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Abstract
Many face recognition approaches expect the input
images to have similar image resolution. However,
in real-world applications, the image resolution var-
ies due to different image capture mechanisms or
sources, affecting the performance of face recogni-
tion systems. This work first analyzes the image
resolution susceptibility of modern face recognition.
Face verification on the very popular LFW dataset
drops from 99.23% accuracy to almost 55% when
image dimensions of both images are reduced to ar-
guable very poor resolution. With cross-resolution
image pairs (one HR and one LR image), face verific-
ation accuracy is even worse. This characteristic is
investigated more in-depth by analyzing the feature
distances utilized for face verification. To increase
the robustness, we propose two training strategies
applied to a state-of-the-art face recognition model:
1) Training with 50% low resolution images within
each batch and 2) using the cosine distance loss
between high and low resolution features in a sia-

mese network structure. Both methods signific-
antly boost face verification accuracy for matching
training and testing image resolutions. Training a
network with different resolutions simultaneously
instead of adding only one specific low resolution
showed improvements across all resolutions and
made a single model applicable to unknown resolu-
tions. However, models trained for one particular
low resolution perform better when using the exact
resolution for testing. We improve the face verifica-
tion accuracy from 96.86% to 97.72% on the popular
LFW database with uniformly distributed image
dimensions between 112 × 112 px and 5 × 5 px.
Our approaches improve face verification accuracy
even more from 77.56% to 87.17% for distributions
focusing on lower images resolutions. Lastly, we
propose specific image dimension sets focusing on
high, mid, and low resolution for five well-known
datasets to benchmark face verification accuracy in
cross-resolution scenarios.
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1 Introduction

Over the last few years, face recognition has gained progressively more attraction. Szegedy et
al. [24] introduced one of the first deep-learning-based approaches in 2014 and applied a 9-layer
convolutional neural network. Since then, deep-learning-based approaches have evolved more and
more due to the growing availability of powerful GPUs and novel large datasets, e.g., Microsoft’s
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Figure 1 Average face verification accuracy across five popular datasets (LFW [9], AgeDB [17], CFP-
FP [22], CALFW [36] and CPLFW [35]) for cross-resolution and equal-resolution (left). One example
image pair for both scenarios in five image resolutions (right).

Celeb Dataset (MS1M) [6] with up to 87k identities. These networks are trained to map a facial
image, typically after head pose normalization, into a feature space, in which intra-class features
distances are minimized, and inter-class feature distances are maximized.

In Figure 1, we show that image accuracy drops for lower image resolution. Hence, we argue
that the learned features depend on the training image resolution. Popular approaches learn a
projection into a distinct feature space with datasets containing mainly high resolution (HR)
images. However, in real-world applications, the image quality is often inferior. Besides external
factors like illumination or the subject’s distance to the camera, sensor characteristics or image
compression affect the image quality. For example, surveillance cameras capture faces at very low
resolutions, in contrast to very high-quality mug-shots-like passport images. Another example is
social media, which tries to recognize HR faces in the foreground and tiny low resolution (LR)
faces in the background. In this work we focus on the most important characteristic of image
quality - the image resolution.

LR face recognition [13, 2, 1] addresses the verification and identification of faces on images
with the same coarse resolution. However, in real-world scenarios, the image resolution is arbitrary
and unknown. Cross-Resolution (CR) face recognition addresses this problem of comparing images
with varying resolutions, but has yet found minor attraction by the research community.

In this work, we first investigate the verification performance of a state-of-the-art face recogni-
tion network [3] on different image resolutions. We differentiate between CR and LR verification
scenarios in our analysis. Figure 1 demonstrates that the performance is significantly worse in
CR and LR scenarios across several datasets. At resolutions below 10 × 10 px, the accuracy is
slightly above 50%, which is only barely above guessing. Therefore, we assume a possibility for
improvements, especially for very low image resolutions.

A major drawback of the works [5, 18] in CR face recognition is their focus on one specific image
resolution, which assumes the image resolution to be known. Moreover, one needs several models
to face a wide range of image resolutions, which are likely to occur in real-world applications.
Zeng et al. [32] use a mix of two/four different image resolutions during training.

Our work distinguishes between two-resolution (i.e., training a network specifically with images
in high resolution and one particular low resolution) and multi-resolution (i.e., feeding the model
with HR and multiple LR images) training.
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In summary, our main contributions are:
We analyze the susceptibility for different image resolution on face verification in-depth.
We propose two intuitive, straightforward approaches and show performance improvements on
several datasets for CR face verification, especially at very low image resolutions.
Lastly, we propose and publish three evaluation protocols to measure face recognition robustness
against CR images. That is, to the best of our knowledge, the first benchmark for CR.

2 Related Work

2.1 Generic Face Recognition
In recent years, face recognition research has focused on loss functions applied mainly on ResNet [7]
architectures. In [14], the authors propose an angular softmax loss with a multiplicative angular
margin and in [27] an additive cosine margin. Deng et al. [3] applied an additive angular margin
loss function, which can effectively extend the discriminating power of features. Recently, Kim
et al. [12] presented with GroupFace a novel architecture that utilizes multiple group-aware
representations to improve the quality of the features. Wang et al. [28] proposed a hierarchical
pyramid diverse attention network. Schroff et al. [21] introduced the triplet loss to maximize the
distances between an anchor image and its genuine sample (same identity) while minimizing the
distance between an anchor image and its imposter sample (different identity).

2.2 Image Resolutions
To the best of our knowledge, no large training dataset provides different resolution versions of
the same facial image. Furthermore, large datasets are often crawled from the web, and thus
they lack very LR images on which the identity is unrecognizable. However, such a dataset is
crucial to train a network, which is robust against varying image resolutions. The generation of
LR images from HR images is an essential component in super-resolution. According to Zhou and
Süsstrunk [37], a mapping from LR to HR images is often learned by synthetically downsampled
HR images to retrieve target-oriented training data. They further state that the frequently used
bicubic interpolation [10] significantly differs from real-world camera-blur and is not optimal.
Nevertheless, simple bicubic downsampling is a cheap, reproducible, and effective way to lower
the image resolution.

2.3 Cross-Resolution Face Recognition
According to [23], existing CR approaches can be grouped into two areas: 1) Transformation-based
methods [34, 4, 19, 8] aim to transform images/features from low resolution to high resolution or
vice versa to project them in a common space. 2) Non-transformation-based approaches [16, 32]
intend to extract scale-invariant features directly into a common feature space. Wang et al. [29]
show an exhaustive review of those methods for addressing CR face recognition, and Figure 2
gives a brief functional overview of those two methods.

Transformation-based Methods
Lu et al. [15] presented a deep coupled ResNet model containing one trunk network and a two-
branch network. The trunk network extracts features, whereas the two-branch network transforms
HR and the corresponding LR features into a space in which their difference can be minimized.

Zangeneh et al. [31] proposed a two-branch deep convolutional neural network. While the
LR branch consists of a super-resolution network combined with a feature extraction network,
the HR branch is only a feature extraction network. Both branches are trained in three different

LITES
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Figure 2 Transformation-based approaches (left) transform either learned image features (dashed path)
or images into a shared space (solid path). Non-Transformation-based (right) methods aim to project
scale-invariant image features directly.

training phases. In the benchmark, images are assigned to a particular branch depending on their
resolution. A similar approach was used in [11]. They trained a U-Net with a combination of
reconstruction and identity preserving loss to super-resolve multi-scale LR images. For feature
extraction, they utilized a pretrained Inception-ResNet.

The authors of [25] proposed a coupled GAN network structure, which comprises two sub-nets,
one for high resolution and one for low resolution. The correlation between the sub-net-generated
features is maximized. Moreover, they considered facial attributes by implicitly matching facial
details for both resolutions.

Non-Transformation-based Methods

In [32], Zeng et al. presented a resolution-invariant deep network and trained it directly with
unified LR and HR images. However, they used only resolutions in the range of 24 to 60 pixels for
LR images.

Massoli et al. [16] proposed a student-teacher network approach. They showed that their
approach can be more effective rather than preprocessing images with super-resolution techniques.

The authors of [18] report that their deep CNN architecture can address the problem of CR
face recognition. They present a two-branch network architecture, which is trained in a pair-wise
manner with multiple classification and contrastive loss functions.

In [5], Ge et al. focused on low computational costs in LR face recognition. Therefore, they
introduced a new learning approach via selective knowledge distillation. A two-stream technique
(large teacher model and a light-weight student model) is employed to transfer selected knowledge
from the teacher model to the student model.
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3 Experimental Setup

3.1 Baseline Network
As our baseline network, we choose a network structure comprising a modified ResNet-50 [7] as
proposed in ArcFace [3], pretrained on ImageNet [20], and an ArcFace layer for classification.

The backbone network (ResNet-50) consists of a set of stacked residual blocks, which are
repeated four times and contains in total 50 convolutional layers. It squeezes the input image from
112 × 112 × 3 px down to 4 × 4 × 2048 px utilizing multiple convolutions. After flattening the
output from the backbone network, dropout is added. A bottleneck layer (512-dimensional fully
connected layer), which represents the extracted features is added following [30, 14, 27]. Finally, a
fully connected layer with 87 k (number of identities in our training set) neurons is added. We
then apply Additive Angular Margin Loss to the network following [3].

For training, we select the cleaned Microsoft MS1M [6] dataset containing about 5.8M images
from about 87k identities. We perform random brightness and saturation variations, left-right
flipping, and random cropping of images as data augmentation. All training parameters are set
according to [3] except for a smaller batch-size of 128 due to hardware limitations. The learning
rate is set to 0.01 and is decreased by a factor of 10 after epoch 9 and epoch 13. In total, we train
for 16 epochs with momentum SGD optimizer. The dropout rate and weight decay are set to 0.5
and 5 · 10−4, respectively.

3.2 Testing Datasets
We select five popular dataset (cf. Table 1) for evaluating face verification performance.

Table 1 Statistics for five popular test datasets.

LFW [9] AgeDB [17] CFP-FP [22] CALFW [36] CPLFW [35]

Identities 5749 568 500 5749 5749
Images 13233 16488 7000 13233 13233
Pairs 6000 6000 7000 6000 6000

We use the aligned face, which is cropped to 112 × 112 × 3 px afterwards for all testing
datasets mentioned in Table 1. In this paper, we exclusively deal with images having equal width
and height. For the sake of simplicity, we denote the image resolution by naming only the first
dimension, i.e., a resolution of 112 px defines a 112 × 112 × 3 px image.

3.3 Reduction of Image Resolution
The baseline network requires HR input images IHR of the dimension 112 px. We simulate a
resolution reduction by performing the following two steps: 1) Downsample Fdown,r(·) images
to an image dimension r in pixels followed by 2) upsampling Fup,r(·) the images back to the
original image dimension and denote the resulting LR images as ILR. The complete process can
be formulated as follows:

ILR = Fup,112(Fdown,r(IHR)) (1)

For both sampling processes, bicubic interpolation [10] is applied. To reduce unwanted artifacts,
typically introduced by the downsampling process, standard anti-aliasing techniques are employed.
In subsection 4.1, we further investigate these effects.

LITES
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Figure 3 Bicubic down- and up-sampling process to reduce the image resolution but keeping the image
dimension.

Figure 3 illustrates the synthetic image resolution reduction. The left image IHR is a sample
taken from the MS1M dataset with a resolution r = 112. In the center, the downsampled image
Fdown,14(IHR) with image dimension r = 14 is depicted. Finally, the upsampled image ILR is
shown on the right and has qualitatively considered an image resolution of r = 14 but technically
the same image dimension as the IHR image. It is evident that all the high-frequency information
is removed by this synthetically resolution reduction. Simultaneously, the image dimension is
equal to the original image, which is the required image dimension for our networks.

3.4 Accuracy in Face Verification
We report accuracy in all experiments, which denotes the face recognition rate in terms of face
verification. To calculate the accuracy value for a given dataset, we first take the cosine distances
d between features of every image pair (I1, I2) extracted from a model M(·) according to N image
pairs defined in the specific evaluation protocol for each dataset. respectively:

d = 1 − M(I1) · M(I2)
∥M(I1)∥2 ∥M(I2)∥2 (2)

Then, we use 10-fold cross-validation to find optimal thresholds that can separate feature
distances of genuine from imposter pairs. The number of correctly identified genuine and imposter
samples from a total number of samples N are then named as true positives TP and true negatives
TN , respectively. We then calculate an accuracy score Acc as follows:

Acc = TP + TN

N
(3)

For all experiments in the CR scenario we generate two evaluation protocols by flipping the
pairwise matching resolution from(

M(Fup,112(Fdown,r(I1))), M(I2)
)

to (
M(I1), M(Fup,112(Fdown,r(I2))

)
We then calculate the accuracy score for both test datasets and then compute the mean.
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4 Analysis of Image Resolution Susceptibility

In this section, we first investigate the effect by reducing the resolution across five test datasets.
Then, we examine the performance of the baseline network under LR conditions in CR and ER
scenarios. Afterward, we take a closer look at the extracted features, especially at the cosine
distance between the image pairs, which is used to classify them as genuine or imposter.

4.1 Resolution Reduction on several Datasets
To better understand what happens when performing resolution reduction synthetically, we analyze
the effect of downsampling on several testing datasets. Hence, we calculate a mean image across
the whole dataset and highlight the mean pixel difference between LR and HR images. The mean
images in Figure 4 are computed as follows:

Imean
HR = 1

N

N∑
i=1

IHR,i (4)

where N denotes the number of elements of the dataset.
Below each mean HR image, we denote the mean absolute pixel differences Dr between

synthetically reduced images ILR,r, and original IHR images across each dataset. We retrieve
those images for four resolutions r ∈ {7, 14, 28, 56} according to:

Dmean
r = 1

N

N∑
i=1

(∣∣∣Fup,112(Fdown,r(IHR,i)) − IHR,i

∣∣∣) (5)

As expected, the resolution reduction process in all datasets is heavily affected by eye, nose,
and mouth regions. High detail information in those regions is lost. This reasonably results in
worse face verification performance as we show later in the next section. The maximum derivation
of a single LR image pixel concerning its corresponding pixel in the HR image is about 50%. In all
pixel-difference images grid-style artifacts occur, which in our opinion result from the anti-aliasing
method of the bicubic interpolation algorithm.

56px 28px

7px14px

IHR

ILR

LFW AgeDB CFP-FP CALFW CPLFW
50%

0%

10%

20%

30%

40%

Figure 4 The left column shows a high resolution sample image IHR from MS1M and its corresponding
reduced-resolution images Fdown,r(Fup,112(IHR)) for four resolutions r ∈ {7, 14, 28, 56}. In the first row
are then the mean images Imean

HR for several datasets shown. Below are the pixel difference images Dmean
r

for specific resolutions.
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The mean dataset HR images are quite different across all datasets. Pose variations in CPLFW
dataset result in blurrier areas of the image. In contrast, the CALFW and LFW dataset images
seem to be very accurately aligned and show almost a clear and detailed average face. Interestingly,
the background in the CFP-FP dataset is very dark compared to other datasets. This results
from cropped faces which are padded in black, especially in the top image region. Also, the pose
variation is visible in the average face. Some ghosting effects are also present in that image.

The mean absolute pixel difference images show the same pattern across all datasets. With
decreasing resolution the difference is more visible, especially in the high frequency regions (eyes,
nose, and mouth).

4.2 Face Verification Accuracy

As depicted in Figure 5, the performance on all datasets drops for lower resolutions as expected.
The accuracy on the LFW dataset is best for high resolution but drops heavily for lower resolutions.
The worst performance on high resolutions can be seen on the CPLFW dataset. A reason for this
behavior can be the large pose variations in this test set, which are not occurring in the training
set and therefore unknown to the network.

Interestingly, we see different decreasing characteristics between the CR and ER scenarios. To
a particular resolution, all datasets show worse performance in the ER scenario than in the CR
scenario. This performance gap is reasonable since more pixel information is present in a CR pair
than in an ER image pair. Against intuition, this trend reverses for very low resolutions except
for the AgeDB dataset. We explain this behavior with a more significant domain shift for the
network necessary within the CR image pairs than within the ER image pairs. Our network is
familiar with HR images, and down to a specific resolution, it can interpret lower quality faces
quite well. Whereas beneath a threshold, both LR images are unfamiliar to the network, and thus,
features represent different ID characteristics compared to HR features. However, in the AgeDB
dataset is a significant age gap within the pairs, which implicates that on LR images, for example,
large hair-style variations or the effect of gray-scale vs. color images, might confuse the network
for positive image pairs.
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Figure 5 Face verification accuracy across several datasets for different image resolutions in cross-
resolution (high resolution vs. low resolution image) and equal-resolution (low resolution vs. low resolution
image) scenario.
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4.3 Feature Distances
Since the accuracy depends on a distance threshold, which classifies sample pairs as genuine
or imposter, the distance between both features vectors is crucial for the verification accuracy.
Hence, we look at the average feature distance for all genuine and imposter image pairs of the
LFW dataset (cf. Figure 6. We divide the diagram roughly into three sections: 1) r > 60 px, 2)
> 20 px < r < 60 px, and 3) r < 20 px. In the first section, feature distances between genuine
and imposter image pairs seem to be independent of the image resolution. The average distance
is about 0.3 within genuine pairs and 1.0 within imposter pairs, which means that the high
dimensional feature vectors are almost orthogonal. The second section reveals, that in both CR
and ER scenario the distance of genuine image pairs tends to increase, whereas the distance for
imposter image pairs is only slightly decreasing. A small reduction of image resolution causes
repelling features. However, reducing the image resolution more (section 3), all LR image features
are projected closely together (far away from HR features), which results in small distances for ER
and high distances in the CR scenario. Considering that almost all pairs are then categorized as
genuine (in the CR scenario) or imposter (in the ER scenario), the face verification performance
is merely guessing.

For the CR scenario, we conduct that our network is not able to extract accurate features
for the very LR images. Hence, this results in a large distance between features because the HR
image features are still very distinctive. However, in the ER scenario, both images are unfamiliar
to the network, which results in resembling extracted features.

Figure 7 captures the cosine feature distance distributions for the LFW dataset. The center
violin plots represent the feature distance distribution for HR image pairs. Distances for genuine
and imposter image pairs are clearly distinguishable. The genuine distances are mainly in a range
between 0.1 and 0.6, whereas imposter distances are mostly in the field of 0.6 and 1.4. Both classes
can be separated effectively with a threshold of about 0.6, and thus, the accuracy for HR face
verification is best (cf. Figure 5). On the left side, distributions for the CR scenario are shown,
whereas on the right side, ER feature distributions are plotted. For images resolutions of 56 px
and 28 px the distributions in both scenarios is similar to the HR distribution. The fact that the
peak feature distance for genuine image pairs even exceeds the maximum distance for imposter
pairs in the CR scenario at very low resolution 5 px, leads to the conclusion that image resolution
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Figure 6 Average cosine feature distances between image pairs for genuine (◦) and imposter (△) pairs
in the LFW dataset. Dashed lines shows distances in the equal-resolution scenario, while solid lines
represent distances in the CR scenario.
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Figure 7 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
(left) and equal-resolution (right) pairs in the LFW dataset. Five different resolutions are shown for our
baseline model.

has a more significant impact on the distance than the identity itself. The gap between CR and
ER accuracy for very low resolutions is therefore reasonable. Although the small distances for
both kinds of image pairs in the ER case, more genuine feature distance still have a smaller value.
This behavior explains a higher accuracy for very low resolutions in the ER scenario compared
to CR scenario. Further experiments with CFP-FP, AgeDB, CALFW, and CPLFW datasets
underline this trend.

5 Training Methods

To improve the separability between feature distances of genuine and imposter image pairs, and
hence, the accuracy, we pursue two intuitive non-transformation-based methods (cf. Figure 8): 1)
CR batch training and 2) CR siamese network training.

In all training sessions, we use the MS1M dataset and train in total for 16 epochs. All training
parameters are set according to our baseline (cf. section 3) for a fair comparison.

5.1 Cross-Resolution Batch Training

Motivated by [32, 16], we first propose a straightforward batch CR training approach to tackle the
susceptibility to image resolutions. Instead of using HR images only, we randomly select half of
the images per batch and synthetically reduce their resolution (cf. subsection 3.3).We train several
specific networks specializing each on a particular resolution. For the sake of simplicity, we refer to
these models according to the following rule: BT-r where r denotes the specific LR value during
training. We apply resolutions r ∈ {x ∈ N | 5 ≤ x ≤ 22} ∪ {28, 56} in our experiments. Since we
only take half of the images per batch for resolution reduction, the network is still exposed to HR
images and thus learns to extract features from HR and LR images at the same gradient update
step.
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Figure 8 Overview of our proposed methods. The left part shows the cross-resolution batch training
method, whereas the right part shows the siamese network cross-resolution training approach.

5.2 Siamese Network Cross-Resolution Training
Inspired by Tang et al. [26], we implement a siamese network structure (cf. Figure 8 CR training.
Each branch of the network consists of our baseline architecture and trains the network for a
specific image resolution. With weight-sharing across all branches, we keep the same number of
parameters and ensure similar inference during test-time compared to BT-r. We construct two
branches for training with exactly two resolutions (the high resolution and one low resolution).
Our objective is to closely project the corresponding features from all branches for a specific image
with an arbitrary resolution. We add a new loss function to the network to enforce this, which
penalizes a high cosine distance between both features. We employed the cosine distance metric
to match the evaluation protocol. Applying a HR image to the ArcFace network (HR branch),
fHR then denotes the corresponding output feature vector, and images from the particular LR
branches are named fLR accordingly. The cosine feature distance loss Ldist is then calculated as:

Ldist = 1 − fHR · fLR

∥fHR∥2 ∥fLR∥2 (6)

For both branches, we calculate the cross-entropy loss LCE,HR and LCE,LR, respectively. We
weigh all three losses approximately equally and multiply the feature distance loss by a factor of
25. Finally, we conclude the total loss function L for the siamese training approach as follows:

L = LCE,HR + LCE,LR + 25 · Ldist (7)

Due to the siamese network architecture, both images, in high resolution and low resolution,
need to be propagated through each branch. Thus, the training time is about double in the
two resolution training scenario. In our experiments, we select the following resolutions r ∈
{5, 6, 7, 8, 12, 14, 20, 28, 56} to train specific resolution models. In the following, we refer to this
training technique as ST-r.

6 Experimental Results

In this section, we present and discuss the results of our proposed approaches. Firstly, we focus on
the two-resolution scenario, i.e., high resolution (112 px) and one specific low resolution. Secondly,
focus on simultaneously training with multiple image resolutions, i.e., high resolution (112 px) and

LITES
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multiple low resolutions (7 px, 14 px, 28 px, and 56 px) in one training. We analyze the accuracy
on five popular datasets and compare the distances of the resulting features for all methods.
Moreover, we introduce a new evaluation protocol to measure the performance of a model for
multiple resolutions in the test dataset. We conclude this section with a comparison of all methods
proposed in this paper, especially concerning the differences in accuracy and training time.

6.1 Two-Resolution Training Scenario
As previously mentioned in section 5, we now analyze the CR batch training approach BT-r and
the siamese network CR training approach ST-r concerning the face verification accuracy on
five popular datasets. This two-resolution training scenario trains each model with exactly two
specified resolutions and compares the results to the baseline network concerning accuracy and
feature distances.

Face Verification Accuracy
As introduced in subsection 3.4, accuracy is a standard metric to measure the performance of a
face verification model. Figure 9 depicts the average face verification accuracy across five common
datasets of the BT-r and ST-r model compared to our baseline model. Note that BT-@ and ST-@
data points represent different models trained explicitly for the test resolution. Both approaches
outperform the baseline model for low image resolutions. For very low resolutions, i.e., 5 px to
8 px, the performance can be increased from ≈ 50% up to 70%. Above r ≈ 40 px, no significant
difference exists between all approaches, which affirms our expectations since the LR images
are visually hardly distinguishable from the original images, and the absolute pixel difference is
minimal (cf. subsection 3.3).

Generally, the performance improvement is increasing with decreasing resolutions. The BT-r
method performs slightly better than the ST-r method, from which we conclude that the siamese
approach might concentrate too much on projecting the features of the same image in different
resolutions into the same space than on classifying the correct identity regardless of the resolution.
For applications with a known fixed resolution, a BT−@ are the better choices.

Moreover, we compare our results on the very popular LFW dataset with two other approaches
(cf. Table 2): First, the selected knowledge distillation technique proposed by Ge et al. [5], and
second, the attribute-guided coupled GAN approach introduced by Talreja et al. [25]. Our systems
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Figure 9 Evaluation of average face verification accuracy across five popular datasets for different
resolution with several models.
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Table 2 Face verification accuracy on the LFW dataset. The best performance of each image resolution
is marked bold.

Image Resolution Model Accuracy

64 px

BT-64 (ours) 99.38%
ST-64 (ours) 99.35%
S-64-sc [5] 92.83%
Talreja et al. [25] 94.92%

32 px

BT-32 (ours) 99.08%
ST-32 (ours) 98.32%
S-32-sc [5] 89.72%
Talreja et al. [25] 91.08%

16 px
BT-16 (ours) 98.17%
ST-16 (ours) 97.8%
S-16-sc [5] 85.87%

clearly outperform both competitors. However, the comparison to Ge et al.’s approach is not fair.
Their baseline model (teacher model) only reaches an accuracy of 97.15%, which is not comparable
to our baseline and state-of-the-art. On the other hand, the model’s number of parameters also
differs. They only trained both models for three different resolutions, showing only a few snapshots
and not the whole performance curve. The lowest resolution, (16 px) is relatively high compared
to our analysis, so we cannot fully exploit our strengths here.

Feature Distances

Similar to subsection 4.3, we pick five different resolutions and take a closer look at the features
themselves. To be more precise, we plot the distance distributions for genuine and imposter image
pairs from the LFW dataset.
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Figure 10 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
pairs in the LFW dataset. For both models, @ denotes that the training resolution matches the test
resolution.
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Figure 11 Best thresholds selected for calculating the accuracy on the LFW dataset using different
models. In the model description an @ denotes, that the training resolution matches the test resolution.

Figure 10 shows that distances of genuine and imposter pairs are much better separable for
low resolutions 14 px, 28 px and 56 px than the baseline results (cf. Figure 7). The main difference
compared to the baseline is the shift of genuine and imposter distances to a range of almost 0 and
0.1 in the very low resolution scenario (7 px). This behavior is remarkable and shows that both
networks learn to project features from very different resolutions into the same space. Although
all distances are small, imposter distances are still greater than genuine, and the distributions
are separable, consistent with the accuracy improvement discussed in the previous subsection
(cf. Figure 9). Furthermore, there is no significant difference between both proposed methods.
This is in line with with the last section’s accuracy values.

To understand and determine the exact resolution where the feature distances drop so much, we
calculate the optimal threshold and analyze the corresponding accuracy values (cf. subsection 3.4).
Figure 11 depicts the threshold values for the baseline, BT-r, and ST-r models on all tested
image resolution in the CR scenario. Thresholds for our baseline model are increasing for lower
resolutions. This trend is consistent with our results in subsection 4.3, where genuine and imposter
feature distances increase for lower resolutions. Our two-resolution training networks show a
significant drop at r = 9 px for BT-r and r ≈ 12 px for ST-r. From these points on, both models
behave differently in the training sessions and project features for significant resolution differences
more closely.

6.2 Multi-Resolution Training Scenario

We propose multiple-resolution training for both approaches to simulate a more applicable model,
which is capable of handling arbitrary resolutions. We train the BT-r model with more than
two resolutions simultaneously by randomly picking a different resolution in {7, 14, 28, 56, 112}
to generate a LR image. Each batch contains HR images and multiple LR images with different
resolutions. We find that those five resolutions equally represent the range of image resolutions.
This range reflects, for example, equivalent distances from subjects to the camera in real life. The
probability of each resolution is set to be equal. We name this approach BT-M in the following.

In the ST-r approach, we apply two different methods for training with multiple resolutions
simultaneously. First, for the LR branch, we randomly pick a resolution from the numbers
{7, 14, 28, 56} and feed the LR branch with LR images of different resolutions within each batch.
The HR branch always takes 112 px images. This training with in total five different resolutions
simultaneously doubles the training time. In the following, this approach will be referred to as
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ST-M1. The second method ST-M2 extends the siamese network to five branches, each branch
representing a particular defined resolution (7 px, 14 px, 28 px, 56 px, and 112 px). Consequently,
four feature distance losses are calculated each between the HR and the corresponding LR branch.
Moreover, we also calculate the cross-entropy loss for each branch. All feature distance losses are
weighted each with a factor of 25, to be in the same order of magnitude as the cross-entropy losses.
The training time for this experiment is about five times longer than the baseline because it is
scaling with the number of defined resolutions for training.

Face Verification Accuracy

Figure 12 presents the face verification accuracy for BT-M, ST-M1, and ST-M2 model across
arbitrary image resolutions. All three approaches perform significantly better than the baseline
model in resolutions below 13 px and worse above a resolution of 28 px. Note that there is a
significant peak at a resolution of 14 px, especially for BT-M. One reason for this could be that
this specific resolution was used during training, and hence, this effect is also visible at resolutions
7 px, 28 px, and 56 px.

Another finding is that the siamese network CR training outperforms the CR batch training
for low resolutions (r < 16 px) and vice-versa for mid and high resolutions (r > 16 px). For
r = 7 px, the ST-M1 model achieves an accuracy score of ≈ 75%, which is almost 25% above the
baseline performance and even higher than ST-7. At the same time, that approach loses about
8% performance at high resolutions r = 56 px. For a more scale-comprehensive performance score,
we will introduce three new evaluation protocols in subsection 6.3.

Figure 13 investigates the performance at and close to two selected resolutions, 7 px and
14 px. On the left side, we can see that BT-7 and ST-7 optimized the performance strictly
for the 7 px resolution, and hence they perform worse in the neighboring regions. BT-@ and
ST-@, which represent specific resolution trained models, perform best at each scale, and this
is reasonable due to the training with that particular image resolution. The performance loss
for all multiple-resolution trained approaches (BT-M, ST-M1, and ST-M2 ) is compensated by
the benefit of having a single model for arbitrary resolutions. The right part of Figure 13 shows
an excerpt of resolutions from 10 px to 18 px. Here, the wave effect of BT-14 and ST-14 is also
slightly visible, meaning that those two models perform relatively best on exactly 14 px resolution.
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Figure 12 Average face verification accuracy across five popular datasets for different image resolutions
with several models. Except for the Baseline all models were trained using multiple image resolutions.
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Figure 13 Accuracy on the LFW dataset for several models trained with different image resolutions.
In the model description an @ denotes, that the training resolution matches the test resolution.

Feature Distances

Interestingly, in terms of feature distance distributions (cf. left part of Figure 14), the multi-
resolution batch training is not behaving similarly to the two resolution batch training. Specifically
for BT-r, at very low resolutions (r = 7 px), the feature distance distributions for genuine and
imposter pairs are even larger than for all other resolutions. This characteristic fits to the BT-r
accuracy at that scale (cf. Figure 13). In contrast to the two-resolution case, both siamese training
approaches (ST-M1 and ST-M2 ) project features for all resolutions closer together. We conduct
this from very low distances across all scales (center and right parts in Figure 14). The maximum
feature distance for both approaches is about 0.1.
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Figure 14 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
pairs in the LFW dataset at different test-set image resolutions. For training, multiple image resolutions
were used.
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6.3 Evaluation Protocols for Multiple Resolutions

Evaluation protocols for common public datasets are not taking into account the image resolution.
In the previous sections, we only considered a specific image resolution to calculate the face
verification accuracy. With single networks (cf. subsection 6.2) capable of handling arbitrary
image resolutions at once, there is a need for a more meaningful evaluation considering multiple
resolutions. Therefore, we propose specific evaluation protocols for all five datasets, with a focus
on four different resolution ranges:

Low resolutions: r ∈ {x ∈ N | 5 ≤ x ≤ 10}
Mid resolutions: r ∈ {x ∈ N | 11 ≤ x ≤ 40}
High resolutions: r ∈ {x ∈ N | 41 ≤ x ≤ 112}
All resolutions: r ∈ {x ∈ N | 5 ≤ x ≤ 112}

The evaluation protocols define the resolution for each image in each pair for the corresponding
dataset, and we keep the probability for each resolution in the generation process equal. All
protocols are available at: https://github.com/martlgap/btm-stm.

6.4 Comparison of the proposed Methods

To conclude this chapter, we provide a comparison between all introduced methods. First, we
analyze the verification performance on HR images for all proposed methods and compare them
to the baseline approach. Figure 15 shows the accuracy of the LFW dataset for each epoch.
We select models BT-7, BT-56, ST-7, and ST-56 to represent both, shallow and relatively high
resolutions. After the first epoch, our baseline model achieves about 98% accuracy, followed by
almost peak accuracy already after the second epoch. During epochs 3 and 16, no significant
changes in accuracy are visible. The BT-56 starts with equal accuracy after the first epoch
and then takes another two epochs to reach almost peak accuracy. The ST-56 gets only after
epoch 4 approximately peak performance. This model needs significantly more samples than both
previously mentioned models to achieve similar accuracy. One reason could be the additional
feature distance loss, which forces the network to minimize feature distances and learn a reasonable
classification.
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Figure 15 Evaluation of face verification accuracy on the original LFW dataset for high resolution
images.
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Table 3 Comparison of training time per epoch and accuracy on LFW dataset for different test image
resolution protocols. Bold numbers denote the best performance across all methods.

Accuracy [%] for Test Resolution

Model
Training Time
per Epoch [h] 112 px all_res high_res mid_res low_res 5 px

Baseline 2 99.23 96.86 99.20 95.89 77.57 54.65
BT-M 2 99.30 97.72 99.33 97.78 87.17 71.53
ST-M1 4 97.40 96.76 97.35 96.98 91.50 76.78
ST-M2 20 95.62 95.07 95.62 95.51 88.72 71.84

The peak performance for both methods BT-7 and ST-7 are significantly lower compared to
the other approaches. This decrease could evolve from too little information in the shallow LR
images, which might probably be just too little resolution to be able to learn a proper feature
extraction. Moreover, models converge slower and need at least 10 epochs to reach the overall
maximum accuracy region.

Second, Table 3 compares all presented methods to their training time per epoch and per-
formance in the multi-resolution scenarios and depicts accuracy values on the LFW dataset. We
conduct that compared to the two resolution techniques, both ST-M1 and ST-M2 models clearly
outperform the baseline and the BT-M for low resolutions. Focusing on higher resolutions, we
conclude that BT-M is the best performing method. Even for the original image resolution of
11 px, the BT-M model performs better than the baseline. We think this is reasonable because
using lower resolutions additionally during training can be seen as extra data augmentation and
hence, can improve the performance. One also has to compromise that for an absolute performance
improvement of about 14% in the low_res protocol, the performance for high_res drops about
2%. In the second siamese training approach, ST-M2 is performing worse in all categories than
ST-M1. Therefore, we conclude that the much greater effort for training is not worth it. It seems
to be less important to force a network to learn close features for the same image in different
resolutions, within each batch, than across several batches.

Lastly, the number of parameters, and hence the inference time, is equal for all models, thus
making the comparison fair and reasonable.

7 Conclusions and Future Work

This work analyzes the impact of different image resolutions on face verification performance
utilizing a state-of-the-art approach. The distances between extracted features are investigated in
detail. Our findings are that facial features extracted from established face recognition networks are
not scale-invariant, and hence the performance decreases substantially for lower image resolutions.

To obtain the best performance, the resolution of the testing images must be the same as in
the corresponding training dataset for the network. To overcome this problem, we propose two
intuitive methods to learn scale-invariant features directly: 1) Training our network with batches
containing an equal amount of LR and HR images. Experiments across five conventional test
datasets show improvements up to 24.80% for for very low image resolutions of 5 px. 2) Training
a siamese network structure, which additionally minimizes feature distances between LR and HR
versions of the same image besides the cross-entropy loss. Evaluations across five conventional
test datasets indicate an improvement in performance up to 31.77%.

Furthermore, we train our proposed models with several resolutions at once. Hence, a single
model can be applied to arbitrary image scales, making it more applicable. We also report a
considerable improvement of 17.96% with our best model ST-M1 for CR verification performance,
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especially for low resolutions. Compared to the simple batch training method, the siamese network
CR training performs better for low resolutions and worse for mid and high resolutions. For
applications with a known fixed resolution, the latter method is the better choice.

Lastly, we introduce and release three different evaluation protocols for five popular datasets,
defining multiple resolutions for CR scenarios.

Our work showed that a loss on feature distances helps to mitigate the resolution susceptibility
in face verification. Therefore, in the future, we want to employ a specifically designed triplet loss
variant, which minimizes intra-class and maximizes inter-class feature distances. We also want
to extend the downsample process by using arbitrary blur kernels described in [33] and applying
them in our work.
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