. Start with ZN'Dg = 0.

1. Fori=1,. k —1:
If deg™ (r(v;)) < 9950pp and N (r(v;)) » Ujeznp,_, N (r(v;)), then define ZN'D; =
IND;_4 U {z} Otherwise set ZN'D; = IND;_;.

2. Set ZND :=INDj,_;.

So in particular we have that for an index i € ZND it always holds that

Ps (r(vi) not separated | G) < 38 deg (r(v;)) (1 — g1(€)) + (1 — ga(e))
< 27%50p5(1 = g1(e)) + (1 — g2(€)) = g (6)

On the event Hy, there are at least %—1 many indices i € {1,...,k—1} with deg?¥ (r(v;)) <
9950u5. Suppose that V;* is a block with V,* ~ Uwen(r(u)) V- (Note that all boxes Vi
with r(v) € N (r(v;)) are by definition adjacent to U ,en(r(;)) Ve -) When we include the
index ¢ to the set ZN'D, we can block all the indices j > ¢ with r(v) € N (r(v;)). But
for fixed v, there can be at most 3¢ indices j > i with r(v) € A" (r(v;)). So including one
index ¢ with deg‘M ) < 9d50u5 to the set ZN'D, can block at most 3d9d50u5 other
indices. Thus we get that on the event Hj one has for large enough £ that

k
k_q k
|IIND| > —2 > .
2795015 + 1 ~ 3094100u4

Whether a block V]! is separated in the path P’ depends only on the edges with at least one
end NV (r(v;)). So in particular for different indices ¢ € ZN'D, it is independent whether
the underlying blocks V! are separated. Thus we get that

Pgs <‘{z € IND(P') : r(v;) separated }| < 30@%0/;5 ’ G’>

IZND(P)|

_ k
< IR (1(2) P H <0 (/(0) T < a0t

where the last inequality holds because of our assumption on e (56). With another union
bound we get that

Ps <3P' in G’ of length k s.t. HZ € IN'D(P') : r(v;) separated H < m ‘ Hk>
< (10p)* (20ug) " =27F,
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where we say P’ in G’ if a path P’ starts at r(0) and is contained in the graph G’. Using
that Pg (ch) < 2-27% we thus get that

k
Ps <3P’ in G’ of length k s.t. |{i € ZIN'D(P’) : r(v;) separated }| < 3(]652()()/15) <3.27F

For abbreviation, we define the event G by

k
G¢ = {EIP’ in G’ of length k s.t. |{i € ZN'D(P') : r(v;) separated }| < ?’OdQOONB} .

Assuming that the events Gy and D¢ (7(0),7((m — 1)e1)) = k both hold, we get that for

large enough k one has Dymn (0, (mn —1)er) > keA(n,f)

. So in total we get that for some

= 30720045
large enough £’
oo
Eg [Dygn (0, (mn —1)er)] > Z Eg [Dygn (0, (mn — 1)e1)Lg, 1{p, (r(0)r ((m—1)e1))=k})
k=K’
eA(n, B) >
= 50920075 ,;; FE5 [16, 1D (r(0) r((m-1)er))=h}] » (57)
and we can further bound the last sum by
> K5 [16,1(D 4 (r(0) r((m—1)er))=H}]
k=K'
= >~ KEs [Lng (r)rionvieny=k3] = 2 KBs [Ligey Ling ¢r0)r(m—1er)=h)]
k=K k=K
> > s [H{Dvmm,(m—l)el)kﬂ 2 KBy {H{GE}]
k=k' 0 k=k'

0 k-1 o
> _ _ —k
= Z kEg |:]1{DV6n(O,(m—1)e1)k’}:| Z kEp [l{pvan(o,(m—nel)kﬂ 3 Z k2
k=1 k=1 k=K'
> Eg [Dy (0, (m —1)e1)] — k' — 6 > ¢/A(m, 3)
for small enough ¢’ > 0 and m large enough. Inserting this into (57) finishes the proof. [J

5.3 The diameter of boxes

In this section, we prove the second item of Theorem 1.1, i.e., that the diameter of the
box {0,...,n —1}% and its expectation both grow like n’.

Lemma 5.6. For all 8 > 0 one has
n’®) ~p Diam ({O, N 1}d) ~p Es [Diam ({0, N 1}d)] .

Proof. By Lemma 4.1, it suffices to consider the case when n = 2 for some k € N. We
have

Diam ({o, e 1}d) > Dy (0, (n— 1)er)

o1



and this already implies that for each € > 0 there exist constants ¢, c. > 0 such that
Ps <csn0(5) < Diam <{O, N 1}d>> >1—¢
and
en¥8) < Egs [Diam <{O, ce,n— 1}d>]

uniformly over n. For the upper bound, we make a dyadic decomposition of the box V.
Similar ideas were also used in [33] for one dimension. For a constant S > 1, we say that
a box Vy2l C V02k is S-good if

1, ol ! 3\ ko
_ < Z
DVyQZ (2 y,2'y + (2 1)6) S<2> 2

for all e € {0,1}?, where we simply write 6 for (3) from here on. We use the notation

k
QF = ﬂ {V;l is S—good} and Q° = ﬂQZS
=1

yEVOQkfl

On the event Q°, we can bound the graph distance between 0 and any y € VOQI€ by
considering a path that goes along the boxes in a dyadic decomposition. Let yo,...,yr € z4
be such that y € Vyzil for all 4. So in particular yg = y and yr = 0. We also have that

Vy%O C Vy211 C...C Vyik and thus also 207 ly;_; € Vy%,i for all ¢ > 1. This implies that
Qi_lyi,1 = Qiyi + 2t=1e for some e € {0, l}d. As all the boxes inside Vozk were assumed to
be S-good we have

Dy (2%, 2ty < Dy (2%yi, 2%y + (271 —1)e) + 1

' ‘ ‘ (i—1—k)0
=D, i1 (2712, 2712y, + (27 — 1)e) +1< S <2) 2" 4 1.

i—1
V2
2y,

Now we have by the triangle inequality

k 3\ (—=1-k)0 k NG
Dyor (0,0) < > (S <2> 2k 4 1) < S2M Y <<2> n 2k9>
=1 =1

< CyS2k0

where the constant Cy depends only on 6. As D(u,v) < D(0,u)+D(0,v) for all u,v € VOQk,
the previous bound already implies that on the event Q° one has

Diam (Vg’“) < 20,521 (58)

and thus it suffices to bound the probability of (QS )C. We know from Corollary 4.6 that
the r-th moment of D, (2’y, 2ly + (2! — 1)6) is of order 2" for all » > 0. So by a union
Y

bound and Markov’s inequality we get that for every fixed box Vyzl

INGLL

Pg (VyQZ is not S—good) < Z Pgs (szl <2ly72ly + (2= 1)€> > 9 <2> okt

Yy
e€{0,1}¢
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l T s (3704 adk
= Z Pg DVOQZ (0,0+(2 —l)e) > S (2> 2

e€{0,1}4
4d
§ E,B |:DV021 (07 0+ (2l _ 1)6) o :| § C. 2[9% C . 24dl
S ST e S (e 5 () g

_ C <2) (I-k)4d 2(l_k)4d B C <4> (I-k)4d
S S

for some constant C' < co. With another union bound that we get that

c 1 C 4\ R
Pg ((Qf) > < Z Pg (Vy2 is not S—g00d> < Z T <3>

yGVOQkil erOQkil o
_ C o1 <4>(lk)4d: ¢ <81>(Md
4d 4d
which implies that
c (81 \*D
P, ((05)) < — < =
? <( ) ) = ;S% (128) = 54 (59)

for some constant C’ < oco. Together with (58), this proves that Diam (V02k> ~p 2H0.
Inequality (58) also implies that

Diam (VOZk> s\
T > S C <9209>

whenever % > 1, and this implies that for some finite K € N and all £k € N

Diam (V02k> o0 Diam <V02k) 00 s \¢
Egs o §K+ZP5 T>S gK—FZ]P’ﬁ (ch9>
S=K S=K

where the last term is finite as % > 1. This also shows that

Eg [Diam (Vg’“)} =0 (2’“9)

and thus finishes the proof of Lemma 5.6. 0

6 Tail behavior of the distances and diameter

Theorem 1.1 shows that the random variables

HZ (H(Z,Z;,)) are tight in (0, 00) under the measure
P5. In this section, we give more precise estimates on the tail-behavior of the random vari-

ables HDu (H(‘)’ZZ)) . We describe this tail behavior via functions f for which sup,cza\ (0} Eg { f ( D(0.u) )}

[l
is finite or infinite. This result is also a useful tool in section 7 and in section 11.
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Theorem 6.1. For alln < #(@ one has

Diam ({0, ...,n}?) !
o ()

For dimension d = 1, the bound given by (60) is sharp, as the following lemma shows.

sup Eg
neN

< 0. (60)

Lemma 6.2. For all dimensions d and all B > 0, there exists a constant t > 0 such that
d
D(0,u)\ =@ \ |
exp (t < ||U||0(B)> )] = 00. (61)

D, = ﬂ {v ~ w for all w € Z% with |[v — w||e > 2}
vEBR(0)

sup [Eg
ueZa\ {0}

Proof. We define the event

If |ullooc = m and the event D,, occurs, the shortest path between 0 and u uses nearest-
neighbor edges only and thus has a length of ||u||~. Using the FKG-inequality, we get
that

Py (Dy) > P3(0 = w for all w € Z4 with [|w]je > 2)/P2©@1 > =7
for some constant C' < oco. Thus we see that

D(0,u _
P ( ( 9(/3)) = HMI&““) > Py (Dn) = exp (~Cllu])

[l

and from here one can easily verify that (61) holds for ¢ large enough. O

1

Remark 6.3. Conditioning on the event that there is no edge longer than m 1-9(F)n
open in the box B, (0), one can actually show that for all u € Z¢ with ||u|s = n one has

D(0,u) .

for some constant C € Rsq, and all large enough n.

For a sequence of positive random variables (X, ),en and some 1 > 0, we have that
D [oe)
Elexp (X)) = / P(exp (X]) > s)ds = / P (X, > log(s))ds
0 0

oo o
=1 +/ P <Xn > log(s)l/") ds=1 +/ P (X, > s)ns" ' exp (s7)ds.
1 0
So in particular, if there exist constants 0 < ¢, C’' < oo such that
P (X, > s) < Cexp (—cs), (62)

this implies that sup,,cy E [exp (X7])] < oo for all n € (0,7). So in fact we will often show
(62) in the following, as this will already imply statements of the form sup,,cy E [exp (X/])] <
00, as in (60). Theorem 6.1 directly implies that that for all n < {15 one has

sup Eg [exp <<DV°"(0’ (7; — 1)61)>n>] < o0, (63)

neN n

whereas (63) does not directly imply any statements about the diameter of boxes as in
(60). However, a slightly weaker statement can be deduced from a slight modification of
(63), as the next lemma shows.
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Lemma 6.4. Suppose that

sup B |exp ((D%"(O’ = 1)@)77)} < o0 (64)

neN nf

for some n >0 and all e € {0,1}%. Then there exist constants C,Cy € Rq such that

Ps (Diam (Vo) > SCyn? for some @ € {0, ..., n}) < Cexp(-S57),

1am co,n—1} {
exp((D ({O’ne’ 1 )> )] < 00 (65)
for all € (0,7).

Proof. We do the proof for n = 2¥ with k& € N. The proof for general n € N follows by
Lemma 4.1. For S > 1 and [ € {0,...,k}, define the events

NG
o= N N {Dvyzl (2ly, oly + (2! — 1)e> <SS (2) 2’“9}

yev2hlee{0,1}4

which implies that

sup Eg
neN

and
k
0% = (97
1=0

On the event QF, for all 7 < n, and for any y € V§!, we can bound the graph distance
between 0 and y by considering a dyadic path between them, and thus we get that on the
event Q°

and this already implies that

B k 3 (I—k)o
=0

for some constant Cy < oo and all 7 < n. So in particular we see that the event
{Diam (Vg > SCyn? for some 7 < n} implies that QlS does not hold for somel € {0,...,k}.
So with a union bound we get that

Pg <Diam (Vo) > SCyn for some 7 < n)

k (I—k)0
3
<) 2 N Py <DV021 (0, (2! — 1)e) > S <2> 2k9) . (66)
=0

e€{0,1}¢

By Markov’s inequality we have for any e € {0,1}%

(I-k)0 (k—1)6
Py (DVOQI (0, 2 - 1)6) > S (;) 2k9> — P, (DVOQZ (0, (2 - 1)e> > S (g) 219>
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aollllal'llla?.l uasn

Figure 4: An example of the process ager, ajer, aser, ageq for the
Graph Vg®. We have K = 3, as az < 14 < ag.

Dy (0,2 —1)e)\" NG
=Pg | exp Yo 510 > exp (S” (3) )

D

[ :(0,(2' = 1)e) K (k—1)0n NG
< Eg |exp Yo 916 exp (—S" <§) ) < Cpexp (—S” <3> )

for some constant C), < oco. Inserting this into (66) shows that

k (k—=1)6n
Ps (Diam (V(',ﬁ) > San(’ for some 1 < n) < Z Q(k_l)an exp (—S” (g) )
=0
< Cexp(—ST)

for some constant C' < co. By taking the constant C' large enough we can also guarantee
that the above inequality holds for all S > 0. This already implies that (65) holds for all
1 € (0,n). O

Lemma 6.5. For all 3 >0 and all e € {0,1}? one has

Dy»(0,(n—1)e 0.5
ilelgEg [exp(( g ( 7”(#9 ) )> )] < 0. (67)

Proof. First, we will consider e = e; only. We define a process (ax(n))ren. As we will fix
n for the rest of the proof we will often simply write ay, for ax(n). We start with ap(n) =0
and define ag(n) inductively by

ar+1(n) =(ar(n) +2)

+ sup {z € N>o : Digyi2)e1410,...,2} ((ak + 2)er, (ak + 2)e1 + ze1) < n9} .
(68)

Given the long-range percolation graph, this sequence can be constructed as follows: for
given ay_1(n), we walk along the ej-axis in positive direction, starting at (ag_1(n)+2)e;.
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We do this until the graph distance between (ax_1(n) + 2)e; and (ax_1(n) + 2+ 2)e; ex-
ceeds a certain threshold (n?), and then we go one step back, i.e., in negative ej-direction,
and then define this point as ape;. This procedure only reveals information about edges
with both endpoints in the slice {y € Z? : az_1(n) +2 < (y,e1) < ax(n) + 1}, so in
particular the differences (ap/y1(n) — ag/(n)) are independent of ax(n) for ¥’ > k. By
translation invariance, the differences (ax11(n) — ax(n)),ey, are independent and identi-
cally distributed random variables. The graph distance between ag(n)e; and agy1(n)e;p is
always bounded by n? + 2, as we can go from ay(n)e; to (ax(n) + 2)e; in two steps and
from there to aj;1(n)e; in at most n? steps. Define

K, =inf{k € N:ag(n) > n}
as the index of the first point ag(n)e; that lies outside of V{j'. Then one has
Dyg (0,(n—1)er) < Kpn® 4 2K, < 3K,n’

as one can walk through the path that goes from 0 to aj(n)ey, from aq(n)e; to az(n)eq,
and from there in the same manner inductively to ax, —1(n)e1, and from there to (n—1)e;.
So our next goal is to show that K, is typically not too large. We use that for all 3 > 0
there exists an o > 0 such that

PB <ak+1(n) - ak(n) > a> > 05’ (69)

n

which we will prove in Lemma 6.6 below. We define the indices ko(n), k1(n), ... by ko(n) =
0 and

ag(n) — ag—1(n)

kH_l(n) = inf{k > kz(n) : > a}.

By construction we have K, < kfy/q14+1(n). So in particular we have

[1

1
< 3Ky < 3kf1/a14+1(n) = 32 kiv1(n) — ki(n).

Dyy (0, (n — 1)er) o
1=0

nf

The differences (ki11(n) — ki(n));>( are independent random variables and are, by (69),
dominated by Geometric (%)—distributed random variables. This already implies that

E, [exp (tDVO" ©. (Z —Vey) )] < Ej |exp t3§ ki (n) — ki(n)

n
=0

—
Q=
s

= | | Eglexp (t3(Kit1(n) — ki(n)))] < C < oo (70)
1=0

for some t > 0 small enough and a uniform constant C' that does not depend on n, as the
differences k;41(n) — k;(n) are dominated by a Geometric (1 )-distributed random variable.
This shows the claim for e = e;. To extend this proof to general e € {0, 1}d, we use the
same technique as in the proof of Lemma 4.2. For i € {0,...,d}, we define e(i) by

e(i) = _pjle)es,
j=1

o7



and thus we get by the triangle inequality that

Dy (0, (n— 1)e) < 3" D ((n = Dei — 1), (n — De).

=1

The random variables Dy ((n—1)e(i — 1), (n — 1)e(7)) are either equal to 0, when e(i —1)
and e(i) coincide, or they have the same distribution as Dyg (0, (n — 1)e1), when e(i — 1)
and e(7) lie on adjacent corners of the cube Vg'. Holder’s inequality implies that

i=1

d
Eg [exp (DV(;z (0, (n — 1)6)0'5)} <Eg [exp (Z DVOn((n —1e(i —1),(n— 1)6(i)>0'5>]

exp dDVn((n —1e(i—1),(n—1)e(: ))0 5)]5 <Eg [exp (dDVOn (0,(n — 1)61)0'5)]

||::]g

and the last term is finite uniformly over all n € N, which follows from (70). O

Lemma 6.6. For all 5 > 0, there exists a constant o > 0 such that for all n € Nsg

n

Proof. As the differences (ap11(n) — ar(n))r>o are identically distributed, it suffices to
consider the case k = 0. The proof uses a dyadic decomposition along the ej-axis. Let n
be large enough so that logy(n) < "70; this holds for all n sufficiently large. We can make
this assumption, as the statement (71) clearly holds for small n by taking « small enough.
Consider a > 0 such that an = = 2" for some h € N. By our assumption on n we have

h =logy(an) <log,(n) < &-. We define the events
2hlo1 -1 3\ (=h)0
_ ! PN 0
O = rl Z%ﬁ102eb02+2 —160(2}2( > ) 7z<2>
J:
and

h
Q=%
=0
For an = € {0,...,2"}, say = = Z?:o 12!, where x; € {0,1} for all [, we consider the

path that goes from 0 to (Z?:h £Cl2l> e1, from there to (Z?:hfl £Cl2l> e1, and iteratively
to (Z?:o xl2l) e; = xzep. Using this path from O to xe; through the dyadic points of the

form 2'e;, one gets that on the event 2 one has for all € {0,...,an}

-1 h raN (=h)
DV1+1 (0, zeq) (22 ( > ) nez (2> +h<2 '+ h<nf,
1=0

where we used that h < ”79 in the last step. Now, we want to estimate the probability

i\ L
of the event . Let us write C'(0) for the constant (2 S (3) 29) and let C’% be a
constant such that

4/6
Es [Dig (0, (n = )en)*’| < Cy (n®) " = Cyn?

3
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for all n € N. Such a constant exists by Corollary 4.6. By an application of Markov’s
inequality we get that

Ps (DVOQZ (0, (2 - 1)e1) > C(0)n’ <

| W
N———
|
>
=
N——

=P, (Dvgl (0, (2! — 1)e1) > C(0)on’s

i 4(h—1) s 4(h—1)
1 6 a4 (3 _4 w\o, —4(3
< Eg [DVOQZ (0, 2 1)e1) } C(0)"in <2> <C(H)iCs (2 ) n (2)
, 3\ 4(h=D)
< C(0) 7 Cs2Mat2™ <2> (72)
Define aj := —2 and define ajy; as in (68). Then one has the line of implications

{Q} = {DVJH(O,mel) <n? for all z € {0, ... ,om}}
ak1(n) — ak(n) _ a} .

n

< {agy1(n) > an} = {

This already gives us that

Py <ak+1(n) () a> <Ps(Q°) < lzngh—lIP’g <DV021 (0.2 = Ve ) > C(O)n’ <;>(l_hw>

n

(™2 i ontoiaooan (YT s s 81\
< 0(8) 7Cs > 2 lataty <2> = a*C(0) ecgz (1%) <05
1=0 1=0
for some o > 0 small enough. So in particular this implies (71). O

Lemma 6.7. Assume that

sup Eg
neN

exp ((Diam ({0"7;9"71 - 1}d)> )] < 00 (73)
exp((Dmm({O’ﬁ'&"n—l}d)> )] < 0 (74)

Proof. Assume that (73) holds for some 1 > 0. Then Lemma 6.4 implies that

for some n > 0. Then

sup Eg
neN

for alln < 1+ 6n.

Ps (Diam (Vg') > SCyn? for some 71 € {0, . .. ,n}) < Cexp(—S") (75)

for some constants C,Cy < oo. As before, we define define ax(n) inductively by ag(n) = 0
and

ag+1(n) =(ag(n) + 2)
+ sup {Z € N>o : D(g12)e14{0,....23 ((ar(n) + 2)eq, (ag(n) +2)er + ze1) < ne} :

29



The differences (aj+1(n) — ax(n));ey, are independent and identically distributed. For
a € (0,1), we have that

JELEED

- < a) =Ps <D261+{07_._72}d (2e1, (24 2)e1) > n? for some z € {2,..., |an] })

<Ps <Diam ({O, . ,z}d> > n? for some z € {0, ..., LanJ})

1

. d 0

=Py (Dlam <{O, cey 2} ) > G, Cy(an)” for some z € {0,..., |an] })

(75) 1\’  —on

< Cexp <— (0/’@'9) ) = Cexp (—Cea ) (76)

for a constant Cj € R-(. Remember that the random variable K, was defined by
K, =inf{k € N:ag(n) > n}
and that
Dyz (0, (n —1)e1) < Knn® + 2K, < 3K,n’. (77)

Assume that K, > 2L for some large integer L. Then there needs to exist at least L
indices i € {1,...,2L} such that a;(n) — a;—1(n) < +. Using independence of the random
variables a;(n) — a;—1(n)

Pg (K, >2L) < Pg U {ai(n) —aj—1(n) < % for all ¢ € U}

Uc{1,...,2L}:
|UI=L

< Z H Pg (ai(n) —ai_1(n) < 2) < 22Lp, <a1(n) o) < i)L

Uc{1,..,2L}: i€U
Ul=L

(76)

76 L _ _
< 22ECexp (—C’éLen) < Cexp (—C’gLH‘e")

for some constants C',Cy € R~ and all L large enough. From (77) we have the line of
implications

{Dvon (0, (n — 1)ey) > 6Ln9} = {K, > 2L}
and thus we get that for L large enough

Pg (Dvg (0,(n—1)ey) > 6Ln9> < Ps (K, >2L) < Cexp (_06L1+0n) ’

s oo (20057 <

for all 7 < 14 On. The same technique as in the proof of Lemma 6.5 shows that

s oo (250522 ) | <

60

which implies that




for all e € {0,1}% and all 7 < 1 + 7. Using Lemma 6.4, we can finally see that this also

implies that
Diam ({0,...,n—1}49))"
sup Eg |exp ! m({ 7 " ! ) < 00
neN n

for all n < 1+ 0On. O

With this, we are ready to go to the proof of Theorem 6.1, which works via a boot-
strapping argument.

Proof of Theorem 6.1. Lemma 6.5 and Lemma 6.4 imply that (60) holds for 7 = 0.4. We
define the function f(x) =1+ 6 -z. Lemma 6.7 says that if (60) holds for some 77 > 0,
then it actually holds for all n < f(7). Iterating this argument, we see that (60) holds
for all n < f*)(0.4), where k € N is an arbitrary integer and f(**) is the k-fold iteration
of f. Letting k go to infinity, the value f(*)(0.4) converges to the fixed point zo of the
equation z = f(z), which is given by xg = 1%9. So in particular we see that (60) holds for
all n < 1%9. O

7 Comparison with different inclusion probabilities

In this section, we compare the graph distances that result from percolation with the
measure Pg to the graph distances that result from independent bond percolation on
Z% where two vertices u,v € Z? are connected with probability p* (3, {u,v}), which is
assumed to be close enough to p (8, {u,v}). The precise condition required for the function
p* (B, {u,v}) is that for fixed f it satisfies that

* * ]'
6o} = Lo = o] = 1 and 7 6., 0}) = p (5, o) +.0 ()
(78)
as |[u — v|| = co. An example of such a set of inclusion probabilities p* (3, {u,v}) is given

by

1 for ||lu —v|| =1

p*(Bv{uv’U}):{fB/\l for [[u — vl > 1

[lu—v[[>

where we prove in Example 7.2 that (78) is satisfied. These inclusion probabilities were
for example also used in [33] for d = 1.

We write ]P’E for the probability measure resulting from independent bond percolation
with inclusion probabilities (p*(3,{u,v})), ,eza- In the following, we give a proof that
both the graph distance D (0,z) and the diameter of a box Diam ({0,...,n}?) scale like
[|2]|?%), respectively n?P), under the measure Ps.

Theorem 7.1. For fized f > 0, suppose that p* (8, {u,v}) satisfies (78). Then the graph
distance between the origin 0 and x € Z% satisfies

|2]"? ~p D (0,2) ~p Ej [D (0, 2)] (79)
under the measure P5. The diameter of cubes satisfies
n’® ~p Diam <{0, . ,n}d) ~p Ej [Dmm <{O7 . ,n}dﬂ (80)

under the measure IP’E.
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For the proof of (79), we follow a technique that was already used in [33] in a similar
form for a comparison between the discrete and the continuous model of percolation. The
proof of (80) needs more involved methods, and is done in section 7.1.

Proof of (79). We fix the dimension d and § from here on and consider them as constants.
We write £ , for the event when there exists an edge between v and v in the graph sampled
with the measure IP’E, and we write E, , if there exists an edge between u and v in the
graph sampled with the measure Pg. With the standard coupling for percolation we can
couple the measures Pg and P} so that uniformly over all u € 7% v e 79\ {u}

1

P (E;U \ Euﬂ}) +P (EW, \ E;v) < Clm

where C7 < oo is a constant, and where we write P for the joint measure. Thus we also

get
1
P ((E;U)C yEu,v) +P ((Eu,u)c \EZ,U) < sz

for some constant Cy < co. We write w* for the percolation configuration sampled by IP’}’;

and w for the percolation configuration sampled by Pg. For two points x,y € 7%, let P be
a geodesic between = and y for the environment w. We construct a path between x and y
in the environment w* as follows:

e For {u,v} € P, if B, occurs we use the direct edge between u and v.

e For {u,v} € P, if B, does not occur go from u to v using |[u — v[|; many nearest-
neighbor edges.

This gives a path P* between x and y in the environment w*. The length of this path

equals
oot + DY fu—vh= D (ﬂE;,v+||“*U||1ﬂ(E;,v)C)

{u,v}eP: {uv}eP: {u,v}eP
E;, ,occurs (E}.,)C occurs

and thus we get that

E[D(z,y;w*) |w] < Z E [1 + ||u— U||1]1(Eﬁ’v)c | w }
{u,v}eP

S (1+|u—v|1021)503D<x,y;w> (81)

{u,v}eP ||U—U||

for some constant C3 < oco. Markov’s inequality for the conditional measure P (‘w) gives
that for each ¢ > 0 there exists a constant C. such that

P (D(z,y;w*) < CeD(z,y;w)) >1—¢ .

Interchanging the roles of w and w* one gets that for each € > 0 there exists a constant
C? such that

P(D(z,y;w) < CID(z,y;w")) 2 1 —¢,

which shows that D(z,y;w*) ~p ||z — y||’?). Inequality (81), and interchanging the roles
of w and w*, implies that E [D(z,y;w*)] and E [D(x,y;w)] are at most a constant factor
apart. Thus we get that ||z — y||®) ~p D(z,y;w*) ~p E[D(z,y;w*)], which finishes the
proof. O
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Example 7.2. The inclusion probabilities given by
1 for |lu—ov| =1

m/\l for |[u—v| >1

P (B, {u,v}) = {
‘ —

satisfy (78).
Proof. For all x € v+ C and y € u + C, we have by the triangle inequality
lu— || = Vd < [lz = y|| < [lu—v]| + V4,

and this already implies that for ||u — v|| > V/d

1
< oo T patrte < 2
wtw+f (Ilu = oll = va)

With a Taylor expansion we see that

1 1 11 <1+(9< 1 ))
le—vll £ vd  fu—vllpe M flu—v lu =

1 1
-t i)
[l = wl| [l =2

and raising this expression to the 2d-th power already gives that

1
dydz = +0 <> ]9
LieLeTam o= o * O (o (82)

for ||u—v| — oco. With the Taylor expansion of the exponential function we have 1—e™% =

s+ O(s?) for small s and thus by inserting (82) into the definition of p (8, {u,v}) we get

p (6 {w}) =1 Horchsemmmivir _ B o < : > (83)

lu = vl lu = v+t

which implies that

P Bl = e A= p (B ) 4 0 ()
O
Example 7.3. The inclusion probabilities given by
for llu— ol =1

1
ﬁ@&wﬂ)Z{ e
1—e lu—vl

for |lu —v|| > 1 .
satisfy (78).

Proof. By a Taylor expansion of the exponential function we get

__s B 1 1
1-— lu—vl2d — = p~ - -
’ Hu—de+O<WwwM“> p(@““”)+O<Wr—mwﬂ>’

where p*(3, {u,v}) = W A1 is the function from Example 7.2. We already know from

Example 7.2 that p*(8, {u,v}) satisfies (78). Thus we directly get that p (8, {u,v}) also
satisfies (78). O
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7.1 The diameter of boxes

Before going to the proof of (80), we prove a technical lemma that we will use later in this
section. It follows directly from the Burkholder-Davis-Gundy-inequality [23].

Lemma 7.4. Let X1,..., X, be independent random variables such that |E [X;]| < C for
alli € {1,...,m}. Then for all p > 2, there exists a constant C' = C'(p,C) such that

m p

>

=1

E

< C'mP/? max E [| X;[P] + C'mP.
K2

Proof. Define Y; = X; — E[X;]. We clearly have

p p p

m m m m m p
E|D Xi| [=E||D_Yi+) E[X]| | <ZE|]D Y| |+2°E ZE[XA]
=1 =1 =1 =1 =1
m p
<2E | Y| | +2°mCP. (84)
=1

The process M; = Y :_, Y; is a martingale and thus we get by the BDG-inequality [23]
that there exists a constant C), such that

m p m p/2 1 m p/2
E ZYZ- < CyE (Z Yf) = C,mP/? || = Zy;
i=1 i=1 mi3 /2
< Cym?"? max|[Y2 |25 = Cpm?* max E[|i["]. (85)

For i € {1,...,m}, we have E[|Y;|P] < 2PE[|X;[P] + 2P|E[X;] [P < 2PE[|X;[P] + 2P|CP.
Combining this with (84) and (85), we finally get that

m p

>

=1

< 2PC,mP/? (max?pE [ X:]P] + 2”0\”) + 2°|mC P < C'mP/? max E [|Y;]P] + C'mP
(2 3

m

> Y

=1

E + 2°|mC|P < 2°CymP/? max E [|Y;|P] + 2P|mC|P
(2

P
]§2PE

for an appropriate constant C’ depending on p and C' only. O

Assume that (p*(B,e)).cp satisfies (78). From the proof about the typical distance
above it directly follows that there exists a constant ¢ > 0, and for all € > 0 there exists
a ¢ > 0, such that

P (Diam ({0, . ,n}d> > cgn9(5)> >1—¢and Ej [Diam <{07 . ,n}dﬂ > enfP)
for all n € N. So we are left to show that
P} (Diam ({0, o n}d) < an9<5>) > 1—c and E} [Diam ({o, .. ,n}d)} < cn® (s6)

uniformly over all n € N, for appropriate constants C,C.. In the following, we will show
that

P} (Dvgl (0, (7 — 1)e1) < Sn?® for all 7 € {0,. .. ,n}) > 0.25 (87)

64



for some constant S and all n € N. From there one can with the same techniques as in
Lemma 6.5 and Lemma 6.4 show that (86) holds. Thus, we will focus on (87) from here
on. We will only do the case where n = 2* for k € N large enough. The general case
follows with Lemma 4.1. We couple the measures IP’; and Pg, using the standard Harris
coupling for percolation. For an edge e € F, we say that it is non-regular if w(e) = 1,
but w*(e) = 0. In words, if the edge is open under the measure P, but closed under the
measure ]P)g. Let C; be a constant such that

a1

P (e is non-regular | w(e) =1) < B

Such a constant exists by the assumption (78). We will always use Cy as this constant in
the rest of the chapter. The rough strategy of the proof of (79) above was to fill in the
gaps that occurred through non-regularities using edges in the nearest-neighbor lattice.
Such an approach does not work for the diameter. Instead, we fill in the gaps using a
third percolation configuration w™, which is contained in w*. For this, we first choose a

list of parameters whose origin will be clear later on. We choose ¢ = 39%6)’ and we choose

B— €10,0), € > 0 such that

93a(0(8-)-0(8) 1

_)g—1 =0. i
0(8-)q +¢eq = 0.5 and 55 <57

(88)
which is possible, as the function 8 +— 6(3) is continuous in S by Theorem 1.5. These
definitions seem quite arbitrary at the moment, but they are chosen in a way so that
the proof works. The third percolation configuration w™ is distributed according to the
measure Pg . So we can couple the three percolation configurations w,w*, and w™ using
the standard Harris coupling for percolation. We write P for the joint measure. We have
that p(B—,e) < p*(B,e) for all edges e that are sufficiently long, which follows directly
from (78). In the following, we will even assume that p(8_,e) < p*(5,e) for all edges e.
Removing this assumption is relatively easy, as all nearest-neighbor edges are open. This
already implies that D(z,y;w*) < D(z,y;w™) for all points x,y € Z%. With this, we are
ready to go to the proof of (87), which already implies (80).

Proof of (87). Define the event A by
k 1
A= ﬂ m {Diam <Va2 ;w_> < 2l9(5*)25k} .
1=0 k!

For k large enough, we have P (A) > 0.5, as we will argue now. Using that

Diam (VOQl ; cu_)
supE |exp

N 216(5-) =

by Theorem 6.1, we get that for some constant C

P(AY) =P (El €{0,...,k},a € VOQIH : Diam (Vfl;w_) > 2l9(57)25k)
i Diam (V()Ql;w—)

k
. L _ _
<y Yp (Dlam (V,f o ) > 2’9(542*) <Y 2dk-p S > 2%
=0 qeyh! 1=0
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k k
<> 9d(k=1) C1g=2" — o2 Y 2% <05
=0 =0

for k large enough. Assume that A holds, and let a € ng_l, u,v € Va2l. Assume that
21 < |lu —v|| < 2™. Then u,v are either in the same box V2", or in adjacent boxes
V2" V2" with |w; — wallee = 1. This implies that Dy (u,v;w7) <2 omi(B-)gek 41 <

w1 )
4 |lu— v||?(B-)2¢k 4 1. So if the event A holds, then for all u,v € V2

Do (u,v;w7) < 5llu — v||B-)2k,

l
V2

For a € VOQIH, let P be a geodesic between z = 2'a and y = 2'a + (2! — 1)e; in the set
Va2l for the environment w. We construct a path between 2'a and 2'a + (2! — 1)e; in the
environment w* as follows:

e For {u,v} € P, if B, occurs we use the direct edge between u and v.

e For {u,v} € P, if B, does not occur go from u to v using the shortest path in the

L. . —
set V.2 in the environment w™.

This gives a path P* between 2'a and 2'a+ (2! —1)e; in the environment w*, as we assumed

that all edges contained in w™ are also contained in w*. The path P* is also contained in
1 . . . . .

V2. Write X{u,vy for the distance D, (u,v;w*). The random variable Xy, . is either 1

v2!
or D,y (u,v;w™). We define the random variable X%u o} by
v if Xy =1
{uwy min (|ju — vl|, 5[lu — v[|#-)25F)  else ’

so in particular we have Xy, ,; < X % v} on the event A, and this already implies that

u,

Dy (@, y;w") < > Xiywy- (89)
{u,v}eP

The important thing about the random variables X! is that they are independent for
different edges e € P, as it is independent for different edges whether they are non-
regular. Next, we want to estimate the first and the g-th moment of the random variable
X%u7v}. For the expectation we ge that

1

/

f < —_ —_—

E (X | (o) = 1] S 1t fu—v] = =140,

whereas for the g-th moment we see that
B [(Xfuy) ol oh) = 1,4] <14 5lhu— o]0 S
e - =l
< 1+ 50 ||u — v]|?B-)i-1oeka < 0,2k(0(B-)a=1teq)

for some constant Ca, as 0(8-)q > 1. Using Lemma 7.4, we see that there exists a constant
C < oo such that

q

E Dy (e i)l Aw] B[ 3 X | |Aw
{u,v}eP
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< C’DVan (z,y;w) 12 Cp2R0(B-)a—1+eq) 4 CDVEQz (z,y;w)?
= C'DVan (z, y;w)q/20220‘5k + C'DVan (z,y;w)4,
and now taking expectation with respect to w yields
E Dvgl (m,y;w*)q\A} <E [CDVQQz (2, y; w) Y/ 2Cy2ROB-)a—14e) | C’Dvazz (z,y;w)?|A
< Clla — yl"O229% 1 Ol — s

for some constant C'. Here we also used that P (A) > 0.5, and thus for all 7 > 0 the r-th
moment of Dy, (z,y;w) is of order ||z — y[|"*®, under the measure P (-|.A). Assume that

|2 — ylloo = 27% with v > 3. Then we get

E Dyt (2,5 0*)1|A] < Gl =y {O0/220E0015) 4 Gl — 000

<c <2k(w9<25>q+0.5) n 27k0(6)q> —C (219(%%0.5) 4 Qiﬂg) < Cu2k% < " — quG(B)

for some constants C’, C",C""" < co. The second last inequality holds as %2 +05< %4 for
v > %. Using Markov’s inequality we see that there exists a constant C < oo such that

for all I > 3k, a e V¢ ', and S > 1

P (Dvagz (2%, ola 4 (2! — 1)e1;w*) > §2k0()1 1(=h0E) | ,4)

Dy (2'a,2la+ (2! — 1)eg;w*) \ * 9\ (k=04/3
Ve ’ ’ a_ 2
SP(( ST ) > S <1.1) \A)

9 \ ~(k=04/3 1\ k-
<081 -= <081 — .
<o) o5 (g)

On the other hand, for [ < 3k we have [ < 3(k — ), which implies that

P (DVan (210,, 21(1 + (21 _ 1)61;w*> > SQkQ(B)l.l(l,k)g(ﬁ) ‘ A)

<P (Dvagl (2la, ola + (2! — 1)61;w_> > S2K0(8)-10(8)9l6(8)1 1U-R(B) | A)

D 2q, 2t 2L — Depzw )\ ? (k=13
:P<( vp (P, dat 2 Derw )) S g0 <2> 321<a<ﬁ>—0<6>>qM>

210(5-) 1.1

L\ aecso)-o(0) LN\ s )-6) 1\
<Csq(_— ql(0(B-)— <CS—7( _— q3(k— -)- < -
<os(y5) 2 <os(y3) 2 <os(5)

where the last inequality holds because of our assumption on S_ (88). So in total we see
that there exists a constant C' such that for all k € N, [ € {0,...,k}, and a € VOQIH one

has

. B DR
P (DVGQZ (2la, ola + (2! — 1)ey;w ) > §k0()] 1U-R0) | A) < 0§51 (21> .

Write Q° for the event

k 2k=l—1
QS - ﬂ {Dv2l (21j61a QZjel + (2l - 1)61;&]*) < Szke(ﬂ)ll(l_k)e(ﬁ)}
=0

2lj€1
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we get with a union bound that

Eo2k-l_1
P ((QS)C} A) <> S p (DWZ <2lj61,21j61 r (2 - l)el;w*> > §2k0(8)1 1(=k)0(8) ’ A)
=0 j=0 2lier

=~ |

1 k—1
<Y oklog—a () <05
i 2.1

for S large enough. Thus we get that P (Q%) > P (Q9 | A)P(A) > 0.25. Using a dyadic
path between 0 and (72 — 1)e;, one can show that on the event Q° one has Dys(0,(n —

Le1) < C(0(8))Sn?P) for some constant C'(A(8)), depending on (5) only. This shows
(87) and thus finishes the proof. O

8 Russo’s formula for expectations

In this chapter, we establish one of our main tools in the proofs of Theorem 1.3 and
Theorem 1.4, which is a version of Russo’s formula. The classical Russo’s formula, also
called Russo-Margulis lemma, see for example [62, Section 1.3] or [81,88] for the original
papers, is a formula for i.i.d. bond percolation. It states that for any finite graph (V, E)
and any increasing event A

d o
@Pp (A) = Z P, (e is pivotal for A), (90)

eceE

where we say that an edge e is pivotal for an event A when changing the status of e also
changes the occurrence of the event A. Note that it does not depend on the occupation
status of the edge e whether e is pivotal for A. Russo’s formula (90) tells us how the prob-
ability of an event changes for i.i.d. percolation when varying the connection probability
p. We modify this formula in two ways. First of all, we adapt it to long-range percolation,
where the inclusion probabilities of the edges are not identically distributed. Secondly, we
develop a formula that determines the derivative of the expectation of a general function
rather than just the probability of a given event.

Lemma 8.1 (Russo’s formula for expectations). Let G = (V, E) be a finite graph with a set
of inclusion probabilities (p(5,¢€)).cp >0, Where B — p(B,e) is continuously differentiable

on R>q for all e € E. By Pg we denote the Bernoulli product measure on {0, 1}E with

inclusion probabilities (p(53,e)).cp and its expectation by Eg. Let f : {0, l}E — R be a
function. Then

5B )] = w8, [£(") - £(w5)]. (91)

eckE

The lemma is stated for any set of continuously differentiable functions p(3,e), but

. -8/, e Jure ﬁdxdy
one can also always think of the case where p(5,{u,v}) =1—¢e = #F¢70FC Jla—yll , as

we only apply it to this case.

Proof of Lemma 8.1. The p1r00£> is similar to the case of the classical Russo’s formula, see
for example [62]. For a vector § = (B¢).cp € Rgm we define the probability measure Pz

on {0,1}¥ by
Pzw)= [ »Bee) [[ (1-p(Bee))

ew(e)=1 ew(e)=0

68



so that each component w(e) is Bernoulli distributed with expectation p(fe,e), and all
components are independent. Under this measure, a function f : {0, 1}E — R has the
expectation

Yo fw [ pBee) TI (1 —p(Bese)).

we{0,1}F ew(e)=1 e:w(e)=0

For an edge f € E, differentiation with respect to 3y gives

d d
d—ﬂfIEE[f(w)]z > f(w)% (etwl(glp(ﬁe,e) 11 (1p(6e7€)))

wel0,1}F exw(e)=0
= Y f@PBrf) L=t — Lugymo) J[ 2Bee) J[ 1 -p(Bese))
wel0,1}F e€B\{f}: e€B\{f}:
w(e)=1 w(e)=0
=Bn ) >, fw I pBae I (-p(Bee)
we{0,1}E w(f)=1 e€B\{f}w(e)=1 e€E\{f}:w(e)=0
B Y, fw I pBee I (A =p(Bee))
we{0,1}F w() 0 e€E\{f}w(e)= e€E\{f}w(e)=0

=8y, Bz [F@)] = (85, NE [f(f—>}—p<ﬂffE~[ W) = F@)].

To conclude, consider the mapping ¢ : R — R¥ defined by ¢(8) = (3,...,3). With this
and the chain rule we finally get

5B 1) = 5Bup 1) = X 37Ba )] = X /(BB [7(") — £ )]

eck eckE

O]

_ _ B _daxd
We now consider the case where p(f,{u,v}) = 1 —e Jure Jove Tomymm@®® Y Noto that
(B, e) decays like Ieli%’ as |e| tends to infinity. By the triangle inequality we have for all
reu+Cycv+C

lu = vl = Vd < Jlo =yl < |lu— o] +Vd

and thus, for ||u — v|| > v/d we can bound the integral in the exponent from above and
below by

1
1= [T ZH
(lu— o+ va) ™"~ Jore o (lu = vl - va)
Also note that we have for all edges {u, v} with ||u — v||o > 2 that

1
12/ / . dyds 93
e e o=yl (93)

as the integrand is bounded by 1. Next, we consider the derivative of p(3, e) for non-nearest
neighbor edges e = {u,v}. By the chain rule we have

0= S
dxdy e TvTC VT yH?d
dB u+C Jv+C Ha7 - y||2d
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and using (92) and (93) we see that for edges {u, v} with ||u—v|[s > 1 and |ju —v| > Vd

1
——v 7\/3 2d
(he—vl-va)

> e
= (Ju—vll+va)™

p/(ﬁv{uav}) = (94)

and thus in particular for fixed 5 > 0 we have p/(3, {u,v}) = © (W

For every non-nearest-neighbor edge e the probability that e exists is upper bounded by
1 — e #. This implies that

) for [[u—v]|| — oo.

[Es [£) — @] < [Bs [£) ~ £ )| < 25 [Ba [7w5) — 7]

for all functions f : {0,1}¥ — R and all edges e € E with |e| > 2. Above we bounded
the derivative p'(8,e) from above and below. We also want to bound the connection
probability p(8,e). As1—e7° > 5 A % for all s > 0 one has that

B 1 (92) B 1
p(ﬁ, {U7U}) Z 7dxdy N — Z A= (95)
Jie Lo amtzann 2 (Jhu— o+ vd) " 2

On the other hand one has 1 — e™® < z and thus one can upper bound the connection
probability by

3 (92) B
p(B; {u,v}) < o — g2 = "
/u-‘rC /v-l-(,’ lz — yl|* (HU—UH _\/@Qd

for |ju — || > Vd.

9 Asymptotic behavior of §(3) for small § and d =1

In this section, we prove Theorem 1.3, i.e., that 8(8) =1 — 8+ o(8) for § — 0 for d = 1.
Determining the asymptotic behavior of §(3) for dimension two or higher for § — 0 is
more difficult for several reasons. First, there is no lower bound on 6(3) that arises from
considering cut points or something similar. The notion of cut points and its implication
on the distance exponent (/) in dimension d = 1 will be explained below. Secondly, it is
not clear which pair of vertices x,y € V' minimizes the expected distance Eg [Dvon (z, y)]
in dimension two or higher, i.e., whether a similar statement of equation (101) holds for
d > 2. However, for all dimensions d there exists a constant ¢ > 0 such that 6(5) < 1—c¢f
for 8 small enough. This can already be shown with the exact same technique that was
used in [27].

But now let us consider dimension d = 1 again. Here we have 6(0) = 1 and it is well
known that 6(5) > 1 — 3 (see [27,33]). So we get that liminfg_,o UBH0O) > _1. Thus it

B
suffices to show that limsupg_,q 9(8)-6(0) < —1. For the sake of completeness, we give a

short sketch of the proof of the lower bound 6(8) > 1 — 3. For this, we define the notion
of a cut point. We say that the vertex w € {1,...,n — 2} is a cut point if there exists no
edge {u,v} with 0 <u <w <v <n—1. We have

u+1 po+1 1 w rn 1
. . — dxd — ——dzd
P (w is a cut point) = | | | | e AL o—y2 FY — o BIo" Jasa [o—y|2 7Y
0<u<w w<v<n-—1
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> ¢ P foh T4y _ =B J5 Gpdy _ —Blog(w) >n~h.
(97)

As the distance between 0 and n—1 is lower bounded by the number of cut points between
0 and n — 1 we get, by linearity of expectation, that

Eg [Djon—1)(0,n —1)] > Eg[[{w : w is a cut point}|] > (n — Qn P =qn!P)  (98)

which shows that 8(5) > 1 — 5. As a first step towards the proof of Theorem 1.3, we
remind ourselves about the submultiplicativity of the expected distance, which was proven
in Lemma 2.3. For all dimensions d and all 8 > 0, the sequence

A(n)=A(n,B) =  max  Eg[Dyz(u,v)] +1
u,we{0,...,n—1}4

is submultiplicative and furthermore one has

003 it PEAB).

n>2  log(n) (99)

Now we are prepared to prove Theorem 1.3. Our main tools for this are Lemma 2.3
and Russo’s formula for expectations (91).

Proof of Theorem 1.3. Note that A(n,0) = n and thus % = 1. Using this and (99)
we obtain

im M — lim in og(A(n, 8)) — log(A(n,0))
1 ﬁ\stgp B : /3\8‘31) n>f2 Blog(n)
inf lim og(A(n, 3)) —log(A(n,0))
< n>f21 ﬂ\s{gp Bloa(n)

. 1 d
= inf s g oA )|

1 d

- rlzgg log(n)A(n,0) @A(n, 8) ‘ﬂ:o (100)

and this works, as for fixed n the function A(n, () is differentiable at g = 0, as the
inclusion probabilities p(8, {u,v}) are. Now we want to calculate %A(n, B) o For
this, let E be the set of all edges of length at least 2 in the graph with vertex set
{0,...,n—1}. For e € E, let w®" be the environment, where we added the edge e
(or do nothing in case it already existed before). For 8 very small compared to % we have
that max, yeqo,...n—1} Eg [D[o,n—l} (u, v)] =Eg [D[O,n—l] (0,n — 1)] To see this, note that
on the one hand for any u,v € {0,...,n — 1} we have

Es [Dio,n-1)(u,v)] < u—w],
whereas on the other hand we have

Eg [Djon-1)(0,n —1)] > (n —1)Pg (ﬂ {e closed})

eeE

As the probability of the event [ cp{e closed} tends to 1 for 3 — 0 we see that

Eﬁ [D[O,n—l] (07 n-— 1)] = u veg)lé.xn—l} Eﬁ [D[O,n—l} (’LL, U)] (101)
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for small enough (3, where small enough of course depends on n. Using this observation
we see that

d A B) = Am,0) . Es[Dygn1)(0,n—1)] —Eo [Dgn-1(0,n —1)]
aghim ), = lim =R < I 5
- Zp’(o, e)Eo [Djgn—1](0,n — L;w") = (n—1)] . (102)
eckE

In the environment w®" sampled by Py, where only the nearest-neighbor edges and the
edge e are present, the shortest path from 0 to n — 1 will also take the edge e. By
taking the edge e, the distance between 0 and n — 1 decreases by |e| — 1, and thus equals

n—1—(le]—1) =n—|e|. For d =1, we get from (94) that p'(0, {u,v}) > m With
this we can upper bound the derivative computed in (102) and obtain that
d et
a3 A(n /B‘ Zp (0,€)Eo [Djo,—17(0,n — ;") — (n — 1)] Zp (0,e)(le] — 1)
eck eck
n—3 n—1 n—3 n—1—k
1 1-— \] — k| 1-1
<= T =2 > =2 >
eeE(|6|+ k=0 j= k+2‘]—k+ k=0 =2 H'l
(103)
For [ € N, we have (1;11)2 < l% — %, as we will show now. One has
L2 L pouse—n=@ra+sne-
I+1)2 12 1 -
SP>P+2a4+10)1-2)=13-224+22%-4+1-2 0> -31—2
and the last line is clearly true. Using that (l+1) < T2 — % we also get that (ZH)Q <
(l+1)2 + lQ -1 < l% — 7. Inserting this into (103) we get that
n—3 n—1—k n—3 oo n—3 n—1—k
d 3 1 3 -1
By ’ < 2 _lc d -
dﬁ (nﬁ) B=0 " 12 Z*ZZZQ—FZ l
k=0 =2 k=0 =2 k=0 =2
n—3 n—1-k 1 n=3 ,n—k _ n—3
<3n+ Z T§4n—i— 1 ?d3—4n—210g(n—k:)
k=0 =2 k=0 k=0
=4n — Zlog(k:) <dn — / log(s)ds = 4n — [— 5+ slog(s)}n
k=3 2 2
< b5n+4—nlog(n).
Inserting this into (100) gives
. 0(B) —0(0) 1 d
limsup ————- < inf ————— , B
B\0 5 n>2 A( )log( ) dﬁ ( ) B5=0
B 1 d ) . f5n+4—nlog(n) <1

= inf ———
2 nlog(n) df Aln p=0 o2 nlog(n)

where the infimum is achieved when taking n — oo. As 6(8) > 1 — 8, and thus
lim inf g~ o w > —1, this finishes the proof of Theorem 1.3. O
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10 Strict monotonicity of the distance exponent

In this chapter, we prove Theorem 1.4, i.e., that the function 0(f) is strictly decreasing in
B. It was known before, see [27,33] and section 2.2, that 6() is strictly decreasing at 8 = 0,
which is equivalent to saying that 6(5) < 1 = 6(0) for all 8 > 0. With the Harris coupling
(cf. [62]) one can see that the function 6(/3) is non-increasing. For this coupling, let (Ue) .
be a collection of i.i.d. random variables that are uniformly distributed on [0, 1] and then
set w(e) = Ly, <p(B,e)}- Then w is distributed according to the law of Pz and for g < '
one has w(e) = Ly, <pse)} < L{u.<p(pe)y = w'(e). So in particular the environment
defined by w’ contains all edges defined by w, and thus D (u,v;w’) < D (u,v;w) for all
u,v € Z%. Taking expectations on both sides of this inequality and letting ||u — v| — oo
already shows that () is non-increasing.

Before going into the details of the proof of the strict monotonicity, we want to show
the main idea. One of the main tools is again Russo’s formula for expectations (91).
We know that Eg[D(0,n1)] = O (ne(ﬁ)), as proven in Theorem 1.1, and thus 0(8) =

log(E@[D(O,nl)]) log(EB [D(O,nl)})

limy, 00 — gt But for fixed n we can calculate the derivative of oz ()
with Lemma 8.1 and get that
d log (Eg [Dvon+1(0, nl)]) 1 d
= s _ 155 [DV$+1(O,n1)]
og(n log(n)Eg [Dvonﬂ(o,nl)}
1

_ / ., et e—
= p'(B,e)Eg | Dyn+1(0,n1;w") — Dynt1(0,n1;w0)

(104)

where F is the set of edges with both endpoints in VO”H. For ease of notation, we drop the
subscript of VO”Jrl in the paragraph below and will implicitly always think of this graph

as the underlying graph. A fully formal proof is given in section 10.2. Our goal is to show

that for each 8 > 0, there exists a ¢(/3) < 0 such that %w < ¢(B) uniformly

over n. For this, it clearly suffices to consider n large enough, as the bound clearly holds
for small n. If we prove this we get that

0(8 +e) - 0(8) = lim {log (Egse [D(0,n1)])  log (E5 [D(0,n1)]) }

n=00 log(n) log(n)
B+e
— lim d log (E, [D(0,n1)]) , - _
n—oo Jg ds log(n)

as we will show in the end of section 10.2 in detail. This implies strict monotonicity of
the function 5 +— 6(3). In order to show %w < ¢(p), we divide the graph
into several levels, and assume n = 2¥ — 1 for some k& € N. The i-th level consists of all
edges for which c2¢ < |e| < C2¢ for some constants 0 < ¢ < C' < co. Note that an edge
can be in several levels, but at most in finitely many. By G(0,n1) we denote the union of
all geodesics between 0 and nl. So the occupation status of edges outside G(0,n1) does

not change the distance between 0 and n1 which implies that for all edges e one has

Eg [(D(0,n1;w) — D(0,n1;w°")) Licegion1)y] = Es [D(0,n1;w) — D(0,n1;w°7)] .

For fixed § > 0, we have by (94) that p/(5,e) = © (Pg(w(e) =1)) = O (ﬁ) as |e| — oc.

Thus we have uniformly over all edges of length at least 2 (but not uniformly over ) that

p'(B,e)Es [D(O,nl;we+) — D(0, nl;wef)] =0 (Eg [D(O,nl;w) — D(O,nl;we*)])
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=0 (Eg [(D(0,n1;w) — D(0,n1;w7)) Licegon1)}]) -
So in order to show that there exists a ¢(8) < 0 such that %w < ¢(B)
uniformly over n it suffices to show that

S B [(D(0.n1iw) - DO nLw ) Lucgionyy] < ¢/(B)Es [D(0.n1)]
e€E:c2t<|e|<C2¢

for some /() < 0 and a positive fraction of the levels i € {1,...,k}. One needs this for a
positive fraction of the levels in order to cancel the logarithm in the denominator of (104).

10.1 The geometry inside blocks

For the proof of Theorem 1.4, we remind ourselves of a few results from the previous
chapters:

From Lemma 2.4 and Lemma 2.5 we know that for all 2 < ¢ < § and u,w € Z4\ {0} with
|lu|loo > 2 one has

IP’B(EI:U,y eVg iz —ylloo <enyx ~ V] y~ V) ‘ Vol ~ VI Vgt ~ Vu’}) < C’élel/2 Mﬂz

where C) is a constant that depends only on the dimension d. This tells us that for a
block V' the vertices x,y € V' that are connected to different boxes z ~ V', y ~ V) are
typically far apart in terms of Euclidean distance, whenever ||u||o > 2. However, the same
result is also true for the chemical distance, as proven in Lemma 5.2. There we proved
that for all dimensions d and all 5 > 0, there exists a function g (¢) with g1 () " 1 such

that for all u,w € Z%\ {0} with ||ulls > 2 and all large enough n > n(e)
Pg(Dyg (x,y) > eA(n, B) for all z,y € Vg with z ~ V', y ~ Vi | Vit ~ V' ~ Vi) > gu(e).
Theorem 1.1 shows that

D (0, B,(0)°) =p n’?

for some 0(8) € (0,1). One can ask whether the same statement is true for the dis-
tance between two sets that are separated by a euclidean distance of n, for example
D (B,(0), B,(0)¢). However, a similar statement can never be true, as there is a uni-
form (in n) positive probability of a direct edge between the sets B, (0) and Bs, (0)¢. But
if we condition on the event that there is no direct edge, then we can get such a result,
as proven in Lemma 4.11 and Corollary 4.12. Formally, let £ be the event that there
is no direct edge between B, (0) and B, (0)¢. For all 8 > 0 and all € > 0, there exist
0 < ¢ < C < oo such that

Ps (cA(n, B) < D (By(0), B2, (0)°) < CA(n, B) | £) > 1—¢

for alln € N. Let £’ be the event that there is no direct edge between V' and Uuezd:”unwzz Vi

w

For all 8 > 0 and all € > 0, there exist 0 < ¢ < C' < oo such that

Py (cAn8)<D(Vg, |J W gCA(n,ﬂ)(c’ >1-¢

u
uEZ:||ul| 0o >2
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for all n € N. So in particular there exists a function g with lim._, g2(¢) = 1 such that

Py |eAm,B) <D (Ve | W jﬁ/ > go(e) (105)

u€Z%: || ul| oo >2

for all large enough n > n(e).
Lemma 11.2 below implies that for all £k € N and 8 > 0 there exists a constant C' such
that for all n € N

Eg [Diam(v(,")’“} < o), (106)

Let § € (0,1). We define a family of sets co;i C Vg' with the following two properties:
[ ] UxECOfL Bgn({L‘) = VOn, and
o |COY| < Copd for all 4,

where Cep is a constant that depends only on the dimension d, but non on §. The
abbreviation CO stands for cover. Such a cover can be constructed by choosing the points
in C(’)fl at a distance of approximately dn.

Lemma 10.1. Fore € (0,1), let DL(g) be the event

RV
DLE) = () {Diam(Bszn(x))<(€15n) }

3
zeCOs’

Then there exists a function hy(g) with lim._,o hi(e) =1 such that
Pg (DL(e)) = ha(e)
for all n > n(e) large enough. If the event DL(e) holds, we say that Vi is e-near.

Proof. By a union bound we have that

5 \0
By (DL(E) < Y By (Diam (Ban(e)) 2 E0) )

2€CO’

5 \0
< Ceoe 2Py (Diam (B.2,(0)) > (=1%n) > (107)

From Markov’s inequality we know that for any k € N and n > 2

Eon)’

Pg (Diam (B.2,(0)) > 3 ) = Pg [ Diam (BgQ’n(O))k > ((61 Zn) )

5 N0\ R 5 \0\ K
< By [Diam (B.2, (0))"] ((gl ) ) "L castn + 1) <<51 ) ) < O (k)05

for some constant C’(k) < co. So using k = 6d[6~1] and inserting this into (107) we get
that

Ps (DE(E)C) < é€—2d€O.5-6d[0—119 < Ol

for some constant C' < oo, which finishes the proof. O

75



Consider long-range percolation on Z?. We split the long-range percolation graph into
blocks of the form V", where v € Z?. For each v € Z%, we contract the block V.* C 74
into one vertex r(v). We call the graph that results from contracting all these blocks
G' = (V',E'). For r(v) € G', we define the neighborhood N (r(v)) by

N (r(v)) = {r(u) €G v —ulleo < 1},

and we define the neighborhood-degree of (v) by

degM(r(v)) = Z deg(r(u)). (108)

r(w)eN (r(v))

We also define these quantities in the same way when we start with long-range percolation
on the graph V™", and contract the box V' for all v € Vj*. Remember that by Lemma 5.4
we have for the event W(e) defined by

W(e) = D* | VI, U Ve | > eAn, B)

u
UEZL:||Ju—vl|oo>2

that for all large enough n > n(e) one has

Py (W(e) | &) < 3% deg" (r(v)) (1 = g1(e)) + (1 = g2(e)). (109)

where ¢g; and gy were defined in Lemma 5.2, respectively (105). Furthermore, before going
to the proof of Theorem 1.4, we remind ourselves about the main results of section 3; In
particular about Lemma 3.2 and (25). For a finite set Z, we defined its average degree by
deg(Z) = ﬁ > vez deg(z). Let CSy, = CSy, (Z%) be all connected subsets of the long-range

percolation graph with vertex set Z¢ of size k that contain the origin 0. We write pp for
Eg [deg(0)]. Then for all 5> 0

Ps (32 € CSy, : deg(Z) > 20p3) < e *hws

and
o e ()] < 5.

10.2 The proof of Theorem 1.4

With the knowledge from the previous subsections, we are now ready to go to the proof of
Theorem 1.4. The proof consists out of three main parts: First, we define a notion of good
paths in a renormalized graph. Then we show that every long enough path is good, with
high probability. Finally, we argue how this implies strict monotonicity of the distance
exponent.

Proof of Theorem 1.4. Consider the graph V02". For k < n, define the graph G’ by con-
tracting all blocks of the form Vuzk. We define 7(u) € G as the vertex that results from
contracting Vu2k. In analogy to Z?, we call the vertex r(0) the origin of G’. We de-
fine a metric on G’ by ||r(u) — 7(v)|lec = ||t — v||cc. Now consider a self-avoiding path
P = (r(ug),r(u1),...,r(us)) C G', where ug = 0, and ¢ is very large (depending on d and
B). We divide the path into blocks of length K = 3% + 1: For j < L%J — 1, we define
R; = (r(ujKk),...,r(ujgy3a)). For each such j and R;, we define a set R; as follows:
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If there exist (r(u;),r(uit+1)) C Ry with [Ju; — uit1llec > 2, we simply set R; = R;. 1If
|7 (i) — 7(wis1)|loo = 1 for all i € {jK,...,jK + 3%}, then we set R; = Rj UN (r(u;k)).

L
The set |J ]L EOJ ! R; is a connected set and its cardinality is bounded from below by

From now on we will always work on the event
Hy = {deg(Z) < 20pg for all Z € CS>4)5 (G') } .
Note that
Py (H{) <e s <27! (110)

by Lemma 3.2. We define the degree of Rj by

deg (RJ) = (%}%‘deg(r(u)).

T
Note that we do not necessarily have

l%)-1

deg (]%j) = Z deg(r(u)),
= rweU T A,

as some vertices r(u;) might be included in more than one of the sets }éj. However, each
vertex r(u;) can be included in at most 3¢ sets R; and thus we have

L)1 F

> odeg(R)<3' > deg(r(w) <3%20u5 | | Ry| < 9%20pst.
— — <

! r(wel 5 T R ’

There are L%J > % > 8% indices j, and thus we have

- ]d
deg (1)) < 920415t = 7220115,

which implies that there are at least [ﬁ] many indices j € {0,..., [t/K]| — 1} with
deg (]%) < 80d+1u5.
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Say that ji,..., Jr _tq are the first such indices. We define a further subset ZND =
20
IND(P) of these indices by starting with ZN "Dy = () and then iteratively define (ZN'D;) Z.E?W
by
IND = INDZ’*l U {‘77’} if Rjz ad UlEIN'DZ‘,1 R.]l .
’ IND;_1 else

So in particular there is no edge between Rj and Rj/ for different j, ;' € IND = IN D[ -
209

The set ZN'D has a cardinality of at least m[ﬁ], as for j; € ZN'D, the set R;,

has a degree of at most 80%+! tp and can thus block at most 80d+1 (3 many other elements
from getting included. So in particular we also have

1 t t
IND| > 7[7] >0 111

| e 809+ g + 112041 = 20009+ g (111)
If Ri = (r(uwik),...,r(ujxy4s4)) is a path of length K = 3% 4+ 1 in the graph G’ with
deg (}%z) < 80d+1,u5, we want to investigate the typical minimal length of a path in

the original model that goes through the blocks (VQk V22+3d>. If there exists j €

Ui K7 U,
{iK,...,iK + 3% — 1} with [[uj41 — uj[lec > 2, let j be the smallest such index. The
probability that there exist z,y € Vu2jk such that z ~ V2jk+1, Y~ Vu%k, where w ¢ {u;j,ujt1},

u

and DVUQ(C (z,y) < eA(2%,B) is bounded by deg (fo) (1—gi1(e)) < 80 g (1 — g1(e)),
J

by Lemma 5.2. If D« (x,y) > eA(2%, ) for all z,y € Vu%k such that z ~ ijil, y~ V2

v2k
where w ¢ {u;,uj11}, we say that the block R; is e-separated.

Now suppose that ||u; — uji1]lec = 1 for all j € {iK,...,iK + 3% —1}. There exists
an index j € {iK +1,...,iK + 3%} with ||u;x — uj||cc > 2, as there are only 3¢ — 1 many
points w € Z% with ||u;jx — w||cc = 1. When the path exits the cube tiz for the last
time, it goes to Vf;;ﬂ,
Uw:Hw—umlloo22 quk for the last exit. If the indirect distance between the sets VHQ;( and

the set Ur(w)eG’:Hw—uz'KHooﬂ Vﬁk is at least eA (2"3,5), ie, if

so in particular the walk does not use a long edge from V,,,,. to

v U v ze(2),

r(w)eG:||lw—u; k|| 0o >2

we also say that the subpath R; and the set R; are e-separated. As deg" (r(u;)) <

80d+1 3, the probability that there is a path of length at most eA(2%, B) that goes through
VUQS(, . ,Vf; ,a 18 bounded by 398091 (1 — g1(g)) + (1 — g2(e)), by (109). So we see that
in all cases, with probability at least

1— (378041 (1 - g1(e)) + (1 - 9(2)))

the original path needs to walk a distance of at least eA(2%,3) inside the sets Vf;;ﬂ,
ok ok . . . .

Vum+2’ o Vi ey and this distance can be witnessed from the set of edges with at

least one end in R;. Note that we have two notions of e-separated: one for subpaths

that make a jump of size at least 2 and one for subpaths that do not make such a jump.
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However, the idea is in both cases that a path that walks through the set R; needs to walk
a distance of at least eA (2’“, 6) in the original model.

We say that a sequence R; is e-influential , if R;is e-separated and all boxes VUQZZ, e uz_lj“s 4

are e'/%-near (see Lemma 10.1 for the definition of e-near). For a block R; with i € TA'D,
we can bound the probability that a sequence R; is not e-influential by

Ps (R; is not e-influential) < 398071 (1 — g1(€)) + (1 — ga(e)) + (3% + 1) (1 —h (61/9)> :

Note that it only depends on edges with at least one endpoint inside R;, whether R; is

e-influential. For different values of different j1,...,5; € ZND, the sets (Rji) L) are
icf{1,...,
not connected, and thus it is independent whether these blocks are e-influential. Next, let

€ be small enough such that

<3d80d+1(1 (e + (1= ga(e) + (374 1) (1 s (51/9))) TR0y . (112)

- 100;@/3

Let ZNF = INF(P) C IND(P) be all indices i € ZN'D, for which R; is e-influential. If
H; holds we want to get bounds on the cardinality of the set ZN F for a fixed path P C G’
of length ¢. Remember that we have

t
IND| > ———,
EIND| = 200091145

as shown in (111). For a path P = (r(ug),r(u1),...,7(ut)) C G’ one thus has

t

Py ( |T. —
g <| NF| < 2 - 20009+ 11

‘ G/> =Pg U {R; not e-influential Vi € U} | G’
UCIND:|U|>IND/2

< 2N (39809711 — g4 () + (1 go(e)) + (3 + 1) (1~ (51/9)))“0‘”%

t
of 1 !
- 10043 | 50003

where used the assumption on e (112) for the last inequality. This shows that a specific
path P is satisfies |[ZN F(P)| > m with high probability. Next, we want to show

that all paths P C G’ of length ¢ starting at the origin r(0) satisfy |[ZN F(P)| > m

with high probability in ¢. Let P; be the set of all paths in G’ of length ¢ starting at r(0).
We call the previously mentioned event G, i.e.,

th{]INf(P) f for allPEPt}.
B

>
123 20009+1

By a comparison with a Galton-Watson tree we get that Eg [|P]] < ,utﬂ. Thus we have, by
a union bound

]P)g (gtc) < Pﬁ (Htc) —|—P5 (|'Pt| > 2t/,6t5) —|—]P)5 (gtC }Hta |Pt| < 2t/,LtB)
o), E[Pf | 1
< ot <3.27¢

C t, t t t
SPB(Ht)+PB(’Pt’>2M5)+2M550tu%t — + 2tﬂtﬁ 25t—
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and with another union bound we get for the event G>; :=(\;—, Gy that
Ps (GS,) <6-27". (113)

So we see that all paths of length at least ¢ contain at least many e-influential

subpaths R; with very high probability in ¢, for € small enough as in (112). Now, let P
be a geodesic between 0 and (2" — 1)1 in the graph with vertex set V@". Let P be the
projection of this path onto G’, and let P be the loop-erased version of it. Whenever
the path P crosses an influential subset R; = (r(uik), ..., (Ui 54¢)) C P, let I =1(i) €
{iK,...,iK + 3% — 1} be the first index for which ||r(u;) — r(u1)|le > 2 if such an
index exists. Respectively let | = I(i) € {iK,...,iK + 3%} be the first index for which
I (w;) — r(uir)|loo > 2, if there does not exist such an index with ||r(w;) — 7(uj41)]|co > 2.
Whenever the path P crosses the set R;, it enters Vfﬁ( through some vertex z; and it

leaves V2 to Vqu+1 through some vertex xp. As the boxes ti’; and Vuzlk are /¢

there exist cubes B, Bg of side length at least 2¢2/92% such that

-near,
2k 2k
2 € BLCV,, ,tr € BRCV,; , and

0
(5 0 2’“) cl5
Diam(Bp), Diam(Bp) < = = ?2“.

The graph distance between zy, and zp is at least e¢A (2]‘3, ,6’) as we will argue now. If there
exists an index [ € {iK,...,iK + 3% — 1} for which ||r(u;) — r(ulH)HOO > 2, then we know
that the box V2 is e- separated At the last visit of the box Vu2l , the geodesic P enters
the box Vu% through some point z € Vqu with z ~ Vj , for some w € VOTHC \ {wg, w1}
We have w # w11, as the loop-erased projection P is self-avoiding. As DV%k (xR, 2) >

eA (2%, 8) for all z € Vuzlk with z ~ V2° for w ¢ {u, u;41}, we automatically get that
D(zr,zR) > €A (2’“,5), as either zp € Vu%k with zp ~ Vu%:, or xy ¢ Vu%k. If there does
not exist an index [ € {iK,...,iK + 3% — 1} for which ||7(u;) — 7(u41)]loo > 2, then we
know that |lu; — UZK”QO = 2 and the geodesic between x;, and xp walks through the set
Urw)ea:jw—uix o=t V , and thus its length is at least

k k
Dygn (w1, 2R) = Dign | V2, U V2] > eA (2’2 5)
r(w)eG"||lw—u;K||oo>2
where the last inequality holds, as the subpath R; was assumed to be e-separated.

When we 1nsert an edge between the boxes By, and Bpg, the distance between z; and
xR is at most 2€ “9k0 4 1. Remember that A(2F,8) > 2k, Thus we have for all edges
e € B;, X Bg

Dyon (zr,xr;w) — Dyon (wr, 2p;w) >5A(2k B) —2£2k6—1>w
V02 L,V R, V02 L LR, = 5 3 = 1
where the last inequality holds for k large enough. The boxes By, and Bp are of side length
at least 2¢2/92F and are disjoint, as Dvozn (xr,zr) > Diam (Br) + Diam (Bg). Thus there
are at least (52/92k)d- (52/92k)d pairs of vertices (a,b) € By, x Bg for which |{a,b}| > /92
On the other hand, we also have |{a,b}| < (3% +1)2¥ < 692* for all pairs (a,b) € By, x B,
as ||r(uir) — r(w)||se < 3% So in particular we have

Z p/(5,€)< ver (2L, Tr;w) — Dyan ($L,$R;we+)>

6€BL><BR:
e2/02k <|e| <62k
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eA(28, B) (99 )

> cA(2", B)

vV
N
’B\
=
N
|

2d 4
e€Br X Bpg: e€Br X Bpg: (’e‘—'—\/&)
e2/02k <|e| <62k e2/02k < |e| <62k

with a constant ¢ > 0, that depends on ,¢,0, and d, and for k large enough. For the
two points 0 and (2" — 1)1, and points x;, and xr which are in a geodesic between 0 and
(2™ — 1)1 in this order, and any edge e we have

Dvozn (0,(2" - 1)1;w) = Dvozn (0,z1;w) + Dvozn (xr,rR;w) + Dvozn (xR, (2" = 1)1;w), and
Dvogn (07 (2” — 1)1;w6+) S _DVOQn (O, IL,W) + Dvogn (.I‘L,ZCR;WG‘F) + Dvogn (J,'R, (2” — 1)1,&)) .
Subtracting these two (in)equalities already yields that

Dyzn (0, (2" = 1)1;w) — Dyon (0,(2" —1)1;w ") > Dyan (xr, xR;w) — Dyan (zr, 2R W),

so in particular we also have

Z P (B, €) (Dvogn (0,(2" —1)1;w) — Dvozn (0, (2" — 1)1;we+)) > cA (2’“,6) i

e€Br X Bpg:
e2/02k < |e| <62k

The above inequality holds for fixed By, C Vu -2 BRr C Vu%k. However, such boxes exist for

all indices i € ZN'F(P). Thus, assuming that D¢ (0, (2"% — 1)1) = ¢ and G>; holds for
large enough ¢ > T', we have for large enough &

> FB.0) (D (0,27~ DLiw) ~ Dy (0,(2" ~ L) ) > [INF(P) e (24,5)

e:2/02k < |e| <642k

t
> L en(24,8) = e (24,8).
= 220004+ 55" p)=e ’

So far, we always worked on the event G>;. Now, we want to get a similar bounds in
expectation, not conditioning on G>;. Writing Ej, for the set of edges e with g2/09k <
le| < 692F we get that there exists a large enough T < oo so that

> P(BEs Dy (0,27~ DLiw) - Dyan (0,2 — 11w) |

-52/@2k<|e|<6d2k

> Z > P(Be Eg[ ( var (0,(2" = 1)1;w) = Dyan (0, (2" — 1)1;we+))

t=T ecE},

]l{DG/ (r(0),r((2n=k=1)1))=t} ﬂ{gzt}}

> A <2k7 5) Ep []l{DG, (r(O),r((Q"*k—l)l)):t}]]'{gzt}}
> 0 (24,8) Yt (Ba (Do (r0)r(2* - 1)) = ) — 22 (65)
2 er05) (10 (g - m) ) S

t=T

> A (2’“,,3) (IEB [ - (0, (2nF — 1)1)} 6 T) > GA (2’“,&) A (2”*’“,5) > GA (2", B)

81



for some ¢ > 0 and all k,n — k large enough. For each edge e, there are only finitely many
levels k for which £2/92F < |e| < 672, Thus we get that

0783 [Py (0.2~ V8- Dy (00— 1)

e

> a0 3 P (BB [Dygn (0,(2" = 1) = Dygn (0, (2" = D1;0°)]
k=1ecE}

n
> 3 OA (27, 8) > e log (27) A (2, )
k=1
for constants ¢y, co, c3 > 0 and n large enough. This already implies that

>_P'(B.eBs [DVc?" (0,(2" = 1)1;w"") — Dyan (0, (2" — 1)1;w€+)]

>3 p(8,€)s [ Dyan (0, (2" = 1)15w) = Dyan (0,27 = 1)1;07)| = e510g (2) A (2", ).
’ (114)

Now, let us see how this bound implies strict monotonicity of the distance exponent
0(B3). We know that

03) = Jim = [vaﬁgﬁg;f” ~ )

and that for fixed n the function

log (Eﬁ [Dvogn (0, (2" — 1)1)])
log(2")

8 —

is, by Russo’s formula for expectations (91), differentiable. So we can calculate the deriva-
tive and bound it from above by

q log (EB [Dvg" (0, (2" — 1)1)})

dp log(2m)
1 d
= —E D on ()7 2n_1 1
Eg |:DV02n (0, (2" — 1)1)} log(2") dg B [ V2 ( ( ) )]

 Yeer¥(B.€)Es | Dygr (0,(2" = )Liwtt) = Dyan (0, (2" = 1w
Eg [Dvozn (0, (20 — 1)1)} log(2")
(11 —e3A (27, B) log(27)
Eg [Dvozn (0, (27 — 1)1)} log(2")

< —eg = ¢(p)

for some ¢(8) < 0 and this holds for all n € N5 large enough. Now fix 0 < 81 < 2 < 0.
We want to show that 6(51) > 6(B2). For each fixed 8 € [B1, B2] there exists n(f) < oo
such that for all n > n(f)

a log (Eg [Dvogn (0, (2" — 1)1)}) ()
dp log (2") 2

(115)
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holds. So in particular we can take N large enough, and ¢ < 0 with |c| small enough so
that the set of 8 € [B1, B2] which satisfy 6(2—5) < ¢, and which satisfy (115) for all n > N,

has Lebesgue measure of at least % Thus we get

05 — 0(5n) =t | (E5 [Py .20 =)D} tog (B5, [ Dy (0,27 — 1)) )

n—00 10g(2n) 1Og(2n)

' B log (Eg |Dy2n (0, (2" —1)1)
YA ] @) )

B2 — B
2

ds

<

c <0,

which finishes the proof of the strict monotonicity O

11 Continuity of the distance exponent

In this section, we show that the distance exponent is continuous in . This result is also
useful for comparing different percolation models with each other, as shown in section 7.
With the tools that we have developed so far, we can already prove continuity from the
left:

Lemma 11.1. The distance exponent 6(f3) is continuous from the left.

Proof. Remember that

_ iyp 08 (A0, 5))
b(8) = nzfz log(n)

which is stated in Lemma 2.3. For fixed n, the function 5 — A(n, /) is continuous and
decreasing in 3. The continuity holds, as the inclusion probabilities p(3, e) are continuous
in B for all edges e, and we only consider the finitely many edges with both endpoints in
V§'- As the functions p(f, e) are also increasing in 3 for all edges e, one can see with the
Harris coupling that the function g — A (n,3) is also decreasing. So we get that for all
6>0

: . . dog(A(n,B—¢)) . .. .log(A(n,B —¢))
Hm6(5 —e) =i —e) =Mbinf = oy =

. log(A(n, )
n>2  log(n)

=0(5),

and this shows continuity from the left. O

The proof of continuity from the right is more difficult. We consider independent bond
percolation on the complete graph with vertex set V = Vg~ and edge set E = {{z,y} :
z,y € V&, x #y}. For k€ {l,...,n} and B1, B2 > 0, we denote by Pg?ii the product
probability measure on the {0,1}¥ where edges ¢ = {u,v} are open with the following
probabilities:

_ 1 dad
k | — ¢ Phorelore YL < )| < 26— 1
PoZp @{u ) =1) = §1 ¢ Phuchue mm®™ e 0, 0y > o :
1 if {u,v} =1
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so in particular the measure ]P’gfi} is identical to the measure Pg,, and the measure }P’gfzz
on the graph with vertex set V02n is identical to the measure Pg,. For k € {2,...,n — 1},

we think of the measure ngzz as an interpolation between the probability measures Pg,

and Pg, on the graph with vertex set VOQn. We will mostly work on this graph in this
chapter and the distances should be considered as the graph distances inside this graph.
We denote by ng;: the expectation under ]P’gf?,z Our main strategy of the proof of
Theorem 1.5 is as follows: We know that

0(3) = lim o <Eﬁ [DVO% (©0,2" - 1)1)}) — lim log <E5 [Dvo?" (0,(2" — 1)1)D

-0 log (2" — 1) n—00 log(2)n

and thus we also have

0(8) —0(B +e¢)
~ lim (1 tog (Es [Dyge (0.(2" ~ 1)1)] ) ~ log sz [Dypn (0.2 ~ 11)]))

g (BJE" [Dige (0,2 = 1)1)]) —og (B [Dyn (0, (27— 1)1)] ) )

n—oo log(2)n

1
=1 _
)

1
n—oo log(2)n

]

(
(
= oy i 2 (o8 (55557 [Py 0,07 = 0] ) — o (275 [y 0,02~ 0]

k=2
11 Egs [Dvg" (0, (2" — 1)1)}
= ﬁ lim — Zlog B+e>k—1 (116)
e~k
o8(2) e n = T\ BJEAT [ Dy (0, (2 = 1)1))
So in order to show that lim._,o (8 + ) = 0(3) it suffices to show that
B+e>k n
Lo (B [ 000 1)

lim lim — Zlog = 2 =0, (117)

k—
k=2 Eg;: ' [DVOQ” (0, (2" — 1)1)}
and in order to show this, it is sufficient to show that the terms

k n
EJLH [Dygn (0, (20 = 1)1)]

log , ke{2,...,n},

EGLN [Dygr 0,20 = 1))

are bounded uniformly and converge to 0, as ¢ — 0,k,n — k — oo. Before going to

the proof, we need to prove several technical results. In Lemma 11.2, we investigate
. Di A% . . .

the exponential moments of %, uniformly over m. In subsection 11.1, we derive

several inequalities for the mixed measure ]P’gi? ¥ that we need later in the proof. Then,

in subsection 11.2 we show how this implies (117) and thus continuity of the distance
exponent 6.

Lemma 11.2. For all B > 0, there exists a constant Cy < oo such that for all s > 1, and
all m € Ny

Diam(Vg")

Eg [es Q) ] < O (118)
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Proof. Define Y, = %;97%(”. In Theorem 6.1, we proved that for each 5 > 0 there exists

ann > 1, and a C < oo such that
Eg ] < (119)

for all m € N. For all ¢, s > 0 one has

_n_
sy < sylygeyn—1y + sylygsyn-1y < y”_lyll{s<yn_1} + syll{ Y } < yh+ sn-T,
s1=1>y
Inserting this into (119), we get that for all s > 1
Eg [e] <Eg [6Y’Z+S%] < 0T < (O
for some C7 < oo. O

11.1 Uniform bounds for the mixed measure

In this chapter, we give several bounds for the measure Pgifk that hold uniformly over

e € [0,1] and k < n. These bounds were partially already proven in the previous sections
or in [33] for fixed 8 and € = 0. One can couple the measures Pgi?k for different € with
the Harris coupling. For some set V C Z? and F = {{u,v} : u, veV,u# v}, let (Ue)pep
be independent random variables with uniform distribution on the interval [0,1]. Define
the function p (8, 5 + ¢, k,{u,v}) : R>0 x R>g x N x E'— [0, 1] by

dzdy

- _B
e 1< [{u,0} <2F -1

B+e
p(B,B+e .k {uv}) =41 _ o~ hurehse im0y s ok
1 Hu,v} =1

Define the environment w® € {0,1}¥ by w(e) = L(v.<p(8,8+¢,k.e)}- Then w® is distributed

according to the measure Pgifk. For 0 < g1 < €9, this construction couples the measures

Pgika and Pgiipk in such a way that all edges contained in the environment defined

by w*! are also contained in the environment defined by w®2. The next two lemmas deal

with the graph distance of certain points in boxes, that have direct edges to other far away
blocks.

Lemma 11.3. Let Vu2k be a block with side length 2% that is connected to V02k and let
l|u|loo > 2. Let By (6) be the following event:

B)= () Dy @y = a2}
%yevgk:
.y~ V2 aty

For every B > 0, there exists a function f1(5) with f1(0) P 1 such that for all large

—0

enough k > k(8), all u € Z* with ||ul|s > 2, and all € € [0,1]

c k k
PILH (Bu0) | V8 ~ V) = 1100).
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Lemma 11.4. Let VUQk, V;,zk be two blocks of side length 2% that are connected to Vozk, with
u#v#0 and ||ul|eo > 2. Let Ay (0) be the following event:

=N N ez}

J:EVO : yEVOQk.
eV yov2t
For every B > 0, there exists a function fa(6) with fa(d) m 1 such that for all large
%
enough k > k(8), all u,v € Z%\ {0} with ||ulleo > 2, and all € € [0,1]

PR (Aun(@) |V~ VE ~ V) = £a6).

Proof of Lemma 11.4 and Lemma 11.3. By the Harris coupling, it suffices to consider the
case ¢ = 1. From here on, the proof is analogous to the proofs of Lemma 5.1 and
Lemma 5.2. The spacing in terms of infinity distance between distinct points x,y € Vozk
with z ~ Vuzk Y~ Vu2k can be bounded in the same way as in Lemma 5.1. As the structure
inside V02k is not affected by any change of ¢, the graph distance between such points x,y
can be bounded as in Lemma 5.2. 0

In the following lemma, we define the graph G’ as the graph, in which we contract
boxes of the form ka for u € Z%. The vertex that results from contracting the box ka
is called r(u).

Lemma 11.5. Let B(d) be the event

Bo)={D* |V, |J vZ|z=a"®

UEZ:||ul| oo >2
For every 8 > 0 there exists a function f3(5) with f3(0) 6—0> 1 such that for all large
—
enough k > k(3), all € € [0,1], and all realizations of G' with deg" (r(0)) < 991004

PLER(B() | GY) = f3(0).

The proof of this lemma is similar to the proof of Lemma 5.4, and we omit it. From
here on we also use the notation f(6) = min {f1(5), f2(5), f3(5)}.

Lemma 11.6. For all 3 > 0, there exist constants 0 < cg < Cg < 00 such that uniformly
over all € € [0,1]

csA (2’2 B) A (2"—k, B+ 5) < ESLF [Dvozn (0,(2" — 1)e1)
< A (2’“, 5) A (2"—"?, B+ s) (120)

The proof is completely analogous to the proofs of Lemma 2.3 and Lemma 5.5, so we
omit it here. The proof of the first inequality is analogous as the proof of Lemma 5.5, and
the proof of the second inequality is analogous to the proof of Lemma 2.3. We want to get
similar bounds on the second moment of distances D v under the measure Pgi?k For
this, remember that Lemma 4.5 tells us that for all § > > 0, there exists a constant Cg < 0o

such that for all n € N, all € € [0,1] and all z,y € Vg’
Egie [Dvg (2, 9)%] < CpA(n, B +¢)*. (121)

Having this inequality uniformly over € € [0, 1] allows us to prove a uniform bound on the
second moment of distances under the measure Pgi?k.
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Lemma 11.7. For all 8 > 0, there ewists a constant Cg < oo such that uniformly over
all e € 10,1], all k <n, and all x,y € V§"

BSLH [Dygn (2,97 < Con(@h, 5)°A 2", +e)2 (122)

Proof. We use a renormalization structure for this proof. We first define the renormalized
graph G’ where we contract all vertices of the set V¥ to one vertex r(u) and do this for
all u € Vi " In the graph @', there is an edge between r(u) and r(v) if and only if there
is an edge between ka and quk. Now, let x,y € VOQ" be arbitrary, say with x € Vu2k and
Yy € VUQk. The claim is clear in the case where u = v, so we will assume u # v from here
on. Consider the shortest path between r(u) and r(v). Say that (r(ug),...,7(ux)) is this
path, where K = D¢ (u,v), up = u, and ug = v. There is a path between x and y that
uses only edges in or between the sets Vu%,k fori =0,..., K. Thus we have an upper bound
on the graph distance between x and y given by

Dyan (2,y) < i <Diam (Vf’“) + 1) . (123)
=0

The random variables Diam (Vu%k> and K = D¢ (u,v) are independent, as the diameters

Diam <Vu21k) depend only on edges with both endpoints inside VUQZ_k, whereas the distance

K = D¢ (u,v) depends only on edges that are between two different boxes. For (X;);cy
iLid. random variables that are furthermore independent of an integer-valued random
variable K one has

E|[> x| |<E (Z 11{z‘<f<}Xi> =E | > Ly lyeiy XiX;
=1 =1 =1 j=1
=Y D> E [1{@&}1{]@}} EXXGI<E|D > Lucryly<iy | E[XT]
i=1 j=1 i=1 j=1

—E |K*|E[x].

2
We know that Eg |Diam (Vl?k) ] < C/gA (2’“,5)2 for some C”ﬁ < o0, which follows from

Theorem 6.1. The distance D¢ (r(u), r(v)) only depends on the occupation status of edges

with both ends in V" that have a length of at least 2. Thus D¢ (7(u),r(v)) has exactly

the same distribution as DVZTHQ (u,v) under the measure Pg, .. The previous observations
0

together with (123) imply that
B Dy e < B3 (ﬁ (Dinan (Vi) + 1)>2
< Eg;?k [(Dc;f (r(u), r(v)) + 1)2} ]Eg;“fk [(Diam <V02k) + 1)2}
< BA [(2 D¢ (r(u), r(v)))ﬂ Bt [<2Diam (v&’“)ﬂ

<45 [Dyn s (w0 ACHA@Y, B)? < 16CHCHAR™, 8 4 2)PA(2, B2,

on—k
VO

where we used (121) for the last inequality. O
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11.2 The proof of Theorem 1.5

In order to prove Theorem 1.5, we use a coupling between the measures }P’gi?k and

Pgiiiﬁ_l. Let w € {0,1}¥ be distributed according to Pg:?k. Let x € {0,1}¥ be a

random vector that is independent of w and has independent coordinates such that

1
1 — ¢ e e mpad™ W Gkt <y < 2k — 1

P(x({u,v}) =1) = {0 (124)

else

Then set w'(e) = w(e) V x(e) = max{w(e), x(e)} for all edges e € E. The coordinates of
w' are independent and for e = {u,v} € E with 2¥=1 < || < 2F — 1 we have

/ ~Jure fore Trommadady [ e fore oS mmadady
P (w'(e) =0) =P (w(e) = 0)P(x(e) =0) = "+ ey e e IvHC fay]

_ _ Bte
—e Juse fose Hzfyn?ddxdy =1-p (ﬁ + €, {UaU})

and thus ' is distributed according to the measure ]P’g;ii’fl. For a block Vuzk =
H;-i:l {pi(w)2¥, ..., (pi(u) +1)2% — 1} of side length 2* and every vertex v € VUQk, there
are at most (2(2% — 1) + l)d < 2k+1d vertices w with 25=1 < [{v,w}| < 2¥ — 1. As x can
only be +1 on edges e with 2871 < |e| < 2F — 1, we have

Pgifk (Hv e V¥ we 27 with x ({v,w}) = 1)
< ML (Bu € 2 with x ({0.0) = 1)
D S )

wEZd:HwHooE[Zk_l,Z’“fl]

(126) 22de 24de
kd kdo(k+1)d“ € _ o5d
= 2 ) w22 272 7kd — 2 & (125)
wezd:le|ooe[2k—172k_1] 0
where we used that
2d
: = Jlu— o[

for all e > 0, all n € N, and all u,v € Z¢ with |[u — v|oc > 2. This was proven in
Lemma 2.1.

Next, we define a notion of good sets inside the graph with vertex set VOQR. For
w e VOTHk, we contract the box Vf,k C VZ" to vertices r(w) and call the resulting graph
G'. Remember the definition of the events B(d), B,(d), and A, () from Lemmas 11.4,
11.3, and 11.5. For a small § > 0 (that will be defined in (131) below), we call a vertex
r(w) and the underlying block VuZ,IC d-good, if all the translated events of B(¢), B,(6), and
Ay (9) occur, ie., if

N N {Dvgk (x,y)zéz’“e(ﬁ)} (127)

k k
z€V2Z": yeV2":
k k
Vi Y~V
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for all u # v for which w # v, Vuzk ~ ng ~ szk and |lu — w||s > 2, and if

N {Dalay) > 020 (128)
x,erjk:
2~V aty

for all u with |[u — wl|se > 2 and V2" ~ V2 and if

p* | v, U V2| > goke®) (129)

u€Z: || u—w| oo >2

Suppose that a path crosses a good set ij, in the sense that it starts somewhere out-
side of the set UuEZd:||ufw||oo<l Vu2k, then goes to the set Vuz,k, and then leaves the set

UuGZd:Hu—wHoogl ka again. When the path enters the set ng at the vertex z, coming

from some a block V2* with |u — w|| > 2, the path needs to walk a distance of at least
§2F98) to reach a vertex y € Vu?k that is connected to the complement of VuQ,k, because of
(127) and (128). When the path enters the set V.2 from a block V.2* with [|v — w||se = 1,

then the path crosses the annulus between ng and Uuezd:\ VUQk. So in particular

lu—wl|oo 22
it needs to walk a distance of at least 62¥¢(%) in order to cross this annulus, because of
(129). Overall, we see that the path needs to walk a distance of at least §2¥(%) within the

set UueZd:Hu—w||oo<1 V,fk in order to cross the set Vlgk. Let 6 be small enough such that

92d50001u%+1 (1 . f((;)) < (32M6+1)79d40011¢3+1 .

Such a § > 0 exists, as f(d) = min{f1(9), f2(5), f3(0)} tends to 1 for 6 — 0. From here on
we call a block V,Lgk good if it is 6-good for this specific choice of §, and we call a vertex
r(w) € G’ good if the underlying block ij is good. For a connected set Z C G’, we are
interested in the number of separated good vertices inside this set, that are good vertices
r(v) such that the sets A/(r(v)) are not connected by a direct edge.

Lemma 11.8. Let ¢ € [0,1], let G = (V02n,E) be sampled according to the measure
}P’gi?k, and let G' be the graph that results from contracting bozes of the form Vﬁk. Then

for large enough K one has

]P’g;’?k <E|Z €CSk (G') with less than separated good Uertices> <3.27K

K
994001341
(130)

Proof. Let Z = {r(v1),...,r(vik)} be a connected set in G'. Let < be a fixed total
ordering of Z¢, where we write < for strict inequalities. Such an ordering can be obtained
by considering a bijection f : N — Z¢ and defining v < v < f~!(u) < f~!(v). So we can
assume that Z = {r(v1),...,7(vK)}, where v; < v2 < ... < vg. For such a set, we add
the nearest neighbors to it. Formally, we define the set

N = | N(w)

r(v)ez

which is still a connected set and satisfies K < |ZV| < 3¢K. A vertex r(u) € G’ can
be included into the set ZV in more than one way, meaning that there can be different
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vertices r(v),r(?) € Z such that r(u) € N (r (v )) and r(u) € N (r(0)). However, each
vertex r(u) € G can be included into the set ZV in at most 3¢ many different ways. So
in particular we have

Zdeg’v r(v;)) < 3¢ Z deg (r(v)),

r(v)EZN

where the neighborhood-degree of a vertex deg"v was defined in (108). Next, we
iteratively define a set LI = LI(Z) = LIx C Z as follows

0. Start with LIy = 0.

1. For i = 1,...,K: If deg" (r( < 9950p511 and N (r(v;)) »= LI;_, then set
LI, = LI;_¢ Ur(vz) else set ]LH = IL,]IZ 1.

On the event where deg(Z) < 20ug1, for all Z € CS>k (G'), we have

de r(v;)) < 3% deg (r < 3%20pp41 |ZV] < 9920051 K
B B
r(v)eZN

and thus there can be at most % many vertices 7(v;) with deg" (r(v;)) > 995011541, which
implies that there are at least % many vertices with deg? (r(v;)) < 995053. Whenever
we include such a vertex in the set LI, we can block at most 9d50,u5+1 different vertices,
which already implies

K
> .
(97500341 + 1) — 99200144

|LI| >
2

The event where deg(Z) < 20ug41 for all Z € CS>k (G') is very likely for large K, by
Lemma 3.2.

Conditioned on the degree of the block V2 , and assuming that degN ) < 94 504841,
the probability that the block VU% is not 5—g00d is bounded by
deg (r(w))? (1 = f2(0)) + deg (r(w)) (1 = f1(8)) + (1 = f3()) < 950003, (1 - £(5)),

where f was defined by f(0) = min{fi(9), f2(6), f3(9)}. Remember that we chose 6 > 0
small enough so that

F(6) = 974500043, (1= £(8)) < (32p511) " 05+ (131)
We now claim that the set LI contains at least W many separated good vertices

with high probability. Given the graph G, it is independent whether different vertices in
LI are good or not, as we will argue now. For a vertex r(u), it depends only on edges with
at least one end in the set (U, ) enr(r(u)) V2" whether the vertex r(u) is good or not. Bu:
for different vertices r(u),r(u’) € LI there are no edges with one end in U, (,)en(r(u)) V2
and the other end in |J, o) EN (r(u) V2" as N (r(u)) = N (r(u')). Thus, it is independent
whether different Vertlces in LI are good. So in particular, the probability that there are
“L | or more vertices in the set LI that are not good is bounded by

\MI

K
2H I f(5) 2 < 2K f(5) 00 < 2K (3205,1) 7% = (16p41) F
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and thus the set LI (and also the set Z ) contains at least W good vertices with
HB+1

very high probability. Furthermore, the separation property directly follows from the
construction. Next, we want to translate such a bound from one connected set to all
connected sets simultaneously. Using Lemma 3.2, we get that

Pgi?k (EIZ eCSk (G' ) with less than separated good vertices>

K
9940011541

K
B+e>k . .

< Ppie (32 € CSk (G') 1 deg(Z) > 20p41) + PoL 7" (|CSK(G)| > 851k, )
+ 85k (16pp) N <3.27K

which finishes the proof. O

With this we can now go to the proof of Theorem 1.5.

Proof of Theorem 1.5. We want to show that for all § > 0 the difference 08(3) — 6(8 + ¢)
converges to 0 as ¢ — 0. At the beginning of section 11, we already showed that the
function 6(-) is continuous from the left, so it suffices to consider € > 0 now. We have also
seen in (116) that

k
E?E? [Dvg" (0,(2" — 1)61)}

1 1 o
0(B)—0(B+¢e)=—=— lim — log (132)
log(2) n=voo n kzzz ES575 7 [Dyan (0, (2 = 1)er)]
Each of the summands in (132) is bounded, which follows directly from the results of
Lemma 11.6. So in order to show that 6(8) = lim._00(8 + ¢), it suffices to show that
the summands converge to 0, for large k,n — k, as ¢ — 0. Showing the convergence of a
summand in (132) to 0 is equivalent to proving that the expression inside the logarithm

converges to 1, which is equivalent to showing that

k k—1
B [Dgr 0.2~ V]~ [Dygr (0,20~ 1)

EZEA [Dygn (0, (27 = 1)en)]

converges to 0 , as ¢ — 0. Again, we write G’ for the graph where we contracted boxes
of the form ka into vertices r(v). So each vertex r(v) in G’ corresponds to the set

V2", We write Diam(r(v)) for Diam <VUQk . Next, we want to investigate the sum of

diameters in connected sets. We claim that there exists a constant 1 < C’ < oo such
that 3, ez Diam(r(v)) < C")Z)2¥®) for all connected sets Z of some size with high
probability. Let Z be a fixed set in G’. Under the measure ]P’g:,‘?k, the diameter of
the box corresponding to some vertex r(v) € G’ always has the same distribution, not
depending on €. By Markov’s inequality we have

Diam(r(v)) ,
Pg | Y Diam(r(v)) > C'|Z|2¥0) | =Py <ezr<v>ez 2R > ¢ lZl)
r(v)eZ

Diam(r(v))

121
<E, {e ity ] e~C171 < (815,1)7 7
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for C' large enough, as %21,:107((2()7])) has uniform exponential moments (see for example

Lemma 11.2). As the diameter of some vertex v is independent of the edges in G’ we get
by a union bound that

Psic [3Z € CSk (G') : > Diam(r(v)) > €' Z[2%)

< Egie [|CSK (G))|] Bpupr) ™ < 27K. (133)

Let Zk be the event that every connected set Z € CSk (G') satisfies ), ez Diam(v) <
C'K2%5) and that every connected set Z € CSy (G') contains at least W

good vertices. We also define Z>x = ;25 Z¢. By (130), (133) and a union bound over
all t > K we know that

separated

k k
PhtF (28%) < ZPEI? zf) <10-27K (134)

for all large enough K. Now assume that the event Z> i holds and that D¢ (r(0),r((27F —

K. So it is possible to walk from 0 to (2" — 1)e; and to touch only K + 1 boxes of the
form ij, by going along the shortest path between r(0) and r ((2"* — 1)e1) in G’. This
path is also a connected set in G'. Between these boxes, one needs to take on additional
step. Thus we have that

Dyan (0, (2" = 1)er) < C'(K +1)280) 4 K < 20"K2H0)., (135)

On the other hand, let P be a path from 0 to (2" — 1)e; and let P be its projection
onto G'. Then the projection P goes through at least K blocks of the form V2 and
the projection P is a connected set in G’. Thus, the set P contains at least m
separated good vertices. Now consider the situation where the path P crosses a good

block Vzk. In this case, the path P already needs to make at least 62¥9(%) steps inside
the set Uy ezd.ju—uw]<1 V2", The sets Uneza,|

different separated good vertices r(w) inside P. The path P crosses at least

[u—wlloo<1 VQk are not directly connected for

9d4oouﬁ+1 B
separated good boxes, where the subtraction of two is necessary because the path touches

boxes at the beginning/end without crossing them. This already implies that

length(P) > (M(ﬁ% 2) 52k0(8), (136)

Next, we want to investigate how this helps us to bound the difference
+e>k +e>k—1
Eg<2> [Dvozn (07 (2n - 1)61)} Eg<2>1 [Dvozn (0, (2n — 1)61)] .

We use the same notation as in the beginning of this chapter, i.e., we assume that w is

distributed according to Pgi?k and y is independent of w and distributed as described

n (124). Then ' := w V x has law ]P’giii’;_l. The structure of the graph G’, in which

we contracted blocks of side length 2¥, does not change, as the edges inserted are either
inside the blocks quk or between neighboring blocks. The probability that a block ij
is adjacent to a bond in w’ that did not exist in w is bounded by 2°%, see (125). For a
connected set Z C G', we write Z, for the set of vertices r(w) € Z for which there exists
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an edge e that is adjacent to Vik and satisfies x(e) = 1. For a fixed set Z we expect that
|Zy| is of order ¢ |Z| but it is not clear how to show such a statement for all connected sets
of some size. Instead, we show that Wlth high probability for all connected sets Z of size
K the set Z, is not larger than li’; f{’ /15) For a fixed connected set Z € CSk(G'), define
the set Zi by the vertices r(w) € Z, for which an edge e with x(e) = 1 exists, so that
e has both endpoints in Vu%k, or one endpoint is in ij and one endpoint is in ka with
r(u) ¢ Z, or one endpoint in Vﬁk and one in VUQIC with w < v and r(u) € Z. For different
vertices r(u) € Z, it is independent whether they are in the set Zi or not. Hence the size

of the set Z>l< is stochastically dominated by Zfi 1 Xi, where X; are independent Bernoulli-
distributed random variables with parameter 2°%. Furthermore, one has |Zy| < 2|Z§<], as
each edge e with 1 — w(e) = w'(e) = 1, that creates a vertex in Zi, can add at most two
vertices to Z,. As the structure of the graph G’ and the sets Z, are independent, we get
for small enough € > 0 that

16
pite>k (32 € CSk (G') + |2y > WK)

psk log(1/¢)
16
< EPE>RM|eS 25" x, > M0
B<k H Z log(1/¢)
pp18 41“B(+}8>
< 4K K p X, > M0 <4KK2K(25d)°g”
=% Mg (; i > log(1/¢) > S % Mgt €

Hpt18 K
_ (25d> log(1/e) 8Kug+1€_uﬂ+l8K S 2—K

where the last inequality holds for small enough . Next, let us see how the sums of
the inside diameters of the sets Z, grow. Let Cy € (0,00) be a the constant such that
k
Diam(vg

Eg e’ 2R < eC15 for all s > 1 and k € N. Such a constant exists by Lemma

1
11.2. We define the functions r(g) = log(1/e) 21 and s(¢) = (%) .Let Z/ c &

be a fixed set of size at most 1’:) g (“ /m)K . Then we have for all small enough ¢ that

PRS Z Diam (r(v)) > r(e)2" VK | = PR <68(5)Zr<v>62/ roon >es(s>r<e>K>
- v)eZ’
Diam <V2k) Z
<Ep |exp | s(e) o’ S ErEK < BT O —s(@r(e)K

2k0(8)

X (_ log(1/2) %1
(

=e" exp 1K> < 16_Kugfl
5111601

where the last inequality holds for € small enough. As the inside structure of blocks of the
form ka in the graph defined by w, the sets Z,, and the connections inside the graph G’
are independent, we get that for £ > 0 small enough

Pﬁi?’“ 3Z € CSk(G') - Z Diam (r(v)) > r(e)2X P K
- r(v)eZy
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Bte>k K, K ek . Pp1116
<PRETR(leSk (@) > 85 uffy,) + PR, <HZ € CSK(G") 12| > WK)

+ 85k 167 gl <3 27K (137)

Let Dy be the event that ., Diam (r(v)) < r()2MB K for all Z € CSk(G'), and let
D>g =2k Di. From (134) and (137) we get that for K large enough

(o0}
P @k nDen)®) < 3 (BSETH (20) + BSLH (D)) <20-27F
t=K

Now assume that D¢ (r(0),7 ((2"7% — 1)e1)) = K and the events Z>x and D>k both
hold; Consider a path P between 0 and (2" —1)e; in the environment ' = w V x
and its projection P on G'. Assume that the events D>k and Z>k both hold, and
that K = D¢ (r(0),r((2"% —1)e1)) is large enough. The path P is a (not necessar-
ily self-avoiding) walk on G’ between 7(0) and r ((2"~% —1)e;). In the environment w

for ‘P‘ large enough, every path that touches ‘P‘ distinct 2F-blocks has length at least

<9d4(‘J0]13H — 2> §2%0(3) by (136). In the environment w V x such a path may be shorter,

but by at most Zr(v)eﬁx Diam(r(v)). So we get that

A

P
length(P) > | ————— — 2| §2k0(5) Di
ength(P) > 571005 11 Z iam(r
r(v)EPX
p k9(3) D\ 9k8(8) k9(B) | £
19 s2m06) _ ‘P‘Q > 12 ‘P‘ 138
9d400ﬂ6+1 r(e) Z (138)

for some small ¢; > 0, € small enough, and ‘15‘ large enough. Now consider the shortest

path P between 0 and (2" — 1) e in the environment «’. Combining the inequalities (135)
and (138) we get that for K = D¢ (r(0),7((2"7% = 1)e1))

2C'K2H6) > Dyan (0, (2" — 1)er) = length(P) > ¢; ‘P‘ 2k0(8)

and thus
‘P‘ < —DG/ ( (0), (2" F — 1)61)) — CyDer (r(O),r((Q"_k - 1)61)> .

So the shortest path P between 0 and (2" — 1)e; in the environment ' = w V x does
not touch more than Cy D (7(0),7((2"% — 1)e1)) blocks with side length 2%, This is an
interesting observation, as the path also needs to touch at least D¢ (r(0), r((2" % — 1)e1))
many blocks with side length 2F.

Now let us bound the difference D (0, (2" — 1)e;w)—D (0, (2" — 1)ey;w’). Let (xq, ..., xs)
be the shortest path between zg = 0 and 25 = (2" — 1)e; in the environment w’. Then we
build a path (yo, ..., ys) between 0 and (2" —1)e; in the environment w as follows. As long
as w ({z;,xi41}) = 1, we follow the path P. If w ({x;, z;+1}) = 0, say with x; € Vuzk and
Tiy1 € Vu%k, we take the shortest path from z; to x; where i = max{s’ : zy € Vu%k}
That means, we go to the point x; where the path (zg,...,zs) leaves the box Vu%k
for the last time. As w and w’ can only differ at edges with length in [2’“_1,2k — 1],
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we already have |[u — |l < 1, and thus the distance between z; and z is at most
Diam(r(u)) + Diam(r(w)) + 1. So the length of the path constructed by this procedure
is at most Diam(r(u)) + Diam(r(w)) longer compared to the original path. When at
z;, we follow the path P again until there appears again an edge e = {z;,x;41} with
w'(e) =1 =1-—w(e) and do the same procedure as before. This construction gives a path

in the environment w of length at most s +23 _ B Diam(v) and this already implies

Dyzn (0,(2" = 1Deg;w) — Dyzn (0,(2" — 1ep;w') = Dyzn (0,(2" = Dej;w) — s

<2 3 Diam(r(v)) < 2C,r(e)Der (T(O),r((wk - 1)61)) 9k6 () (139)
r(v)EPy

for small enough € and when D> N Z>x and Dgr (r(0),7((2"% — 1)e;)) > K hold for
large enough K. So this gives us a bound on the difference of Dvozn (0, (2" — 1)e;;w) and

Dyan (0,(2" — 1)e;;w’) that goes to 0, as € — 0. This bound only holds on the previously
mentioned event, but we can also choose K, depending on n — k, in such a way such
that the probability of this event goes to 1 as n — k — oo. The residual terms, where
the previously mentioned events do not hold, can be estimated with the Cauchy-Schwarz
inequality. For small enough € > 0 and large enough k,n — k we have

k k—1
Eg—£2> [Dvogn (07 (2n — 1)61)] — Eg;Zil DV02" (07 (2n - 1)61)]
N Eg;?k [DVo?n(O’ (2" = Der;w) — Dyen (0, (2" — 1)61;w')}
N Egg?k[ (DV(?n (0, (2" = D)er;w) — Dyen (0, (2" — 1)61;w’)>

Lo nzen 3 YD (rm),T((zH_l)el))zn_k}}

+EIEH (D (0,27 = Deiw) = Dygn (0,27 = ey ) )

Lo nzen Y YD (r(O),r((Q"*k—l)q))<n—k}}

n Eggfk[ (DVOW (0,(2" — Dersw) — Dyan (0, (2" — Dex; w’)) 1y (D>n_kmz>n_k)cﬂ

(139)
< Eg;?k [DG/ (r(O),r((gn—k — 1)61)) chr(gpke(ﬁ)]

B4e>k n_ 2 B4e>k 2
+ \/Eﬂgk |:_DV027’L (0, (2 1)61) i| \/Eﬁﬁk |::H.{DG/ (7‘(0)71”((277‘k_l)el))<n_k}:|

Eﬁ+s>k [D N on _ 1 2} Eﬁ+€>k HQ
+\/ B<k V§ (07( )61) B<k {(’Dzn_kﬁZEn_k)c}

< 20,r(e)2X PRy, . [Dvozn,k (0,(2"7 = 1)e)| + (V/TAE" )
CAQF B+ ) Psys (Dvgn_k (0,(2" % — 1)ey) < n — k:)l/ 2)
+/CoA(2F, BIAQ™ T, B+6)20 27"

< A@F, 8+ ) (20ur(©)2P) + /TARF, B)s 11 (Dynon (0, (27F — T)er) < m - k:)l/ ’
+/C3A (2%, 3)20 - 2*"7”“)

where we used Lemma 11.7 for the second inequality and the Cauchy-Schwarz inequality
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and (139) for the first inequality. Using Lemma 11.6, we get that

Bt [Dvozn (0, (2" — 1)e1)] —EjLh [DVOW (0, (2" — 1)61)]

Efre>h-l [Dvozn (0, (27 — 1)61)}

n—k
A@2"", B+ ¢) _ (20wr(€)2k0(6)

= GA@ B+ 9AZ )
+VOAEH) <20 2 P (DVOQ"*k (0,(2" % —1)er) <n — k) 1/2) >

1/2
< O (r(s) +20-27"F +Pay (szn—k (0,(2"* —1)er) <n— k) )
0

for some finite constant C'y < oco. This is true, as both fractions

AREB+AREE) L AR B4 )2
cgA (27 FF1 B 4+ e)A(2F-1, B) cgA(2nkF1 B 4 ) A(2F-1, B)
are bounded uniformly over all € € [0, 1], £ < n € N. The last term in the above calculation
is the probability Pgy; (DVQn_zc (0,(2" % —1)e;) < n— k), which tends to 0 as n — k goes
0
to infinity, as the graph distance between 0 and (27%—1)e; is of order 2("—F)0(B+1) 5

under the measure Pg, . In particular this implies that for large enough &

k n k—1 n
Ej5* [Dyge (0,2 = Den)| ~EFE7E [Dygr (0, (27 = Den)]

+e>k—1
Eggiil [DVO?” (0, (2" — 1)61)}
converges to zero, as € — 0 and n — k — oo. Thus

k n
S5 [Dygn (0,27 = 1)er)]

log Bte>k—1
e>k—
Eg<i1 [DVO?” (0, (2" — 1)61)}

converges to 0 as ¢ — 0 and k,n—k — oo. As all terms of this form are bounded uniformly
over k,n and € € (0,1), by Lemma 11.6, it already follows that

=0

n BRI Dy on (0, (27 — 1)eq)
1 1 k V2 ) 1
lim §(8) — (8 +¢) = lim Toal3) lim — E log Bi§>k—1[ . }

which shows continuity from the right of the distance exponent 6(-) and thus finishes the
proof of Theorem 1.5. O

12 Proofs for d =1

In this section, we show a few lemmas for d = 1, where slightly different techniques
compared to d > 2 are needed. It is well-known that for fixed 8 < 1 one has Eg [D(0,n)] =
Q (n'=P). The next lemma gives a more uniform bound on the growth of Eg [D(0,n)] that
holds for all g € [0, 1] simultaneously.

Lemma 12.1. There exists a ¢ > 0 such that for all M,n € N and 5 € [0, 1]
Es [Dio,pin-1) (0, Mn —1)] > eM*PEg [Djg,,_1) (0,n — 1)] . (140)
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Proof. First note that the proof of (43) does not depend on a uniform bound on the second
moment and works as written above. So we can safely apply it in our argumentation here.
By (43) we can choose ¢ > 0 small enough so that

Eg [Djon-1) ([0,en],[n —wn —1,n —1])] > =Eg [Dy n—1(0,n — 1)]

N =

uniformly over 8 € [0, 1]. This implies the existence of a ¢ > 0 such that
Eﬂ [D[fn,2nfl] (VILD Vln)] > clEﬁ [D[O,nfl] (0777' - 1)] (141)

uniformly over 8 € [0,1] and n € N large enough, as we will argue now. For fixed ¢+ > 0
there is a uniform positive probability (in 5 € [0,1] and n € N) that the rightmost vertex
incident to V™ lies inside [0,:n] and that the leftmost vertex incident to V]" lies inside
[n —wn — 1,n — 1]. Call this event A. Whenever the event A holds, one already has

D[—n,?n—l] (Vllla ‘/ln) > D[O,n—l] ([07 L?’L] ) [’I’L —wm—1,n— 1]) )

and as both the event A and the distance Dy ,,_1 ([0, tn],[n —tn — 1,n — 1]) are decreas-
ing one has by the FKG inequality

EB [D[fn,2n71] (Vzlla Vln)] > ]EB [D[fn,2n71] (th Vln) ]]-A]

> Eg [Dy 1] ([0,en] ,[n—n —1,n —1]) 14]

Ps(A)
2

> Es [D[o,n—l] ([0,en],[n—wn—1,n— 1])] Ps(A) > Eg [D[o,n—l] (0,n — 1)} ,
which shows (141). For long-range percolation on the line segment {0,...,M — 1}, we
call an odd point w € {1,...,M — 2} a separation point if w ~ {0,...,w — 2}, w =
{w+2,...,M—1},and {0, ..., w—1} = {w+1,..., M —1}; See Figure 5 for an illustration.
Even points can simply never be separation points with our definition. These three events
are independent and we can bound the probability of the first event by
40 2 1

Ps (w o {0,...,w—2}) > e Pl mpdids 5 o1
The same calculation also works for the second event and shows that Pg (w =~ {w+2,...,M —1}) >
e ! for all B € [0,1]. The probability of the event {0,...,w —1} % {w+1,...,M — 1}
can be bounded from below by

H H B L gy _ 6_/3f8ﬂ Lﬁl ﬁdxdy

e lo—y|?

0<u<w w<v<M-1

w oo 1 w
> Pl S e drdy B o= dy _ —Blog(w+1) > M7,

uniformly over § € [0, 1]. Using the independence of the three relevant events, we get that

Ps (w is a separation point) = Pg (w ~ {0,...,w —2}) -Pg(w »~ {w+2,...,M —1})
Py ({0, w—1} e {w+1,..., M —1}) > e 2M P >01M .

For w odd, we call the set V] a separation interval if V) »~ [0,(w — 1)n —1],V} =
[(w+2)n, Mn — 1], and {0,...,wn—1} = {(w+1)n,...,Mn —1}. Again, an even w can
never define a separation interval. By the scaling invariance of the underlying continuous
model, the probability that V] is a separation interval is exactly the probability that w is a
separation point for the line segment {0, ..., M —1}, and this probability is bounded from
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o N 0 el (D)
w—2 w—1 w w1 +2
O T\
Figure 5: The vertex w is a separation point if all edges e with
le] > 2 are either strictly to the left or right of w, as above.

g

below by 0.1M 8. Let w1, ..., w; € {1,..., M —2} be integers such that V. is a separation
interval for all i. Then each path between 0 and Mn — 1 in the graph {0,...,Mn — 1}
needs to cross all separation intervals of this form and in particular

l

Do pin—1) (0, Mn — 1) > ZD[(wi—l)n,(wi+2)n—1] (Ve —1, Vi 11) -
i1

The fact that V) is a separation interval reveals no information about the edges with
both endpoints in {(w — 1)n, ..., (w+ 2)n — 1}, except that there is no direct edge from
{(w—=1)n,...,wn -1} to {(w+ 1)n,...,(w+2)n — 1}. Thus, by taking expectations in
the above inequality and using that both the event {V} is a sep. int.} and the random
distance Dj(y—1)n,(wt2)n—1] (Vﬁ_l, V£+1) are decreasing, we get by the FKG-inequality

M-2
EB [D[O,Mnfl] (07 Mn — 1)] > EB Z H{VJ} is a sep. int.}D[(wfl)n,(w+2)nfl] (Vurjl—b VuT;L—i—l)
w=1
M—-2
> Z Eﬁ [R{VJ} is a sep. int.}] ]EB [D[fn,2n71] (th Vln)]
w=1
(141)
> > 0AM PIEs [Dgpo)(0,n —1)] = M PEg [Dpgjp1y(0,n — 1)]
we{l,...,M—2}:
w odd

for some small constant ¢ > 0 and M large enough. For M small, one can take ¢ small
enough so that (140) holds for such M, by Lemma 4.1. O

With this we are now ready to go to the proof of Lemma 4.5 for d = 1.

Proof of Lemma 4.5 for d = 1. We say that the vertex w € {1,...,m — 2} is a cut point
(for the interval {0,...,m — 1}) if there exists no edge of the form {u,v} with 0 < u <
w<v<m-—1. Forw< 7§ and 8 <2 we have

u+1 pov+1 1 w rm 1
. . — dzd — ——=dzd
P (w is a cut point) = | | | I ¢ PR LT e dedy 2B i g dedy
0<u<w w<v<m—1

_ w r2w+1 1 w 1 1
<e Bl Jutn mygpdedy _ PN s e T

—B(—log(1)+2log(w+1)—log(2w+1))

2
,510g<<ww+71)) it
=e =e 2wl < e_BIOg(T)

< g Plog(wtl) Blog(2) < g=B
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Figure 6: The long edges inside the box {0,...,7""! — 1}. The
set B are the two bold black edges.

and with this we get, by linearity of expectation and symmetry of the process, that

Lm/2]
Eg[{w e {1,...,m —2} : wis a cut point}|] <1+ 2 Z P (w is a cut point)
w=1
Lm/2] w—B+1]™
m 10 + 8 € [0,2]\ {1
§1+82w5g10+8/ wPdw = [—6+1L gelo.2iity
w=1 1 10 + 8log(m) =1

As the expected number of cut points is monotone decreasing in 3, we get that for the func-
tion f(8,m) =Eg[[{w € {1,...,m —2} : w is a cut point}|] we have the upper bound

%ml_ﬂ 68<1
f(B,m) < <10 +8log(m) 1<B<2. (142)
20 8>2

We now use a method (that was already used in [33] in a similar form for the con-
tinuous model) in order to bound the second moment of Dy, 41 (O,m”Jrl - 1). We say
0

that an interval Vkmn is unbridged if there exists no edge {u,v} with both endpoints in
{O, c,mnt — 1} and u < km™,v > (k + 1)m™; Contrary, if there exists such an edge
we say that the interval is bridged. In this case, we also say that the interval is bridged
by the edge {u,v}. So clearly the intervals Vomn, V™" are unbridged, and the probability
that V™" is unbridged for w € {1,...,m — 2} is exactly the probability that w is a cut
point for the interval {0,...,m — 1}. We now define a set of edges B as follows: Let
i < je{0,...,m—1} with |i — j| > 1 satisfy V;"" ~ V/*" and V/™ ~ VI for all
(I1,02) € {0,...,i} x{0,...,m —1 — 7} \ {(0,0)}. In this situation, we add one edge
between V™" and ijn to B. If there are several edges between V;™" and V}mn we choose
the left-most shortest such edge (this rule is arbitrary, any deterministic rule would work
here). An example of this construction is given in Figure 6. So the set B is the set of
possible bridges where we already delete edges that are furthermore bridged by even longer
edges. With this construction, we get |B| < m, as each interval ijn can be adjacent to at
most two edges in B, and each edge in BB touches two intervals. Furthermore, if an interval
ijn is bridged, then there exists an edge e € B so that ij" is bridged by e. Let U’ be

the set of endpoints of edges in B and let
U=uuf{o,m",....,(m—-1)m"}U {m”— L,om™ —1,...,m"H — 1}.

Let U = {xo,x1,..., 2y}, where zy < ... < z,. By the construction we have || < 4m and
|zi—1 — x;) <m™— 1. For x;_1,z; with (z;_1,2;) # (km"™ — 1, km™) for all k, we say that
[zi_1,x;] is bridged, if there exists an edge {u,v} € B with v < z;_; < x; < v. Assume
we have (z;_1,x;) which is not of the form (km”™ — 1, km™), say with [x;_1,x;] C ij" for
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some j € {0,...,m — 1}, and [x;_1,x;] is not bridged. Then also ijn is not bridged. On
the other hand, if [x;_1,z;] is bridged, then also V]mn is bridged by some edge in B. In
each interval V]mn there are at most two points in V]mn N U that come from endpoints of
edges in B; Furthermore, the two endpoints of the interval are also in V]m" NU. So in total
there are at most 4 points in ijn NU for all j € {0,...,m — 1}, and thus there are at
most three intervals of the form [z;_1, x;] inside each V]mn This already implies that

{i e {1,...,u} : [z_1,2;] is not bridged}| < 3|{j € {0,...,m —1}: ijn is not bridged }|.
(143)

Now we want to construct a path between 0 and m"t! — 1. Let

T = arg Ze?ll’a% }D[xhl,xd (zi—1,24) -
If there are multiple maximizers, we pick one with z; # km” for all k, and with minimal
x; among those maximizers. So in particular [x;_i,x;] always lies inside some interval
V}mn. If [x;—1,2,] is bridged by some edge e = {z,,2.,} € B, say with z;, < x,, then
we consider the path that goes from 0 = zg to x,,, then directly jumps to x,, and from

there goes to x, = m"*T! — 1. This implies that

T u
Djg mn+1-1) (0,m™ T = 1) < ZD[xi,l,xi] (i1, 7)) + 1+ Z Dig, i) (Tim1, )
i=1 —y

< UI{I;LX D[xi,l,xi} (xz lamZ) <4m I{l;LX D[z —1,T4] (xi—hxi)

in this case. For the case where [x;_1, 2] is not bridged, we consider the path that goes
iteratively from zq to x,. Here we have

D[07mn+1_1] (0, anrl - 1)

T—1 u

< ZD[a:i_m:i] (@i-1,%i) + D, 2] (Tr—1,27) + Z Dy, 2y (Tie1, 74)
i=1 i=7+1

<4 ax Dy, (X1, x4) + a D, G (xi—1,xi),

o mmf’rX [@i-1,2i] (xZ ! xl) [:Ei—l,mjrilo?c{bridged [i—1,2:] (xl 1 .731)

and thus we have in both cases that

(Djgr 1] (0,m"+ = 1))

2 2
<2 <4m rgéaTX Dz, ) (@ie1, xl)) +2 <[$z l,xi?}l%i{bridged Dig;_1 i) (xi—hl”i))
2
2 2
< 32m (I?;:(D[wz L) (Tie 1,xz)> +2 Z (Digy_y i) (i1, 23)) " (144)

[zi—1,z;] not bridged

Next, we want to bound both terms in the above sum in expectation. To bound the
first term, we use the following observation: If X1,..., Xy are independent non-negative
random variables and 7 = argmax;c(y,._ 5}, then

(max XZ->
TET

E

100



Conditioned on U, the random variables (D[xi_l,xi} (-1, xl))u are independent and by

i=1
Lemma 4.1 their expectation is bounded by the expectation of (Dvo'mn (0, m™ — 1)), up to
a factor of 3. As u < 4m, we get with (145) and Lemma 4.1 that

Eg {m;x D,y o) (i1, 961‘)2] =Eg [E [max Dy ) (i1, i)° | U”

1ET
2
<Eg4 [16m2 maxE [Dy, o (zi-1,2:) | U] 2} < 144m?E; [Dvomn (0, m"™ — 1)}
(146)

In order to bound the second summand in (144) in expectation, we use the bound on the
number of unbridged segments (143). Also note that the second moment of D, | .. (%i—1, T;)

is, by Lemma 4.1, bounded by the second moment of (Dvom" (0,m" — 1)), up to a factor
of 9 = 32. With this we get that

EB Z (D[xiflyxi] (xi—17mi))2

[zi—1,2;] not bridged

2
=Eg |Eg Z (Dpay ) (i1, 24)) ‘ u
[xi—1,2i] not bridged

< 9E; | Dy (0,m" —1)?] Eg - 1

[zi—1,2;] not bridged

< 2TBg [ Dy (0.m" = 1) By [|{j € {0,...,m — 1} : V;"" unbridged} ]
< 27Eg | Dy (0,m" = 1)°] 2+ f(B,m)) = Eg | D (0,m" = 1)°| f(8,m),  (147)

where f(3,m) = 27(2+ f(8,m)). Combining (146) and (147), and taking expectations in
(144), we obtain that

Eg [Dvomn+1 (0, m"*t — 1)2] < 5000m’E; [Dvomn (0, m" — 1)} ’

+2f(8,m)Eg [Dvomn (0, m"™ — 1)2} .

Iterating this inequality over all k = 1,...,n, we get
E; [D 0, —1)7] < 5000m* S (2F ey D (0,mk = 1)]?
[Py 0 7] 005 (o0) " 5 1)
(148)
Using the bounds on f(8, m) from (142), we see that function f(ﬁ, m) satisfies
~ 600 118 B
f(B,m) =272+ f(B,m)) < {600(1+log(m)) 1<B<2 . (149)
600 6 >2

By compactness of each interval [3, 3 + 1], it suffices to show that the uniform bound on
the second moment (36) holds for all 5 > 0 and € € (—cg,cg) for some cg > 0 small
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enough, respectively for § =0 and ¢ € [0, cg). To extend the inequality from open sets to
compact intervals, one can cover each compact interval with finitely many open sets and
then take the largest among these finitely many constants that arose from this procedure.
So we are left to show that for all 3 > 0, there exist a constants cg > 0 and C'3 < oo such
that for all n € N, all € € (—cg, cg), respectively all € € [0, cg) for 8 =0, and all u,v € V!

Ege [Dvg(u,v)?] < CaA(n, B +¢). (150)
We start with the case 5 > 1. By Remark 4.4, there exists a 8/ = 6/(3) > 0 such that
Ege [Dvomkﬂ (O,m mF — 1)} > m? OB, . [Dvomk (O,mk _ 1)] (151)
for all k € N, m large enough, and |e| < % Inserting this into (148), we get

Eg [Dvom”“ (0, " — 1)2]

3

>n+1—k 2

< 5000m* ; (2 F(8.m) (m*29’>n_kE5 [Dvomn (0,m" —1)

Now choose m € N large enough and cg € (0,0.1) small enough so that 2f(8+¢, m)m=2¢'(¥) <
0.5 for all € € (—cg,cg). This is clearly possible for 3 > 1. For 8 = 1, we can choose cg
small enough so that cg < '(1), where ¢'(1) is the one defined in (151). By monotonicity
in the first argument of the function f(-,-) one then has f(1 + ¢,m) < %m‘jﬁ for all

£ € (—cp, cg), which shows that one can find m, cg so that 2f(1 +¢&,m)m =21 < 0.5 for
all € € (—cg,c3). This then gives that

- n 2
Egpe [Dvomn+1 (0,mn*! — 1)2} < 10000(8 — cg,m)m* 3 0.5"* Eg., [Dvomn (0,m" —1)
k=1

~ 2 -
< 20000 (8 — 5, m)m* B [Dvomn (0, m" — 1)} < 20000f (83 — cg, m)m*A (m™, B + £)?

3 ... To extend

for all € € (—cp,cg). This shows (150) along the subsequence m,m?,m
inequality (150) from this subsequence to all integers, use Lemma 4.1.
Next, we consider the case where 3 € (0,1). Using Lemma 12.1, we know that there

is a constant ¢ € (0,1) such that
Eg [Dvom" (0,m" — 1)} > cm(”_k)(l_ﬁ)]Eﬁ |:Dvomn—k (O,m”_k — 1)}
n—k
> (em! )" By [Dy s (0,mF < 1)]

for all n > k and m € N. Now take m large enough and cg small enough so that
% < 0.5 for all € € (—cg,cp), and that 0 < 8 —cg < B+ cg < 1. Using (148) we
get that for such m and € € (—cg, cg)

n+l—k

Ege [Dvomn+1 (0,mn*! — 1)2} < 5000m* zn: (2 (8, m)) Eg [DVO,,L;C <O,mk — 1)}2

k=1

< 5000m* zn: (278 +-, m))"+1_k (cm1—5—8)2(k_”) Bgiz [ Dy (0,m" — 1)}2
k=1
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—k

(149) 1200 mﬂ-i-e 1 N 2
< 10000f(8 — cg,m 42( — )> B [Dvomn (0,m —1)]

~ 2
< 10000£(3 — cg,m)m* Z 0.5" *Eg,. [Dvomn (0, m" — 1)}
k=1

~ 2
< 20000£ (3 — cg,m)m By [Dvmn (0,m" — 1)} < 105m Eg,. [Dvmn (0,m™ — 1)} ,

which shows (150) for numbers of the form m,m? m3,... Here, we used that f(3,m) <
m — 2 for all 8 € R>p, and thus f(B,m) =27(2+ f(B, )) < 27m for the last inequality.
To extend inequality (150) from this subsequence to all integers, use Lemma 4.1. The

proof for 5 = 0 works analogous to the case 8 € (0,1), and we omit it. O

Proof of Corollary 4.6 for d =1. We use the same notation as in the proof of Lemma 4.5
for d = 1 above. We have that

+1
D[O»mnﬂ—l] (O’ m™ - 1) < dm I{l;?} D[Iiflﬂfi} (mi_l’ .QJZ) * [mifl,xiﬁav;}t(bridged D[xifl’xi} (xi_h xz)

and this implies that for any r > 0
(Dygmrns1 -1 (0,m™ 1 = 1))

2r

2

< 2% 4Prm® <I{1?£aj( D[ﬂﬁiq,xi} (xi—laxi)> + 2" E : (D[Z'i—laxi] (xi—hxi)) "
[xi—1,2;] not bridged

Taking expectations and the same arguments as in the proof of Lemma 4.5 yield

2
Es (maTXD[%hxi] (xi—bxi)r)

i#

< EB [16m2 mang [D[IFl,Ii] (1‘1‘_1, xi)r ‘U}2
i

< 16m*3* Eg [Dygmn—1) (0,m" — 1)"] .
From here, the same proof as before gives that Eg [D[Om](o,n)r] < C(r)Es [D[Om(O,n)]r

for a constant C(r), and 7 of the form r = 2 with natural k. Extending this to all r > 0
works with Hoélder’s inequality. O
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Critical exponents

13 Introduction

Consider Bernoulli bond percolation on Z? where we include an edge between the vertices
z,y € Z% with probability 1 — e=#/(*%) and independent of all other edges. The function
J 7% x 7% — [0,00) is a kernel that is symmetric, i.e., J(z,y) = J(y,z) for all z,y € Z%.
We denote the resulting probability measure by Pz and its expectation by Eg. Edges
that are included are also referred to as open. We are interested in the case where the
kernel is also translation invariant and integrable, meaning that J(x,y) = J(0,y — z) for
all z,y € Z% and Y wezd J(0,2) < oo. The integrability condition guarantees that the
resulting graph is almost surely locally finite. This procedure creates certain clusters,
which are the connected components in the resulting random graph. Write K, for the
cluster containing the vertex z € Z?. A major question in percolation theory is the
emergence of infinite clusters, for which we define the critical parameter 3. by

Bc:inf{,@Z():]P’g(‘Kg‘ :OO) >0}.

A comparison with a Galton-Watson tree shows that there are no infinite clusters for
8 < (erzd J(O,x))_l, which shows 8. > 0. For d > 1 and J # 0 it is well-known that
B. < 0o, whereas for d = 1 it is known that 8. < oo in the case where J(z,y) ~ [|z—y|| =}~
for e < 1 [41,84], whereas 3. = oo for a > 1. Long-range percolation mostly deals with the
case where J(z,y) =~ ||z — y|| =9~ for some a > 0, where we write J(z,y) ~ ||z — y|| =%
J(z,y)
flo—y|~d=
lx — y|| large enough. In general it is expected that for o > d the resulting graph looks
similar to nearest-neighbor percolation, is very well connected for a < d, and shows a
self-similar behavior for av = d. See [12,17-19,33] and the part I of this thesis for results
pointing in this direction. From the definition of 8. and the standard Harris coupling [62]
we see that Pg (|Ko| = 00) > 0 for 8 > f. and Pg (| Ko| = 00) = 0 for § < B, but it is
not clear what happens at 3 = B.. For J(z,y) ~ ||z — y||7%® with « € (0,d) and all
d € N5 Berger showed that Pg, (| Ko| = co) = 0 [16, Theorem 1.5], whereas for d = 1 and
J(z,y) ~ ||z — y|| =2 it is a result by Aizenman and Newman that Pg, (|Ko| = 00) > 0 [4].
For d > 2 and a > d it is also expected that Pg, (|Ko| = oo0) = 0, but there is no full
proof known at the moment. Whenever there is no infinite cluster at the critical value,
it is a central question how fast the tail of the cluster at criticality Pg, (|Ko| > n) and
the two-point function Pg, (0 <+ ) tend to 0 as n, respectively ||x||, grow. Here we write
x <> y if there exists an open path from z to y. It is conjectured that

if the ratio between them satisfies ¢ < < ¢7! for a small enough ¢ > 0 and

Ps, (|Ko| > n) ~n~1/° as n — oo, (152)

Ps. (0 ¢ @) = [laf| 4277 as ||z]| — oo (153)

for certain numbers 7, § depending on d and «, but not on the precise details of the kernel J.

Here, we write f(n) =~ n¢if f(n) = n°*°(1), Even the existence of the exponents is not clear

o . . . . log(Pg,. (| Ko|> . log(Pg,. (0
and it is still open, whether the limits lim, %M and lim ;500 %W

exist. The widely accepted conjecture is that they exist. This has been for example
proven for other models of percolation like two-dimensional percolation on the triangular
lattice [77,92,93] or percolation for high enough dimension d, or for small enough « [61].

Recently, Hutchcroft proved the upper bounds ¢ < % and 2 — n < « [70], improving

his previous result § < 25{—‘:" [65] which is, to our knowledge, the first rigorous proof of a
power-law decay of Pg, (|Ko| > n) for long-range percolation.
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Figure 7: The critical exponents 2 —n and § for d = 1. On the left: The purple line
is the conjectured true value, our lower bound, and the upper bound proven in [70].
On the right: The yellow curve is the upper bound on ¢ shown in [70], the red curve
is the conjectured true value of §, and the blue curve is our lower bound. The part
where the lower bound and the conjectured true value agree (a € [%, 1)) is purple.

Our results In this part of the thesis, we give lower bounds on the exponents § and 2 —17.
We will always assume an upper bound on the kernel J of the form J(z,y) < C1[|z—y| =%
for some constant Cy < oo.

Theorem 13.1. Let o € (0,1) for d = 1, respectively o« > 0 for d > 1. Suppose that
J(x,y) < Cllz —y||~%* and the exponent & defined in (152) exists. Then

d+ (aNl)
02 s an)

Theorem 13.1 is an immediate consequence of Proposition 14.7. It is only of interest
in dimension d € {1,2} and for o > %, as it is known in wider generality that § > 2 [2,53,
Proposition 10.29]. For the case where d =1 and « € [%, 1), respectively where d = 2 and
a € [%, 1], our lower bound coincides with the conjectured true value of 9.
In particular, Theorem 13.1 shows that for d € {1,2} and o > % the model does not
exhibit the so called 'mean-field behavior’. The notion of 'mean-field behavior’ is a notion
that comes from physics, and roughly means that all the critical exponents are the same
as in models of infinite dimension, such as Erdés-Rényi graphs (in the n — oo limit) or
the binary tree. There are several ways of precisely defining this notion, but applied to
our case all of them imply, among other things, that the exponents ¢ and 2 — 7 exist and
take the values 6 = 2 and 2 — 7 = 2 A a.. In a major breakthrough by Hara and Slade [55]
mean-field behavior was established for high dimensional nearest-neighbour percolation.
It was later also established for long-range percolation with d > 6 or a < % [61]. The
lower bounds in Theorem 13.1 rule out the mean-field behavior for d € {1,2} and « > %,

as they imply that § > 2 in this regime.

Theorem 13.2. Let a € (0,1) for d = 1, respectively o« > 0 for d > 1. Suppose that
J(z,y) < Cil|lz — y||~4 and the exponent 2 —n defined in (153) exists. Then

2—-n>aAnl.
A graphical representation of our results, previously known results, and the conjec-

tured behavior can be found in Figure 7 for dimension d = 1 and in Figure 8 for dimension
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Figure 8: The critical exponents 2 —n and § for d = 2. On the left: The blue line is
our lower bound, the yellow line is the upper bound proven in [70], and the red line
is the conjectured true value. The part where all three of them agree (a € (0,1]) is
purple and the part where the upper bound and the conjectured true value agree
(a € (17 %]) is orange. On the right: The yellow curve is the upper bound on §
shown in [70], the red curve is the conjectured true value of d, and the blue curve is
our lower bound. The part where the lower bound and the conjectured true value

agree (a € [%, 1]) is purple.

d = 2. Theorem 13.2 is an immediate consequence of Proposition 14.6. In the case where
J(z,y) =~ ||z — y|| =9, Theorem 13.2 shows together with Hutchcroft’s result [70] that
2 —n =« for a <1, respectively o < 1 for d = 1, provided the exponent 2 — n defined
in (153) exists. This also gives a partial solution to [70, Problem 4.1], which asks for
conditions under which the upper bound 2 — 7 < « has a matching lower bound. Provided
that the conjectured picture described in (154) below holds, our proof also shows that the
crossover value a.(d) defined in (154) below satisfies a.(d) > 1 for all dimensions d > 2.
We could alternatively define the exponent 2—n by > -1 P, (0 <> 7) = n?. Fora <1
the results of [70] together with Proposition 14.6 show that the exponent 2 — 7 defined
like this exists and equals a.. See also the discussion after Proposition 14.6 for more details.

Our proofs only assume an upper bound on the kernel J, so in particular the results are
still valid for nearest-neighbor percolation. However, the bound 2 —17 > 1 observed in this
situation already follows from the proof of sharpness of the phase transition of Duminil-
Copin and Tassion (162), and the lower bound 6 > 3 observed for d = 2 follows from
2—n > 1 and the hyperscaling inequality (2—7)(d+1) < d(d—1) proven by Hutchcroft [65].
This hyperscaling inequality can be rearranged to § > % and usingd =2,2—n>1
shows § > 3. But our proof still shows § > 3 without this machinery and without assuming
the existence of the exponent 2 — 1. Our main tool for the proofs of Theorem 13.1 and
Theorem 13.2 (respectively Proposition 14.7 and Proposition 14.6) is a connection between
the critical exponents and the isoperimetry of the boxes A, = {—n,...,n}¢ in section 14.2.

Related work The critical behavior of percolating systems is typically a difficult prob-
lem. There has been considerable progress on the understanding of percolation on various
graphs at and near criticality over the last years, see for example [30,37-40,57,58,65-70,82].
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The physics prediction for the critical exponent 2 — 7 is given by

a for a < 2 —ngr(d)
2—nsr for a>2—nsr(d)

2—n(d,a) = {

where 2 — ngr(d) is the corresponding exponent for short-range percolation on Z¢. The
prediction for the exponent ¢ is given by

2 for a < %
§(d, o) =  dte for a € [%,ac(d)] (154)

dsr(d) for a > a,(d)

where dgr (d) is the corresponding exponent for short-range percolation and dgr(d) and the
crossover value a.(d) are such that the function §(d, «) is continuous in a. See also [65,
section 1.3] or [53, section 9 and 10] for a broader overview of these predictions and
references to the physics literature. The critical exponents are typically better understood
in high dimension or for o < %l, where the triangle condition holds and methods involving
the lace expansion can be used [11,22,25,55,61]. Also for dimension d = 2, and in
particular for the triangular lattice, the situation is much better understood, due to works
of Kesten, Smirnov and Werner [75,77,92,93]. Here one knows that dggr(2) = %. This
also explains the conjectured pictures in Figure 8 and shows that the crossover value
ac(2) is expected to be g—i. Also for the hierarchical lattice the phase transition is better
understood, due to recent results of Hutchcroft [69]. The lower bound 6 > flf—g proven for
the hierarchical lattice is similar to our lower bound for d = 1 and also shows absence of
mean-field behavior for o > % on the hierarchical lattice.

14 Proofs

Before going to the proofs, we want to introduce a theorem that deals with the universal
tightness of the maximum open cluster inside a random graph. It is a subset of [65,
Theorem 2.2], which turned out to be extremely useful in various models of random graphs.
We write | Kpax(A)| for the cardinality of the largest open cluster in A. Note that Kyax(A)
is in general not well-defined as a subset of A, since there can be distinct clusters with the
same cardinality. But this will not cause any problems in the following. We define the
typical value of |Kpax(A)| by

Mg(A) =min {n > 0:Pg (| Kmax(A)| > n) < 6_1} . (155)

The theorem deals with general weighted graphs G = (V, E,J), where J : E — [0,00)
is a function that gives weights to the edges. Now edges are open or closed independent
of each other and an edge e € E is open with probability 1 — e #/(€) where 8 > 0 is a
parameter. In particular, long-range percolation on the integer lattice can be modelled as
a weighted random graph with the weight function J({z,y}) = J(z — y).

Theorem 14.1 (Universal tightness of the maximum cluster size). Let G = (V, E,J) be
a countable weighted graph and let A CV be finite and non-empty. Then the inequalities

Ps (| Kmar(A)| > aMg(A)) < e75 (156)
and Pg (| K, N A| > aMg(A)) < e-Pg (K, NA| > Ma(A))e s (157)

hold for every 8> 0,a>1, andu € V.
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We will use this theorem at many points in this chapter. For the lower bound on § we
define 0 = %. In the following we will always assume that

> Py (Kol > k) < Cn'* (158)
k=1

holds for some constant C' < oco. Note that this already implies that Pg (| Ko| > n) <
n~L3 0 Ps(|Ko| > k) < Cn~Y. Furthermore, for 6 < 1 the bound Py (| Ko| > k) < Ck~?
for all k € {1,...,n} also implies (158) with a different constant C’ depending on C' and
6.

For the lower bound on the exponent of the two-point function 2 — n we define A,, =
{—n,...,n}¢ and assume that

1
T D Py (04 x) < Cn~H (159)
n T€EA,

holds for some constant C' < co. From this definition we directly see that we can always
assume that —d 4+ 2 — n < 0, as the statement is trivially true otherwise.

14.1 Moments of the cluster size inside boxes

In this section, we give bounds on the expected size of the cluster inside boxes, i.e.,
Eg [|Ko(Ar)], given the upper bounds on the tail of the cluster (158) or the two-point
function (159). For A C Z% and = € A we use the notation K,(A) for the set of vertices
y € A that are connected to x through an open path that lies entirely within A. The next
lemma translates bounds of the tail of the cluster size into bounds of the typical largest
cluster inside boxes of size n. The proof of such a statement has already been done for
many different models of percolation [65,82]. We give a short proof for completeness.

Lemma 14.2. Assume that (158) holds for some constant 1 < C < oo. Let A C Z¢ be a
finite set of size n. Then one has

Mg(A) < 3CnT+e (160)

Proof. For z € A, let K,(A) be the cluster of = inside A. We use the notation C' = 3C
and get that

Eg H{x €A Ky (A)] > énﬁ}

~ 1

< ZPB (]Kx] > C’nﬁ < Z CC’_OTFHLG = Cé_ennfﬁ =CC ntia,

TEA TEA

~ 1 ~ 1

If there is one & € A such that |K,(A)| > Cn+9, then there are at least CnT+ many
~ 1 ~ 1

such x € A. So in particular, if [Kmax(A)| > Cn1+9, then there are at least CnT+¢ many

vertices z € A with |K,(A)| > CnT¥0. This implies that

1 ~ 1 S ~ 1
{IKmsizentto} = Gt

{x eN:|K(A)] > C’nﬁ}’

and taking expectations on both sides yields that

B (|Kumax(M)] 2 Cnie) < cnllig Es [|[{we A [Ko(8)| 2 Cniia )|
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<l oétnth — cE 0 = 0(30) 1 <
CnT+o

<7

W
®

1

which shows that Mg(A) < 3CnT+.
O

Lemma 14.3. Assume that (158) holds. Let A C Z% be a finite set of size n. Then there
exists a constant Cy = Co(C, 0) such that

g [[Ko(A)]] < Coni0. (161)

Proof. The proof is heavily based on the use of Theorem 14.1. For abbreviation, we simply
write M = Mpg(A). Thus we get that

0 oo M
Eg[[Ko(A)] = Pa([Ko(A)] > k) =Y Pa(|Ko(A)] > IM + k)
y k=1 o 1=0 k=1
=Y "Pa(IKo(A)] = k) + D> Ps(|Kp(A)] > IM + k)
k=1 =1 k=1

1-6

o
< OM'™0 4 eCM'0Y 75 < O'M'0 < CyniEe
=1

for some constants C’,Cy < oo. Here we used the result of Lemma 14.2 for the last
inequality. O

The next Lemma translates the average bound on the two-point function (159) into
bounds on the restricted cluster size. For two sets A, B C Z% we introduce the notation

A A B, meaning that there exists a path from A to B that uses edges with both
endpoints in A, only.

Lemma 14.4. Assume that (159) holds. Then one has
By [[Ko(An)] < 390027,
for all x € A,.

Proof. The oo-distance between different 0 and x € A, is at most n. We have that
|A,| = (2n 4 1)%. Thus linearity of expectation gives that

An 1
Eg [1Ko(An)l] = Y Py (0% 2) < Al gy 3 Bs (00 2)
TEAn " zen,

< (2n +1)ICn =42 < 3902,

109



14.2 Isoperimetric inequalities in expectation

In this section, we use the isoperimetry of the box A, = {—n,...,n}% in order to bound
the expected number of edges at the boundary of the box, for which the end inside the box
is connected to 0. For long-range percolation with a kernel .J : Z¢ x Z¢ — [0, c0) satisfying
J(z,y) =~ ||z — y|| =9 the isoperimetry of the box A,, changes at o = 1. More precisely,
if we denote by dA,, the set of open edges with exactly one endpoint in A,,, we have that

nd—e ifa<l
Eg [|0AL]] =~ S n¢tlog(n) ifa=1.
nd=1 ifa>1

Consequently, we see that for @ < 1 long-range effects determine the isoperimetry of the
box, whereas for o > 1 the short-range effects dominate, with logarithmic corrections at
«a = 1. In particular, a point x € A, that is chosen uniformly at random will have of order
n~(@AD+o(1) neighbors outside of the box. This is also the reason, why the term a A 1
pops up in the statements of Theorem 13.1 and Theorem 13.2. In the following, for two
sets A, B C Z% we use the notation A ~ B if there exists a direct edge from A to B. We
also use a statement that was shown by Duminil-Copin and Tassion in [39,40]. There it
is shown that for 3 > 3, and all finite sets S C Z? containing the origin 0 one has

03(5) =33 (1= ) Py (045 2) > 1. (162)

z€S y¢S

Moreover, they also showed the reverse direction, i.e., that ¢g(S) > 1 for all finite sets
S C Z% with 0 € S implies 8 > ., but we will not use this statement in our proof. Similar
results to the result in (162) were already shown previously, see for example [76, Lemma
3.1] or [4, Lemma 5.1].

Lemma 14.5. We write Ko(Ag) for the set of vertices y € Ay that are connected to 0
through an open path that lies entirely within Ag. Let n € N be arbitrary and fixed. For
d=1 and all a € (0,1), respectively for d > 1 and all a > 0, and all B > 0, there ezists a
constant C3 = Cs(a, B,d) that does not depend on n, so that there exists a k € {1,...,n}
with

b (M) = D 3 (1= @) Py (045 1) < Gyl (Ko (An)] f(n0)  (163)

xEAL yE Ay

where the function f(n,«) is defined by

n-¢ ifa<1
f(n,a) =< n"tlog(n) ifa=1. (164)
n~t ifa>1

Proof. For x € A,, we write t, = Pg (a: Ay 0) and get that

> te= D B (o€ 0) =Es[IKo(An)l]. (165)

:EEAn CEEAn

Next, we define X}, as the number of open edges between Ay, and (A;)¢ for which one end
is connected to 0 within Ay. Formally, we define

X, = He:{a,b} open:a € Ag,b ¢ Ay, and()(i)a}‘.
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The occupation status of edges inside Ap and of edges with one end outside of Ay are
independent random variables. So by linearity of expectation one has

Es (X = D0 30 (1= @) Py (0™ a) = 05 (M)
a€Ay, b Ay

Thus, it suffices to bound the expected value of X and show that there exists a k €
{1,...,n} such that the expected value Eg [X}] is reasonably small, as in (163). For this,
let K be a random variable that is uniformly distributed on {1,...,n} and is independent
of the percolation configuration. We write Pg for the joint distribution of the percolation
configuration and K, and Eg for its expectation. Thus we get

Es [ Xk]| =Eg H{{a,b} open: a € {—K,...,K}d,bgé{—K,...,K}d, and O<A—K>a}H

- ;iEﬁ H{{a,b} open : a € {—k,...,k}d,bgé {—k,...,k}d, and O&a}ﬂ
k=1

vy s

k=1 a€An, bcZd

ﬂ{aEAk}l{b¢Ak}l{0<A—k)a}]l{aNb}] . (166)

For fixed k, the events {0 LN a} and {{a,b} is open} are independent for b ¢ Ay, as the
first event depends only on edges with both endpoints inside Aj. For fixed a € A,,, the

expression Pg (0 sy a) can only be positive if k > ||a||so. Combining the two previous
observations we get that

EB[XK]:%ZZ Z PB(O&)(I)Pﬁ(aNb)

k=1 a€Ay bGZd\Ak

:%Z i Z Pg(O&)@)Pﬁ(awb)

a€Mn k=1V||al|co bEZ\A},

<> Pg (o Any a) % 3 (1 _ e—ﬂJ(a,b))

a€Ny, k=1V|allco bEZA\Ay
1 O i
< Z ta E Z Z 501”@—[?” d-o ) (167)
a€Ny, kE=1V|allcc bEZI\Ag

where we used that 1—e™® < z for the last inequality. Now, for fixed a € A, and k > ||a|0o
there exist constants C{ = C1(C1,d, ) < oo and CY = CY(C4,d, a, ) < oo such that

> BCila=b < > > BCla—b|
beZA\ Ay, I=k+1—||alloo bEZE: || b—al|co =]
= Z Z IBC].HbH_d_a < Z Cild_ll_d_a
I=k+1—|la|lco bEZ2:||b|| oo =1 I=k+1—||allco
=Cp ). <kt 1 - alleo) (168)
I=k+1—|lalso
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Using (168) we see that

% Z Y BCilla—b|~ “< Z Ci(k + 1~ lalle)™

k=1V|lallcoc bEZI\A s llalloo

1n+1
< C//* k—a < CY 169
> Uy n ; > lf(n7 Od) ( )

for a constant C; = C1(CY, &) < oo. Inserting this result into (167) yields

LS B X = B (Xl < 3 tuCaf(n, ) "L By 1K (An)]) Cr ().

a€hy,
So in particular there needs to exist at least one k € {1,...,n} for which Eg[X};] <
Eg [| Ko (An)]] C1 f(n, @), which finishes the proof. O

14.3 The proof of Theorem 13.1 and Theorem 13.2

Now we are ready to go to the main proofs. Theorem 13.1 is an immediate consequence of
Proposition 14.7 and Theorem 13.2 is an immediate consequence of Proposition 14.6. Also
remember the definition of the function f defined in (164) which we will use at several
points below.

Proposition 14.6. Let o € (0,1) for d = 1, respectively o > 0 for d > 1, and assume
that there eists a constant C1 < oo such that J(x,y) < Cil|x — y||=9= for all x,y € Z.
Provided . < oo one has ) Pp. (0 z) > —f(n o)~ where Cs is the same constant
as in Lemma 14.5.

Proof. We will first show that Eg, [|Ko (Ay)|] > C%f(n, a)~1l. Assume the contrary, i.e.,
Eg. [|[Ko (An)]] < C%f(n, a)~!. Then by Lemma 14.5 there exists a k € {1,...,n} with

$p. (M) < C3Eg, [|[Ko (Ap)[] f(n, ) <1

which is a contradiction to (162). Now, by linearity of expectation we have that

S Ba 0oz 3 (064 o) =By (Ko ()] 2 - fma) ™ (170)
€A, €A,

O

Proposition 14.6 shows in particular that for a small enough constant ¢ > 0 we have

en~dre for a <1
|A | Z Ps, (0 <> x) > en U f(n,a) ™t = { en~Hllog(n)™t fora =1
z€An cn for a > 1

which shows that the exponent 2 — 7 defined in (153) satisfies 2 — n > «a A 1, provided
the exponent 2 — n exists. In [70] it is shown that \T1n| >sen, Ps. (043 2) = O (n=%F).
Combining this with Proposition 14.6 we get that for @ < 1 and a kernel J satisfying
J(z,y) ~ ||z —y[|~?"* one has

~ oy—dta
|A ’ Z P, (0> z) ~n .
€A
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So when we alternatively define the two-point critical exponent 2 — n by the averaged
version ﬁ > wen, Pp. (0 1) = n~%277 then we see that this exponent exists for a < 1
and equals . However, it is not clear whether this statements holds without averaging,
i.e., if the exponent 2 — 7 defined as in (153) also exists. See also [70, Problem 4.3] for a
related problem. Next, we consider the lower bound on the exponent 6.

Proposition 14.7. Let a € (0,1) for d = 1, respectively o« > 0 for d > 1, and assume
that there exists a constant Cy < oo such that J(z,y) < C1||x — y||=¥ for all z,y € Z°.

Suppose that B, < oo and Y ;_, Pg, (| Ko| > k) < Cnl=s foralln € N. Then § > nggﬁg

Proof. We write § = 1 and get that Y p_, Ps (|[Ko| > k) < ON'"% for all N € N.

—6
Lemma 14.3 shows that for some constant C’ < co we have Eg[|Ko (Ay)|] < C'niv
Combining this with inequality (170) we get that

C'niT50 > By [|Ko (An)]] > C5 f(n, @)L & @A Ho)

and this shows that d% > a A1l. As we consider a € (0,1) only for d = 1, we always

have that O‘T/\l < 1. Elementary calculations show that

1-60 5—1>a/\1<:>5_1>a/\15+a/\1
1460 6417 - d d
aANl aAl aAl
_ — 1— > 1
& 7 1) 5< 7 >_ 4 +

1+2% a4 (anl)
5> d_ —
= 11— d—(aAl)

which finishes the proof. O
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Random walks

15 Introduction

Consider independent Z?-valued random variables X1, Xo, ... that are symmetric, i.e., they
satisfy P (X; = z) = P(X; = —z) for all z € Z%. We want to know for which regimes of
decay of P (X; = x) the associated random walk defined by S, = Y ;_; X}, is recurrent
or transient. For this, we first construct an electrical network that is equivalent to this
random walk. We do this by giving conductances to all edges {a, b} with a,b € Z?, allowing
self-loops here. For two points a,b € Z? we give a conductance of Clapy =P (Xi=a-0)
to the edge between them. The symmetry condition P (X; = z) = P (X; = —z) guarantees
that the conductances defined like this are well-defined. Then consider the reversible
Markov chain on this network, i.e., the Markov chain defined by P (M, 11 = y|M,, = z) =
EZ:;@L’Z} = C{zy}- The resulting Markov chain has exactly the same distribution as
Sr, and thus, we will analyze this Markov chain from here on. It is a classical result of
Pélya that the simple random walk on the integer lattice Z? is recurrent for d € {1, 2} and
transient for d > 3 [86]. Furthermore, it is a well-known result about electrical networks
that transience of the random walk is equivalent to the existence of a unit flow with finite
energy from o to infinity, where o is an arbitrary vertex in the graph, or the origin for
the integer lattice; see for example [79, Theorem 2.10]. With this characterization of
transience, one directly gets that the random walk 5, defined as above is always transient
for d > 3, and recurrent when the X;-s are bounded symmetric random variables and
d € {1,2}. In this part of the thesis, we answer the question whether the random walk
is recurrent or transient when P (X = z) has a power-law decay, i.e., when P (X = z) =
P(X = —z) = O (||z||~*), where s > d is a parameter. Note that this question makes
no sense for s < d, as the probabilities P (X; = ) need to sum up to 1. This problem
has been studied before at several other places, for example in [24] using the recurrence
criterion of [94, Section 8]. However, previous proofs used the characteristic function of
the random walk

0(0) = 3 P(X1 =)™,

whereas our proof does not use characteristic functions, but uses the theory of electric
networks. The results of the transience/recurrence of Pélya are often humorously para-
phrased as “A drunk man will find his way home, but a drunk bird may get lost forever.”,
which goes back to Shizuo Kakutani. So in this chapter, we study the question which
kinds of drunk grasshoppers, which tend to make huge jumps, eventually will find their
way home and which kinds may get lost forever. The answer is that the random walk is
recurrent for d € {1,2} and s > 2d, and transient otherwise.

Theorem 15.1. Let X1, Xo, ... be i.i.d. symmetric Z¢-valued random variables satisfying
P(X; =2) =P (X = —x) > c|lz||~* for some ¢ > 0,s < 2d, and all x large enough. Then
the random walk S,, defined by S, = > j_, X, is transient.

This result is not surprising, as for s < 2d the total conductance between the two boxes
A=1{0,...,n}%and B =2n-e1+{0,...,n}" satisfies >, 4, > oyeB Clay) n?=% > 1 and
this suggests that it is possible to construct a finite-energy flow from the root to infinity.
Here e; denotes the standard unit vector pointing in the direction of the first coordinate
axis. This suggests that the transition from transience to recurrence in dimension d €
{1,2} happens at s = 2d. Also many different properties of the long-range percolation
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graph change at this value; see section 1.4 for more examples of such phenomena. What
happens at the critical value s = 2d is treated in the following theorem.

Theorem 15.2. Let d € {1,2}, and let X1, Xs, ... be i.i.d. symmetric Z%-valued random
variables satisfying P (X, = x) = P (X1 = —x) < C||z||72¢ for some constant C < oo and
all © # 0. Then the random walk Sy, defined by Sy, = > }_; X}, is recurrent.

So in particular Theorem 15.2 shows that for dimension d € {1,2} and for P (X; = z) =
c||z|| 724 the associated random walk is recurrent, without having a mean in dimension 1,
respectively a finite variance in dimension 2. Both cases lie on the exact borderline that
separates the transient regime from the recurrent regime. The transience or recurrence
of a Markov chain, or of a sum of i.i.d. random variables, is an elementary question that
has been extensively studied in many different regimes [26, 89, 90], including results in
random environments [95] and on percolation clusters [5,16,71,85]. We also use parts of
the techniques developed by Berger in [16], in particular Lemma 16.2.

The random walk (X,,),en can also be seen to be equivalent to an annealed random
walk on a sequence of long-range percolation graphs when the underlying graph of the
percolation gets resampled at every time-step. If one does not do this resampling, then
one has a simple random walk on a percolation cluster. It is a natural question to ask
how the random walk on a graph with long jumps compares to the simple random walk
on the associated graph obtained by percolation. Formally, let G = (V, E') be a connected
graph with weighted edges (cc).cp € RE,. Assume that for each vertex v € V one
has 0 < . e Ce < 00, and let (Xy), oy be the random walk defined by the transition
probabilities

neN

P(Xpp1 = 2|X, = y) = 20 (171)
Ze:yEe Ce

for all edges {z,y} € E. If the random walk (X,,),en is recurrent almost surely for
all possible starting points, we also say that the graph G = (V| E) is recurrent. Let
G = (V, E,w) be a random graph with vertex set V', where each edge e € F has a random
non-negative weight w(e) that satisfies E [w(e)] < c.. Note that we do not require that
these random weights are independent for different edges. In the case where w(e) € {0, 1}
almost surely for all edges e € F, one can also think of bond percolation on the graph
(V,E). Let (Yy),cy be the random walk on this weighted graph, i.e., the random walk
with transition probabilities

P (Vs = af¥i = ) = <208 (172)

Ee:yEe w(e)

for all vertices y € V' and all vertices z € V for which w({z,y}) > 0. In the case where
Ze:yeew(e) = 0, i.e., when all edges with y as one of its endpoints have a weight of
0, we simply define Y;, as the random walk that stays constant on y. For two vertices
x,y € V we say that they are connected if there exists a path of edges between them, such
that w(e) > 0 for all edges e in this path. The graph G will not be connected for many
examples of percolation, but we say that it is recurrent if all its connected components are
recurrent graphs. We prove that if the random walk with the long-range steps (X, )nen
is recurrent, then almost every realization of the corresponding random weighted graph is
also recurrent.

Theorem 15.3. Let G = (V, E) be a graph with weighted edges (cc),cp € Rgo as above.
Assume that the random walk (Xy), oy defined by (171) is recurrent. Let G = (V,E,w) be
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a graph, where the edges e € E carry a random weight w(e) with
Ew(e)] < ce

foralle € E. Then the random walk on these weights defined by (172) is recurrent almost
surely.

The proof of this theorem will be a direct consequence of Lemma 17.2. In section 17
below we will use Theorem 15.2 and Theorem 15.3 in order to extend the results on
recurrence of random walks of percolation clusters of Berger [16] to percolation clusters on
the one- or two-dimensional integer lattice with dependencies, i.e., when the occupation
statuses of different edges are not independent. We will also apply this extension to
the weight-dependent random connection model and obtain several new results regarding
the recurrence of random walks on such models. Readers interested mostly in the new
results regarding recurrence of the random connection model might also consider to skip
section 16 directly go to section 17. It is also completely self-contained, up to the use of
Theorem 15.2.

Random walks on long-range models are a well-studied object, including results on
mixing times [13] and scaling limits [21,28,29]. However, many results so far focused on
independent long-range percolation or needed assumptions on ergodicity. One model of
dependent percolation for which the recurrence and transience has been studied recently
is the weight dependent random connection model [49]. We consider the weight dependent
random connection model in dimension d = 2. The vertex set of this graph is a Poisson
process of unit intensity on R? x (0,1). For a vertex (z,s) in the Poisson process, the
value x € R? is called the spatial parameter and the value s € (0,1) is called the weight
parameter. Two vertices (z,s) and (y,t) are connected with probability ¢ ((z,s), (y,t)),
where ¢ : (R? x (0, 1))2 — [0, 1] is a function. We will always assume that ¢ is of the form

@ ((x,9),(y,1) = p (g(s, )|z — y|I*)

where p is a function (also called profile function) from Rx>¢ to [0, 1] that is non-increasing
and satisfies
lim °p(r) =1 (173)
r—00
for some 6 > 1. The function ¢ : (0,1)x(0,1) — R>¢ is a kernel that is symmetric and non-
decreasing in both arguments. We define different kernels depending on two parameters
v € [0,1) and 8 > 0. The parameter 7 determines the strength of the influence of
the weight parameter. The parameter [ corresponds to the density of edges. Different
examples of kernels are the sum kernel

—d
g(s,t) = g™ (s,t) = (S’V/d + fv/d> 7

| =

the min kernel
: 1
g(s, t) = gmln(s’ t) = E (min(s> t))77
the product kernel

1
g(s,t) = gpmd(s,t) = Bs”t”,
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and the preferential attachment kernel
1
g(s,t) = gP?*(s,t) = 3 min(s, t)” max(s,t)'77.

As o < gMmin < 24gsum - the min kernel and the sum kernel show typically the same
qualitative behavior. Depending on the value of 3, there might be an infinite connected
cluster [50,51]. The weight-dependent random connection model and other models with
scale-free degree distribution have been studied intensively in recent years, including new
results on the convergence of such graphs [47,52,73], the chemical distances [34,48,64,74],
random walks and the contact process evolving on random graphs [46,49,63], and the
percolation phase transitions [34, 50,51, 60]. In section 17.1 below we study for which
combinations of v and ¢ all connected components of the resulting graph are almost
surely recurrent. Our main (and only) tool for this is a consequence of Theorem 15.3,
which allows to make statements about random walks on dependent percolation clusters.
Whenever there is no infinite cluster, then the random walk is clearly recurrent on all finite
clusters. The question of recurrence and transience has been studied before by Gracar,
Heydenreich, Ménch, and Morters in [49]. We will generally adapt to their notation. An
overview of their results and our newly obtained results can be found in Figure 9. Our
results for the weight-dependent random connection model are as follows.

Theorem 15.4. Consider the weight-dependent random connection model with profile
function p satisfying (173) in dimension d = 2.

(a) For the preferential attachment kernel, every component is almost surely recurrent
if6>2,7<3.

(b) For the min kernel and the sum kernel, every component is almost surely recurrent
if5:2,7<% 07’5>2,fy:%.

: e 1
(c) For the product kernel, every component is almost surely recurrent if 6 = 2,v < 3.

16 Random walks with large steps

As already shortly discussed in the introduction, we will always study the random walk
on an electric network, and this random walk has the same distribution as the sum
of random variables ) ;_; Xj. For this, we define the conductances on the edges by
Czyy = P (X1 =2 —y), which is well-defined as P (X; =z —y) = P(X; =y —x). Now
the Markov chain on these conductances has the same distribution as S, = > ;_; Xj. We
can without loss of generality assume that P (X; = 0) = 0, as the steps X; with X; = 0
have no influence whether a random walk is recurrent or transient. For such a Markov
chain, there are well-known criteria for transience/recurrence. A random walk on this net-
work is transient if and only if there exists a unit flow with finite energy from the origin 0
to infinity, see for example [79, Theorem 2.10] or [35,78,80]. We use this connection be-
tween transience and flows in the proof of Theorem 15.1 and in the proof of Theorem 15.2
for d = 2. The use in the proof of Theorem 15.2 for d = 2 is more implicit, as it is hidden
in the proof of Lemma 16.2. In particular, the proof of Lemma 16.2 uses cutsets [83] and
the Nash-Williams criterion in order to show that there can not exist a flow with finite
energy from 0 to infinity. Note that the network (C{%y})%yesz Ly defined as above is still
translation-invariant. The same statements about transience/recurrence of this network
can be made without translation invariance, as the following lemma shows.
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(a) Preferential attachment kernel (b) Min and sum kernel
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(¢) Product kernel

Figure 9: Recurrent and transient regimes for weight-dependent random connection mod-
els. The red lines/area is the phase where Theorem 15.4 shows the recurrence of the
random walk, and where the recurrence has not been shown by Gracar, Heydenreich,
Ménch, and Morters in [49].

Lemma 16.1. For an electric network in dimension d € {1,2} the condition cgy ) <
Cllz — y|| =2 implies recurrence, whereas Clayt = Cllz —y[|7% for some ¢ > 0 and s < 2d
implies transience.

Proof of Lemma 16.1 given Theorem 15.1 and Theorem 15.2. We start with the proof of
the recurrence. Let d € {1,2}. We have that

—2d . ~
Cagy < Cllz =y = Gayy-
Thus, using Rayleigh’s monotonicity principle [79, Chapter 2.4], it suffices to show that

the network defined through the conductances (E{%y})x yeZd oty is recurrent. Define \ :=

>_zezd\ {0} Cllz| =2 = > zezd\ {0} C{oz}- Let X1, Xy, ... be iid. random variables with
P(X; =x) = A\71C||z||72? for x € Z\ {0}. Such random variable exists as

S Al =1
2€Z\{0}

by the definition of A. Then the random walk S, = > ;_; X has exactly the same
distribution as a random walk started at 0 on the network defined by the conductances
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(5{%3/})96 J; Together with Theorem 15.2 this shows that the random walk on the network
defined by (é{%y})x ” is recurrent and, as argued before, this also shows that the random
walk on the network defined by (C{Ly})x ’ is recurrent. The proof of the transience for the

case where cg, 1 > cl|x — y[|~* for some ¢ > 0 and s < 2d works analogous and we omit
it. O

After seeing the connection between the electrical networks and the random walk
Spn = p_1 Xk, we are ready to go to the proof of Theorem 15.1.

16.1 The proof of Theorem 15.1

Proof of Theorem 15.1. We iteratively define disjoint boxes Ay, Aq,... as follows. Let
ag = bg = 0 and define ay, and by, iteratively by axi1 = b + 2k+1 and bpy1 = b +2-
2kl 1 = apyq + 251 — 1. Then define the box Ay := {ay, ..., by} x {0,...,2F —1}4-1,
The resulting sets Aj, are disjoint for different k, and they are boxes of side length 2%,
thus containing 2 elements. We now construct a flow between the different boxes as
follows. For k large enough, say for k& > K, we have c(, 3 > cl|lx —y[|7° > 27k for all
x € Ag,y € Agy1, where ¢ is a constant that does not depend on k. So we consider the flow
that starts uniformly distributed over Ay and each node a: € Ak distributes its incoming
flow uniformly to Ag,1, i.e., it sends a flow of strength |A | |A " to each node y € Ag1.
The incoming flow in Ajy; is again uniformly distributed over the box. As this is only
possible for k > K, we need to send an initial flow to Ag. For this, we simply consider
a unit flow 0 to Ax that distributes uniformly over A, i.e., each vertex in Ag receives
a flow of i, and all edges used by this unit flow are in a finite box. Concatenating
the described flows clearly gives a unit flow 8 from 0 to infinity, from which we now want
to estimate the energy. We are only interested in whether its energy is finite or infinite,
and thus it suffices to consider the energy that is generated by the flows between A and
Agyq for large enough k. For one pair of boxes Ay, Ax11 with k > K there exist constants
C,C" < oo such that

oy fewt ooy g (A Al
— —S
T€EAL YEAR 11 Ay} T€AL yEAL 11 clz =yl

€A YEAR 11

Using that s < 2d we can now see that
DD DD PICTINED SIERTETIN
h=K a€A, yeAp, Ct@v} =K

which shows that 0 is a flow of finite energy and thus shows the transience of the random
walk. O
16.2 The proof of Theorem 15.2 for d =1

Proof of Theorem 15.2 for d = 1. The main strategy of this proof is to compare the dis-
crete random walk to the sum of independent Cauchy random variables. We assumed that
Clayy < Cllz — y|| =2 for 2,y € Z. First, we define different weights Ciz,y} as follows. For
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r =0 and y # 0 we define ¢(, ,, = f||yy‘|71 ?lszds. For = # 0, we define ¢y, ,y accordingly
by translation, i.e.,
ly—z| 1

C T =c —_xl = ——ds.
oy} = 0y—a} /|y—x—1 1+ 52 §

As we started with the assumption cg, 3 < Cllz — y|| 7%, we also have that cg,,, <
AC{zy) for a constant A large enough and all © # y. Thus, by Rayleigh’s monotonicity
principle [79, Chapter 2.4], it suffices to show that the network defined by the conductances
()‘é{%y})x,yez,x 4y is recurrent. Multiplying every conductance by a constant factor does
not change whether the network is recurrent or transient, and thus it suffices to show

that the network defined by the conductances (E{Ivy})x JeZaty is recurrent. For this, let

Y1,Ys, ... beiid. Cauchy-random variables and define X; = sgn(Y})[|Yx|]. Then X; has

the distribution of one step of the random walk on the network defined by (5{$7?J})x ety

and by independence S;, = > | X, has exactly the same distribution as the random walk
on the network defined by (E{C,w})CC e Furthermore, we define Ry = Y}, — X}. Clearly,
R1, Ry, ... are i.i.d. random variables that are bounded by 1 and thus we have that

S

k=1

<n. (174)

By the stableness of the Cauchy-distribution we furthermore have that

P ( anyk
k=1

oo

> 50| =P(%i| > 5) 2/00 L 4 </ Las=1 )
n|= = ——ds —ds==.
' 5 m(l+s?) T Js s? 5

Now remember that S), = >, X => 1y Ys — > ;_; Rr. Combining (174) and (175)
n n
>_Xi > Xi

gives
]P’( §6n>:1—IP’< >6n>
k=1 k=1
n n
21—P<2Rk >n> —]P’(ZYk >5n> > 0.8.
k=1

k=1
Thus, there needs to exist a point = € {—6n,...,6n} with

n
0.8 0.8
P X = > = .
(kz_l k x) ~ {-6n,...,6n}| 12n+1

However, for n even, the € Z that maximizes P (}_;_; X; = x) is 0. To see this, let p

n

be the counting density of Zki 21 Xj.. Using the symmetry of p (which is inherited from
the symmetry of X/) and a convolution, we see that

P (Z X}, = w) =Y p(k)p(x—k) < > pk)2 D> plx—k)2=>_ p(k)*
k=1

keZ kEZ kEZ kEZ
=Y plk)p(—k) =P (Z Xj, = 0)
kEZ k=1
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where we used the Cauchy-Schwarz inequality for the inequality. So in particular, for n
even, we have that

0.8
X, =0
(Z k )—12n+1

Summing this over all even n we get that > >, P (> ;_; X} = 0) = oo, which implies the
recurrence of the random walk S}, = ") | X;. As discussed above, this already implies
the recurrence of the random walk S,,. O

16.3 The proof of Theorem 15.2 for d = 2

The proof of Theorem 15.2 for d = 2 is a direct consequence of Lemma 16.9 and Lemma 16.10
below. But before going to these, we need to introduce several intermediary statements.
The first one, Lemma 16.2, is taken from [16, Theorem 3.9]. It has the slight modifica-
tion that we want that the distribution is the same for all edges with a fixed orientation,
whereas [16, Theorem 3.9] does not take into account different orientations (The precise
definition of orientation is given in Notation 16.4 below). However, the exact same proof
as in [16] also works in our situation and we omit it. We say that a distribution p has a
Cauchy tail if there exists a constant C such that

1 ([Ct,00)) < Ct™! for all t > 0. (176)

Note that in order to determine whether a distribution p has a Cauchy tail, it suffices
to check that condition (176) holds for all numbers ¢ of the form C’ -3/ with a constant
C’" € Ryp and j € N, instead of all ¢ > 0. Our arguments will mostly use the symmetry of
the nearest-neighbor bonds with respect to the oo-norm. Therefore, we will always mean
edges {x,y} with ||z — y||cc = 1 when speaking of nearest-neighbor or short-range edges
in the following.

Lemma 16.2. Let G be a random electrical network on the nearest-neighbor edges of the
lattice 72, i.e., the edges {{z,y} : [|x —y|lco = 1}. Suppose that all the edges with the same
orientation have the same conductance distribution, and this distribution has a Cauchy
tail. Then almost all realizations of this random graph G are recurrent graphs.

Before going to the formal details of the proof of Theorem 15.2, we want to explain the
main ideas behind it. Assume that ¢, ,y are conductances on Z? with ¢, 3 = ||z — y|| =24,
where d = 2. If one has two disjoint boxes A, B of side length 3* and with distance approx-
imately 3%, then one has Clay) N 374 for all € A and y € B. An edge of conductance
374 is equivalent to N edges in series with conductance N - 374 each, where N is an
arbitrary positive integer. In our construction, N will be of order 3*. So the rough idea
is to replace each edge {z,y} with © (3’“) many edges of conductance © (3*3’“). By the
parallel law, the conductivity of the network further increases if we erase these © (3’“)
many edges in series of conductance © (3*3’“), and increase the conductances along a path
'yl;,y of length © (Sk) in the nearest-neighbor lattice by © (3_3k). However, we will not do
this independently for all z € A,y € B, but we want that for different points z,2’ € A
and y,y’ € B the paths ’y’;’y and 71;,7y, have an overlap that is relatively big. So far, we
only looked at fixed k € N. We will do such a construction for all £ € N. But at each
k, we will also look at random, 3*-periodic shifts of the plane. We use these uniform
random shifts so that the distribution of the final conductance is the same for all edges of
the same orientation. This construction will then lead to Cauchy tails for the individual
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conductances of the edges in the nearest-neighbor lattice, and thus, using Lemma 16.2,
to the recurrence of the random walk on this network. The environment we started with
is completeley deterministic, and the edge-weights arising through our construction are
random just because of the random shifts of the plane. This also underlines that it is
important for our construction to use random shifts, so that we can apply Lemma 16.2.

Next, we introduce some notation. We do this in order to partition the plane Z? into
boxes with side length 3*.

Notation 16.3. For a point x = (x1,z2) € Z? we write
V3 =3k 4+ {0,...,3" — 132 = {@3F, . a13F + 35 — 1) x {3k, 2p3h +3F — 1)

for the box with side length 3* that is translated by 3*xz. So in particular 72 = L eze Vx?’k,
where the symbol | | stands for a disjoint union. Forl € {0,...,k}, each box of side length
3k can be written as the disjoint union of 32+=1 bozes of side length 3t. This union is
simply given by

v =3kz 4+ 4{0,...,3" 1} =3k + | | v

ye{0,...,3k—1—1}2
= |_| (3kaj+ Vy?’l) .

3k—1
erO

For each point x € 72, there exists for all 1 > 0 a unique y = y(l,z) € Z* with x € Vj’(ll )

For a point x € 72, let my(x) be the midpoint of Vy?’(ll )y b€

() = 3y () + > - ! G) .

So in particular we have mo(x) = x for all x € Z*. Also note that my(z) and my,1(x) can
be the same point. A point u € Z? for which there exists a point x € 7> with my(z) = u
s also called a midpoint of the I-th level. Note that a block V;’k contains exactly 321
midpoints of the l-th level, for alll € {0,...,k}.

Edges of the form {z,y} with x,y € Z2, ||z — y/lcc = 1 can have four different orien-
tations: \, / , |, and —. For an orientation Ve N =) we write B (z?) for
all the short-range edges pointing in this direction in the integer lattice. We also want to
make a tiling of E- (ZQ) with a given periodicity. We will simply decide on one tiling now.
There are, of course, several other natural options, which come from a different inclusion
on the boundary of the blocks V.V.

Notation 16.4. For any a € Z?, N € N, we define

B_(VN) = {{m+ <_11>} xe VaN},
B, (VY) = {{:rx—i— G)} ze VGN},
E (VN = {{xl‘—k (2)} re VaN},
E_(VN) = {{mx—i— (é)} ze VQN}.
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Figure 10: The gray lines between the vertices indicate the partitioning
of the plane. The midpoints of the first and the second level are the
filled vertices. The canonical shortest paths between the 8 midpoints of
the first level and the midpoint of the second level are the 3 bold black
edges between these points.

Note that for € Z? and [ € N, the midpoints m;(x) and m;,1(x) have either 0 or
3! as distance in the co-metric, i.e., |[my(z) — myy1(z)||o € {0,3'}. In the case where
lmi(z) — miy1(z)]|eo = 3, there exists a path of length 3' connecting m;(x) and myy1(z)
which uses edges {u,v} with |[u — v|]|cc = 1 only. Such a path is in general not unique,
but it is unique if we make the further restriction that the path uses 3' edges of the same
orientation. So the resulting path, which we refer to as the canonical shortest path, is the
path that connects m;(z) and m;yq(x) using the straight line between these two points.
Examples of canonical shortest paths are given in Figure 10.

Next, we define a set of paths. We want to define a path %’;g for all z,y € Z? for which
there exist a, b € Z2 with [[a—b|les € {2,...,7}, such that = € 3¥a+{0,...,3F—1}2 = V3"
and y € 3% + {0,...,3F —1}? = Vb3k. The path 7’;71} defined below is adopted to the
renormalization with scale 3, as it uses this iterative structure. Whenever x,y are not of
the form as described above, we simply say that the path *yg];y does not exist. A picture
of our construction is given in Figure 12.

Definition 16.5. Let a,b € Z? with ||a —b||leo € {2,...,7}, and let € 3*a+{0,..., 3" —
1}? = Va?’k and y € 3*b +{0,...,3F — 1}% = Vb3k. We define the path 'yf[ij as the path
that goes from x = mo(z) to my(z) following the canonical shortest path and from there
to mo(x) following the canonical shortest path and from there, iteratively, following the
canonical shortest paths, to my(x). From there, the path goes in a deterministic way to
mi(y) and from there iteratively, following the canonical shortest paths, to mo(y) = y.
For the path between my(x) and my(y) we follow the line sketched in Figure 11.

The paths ’ygﬁy are no simple paths or shortest paths. In particular, they can go several
times over the same edge. Also note that we do not have 'y’;,y = ’yzlj,x, in general. This is
because the path chosen between my(x) and my(y) is not necessarily the same path, see
Figure 11. However, the paths Vﬁ,y can not be too long. The oco-distance between the points
mp(x) and my(y) is at most 7-3%, and for [+ 1 < k one has ||m;(z) —mi1(2)|lso € {0,3'},
and the same statement also holds for y instead of x. Writing \7§7y| for the length of the
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Figure 11: The midpoints of boxes of side length 3* are the dots. The
partition of the lattice into blocks of side length 3% is marked in gray.
The path between the midpoint my(z) (the blue dot) and a different
midpoint myg(y) in a different box (a black dot) is obtained by following
the black line.

path 'y];,y, we thus get that

k—1
el <7-35 42> 3 <10-3"% (177)
=0

Consider the set of paths 7§,y over all suitable points z,y € Z2. We want to bound the
number of edges that lie in N or more paths ’yg’;y. We say that an edge e = {u, v} is in the
path v = (zg,...,z,), abbreviated by e € v, if (u,v) = (z4,x; + 1) or (v,u) = (x;,z; + 1)
for an i € {0,...,n — 1}. We first focus on the structure of the paths inside of one box
A= Va3k = 3ka+{0,...,35—1}. Foreach € {0,..., k}, there are 32*-0) midpoints of the
[-th level inside A, i.e., points y € A such that y = my(x) for a point z € A. Thus there
are 32(:=1=1) midpoints of the form my1(z) in A. Each box of side length 3"+! contains
9 boxes of side length 3. Thus, there are 8 - 3!32(h=1=1) < 32k—I+1 edges in A that are
on the canonical shortest path between two midpoints of the form m;(x) and myi(x).
The factor 8 arises, as for one box of side length 3!*! with midpoint z we only need to
consider the 8 = 32 — 1 boxes of side length 3! that lie inside this box but do not have z as
a midpoint. Edges that do not lie on the canonical shortest path between two midpoints
of any level are not used in the segments that connect an z € A to m(A), where m(A) is
the midpoint of A. Furthermore, for two boxes V3" and Vb?’k with ||a — b||ec < 7, there are
at most 7- 3% edges that are on the path between the midpoints of Va?’k and Vb?’k. Many of
the edges in this path lie actually outside of both the boxes Vagk and Vb3k.

Lemma 16.6. For each short-range edge e we define the number N by

NF = H(:ﬂ,y) €Z?x7*: eeﬁvy}‘
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Figure 12: The dashed line is the path ’yiy between the points x (blue)
and y (red). The dots are points in Z2, the gray lines give the partition
of Z? into sets of the form V3, and the thick black lines give the partition
of Z? into sets V2. The encircled points are the points mq(z), ma(z),
and ma(y). Note that we have y = mg(y) = m1(y) here.

which is just the number of paths of the form vlaf’y that use the edge e. Remember that we
defined the path ’y];’y only for points x,y satisfying x € Va3k,y € Vb?’k for some a,b € 72
with ||la — bllec € {2,...,7}. So in particular for all edges e we have that e ¢ ’yllf’y for
all points x,y that are not of the form as described above. For a number r > 0 and an
orientation v € N\, |, —} we define

xhV = He e By (Vi) NE> r}‘

which is the number of edges in E— <Vb3k) that lie in at least r different paths of the form
7§,y- Then for any | <k —1 one has

k,v —
X5 i < 32k—l+1 | gk o g2k—1+2 (178)
and f’LH th€7 more, one h(lS
Xk’y =0 179
>917.34k . ( )

Proof. Suppose that an edge e is not on the straight line between two midpoints of the
[-th level and the (I + 1)-th level in the set Vo?’k7 and also not on the path between two
midpoints m (Va?’k) and m (Vb3k> for a,b € Z? with |la — bll € {2,...,7}. So the edge
e can only be on the straight line between midpoints of the j-th level and the (j + 1)-th

level, for j <[ — 1. Thus, there exists a set Vf?’(le_)1

paths of the form 7’;71/ where x € Vf(l;)l ory e V;’(:)l. There are (2-7+1)2 —9 = 216 many

a € 72 with 2 < ||lallec < 7. Thus, there are at most 216 - 32(¢-13%k < 25 . 32642 pajrg

C V03k such that e can only be part of
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(z,y) with z € V;’(l;)l and y € Ua622:2§“a”oo§7 V;’k. Using symmetry between x and y we
get that N¥ < 50 - 32k+2L,

This shows that edges e with N* > 50-32%%2 are either on the canonical path between
two midpoints of the I-th level and the (I 4 1)-th level in the set VOSk, or on the path
between two midpoints m <Va3k) and m (Vb3k> for a,b € Z? with ||a — b||eo € {2,...,7}.

As discussed before, in the set V03k, there are at most 32*~*1 edges that join a midpoint of

the I-th level to a midpoint of the (I + 1)-th level. For each orientation, there are 3% edges
that are used by paths between different midpoints. For the orientation /, for example,

this are simply the edges of the form { (2) , (2 i }) } with s € {0,...,3¥ —1}. Thus we
have

which shows (178). Note that the last inequality in (180) holds because | < k. Further-

more, for each edge e there are at most ((2-7 + 1)232’“)2 < 21734 pairs (x,y) such that
'y];,y is defined and for which e € 7§7y is possible. This holds, as for every path ’y];yy that

uses one of the edges in E <Vb3k), say for z € Va?’k and y € Vb3k, we already must have
llallco, ||b]|lcc < 7. This gives us that

k —
X272V17.34k = O (181)

which finishes the proof. ]

We are now ready to go to the proof of the recurrence of the network. Remember
that we started with conductances c(, ,y satisfying cg, .0 < Cllz — y[|32 for a uniform
constant 0 < C' < co. For two networks (C{x,y} i and (5{%9})3;,3/624 we say that the
first network has a higher conductivity than the second network if the effective conduc-
tances satisfy €.g(A < B) > Gu(A < B) for all sets A, B ¢ Z%. Taking A = {0} and
B = 7%\ {-n,...,n}% and letting n to oo, this shows that if the network defined by
C{z,y} 1s recurrent, then the network defined by ¢y, .y is also recurrent. By Rayleigh’s
monotonicity principle [79, Chapter 2.4], the conductivity of the network increases if we
increase the conductance of edges. Thus, it suffices to show that the network defined by
the conductances cg, ,y = Cllx — y|lot is recurrent. However, multiplying every conduc-
tance of each edge by a constant factor does not change whether the network is recurrent
or transient. Thus, we will, from now on, focus on the case where

1

=l for all z,y € Z*, x # .
o0

Hayy =

Following an idea of Berger [16], our strategy is that we erase the long edges and give a
higher conductance to the short edges instead, in such a way that the total conductivity
increases. The way in which this is done in [16] does not work in the situation we are
dealing with. The precise way in which we do this is described in Definition 16.7 for edges
of length 2,3,...,8, and in Definition 16.8 for edges of length 9 and higher (where the
length of an edge is measured in the oo-distance of its endpoints). Some edges might
appear several times, but if we increase the conductances twice for one edge, then it only
increases the total conductivity of the network. Before going to these definitions, we need
to introduce a bit more notation.
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For a path v = (zg,21,...,2,) and a point r € Z2, we define the path r + vy =
(r + zo,r + x1,...,7 + x,), which is now a path between r + z¢ and r + z,. Note
that for three points z,y,r € Z? and k € N, for which the path *y];+r’y+,, exists, the
path —r 4 ¥ 4ry+r 18 actually a path between z and y. Also remember that we write
E(7*) = {{z,y} CZ?: ||z — y|loo = 1} for the edge set consisting of short edges on Z?.

Definition 16.7. For two vertices x = (x1,12) and y = (y1,%2) in Z?, we define the path
Yu,y a5 the path that goes from x to (x1,y2) using |r2 — y2| edges of the orientation |,
and from there to (y1,y2) using |x1 — y1| edges of the orientation —. This path is uniquely
defined and has length ||z —yl|1 < 2|z —Yylloo. We now define a weight W : E(Z?) — [0, o0)
as follows. Start with W = 0. Now, for each pair (z,y) € Z? x Z2 with 2 < ||z — y|lc0 < 8,
increase W (e) for all edges e € 'y’xyy by 16. Define W as the limiting object.

Definition 16.8. We now define a weight Uy : E(Z*) — [0,00) as follows. Start with
Up = 0. Choose rj, € {0,...,3% — 112 uniformly at random. Now, for each pair (z,y) €
Z2x 72 for which there exist a,b € Z2 with 2 < |Ja—b|lee < 7 with z+ry € V3 y+ry € Vf’k,
increase Ug(e) for all edges e € —ri + ’Yl;+rk,y+rk by 10 - 3735, Define U, as the limiting
object.

Note that U, and W are well-defined and do not depend on the order of the exhaustion
of 7% x 72, as we only add a non-negative amount at every step, and never subtract
anything. Next, we want to show that the nearest-neighbor network (Z2, E(7Z?),U ) defined
by U = W + > 32, Uy, has a higher conductivity than the original network. Note that
we can define U = W + > 77, Uy, also directly by increasing the conductances along all
suitable paths vé,y or 'y’;’y by the corresponding value and then look at the limiting object.

Lemma 16.9. The network defined by the weights U(e) = W(e) + > p—, Uk(e) has a
higher conductivity than the network defined by the weights

Clayt = % for all z,y € 72, x # y. (182)
Iz = yll%

Proof. A non-nearest-neighbor edge e = {u, v} is not included in the network defined by
U. However, we have increased the conductances along some path connecting « and v,
when we consider the sum W + >~ Ug. In the following, we will show that for each
edge e = {u,v}, the conductances indeed were increased at least once along a nearest-
neighbor path connecting u and v, and this increase of the conductances of the short
edges actually increased the total conductivity of the network. A similar argument for
the latter claim was also used in [16]. Assume that e = {u,v} is an edge with length at
least 9, and let k € {2,3,...} be such that 3* < ||u — v||e < 3¥F!. Say that u +r,_; €
ka_l,v—krk_l € Vb?’k_l. If2 < |la—b|loc <7, we deleted the edge {u, v} (with conductance
lu—v||z* < 37%), but increased the conductance of nearest-neighbor edges along the path
—Tp—1 + ’yflrlk_hﬁm_l by 10 - 373 =1, The path —rj_; + 7a’c€J_rik_1,y+rk_1 has a length of
at most 10 - 3*~! by (177), and thus we increased the total conductivity of the network.
To see this, assume we have a nearest-neighbor path of length N = 10 - 3*~! connecting
u and v. The edge {u,v} is actually equivalent to a string of N edges in series, each
with conductance Ney, 1. Identifying the vertices in this string with the vertices in the
original path in the nearest-neighbor lattice can only increase the conductivity of the
network. Then applying the parallel law with the edges in the original lattice and the
newly formed edges is equivalent to adding a conductance of Ncy, ) to each edge in the
path connecting u and v. As Negy ) < 10 - 3k=13=4k < 10 . 3730~ this increased the
total conductivity of the network.
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If u, v with 3F < |lu—1v|jeo < 3¥"1 are not such that u+r,_1 € V3" vt rpq € V}f’kil

with a,b € Z% and 2 < ||a—b|l« < 7, we already must have that ||[u—v||s > 6-3¥~1 = 2.3%,
Thus, there exist a’,b" € Z? with 2 < ||a’ — b'||c < 7 such that u+ 7y € Va?ik, vty € V})?,’k
The same argument as before shows that we also increased the total conductivity in this
case.

For edges e = {u,v} with ||u — v||cc < 8 we increase the conductances of the short
edges along the path v, , by 16. As v, , has a length of ||z — y[|; < 16, we also increased
the conductivity of the network for this case. O

Lemma 16.10. Fiz an orientation v € {\, ./, |, =} Then for all edges e of this
orientation, U(e) is identically distributed and has a Cauchy tail. Thus, by Lemma 16.2,
the random walk on the network (ZQ,E(ZQ), U) 15 almost surely recurrent.

Proof. As W, Uy, Us,... are independent, it suffices to show that the distribution of W (e),
respectively Ug(e), depends only on the orientation of the edge e. This is clear for W,
as the value W(e) depends only on the orientation of the edge e. Remember that we
say that 7§c€+rk,y+m exists, when x + r; € Va?’k,y + 1 € Vb?’k for a,b € Z? with 2 <
la — blloc < 7. For Uy, note that Ug(e) depends only on the number of pairs (x,y) for
which e € —ry + 75, 1, and for which 7%, . exists. More precisely, Uy (e) is
simply 10 - 373 times the number of pairs (x,y) for which e € —ry, + 7§+rk,y+rk> and for
which ¥ 4 y4r, €Xists. However, we have that

k k
H(x,y):ee _Tk+7¢+rk,y+rk}‘ = H(x,y):e—i—rk G’yx+rk7y+rk}‘

@y etmet, =N (183

where we write {u,v} + rp = {u+ rg,v + ri} for an edge e = {u,v}. The quantity
NE is clearly 3*-periodic in both coordinate directions. As 7 is uniformly chosen on
{0,...,3% — 1}2, we see that the distribution of Né‘q_rk, and thus also of Ug(e), depends
only on the orientation of the edge e.

Now let us turn to the tail properties of the random variable U(e). W (e) is uniformly
bounded over all e, so we can ignore it from here on. From (179) and (183) we get that
there exists a uniform constant C' < oo such that

Ug(e) = N*

e+rg

: (10 - 3—3k) <3k

and for [ € {0,...,k — 1} we get with (178) that

21—k k k) - 3

P (Uk(e) = 500 37F) = P (NF,,, =50 32042 ) < = = 37142,
where we used the uniform distribution of 7, and (178) for the last inequality. Using
j = 2l — k and solving this for [ = k—;], we get that there exists a constant C' < oo such

that for all j € {—k,—k+2,...,k—2}
P (Uy(e) > 500-37) < C37"%". (184)
We want to extend this inequality from j € {—k,—k+2,...,k —2} to j € {—k,—k +

2,...,k—2}. The extension from j € {—k, —k+2,...,k—2} to j € [k, k] is easily doable
by increasing the constant C' and looking at the nearest integers in the set {—k,—k +
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2,...,k—2}. For j < —k and C > 1 there is nothing to show, so (184) holds trivially in
this regime. Furthermore one has

P (Uk(e) > 21710 3’“) =P (N’f

e+7rg

> 21734k) (179

which shows that (184) also holds for j > k and a large enough constant C. Finally, as
inequality (184) holds for all j € R with a high enough constant C, by further increasing
the constant we can make sure that

P (Uy(e) > 37) < C37 2. (185)

for all j € R. Also note that for j < k inequality (185) gives that P (Uy(e) > 37) <
03" < 377, We want to use this observation in order to show that > "7, Ug(e) has a

Cauchy tail. Note that if we have U (e) < 35" for all k > j € N, then we also have
that

00 o) ) o) X
ZUk(e)§Z3j+J; —3]23 <3y 37 <3.3.
k=3 k=3 k=0

As we furthermore have Ug(e) < C13* for a large enough constant Cy and all k € N, we
get that

00 j—1
ZUk(e) = ZUk + ZUk ZCﬂ’)k + Z3J+ 2 < C13J +3.3 = 023‘7
k=1 k=1 k=1

= k= =j

%

for Cy = C1 + 3. Using the previous arguing in the reverse direction, we see that the event
. - J—k

{302, Uk(e) > C237} implies that there exists a k > j with Uy(e) > 39t%5" . Using this

observation and combining it with a union bound, we get that

P <§: Uk(e) > Cz3j> <P (Uk( ) >3+ fora k> ]> < ip (Uk(e) S 31+%)

o0 oo
Ty et cor byt s byt Syt <0 9
k=j k=0
which shows that >, Ug(e) has a Cauchy tail and thus finishes the proof. O

Remark 16.11. Using the definition of Uy, one can easily show that P (Uk(e) > 3'“) R~
37%, so (185) is approzimately an equality for k = j. This already implies that

P (i Ug(e) > 3J'> > P (Uj(e) > 37) ~ 377
k=1

which shows together with Lemma 16.10 that the tail of U is approximately that of a
Cauchy distribution, i.e., P(U(e) > M) ~ M~ for M large.

17 Random walks on percolation clusters

In this section, we prove Theorem 15.3, i.e., that random walks on certain percolation
clusters are recurrent. In section 17.1 below we apply this result to the weight-dependent
random connection model. From Theorem 15.3 we can deduce the following corollary.
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Corollary 17.1. Letd € {1,2} and let (Zd,E,w) be the complete graph on Z* where each
edge {z,y} € E carries a random weight w({z,y}) satsifying E [w({z,y})] < Oz — y|~*
for a constant C < oo and all pairs of points x,y € Z%. Then the random walk on
(Zd, E,w) 18 recurrent almost surely.

For dimension d € {1,2} and for the complete graph on Z¢ with inclusion probabilities
Clayy = Iz —y |=2¢ Corollary 17.1 extends a classical result of Berger on recurrence of
the random walk on long-range percolation clusters [16, Theorem 1.4]. There are two
differences between Corollary 17.1 and [16, Theorem 1.4]. The first is that [16, Theorem
1.4] only deals with the case where w € {0,1}¥, whereas w € RZ in our situation. The
second difference is that Corollary 17.1 does not require that the inclusion of edges is
independent, whereas [16, Theorem 1.4] requires independence. To deduce this corollary
from Theorem 15.3, note that Theorem 15.2 (respectively Lemma 16.1) shows that the

random walk on conductances (C{x»y})xyezd with gy, < Cllz — y[|7>* is recurrent in

dimension d € {1,2}. Theorem 15.3 thus implies that the random walk on a percolation
cluster with weight distributions E [w({z,y})] < C||z — y|| 72 is recurrent.

Theorem 15.3 will be a direct consequence of Lemma 17.2 below. For two disjoint finite
sets ) # A, B C V we write Gt (A <> B;w) for the effective conductance between these
two sets in the environment w, which is the environment in which each edge e has the
conductance w(e). Note that Geg (A <+ B;w) is a random variable that is measurable with
respect to w. We also write Geq (A <> B) for the effective conductance between A and B in
the environment where each edge e has conductance c.. For a vertex a € V' we simply write
a for the set {a}. Furthermore, we write G (a <> 00) for the limit lim,, oo Gesr (a — AC ),
where (Ay,), is a sequence with a € A, for all n and A,, V.

Lemma 17.2. Leta € V and let A CV with a € A be a finite subset of V. Assume that
Ew(e)] < ce for all edges e € E. Then

E [€.q5(a + A% w)] < Copp (a < A°). (186)
Let us first see how this implies Theorem 15.3.

Proof of Theorem 15.3 given Lemma 17.2. Let a € V be a vertex. Our goal is to show
that the random walk started at a € V is recurrent. Let € > 0 be arbitrary. As the random

walk on the conductances (c{x,y})x yev is recurrent, there exists a finite set A; C V such

that a € A; and %o (a - Ag) < . Lemma 17.2 already implies that
E [%eff (a > Ag;w)] < Cog (a “ AE) < e,
and as e (a <> 00;w) < Ger (a & Ag; w) this already gives that
E [Geri (a <> 003 w)] < €.

As e > 0 was arbitrary and g (a <> 0o;w) is a non-negative random variable this already
implies that %eg (a <> co;w) = 0 almost surely, which is equivalent to saying that the
random walk on the weights (w(e)),cp started at a € V' is recurrent almost surely. As
a € V was arbitrary, this finishes the proof. ]

Lemma 17.2 shows that the expected conductance always decreases if we say that an
edge e with conductance ¢, > 0 now carries a conductance of w(e) with E[w(e)] < ce.
This inequality might also be strict in many natural examples, despite the fact that the
expected conductance over this edge stays the same. The reason why this inequality holds
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is ultimately linked to the fact that the effective conductance is a concave function over
the individual conductances. In the proof of Lemma 17.2 below the concavity is used
implicitly, as the infimum over a set of linear functions is a concave function.

Proof of Lemma 17.2. We use Dirichlet’s principle for the effective conductance, see for
example [79, Exercise 2.13]. It says that for two non-empty disjoint sets A, B C V the
effective conductance between these two sets can be expressed as

%ot (A < B) }gjfre%;ce df (e
where F is the set of functions f from V to R that are +1 on A and 0 on B. For an edge
e = {x,y} we write (df(e))* = (f(x) — f(y))? for the squared difference of the values of f
at the endpoints of the edge. This is well-defined, even without fixing an orientation for
the edge. Dirichlet’s principle also holds for €. (A <> B;w). Thus we get that

E[%s (A < B;w)|=E }g‘—eeEW(e) (df(e))2 < }QEFE eezj;w(e) (df(e))2]
= }njfT E [w(e)] (df (e))* < 1nf Zce df(e))* = 6oz (A < B)
€ eckE eeE

where we can interchange the sum and the expectation as all summands are non-negative.
The change of the infimum and the expectation is always allowed when putting the in-
equality. Using this inequality for A = {a} and B = A® finishes the proof. O

17.1 Recurrence for the weight-dependent random connection model

In this section, we prove Theorem 15.4, i.e., different phases of recurrence for the two-
dimensional weight-dependent random connection model. Our main tool for proving
this is a comparison to dependent percolation on the two-dimensional integer lattice in
Lemma 17.3 below. A slightly weaker statement was already proven in [49, Lemma 4.1],
where the condition (187) needed to hold with |z —y|* replaced by |z —y|® for some o > 4.
This improvement allows us to prove the results of Theorem 15.4. Lemma 17.3 is a direct
consequence of Corollary 17.1.

Lemma 17.3. Let X, be a unit intensity Poisson process on R%. Consider a random
graph H on this point process, where points x,y € X = V(H) are joined by an edge with
conditional probability Py, given Xo. If

sup ||z — y|[* Py < 00 (187)
x7y

then any infinite component of H is recurrent.

Note that Lemma 17.3 does not make any assumptions on the independence of different
edges. In particular, for the proof of Theorem 15.4, we will also require the statement to
hold for dependent percolation models.

Proof. We prove this via a discretization. We construct a weighted graph G = (ZQ, E, w)
as follows. For each v € Z?, identify all vertices in X, N (v + [0, 1)2> to one vertex v,

which we also imagine to be at the position v € Z2? in space. For some u,v € Z2, if
there are m > 1 edges between u and v, replace them by one edge of conductance m,
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i.e., w({u,v}) = m. If there is no edge between two vertices u,v € Z? in the graph G,
we set w({u,v}) = 0. Call this new graph G. It is not hard to see that if any connected
component of G is recurrent, then also every connected component of H is recurrent.
This holds, as we only contracted vertices of H and applied the parallel law to parallel
edges. So we are left with showing that every connected component of G is recurrent.
Assumption (187) implies that there exists a constant C' < oo such that for all u # v and
for all € u + [0,1)?,y € v 4 [0,1)* one has P, < C|u — v|~*. Therefore for each edge
e = {u,v} € E one now has

Elw({u,v})] =E > > Puy

| 2€Xo0oN(u+[0,1)?) yeXooN(v4[0,1)?)

<E > Cllu =™ = Cllu— || ~*
| 2€ X 0oN(u+[0,1)2) yeXooN(v4[0,1)?)

where we used that the Poisson process has a unit intensity in the last equality. This
already implies that the random walk on every connected component of GG is recurrent, by
Corollary 17.1. O

Before going to the proof of Theorem 15.4, we still need to prove a small technical
lemma, that we will use later.

Lemma 17.4. Suppose that X is a non-negative random variable satisfying P (X <¢e) <
Ce for some constant C < oo and all € > 0. Then for n <1 one has

E[X7"] < oo (188)
and for n > 1 one has
E[XTNX >e]=0("") (189)
as € goes to 0.

Proof. To prove (188) note that

o0 o (o)
E[X7 <Y P(X2n) =14 P(X<n 1) <1+Y Onn<oo
n=1 n=1

n=0

as % > 1. To show (189) note that for small enough ¢ one has P (X > ¢) > 0.5 and this
implies that for all £ > ¢ one has

< 2CE.

< g > < £
P(XSéxzs)_P(X—E;XE—@ _P(xX=9

P(X > ¢) 0.5
For ¢ < ¢ one obviously has P (X < £|X >¢) =0. As n > 1, this implies that

o0 o0
E[X X 2] <1+ P(X 20X 2e) =1+ P(X <n n|X >¢)
n=1 n=1
[e7] ) [e7] )
=1+ Y P(Xgn*ﬂXEQ <1+ Y 20n7
n=1 n=1
< C'[eM'Th < 207t
for some constant ¢’ < oo and e small enough. This shows (189) and thus finishes the
proof. O
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With this, we are now ready to go the the proof of Theorem 15.4. Remember that the
vertex set of the two-dimensional weight-dependent random connection model is a Poisson
process of unit intensity on R? x (0,1). So in particular if we condition that there is a
point in this Process with spatial parameter € R?, the weight-parameter of this vertex is
still uniformly distributed on the interval (0,1). If we condition that there are two points
in the Poisson process with spatial parameters z and y, then the weight-parameters of
these points are independent random variables that are uniformly distributed on (0, 1).

Proof of Theorem 15.4. Throughout the proof we will always assume that S and T are
independent random variables that are uniformly distributed on (0,1). For all cases of
random-connection models considered in Theorem 15.4 we will verify that (187) holds.
For this we need to show that

Py =E[p(9(S,T)llz = yl*)] = O (llz =yl ™), (190)

as ||z — y|| — oo. This already implies that all connected components are recurrent by
Lemma 17.3. We will only do the case v > 0. The case v = 0 works analogously or is
degenerate. The factor of % in the kernel ¢g(S,T") does not change whether (190) holds
or not, so we will just ignore it from here on and think of § = 1. We will show (190)
for all cases appearing in Theorem 15.4. Assuming that (173) holds we directly get that
p(r) < Cr~° for a large enough constant C' < oo and all r > 0. To strengthen this bound,
note that we also have

p(r) < C (101 () + 10 (1)) (191)

for a large enough constant C' < oo and all > 0, as p(r) € [0, 1] for all r € R>¢. Now let
us turn to the individual cases.

(a) (Preferential attachment kernel): For v < 1 we will first determine the limiting be-
havior near 0 of the distribution of g(S,T) = min(S,T) "max(S,T)!~7. For abbreviation
we will write min = min(S, T'), max = max(S,T), and X = min”max!~7. Let n € N be
arbitrary. Then we have that

1 1 > 1 1 1
o

§P<mm 21>+ZIP><

as min’ymaxl_7 < ln and min” > 2n1 k already imply max ~7 < ik On the event where
2n = < min? < = —4—— and max!~7 < 5% we must have that

_n—k . _ k.
2 7 <min<max <2 1-v

which can only hold if —”T*k < —%, which is equivalent to k£ < (1 — y)n. Thus, all

addends in the sum (192) are equal to 0 for £ > (1 — v)n and can be ignored. For every
two non-negative real numbers a and b we have that

P(min < a,max <b) <P(S<a,T<b)+P(T <a,S <b) <2ab.
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Inserting the previous observations into (192) we can further calculate that

1 1 L(1=)n] 1 1

27 k=0 v 21—
L(1—~)n] [(1=~)n]
1 1 11 k__k_
<27+2 Z nk—l & =2 n+21+77n 27 1=y
~ Qm 27 27 15
_n (- v)n_(l yn _7_’_(1 7) “n
<C2 7—!—02 D) = < (C2° W+C’2

<0275 027 < 90 . 272

for a large enough constant C’ We used that v < l which implies that l — % > 0, and
thus the sum Zk ~)n] 2W = is, up to a multiplicative constant, equal to its last addend

2 - "fww % This already shows that
P(g(S,T) < &) =P (min(S, T) max(S,T)" "7 < ¢) < C'e?
for some constant C’ < oo and all € > 0. Taking squares this also implies that
P(g(S,T)* <e) =P (g(5,T) < Ve) <C'e (193)

for all ¢ > 0. This is useful for us, as we can thus apply Lemma 17.4 to the random
variable ¢(S,T)2. Let p be a profile function with limsup,_, .. °p(r) < oo for some § > 2.
We still need to show (190). By inequality (191) we can assume that

p(r) < 1oy (r) + 1 o) (r)r?,

where we drop the multiplicative constant in (191) for the ease of notation. Using that
g > 1 by assumption, we get that for some constant C' < oo

E[p (g(S. )l = y|[*)]
(gSTHw—mP<1%+ERM&TWx—wPV6\M&TWx—mPEQ

P(g < ) e =l B G T s TP

>

IN

[
1-2
<07+C:c Y 25() =0 (||lr—vy
|2 —yl|* | | |z =yl (H | )

which shows (190) and finishes the proof. The last inequality holds because of Lemma 17.4
and (193).

(b) (Min and sum kernel): We show the result for the min kernel. As the sum kernel and
the min kernel differ only by a constant, this already implies that (190) also holds for the
sum kernel. We start with the case § = 2,v < % We can assume that p(r) < Cr~2 for a
constant C' < co and thus we get that

Py =E[p (908, T)llx = y|*)] < Cllz -y ~*E [min(S,T)"*"] < Cllz - y||'E [S™T 7]
=Cllo—y|"E[ST]E[T™] = O (Jl= — ylI™")

134



as 2y < 1 and thus E IS _27] ,E [T‘QV] < 00. This finishes the proof for the first case. For
the second case v = 5,6 > 2 we ignore the constant in (191) and will thus assume from
here on that

p(r) < o1y (1) + Lpge0) (r)r~°.

This implies that
Poy=E[p(9(S.T)]z - y||*)]
-5
<P (mm(s, T)z ||z —y|% < 1) +E [(min(S, T)z ||z — yH2) \ min(S, T)2 ||z — y|| > 1]

1
Iz —yll*
2

5
1 1-3 1
e () o)
lz —y* |z —yl* |z —y||*

min(S,T) > 1]

:]P’<min(S,T) < P

)+ lle = 8 |mins, 1)

for some constant C' < co. The last line holds because of Lemma 17.4, as P (min(S,7) < ¢) <
2e and % > 1. This finishes the proof for the min kernel.

(¢) (Product kernel): Now let us turn to the product kernel g(S,7) = SYT7. Let v < 3
and § = 2. We can assume that p(r) < Cr~2 and thus we get with the same argument as
above that

Poy =E[p(9(S.T)llz = ylI*)] < Cllz —y|E[s7T7] = O (||lz — ylI™")

which finishes the proof. O
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