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Introduction

In this thesis, we study different phenomena for long-range percolation. The thesis is
based on the following four papers, where one of them is joint work with Noam Berger.

[7] Johannes Bäumler. Distances in 1
|x−y|2d percolation models for all dimensions. arXiv

preprint arXiv:2208.04800, 2022.

[8] Johannes Bäumler. Behavior of the distance exponent for 1
|x−y|2d long-range perco-

lation. arXiv preprint arXiv:2208.04793, 2022.

[9] Johannes Bäumler and Noam Berger. Isoperimetric lower bounds for critical expo-
nents for long-range percolation. arXiv preprint arXiv:2204.12410, 2022.

[10] Johannes Bäumler. Recurrence and transience of symmetric random walks with
long-range jumps. arXiv preprint arXiv:2209.09901, 2022.

Large parts of the thesis are identical to the papers, where part I contains the material
of [7,8], part II contains the results [9], and part III is mostly identical to [10]. Each of the
three parts contains a specific introduction to its topic and is mostly self-contained. Before
going to the individual parts of the paper, we outline the setup and the main results of
this thesis.

In part I and II of the thesis, we will consider independent percolation only. For this,
consider a graph G = (V,E) with weighted edge set. Let J : E → [0,+∞] be the weight.
Let β ≥ 0 be a parameter. An edge e ∈ E is either open or closed, where the edge e is
open with probability p(β, e) = 1 − e−βJ(e), independent of all other edges. We denote
the resulting measure by Pβ. We define 0 · (+∞) := +∞, so in particular for all β ≥ 0,
an edge e with J(e) = +∞ is open almost surely. With this definition of percolation, one
can recover many models of percolation that have been studied a lot over the last decades.
For example, for

V = Zd, E =
{
{x, y} : x, y ∈ Zd, ‖x− y‖2 = 1

}
, and J(e) = 1 for all e ∈ E,

this gives the model of nearest-neighbor percolation on the d-dimensional integer lattice.
Here, an edge is open with probability 1− e−β. So for β = 0, all edges are closed almost
surely, whereas for β → ∞, the probability that an edge is open goes to 1. Another
example of percolation is the Erdős-Rényi random graph model. For this, define

V = {1, . . . , n}, E = {{x, y} : x, y ∈ V, x 6= y} , and J(e) = 1 for all e ∈ E.

Again, an edge is open with probability p = 1 − e−β on this graph, so this gives us
a reparametrization of the classical Erdős-Rényi model. In this thesis, we are mostly
interested in the case where

V = Zd, E = {{x, y} : x, y ∈ V, x 6= y} , and J ({x, y}) = Θ
(
‖x− y‖−s

)
for some s > 0. Depending on the value of s, there are several different phases. For
example for β > 0, the resulting graph will almost surely be locally finite for s > d,
whereas each vertex has an infinite degree for s ≤ d almost surely. This shows that the
value s = d is critical for the local finiteness of the graph. In part I of this thesis we
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investigate the chemical distances on such random graphs. For two points x, y ∈ Zd, the
chemical distance, also called graph distance or hop-count distance, is the length of the
shortest open path between them; we denote it by D(x, y). Also note that D(x, y) = +∞
is possible, in the case where x and y are not connected by an open path. In order to
circumvent this, we will always assume that p (β, {u, v}) = 1 for all β ≥ 0 and all u, v ∈ Zd
with ‖u − v‖ = 1. Assume that p (β, {u, v}) = Θ (‖u− v‖−s). It was known before that
for s ∈ (d, 2d) the graph distance D(x, y) between x and y grows polylogarithmically in
the Euclidean distance ‖x− y‖ [18], whereas the graph distance D(x, y) grows linearly in
the Euclidean distance ‖x − y‖ for s > 2d [17]. This shows that the value s = 2d is a
critical value for the growth of the chemical distances. In part I of the thesis, we study
the chemical distances for s = 2d. For this, we will assume that

p (β, {u, v}) = 1 for ‖u− v‖ = 1 and p (β, {u, v}) =
β

‖u− v‖2d
+O

(
1

‖u− v‖2d+1

)
.

Let u ∈ Zd be a point with ‖u‖∞ = n. We will show that both the graph distance D(0, u)
between the origin and u and the diameter of the box {0, . . . , n}d grow like nθ, where
θ = θ(d, β) ∈ (0, 1], with θ(d, β) = 1 if and only if β = 0. For fixed dimension d, we
will also discuss how the function θ(β) = θ(d, β) depends on β. Here, we determine the
asymptotic behavior of θ(β) for large β, we prove that θ(β) is continuous and strictly
decreasing in β, and we show that θ(β) = 1− β + o(β) for small β in dimension d = 1.

Let us assume that the weight J is translation invariant, in the sense that J({u, v}) =
J({0, v − u}) for all distinct u, v ∈ Zd. In this case it is clear that the distribution of the
resulting random graph is also invariant under translations. We also write J(u) = J({0, u})
for u ∈ Zd. When removing the assumption that J({u, v}) = +∞ for nearest-neighbor
edges {u, v}, the resulting open subgraph can have infinite components or not, depending
on the weight function J and the value of β. For fixed β and J , this probability will be
either 0 or 1, by Kolmogorov’s 0-1-law. Whenever

∑
u∈Zd\{0} J(u) <∞, one can show that

the resulting open clusters are almost surely finite for β <
(∑

u∈Zd\{0} J(u)
)−1

. On the

other hand, when J(u) = Θ (‖u‖−s) for some s ∈ (1, 2] in dimension d = 1, respectively
for some s > d in dimension d ≥ 2, it is known that for large enough β there will almost
surely be an infinite open subgraph [84]. As this property is monotone in β, there exists a
critical value βc at which this change of behavior occurs. We write K0 for the open cluster
containing the origin, and we write s = d+ α. There are several critical exponents which
describe the behavior of the random graph for β = βc. We study two of them in part II
of this thesis, namely the critical exponent of the clustersize δ and the two-point function
exponent 2− η. These two exponents are defined by

δ = lim
n→∞

− log(n)

log (Pβc (|K0| ≥ n))
and 2− η = lim

x→∞

log (Pβc (0↔ x))

log(‖x‖)
+ d.

Provided these exponents exist, we show that

δ ≥ d+ (α ∧ 1)

d− (α ∧ 1)
and 2− η ≥ α ∧ 1.

The lower bound on δ is believed to be sharp for d = 1, α ∈
[

1
3 , 1
)

and for d = 2, α ∈
[

2
3 , 1
]
,

whereas the lower bound on 2−η is sharp for d = 1, α ∈ (0, 1), and for α ∈ (0, 1] for d > 1,
and is not believed to be sharp otherwise. Our main tool is a connection between the
critical exponents and the isoperimetry of cubes inside Zd. The reason why α ∧ 1 shows
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up in our lower bounds above is because the value α = 1, respectively s = d + 1, is the
critical value for the isoperimetry of cubes inside Zd.

In part III of this thesis, we study random walks on percolation clusters, and long-
range random walks on the integer lattice. Let X1, X2, . . . be i.i.d. random variables with
values in Zd satisfying P (X1 = x) = P (X1 = −x) = Θ (‖x‖−s) for some s > d. We show
that the long-range random walk defined by Sn =

∑n
k=1Xk is recurrent for d ∈ {1, 2}

and s ≥ 2d, and transient otherwise. This also shows that for an electric network in
dimension d ∈ {1, 2} the condition c{x,y} ≤ C‖x − y‖−2d implies recurrence, whereas
c{x,y} ≥ c‖x−y‖−s for some c > 0 and s < 2d implies transience. This shows that the value
s = 2d is critical for the recurrence of long-range random walks. The underlying reason
why the value s = 2d is critical for recurrence of random walks in dimension d ∈ {1, 2} is
because the random variables Xi have a mean in dimension d = 1 if and only if s > 2, and
they have a finite variance in dimension d = 2 if and only if s > 4. This fact about the
recurrence and transience of long-range random walks was already previously known, but
we give a new proof of it that uses only electric networks. When one considers independent
long-range percolation on Zd with J({x, y}) = 1

‖x−y‖s and β > βc, the return properties of

the simple random walk have been studied by Berger in [16]. He proved that the simple
random walk in dimension d ∈ {1, 2} is recurrent for s ≥ 2d and transient for s ∈ (d, 2d).
The same questions can be asked for the weight-dependent random connection model,
which is a model for dependent percolation. Random walks on this model were studied
recently by Gracar et al. [49]. We use the results about the long-range random walk Sn
to show the recurrence of simple random walks on several new classes of two-dimensional
weight-dependent random connection models. For some classes of the random connection
model, our newly obtained results show the recurrence for critical cases, whereas for other
classes, it is not completely clear yet, what the critical case for recurrence or transience of
the simple random walk on such a random graph is.
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Chemical distances

1 Introduction

Consider independent long-range bond percolation on Zd where all edges {u, v} with ‖u−
v‖∞ = 1 are open and an edge {u, v} with ‖u− v‖∞ ≥ 2 is open with probability

p(β, {u, v}) := 1− e−β
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

,

where C := [0, 1)d and β ≥ 0. We call the corresponding probability measure Pβ and
denote its expectation by Eβ. The resulting graph is clearly connected and the graph
distance D(u, v) between two points u, v ∈ Zd satisfies D(u, v) ≤ ‖u − v‖∞. We are
interested in the scaling of the typical distance of two points u, v ∈ Zd and the scaling
of the diameter of boxes {0, . . . , N}d. In [27] it is proven that the typical diameter of
some box grows at most polynomially with some power strictly smaller than 1. More
precisely, Coppersmith, Gamarnik, and Sviridenko proved that for all β > 0 there exists

an exponent θ′ = θ′(β) < 1 such that limN→∞ Pβ
(

Diam
(
{0, . . . , N}d

)
≤ N θ′

)
= 1.

However, the authors do not give any polynomial lower bound for dimensions d ≥ 2. An
analogous lower bound was already conjectured in [12,18], and an exact lower bound was
later proven to hold in one dimension: In [33] Ding and Sly showed that for the connection
probability p(β, {u, v}) given by p(β, {u, v}) = β

|u−v|2 ∧1 for |u−v| ≥ 2 and p(β, {u, v}) = 1

for |u − v| = 1 the typical distance between the two points 0, n ∈ N and the diameter of
{0, . . . , n} both grow like nθ for some θ ∈ (0, 1], where θ = 1 if and only if β = 0. More
precisely, they proved that

nθ ≈P D(0, n) ≈P Diam ({0, . . . , n}) ≈P E [D(0, n)]

where the notation A(n) ≈P B(n) means that for all ε > 0 there exist 0 < c < C < ∞
such that P (cB(n) ≤ A(n) ≤ CB(n)) > 1 − ε for all n ∈ N. In this thesis, we prove an
analogous result for all dimensions.

1.1 Main results

Theorem 1.1. For all dimensions d and all β > 0, there exists an exponent θ = θ(d, β) ∈
(0, 1) such that

‖u‖θ ≈P D (0, u) ≈P Eβ [D(0, u)] (1)

and

kθ ≈P Diam
(
{0, . . . , k}d

)
≈P Eβ

[
Diam

(
{0, . . . , k}d

)]
. (2)

We write 0 for the vector with all entries equal to 0 and the notation A(u) ≈P B(u)
means that for all ε > 0 there exist 0 < c < C <∞ such that Pβ (cB(u) ≤ A(u) ≤ CB(u)) >

1 − ε for all u ∈ Zd. The inclusion probability p(β, {u, v}) := 1 − e−β
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

is only one possible choice for a function which asymptotically grows like β
‖u−v‖2d . In sec-

tion 7, we will show the same results for other possible choices of such functions. Examples

of inclusion probabilities we consider are β
‖u−v‖2d ∧ 1 and 1− e

− β
‖u−v‖2d .

The exponent θ = θ(β) defined in Theorem 1.1 arises through a subadditivity argument
(see section 2.2 below) and its precise value is not known to us. However, for fixed
dimension d, we determine the asymptotic behavior of the function θ(β) for large β.
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Theorem 1.2. For all dimensions d, there exist constants 0 < c < C <∞ such that

c

log(β)
≤ θ(β) ≤ C

log(β)
(3)

for all β ≥ 2.

Furthermore, we study several other properties of the dependence of the distance
exponent θ(β) on β. For d = 1, it is well-known that θ(β) ≥ 1−β, see for example [27,33].
In section 9, we show that for small β this lower bound is indeed a good approximation
for θ(β).

Theorem 1.3. For d = 1, the right-hand derivative of the distance exponent d
dβ θ(β) exists

at β = 0 and furthermore one has d
dβ θ(β)

∣∣∣
β=0

= −1. This yields that θ(β) = 1− β + o(β)

as β → 0.

It is clear that the function θ(β) is monotonically decreasing in β, as for β1 < β2 we
can couple the respective measures in such a way that the set of edges resulting from Pβ1

is a subset of the edge-set sampled from Pβ2 . In section 10, we show that θ(β) is even
strictly decreasing.

Theorem 1.4. The distance exponent θ : R≥0 → (0, 1] is strictly monotonically decreasing.

The main tool in the proof of Theorems 1.3 and 1.4 is Lemma 8.1, which can be seen
as a version of Russo’s formula for expectations. Finally, in section 11 we show that θ(β)
is a continuous function.

Theorem 1.5. The distance exponent θ : R≥0 → (0, 1] is continuous in β.

So in particular, Theorem 1.5 together with the facts limβ→0 θ(β) = θ(0) = 1 and
limβ→∞ θ(β) = 0 show that θ(β) interpolates continuously between 0 and 1, as β goes
from +∞ to 0. The continuity of the distance exponent is also used for the comparison
with different inclusion probabilities in section 7.

1.2 The continuous model

For β > 0, the described discrete percolation model has a self-similarity that comes from
a coupling with the underlying continuous model, that we will now describe for any di-
mension. This will also explain our, at first sight complicated, choice of the connection
probability. Consider a Poisson point process Ẽ on Rd×Rd with intensity β

2‖t−s‖2d2
. Define

the symmetrized version E by E := {(t, s) ∈ Rd × Rd : (s, t) ∈ Ẽ} ∪ Ẽ . For u, v ∈ Zd with
‖u− v‖∞ ≥ 1 we put an edge between u and v if and only if ((u+ C)× (v + C)) ∩ E 6= ∅,
where we use the notation C = [0, 1)d. The cardinality of ((u+ C)× (v + C)) ∩ Ẽ is a
random variable with Poisson distribution and parameter

∫
u+C

∫
v+C

β
2‖t−s‖2ddsdt. Thus,

by the properties of Poisson processes, the probability that u � v equals

P (((u+ C)× (v + C)) ∩ E = ∅) = P
(

((u+ C)× (v + C)) ∩ Ẽ = ∅
)2

=

(
e
−
∫
u+C

∫
v+C

β

2‖t−s‖2d
dsdt
)2

= e
−
∫
u+C

∫
v+C

β

‖t−s‖2d
dsdt

= 1− p(β, {u, v})

which is exactly the probability that u � v under the measure Pβ. Note that for {u, v} with

‖u − v‖∞ = 1 we have
∫
u+C

∫
v+C

β
‖t−s‖2ddsdt = ∞. So we really get that all edges of the
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form {u, v} with ‖u− v‖∞ = 1 are open. The construction with the Poisson process also
implies that the presence of different bonds is independent and thus the resulting measure
of the random graph constructed above equals Pβ. The chosen inclusion probabilities
have many advantages. First of all, the resulting model is invariant under translation and
invariant under the reflection of coordinates, i.e., when we change the i-th component
pi(x) of all x ∈ Zd to −pi(x). Furthermore, the model has the following self-similarity:
For some vector u = (p1(u), . . . , pd(u)) ∈ Zd and n ∈ N>0 we define the translated boxes
V n
u :=

∏d
i=1{pi(u)n, . . . , (pi(u) + 1)n− 1} = nu+

∏d
i=1{0, . . . , n− 1}. Then for all points

u, v ∈ Zd, and all n ∈ N>0 one has

Pβ (V n
u � V n

v ) =
∏
x∈V nu

∏
y∈V nv

Pβ (x � y) =
∏
x∈V nu

∏
y∈V nv

e
−
∫
x+C

∫
y+C

β

‖t−s‖2d
dsdt

= e
−
∑
x∈V nu

∑
y∈V nv

∫
x+C

∫
y+C

β

‖t−s‖2d
dsdt

= e
−
∫
nu+[0,n)d

∫
nv+[0,n)d

β

‖t−s‖2d
dsdt

= e
−
∫
u+C

∫
v+C

β

‖t−s‖2d
dsdt

= Pβ (u � v)

which shows the self-similarity of the model. Also observe that for any α ∈ R>0 the process

αẼ :=
{

(x, y) ∈ Rd × Rd :
(

1
αx,

1
αy
)
∈ Ẽ
}

is again a Poisson point process with intensity
β

2‖x−y‖2d .

1.3 Notation

We use the notation ei for the i-th standard unit vector in Rd. For a vector y ∈ Rd, we
write pi(y) for the i-th coordinate of y, i.e., pi(y) = 〈ei, y〉. We also use the notation 0
for the vector with all entries equal to 0 and the notation 1 for the vector with all entries
equal to 1. We use the symbol C for the box [0, 1)d. When we write ‖u‖ we always mean
the 2-norm of the vector u. For k ∈ N, we define the sets

Sk :=
{
x ∈ Zd : ‖x‖∞ = k

}
and S≥k :=

{
x ∈ Zd : ‖x‖∞ ≥ k

}
For the closed ball of radius r around x ∈ Zd in the ∞-norm we use the notation Br(x),
i.e., Br(x) =

{
y ∈ Zd : ‖x− y‖∞ ≤ r

}
. For a vector u ∈ Zd and n ∈ N, we write

V n
u = n · u+ {0, . . . , n− 1}d =

d∏
i=1

{npi(u), . . . , npi(u) + n− 1}

for the box of side length n shifted by nu. When we want to emphasize that we work
on certain subgraphs A ⊂ Zd, we will write DA (x, y) for the graph distance inside the
set A, i.e., when we consider edges with both endpoints inside A only. Whenever we
write Diam(A) for some set A ⊂ Zd we always mean the inside diameter of this set,
i.e., Diam(A) = maxx,y∈ADA(x, y). The percolation configuration is a random element
ω ∈ {0, 1}E , where we say that the edge e exists or is open or present if ω(e) = 1. For
ω ∈ {0, 1}E and e ∈ E we define the elements ωe+, ωe− by

ωe+(ẽ) =

{
1 ẽ = e

ω(e) ẽ 6= e
and ωe−(ẽ) =

{
0 ẽ = e

ω(e) ẽ 6= e
,

so this are the edge sets when we insert, respectively delete, the edge e. When we look
at a (possibly random) subset of the edges that is defined by some ω ∈ {0, 1}E we also
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write D(u, v;ω) for the graph distance between u and v in the environment represented
by ω. For some edge e = {u, v} we write |e| = |{u, v}| = ‖u− v‖∞ for the distance in the
∞-norm between the endpoints. We use the notation log(x) for the natural logarithm, i.e.,
the logarithm to the base e. We define the indirect distance D?(A,B) between the sets
A,B ⊂ Zd as the graph distance in the environment where we removed all edges between
A and B, which is the distance when we only consider paths between A and B that do
not use an edge e = {u, v} with u ∈ A, v ∈ B.

1.4 Related work

The scaling of the graph distance, also called chemical distance or hop-count distance, is
a central characteristic of a random graph and has also been examined for many differ-
ent models of percolation, see for example [1, 6, 12, 17–20, 27, 31–33, 36, 45, 54, 59, 82]. For
all dimensions d, one can also consider the long-range percolation model with connection
probability asymptotic to β

‖u−v‖s . When varying the parameter s, there are a total of 5 dif-
ferent regimes, with the transitions happening at s = d and s = 2d. The value of the first
transition s = d is very natural, as the resulting random graph is locally finite if and only
if s > d. For s < d the graph distance between two points is at most d d

d−se [14], whereas

for s = d, the diameter of the box {0, . . . , n}d is of order log(n)
log(log(n)) [27, 96]. In [12, 18–20]

the authors proved that for d < s < 2d the typical distance between two points of Eu-
clidean distance n grows like log(n)∆, where ∆−1 = log2

(
2d
s

)
. The behavior of the typical

distance for long-range percolation on Zd also changes at s = 2d. The reason why s = 2d
is a critical value is that for s = 2d the graph is self-similar, as described in section 1.2. For
s > 2d the graph distance grows at least linearly in the Euclidean distance of two points,
as proven in [17]. In [33] it is shown that the typical distance for d = 1, s = 2 grows like nθ

for some θ ∈ (0, 1). For d ≥ 2 and s = 2d the authors in [27] proved a polynomial upper
bound on the graph distance, but no lower bound. In this thesis, we show a matching
polynomial lower bound for all dimensions d, similar to the results of [33] in one dimension.

Another line of research is to investigate what happens when one drops the assump-
tion that p(β, {u, v}) = 1 for all nearest neighbor edges {u, v}, but assigns i.i.d. random
variables to the nearest neighbor edges instead. For d = 1, there is a change of behavior
at s = 2. As proven by Aizenman, Newman, and Schulman in [4, 84, 91], an infinite open
cluster can not emerge for s > 2 and for s = 2, β ≤ 1, no matter how small P (k � k + 1)
is. See also [41] for a new proof of these results. On the other hand, an infinite cluster can
emerge for s < 2 and s = 2, β > 1 (see [84]). In [4] the authors proved that there is a discon-
tinuity in the percolation density for s = 2, contrary to the situation for s < 2, as proven
in [16,65]. For models, for which an infinite cluster exists the behavior of the percolation
model at and near criticality is also a well-studied question (cf. [11, 16, 22, 30, 65, 69, 70]).
It is not known up to now how the typical distance in long-range percolation grows for
s = 2d and p(β, {u, v}) < 1 for nearest-neighbor edges {u, v}, but we conjecture also a
polynomial growth in the Euclidean distance, whenever an infinite cluster exists.

For d = 1, the behavior of the mixing time is also a property that exhibits a transition
at s = 2, as proven in [13]. On the line segment {0, . . . , n} the mixing time grows quadratic
in n for s > 2 and is of order ns−1 for 1 < s < 2. The behavior of the mixing time for
s = 2 is still open, but we conjecture a similar behavior to that of the chemical distance,
namely that the mixing time interpolates between n and n2, as β goes from +∞ to 0.
A better understanding of the mixing time is useful to study the heat kernel and under-
stand the long-time behavior of the simple random walk on the cluster. In [28,29] Crawford
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and Sly give bounds on the heat kernel and prove a scaling limit for the case s ∈ (d, d+ 1).

Also the Ising model on the one-dimensional line with interaction energy J ({x, y}) =
|x − y|−s is a well-studied object. In [42] the author considers the case where s < 2,
but there are also many results for the critical case s = 2, see for example [3, 44, 72]. In
particular, the authors in [3] proved a discontinuity of the magnetization.

2 Asymptotic behavior of the distance exponent for large β

In this chapter, we prove Theorem 1.2. On the way, in section 2.1, we prove several
elementary bounds on connection probabilities between certain points and boxes in the
long-range percolation graph that will also be used in the following sections. In section
2.2, we prove a submultiplicative structure of the expected distance between two points,
leading to the existence of a distance exponent, and also to the inverse logarithmic upper
bound in Theorem 1.2. In section 2.3, we show that vertices inside a box are not connected
to more than one box that is far away, typically. This is necessary in order to prove strict
positivity of the distance exponent θ(β) in section 2.4, and the lower bound on θ(β) in
Theorem 1.2.

2.1 Bounds on connection probabilities

Lemma 2.1. For all β ≥ 0, all n ∈ N, and all u, v ∈ Zd with ‖u− v‖∞ ≥ 2, one has the
upper bound

Pβ (u ∼ v) = Pβ (V n
u ∼ V n

v ) ≤ 22dβ

‖u− v‖2d∞
, (4)

and one has the lower bound

Pβ (u ∼ v) = Pβ (V n
u ∼ V n

v ) ≥ (4d)−2dβ

‖u− v‖2d∞
∧ 1

2
. (5)

For all k ≥ 2 one has

Pβ (0 ∼ S≥k) ≤ β50dk−d, (6)

and for m ∈ N, any vertex x ∈ V m
0 , and a box V m

w with ‖w‖∞ ≥ 2 one has

Pβ (x ∼ V m
w ) ≤ β42d

‖w‖2d∞md
. (7)

Proof. The equality Pβ (u ∼ v) = Pβ (V n
u ∼ V n

v ) is clear from the discussion about the
underlying continuous model in section 1.2. We start with the proof of (4). Applying
the inequalities 1 − e−x ≤ x and ‖ · ‖2 ≥ ‖ · ‖∞, we get that for two vertices u, v with
‖u− v‖∞ ≥ 2

Pβ (u ∼ v) = 1− e−β
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy ≤ β

∫
u+C

∫
v+C

1

‖x− y‖2d
dxdy

≤ β
∫
u+C

∫
v+C

1

‖x− y‖2d∞
dxdy ≤ β

(‖u− v‖∞ − 1)2d
≤ 22dβ

‖u− v‖2d∞
. (8)
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In order to bound the connection probability between u and v from below, first observe
that ‖x‖2 ≤ ‖x‖1 ≤ d‖x‖∞ for all x ∈ Rd. Thus we have∫

u+C

∫
v+C

1

‖t− s‖2d
dsdt ≥ d−2d

∫
u+C

∫
v+C

1

‖t− s‖2d∞
dsdt

≥ d−2d

∫
u+C

∫
v+C

1

(‖u− v‖∞ + 1)2d
dsdt ≥ (2d)−2d 1

‖u− v‖2d∞

and this already gives

Pβ(u ∼ v) ≥ 1− e
−(2d)−2d β

‖u−v‖2d∞ ≥ (4d)−2dβ

‖u− v‖2d∞
∧ 1

2

as 1− e−x ≥ x
2 ∧

1
2 for all x ∈ R≥0. So we showed (5).

For each point x ∈ Sk = {z ∈ Zd : ‖z‖∞ = k}, at least one of its coordinates pi(x)
equals −k or +k. All other coordinates can be any integer between −k and +k. Thus we
can bound the cardinality of the set |Sk| by |Sk| ≤ 2d(2k + 1)d−1. In (8) we showed that
Pβ (0 ∼ x) ≤ β

(‖x‖∞−1)2d . This already implies that for k ≥ 2

Pβ (0 ∼ Sk) ≤
∑
x∈Sk

Pβ(0 ∼ x)
(8)

≤
∑
x∈Sk

β

(‖x‖∞ − 1)2d
≤ 2d(2k + 1)d−1 β

(k − 1)2d

and thus also

Pβ (0 ∼ S≥k) ≤
∞∑
k′=k

Pβ (0 ∼ Sk′) ≤
∞∑
k′=k

2d(2k′ + 1)d−1 β

(k′ − 1)2d

≤
∞∑
k′=k

2d3d(k′)d−1 β22d

(k′)2d
= β24d

∞∑
k′=k

(k′)−d−1 ≤ β50dk−d, (9)

which already proves (6). For m ∈ N, a vertex x ∈ V m
0 , and a box V m

w with ‖w‖∞ ≥ 2,
we have for all z ∈ V m

w that ‖x− z‖∞ ≥ (‖w‖∞ − 1)m. This implies

Pβ (x ∼ V m
w )

(4)

≤
∑
z∈Vmw

22dβ

‖x− z‖2d∞
≤
∑
z∈Vmw

22dβ

((‖w‖∞ − 1)m)2d
≤ β42d

‖w‖2d∞md
,

which shows (7).

We will often condition on the event that two blocks V n
u , V

n
v are connected. So if we

write X for the number of edges between them, we condition on the event X ≥ 1. This
conditioning clearly increases the expected number of edges between V n

u and V n
v , but by

at most +1, as shown in the next lemma.

Lemma 2.2. Let u, v ∈ Zd with u 6= v and let X be the number of edges between the blocks
V n
u and V n

v . Then for all β > 0

Eβ [X|X ≥ 1] ≤ 1 + Eβ [X]

Proof. The random variable X is a sum of independent Bernoulli random variables and
we prove the statement for all random variables of this type. We use the notation X =∑m

i=1Xi, where m ∈ N, and (Xi)i∈{1,...,m} are independent Bernoulli random variables.
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For i ∈ {1, . . . ,m}, let Ai be the event that Xi = 1 and Xj = 0 for all j ∈ {1, . . . , i− 1}.
As {X ≥ 1} implies that there is a first index i such that Xi = 1, we get that

{X ≥ 1} =
m⊔
i=1

Ai,

where the symbol
⊔

means a disjoint union. On the event Ai, we know that all the random
variables Xj with j < i equal 0, but we have no information about random variables Xj

with j > i. Thus we get that

Eβ [X1Ai ]

Pβ (Ai)
= Eβ [X|Ai] = Eβ

1 +
m∑

j=i+1

Xj

∣∣∣Ai
 = 1 + Eβ

 m∑
j=i+1

Xj

 ≤ 1 + Eβ [X] .

Multiplying by Pβ (Ai) on both sides of this inequality we get that Eβ [X1Ai ] ≤ Pβ (Ai) (1 + Eβ [X]).
As the events (Ai)i∈{1,...,m} are disjoint, we finally get that

Eβ [X|X ≥ 1] =
Eβ
[
X1{X≥1}

]
Pβ (X ≥ 1)

=

∑m
i=1 Eβ [X1Ai ]

Pβ (X ≥ 1)

≤
∑m

i=1 Pβ (Ai) (1 + Eβ [X])

Pβ (X ≥ 1)
= 1 + Eβ [X] .

2.2 Submultiplicativity and the upper bound in Theorem 1.2

In this section, we prove the submultiplicative structure in the model in Lemma 2.3. This
allows us to define the distance growth exponent θ(β) and also helps to prove the upper
bound on θ(β) in Theorem 1.2.

Lemma 2.3. For all dimensions d and all β ≥ 0 the sequence

Λ(n) = Λ(n, β) := max
u,v∈{0,...,n−1}d

Eβ
[
DV n0

(u, v)
]

+ 1 (10)

is submultiplicative and for all β ≥ 0

θ(β) = inf
n≥2

log (Λ(n, β))

log(n)
= lim

n→∞

log (Λ(n, β))

log(n)
.

Proof. We show (10) using a renormalization argument. As before, we define V n
u =∏d

i=1 {pi(u)n, . . . , (pi(u) + 1)n− 1}. The graph G′ obtained by identifying all the vertices
in V n

u to one vertex r(u) has the same connection probabilities as the original model. For
x, y ∈ {0, . . . ,mn− 1}d, say with x ∈ V n

u and y ∈ V n
w , we create a path from x to y as fol-

lows. First we consider the shortest path P = (r(u0) = r(u), r(u1), . . . , r(ul−1), r(ul) = r(w))
from r(u) to r(w) in G′, where l = DG′(r(u), r(w)) is the distance between r(u) and r(w) in
the renormalized model. Inside V n

ui , we first fix two vertices zi and vi such that zi ∼ V n
ui−1

and vi ∼ V n
ui+1

; for i = 0 set z0 = x and for i = l set vl = y. In case there are several
such vertices zi and vi, we choose the one with smallest coordinates, where we weigh the
coordinates in decreasing order (any deterministic rule that does not depend on the en-
vironment would work here). For each i, there clearly is a path between zi and vi that
is completely inside V n

ui . As no information has been revealed up to now about the edges
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with both endpoints inside V n
ui , the expected distance between vi and zi inside V n

ui is at
most

max
a,b∈V nui

Eβ
[
DV nui

(a, b)
]

= Λ(n, β)− 1.

Now we glue all these paths together to get a path from x to y. To bound the total
distance between x and y note that we have l+ 1 sets V n

ui in which we need to find a path
between two vertices. Additionally, we need to add +l for the steps that we make from
V n
ui to V n

ui+1
for i = 0, . . . , l − 1. Thus we get that

Eβ
[
DVmn0

(x, y)
∣∣ DG′(r(u), r(w)) = l

]
≤ (l + 1) max

a,b∈{0,...,n−1}d
Eβ
[
DV n0

(a, b)
]

+ l.

Taking expectations on both sides of this inequality yields

Eβ
[
DVmn0

(x, y)
]

≤ (Eβ [DG′(r(u), r(w))] + 1) max
a,b∈{0,...,n−1}d

Eβ
[
DV n0

(a, b)
]

+ Eβ [DG′(r(u), r(w))]

= (Eβ [DG′(r(u), r(w))] + 1)

(
max

a,b∈{0,...,n−1}d
Eβ
[
DV n0

(a, b)
]

+ 1

)
− 1

=
(
Eβ
[
DVm0

(u,w)
]

+ 1
)(

max
a,b∈{0,...,n−1}d

Eβ
[
DV n0

(a, b)
]

+ 1

)
− 1

≤ Λ(m)Λ(n)− 1.

As x, y ∈ {0, . . . , nm− 1}d were arbitrary we obtain

Λ(mn) ≤ Λ(m)Λ(n), (11)

and as the sequence is submultiplicative we can define

θ = θ(β) = lim
k→∞

log
(
Λ(2k, β)

)
log(2k)

.

Actually, this limit exists not just along dyadic points of the form 2k, for k ∈ N, but even
when taking a limit along the integers, i.e.,

θ = θ(β) = lim
n→∞

log (Λ(n, β))

log(n)
,

which follows from Lemma 4.1 below. As a next step, we want to show that Λ(n) ≥ nθ

for all n. We do this using a proof by contradiction. So assume the contrary, i.e., there
exists a natural number N and a c < 1 with Λ(N) = cN θ. Using (11) we get that for
every integer k

Λ(Nk) ≤ Λ(N)k = ckN θk

and thus

θ = lim
k→∞

log
(
Λ(Nk, β)

)
log(Nk)

≤ lim sup
k→∞

log(ckN θk)

log(Nk)
=

log(c) + θ log(N)

log(N)
< θ

which is a contradiction. Knowing this already gives us that for all positive numbers K
we have

θ = lim
n→∞

log(Λ(n))

log(n)
= inf

n≥2

log(Λ(n))

log(n)
= inf

n≥K

log(Λ(n))

log(n)
. (12)
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This lemma and its proof already have several interesting applications. First, we
emphasize that Λ(mn, β) ≥ Λ(n, β) for all m,n ∈ N>0. This holds, as for arbitrary
x, y ∈ V n

0 , the distance DVmn0
(u, v) between u ∈ V m

x and v ∈ V m
y is at least the distance

between r(x) and r(y) in G′. Using the self-similarity and taking expectations we thus get
that

Eβ
[
DVmn0

(u, v)
]
≥ Eβ [DG′(r(x), r(y))] = Eβ

[
DV n0

(x, y)
]

which shows our claim. For n = 3, we have for all u, v ∈ {0, 1, 2}d with u 6= v, and for all
β > 0 that

Eβ
[
D[0,2]d(u, v)

]
= 1 · Pβ(u ∼ v) + 2 · Pβ(u � v) < 2

and this already implies that Λ(3) =: 3θ
′
< 3 for some θ′ = θ′(β) < 1. Inductively, with a

renormalization at scale 3, we get that

Λ(3kN) ≤ Λ(3)kΛ(N) = 3kθ
′
Λ(N) (13)

for all k,N ∈ N>0. This inequality already gives the upper bound in expectation for
s = 2d, that was already observed in [27] with a very similar technique. Next, we do
a renormalization at scale 2d

√
β instead of scale 3 in order to get the inverse logarithmic

upper bound stated in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. We want to show that for each dimension d
there exists a constant C <∞ such that for all β ≥ 2

θ(d, β) ≤ C

log(β)
.

As the connection probability Pβ (u ∼ v) between any two vertices u, v ∈ Zd is increasing
in β, the distance exponent θ : R≥0 → [0, 1] is clearly decreasing by the Harris coupling,
see for example [62]. Thus it suffices to show the upper bound for β large enough with
2d
√
β ∈ N. For such a β and all u, v ∈ {0, . . . , 2d

√
β − 1}d, we have for all y ∈ u + C and

x ∈ v + C that

‖x− y‖2d ≤ d2d‖x− y‖2d∞ ≤ d2d 2d
√
β

2d
= d2dβ (14)

and this already implies ∫
u+C

∫
v+C

1

‖x− y‖2d
dxdy ≥ 1

d2dβ
.

Inserting this into the definition p(β, {u, v}) and using that 1− e−x ≥ x
2 for all x ≤ 1 we

get that for large enough β that satisfy 1
d2dβ
≤ 1 we already have

Pβ(u ∼ v) = 1− e−β
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy (14)

≥ 1− e−d−2d ≥ 1

2
d−2d ≥ (2d)−2d (15)

for all u, v ∈ {0, . . . , 2d
√
β − 1}d. Next, we bound the expected graph distance between

u and v. We do this by comparing the distance to a geometric random variable. Let

(u = u0, u1, . . . , uk = v) be a deterministic self-avoiding path from u to v inside V
2d√β

0 ,
with k ≤ 2d

√
β and ‖ui − ui−1‖∞ = 1 for all i ∈ {1, . . . , k}. Starting from this, we build a

shorter path between u and v as follows. We start at u0 = u. Then for i = 0, . . . , k − 1,
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if ui ∼ v, directly go to v. If ui � v, then go to ui+1. This gives a path P between u
and v, and for l ∈ {1, . . . , k} this path has length of at least l if and only if ui � v for all
i ∈ {0, . . . , l− 2}. As the connections between v and different ui-s are independent we get
that

Eβ
[
D
V

2d√β
0

(u, v)

]
=

k∑
l=1

Pβ
(
D
V

2d√β
0

(u, v) ≥ l
)
≤

k∑
l=1

Pβ (ui � v for all i ≤ l − 2)

(15)

≤
k∑
l=1

(
1− (2d)−2d

)l−1
≤ 1

1− (1− (2d)−2d)
= (2d)2d.

This already implies that Λ
(

2d
√
β, β

)
≤ (2d)2d + 1 ≤ (3d)2d. Applying the submultiplica-

tivity of Λ iteratively we get that

θ(β) = lim
k→∞

log
(

Λ
(

2d
√
β
k
, β
))

log
(

2d
√
β
k
) ≤ lim sup

k→∞

log
(

Λ
(

2d
√
β, β

)k)
log
(

2d
√
β
k
)

=
log
(
Λ
(

2d
√
β, β

))
log
(

2d
√
β
) ≤

log
(
(3d)2d

)
1
2d log(β)

=
4d2 log (3d)

log(β)

which finishes the proof.

2.3 Spacing between points with long bonds

In this section, we investigate certain geometric properties of the cluster inside certain
boxes. Mostly, we want to get upper bounds on the probability that a vertex is connected
to two different long edges. As we will need it at a later point, namely in section 5.1,
we will prove the statements for ‖x − y‖∞ ≤ 1 instead of x = y. This does not cause
major difficulties, as for each point x ∈ Zd, there are only 3d many points y ∈ Zd with
‖x − y‖∞ ≤ 1. We start with showing that the probability that two vertices x, y with
‖x− y‖∞ ≤ 1 are both connected to far away boxes is very low.

Lemma 2.4. For blocks V m
u , V m

v , V m
w with ‖u−v‖∞, ‖v−w‖∞ ≥ 2, there exists a constant

Cd <∞ such that for all β ≥ 0

Pβ (∃x, y ∈ V m
v : ‖x− y‖∞ ≤ 1, x ∼ V m

u , y ∼ V m
w ) ≤ Cdβ

2

‖u− v‖2d∞‖w − v‖2d∞md
.

Proof. By translational invariance we can assume that v = 0, and thus ‖u‖∞, ‖w‖∞ ≥ 2.
For each x ∈ V m

0 there are at most 3d vertices y ∈ V m
0 with ‖x− y‖∞ ≤ 1. For x, y ∈ V m

0

the probability that y ∼ V m
w is bounded by β42d

‖w‖2d∞md
, and the probability that x ∼ V m

u is

bounded by by β42d

‖u‖2d∞md
, by (7). Thus

Pβ (∃x, y ∈ V m
0 : ‖x− y‖∞ ≤ 1, x ∼ V m

u , y ∼ V m
w ) ≤

∑
x∈Vm0

Pβ (x ∼ V m
u ) 3d

β42d

‖w‖2d∞md

=
48dβ

‖w‖2d∞md

∑
x∈Vm0

Pβ (x ∼ V m
u )

(7)

≤ 48dβ

‖w‖2d∞md
md β42d

‖u‖2d∞md
≤ β21000d

‖w‖2d∞‖u‖2d∞md

which finishes the proof.
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Lemma 2.5. For blocks V m
u , V m

v , V m
w with ‖v − w‖∞ ≥ 2 and ‖u− v‖∞ = 1, there exists

a constant Cd <∞ such that for all β ≥ 0

Pβ (∃x, y ∈ V m
v : ‖x− y‖∞ ≤ 1, x ∼ V m

u , y ∼ V m
w ) ≤

{
Cdβdβe log(m)
‖v−w‖2d∞m

for d = 1
Cdβdβe
‖v−w‖2d∞m

for d ≥ 2
.

Proof. By translational invariance we can assume that v = 0, and thus ‖u‖∞ = 1, ‖w‖∞ ≥
2. For each x ∈ V m

0 there are at most 3d vertices y ∈ V m
0 with ‖x − y‖∞ ≤ 1. For each

vertex y ∈ V m
0 the probability that y ∼ V m

w is bounded by β42d

‖w‖2d∞md
by (7). Thus

Pβ (∃x, y ∈ V m
0 : ‖x− y‖∞ ≤ 1, x ∼ V m

u , y ∼ V m
w ) ≤

∑
x∈Vm0

Pβ (x ∼ V m
u ) 3d

β42d

‖w‖2d∞md

=
48dβ

‖w‖2d∞md

∑
x∈Vm0

Pβ (x ∼ V m
u ) . (16)

As ‖u‖∞ = 1 we have D∞(x, V m
u ) ≤ m for all x ∈ V m

0 , where D∞ is the distance with
respect to the ∞-norm. We furthermore have the inequality

|{x ∈ V m
0 : D∞ (x, V m

u ) = k}| ≤ 6dmd−1

for all k ∈ N. This is clear for k > m, as the relevant set is empty in this case. For k ≤ m
the set

{
x ∈ Zd : D∞ (x, V m

u ) = k
}

is just the boundary of the box

d∏
i=1

{pi(u)m− k, . . . , (pi(u) + 1)m− 1 + k} ,

which is a box of side length m + 2k ≤ 3m. Thus the boundary has a cardinality of at
most 2d(3m)d−1 ≤ 6dmd−1. Using this observation we get that

∑
x∈Vm0

Pβ (x ∼ V m
u ) =

m∑
k=1

∑
x∈Vm0 :

D∞(x,Vmu )=k

Pβ (x ∼ V m
u ) ≤

m∑
k=1

6dmd−1Pβ (x ∼ x+ S≥k)

(6)

≤ 6dmd−1 + 6dmd−1
m∑
k=2

β50dk−d ≤

{
md−1 log(m)dβe400d for d = 1

md−1dβe400d for d ≥ 2
. (17)

Inserting this into (16), we get that

Pβ (∃x, y ∈ V m
0 : ‖x− y‖∞ ≤ 1, x ∼ V m

u , y ∼ V m
w ) ≤

∑
x∈Vm0

Pβ (x ∼ V m
u ) 3d

β42d

‖w‖2d∞md

≤


20000dβdβe log(m)

‖w‖2d∞m
for d = 1

20000dβdβe
‖w‖2d∞m

for d ≥ 1

which finishes the proof.

Lemma 2.6. Let m ∈ N, l ∈ {1, . . . , 3d − 1}, and let v0, v1, . . . , vl+1 ∈ Zd be distinct
with ‖vi+1 − vi‖∞ = 1 for all i ∈ {0, . . . , l}, ‖vi − v0‖∞ = 1 for all i ∈ {0, . . . , l} and
‖vl+1 − v0‖∞ = 2. Then there exists a constant Cd <∞ such that the two probabilities

Pβ
(
∃i ∈ {1, . . . , l}∃x, y ∈ V m

vi with ‖x− y‖∞ ≤ 1, x ∼ V m
vi−1

, y ∼ V m
vi+1
∩
(
y + S≥m

6d

))
,
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Pβ
(
∃i ∈ {1, . . . , l}∃x, y ∈ V m

vi with ‖x− y‖∞ ≤ 1, x ∼ V m
vi+1

, y ∼ V m
vi−1
∩
(
y + S≥m

6d

))
are both bounded by Cdβdβe log(m)

m for d = 1, respectively by Cdβdβe
m for d ≥ 2.

Proof. By a union bound we have that

Pβ
(
∃i ∈ {1, . . . , l}∃x, y ∈ V m

vi with ‖x− y‖∞ ≤ 1, x ∼ V m
vi−1

, y ∼ V m
vi+1
∩
(
y + S≥m

6d

))
≤

∑
i∈{1,...,l}

∑
x,y∈Vmvi :

‖x−y‖∞≤1

Pβ
(
x ∼ V m

vi−1
, y ∼ V m

vi+1
∩
(
y + S≥m

6d

))

≤
∑

i∈{1,...,l}

∑
x,y∈Vmvi :

‖x−y‖∞≤1

Pβ
(
x ∼ V m

vi−1

)
Pβ
(
y ∼

(
y + S≥m

6d

))
(6)

≤ β50d
(m

6d

)−d ∑
i∈{1,...,l}

∑
x,y∈Vmvi :

‖x−y‖∞≤1

Pβ
(
x ∼ V m

vi−1

)

≤ β150d
(m

6d

)−d ∑
i∈{1,...,l}

∑
x∈Vmvi

Pβ
(
x ∼ V m

vi−1

)
.

The sum
∑

x∈Vmvi
Pβ
(
x ∼ V m

vi−1

)
was already upper bounded in (17). Using this upper

bound, l ≤ 3d, and inserting this into the line above we get that

β150d
(m

6d

)−d ∑
i∈{1,...,l}

∑
x∈Vmvi

Pβ
(
x ∼ V m

vi−1

)
≤


βdβe(6d106)

d
log(m)

m for d = 1

βdβe(6d106)
d

m for d ≥ 2

which finishes the proof for the first item in the statement of the lemma. The estimate for
the second term works analogously.

2.4 The lower bound in Theorem 1.2

Finally, we developed all the necessary techniques in order to show the lower bound in
Theorem 1.2, i.e., that there for all dimensions d, there exists a constant c > 0 such that
θ(β) ≥ c

log(β) for all β ≥ 2.

Proof of the lower bound in Theorem 1.2. Inequality (5) and Lemma 2.4 show that for all
dimensions d there exists a constant Cd < ∞ such that for all β ≥ 2 and all u, v, w with
‖u− v‖∞, ‖v − w‖∞ ≥ 2

Pβ (∃x ∈ V m
v : x ∼ V m

u , x ∼ V m
w | V m

u ∼ V m
v ∼ V m

w ) ≤ Cdβ
2

m1/2
. (18)

Analogously, Lemma 2.5 shows that there exists a constant Cd <∞ such that for all β ≥ 2
and all u, v, w with ‖u− v‖∞ ≥ 2 and ‖v − w‖∞ = 1

Pβ (∃x ∈ V m
v : x ∼ V m

u , x ∼ V m
w | V m

u ∼ V m
v ∼ V m

w ) ≤ Cdβ
2

m1/2
(19)
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where we also used that log(m)
m = O

(
m−1/2

)
. Lemma 2.6 implies that for every l ∈

{1, . . . , 3d−1} and v0, v1, . . . , vl+1 ∈ Zd distinct with ‖vi+1−vi‖∞ = 1 for all i ∈ {0, . . . , l},
‖vi − v0‖∞ = 1 for all i ∈ {1, . . . , l}, and ‖vl+1 − v0‖∞ = 2, one has the bound

Pβ
(
∃x1, . . . , xl : xi ∈ V m

vi , V
m
v0
∼ x1 ∼ x2 ∼ . . . ∼ xl ∼ V m

vl+1

)
≤ Cdβ

2

m1/2
(20)

as a path from Vv0 to Vvl+1
in l+ 1 ≤ 3d steps needs to contain at least one edge {xi, xi+1}

with ‖xi − xi+1‖∞ ≥ m
3d

and thus xi ∼ xi + S≥m

6d
in this case. We will now show that

Eβ
[
DVmM0

(0, (mM − 1)e1)
]
≥
(

1 +
1

3d+4

)
Eβ
[
DVM0

(0, (M − 1)e1)
]

(21)

for m ≥
(
2000 · dβe335dCd

)(34d)
and all large enough M . We will see later where this

condition on m comes from. To see (21), we use a renormalization. For u ∈ VM
0 , we

identify the blocks V m
u to vertices r(u) and call the resulting graph G′. Then we will prove

that

Eβ
[
DVmM0

(0, (mM − 1)e1)
]
≥
(

1 +
1

3d+4

)
Eβ [DG′ (r(0), r((M − 1)e1))]

for large enough M . This implies (21), as the random graphs G′ and VM
0 have the same

distribution, as shown in section 1.2. Now we condition on the graph G′, i.e., we already
have the knowledge which blocks of the form V m

u are connected in the original graph.
Let P ′ = (r(v0), . . . , r(vk)) be a self-avoiding path in G′ starting at the origin vertex,
i.e., v0 = 0. Let k ≥ 3d+3. Let l =

⌊
k

3d+1

⌋
. For j ∈ {0, . . . , l}, we call the subsequence

Rj :=
(
r(v2j3d), r(v2j3d+1), . . . , r(v(2j+2)3d)

)
separated if there does not exist a sequence

(xi)
(2j+2)·3d−1

i=2j3d+1
such that xi ∈ V m

vi for all i ∈ {2j3d + 1, . . . , (2j + 2)3d − 1} and

V m
v
j3d
∼ xj3d+1 ∼ xj3d+2 ∼ . . . ∼ x(j+2)3d−1 ∼ V m

v
(j+2)3d

.

For a given self-avoiding path P ′ ⊂ G′ and different values of j ∈ {0, . . . , l}, it is inde-

pendent whether the subsequences
(
r(v2j3d), r(v2j3d+1), . . . , r(v(2j+2)3d)

)
are separated,

and the probability that a specific subsequence
(
r(v2j3d), r(v2j3d+1), . . . , r(v(2j+2)3d)

)
is

not separated is bounded by Cdβ
2

m1/2 , as for every sequence
(
v2j3d , v2j3d+1, . . . , v(2j+2)3d

)
at

least one of the situations of (18),(19) or (20) holds, as we will argue below. Here we say
that the situation of (18) holds if there exists an index i ∈ {2j3d + 1, . . . , (2j + 2)3d − 1}
such that ‖vi − vi+1‖∞, ‖vi − vi−1‖∞ ≥ 2, the situation of (19) holds if there exists an
index i ∈ {2j3d + 1, . . . , (2j + 2)3d − 1} such that ‖vi − vi+1‖∞ = 1, ‖vi − vi−1‖∞ ≥ 2
or ‖vi − vi−1‖∞ = 1, ‖vi − vi+1‖∞ ≥ 2, and the situation of (20) holds if there ex-
ists l ∈ {1, . . . , 3d − 1} such that ‖vi+1 − vi‖∞ = 1 for all i ∈ {2j3d, . . . , 2j3d + l},
‖vi − v2j3d‖∞ = 1 for all i ∈ {2j3d + 1, . . . , 2j3d + l} and ‖v2j3d+l+1 − v2j3d‖∞ = 2. If
none of the situations in (18),(19) holds, then the path makes only nearest neighbor-jumps
within the subsequence Rj . However, as that there are only 3d − 1 many points v ∈ Zd
with ‖v − v2j3d‖∞ = 1, the situation of (20) must occur within the subsequence Rj for
some l. So in total we see that

Pβ
(
Rj not separated

∣∣ G′) ≤ Cdβ
2

m1/2
.
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The reason why we consider separated subsequences is that in a separated subsequence,
the walk on the original graph V mM

0 needs to take at least one additional step. For a fixed
path P ′ ⊂ G′ of length k and l =

⌊
k

3d+1

⌋
we have that

Pβ
(
|{j ∈ {0, . . . , l} : Rj not separated}| > l

2

∣∣ G′)

= Pβ

 ⋃
U⊂{0,...,l}
|U |>l/2

{Rj not separated for all j ∈ U}
∣∣∣ G′


≤

∑
U⊂{0,...,l}
|U |>l/2

Pβ
(
{Rj not separated for all j ∈ U}

∣∣∣ G′) ≤ 2l
(
Cdβ

2

m1/2

)l/2
.

Next, we want to bound the expected degree of vertices in the long-range percolation
graph from above. With the bound on the connection probability Pβ(0 ∼ u) (4), we get
that

Eβ [deg(0)] =
∑

u∈Zd\{0}

Pβ(0 ∼ u) ≤ 3d +
∞∑
k=2

∑
u∈Sk

22dβ

k2d
≤ 3d +

∞∑
k=2

2d(2k + 1)d−1 22dβ

k2d

≤ 3d + β23d3d
∞∑
k=2

k−d−1 ≤ 3d + β34d ≤ dβe35d. (22)

Let P ′k be the set of self-avoiding paths in G′ starting at r(0). With a comparison to the

case of a Galton-Watson tree inequality (22) already gives that Eβ [|P ′k|] ≤
(
dβe35d

)k
. As⌊

k
3d+2

⌋
≤
b k

3d+1 c
2 , we see that

Pβ
(
∃P ′ ∈ P ′k with less than

⌊ k

3d+2

⌋
separated subpaths Rj

)
= Eβ

[
Pβ
(
∃P ′ ∈ P ′k with less than

⌊ k

3d+2

⌋
separated subpaths Rj

∣∣∣G′)]

≤ Eβ

∣∣P ′k∣∣ 2k (Cdβ2

m1/2

)⌊ k

3d+2

⌋ ≤ (dβe35d
)k

2k
(
Cdβ

2

m1/2

)⌊ k

3d+2

⌋

≤
(
dβe335d

)k
2kCkd

1

m
k

34d

≤ 0.01k

by the choice of m ≥
(
2000 · 35dCddβe3

)(34d)
. Next, we want to translate this bound on

the probability of certain events to bounds on the expectation of the distances. For this,
let Gk be the event that all self-avoiding paths P ′ ⊂ G′ starting at the origin and of length

k̃ ≥ k contain at least
⌊

k̃
3d+2

⌋
separated subpaths Rj . With the preceding inequality we

directly get Pβ (Gk) ≥ 1 − 0.1k. On the event Gk, each path P ⊂ V mM
0 starting at the

origin, for which the loop-erased projection on G′ goes through k̃ + 1 different blocks of

the form V m
u , needs to have a length of at least k̃ +

⌊
k̃

3d+2

⌋
≥
(
1 + 1

3d+3

)
k̃. Furthermore,

if we have DG′ (r(0), r ((M − 1)e1)) = k̃, then every path connecting 0 to (mM − 1)e1 in
the original model V mM

0 goes through at least k̃+ 1 different blocks of the form V m
u , with
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u ∈ VM
0 . So we get that

Eβ
[
DVmM0

(0, (mM − 1)e1)
]
≥

∞∑
k=3d+3

Eβ
[
DVmM0

(0, (mM − 1)e1)1{DG′ (r(0),r((M−1)e1))=k}

]
≥

∞∑
k=3d+3

Eβ
[
DVmM0

(0, (mM − 1)e1)1{DG′ (r(0),r((M−1)e1))=k}1Gk

]
≥

∞∑
k=3d+3

Eβ
[
k

(
1 +

1

3d+3

)
1{DG′ (r(0),r((M−1)e1))=k}1Gk

]

≥
∞∑

k=3d+3

(
Eβ
[
k

(
1 +

1

3d+3

)
1{DG′ (r(0),r((M−1)e1))=k}

]
− Eβ

[
2k1GCk

])

≥
(

1 +
1

3d+3

) ∞∑
k=3d+3

kEβ

[
1{

D
VM0

(0,(M−1)e1)=k

}
]
− 2

∞∑
k=1

0.1kk

≥
(

1 +
1

3d+3

)
Eβ
[
DVM0

(0, (M − 1)e1)
]
− 3d+4Pβ

(
DVM0

(0, (M − 1)e1) < 3d+3
)
− 1

≥
(

1 +
1

3d+4

)
Eβ
[
DVM0

(0, (M − 1)e1)
]

where the last inequality holds for all large enough M , as for all K ∈ N the probability

of the event
{
DVM0

(0, (M − 1)e1) < K
}

tends to 0 as M → ∞. Say that it holds for

all M ≥ mN , where m =
⌈ (

2000 · 35dCddβe3
)(34d)

⌉
. The important property about the

choice of m is, that its size is polynomial in β. This already implies that

θ(β) ≥ lim
n→∞

log
(
Eβ
[
DVm

n
0

(0, (mn − 1)e1)
])

log (mn)
≥ lim

n→∞

log
((

1 + 1
3d+4

)n−N)
log (mn)

=
log
(
1 + 1

3d+4

)
log(m)

≥ c

log(β)

for some small c > 0 and all β ≥ 2.

3 Connected sets in graphs

The expected number of open paths in the long-range percolation model, of length k, and
starting at 0, grows at most like E [deg(0)]k, which can be easily proven by a comparison
with a Galton-Watson tree. However, it is a priori not clear how the number of connected
subsets of Zd containing the origin grows. In particular, because the maximal degree of
vertices is unbounded. In this chapter, we prove several results about the structure of
connected sets in the long-range percolation graph. Mostly, we want to prove that with
exponentially high probability in k, all connected sets of size k in the graph have not too
many edges. First, we need to define what we mean by a connected set. Formally, we
define the a connected set as follows. For a graph G = (V,E) we say that a subset Z ⊂ V
is connected if the graph (Z,E′) with edge set E′ = {{x, y} ∈ E : x, y ∈ Z} is connected.
As a first step, we bound the expected number of connected sets of certain size in Galton-
Watson trees. This counting of connected sets plays an important role in sections 5 and
11 below.
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Y ′1

Y1,Y7,Y15

Y ′2

Y2,Y4,Y6

Y ′5

Y8,Y12,Y14

Y ′3

Y3

Y ′4

Y5

Y ′6

Y9,Y11

Y ′8

Y13

Y ′7

Y10

Figure 1: In the above tree, the process (Y ′i )i∈{1,...,9} is writ-

ten inside the vertices and the process (Yi)i∈{1,...,15} is writ-
ten above the vertices. For this tree we have (a1, . . . , a14) =
(d, d, u, d, u, u, d, d, d, u, u, d, u, u).

Lemma 3.1. Let X be a countable set with a total ordering and a minimal element, let
X be a countable sum of independent Bernoulli-distributed random variables over this set,
i.e., X =

∑
i∈X Xi, and let µ be the expectation value of X. Say that q(k) = P(Xk = 1).

Let T be a Galton-Watson tree with offspring distribution L(X). We denote the set of all
subtrees of T of size k containing the origin by Tk. Then

E [|Tk|] ≤ 4kµk.

Proof. The choice of the set X and the total ordering on it do not influence the outcome,
so we will always work with X = N from here on. We can think of the Galton-Watson tree
as a model of independent bond percolation on the graph with vertex set L =

⋃∞
n=0 Ln,

where Ln = Nn, and with edge set S = {{v, (v m)} : v ∈ L,m ∈ N} where some edge of the
form {v, (v m)} is open with probability q(m). Note that the graph G = (L, S) is a tree, so
in particular there exists a unique path from the origin ∅ to every vertex; this tree is also
known as the Ulam-Harris tree. For a vertex v ∈ L, the number of open edges of the form
{v, (v m)} has the same law as X and thus we can identify the open cluster connected to
the root ∅ with a Galton-Watson tree with offspring distribution L(X). So in particular,
the expected number of subtrees of the Galton-Watson tree T of size k is the same as the
expected number of connected sets of size k in (L, S). For a vertex v ∈ L, we call the
vertices of the form (v m) that are connected to v by an open bond the children of v. Vice
versa, we say that v is the parent of the vertex (v m), if (v m) is connected to v. For a
connected set L′ ⊂ L of size k, we now describe an exploration process (Yi)i∈{1,...,2k−1} of
it:

0. Start with Y1 = ∅.

1. For i = 1, . . . , 2k − 1

(a) If there exists m ∈ N for which (Yi m) ∈ L′ and Yj 6= (Yi m) for all j < i, let
m′ be the minimal among those m ∈ N and set Yi+1 = (Yi m

′).

(b) If such an m does not exist, let Yi+1 be the parent of Yi.
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An example of this procedure is given in Figure 1. This exploration process traverses
every edge exactly twice in opposite directions and starts and ends at the origin of the
tree. We also say that the exploration process Yi goes (one level) down if (a) occurs
in the algorithm above and otherwise we say that the process goes (one level) up. We
also define a different process (Y ′i )i∈{1,...,k}, where Y ′i is the unique point Yl such that

|{Y1, . . . , Yl−1}| < i and |{Y1, . . . , Yl}| = i. So the process (Y ′i )i∈{1,...,k} is like a depth-first
search from left to right in the tree. We can encode all information contained in the
subtree L′ by the two sequences (a1, . . . , a2k−2) ∈ {u, d}2k−2 and (m1, . . . ,mk−1) ∈ Nk−1.
The first sequence (a1, . . . , a2k−2) encodes whether the process Yi goes one level up or
down at a certain point. Here ai = u if the process goes one level up after Yi, i.e., if Yi+1

is the parent of Yi. Otherwise we set ai = d, i.e., if Yi+1 is a child of Yi. The sequence
(m1, . . . ,mk−1) encodes the direction of the process, where the i-th coordinate gives the
direction when the walk goes down for the i-th time. This happens when it touches the
vertex Y ′i+1 for the first time. So if v is the parent of Y ′i+1, then Y ′i+1 = (v mi).

For fixed
→
a = (a1, . . . , a2k−2) ∈ {u, d}2k−2, we want to upper bound the expected

number of subtrees containing the origin with exactly this up-and-down structure. As-
sume that the exploration process Yi visits exactly l children of some vertex Y ′j . Then
the expected number of ways to choose these l children among the children of Y ′j in an
increasing way is given by∑

m1∈N
q(m1)

∑
m2∈N:
m2>m1

q(m2) · · ·
∑
ml∈N:

ml>ml−1

q(ml) ≤ µl.

We have this choice for all vertices Y ′j in the tree. The sum over the number of children
of all the vertices is k − 1, as every vertex, except the origin ∅, is the child of exactly one
vertex. Thus the expected number of trees with a specified up-and-down structure can be
bounded from above by

∑
m1∈N

· · ·
∑

mk−1∈N

k−1∏
i=1

q(mi) = µk−1.

Up to now, we considered a fixed up-and-down-structure. However, there are at most∣∣{u, d}2k−2
∣∣ = 22k−2 possible up-and-down structures (a1, . . . , a2k−2) (In fact there are

significantly fewer combinations, as one has additional constraints like a1 = d). So in
total, we get

E [|Tk|] ≤
∑

→
a∈{u,d}2k−2

µk−1 ≤
(

22k−2
)
µk−1 ≤ 4kµk.

We now want to use the above lemma about the Galton-Watson tree in order to get
results about the average degree of connected subsets of the long-range percolation graph.
For this, we define the average degree of some set finite Z ⊂ Zd by

deg(Z) :=
1

|Z|
∑
v∈Z

deg(v).
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One elementary inequality we will use in the following controls the exponential moments
of certain random variables. Assume that (Ui)i∈N are independent Bernoulli random
variables and U =

∑∞
i=1 Ui. Then

E
[
eU
]

= E
[
e
∑
i∈N Ui

]
=
∏
i∈N
E
[
eUi
]
≤
∏
i∈N

(1 + eE [Ui]) ≤
∏
i∈N

eeE[Ui] = eeE[U ] (23)

and this already implies, by Markov’s inequality, that for any C > 0

P (U > CE [U ]) = P
(
eU > eCE[U ]

)
≤ E

[
eU
]
e−CE[U ]

(23)

≤ e(e−C)E[U ]. (24)

Lemma 3.2. Let CSk = CSk
(
Zd
)

be all connected subsets of the long-range percolation
graph with vertex set Zd, which are of size k and contain the origin 0. We write µβ for
Eβ [deg(0)]. Then for all β > 0

Pβ
(
∃Z ∈ CSk : deg(Z) ≥ 20µβ

)
≤ e−4kµβ .

Proof. Consider percolation on the tree L =
⋃∞
n=0 Ln, where Ln =

(
Zd \ {0}

)n
, the edge

set is given by S =
{
{v, (v m)} : v ∈ L,m ∈ Zd \ {0}

}
and an edge of the form {v, (v m)}

is open with probability p (β, {0,m}). A total ordering on Zd \{0} is given by considering
an arbitrary deterministic bijection with N. From Lemma 3.1, we know that the expected
number of connected sets of size k in L is bounded by 4kµkβ. We want to project a finite

tree T ⊂ L of size k down to Zd. Remember the notation (Y ′i )i∈{1,...,k} for the depth-
first search from left to right in the tree. The information contained in the structure of
the tree can be represented by the vectors

→
a = (a1, . . . , a2k−2) ∈ {u, d}2k−2 and

→
m =

(m1, . . . ,mk−1) ∈
(
Zd \ {0}

)k−1
. We now define a subgraph (Z(T ), E(T )) of the integer

lattice and an exploration process (X ′i)i∈{1,...,k} as follows:

0. Start with X ′1 = 0, E1(T ) = ∅.

1. For i = 2, . . . , k :
Let j < i be such that Y ′i = (Y ′j m) for some m ∈ Zd \ {0}. Set X ′i = X ′j + m and

Ei(T ) = Ei−1(T ) ∪
{
{X ′i, X ′j}

}
2. Z(T ) =

⋃k
i=1{X ′i} and E(T ) = Ek(T )

See Figure 2 for an example of this projection. The graph (Z(T ), E(T )) is clearly
connected, but it is not necessarily a tree, as there can be i 6= j with X ′i = X ′j , in which
case there exists a loop containing X ′i. We call both the graph (Z(T ), E(T )) and the tree
T admissible if (Z(T ), E(T )) is a tree. We also write T Ak for the set of admissible trees
T ⊂ (L, S) of size k. For a tree T ⊂ (L, S) of size k, the condition T ∈ T Ak is equivalent
to |Z(T )| = k, as every connected graph with k vertices and k− 1 edges is a tree. Assume
that the graph (Z(T ), E(T )) is admissible. Then the probability that all edges exist in the
random graph equals

∏k−1
i=1 p(β, {0,mi}), which is exactly the probability that all edges

of the tree T exist inside (L, S). Every connected set Z ⊂ Zd has a spanning tree. Thus
there exists a tree T ⊂ L with Z = Z(T ) such that all edges in E(T ) exist. This and the
result of Lemma 3.1 imply that

Eβ
[∣∣∣CSk(Zd)∣∣∣] ≤ ∑

T∈T Ak

Pβ (all edges in E(T ) exist) =
∑

T∈T Ak

Pβ (T ∈ Tk)

≤ Eβ [|Tk|] ≤ 4kµkβ. (25)
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Y ′1

Y ′2 Y ′3

Y ′4 Y ′5

X ′2 X ′4 X ′1 X ′3 X ′5
−3 −2 −1 0 1 2 3 4

Figure 2: A tree T with 5 vertices, (a1, . . . , a8) =
(d, u, d, d, u, d, u, u), (m1, . . . ,m4) = (−2, 1,−2, 2), and its projec-
tion on Z. The vertices with thick boundary {−2,−1, 0, 1, 3} ⊂ Z
are the set Z(T ) and the thick edges between them are the set
E(T ). Note that (Z(T ), E(T )) really is a tree for this example.

For an admissible tree T , the degree of each vertex v ∈ Z(T ) is the sum of an inside degree
and an outside degree, which we will now define. The inside degree degZ(T )(v) of a vertex
v ∈ Z(T ) is defined by

degZ(T )(v) =
∑

u∈Z(T )

1{{v,u}∈E(T )}

which is just the number of edges in E(T ) containing v. Note that for a given admissible
tree T , the inside degree is purely deterministic and does not depend on the environment.
Also note that, by the handshaking lemma,∑

v∈Z(T )

degZ(T )(v) = 2|E(T )| = 2 (|Z(T )| − 1) , (26)

where the last equality holds as (Z(T ), E(T )) is a tree. Now let us turn to the outside
degree degZ(T )C (v) of a vertex v ∈ Z(T ), which we define by

degZ(T )C (v) =
∑

u∈Zd\{v}:
{u,v}/∈E(T )

ω({v, u}).

The outside degree depends on the random environment ω and is a non-constant random
variable, contrary to degZ(T )(v). Now we want to get bounds on the random variable∑

v∈Z(T ) degZ(T )C (v). Note that {u, v} /∈ E(T ) does not imply that u /∈ Z(T ), but
only that u and v are not neighbors in the graph induced by T . The random variable∑

v∈Z(T ) degZ(T )C (v) is not the sum of independent Bernoulli random variables, as we
might count some edges twice. But as one can count every edge at most twice in this sum,
one has the bound

1

2

∑
v∈Z(T )

degZ(T )C (v) ≤
∑

{u,v}/∈E(T ):
{u,v}∩Z(T )6=∅

ω ({u, v}) (27)
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where the expression on the right-hand side is a sum of independent Bernoulli random
variables with expectation at most |Z(T )|µβ. So for each admissible tree T we always
have∑
v∈Z(T )

deg(v) =
∑

v∈Z(T )

degZ(T )(v) +
∑

v∈Z(T )

degZ(T )C (v) ≤ 2|Z(T )|+ 2
∑

{u,v}/∈E(T ):
{u,v}∩Z(T )6=∅

ω ({u, v}) .

We use the notation

U = U(T ) :=
∑

{u,v}/∈E(T ):
{u,v}∩Z(T ) 6=∅

ω ({u, v}) .

For a given finite admissible tree T , we have that

Pβ
(
deg(Z(T )) ≥ 20µβ

)
= Pβ

 ∑
v∈Z(T )

deg(v) ≥ 20|Z(T )|µβ

 ≤ Pβ (2U ≥ 18|T |µβ)

= Pβ (U ≥ 9|T |µβ)
(24)

≤ E
[
eU
]
e−9|T |µβ ≤ ee|T |µβe−9|T |µβ ≤ e−6|T |µβ . (28)

So far we only got this bound for a fixed admissible tree T ⊂ (L, S). Remember that
every connected set Z ∈ CSk has a spanning tree and there exists a tree T ⊂ (L, S) so
that (Z(T ), E(T )) is exactly this spanning tree. Again, we use the notation T Ak for the
set of admissible trees T ⊂ (L, S) of size k. With the observation from before we get that

Pβ
(
∃Z ∈ CSk : deg(Z) ≥ 20µβ

)
≤

∑
T∈T Ak

Pβ
(
deg(Z(T )) ≥ 20µβ, all edges in E(T ) exist

)
≤

∑
T∈T Ak

Pβ (U(T ) ≥ 9kµβ, all edges in E(T ) exist)

=
∑

T∈T Ak

Pβ (U(T ) ≥ 9kµβ)Pβ (all edges in E(T ) exist)

(28)

≤ e−6kµβ
∑

T∈T Ak

Pβ (all edges in E(T ) exist)

(25)

≤ e−6kµβ4kµkβ ≤ e−6kµβe2keµβk ≤ e−4kµβ

where we used that µβ ≥ 2 in the last inequality. This holds for long-range percolation
with our parameters, as each vertex is always connected to its nearest neighbors. The final
inequality is exactly the result that we wanted to show and thus finishes the proof.

4 Distances in V n
0

In this section, we give several bounds on the distribution of the graph distances between
points, respectively sets, inside of certain boxes. In section 4.1, we determine several
different properties of the function (x, y) 7→ Eβ

[
DV n0

(x, y)
]
. It is intuitively clear that the

expression is large when x, y also have a big Euclidean distance, for example when x = 0
and y = (n− 1)1. This intuition is made rigorous in Lemma 4.2. In section 4.2, we upper
bound the second moment of random variables of the form DV n0

(x, y). Then, in section
4.3 we use these results in order to bound the distance between certain points and sets in
the long-range percolation graph.
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4.1 Graph distances of far away points

From the definition of Λ(n, β) in (10) it is not clear which pair u, v maximizes the expected
distance and how the expected graph distances can be compared for different graphs V n

0

and V n′
0 . In Lemma 4.1, we construct a coupling between the long-range percolation graph

on V n
0 for different n. In Lemma 4.2, we show that, up to a constant factor, the maximum

in the definition of Λ(n, β) gets attained by the pair {0, (n− 1)e1} or {0, (n− 1)1}.

Lemma 4.1. Let β ≥ 0 and n′, n ∈ N>0 with n′ ≤ n. For u, v ∈ V n
0 define u′ :=

bn′n uc, v
′ := bn′n vc, where the rounding operation is componentwise. There exists a coupling

of the random graphs with vertex sets V n
0 and V n′

0 such that both are distributed according
to Pβ and

D
V n
′

0
(u′, v′) ≤ 3DV n0

(u, v) (29)

for all u, v ∈ V n
0 . The same holds true when one considers the graph Zd instead of V n

0 and
this also implies that

Diam
(
V n′

0

)
≤ 3Diam

(
V n

0

)
. (30)

Proof. We prove the statement via a coupling with the underlying continuous model. As
the claim clearly holds for β = 0 or for u = v, we can assume β > 0, and u 6= v from
here on. Let Ẽ be a Poisson point process on Rd × Rd with intensity β

2‖t−s‖2d and define

E =
{

(t, s) ∈ Rd × Rd : (s, t) ∈ Ẽ
}
∪ Ẽ . Remember that this point process has a scaling

invariance, namely that for a constant α > 0 the set αE has exactly the same distribution
as E . We now define a random graph G = (V,E): For u, v ∈ V n

0 =: V we place an edge
between u and v if and only if (u + C) × (v + C) ∩ nE 6= ∅. We have already seen in
section 1.2 about the continuous model that this creates a sample of independent long-
range percolation where the connection probability between the vertices u and v is given by

p(β, |v−u|) = 1− e−
∫
u+C

∫
v+C

β

‖t−s‖2d
dtds

. We can do the same procedure for V ′ := V n′
0 and

n′E to get a random graph G′ = (V ′, E′). Formally, we place an edge between two vertices
u′, v′ ∈ V ′ if and only if (u′+C)×(v′+C)∩n′E 6= ∅. We now claim that for any two vertices
u, v ∈ V with u 6= v and u′, v′ defined as above one has DG′(u

′, v′) ≤ 2DG(u, v) + 1, which
already implies (29). Assume that (x0 = u, x1, . . . , xl = v) is the shortest path between u
and v in G, where l = DG(u, v). Then for all i = 1, . . . , l there are points

(y(i, 0), y(i, 1)) ∈ (xi−1 + C)× (xi + C) ∩ nE .

In particular one has
‖y(i− 1, 1)− y(i, 0)‖∞ < 1

for all i = 2, . . . , l, ‖y(1, 0) − u‖∞ < 1, and ‖y(l, 1) − v‖∞ < 1. For all i = 1, . . . , l
and j ∈ {0, 1} define y′(i, j) = n′

n y(i, j), which implies (y′(i, 0), y′(i, 1)) ∈ n′E . With this
definition one clearly has

‖y′(i− 1, 1)− y′(i, 0)‖∞ < 1

for all i = 2, . . . , l, ‖y′(1, 0) − n′

n u‖∞ < 1, and ‖y′(l, 1) − n′

n v‖∞ < 1. So in G′ we
can use the path from u′ to v′ that uses all the edges {by′(i, 0)c, by′(i, 1)c} and in the
case where by′(i − 1, 1)c 6= by′(i, 0)c holds, respectively the analogous statement for u′

or v′ holds, we can use the nearest neighbor edge between those vertices, which exists as
‖y′(i − 1, 1) − y′(i, 0)‖∞ < 1. So for each vertex that is touched by the shortest path
between u and v in G one one needs to make at most one additional step for the path
between u′ and v′ in G′, which implies that DG′(u

′, v′) ≤ 2DG(u, v) + 1. If one does not
restrict to the sets V = V n

0 and V ′ = V n′
0 , but works on the graph with vertex set Zd

instead, the same proof works.
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Lemma 4.2. For all β ≥ 0, n ∈ N>0, and u, v ∈ V n
0 , we have

Eβ
[
DV n0

(u, v)
]
≤ 6dEβ

[
DV n0

(0, (n− 1)e1)
]

(31)

and
Eβ
[
DV n0

(0, (n− 1)e1)
]
≤ 6Eβ

[
DV n0

(0, (n− 1)1)
]

. (32)

This lemma already has two interesting implications, that we want to discuss before
going to the proof.

Remark 4.3. Combining (31) and (32) already implies that for Λ(n, β) = maxu,v∈V n0 Eβ
[
DV n0

(u, v)
]
+

1 one has

Eβ
[
DV n0

(0, (n− 1)e1)
]

+ 1 ≤ Λ(n, β) ≤ 6dEβ
[
DV n0

(0, (n− 1)e1)
]

+ 1 and

Eβ
[
DV n0

(0, (n− 1)1)
]

+ 1 ≤ Λ(n, β) ≤ 36dEβ
[
DV n0

(0, (n− 1)1)
]

+ 1.

Remark 4.4. For all bounded sets K ⊂ R≥0 there exists a constant θ? > 0 such that for
all β ∈ K and all M,N large enough one has

Λ(MN,β) ≥M θ?Λ(N, β).

Proof. Remark 4.3 together with (21) already show the existence of such an θ? along a
subsequence of numbers of the form M = mk. Lemma 4.1 shows the result for all large
enough M .

Proof of Lemma 4.2. Using the triangle inequality and linearity of expectation we get for
all u, v ∈ V n

0 that

Eβ
[
DV n0

(u, v)
]
≤ Eβ

[
DV n0

(u,0)
]

+ Eβ
[
DV n0

(0, v)
]

and thus, in order to prove (31), it suffices to show that

Eβ
[
DV n0

(0, v)
]
≤ 3dEβ

[
DV n0

(0, (n− 1)e1)
]

(33)

for all v ∈ V n
0 . By symmetry, we can assume that p1(v) ≥ p2(v) ≥ . . . ≥ pd(v). For

k ∈ {0, . . . , d}, we define the vector v(k) ∈ V n
0 by

v(k) =

k∑
i=1

pi(v)ei,

i.e., the first k coordinates of v(k) equal the corresponding coordinates of v and all other
coordinates are 0. By the triangle inequality and linearity of expectation we clearly have

Eβ
[
DV n0

(0, v)
]
≤ Eβ

[
d−1∑
i=0

DV n0
(v(i), v(i+ 1))

]
=

d−1∑
i=0

Eβ
[
DV n0

(v(i), v(i+ 1))
]

.

So in order to show (33), it suffices to show that

Eβ
[
DV n0

(v(i), v(i+ 1))
]
≤ 3Eβ

[
DV n0

(0, (n− 1)e1)
]

(34)

for all i ∈ {0, . . . , d− 1}. For each such index i, the cube

Bi =

i∏
j=1

{pj(v)− pi+1(v), . . . , pj(v)} × {0, . . . , pi+1(v)}d−i
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v(0) v(1)

v(2)

Figure 3: Let v = (6, 3) ∈ V 8
0 . The points in the gray area are the

set V 8
0 . The points in the hatched area are B1.

is contained in the cube V n
0 and contains both points v(i) and v(i+1), which lie on adjacent

corners of the cube. See figure 3 for an example. Allowing the geodesic to use less edges
clearly increases the distance between two points, which implies DV n0

(v(i), v(i + 1)) ≤
DBi(v(i), v(i+ 1)) as Bi ⊂ V n

0 . As the model is invariant under changing the coordinates
and under the action ei 7→ −ei we already get for all i ∈ {0, . . . , d− 1}

Eβ [DBi(v(i), v(i+ 1))] = Eβ
[
D
V
pi+1(v)+1

0

(0, pi+1(v)e1)

]
≤ 3Eβ

[
DV n0

(0, (n− 1)e1)
]

,

where we used Lemma 4.1 for the last inequality. This shows (34) and thus finishes the
proof of (31). Now let us go to the proof of (32). Define y ∈ Zd by p1(y) = 1, pi(y) = −1
for i ≥ 2 and define the cube B by B = {n − 1, . . . , 2n − 2} × {0, . . . , n − 1}d−1. By the
triangle inequality we have

DV 2n−1
0

(0, (2n− 2)e1) ≤ DV n0
(0, (n− 1)1) +DB((n− 1)1, (2n− 2)e1). (35)

Observe that (2n− 2)e1 = (n− 1)1 + (n− 1)y. The pairs of vertices 0 and (n− 1)1 lie on
opposite corners of the cube V n

0 . The vertices (n− 1)1 and (2n− 2)e1 also lie on opposite
corners of the cube B. The two cubes V n

0 and B differ by a translation only; in particular,
they have the same side length. As the long-range percolation model is invariant under
translation and reflection of any coordinate the two terms in the sum (35) have the same
distribution which implies that

Eβ
[
DV 2n−1

0
(0, (2n− 2)e1)

]
≤ 2Eβ

[
DV n0

(0, (n− 1)1)
]

.

Using Lemma 4.1, we finally get

Eβ
[
DV n0

(0, (n− 1)e1)
]
≤ 3Eβ

[
DV 2n−1

0
(0, (2n− 2)e1)

]
≤ 6Eβ

[
DV n0

(0, (n− 1)1)
]

which shows (32).
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4.2 The second moment bound

The next lemma relates the second moment of the distances to their first moment. We
use a technique that has already been used in [33] before in a slightly different form for
dimension d = 1 only. As we need the result in a uniform dependence on β in section 11
below, we directly prove the uniform statement here. The uniformity does not cause any
complications for d ≥ 2, but it causes minor technical difficulties for d = 1. So we give a
separate proof for dimension d = 1 in section 12 below. The situation for d ≥ 2 is easier,
as there are no cut points, in the sense that for every u, v ∈ V n

0 there exist two disjoint
paths between u and v. For d = 1, and in particular for β < 1, such a statement will
typically not be true.

Lemma 4.5. For all β ≥ 0, there exists a constant Cβ < ∞ such that for all n ∈ N, all
ε ∈ [0, 1] and all u, v ∈ V n

0

Eβ+ε

[
DV n0

(u, v)2
]
≤ CβΛ(n, β + ε)2. (36)

Proof of Lemma 4.5 for d ≥ 2. Fix β ≥ 0. We will prove that for all ε ∈ [0, 1], all m,n ∈
N, and all u, v ∈ V mn

0

Eβ+ε

[
DVmn0

(u, v)2
]
≤ 170m4Λ(n, β + ε)2 + 170 max

w,z∈V n0
Eβ+ε

[
DV n0

(w, z)2
]

. (37)

Iterating over this inequality one gets for some large enough N that

max
u,v∈VmkN0

Eβ+ε

[
D
Vm

kN
0

(u, v)2
]

≤ 170m4
k∑
i=0

170iΛ(mk−iN, β + ε)2 + 170k max
u,v∈V N0

Eβ+ε

[
DV N0

(u, v)2
]

≤ 170m4
k∑
i=0

170iΛ(mk−iN, β + ε)2 + 170kN2. (38)

for all k ∈ N. By Remark 4.4 there exists θ? = θ?(β) > 0 such that for all ε ∈ [0, 1], and
all m,n ∈ N large enough one has

Λ(mn, β + ε) = max
u,v∈Vmn0

Eβ+ε

[
DVmn0

(u, v)
]

+ 1

≥ mθ?
(

max
u,v∈V n0

Eβ+ε

[
DV n0

(u, v)
]

+ 1

)
= mθ?Λ(n, β + ε).

Take m large enough so that also 170m−2θ? < 1
2 is satisfied. Inserting this into (38) gives

max
u,v∈VmkN0

Eβ+ε

[
D
Vm

kN
0

(u, v)2
]
≤ 170m4

k∑
i=0

170iΛ(mk−iN, β + ε)2 + 170kN2

≤ 170m4
k∑
i=0

170im−2θ?iΛ(mkN, β + ε)2 +N2Λ(mkN, β + ε)

≤
(
340m4 +N2

)
Λ(mkN, β + ε)2

for large enough N . This shows (36) along the subsequence N,mN,m2N, . . . . For
general n ∈ N, the desired result follows from Lemma 4.1. So we are left with show-
ing (37). For this, we use an elementary observation, that was already used in [33].
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Assume that X1, . . . , Xm̃ are independent non-negative random variables and let τ =
arg maxi∈{1,...,m̃} (Xi). Then

E

[(
max
i 6=τ

Xi

)2
]
≤ E

 m̃∑
i=1

Xi

∑
j 6=i

Xj

 =

m̃∑
i=1

∑
j 6=i
E [Xi]E [Xj ] ≤ m̃2 max

i
E [Xi]

2 . (39)

We still need to show inequality (37), i.e., that

Eβ+ε

[
DVmn0

(u, v)2
]
≤ 170m4Λ(n, β + ε)2 + 170 max

w,z∈V n0
Eβ+ε

[
DV n0

(w, z)2
]

.

Let u, v ∈ V mn
0 , say with u ∈ V n

x , v ∈ V n
y , where x, y ∈ V m

0 . Inequality (37) clearly
holds in the case where x = y. For the case x 6= y, let x0 = x, x1, . . . , xl = y and
x′0 = x, x′1, . . . , x

′
l′ = y be two completely disjoint and deterministic paths between x and

y inside V m
0 that are of length at most m + 1 and use only nearest-neighbor edges, i.e.,

‖xi − xi−1‖∞ = 1 and ‖x′i − x′i−1‖∞ = 1 for all suitable indices i. By completely disjoint
we mean that {x1, . . . , xl−1} ∩

{
x′1, . . . , x

′
l′−1

}
= ∅; the starting point x = x0 = x′0 and

the end point y = xl = x′l′ already need to agree by the construction. Now we iteratively
define sequences (Li, Ri)

l
i=0 and (L′i, R

′
i)
l′
i=0 as follows:

0. Set L0 = u,Rl = v.

1. For i = 1, . . . , l, choose Ri−1 ∈ V n
xi−1

and Li ∈ V n
xi such that ‖Ri−1 − Li‖∞ = 1.

Analogously, we define (L′i, R
′
i)
l′
i=0 by

0. Set L′0 = u,R′l′ = v.

1. For i = 1, . . . , l′, choose R′i−1 ∈ V n
x′i−1

and L′i ∈ V n
x′i

such that ‖R′i−1 − L′i‖∞ = 1.

The choice of these algorithms in step (1.) is typically not unique. If there are several
possibilities, we always choose the vertices with some deterministic rule that does not
depend on the environment. By construction we have Li, Ri ∈ V n

xi and L′i, R
′
i ∈ V n

x′i
for all

i ∈ {0, . . . , l}, respectively i ∈ {0, . . . , l′}. Define

Xi = DV nxi
(Li, Ri) for i ∈ {1, . . . , l − 1} and

X ′i = DV n
x′
i

(L′i, R
′
i) for i ∈ {1, . . . , l′ − 1}.

This are at most l − 1 + l′ − 1 ≤ 2m random variables and they are independent, as the
boxes V n

x′i
and V n

xi are disjoint. We order the random variables {Xi : i ∈ {1, . . . , l − 1}} ∪
{X ′i : i ∈ {1, . . . , l′ − 1}} in a descending way and call them Y1, Y2, . . . , Yl+l′−2. The idea
in finding a short path between u and v is now to avoid the box where the maximum of
the Yi-s is attained. Assume that the maximum of them is one of the Xi-s, i.e., Xi = Y1

for some i ∈ {1, . . . , l − 1}. Then we consider the path that goes from L′0 = v to R′0
and from there to L′1, and from there we go successively to R′l′ = v. Otherwise, we have
X ′i = Y1 for some i ∈ {1, . . . , l′−1}. In this situation, we consider the path that goes from
L0 = v to R0, from there to L1, and successively to Rl = v. In both cases we have have
constructed a path between u and v. The length of this path is an upper bound on the
chemical distance between u and v and thus we get

DVmn0
(u, v) ≤ DV nx (L0, R0) +DV nx (L′0, R

′
0) +DV ny (Ll, Rl) +DV ny (L′l′ , R

′
l′) +mY2 + (m+ 1),

(40)
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where the summand (m + 1) arises as one still needs to go from Ri to Li+1 for all i ∈
{0, . . . , l − 1}, or from R′i to L′i+1 for all i ∈ {0, . . . , l′ − 1}. But by assumption one has
l, l′ ≤ m+ 1, so one needs at most m+ 1 additional steps. From (39) we know that

Eβ+ε

[
Y 2

2

]
≤ 4m2 max

w,z∈V n0
Eβ+ε

[
DV n0

(w, z)
]2
. (41)

For the distance between L0 and R0 one clearly has

Eβ+ε

[
DV nx (L0, R0)2

]
≤ max

w,z∈V n0
Eβ+ε

[
DV n0

(w, z)2
]

and the same statements hold for DV nx (L′0, R
′
0), DV ny (Ll, Rl), and DV ny (L′l′ , R

′
l′). Using the

elementary inequality
(∑6

i=1 ai

)2
≤ 36

∑6
i=1 a

2
i that holds for any six numbers a1, . . . , a6 ∈

R for the term in (40), we get that

Eβ+ε

[
DVmn0

(u, v)2
]

≤ 36Eβ+ε

[
DV nx (L0, R0)2 +DV nx (L′0, R

′
0)2 +DV ny (Ll, Rl)

2 +DV ny (L′l′ , R
′
l′)

2 +m2Y 2
2 + (m+ 1)2

]
≤ 4 · 36 max

w,z∈V n0
Eβ+ε

[
DV n0

(w, z)2
]

+ 36m2Eβ+ε

[
Y 2

2

]
+ 6(m+ 1)2

(41)

≤ 170 max
w,z∈V n0

Eβ+ε

[
DV n0

(w, z)2
]

+ 170m4Λ(n, β + ε)2

which shows (37) and thus finishes the proof.

Corollary 4.6. Iterating this technique one can show that for all k ∈ N of the form k = 2l

and for all β > 0 there exists a constant Cβ <∞ such that for all n ∈ N, and all u, v ∈ V n
0

Eβ
[
DV n0

(u, v)k
]
≤ CβΛ(n, β)k. (42)

Then, one can extend this bound to all k ∈ R≥0 with Hölder’s inequality.

Proof of Corollary 4.6 for d ≥ 2. For r > 0, define the quantity

Λr(β, n) := max
x,y∈V n0

Eβ
[
DV n0

(x, y)r
]

and assume that Λr(β, n) ≤ CΛ(β, n)r for some constant C and all n ∈ N. Using the same
notation as in (40) above we get that for any u, v ∈ V mn

0 , say with u ∈ V n
x and y ∈ V n

y ,

DVmn0
(u, v) ≤ DV nx (L0, R0) +DV nx (L′0, R

′
0) +DV ny (Ll, Rl) +DV ny (L′l′ , R

′
l′) +mY2 + (m+ 1),

and thus we also get that

DVmn0
(u, v)2r ≤ 62r

(
DV nx (L0, R0)2r +DV nx (L′0, R

′
0)2r

+DV ny (Ll, Rl)
2r +DV ny (L′l′ , R

′
l′)

2r + (mY2)2r + (m+ 1)2r
)

.

We have that

Eβ
[
(mY2)2r

]
= m2rEβ

[
(Y r

2 )2
]
≤ m2r max

w,z∈V n0
Eβ
[
DV n0

(w, z)r
]2 ≤ m2rC2Λ(β, n)r
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and from here the same proof as in Lemma 4.5 shows that Λ2r(β, n) ≤ C(r)Λ(β, n)2r for
some constant C(r) <∞. Inductively, we thus get that for all r = 2k, with k ∈ N one has
Λr(β, n) ≤ C(r)Λ(β, n)r. Whenever r > 0 is not of the form r = 2k for some k ∈ N, let k
be large enough so that r < 2k. Then we get that

Λr(β, n) = max
x,y∈V n0

Eβ
[
DV n0

(x, y)r
]
≤ max

x,y∈V n0
Eβ
[
DV n0

(x, y)2k
] r

2k ≤ CΛ(β, n)r

for some constant C.

4.3 Graph distances between points and boxes

So far, we only considered distances between two different points in a box. In this section,
we investigate the distance between certain points and boxes. For n ∈ N and 0 < ι < 1

2

we define the boxes Lnι := [0, ιn]d and Rnι := [n− 1− ιn, n− 1]d. This are boxes that lie
in opposite corners of the cube V n

0 , where Lnι lies in the corner containing 0 and Rnι lies
in the corner containing 1. The next lemma deals with the graph distance of these two
boxes. A similar statement of Lemma 4.7 for the continuous model and d = 1, was already
proven in [33]. We follow the same strategy for the proof of this lemma. Again, we prove
it uniformly for β in some compact intervals, as we will need this uniform statement in
section 11. The uniformity does not make any complications in this proof here.

Lemma 4.7. For all β ≥ 0, there exists an ι > 0 such that uniformly over all ε ∈ [0, 1]
and n ∈ N

Eβ+ε

[
DV n0

(Lnι , R
n
ι )
]
≥ 1

2
Eβ+ε

[
DV n0

(0, (n− 1)1)
]

, (43)

and there exists c? > 0 such that uniformly over all ε ∈ [0, 1] and n ∈ N

Pβ+ε

(
DV n0

(Lnι , R
n
ι ) ≥ 1

4
Eβ+ε

[
DV n0

(0, (n− 1)1)
])
≥ c?. (44)

Proof. The statement clearly holds for small n, so we focus on n ∈ N large enough from
here on. Let x ∈ Lnι and y ∈ Rnι be the minimizers of DV n0

(Lnι , R
n
ι ), i.e., DV n0

(Lnι , R
n
ι ) =

DV n0
(x, y). If the minimizers are not unique, pick arbitrary ones in some fixed way not

depending on the environment. The choice of x, y, and the distance DV n0
(Lnι , R

n
ι ) depend

only on edges with at least one endpoint in V n
0 \ (Lnι ∪Rnι ). The distances DLnι (0, x),

respectively DRnι (y, (n−1)1), depend only on edges with both endpoints in Lnι , respectively
Rnι . Thus we get that

Eβ+ε

[
DV n0

(0, (n− 1)1)
]
≤ Eβ+ε

[
DRnι (0, x)

]
+ Eβ+ε

[
DV n0

(Lnι , R
n
ι )
]

+ Eβ+ε

[
DRnι (y, (n− 1)1)

]
≤ 2Λ(bιnc, β + ε) + Eβ+ε

[
DV n0

(Lnι , R
n
ι )
]
.

For ι small enough and n large enough, we get uniformly over ε ∈ [0, 1] that

Λ(n, β + ε) ≥
(

1

ι

)θ′
Λ(bιnc, β + ε)

for some θ′ > 0 by Remark 4.4. So by Lemma 4.2, respectively Remark 4.3, we can choose
ι small enough so that uniformly over n ∈ N large enough and ε ∈ [0, 1]

2Λ(bιnc, β + ε) ≤ 1

2
Eβ+ε

[
DV n0

(0, (n− 1)1)
]

,
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and this implies that

Eβ+ε

[
DV n0

(Lnι , R
n
ι )
]
≥ Eβ+ε

[
DV n0

(0, (n− 1)1)
]
− 2Λ(bιnc, β + ε)

≥ 1

2
Eβ+ε

[
DV n0

(0, (n− 1)1)
]

which proves (43). For such an ι, defineA =
{
DV n0

(Lnι , R
n
ι ) ≥ 1

4Eβ+ε

[
DV n0

(0, (n− 1)1)
]}

.
By the Cauchy-Schwarz inequality we have

Eβ+ε

[
DV n0

(0, (n− 1)1)
]
≤ 2Eβ+ε

[
DV n0

(Lnι , R
n
ι )
]

= 2Eβ+ε

[
DV n0

(Lnι , R
n
ι )1AC

]
+ 2Eβ+ε

[
DV n0

(Lnι , R
n
ι )1A

]
≤ 1

2
Eβ+ε

[
DV n0

(0, (n− 1)1)
]

+ 2Eβ+ε

[
DV n0

(0, (n− 1)1)2
]1/2√Pβ+ε (A)

≤ 1

2
Eβ+ε

[
DV n0

(0, (n− 1)1)
]

+ C ′Eβ+ε

[
DV n0

(0, (n− 1)1)
]√

Pβ+ε (A),

where the last inequality holds for some C ′ <∞, by Lemma 4.2 and Lemma 4.5. Solving
the previous line of inequalities for Pβ+ε (A) shows (44).

Lemma 4.8. For all β ≥ 0 and all dimensions d, there exists a constant c1 > 0 such that
uniformly over all n ∈ N and all x ∈ Sn

Eβ
[
DBn(0)(0, x)

]
≥ c1Eβ

[
DV n0

(0, (n− 1)1)
]

(45)

and the constant c1 can be chosen in such a way so that it only depends on the dimension
d and the value ι > 0 in (43).

Proof. Let v ∈ Sn be one of the minimizers of y 7→ Eβ
[
DBn(0)(0, y)

]
among all vertices

y ∈ Sn. By reflection symmetry, we can assume that all coordinates of v are non-negative.
With the notation e0 = ed we define the vectors v0, . . . , vd−1 by

〈ej , vi〉 = 〈ei+j mod d, v〉

which are just versions of the vector v, where we cyclically permuted the coordinates. By
invariance under changes of coordinates, we have

Eβ
[
DBn(0)(0, v)

]
= Eβ

[
DBn(0)(0, vi)

]
for all i ∈ {0, . . . , d− 1}. Define the vertices u0, . . . , ud by uj =

∑j
i=1 vi. By our construc-

tion we have u0 = 0 and ud =
∑d

i=1 vi = N1 for some integer N ≥ n. The balls Bn(ui)
are all contained in the cube Υ = {−n, . . . , N + n}d for all i ∈ {0, . . . , d}. Thus we have

Eβ [DΥ(0, N1)] ≤
d−1∑
i=1

Eβ [DΥ(ui−1, ui−1 + vi1)] ≤ dEβ
[
DBn(0)(0, v)

]
,

and by translation invariance we also have for the cube Υ1 = {0, . . . , 2n+N}d

Eβ [DΥ1(n1, (n+N)1)] ≤ d Eβ
[
DBn(0)(0, v)

]
.

Using the triangle inequality, we see that for all k ∈ N the expected distance between n1
and (n+ kN)1 inside the cube Υk = {0, . . . , 2n+ kN}d is upper bounded by

Eβ [DΥk(n1, (n+ kN)1)] ≤ k · d Eβ
[
DBn(0)(0, v)

]
.
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But Lemma 4.1 also gives that for s = n
kN+2n and w1 = bsn1c, w2 = bs(n+ kN)1c

Eβ
[
DV n0

(w1, w2)
]
≤ 3k · d Eβ

[
DBn(0)(0, v)

]
.

As N ≥ n, for each fixed ι > 0 we can choose k large enough so that w1 ∈ Lnι and w2 ∈ Rnι
and thus Eβ

[
DV n0

(w1, w2)
]
≥ Eβ

[
DV n0

(Lnι , R
n
ι )
]
. Then we get by the lower bound on the

expected distance between the boxes Lnι and Rnι (43) that for such a k

Eβ
[
DBn(0)(0, v)

]
≥ 1

3kd
Eβ
[
DV n0

(w1, w2)
]
≥ 1

3kd
Eβ
[
DV n0

(Lnι , R
n
ι )
]

(43)

≥ 1

6kd
Eβ
[
DV n0

(0, (n− 1)1)
]

which finishes the proof, as v ∈ Sn was assumed to minimize the expected distance
Eβ
[
DBn(0)(0, y)

]
among all vertices y ∈ Sn.

Lemma 4.9. For all dimensions d and all β > 0, there exists an η ∈
(
0, 1

2

)
such that

uniformly over all n ∈ N and all x ∈ Sn

Eβ
[
DBn(0) (Bηn(0), Bηn(x))

]
≥ c1

2
Λ(n, β) (46)

where c1 is the constant from (45) and there exists a constant c2 such that

Pβ
(
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4
Λ(n, β)

)
≥ c2. (47)

Furthermore, for each β ≥ 0 there exist constants c3 > 0 such that

Pβ
(
D
(
Bn(0), B2n(0)C

)
≥ c1

4
Λ(n, β)

)
≥ c3 (48)

uniformly over all n ∈ N.

Note that in the above lemma, for x ∈ Sn the box Bηn(x) is not completely con-
tained inside Bn(0), but from the definition of DBn(0) (·, ·), we only consider the part that
intersects Bn(0).

Proof. Given the results of Lemma 4.8, the proof of (46) and (47) works in the same way
as the proof of Lemma 4.7 and we omit it. Regarding the statement of (48), we will first
prove that for η > 0 small enough

Pβ
(
D
(
Bηn(0), Bn(0)C

)
≥ c1

4
Λ(n, β)

)
≥ c4 (49)

for some constant c4 > 0 and uniformly over all n ∈ N. For this, we use the FKG
inequality, see [62, Section 1.3] or [43, 56] for the original papers. We can cover the set⋃
x∈Sn Bηn(x) with uniformly (in n) finitely many sets of the form Bηn(x). For example,

we have ⋃
x∈Sn:
〈x,e1〉=n

Bηn(x) ⊂
⋃
x∈F

Bηn(x)

where F =
{
ne1 +

∑d
i=2 kiei : ki ∈

{
−
⌈

n
dηne

⌉
, . . . ,

⌈
n
dηne

⌉}
for all i ∈ {2, . . . , d}

}
, and all

other faces of the set
⋃
x∈Sn Bηn(x) can be covered in a similar way. Suppose that A′n ⊂ Sn

is a sequence of finite sets with supn |A′n| =: A′ <∞ such that⋃
x∈Sn

Bηn(x) =
⋃
x∈A′n

Bηn(x)
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for all n ∈ N. So in particular we have{
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4
Λ(n, β) for all x ∈ Sn

}
=
{
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4
Λ(n, β) for all x ∈ A′n

}
.

The events
{
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4 Λ(n, β)
}

are decreasing for all x ∈ Sn in the
sense that they are stable under the deletion of edges. Thus the FKG inequality and (47)
imply that that

Pβ
(
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4
Λ(n, β) for all x ∈ Sn

)
=Pβ

(
DBn(0) (Bηn(0), Bηn(x)) ≥ c1

4
Λ(n, β) for all x ∈ A′n

)
≥ c|A

′
n|

2 ≥ cA′2 .

Assume that there is no direct edge from [−(n− ηn), (n− ηn)]d to Zd \ [−n, n]d. This has
a uniform positive probability in n and is also a decreasing event. Then any path from
Bηn(0) to Bn(0)C goes through at least one box Bηn(x)∩Bn(0) for some x ∈ Sn. So with
another application of the FKG inequality we get that

Pβ
(
D
(
Bηn(0), Bn(0)C

)
≥ c1

4
Λ(n, β)

)
≥ c5

for some c5 > 0 and uniformly over all n ∈ N. Next, let An ⊂ Bn(0) be a sequence of sets
such that

⋃
x∈An Bηn(x) = Bn(0) and supn |An| =: A < ∞. Then D

(
Bn(0), B2n(0)C

)
<

c1
4 Λ(n, β) already implies that there exists a point x ∈ An such that D

(
Bηn(x), Bn(x)C

)
<

c1
4 Λ(n, β). By another application of the FKG inequality we have

Pβ
(
D
(
Bn(0), B2n(0)C

)
≥ c1

4
Λ(n, β)

)
≥ Pβ

(
D
(
Bηn(x), Bn(x)C

)
≥ c1

4
Λ(n, β) for all x ∈ An

)
≥ c|An|5 ≥ cA5

which proves (48).

Lemma 4.10. For all β ≥ 0 and all ε > 0, there exist 0 < c < C <∞ such that

Pβ
(
cΛ(n, β) ≤ D

(
0, Bn(0)C

)
≤ CΛ(n, β)

)
> 1− ε (50)

for all n ∈ N.

Similar statements for one dimension and the continuous model were already proven
in [33]. We follow a similar strategy here.

Proof. By the inequality D
(
0, Bn(0)C

)
≤ DV n+2

0
(0, (n+ 1)1) we get that

Eβ
[
D
(
0, Bn(0)C

)]
≤ Λ(n+ 2, β) ≤ Λ(n, β) + 2.

Using Markov’s inequality we see that

Pβ
(
D(0, Bn(0)C) > CΛ(n, β)

)
≤ Λ(n, β) + 2

CΛ(n, β)
,

and thus the probability Pβ
(
D(0, Bn(0)C) ≤ CΛ(n, β)

)
can be made arbitrarily close to

1 by taking C large enough. We will also refer to this case as the upper bound. The
probability of the lower bound Pβ (cΛ(n, β)) ≤ D(0, Bn(0)C) can be made arbitrarily close
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to 1 for small n by taking c small enough. So we will always focus on n large enough from
here on. Fix K,N ∈ N>1 such that the function i 7→ Λ

(
K2iN, β

)
is increasing in i. This

is possible by Remark 4.4. We now consider boxes of the form BK2iN (0). The probability
of a direct edge from BK2(i−1)N (0) to BK2iN (0)C equals the probability of a direct edge
between 0 and BK2(0)C , and is by (6) bounded by β50dK−2. So the probability that there
is some i ∈ {1, . . . ,K} for which there is a direct edge from BK2(i−1)N (0) to BK2iN (0)C

is bounded by β50dK−1. We denote the complement of this event by A. Conditioned
on the event A, where there exists no edge between BK2(i−1)N (0) and BK2iN (0)C for all
i ∈ {1, . . . ,K}, each path from BN (0) to BK2KN (0) needs to cross all the distances from
BK2(i−1)N (0) to B2K2(i−1)N (0)C . For odd i, these distances are independent. Remember
that i 7→ Λ

(
K2iN, β

)
is increasing in i. So conditioned on the event A we have the bound

Pβ
(
D
(
0, BK2KN (0)C

)
<
c1

4
Λ(N, β)

∣∣∣A)
≤ Pβ

(
D
(
BK2(i−1)N (0), B2K2(i−1)N (0)C

)
<
c1

4
Λ
(
K2(i−1)N, β

)
∀i ∈ {1, . . . ,K} odd

∣∣∣A)
=

k∏
i=1:
i odd

Pβ
(
D
(
BK2(i−1)N (0), B2K2(i−1)N (0)C

)
<
c1

4
Λ
(
K2(i−1)N, β

) ∣∣∣A)

≤
k∏

i=1:
i odd

Pβ
(
D
(
BK2(i−1)N (0), B2K2(i−1)N (0)C

)
<
c1

4
Λ
(
K2(i−1)N, β

))
≤ (1− c3)b

K
2
c,

where the second last inequality holds because of FKG, as events of the form {D(·, ·) < x}
are increasing and A is decreasing, and where c3 is the constant from (48). Thus we have
that

Pβ
(
D
(
0, BK2KN (0)C

)
<
c1

4
Λ(N, β)

)
≤ Pβ

(
D
(
0, BK2KN (0)C

)
<
c1

4
Λ(N, β)

∣∣∣A)+ Pβ
(
AC
)
≤ (1− c3)b

K
2
c + β50dK−1

and this quantity can be made arbitrary small by suitable choice of K. To finish the proof,
remember that Λ(N, β) and Λ

(
K2KN, β

)
are off by a factor of at most K2K , as

Λ (N, β) ≤ Λ
(
K2KN, β

) (10)

≤ Λ
(
K2K , β

)
Λ (N, β) ≤ K2KΛ (N, β) .

Thus we have

Pβ
(
D
(
0, BK2KN (0)C

)
<

c1

4K2K
Λ(K2KN, β)

)
≤ Pβ

(
D
(
0, BK2KN (0)C

)
<
c1

4
Λ(N, β)

)
≤ (1− c3)b

K
2
c + β50dK−1.

Now, for fixed ε > 0, take K large enough so that (1− c3)b
K
2
c + β50dK−1 < ε. For n ∈ N

large enough with n > K2K , let N be the largest integer for which K2KN ≤ n. We know
that K2KN ≤ n ≤ K2K2N and this also yields, by Lemma 4.1, that

Λ(n, β) ≤ 3Λ
(
K2K2N, β

)
≤ 6Λ

(
K2KN, β

)
which already implies

Pβ
(
D
(
0, Bn(0)C

)
<

c1

24K2K
Λ(n, β)

)
≤ Pβ

(
D
(
0, Bn(0)C

)
<

c1

4K2K
Λ(K2KN, β)

)
≤ Pβ

(
D
(
0, BK2KN (0)C

)
<

c1

4K2K
Λ(K2KN, β)

)
≤ (1− c3)b

K
2
c + β50dK−1 ≤ ε.
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The previous lemma tells us that for fixed β > 0 all quantiles of D
(
0, Bn(0)C

)
are of or-

der Λ(n, β). We want to prove a similar statement for the quantiles of D
(
Bn(0), B2n(0)C

)
.

However, an analogous statement can not be true, as there is a uniform positive proba-
bility of a direct edge between Bn(0) and B2n(0)C . But if we condition on the event that
there is no such direct edge, the statement still holds.

Lemma 4.11. Let L be the event that there is no direct edge between Bn(0) and B2n(0)C .
For all β > 0 and all ε > 0, there exist 0 < c < C <∞ such that

Pβ
(
cΛ(n, β) ≤ D(Bn(0), B2n(0)C) ≤ CΛ(n, β)

∣∣ L) > 1− ε (51)

for all n ∈ N.

Proof. From Markov’s inequality we know that

Eβ
[
D(Bn(0), B2n(0)C)

]
≤ Eβ [D(n1, (2n+ 1)1)]

≤ Eβ
[
DV n1

(n1, (2n− 1)1)
]

+ 2 ≤ Λ(n, β) + 1,

and thus the probability Pβ
(
D(Bn(0), B2n(0)C) ≤ CΛ(n, β)

∣∣ L) can be made arbitrarily
close to 1 by taking C large enough. For the lower bound, we first consider integers of
the form Nk = MkN0, where we fix M ∈ N first. Let M be the smallest natural number
such that M ≥ 100 and Λ(M,β) ≤ M

10 . The inequality Λ(M,β) ≤ M
10 holds for large

enough M , as Λ(M,β) asymptotically grows like a power of M that is strictly less than
one, see section 2.2. As β is fixed for the rest of the proof, we simply write Λ(n) for
Λ(n, β). We write Cn for the annulus B2n(0) \ Bn(0). Let Aδ denote the event that for
all vertices x ∈ CMN for which there exists an edge e = {x, y} with ‖x − y‖∞ ≥ N one
has D

(
x,CCMN ;ωe−

)
≥ δΛ(MN). We will now show that the probability of the event Aδ

converges to 1 as δ → 0. Remember that Λ(MN) and Λ(N) differ by a factor of at most
M . Let us first consider the event that for some δ1 > 0 there exists a vertex incident
to a long edge in one of the boundary regions of thickness δ1N of CMN , Formally, for
δ1 ∈

(
0, 1

2

)
, we define the boundary region ∂δ1CMN of CMN by

∂δ1CMN = {BMN+δ1N (0) \BMN (0)} ∪ {B2MN (0) \B2MN−δ1N (0)} .

The set ∂δ1CMN has a size of at most 4dδ1N (5MN)d−1, as one needs to fix one of the coor-
dinates within the interval (MN,MN + δ1N ], respectively in the interval (2MN − δ1N, 2MN ],
or one of the reflections of these intervals, and then has at most 4MN + 1 possibilities for
each of the remaining d− 1 coordinates. Combining this gives∣∣∣∂δ1CMN

∣∣∣ ≤ (4dδ1N)(4MN + 1)d−1 ≤ 4dδ1N(5MN)d−1.

The probability that a vertex is incident to some edge of length ≥ N is proportional to
β
Nd as shown in (6). So together with (6) we get that

Pβ
(
∃x ∈ ∂δ1CMN , y ∈ BN−1(x)C : x ∼ y

)
≤ 4dδ1N(5MN)d−1Pβ (0 ∼ S≥N )

≤ δ1 · 4d(5MN)dβ50dN−d ≤ δ1 · β
(
103M

)d
.

Furthermore, the expected number of points x ∈ CMN which are incident to a long edge
is bounded by

Eβ
[∣∣{x ∈ CMN : x ∼ BN−1(x)C}

∣∣] ≤ ∑
x∈CMN

∑
y∈BN−1(x)C

Pβ(x ∼ y)
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≤ |CMN |
∑

y∈BN−1(0)C

Pβ(0 ∼ y)
(9)

≤ (5MN)dβ50dN−d ≤ β(250M)d. (52)

where the second last inequality holds as |CMN | ≤ (4MN + 1)d ≤ (5MN)d, and because
the sum

∑
y∈BN−1(0)C Pβ(0 ∼ y) can be upper bounded by β50dN−d in the exact same

way as in (9). As the existence of an edge {x, y} with |{x, y}| ≥ N and the distance
D
(
x,Bδ1N (x)C ;ω{x,y}−

)
are independent random variables, we get with a union bound

that

Pβ
(
∃x ∈ CMN , y ∈ BN−1(x)C : x ∼ y,D

(
x,Bδ1N (x)C ;ω{x,y}−

)
< δΛ(MN)

)
≤

∑
x∈CMN

∑
y∈BN−1(x)C

Pβ(x ∼ y)Pβ
(
D
(
x,Bδ1N (x)C

)
< δΛ(MN)

)
≤ β(250M)dPβ

(
D
(
0, Bδ1N (0)C

)
< δΛ(MN)

)
where we used (52) for the last inequality. Thus we also get that

Pβ
(
ACδ
)

= Pβ
(
∃x ∈ CMN , y ∈ BN−1(x)C : x ∼ y,D

(
x,CCMN ;ω{x,y}−

)
< δΛ(MN)

)
≤ Pβ

(
∃x ∈ ∂δ1CMN , y ∈ BN−1(x)C : x ∼ y

)
+ Pβ

(
∃x ∈ CMN , y ∈ BN−1(x)C : x ∼ y,D

(
x,Bδ1N (x)C ;ω{x,y}−

)
< δΛ(MN)

)
≤ δ1β

(
103M

)d
+ β(250M)dPβ

(
D
(
0, Bδ1N (0)C

)
< δΛ(MN)

)
(53)

and this converges to 0 as δ → 0, for an appropriate choice of δ1(δ), by Lemma 4.10
uniformly over N ∈ N. We write f(δ) for the supremum of Pβ

(
ACδ
)

over all N ∈ N and
for A,B ⊂ V , we write D? (A,B) for the indirect distance between A and B, i.e., the
length of the shortest path between A and B that does not use a direct edge between A
and B. Now assume that D?

(
BMN (0), B2MN (0)C

)
< δΛ(MN). We now consider the

path between BMN (0) and B2MN (0)C that achieves this distance. Either this path uses
some long edge (of length greater than N−1), or it only jumps from one block of the form
V N
v to directly neighboring blocks. The probability that there exists a point x ∈ CMN

and a long edge e incident to it such that D
(
x,CCMN ;ωe−

)
< δΛ(MN) is relatively small

by (53). Any path that does not use long edges can only do jumps between neighboring

blocks of the form V N
v . Say the path uses the blocks

(
V N
v′i

)L′
i=0

. Consider the loop-erased

trace of this walk on the blocks, i.e., say that the path uses the blocks
(
V N
vi

)L
i=0
⊂ CMN

with ‖vi − vi−1‖∞ = 1 and never returns to V N
vi after going to V N

vi+1
. There need to be

at least M
3 transitions between blocks of the form V N

ui and V N
wi with ‖ui − wi‖∞ = 2 and

ui, wi ∈ {v0, . . . , vL}, as the path needs to walk a distance in the infinity-norm of at least
MN . So in particular we have

dM/3e∑
i=1

D?
B2MN (0)

(
V N
ui , V

N
wi

)
≤ D?

B2MN (0)

(
BMN (0), B2MN (0)C

)
< δΛ(MN,β) ≤ δΛ(M,β)Λ(N, β) ≤ M

10
δΛ(N, β)

where we used our assumption on M for the last step. So in particular there need to be at
least two transitions between V N

ui and V N
wi that satisfy DB2MN (0)

(
V N
ui , V

N
wi

)
< δΛ(N, β).

In fact, there need to be some linear number in M many such transitions, but two are
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sufficient for our purposes here. All these transitions need to be disjoint, as shortest paths
never use the same edge twice. Thus we get by the BK inequality (see [62, Section 1.3]
or [15,87]) that

Pβ

dM/3e∑
i=1

D?
B2MN (0)

(
V N
ui , V

N
wi

)
≤ M

10
δΛ(N)

 ≤M2

(
min
i
Pβ
(
D?
B2MN (0)

(
V N
ui , V

N
wi

)
< δΛ(N)

))2

.

For each combination of vectors ui, wi with ‖ui − wi‖∞ = 2, we can translate and rotate
the boxes V N

ui and V N
wi to boxes T

(
V N
ui

)
and T

(
V N
wi

)
in such a way that T

(
V N
ui

)
⊂ BN (0)

and T
(
V N
wi

)
⊂ B2N (0)C . By translational and rotational invariance of our long-range

percolation model, this already implies that

min
i
Pβ
(
D?
B2MN (0)

(
V N
ui , V

N
wi

)
< δΛ(N)

)
≤ Pβ

(
D?
B2N (0)

(
BN (0), B2N (0)C

)
< δΛ(N)

)
.

There are at most
(
(5M)d

)
! choices for possible choice of vertices v0, v1, . . . , vL, as there are

at most (5M)d possibilities for v0 and (5M)d− 1 possibilities for v1 and so on. Overall we
see that the probability that there exists an indirect path between BMN (0) and B2MN (0)C

of length δΛ(MN), which jumps between neighboring blocks of the form V N
v only, is

bounded by (
5Md

)
!M2Pβ

(
D?
B2N (0)

(
BN (0), B2N (0)C

)
< δΛ(N)

)2
.

We write S for the constant
(
5Md

)
!M2. Thus we get that

Pβ
(
D?
B2MN (0)

(
BMN (0), B2MN (0)C < δΛ(MN)

))
≤ SPβ

(
D?
B2N (0)

(
BN (0), B2N (0)C

)
< δΛ(N)

)2
+ Pβ

(
ACδ
)

.

We define the sequence (an)n∈N by

a0 = Pβ
(
D?
B2N (0)

(
BN (0), B2N (0)C

)
< δΛ(N)

)
and an+1 = Sa2

n + f(δ). Inductively it follows that

Pβ
(
D?
B

2MkN
(0)

(
BMkN (0), B2MkN (0)C

)
< δΛ(MkN)

)
≤ ak

for all k ∈ N. For f(δ) < 1
4S , the equation a = Sa2 + f(δ) has the two solutions

a− =
1−

√
1− 4Sf(δ)

2S
and a+ =

1 +
√

1− 4Sf(δ)

2S
>

1

2S
.

For a0 ∈ [0, a+), and thus in particular for a0 ∈
[
0, 1

2S

]
, the sequence an converges to

a− =
1−
√

1−4Sf(δ)

2S ≈ f(δ) and thus we get

lim sup
k→∞

Pβ
(
D?
B

2MkN
(0)

(
BMkN (0), B2MkN (0)C

)
< δΛ(MkN)

)
≤ a− .

For fixed N ∈ N, the requirement

a0 = Pβ
(
D?
B2N (0)

(
BN (0), B2N (0)C

)
< δΛ(N)

)
≤ 1

2S

is satisfied for small enough δ > 0 and this shows (51) along the subsequence Nk = MkN .
To get the statement for all integer numbers, one can use Lemma 4.1 and the fact that
Λ(n) ≤ Λ(mn) ≤ mΛ(n) for all integers m,n.
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With the same technique as above one can also prove that the indirect distance between
V n
0 and the set Bn (V n

0 )C =
{
x ∈ Zd : D∞(x, V n

0 ) > n
}

=
⋃
u∈Zd:‖u‖∞≥2 V

n
u scales like

Λ(n, β).

Corollary 4.12. For all β ≥ 0 and ε > 0 there exist 0 < cε < Cε <∞ such that

Pβ
(
cεΛ(n, β) ≤ D?

(
V n
0 , Bn (V n

0 )C
)
≤ CεΛ(n, β)

)
≥ 1− ε .

5 The proof of Theorem 1.1

We first give an outline of the proof of Theorem 1.1. In Lemma 4.10, we showed that

D
(
0, Bn (0)C

)
≈P Λ(n, β), and Lemma 4.2 shows that Λ(n, β) ≈ Eβ

[
DV n0

(0, (n− 1)e1)
]
,

meaning that the ratio of these two expressions is uniformly bounded from below and
above by constants 0 < c < C < ∞. In Lemma 5.5 below we prove supermultiplicativity
of Λ(n, β). Together with the submultiplicativity proven in Lemma 2.3 this shows that for
each β ≥ 0 there exists cβ > 0 such that cβΛ(m,β)Λ(n, β) ≤ Λ(mn, β) ≤ Λ(m,β)Λ(n, β).
We define ak = log

(
Λ(2k, β)

)
. The sequence is subadditive and thus

θ(β) = lim
k→∞

log(Λ(2k, β))

log(2k)
= lim

k→∞

ak
log(2)k

= inf
k∈N

ak
log(2)k

exists, where the last inequality holds because of Fekete’s Lemma. On the other hand, the
sequence bk = log(cβΛ(2k, β)) satisfies

bk+l = log(cβΛ(2k+l, β)) ≥ log(cβΛ(2k, β)cβΛ(2l, β)) = bk + bl

and thus

θ(β) = lim
k→∞

log(cβΛ(2k, β))

log(2k)
= lim

k→∞

bk
log(2)k

= sup
k∈N

bk
log(2)k

.

This already implies that

2kθ(β) ≤ Λ(2k, β) ≤ c−1
β 2kθ(β)

for all k ∈ N. These two inequalities can be extended from points of the form 2k to all
integers with Lemma 4.1. So there exists a constant 0 < C ′β <∞ such that for all n ∈ N

1

C ′β
nθ(β) ≤ Λ(n, β) ≤ C ′βnθ(β).

which shows (1). So we still need to prove supermultiplicativity of Λ(·, β) in order to prove
the first item in Theorem 1.1. The second item of Theorem 1.1, i.e., the bounds on the
diameter of cubes (2), we show in section 5.3.

5.1 Distances between certain points

In this chapter, we examine the typical behavior of distances between points that are
connected to long edges. In Lemma 5.1, we consider the infinity distance between such
points. Using a coupling argument with the continuous model, we compare the situation to
the situations occurring in Lemma 2.4 and Lemma 2.5. Then, in Lemma 5.2 we translate
these bounds on the infinity distance into bounds on the typical graph distance between
points that are incident to long edges.

Fix the three blocks V n
u , V

n
w and V n

0 with ‖u‖∞ ≥ 2. The next lemma deals with the
infinity distance between points x, y ∈ V n

0 with x ∼ V n
u , y ∼ V n

w .
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Lemma 5.1. For all 1
n < ε ≤ 1

4 and u,w ∈ Zd \ {0} with ‖u‖∞ ≥ 2 one has

Pβ
(
∃x, y ∈ V n

0 : ‖x− y‖∞ ≤ εn, x ∼ V n
u , y ∼ V n

w

∣∣ V n
0 ∼ V n

u , V
n
0 ∼ V n

w

)
≤ C ′dε1/2dβe2

where C ′d is a constant that depends only on the dimension d.

Proof. Let E be the symmetrized Poisson process constructed in subsection 1.2 about the
continuous model, i.e., Ẽ is a Poisson process on Rd × Rd with intensity β

2‖t−s‖2d and E is

defined by E :=
{

(s, t) ∈ Rd × Rd : (t, s) ∈ Ẽ
}
∪Ẽ . Now we place an edge between x, y ∈ Zd

if and only if

(x+ C)× (y + C) ∩ nE 6= ∅

and call this graph G = (V,E). The distribution of the resulting graph is identical to Pβ
by the dilation invariance of E . We can do the same procedure for b 1

2ε − 1cE , i.e., place
an edge between x′, y′ ∈ Zd if and only if

(x′ + C)× (y′ + C) ∩
⌊ 1

2ε
− 1
⌋
E 6= ∅

and call the resulting graph G′ = (V ′, E′). Now assume that in the graph G there exist
x, y ∈ V n

0 with ‖x− y‖∞ ≤ εn such that x ∼ V n
u and y ∼ V n

w in G. Then there exist

xc ∈ x+ C, uc ∈ nu+ [0, n)d , yc ∈ y + C, wc ∈ nw + [0, n)d

with (xc, uc), (yc, wc) ∈ nE . We also have ‖xc − yc‖∞ ≤ εn + 1 ≤ 2εn. Now we rescale

the process from size n to size b 1
2ε − 1c. For (x̃c, ũc) =

b 1
2ε
−1c
n (xc, uc) and (ỹc, w̃c) =

b 1
2ε
−1c
n (yc, wc) we have

(x̃c, ũc) ∈

b 1
2ε − 1c
n

x+

[
0,
b 1

2ε − 1c
n

)d×(⌊ 1

2ε
− 1
⌋
u+

[
0,
⌊ 1

2ε
− 1
⌋)d) ∩ ⌊ 1

2ε
− 1
⌋
E ,

(ỹc, w̃c) ∈

b 1
2ε − 1c
n

y +

[
0,
b 1

2ε − 1c
n

)d×(⌊ 1

2ε
− 1
⌋
w +

[
0,
⌊ 1

2ε
− 1
⌋)d) ∩ ⌊ 1

2ε
− 1
⌋
E .

From the rescaling we also have ‖x̃c − ỹc‖∞ ≤ 2εb 1
2ε − 1c < 1. So in particular there

are vertices x′, y′ ∈
{

0, . . . , b 1
2ε − 1c − 1

}d
with x′ ∼ V

b 1
2ε
−1c

u , y′ ∼ V
b 1

2ε
−1c

w in G′, and
‖x′ − y′‖∞ ≤ 1. Write N = b 1

2ε − 1c. From (18) and (19) we get

Pβ
(
∃x, y ∈ V N

0 : ‖x− y‖∞ ≤ 1, x ∼ V N
u , y ∼ V N

w

∣∣∣ V N
0 ∼ V N

u , V N
0 ∼ V N

w

)
≤ Cddβe2

N1/2
=

Cddβe2

b 1
2ε − 1c1/2

≤ C ′dε1/2dβe2

for some C ′d <∞. With the coupling argument from before we thus also get

Pβ
(
∃x, y ∈ V n

0 : ‖x− y‖∞ ≤ εn, x ∼ V n
u , y ∼ V n

w

∣∣ V n
0 ∼ V n

u , V
n
0 ∼ V n

w

)
≤ Pβ

(
∃x, y ∈ V N

0 : ‖x− y‖∞ ≤ 1, x ∼ V N
u , y ∼ V N

w

∣∣∣ V N
0 ∼ V N

u , V N
0 ∼ V N

w

)
≤ C ′dε1/2dβe2.
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Lemma 5.2. For all dimensions d and all β ≥ 0, there exists a function g1(ε) with
g1(ε) −→

ε→0
1 such that for all u,w ∈ Zd \ {0} with ‖u‖∞ ≥ 2 and all large enough n ≥ n(ε)

Pβ
(
DV n0

(x, y) > εΛ(n, β) for all x, y ∈ V n
0 with x ∼ V n

u , y ∼ V n
w

∣∣ V n
u ∼ V n

0 ∼ V n
w

)
≥ g1(ε).

Proof. We write Pu,wβ (·) for the conditional probability measure Pβ
(
·
∣∣ V n

u ∼ V n
0 ∼ V n

w

)
.

As β is fixed throughout the rest of the proof, we write Λ(n) for Λ(n, β). We define the
event

A(K, ε1, ε) = {‖x− y‖∞ > ε1n for all x, y ∈ V n
0 with x ∼ V n

u , y ∼ V n
w }

∩
{
DV n0

(
x,Bε1n(x)C

)
> εΛ(n) for all x ∈ V n

0 with x ∼ V n
u

}
∩ {|{x ∈ V n

0 : x ∼ V n
u }| ≤ K}

and observe that{
DV n0

(x, y) > εΛ(n) for all x, y ∈ V n
0 with x ∼ V n

u , y ∼ V n
w

}
⊃ {A(K, ε1, ε)} .

Thus it suffices to show that Pu,wβ (A(K, ε1, ε)) converges to 1 as ε→ 0 for an appropriate

choice of K = K(ε), ε1 = ε1(ε). Respectively, we want to show that Pu,wβ
(
A(K, ε1, ε)

C
)

converges to 0. We have that

A(K, ε1, ε)
C = {|{x ∈ V n

0 : x ∼ V n
u }| > K}

∪ {‖x− y‖∞ < ε1n for some x, y ∈ V n
0 with x ∼ V n

u , y ∼ V n
w }

∪
({

DV n0

(
x,Bε1n(x)C

)
≤ εΛ(n) for some x ∈ V n

0 with x ∼ V n
u

}
∩ {|{x ∈ V n

0 : x ∼ V n
u }| ≤ K}

)
and thus we get with Lemma 5.1 that

Pu,wβ
(
A(K, ε1, ε)

C
)
≤ Pu,wβ (|{x ∈ V n

0 : x ∼ V n
u }| > K) + C ′dε

1/2
1 dβe

2

+ Pu,wβ
({
DV n0

(
x,Bε1n(x)C

)
≤ εΛ(n) for some x ∈ V n

0 with x ∼ V n
u

}
∩ {|{x ∈ V n

0 : x ∼ V n
u }| ≤ K}

)
≤ Pu,wβ (|{x ∈ V n

0 : x ∼ V n
u }| > K) + C ′dε

1/2
1 dβe

2 +KPβ
(
D
(
0, Bε1n(0)C

)
≤ εΛ(n)

)
.

The expression Pu,wβ (|{x ∈ V n
0 : x ∼ V n

u }| > K) converges to 0 for K → ∞, by Markov’s
inequality, as one has the bound

Eβ [|{x ∈ V n
0 , z ∈ V n

u : x ∼ z}|] =
∑
x∈V n0

∑
z∈V nu

Pβ (x ∼ z)
(4)

≤
∑
x∈V n0

∑
z∈V nu

β

(‖x− z‖∞ − 1)2d

≤
∑
x∈V n0

∑
z∈V nu

β

((‖u‖∞ − 1)n)2d
≤ β22d

‖u‖2d∞
≤ β22d.

We need an upper bound on this quantity for expectation with respect to the conditional
measure Pu,wβ . Lemma 2.2 then gives that

Eu,wβ [|{x ∈ V n
0 : x ∼ V n

u }|] ≤ E
u,w
β [|{x ∈ V n

0 , z ∈ V n
u : x ∼ z}|] ≤ β22d + 1

and this upper bound does not depend on n or u. Using Lemma 4.10, we see that for
fixed ε1 > 0 the term Pβ

(
D
(
0, Bε1n(0)C

)
≤ εΛ(n)

)
converges to 0 as ε→ 0 and thus we

can take K = K(ε) and ε1 = ε1(ε) that converge to +∞, respectively 0, slow enough such
that KPβ

(
D
(
0, Bε1n(0)C

)
≤ εΛ(n)

)
also converges to 0 for ε→ 0.

We want a similar function for the indirect distance between boxes. Such a function
exists by Corollary 4.12.
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Definition 5.3. Let g2(ε) be a function with g2(ε) −→
ε→0

1 such that the indirect distance

D? between the sets V n
0 and Bn (V n

0 )C satisfies

Pβ
(
D?
(
V n
0 , Bn (V n

0 )C
)
> εΛ(n, β)

)
≥ g2(ε)

for all n ≥ n(ε) large enough.

Consider long-range percolation on Zd. We split the long-range percolation graph into
blocks of the form V n

v , where v ∈ Zd. For each v ∈ Zd, we contract the block V n
v ⊂ Zd

into one vertex r(v). We call the graph that results from contracting all these blocks
G′ = (V ′, E′). For r(v) ∈ G′, we define the neighborhood N (r(v)) by

N (r(v)) =
{
r(u) ∈ G′ : ‖v − u‖∞ ≤ 1

}
,

and we define the neighborhood-degree of r(v) by

degN (r(v)) =
∑

r(u)∈N (r(v))

deg(r(u)).

We also define these quantities in the same way when we start with long-range percolation
on the graph V mn

0 , and contract the box V n
v for all v ∈ V m

0 . The next lemma concerns
the indirect distance between two sets, conditioned on the graph G′.

Lemma 5.4. Let W(ε) be the event

W(ε) :=

D?

V n
v ,

⋃
u∈Zd:‖u−v‖∞≥2

V n
u

 > εΛ(n, β)

 .

For all large enough n ≥ n(ε) one has

Pβ
(
W(ε)C | G′

)
≤ 3d degN (r(0)) (1− g1(ε)) + (1− g2(ε)) .

Proof. By translation invariance we can assume v = 0. We define the set T = V n
0 ∪⋃

u∈Zd:‖u‖∞≥2 V
n
u , and we define the events W1(ε) and W2(ε) by

W1(ε) =
{
∃a, b, x, y ∈ Zd with ‖a‖∞ = 1, ‖a− b‖∞ ≥ 2, x ∈ V n

a , y ∈ V n
b :

e = {x, y} open, D(x, T ;ωe−) ≤ εΛ(n), D(y, T ;ωe−) ≤ εΛ(n)
}

and

W2(ε) =
{

There is an open path P of length at most εΛ(n) from V n
0 to

⋃
u∈Zd:‖u‖∞≥2

V n
u :

∀{x, y} ∈ P there exist a, b ∈ Zd with x ∈ V n
a , y ∈ V n

b , ‖a− b‖∞ ≤ 1
}

.

We will now show thatW(ε)C ⊂ W1(ε)∪W2(ε). Assuming thatW(ε)C holds, there exists
an open path P from V n

0 to
⋃
u∈Zd:‖u‖∞≥2 with length ≤ εΛ(n), and this path does not use

a direct edge between these two sets. The path P can either be of the form as described
in the event W2(ε), or it contains an edge e = {x, y} such that x ∈ V n

a , y ∈ V n
b with

‖a‖∞ = 1, ‖a− b‖∞ ≥ 2. Let us assume that this path P is not of the form as described
in the event W2(ε). As the length of the path is at most εΛ(n), the distance from the
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endpoints x, y of such an edge to the set T is at most εΛ(n), even when the edge {x, y} is
removed. This holds, as the path P starts at V n

0 , then uses the edge e, and then arrives
in the set

⋃
u∈Zd:‖u‖∞≥2 V

n
u . Also note that y ∈ T is possible, in which case the distance

between y and T equals 0. However, we see that W1(ε) holds. Combined, we showed that
W(ε)C ⊂ W1(ε) ∪W2(ε).

The eventW2(ε) is independent ofG′, which implies that Pβ (W2(ε)|G′) = Pβ (W2(ε)) ≤
1− g2(ε). Suppose that ‖a‖∞ = 1 and ‖a− b‖∞ ≥ 2, with V n

a ∼ V n
b . Assume that there

exists a path P from V n
0 to

⋃
u∈Zd:‖u‖∞≥2 with length ≤ εΛ(n), that uses an edge e = {x, y}

with x ∈ V n
a , y ∈ V n

b . The path needs to get to x, and it enters the box V n
a from some box

V n
e with ‖e‖∞ ≤ 1. Say that the path enters the box V n

a through the vertex z ∈ V n
a with

z ∼ V n
e . The chemical distance between x and z can be at most εΛ(n, β). There are 3d

such vectors e, so the probability that there exists such a path is bounded by 3d(1−g1(ε)),
as ‖a− b‖∞ ≥ 2. With a union bound we get that

Pβ
(
W1(ε)|G′

)
≤

∑
a:‖a‖∞=1

∑
b:‖a−b‖≥2,V na ∼V nb

Pβ
(
∃x ∈ V n

a , y ∈ V n
b : x ∼ y,D(x, T ;ωe−) < εΛ(n)

)
≤

∑
a:‖a‖∞=1

deg(r(a))3d(1− g1(ε)) ≤ degN (r(0))3d(1− g1(ε))

and thus we finally get that

Pβ
(
W(ε)C

)
≤ Pβ (W1(ε)) + Pβ (W2(ε)) ≤ degN (r(0))3d(1− g1(ε)) + (1− g2(ε)).

5.2 Supermultiplicativity of Λ(n, β)

In this section, we prove the supermultiplicativity of Λ(n, β). Our main tools for this are
the results of the previous section and Lemma 3.2. We also use the the same notation as
in Lemma 3.2, i.e., µβ = Eβ [deg(0)] and deg(Z) = 1

|Z|
∑

v∈Z deg(v).

Lemma 5.5. For all β > 0, there exists a constant c > 0 such that for all m,n ∈ N

Λ(mn, β) ≥ cΛ(n, β)Λ(m,β). (54)

Proof. Inequality (54) holds for all small m or n ∈ N for some c > 0, so it suffices to
consider m and n large enough. We split the graph V mn

0 into blocks of the form V n
v ,

where v ∈ V m
0 . For each v ∈ V m

0 , we contract the block V n
v ⊂ V mn

0 into one vertex. We
call the graph that results from contracting all these blocks G′ = (V ′, E′). The graph G′

has the same distribution as long range percolation on V m
0 under the measure Pβ. By r(v),

we denote the vertex in G′ that results from contracting the box V n
v . We also define an

analogy of the infinity-distance on G′ by ‖r(u)−r(v)‖∞ = ‖u−v‖∞. Our goal is to bound
the expected distance between the vertices 0 and (mn− 1)e1 from below, conditioned on
the graph G′. For this, we consider all loop-erased walks P ′ = (r(v0), r(v1), . . . , r(vk))
between r(0) and r((m− 1)e1) in G′. In the following we always work on a certain event
Ht, which is defined by

Ht =
⋂
k≥t

{∣∣CSk (G′)∣∣ ≤ 10kµkβ

}
∩
⋂
k≥t

{
deg(Z) ≤ 20µβ∀Z ∈ CSk

(
G′
)}

.

Note that, by Lemma 3.2, (25), and Markov’s inequality one has

Pβ
(
HCt
)
≤
∞∑
k=t

Pβ
(∣∣CSk (G′)∣∣ > 10kµkβ

)
+
∞∑
k=t

Pβ
(
∃Z ∈ CSk

(
G′
)

: deg(Z) > 20µβ
)
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≤
∞∑
k=t

0.4k +
∞∑
k=t

e−4µβk ≤
∞∑
k=t

0.5k = 2 · 2−t. (55)

Let P ′ = (r(v0), . . . , r(vk)) be a self-avoiding path in G′ starting at the origin vertex, i.e.,
v0 = 0. Assume that k is large enough (which will be specified later) and let ε be small
enough such that (

27d50µβ(1− g1(ε)) + 2(1− g2(ε))
) 1

30d200µβ ≤ 1

20µβ
. (56)

We will see later on, where this condition on ε comes from. We will now describe what
it means for a block V n

vi to be separated; we will also say that the vertex r(vi) ∈ G′ is
separated in this case. Intuitively, a block being separated ensures that a path in the
original model that passes through this block needs to walk a distance of at least εΛ(n, β).
Formally, let P be a path in the original graph V mn

0 between 0 and (mn− 1)e1, such that
this path goes through the blocks corresponding to r(u0), r(u1), . . . , r(uK) in this order.
Let P ′ = (r(v0), . . . , r(vk)) be the loop-erasure of the path (r(u0), r(u1), . . . , r(uK)). So
in particular, P ′ is self-avoiding. Suppose that ‖vi − vi+1‖∞ ≥ 2. Then we call the block
r(vi) separated if

DV nvi
(x, y) ≥ εΛ(n, β) for all x, y ∈ V n

vi with x ∼ V n
vi+1

, y ∼ V n
w , w /∈ {vi, vi+1}.

If ‖vi − vi+1‖∞ = 1, we call the block r(vi) separated if

D?
Vmn0

V n
vi ,

⋃
r(w)∈G′:‖w−vi‖∞≥2

V n
w

 ≥ εΛ(n, β).

Next, we want to upper bound the probability that a block r(vi) is not separated, given the
graph G′. Assume that ‖vi − vi+1‖∞ ≥ 2. Conditioned on the graph G′, the probability
that r(vi) is not separated is bounded by deg (r(vi)) (1− g1(ε)) for large enough n. Assume
that ‖vi − vi+1‖∞ = 1. Given the graph G′, we have that

P

D?
Vmn0

(
V n
vi ,

⋃
r(v):‖v−vi‖∞≥2

V n
v

)
< εΛ(n, β)

∣∣ G′


≤ 3d degN (r(vi)) (1− g1(ε)) + (1− g2(ε))

for all large enough n, by Lemma 5.4. No matter whether ‖vi − vi+1‖∞ = 1 or ‖vi −
vi+1‖∞ > 1, in both cases we have that

Pβ
(
r(vi) not separated | G′

)
≤ 3d degN (r(vi)) (1− g1(ε)) + (1− g2(ε)).

We define the set

R̃k =
k−1⋃
i=0

N (r(vi)) .

The set R̃k is a connected set in G′, containing the origin r(v0), and its size is bounded
from above and below by

k ≤ |R̃k| ≤ 3dk.
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Assuming that the event Hk holds, we get that the average degree of the set R̃k is bounded
by 20µβk. A vertex r(v) can be included in several sets N (r(vi)) for different i, but in at
most 3d many. So in particular we have

k−1∑
i=0

degN (r(vi)) ≤ 3d|R̃k|20µβk ≤ 9d20µβ

and thus there can be at most k
2 many indices i ∈ {0, . . . , k−1} with degN (r(vi)) > 9d50µβ.

We now define a set of special indices IND(P ′) ⊂ {1, . . . , k− 1} via the algorithm below.
For abbreviation, we will mostly just write IND for IND(P ′), but one should remember
that the indices really depend on the chosen path P ′.

0. Start with IND0 = ∅.

1. For i = 1, . . . , k − 1:
If degN (r(vi)) ≤ 9d50µβ and N (r(vi)) �

⋃
j∈INDi−1

N (r(vj)), then define INDi =
INDi−1 ∪ {i}. Otherwise set INDi = INDi−1.

2. Set IND := INDk−1.

So in particular we have that for an index i ∈ IND it always holds that

Pβ
(
r(vi) not separated | G′

)
≤ 3d degN (r(vi)) (1− g1(ε)) + (1− g2(ε))

≤ 27d50µβ(1− g1(ε)) + (1− g2(ε)) =: g′(ε)

On the eventHk, there are at least k
2−1 many indices i ∈ {1, . . . , k−1} with degN (r(vi)) ≤

9d50µβ. Suppose that V n
v is a block with V n

v ∼
⋃
w∈N (r(vi))

V n
w . (Note that all boxes V n

v

with r(v) ∈ N (r(vi)) are by definition adjacent to
⋃
w∈N (r(vi))

V n
w .) When we include the

index i to the set IND, we can block all the indices j > i with r(v) ∈ N (r(vj)). But
for fixed v, there can be at most 3d indices j > i with r(v) ∈ N (r(vj)). So including one
index i with degN (r(vi)) ≤ 9d50µβ to the set IND, can block at most 3d9d50µβ other
indices. Thus we get that on the event Hk one has for large enough k that

|IND| ≥
k
2 − 1

27d50µβ + 1
≥ k

30d100µβ
.

Whether a block V n
vi is separated in the path P ′ depends only on the edges with at least one

end N (r(vi)). So in particular for different indices i ∈ IND, it is independent whether
the underlying blocks V n

vi are separated. Thus we get that

Pβ
(∣∣{i ∈ IND(P ′) : r(vi) separated

}∣∣ ≤ k

30d200µβ

∣∣∣ G′)
≤ 2|IND(P ′)| (g′(ε)) |IND(P ′)|

2 ≤ 2k
(
g′(ε)

) k

30d200µβ ≤ (20µβ)−k

where the last inequality holds because of our assumption on ε (56). With another union
bound we get that

Pβ
(
∃P ′ in G′ of length k s.t.

∣∣{i ∈ IND(P ′) : r(vi) separated
}∣∣ ≤ k

30d200µβ

∣∣∣ Hk)
≤ (10µβ)k (20µβ)−k = 2−k,
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where we say P ′ in G′ if a path P ′ starts at r(0) and is contained in the graph G′. Using
that Pβ

(
HCk
)
≤ 2 · 2−k, we thus get that

Pβ
(
∃P ′ in G′ of length k s.t.

∣∣{i ∈ IND(P ′) : r(vi) separated
}∣∣ ≤ k

30d200µβ

)
≤ 3 · 2−k.

For abbreviation, we define the event Gk by

GCk =

{
∃P ′ in G′ of length k s.t.

∣∣{i ∈ IND(P ′) : r(vi) separated
}∣∣ ≤ k

30d200µβ

}
.

Assuming that the events Gk and DG′ (r(0), r((m− 1)e1)) = k both hold, we get that for

large enough k one has DVmn0
(0, (mn− 1)e1) ≥ kεΛ(n,β)

30d200µβ
. So in total we get that for some

large enough k′

Eβ
[
DVmn0

(0, (mn− 1)e1)
]
≥
∞∑
k=k′

Eβ
[
DVmn0

(0, (mn− 1)e1)1Gk1{DG′ (r(0),r((m−1)e1))=k}
]

≥ εΛ(n, β)

30d200µβ

∞∑
k=k′

kEβ
[
1Gk1{DG′ (r(0),r((m−1)e1))=k}

]
, (57)

and we can further bound the last sum by

∞∑
k=k′

kEβ
[
1Gk1{DG′ (r(0),r((m−1)e1))=k}

]
=
∞∑
k=k′

kEβ
[
1{DG′ (r(0),r((m−1)e1))=k}

]
−
∞∑
k=k′

kEβ
[
1{GCk }1{DG′ (r(0),r((m−1)e1))=k}

]
≥
∞∑
k=k′

kEβ
[
1{

DVm0
(0,(m−1)e1)=k

}]− ∞∑
k=k′

kEβ
[
1{GCk }

]

≥
∞∑
k=1

kEβ
[
1{

DVm0
(0,(m−1)e1)=k

}]− k′−1∑
k=1

kEβ
[
1{

DVm0
(0,(m−1)e1)=k

}]− 3

∞∑
k=k′

k2−k

≥ Eβ
[
DVm0

(0, (m− 1)e1)
]
− k′ − 6 ≥ c′Λ(m,β)

for small enough c′ > 0 and m large enough. Inserting this into (57) finishes the proof.

5.3 The diameter of boxes

In this section, we prove the second item of Theorem 1.1, i.e., that the diameter of the
box {0, . . . , n− 1}d and its expectation both grow like nθ.

Lemma 5.6. For all β ≥ 0 one has

nθ(β) ≈P Diam
(
{0, . . . , n− 1}d

)
≈P Eβ

[
Diam

(
{0, . . . , n− 1}d

)]
.

Proof. By Lemma 4.1, it suffices to consider the case when n = 2k for some k ∈ N. We
have

Diam
(
{0, . . . , n− 1}d

)
≥ DV n0

(0, (n− 1)e1)
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and this already implies that for each ε > 0 there exist constants c, cε > 0 such that

Pβ
(
cεn

θ(β) < Diam
(
{0, . . . , n− 1}d

))
> 1− ε

and

cnθ(β) ≤ Eβ
[
Diam

(
{0, . . . , n− 1}d

)]
uniformly over n. For the upper bound, we make a dyadic decomposition of the box V n

0 .
Similar ideas were also used in [33] for one dimension. For a constant S ≥ 1, we say that

a box V 2l
y ⊂ V 2k

0 is S-good if

D
V 2l
y

(
2ly, 2ly + (2l − 1)e

)
≤ S

(
3

2

)(l−k)θ

2kθ

for all e ∈ {0, 1}d, where we simply write θ for θ(β) from here on. We use the notation

ΩS
l =

⋂
y∈V 2k−l

0

{
V 2l

y is S-good
}

and ΩS =
k⋂
l=1

ΩS
l .

On the event ΩS , we can bound the graph distance between 0 and any y ∈ V 2k
0 by

considering a path that goes along the boxes in a dyadic decomposition. Let y0, . . . , yk ∈ Zd
be such that y ∈ V 2i

yi for all i. So in particular y0 = y and yk = 0. We also have that

V 20

y0
⊂ V 21

y1
⊂ . . . ⊂ V 2k

yk
and thus also 2i−1yi−1 ∈ V 2i

yi for all i ≥ 1. This implies that

2i−1yi−1 = 2iyi + 2i−1e for some e ∈ {0, 1}d. As all the boxes inside V 2k
0 were assumed to

be S-good we have

D
V 2k
0

(
2iyi, 2

i−1yi−1

)
≤ D

V 2k
0

(
2iyi, 2

iyi + (2i−1 − 1)e
)

+ 1

= D
V 2i−1

2yi

(
2i−12yi, 2

i−12yi + (2i−1 − 1)e
)

+ 1 ≤ S
(

3

2

)(i−1−k)θ

2kθ + 1.

Now we have by the triangle inequality

D
V 2k

0
(0, v) ≤

k∑
l=1

(
S

(
3

2

)(l−1−k)θ

2kθ + 1

)
≤ S2kθ

k∑
l=1

((
3

2

)(l−1−k)θ

+
1

2kθ

)
≤ CθS2kθ

where the constant Cθ depends only on θ. As D(u, v) ≤ D(0, u)+D(0, v) for all u, v ∈ V 2k
0 ,

the previous bound already implies that on the event ΩS one has

Diam
(
V 2k

0

)
≤ 2CθS2kθ (58)

and thus it suffices to bound the probability of
(
ΩS
)C

. We know from Corollary 4.6 that
the r-th moment of D

V 2l
y

(
2ly, 2ly + (2l − 1)e

)
is of order 2rlθ, for all r ≥ 0. So by a union

bound and Markov’s inequality we get that for every fixed box V 2l
y

Pβ
(
V 2l

y is not S-good
)
≤

∑
e∈{0,1}d

Pβ

(
D
V 2l
y

(
2ly, 2ly + (2l − 1)e

)
> S

(
3

2

)(l−k)θ

2kθ

)
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=
∑

e∈{0,1}d
Pβ

(
D
V 2l
0

(
0,0 + (2l − 1)e

) 4d
θ
> S

4d
θ

(
3

2

)(l−k)4d

24dk

)

≤
∑

e∈{0,1}d

Eβ
[
D
V 2l
0

(
0,0 + (2l − 1)e

) 4d
θ

]
S

4d
θ

(
3
2

)(l−k)4d
24dk

≤ C · 2lθ
4d
θ

S
4d
θ

(
3
2

)(l−k)4d
24dk

=
C · 24dl

S
4d
θ

(
3
2

)(l−k)4d
24dk

≤ C

S
4d
θ

(
2

3

)(l−k)4d

2(l−k)4d =
C

S
4d
θ

(
4

3

)(l−k)4d

for some constant C <∞. With another union bound that we get that

Pβ
((

ΩS
l

)C) ≤ ∑
y∈V 2k−l

0

Pβ
(
V 2l

y is not S-good
)
≤

∑
y∈V 2k−l

0

C

S
4d
θ

(
4

3

)(l−k)4d

=
C

S
4d
θ

2(k−l)d
(

4

3

)(l−k)4d

=
C

S
4d
θ

(
81

128

)(k−l)d

which implies that

Pβ
((

ΩS
)C) ≤ k∑

l=1

C

S
4d
θ

(
81

128

)(k−l)d
≤ C ′

S
4d
θ

(59)

for some constant C ′ < ∞. Together with (58), this proves that Diam
(
V 2k
0

)
≈P 2kθ.

Inequality (58) also implies thatDiam
(
V 2k
0

)
2kθ

> S

 ⊂
(

Ω
S

2Cθ

)C
whenever S

2Cθ
> 1, and this implies that for some finite K ∈ N and all k ∈ N

Eβ

Diam
(
V 2k
0

)
2kθ

 ≤ K +
∞∑

S=K

Pβ

Diam
(
V 2k
0

)
2kθ

> S

 ≤ K +
∞∑

S=K

Pβ

((
Ω

S
2Cθ

)C)

≤ K +
∞∑
S=1

C ′ (2Cθ)
4d
θ

S
4d
θ

<∞

where the last term is finite as 4d
θ > 1. This also shows that

Eβ
[
Diam

(
V 2k

0

)]
= O

(
2kθ
)

and thus finishes the proof of Lemma 5.6.

6 Tail behavior of the distances and diameter

Theorem 1.1 shows that the random variables D(0,u)

‖u‖θ(β) are tight in (0,∞) under the measure

Pβ. In this section, we give more precise estimates on the tail-behavior of the random vari-

ables D(0,u)

‖u‖θ(β) . We describe this tail behavior via functions f for which supu∈Zd\{0} Eβ
[
f
(
D(0,u)

‖u‖θ(β)

)]
is finite or infinite. This result is also a useful tool in section 7 and in section 11.
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Theorem 6.1. For all η < 1
1−θ(β) one has

sup
n∈N

Eβ

[
exp

((
Diam

(
{0, . . . , n}d

)
nθ(β)

)η)]
<∞. (60)

For dimension d = 1, the bound given by (60) is sharp, as the following lemma shows.

Lemma 6.2. For all dimensions d and all β > 0, there exists a constant t > 0 such that

sup
u∈Zd\{0}

Eβ

[
exp

(
t

(
D(0, u)

‖u‖θ(β)

) d
1−θ(β)

)]
=∞. (61)

Proof. We define the event

Dn =
⋂

v∈Bn(0)

{
v � w for all w ∈ Zd with ‖v − w‖∞ ≥ 2

}
If ‖u‖∞ = n and the event Dn occurs, the shortest path between 0 and u uses nearest-
neighbor edges only and thus has a length of ‖u‖∞. Using the FKG-inequality, we get
that

Pβ (Dn) ≥ Pβ(0 � w for all w ∈ Zd with ‖w‖∞ ≥ 2)|Bn(0)| ≥ e−Cnd

for some constant C <∞. Thus we see that

Pβ

(
D(0, u)

‖u‖θ(β)
∞

= ‖u‖1−θ(β)
∞

)
≥ Pβ (Dn) ≥ exp

(
−C‖u‖d

)
and from here one can easily verify that (61) holds for t large enough.

Remark 6.3. Conditioning on the event that there is no edge longer than m
− 1

1−θ(β)n
open in the box Bn(0), one can actually show that for all u ∈ Zd with ‖u‖∞ = n one has

Pβ
(
D(0, u)

‖u‖θ(β)
> m

)
≥ exp

(
−Cm−

d
1−θ(β)

)
for some constant C ∈ R>0, and all large enough n.

For a sequence of positive random variables (Xn)n∈N and some η > 0, we have that

E [exp (Xη
n)] =

∫ ∞
0
P (exp (Xη

n) > s) ds =

∫ ∞
0
P (Xη

n > log(s)) ds

= 1 +

∫ ∞
1
P
(
Xn > log(s)1/η

)
ds = 1 +

∫ ∞
0
P (Xn > s) ηsη−1 exp (sη) ds.

So in particular, if there exist constants 0 < c,C <∞ such that

P (Xn > s) ≤ C exp
(
−csη̄

)
, (62)

this implies that supn∈N E [exp (Xη
n)] <∞ for all η ∈ (0, η̄). So in fact we will often show

(62) in the following, as this will already imply statements of the form supn∈N E [exp (Xη
n)] <

∞, as in (60). Theorem 6.1 directly implies that that for all η < 1
1−θ one has

sup
n∈N

Eβ
[
exp

((
DV n0

(0, (n− 1)e1)

nθ

)η)]
<∞, (63)

whereas (63) does not directly imply any statements about the diameter of boxes as in
(60). However, a slightly weaker statement can be deduced from a slight modification of
(63), as the next lemma shows.
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Lemma 6.4. Suppose that

sup
n∈N

Eβ
[
exp

((
DV n0

(0, (n− 1)e)

nθ

)η)]
<∞ (64)

for some η > 0 and all e ∈ {0, 1}d. Then there exist constants C,Cθ ∈ R>0 such that

Pβ
(

Diam
(
V n̄
0

)
> SCθn

θ for some n̄ ∈ {0, . . . , n}
)
≤ C exp (−Sη) ,

which implies that

sup
n∈N

Eβ

[
exp

((
Diam

(
{0, . . . , n− 1}d

)
nθ

)η̄)]
<∞ (65)

for all η̄ ∈ (0, η).

Proof. We do the proof for n = 2k with k ∈ N. The proof for general n ∈ N follows by
Lemma 4.1. For S ≥ 1 and l ∈ {0, . . . , k}, define the events

ΩS
l =

⋂
y∈V 2k−l

0

⋂
e∈{0,1}d

{
D
V 2l
y

(
2ly, 2ly + (2l − 1)e

)
≤ S

(
3

2

)(l−k)θ

2kθ

}

and

ΩS =
k⋂
l=0

ΩS
l .

On the event ΩS , for all n̄ ≤ n, and for any y ∈ V n̄
0 , we can bound the graph distance

between 0 and y by considering a dyadic path between them, and thus we get that on the
event ΩS

DV n̄0
(0, y) ≤

k∑
l=0

S

(
3

2

)(l−k)θ

2kθ + k,

and this already implies that

Diam
(
V n̄
0

)
≤ 2

(
k∑
l=0

S

(
3

2

)(l−k)θ

2kθ + k

)
≤ CθS2kθ

for some constant Cθ < ∞ and all n̄ ≤ n. So in particular we see that the event{
Diam (V n̄

0 ) > SCθn
θ for some n̄ ≤ n

}
implies that ΩS

l does not hold for some l ∈ {0, . . . , k}.
So with a union bound we get that

Pβ
(

Diam
(
V n̄
0

)
> SCθn

θ for some n̄ ≤ n
)

≤
k∑
l=0

2(k−l)d
∑

e∈{0,1}d
Pβ

(
D
V 2l
0

(
0, (2l − 1)e

)
> S

(
3

2

)(l−k)θ

2kθ

)
. (66)

By Markov’s inequality we have for any e ∈ {0, 1}d

Pβ

(
D
V 2l
0

(
0, (2l − 1)e

)
> S

(
3

2

)(l−k)θ

2kθ

)
= Pβ

(
D
V 2l
0

(
0, (2l − 1)e

)
> S

(
4

3

)(k−l)θ
2lθ

)
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a0 a1 a2 a3

Figure 4: An example of the process a0e1, a1e1, a2e1, a3e1 for the
Graph V 15

0 . We have K = 3, as a2 < 14 ≤ a3.

= Pβ

exp

DV 2l
0

(
0, (2l − 1)e

)
2lθ

η > exp

(
Sη
(

4

3

)(k−l)θη
)

≤ Eβ

exp

DV 2l
0

(
0, (2l − 1)e

)
2lθ

η exp

(
−Sη

(
4

3

)(k−l)θη
)
≤ Cη exp

(
−Sη

(
4

3

)(k−l)θη
)

for some constant Cη <∞. Inserting this into (66) shows that

Pβ
(

Diam
(
V n̄
0

)
> SCθn

θ for some n̄ ≤ n
)
≤

k∑
l=0

2(k−l)dCη exp

(
−Sη

(
4

3

)(k−l)θη
)

≤ C exp (−Sη)

for some constant C <∞. By taking the constant C large enough we can also guarantee
that the above inequality holds for all S > 0. This already implies that (65) holds for all
η̄ ∈ (0, η).

Lemma 6.5. For all β ≥ 0 and all e ∈ {0, 1}d one has

sup
n∈N

Eβ

[
exp

((
DV n0

(0, (n− 1)e)

nθ

)0.5
)]

<∞. (67)

Proof. First, we will consider e = e1 only. We define a process (ak(n))k∈N. As we will fix
n for the rest of the proof we will often simply write ak for ak(n). We start with a0(n) = 0
and define ak(n) inductively by

ak+1(n) =(ak(n) + 2)

+ sup
{
z ∈ N>0 : D(ak+2)e1+{0,...,z}d

(
(ak + 2)e1, (ak + 2)e1 + ze1

)
≤ nθ

}
.

(68)

Given the long-range percolation graph, this sequence can be constructed as follows: for
given ak−1(n), we walk along the e1-axis in positive direction, starting at (ak−1(n) + 2)e1.
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We do this until the graph distance between (ak−1(n) + 2)e1 and (ak−1(n) + 2 + z)e1 ex-
ceeds a certain threshold (nθ), and then we go one step back, i.e., in negative e1-direction,
and then define this point as ake1. This procedure only reveals information about edges
with both endpoints in the slice {y ∈ Zd : ak−1(n) + 2 ≤ 〈y, e1〉 ≤ ak(n) + 1}, so in
particular the differences (ak′+1(n) − ak′(n)) are independent of ak(n) for k′ ≥ k. By
translation invariance, the differences (ak+1(n)− ak(n))k∈N0

are independent and identi-
cally distributed random variables. The graph distance between ak(n)e1 and ak+1(n)e1 is
always bounded by nθ + 2, as we can go from ak(n)e1 to (ak(n) + 2)e1 in two steps and
from there to ak+1(n)e1 in at most nθ steps. Define

Kn = inf {k ∈ N : ak(n) ≥ n}

as the index of the first point ak(n)e1 that lies outside of V n
0 . Then one has

DV n0
(0, (n− 1)e1) ≤ Knn

θ + 2Kn ≤ 3Knn
θ

as one can walk through the path that goes from 0 to a1(n)e1, from a1(n)e1 to a2(n)e1,
and from there in the same manner inductively to aKn−1(n)e1, and from there to (n−1)e1.
So our next goal is to show that Kn is typically not too large. We use that for all β ≥ 0
there exists an α > 0 such that

Pβ
(
ak+1(n)− ak(n)

n
≥ α

)
≥ 0.5, (69)

which we will prove in Lemma 6.6 below. We define the indices k0(n), k1(n), . . . by k0(n) =
0 and

ki+1(n) = inf{k > ki(n) :
ak(n)− ak−1(n)

n
≥ α}.

By construction we have Kn ≤ kd1/αe+1(n). So in particular we have

DV n0
(0, (n− 1)e1)

nθ
≤ 3Kn ≤ 3kd1/αe+1(n) = 3

d 1
α
e∑

i=0

ki+1(n)− ki(n).

The differences (ki+1(n)− ki(n))i≥0 are independent random variables and are, by (69),

dominated by Geometric
(

1
2

)
-distributed random variables. This already implies that

Eβ
[
exp

(
t
DV n0

(0, (n− 1)e1)

nθ

)]
≤ Eβ

exp

t3 d 1
α
e∑

i=0

ki+1(n)− ki(n)


=

d 1
α
e∏

i=0

Eβ [exp (t3(ki+1(n)− ki(n)))] ≤ C <∞ (70)

for some t > 0 small enough and a uniform constant C that does not depend on n, as the
differences ki+1(n)−ki(n) are dominated by a Geometric

(
1
2

)
-distributed random variable.

This shows the claim for e = e1. To extend this proof to general e ∈ {0, 1}d, we use the
same technique as in the proof of Lemma 4.2. For i ∈ {0, . . . , d}, we define e(i) by

e(i) =

i∑
j=1

pj(e)ei,
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and thus we get by the triangle inequality that

DV n0
(0, (n− 1)e) ≤

d∑
i=1

DV n0
((n− 1)e(i− 1), (n− 1)e(i)).

The random variables DV n0
((n− 1)e(i− 1), (n− 1)e(i)) are either equal to 0, when e(i− 1)

and e(i) coincide, or they have the same distribution as DV n0
(0, (n− 1)e1), when e(i− 1)

and e(i) lie on adjacent corners of the cube V n
0 . Hölder’s inequality implies that

Eβ
[
exp

(
DV n0

(0, (n− 1)e)0.5
)]
≤ Eβ

[
exp

(
d∑
i=1

DV n0
((n− 1)e(i− 1), (n− 1)e(i))0.5

)]

≤
d∏
i=1

Eβ
[
exp

(
dDV n0

((n− 1)e(i− 1), (n− 1)e(i))0.5
)] 1

d ≤ Eβ
[
exp

(
dDV n0

(0, (n− 1)e1)0.5
)]

and the last term is finite uniformly over all n ∈ N, which follows from (70).

Lemma 6.6. For all β > 0, there exists a constant α > 0 such that for all n ∈ N>0

Pβ
(
ak+1(n)− ak(n)

n
≥ α

)
≥ 0.5. (71)

Proof. As the differences (ak+1(n) − ak(n))k≥0 are identically distributed, it suffices to
consider the case k = 0. The proof uses a dyadic decomposition along the e1-axis. Let n
be large enough so that log2(n) ≤ nθ

2 ; this holds for all n sufficiently large. We can make
this assumption, as the statement (71) clearly holds for small n by taking α small enough.
Consider α > 0 such that αn = 2h for some h ∈ N. By our assumption on n we have
h = log2(αn) ≤ log2(n) ≤ nθ

2 . We define the events

Ωl =
2h−l−1⋂
j=0

DV 2l
je1

(
j2le1, (j2

l + 2l − 1)e1

)
≤

(
2
∞∑
i=0

(
3

2

)−iθ)−1

nθ
(

3

2

)(l−h)θ


and

Ω =

h⋂
l=0

Ωl.

For an x ∈ {0, . . . , 2h}, say x =
∑h

l=0 xl2
l, where xl ∈ {0, 1} for all l, we consider the

path that goes from 0 to
(∑h

l=h xl2
l
)
e1, from there to

(∑h
l=h−1 xl2

l
)
e1, and iteratively

to
(∑h

l=0 xl2
l
)
e1 = xe1. Using this path from 0 to xe1 through the dyadic points of the

form 2le1, one gets that on the event Ω one has for all x ∈ {0, . . . , αn}

DV x+1
0

(0, xe1) ≤

(
2
∞∑
i=0

(
3

2

)−iθ)−1

nθ
h∑
l=0

(
3

2

)(l−h)θ

+ h < 2−1nθ + h ≤ nθ,

where we used that h ≤ nθ

2 in the last step. Now, we want to estimate the probability

of the event Ω. Let us write C(θ) for the constant
(

2
∑∞

i=0

(
3
2

)−iθ)−1
and let C 4

θ
be a

constant such that

Eβ
[
DV n0

(0, (n− 1)e1)4/θ
]
≤ C 4

θ

(
nθ
)4/θ

= C 4
θ
n4
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for all n ∈ N. Such a constant exists by Corollary 4.6. By an application of Markov’s
inequality we get that

Pβ

(
D
V 2l
0

(
0, (2l − 1)e1

)
> C(θ)nθ

(
3

2

)(l−h)θ
)

= Pβ

(
D
V 2l
0

(
0, (2l − 1)e1

) 4
θ
> C(θ)

4
θnθ

4
θ

(
3

2

)(l−h)θ 4
θ

)

≤ Eβ
[
D
V 2l
0

(
0, (2l − 1)e1

) 4
θ

]
C(θ)−

4
θn−4

(
3

2

)4(h−l)
≤ C(θ)−

4
θC 4

θ

(
2lθ
) 4
θ
n−4

(
3

2

)4(h−l)

≤ C(θ)−
4
θC 4

θ
24lα42−4h

(
3

2

)4(h−l)
(72)

Define ak := −2 and define ak+1 as in (68). Then one has the line of implications

{Ω} ⇒
{
DV x+1

0
(0, xe1) ≤ nθ for all x ∈ {0, . . . , αn}

}
⇔ {ak+1(n) ≥ αn} ⇒

{
ak+1(n)− ak(n)

n
> α

}
.

This already gives us that

Pβ
(
ak+1(n)− ak(n)

n
≤ α

)
≤ Pβ

(
ΩC
)
≤

h∑
l=0

2h−lPβ

(
D
V 2l
0

(
0, (2l − 1)e1

)
> C(θ)nθ

(
3

2

)(l−h)θ
)

(72)

≤ C(θ)−
4
θC 4

θ

h∑
l=0

2h−l24lα42−4h

(
3

2

)4(h−l)
= α4C(θ)−

4
θC 4

θ

h∑
l=0

(
81

128

)h−l
< 0.5

for some α > 0 small enough. So in particular this implies (71).

Lemma 6.7. Assume that

sup
n∈N

Eβ

[
exp

((
Diam

(
{0, . . . , n− 1}d

)
nθ

)η)]
<∞ (73)

for some η > 0. Then

sup
n∈N

Eβ

[
exp

((
Diam

(
{0, . . . , n− 1}d

)
nθ

)η̄)]
<∞ (74)

for all η̄ < 1 + θη.

Proof. Assume that (73) holds for some η > 0. Then Lemma 6.4 implies that

Pβ
(

Diam
(
V n̄
0

)
> SCθn

θ for some n̄ ∈ {0, . . . , n}
)
≤ C exp (−Sη) (75)

for some constants C,Cθ <∞. As before, we define define ak(n) inductively by a0(n) = 0
and

ak+1(n) =(ak(n) + 2)

+ sup
{
z ∈ N>0 : D(ak+2)e1+{0,...,z}d

(
(ak(n) + 2)e1, (ak(n) + 2)e1 + ze1

)
≤ nθ

}
.
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The differences (ak+1(n)− ak(n))k∈N0
are independent and identically distributed. For

α ∈ (0, 1), we have that

Pβ
(
a1(n)− a0(n)

n
≤ α

)
= Pβ

(
D2e1+{0,...,z}d (2e1, (2 + z)e1) > nθ for some z ∈ {2, . . . , bαnc}

)
≤ Pβ

(
Diam

(
{0, . . . , z}d

)
> nθ for some z ∈ {0, . . . , bαnc}

)
= Pβ

(
Diam

(
{0, . . . , z}d

)
>

1

αθCθ
Cθ(αn)θ for some z ∈ {0, . . . , bαnc}

)
(75)

≤ C exp

(
−
(

1

αθCθ

)η)
= C exp

(
−C ′θα−θη

)
(76)

for a constant C ′θ ∈ R>0. Remember that the random variable Kn was defined by

Kn = inf {k ∈ N : ak(n) ≥ n}

and that

DV n0
(0, (n− 1)e1) ≤ Knn

θ + 2Kn ≤ 3Knn
θ. (77)

Assume that Kn > 2L for some large integer L. Then there needs to exist at least L
indices i ∈ {1, . . . , 2L} such that ai(n)− ai−1(n) ≤ 1

L . Using independence of the random
variables ai(n)− ai−1(n)

Pβ (Kn > 2L) ≤ Pβ

 ⋃
U⊂{1,...,2L}:
|U |=L

{
ai(n)− ai−1(n) ≤ 1

L
for all i ∈ U

}
≤

∑
U⊂{1,...,2L}:
|U |=L

∏
i∈U
Pβ
(
ai(n)− ai−1(n) ≤ 1

L

)
≤ 22LPβ

(
a1(n)− a0(n) ≤ 1

L

)L
(76)

≤ 22LC exp
(
−C ′θLθη

)L
≤ C̄ exp

(
−C̄θL1+θη

)
for some constants C̄, C̄θ ∈ R>0 and all L large enough. From (77) we have the line of
implications {

DV n0
(0, (n− 1)e1) > 6Lnθ

}
⇒ {Kn > 2L}

and thus we get that for L large enough

Pβ
(
DV n0

(0, (n− 1)e1) > 6Lnθ
)
≤ Pβ (Kn > 2L) ≤ C̄ exp

(
−C̄θL1+θη

)
,

which implies that

sup
n∈N

Eβ

[
exp

((
DV n0

(0, (n− 1)e1)

nθ

)η̄)]
<∞

for all η̄ < 1 + θη. The same technique as in the proof of Lemma 6.5 shows that

sup
n∈N

Eβ

[
exp

((
DV n0

(0, (n− 1)e)

nθ

)η̄)]
<∞
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for all e ∈ {0, 1}d and all η̄ < 1 + θη. Using Lemma 6.4, we can finally see that this also
implies that

sup
n∈N

Eβ

[
exp

((
Diam

(
{0, . . . , n− 1}d

)
nθ

)η̄)]
<∞

for all η̄ < 1 + θη.

With this, we are ready to go to the proof of Theorem 6.1, which works via a boot-
strapping argument.

Proof of Theorem 6.1. Lemma 6.5 and Lemma 6.4 imply that (60) holds for η̄ = 0.4. We
define the function f(x) = 1 + θ · x. Lemma 6.7 says that if (60) holds for some η̄ > 0,
then it actually holds for all η < f(η̄). Iterating this argument, we see that (60) holds
for all η < f (k)(0.4), where k ∈ N is an arbitrary integer and f (k) is the k-fold iteration
of f . Letting k go to infinity, the value f (k)(0.4) converges to the fixed point x0 of the
equation x = f(x), which is given by x0 = 1

1−θ . So in particular we see that (60) holds for

all η < 1
1−θ .

7 Comparison with different inclusion probabilities

In this section, we compare the graph distances that result from percolation with the
measure Pβ to the graph distances that result from independent bond percolation on
Zd where two vertices u, v ∈ Zd are connected with probability p? (β, {u, v}), which is
assumed to be close enough to p (β, {u, v}). The precise condition required for the function
p? (β, {u, v}) is that for fixed β it satisfies that

p? (β, {u, v}) = 1 for ‖u− v‖ = 1 and p? (β, {u, v}) = p (β, {u, v}) +O
(

1

‖u− v‖2d+1

)
(78)

as ‖u− v‖ → ∞. An example of such a set of inclusion probabilities p? (β, {u, v}) is given
by

p? (β, {u, v}) =

{
1 for ‖u− v‖ = 1

β
‖u−v‖2d ∧ 1 for ‖u− v‖ > 1

where we prove in Example 7.2 that (78) is satisfied. These inclusion probabilities were
for example also used in [33] for d = 1.

We write P?β for the probability measure resulting from independent bond percolation
with inclusion probabilities (p?(β, {u, v}))u,v∈Zd . In the following, we give a proof that

both the graph distance D (0, x) and the diameter of a box Diam
(
{0, . . . , n}d

)
scale like

‖x‖θ(β), respectively nθ(β), under the measure P?β.

Theorem 7.1. For fixed β ≥ 0, suppose that p? (β, {u, v}) satisfies (78). Then the graph
distance between the origin 0 and x ∈ Zd satisfies

‖x‖θ(β) ≈P D (0, x) ≈P E?β [D (0, x)] (79)

under the measure P?β. The diameter of cubes satisfies

nθ(β) ≈P Diam
(
{0, . . . , n}d

)
≈P E?β

[
Diam

(
{0, . . . , n}d

)]
(80)

under the measure P?β.
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For the proof of (79), we follow a technique that was already used in [33] in a similar
form for a comparison between the discrete and the continuous model of percolation. The
proof of (80) needs more involved methods, and is done in section 7.1.

Proof of (79). We fix the dimension d and β from here on and consider them as constants.
We write E?u,v for the event when there exists an edge between u and v in the graph sampled
with the measure P?β, and we write Eu,v if there exists an edge between u and v in the
graph sampled with the measure Pβ. With the standard coupling for percolation we can
couple the measures Pβ and P?β so that uniformly over all u ∈ Zd, v ∈ Zd \ {u}

P
(
E?u,v \ Eu,v

)
+ P

(
Eu,v \ E?u,v

)
≤ C1

1

‖u− v‖2d+1

where C1 < ∞ is a constant, and where we write P for the joint measure. Thus we also
get

P
((
E?u,v

)C ∣∣Eu,v)+ P
(

(Eu,v)
C
∣∣E?u,v) ≤ C2

1

‖u− v‖
for some constant C2 <∞. We write ω? for the percolation configuration sampled by P?β
and ω for the percolation configuration sampled by Pβ. For two points x, y ∈ Zd, let P be
a geodesic between x and y for the environment ω. We construct a path between x and y
in the environment ω? as follows:

• For {u, v} ∈ P , if E?u,v occurs we use the direct edge between u and v.

• For {u, v} ∈ P , if E?u,v does not occur go from u to v using ‖u− v‖1 many nearest-
neighbor edges.

This gives a path P ? between x and y in the environment ω?. The length of this path
equals ∑

{u,v}∈P :
E?u,voccurs

1 +
∑

{u,v}∈P :

(E?u,v)Coccurs

‖u− v‖1 =
∑
{u,v}∈P

(
1E?u,v + ‖u− v‖11(E?u,v)C

)

and thus we get that

E
[
D(x, y;ω?)

∣∣ ω ] ≤ ∑
{u,v}∈P

E
[
1 + ‖u− v‖11(E?u,v)C

∣∣ ω ]
≤

∑
{u,v}∈P

(
1 + ‖u− v‖1C2

1

‖u− v‖

)
≤ C3D(x, y;ω) (81)

for some constant C3 <∞. Markov’s inequality for the conditional measure P
(
·
∣∣ω) gives

that for each ε > 0 there exists a constant Cε such that

P (D(x, y;ω?) ≤ CεD(x, y;ω)) ≥ 1− ε .

Interchanging the roles of ω and ω? one gets that for each ε > 0 there exists a constant
C?ε such that

P (D(x, y;ω) ≤ C?εD(x, y;ω?)) ≥ 1− ε,

which shows that D(x, y;ω?) ≈P ‖x− y‖θ(β). Inequality (81), and interchanging the roles
of ω and ω?, implies that E [D(x, y;ω?)] and E [D(x, y;ω)] are at most a constant factor
apart. Thus we get that ‖x− y‖θ(β) ≈P D(x, y;ω?) ≈P E [D(x, y;ω?)], which finishes the
proof.
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Example 7.2. The inclusion probabilities given by

p? (β, {u, v}) =

{
1 for ‖u− v‖ = 1

β
‖u−v‖2d ∧ 1 for ‖u− v‖ > 1

satisfy (78).

Proof. For all x ∈ v + C and y ∈ u+ C, we have by the triangle inequality

‖u− v‖ −
√
d ≤ ‖x− y‖ ≤ ‖u− v‖+

√
d,

and this already implies that for ‖u− v‖ >
√
d

1(
‖u− v‖+

√
d
)2d
≤
∫
v+C

∫
u+C

1

‖x− y‖2d
dydx ≤ 1(

‖u− v‖ −
√
d
)2d

.

With a Taylor expansion we see that

1

‖u− v‖ ±
√
d

=
1

‖u− v‖
1

1±
√
d

‖u−v‖

=
1

‖u− v‖

(
1 +O

(
1

‖u− v‖

))

=
1

‖u− v‖
+O

(
1

‖u− v‖2

)
and raising this expression to the 2d-th power already gives that∫

v+C

∫
u+C

1

‖x− y‖2d
dydx =

1

‖u− v‖2d
+O

(
1

‖u− v‖2d+1

)
(82)

for ‖u−v‖ → ∞. With the Taylor expansion of the exponential function we have 1−e−s =
s+O(s2) for small s and thus by inserting (82) into the definition of p (β, {u, v}) we get

p (β, {u, v}) = 1− e−β
∫
v+C

∫
u+C

1

‖x−y‖2d
dydx

=
β

‖u− v‖2d
+O

(
1

‖u− v‖2d+1

)
(83)

which implies that

p? (β, {u, v}) =
β

‖u− v‖2d
∧ 1 = p (β, {u, v}) +O

(
1

‖u− v‖2d+1

)
.

Example 7.3. The inclusion probabilities given by

p̃ (β, {u, v}) =

{
1 for ‖u− v‖ = 1

1− e−
β

‖u−v‖2d for ‖u− v‖ > 1
.

satisfy (78).

Proof. By a Taylor expansion of the exponential function we get

1− e−
β

‖u−v‖2d =
β

‖u− v‖2d
+O

(
1

‖u− v‖4d

)
= p?(β, {u, v}) +O

(
1

‖u− v‖2d+1

)
,

where p?(β, {u, v}) = β
‖u−v‖2d ∧1 is the function from Example 7.2. We already know from

Example 7.2 that p?(β, {u, v}) satisfies (78). Thus we directly get that p̃ (β, {u, v}) also
satisfies (78).
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7.1 The diameter of boxes

Before going to the proof of (80), we prove a technical lemma that we will use later in this
section. It follows directly from the Burkholder-Davis-Gundy-inequality [23].

Lemma 7.4. Let X1, . . . , Xm be independent random variables such that |E [Xi] | ≤ C for
all i ∈ {1, . . . ,m}. Then for all p ≥ 2, there exists a constant C ′ = C ′(p, C) such that

E

[∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣
p]
≤ C ′mp/2 max

i
E [|Xi|p] + C ′mp.

Proof. Define Yi = Xi − E [Xi]. We clearly have

E

[∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
m∑
i=1

Yi +
m∑
i=1

E [Xi]

∣∣∣∣∣
p]
≤ 2pE

[∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
p]

+ 2pE

[∣∣∣∣∣
m∑
i=1

E [Xi]

∣∣∣∣∣
p]

≤ 2pE

[∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
p]

+ 2p|mC|p. (84)

The process Mt =
∑t

i=1 Yi is a martingale and thus we get by the BDG-inequality [23]
that there exists a constant Cp such that

E

[∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
p]
≤ CpE

( m∑
i=1

Y 2
i

)p/2 = Cpm
p/2

∥∥∥∥∥ 1

m

m∑
i=1

Y 2
i

∥∥∥∥∥
p/2

p/2

≤ Cpmp/2 max
i

∥∥Y 2
i

∥∥p/2
p/2

= Cpm
p/2 max

i
E [|Yi|p] . (85)

For i ∈ {1, . . . ,m}, we have E [|Yi|p] ≤ 2pE [|Xi|p] + 2p|E [Xi] |p ≤ 2pE [|Xi|p] + 2p|C|p.
Combining this with (84) and (85), we finally get that

E

[∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣
p]
≤ 2pE

[∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
p]

+ 2p|mC|p ≤ 2pCpm
p/2 max

i
E [|Yi|p] + 2p|mC|p

≤ 2pCpm
p/2

(
max
i

2pE [|Xi|p] + 2p|C|p
)

+ 2p|mC|p ≤ C ′mp/2 max
i
E [|Yi|p] + C ′mp

for an appropriate constant C ′ depending on p and C only.

Assume that (p?(β, e))e∈E satisfies (78). From the proof about the typical distance
above it directly follows that there exists a constant c > 0, and for all ε > 0 there exists
a cε > 0, such that

P?β
(

Diam
(
{0, . . . , n}d

)
> cεn

θ(β)
)
> 1− ε and E?β

[
Diam

(
{0, . . . , n}d

)]
> cnθ(β)

for all n ∈ N. So we are left to show that

P?β
(

Diam
(
{0, . . . , n}d

)
≤ Cεnθ(β)

)
> 1−ε and E?β

[
Diam

(
{0, . . . , n}d

)]
≤ Cnθ(β) (86)

uniformly over all n ∈ N, for appropriate constants C,Cε. In the following, we will show
that

P?β
(
DV n̄0

(0, (n̄− 1)e1) ≤ S̄nθ(β) for all n̄ ∈ {0, . . . , n}
)
≥ 0.25 (87)
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for some constant S̄ and all n ∈ N. From there one can with the same techniques as in
Lemma 6.5 and Lemma 6.4 show that (86) holds. Thus, we will focus on (87) from here
on. We will only do the case where n = 2k for k ∈ N large enough. The general case
follows with Lemma 4.1. We couple the measures P?β and Pβ, using the standard Harris
coupling for percolation. For an edge e ∈ E, we say that it is non-regular if ω(e) = 1,
but ω?(e) = 0. In words, if the edge is open under the measure Pβ, but closed under the
measure P?β. Let C1 be a constant such that

P (e is non-regular | ω(e) = 1) ≤ C1
|e| .

Such a constant exists by the assumption (78). We will always use C1 as this constant in
the rest of the chapter. The rough strategy of the proof of (79) above was to fill in the
gaps that occurred through non-regularities using edges in the nearest-neighbor lattice.
Such an approach does not work for the diameter. Instead, we fill in the gaps using a
third percolation configuration ω−, which is contained in ω?. For this, we first choose a
list of parameters whose origin will be clear later on. We choose q = 4

3θ(β) , and we choose

β− ∈ [0, β), ε > 0 such that

θ(β−)q − 1 + εq = 0.5 and
23q(θ(β−)−θ(β))

2.2
<

1

2.1
(88)

which is possible, as the function β 7→ θ(β) is continuous in β by Theorem 1.5. These
definitions seem quite arbitrary at the moment, but they are chosen in a way so that
the proof works. The third percolation configuration ω− is distributed according to the
measure Pβ− . So we can couple the three percolation configurations ω, ω?, and ω− using
the standard Harris coupling for percolation. We write P for the joint measure. We have
that p(β−, e) ≤ p?(β, e) for all edges e that are sufficiently long, which follows directly
from (78). In the following, we will even assume that p(β−, e) ≤ p?(β, e) for all edges e.
Removing this assumption is relatively easy, as all nearest-neighbor edges are open. This
already implies that D(x, y;ω?) ≤ D(x, y;ω−) for all points x, y ∈ Zd. With this, we are
ready to go to the proof of (87), which already implies (80).

Proof of (87). Define the event A by

A =
k⋂
l=0

⋂
a∈V 2k−l

0

{
Diam

(
V 2l

a ;ω−
)
≤ 2lθ(β−)2εk

}
.

For k large enough, we have P (A) ≥ 0.5, as we will argue now. Using that

sup
l∈N

E

exp

Diam
(
V 2l
0 ;ω−

)
2lθ(β−)

 <∞
by Theorem 6.1, we get that for some constant C

P
(
AC
)

= P
(
∃l ∈ {0, . . . , k}, a ∈ V 2k−l

0 : Diam
(
V 2l

a ;ω−
)
> 2lθ(β−)2εk

)
≤

k∑
l=0

∑
a∈V 2k−l

0

P
(

Diam
(
V 2l

a ;ω−
)
> 2lθ(β−)2εk

)
≤

k∑
l=0

2d(k−l)P

Diam
(
V 2l
0 ;ω−

)
2lθ(β−)

> 2εk


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≤
k∑
l=0

2d(k−l)Ce−2εk = Ce−2εk
k∑
l=0

2dl < 0.5

for k large enough. Assume that A holds, and let a ∈ V 2k−l
0 , u, v ∈ V 2l

a . Assume that
2m−1 < ‖u − v‖ ≤ 2m. Then u, v are either in the same box V 2m

w , or in adjacent boxes
V 2m
w1
, V 2m

w2
with ‖w1 − w2‖∞ = 1. This implies that D

V 2l
a

(u, v;ω−) ≤ 2 · 2mθ(β−)2εk + 1 ≤
4 · ‖u− v‖θ(β−)2εk + 1. So if the event A holds, then for all u, v ∈ V 2l

a

D
V 2l
a

(u, v;ω−) ≤ 5‖u− v‖θ(β−)2εk.

For a ∈ V 2k−l
0 , let P be a geodesic between x = 2la and y = 2la + (2l − 1)e1 in the set

V 2l
a for the environment ω. We construct a path between 2la and 2la + (2l − 1)e1 in the

environment ω? as follows:

• For {u, v} ∈ P , if E?u,v occurs we use the direct edge between u and v.

• For {u, v} ∈ P , if E?u,v does not occur go from u to v using the shortest path in the

set V 2l
a in the environment ω−.

This gives a path P ? between 2la and 2la+(2l−1)e1 in the environment ω?, as we assumed
that all edges contained in ω− are also contained in ω?. The path P ? is also contained in
V 2l
a . Write X{u,v} for the distance D

V 2l
a

(u, v;ω?). The random variable X{u,v} is either 1

or D
V 2l
a

(u, v;ω−). We define the random variable X ′{u,v} by

X ′{u,v} =

{
1 if X{u,v} = 1

min
(
‖u− v‖, 5‖u− v‖θ(β−)2εk

)
else

,

so in particular we have X{u,v} ≤ X ′{u,v} on the event A, and this already implies that

D
V 2l
a

(x, y;ω?) ≤
∑
{u,v}∈P

X ′{u,v}. (89)

The important thing about the random variables X ′e is that they are independent for
different edges e ∈ P , as it is independent for different edges whether they are non-
regular. Next, we want to estimate the first and the q-th moment of the random variable
X ′{u,v}. For the expectation we ge that

E
[
X ′{u,v} | ω({u, v}) = 1,A

]
≤ 1 + ‖u− v‖ C1

‖u− v‖
= 1 + C1,

whereas for the q-th moment we see that

E
[(
X ′{u,v}

)q ∣∣ ω({u, v}) = 1,A
]
≤ 1 + 5‖u− v‖θ(β−)q2εkq

C1

‖u− v‖
≤ 1 + 5C1‖u− v‖θ(β−)q−12εkq ≤ C22k(θ(β−)q−1+εq),

for some constant C2, as θ(β−)q > 1. Using Lemma 7.4, we see that there exists a constant
C <∞ such that

E
[
D
V 2l
a

(x, y;ω?)q|A, ω
]
≤ E

 ∑
{u,v}∈P

X ′{u,v}

q ∣∣∣ A, ω

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≤ CD
V 2l
a

(x, y;ω)q/2C22k(θ(β−)q−1+εq) + CD
V 2l
a

(x, y;ω)q

= CD
V 2l
a

(x, y;ω)q/2C220.5k + CD
V 2l
a

(x, y;ω)q,

and now taking expectation with respect to ω yields

E
[
D
V 2l
a

(x, y;ω?)q|A
]
≤ E

[
CD

V 2l
a

(x, y;ω)q/2C22k(θ(β−)q−1+ε) + CD
V 2l
a

(x, y;ω)q|A
]

≤ C̃‖x− y‖θ(β)q/220.5k + C̃‖x− y‖θ(β)q

for some constant C̃. Here we also used that P (A) ≥ 0.5, and thus for all r > 0 the r-th
moment of D

V 2l
a

(x, y;ω) is of order ‖x− y‖rθ(β), under the measure P (·|A). Assume that

‖x− y‖∞ = 2γk with γ > 3
4 . Then we get

E
[
D
V 2l
a

(x, y;ω?)q|A
]
≤ C̃‖x− y‖θ(β)q/22k(θ(β−)q−1+ε) + C̃‖x− y‖θ(β)q

≤ C ′
(

2
k
(
γθ(β)q

2
+0.5

)
+ 2γkθ(β)q

)
= C ′

(
2k(

γ2
3

+0.5) + 2k
γ4
3

)
≤ C ′′2k

γ4
3 ≤ C ′′′‖x− y‖qθ(β)

for some constants C ′, C ′′, C ′′′ <∞. The second last inequality holds as γ2
3 + 0.5 < γ4

3 for
γ > 3

4 . Using Markov’s inequality we see that there exists a constant C < ∞ such that

for all l > 3
4k, a ∈ V 2k−l

0 , and S ≥ 1

P
(
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω?

)
> S2kθ(β)1.1(l−k)θ(β)

∣∣ A)
≤ P

((
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω?

)
2θ(β)l

)q
> Sq

(
2

1.1

)(k−l)4/3 ∣∣ A)

≤ CS−q
(

2

1.1

)−(k−l)4/3
≤ CS−q

(
1

2.2

)k−l
.

On the other hand, for l ≤ 3
4k we have l ≤ 3(k − l), which implies that

P
(
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω?

)
> S2kθ(β)1.1(l−k)θ(β)

∣∣ A)
≤ P

(
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω−

)
> S2kθ(β)−lθ(β)2lθ(β)1.1(l−k)θ(β)

∣∣ A)
= P

((
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω−

)
2lθ(β−)

)q
> Sq

(
2

1.1

)(k−l) 4
3

2l(θ(β)−θ(β−))q
∣∣ A)

≤ CS−q
(

1

2.2

)k−l
2ql(θ(β−)−θ(β)) ≤ CS−q

(
1

2.2

)k−l
2q3(k−l)(θ(β−)−θ(β)) ≤ CS−q

(
1

2.1

)k−l
where the last inequality holds because of our assumption on β− (88). So in total we see

that there exists a constant C such that for all k ∈ N, l ∈ {0, . . . , k}, and a ∈ V 2k−l
0 one

has

P
(
D
V 2l
a

(
2la, 2la+ (2l − 1)e1;ω?

)
> S2kθ(β)1.1(l−k)θ(β)

∣∣ A) ≤ CS−q ( 1

2.1

)k−l
.

Write ΩS for the event

ΩS =
k⋂
l=0

2k−l−1⋂
j=0

{
D
V 2l

2lje1

(
2lje1, 2

lje1 + (2l − 1)e1;ω?
)
≤ S2kθ(β)1.1(l−k)θ(β)

}
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we get with a union bound that

P
((

ΩS
)C ∣∣ A) ≤ k∑

l=0

2k−l−1∑
j=0

P
(
D
V 2l

2lje1

(
2lje1, 2

lje1 + (2l − 1)e1;ω?
)
> S2kθ(β)1.1(l−k)θ(β)

∣∣∣ A)

≤
k∑
l=0

2k−lCS−q
(

1

2.1

)k−l
< 0.5

for S large enough. Thus we get that P
(
ΩS
)
≥ P

(
ΩS

∣∣ A)P (A) > 0.25. Using a dyadic
path between 0 and (n̄ − 1)e1, one can show that on the event ΩS one has DV n̄0

(0, (n̄ −
1)e1) ≤ C(θ(β))Snθ(β) for some constant C(θ(β)), depending on θ(β) only. This shows
(87) and thus finishes the proof.

8 Russo’s formula for expectations

In this chapter, we establish one of our main tools in the proofs of Theorem 1.3 and
Theorem 1.4, which is a version of Russo’s formula. The classical Russo’s formula, also
called Russo-Margulis lemma, see for example [62, Section 1.3] or [81, 88] for the original
papers, is a formula for i.i.d. bond percolation. It states that for any finite graph (V,E)
and any increasing event A

d

dp
Pp (A) =

∑
e∈E

Pp (e is pivotal for A) , (90)

where we say that an edge e is pivotal for an event A when changing the status of e also
changes the occurrence of the event A. Note that it does not depend on the occupation
status of the edge e whether e is pivotal for A. Russo’s formula (90) tells us how the prob-
ability of an event changes for i.i.d. percolation when varying the connection probability
p. We modify this formula in two ways. First of all, we adapt it to long-range percolation,
where the inclusion probabilities of the edges are not identically distributed. Secondly, we
develop a formula that determines the derivative of the expectation of a general function
rather than just the probability of a given event.

Lemma 8.1 (Russo’s formula for expectations). Let G = (V,E) be a finite graph with a set
of inclusion probabilities (p(β, e))e∈E,β≥0, where β 7→ p(β, e) is continuously differentiable

on R≥0 for all e ∈ E. By Pβ we denote the Bernoulli product measure on {0, 1}E with

inclusion probabilities (p(β, e))e∈E and its expectation by Eβ. Let f : {0, 1}E → R be a
function. Then

d

dβ
Eβ [f(ω)] =

∑
e∈E

p′(β, e)Eβ
[
f(ωe+)− f(ωe−)

]
. (91)

The lemma is stated for any set of continuously differentiable functions p(β, e), but

one can also always think of the case where p(β, {u, v}) = 1− e−β
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

, as
we only apply it to this case.

Proof of Lemma 8.1. The proof is similar to the case of the classical Russo’s formula, see
for example [62]. For a vector

#»

β = (βe)e∈E ∈ RE≥0, we define the probability measure P #»
β

on {0, 1}E by

P #»
β (ω) =

∏
e:ω(e)=1

p(βe, e)
∏

e:ω(e)=0

(1− p(βe, e))
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so that each component ω(e) is Bernoulli distributed with expectation p(βe, e), and all
components are independent. Under this measure, a function f : {0, 1}E → R has the
expectation

E #»
β [f(ω)] =

∑
ω∈{0,1}E

f(ω)
∏

e:ω(e)=1

p(βe, e)
∏

e:ω(e)=0

(1− p(βe, e)).

For an edge f ∈ E, differentiation with respect to βf gives

d

dβf
E #»
β [f(ω)] =

∑
ω∈{0,1}E

f(ω)
d

dβf

 ∏
e:ω(e)=1

p(βe, e)
∏

e:ω(e)=0

(1− p(βe, e))


=

∑
ω∈{0,1}E

f(ω)p′(βf , f)
(
1ω(f)=1 − 1ω(f)=0

) ∏
e∈E\{f}:
ω(e)=1

p(βe, e)
∏

e∈E\{f}:
ω(e)=0

(1− p(βe, e))

= p′(βf , f)
∑

ω∈{0,1}E :ω(f)=1

f(ω)
∏

e∈E\{f}:ω(e)=1

p(βe, e)
∏

e∈E\{f}:ω(e)=0

(1− p(βe, e))

− p′(βf , f)
∑

ω∈{0,1}E :ω(f)=0

f(ω)
∏

e∈E\{f}:ω(e)=1

p(βe, e)
∏

e∈E\{f}:ω(e)=0

(1− p(βe, e))

= p′(βf , f)E #»
β

[
f(ωf+)

]
− p′(βf , f)E #»

β

[
f(ωf−)

]
= p′(βf , f)E #»

β

[
f(ωf+)− f(ωf−)

]
.

To conclude, consider the mapping φ : R 7→ RE defined by φ(β) = (β, . . . , β). With this
and the chain rule we finally get

d

dβ
Eβ [f(ω)] =

d

dβ
Eφ(β) [f(ω)] =

∑
e∈E

d

dβe
Eβ [f(ω)] =

∑
e∈E

p′(β, e)Eβ
[
f(ωe+)− f(ωe−)

]
.

We now consider the case where p(β, {u, v}) = 1 − e
−
∫
u+C

∫
v+C

β

‖x−y‖2d
dxdy

. Note that
p(β, e) decays like β

|e|2d as |e| tends to infinity. By the triangle inequality we have for all

x ∈ u+ C, y ∈ v + C

‖u− v‖ −
√
d ≤ ‖x− y‖ ≤ ‖u− v‖+

√
d

and thus, for ‖u − v‖ ≥
√
d we can bound the integral in the exponent from above and

below by

1(
‖u− v‖+

√
d
)2d
≤
∫
v+C

∫
u+C

1

‖x− y‖2d
dydx ≤ 1(

‖u− v‖ −
√
d
)2d

. (92)

Also note that we have for all edges {u, v} with ‖u− v‖∞ ≥ 2 that

1 ≥
∫
v+C

∫
u+C

1

‖x− y‖2d
dydx (93)

as the integrand is bounded by 1. Next, we consider the derivative of p(β, e) for non-nearest
neighbor edges e = {u, v}. By the chain rule we have

d

dβ
p(β, e) =

∫
u+C

∫
v+C

1

‖x− y‖2d
dxdy e

−
∫
u+C

∫
v+C

β

‖x−y‖2d
dxdy
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and using (92) and (93) we see that for edges {u, v} with ‖u− v‖∞ > 1 and ‖u− v‖ ≥
√
d

p′(β, {u, v}) =


≤ 1

(‖u−v‖−
√
d)

2d

≥ e−β

(‖u−v‖+
√
d)

2d

(94)

and thus in particular for fixed β > 0 we have p′(β, {u, v}) = Θ
(

1
‖u−v‖2d

)
for ‖u−v‖ → ∞.

For every non-nearest-neighbor edge e the probability that e exists is upper bounded by
1− e−β. This implies that∣∣Eβ [f(ωe+)− f(ω)

]∣∣ ≤ ∣∣Eβ [f(ωe+)− f(ωe−)
]∣∣ ≤ 1

e−β
∣∣Eβ [f(ωe+)− f(ω)

]∣∣
for all functions f : {0, 1}E → R and all edges e ∈ E with |e| ≥ 2. Above we bounded
the derivative p′(β, e) from above and below. We also want to bound the connection
probability p(β, e). As 1− e−s ≥ s

2 ∧
1
2 for all s ≥ 0 one has that

p(β, {u, v}) ≥
∫
u+C

∫
v+C

β

2‖x− y‖2d
dxdy ∧ 1

2

(92)

≥ β

2
(
‖u− v‖+

√
d
)2d
∧ 1

2
. (95)

On the other hand one has 1 − e−x ≤ x and thus one can upper bound the connection
probability by

p(β, {u, v}) ≤
∫
u+C

∫
v+C

β

‖x− y‖2d
dxdy

(92)

≤ β(
‖u− v‖ −

√
d
)2d

(96)

for ‖u− v‖ ≥
√
d.

9 Asymptotic behavior of θ(β) for small β and d = 1

In this section, we prove Theorem 1.3, i.e., that θ(β) = 1− β + o(β) for β → 0 for d = 1.
Determining the asymptotic behavior of θ(β) for dimension two or higher for β → 0 is
more difficult for several reasons. First, there is no lower bound on θ(β) that arises from
considering cut points or something similar. The notion of cut points and its implication
on the distance exponent θ(β) in dimension d = 1 will be explained below. Secondly, it is
not clear which pair of vertices x, y ∈ V n

0 minimizes the expected distance Eβ
[
DV n0

(x, y)
]

in dimension two or higher, i.e., whether a similar statement of equation (101) holds for
d ≥ 2. However, for all dimensions d there exists a constant c > 0 such that θ(β) ≤ 1− cβ
for β small enough. This can already be shown with the exact same technique that was
used in [27].

But now let us consider dimension d = 1 again. Here we have θ(0) = 1 and it is well

known that θ(β) ≥ 1− β (see [27, 33]). So we get that lim infβ→0
θ(β)−θ(0)

β ≥ −1. Thus it

suffices to show that lim supβ→0
θ(β)−θ(0)

β ≤ −1. For the sake of completeness, we give a
short sketch of the proof of the lower bound θ(β) ≥ 1− β. For this, we define the notion
of a cut point. We say that the vertex w ∈ {1, . . . , n− 2} is a cut point if there exists no
edge {u, v} with 0 ≤ u < w < v ≤ n− 1. We have

Pβ (w is a cut point) =
∏

0≤u<w

∏
w<v≤n−1

e
−β
∫ u+1
u

∫ v+1
v

1
|x−y|2

dxdy
= e
−β
∫ w
0

∫ n
w+1

1
|x−y|2

dxdy
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≥ e−β
∫ w
0

∫∞
w+1

1
|x−y|2

dxdy
= e
−β
∫ w
0

1
w+1−ydy

= e−β log(w+1) ≥ n−β.
(97)

As the distance between 0 and n−1 is lower bounded by the number of cut points between
0 and n− 1 we get, by linearity of expectation, that

Eβ
[
D[0,n−1](0, n− 1)

]
≥ Eβ [|{w : w is a cut point}|] ≥ (n− 2)n−β = Ω(n1−β) (98)

which shows that θ(β) ≥ 1 − β. As a first step towards the proof of Theorem 1.3, we
remind ourselves about the submultiplicativity of the expected distance, which was proven
in Lemma 2.3. For all dimensions d and all β ≥ 0, the sequence

Λ(n) = Λ(n, β) := max
u,v∈{0,...,n−1}d

Eβ
[
DV n0

(u, v)
]

+ 1

is submultiplicative and furthermore one has

θ(β) = inf
n≥2

log (Λ(n, β))

log(n)
. (99)

Now we are prepared to prove Theorem 1.3. Our main tools for this are Lemma 2.3
and Russo’s formula for expectations (91).

Proof of Theorem 1.3. Note that Λ(n, 0) = n and thus log(Λ(n,0))
log(n) = 1. Using this and (99)

we obtain

lim sup
β↘0

θ(β)− θ(0)

β
= lim sup

β↘0
inf
n≥2

log(Λ(n, β))− log(Λ(n, 0))

β log(n)

≤ inf
n≥2

lim sup
β↘0

log(Λ(n, β))− log(Λ(n, 0))

β log(n)

= inf
n≥2

1

log(n)

d

dβ
log(Λ(n, β))

∣∣∣
β=0

= inf
n≥2

1

log(n)Λ(n, 0)

d

dβ
Λ(n, β)

∣∣∣
β=0

(100)

and this works, as for fixed n the function Λ(n, β) is differentiable at β = 0, as the

inclusion probabilities p(β, {u, v}) are. Now we want to calculate d
dβΛ(n, β)

∣∣∣
β=0

. For

this, let E be the set of all edges of length at least 2 in the graph with vertex set
{0, . . . , n− 1}. For e ∈ E, let ωe+ be the environment, where we added the edge e
(or do nothing in case it already existed before). For β very small compared to 1

n we have
that maxu,v∈{0,...,n−1} Eβ

[
D[0,n−1](u, v)

]
= Eβ

[
D[0,n−1](0, n− 1)

]
. To see this, note that

on the one hand for any u, v ∈ {0, . . . , n− 1} we have

Eβ
[
D[0,n−1](u, v)

]
≤ |u− v|,

whereas on the other hand we have

Eβ
[
D[0,n−1](0, n− 1)

]
≥ (n− 1)Pβ

(⋂
e∈E
{e closed}

)
.

As the probability of the event
⋂
e∈E{e closed} tends to 1 for β → 0 we see that

Eβ
[
D[0,n−1](0, n− 1)

]
= max

u,v∈{0,...,n−1}
Eβ
[
D[0,n−1](u, v)

]
(101)
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for small enough β, where small enough of course depends on n. Using this observation
we see that

d

dβ
Λ(n, β)

∣∣∣
β=0

= lim
β↘0

Λ(n, β)− Λ(n, 0)

β
= lim

β↘0

Eβ
[
D[0,n−1](0, n− 1)

]
− E0

[
D[0,n−1](0, n− 1)

]
β

=
∑
e∈E

p′(0, e)E0

[
D[0,n−1](0, n− 1;ωe+)− (n− 1)

]
. (102)

In the environment ωe+ sampled by P0, where only the nearest-neighbor edges and the
edge e are present, the shortest path from 0 to n − 1 will also take the edge e. By
taking the edge e, the distance between 0 and n− 1 decreases by |e| − 1, and thus equals
n−1− (|e|−1) = n−|e|. For d = 1, we get from (94) that p′(0, {u, v}) ≥ 1

(|u−v|+1)2 . With

this we can upper bound the derivative computed in (102) and obtain that

d

dβ
Λ(n, β)

∣∣∣
β=0

=
∑
e∈E

p′(0, e)E0

[
D[0,n−1](0, n− 1;ωe+)− (n− 1)

]
= −

∑
e∈E

p′(0, e)(|e| − 1)

≤ −
∑
e∈E

1

(|e|+ 1)2
(|e| − 1) =

n−3∑
k=0

n−1∑
j=k+2

1− |j − k|
(j − k + 1)2

=

n−3∑
k=0

n−1−k∑
l=2

1− l
(l + 1)2

.

(103)

For l ∈ N, we have −l
(l+1)2 ≤ 2

l2
− 1

l , as we will show now. One has

−l
(l + 1)2

≤ 2

l2
− 1

l
⇔ −l3 ≤ (l + 1)2(2− l) = (l2 + 2l + 1)(2− l)

⇔ l3 ≥ (l2 + 2l + 1)(l − 2) = l3 − 2l2 + 2l2 − 4l + l − 2⇔ 0 ≥ −3l − 2

and the last line is clearly true. Using that −l
(l+1)2 ≤ 2

l2
− 1

l we also get that 1−l
(l+1)2 ≤

1
(l+1)2 + 2

l2
− 1

l ≤
3
l2
− 1

l . Inserting this into (103) we get that

d

dβ
Λ(n, β)

∣∣∣
β=0
≤

n−3∑
k=0

n−1−k∑
l=2

3

l2
− 1

l
≤

n−3∑
k=0

∞∑
l=2

3

l2
+

n−3∑
k=0

n−1−k∑
l=2

−1

l

≤ 3n+
n−3∑
k=0

n−1−k∑
l=2

−1

l
≤ 4n+

n−3∑
k=0

∫ n−k

1

−1

s
ds = 4n−

n−3∑
k=0

log(n− k)

= 4n−
n∑
k=3

log(k) ≤ 4n−
∫ n

2
log(s)ds = 4n−

[
− s+ s log(s)

]n
2

≤ 5n+ 4− n log(n).

Inserting this into (100) gives

lim sup
β↘0

θ(β)− θ(0)

β
≤ inf

n≥2

1

Λ(n, 0) log(n)

d

dβ
Λ(n, β)

∣∣∣
β=0

= inf
n≥2

1

n log(n)

d

dβ
Λ(n, β)

∣∣∣
β=0
≤ inf

n≥2

5n+ 4− n log(n)

n log(n)
≤ −1

where the infimum is achieved when taking n → ∞. As θ(β) ≥ 1 − β, and thus

lim infβ↘0
θ(β)−θ(0)

β ≥ −1, this finishes the proof of Theorem 1.3.
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10 Strict monotonicity of the distance exponent

In this chapter, we prove Theorem 1.4, i.e., that the function θ(β) is strictly decreasing in
β. It was known before, see [27,33] and section 2.2, that θ(β) is strictly decreasing at β = 0,
which is equivalent to saying that θ(β) < 1 = θ(0) for all β > 0. With the Harris coupling
(cf. [62]) one can see that the function θ(β) is non-increasing. For this coupling, let (Ue)e∈E
be a collection of i.i.d. random variables that are uniformly distributed on [0, 1] and then
set ω(e) := 1{Ue≤p(β,e)}. Then ω is distributed according to the law of Pβ and for β ≤ β′

one has ω(e) = 1{Ue≤p(β,e)} ≤ 1{Ue≤p(β′,e)} = ω′(e). So in particular the environment
defined by ω′ contains all edges defined by ω, and thus D (u, v;ω′) ≤ D (u, v;ω) for all
u, v ∈ Zd. Taking expectations on both sides of this inequality and letting ‖u − v‖ → ∞
already shows that θ(·) is non-increasing.

Before going into the details of the proof of the strict monotonicity, we want to show
the main idea. One of the main tools is again Russo’s formula for expectations (91).
We know that Eβ [D(0, n1)] = Θ

(
nθ(β)

)
, as proven in Theorem 1.1, and thus θ(β) =

limn→∞
log(Eβ [D(0,n1)])

log(n) . But for fixed n we can calculate the derivative of
log(Eβ [D(0,n1)])

log(n)
with Lemma 8.1 and get that

d

dβ

log
(
Eβ
[
DV n+1

0
(0, n1)

])
log(n)

=
1

log(n)Eβ
[
DV n+1

0
(0, n1)

] d

dβ
Eβ
[
DV n+1

0
(0, n1)

]
=

1

log(n)Eβ
[
DV n+1

0
(0, n1)

] ∑
e∈E

p′(β, e)Eβ
[
DV n+1

0
(0, n1;ωe+)−DV n+1

0
(0, n1;ωe−)

]
(104)

where E is the set of edges with both endpoints in V n+1
0 . For ease of notation, we drop the

subscript of V n+1
0 in the paragraph below and will implicitly always think of this graph

as the underlying graph. A fully formal proof is given in section 10.2. Our goal is to show

that for each β > 0, there exists a c(β) < 0 such that d
dβ

log(Eβ [D(0,n1)])
log(n) < c(β) uniformly

over n. For this, it clearly suffices to consider n large enough, as the bound clearly holds
for small n. If we prove this we get that

θ(β + ε)− θ(β) = lim
n→∞

{
log (Eβ+ε [D(0, n1)])

log(n)
−

log (Eβ [D(0, n1)])

log(n)

}
= lim

n→∞

∫ β+ε

β

d

ds

log (Es [D(0, n1)])

log(n)
ds < 0

as we will show in the end of section 10.2 in detail. This implies strict monotonicity of

the function β 7→ θ(β). In order to show d
dβ

log(Eβ [D(0,n1)])
log(n) < c(β), we divide the graph

into several levels, and assume n = 2k − 1 for some k ∈ N. The i-th level consists of all
edges for which c2i < |e| ≤ C2i for some constants 0 < c < C < ∞. Note that an edge
can be in several levels, but at most in finitely many. By G(0, n1) we denote the union of
all geodesics between 0 and n1. So the occupation status of edges outside G(0, n1) does
not change the distance between 0 and n1 which implies that for all edges e one has

Eβ
[(
D(0, n1;ω)−D(0, n1;ωe−)

)
1{e∈G(0,n1)}

]
= Eβ

[
D(0, n1;ω)−D(0, n1;ωe−)

]
.

For fixed β > 0, we have by (94) that p′(β, e) = Θ (Pβ(ω(e) = 1)) = Θ
(

1
|e|2d

)
as |e| → ∞.

Thus we have uniformly over all edges of length at least 2 (but not uniformly over β) that

p′(β, e)Eβ
[
D(0, n1;ωe+)−D(0, n1;ωe−)

]
= Θ

(
Eβ
[
D(0, n1;ω)−D(0, n1;ωe−)

])
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= Θ
(
Eβ
[(
D(0, n1;ω)−D(0, n1;ωe−)

)
1{e∈G(0,n1)}

])
.

So in order to show that there exists a c(β) < 0 such that d
dβ

log(Eβ [D(0,n1)])
log(n) < c(β)

uniformly over n it suffices to show that∑
e∈E:c2i<|e|≤C2i

Eβ
[(
D(0, n1;ω)−D(0, n1;ωe−)

)
1{e∈G(0,n1)}

]
< c′(β)Eβ [D(0, n1)]

for some c′(β) < 0 and a positive fraction of the levels i ∈ {1, . . . , k}. One needs this for a
positive fraction of the levels in order to cancel the logarithm in the denominator of (104).

10.1 The geometry inside blocks

For the proof of Theorem 1.4, we remind ourselves of a few results from the previous
chapters:
From Lemma 2.4 and Lemma 2.5 we know that for all 1

n < ε ≤ 1
4 and u,w ∈ Zd \{0} with

‖u‖∞ ≥ 2 one has

Pβ
(
∃x, y ∈ V n

0 : ‖x− y‖∞ ≤ εn, x ∼ V n
u , y ∼ V n

w

∣∣ V n
0 ∼ V n

u , V
n
0 ∼ V n

w

)
≤ C ′dε1/2dβe2

where C ′d is a constant that depends only on the dimension d. This tells us that for a
block V n

0 the vertices x, y ∈ V n
0 that are connected to different boxes x ∼ V n

u , y ∼ V n
w are

typically far apart in terms of Euclidean distance, whenever ‖u‖∞ ≥ 2. However, the same
result is also true for the chemical distance, as proven in Lemma 5.2. There we proved
that for all dimensions d and all β ≥ 0, there exists a function g1(ε) with g1(ε) −→

ε→0
1 such

that for all u,w ∈ Zd \ {0} with ‖u‖∞ ≥ 2 and all large enough n ≥ n(ε)

Pβ
(
DV n0

(x, y) > εΛ(n, β) for all x, y ∈ V n
0 with x ∼ V n

u , y ∼ V n
w

∣∣ V n
u ∼ V n

0 ∼ V n
w

)
≥ g1(ε).

Theorem 1.1 shows that

D
(
0, Bn(0)C

)
≈P nθ(β)

for some θ(β) ∈ (0, 1). One can ask whether the same statement is true for the dis-
tance between two sets that are separated by a euclidean distance of n, for example
D
(
Bn(0), B2n(0)C

)
. However, a similar statement can never be true, as there is a uni-

form (in n) positive probability of a direct edge between the sets Bn(0) and B2n(0)C . But
if we condition on the event that there is no direct edge, then we can get such a result,
as proven in Lemma 4.11 and Corollary 4.12. Formally, let L be the event that there
is no direct edge between Bn(0) and B2n(0)C . For all β ≥ 0 and all ε > 0, there exist
0 < c < C <∞ such that

Pβ
(
cΛ(n, β) ≤ D

(
Bn(0), B2n(0)C

)
≤ CΛ(n, β)

∣∣ L) > 1− ε

for all n ∈ N. Let L′ be the event that there is no direct edge between V n
0 and

⋃
u∈Zd:‖u‖∞≥2 V

n
u .

For all β ≥ 0 and all ε > 0, there exist 0 < c < C <∞ such that

Pβ

cΛ(n, β) ≤ D

V n
0 ,

⋃
u∈Zd:‖u‖∞≥2

V n
u

 ≤ CΛ(n, β)
∣∣∣ L′

 > 1− ε
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for all n ∈ N. So in particular there exists a function g with limε→0 g2(ε) = 1 such that

Pβ

εΛ(n, β) < D

V n
0 ,

⋃
u∈Zd:‖u‖∞≥2

V n
u

 ∣∣∣ L′
 ≥ g2(ε) (105)

for all large enough n ≥ n(ε).
Lemma 11.2 below implies that for all k ∈ N and β > 0 there exists a constant C such

that for all n ∈ N

Eβ
[
Diam (V n

0 )k
]
≤ Cnkθ(β). (106)

Let δ ∈ (0, 1). We define a family of sets COδn ⊂ V n
0 with the following two properties:

•
⋃
x∈COδn Bδn(x) = V n

0 , and

•
∣∣COδn∣∣ ≤ CCOδ−d for all δ,

where CCO is a constant that depends only on the dimension d, but non on δ. The
abbreviation CO stands for cover. Such a cover can be constructed by choosing the points
in COδn at a distance of approximately δn.

Lemma 10.1. For ε ∈ (0, 1), let DL(ε) be the event

DL(ε) =
⋂

x∈COε2n

{
Diam (Bε2n(x)) <

(
ε1.5n

)θ
3

}
.

Then there exists a function h1(ε) with limε→0 h1(ε) = 1 such that

Pβ (DL(ε)) ≥ h1(ε)

for all n ≥ n(ε) large enough. If the event DL(ε) holds, we say that V n
0 is ε-near.

Proof. By a union bound we have that

Pβ
(
DL(ε)C

)
≤

∑
x∈COε2n

Pβ

(
Diam (Bε2n(x)) ≥

(
ε1.5n

)θ
3

)

≤ CCOε−2dPβ

(
Diam (Bε2n(0)) ≥

(
ε1.5n

)θ
3

)
. (107)

From Markov’s inequality we know that for any k ∈ N and n ≥ ε−2

Pβ

(
Diam (Bε2n(0)) ≥

(
ε1.5n

)θ
3

)
= Pβ

Diam (Bε2n(0))k ≥

((
ε1.5n

)θ
3

)k
≤ Eβ

[
Diam (Bε2n(0))k

]((ε1.5n
)θ

3

)−k
(106)

≤ C(2ε2n+ 1)kθ

((
ε1.5n

)θ
3

)−k
≤ C ′(k)ε0.5kθ

for some constant C ′(k) < ∞. So using k = 6ddθ−1e and inserting this into (107) we get
that

Pβ
(
DL(ε)C

)
≤ C̃ε−2dε0.5·6ddθ−1eθ ≤ C̃εd

for some constant C̃ <∞, which finishes the proof.
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Consider long-range percolation on Zd. We split the long-range percolation graph into
blocks of the form V n

v , where v ∈ Zd. For each v ∈ Zd, we contract the block V n
v ⊂ Zd

into one vertex r(v). We call the graph that results from contracting all these blocks
G′ = (V ′, E′). For r(v) ∈ G′, we define the neighborhood N (r(v)) by

N (r(v)) =
{
r(u) ∈ G′ : ‖v − u‖∞ ≤ 1

}
,

and we define the neighborhood-degree of r(v) by

degN (r(v)) =
∑

r(u)∈N (r(v))

deg(r(u)). (108)

We also define these quantities in the same way when we start with long-range percolation
on the graph V mn

0 , and contract the box V n
v for all v ∈ V m

0 . Remember that by Lemma 5.4
we have for the event W(ε) defined by

W(ε) :=

D?

V n
v ,

⋃
u∈Zd:‖u−v‖∞≥2

V n
u

 > εΛ(n, β)

 .

that for all large enough n ≥ n(ε) one has

Pβ
(
W(ε)C | G′

)
≤ 3d degN (r(v)) (1− g1(ε)) + (1− g2(ε)) , (109)

where g1 and g2 were defined in Lemma 5.2, respectively (105). Furthermore, before going
to the proof of Theorem 1.4, we remind ourselves about the main results of section 3; In
particular about Lemma 3.2 and (25). For a finite set Z, we defined its average degree by
deg(Z) = 1

|Z|
∑

v∈Z deg(z). Let CSk = CSk
(
Zd
)

be all connected subsets of the long-range

percolation graph with vertex set Zd of size k that contain the origin 0. We write µβ for
Eβ [deg(0)]. Then for all β > 0

Pβ
(
∃Z ∈ CSk : deg(Z) ≥ 20µβ

)
≤ e−4kµβ

and

Eβ
[∣∣∣CSk (Zd)∣∣∣] ≤ 4kµkβ.

10.2 The proof of Theorem 1.4

With the knowledge from the previous subsections, we are now ready to go to the proof of
Theorem 1.4. The proof consists out of three main parts: First, we define a notion of good
paths in a renormalized graph. Then we show that every long enough path is good, with
high probability. Finally, we argue how this implies strict monotonicity of the distance
exponent.

Proof of Theorem 1.4. Consider the graph V 2n
0 . For k ≤ n, define the graph G′ by con-

tracting all blocks of the form V 2k
u . We define r(u) ∈ G′ as the vertex that results from

contracting V 2k
u . In analogy to Zd, we call the vertex r(0) the origin of G′. We de-

fine a metric on G′ by ‖r(u) − r(v)‖∞ = ‖u − v‖∞. Now consider a self-avoiding path
P = (r(u0), r(u1), . . . , r(ut)) ⊂ G′, where u0 = 0, and t is very large (depending on d and
β). We divide the path into blocks of length K = 3d + 1: For j ≤ b tK c − 1, we define

Rj =
(
r(ujK), . . . , r(ujK+3d)

)
. For each such j and Rj , we define a set R̃j as follows:
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If there exist (r(ui), r(ui+1)) ⊂ Rj with ‖ui − ui+1‖∞ ≥ 2, we simply set R̃j = Rj . If
‖r(ui)− r(ui+1)‖∞ = 1 for all i ∈ {jK, . . . , jK + 3d}, then we set R̃j = Rj ∪ N (r(ujK)).

The set
⋃b t

K
c−1

j=0 R̃j is a connected set and its cardinality is bounded from below by∣∣∣∣∣∣
b t
K
c−1⋃

j=0

R̃j

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
b t
K
c−1⋃

j=0

Rj

∣∣∣∣∣∣ ≥ K
⌊ t
K

⌋
≥ t

2
,

and bounded from above by∣∣∣∣∣∣
b t
K
c−1⋃

j=0

R̃j

∣∣∣∣∣∣ ≤ 3d

∣∣∣∣∣∣
b t
K
c−1⋃

j=0

Rj

∣∣∣∣∣∣ ≤ 3dt.

From now on we will always work on the event

Ht :=
{

deg(Z) < 20µβ for all Z ∈ CS≥t/2
(
G′
)}

.

Note that

Pβ
(
HCt
)
≤ e−2tµβ ≤ 2−t (110)

by Lemma 3.2. We define the degree of R̃j by

deg
(
R̃j

)
=

∑
r(u)∈R̃j

deg(r(u)).

Note that we do not necessarily have

b t
K
c−1∑

i=0

deg
(
R̃j

)
=

∑
r(u)∈

⋃b t
K
c−1

i=0 R̃j

deg(r(u)),

as some vertices r(ui) might be included in more than one of the sets R̃j . However, each
vertex r(ui) can be included in at most 3d sets R̃j and thus we have

b t
K
c−1∑

j=0

deg
(
R̃j

)
≤ 3d

∑
r(u)∈

⋃b t
K
c−1

j=0 R̃j

deg(r(u)) ≤ 3d20µβ

∣∣∣∣∣∣
b t
K
c−1⋃

j=0

R̃j

∣∣∣∣∣∣ ≤ 9d20µβt.

There are b tK c ≥
t

2K ≥
t

8d
indices j, and thus we have

1

bt/Kc

b t
K
c−1∑

j=0

deg
(
R̃j

)
≤ 8d

t
9d20µβt = 72d20µβ,

which implies that there are at least d t
20d
e many indices j ∈ {0, . . . , bt/Kc − 1} with

deg
(
R̃j

)
≤ 80d+1µβ.
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Say that j1, . . . , jd t

20d
e are the first such indices. We define a further subset IND =

IND(P ) of these indices by starting with IND0 = ∅ and then iteratively define (INDi)
d t

20d
e

i=1

by

INDi :=

{
INDi−1 ∪ {ji} if R̃ji �

⋃
l∈INDi−1

R̃jl
INDi−1 else

.

So in particular there is no edge between R̃j and R̃j′ for different j, j′ ∈ IND := INDd t

20d
e.

The set IND has a cardinality of at least 1
80d+1µβ+1

d t
20d
e, as for ji ∈ IND, the set R̃ji

has a degree of at most 80d+1µβ and can thus block at most 80d+1µβ many other elements
from getting included. So in particular we also have

|IND| ≥ 1

80d+1µβ + 1

⌈ t

20d

⌉
≥ t

2000d+1µβ
. (111)

If Ri =
(
r(uiK), . . . , r(uiK+3d)

)
is a path of length K = 3d + 1 in the graph G′ with

deg
(
R̃i

)
≤ 80d+1µβ, we want to investigate the typical minimal length of a path in

the original model that goes through the blocks
(
V 2k
uiK

, . . . , V 2k
u
iK+3d

)
. If there exists j ∈

{iK, . . . , iK + 3d − 1} with ‖uj+1 − uj‖∞ ≥ 2, let j be the smallest such index. The

probability that there exist x, y ∈ V 2k
uj such that x ∼ V 2k

uj+1
, y ∼ V 2k

w , where w /∈ {uj , uj+1},
and D

V 2k
uj

(x, y) ≤ εΛ(2k, β) is bounded by deg
(
V 2k
uj

)
(1− g1(ε)) ≤ 80d+1µβ (1− g1(ε)),

by Lemma 5.2. If D
V 2k
uj

(x, y) > εΛ(2k, β) for all x, y ∈ V 2k
uj such that x ∼ V 2k

uj+1
, y ∼ V 2k

w ,

where w /∈ {uj , uj+1}, we say that the block Ri is ε-separated.
Now suppose that ‖uj − uj+1‖∞ = 1 for all j ∈ {iK, . . . , iK + 3d − 1}. There exists

an index j ∈ {iK + 1, . . . , iK + 3d} with ‖uiK − uj‖∞ ≥ 2, as there are only 3d − 1 many

points w ∈ Zd with ‖uiK − w‖∞ = 1. When the path exits the cube V 2k
uiK

for the last

time, it goes to V 2k
uiK+1

, so in particular the walk does not use a long edge from VuiK to⋃
w:‖w−uiK‖∞≥2 V

2k
w for the last exit. If the indirect distance between the sets V 2k

uiK
and

the set
⋃
r(w)∈G′:‖w−uiK‖∞≥2 V

2k
w is at least εΛ

(
2k, β

)
, i.e, if

D?
V 2n
0

V 2k

uiK
,

⋃
r(w)∈G′:‖w−uiK‖∞≥2

V 2k

w

 ≥ εΛ(2k, β
)

,

we also say that the subpath Ri and the set R̃i are ε-separated. As degN (r(ui)) ≤
80d+1µβ, the probability that there is a path of length at most εΛ(2k, β) that goes through

V 2k
uiK

, . . . , V 2k
u
iK+3d

is bounded by 3d80d+1(1− g1(ε)) + (1− g2(ε)), by (109). So we see that

in all cases, with probability at least

1−
(

3d80d+1(1− g1(ε)) + (1− g2(ε))
)

the original path needs to walk a distance of at least εΛ(2k, β) inside the sets V 2k
uiK+1

,

V 2k
uiK+2

, . . . , V 2k
u
iK+3d−1

, and this distance can be witnessed from the set of edges with at

least one end in R̃i. Note that we have two notions of ε-separated: one for subpaths
that make a jump of size at least 2 and one for subpaths that do not make such a jump.
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However, the idea is in both cases that a path that walks through the set Ri needs to walk
a distance of at least εΛ

(
2k, β

)
in the original model.

We say that a sequenceRi is ε-influential , if R̃i is ε-separated and all boxes V 2k
uiK

, . . ., V 2k
u
iK+3d

are ε1/θ-near (see Lemma 10.1 for the definition of ε-near). For a block Ri with i ∈ IND,
we can bound the probability that a sequence Ri is not ε-influential by

Pβ (Ri is not ε-influential) ≤ 3d80d+1(1− g1(ε)) + (1− g2(ε)) + (3d + 1)
(

1− h1

(
ε1/θ

))
.

Note that it only depends on edges with at least one endpoint inside R̃i, whether Ri is

ε-influential. For different values of different j1, . . . , jl ∈ IND, the sets
(
R̃ji

)
i∈{1,...,l}

are

not connected, and thus it is independent whether these blocks are ε-influential. Next, let
ε be small enough such that(

3d80d+1(1− g1(ε)) + (1− g2(ε)) + (3d + 1)
(

1− h1

(
ε1/θ

))) 1

2·2000d+1µβ ≤ 1

100µ2
β

. (112)

Let INF = INF(P ) ⊂ IND(P ) be all indices i ∈ IND, for which Ri is ε-influential. If
Ht holds we want to get bounds on the cardinality of the set INF for a fixed path P ⊂ G′
of length t. Remember that we have

|IND| ≥ t

2000d+1µβ
,

as shown in (111). For a path P = (r(u0), r(u1), . . . , r(ut)) ⊂ G′ one thus has

Pβ
(
|INF| < t

2 · 2000d+1µβ

∣∣∣ G′) = Pβ

 ⋃
U⊂IND:|U |≥IND/2

{Ri not ε-influential ∀i ∈ U}
∣∣∣ G′


≤ 2|IND|

(
3d80d+1(1− g1(ε)) + (1− g2(ε)) + (3d + 1)

(
1− h1

(
ε1/θ

))) t

2·2000d+1µβ

≤ 2t

(
1

100µ2
β

)t
=

1

50tµ2t
β

where used the assumption on ε (112) for the last inequality. This shows that a specific
path P is satisfies |INF(P )| ≥ t

2·2000d+1µβ
with high probability. Next, we want to show

that all paths P ⊂ G′ of length t starting at the origin r(0) satisfy |INF(P )| ≥ t
2·2000d+1µβ

with high probability in t. Let Pt be the set of all paths in G′ of length t starting at r(0).
We call the previously mentioned event Gt, i.e.,

Gt =

{
|INF(P )| ≥ t

2 · 2000d+1µβ
for all P ∈ Pt

}
.

By a comparison with a Galton-Watson tree we get that Eβ [|Pt|] ≤ µtβ. Thus we have, by
a union bound

Pβ
(
GCt
)
≤ Pβ

(
HCt
)

+ Pβ
(
|Pt| > 2tµtβ

)
+ Pβ

(
GCt

∣∣Ht, |Pt| ≤ 2tµtβ
)

≤ Pβ
(
HCt
)

+ Pβ
(
|Pt| > 2tµtβ

)
+ 2tµtβ

1

50tµ2t
β

(110)

≤ 2−t +
E [|Pt|]
2tµtβ

+
1

25t
≤ 3 · 2−t.
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and with another union bound we get for the event G≥t :=
⋂∞
t′=t Gt′ that

Pβ
(
GC≥t
)
≤ 6 · 2−t. (113)

So we see that all paths of length at least t contain at least t
2·2000d+1µβ

many ε-influential

subpaths Ri with very high probability in t, for ε small enough as in (112). Now, let P̂
be a geodesic between 0 and (2n − 1)1 in the graph with vertex set V 2n

0 . Let P̃ be the
projection of this path onto G′, and let P be the loop-erased version of it. Whenever
the path P crosses an influential subset Ri =

(
r(uiK), . . . , r(uiK+3d)

)
⊂ P , let l = l(i) ∈

{iK, . . . , iK + 3d − 1} be the first index for which ‖r(ul) − r(ul+1)‖∞ ≥ 2 if such an
index exists. Respectively let l = l(i) ∈ {iK, . . . , iK + 3d} be the first index for which
‖r(ul)− r(uiK)‖∞ ≥ 2, if there does not exist such an index with ‖r(ul)− r(ul+1)‖∞ ≥ 2.

Whenever the path P crosses the set Ri, it enters V 2k
uiK

through some vertex xL and it

leaves V 2k
ul

to V 2k
ul+1

through some vertex xR. As the boxes V 2k
uiK

and V 2k
ul

are ε1/θ-near,

there exist cubes BL, BR of side length at least 2ε2/θ2k such that

xL ∈ BL ⊂ V 2k

uiK
, xR ∈ BR ⊂ V 2k

ul
, and

Diam(BL),Diam(BR) <

(
ε

1.5
θ 2k

)θ
3

=
ε1.5

3
2kθ.

The graph distance between xL and xR is at least εΛ
(
2k, β

)
, as we will argue now. If there

exists an index l ∈ {iK, . . . , iK + 3d− 1} for which ‖r(ul)− r(ul+1)‖∞ ≥ 2, then we know

that the box V 2k
ul

is ε-separated. At the last visit of the box V 2k
ul

, the geodesic P̂ enters

the box V 2k
ul

through some point z ∈ V 2k
ul

with z ∼ V 2k
w , for some w ∈ V 2n−k

0 \ {ul, ul+1}.
We have w 6= ul+1, as the loop-erased projection P is self-avoiding. As D

V 2k
ul

(xR, z) ≥

εΛ
(
2k, β

)
for all z ∈ V 2k

ul
with z ∼ V 2k

w for w /∈ {ul, ul+1}, we automatically get that

D(xL, xR) ≥ εΛ
(
2k, β

)
, as either xL ∈ V 2k

ul
with xL ∼ V 2k

ul−1
, or xL /∈ V 2k

ul
. If there does

not exist an index l ∈ {iK, . . . , iK + 3d − 1} for which ‖r(ul) − r(ul+1)‖∞ ≥ 2, then we
know that ‖ul − uiK‖∞ = 2 and the geodesic between xL and xR walks through the set⋃
r(w)∈G′:‖w−uiK‖∞=1 V

2k
w , and thus its length is at least

DV 2n
0

(xL, xR) ≥ D?
V 2n
0

V 2k

uiK
,

⋃
r(w)∈G′:‖w−uiK‖∞≥2

V 2k

w

 ≥ εΛ(2k, β
)

where the last inequality holds, as the subpath Ri was assumed to be ε-separated.
When we insert an edge between the boxes BL and BR, the distance between xL and

xR is at most 2 ε
1.5

3 2kθ + 1. Remember that Λ(2k, β) ≥ 2kθ. Thus we have for all edges
e ∈ BL ×BR

DV 2n
0

(xL, xR;ω)−DV 2n
0

(
xL, xR;ωe+

)
≥ εΛ

(
2k, β

)
− 2

ε1.5

3
2kθ − 1 ≥ εΛ(2k, β)

4

where the last inequality holds for k large enough. The boxes BL and BR are of side length
at least 2ε2/θ2k and are disjoint, as DV 2n

0
(xL, xR) > Diam (BL) + Diam (BR). Thus there

are at least
(
ε2/θ2k

)d·(ε2/θ2k
)d

pairs of vertices (a, b) ∈ BL×BR for which |{a, b}| ≥ ε2/θ2k.
On the other hand, we also have |{a, b}| ≤ (3d+1)2k ≤ 6d2k for all pairs (a, b) ∈ BL×BR,
as ‖r(uiK)− r(ul)‖∞ ≤ 3d. So in particular we have∑

e∈BL×BR:
ε2/θ2k≤|e|≤6d2k

p′(β, e)
(
DV 2n

0
(xL, xR;ω)−DV 2n

0

(
xL, xR;ωe+

))
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≥
∑

e∈BL×BR:
ε2/θ2k≤|e|≤6d2k

p′(β, e)
εΛ(2k, β)

4

(94)

≥
∑

e∈BL×BR:
ε2/θ2k≤|e|≤6d2k

e−β(
|e|+

√
d
)2d

εΛ(2k, β)

4
≥ cΛ(2k, β)

with a constant c > 0, that depends on β, ε, θ, and d, and for k large enough. For the
two points 0 and (2n − 1)1, and points xL and xR which are in a geodesic between 0 and
(2n − 1)1 in this order, and any edge e we have

DV 2n
0

(0, (2n − 1)1;ω) = DV 2n
0

(0, xL;ω) +DV 2n
0

(xL, xR;ω) +DV 2n
0

(xR, (2
n − 1)1;ω) , and

DV 2n
0

(
0, (2n − 1)1;ωe+

)
≤ DV 2n

0
(0, xL;ω) +DV 2n

0

(
xL, xR;ωe+

)
+DV 2n

0
(xR, (2

n − 1)1;ω) .

Subtracting these two (in)equalities already yields that

DV 2n
0

(0, (2n − 1)1;ω)−DV 2n
0

(
0, (2n − 1)1;ωe+

)
≥ DV 2n

0
(xL, xR;ω)−DV 2n

0

(
xL, xR;ωe+

)
,

so in particular we also have∑
e∈BL×BR:

ε2/θ2k≤|e|≤6d2k

p′(β, e)
(
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

))
≥ cΛ

(
2k, β

)
.

The above inequality holds for fixed BL ⊂ V 2k
uiK

, BR ⊂ V 2k
ul

. However, such boxes exist for

all indices i ∈ INF(P ). Thus, assuming that DG′
(
0, (2n−k − 1)1

)
= t and G≥t holds for

large enough t ≥ T , we have for large enough k∑
e:ε2/θ2k≤|e|≤6d2k

p′(β, e)
(
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

))
≥ |INF(P )| cΛ

(
2k, β

)
≥ t

2 · 2000d+1µβ
cΛ
(

2k, β
)

=: c′tΛ
(

2k, β
)

.

So far, we always worked on the event G≥t. Now, we want to get a similar bounds in
expectation, not conditioning on G≥t. Writing Ek for the set of edges e with ε2/θ2k ≤
|e| ≤ 6d2k we get that there exists a large enough T <∞ so that∑
e:ε2/θ2k≤|e|≤6d2k

p′(β, e)Eβ
[
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

)]

≥
∞∑
t=T

∑
e∈Ek

p′(β, e)Eβ
[ (
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

))
· 1{DG′(r(0),r((2n−k−1)1))=t}1{G≥t}

]
≥
∞∑
t=T

c′tΛ
(

2k, β
)
Eβ
[
1{DG′(r(0),r((2n−k−1)1))=t}1{G≥t}

]
≥ c′Λ

(
2k, β

) ∞∑
t=T

t
(
Pβ
(
DG′

(
r(0), r((2n−k − 1)1)

)
= t
)
− Pβ

(
GC≥t
))

(113)

≥ c′Λ
(

2k, β
)( ∞∑

t=T

t
(
Pβ
(
D
V 2n−k
0

(
0, (2n−k − 1)1

)
= t
))
−
∞∑
t=T

6t2−t

)
≥ c′Λ

(
2k, β

)(
Eβ
[
D
V 2n−k
0

(
0, (2n−k − 1)1

)]
− 6− T

)
≥ c̃Λ

(
2k, β

)
Λ
(

2n−k, β
)
≥ c̃Λ (2n, β)
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for some c̃ > 0 and all k, n− k large enough. For each edge e, there are only finitely many
levels k for which ε2/θ2k ≤ |e| ≤ 6d2k. Thus we get that∑

e

p′(β, e)Eβ
[
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

)]
≥ c1

n∑
k=1

∑
e∈Ek

p′(β, e)Eβ
[
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

)]
≥ c2

n∑
k=1

Λ (2n, β) ≥ c3 log (2n) Λ (2n, β)

for constants c1, c2, c3 > 0 and n large enough. This already implies that∑
e

p′(β, e)Eβ
[
DV 2n

0

(
0, (2n − 1)1;ωe−

)
−DV 2n

0

(
0, (2n − 1)1;ωe+

)]
≥
∑
e

p′(β, e)Eβ
[
DV 2n

0
(0, (2n − 1)1;ω)−DV 2n

0

(
0, (2n − 1)1;ωe+

)]
≥ c3 log (2n) Λ (2n, β) .

(114)

Now, let us see how this bound implies strict monotonicity of the distance exponent
θ(β). We know that

θ(β) = lim
n→∞

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)

and that for fixed n the function

β 7→
log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)

is, by Russo’s formula for expectations (91), differentiable. So we can calculate the deriva-
tive and bound it from above by

d

dβ

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)

=
1

Eβ
[
DV 2n

0
(0, (2n − 1)1)

]
log(2n)

d

dβ
Eβ
[
DV 2n

0
(0, (2n − 1)1)

]

=

∑
e∈E p

′(β, e)Eβ
[
DV 2n

0
(0, (2n − 1)1;ωe+)−DV 2n

0
(0, (2n − 1)1;ωe−)

]
Eβ
[
DV 2n

0
(0, (2n − 1)1)

]
log(2n)

(114)

≤ −c3Λ (2n, β) log(2n)

Eβ
[
DV 2n

0
(0, (2n − 1)1)

]
log(2n)

≤ −c3 =: c(β)

for some c(β) < 0 and this holds for all n ∈ N>0 large enough. Now fix 0 < β1 < β2 <∞.
We want to show that θ(β1) > θ(β2). For each fixed β ∈ [β1, β2] there exists n(β) < ∞
such that for all n ≥ n(β)

d

dβ

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log (2n)

≤ c(β)

2
(115)
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holds. So in particular we can take N large enough, and c < 0 with |c| small enough so

that the set of β ∈ [β1, β2] which satisfy c(β)
2 < c, and which satisfy (115) for all n ≥ N ,

has Lebesgue measure of at least β2−β1

2 . Thus we get

θ(β2)− θ(β1) = lim
n→∞

 log
(
Eβ2

[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)

−
log
(
Eβ1

[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)


= lim

n→∞

∫ β2

β1

d

dβ

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log(2n)

dβ

≤ β2 − β1

2
c < 0,

which finishes the proof of the strict monotonicity

11 Continuity of the distance exponent

In this section, we show that the distance exponent is continuous in β. This result is also
useful for comparing different percolation models with each other, as shown in section 7.
With the tools that we have developed so far, we can already prove continuity from the
left:

Lemma 11.1. The distance exponent θ(β) is continuous from the left.

Proof. Remember that

θ(β) = inf
n≥2

log (Λ(n, β))

log(n)

which is stated in Lemma 2.3. For fixed n, the function β 7→ Λ(n, β) is continuous and
decreasing in β. The continuity holds, as the inclusion probabilities p(β, e) are continuous
in β for all edges e, and we only consider the finitely many edges with both endpoints in
V n
0 . As the functions p(β, e) are also increasing in β for all edges e, one can see with the

Harris coupling that the function β 7→ Λ (n, β) is also decreasing. So we get that for all
β > 0

lim
ε↘0

θ(β − ε) = inf
ε>0

θ(β − ε) = inf
ε>0

inf
n≥2

log (Λ(n, β − ε))
log(n)

= inf
n≥2

inf
ε>0

log (Λ(n, β − ε))
log(n)

= inf
n≥2

log (Λ(n, β))

log(n)
= θ(β),

and this shows continuity from the left.

The proof of continuity from the right is more difficult. We consider independent bond
percolation on the complete graph with vertex set V = V 2n

0 and edge set E = {{x, y} :

x, y ∈ V 2n
0 , x 6= y}. For k ∈ {1, . . . , n} and β1, β2 > 0, we denote by Pβ2>k

β1≤k the product

probability measure on the {0, 1}E where edges e = {u, v} are open with the following
probabilities:

Pβ2>k
β1≤k (ω({u, v}) = 1) =


1− e−β1

∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

if 1 < |{u, v}| ≤ 2k − 1

1− e−β2

∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

if |{u, v}| ≥ 2k

1 if |{u, v}| = 1

,
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so in particular the measure Pβ2>1
β1≤1 is identical to the measure Pβ2 , and the measure Pβ2>n

β1≤n
on the graph with vertex set V 2n

0 is identical to the measure Pβ1 . For k ∈ {2, . . . , n− 1},
we think of the measure Pβ2>k

β1≤k as an interpolation between the probability measures Pβ1

and Pβ2 on the graph with vertex set V 2n
0 . We will mostly work on this graph in this

chapter and the distances should be considered as the graph distances inside this graph.
We denote by Eβ2>k

β1≤k the expectation under Pβ2>k
β1≤k. Our main strategy of the proof of

Theorem 1.5 is as follows: We know that

θ(β) = lim
n→∞

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log (2n − 1)

= lim
n→∞

log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
log(2)n

and thus we also have

θ(β)− θ(β + ε)

= lim
n→∞

1

log(2)n

(
log
(
Eβ
[
DV 2n

0
(0, (2n − 1)1)

])
− log

(
Eβ+ε

[
DV 2n

0
(0, (2n − 1)1)

]))
= lim

n→∞

1

log(2)n

(
log
(
Eβ+ε>n
β≤n

[
DV 2n

0
(0, (2n − 1)1)

])
− log

(
Eβ+ε>1
β≤1

[
DV 2n

0
(0, (2n − 1)1)

]))
=

1

log(2)
lim
n→∞

1

n

n∑
k=2

(
log
(
Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)1)

])
− log

(
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)1)

]))

=
1

log(2)
lim
n→∞

1

n

n∑
k=2

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)1)

]
 . (116)

So in order to show that limε→0 θ(β + ε) = θ(β) it suffices to show that

lim
ε→0

lim
n→∞

1

n

n∑
k=2

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)1)

]
 = 0, (117)

and in order to show this, it is sufficient to show that the terms

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)1)

]
 , k ∈ {2, . . . , n},

are bounded uniformly and converge to 0, as ε → 0, k, n − k → ∞. Before going to
the proof, we need to prove several technical results. In Lemma 11.2, we investigate

the exponential moments of
Diam(Vm0 )

mθ
, uniformly over m. In subsection 11.1, we derive

several inequalities for the mixed measure Pβ+ε>k
β≤k that we need later in the proof. Then,

in subsection 11.2 we show how this implies (117) and thus continuity of the distance
exponent θ.

Lemma 11.2. For all β ≥ 0, there exists a constant C1 <∞ such that for all s ≥ 1, and
all m ∈ N>0

Eβ
[
e
s
Diam(Vm0 )
mθ(β)

]
< eC1sC1

. (118)
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Proof. Define Ym :=
Diam(Vm0 )
mθ(β) . In Theorem 6.1, we proved that for each β ≥ 0 there exists

an η > 1, and a C <∞ such that

Eβ
[
eY

η
m

]
≤ C (119)

for all m ∈ N. For all y, s > 0 one has

sy ≤ sy1{s<yη−1} + sy1{s≥yη−1} ≤ yη−1y1{s<yη−1} + sy1{
s

1
η−1≥y

} ≤ yη + s
η
η−1 .

Inserting this into (119), we get that for all s ≥ 1

Eβ
[
esYm

]
≤ Eβ

[
eY

η
m+s

η
η−1

]
≤ Ces

η
η−1 ≤ eC1sC1

for some C1 <∞.

11.1 Uniform bounds for the mixed measure

In this chapter, we give several bounds for the measure Pβ+ε>k
β≤k that hold uniformly over

ε ∈ [0, 1] and k ≤ n. These bounds were partially already proven in the previous sections

or in [33] for fixed β and ε = 0. One can couple the measures Pβ+ε>k
β≤k for different ε with

the Harris coupling. For some set V ⊂ Zd and E = {{u, v} : u, v ∈ V, u 6= v}, let (Ue)e∈E
be independent random variables with uniform distribution on the interval [0, 1]. Define
the function p (β, β + ε, k, {u, v}) : R≥0 × R≥0 × N× E → [0, 1] by

p (β, β + ε, k, {u, v}) =


1− e−

∫
u+C

∫
v+C

β

‖x−y‖2d
dxdy

1 < |{u, v}| ≤ 2k − 1

1− e−
∫
u+C

∫
v+C

β+ε

‖x−y‖2d
dxdy |{u, v}| ≥ 2k

1 |{u, v}| = 1

.

Define the environment ωε ∈ {0, 1}E by ω(e) = 1{Ue≤p(β,β+ε,k,e)}. Then ωε is distributed

according to the measure Pβ+ε>k
β≤k . For 0 ≤ ε1 < ε2, this construction couples the measures

Pβ+ε1>k
β≤k and Pβ+ε2>k

β≤k in such a way that all edges contained in the environment defined
by ωε1 are also contained in the environment defined by ωε2 . The next two lemmas deal
with the graph distance of certain points in boxes, that have direct edges to other far away
blocks.

Lemma 11.3. Let V 2k
u be a block with side length 2k that is connected to V 2k

0 and let
‖u‖∞ ≥ 2. Let Bu(δ) be the following event:

Bu(δ) =
⋂

x,y∈V 2k

0 :

x,y∼V 2k
u ,x 6=y

{
D
V 2k
0

(x, y) ≥ δ2kθ(β)
}

.

For every β > 0, there exists a function f1(δ) with f1(δ) −→
δ→0

1 such that for all large

enough k ≥ k(δ), all u ∈ Zd with ‖u‖∞ ≥ 2, and all ε ∈ [0, 1]

Pβ+ε>k
β≤k

(
Bu(δ) | V 2k

0 ∼ V 2k

u

)
≥ f1(δ).
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Lemma 11.4. Let V 2k
u , V 2k

v be two blocks of side length 2k that are connected to V 2k
0 , with

u 6= v 6= 0 and ‖u‖∞ ≥ 2. Let Au,v(δ) be the following event:

Au,v(δ) =
⋂

x∈V 2k

0 :

x∼V 2k
u

⋂
y∈V 2k

0 :

y∼V 2k
v

{
D
V 2k
0

(x, y) ≥ δ2kθ(β)
}

.

For every β > 0, there exists a function f2(δ) with f2(δ) −→
δ→0

1 such that for all large

enough k ≥ k(δ), all u, v ∈ Zd \ {0} with ‖u‖∞ ≥ 2, and all ε ∈ [0, 1]

Pβ+ε>k
β≤k

(
Au,v(δ) | V 2k

u ∼ V 2k

0 ∼ V 2k

v

)
≥ f2(δ).

Proof of Lemma 11.4 and Lemma 11.3. By the Harris coupling, it suffices to consider the
case ε = 1. From here on, the proof is analogous to the proofs of Lemma 5.1 and
Lemma 5.2. The spacing in terms of infinity distance between distinct points x, y ∈ V 2k

0

with x ∼ V 2k
u , y ∼ V 2k

u can be bounded in the same way as in Lemma 5.1. As the structure

inside V 2k
0 is not affected by any change of ε, the graph distance between such points x, y

can be bounded as in Lemma 5.2.

In the following lemma, we define the graph G′ as the graph, in which we contract
boxes of the form V 2k

u for u ∈ Zd. The vertex that results from contracting the box V 2k
u

is called r(u).

Lemma 11.5. Let B(δ) be the event

B(δ) :=

D?

V 2k

0 ,
⋃

u∈Zd:‖u‖∞≥2

V 2k

u

 ≥ δ2kθ(β)

 .

For every β > 0 there exists a function f3(δ) with f3(δ) −→
δ→0

1 such that for all large

enough k ≥ k(δ), all ε ∈ [0, 1], and all realizations of G′ with degN (r(0)) ≤ 9d100µβ

Pβ+ε>k
β≤k

(
B(δ) | G′

)
≥ f3(δ).

The proof of this lemma is similar to the proof of Lemma 5.4, and we omit it. From
here on we also use the notation f(δ) = min {f1(δ), f2(δ), f3(δ)}.

Lemma 11.6. For all β > 0, there exist constants 0 < cβ < Cβ <∞ such that uniformly
over all ε ∈ [0, 1]

cβΛ
(

2k, β
)

Λ
(

2n−k, β + ε
)
≤ Eβ+ε>k

β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
≤ CβΛ

(
2k, β

)
Λ
(

2n−k, β + ε
)

(120)

The proof is completely analogous to the proofs of Lemma 2.3 and Lemma 5.5, so we
omit it here. The proof of the first inequality is analogous as the proof of Lemma 5.5, and
the proof of the second inequality is analogous to the proof of Lemma 2.3. We want to get
similar bounds on the second moment of distances DV 2n

0
under the measure Pβ+ε>k

β≤k . For
this, remember that Lemma 4.5 tells us that for all β ≥ 0, there exists a constant Cβ <∞
such that for all n ∈ N, all ε ∈ [0, 1] and all x, y ∈ V n

0

Eβ+ε

[
DV n0

(x, y)2
]
≤ CβΛ(n, β + ε)2. (121)

Having this inequality uniformly over ε ∈ [0, 1] allows us to prove a uniform bound on the

second moment of distances under the measure Pβ+ε>k
β≤k .
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Lemma 11.7. For all β ≥ 0, there exists a constant Cβ < ∞ such that uniformly over
all ε ∈ [0, 1], all k ≤ n, and all x, y ∈ V 2n

0

Eβ+ε>k
β≤k

[
DV 2n

0
(x, y)2

]
≤ CβΛ(2k, β)2Λ(2n−k, β + ε)2. (122)

Proof. We use a renormalization structure for this proof. We first define the renormalized
graph G′ where we contract all vertices of the set V k

u to one vertex r(u) and do this for

all u ∈ V 2n−k
0 . In the graph G′, there is an edge between r(u) and r(v) if and only if there

is an edge between V 2k
u and V 2k

v . Now, let x, y ∈ V 2n
0 be arbitrary, say with x ∈ V 2k

u and

y ∈ V 2k
v . The claim is clear in the case where u = v, so we will assume u 6= v from here

on. Consider the shortest path between r(u) and r(v). Say that (r(u0), . . . , r(uK)) is this
path, where K = DG′ (u, v), u0 = u, and uK = v. There is a path between x and y that

uses only edges in or between the sets V 2k
ui for i = 0, . . . ,K. Thus we have an upper bound

on the graph distance between x and y given by

DV 2n
0

(x, y) ≤
K∑
i=0

(
Diam

(
V 2k

ui

)
+ 1
)

. (123)

The random variables Diam
(
V 2k
ui

)
and K = DG′ (u, v) are independent, as the diameters

Diam
(
V 2k
ui

)
depend only on edges with both endpoints inside V 2k

ui , whereas the distance

K = DG′ (u, v) depends only on edges that are between two different boxes. For (Xi)i∈N
i.i.d. random variables that are furthermore independent of an integer-valued random
variable K̃ one has

E

 K̃∑
i=1

Xi

2 ≤ E
( ∞∑

i=1

1{i≤K̃}Xi

)2
 = E

 ∞∑
i=1

∞∑
j=1

1{i≤K̃}1{j≤K̃}XiXj


=

∞∑
i=1

∞∑
j=1

E
[
1{i≤K̃}1{j≤K̃}

]
E [XiXj ] ≤ E

 ∞∑
i=1

∞∑
j=1

1{i≤K̃}1{j≤K̃}

E [X2
1

]
= E

[
K̃2
]
E
[
X2

1

]
.

We know that Eβ
[
Diam

(
V 2k

li

)2
]
≤ C ′βΛ

(
2k, β

)2
for some C ′β < ∞, which follows from

Theorem 6.1. The distance DG′ (r(u), r(v)) only depends on the occupation status of edges
with both ends in V 2n

0 that have a length of at least 2k. Thus DG′ (r(u), r(v)) has exactly
the same distribution as D

V 2n−k
0

(u, v) under the measure Pβ+ε. The previous observations

together with (123) imply that

Eβ+ε>k
β≤k

[
DV 2n

0
(x, y)2

]
≤ Eβ+ε>k

β≤k

( K∑
i=0

(
Diam

(
V 2k

ui

)
+ 1
))2


≤ Eβ+ε>k

β≤k

[
(DG′ (r(u), r(v)) + 1)2

]
Eβ+ε>k
β≤k

[(
Diam

(
V 2k

0

)
+ 1
)2
]

≤ Eβ+ε>k
β≤k

[
(2DG′ (r(u), r(v)))2

]
Eβ+ε>k
β≤k

[(
2Diam

(
V 2k

0

))2
]

≤ 4Eβ+ε

[
D
V 2n−k
0

(u, v)2
]

4C ′βΛ(2k, β)2 ≤ 16CβC
′
βΛ(2n−k, β + ε)2Λ(2k, β)2,

where we used (121) for the last inequality.
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11.2 The proof of Theorem 1.5

In order to prove Theorem 1.5, we use a coupling between the measures Pβ+ε>k
β≤k and

Pβ+ε>k−1
β≤k−1 . Let ω ∈ {0, 1}E be distributed according to Pβ+ε>k

β≤k . Let χ ∈ {0, 1}E be a
random vector that is independent of ω and has independent coordinates such that

P (χ ({u, v}) = 1) =

{
1− e−ε

∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

if2k−1 ≤ |{u, v}| ≤ 2k − 1

0 else
. (124)

Then set ω′(e) = ω(e) ∨ χ(e) = max{ω(e), χ(e)} for all edges e ∈ E. The coordinates of
ω′ are independent and for e = {u, v} ∈ E with 2k−1 ≤ |e| ≤ 2k − 1 we have

P
(
ω′(e) = 0

)
= P (ω(e) = 0)P (χ(e) = 0) = e

−
∫
u+C

∫
v+C

β

‖x−y‖2d
dxdy

e
−
∫
u+C

∫
v+C

ε

‖x−y‖2d
dxdy

= e
−
∫
u+C

∫
v+C

β+ε

‖x−y‖2d
dxdy

= 1− p (β + ε, {u, v})

and thus ω′ is distributed according to the measure Pβ+ε>k−1
β≤k−1 . For a block V 2k

u =∏d
i=1

{
pi(u)2k, . . . , (pi(u) + 1)2k − 1

}
of side length 2k and every vertex v ∈ V 2k

u , there

are at most
(
2(2k − 1) + 1

)d ≤ 2(k+1)d vertices w with 2k−1 ≤ |{v, w}| ≤ 2k − 1. As χ can
only be +1 on edges e with 2k−1 ≤ |e| ≤ 2k − 1, we have

Pβ+ε>k
β≤k

(
∃v ∈ V 2k

u , w ∈ Zd with χ ({v, w}) = 1
)

≤ 2kdPβ+ε>k
β≤k

(
∃w ∈ Zd with χ ({0, w}) = 1

)
≤ 2kd

∑
w∈Zd:‖w‖∞∈[2k−1,2k−1]

(
1− e−

∫
0+C

∫
w+C

ε

‖x−y‖2d
dxdy

)
(126)

≤ 2kd
∑

w∈Zd:‖w‖∞∈[2k−1,2k−1]

22dε

‖w‖2d∞
≤ 2kd2(k+1)d 24dε

22kd
= 25dε, (125)

where we used that

1− e−ε
∫
u+C

∫
v+C

1

‖x−y‖2d
dxdy

= Pε (u ∼ v) ≤ 22dε

‖u− v‖2d∞
(126)

for all ε ≥ 0, all n ∈ N, and all u, v ∈ Zd with ‖u − v‖∞ ≥ 2. This was proven in
Lemma 2.1.

Next, we define a notion of good sets inside the graph with vertex set V 2n
0 . For

w ∈ V 2n−k
0 , we contract the box V 2k

w ⊂ V 2n
0 to vertices r(w) and call the resulting graph

G′. Remember the definition of the events B(δ),Bu(δ), and Au,v(δ) from Lemmas 11.4,
11.3, and 11.5. For a small δ > 0 (that will be defined in (131) below), we call a vertex

r(w) and the underlying block V 2k
w δ-good, if all the translated events of B(δ),Bu(δ), and

Au,v(δ) occur, i.e., if ⋂
x∈V 2k

w :

x∼V 2k
u

⋂
y∈V 2k

w :

y∼V 2k
v

{
D
V 2k
w

(x, y) ≥ δ2kθ(β)
}

(127)
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for all u 6= v for which w 6= v, V 2k
u ∼ V 2k

w ∼ V 2k
v and ‖u− w‖∞ ≥ 2, and if⋂

x,y∈V 2k
w :

x,y∼V 2k
u ,x 6=y

{
D
V 2k
w

(x, y) ≥ δ2kθ(β)
}

(128)

for all u with ‖u− w‖∞ ≥ 2 and V 2k
u ∼ V 2k

w , and if

D?

V 2k

w ,
⋃

u∈Zd:‖u−w‖∞≥2

V 2k

u

 ≥ δ2kθ(β). (129)

Suppose that a path crosses a good set V 2k
w , in the sense that it starts somewhere out-

side of the set
⋃
u∈Zd:‖u−w‖∞≤1 V

2k
u , then goes to the set V 2k

w , and then leaves the set⋃
u∈Zd:‖u−w‖∞≤1 V

2k
u again. When the path enters the set V 2k

w at the vertex x, coming

from some a block V 2k
u with ‖u − w‖ ≥ 2, the path needs to walk a distance of at least

δ2kθ(β) to reach a vertex y ∈ V 2k
w that is connected to the complement of V 2k

w , because of

(127) and (128). When the path enters the set V 2k
w from a block V 2k

v with ‖v−w‖∞ = 1,

then the path crosses the annulus between V 2k
w and

⋃
u∈Zd:‖u−w‖∞≥2 V

2k
u . So in particular

it needs to walk a distance of at least δ2kθ(β) in order to cross this annulus, because of
(129). Overall, we see that the path needs to walk a distance of at least δ2kθ(β) within the

set
⋃
u∈Zd:‖u−w‖∞≤1 V

2k
u in order to cross the set V 2k

w . Let δ be small enough such that

92d5000µ2
β+1 (1− f(δ)) ≤ (32µβ+1)−9d400µβ+1 .

Such a δ > 0 exists, as f(δ) = min {f1(δ), f2(δ), f3(δ)} tends to 1 for δ → 0. From here on

we call a block V 2k
w good if it is δ-good for this specific choice of δ, and we call a vertex

r(w) ∈ G′ good if the underlying block V 2k
w is good. For a connected set Z ⊂ G′, we are

interested in the number of separated good vertices inside this set, that are good vertices
r(v) such that the sets N (r(v)) are not connected by a direct edge.

Lemma 11.8. Let ε ∈ [0, 1], let G =
(
V 2n
0 , E

)
be sampled according to the measure

Pβ+ε>k
β≤k , and let G′ be the graph that results from contracting boxes of the form V 2k

w . Then
for large enough K one has

Pβ+ε>k
β≤k

(
∃Z ∈ CSK

(
G′
)

with less than
K

9d400µβ+1
separated good vertices

)
≤ 3 · 2−K .

(130)

Proof. Let Ẑ = {r(v1), . . . , r(vK)} be a connected set in G′. Let � be a fixed total
ordering of Zd, where we write ≺ for strict inequalities. Such an ordering can be obtained
by considering a bijection f : N→ Zd and defining u � v ⇔ f−1(u) ≤ f−1(v). So we can
assume that Ẑ = {r(v1), . . . , r(vK)}, where v1 ≺ v2 ≺ . . . ≺ vK . For such a set, we add
the nearest neighbors to it. Formally, we define the set

ẐN =
⋃

r(v)∈Ẑ

N (r(v))

which is still a connected set and satisfies K ≤ |ẐN | ≤ 3dK. A vertex r(u) ∈ G′ can
be included into the set ẐN in more than one way, meaning that there can be different

89



vertices r(v), r(ṽ) ∈ Ẑ such that r(u) ∈ N (r(v)) and r(u) ∈ N (r(ṽ)). However, each
vertex r(u) ∈ G′ can be included into the set ẐN in at most 3d many different ways. So
in particular we have

K∑
i=1

degN (r(vi)) ≤ 3d
∑

r(v)∈ẐN
deg (r(v)) ,

where the neighborhood-degree of a vertex degN (r(u)) was defined in (108). Next, we
iteratively define a set LI = LI(Ẑ) = LIK ⊂ Ẑ as follows:

0. Start with LI0 = ∅.

1. For i = 1, . . . ,K: If degN (r(vi)) ≤ 9d50µβ+1 and N (r(vi)) � LIi−1, then set
LIi = LIi−1 ∪ r(vi); else set LIi = LIi−1.

On the event where deg(Z) ≤ 20µβ+1, for all Z ∈ CS≥K (G′), we have

K∑
i=1

degN (r(vi)) ≤ 3d
∑

r(v)∈ẐN
deg (r(v)) ≤ 3d20µβ+1

∣∣∣ẐN ∣∣∣ ≤ 9d20µβ+1K

and thus there can be at most K
2 many vertices r(vi) with degN (r(vi)) > 9d50µβ+1, which

implies that there are at least K
2 many vertices with degN (r(vi)) ≤ 9d50µβ. Whenever

we include such a vertex in the set LI, we can block at most 9d50µβ+1 different vertices,
which already implies

|LI| ≥ K

2(9d50µβ+1 + 1)
≥ K

9d200µβ+1
.

The event where deg(Z) ≤ 20µβ+1 for all Z ∈ CS≥K (G′) is very likely for large K, by
Lemma 3.2.

Conditioned on the degree of the block V 2k
w , and assuming that degN (r(w)) ≤ 9d50µβ+1,

the probability that the block V 2k
w is not δ-good is bounded by

deg (r(w))2 (1− f2(δ)) + degN (r(w)) (1− f1(δ)) + (1− f3(δ)) ≤ 92d5000µ2
β+1 (1− f(δ)) ,

where f was defined by f(δ) = min{f1(δ), f2(δ), f3(δ)}. Remember that we chose δ > 0
small enough so that

f̃(δ) := 92d5000µ2
β+1 (1− f(δ)) ≤ (32µβ+1)−9d400µβ+1 . (131)

We now claim that the set LI contains at least K
9d400µβ+1

many separated good vertices

with high probability. Given the graph G′, it is independent whether different vertices in
LI are good or not, as we will argue now. For a vertex r(u), it depends only on edges with

at least one end in the set
⋃
r(v)∈N (r(u)) V

2k
v whether the vertex r(u) is good or not. But

for different vertices r(u), r(u′) ∈ LI there are no edges with one end in
⋃
r(v)∈N (r(u)) V

2k
v

and the other end in
⋃
r(v)∈N (r(u′)) V

2k
v , as N (r(u)) � N (r(u′)). Thus, it is independent

whether different vertices in LI are good. So in particular, the probability that there are
|LI|
2 or more vertices in the set LI that are not good is bounded by

2|LI|f̃(δ)
|LI|
2 ≤ 2K f̃(δ)

K

9d400µβ+1 ≤ 2K (32µβ+1)−K = (16µβ+1)−K
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and thus the set LI (and also the set Ẑ) contains at least K
9d400µβ+1

good vertices with

very high probability. Furthermore, the separation property directly follows from the
construction. Next, we want to translate such a bound from one connected set to all
connected sets simultaneously. Using Lemma 3.2, we get that

Pβ+ε>k
β≤k

(
∃Z ∈ CSK

(
G′
)

with less than
K

9d400µβ+1
separated good vertices

)
≤ Pβ+ε>k

β≤k

(
∃Z ∈ CSK

(
G′
)

: |{r(v) ∈ LI(Z) : r(v) good}| ≤ K

9d400µβ+1

)
≤ Pβ+ε

(
∃Z ∈ CSK

(
G′
)

: deg(Z) > 20µβ+1

)
+ Pβ+ε>k

β≤k
(∣∣CSK(G′)

∣∣ > 8KµKβ+1

)
+ 8KµKβ+1 (16µβ+1)−K ≤ 3 · 2−K

which finishes the proof.

With this we can now go to the proof of Theorem 1.5.

Proof of Theorem 1.5. We want to show that for all β ≥ 0 the difference θ(β)− θ(β + ε)
converges to 0 as ε → 0. At the beginning of section 11, we already showed that the
function θ(·) is continuous from the left, so it suffices to consider ε > 0 now. We have also
seen in (116) that

θ(β)− θ(β + ε) =
1

log(2)
lim
n→∞

1

n

n∑
k=2

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
 . (132)

Each of the summands in (132) is bounded, which follows directly from the results of
Lemma 11.6. So in order to show that θ(β) = limε→0 θ(β + ε), it suffices to show that
the summands converge to 0, for large k, n − k, as ε → 0. Showing the convergence of a
summand in (132) to 0 is equivalent to proving that the expression inside the logarithm
converges to 1, which is equivalent to showing that

Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
− Eβ+ε>k−1

β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
converges to 0 , as ε → 0. Again, we write G′ for the graph where we contracted boxes
of the form V 2k

v into vertices r(v). So each vertex r(v) in G′ corresponds to the set

V 2k
v . We write Diam(r(v)) for Diam

(
V 2k
v

)
. Next, we want to investigate the sum of

diameters in connected sets. We claim that there exists a constant 1 < C ′ < ∞ such
that

∑
r(v)∈Z Diam(r(v)) ≤ C ′|Z|2kθ(β) for all connected sets Z of some size with high

probability. Let Z be a fixed set in G′. Under the measure Pβ+ε>k
β≤k , the diameter of

the box corresponding to some vertex r(v) ∈ G′ always has the same distribution, not
depending on ε. By Markov’s inequality we have

Pβ

 ∑
r(v)∈Z

Diam(r(v)) > C ′|Z|2kθ(β)

 = Pβ
(
e
∑
r(v)∈Z

Diam(r(v))

2kθ(β) > eC
′|Z|
)

≤ Eβ
[
e

Diam(r(v))

2kθ(β)

]|Z|
e−C

′|Z| ≤ (8µβ+1)−|Z|
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for C ′ large enough, as Diam(r(v))

2kθ(β) has uniform exponential moments (see for example
Lemma 11.2). As the diameter of some vertex v is independent of the edges in G′ we get
by a union bound that

Pβ+ε

∃Z ∈ CSK (G′) :
∑

r(v)∈Z

Diam(r(v)) > C ′|Z|2kθ(β)


≤ Eβ+ε

[∣∣CSK (G′)∣∣] (8µβ+1)−K ≤ 2−K . (133)

Let ZK be the event that every connected set Z ∈ CSK (G′) satisfies
∑

v∈Z Diam(v) ≤
C ′K2kθ(β) and that every connected set Z ∈ CSK (G′) contains at least K

9d400µβ+1
separated

good vertices. We also define Z≥K :=
⋂∞
t=K Zt. By (130), (133) and a union bound over

all t ≥ K we know that

Pβ+ε>k
β≤k

(
ZC≥K

)
≤
∞∑
t=K

Pβ+ε>k
β≤k

(
ZCt
)
≤ 10 · 2−K (134)

for all large enoughK. Now assume that the event Z≥K holds and thatDG′
(
r(0), r((2n−k − 1)e1)

)
=

K. So it is possible to walk from 0 to (2n − 1)e1 and to touch only K + 1 boxes of the

form V 2k
w , by going along the shortest path between r(0) and r

(
(2n−k − 1)e1

)
in G′. This

path is also a connected set in G′. Between these boxes, one needs to take on additional
step. Thus we have that

DV 2n
0

(0, (2n − 1)e1) ≤ C ′(K + 1)2kθ(β) +K ≤ 2C ′K2kθ(β). (135)

On the other hand, let P be a path from 0 to (2n − 1)e1 and let P̂ be its projection

onto G′. Then the projection P̂ goes through at least K blocks of the form V 2k
w and

the projection P̂ is a connected set in G′. Thus, the set P̂ contains at least K
9d400µβ+1

separated good vertices. Now consider the situation where the path P crosses a good
block V 2k

w . In this case, the path P already needs to make at least δ2kθ(β) steps inside

the set
⋃
u∈Zd:‖u−w‖∞≤1 V

2k
u . The sets

⋃
u∈Zd:‖u−w‖∞≤1 V

2k
u are not directly connected for

different separated good vertices r(w) inside P̂ . The path P crosses at least K
9d400µβ+1

− 2

separated good boxes, where the subtraction of two is necessary because the path touches
boxes at the beginning/end without crossing them. This already implies that

length(P ) ≥
(

K

9d400µβ+1
− 2

)
δ2kθ(β). (136)

Next, we want to investigate how this helps us to bound the difference

Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
− Eβ+ε>k−1

β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
.

We use the same notation as in the beginning of this chapter, i.e., we assume that ω is
distributed according to Pβ+ε>k

β≤k and χ is independent of ω and distributed as described

in (124). Then ω′ := ω ∨ χ has law Pβ+ε>k−1
β≤k−1 . The structure of the graph G′, in which

we contracted blocks of side length 2k, does not change, as the edges inserted are either
inside the blocks V 2k

w or between neighboring blocks. The probability that a block V 2k
w

is adjacent to a bond in ω′ that did not exist in ω is bounded by 25dε, see (125). For a
connected set Z ⊂ G′, we write Zχ for the set of vertices r(w) ∈ Z for which there exists
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an edge e that is adjacent to V 2k
w and satisfies χ(e) = 1. For a fixed set Z we expect that

|Zχ| is of order ε |Z| but it is not clear how to show such a statement for all connected sets
of some size. Instead, we show that with high probability for all connected sets Z of size
K the set Zχ is not larger than

16µβ+1K
log(1/ε) . For a fixed connected set Z ∈ CSK(G′), define

the set Z lχ by the vertices r(w) ∈ Zχ for which an edge e with χ(e) = 1 exists, so that

e has both endpoints in V 2k
w , or one endpoint is in V 2k

w and one endpoint is in V 2k
u with

r(u) /∈ Z, or one endpoint in V 2k
w and one in V 2k

u with w ≺ u and r(u) ∈ Z. For different
vertices r(u) ∈ Z, it is independent whether they are in the set Z lχ or not. Hence the size

of the set Z lχ is stochastically dominated by
∑K

i=1Xi, where Xi are independent Bernoulli-

distributed random variables with parameter 25dε. Furthermore, one has |Zχ| ≤ 2|Z lχ|, as

each edge e with 1 − ω(e) = ω′(e) = 1, that creates a vertex in Z lχ, can add at most two
vertices to Zχ. As the structure of the graph G′ and the sets Zχ are independent, we get
for small enough ε > 0 that

Pβ+ε>k
β≤k

(
∃Z ∈ CSK

(
G′
)

: |Zχ| >
µβ+116

log(1/ε)
K

)
≤ Eβ+ε>k

β≤k
[∣∣CSK (G′)∣∣]P(2

K∑
i=1

Xi >
µβ+116

log(1/ε)
K

)

≤ 4KµKβ+1P

(
K∑
i=1

Xi >
µβ+18

log(1/ε)
K

)
≤ 4KµKβ+12K

(
25dε

) µβ+18

log(1/ε)
K

=
(

25d
) µβ+18

log(1/ε)
K

8KµKβ+1e
−µβ+18K ≤ 2−K

where the last inequality holds for small enough ε. Next, let us see how the sums of
the inside diameters of the sets Zχ grow. Let C1 ∈ (0,∞) be a the constant such that

Eβ

esDiam

(
V 2k

0

)
2kθ(β)

 < eC1sC1 for all s ≥ 1 and k ∈ N. Such a constant exists by Lemma

11.2. We define the functions r(ε) = log(1/ε)
− 1

2C1 and s(ε) =
(

log(1/ε)
µβ+116C1

) 1
C1 . Let Z ′ ⊂ G′

be a fixed set of size at most
µβ+116
log(1/ε)K. Then we have for all small enough ε that

Pβ+ε>k
β≤k

 ∑
r(v)∈Z′

Diam (r(v)) > r(ε)2kθ(β)K

 = Pβ+ε>k
β≤k

(
e
s(ε)

∑
r(v)∈Z′

Diam(r(v))

2kθ(β) > es(ε)r(ε)K
)

≤ Eβ

exp

s(ε)Diam
(
V 2k
0

)
2kθ(β)

|Z
′|

e−s(ε)r(ε)K ≤ e
µβ+116K

log(1/ε)
C1s(ε)C1

e−s(ε)r(ε)K

= eK exp

(
− log(1/ε)

1
2C1

(µβ+116C1)
1
C1

K

)
≤ 16−Kµ−Kβ+1

where the last inequality holds for ε small enough. As the inside structure of blocks of the
form V 2k

v in the graph defined by ω, the sets Zχ, and the connections inside the graph G′

are independent, we get that for ε > 0 small enough

Pβ+ε>k
β≤k

∃Z ∈ CSK(G′) :
∑

r(v)∈Zχ

Diam (r(v)) > r(ε)2kθ(β)K


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≤ Pβ+ε>k
β≤k

(∣∣CSK(G′)
∣∣ > 8KµKβ+1

)
+ Pβ+ε>k

β≤k

(
∃Z ∈ CSK(G′) : |Zχ| >

µβ+116

log(1/ε)
K

)
+ 8KµKβ+116−Kµ−Kβ+1 ≤ 3 · 2−K . (137)

Let DK be the event that
∑

v∈Zχ Diam (r(v)) ≤ r(ε)2kθ(β)K for all Z ∈ CSK(G′), and let

D≥K =
⋂∞
t=K Dt. From (134) and (137) we get that for K large enough

Pβ+ε>k
β≤k

(
(Z≥K ∩ D≥K)C

)
≤
∞∑
t=K

(
Pβ+ε>k
β≤k

(
ZCt
)

+ Pβ+ε>k
β≤k

(
DCt
))
≤ 20 · 2−K .

Now assume that DG′
(
r(0), r

(
(2n−k − 1)e1

))
= K and the events Z≥K and D≥K both

hold; Consider a path P between 0 and (2n − 1) e1 in the environment ω′ = ω ∨ χ
and its projection P̂ on G′. Assume that the events D≥K and Z≥K both hold, and
that K = DG′

(
r(0), r((2n−k − 1)e1)

)
is large enough. The path P̂ is a (not necessar-

ily self-avoiding) walk on G′ between r(0) and r
(
(2n−k − 1)e1

)
. In the environment ω

for
∣∣∣P̂ ∣∣∣ large enough, every path that touches

∣∣∣P̂ ∣∣∣ distinct 2k-blocks has length at least(
|P̂ |

9d400µβ+1
− 2

)
δ2kθ(β) by (136). In the environment ω ∨ χ such a path may be shorter,

but by at most
∑

r(v)∈P̂χ Diam(r(v)). So we get that

length(P ) ≥


∣∣∣P̂ ∣∣∣

9d400µβ+1
− 2

 δ2kθ(β) −
∑

r(v)∈P̂χ

Diam(r(v))

≥


∣∣∣P̂ ∣∣∣

9d400µβ+1
− 2

 δ2kθ(β) − r(ε)
∣∣∣P̂ ∣∣∣ 2kθ(β) ≥ c12kθ(β)

∣∣∣P̂ ∣∣∣ (138)

for some small c1 > 0, ε small enough, and
∣∣∣P̂ ∣∣∣ large enough. Now consider the shortest

path P between 0 and (2n − 1) e1 in the environment ω′. Combining the inequalities (135)
and (138) we get that for K = DG′

(
r(0), r((2n−k − 1)e1)

)
2C ′K2kθ(β) ≥ DV 2n

0
(0, (2n − 1)e1) = length(P ) ≥ c1

∣∣∣P̂ ∣∣∣ 2kθ(β)

and thus∣∣∣P̂ ∣∣∣ ≤ 2C ′

c1
DG′

(
r(0), r((2n−k − 1)e1)

)
=: CwDG′

(
r(0), r((2n−k − 1)e1)

)
.

So the shortest path P between 0 and (2n − 1)e1 in the environment ω′ = ω ∨ χ does
not touch more than CwDG′

(
r(0), r((2n−k − 1)e1)

)
blocks with side length 2k. This is an

interesting observation, as the path also needs to touch at least DG′
(
r(0), r((2n−k − 1)e1)

)
many blocks with side length 2k.

Now let us bound the differenceD (0, (2n − 1)e1;ω)−D (0, (2n − 1)e1;ω′). Let (x0, . . . , xs)
be the shortest path between x0 = 0 and xs = (2n− 1)e1 in the environment ω′. Then we
build a path (y0, . . . , ys̃) between 0 and (2n−1)e1 in the environment ω as follows. As long

as ω ({xi, xi+1}) = 1, we follow the path P . If ω ({xi, xi+1}) = 0, say with xi ∈ V 2k
u and

xi+1 ∈ V 2k
w , we take the shortest path from xi to xi′ where i′ = max{s′ : xs′ ∈ V 2k

w }.
That means, we go to the point xi′ where the path (x0, . . . , xs) leaves the box V 2k

w

for the last time. As ω and ω′ can only differ at edges with length in
[
2k−1, 2k − 1

]
,
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we already have ‖u − w‖∞ ≤ 1, and thus the distance between xi and xi′ is at most
Diam(r(u)) + Diam(r(w)) + 1. So the length of the path constructed by this procedure
is at most Diam(r(u)) + Diam(r(w)) longer compared to the original path. When at
xi′ , we follow the path P again until there appears again an edge e = {xj , xj+1} with
ω′(e) = 1 = 1−ω(e) and do the same procedure as before. This construction gives a path
in the environment ω of length at most s+ 2

∑
v∈P̂χ Diam(v) and this already implies

DV 2n
0

(0, (2n − 1)e1;ω)−DV 2n
0

(
0, (2n − 1)e1;ω′

)
= DV 2n

0
(0, (2n − 1)e1;ω)− s

≤ 2
∑

r(v)∈P̂χ

Diam(r(v)) ≤ 2Cwr(ε)DG′

(
r(0), r((2n−k − 1)e1)

)
2kθ(β) (139)

for small enough ε and when D≥K ∩ Z≥K and DG′
(
r(0), r((2n−k − 1)e1)

)
≥ K hold for

large enough K. So this gives us a bound on the difference of DV 2n
0

(0, (2n − 1)e1;ω) and

DV 2n
0

(0, (2n − 1)e1;ω′) that goes to 0, as ε→ 0. This bound only holds on the previously
mentioned event, but we can also choose K, depending on n − k, in such a way such
that the probability of this event goes to 1 as n − k → ∞. The residual terms, where
the previously mentioned events do not hold, can be estimated with the Cauchy-Schwarz
inequality. For small enough ε > 0 and large enough k, n− k we have

Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
− Eβ+ε>k−1

β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
= Eβ+ε>k

β≤k

[
DV 2n

0
(0, (2n − 1)e1;ω)−DV 2n

0
(0, (2n − 1)e1;ω′)

]
= Eβ+ε>k

β≤k

[ (
DV 2n

0
(0, (2n − 1)e1;ω)−DV 2n

0
(0, (2n − 1)e1;ω′)

)
· 1{D≥n−k∩Z≥n−k}1{DG′(r(0),r((2n−k−1)e1))≥n−k}

]
+ Eβ+ε>k

β≤k

[ (
DV 2n

0
(0, (2n − 1)e1;ω)−DV 2n

0
(0, (2n − 1)e1;ω′)

)
· 1{D≥n−k∩Z≥n−k}1{DG′(r(0),r((2n−k−1)e1))<n−k}

]
+ Eβ+ε>k

β≤k

[ (
DV 2n

0
(0, (2n − 1)e1;ω)−DV 2n

0
(0, (2n − 1)e1;ω′)

)
1{

(D≥n−k∩Z≥n−k)
C
}]

(139)

≤ Eβ+ε>k
β≤k

[
DG′

(
r(0), r((2n−k − 1)e1)

)
2Cwr(ε)2

kθ(β)
]

+

√
Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)2

]√
Eβ+ε>k
β≤k

[
1

2
{DG′(r(0),r((2n−k−1)e1))<n−k}

]

+

√
Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)2

]√√√√Eβ+ε>k
β≤k

[
1

2{
(D≥n−k∩Z≥n−k)

C
}
]

≤ 2Cwr(ε)2
kθ(β)Eβ+ε

[
D
V 2n−k
0

(0, (2n−k − 1)e1)
]

+
(√

CβΛ(2k, β)

· Λ(2n−k, β + ε)Pβ+1

(
D
V 2n−k
0

(0, (2n−k − 1)e1) < n− k
)1/2 )

+
√
CβΛ(2k, β)Λ(2n−k, β + ε)20 · 2−

n−k
2

≤ Λ(2n−k, β + ε)
(

2Cwr(ε)2
kθ(β) +

√
CβΛ(2k, β)Pβ+1

(
D
V 2n−k
0

(0, (2n−k − 1)e1) < n− k
)1/2

+
√
CβΛ(2k, β)20 · 2−

n−k
2

)
where we used Lemma 11.7 for the second inequality and the Cauchy-Schwarz inequality
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and (139) for the first inequality. Using Lemma 11.6, we get that

Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
− Eβ+ε>k−1

β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
≤ Λ(2n−k, β + ε)

cβΛ(2n−k+1, β + ε)Λ(2k−1, β)
·

(
2Cwr(ε)2

kθ(β)

+
√
CβΛ(2k, β)

(
20 · 2−

n−k
2 + Pβ+1

(
D
V 2n−k
0

(0, (2n−k − 1)e1) < n− k
)1/2

))

≤ Cf
(
r(ε) + 20 · 2−

n−k
2 + Pβ+1

(
D
V 2n−k
0

(0, (2n−k − 1)e1) < n− k
)1/2

)
for some finite constant Cf <∞. This is true, as both fractions

Λ(2n−k, β + ε)Λ(2k, β)

cβΛ(2n−k+1, β + ε)Λ(2k−1, β)
and

Λ(2n−k, β + ε)2kθ(β)

cβΛ(2n−k+1, β + ε)Λ(2k−1, β)

are bounded uniformly over all ε ∈ [0, 1], k ≤ n ∈ N. The last term in the above calculation

is the probability Pβ+1

(
D
V 2n−k
0

(0, (2n−k − 1)e1) < n− k
)

, which tends to 0 as n−k goes

to infinity, as the graph distance between 0 and (2n−k−1)e1 is of order 2(n−k)θ(β+1) � n−k
under the measure Pβ+1. In particular this implies that for large enough k

Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
− Eβ+ε>k−1

β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
converges to zero, as ε→ 0 and n− k →∞. Thus

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]


converges to 0 as ε→ 0 and k, n−k →∞. As all terms of this form are bounded uniformly
over k, n and ε ∈ (0, 1), by Lemma 11.6, it already follows that

lim
ε↘0

θ(β)− θ(β + ε) = lim
ε↘0

1

log(2)
lim
n→∞

1

n

n∑
k=2

log

 Eβ+ε>k
β≤k

[
DV 2n

0
(0, (2n − 1)e1)

]
Eβ+ε>k−1
β≤k−1

[
DV 2n

0
(0, (2n − 1)e1)

]
 = 0

which shows continuity from the right of the distance exponent θ(·) and thus finishes the
proof of Theorem 1.5.

12 Proofs for d = 1

In this section, we show a few lemmas for d = 1, where slightly different techniques
compared to d ≥ 2 are needed. It is well-known that for fixed β < 1 one has Eβ [D(0, n)] =
Ω
(
n1−β). The next lemma gives a more uniform bound on the growth of Eβ [D(0, n)] that

holds for all β ∈ [0, 1] simultaneously.

Lemma 12.1. There exists a c > 0 such that for all M,n ∈ N and β ∈ [0, 1]

Eβ
[
D[0,Mn−1] (0,Mn− 1)

]
≥ cM1−βEβ

[
D[0,n−1] (0, n− 1)

]
. (140)
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Proof. First note that the proof of (43) does not depend on a uniform bound on the second
moment and works as written above. So we can safely apply it in our argumentation here.
By (43) we can choose ι > 0 small enough so that

Eβ
[
D[0,n−1] ([0, ιn] , [n− ιn− 1, n− 1])

]
≥ 1

2
Eβ
[
D[0,n−1](0, n− 1)

]
uniformly over β ∈ [0, 1]. This implies the existence of a c′ > 0 such that

Eβ
[
D[−n,2n−1]

(
V n
−1, V

n
1

)]
≥ c′Eβ

[
D[0,n−1](0, n− 1)

]
(141)

uniformly over β ∈ [0, 1] and n ∈ N large enough, as we will argue now. For fixed ι > 0
there is a uniform positive probability (in β ∈ [0, 1] and n ∈ N) that the rightmost vertex
incident to V n

−1 lies inside [0, ιn] and that the leftmost vertex incident to V n
1 lies inside

[n− ιn− 1, n− 1]. Call this event A. Whenever the event A holds, one already has

D[−n,2n−1]

(
V n
−1, V

n
1

)
≥ D[0,n−1] ([0, ιn] , [n− ιn− 1, n− 1]) ,

and as both the event A and the distance D[0,n−1] ([0, ιn] , [n− ιn− 1, n− 1]) are decreas-
ing one has by the FKG inequality

Eβ
[
D[−n,2n−1]

(
V n
−1, V

n
1

)]
≥ Eβ

[
D[−n,2n−1]

(
V n
−1, V

n
1

)
1A

]
≥ Eβ

[
D[0,n−1] ([0, ιn] , [n− ιn− 1, n− 1])1A

]
≥ Eβ

[
D[0,n−1] ([0, ιn] , [n− ιn− 1, n− 1])

]
Pβ(A) ≥

Pβ(A)

2
Eβ
[
D[0,n−1](0, n− 1)

]
,

which shows (141). For long-range percolation on the line segment {0, . . . ,M − 1}, we
call an odd point w ∈ {1, . . . ,M − 2} a separation point if w � {0, . . . , w − 2}, w �
{w+2, . . . ,M−1}, and {0, . . . , w−1} � {w+1, . . . ,M−1}; See Figure 5 for an illustration.
Even points can simply never be separation points with our definition. These three events
are independent and we can bound the probability of the first event by

Pβ (w � {0, . . . , w − 2}) ≥ e−β
∫ 0
−∞

∫ 2
1

1
|t−s|2

dtds ≥ e−1.

The same calculation also works for the second event and shows that Pβ (w � {w + 2, . . . ,M − 1}) ≥
e−1 for all β ∈ [0, 1]. The probability of the event {0, . . . , w − 1} � {w + 1, . . . ,M − 1}
can be bounded from below by∏

0≤u<w

∏
w<v≤M−1

e
−β
∫ u+1
u

∫ v+1
v

1
|x−y|2

dxdy
= e
−β
∫ w
0

∫M
w+1

1
|x−y|2

dxdy

≥ e−β
∫ w
0

∫∞
w+1

1
|x−y|2

dxdy
= e
−β
∫ w
0

1
w+1−ydy

= e−β log(w+1) ≥M−β.

uniformly over β ∈ [0, 1]. Using the independence of the three relevant events, we get that

Pβ (w is a separation point) = Pβ (w � {0, . . . , w − 2}) · Pβ (w � {w + 2, . . . ,M − 1})
· Pβ ({0, . . . , w − 1} � {w + 1, . . . ,M − 1}) ≥ e−2M−β ≥ 0.1M−β.

For w odd, we call the set V n
w a separation interval if V n

w � [0, (w − 1)n− 1] , V n
w �

[(w + 2)n,Mn− 1], and {0, . . . , wn− 1} � {(w+ 1)n, . . . ,Mn− 1}. Again, an even w can
never define a separation interval. By the scaling invariance of the underlying continuous
model, the probability that V n

w is a separation interval is exactly the probability that w is a
separation point for the line segment {0, . . . ,M −1}, and this probability is bounded from
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w−2 w−1 w w+1 w+2

Figure 5: The vertex w is a separation point if all edges e with
|e| ≥ 2 are either strictly to the left or right of w, as above.

below by 0.1M−β. Let w1, . . . , wl ∈ {1, . . . ,M−2} be integers such that V n
wi is a separation

interval for all i. Then each path between 0 and Mn − 1 in the graph {0, . . . ,Mn− 1}
needs to cross all separation intervals of this form and in particular

D[0,Mn−1] (0,Mn− 1) ≥
l∑

i=1

D[(wi−1)n,(wi+2)n−1]

(
V n
wi−1, V

n
wi+1

)
.

The fact that V n
w is a separation interval reveals no information about the edges with

both endpoints in {(w − 1)n, . . . , (w + 2)n− 1}, except that there is no direct edge from
{(w − 1)n, . . . , wn− 1} to {(w + 1)n, . . . , (w + 2)n− 1}. Thus, by taking expectations in
the above inequality and using that both the event {V n

w is a sep. int.} and the random
distance D[(w−1)n,(w+2)n−1]

(
V n
w−1, V

n
w+1

)
are decreasing, we get by the FKG-inequality

Eβ
[
D[0,Mn−1] (0,Mn− 1)

]
≥ Eβ

[
M−2∑
w=1

1{V nw is a sep. int.}D[(w−1)n,(w+2)n−1]

(
V n
w−1, V

n
w+1

)]

≥
M−2∑
w=1

Eβ
[
1{V nw is a sep. int.}

]
Eβ
[
D[−n,2n−1]

(
V n
−1, V

n
1

)]
(141)

≥
∑

w∈{1,...,M−2}:
w odd

0.1M−βc′Eβ
[
D[0,n−1](0, n− 1)

]
≥ cM1−βEβ

[
D[0,n−1](0, n− 1)

]

for some small constant c > 0 and M large enough. For M small, one can take c small
enough so that (140) holds for such M , by Lemma 4.1.

With this we are now ready to go to the proof of Lemma 4.5 for d = 1.

Proof of Lemma 4.5 for d = 1. We say that the vertex w ∈ {1, . . . ,m − 2} is a cut point
(for the interval {0, . . . ,m − 1}) if there exists no edge of the form {u, v} with 0 ≤ u <
w < v ≤ m− 1. For w < m

2 and β ≤ 2 we have

Pβ (w is a cut point) =
∏

0≤u<w

∏
w<v≤m−1

e
−β
∫ u+1
u

∫ v+1
v

1
|x−y|2

dxdy
= e
−β
∫ w
0

∫m
w+1

1
|x−y|2

dxdy

≤ e−β
∫ w
0

∫ 2w+1
w+1

1
|x−y|2

dxdy
= e
−β
∫ w
0

1
w+1−y−

1
2w+1−ydy

= e−β(− log(1)+2 log(w+1)−log(2w+1)) = e
−β log

(
(w+1)2

2w+1

)
≤ e−β log(w+1

2 )

≤ e−β log(w+1)eβ log(2) ≤ 4w−β
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0 7n 7 · 7n

Figure 6: The long edges inside the box {0, . . . , 7n+1 − 1}. The
set B are the two bold black edges.

and with this we get, by linearity of expectation and symmetry of the process, that

Eβ [|{w ∈ {1, . . . ,m− 2} : w is a cut point}|] ≤ 1 + 2

bm/2c∑
w=1

Pβ (w is a cut point)

≤ 1 + 8

bm/2c∑
w=1

w−β ≤ 10 + 8

∫ m

1
w−βdw =

10 + 8
[
w−β+1

−β+1

]m
1

β ∈ [0, 2] \ {1}

10 + 8 log(m) β = 1
.

As the expected number of cut points is monotone decreasing in β, we get that for the func-
tion f(β,m) := Eβ [|{w ∈ {1, . . . ,m− 2} : w is a cut point}|] we have the upper bound

f(β,m) ≤


20

1−βm
1−β β < 1

10 + 8 log(m) 1 ≤ β ≤ 2

20 β > 2

. (142)

We now use a method (that was already used in [33] in a similar form for the con-
tinuous model) in order to bound the second moment of D

Vm
n+1

0

(
0,mn+1 − 1

)
. We say

that an interval V mn

k is unbridged if there exists no edge {u, v} with both endpoints in{
0, . . . ,mn+1 − 1

}
and u < kmn, v ≥ (k + 1)mn; Contrary, if there exists such an edge

we say that the interval is bridged. In this case, we also say that the interval is bridged
by the edge {u, v}. So clearly the intervals V mn

0 , V mn
m−1 are unbridged, and the probability

that V mn
w is unbridged for w ∈ {1, . . . ,m− 2} is exactly the probability that w is a cut

point for the interval {0, . . . ,m − 1}. We now define a set of edges B as follows: Let
i < j ∈ {0, . . . ,m − 1} with |i − j| > 1 satisfy V mn

i ∼ V mn
j and V mn

i−l1 � V mn

j+l2
for all

(l1, l2) ∈ {0, . . . , i} × {0, . . . ,m − 1 − j} \ {(0, 0)}. In this situation, we add one edge
between V mn

i and V mn
j to B. If there are several edges between V mn

i and V mn
j we choose

the left-most shortest such edge (this rule is arbitrary, any deterministic rule would work
here). An example of this construction is given in Figure 6. So the set B is the set of
possible bridges where we already delete edges that are furthermore bridged by even longer
edges. With this construction, we get |B| ≤ m, as each interval V mn

j can be adjacent to at
most two edges in B, and each edge in B touches two intervals. Furthermore, if an interval
V mn
j is bridged, then there exists an edge e ∈ B so that V mn

j is bridged by e. Let U ′ be
the set of endpoints of edges in B and let

U := U ′ ∪ {0,mn, . . . , (m− 1)mn} ∪
{
mn − 1, 2mn − 1, . . . ,mn+1 − 1

}
.

Let U = {x0, x1, . . . , xu}, where x0 < . . . < xu. By the construction we have |U| ≤ 4m and
|xi−1 − xi| ≤ mn − 1. For xi−1, xi with (xi−1, xi) 6= (kmn − 1, kmn) for all k, we say that
[xi−1, xi] is bridged, if there exists an edge {u, v} ∈ B with u ≤ xi−1 < xi ≤ v. Assume
we have (xi−1, xi) which is not of the form (kmn − 1, kmn), say with [xi−1, xi] ⊂ V mn

j for
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some j ∈ {0, . . . ,m− 1}, and [xi−1, xi] is not bridged. Then also V mn
j is not bridged. On

the other hand, if [xi−1, xi] is bridged, then also V mn
j is bridged by some edge in B. In

each interval V mn
j there are at most two points in V mn

j ∩ U that come from endpoints of

edges in B; Furthermore, the two endpoints of the interval are also in V mn
j ∩U . So in total

there are at most 4 points in V mn
j ∩ U for all j ∈ {0, . . . ,m − 1}, and thus there are at

most three intervals of the form [xi−1, xi] inside each V mn
j . This already implies that

|{i ∈ {1, . . . , u} : [xi−1, xi] is not bridged}| ≤ 3
∣∣{j ∈ {0, . . . ,m− 1} : V mn

j is not bridged
}∣∣ .

(143)

Now we want to construct a path between 0 and mn+1 − 1. Let

τ = arg max
i∈{1,...,u}

D[xi−1,xi] (xi−1, xi) .

If there are multiple maximizers, we pick one with xi 6= kmn for all k, and with minimal
xi among those maximizers. So in particular [xi−1, xi] always lies inside some interval
V mn
j . If [xτ−1, xτ ] is bridged by some edge e = {xτ1 , xτ2} ∈ B, say with xτ1 < xτ2 , then

we consider the path that goes from 0 = x0 to xτ1 , then directly jumps to xτ2 and from
there goes to xu = mn+1 − 1. This implies that

D[0,mn+1−1]

(
0,mn+1 − 1

)
≤

τ1∑
i=1

D[xi−1,xi] (xi−1, xi) + 1 +
u∑

i=τ2+1

D[xi−1,xi] (xi−1, xi)

≤ umax
i 6=τ

D[xi−1,xi] (xi−1, xi) ≤ 4mmax
i 6=τ

D[xi−1,xi] (xi−1, xi)

in this case. For the case where [xτ−1, xτ ] is not bridged, we consider the path that goes
iteratively from x0 to xu. Here we have

D[0,mn+1−1]

(
0,mn+1 − 1

)
≤

τ−1∑
i=1

D[xi−1,xi] (xi−1, xi) +D[xτ−1,xτ ] (xτ−1, xτ ) +
u∑

i=τ+1

D[xi−1,xi] (xi−1, xi)

≤ 4mmax
i 6=τ

D[xi−1,xi] (xi−1, xi) + max
[xi−1,xi] not bridged

D[xi−1,xi] (xi−1, xi) ,

and thus we have in both cases that(
D[0,mn+1−1]

(
0,mn+1 − 1

))2
≤ 2

(
4mmax

i 6=τ
D[xi−1,xi] (xi−1, xi)

)2

+ 2

(
max

[xi−1,xi] not bridged
D[xi−1,xi] (xi−1, xi)

)2

≤ 32m2

(
max
i 6=τ

D[xi−1,xi] (xi−1, xi)

)2

+ 2
∑

[xi−1,xi] not bridged

(
D[xi−1,xi] (xi−1, xi)

)2
. (144)

Next, we want to bound both terms in the above sum in expectation. To bound the
first term, we use the following observation: If X1, . . . , Xm̃ are independent non-negative
random variables and τ = arg maxi∈{1,...,m̃}, then

E

[(
max
i 6=τ

Xi

)2
]
≤ E

 m̃∑
i=1

Xi

∑
j 6=i

Xj

 =

m̃∑
i=1

∑
j 6=i
E [Xi]E [Xj ] ≤ m̃2 max

i
E [Xi]

2 .

(145)
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Conditioned on U , the random variables
(
D[xi−1,xi] (xi−1, xi)

)u
i=1

are independent and by

Lemma 4.1 their expectation is bounded by the expectation of
(
DVm

n
0

(0,mn − 1)
)

, up to

a factor of 3. As u ≤ 4m, we get with (145) and Lemma 4.1 that

Eβ
[
max
i 6=τ

D[xi−1,xi] (xi−1, xi)
2

]
= Eβ

[
E
[
max
i 6=τ

D[xi−1,xi] (xi−1, xi)
2
∣∣ U]]

≤ Eβ
[
16m2 max

i
E
[
D[xi−1,xi] (xi−1, xi)

∣∣ U]2] ≤ 144m2Eβ
[
DVm

n
0

(0,mn − 1)
]2
.

(146)

In order to bound the second summand in (144) in expectation, we use the bound on the
number of unbridged segments (143). Also note that the second moment ofD[xi−1,xi] (xi−1, xi)

is, by Lemma 4.1, bounded by the second moment of
(
DVm

n
0

(0,mn − 1)
)

, up to a factor

of 9 = 32. With this we get that

Eβ

 ∑
[xi−1,xi] not bridged

(
D[xi−1,xi] (xi−1, xi)

)2
= Eβ

Eβ
 ∑

[xi−1,xi] not bridged

(
D[xi−1,xi] (xi−1, xi)

)2 ∣∣∣ U


≤ 9Eβ
[
DVm

n
0

(0,mn − 1)2
]
Eβ

 ∑
[xi−1,xi] not bridged

1


≤ 27Eβ

[
DVm

n
0

(0,mn − 1)2
]
Eβ
[∣∣{j ∈ {0, . . . ,m− 1} : V mn

j unbridged
}∣∣]

≤ 27Eβ
[
DVm

n
0

(0,mn − 1)2
]

(2 + f(β,m)) =: Eβ
[
D (0,mn − 1)2

]
f̃(β,m), (147)

where f̃(β,m) = 27(2 + f(β,m)). Combining (146) and (147), and taking expectations in
(144), we obtain that

Eβ
[
D
Vm

n+1
0

(
0,mn+1 − 1

)2] ≤ 5000m4Eβ
[
DVm

n
0

(0,mn − 1)
]2

+ 2f̃(β,m)Eβ
[
DVm

n
0

(0,mn − 1)2
]

.

Iterating this inequality over all k = 1, . . . , n, we get

Eβ
[
D
Vm

n+1
0

(
0,mn+1 − 1

)2] ≤ 5000m4
n∑
k=1

(
2f̃(β,m)

)n+1−k
Eβ
[
D
Vm

k
0

(
0,mk − 1

)]2
.

(148)

Using the bounds on f(β,m) from (142), we see that function f̃(β,m) satisfies

f̃(β,m) = 27 (2 + f(β,m)) ≤


600
1−βm

1−β β < 1

600 (1 + log(m)) 1 ≤ β ≤ 2

600 β > 2

. (149)

By compactness of each interval [β, β + 1], it suffices to show that the uniform bound on
the second moment (36) holds for all β > 0 and ε ∈ (−cβ, cβ) for some cβ > 0 small
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enough, respectively for β = 0 and ε ∈ [0, cβ). To extend the inequality from open sets to
compact intervals, one can cover each compact interval with finitely many open sets and
then take the largest among these finitely many constants that arose from this procedure.
So we are left to show that for all β ≥ 0, there exist a constants cβ > 0 and Cβ <∞ such
that for all n ∈ N, all ε ∈ (−cβ, cβ), respectively all ε ∈ [0, cβ) for β = 0, and all u, v ∈ V n

0

Eβ+ε

[
DV n0

(u, v)2
]
≤ CβΛ(n, β + ε)2. (150)

We start with the case β ≥ 1. By Remark 4.4, there exists a θ′ = θ′(β) > 0 such that

Eβ+ε

[
D
Vm

k+1
0

(
0,m ·mk − 1

)]
≥ mθ′(β)Eβ+ε

[
D
Vm

k
0

(
0,mk − 1

)]
(151)

for all k ∈ N, m large enough, and |ε| ≤ 1
2 . Inserting this into (148), we get

Eβ
[
D
Vm

n+1
0

(
0,mn+1 − 1

)2]
≤ 5000m4

n∑
k=1

(
2f̃(β,m)

)n+1−k (
m−2θ′

)n−k
Eβ
[
DVm

n
0

(0,mn − 1)
]2
.

Now choosem ∈ N large enough and cβ ∈ (0, 0.1) small enough so that 2f̃(β+ε,m)m−2θ′(β) ≤
0.5 for all ε ∈ (−cβ, cβ). This is clearly possible for β > 1. For β = 1, we can choose cβ
small enough so that cβ < θ′(1), where θ′(1) is the one defined in (151). By monotonicity
in the first argument of the function f̃(·, ·) one then has f̃(1 + ε,m) ≤ 600

cβ
mcβ for all

ε ∈ (−cβ, cβ), which shows that one can find m, cβ so that 2f̃(1 + ε,m)m−2θ′(1) ≤ 0.5 for
all ε ∈ (−cβ, cβ). This then gives that

Eβ+ε

[
D
Vm

n+1
0

(
0,mn+1 − 1

)2] ≤ 10000f̃(β − cβ,m)m4
n∑
k=1

0.5n−k Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2

≤ 20000f̃(β − cβ,m)m4Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2
≤ 20000f̃(β − cβ,m)m4Λ (mn, β + ε)2

for all ε ∈ (−cβ, cβ). This shows (150) along the subsequence m,m2,m3, . . . To extend
inequality (150) from this subsequence to all integers, use Lemma 4.1.

Next, we consider the case where β ∈ (0, 1). Using Lemma 12.1, we know that there
is a constant c ∈ (0, 1) such that

Eβ
[
DVm

n
0

(0,mn − 1)
]
≥ cm(n−k)(1−β)Eβ

[
D
Vm

n−k
0

(
0,mn−k − 1

)]
≥
(
cm1−β

)n−k
Eβ
[
D
Vm

n−k
0

(
0,mn−k − 1

)]
for all n ≥ k and m ∈ N. Now take m large enough and cβ small enough so that
1200 mβ+ε−1

c(1−β−ε) < 0.5 for all ε ∈ (−cβ, cβ), and that 0 < β − cβ < β + cβ < 1. Using (148) we

get that for such m and ε ∈ (−cβ, cβ)

Eβ+ε

[
D
Vm

n+1
0

(
0,mn+1 − 1

)2] ≤ 5000m4
n∑
k=1

(
2f̃(β,m)

)n+1−k
Eβ
[
D
Vm

k
0

(
0,mk − 1

)]2

≤ 5000m4
n∑
k=1

(
2f̃(β + ε,m)

)n+1−k (
cm1−β−ε

)2(k−n)
Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2
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(149)

≤ 10000f̃(β − cβ,m)m4
n∑
k=1

(
1200 mβ+ε−1

c(1− β − ε)

)n−k
Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2

≤ 10000f̃(β − cβ,m)m4
n∑
k=1

0.5n−kEβ+ε

[
DVm

n
0

(0,mn − 1)
]2

≤ 20000f̃(β − cβ,m)m4Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2
≤ 106m5Eβ+ε

[
DVm

n
0

(0,mn − 1)
]2
,

which shows (150) for numbers of the form m,m2,m3, . . . Here, we used that f(β,m) ≤
m− 2 for all β ∈ R≥0, and thus f̃(β,m) = 27(2 + f(β,m)) ≤ 27m for the last inequality.
To extend inequality (150) from this subsequence to all integers, use Lemma 4.1. The
proof for β = 0 works analogous to the case β ∈ (0, 1), and we omit it.

Proof of Corollary 4.6 for d = 1. We use the same notation as in the proof of Lemma 4.5
for d = 1 above. We have that

D[0,mn+1−1]

(
0,mn+1 − 1

)
≤ 4mmax

i 6=τ
D[xi−1,xi] (xi−1, xi) + max

[xi−1,xi] not bridged
D[xi−1,xi] (xi−1, xi)

and this implies that for any r > 0(
D[0,mn+1−1]

(
0,mn+1 − 1

))2r
≤ 22r42rm2r

(
max
i 6=τ

D[xi−1,xi] (xi−1, xi)

)2r

+ 2r
∑

[xi−1,xi] not bridged

(
D[xi−1,xi] (xi−1, xi)

)2r
.

Taking expectations and the same arguments as in the proof of Lemma 4.5 yield

Eβ

[(
max
i 6=τ

D[xi−1,xi] (xi−1, xi)
r

)2
]
≤ Eβ

[
16m2 max

i
Eβ
[
D[xi−1,xi] (xi−1, xi)

r
∣∣U]2]

≤ 16m232rEβ
[
D[0,mn−1] (0,mn − 1)r

]
.

From here, the same proof as before gives that Eβ
[
D[0,n](0, n)r

]
≤ C(r)Eβ

[
D[0,n](0, n)

]r
for a constant C(r), and r of the form r = 2k with natural k. Extending this to all r > 0
works with Hölder’s inequality.
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Critical exponents

13 Introduction

Consider Bernoulli bond percolation on Zd where we include an edge between the vertices
x, y ∈ Zd with probability 1− e−βJ(x,y) and independent of all other edges. The function
J : Zd × Zd → [0,∞) is a kernel that is symmetric, i.e., J(x, y) = J(y, x) for all x, y ∈ Zd.
We denote the resulting probability measure by Pβ and its expectation by Eβ. Edges
that are included are also referred to as open. We are interested in the case where the
kernel is also translation invariant and integrable, meaning that J(x, y) = J(0, y − x) for
all x, y ∈ Zd and

∑
x∈Zd J(0, x) < ∞. The integrability condition guarantees that the

resulting graph is almost surely locally finite. This procedure creates certain clusters,
which are the connected components in the resulting random graph. Write Kx for the
cluster containing the vertex x ∈ Zd. A major question in percolation theory is the
emergence of infinite clusters, for which we define the critical parameter βc by

βc = inf {β ≥ 0 : Pβ (|K0| =∞) > 0} .

A comparison with a Galton-Watson tree shows that there are no infinite clusters for
β <

(∑
x∈Zd J(0, x)

)−1
, which shows βc > 0. For d > 1 and J 6= 0 it is well-known that

βc <∞, whereas for d = 1 it is known that βc <∞ in the case where J(x, y) ' ‖x−y‖−1−α

for α ≤ 1 [41,84], whereas βc =∞ for α > 1. Long-range percolation mostly deals with the
case where J(x, y) ' ‖x− y‖−d−α for some α > 0, where we write J(x, y) ' ‖x− y‖−d−α

if the ratio between them satisfies ε < J(x,y)
‖x−y‖−d−α < ε−1 for a small enough ε > 0 and

‖x − y‖ large enough. In general it is expected that for α > d the resulting graph looks
similar to nearest-neighbor percolation, is very well connected for α < d, and shows a
self-similar behavior for α = d. See [12, 17–19, 33] and the part I of this thesis for results
pointing in this direction. From the definition of βc and the standard Harris coupling [62]
we see that Pβ (|K0| =∞) > 0 for β > βc and Pβ (|K0| =∞) = 0 for β < βc, but it is
not clear what happens at β = βc. For J(x, y) ' ‖x − y‖−d−α with α ∈ (0, d) and all
d ∈ N>0 Berger showed that Pβc (|K0| =∞) = 0 [16, Theorem 1.5], whereas for d = 1 and
J(x, y) ' ‖x− y‖−2 it is a result by Aizenman and Newman that Pβc (|K0| =∞) > 0 [4].
For d ≥ 2 and α ≥ d it is also expected that Pβc (|K0| =∞) = 0, but there is no full
proof known at the moment. Whenever there is no infinite cluster at the critical value,
it is a central question how fast the tail of the cluster at criticality Pβc (|K0| ≥ n) and
the two-point function Pβc (0↔ x) tend to 0 as n, respectively ‖x‖, grow. Here we write
x↔ y if there exists an open path from x to y. It is conjectured that

Pβc (|K0| ≥ n) ≈ n−1/δ as n→∞, (152)

Pβc (0↔ x) ≈ ‖x‖−d+2−η as ‖x‖ → ∞ (153)

for certain numbers η, δ depending on d and α, but not on the precise details of the kernel J .
Here, we write f(n) ≈ nc if f(n) = nc+o(1). Even the existence of the exponents is not clear

and it is still open, whether the limits limn→∞
log(Pβc (|K0|≥n))

log(n) and lim‖x‖→∞
log(Pβc (0↔x))

log(‖x‖)
exist. The widely accepted conjecture is that they exist. This has been for example
proven for other models of percolation like two-dimensional percolation on the triangular
lattice [77, 92, 93] or percolation for high enough dimension d, or for small enough α [61].
Recently, Hutchcroft proved the upper bounds δ ≤ 2d

d−α and 2 − η ≤ α [70], improving

his previous result δ ≤ 2d+α
d−α [65] which is, to our knowledge, the first rigorous proof of a

power-law decay of Pβc (|K0| ≥ n) for long-range percolation.
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Figure 7: The critical exponents 2− η and δ for d = 1. On the left: The purple line
is the conjectured true value, our lower bound, and the upper bound proven in [70].
On the right: The yellow curve is the upper bound on δ shown in [70], the red curve
is the conjectured true value of δ, and the blue curve is our lower bound. The part
where the lower bound and the conjectured true value agree

(
α ∈

[
1
3 , 1
))

is purple.

Our results In this part of the thesis, we give lower bounds on the exponents δ and 2−η.
We will always assume an upper bound on the kernel J of the form J(x, y) ≤ C1‖x−y‖−d−α
for some constant C1 <∞.

Theorem 13.1. Let α ∈ (0, 1) for d = 1, respectively α > 0 for d > 1. Suppose that
J(x, y) ≤ C1‖x− y‖−d−α and the exponent δ defined in (152) exists. Then

δ ≥ d+ (α ∧ 1)

d− (α ∧ 1)
.

Theorem 13.1 is an immediate consequence of Proposition 14.7. It is only of interest
in dimension d ∈ {1, 2} and for α > d

3 , as it is known in wider generality that δ ≥ 2 [2,53,
Proposition 10.29]. For the case where d = 1 and α ∈

[
1
3 , 1
)
, respectively where d = 2 and

α ∈
[

2
3 , 1
]
, our lower bound coincides with the conjectured true value of δ.

In particular, Theorem 13.1 shows that for d ∈ {1, 2} and α > d
3 the model does not

exhibit the so called ’mean-field behavior’. The notion of ’mean-field behavior’ is a notion
that comes from physics, and roughly means that all the critical exponents are the same
as in models of infinite dimension, such as Erdös-Rényi graphs (in the n → ∞ limit) or
the binary tree. There are several ways of precisely defining this notion, but applied to
our case all of them imply, among other things, that the exponents δ and 2− η exist and
take the values δ = 2 and 2− η = 2∧ α. In a major breakthrough by Hara and Slade [55]
mean-field behavior was established for high dimensional nearest-neighbour percolation.
It was later also established for long-range percolation with d > 6 or α < d

3 [61]. The

lower bounds in Theorem 13.1 rule out the mean-field behavior for d ∈ {1, 2} and α > d
3 ,

as they imply that δ > 2 in this regime.

Theorem 13.2. Let α ∈ (0, 1) for d = 1, respectively α > 0 for d > 1. Suppose that
J(x, y) ≤ C1‖x− y‖−d−α and the exponent 2− η defined in (153) exists. Then

2− η ≥ α ∧ 1.

A graphical representation of our results, previously known results, and the conjec-
tured behavior can be found in Figure 7 for dimension d = 1 and in Figure 8 for dimension
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Figure 8: The critical exponents 2− η and δ for d = 2. On the left: The blue line is
our lower bound, the yellow line is the upper bound proven in [70], and the red line
is the conjectured true value. The part where all three of them agree (α ∈ (0, 1]) is
purple and the part where the upper bound and the conjectured true value agree(
α ∈

(
1, 43

24

])
is orange. On the right: The yellow curve is the upper bound on δ

shown in [70], the red curve is the conjectured true value of δ, and the blue curve is
our lower bound. The part where the lower bound and the conjectured true value
agree

(
α ∈

[
2
3 , 1
])

is purple.

d = 2. Theorem 13.2 is an immediate consequence of Proposition 14.6. In the case where
J(x, y) ' ‖x − y‖−d−α, Theorem 13.2 shows together with Hutchcroft’s result [70] that
2 − η = α for α ≤ 1, respectively α < 1 for d = 1, provided the exponent 2 − η defined
in (153) exists. This also gives a partial solution to [70, Problem 4.1], which asks for
conditions under which the upper bound 2−η ≤ α has a matching lower bound. Provided
that the conjectured picture described in (154) below holds, our proof also shows that the
crossover value αc(d) defined in (154) below satisfies αc(d) ≥ 1 for all dimensions d ≥ 2.
We could alternatively define the exponent 2−η by

∑
x∈Λn

Pβc (0↔ x) ≈ n2−η. For α < 1
the results of [70] together with Proposition 14.6 show that the exponent 2 − η defined
like this exists and equals α. See also the discussion after Proposition 14.6 for more details.

Our proofs only assume an upper bound on the kernel J , so in particular the results are
still valid for nearest-neighbor percolation. However, the bound 2− η ≥ 1 observed in this
situation already follows from the proof of sharpness of the phase transition of Duminil-
Copin and Tassion (162), and the lower bound δ ≥ 3 observed for d = 2 follows from
2−η ≥ 1 and the hyperscaling inequality (2−η)(δ+1) ≤ d(δ−1) proven by Hutchcroft [65].
This hyperscaling inequality can be rearranged to δ ≥ d+2−η

d−(2−η) and using d = 2, 2− η ≥ 1
shows δ ≥ 3. But our proof still shows δ ≥ 3 without this machinery and without assuming
the existence of the exponent 2 − η. Our main tool for the proofs of Theorem 13.1 and
Theorem 13.2 (respectively Proposition 14.7 and Proposition 14.6) is a connection between
the critical exponents and the isoperimetry of the boxes Λn = {−n, . . . , n}d in section 14.2.

Related work The critical behavior of percolating systems is typically a difficult prob-
lem. There has been considerable progress on the understanding of percolation on various
graphs at and near criticality over the last years, see for example [30,37–40,57,58,65–70,82].
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The physics prediction for the critical exponent 2− η is given by

2− η(d, α) =

{
α for α ≤ 2− ηSR(d)

2− ηSR for α > 2− ηSR(d)

where 2 − ηSR(d) is the corresponding exponent for short-range percolation on Zd. The
prediction for the exponent δ is given by

δ(d, α) =


2 for α ≤ d

3
d+α
d−α for α ∈

[
d
3 , αc(d)

]
δSR(d) for α ≥ αc(d)

(154)

where δSR(d) is the corresponding exponent for short-range percolation and δSR(d) and the
crossover value αc(d) are such that the function δ(d, α) is continuous in α. See also [65,
section 1.3] or [53, section 9 and 10] for a broader overview of these predictions and
references to the physics literature. The critical exponents are typically better understood
in high dimension or for α < d

3 , where the triangle condition holds and methods involving
the lace expansion can be used [11, 22, 25, 55, 61]. Also for dimension d = 2, and in
particular for the triangular lattice, the situation is much better understood, due to works
of Kesten, Smirnov and Werner [75, 77, 92, 93]. Here one knows that δSR(2) = 91

5 . This
also explains the conjectured pictures in Figure 8 and shows that the crossover value
αc(2) is expected to be 43

24 . Also for the hierarchical lattice the phase transition is better

understood, due to recent results of Hutchcroft [69]. The lower bound δ ≥ d+α
d−α proven for

the hierarchical lattice is similar to our lower bound for d = 1 and also shows absence of
mean-field behavior for α > d

3 on the hierarchical lattice.

14 Proofs

Before going to the proofs, we want to introduce a theorem that deals with the universal
tightness of the maximum open cluster inside a random graph. It is a subset of [65,
Theorem 2.2], which turned out to be extremely useful in various models of random graphs.
We write |Kmax(Λ)| for the cardinality of the largest open cluster in Λ. Note that Kmax(Λ)
is in general not well-defined as a subset of Λ, since there can be distinct clusters with the
same cardinality. But this will not cause any problems in the following. We define the
typical value of |Kmax(Λ)| by

Mβ(Λ) = min
{
n ≥ 0 : Pβ (|Kmax(Λ)| ≥ n) ≤ e−1

}
. (155)

The theorem deals with general weighted graphs G = (V,E, J), where J : E → [0,∞)
is a function that gives weights to the edges. Now edges are open or closed independent
of each other and an edge e ∈ E is open with probability 1 − e−βJ(e), where β ≥ 0 is a
parameter. In particular, long-range percolation on the integer lattice can be modelled as
a weighted random graph with the weight function J({x, y}) = J(x− y).

Theorem 14.1 (Universal tightness of the maximum cluster size). Let G = (V,E, J) be
a countable weighted graph and let Λ ⊆ V be finite and non-empty. Then the inequalities

Pβ (|Kmax(Λ)| ≥ αMβ(Λ)) ≤ e−
α
9 (156)

and Pβ (|Ku ∩ Λ| ≥ αMβ(Λ)) ≤ e · Pβ (|Ku ∩ Λ| ≥Mβ(Λ)) e−
α
9 (157)

hold for every β ≥ 0, α ≥ 1, and u ∈ V .

107



We will use this theorem at many points in this chapter. For the lower bound on δ we
define θ := 1

δ . In the following we will always assume that

n∑
k=1

Pβ (|K0| ≥ k) ≤ Cn1−θ (158)

holds for some constant C < ∞. Note that this already implies that Pβ (|K0| ≥ n) ≤
n−1

∑n
k=1 Pβ (|K0| ≥ k) ≤ Cn−θ. Furthermore, for θ < 1 the bound Pβ (|K0| ≥ k) ≤ Ck−θ

for all k ∈ {1, . . . , n} also implies (158) with a different constant C ′ depending on C and
θ.

For the lower bound on the exponent of the two-point function 2 − η we define Λn =
{−n, . . . , n}d and assume that

1

|Λn|
∑
x∈Λn

Pβ (0↔ x) ≤ Cn−d+2−η (159)

holds for some constant C < ∞. From this definition we directly see that we can always
assume that −d+ 2− η ≤ 0, as the statement is trivially true otherwise.

14.1 Moments of the cluster size inside boxes

In this section, we give bounds on the expected size of the cluster inside boxes, i.e.,
Eβ [|K0(Λn)|], given the upper bounds on the tail of the cluster (158) or the two-point
function (159). For Λ ⊂ Zd and x ∈ Λ we use the notation Kx(Λ) for the set of vertices
y ∈ Λ that are connected to x through an open path that lies entirely within Λ. The next
lemma translates bounds of the tail of the cluster size into bounds of the typical largest
cluster inside boxes of size n. The proof of such a statement has already been done for
many different models of percolation [65,82]. We give a short proof for completeness.

Lemma 14.2. Assume that (158) holds for some constant 1 ≤ C <∞. Let Λ ⊂ Zd be a
finite set of size n. Then one has

Mβ(Λ) ≤ 3Cn
1

1+θ (160)

Proof. For x ∈ Λ, let Kx(Λ) be the cluster of x inside Λ. We use the notation C̃ = 3C
and get that

Eβ
[∣∣∣{x ∈ Λ : |Kx(Λ)| ≥ C̃n

1
1+θ

}∣∣∣] =
∑
x∈Λ

Pβ
(
|Kx(Λ)| ≥ C̃n

1
1+θ

)
≤
∑
x∈Λ

Pβ
(
|Kx| ≥ C̃n

1
1+θ

)
≤
∑
x∈Λ

CC̃−θn−
θ

1+θ = CC̃−θnn−
θ

1+θ = CC̃−θn
1

1+θ .

If there is one x ∈ Λ such that |Kx(Λ)| ≥ C̃n
1

1+θ , then there are at least C̃n
1

1+θ many

such x ∈ Λ. So in particular, if |Kmax(Λ)| ≥ C̃n
1

1+θ , then there are at least C̃n
1

1+θ many

vertices x ∈ Λ with |Kx(Λ)| ≥ C̃n
1

1+θ . This implies that

1{
|Kmax(Λ)|≥C̃n

1
1+θ

} ≤ 1

C̃n
1

1+θ

∣∣∣{x ∈ Λ : |Kx(Λ)| ≥ C̃n
1

1+θ

}∣∣∣
and taking expectations on both sides yields that

Pβ
(
|Kmax(Λ)| ≥ C̃n

1
1+θ

)
≤ 1

C̃n
1

1+θ

Eβ
[∣∣∣{x ∈ Λ : |Kx(Λ)| ≥ C̃n

1
1+θ

}∣∣∣]
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≤ 1

C̃n
1

1+θ

CC̃−θn
1

1+θ = CC̃−1−θ = C(3C)−1−θ <
1

3
<

1

e

which shows that Mβ(Λ) ≤ 3Cn
1

1+θ .

Lemma 14.3. Assume that (158) holds. Let Λ ⊂ Zd be a finite set of size n. Then there
exists a constant C2 = C2(C, θ) such that

Eβ [|K0(Λ)|] ≤ C2n
1−θ
1+θ . (161)

Proof. The proof is heavily based on the use of Theorem 14.1. For abbreviation, we simply
write M = Mβ(Λ). Thus we get that

Eβ [|K0(Λ)|] =
∞∑
k=1

Pβ (|K0(Λ)| ≥ k) =
∞∑
l=0

M∑
k=1

Pβ (|K0(Λ)| ≥ lM + k)

=

M∑
k=1

Pβ (|K0(Λ)| ≥ k) +

∞∑
l=1

M∑
k=1

Pβ (|Kx(Λ)| ≥ lM + k)

≤ CM1−θ +
∞∑
l=1

M∑
k=1

Pβ (|K0(Λ)| ≥ lM)

(157)

≤ CM1−θ +M
∞∑
l=1

ePβ (|K0(Λ)| ≥M) e−
l
9

≤ CM1−θ + eCM1−θ
∞∑
l=1

e−
l
9 ≤ C ′M1−θ ≤ C2n

1−θ
1+θ

for some constants C ′, C2 < ∞. Here we used the result of Lemma 14.2 for the last
inequality.

The next Lemma translates the average bound on the two-point function (159) into
bounds on the restricted cluster size. For two sets A,B ⊂ Zd we introduce the notation

A
Λn←→ B, meaning that there exists a path from A to B that uses edges with both

endpoints in Λn only.

Lemma 14.4. Assume that (159) holds. Then one has

Eβ [|K0(Λn)|] ≤ 3dCn2−η.

for all x ∈ Λn.

Proof. The ∞-distance between different 0 and x ∈ Λn is at most n. We have that
|Λn| = (2n+ 1)d. Thus linearity of expectation gives that

Eβ [|K0(Λn)|] =
∑
x∈Λn

Pβ
(

0
Λn←→ x

)
≤ |Λn|

1

|Λn|
∑
x∈Λn

Pβ (0↔ x)

≤ (2n+ 1)dCn−d+2−η ≤ 3dCn2−η.
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14.2 Isoperimetric inequalities in expectation

In this section, we use the isoperimetry of the box Λn = {−n, . . . , n}d in order to bound
the expected number of edges at the boundary of the box, for which the end inside the box
is connected to 0. For long-range percolation with a kernel J : Zd×Zd → [0,∞) satisfying
J(x, y) ' ‖x − y‖−d−α the isoperimetry of the box Λn changes at α = 1. More precisely,
if we denote by ∂Λn the set of open edges with exactly one endpoint in Λn, we have that

Eβ [|∂Λn|] '


nd−α if α < 1

nd−1 log(n) if α = 1

nd−1 if α > 1

.

Consequently, we see that for α < 1 long-range effects determine the isoperimetry of the
box, whereas for α ≥ 1 the short-range effects dominate, with logarithmic corrections at
α = 1. In particular, a point x ∈ Λn that is chosen uniformly at random will have of order
n−(α∧1)+o(1) neighbors outside of the box. This is also the reason, why the term α ∧ 1
pops up in the statements of Theorem 13.1 and Theorem 13.2. In the following, for two
sets A,B ⊂ Zd we use the notation A ∼ B if there exists a direct edge from A to B. We
also use a statement that was shown by Duminil-Copin and Tassion in [39, 40]. There it
is shown that for β ≥ βc and all finite sets S ⊂ Zd containing the origin 0 one has

φβ (S) :=
∑
x∈S

∑
y/∈S

(
1− e−βJ(x,y)

)
Pβ
(

0
S←→ x

)
≥ 1. (162)

Moreover, they also showed the reverse direction, i.e., that φβ(S) ≥ 1 for all finite sets
S ⊂ Zd with 0 ∈ S implies β ≥ βc, but we will not use this statement in our proof. Similar
results to the result in (162) were already shown previously, see for example [76, Lemma
3.1] or [4, Lemma 5.1].

Lemma 14.5. We write K0(Λk) for the set of vertices y ∈ Λk that are connected to 0
through an open path that lies entirely within Λk. Let n ∈ N be arbitrary and fixed. For
d = 1 and all α ∈ (0, 1), respectively for d > 1 and all α > 0, and all β > 0, there exists a
constant C3 = C3(α, β, d) that does not depend on n, so that there exists a k ∈ {1, . . . , n}
with

φβ (Λk) =
∑
x∈Λk

∑
y/∈Λk

(
1− e−βJ(x,y)

)
Pβ
(

0
Λk←→ x

)
≤ C3Eβ [|K0 (Λn)|] f(n, α) (163)

where the function f(n, α) is defined by

f(n, α) =


n−α if α < 1

n−1 log(n) if α = 1

n−1 if α > 1

. (164)

Proof. For x ∈ Λn we write tx := Pβ
(
x

Λn←→ 0
)

and get that∑
x∈Λn

tx =
∑
x∈Λn

Pβ
(
x

Λn←→ 0
)

= Eβ [|K0(Λn)|] . (165)

Next, we define Xk as the number of open edges between Λk and (Λk)
C for which one end

is connected to 0 within Λk. Formally, we define

Xk :=
∣∣∣{e = {a, b} open : a ∈ Λk, b /∈ Λk, and 0

Λk←→ a
}∣∣∣ .
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The occupation status of edges inside Λk and of edges with one end outside of Λk are
independent random variables. So by linearity of expectation one has

Eβ [Xk] =
∑
a∈Λk

∑
b/∈Λk

(
1− e−βJ(a,b)

)
Pβ
(

0
Λk←→ a

)
= φβ (Λk) .

Thus, it suffices to bound the expected value of Xk and show that there exists a k ∈
{1, . . . , n} such that the expected value Eβ [Xk] is reasonably small, as in (163). For this,
let K be a random variable that is uniformly distributed on {1, . . . , n} and is independent
of the percolation configuration. We write Pβ for the joint distribution of the percolation
configuration and K, and Eβ for its expectation. Thus we get

Eβ [XK ] = Eβ

[∣∣∣{{a, b} open : a ∈ {−K, . . . ,K}d, b /∈ {−K, . . . ,K}d, and 0
ΛK←→ a

}∣∣∣]
=

1

n

n∑
k=1

Eβ
[∣∣∣{{a, b} open : a ∈ {−k, . . . , k}d, b /∈ {−k, . . . , k}d, and 0

Λk←→ a
}∣∣∣]

=
1

n

n∑
k=1

∑
a∈Λn

∑
b∈Zd

Eβ

[
1{a∈Λk}1{b/∈Λk}1

{
0

Λk←→a
}1{a∼b}

]
. (166)

For fixed k, the events {0 Λk←→ a} and {{a, b} is open} are independent for b /∈ Λk, as the
first event depends only on edges with both endpoints inside Λk. For fixed a ∈ Λn, the

expression Pβ
(

0
Λk←→ a

)
can only be positive if k ≥ ‖a‖∞. Combining the two previous

observations we get that

Eβ [XK ] =
1

n

n∑
k=1

∑
a∈Λk

∑
b∈Zd\Λk

Pβ
(

0
Λk←→ a

)
Pβ (a ∼ b)

=
1

n

∑
a∈Λn

n∑
k=1∨‖a‖∞

∑
b∈Zd\Λk

Pβ
(

0
Λk←→ a

)
Pβ (a ∼ b)

≤
∑
a∈Λn

Pβ
(

0
Λn←→ a

) 1

n

n∑
k=1∨‖a‖∞

∑
b∈Zd\Λk

(
1− e−βJ(a,b)

)
≤
∑
a∈Λn

ta

 1

n

n∑
k=1∨‖a‖∞

∑
b∈Zd\Λk

βC1‖a− b‖−d−α
 , (167)

where we used that 1−e−x ≤ x for the last inequality. Now, for fixed a ∈ Λn and k ≥ ‖a‖∞
there exist constants C ′1 = C ′1(C1, d, β) <∞ and C ′′1 = C ′′1 (C1, d, α, β) <∞ such that

∑
b∈Zd\Λk

βC1‖a− b‖−d−α ≤
∞∑

l=k+1−‖a‖∞

∑
b∈Zd:‖b−a‖∞=l

βC1‖a− b‖−d−α

=
∞∑

l=k+1−‖a‖∞

∑
b∈Zd:‖b‖∞=l

βC1‖b‖−d−α ≤
∞∑

l=k+1−‖a‖∞

C ′1l
d−1l−d−α

= C ′1

∞∑
l=k+1−‖a‖∞

l−1−α ≤ C ′′1 (k + 1− ‖a‖∞)−α. (168)
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Using (168) we see that

1

n

n∑
k=1∨‖a‖∞

∑
b∈Zd\Λk

βC1‖a− b‖−d−α ≤
1

n

n∑
k=‖a‖∞

C ′′1 (k + 1− ‖a‖∞)−α

≤ C ′′1
1

n

n+1∑
k=1

k−α ≤ Ĉ1f(n, α) (169)

for a constant Ĉ1 = Ĉ1(C ′′1 , α) <∞. Inserting this result into (167) yields

1

n

n∑
k=1

Eβ [Xk] = Eβ [XK ] ≤
∑
a∈Λn

taĈ1f(n, α)
(165)
= Eβ [|K0 (Λn)|] Ĉ1f(n, α).

So in particular there needs to exist at least one k ∈ {1, . . . , n} for which Eβ [Xk] ≤
Eβ [|K0 (Λn)|] Ĉ1f(n, α), which finishes the proof.

14.3 The proof of Theorem 13.1 and Theorem 13.2

Now we are ready to go to the main proofs. Theorem 13.1 is an immediate consequence of
Proposition 14.7 and Theorem 13.2 is an immediate consequence of Proposition 14.6. Also
remember the definition of the function f defined in (164) which we will use at several
points below.

Proposition 14.6. Let α ∈ (0, 1) for d = 1, respectively α > 0 for d > 1, and assume
that there exists a constant C1 <∞ such that J(x, y) ≤ C1‖x− y‖−d−α for all x, y ∈ Zd.
Provided βc <∞ one has

∑
x∈Λn

Pβc (0↔ x) ≥ 1
C3
f(n, α)−1 where C3 is the same constant

as in Lemma 14.5.

Proof. We will first show that Eβc [|K0 (Λn) |] ≥ 1
C3
f(n, α)−1. Assume the contrary, i.e.,

Eβc [|K0 (Λn) |] < 1
C3
f(n, α)−1. Then by Lemma 14.5 there exists a k ∈ {1, . . . , n} with

φβc (Λk) ≤ C3Eβc [|K0 (Λn)|] f(n, α) < 1

which is a contradiction to (162). Now, by linearity of expectation we have that∑
x∈Λn

Pβc (0↔ x) ≥
∑
x∈Λn

Pβc
(

0
Λn←→ x

)
= Eβc [|K0 (Λn)|] ≥ 1

C3
f(n, α)−1. (170)

Proposition 14.6 shows in particular that for a small enough constant c > 0 we have

1

|Λn|
∑
x∈Λn

Pβc (0↔ x) ≥ cn−df(n, α)−1 =


cn−d+α for α < 1

cn−d+1 log(n)−1 for α = 1

cn−d+1 for α > 1

which shows that the exponent 2 − η defined in (153) satisfies 2 − η ≥ α ∧ 1, provided
the exponent 2 − η exists. In [70] it is shown that 1

|Λn|
∑

x∈Λn
Pβc (0↔ x) = O

(
n−d+α

)
.

Combining this with Proposition 14.6 we get that for α < 1 and a kernel J satisfying
J(x, y) ' ‖x− y‖−d−α one has

1

|Λn|
∑
x∈Λn

Pβc (0↔ x) ' n−d+α.
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So when we alternatively define the two-point critical exponent 2 − η by the averaged
version 1

|Λn|
∑

x∈Λn
Pβc (0↔ x) ≈ n−d+2−η, then we see that this exponent exists for α < 1

and equals α. However, it is not clear whether this statements holds without averaging,
i.e., if the exponent 2− η defined as in (153) also exists. See also [70, Problem 4.3] for a
related problem. Next, we consider the lower bound on the exponent δ.

Proposition 14.7. Let α ∈ (0, 1) for d = 1, respectively α > 0 for d > 1, and assume
that there exists a constant C1 <∞ such that J(x, y) ≤ C1‖x− y‖−d−α for all x, y ∈ Zd.
Suppose that βc <∞ and

∑n
k=1 Pβc (|K0| ≥ k) ≤ Cn1− 1

δ for all n ∈ N. Then δ ≥ d+(α∧1)
d−(α∧1) .

Proof. We write θ = 1
δ and get that

∑N
k=1 Pβc (|K0| ≥ k) ≤ CN1−θ for all N ∈ N.

Lemma 14.3 shows that for some constant C ′ < ∞ we have Eβ [|K0 (Λn)|] ≤ C ′nd
1−θ
1+θ .

Combining this with inequality (170) we get that

C ′nd
1−θ
1+θ ≥ Eβ [|K0 (Λn)|] ≥ C−1

3 f(n, α)−1 ≈ n(α∧1)+o(1)

and this shows that d1−θ
1+θ ≥ α ∧ 1. As we consider α ∈ (0, 1) only for d = 1, we always

have that α∧1
d < 1. Elementary calculations show that

d
1− θ
1 + θ

= d
δ − 1

δ + 1
≥ α ∧ 1⇔ δ − 1 ≥ α ∧ 1

d
δ +

α ∧ 1

d

⇔ δ − α ∧ 1

d
δ = δ

(
1− α ∧ 1

d

)
≥ α ∧ 1

d
+ 1

⇔ δ ≥
1 + α∧1

d

1− α∧1
d

=
d+ (α ∧ 1)

d− (α ∧ 1)

which finishes the proof.
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Random walks

15 Introduction

Consider independent Zd-valued random variables X1, X2, ... that are symmetric, i.e., they
satisfy P (X1 = x) = P (X1 = −x) for all x ∈ Zd. We want to know for which regimes of
decay of P (Xi = x) the associated random walk defined by Sn =

∑n
k=1Xk is recurrent

or transient. For this, we first construct an electrical network that is equivalent to this
random walk. We do this by giving conductances to all edges {a, b} with a, b ∈ Zd, allowing
self-loops here. For two points a, b ∈ Zd we give a conductance of c{a,b} = P (Xi = a− b)
to the edge between them. The symmetry condition P (Xi = x) = P (Xi = −x) guarantees
that the conductances defined like this are well-defined. Then consider the reversible
Markov chain on this network, i.e., the Markov chain defined by P (Mn+1 = y|Mn = x) =

c{x,y}∑
z∈Zd c{x,z}

= c{x,y}. The resulting Markov chain has exactly the same distribution as

Sn, and thus, we will analyze this Markov chain from here on. It is a classical result of
Pólya that the simple random walk on the integer lattice Zd is recurrent for d ∈ {1, 2} and
transient for d ≥ 3 [86]. Furthermore, it is a well-known result about electrical networks
that transience of the random walk is equivalent to the existence of a unit flow with finite
energy from o to infinity, where o is an arbitrary vertex in the graph, or the origin for
the integer lattice; see for example [79, Theorem 2.10]. With this characterization of
transience, one directly gets that the random walk Sn defined as above is always transient
for d ≥ 3, and recurrent when the Xi-s are bounded symmetric random variables and
d ∈ {1, 2}. In this part of the thesis, we answer the question whether the random walk
is recurrent or transient when P (X = x) has a power-law decay, i.e., when P (X = x) =
P (X = −x) = Θ (‖x‖−s), where s > d is a parameter. Note that this question makes
no sense for s ≤ d, as the probabilities P (Xi = x) need to sum up to 1. This problem
has been studied before at several other places, for example in [24] using the recurrence
criterion of [94, Section 8]. However, previous proofs used the characteristic function of
the random walk

ϕ(θ) =
∑
x∈Zd

P (X1 = x) eix·θ,

whereas our proof does not use characteristic functions, but uses the theory of electric
networks. The results of the transience/recurrence of Pólya are often humorously para-
phrased as “A drunk man will find his way home, but a drunk bird may get lost forever.”,
which goes back to Shizuo Kakutani. So in this chapter, we study the question which
kinds of drunk grasshoppers, which tend to make huge jumps, eventually will find their
way home and which kinds may get lost forever. The answer is that the random walk is
recurrent for d ∈ {1, 2} and s ≥ 2d, and transient otherwise.

Theorem 15.1. Let X1, X2, . . . be i.i.d. symmetric Zd-valued random variables satisfying
P (X1 = x) = P (X1 = −x) ≥ c‖x‖−s for some c > 0, s < 2d, and all x large enough. Then
the random walk Sn defined by Sn =

∑n
k=1Xk is transient.

This result is not surprising, as for s < 2d the total conductance between the two boxes
A = {0, . . . , n}d and B = 2n ·e1 +{0, . . . , n}d satisfies

∑
x∈A

∑
y∈B c{x,y} ≈ n2d−s � 1 and

this suggests that it is possible to construct a finite-energy flow from the root to infinity.
Here e1 denotes the standard unit vector pointing in the direction of the first coordinate
axis. This suggests that the transition from transience to recurrence in dimension d ∈
{1, 2} happens at s = 2d. Also many different properties of the long-range percolation
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graph change at this value; see section 1.4 for more examples of such phenomena. What
happens at the critical value s = 2d is treated in the following theorem.

Theorem 15.2. Let d ∈ {1, 2}, and let X1, X2, . . . be i.i.d. symmetric Zd-valued random
variables satisfying P (X1 = x) = P (X1 = −x) ≤ C‖x‖−2d for some constant C <∞ and
all x 6= 0. Then the random walk Sn defined by Sn =

∑n
k=1Xk is recurrent.

So in particular Theorem 15.2 shows that for dimension d ∈ {1, 2} and for P (X1 = x) =
c‖x‖−2d the associated random walk is recurrent, without having a mean in dimension 1,
respectively a finite variance in dimension 2. Both cases lie on the exact borderline that
separates the transient regime from the recurrent regime. The transience or recurrence
of a Markov chain, or of a sum of i.i.d. random variables, is an elementary question that
has been extensively studied in many different regimes [26, 89, 90], including results in
random environments [95] and on percolation clusters [5, 16, 71, 85]. We also use parts of
the techniques developed by Berger in [16], in particular Lemma 16.2.

The random walk (Xn)n∈N can also be seen to be equivalent to an annealed random
walk on a sequence of long-range percolation graphs when the underlying graph of the
percolation gets resampled at every time-step. If one does not do this resampling, then
one has a simple random walk on a percolation cluster. It is a natural question to ask
how the random walk on a graph with long jumps compares to the simple random walk
on the associated graph obtained by percolation. Formally, let G = (V,E) be a connected
graph with weighted edges (ce)e∈E ∈ RE≥0. Assume that for each vertex v ∈ V one
has 0 <

∑
e:v∈e ce < ∞, and let (Xn)n∈N be the random walk defined by the transition

probabilities

P (Xn+1 = x|Xn = y) =
c{x,y}∑
e:y∈e ce

(171)

for all edges {x, y} ∈ E. If the random walk (Xn)n∈N is recurrent almost surely for
all possible starting points, we also say that the graph G = (V,E) is recurrent. Let
G̃ = (V,E, ω) be a random graph with vertex set V , where each edge e ∈ E has a random
non-negative weight ω(e) that satisfies E [ω(e)] ≤ ce. Note that we do not require that
these random weights are independent for different edges. In the case where ω(e) ∈ {0, 1}
almost surely for all edges e ∈ E, one can also think of bond percolation on the graph
(V,E). Let (Yn)n∈N be the random walk on this weighted graph, i.e., the random walk
with transition probabilities

P (Yn+1 = x|Yn = y) =
ω({x, y})∑
e:y∈e ω(e)

(172)

for all vertices y ∈ V and all vertices x ∈ V for which ω({x, y}) > 0. In the case where∑
e:y∈e ω(e) = 0, i.e., when all edges with y as one of its endpoints have a weight of

0, we simply define Yn as the random walk that stays constant on y. For two vertices
x, y ∈ V we say that they are connected if there exists a path of edges between them, such
that ω(e) > 0 for all edges e in this path. The graph G̃ will not be connected for many
examples of percolation, but we say that it is recurrent if all its connected components are
recurrent graphs. We prove that if the random walk with the long-range steps (Xn)n∈N
is recurrent, then almost every realization of the corresponding random weighted graph is
also recurrent.

Theorem 15.3. Let G = (V,E) be a graph with weighted edges (ce)e∈E ∈ RE≥0 as above.

Assume that the random walk (Xn)n∈N defined by (171) is recurrent. Let G̃ = (V,E, ω) be
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a graph, where the edges e ∈ E carry a random weight ω(e) with

E [ω(e)] ≤ ce

for all e ∈ E. Then the random walk on these weights defined by (172) is recurrent almost
surely.

The proof of this theorem will be a direct consequence of Lemma 17.2. In section 17
below we will use Theorem 15.2 and Theorem 15.3 in order to extend the results on
recurrence of random walks of percolation clusters of Berger [16] to percolation clusters on
the one- or two-dimensional integer lattice with dependencies, i.e., when the occupation
statuses of different edges are not independent. We will also apply this extension to
the weight-dependent random connection model and obtain several new results regarding
the recurrence of random walks on such models. Readers interested mostly in the new
results regarding recurrence of the random connection model might also consider to skip
section 16 directly go to section 17. It is also completely self-contained, up to the use of
Theorem 15.2.

Random walks on long-range models are a well-studied object, including results on
mixing times [13] and scaling limits [21, 28, 29]. However, many results so far focused on
independent long-range percolation or needed assumptions on ergodicity. One model of
dependent percolation for which the recurrence and transience has been studied recently
is the weight dependent random connection model [49]. We consider the weight dependent
random connection model in dimension d = 2. The vertex set of this graph is a Poisson
process of unit intensity on R2 × (0, 1). For a vertex (x, s) in the Poisson process, the
value x ∈ R2 is called the spatial parameter and the value s ∈ (0, 1) is called the weight
parameter. Two vertices (x, s) and (y, t) are connected with probability ϕ ((x, s), (y, t)),

where ϕ :
(
R2 × (0, 1)

)2 → [0, 1] is a function. We will always assume that ϕ is of the form

ϕ ((x, s), (y, t)) = ρ
(
g(s, t)‖x− y‖2

)
where ρ is a function (also called profile function) from R≥0 to [0, 1] that is non-increasing
and satisfies

lim
r→∞

rδρ(r) = 1 (173)

for some δ > 1. The function g : (0, 1)×(0, 1)→ R≥0 is a kernel that is symmetric and non-
decreasing in both arguments. We define different kernels depending on two parameters
γ ∈ [0, 1) and β > 0. The parameter γ determines the strength of the influence of
the weight parameter. The parameter β corresponds to the density of edges. Different
examples of kernels are the sum kernel

g(s, t) = gsum(s, t) =
1

β

(
s−γ/d + t−γ/d

)−d
,

the min kernel

g(s, t) = gmin(s, t) =
1

β
(min(s, t))γ ,

the product kernel

g(s, t) = gprod(s, t) =
1

β
sγtγ ,
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and the preferential attachment kernel

g(s, t) = gpa(s, t) =
1

β
min(s, t)γ max(s, t)1−γ .

As gsum ≤ gmin ≤ 2dgsum, the min kernel and the sum kernel show typically the same
qualitative behavior. Depending on the value of β, there might be an infinite connected
cluster [50, 51]. The weight-dependent random connection model and other models with
scale-free degree distribution have been studied intensively in recent years, including new
results on the convergence of such graphs [47,52,73], the chemical distances [34,48,64,74],
random walks and the contact process evolving on random graphs [46, 49, 63], and the
percolation phase transitions [34, 50, 51, 60]. In section 17.1 below we study for which
combinations of γ and δ all connected components of the resulting graph are almost
surely recurrent. Our main (and only) tool for this is a consequence of Theorem 15.3,
which allows to make statements about random walks on dependent percolation clusters.
Whenever there is no infinite cluster, then the random walk is clearly recurrent on all finite
clusters. The question of recurrence and transience has been studied before by Gracar,
Heydenreich, Mönch, and Mörters in [49]. We will generally adapt to their notation. An
overview of their results and our newly obtained results can be found in Figure 9. Our
results for the weight-dependent random connection model are as follows.

Theorem 15.4. Consider the weight-dependent random connection model with profile
function ρ satisfying (173) in dimension d = 2.

(a) For the preferential attachment kernel, every component is almost surely recurrent
if δ > 2, γ < 1

2 .

(b) For the min kernel and the sum kernel, every component is almost surely recurrent
if δ = 2, γ < 1

2 or δ > 2, γ = 1
2 .

(c) For the product kernel, every component is almost surely recurrent if δ = 2, γ < 1
2 .

16 Random walks with large steps

As already shortly discussed in the introduction, we will always study the random walk
on an electric network, and this random walk has the same distribution as the sum
of random variables

∑n
k=1Xk. For this, we define the conductances on the edges by

c{x,y} = P (X1 = x− y), which is well-defined as P (X1 = x− y) = P (X1 = y − x). Now
the Markov chain on these conductances has the same distribution as Sn =

∑n
k=1Xk. We

can without loss of generality assume that P (X1 = 0) = 0, as the steps Xi with Xi = 0
have no influence whether a random walk is recurrent or transient. For such a Markov
chain, there are well-known criteria for transience/recurrence. A random walk on this net-
work is transient if and only if there exists a unit flow with finite energy from the origin 0
to infinity, see for example [79, Theorem 2.10] or [35, 78, 80]. We use this connection be-
tween transience and flows in the proof of Theorem 15.1 and in the proof of Theorem 15.2
for d = 2. The use in the proof of Theorem 15.2 for d = 2 is more implicit, as it is hidden
in the proof of Lemma 16.2. In particular, the proof of Lemma 16.2 uses cutsets [83] and
the Nash-Williams criterion in order to show that there can not exist a flow with finite
energy from 0 to infinity. Note that the network

(
c{x,y}

)
x,y∈Zd,x 6=y defined as above is still

translation-invariant. The same statements about transience/recurrence of this network
can be made without translation invariance, as the following lemma shows.
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Figure 9: Recurrent and transient regimes for weight-dependent random connection mod-
els. The red lines/area is the phase where Theorem 15.4 shows the recurrence of the
random walk, and where the recurrence has not been shown by Gracar, Heydenreich,
Mönch, and Mörters in [49].

Lemma 16.1. For an electric network in dimension d ∈ {1, 2} the condition c{x,y} ≤
C‖x − y‖−2d implies recurrence, whereas c{x,y} ≥ c‖x − y‖−s for some c > 0 and s < 2d
implies transience.

Proof of Lemma 16.1 given Theorem 15.1 and Theorem 15.2. We start with the proof of
the recurrence. Let d ∈ {1, 2}. We have that

c{x,y} ≤ C‖x− y‖−2d =: c̃{x,y}.

Thus, using Rayleigh’s monotonicity principle [79, Chapter 2.4], it suffices to show that
the network defined through the conductances

(
c̃{x,y}

)
x,y∈Zd,x 6=y is recurrent. Define λ :=∑

x∈Zd\{0}C‖x‖−2d =
∑

x∈Zd\{0} c̃{0,x}. Let X1, X2, . . . be i.i.d. random variables with

P (X1 = x) = λ−1C‖x‖−2d for x ∈ Zd \ {0}. Such random variable exists as∑
x∈Zd\{0}

λ−1C‖x‖−2d = 1

by the definition of λ. Then the random walk Sn =
∑n

k=1Xk has exactly the same
distribution as a random walk started at 0 on the network defined by the conductances
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(
c̃{x,y}

)
x,y

. Together with Theorem 15.2 this shows that the random walk on the network

defined by
(
c̃{x,y}

)
x,y

is recurrent and, as argued before, this also shows that the random

walk on the network defined by
(
c{x,y}

)
x,y

is recurrent. The proof of the transience for the

case where c{x,y} ≥ c‖x − y‖−s for some c > 0 and s < 2d works analogous and we omit
it.

After seeing the connection between the electrical networks and the random walk
Sn =

∑n
k=1Xk, we are ready to go to the proof of Theorem 15.1.

16.1 The proof of Theorem 15.1

Proof of Theorem 15.1. We iteratively define disjoint boxes A0, A1, . . . as follows. Let
a0 = b0 = 0 and define ak and bk iteratively by ak+1 = bk + 2k+1, and bk+1 = bk + 2 ·
2k+1 − 1 = ak+1 + 2k+1 − 1. Then define the box Ak := {ak, . . . , bk} × {0, . . . , 2k − 1}d−1.
The resulting sets Ak are disjoint for different k, and they are boxes of side length 2k,
thus containing 2kd elements. We now construct a flow between the different boxes as
follows. For k large enough, say for k ≥ K, we have c{x,y} ≥ c‖x − y‖−s ≥ c′2−ks for all
x ∈ Ak, y ∈ Ak+1, where c′ is a constant that does not depend on k. So we consider the flow
that starts uniformly distributed over Ak and each node x ∈ Ak distributes its incoming
flow uniformly to Ak+1, i.e., it sends a flow of strength 1

|Ak|
1

|Ak+1| to each node y ∈ Ak+1.

The incoming flow in Ak+1 is again uniformly distributed over the box. As this is only
possible for k ≥ K, we need to send an initial flow to AK . For this, we simply consider
a unit flow 0 to AK that distributes uniformly over AK , i.e., each vertex in AK receives
a flow of 1

|AK | , and all edges used by this unit flow are in a finite box. Concatenating
the described flows clearly gives a unit flow θ from 0 to infinity, from which we now want
to estimate the energy. We are only interested in whether its energy is finite or infinite,
and thus it suffices to consider the energy that is generated by the flows between Ak and
Ak+1 for large enough k. For one pair of boxes Ak, Ak+1 with k ≥ K there exist constants
C,C ′ <∞ such that

∑
x∈Ak

∑
y∈Ak+1

θ(x, y)2

c{x,y}
≤
∑
x∈Ak

∑
y∈Ak+1

(|Ak| · |Ak+1|)−2

c‖x− y‖−s

≤
∑
x∈Ak

∑
y∈Ak+1

C2−4kd2ks ≤ C ′2−2kd2ks = C ′2k(s−2d).

Using that s < 2d we can now see that

∞∑
k=K

∑
x∈Ak

∑
y∈Ak+1

θ(x, y)2

c{x,y}
≤
∞∑
k=K

C ′2k(s−2d) <∞

which shows that θ is a flow of finite energy and thus shows the transience of the random
walk.

16.2 The proof of Theorem 15.2 for d = 1

Proof of Theorem 15.2 for d = 1. The main strategy of this proof is to compare the dis-
crete random walk to the sum of independent Cauchy random variables. We assumed that
c{x,y} ≤ C‖x − y‖−2 for x, y ∈ Z. First, we define different weights c̃{x,y} as follows. For
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x = 0 and y 6= 0 we define c̃{x,y} =
∫ |y|
|y|−1

1
1+s2

ds. For x 6= 0, we define c̃{x,y} accordingly
by translation, i.e.,

c̃{x,y} = c̃{0,y−x} =

∫ |y−x|
|y−x|−1

1

1 + s2
ds.

As we started with the assumption c{x,y} ≤ C‖x − y‖−2, we also have that c{x,y} ≤
λc̃{x,y} for a constant λ large enough and all x 6= y. Thus, by Rayleigh’s monotonicity
principle [79, Chapter 2.4], it suffices to show that the network defined by the conductances(
λc̃{x,y}

)
x,y∈Z,x 6=y is recurrent. Multiplying every conductance by a constant factor does

not change whether the network is recurrent or transient, and thus it suffices to show
that the network defined by the conductances

(
c̃{x,y}

)
x,y∈Z,x 6=y is recurrent. For this, let

Y1, Y2, . . . be i.i.d. Cauchy-random variables and define X ′k = sgn(Yk)d|Yk|e. Then X ′k has
the distribution of one step of the random walk on the network defined by

(
c̃{x,y}

)
x,y∈Z,x 6=y,

and by independence S′n =
∑n

k=1X
′
k has exactly the same distribution as the random walk

on the network defined by
(
c̃{x,y}

)
x,y∈Z. Furthermore, we define Rk = Yk −X ′k. Clearly,

R1, R2, . . . are i.i.d. random variables that are bounded by 1 and thus we have that∣∣∣∣∣
n∑
k=1

Rk

∣∣∣∣∣ ≤ n. (174)

By the stableness of the Cauchy-distribution we furthermore have that

P

(∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣ > 5n

)
= P (|Y1| > 5) = 2

∫ ∞
5

1

π(1 + s2)
ds ≤

∫ ∞
5

1

s2
ds =

1

5
. (175)

Now remember that S′n =
∑n

k=1X
′
k =

∑n
k=1 Yk −

∑n
k=1Rk. Combining (174) and (175)

gives

P

(∣∣∣∣∣
n∑
k=1

X ′k

∣∣∣∣∣ ≤ 6n

)
= 1− P

(∣∣∣∣∣
n∑
k=1

X ′k

∣∣∣∣∣ > 6n

)

≥ 1− P

(∣∣∣∣∣
n∑
k=1

Rk

∣∣∣∣∣ > n

)
− P

(∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣ > 5n

)
≥ 0.8.

Thus, there needs to exist a point x ∈ {−6n, . . . , 6n} with

P

(
n∑
k=1

X ′k = x

)
≥ 0.8

|{−6n, . . . , 6n}|
=

0.8

12n+ 1
.

However, for n even, the x ∈ Z that maximizes P (
∑n

k=1X
′
k = x) is 0. To see this, let ρ

be the counting density of
∑n/2

k=1X
′
k. Using the symmetry of ρ (which is inherited from

the symmetry of X ′i) and a convolution, we see that

P

(
n∑
k=1

X ′k = x

)
=
∑
k∈Z

ρ(k)ρ(x− k) ≤
√∑
k∈Z

ρ(k)2

√∑
k∈Z

ρ(x− k)2 =
∑
k∈Z

ρ(k)2

=
∑
k∈Z

ρ(k)ρ(−k) = P

(
n∑
k=1

X ′k = 0

)
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where we used the Cauchy-Schwarz inequality for the inequality. So in particular, for n
even, we have that

P

(
n∑
k=1

X ′k = 0

)
≥ 0.8

12n+ 1
.

Summing this over all even n we get that
∑∞

n=1 P (
∑n

k=1X
′
k = 0) =∞, which implies the

recurrence of the random walk S′n =
∑n

k=1X
′
k. As discussed above, this already implies

the recurrence of the random walk Sn.

16.3 The proof of Theorem 15.2 for d = 2

The proof of Theorem 15.2 for d = 2 is a direct consequence of Lemma 16.9 and Lemma 16.10
below. But before going to these, we need to introduce several intermediary statements.
The first one, Lemma 16.2, is taken from [16, Theorem 3.9]. It has the slight modifica-
tion that we want that the distribution is the same for all edges with a fixed orientation,
whereas [16, Theorem 3.9] does not take into account different orientations (The precise
definition of orientation is given in Notation 16.4 below). However, the exact same proof
as in [16] also works in our situation and we omit it. We say that a distribution µ has a
Cauchy tail if there exists a constant C such that

µ ([Ct,∞)) ≤ Ct−1 for all t > 0. (176)

Note that in order to determine whether a distribution µ has a Cauchy tail, it suffices
to check that condition (176) holds for all numbers t of the form C ′ · 3j with a constant
C ′ ∈ R>0 and j ∈ N, instead of all t > 0. Our arguments will mostly use the symmetry of
the nearest-neighbor bonds with respect to the ∞-norm. Therefore, we will always mean
edges {x, y} with ‖x − y‖∞ = 1 when speaking of nearest-neighbor or short-range edges
in the following.

Lemma 16.2. Let G be a random electrical network on the nearest-neighbor edges of the
lattice Z2, i.e., the edges {{x, y} : ‖x−y‖∞ = 1}. Suppose that all the edges with the same
orientation have the same conductance distribution, and this distribution has a Cauchy
tail. Then almost all realizations of this random graph G are recurrent graphs.

Before going to the formal details of the proof of Theorem 15.2, we want to explain the
main ideas behind it. Assume that c{x,y} are conductances on Z2 with c{x,y} = ‖x−y‖−2d,

where d = 2. If one has two disjoint boxes A,B of side length 3k and with distance approx-
imately 3k, then one has c{x,y} ≈ 3−4k for all x ∈ A and y ∈ B. An edge of conductance

3−4k is equivalent to N edges in series with conductance N · 3−4k each, where N is an
arbitrary positive integer. In our construction, N will be of order 3k. So the rough idea
is to replace each edge {x, y} with Θ

(
3k
)

many edges of conductance Θ
(
3−3k

)
. By the

parallel law, the conductivity of the network further increases if we erase these Θ
(
3k
)

many edges in series of conductance Θ
(
3−3k

)
, and increase the conductances along a path

γkx,y of length Θ
(
3k
)

in the nearest-neighbor lattice by Θ
(
3−3k

)
. However, we will not do

this independently for all x ∈ A, y ∈ B, but we want that for different points x, x′ ∈ A
and y, y′ ∈ B the paths γkx,y and γkx′,y′ have an overlap that is relatively big. So far, we
only looked at fixed k ∈ N. We will do such a construction for all k ∈ N. But at each
k, we will also look at random, 3k-periodic shifts of the plane. We use these uniform
random shifts so that the distribution of the final conductance is the same for all edges of
the same orientation. This construction will then lead to Cauchy tails for the individual
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conductances of the edges in the nearest-neighbor lattice, and thus, using Lemma 16.2,
to the recurrence of the random walk on this network. The environment we started with
is completeley deterministic, and the edge-weights arising through our construction are
random just because of the random shifts of the plane. This also underlines that it is
important for our construction to use random shifts, so that we can apply Lemma 16.2.

Next, we introduce some notation. We do this in order to partition the plane Z2 into
boxes with side length 3k.

Notation 16.3. For a point x = (x1, x2) ∈ Z2 we write

V 3k

x = 3kx+ {0, . . . , 3k − 1}2 = {x13k, . . . , x13k + 3k − 1} × {x23k, . . . , x23k + 3k − 1}

for the box with side length 3k that is translated by 3kx. So in particular Z2 =
⊔
x∈Z2 V 3k

x ,
where the symbol

⊔
stands for a disjoint union. For l ∈ {0, . . . , k}, each box of side length

3k can be written as the disjoint union of 32(k−l) boxes of side length 3l. This union is
simply given by

V 3k

x = 3kx+ {0, . . . , 3k − 1} = 3kx+
⊔

y∈{0,...,3k−l−1}2
V 3l

y

=
⊔

y∈V 3k−l
0

(
3kx+ V 3l

y

)
.

For each point x ∈ Z2, there exists for all l ≥ 0 a unique y = y(l, x) ∈ Z2 with x ∈ V 3l

y(l,x).

For a point x ∈ Z2, let ml(x) be the midpoint of V 3l

y(l,x), i.e.,

ml(x) = 3ly(l, x) +
3l − 1

2

(
1
1

)
.

So in particular we have m0(x) = x for all x ∈ Z2. Also note that ml(x) and ml+1(x) can
be the same point. A point u ∈ Z2 for which there exists a point x ∈ Z2 with ml(x) = u

is also called a midpoint of the l-th level. Note that a block V 3k
a contains exactly 32(k−l)

midpoints of the l-th level, for all l ∈ {0, . . . , k}.

Edges of the form {x, y} with x, y ∈ Z2, ‖x − y‖∞ = 1 can have four different orien-

tations: � , � , | , and −. For an orientation
→
ν ∈ {�,�, |,−}, we write E→

ν

(
Z2
)

for
all the short-range edges pointing in this direction in the integer lattice. We also want to
make a tiling of E→

ν

(
Z2
)

with a given periodicity. We will simply decide on one tiling now.
There are, of course, several other natural options, which come from a different inclusion
on the boundary of the blocks V N

a .

Notation 16.4. For any a ∈ Z2, N ∈ N, we define

E�
(
V N
a

)
=

{{
x, x+

(
1
−1

)}
: x ∈ V N

a

}
,

E�
(
V N
a

)
=

{{
x, x+

(
1
1

)}
: x ∈ V N

a

}
,

E|
(
V N
a

)
=

{{
x, x+

(
0
1

)}
: x ∈ V N

a

}
,

E−
(
V N
a

)
=

{{
x, x+

(
1
0

)}
: x ∈ V N

a

}
.
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Figure 10: The gray lines between the vertices indicate the partitioning
of the plane. The midpoints of the first and the second level are the
filled vertices. The canonical shortest paths between the 8 midpoints of
the first level and the midpoint of the second level are the 3 bold black
edges between these points.

Note that for x ∈ Z2 and l ∈ N, the midpoints ml(x) and ml+1(x) have either 0 or
3l as distance in the ∞-metric, i.e., ‖ml(x) − ml+1(x)‖∞ ∈ {0, 3l}. In the case where
‖ml(x)−ml+1(x)‖∞ = 3l, there exists a path of length 3l connecting ml(x) and ml+1(x)
which uses edges {u, v} with ‖u − v‖∞ = 1 only. Such a path is in general not unique,
but it is unique if we make the further restriction that the path uses 3l edges of the same
orientation. So the resulting path, which we refer to as the canonical shortest path, is the
path that connects ml(x) and ml+1(x) using the straight line between these two points.
Examples of canonical shortest paths are given in Figure 10.

Next, we define a set of paths. We want to define a path γkx,y for all x, y ∈ Z2 for which

there exist a, b ∈ Z2 with ‖a−b‖∞ ∈ {2, . . . , 7}, such that x ∈ 3ka+{0, . . . , 3k−1}2 = V 3k
a

and y ∈ 3kb + {0, . . . , 3k − 1}2 = V 3k

b . The path γkx,y defined below is adopted to the
renormalization with scale 3, as it uses this iterative structure. Whenever x, y are not of
the form as described above, we simply say that the path γkx,y does not exist. A picture
of our construction is given in Figure 12.

Definition 16.5. Let a, b ∈ Z2 with ‖a− b‖∞ ∈ {2, . . . , 7}, and let x ∈ 3ka+ {0, . . . , 3k −
1}2 = V 3k

a and y ∈ 3kb + {0, . . . , 3k − 1}2 = V 3k

b . We define the path γkx,y as the path
that goes from x = m0(x) to m1(x) following the canonical shortest path and from there
to m2(x) following the canonical shortest path and from there, iteratively, following the
canonical shortest paths, to mk(x). From there, the path goes in a deterministic way to
mk(y) and from there iteratively, following the canonical shortest paths, to m0(y) = y.
For the path between mk(x) and mk(y) we follow the line sketched in Figure 11.

The paths γkx,y are no simple paths or shortest paths. In particular, they can go several

times over the same edge. Also note that we do not have γkx,y = γky,x, in general. This is
because the path chosen between mk(x) and mk(y) is not necessarily the same path, see
Figure 11. However, the paths γkx,y can not be too long. The∞-distance between the points

mk(x) and mk(y) is at most 7 ·3k, and for l+1 ≤ k one has ‖ml(x)−ml+1(x)‖∞ ∈ {0, 3l},
and the same statement also holds for y instead of x. Writing |γkx,y| for the length of the
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Figure 11: The midpoints of boxes of side length 3k are the dots. The
partition of the lattice into blocks of side length 3k is marked in gray.
The path between the midpoint mk(x) (the blue dot) and a different
midpoint mk(y) in a different box (a black dot) is obtained by following
the black line.

path γkx,y, we thus get that

|γkx,y| ≤ 7 · 3k + 2
k−1∑
l=0

3l ≤ 10 · 3k. (177)

Consider the set of paths γkx,y over all suitable points x, y ∈ Z2. We want to bound the

number of edges that lie in N or more paths γkx,y. We say that an edge e = {u, v} is in the
path γ = (x0, . . . , xn), abbreviated by e ∈ γ, if (u, v) = (xi, xi + 1) or (v, u) = (xi, xi + 1)
for an i ∈ {0, . . . , n − 1}. We first focus on the structure of the paths inside of one box

A = V 3k
a = 3ka+{0, . . . , 3k−1}. For each l ∈ {0, . . . , k}, there are 32(k−l) midpoints of the

l-th level inside A, i.e., points y ∈ A such that y = ml(x) for a point x ∈ A. Thus there
are 32(k−l−1) midpoints of the form ml+1(x) in A. Each box of side length 3l+1 contains
9 boxes of side length 3l. Thus, there are 8 · 3l32(k−l−1) ≤ 32k−l+1 edges in A that are
on the canonical shortest path between two midpoints of the form ml(x) and ml+1(x).
The factor 8 arises, as for one box of side length 3l+1 with midpoint z we only need to
consider the 8 = 32− 1 boxes of side length 3l that lie inside this box but do not have z as
a midpoint. Edges that do not lie on the canonical shortest path between two midpoints
of any level are not used in the segments that connect an x ∈ A to m(A), where m(A) is

the midpoint of A. Furthermore, for two boxes V 3k
a and V 3k

b with ‖a− b‖∞ ≤ 7, there are

at most 7 · 3k edges that are on the path between the midpoints of V 3k
a and V 3k

b . Many of

the edges in this path lie actually outside of both the boxes V 3k
a and V 3k

b .

Lemma 16.6. For each short-range edge e we define the number Nk
e by

Nk
e =

∣∣∣{(x, y) ∈ Z2 × Z2 : e ∈ γkx,y
}∣∣∣

124



Figure 12: The dashed line is the path γ2
x,y between the points x (blue)

and y (red). The dots are points in Z2, the gray lines give the partition
of Z2 into sets of the form V 3

a , and the thick black lines give the partition
of Z2 into sets V 9

a . The encircled points are the points m1(x),m2(x),
and m2(y). Note that we have y = m0(y) = m1(y) here.

which is just the number of paths of the form γkx,y that use the edge e. Remember that we

defined the path γkx,y only for points x, y satisfying x ∈ V 3k
a , y ∈ V 3k

b for some a, b ∈ Z2

with ‖a − b‖∞ ∈ {2, . . . , 7}. So in particular for all edges e we have that e /∈ γkx,y for
all points x, y that are not of the form as described above. For a number r ≥ 0 and an
orientation

→
ν ∈ {�,�, |,−} we define

Xk,
→
ν

≥r =
∣∣∣{e ∈ E→

ν

(
V 3k

0

)
: Nk

e ≥ r
}∣∣∣

which is the number of edges in E→
ν

(
V 3k

0

)
that lie in at least r different paths of the form

γkx,y. Then for any l ≤ k − 1 one has

Xk,
→
ν

≥50·32k+2l ≤ 32k−l+1 + 3k ≤ 32k−l+2 (178)

and furthermore, one has

Xk,
→
ν

≥217·34k = 0. (179)

Proof. Suppose that an edge e is not on the straight line between two midpoints of the
l-th level and the (l + 1)-th level in the set V 3k

0 , and also not on the path between two

midpoints m
(
V 3k
a

)
and m

(
V 3k

b

)
for a, b ∈ Z2 with ‖a − b‖∞ ∈ {2, . . . , 7}. So the edge

e can only be on the straight line between midpoints of the j-th level and the (j + 1)-th

level, for j ≤ l − 1. Thus, there exists a set V 3l−1

f(e) ⊂ V 3k
0 such that e can only be part of

paths of the form γkx,y where x ∈ V 3l−1

f(e) or y ∈ V 3l−1

f(e) . There are (2 ·7 + 1)2−9 = 216 many

a ∈ Z2 with 2 ≤ ‖a‖∞ ≤ 7. Thus, there are at most 216 · 32(l−1)32k < 25 · 32k+2l pairs
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(x, y) with x ∈ V 3l−1

f(e) and y ∈
⋃
a∈Z2:2≤‖a‖∞≤7 V

3k
a . Using symmetry between x and y we

get that Nk
e < 50 · 32k+2l.

This shows that edges e with Nk
e ≥ 50 ·32k+2l are either on the canonical path between

two midpoints of the l-th level and the (l + 1)-th level in the set V 3k
0 , or on the path

between two midpoints m
(
V 3k
a

)
and m

(
V 3k

b

)
for a, b ∈ Z2 with ‖a − b‖∞ ∈ {2, . . . , 7}.

As discussed before, in the set V 3k
0 , there are at most 32k−l+1 edges that join a midpoint of

the l-th level to a midpoint of the (l+ 1)-th level. For each orientation, there are 3k edges
that are used by paths between different midpoints. For the orientation �, for example,

this are simply the edges of the form

{(
s
s

)
,

(
s+ 1
s+ 1

)}
with s ∈ {0, . . . , 3k− 1}. Thus we

have

Xk,
→
ν

≥50·32k+2l ≤ 32k−l+1 + 3k ≤ 32k−l+2 (180)

which shows (178). Note that the last inequality in (180) holds because l ≤ k. Further-

more, for each edge e there are at most
(
(2 · 7 + 1)232k

)2
< 21734k pairs (x, y) such that

γkx,y is defined and for which e ∈ γkx,y is possible. This holds, as for every path γkx,y that

uses one of the edges in E→
ν

(
V 3k

0

)
, say for x ∈ V 3k

a and y ∈ V 3k

b , we already must have

‖a‖∞, ‖b‖∞ ≤ 7. This gives us that

Xk,
→
ν

≥217·34k = 0 (181)

which finishes the proof.

We are now ready to go to the proof of the recurrence of the network. Remember
that we started with conductances c{x,y} satisfying c{x,y} ≤ C‖x − y‖−4

∞ for a uniform
constant 0 < C < ∞. For two networks

(
c{x,y}

)
x,y∈Zd and

(
c̃{x,y}

)
x,y∈Zd we say that the

first network has a higher conductivity than the second network if the effective conduc-
tances satisfy Ceff(A ↔ B) ≥ C̃eff(A ↔ B) for all sets A,B ⊂ Zd. Taking A = {0} and
B = Zd \ {−n, . . . , n}d, and letting n to ∞, this shows that if the network defined by
c{x,y} is recurrent, then the network defined by c̃{x,y} is also recurrent. By Rayleigh’s
monotonicity principle [79, Chapter 2.4], the conductivity of the network increases if we
increase the conductance of edges. Thus, it suffices to show that the network defined by
the conductances c{x,y} = C‖x − y‖−4

∞ is recurrent. However, multiplying every conduc-
tance of each edge by a constant factor does not change whether the network is recurrent
or transient. Thus, we will, from now on, focus on the case where

c{x,y} =
1

‖x− y‖4∞
for all x, y ∈ Z2, x 6= y.

Following an idea of Berger [16], our strategy is that we erase the long edges and give a
higher conductance to the short edges instead, in such a way that the total conductivity
increases. The way in which this is done in [16] does not work in the situation we are
dealing with. The precise way in which we do this is described in Definition 16.7 for edges
of length 2, 3, . . . , 8, and in Definition 16.8 for edges of length 9 and higher (where the
length of an edge is measured in the ∞-distance of its endpoints). Some edges might
appear several times, but if we increase the conductances twice for one edge, then it only
increases the total conductivity of the network. Before going to these definitions, we need
to introduce a bit more notation.
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For a path γ = (x0, x1, . . . , xn) and a point r ∈ Z2, we define the path r + γ =
(r + x0, r + x1, . . . , r + xn), which is now a path between r + x0 and r + xn. Note
that for three points x, y, r ∈ Z2, and k ∈ N, for which the path γkx+r,y+r exists, the

path −r + γkx+r,y+r is actually a path between x and y. Also remember that we write
E(Z2) =

{
{x, y} ⊂ Z2 : ‖x− y‖∞ = 1

}
for the edge set consisting of short edges on Z2.

Definition 16.7. For two vertices x = (x1, x2) and y = (y1, y2) in Z2, we define the path
γ′x,y as the path that goes from x to (x1, y2) using |x2 − y2| edges of the orientation |,
and from there to (y1, y2) using |x1− y1| edges of the orientation −. This path is uniquely
defined and has length ‖x−y‖1 ≤ 2‖x−y‖∞. We now define a weight W : E(Z2)→ [0,∞)
as follows. Start with W ≡ 0. Now, for each pair (x, y) ∈ Z2×Z2 with 2 ≤ ‖x− y‖∞ ≤ 8,
increase W (e) for all edges e ∈ γ′x,y by 16. Define W as the limiting object.

Definition 16.8. We now define a weight Uk : E(Z2) → [0,∞) as follows. Start with
Uk ≡ 0. Choose rk ∈ {0, . . . , 3k − 1}2 uniformly at random. Now, for each pair (x, y) ∈
Z2×Z2 for which there exist a, b ∈ Z2 with 2 ≤ ‖a−b‖∞ ≤ 7 with x+rk ∈ V 3k

a , y+rk ∈ V 3k

b ,
increase Uk(e) for all edges e ∈ −rk + γkx+rk,y+rk

by 10 · 3−3k. Define Uk as the limiting
object.

Note that Uk and W are well-defined and do not depend on the order of the exhaustion
of Z2 × Z2, as we only add a non-negative amount at every step, and never subtract
anything. Next, we want to show that the nearest-neighbor network

(
Z2, E(Z2), U

)
defined

by U = W +
∑∞

k=1 Uk has a higher conductivity than the original network. Note that
we can define U = W +

∑∞
k=1 Uk also directly by increasing the conductances along all

suitable paths γ′x,y or γkx,y by the corresponding value and then look at the limiting object.

Lemma 16.9. The network defined by the weights U(e) = W (e) +
∑∞

k=1 Uk(e) has a
higher conductivity than the network defined by the weights

c{x,y} =
1

‖x− y‖4∞
for all x, y ∈ Z2, x 6= y. (182)

Proof. A non-nearest-neighbor edge e = {u, v} is not included in the network defined by
U . However, we have increased the conductances along some path connecting u and v,
when we consider the sum W +

∑∞
k=1 Uk. In the following, we will show that for each

edge e = {u, v}, the conductances indeed were increased at least once along a nearest-
neighbor path connecting u and v, and this increase of the conductances of the short
edges actually increased the total conductivity of the network. A similar argument for
the latter claim was also used in [16]. Assume that e = {u, v} is an edge with length at
least 9, and let k ∈ {2, 3, . . .} be such that 3k ≤ ‖u − v‖∞ < 3k+1. Say that u + rk−1 ∈
V 3k−1

a , v+rk−1 ∈ V 3k−1

b . If 2 ≤ ‖a−b‖∞ ≤ 7, we deleted the edge {u, v} (with conductance
‖u−v‖−4

∞ ≤ 3−4k), but increased the conductance of nearest-neighbor edges along the path
−rk−1 + γk−1

x+rk−1,y+rk−1
by 10 · 3−3(k−1). The path −rk−1 + γk−1

x+rk−1,y+rk−1
has a length of

at most 10 · 3k−1 by (177), and thus we increased the total conductivity of the network.
To see this, assume we have a nearest-neighbor path of length N = 10 · 3k−1 connecting
u and v. The edge {u, v} is actually equivalent to a string of N edges in series, each
with conductance Nc{u,v}. Identifying the vertices in this string with the vertices in the
original path in the nearest-neighbor lattice can only increase the conductivity of the
network. Then applying the parallel law with the edges in the original lattice and the
newly formed edges is equivalent to adding a conductance of Nc{u,v} to each edge in the

path connecting u and v. As Nc{u,v} ≤ 10 · 3k−13−4k ≤ 10 · 3−3(k−1), this increased the
total conductivity of the network.
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If u, v with 3k ≤ ‖u−v‖∞ < 3k+1 are not such that u+rk−1 ∈ V 3k−1

a , v+rk−1 ∈ V 3k−1

b

with a, b ∈ Z2 and 2 ≤ ‖a−b‖∞ ≤ 7, we already must have that ‖u−v‖∞ > 6·3k−1 = 2·3k.
Thus, there exist a′, b′ ∈ Z2 with 2 ≤ ‖a′− b′‖∞ ≤ 7 such that u+ rk ∈ V 3k

a′ , v+ rk ∈ V 3k

b′ .
The same argument as before shows that we also increased the total conductivity in this
case.

For edges e = {u, v} with ‖u − v‖∞ ≤ 8 we increase the conductances of the short
edges along the path γ′x,y by 16. As γ′x,y has a length of ‖x− y‖1 ≤ 16, we also increased
the conductivity of the network for this case.

Lemma 16.10. Fix an orientation
→
ν ∈ {� , � , | , −}. Then for all edges e of this

orientation, U(e) is identically distributed and has a Cauchy tail. Thus, by Lemma 16.2,
the random walk on the network

(
Z2, E(Z2), U

)
is almost surely recurrent.

Proof. As W,U1, U2, . . . are independent, it suffices to show that the distribution of W (e),
respectively Uk(e), depends only on the orientation of the edge e. This is clear for W ,
as the value W (e) depends only on the orientation of the edge e. Remember that we

say that γkx+rk,y+rk
exists, when x + rk ∈ V 3k

a , y + rk ∈ V 3k

b for a, b ∈ Z2 with 2 ≤
‖a − b‖∞ ≤ 7. For Uk, note that Uk(e) depends only on the number of pairs (x, y) for
which e ∈ −rk + γkx+rk,y+rk

, and for which γkx+rk,y+rk
exists. More precisely, Uk(e) is

simply 10 · 3−3k times the number of pairs (x, y) for which e ∈ −rk + γkx+rk,y+rk
, and for

which γkx+rk,y+rk
exists. However, we have that∣∣∣{(x, y) : e ∈ −rk + γkx+rk,y+rk

}∣∣∣ =
∣∣∣{(x, y) : e+ rk ∈ γkx+rk,y+rk

}∣∣∣
=
∣∣∣{(x, y) : e+ rk ∈ γkx,y

}∣∣∣ = Nk
e+rk

, (183)

where we write {u, v} + rk = {u + rk, v + rk} for an edge e = {u, v}. The quantity
Nk
e is clearly 3k-periodic in both coordinate directions. As rk is uniformly chosen on
{0, . . . , 3k − 1}2, we see that the distribution of Nk

e+rk
, and thus also of Uk(e), depends

only on the orientation of the edge e.

Now let us turn to the tail properties of the random variable U(e). W (e) is uniformly
bounded over all e, so we can ignore it from here on. From (179) and (183) we get that
there exists a uniform constant C <∞ such that

Uk(e) = Nk
e+rk

·
(

10 · 3−3k
)
≤ C3k

and for l ∈ {0, . . . , k − 1} we get with (178) that

P
(
Uk(e) ≥ 500 · 32l−k

)
= P

(
Nk
e+rk

≥ 50 · 32l+2k
)
≤ 32k−l+2

32k
= 3−l+2,

where we used the uniform distribution of rk and (178) for the last inequality. Using
j = 2l − k and solving this for l = k+j

2 , we get that there exists a constant C < ∞ such
that for all j ∈ {−k,−k + 2, . . . , k − 2}

P
(
Uk(e) ≥ 500 · 3j

)
≤ C3−

k+j
2 . (184)

We want to extend this inequality from j ∈ {−k,−k + 2, . . . , k − 2} to j ∈ {−k,−k +
2, . . . , k−2}. The extension from j ∈ {−k,−k+2, . . . , k−2} to j ∈ [−k, k] is easily doable
by increasing the constant C and looking at the nearest integers in the set {−k,−k +
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2, . . . , k − 2}. For j < −k and C ≥ 1 there is nothing to show, so (184) holds trivially in
this regime. Furthermore one has

P
(
Uk(e) > 21710 · 3k

)
= P

(
Nk
e+rk

> 21734k
)

(179)
= 0

which shows that (184) also holds for j ≥ k and a large enough constant C. Finally, as
inequality (184) holds for all j ∈ R with a high enough constant C, by further increasing
the constant we can make sure that

P
(
Uk(e) ≥ 3j

)
≤ C3−

k+j
2 . (185)

for all j ∈ R. Also note that for j � k inequality (185) gives that P
(
Uk(e) ≥ 3j

)
≤

C3−
k+j

2 � 3−j . We want to use this observation in order to show that
∑∞

k=1 Uk(e) has a

Cauchy tail. Note that if we have Uk(e) ≤ 3j+
j−k

2 for all k ≥ j ∈ N, then we also have
that

∞∑
k=j

Uk(e) ≤
∞∑
k=j

3j+
j−k

2 = 3j
∞∑
k=j

3
j−k

2 ≤ 3j
∞∑
k=0

3
−k
2 ≤ 3 · 3j .

As we furthermore have Uk(e) ≤ C13k for a large enough constant C1 and all k ∈ N, we
get that

∞∑
k=1

Uk(e) =

j−1∑
k=1

Uk(e) +

∞∑
k=j

Uk(e) ≤
j−1∑
k=1

C13k +

∞∑
k=j

3j+
j−k

2 ≤ C13j + 3 · 3j = C23j

for C2 = C1 +3. Using the previous arguing in the reverse direction, we see that the event{∑∞
k=1 Uk(e) > C23j

}
implies that there exists a k ≥ j with Uk(e) > 3j+

j−k
2 . Using this

observation and combining it with a union bound, we get that

P

( ∞∑
k=1

Uk(e) > C23j

)
≤ P

(
Uk(e) > 3j+

j−k
2 for a k ≥ j

)
≤
∞∑
k=j

P
(
Uk(e) > 3j+

j−k
2

)
(185)

≤
∞∑
k=j

C3−
k+j+

j−k
2

2 = C3−
3
4
j
∞∑
k=j

3−
k
4 = C3−

3
4
j3−

j
4

∞∑
k=0

3−
k
4 ≤ 5C · 3−j

which shows that
∑∞

k=1 Uk(e) has a Cauchy tail and thus finishes the proof.

Remark 16.11. Using the definition of Uk, one can easily show that P
(
Uk(e) ≥ 3k

)
≈

3−k, so (185) is approximately an equality for k = j. This already implies that

P

( ∞∑
k=1

Uk(e) ≥ 3j

)
≥ P

(
Uj(e) ≥ 3j

)
≈ 3−j

which shows together with Lemma 16.10 that the tail of U is approximately that of a
Cauchy distribution, i.e., P (U(e) > M) ≈M−1 for M large.

17 Random walks on percolation clusters

In this section, we prove Theorem 15.3, i.e., that random walks on certain percolation
clusters are recurrent. In section 17.1 below we apply this result to the weight-dependent
random connection model. From Theorem 15.3 we can deduce the following corollary.
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Corollary 17.1. Let d ∈ {1, 2} and let
(
Zd, E, ω

)
be the complete graph on Zd where each

edge {x, y} ∈ E carries a random weight ω({x, y}) satsifying E [ω({x, y})] ≤ C‖x− y‖−2d

for a constant C < ∞ and all pairs of points x, y ∈ Zd. Then the random walk on(
Zd, E, ω

)
is recurrent almost surely.

For dimension d ∈ {1, 2} and for the complete graph on Zd with inclusion probabilities
c{x,y} = ‖x − y‖−2d Corollary 17.1 extends a classical result of Berger on recurrence of
the random walk on long-range percolation clusters [16, Theorem 1.4]. There are two
differences between Corollary 17.1 and [16, Theorem 1.4]. The first is that [16, Theorem
1.4] only deals with the case where ω ∈ {0, 1}E , whereas ω ∈ RE≥0 in our situation. The
second difference is that Corollary 17.1 does not require that the inclusion of edges is
independent, whereas [16, Theorem 1.4] requires independence. To deduce this corollary
from Theorem 15.3, note that Theorem 15.2 (respectively Lemma 16.1) shows that the
random walk on conductances

(
c{x,y}

)
x,y∈Zd with c{x,y} ≤ C‖x − y‖−2d is recurrent in

dimension d ∈ {1, 2}. Theorem 15.3 thus implies that the random walk on a percolation
cluster with weight distributions E [ω({x, y})] ≤ C‖x− y‖−2d is recurrent.

Theorem 15.3 will be a direct consequence of Lemma 17.2 below. For two disjoint finite
sets ∅ 6= A,B ⊂ V we write Ceff (A↔ B;ω) for the effective conductance between these
two sets in the environment ω, which is the environment in which each edge e has the
conductance ω(e). Note that Ceff (A↔ B;ω) is a random variable that is measurable with
respect to ω. We also write Ceff (A↔ B) for the effective conductance between A and B in
the environment where each edge e has conductance ce. For a vertex a ∈ V we simply write
a for the set {a}. Furthermore, we write Ceff (a↔∞) for the limit limn→∞ Ceff

(
a↔ ACn

)
,

where (An)n is a sequence with a ∈ An for all n and An ↗ V .

Lemma 17.2. Let a ∈ V and let Λ ⊂ V with a ∈ Λ be a finite subset of V . Assume that
E [ω(e)] ≤ ce for all edges e ∈ E. Then

E
[
Ceff

(
a↔ ΛC ;ω

)]
≤ Ceff

(
a↔ ΛC

)
. (186)

Let us first see how this implies Theorem 15.3.

Proof of Theorem 15.3 given Lemma 17.2. Let a ∈ V be a vertex. Our goal is to show
that the random walk started at a ∈ V is recurrent. Let ε > 0 be arbitrary. As the random
walk on the conductances

(
c{x,y}

)
x,y∈V is recurrent, there exists a finite set Λε ⊂ V such

that a ∈ Λε and Ceff

(
a↔ ΛCε

)
< ε. Lemma 17.2 already implies that

E
[
Ceff

(
a↔ ΛCε ;ω

)]
≤ Ceff

(
a↔ ΛCε

)
< ε,

and as Ceff (a↔∞;ω) ≤ Ceff

(
a↔ ΛCε ;ω

)
this already gives that

E [Ceff (a↔∞;ω)] < ε.

As ε > 0 was arbitrary and Ceff (a↔∞;ω) is a non-negative random variable this already
implies that Ceff (a↔∞;ω) = 0 almost surely, which is equivalent to saying that the
random walk on the weights (ω(e))e∈E started at a ∈ V is recurrent almost surely. As
a ∈ V was arbitrary, this finishes the proof.

Lemma 17.2 shows that the expected conductance always decreases if we say that an
edge e with conductance ce > 0 now carries a conductance of ω(e) with E [ω(e)] ≤ ce.
This inequality might also be strict in many natural examples, despite the fact that the
expected conductance over this edge stays the same. The reason why this inequality holds
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is ultimately linked to the fact that the effective conductance is a concave function over
the individual conductances. In the proof of Lemma 17.2 below the concavity is used
implicitly, as the infimum over a set of linear functions is a concave function.

Proof of Lemma 17.2. We use Dirichlet’s principle for the effective conductance, see for
example [79, Exercise 2.13]. It says that for two non-empty disjoint sets A,B ⊂ V the
effective conductance between these two sets can be expressed as

Ceff (A↔ B) = inf
f∈F

∑
e∈E

ce (df(e))2 ,

where F is the set of functions f from V to R that are +1 on A and 0 on B. For an edge
e = {x, y} we write (df(e))2 = (f(x)− f(y))2 for the squared difference of the values of f
at the endpoints of the edge. This is well-defined, even without fixing an orientation for
the edge. Dirichlet’s principle also holds for Ceff (A↔ B;ω). Thus we get that

E [Ceff (A↔ B;ω)] = E

[
inf
f∈F

∑
e∈E

ω(e) (df(e))2

]
≤ inf

f∈F
E

[∑
e∈E

ω(e) (df(e))2

]
= inf

f∈F

∑
e∈E

E [ω(e)] (df(e))2 ≤ inf
f∈F

∑
e∈E

ce (df(e))2 = Ceff (A↔ B)

where we can interchange the sum and the expectation as all summands are non-negative.
The change of the infimum and the expectation is always allowed when putting the in-
equality. Using this inequality for A = {a} and B = ΛC finishes the proof.

17.1 Recurrence for the weight-dependent random connection model

In this section, we prove Theorem 15.4, i.e., different phases of recurrence for the two-
dimensional weight-dependent random connection model. Our main tool for proving
this is a comparison to dependent percolation on the two-dimensional integer lattice in
Lemma 17.3 below. A slightly weaker statement was already proven in [49, Lemma 4.1],
where the condition (187) needed to hold with |x−y|4 replaced by |x−y|α for some α > 4.
This improvement allows us to prove the results of Theorem 15.4. Lemma 17.3 is a direct
consequence of Corollary 17.1.

Lemma 17.3. Let X∞ be a unit intensity Poisson process on R2. Consider a random
graph H on this point process, where points x, y ∈ X∞ = V (H) are joined by an edge with
conditional probability Px,y, given X∞. If

sup
x,y
‖x− y‖4Px,y <∞ (187)

then any infinite component of H is recurrent.

Note that Lemma 17.3 does not make any assumptions on the independence of different
edges. In particular, for the proof of Theorem 15.4, we will also require the statement to
hold for dependent percolation models.

Proof. We prove this via a discretization. We construct a weighted graph G =
(
Z2, E, ω

)
as follows. For each v ∈ Z2, identify all vertices in X∞ ∩

(
v + [0, 1)2

)
to one vertex v,

which we also imagine to be at the position v ∈ Z2 in space. For some u, v ∈ Z2, if
there are m ≥ 1 edges between u and v, replace them by one edge of conductance m,
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i.e., ω({u, v}) = m. If there is no edge between two vertices u, v ∈ Z2 in the graph G,
we set ω({u, v}) = 0. Call this new graph G. It is not hard to see that if any connected
component of G is recurrent, then also every connected component of H is recurrent.
This holds, as we only contracted vertices of H and applied the parallel law to parallel
edges. So we are left with showing that every connected component of G is recurrent.
Assumption (187) implies that there exists a constant C <∞ such that for all u 6= v and
for all x ∈ u+ [0, 1)2 , y ∈ v + [0, 1)2 one has Px,y ≤ C‖u− v‖−4. Therefore for each edge
e = {u, v} ∈ E one now has

E [ω ({u, v})] = E

 ∑
x∈X∞∩(u+[0,1)2)

∑
y∈X∞∩(v+[0,1)2)

Px,y


≤ E

 ∑
x∈X∞∩(u+[0,1)2)

∑
y∈X∞∩(v+[0,1)2)

C‖u− v‖−4 = C‖u− v‖−4

where we used that the Poisson process has a unit intensity in the last equality. This
already implies that the random walk on every connected component of G is recurrent, by
Corollary 17.1.

Before going to the proof of Theorem 15.4, we still need to prove a small technical
lemma that we will use later.

Lemma 17.4. Suppose that X is a non-negative random variable satisfying P (X ≤ ε) ≤
Cε for some constant C <∞ and all ε > 0. Then for η < 1 one has

E
[
X−η

]
<∞ (188)

and for η > 1 one has

E
[
X−η|X ≥ ε

]
= O

(
ε1−η) (189)

as ε goes to 0.

Proof. To prove (188) note that

E
[
X−η

]
≤
∞∑
n=0

P
(
X−η ≥ n

)
= 1 +

∞∑
n=1

P
(
X ≤ n−

1
η

)
≤ 1 +

∞∑
n=1

Cn
− 1
η <∞

as 1
η > 1. To show (189) note that for small enough ε one has P (X ≥ ε) ≥ 0.5 and this

implies that for all ε̃ ≥ ε one has

P (X ≤ ε̃|X ≥ ε) =
P (X ≤ ε̃, X ≥ ε)

P (X ≥ ε)
≤ P (X ≤ ε̃)

0.5
≤ 2Cε̃.

For ε̃ < ε one obviously has P (X ≤ ε̃|X ≥ ε) = 0. As η > 1, this implies that

E
[
X−η|X ≥ ε

]
≤ 1 +

∞∑
n=1

P
(
X−η ≥ n|X ≥ ε

)
= 1 +

∞∑
n=1

P
(
X ≤ n−

1
η |X ≥ ε

)

= 1 +

dε−ηe∑
n=1

P
(
X ≤ n−

1
η |X ≥ ε

)
≤ 1 +

dε−ηe∑
n=1

2Cn
− 1
η

≤ C ′dε−ηe1−
1
η ≤ 2C ′ε1−η

for some constant C ′ < ∞ and ε small enough. This shows (189) and thus finishes the
proof.
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With this, we are now ready to go the the proof of Theorem 15.4. Remember that the
vertex set of the two-dimensional weight-dependent random connection model is a Poisson
process of unit intensity on R2 × (0, 1). So in particular if we condition that there is a
point in this Process with spatial parameter x ∈ R2, the weight-parameter of this vertex is
still uniformly distributed on the interval (0, 1). If we condition that there are two points
in the Poisson process with spatial parameters x and y, then the weight-parameters of
these points are independent random variables that are uniformly distributed on (0, 1).

Proof of Theorem 15.4. Throughout the proof we will always assume that S and T are
independent random variables that are uniformly distributed on (0, 1). For all cases of
random-connection models considered in Theorem 15.4 we will verify that (187) holds.
For this we need to show that

Px,y = E
[
ρ
(
g(S, T )‖x− y‖2

)]
= O

(
‖x− y‖−4

)
, (190)

as ‖x − y‖ → ∞. This already implies that all connected components are recurrent by
Lemma 17.3. We will only do the case γ > 0. The case γ = 0 works analogously or is
degenerate. The factor of 1

β in the kernel g(S, T ) does not change whether (190) holds
or not, so we will just ignore it from here on and think of β = 1. We will show (190)
for all cases appearing in Theorem 15.4. Assuming that (173) holds we directly get that
ρ(r) ≤ Cr−δ for a large enough constant C <∞ and all r ≥ 0. To strengthen this bound,
note that we also have

ρ(r) ≤ C
(
1[0,1)(r) + 1[1,∞)(r)r

−δ
)

(191)

for a large enough constant C <∞ and all r ≥ 0, as ρ(r) ∈ [0, 1] for all r ∈ R≥0. Now let
us turn to the individual cases.

(a) (Preferential attachment kernel): For γ < 1
2 we will first determine the limiting be-

havior near 0 of the distribution of g(S, T ) = min(S, T )γmax(S, T )1−γ . For abbreviation
we will write min = min(S, T ), max = max(S, T ), and X = minγmax1−γ . Let n ∈ N be
arbitrary. Then we have that

P
(
X ≤ 1

2n

)
= P

(
minγ ≤ 1

2n

)
+
∞∑
k=0

P
(

1

2n−k
< minγ ≤ 1

2n−k−1
, X ≤ 1

2n

)

≤ P
(

minγ ≤ 1

2n

)
+
∞∑
k=0

P
(

1

2n−k
< minγ ≤ 1

2n−k−1
,max1−γ ≤ 1

2k

)
(192)

as minγmax1−γ ≤ 1
2n and minγ ≥ 1

2n−k
already imply max1−γ ≤ 1

2k
. On the event where

1
2n−k

< minγ ≤ 1
2n−k−1 and max1−γ ≤ 1

2k
we must have that

2
−n−k

γ < min ≤ max ≤ 2
− k

1−γ

which can only hold if −n−k
γ < − k

1−γ , which is equivalent to k < (1 − γ)n. Thus, all
addends in the sum (192) are equal to 0 for k ≥ (1 − γ)n and can be ignored. For every
two non-negative real numbers a and b we have that

P (min ≤ a,max ≤ b) ≤ P (S ≤ a, T ≤ b) + P (T ≤ a, S ≤ b) ≤ 2ab.
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Inserting the previous observations into (192) we can further calculate that

P
(
X ≤ 1

2n

)
≤ P

(
min ≤ 1

2
n
γ

)
+

b(1−γ)nc∑
k=0

P
(

min ≤ 1

2
n−k−1
γ

,max ≤ 1

2
k

1−γ

)

≤ 2
1

2
n
γ

+ 2

b(1−γ)nc∑
k=0

1

2
n−k−1
γ

· 1

2
k

1−γ
= 2

1

2
n
γ

+ 2
1+ 1

γ
1

2
n
γ

b(1−γ)nc∑
k=0

2
k
γ
− k

1−γ

≤ C2
−n
γ + C2

−n
γ 2

(1−γ)n
γ
− (1−γ)n

1−γ ≤ C2
−n
γ + C2

−n
γ

+
(1−γ)n

γ
−n

≤ C2
−n
γ + C2−2n ≤ 2C · 2−2n

for a large enough constant C. We used that γ < 1
2 which implies that 1

γ −
1

1−γ > 0, and

thus the sum
∑b(1−γ)nc

k=0 2
k
γ
− k

1−γ is, up to a multiplicative constant, equal to its last addend

2
b(1−γ)nc

γ
− b(1−γ)nc

1−γ . This already shows that

P (g(S, T ) ≤ ε) = P
(
min(S, T )γmax(S, T )1−γ ≤ ε

)
≤ C ′ε2

for some constant C ′ <∞ and all ε > 0. Taking squares this also implies that

P
(
g(S, T )2 ≤ ε

)
= P

(
g(S, T ) ≤

√
ε
)
≤ C ′ε (193)

for all ε > 0. This is useful for us, as we can thus apply Lemma 17.4 to the random
variable g(S, T )2. Let ρ be a profile function with lim supr→∞ r

δρ(r) <∞ for some δ > 2.
We still need to show (190). By inequality (191) we can assume that

ρ(r) ≤ 1[0,1)(r) + 1[1,∞)(r)r
−δ,

where we drop the multiplicative constant in (191) for the ease of notation. Using that
δ
2 > 1 by assumption, we get that for some constant C <∞

Px,y = E
[
ρ
(
g(S, T )‖x− y‖2

)]
≤ P

(
g(S, T )‖x− y‖2 < 1

)
+ E

[(
g(S, T )‖x− y‖2

)−δ ∣∣ g(S, T )‖x− y‖2 ≥ 1
]

≤ P
(
g(S, T ) <

1

‖x− y‖2

)
+ ‖x− y‖−2δE

[
(g(S, T )2)−

δ
2

∣∣∣ g(S, T )2 ≥ 1

‖x− y‖4

]
≤ C 1

‖x− y‖4
+ C‖x− y‖−2δ

(
1

‖x− y‖4

)1− δ
2

= O
(
‖x− y‖−4

)
which shows (190) and finishes the proof. The last inequality holds because of Lemma 17.4
and (193).

(b) (Min and sum kernel): We show the result for the min kernel. As the sum kernel and
the min kernel differ only by a constant, this already implies that (190) also holds for the
sum kernel. We start with the case δ = 2, γ < 1

2 . We can assume that ρ(r) ≤ Cr−2 for a
constant C <∞ and thus we get that

Px,y = E
[
ρ
(
g(S, T )‖x− y‖2

)]
≤ C‖x− y‖−4E

[
min(S, T )−2γ

]
≤ C‖x− y‖−4E

[
S−2γT−2γ

]
= C‖x− y‖−4E

[
S−2γ

]
E
[
T−2γ

]
= O

(
‖x− y‖−4

)
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as 2γ < 1 and thus E
[
S−2γ

]
,E
[
T−2γ

]
<∞. This finishes the proof for the first case. For

the second case γ = 1
2 , δ > 2 we ignore the constant in (191) and will thus assume from

here on that

ρ(r) ≤ 1[0,1)(r) + 1[1,∞)(r)r
−δ.

This implies that

Px,y = E
[
ρ
(
g(S, T )‖x− y‖2

)]
≤ P

(
min(S, T )

1
2 ‖x− y‖2 < 1

)
+ E

[(
min(S, T )

1
2 ‖x− y‖2

)−δ ∣∣∣min(S, T )
1
2 ‖x− y‖2 ≥ 1

]
= P

(
min(S, T ) <

1

‖x− y‖4

)
+ ‖x− y‖−2δE

[
min(S, T )−

δ
2

∣∣∣min(S, T ) ≥ 1

‖x− y‖4

]
≤ 2

‖x− y‖4
+ C‖x− y‖−2δ

(
1

‖x− y‖4

)1− δ
2

= O
(

1

‖x− y‖4

)
for some constant C <∞. The last line holds because of Lemma 17.4, as P (min(S, T ) ≤ ε) ≤
2ε and δ

2 > 1. This finishes the proof for the min kernel.

(c) (Product kernel): Now let us turn to the product kernel g(S, T ) = SγT γ . Let γ < 1
2

and δ = 2. We can assume that ρ(r) ≤ Cr−2 and thus we get with the same argument as
above that

Px,y = E
[
ρ
(
g(S, T )‖x− y‖2

)]
≤ C‖x− y‖−4E

[
S−2γT−2γ

]
= O

(
‖x− y‖−4

)
which finishes the proof.
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[36] Alexander Drewitz, Balázs Ráth, and Artëm Sapozhnikov. On chemical distances and shape
theorems in percolation models with long-range correlations. Journal of Mathematical Physics,
55(8):083307, 2014.

[37] Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez. Critical exponents for a
percolation model on transient graphs. (2021) arXiv preprint arXiv:2101.05801.

137



[38] Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Absence of infinite cluster
for critical bernoulli percolation on slabs. Communications on Pure and Applied Mathematics,
69(7) (2016) 1397–1411.

[39] Hugo Duminil-Copin and Vincent Tassion. A new proof of the sharpness of the phase transition
for bernoulli percolation and the ising model. Communications in Mathematical Physics, 343(2)
(2016) 725–745.

[40] Hugo Duminil-Copin and Vincent Tassion. A new proof of the sharpness of the phase transition
for bernoulli percolation on Zd. L’Enseignement mathématique, 62(1) (2017) 199–206.
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American Mathematical Monthly, 117(3):220–231, 2010.

[79] Russell Lyons and Yuval Peres. Probability on trees and networks, volume 42. Cambridge
University Press, 2017.

[80] Terry Lyons. A simple criterion for transience of a reversible markov chain. The Annals of
Probability, pages 393–402, 1983.

[81] Grigorii A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy
peredachi informatsii, 10(2):101–108, 1974.

[82] Asaf Nachmias and Yuval Peres. Critical random graphs: diameter and mixing time. The
Annals of Probability, 36(4):1267–1286, 2008.

[83] C. St. J. A. Nash-Williams. Random walk and electric currents in networks. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 55, pages 181–194. Cambridge
University Press, 1959.

[84] Charles M. Newman and Lawrence S. Schulman. One dimensional 1/|j − i|s percolation
models: The existence of a transition for s ≤ 2. Communications in Mathematical Physics,
104(4):547–571, 1986.

[85] Robin Pemantle and Yuval Peres. On which graphs are all random walks in random environ-
ments transient? In Random Discrete Structures, pages 207–211. Springer, 1996.

[86] Georg Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im
Straßennetz. Mathematische Annalen, 84(1):149–160, 1921.

[87] David Reimer. Proof of the van den berg–kesten conjecture. Combinatorics, Probability and
Computing, 9(1):27–32, 2000.

[88] Lucio Russo. On the critical percolation probabilities. Zeitschrift für Wahrscheinlichkeitsthe-
orie und verwandte Gebiete, 56(2):229–237, 1981.

[89] L. A. Shepp. Symmetric random walk. Transactions of the American Mathematical Society,
104(1):144–153, 1962.

[90] L. A. Shepp. Recurrent random walks with arbitrarily large steps. Bulletin of the American
Mathematical Society, 70(4):540–542, 1964.

[91] Lawrence S. Schulman. Long range percolation in one dimension. Journal of Physics A:
Mathematical and General, 16(17):L639, 1983.

[92] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, cardy’s formula,
scaling limits. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 333(3) (2001)
239–244.

[93] Stanislav Smirnov and Wendelin Werner. Critical exponents for two-dimensional percolation.
Mathematical Research Letters, 8(6) (2001) 729–744.

140



[94] Frank Spitzer. Principles of random walk, volume 34. Springer Science & Business Media,
2001.

[95] Alain-Sol Sznitman. On a class of transient random walks in random environment. The Annals
of Probability, 29(2):724–765, 2001.

[96] Tianqi Wu. A sharp leading order asymptotic of the diameter of a long range percolation
graph. arXiv preprint arXiv:2211.16500, 2022.

141


	I Chemical Distances
	Introduction
	Main results
	The continuous model
	Notation
	Related work

	Asymptotic behavior of the distance exponent for large 
	Bounds on connection probabilities
	Submultiplicativity and the upper bound in Theorem 1.2
	Spacing between points with long bonds
	The lower bound in Theorem 1.2

	Connected sets in graphs
	Distances in V0n
	Graph distances of far away points
	The second moment bound
	Graph distances between points and boxes

	The proof of Theorem 1.1
	Distances between certain points
	Supermultiplicativity of (n,)
	The diameter of boxes

	Tail behavior of the distances and diameter
	Comparison with different inclusion probabilities
	The diameter of boxes

	Russo's formula for expectations
	Asymptotic behavior of () for small  and d=1
	Strict monotonicity of the distance exponent
	The geometry inside blocks
	The proof of Theorem 1.4

	Continuity of the distance exponent
	Uniform bounds for the mixed measure
	The proof of Theorem 1.5 

	Proofs for d=1

	II Critical exponents
	Introduction
	Proofs
	Moments of the cluster size inside boxes
	Isoperimetric inequalities in expectation
	The proof of theo:clustersize and theo:twopointfct


	III Random walks
	Introduction
	Random walks with large steps
	The proof of theo:transience
	The proof of theo:recurrence for d=1
	The proof of theo:recurrence for d=2

	Random walks on percolation clusters
	Recurrence for the weight-dependent random connection model

	References


