
Dual-Domain Attention for Image Deblurring

Yuning Cui1*, Yi Tao2*, Wenqi Ren3†, Alois Knoll1

1Technical University of Munich
2MIT Universal Village Program

3Shenzhen Campus of Sun Yat-sen University
{yuning.cui, knoll}@in.tum.de, yitao@universal-village.org, renwq3@mail.sysu.edu.cn

Abstract

As a long-standing and challenging task, image deblurring
aims to reconstruct the latent sharp image from its degraded
counterpart. In this study, to bridge the gaps between degrad-
ed/sharp image pairs in the spatial and frequency domains
simultaneously, we develop the dual-domain attention mech-
anism for image deblurring. Self-attention is widely used in
vision tasks, however, due to the quadratic complexity, it is
not applicable to image deblurring with high-resolution im-
ages. To alleviate this issue, we propose a novel spatial at-
tention module by implementing self-attention in the style of
dynamic group convolution for integrating information from
the local region, enhancing the representation learning ca-
pability and reducing computational burden. Regarding fre-
quency domain learning, many frequency-based deblurring
approaches either treat the spectrum as a whole or decompose
frequency components in a complicated manner. In this work,
we devise a frequency attention module to compactly decou-
ple the spectrum into distinct frequency parts and accentu-
ate the informative part with extremely lightweight learnable
parameters. Finally, we incorporate attention modules into a
U-shaped network. Extensive comparisons with prior arts on
the common benchmarks show that our model, named Dual-
Domain Attention Network (DDANet), obtains comparable
results with a significantly improved inference speed.

Introduction
In this paper, we address the problem of blind motion de-
blurring whose aim is to recover the sharp image from a
degraded observation caused by motion of camera during
sensor exposure or objects in the scene (Kundur and Hatz-
inakos 1996; Campisi and Egiazarian 2017). This problem
is encountered in many diverse technical areas, such as re-
mote sensing (Bertero, Boccacci, and De Mol 2021), med-
ical imaging (Michailovich and Adam 2005), photography
(Sroubek and Flusser 2005), and self-driving cars (Zhang
et al. 2022a). Deblurring also serves as a fundamental pre-
processing measure for some downstream computer vision
tasks (Sayed and Brostow 2021). Due to the ill-posed prop-
erty, it has attracted considerable attention from industrial
community and academia over the years.
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Considering image deblurring as an inverse problem,
numerous approaches have been developed to deal with
blind deblurring problems and non-blind deblurring prob-
lems (Wang and Tao 2014). Non-blind deblurring means that
the blue kernel is assumed to be known and the target image
can be generated from both the kernel and the observation.
The typical methods for this category include Wiener fil-
ter (Wiener et al. 1949) and Richardson-Lucy (Richardson
1972; Lucy 1974). By contrast, dating back to the 1970s,
blind image deblurring is more practical and challenging
where the blur kernel is unknown. Many novel approaches
have been put forward to tackle it by estimating the blue ker-
nel and sharp image successively or simultaneously (Bahat,
Efrat, and Irani 2017; Aittala and Durand 2018). However,
with various additional constraints, these methods are not
applicable in the complicated scenarios.

Recently, with the rapid development of deep learning,
multifarious methods based on convolutional neural net-
work (CNN) have emerged as a preferable solution com-
pared to above-mentioned methods, due to their advanced
mapping capacity from blurry image to the sharp target
(Nah, Hyun Kim, and Mu Lee 2017; Suin, Purohit, and Ra-
jagopalan 2020; Chen et al. 2022; Zamir et al. 2021). Despite
the improved performance these methods have brought, with
the limited receptive filed of convolution, they struggle to in-
tegrate the long-range dependencies. More recently, to alle-
viate this issue, Transformer methods have been tailored for
deblurring to further boost the accuracy of reconstruction
(Wang et al. 2022; Tsai et al. 2022). The core component
of these approaches is self-attention mechanism where each
pixel is modulated by a weighted sum of the whole feature
map. Despite many efforts to reduce the quadratic complex-
ity of this technique, these solutions still struggle to have
efficient implementation compared to CNN-based methods.

In this paper, we propose an efficient spatial attention
module (SAM) that combines the merits of group con-
volution (Krizhevsky, Sutskever, and Hinton 2012) and
self-attention (Vaswani et al. 2017). Our SAM is Tanh-
normalized and shares weights over the group dimension,
utilizing the group convolution mechanism to mimic the op-
eration of self-attention. Compared to self-attention, SAM
performs information aggregation within a small region to
reduce the computational complexity and substitutes hyper-
bolic tangent function for Softmax from the inspiration that
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not all surrounding pixels have the positive effect on the
centered pixel. Importantly, our SAM generates integration
weights for each two pixels from contextual information in-
stead of from information that is only related to these two
pixels. Different to group-wise convolution, the integration
weights in our module are shared in each group across chan-
nel dimension which results in further efficiency.

On the other hand, most of the recent deep learning-based
methods solve deblurring only in the spatial domain without
sufficiently utilizing the discrepancies in the frequency do-
main. Recently, some works have been proposed to reduce
the frequency gap between sharp/blurry image pairs (Zou
et al. 2021; Mao et al. 2021; Liu et al. 2020; Zhang et al.
2022b). For instance, SDWNet (Zou et al. 2021) introduces
wavelet reconstruction module to decouple the features into
various frequency subbands by Wavelet transform, which
needs additional computational complexity to perform in-
verse transform. DeepRFT (Mao et al. 2021) treats high-
frequency signals with the normal residual branch and deals
with omni-frequency using Fourier transform-based branch.
However, these two branches share the same input, and as
a consequence, the low-frequency information conveyed to
residual branch may disturb the learning of high-frequency
signal. MSFS-Net (Zhang et al. 2022b) adopts multiple com-
plicated OctConv (Chen et al. 2019) to conduct frequency
separation, and down/upsampling operations are performed
frequently, introducing extra computation burdens.

In this work, we develop a simple yet effective and ef-
ficient frequency attention module to decouple the feature
into low- and high-frequency components, and then accen-
tuate the informative ones via the learnable weights. To this
end, we leverage average pooling with different kernel sizes,
i.e., 3 × 3 kernel and global kernel, to obtain two low-
frequency parts with different receptive fields. After gen-
erating opposite high-frequency components by subtract-
ing low-frequency parts from the input, learnable weights
are imposed on the resultant diverse frequency signals to
achieve recalibration. In this manner, the various frequency
subbands are treated individually. Our strategy enjoys sev-
eral advantages. Firstly, it works without using FFT or
wavelet transform and hence no extra inverse transform is
needed. Compared to FFT, it does not require any further
processing to distinguish different frequency components.
Second, it is compact without employing any postprocess-
ing convolution as in (Mao et al. 2021; Zou et al. 2021).

In summary, our main contributions are as follows:

• We develop a dual-domain attention mechanism to boost
image deblurring performance by enhancing representa-
tion learning in the spatial and frequency domains.

• We propose a spatial attention module (SAM) that in-
herits the strengths of convolution and self-attention to
capture local dependencies efficiently.

• We devise a frequency attention module (FAM) that per-
forms controlled frequency transformation by accentu-
ating the more informative frequency parts with an ex-
tremely lightweight implementation.

• We conduct comprehensive comparisons with prior arts
to demonstrate the effectiveness of our attention method.

Related Work

Image deblurring. Recently, CNN-based architectures have
outperformed the conventional deblurring approaches. As
a seminal technique, DeepDeblur (Nah, Hyun Kim, and
Mu Lee 2017) directly learns the regression between im-
age pairs, exhibiting superiority in deblurring over kernel-
based frameworks. Thereafter, equipped with various ad-
vanced functional units and modules, e.g., dilated convo-
lution, UNet and attention mechanism, abundant CNN net-
works have been investigated to improve performance (Za-
mir et al. 2021; Chen et al. 2021b; Yuan, Su, and Ma 2020).
More recently, some researchers have introduced Trans-
former into image deblurring to capture long-range depen-
dencies (Zamir et al. 2022; Wang et al. 2022; Chen et al.
2021a). In this paper, we pursue a dual-domain attention
mechanism to address deblurring.

Self-attention in image deblurring. Attention mecha-
nisms, especially self-attention (Vaswani et al. 2017), play
an important role to attend to relevant information and en-
hance the representation learning ability in image deblurring
frameworks (Purohit and Rajagopalan 2020). For instance,
efficient self-attention is leveraged in an encoder-decoder
architecture to obtain better representation (Suin, Purohit,
and Rajagopalan 2020). Sparse non-local attention module
is proposed in (Purohit et al. 2021) to cope with the spatially-
varying degradation.

Of late, various methods have been developed in com-
puter vision community to reduce the quadratic complexity
of canonical self-attention (SA) (Wu et al. 2019; Li et al.
2022a; Liang et al. 2021; Li et al. 2022b). In the context
of image deblurring, SA across channel dimension is pro-
posed in Restormer (Zamir et al. 2022) to reduce complex-
ities. Uformer (Wang et al. 2022) performs SA within non-
overlapping local windows as in Swin Transformer (Liu
et al. 2021). Stripformer (Tsai et al. 2022) introduces intra-
and inter-strip attentions for dynamic scene image deblur-
ring. In this paper, we also focus on SA to achieve spatial
attention, but implement in a convolution style to make it
more efficient.

Frequency analysis in image deblurring. Fourier anal-
ysis is widely used in traditional image deblurring methods
owing to convolution theorem (Ayers and Dainty 1988; Del-
bracio and Sapiro 2015; Keuper et al. 2013). Recently, some
CNN-based frameworks have been designed to bridge the
frequency gap between blurry/sharp image pairs (Liu et al.
2020; Cui et al. 2023). SDWNet uses wavelet transform to
separate the input into four frequency subbands and treats
each with individual convolution to avoid interference be-
tween different frequency parts (Zou et al. 2021). Deep-
RFT leverages FFT-based branch to process frequency infor-
mation (Mao et al. 2021). MSFS-Net adopts multiple Oct-
Conv (Chen et al. 2019) operation to decompose frequency
(Zhang et al. 2022b). We explore a simpler frequency at-
tention module to first decouple the spectrum with aver-
age pooling technique, and then emphasize the useful fre-
quency components and suppress the less informative ones
via learnable parameters.
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Figure 1: The pipeline of our framework. We insert our spatial and frequency attention modules between two convolution layers.
The input and output layers are borrowed from MIMO-UNet (Cho et al. 2021).

Proposed Algorithm
In this section, we first introduce two attention modules in
detail. Then we describe the overall architecture of the pro-
posed image deblurring network. The loss functions follow
in the final part.

Spatial Attention Module (SAM)
To enhance the representation capacity of the extracted fea-
tures in spatial domain, the proposed SAM mimics the op-
eration of MHSA in the style of convolution. We first revisit
the formulation of MHSA (Vaswani et al. 2017):

MHSA(Q,K, V ) = Concat(head1, ..., headh)W
O (1)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2)

where, WQ
i ,WK

i ,WV
i are parameter matrices to project

Q,K and V into different representation subspaces. The
core component of each head is scaled dot-product attention:

Attention(Q,K, V ) = AV

= softmax(
QKT

√
dk

)V
(3)

Given the input shape of RH×W×C , the size of the attention
map (A) and the outcome is RHW×HW and RHW×C , re-
spectively. We assume that Q,K, V in Eq. 3 have the same
number of channels with the input for convenience. Hence,
Q,K, V ∈ RHW×C .

Next, we will show that the weights of other pixels to a
target pixel are calculated locally. To be specific, for a single
resultant pixel of Eq. 3, it is obtained by,

yi,j =
HW∑
p=1

Ai,pVp,j (4)

where, i, p, j denote the coordinates. The contribution of
Vi+1,j to the calculation of yi,j is the value of Ai,i+1, which
is generated by,

Ai,i+1 =
C∑

q=1

Qi,qK
T
q,i+1 (5)
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Figure 2: Spatial attention module.

Here, we leave out the scale factor in Eq. 3 for simplicity.
From Eq. 5, we can conclude that the weight of another pixel
to a target one is generated by only considering information
of these two pixels across channel dimension without taking
other pixels into account.

To obtain weights for each two pixels from contextual
information, our SAM first adopts global average pooling
(GAP) to generate a global feature, and then a convolution
layer is utilized to adjust the channel dimension. As claimed
in (Purohit et al. 2021), propagating all information across
spatial domain has a side effect. Hence, we reduce the scope
of propagating and conduct local self-attention. In addition,
different from the vanilla self-attention, we instead utilize
the hyperbolic tangent activation function to generate neg-
ative weights for harmful pixels, and as a consequence, the
negative effects of these pixels can be suppressed. Formally,
given the input X ∈ RC×H×W , our attention weights for all
groups are obtained by,

W = Tanh(W1 ∗GAP(X)) (6)

where, W1 is the parameter matrix of convolution layer, and
∗ denotes convolution operation. W ∈ Rg×k2

, where k is
the kernel size of attention, and g is the number of groups.

Following group convolution, we split the input X into
several groups, but each group shares the same attention
weights across the channel and spatial dimensions. This
measure can significantly reduce the number of attention
weights and parameters, and hence ease the difficulty of
training. After obtaining the attention weights and group fea-
ture, the local self-attention is described by,

Si = Wi ∗Xi (7)
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Figure 3: Frequency attention module. GAP denotes the
Global Average Pooling, and AP is Average Pooling with
the kernel size of 3 × 3. Modulation is implemented by
channel-wise recalibration where the attention weights are
set as directly learnable parameters without introducing any
additional sublayer.

where, i is the index of group. To promote interactions be-
tween different groups as MHSA does in Eq. 1, we apply
another convolution layer to get the final output of SAM,

SAM(X) = Concat(S1, S2, ..., Sg)W2 (8)

To summarize, our SAM is different from the vanilla
self-attention in following aspects: (i) The attention weights
are generated based on the contextual information. (ii) The
scope for integration is limited in a small region to re-
duce the computational complexity. (iii) Negative weights
are produced to suppress the effects of harmful pixels via
hyperbolic tangent activation function.

Frequency Attention Module (FAM)
(Liu et al. 2020) shows that the low-frequency parts of a
sharp image and its blurry counterpart are similar while
there are huge discrepancies between high-frequency com-
ponents. Inspired by this opinion, to enable efficient fre-
quency learning, we design FAM to treat different frequency
subbands individually. FAM mainly contains two steps, de-
composition and modulation, as illustrated in Figure 3.

Intuitively, the simplest decoupling method is to split the
spectrum into two parts, the lowest part and the opposite.
To achieve this goal, FAM is established based on average
pooling whose result is proportional to the lowest frequency
component in the spectrum (Qin et al. 2021).

Given an input X ∈ RC×H×W , we apply global aver-
age pooling to extract the lowest frequency component, and
the high frequency can be obtained by subtracting the resul-
tant low frequency from X . This process can be formally
described as,

X l
g = GAP(X); Xh

g = X −X l
g (9)

where X l
g and Xh

g denote the global low- and high-
frequency components, respectively.

Furthermore, due to the important role of receptive filed
in image deblurring, apart from the global frequency mod-
ulation, we also add a fine-grained pooling operation in the

local branch (see Figure 3). Specifically, we utilize the av-
erage pooling with the kernel size of 3 × 3 to extract local
lowest frequency. Similar to Eq. 9, we can obtain,

X l
l = AP(X); Xh

l = X −X l
l (10)

where X l
l and Xh

l are the local low- and high-frequency
components. After getting the global low/high frequency
and local low/high frequency information in Eq. 9 and
Eq. 10, we modulate them via the channel-wise attention
weights. The final output of FAM is obtained by adding
these elements together,

FAM(X) = W l
gX

l
g +Wh

g X
h
g +W l

lX
l
l +Wh

l X
h
l (11)

where the channel-wise weights W are the learnable pa-
rameters directly optimized via the back-propagation. We
do not utilize any additional sublayer to obtain the attention
weights for simplicity.

Overall Pipeline
We incorporate two attention modules into an encoder-
decoder baseline to establish our dual-domain attention net-
work. Following (Cho et al. 2021), we adopt the multi-input
and multi-output mechanisms to ease training difficulty. The
bottom part of Figure 1 shows the difference between the
altered residual block and the standard one.

On the whole, DDANet is a U-shaped hierarchical net-
work, which has three scales for the encoder and decoder. To
be specific, given an observed image, DDANet first applies
a single convolution layer to extract the low-level feature.
Then the obtained shallow feature is fed into three scales of
the encoder. Each scale has 20 residual blocks in total, and
we employ FAM/local in the last 4 ones while FAM/global
in last 8 blocks. SAM is only used in the last residual block.
The number of total blocks are kept identical in each scale.
Starting from the very first image, the encoder network pro-
gressively reduces the spatial size while doubling the num-
ber of channels. The decoder performs in an inverse manner
as encoder. In addition, feature-level and image-level skip
connections are applied as in (Cho et al. 2021; Mao et al.
2021). Finally, the sharp image is generated by adding the
degraded image via the global skip connection.

Loss Function
To facilitate dual-domain learning, we adopt the L1 loss
function in the spatial and frequency domains (Cho et al.
2021).

Lspa =
R∑

r=1

1

Sr
∥ŷr − yr∥1 (12)

Lfre =
R∑

r=1

1

Sr
∥F(ŷr)−F(yr)∥1 (13)

L = Lspa + λLfre (14)

where ŷr is the predicted image, yr denotes the ground truth,
R is the index of multi-scale output. Sr is the normalization
factor representing the number of total elements of ŷr. We
empirically set the hyper-parameter λ as 0.1 to balance the
dual-domain learning.
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Method PSNR↑ SSIM↑ Params FLOPs

Nah (2017) 29.08 0.914 11.7 -
DeblurGAN (2018) 28.70 0.858 - -
DeblurGAN-v2 (2019) 29.55 0.934 60.9 -
SRN (2018) 30.26 0.934 6.8
DBGAN (2020) 31.10 0.942 11.6 759.85
DMPHN (2019) 31.20 0.940 21.7 -
MIMO-UNet+ (2021) 32.45 0.957 16.1 154.41
HINet (2021) 32.71 0.959 88.7 170.5
MPRNet (2021) 32.66 0.959 20.1 777.01
IPT (2021) 32.52 - 114 594
MSFS-Net (2022) 32.73 0.959 -
KiT (2022) 32.70 0.959 -
MAXIM-3S (2022) 32.86 0.961 22.2 169.5
Restormer (2022) 32.92 0.961 26.13 140.99

DDANet 33.07 0.962 16.18 153.51

Table 1: Image deblurring comparisons on the GoPro (Nah,
Hyun Kim, and Mu Lee 2017) benchmark dataset.

Experiments
In this section, we first delineate the datasets and the details
of implementation. Next, we provide comparisons between
DDANet and state-of-the-art deblurring methods to verify
the superiority of our network. Finally, ablation studies are
presented to validate the effectiveness of each design.

Datasets and Implementation Details
Following recent works (Zamir et al. 2022; Tu et al. 2022),
we utilize the GoPro (Nah, Hyun Kim, and Mu Lee 2017)
dataset that contains 2,103 blurry/sharp image pairs for
training and 1,111 pairs for evaluation. In addition, to val-
idate generalization capability, we directly apply GoPro-
trained model to the synthetic dataset (HIDE (Shen et al.
2019)) and real-world dataset (RealBlur (Rim et al. 2020)).
PSNR and SSIM (Wang et al. 2004) serve as the metrics.

We train DDANet with Adam (Kingma and Ba 2014) op-
timizer with the initial learning rate as 1 × 10−4, which
is reduced to 1 × 10−6 via the cosine annealing strategy
(Loshchilov and Hutter 2016). The network is trained on
256 × 256 patches with a batch size of 4 for 3000 epochs,
and tested on the full resolution. For data augmentation, hor-
izontal flips are randomly applied with a probability of 0.5.
The kernel size of SAM is set as 3× 3. Our experiments are
performed on an NVIDIA Tesla V100 GPU and Intel Xeon
Platinum 8255C CPU. FLOPs are measured on 256 × 256
patches.

Quantitative and Qualitative Evaluation
Table 1 shows the comparisons with state-of-the-art methods
(Zamir et al. 2022; Tu et al. 2022; Lee et al. 2022) on GoPro
(Nah, Hyun Kim, and Mu Lee 2017). Our DDANet obtains
significantly better accuracy than existing algorithms. To be
specific, compared to the advanced Restormer (Zamir et al.
2022), DDANet outperforms it by 0.15 dB with about 10M
fewer parameters and comparable computation complexity.

Method DBGAN DeepRFT+ MPRNet Restormer Ours

PSNR 31.10 32.45 32.66 32.92 33.07
Time (s) 1.447 0.806 1.148 1.218 0.247

Table 2: Inference time comparisons on GoPro test dataset.
Inference time is evaluated on 720×1280 images by second.
The accuracy of DeepRFT+ (Mao et al. 2021) is obtained by
removing the patch-based strategy.

Baseline SAM FAM PSNR SSIM Params FLOPs

✓ 31.42 0.948 6.81 67.2
✓ ✓ 31.82 0.951 6.92 67.6
✓ ✓ 32.17 0.953 6.82 67.2
✓ ✓ ✓ 32.29 0.958 6.93 67.6

Table 3: Ablation studies for the proposed modules on Go-
Pro (Nah, Hyun Kim, and Mu Lee 2017).

These results demonstrate the better trade-off of our method
between accuracy and computational cost.

Moreover, we also test the GoPro-trained model on an-
other synthetic dataset and the real-world dataset without
fine-tuning. The results on HIDE (Shen et al. 2019) and
RealBlur (Rim et al. 2020) are listed in Table 5 and Ta-
ble 6, respectively. On HIDE dataset, our method achieves
an improvement of 0.65 dB PSNR compared to MIMO-
UNet+ (Cho et al. 2021). On the more challenging real-
world dataset, DDANet gains 0.03 dB higher score in terms
of PSNR than MAXIM-3S (Tu et al. 2022) algorithm, show-
ing the strong generalization capability of our method.

In addition, as shown in Table 2, we evaluate the infer-
ence speed of several state-of-the-art deblurring methods on
GoPro testset (Nah, Hyun Kim, and Mu Lee 2017) using the
released test code and pre-trained models on our equipment.
DDANet is almost 5× faster than Restormer (Zamir et al.
2022) with 0.15 dB higher accuracy. Since DeepRFT+ (Mao
et al. 2021) shares the similar baseline network with our
model, we remove its patch-based testing strategy borrowed
from (Zou et al. 2021) for a fair comparison. Despite using
DO-Conv (Cao et al. 2022), DeepRFT+ only achieves 32.45
dB PSNR with an inferior inference speed to our DDANet.

Visual comparisons on GoPro (Nah, Hyun Kim, and
Mu Lee 2017) are shown in Figure 4. Our approach is more
effective in removing motion blurs than other methods.

Ablation Studies
Ablation studies are conducted by applying our designs to
the baseline network (Nah, Hyun Kim, and Mu Lee 2017),

Method None Sigmoid Softmax Tanh

PSNR 31.67 31.67 31.66 31.77

Table 4: SAM with different activation functions. The num-
ber of groups is 8 and the convolution in Eq. 8 is not used.
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Method DMPHN DeblurGAN DeblurGAN-v2 SRN DBGAN MT-RNN MIMO-UNet+ SPAIR TTFA DDANet

PSNR↑ 29.09 24.51 26.61 28.36 28.94 29.15 29.99 30.29 30.55 30.64
SSIM↑ 0.924 0.871 0.875 0.915 0.915 0.918 0.930 0.931 0.935 0.937

Table 5: Image deblurring results on HIDE (Shen et al. 2019). Our DDANet is trained only on the GoPro (Nah, Hyun Kim, and
Mu Lee 2017) dataset and directly applied to the HIDE benchmark.

Method DMPHN DeblurGAN DeblurGAN-v2 SRN DBGAN MT-RNN MIMO-UNet+ MAXIM-3S DDANet

PSNR↑ 35.70 33.79 35.26 35.66 33.78 35.79 35.54 35.78 35.81
SSIM↑ 0.948 0.903 0.944 0.947 0.909 0.951 0.947 0.947 0.951

Table 6: Image deblurring results on RealBlur-R (Rim et al. 2020). Our DDANet is trained only on the GoPro (Nah, Hyun Kim,
and Mu Lee 2017) dataset and directly applied to the RealBlur benchmark.

Group Baseline 1 2 4 8 16 32

PSNR 31.42 31.62 31.63 31.64 31.77 31.80 31.81
Params 6.81 6.81 6.82 6.82 6.84 6.87 6.94

Table 7: The number of groups in SAM. The results are ob-
tained without using the convolution in Eq. 8.

Method Gourp conv w/o Outconv w/ Outconv

PSNR 31.52 31.80 31.82

Table 8: Different design choices of SAM.

where there are total 8 residual blocks in each scale of
both encoder and decoder. To save training time, we train
this small model for only 1900 epochs on GoPro (Nah,
Hyun Kim, and Mu Lee 2017) to discuss the influence of
each design.

Effects of Individual Modules
We study the effects of the proposed two modules indi-
vidually in Table 3. Compared to the baseline model (Cho
et al. 2021), SAM significantly boosts the performance by
0.40 dB. Equipped with FAM, the network obtains 32.17 dB
PSNR, which is 0.75 dB higher than that of baseline. These
results are achieved with negligible introduced parameters
and computational complexity. With both two modules, the
model receives a further improved accuracy that is 0.87 dB
higher than baseline by introducing only 0.12 M parameters
and 0.4 G FLOPs. These results demonstrate the effective-
ness of the proposed modules and their compatibility.

Design Choices for SAM
In Table 4, we substitute various alternatives for the acti-
vation function used in SAM. With Softmax function that
is adopted in the vanilla self-attention, SAM obtains 31.66
dB PSNR. This result is similar to that of Sigmoid function
which also projects the attention weights into (0, 1). Inter-
estingly, without using any activation function, the network
shows no decline in performance. Equipped with hyperbolic

tangent function, SAM receives a remarkable gain of 0.11
dB over Softmax version. In this case, the attention module
is capable of suppressing the deleterious information when
performing integration within a local region.

In Table 7, we vary the number of groups in SAM
and study its influence on accuracy. Increasing the num-
ber of groups leads to improved performance consistently.
This phenomenon demonstrates that, with various attention
weights, the features can be projected into more subspaces
corresponding to the case of more heads in MHSA. How-
ever, as the number of groups goes up, the number of param-
eters also increases. Since there is no significant difference
in accuracy between group 16 and 32, we select 16 as the
final configuration.

To further demonstrate the validity of our spatial atten-
tion mechanism, we substitute the standard group convolu-
tion for SAM. The main difference between these two meth-
ods is that the attention weights of SAM are context-aware
and adjust according to the input feature. From Table 8 we
can see that using group convolution leads to 0.28 dB PSNR
decline compared to our version. Then, we also study the
importance of convolution in Eq. 8 which promotes inter-
actions between different groups. As shown in Table 8, this
operation boosts the performance by 0.02 dB.

Alternatives to SAM
To demonstrate the effectiveness of our spatial attention
module, we choose the vanilla self-attention (Wang et al.
2018) and MDTA in Restormer (Zamir et al. 2022) as com-
petitors. To achieve a fair comparison, we implement them
and our SAM in the same network (Cho et al. 2021). Due to
the huge memory consumption of the original self-attention,
we only use single attention block in the first scale of the de-
coder network. The results are shown in Table 9. Compared
to MDTA in Restormer (Zamir et al. 2022) and vanilla self-
attention (Wang et al. 2018) module, our SAM has fewest
parameters and FLOPs. Implementing attention on channel
dimension, MDTA obtains the worst performance compared
to the explicit spatial attention versions. Compared to the
global self-attention, SAM receives a gain of 0.05 dB due to
the properties of local and selective integration. It is worth
mentioning that SAM has less computational complexity
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Figure 4: Visual comparisons on GoPro (Nah, Hyun Kim, and Mu Lee 2017) test dataset. Our model is more effective in
recovering details than other algorithms.

Method MDTA Self-attention SAM

PSNR (dB) 31.34 31.50 31.55
Params (M) 6.88 8.99 6.83
FLOPs (G) 67.45 67.30 67.17

Table 9: Comparisons between different variants of self-
attention. MDTA denotes the multi-Dconv head transposed
attention module proposed in Restormer (Zamir et al. 2022).
The global self-attention module is borrowed from (Wang
et al. 2018).

Filters Baseline 1 4 6 8

PSNR (dB) 31.42 31.48 31.61 31.66 31.69
FLOPs (G) 67.17 67.18 67.20 67.22 67.23

Table 10: Number of local filters. Four filters indicates that
we deploy the local filter to the last four residual blocks in
each scale of the baseline network.

compared to self-attention, and thus it can be deployed in
multiple locations.

Design Choices for FAM
Since the global branch and local branch of FAM only differ
in kernel size, we only explore the influence of the num-
ber of local branches in Table 10. The number 4 means
that the last four residual blocks of each scale are equipped
with this operator. Increasing the number of frequency at-
tention blocks leads to consistent improvement in accuracy.
Nevertheless, using more filters means the increasing com-
plexities. To strike a better trade-off between efficiency and
accuracy, we pick 4 local filters in the final network. To
delve into the mechanism of FAM, we plot the proportion
of high-frequency component in the feature map in Figure
5. These results are obtained from the feature before the
second convolution of each residual block. With FAM, the

Figure 5: The proportion of high-frequency component in
the feature map with different depths. FAM emphasizes the
high-frequency parts significantly compared to the baseline
network.

high-frequency components are accentuated, according with
the aim of image deblurring.

Conclusion
To address image deblurring, we develop the dual-domain
attention mechanism that is composed of two attention mod-
ules in both spatial and frequency domains to enhance repre-
sentation learning capability. Specifically, the spatial atten-
tion module (SAM) mimics the self-attention in an efficient
style to reduce computation complexity. SAM generates se-
lective attention weights from the global feature and per-
forms attention in the local region. Furthermore, a simple yet
effective frequency attention module (FAM) is proposed to
accentuate the useful frequency subbands by decoupling and
modulating frequency components . These two modules are
incorporated into a U-shaped baseline network. Extensive
experiments on the widely used benchmarks demonstrate
that DDANet achieves the state-of-the-art accuracy with fast
inference speed.
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