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Abstract

Cancer is one of the leading causes of death with nearly ten million casualties per year. Vast intratu-

mor heterogeneity makes the establishment of treatment strategies challenging. The development of

customized healthcare based on large amounts of omics data is the basis for the emerging discipline

of precision oncology. One of the main objectives in the analysis of omics data is the discovery of

novel biomarkers that can serve as putative drug targets or surrogates for prognosis. In this thesis,

three projects were implemented to investigate established signatures and identify novel candidate

biomarkers.

One of the aims of biomarker discovery in oncology is to distinguish clinically relevant cancer sub-

types which differ in morphologic and molecular configuration. Pancreatic ductal adenocarcinoma

(PDAC) is one of the most clinically complex types of cancer. Four studies attempted PDAC stratifica-

tion and established gene signatures that in this thesis were submitted to a comprehensive computa-

tional evaluation across data sets, revealing inconsistencies. Moreover, cellular decomposition iden-

tified the presence of healthy pancreas contamination in the data as a source of bias in the subtypes

characterization. Predictions obtained from random genes and shuffled label subtypes achieved com-

parable performances. Thus, these gene signatures can not be generalized to other datasets. These

findings suggest that the heterogeneity of the tumor composition should be taken into account as well

as the different platforms and sample preparation used. In addition, signatures should be carefully

validated on independent datasets to control overfitting.

The accumulation of not only genetic but also epigenetic changes can lead to cancer progression.

DNAmethylation occurs at theCpG level and acrossCpGs in differentiallymethylated regions (DMRs).

The second project of this thesis presents Dimmer 2.0, a previously published tool for the identifica-

tion of de novo DMRs. In this work, Dimmer 2.0 was extended to whole-genome bisulfite sequencing

and multiple array platform integration. Additionally, the analysis of a pre-processed data matrix

andmethylation profiles of a non-CpG context is now possible. A new approach has been introduced

to assign an individual p-value to every DMR accounting for their size. The capabilities of Dimmer

2.0 are evaluated in PDAC patients with liver metastasis, where we revealed methylation alteration

in regions involved in zinc homeostasis and the regulation of toll-like receptor signaling pathways.

Methylation profiles of meningioma samples were used to investigate potential epigenetic attributes

that explain the progression from benign to malignant stage. DMRs were found associated with con-

stitutive signaling generated by aberrant PI3K.
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The scope of the third project is the study of biomarkers of tumor budding (TB). Tumor budding

is defined as the presence of single cells and clusters of less than five cells detached from the tumor

bulk and settled in the adjacent stroma. While a higher count is known to be linked to worse survival,

the molecular characteristics of tumor budding have not been investigated. Gene and protein expres-

sion, DNA methylation and somatic mutations were jointly analyzed. Results show the expression of

two oncogenes, KCNN4 and TNFR12A linked with increased budding activity. Our findings show

enrichment in the epithelial-to-mesenchymal transition process and WNT signaling pathway.

In the scope of this thesis, machine learning algorithms and statistical analyses are applied to omics

data in three projects with a focus on biomarker evaluation and identification. The findings presented

in this thesis provide new insights for future studies to elucidate disease mechanisms needed for

improving targeted treatments. Making sense of this kind of data is a prerequisite for advancement

in the area of personalized medicine.

iii
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Kurzfassung

Krebs ist eine der häufigsten Todesursachenmit fast zehnMillionen Todesopfern pro Jahr. Die enorme

Heterogenität innerhalb des Tumors macht die Entwicklung von Behandlungsstrategien zu einer

Herausforderung. Die Entwicklung einer maßgeschneiderten Gesundheitsfürsorge, basierend auf

großen Mengen von Omics-Daten, bildet die Grundlage für die entstehende Disziplin der Präzision-

sonkologie. Eines der Hauptziele bei der Analyse von Omics-Daten ist die Entdeckung neuartiger

Biomarker, die als potenzielle Angriffspunkte für Medikamente oder als Indikatoren für die Prog-

nose dienen können. In dieser Arbeit wurden drei Projekte durchgeführt, um etablierte Signaturen

zu untersuchen und neue Biomarkerkandidaten zu identifizieren.

Eines der Ziele der Entdeckung von Biomarkern in der Onkologie besteht darin, klinisch relevante

Krebs-Subtypen zu unterscheiden, die sich in ihrermorphologischen undmolekularen Konfiguration

unterscheiden. Das duktale Adenokarzinom der Bauchspeicheldrüse (PDAC) ist eine der klinisch

komplexesten Krebsarten. In vier Studien wurde versucht, das PDAC zu stratifizieren und Gensigna-

turen zu erstellen. Diese wurden in der vorliegenden Arbeit einer umfassenden computergestützten

Bewertung über verschiedene Datensätze hinweg unterzogen, wobei sich Unstimmigkeiten zeigten.

Darüber hinaus wurde bei der zellulären Dekomposition das Vorhandensein von Kontaminationen

mit gesunden Pankreaszellen als eine Quelle von Verzerrungen bei der Charakterisierung der Sub-

typen identifiziert. Vorhersagen, die auf der Grundlage zufälliger Gene und randomisierter Subty-

pannotationen erstellt wurden, erzielten vergleichbare Ergebnisse. Daher können diese Gensigna-

turen nicht auf andere Datensätze verallgemeinert werden. Diese Ergebnisse deuten darauf hin,

dass die Heterogenität der Tumorzusammensetzung ebenso berücksichtigt werden sollte wie die un-

terschiedlichen Plattformen und die verwendete Probenvorbereitung. Darüber hinaus sollten die

Signaturen sorgfältig an unabhängigen Datensätzen validiert werden, um sogenanntes Overfitting

zu vermeiden. Die Anhäufung nicht nur genetischer, sondern auch epigenetischer Veränderungen

kann zum Fortschreiten von Krebs führen. DNA-Methylierung findet auf CpG-Ebene und CpG-

übergreifend in differentiell methylierten Regionen (DMRs) statt. Das zweite Projekt dieser Arbeit

stellt Dimmer 2.0 vor, ein bereits veröffentlichtes Tool zur Identifizierung von de novo DMRs. In

dieserArbeitwurdeDimmer 2.0 aufWhole-GenomeBisulfite Sequencingunddie Integrationmehrerer

Array-Plattformen ausgeweitet. Zusätzlich ist nun die Analyse einer vorverarbeiteten Datenmatrix

und vonMethylierungsprofilen eines Nicht-CpG-Kontextes möglich. Ein neuer Ansatz wurde einge-

führt, um jeder DMR einen individuellen p-Wert zuzuweisen, der ihre Größe berücksichtigt. Die
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Fähigkeiten vonDimmer 2.0wurden bei PDAC-Patientenmit Lebermetastasen evaluiert, wobeiMethy-

lierungsveränderungen in Regionen nachgewiesen werden konnten, die an der Zink-Homöostase

und der Regulierung von Toll-like-Rezeptor-Signalwegen beteiligt sind. Methylierungsprofile von

Meningeom-Probenwurden verwendet, um potenzielle epigenetischeMerkmale zu untersuchen, die

das Fortschreiten vom gutartigen zum bösartigen Stadium erklären. Es wurden DMRs gefunden, die

mit einer konstitutiven Signalübertragung durch aberrante PI3K in Verbindung stehen.

Das dritte Projekt befasst sich mit der Untersuchung von Biomarkern für Tumor-Budding (TB).

TB ist definiert als das Vorhandensein einzelner Zellen und Cluster von weniger als fünf Zellen, die

sich von der Tumormasse ablösen und sich im angrenzenden Stroma ansiedeln. Es ist zwar bekannt,

dass eine höhere Anzahl solcher Cluster mit einer schlechteren Überlebensrate einhergeht, doch die

molekularen Merkmale von TB sind noch nicht untersucht worden. In diesem Kontext wurden in

der vorliegenden Arbeit Gen- und Proteinexpression, DNA-Methylierung und somatische Mutatio-

nen gemeinsam analysiert. Die Ergebnisse zeigen, dass die Expression von zwei Onkogenen, KCNN4

und TNFR12A, mit einer erhöhten TB-Aktivität verbunden ist. Unsere Ergebnisse zeigen eine Anre-

icherung im epithelialen-zu-mesenchymalen Übergangsprozess und im WNT-Signalweg.

ImRahmen dieser Arbeit werdenAlgorithmen desmaschinellen Lernens und statistischeAnalysen

auf Omics-Daten in drei Projekten angewandt, wobei der Schwerpunkt auf der Bewertung und Iden-

tifizierung von Biomarkern liegt. Die in dieser Arbeit vorgestellten Ergebnisse liefern neue Erkennt-

nisse für künftige Studien zur Aufklärung von Krankheitsmechanismen, die zur Verbesserung geziel-

ter Behandlungen erforderlich sind. Diese Art von Daten sinnvoll zu nutzen, ist eine Voraussetzung

für Fortschritte im Bereich der personalisierten Medizin.

v
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1 Introduction

1.1 Introduction to cancer biology

Cancer is one of the major causes of death in the world with approximately 19 million estimated new

cases in 2020 [1]. All diseases induced by the uncontrolled division and multiplication of abnormal

cells can be classified as cancer [2]. Cancer is a multistep process and even though the etiology of

some tumors is unknown, there are common characteristics that contribute to the progression and

advancement to more severe stages, also used as starting points for targeted therapies.

Figure 1.1 The ten hallmarks of cancer as proposed by Hanahan and Weinberg in 2011. Figure
readapted from [3].

The combination of the characteristics of cancer cells, summarized in Figure 1.1, constitute the so

called hallmarks of cancer, first proposed in 2000 by Hanahan and Weinberg [4] with six main cancer

features (apoptosis resistance, proliferative signaling promotion, tumor suppressor resistance, metas-
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tasis promotion, replicative immortality promotion, angiogenesis promotion), then expanded in 2011

[3] with four additional emerging hallmarks (immune destruction evasion, metabolism reprogram-

ming, genome alteration, inflammation promotion) later scientifically consolidated and included in

the list as official hallmarks.

When DNA is damaged it can alternate cellular function transforming healthy cells into cancerous

ones. Damage can occur because of external causes (exogenous) such as radiation exposure or viruses,

or internal to the cell (endogenous), for instance in cell metabolism or the DNAdamage caused by free

radicals [5]. The consequence of both exogenous and endogenous agents is the modification of the

DNA structure hence mutation. A healthy organism is able to detect and repair genomic mutation,

maintaining the regular state and containing the mutation occurrence. All healthy cells are subject

to mutations, however, DNA in tumor cells mutates more frequently than in normal cells, generat-

ing accumulation of cancer mutations, favoring tumor proliferation and migration, angiogenesis and

new unknown mutations. This mechanism is linked to the so-called “caretaker” genes, involved in

blocking the rise of cancer as tumor suppressor genes, for instance [6, 7].

Onemain distinctive trait of cancer is the excessive hyperproliferation of cancerous cells, as a possi-

ble consequence of changes in signal transduction. Signal transduction consists in the transmission of

a signal from the extracellular domain into the intracellular one through cell-surface receptors [8, 9].

The process most commonly starts when a signaling molecule named ligand binds to a receptor acti-

vating a kinase enzyme. Kinases function as regulatory elements that can to activate or deactivate pro-

teins via phosphorylation. This event results in a cascade of pathways called signaling pathways that,

when reaching the nucleus cell, are responsible for gene activity and ultimately cell behavior such as

metabolism and mitosis stimulation [8]. Signal transduction is a fundamental process in normal cells

but the presence of, for instance, gene mutations might create abnormal receptors or overexpression

of receptors. Both of these changes can result in independent and excessive receptor activation, linked

to aberrant signal activation and the triggering of malignant cell proliferation. Examples of signal-

ing pathways commonly found altered in cancer are the MAPK pathway and the PI3K/AKT/mTOR

pathway [8]. Cascades do not act independently but they interplay with one another, resulting in a

complex signaling network.

Responsible for limiting replication in normal cells is the shortening after every replication of telom-

eres, DNA protein structures located at the chromosome extremities. In cancer cells, this process is

inverted and telomeres are elongated thus preventing the cells to stop duplicating [10].

When cells in an organism are irreparable or dangerous, apoptosis comes into play to get rid of such

unwanted cells. Apoptosis is amechanism that kills cells by programming their death and, in the case

of pathogens, contributes to limiting damaged cell replication [11]. Abnormal apoptotic activity is

linked to carcinogenesis where malignant cells evade the self-disruption. The regulation of apoptosis

depends on two pathways occurring in the extracellular or intracellular domain, named extrinsic

and intrinsic pathways, respectively. The first one begins with a death signal while the second one,

2
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also called mitochondrial pathway, arises from a lack of survival signal. Both pathways conclude

with a cascade of catalytic activation of the proteases caspase which ultimately controls cell death.

DNA damage at the level of pro-apoptosis genes might lead to apoptosis inhibition that in the case of

pathogenic cells increases their survival, linked to proliferation promotion [12, 13].

The new tumor requires an additional bloodstream to sustain its growth, possible thanks to the

mechanisms of angiogenesis that stimulates the creation of new blood vessels from the physiological

vascular system. One trait of tumoral cells is the ability to promote angiogenesis and thus sustain the

tumor growth with oxygen and nutrients [14]

Another main aspect of cancer aggressiveness is that it is often not only limited to the original

location but it can induce tissue invasionwhich leads to the initiation of new tumors. Whenmalignant

cells access the vascular or lymphatic systems, they are transported through the body and spread to

different tissues forming metastasis [15].

More energy is required for malignant tumor cells to grow, which sees an increased amount of

glucose transporters on the cancer cell surface to increase nutrient supply. From the glucose, energy

is produced through theWarburg effect where aerobic glycolysis is adopted by the cell to break down

glucose into lactate, contrary to non-neoplastic cells where the presence of oxygen would lead to an

increase in oxidative phosphorylation activity at the mitochondrial level [16]. An increase in the lactic

acid production rate is linked to an extracellular pH level reduction responsible for tumor progression

and apoptotic resistance [16, 17].

The progression of cancer is additionally supported by its resistance to tumor suppressor genes.

One example is the tumor protein P53 (TP53), the most common gene mutation observed in certain

types of cancer and is known for its tumor suppressor behavior [18]. TP53 controls cell proliferation

in case of damaged DNA, communicates with other genes to repair the DNA damage or, in case the

repair is not possible, causes cell death preventing cancer initiation. However, a mutation in TP53

inactivates its tumor suppression functionalities and inhibits DNA repair, allowing the growth and

multiplication of cells containing damaged DNA. TP53 mutation status has been proven to be an

accurate prognosis indicator hence it can be used as a predictor marker for the survival of cancer

patients [19].

While healthy cells can replicate only a limited number of times (from 40 to 60 times) before senes-

cence or apoptosis [20], cancerous cells manage to evade this limit and acquire the ability to replicate

an indefinite number of times.

Another cancer hallmark is the evasion of the immune response. The immune system constantly

scans the body to detect and knock down emerging tumors. While a large part of rising tumors is

destroyed by this system, named immunosurveillance, certain cancer cells can evade or withstand it

[21]. In a functioning cancer immunity cycle, dead cancer cells release antigenswhich are absorbed by

antigen-presenting immune cells (such as dendritic cells) [22]. Such cells, with the antigens exposed

on their surface, migrate to the lymphatic organs (such as lymph nodes). Through the T cell recep-

3
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tor, CD8+ T cells recognize the antigens presented by the major-histocompatibility complex (MHC)

class 1 and, together with costimulatory signals, get activated [23]. Activated cytotoxic T lympho-

cytes (CTL) move from the draining lymph nodes to the tumor site, where they infiltrate. Once there,

the MHC 1 present on the cancer cells surface can bind to the CD8+ cells, and this interaction leads

to the killing of the formers and the release of more antigens to continue with the immune cycle.

One or more of these steps can be evaded or inhibited through several mechanisms that elude the

immune response. One of these mechanisms is the antigen loss. A decrease or loss of tumor anti-

gens and their presentation makes cells not recognizable from the CTLs [24]. In this way, there is a

reduction of CTL activation, and their consequent potential migration and infiltration. One known

mechanism employed for immune evasion is the downregulation ofMHC class 1 [25, 26]. When there

is a decreased expression of MHC 1 on cancer cells, these cells are invisible to CTLs, preventing their

binding and hence the CTLs activation. Another strategy that cancer cells can adopt is the active

inhibition of the host immune components. This can be done with the use of immunological check-

points, molecules that regulate the activation of some immune cells to prevent them from attacking

self-cells. One example is the receptor/ligand programmed death-1 (PD-1) / PD-1 ligand (PD-L1)

[27]. The activation of cytotoxic T lymphocytes is blocked by the engagement of PD-1, expressed on

T cells, with PD-L1, expressed on cancer cells. The use of immune checkpoint inhibitors is one of the

strategies used in immunotherapy. Another aspect to consider is the immunosuppressive TME, char-

acterized by the presence of inflammatory cytokines such as TGF-beta and interleukin-10 (IL-10), and

the involvement of immunosuppressive cells like myeloid-derived suppressor cells, T regulatory cells

and tumor-associated macrophages [28, 29]. The inflammation generated by the immune response

contributes to making the TME a desirable environment for tumor growth.

Despite these characteristics being the common denominators in cancer, different cancer types be-

have heterogeneously showing varying levels of resistance to metastatic power. Therefore, the hall-

marks can show up in different ways depending onmultiple factors, like the tissue type or the genetic

history of the patient.

1.2 Overview on the omics data

The advancement in high-throughput assay allowed the measurement of large-scale molecular data

simultaneously, generating the notion of omics data [30]. All the data with the name ending in -omics,

including genomics, epigenomics, transcriptomics, proteomics, metabolomics, andmicrobiomics, are

part of it. The study of the omics data in their interactions takes the name of multi-omics [30, 31].

• Genomics. Genomics is the branch of biology that studies the complete set of DNA of an

organism, also called genome. Genomics analysis aims to identify those genetic variations as-

sociatedwith a condition or disease. The implementation of genomics is commonly directed at

the detection of a single position DNA variation, defined as single nucleotide polymorphisms

4
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(SNPs) and small insert/deletions (indels). However, the interaction of two or more SNPs

(named epistasis) is also a matter of study. This approach is called genome-wide association

study (GWAS) [32] and it is possible thanks to the progression in sequencing technologies that

made the acquisition of DNA sequence more affordable and accurate [33]. This was also pos-

sible thanks to the human genome project [34], one of the biggest research projects focused

on determining the sequencing of the complete human genome for the first time. Launched in

1990 and concluded in 2003, the cost of sequencing the human genome at the end of the project

was $10,000, a cost that nowadays dropped to $600 [35].

• Epigenetics. Epigenetics studies the alteration of gene expression or mechanisms that influ-

ence the phenotype without affecting the DNA sequence, contrary to genetics. Histone modi-

fication, DNA methylation, and chromatin remodeling are the main forms of epigenetic mani-

festation. DNA methylation is one of the most commonly studied mechanisms [36], involving

chemical modification at the DNA level. Epigenetic changes can arise from environmental fac-

tors such as nutrition and smoke or exposure to pollutants, metals, or radiation.

• Transcriptomics. Transcriptomics studies are focused on the transcriptome, the whole set of

RNA transcripts in a cell [37]. Besides messenger RNA (mRNA), the coding RNA that is trans-

lated into protein, transcriptomics covers also non-coding transcripts like small non-coding

RNA (e.g. microRNA), and long non-coding RNA such as circular RNA (circRNA) [38]. The

available methods retrieve transcriptomics data from both a qualitative and quantitative point

of view, allowing the annotation of the genome by identifying thousands of transcripts, pro-

viding their location and function together with their intensity in terms of expression level.

Transcriptomics can be applied for exploring splicing events, post-translational modifications,

biomarker discovery, and the understanding of a disease’ stage, a tissue status, or a cellular

function [39].

• Proteomics. The whole collection of proteins present in a cell is analyzed by the field of pro-

teomics. Proteins are complex molecules composed of a chain of amino acids bonded together

and they are responsible for the functioning of cells, tissues and organs [40]. As stated in the

central dogma of molecular biology, the nucleotides constituting the RNA sequence are taken

in triplets (codons) and translated into a sequence of amino acids forming a polypeptide bond

[41]. The folding of a polypeptide generates a protein and its structure determines the function

the protein will perform. The study of proteins arise in complexity because of the tens of thou-

sands of possible structures a polypeptide can fold into. Additional events such as alternative

splicing and mRNA editing further contribute to the generation of new different proteins that

make their quantification and identification challenging [42, 43]. The first choice instrument

for proteome analysis is mass spectrometry (MS), an accurate technique used to identify the
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proteins expressed in a sample, determine the protein structure and the amino acid sequence,

and identify post-translational modifications [44].

• Metabolomics. Metabolomics studies metabolites (e.g. vitamins, amino acids, and organic

acids) and low-molecular-weight molecules for the understanding of cellular metabolic activ-

ity [45]. Metabolites are generated by the process ofmetabolism and they are employed inmul-

tiple activities like defense, energy production, signaling regulation, and regulation of other

biomolecules [46]. Measurements of metabolites profile and abundance are often carried out

by MS.

• Microbiomics. Microbiota is the collection of microorganisms, including bacteria, protozoa,

viruses, and fungi, that live together in the organism. Microbial cells in a human are estimated

to be up to 100 trillion [47]. Microbiome is the set of genes that arises from the microbiota.

A microbial population can inhabit both inside and outside a living organism, such as the

gut, throat, and skin. Nevertheless, the microbiome of the digestive tract is one of the most

important given its direct association with the immune system and metabolism, affecting the

organism’s health [48]. The study of microbiome-derived diseases is one of the main use in

bioinformatics. Alteration in the gutmicrobiota can lead to several diseases like type 2 diabetes,

cancer, cardiovascular diseases, and obesity [49]. Furthermore, an association has been found

with mental health diseases such as schizophrenia and depression [50, 51].

1.2.1 Transcriptomics

Two main techniques are used to quantify and identify transcripts at a specific moment, fluorescence

hybridization-based namedDNAmicroarray, and RNA-seq. Array-based techniques consist of a plas-

tic or glass chip where hundreds of thousands of probes are bound [52]. Probes are typically oligonu-

cleotides (DNA sequences) of different lengths that can go from 25 bp to 60 bp [53]. Their location on

the chip is in clusters, where each cluster is a target transcript. RNA is then isolated from the study

sample and exposed to the array slide to make the new RNA strands bind together with the comple-

mentary base of the probes, generating fluorescent light. Such lightwill be used to determinewhether

the gene is up-/down-regulated or unchanged and the presence of multiple probes per gene is fun-

damental to give consistent results. With RNA-seq it is possible to identify the nucleotide sequence

of the RNA. Next-generation sequencing (NGS) platforms have been developed by multiple firms,

among them, Roche, Thermo Fisher Scientific, and Illumina, with the latter one as one of the most

popular [54–56]. The Illumina NGS method follows four main steps named library preparation, am-

plification, sequencing, and alignment [57–59]. RNA is converted into complementary DNA (cDNA)

used as input in the NGS platform. This is done with the implementation of reverse transcription.

cDNA is segmented and each segment is ligated to a sequencing adaptor. In the amplification step,

segments are bound to chips and a complementary strand of each segment is made while the origi-
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nal is washed away. Segments are amplified through bridge amplification. The amplification starts

folding segments over the chip to form bridges, followed by the synthesization of a complementary

strand for each segment. Denaturation of the bridge will create two strands of single-stranded DNA.

Bridges are cloned into millions of copies thanks to the polymerase chain reaction. The sequencing

step is to determine the RNA reads, where lasers scan the chip after every amplification and a dif-

ferent fluorescent label is assigned to each nucleotide. The last step is alignment, where reads are

mapped to a reference genome. The introduction of NGS technologies paved the way to make RNA-

seq replace the DNA microarray. RNA-seq captures transcripts at higher coverage, not known a priori

hence allowing the identification of novel transcripts.

The main steps of both technologies are illustrated in Figure 1.2.

Figure 1.2 Overview of microarray and RNA-Seq assays.

One of the major applications of sequencing and array technologies is the measurement of gene

expression levels. Altered expression values of genes involved in cell cycle processes are one leading

consequences of cancer. The alteration might inhibit the tumor suppressor role of a gene, turning it

into a tumor promoter involved in cellular mechanisms likemetabolism, cell growth, progression and

7
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multiplication, apoptosis. With the awareness that gene expression alteration might be associated

with cancer initiation and development, it’s important to observe the expression status of as many

genes as possible to unravel not only the elements that triggered the tumor start but also the ones that

enhance its proliferating activity.

1.2.2 Epigenetics

DNA methylation consists in a chemical modification that arises when the DNA methyltransferase

(DNMT) transfers a methyl group from the S-adenyl methionine to the fifth carbon position of the a

cytosine, forming a 5-methylcytosine. In mammals, 98% of DNA methylation occurs when, on the

strand in direction 5’ to 3’, the nucleotides cytosine precede guanine and there is a phosphate group

between the two, context that takes the name of CpG site [60, 61] (Figure 1.3 A). CpGs tend to group

in dense clusters named CpG islands and are usually unmethylated and located in gene promoters.

However, aberrant methylation of CpG islands is known to be responsible for regulating gene expres-

sion activity because of transcription prevention or promotion [60, 62, 63]. Hypermethylation of CpG

islands in gene promoters prevents the binding of the transcription factor resulting in epigenetic gene

silencing, leading to cancer initiation and therapy resistance in case the repressed gene is a tumor

suppressor. Hypomethylated CpG islands situated in the promoter region are associated with gene

activation and overexpression (Figure 1.3 B).

Figure 1.3 A) Creation of a 5-Methylcytosine by the transfer of a methyl group to the fifth
position of a cytosine. B) Hypermethylated and hypomethylated CpG islands in promoter

regions are responsible for gene silencing and activation.

The DNA methylation’s regulatory role can also be observed outside the promoter, for instance

at the enhancer and silencer level or gene-body. Methylated enhancers have been linked to immune

8
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infiltration in lung cancer [64]. With the estimation of immune cell types, it has been shown the corre-

lation between immune infiltration abundance andDNAmethylation at the enhancer level, indicating

that methylated enhancers might influence cancer-infiltrating immune cells. DNAmethylation in the

gene body has been found associated with an increase in gene expression [65]. It has been discovered

that DNA methylation has a significant link to carcinogenesis and its role in disease evolution and

growth has been widely investigated. [66–69]. Colorectal cancer is characterized by altered methyla-

tion activity combined with genetic modifications such as TP53, APC, BRAF, and KRAS. Colorectal

cancer is a highly age-related disease and the presence of hypermethylated CpG islands is observed

in aging patients. Indeed, colorectal mucosa has been linked to altered methylation in the promoter

regions of the genes, which might be responsible for the neoplasm evolution [70–72]. The impact

DNA methylation has on numerous diseases makes it the perfect candidate for biomarker discovery.

Measurement of DNA methylation levels is mostly carried out following two technologies, one

based on genome sequencing, named whole genome bisulfite sequencing (WGBS), and one based

on array technique. The main difference between the two methods is the depth of the information

they can retrieve. Indeed, WGBS can measure 95% of the CpGs present in the whole human genome

while themost recent array-basedmethod,MethylationEPICArray released by Illumina, canmeasure

approximately 850,000 CpGs out of 28 million, hence 30% of the total CpGs in the genome [73, 74].

The proportion of CpGs distributed across gene regions and CpG context is also different between

WGBS and EPIC, with WGBS showing a higher percentage of CpG islands covered ( 50% vs 18% of

EPIC), CpGs in 5’UTR ( 17% vs 13% of EPIC), CpGs in the promoter ( 13% vs 7% of EPIC) andCpGs in

FANTOM5 enhancer ( 6% vs 3% for EPIC) [75–77]. On the other hand, other gene regions are covered

with proportional percentages. For its elevated in-depth analysis, WGBS is the preferred method and

the advent of NGS allows DNA sample preparation and successive genome sequencing to be more

affordable. However, array techniques are still the preferred choice considering the efficiency in terms

of time and costs [78].

Popular measurement of methylation intensity at the CpG level, is given by a continuous value

ranging between 0 and 1, also known as 𝛽 value. 𝛽 value is the ratio of methylated signal intensities

(M) and the total intensities, which is the sum of both methylated (M) and unmethylated (U) signal

intensities. Hence, 𝛽 can be defined as: 𝛽 = 𝑀
𝑀+𝑈 . The 0 to 1 interval allows easy interpretation of

the methylation level of an individual CpG, where the extremes correspond to unmethylated CpG, in

case of 𝛽 = 0 or fully methylated CpG when 𝛽 = 1.

1.3 The importance of biomarkers

Cancer initiation, development and spread to metastasis can be driven by a wide variety factors such

as inherited genetic alteration, lifestyle, the environment the person is exposed to or a combination

of them. The understanding of cancer increases in complexity when investigating the molecular pat-

9
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tern that triggers the malignant cell transformation and progression. The advent of NGS technologies

changed the analysis of molecular cancer scenarios. Thanks to the high genomic coverage, NGSmade

large-scale data available at great detail. This will soon allow researchers to replace the one-fits-all

solutions with approaches personalized to each patient. Indeed, if the discovery of cancer therapies

and molecular drivers has always been performed for universal application, the last decade observed

a substantial change on how tumor patients are studied and treated. The final aim is to elucidate

genomic alteration to better delineate tumor progression and address a therapy which matches the

patient tumor’s molecular characteristics [79]. This leads to precision medicine, an innovative and

promising holistic approach which takes into consideration each patient’s information individually.

To facilitate precision medicine, it is important to be aware of the medical state of the patient to make

the most effective pharmacological choice and prolong the patient’s survival expectation. The knowl-

edge of the biological processes standing behind a pathogenic outcome is crucial to predict the drug

response and thus to design the best intervention.

A biomarker, short for biological marker, is an indicator for such status, which the National Cancer

Institute [80] defines as “a biological molecule found in blood, other body fluids, or tissues that is

a sign of a normal or abnormal process, or of a condition or disease [...]”. The role of biomarkers

is diverse and is subject to different measurements, applicability and interpretations. Three main

categories distinguish biomarkers: predictive, prognostic and diagnostic [81]. Predictive biomarkers are

used to predict the therapeutic response hence to assess whether a patient can benefit from a specific

medication. These biomarkers compare therapy to placebo or to other therapies to quantify the level of

benefit from exposing a patient to that therapy. Prognostic biomarkers are indicators of the probability

of an event such as death or disease recurrence. Hence, this kind of biomarker is commonly used to

predict a patient’s prognosis. Diagnostic biomarkers are used for finding out the presence of a disease

in a patient or for delineating its subtype. It can be additionally used to confirm the presence of

a disease. The advancement in high-throughput technologies facilitated biomarker discovery and

their evaluation, with the final goal of clinical application. Biomarkers constitute a powerful tool for

assisting doctors during the process of decision-making and play a key role in the development of

personalized treatments.

1.3.1 Computational biomarker discovery

Identification of biomarkers can come from any measurable biological data such as exome and whole

genome sequencing, expression profiling, proteomics and DNA methylation. Hence biomarkers can

be SNPs, copynumber variations (CNVs), genes ormethylated cytosines. The computational biomarker

discovery can be carried out following a sequence of steps, summarized in Figure 1.4.

Biomarkers can derive from multiple molecular data, taken individually or integrated. Besides

molecular profiles, a phenotype of interest can be known a priori, like the knowledge of the cancer

subtype labels for each sample. To ensure reliable results, molecular data is then cleaned and cor-
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rected. Quality control is mandatory to remove low-quality samples and features such as genes with

low sequencing depth. Data can be subject to variability due to sample preparation, origin, trans-

portation, and technical settings. Such unwanted variation takes the name of batch effect and it is

important to correct the data to remove the technical variation and leave only the biological variation

of interest. Omics data are large-scale data with thousands or even millions of features, and it is com-

mon practice to reduce the data dimension by removing less informative features with low variance

or correlated features responsible for data redundancy. These are just a few of the data preparation

steps. For increasing the model accuracy and the interpretability of the results, data can be further

adjusted by removing the effect of confounding factors such as tissue heterogeneity, by estimating the

sample’s cell type composition, or other covariates like demographic or clinical factors. The choice

of the model depends on the data characteristics, size, knowledge of the variable of interest. This

last variable is what distinguish supervised from unsupervised models. Unsupervised can help find

hidden molecular patterns that correspond to distinct cancer subtypes. The features that produce

relevant clusters are further investigated as they might be potential biomarkers. On the other hand,

a supervised approach can be employed to investigate the relationship between a phenotype and a

genotype. Example of a supervised case is the training of a classification algorithm on Immunohis-

tochemistry (IHC) obtained labels and predicting the labels on a different set of samples, a test data.

These features most related to the variable of interest constitute potential biomarkers. Such potential

biomarkers have to go through deep analytical validation. Measures like accuracy and false discov-

ery rate are used to estimate the predictive performance of a set of features used as classifiers. It has

Figure 1.4 Overview of the computational workflow for biomarker discovery. The first step is
collecting molecular data and phenotype information, when available. Data is then subject to

pre-processing where steps like quality control, normalization and features filtering are applied.
Once the data are ready, the next step is building the model that will be used for the discovery of

potential biomarkers. According to the presence or not of phenotypic data, the model will be
supervised or unsupervised. A potential biomarker will be validated analytically and/or

experimentally, with the design of a clinical study for its evaluation.
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been shown how random features reach a predictive accuracy comparable to the one of established

biomarkers [82]. This finding makes the comparison between potential biomarkers and random fea-

tures a fundamental validation step that is often ignored. A biomarker to be applicable has to be

generalizable and consistent, reaching comparable performance on independent data. In the case of

prognostic biomarkers, the prognostic relevance is assessed by estimating the odds of survival with

the gold standard method Kaplan-Meier estimator [83] or Cox regression [84]. To be used in clinical

practice, biomarkers have to be validated through clinical trials to prove their validity. A biological ex-

periment is designed and used to test whether the biomarker affects positively the patient’s outcome

or therapeutic response.

1.3.2 Gene signatures for cancer subtyping

Cancer is not considered as one single disease and even the same cancer type can be heterogeneous

showing distinct morphologic and phenotypic characteristics. Understanding their differences is cru-

cial for guiding treatment strategies and predicting the disease outcome. The study of the tumoral

properties shows differentiation in the cellular traits and genomic landscape, suggesting the existence

of subgroups within each class of tumor type. Identifying the correct subtype a sample belongs to,

is fundamental for designing personalized care. However, cancer stratification is one of the biggest

research challenges.

Researchers were able to develop computational tools for patient stratification in subtypes for nu-

merous cancer types such as breast cancer [85], colorectal cancer [86, 87] and PDAC [88–91]. The

classification in subtypes of breast cancer is the most straightforward due to the divergent plasticity

of the subtypes [85, 92, 93]. Indeed, breast cancer subtypes can be divided into three main classes

with distinct prognoses and treatment responsiveness while, for several cancer types, there is still

inconsistency in determining both the number of classes and their characteristics.

Histology is the standard method for tumor subtype classification. In particular, immunohisto-

chemistry (IHC) uses antibodies to bind antigens and detect specific proteins in a portion of tissue

previously formalin-fixed and paraffin-embedded [94]. However, the use of IHC is extremely depen-

dent on the pathologist who performs the analysis. Not only the interpretation of the results, but

components such as reagents for antigen retrieval, duration of tissue fixation, and fixation agents are

only a few of the choices a pathologist has to make, making IHC a non-standardized technique sub-

ject to noise. For these reasons, the classification in subtypes based on molecular data would advance

precision oncology and contribute to a tumor stratification systematic and free of biases [95]. Intrinsic

molecular cancer subtypes are subclasses of cancer identified thanks to the combination of molecular

data with machine learning techniques. This new approach which started being adopted in recent

years, is a systematic alternative to histology meant to speed up the classification, increase the ac-

curacy and link molecular knowledge to the subtypes. Molecular subtypes are commonly based on

transcriptome and identified based on gene expression valueswhere unsupervised or supervisedma-
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chine learning methods are applied, depending on the availability of pre-assigned histological labels.

When a set of genes share the same expression pattern and relationship with a disease or condition it

takes the name of gene signature [96, 97]. A gene signature is a potential composite biomarker and one

of the diagnostic uses is the tumor subtype classification. The advancement in computational analysis

along with large-scale omics data constitutes a powerful tool for making cancer sample classification

fast, automated and bias-free. This is possible with the identification of signatures whose altered

expression is linked to a specific phenotype, which constitute a potential cancer subtype classifiers.

1.3.3 Current challenges

With the implementation of computational techniques, bioinformaticians address research questions

aimed at unraveling unknownmechanisms and contributing to the understanding of systems biology.

Despite the great effort in developing new technologies and algorithms to assist biomarker discovery,

there are several major challenges that researchers have to face [98]. In section 1.3.1 we review the

principal steps implemented for the identification of novel biomarkers from a computational point of

view, brieflymentioning limitations and obstacles. In this section, we dive deeper into the subject and

cover the major challenges when performing biomarker discovery.

Data size and preprocessing

New technology platformsmademolecular data available at a great detail. Nevertheless, dealingwith

big dimensional data is one of the major challenges in computational biomarker discovery. Molecu-

lar data are often characterized by the measurement of thousands or millions of features in a much

smaller amount of samples. This data configuration, i.e. when the feature size is considerably bigger

than the sample size, can lead to overfitting [99]. Overfitting occurs when the model is built to catch

exactly the characteristics and minor details of the data used for training, resulting in the inapplica-

bility on external data. Moreover, the use of a small sample size might lead to false discoveries and

misleading conclusions due to the underrepresentation of a more realistic population of interest. If

the goal is to find biomarkers to distinguish cancer subtypes, we need to acquire enough samples to

be able to capture enough patient-to-patient variability for a robust distinction. With fewer samples,

the risk is to only resemble a subpopulation or only one of the subtypes and miss out on relevant

heterogeneity needed to extend the results to a broader real-world cohort. Nevertheless, a large data

structure is not only complex to handle but also challenging to interpret, especially in the case of a

multi-omics approach. There are twomain approaches for studyingmultiple omics data [100], where

the first one is targeted to specific molecular mechanisms or molecules where we know a priori the

pathways to look at. The analysis proceeds by assessing the behavior and activity of the molecules

involved, from a multi-omics point of view. A second approach is oriented to the discovery of novel

markers thanks to the analysis of the omics data first individually and then in combination to identify
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overlap and meaningful correlations. Such an approach is very advantageous to gain novel insight

yet complex given the extensive amount of data available, making the analysis computationally chal-

lenging and the results of hard interpretation. Indeed, the integration and interpretation of distinct

levels of molecular data is not always straightforward [101]. Another important aspect to consider is

the eventuality of technical and biological biases in the data introduced by sample handling or data

generation, resulting in noisy and misleading signals. Preprocessing and data cleaning are crucial

steps for removing data biases yet maintaining the wanted heterogeneity. Filtering out low variable,

co-correlated features or outliers are some of the standard preprocessing approaches, followed by

data standardization or normalization [102].

Resources

Another important aspect is the limited resources available to researchers. Resources can be of dif-

ferent kinds, for instance, money budget, computational resources, or clinical and demographic data

as support to the molecular data. A limited budget obstacles researchers to acquire the necessary

amount of data and it limits the purchase and use of particular platforms and technologies. It is ad-

ditionally involved in providing the required computational resources able to sustain the analysis of

big data and computationally heavy algorithms. Nevertheless, many computations are challenging

despite the resources because of the extremely high feature size [103]. Moreover, samples used for the

analysis are often lacking additional useful information, such as demographics and clinical/medical

data of the patients (e.g. age, medical history, previous treatments, eventual cancer relapse or refrac-

tory).

Model

The model adopted for discovery is of fundamental importance and its design can be used to control

for overfitting and prevent false discoveries [104]. Selecting the right model requires the understand-

ing of the data and the desired output, however, it might provide an additional level of bias especially

if it requires the selection of multiple hyperparameters [105]. Additionally, numerous novel sophis-

ticated algorithms might be hard to implement or to interpret the outcome’s biological relevance.

Results validation

A meticulous data and model selection that led to a potential biomarker needs to go through one

last phase which is the validation of the results [104]. This step involves the evaluation of the accu-

racy of the model as well as of the results. The major limitations of novel potential biomarkers are

a lack of generalizability, reproducibility, and robustness. Biomarkers are generalizable when their

discovery is not limited to representing a subpopulation but it catches variabilities that can resemble

a larger population real-world-like. Another fundamental aspect is the reproducibility of the results.
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One common issue in biomarker discovery is that, testing the potential biomarker on an independent

cohort, it does not reproduce the outcome it is supposed to return. This is a common case of overfit-

ting, when the model performs too well on the discovery cohort but it does not reproduce the same

result on external data. Hence, testing the potential biomarkers on an independent dataset helps in

understanding the biomarker applicability. One additional point is assessing whether the biomarkers

obtained are robust enough, meaning that they carry true biological meaning, are reliable, and their

discovery is not due to chance but they are real indicators of a phenotype or a condition. Whenwe test

for robustness wewant to compare our potential biomarkers with random ones, to assess which is the

chance of obtaining the same outcome when using random features [102]. This step is often omitted

and, without it, we might ignore cases of false discoveries. One example is the study published by

Venet and colleagues [106], where it was shown how most published breast cancer gene signatures

lack of robustness and their predictive ability is comparable to random genes. Hence, we conclude

emphasizing the results validation as a crucial step in the computational workflow, to ensure relia-

bility and biologically significant results.

1.4 Pancreatic Ductal Adenocarcinoma (PDAC)

Pancreatic Ductal Adenocarcinoma (PDAC) is the most common type of pancreatic cancer and more

than 90% of the neoplasm of the pancreas is PDAC [107]. Besides being the most prevalent pancreatic

cancer type, PDAC also registers the highest aggressiveness among pancreatic malignancies with a

five-year survival rate of less than 10% [108]. This is due to PDACalready being at an advanced stage at

the moment of its detection. Indeed, the disease progresses slowly without visible symptoms, result-

ing in a delayed diagnosis that makes treatment challenging. Prediction of PDAC patients’ prognosis

and therapy performance depends on the stage of the disease when it is found. First-line treatment is

pancreatectomy, the surgical resection of the tumorwhich guarantees the best outcome and combined

with chemotherapy reaches a five-year survival rate of over 30% [109]. However, mainly because of

the lack of symptoms, patients develop distant metastases and the majority die within 2 years from

the diagnosis, with chances of surviving the first year after diagnosis lower than 20% [107].

PDAC is not longer studied as one disease but is instead analyzed considering the heterogeneity

across different individuals. Different histological phenotypes in PDAC are due to different genetic

modifications and cellular compositions, with an impact on the survival andmetastases spread. Con-

tinuing from a histological point of view, PDAC is characterized by the presence of dense fibrotic

stroma which surrounds the pancreatic glands [110]. The cellular landscape in PDAC displays not

only intertumor but more importantly also intratumor heterogeneity. Indeed, the same neoplasm ob-

served at different stages is characterized by a progressive change in the cellular landscape, at a his-

tological level. A distinctive feature of PDAC is the substantial desmoplastic response which changes

and develops together with the tumor, adapting its components to the TME and creating a stromal
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barrier around the tumor, preventing immune cells from penetrating, promoting tumorigenesis and

enhancing therapy resistance [111]. TME of the PDAC is composed of extracellular matrix (ECM)

proteins, immune cells, pancreatic stellate cells, and fibroblasts [111], as illustrated in Figure 1.5.

Figure 1.5 Simplified overview on the elements in the PDAC microenvironment, made of tumor
cells, stroma, immune cells, and ECM production together with the desmoplastic response.

PDAC arises from the epithelial cells of the pancreatic ducts, driven by the combination of muta-

tional changes and then supported at a cellular level by the TME complexity. Four genes are the most

commonly altered in PDAC, the oncogene KRAS and the three tumor suppressor genes CDKN2A,

SMAD4, and TP53 [112]. KRAS as the most frequent (found mutated in more than 95% of the PDAC

cases) is the early genetic alteration, contrary to TP53 and SMAD4 observed altered in later stages

thus linked to tumor progression.

A deep understanding of the immune and stromal compartment together with the TME is crucial

to help solve this oncological challenge.

1.4.1 PDAC published signatures

One of the goals of PDAC analysis is the arrangement of samples in subgroups based on their molec-

ular pattern. Several transcriptomic-based classification schemes have been proposed where samples

are mainly distinguishable for their morphology and prognosis [88–91]. However, still no clinical de-

cisions have been made. Numerous studies contributed to finding the biological differences between

PDAC samples. Some studies gained more attention than others from the related research field and

are considered a gold standard in the literature. These three studies are Collisson et al. [89] in 2011,

followed by Moffitt et al. [88] in 2015 and Bailey et al. [90] in 2016. A more recent study published in
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2018 by Puleo et al. [91] also proposes promising molecular-based PDAC subtypes. We will refer to

the studies by the name of their first author.

The four studies identified PDAC subtypes, different in number but with similar characteristics

in the composition. Collisson discovered three subtypes defined as Classical, Quasi-Mesenchymal

(QM-PDA), and Exocrine-like. Moffitt established that PDAC can be divided into twomain categories

with oppositemorphological and prognostic characteristics: Classical and Basal subtypes. Bailey pro-

posed four subtypes: Squamous, Immunogenic, Pancreatic Progenitor, and Aberrantly Differentiated

Exocrine (ADEX) while Puleo identified five subtypes named Desmoplastic, Pure Classical, Stroma

Activated, Immune classical and Pure Basal-like. The subtypes discrimination has been linked to a

list of genes whose expression status reflects the biological alteration responsible for tumor diversifi-

cation.

Collisson employs microarray expression data from two groups of PDAC samples, one taken con-

sidering the tumor in its whole and the other one previously submitted to microdissection, where

the epithelium was devoid of the stroma. After combining the two datasets, the authors identified

three clusters with the use of consensus clustering-based NMF. Amulti-class SAM analysis identified

a panel of 62 genes to be used for classifying patients to their subtypes. The three subtypes proposed

have been then validated via clustering analysis to test their reproducibility on independent datasets.

One dataset originated from both human and mouse cell lines did not return any Exocrine-like sub-

type. The other three datasets from human samples were first merged into the dataset used for the

subtype identification and then clustered using the signature genes. The clusters obtained matched

with the three subtypes proposed by Collisson and colleagues. However, the same result was not

observed when the clustering was applied on one of the validation datasets taken independently,

without prior merging it with the discovery data. Additionally, a validation using 19 in vitro human

PDAC cell lines to test the impact of two drug therapies was carried out. The response observed was

different, with Erlotinib more beneficial for the Classical type contrary to Gemcitabine with a positive

outcome on the QM-PDA subtype.

Moffitt combines multiple microarray datasets obtained from diverse sources and tissue types (pri-

mary andmetastatic tumors, cell lines, normal pancreas and distant sites adjacent to normal samples).

The authors decomposed the data into 14 biological components with the use of NMF. The compo-

nents are used for performing virtual microdissection and isolating those categories of components

linked to the stroma compartment and tumor tissue. The stroma-related genes and tumor-related

genes, 48 and 50 respectively, were identified as representative of the sample’s diversity and used to

establish two distinct binary subtyping schemes. Samples are classified into Normal Stroma or Ac-

tivated Stroma subtype, in the first case, and Classical or Basal, in the second classification schema.

Validation of the subtypeswas carried out by implementing clustering analysis on samples of primary

PDAC, cell lines, patient-derived xenografts, and cancer-associated fibroblasts. The clusters obtained

did not confirm the classification in Basal and Classical in the case of the cell lines, contrary to the use
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of patient-derived xenografts which confirmed the binary classification. The two tumor subtypes are

linked to opposite prognoses confirmed via survival analysis, where Basal is associated with a worse

outcome hence a more aggressive subtype, opposite of Classical which showed a better prognosis.

Differently from the previous two studies which used microarray data, Bailey used RNA-Seq gene

expression data derived from sequencing samples of ductal histopathological subtypes as well as a

few acinar cell carcinoma samples and intraductal papillary mucinous neoplasm with invasion. The

technique used for grouping the samples was the same adopted by Collisson and Moffitt, this time

without previous microdissection (neither via laser nor virtually) but filtering the most informative

samples by keeping only the ones that registered tumor cellularity above 40%. Clustering the data via

consensus clustering-basedNMF returned the samples divided into four subtypes, where the optimal

number was established with a cophenetic coefficient. The four subtypes proposed are different in

prognosis and tumor cellular composition. The subtypes are called Squamous, Immunogenic, Pan-

creatic Progenitor and Aberrantly Differentiated Exocrine (ADEX) and their genomic hallmarks have

been further investigated by Bailey and colleagueswith awhole-genome and deep-exome sequencing

analysis. 613 genes were found significantly differentially expressed between the four subtypes, iden-

tified via multi-class SAM. The reproducibility of the four classes on independent data was assessed

employing a microarray dataset of human PDAC samples, this time not limited to only samples rich

in tumor cellularity. Performing the same clustering analysis returned the same subtypes, further

supporting their existence.

A collection of formalin-fixed paraffin-embedded samples from resected primary tumors was used

by Puleo. Gene expression was measured with microarray and hierarchical consensus clustering was

used to establish the subgroups of PDAC. Puleo and colleagues identified five subtypes named Pure

Classical, Immune Classical, Desmoplastic, Stroma Activated and Pure Basal-like. The subtypes are

named after measuring the stromal compartment together with the infiltrating immune cells and

the TME, assessed by deconvoluting the data into components and using transcriptomic-based tech-

niques. Subtypes rich in stroma are Activated Stroma andDesmoplastic, where the first one is charac-

terized by activated stromal elements while the second one is composed of fibroblast and endothelial

cells with a high immune infiltration. Another subtype rich in immune cells is the Immune Classical,

contrary to Pure Classical and Pure Basal-like which were found poor in the immune response. In

terms of tumor differentiation, Pure Classical was foundwell differentiated, suggesting lower aggres-

siveness and slower progression, while Basal-like was found poorly differentiated. Puleo additionally

investigated the survival associatedwith each subtypewith a survival analysiswhich sees the survival

curvewith the poorest outcome linked to the Pure Basal-like. Activated Stroma, another subtypewith

little immune cell compartment, was found associated with poor survival. The binary classification

of Moffitt is taken as a comparison to highlight the existence of two main PDAC categories which can

be further divided into more detailed subcategories. Furthermore, Puleo and colleagues mentioned
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the potential existence of subtypes which includes both classical and basal characteristics. Finally, a

list of 403 signature genes to use as classifiers is proposed.

An overview of the aforementioned studies and the distinctive features of the subtypes is provided

in Figure 1.6.

Figure 1.6 Overview on the PDAC molecular subtypes of Bailey et al., Collisson et al., Moffitt et al.
and Puleo et al.. Table from [113].

1.4.2 Limitations

The extensive analysis carried out by the four studies has been often taken as a reference whenever

PDAC subtyping was discussed. However, despite their contribution to better understanding how

PDAC can be classified, numerous studies found inconsistencies and expressed hesitancy [114–119].
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The main critics are linked to the real existence of one or more of the proposed subtypes, suspecting

that their discovery is influenced by sample preparation.

One evaluation was performed by Janky et al. [117] who predicted Collisson classes in a whole

tumor samples cohort, using the 62 gene signature. Despite the clusters matching with the labels

from the existing classes, the authors observed the survival curves linked to the obtained clusters

and found a discrepancy with the prognosis described by the original study. In particular, Exocrine-

like was described as a less aggressive subtype linked to good prognosis, while Janky et al. linked

Exocrine-like to a poor outcome. Rashid et al. [116] assessed the clustering robustness of the genes

proposed by Collisson, Moffitt and Bailey by using them to cluster nine independent datasets. Sur-

vival analysis was additionally performed to assess the prognostic relevance and reproducibility of

the subtypes. The binary classification proposed by Moffitt with their tumor-specific subtypes is the

one found consistent in identifying patient groups whose survival difference was significant and co-

herent with what was stated byMoffitt and colleagues. The prognostic power of the Moffitt signature

was further validated by Birnbaum et al. [114], which employed 15 cohorts of primary tumor samples.

The assessment of subtype’s prognosis was validated for Moffitt and Bailey signatures but not for the

Collisson one.

Besides observing whether the signatures are prognostically relevant or not, other studies focused

on investigating the tumor purity and composition as well as the biological relevance of the subtypes

proposed. The Cancer Genome Atlas (TCGA) Research Network [115] used their dataset of primary

PDAC samples and selected, in turn, one of the signatures. The application of clustering on the re-

duced dataset returned clusters successively analyzed in their tumor purity to elucidate their biolog-

ical meaning. Subtypes found low in tumor purity were the Exocrine-like and Immunogenic from

Collisson and Bailey, respectively. The presence of normal pancreatic tissue in the samples might

be the reason for such poor purity. Skepticism on the Bailey Immunogenic subtype was also raised

by Maurer et al. [118] who hypothesized the possible influence of a rich stroma compartment in the

Immunogenic-predicted samples. Sivakumar et al. [119] performed a functional pathway analysis

finding the Immunogenic subtype involved in the cell cycle signaling pathway. Despite this promis-

ing finding, further investigation on the composition of the sample should be performed to clear the

doubt on the possible high Immunogenicity of the samples used as bias sources.

The Immunogenic subtype is not the only subject of criticism. As already mentioned by TCGA,

Exocrine-like existence has been in doubt from other studies and even from Collisson himself, who

analyzed the subtypes in vitro and found no presence of this subtype, suggesting contamination from

exocrine cells of normal tissue. The same doubt was expressed for the Bailey ADEX subtype, possibly

derived by the presence of acinar cells in the samples employed for its discovery [91, 114, 115]. Same

hypothesis was sustained by Puleo who found the ADEX subtypes strongly expressed with genes of

acinar cells after computing cell types estimation of resected PDAC samples. Puleo further observed

no significant prognostic results associated with ADEX when performing survival analysis. The sub-
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types proposed by Collisson, Moffitt and Bailey, except the one offered by Puleo given its more recent

release, have been extensively assessed and used in literature. These studies estimated and accounted

for factors such as immune infiltration, tumor composition, stroma compartment and survival asso-

ciation with their subtypes. However, these studies have been carried out independently and the

subtypes show a lack of agreement. Not coordinated studies not only established barely intersecting

gene panels used for subtypes classification (Supplementary Figure 5.1), but even the subtypes re-

leased have characteristics that hardly overlap. Moreover, the proposed subtypes lack harmonization

in their terminology and number, indicating how the real number of PDAC subgroups is still far from

being elucidated. As an example, we can see the classical-like subtypes in all four studies (Classical

(Moffitt), Classical PDA (Collisson), Pure Classical (Puleo) and Pancreatic Progenitor (Bailey)), while

other important tissue compounds such as stroma and immunogenicity have been taken into account

by few studies (Puleo, Moffitt for the stroma compound and Bailey for the immune one)while ignored

by the others.

Studies started to advance the hypothesis of the existence of subtypes with common characteris-

tics, excluding the rigorous mutually exclusive subtype schema. Taking the example of binary clas-

sification with the concept of two antagonistic classes with divergent traits, several studies observed

characteristics that belong to both the subtypes [115, 120–122].

Chan-Seng-Yue et al. [122] used single-cell RNA-Seq to investigate the issue derived from classi-

fying bulk tumor samples. They started analyzing bulk tumor samples to assign to each of them a

label from Moffitt, Collisson, Bailey and Puleo classification schemes. The authors faced the issue

of predicting the subtype of a group of samples that would not coincide with any of the existing

subtypes. After analyzing data at a single-cell level for each sample, the authors found in 13 out of

15 samples both Basal and Classical cells, results that with bulk data would have not been possible

to reveal. Disagreement in binary classification was also experienced by Topham et al. [121], who

used the tool offered byMoffitt based on logistic regression plus the version reviewed by Rashid et al.

named PurIST [116]. Twelve percent of the samples were attributed to be neither Basal nor Classical,

and further examination revealed the median expression of this group of samples to be intermedi-

ated between the two extremes classes Basal and Classical. What was observed introduced the idea of

gradient subtyping, where tumors with hybrid features can be explained if we think of binary classifi-

cation as a continuum subtype showing a progressive shift going from classical-like type to basal-like.

Because of the multitude circumstances, PDAC can adopt in terms of tissue composition and cellular

environment, the concept of tumor subgroups begins to be seen as a spectrum of features forgetting

the idea of distinct and exclusive classes.

To better capture the heterogeneity of PDAC, Nicolle et al. [123] took RNA-Seq of patient-derived

xenografts (PDX) samples and applied the notion of a continuum spectrum of classes to build a pre-

dictor for PDAC patient prognosis. The expression obtained from sequencing the samples was used

to decompose the data with independent component analysis (ICA) and, through histology, samples
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were allocated to five subtypes. The authors computed the correlation between the five subtypes and

the ICA components and identified the one with the highest correlation. Such a component takes

the name of Pancreatic Adenocarcinoma Molecular Gradient (PAMG), a vector of continuous values,

one for each tumor sample. The efficacy of PAMG was assessed by comparing it with a dichotomous

classification and the transition observed confirmed the hypothesis of a continuum class more prog-

nostic relevant than separate classes. The same conclusion was reached when Nicolle and colleagues

used the tool PurIST to predict the Basal and Classical and compare them with their gradient classi-

fier. The outcome they obtained shows how PAMG detects the heterogeneity of the PDAC accurately,

accounting for the tumor diversification more than a binary schema.

The differentways sampleswere usedmight influence the subtypes’ identification. Puleo employed

the samples in their whole, without non-tumor cellularity filtering. On the other hand, Bailey only

used samples with tumor cellularity > 40%. Moffitt and Collisson both performed microdissection,

removing the stromal compartment from the tumor, the first one in silico and the second one via laser.

1.5 Meningioma

Meningioma is themost frequent central nervous system and intracranial type of cancer [124]. Menin-

gioma arises from the meninges and its prognosis is positive in most cases, as its morphology makes

it suitable for tumor resection [125]. About 80% of the meningioma cases are benign while malig-

nant ones are more exceptional with approximately 4-5% of meningioma samples classified as malig-

nant [126, 127]. According to the classification in grades provided by the World Health Organization

(WHO), a benign meningioma has a WHO grade I while a malignant meningioma has a WHO grade

III, characterized by fast progression and a higher chance of recurrence after surgery with a 5-year

survival rate of around 64% [128]. Meningioma is widely known to be age-related and sex-specific,

found more frequently in females [125–127]. However, the exact cause responsible for meningioma

formation is not fully clear and it seems related tomultiple circumstances. Environmental factors such

as radiation exposure [129] and head trauma [130] were found highly associated with meningioma

while there is no strong relationship with genetic heritage. Indeed, numerous studies performed on

patients exposed to X-ray and radiation therapy proved the causation between ionizing radiation and

the risk of developing meningioma in elderly life [127, 129, 131–133].

1.6 Tumor budding (TB)

Tumor budding (TB) is defined as the detachment of cancer cells from the main bulk, infiltrating

the adjacent parenchyma as individual cells or clusters of less than five cells (see Figure 1.7). An

agreement was found in literature concerning a poor prognosis for patients with a high count of buds

[134–138]. As amatter of fact, TB is already known to be a prognostic indicator for cancer types such as
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colorectal cancer [139–141], pancreatic cancer [142] and laryngeal cancer [143], plus lung-SCC, largely

studied in the last years [135–138].

Numerous studies mirrored TB to the epithelial-mesenchymal transition (EMT). EMT plays a key

role in enhancing cell migration by transitioning cell morphology from epithelial to mesenchymal

[144]. Mechanisms linked to EMT are the modification of the cytoskeleton and ECM degradation.

Moreover, EMT leads to increasedmotility and invasion of the cells. TGF𝛽 andWNT are the signaling

pathways known to be responsible for EMT [145]. The two signaling, together with microRNA-34

and microRNA-20, regulate the activation of three transcription factors, ZEB1, TWIST and SNAIL,

which leads to a decrease in the expression of E-cadherin, an adhesion molecule that determines the

epithelial phenotype of a cell. At the same time, cells gain enrichment in mesenchymal markers such

as vimentin [146, 147]. Epithelial cells are found in the tumor bulk while cells part of the buds have

mesenchymal cell traits. The application of a grading scheme serves as instrument to help clinicians

evaluate the magnitude of tumor budding activity and its link to aggressiveness. Two system have

been proposed to grade the TB activity, by accounting for the amount of buds and the number of cells

within them [148, 149].

Figure 1.7 Tissue slide indicating tumor buds (indicated by asterisks) and single-cell invasion
(indicated by arrows). Figure from [134], with permission of Elsevier.

1.7 Lung Squamous Cell Carcinoma (lung-SCC)

Lung cancer is the deadliest cancer type, registering 18% of deaths from cancer in 2020, and the sec-

ond most prevalent after breast cancer [1]. Non-small cell lung cancer is the most diffuse histological

subtype of lung cancer and can be further divided into subcategories, with lung squamous cell carci-

noma (SCC) as the prevailing lung cancer subtype after adenocarcinoma. Lung-SCC is characterized

by slow progression and squamous cell morphologic structure, arising in the airways from the tra-

chea to the lungs, in the bronchi proximity. Because of slow tumor growth, it is usually diagnosed

at an advanced stage with a five-year survival rate of approximately 16%, a percentage linked to the
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tumor progression status where stage I can reach a level of five-year survival rate of 50% and above

[150]. Lung-SCC is strongly associated with tobacco consumption [151, 152] and with advanced age,

and lung-SCC patients present high comorbidity levels. Several studies found this cancer type to be

characterized by high mutational compounds, with alteration in TP53, FGFR, PIK3CA, EGFR, and

PTEN [153, 154]. Most analyzed prognostic features are tumor-node-metastasis classification, sex,

age, and other clinical features, part of the American Joint Committee for Cancer staging system [155,

156]. However, knowledge of histomorphologic prognostic markers is still poor. Research considers

TB as a histopathological biomarker for numerous cancers [139–143], and its potential is starting to be

considered also for lung-SCC. Indeed, the aggressiveness of lung-SCC has been found related to TB,

where patientswith high activitywere found having poor survival [135–138]. Anothermorphological

trait named STAS is studied in the context of lung cancer. STAS, the abbreviation for spread through

air spaces, is the dissociation of tumor cells from the bulk and their spread in the alveolar space [157].

Figure 1.8 gives an example of a tissue slide with STAS foci. STAS has been studied in lung cancer but

not so much yet in the SCC subtype [158, 159].

Figure 1.8 Tissue slide with representation of STAS, indicated by the asterisks. A dashed line
indicates how the distance between tumor bulk and the most distant STAS is measured. Distance
is then measured counting the alveoli observed in between. Figure from [134], with permission

of Elsevier.

1.8 Differentially Methylated Regions (DMRs)

DNA methylation plays an important role in regulating tissue-/cell-/condition-specific protein tran-

scription, X chromosome inactivation and embryonic development [61]. Knowing the genomic loca-

tionwheremethylation took place can unravel themechanisms that triggered a disease or condition or

that elucidate a phenotypic difference. For instance, the comparison between primary and metastasis

or between knockout and mock could be driven by aberrant methylation levels.
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Always considered at a single loci or CpG context level (e.g. CpG island/shore or shelf), the focus

on DNA methylation has been moved towards the study of aberrant methylation in genomic regions.

It has been proven that adjacent CpG sites have proportional methylation levels and that neighboring

sites tend to cluster together [160]. Hence, taking CpGs in clusters might give more robust informa-

tion than taking them individually. Differentially methylated regions (DMRs) are genomic regions

in which the methylation status between conditions is different. DMRs carry more biological insight

than differentially methylated loci (DML) because of spatial correlation, thus having more statistical

power in determining significant results.

1.8.1 State-of-the-art tools for DMRs discovery

Numerous tools have been released for the identification of DMRs. Nevertheless, their implementa-

tion is not always easy. Basic programming knowledge (most commonly R) is often needed, andmany

computational tools are applicable only under specific characteristics with a particular data format or

from a specific platform, either solely array, WGBS, or both. We summarized the main features of the

most popular DMR detection tools in Supplementary Table 5.2.

For some methods, regions are biologically pre-defined such as gene promoters, FANTOM5 en-

hancers and CpG islands, or tiling regions, meaning sections of the genome of a given size (e.g. 1-5

kb). However, most of the methods allow the identification of de novo DMRs, for instance with the

use of a genomic window of dynamic size, extended for as long as the DMR is observed. Several

methods are considered the gold standard of DNA methylation differential analysis. An example is

theMinfi pipeline [161], available in R and built for analyzing array data starting from raw files. Minfi

implements the bump hunting algorithm proposed by Jaffe et al. [162] and it works first by computing

a t-test for each CpG and then collecting CpGs in clusters, as potential DMRs, based on the t-statistics

values. In this way, Minfi allows the identification of novel regions without prior information about

their size or genomic location. In addition, Minfi included a permutation step to ensure the identi-

fication of significant DMRs. Besides the t-test, the identification of DMR is also built on other tests

like Fisher’s exact test in the case of methylSig [163], a two-dimensional Kolmogorov-Smirnov test

used by Metilene [164] and a Wilcoxon or Kruskal-Wallis paired non-parametric tests (depending on

the number of conditions to be compared) implemented in methylPipe [165]. In the case of bisulfite

sequencing, among the tools for de novo regions detection there are BSmooth [166], DMRfinder [167],

methylKit [168] and DMRcate [169]. DMRcate is another tool widely implemented in literature and

seen as a gold standard choice in DNA methylation analysis. It is designed for both microarray and

sequencing data. DMRcate searches for regions by using a Gaussian kernel smoothing approach.

Besides novel regions, many existing tools examine methylation levels inside pre-existing regions

or tiling windows. Results from comparing pre-established regions of interest are more robust and

generally more significant, with their interpretation being more straightforward. Additionally, these

methods are particularly suitablewhen the userwants to observemethylation activity in some specific
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regions/areas. Examples of methods that analyze predefined regions are edgeR [170], designed for

bisulfite sequencing data, and RnBeads [171], suitable for both array and sequencing-based methy-

lation profiles. Nevertheless, the research of indefinite region type or length not only might give

more realistic results, given that DMRs are most likely not all of the same size or in the same genomic

area, but it also allows the discovery of novel insights related to aberrant methylation activity located

in areas of the genome still unknown in literature. Tools like Metilene [164], methylSig [163] and

methylPipe [165] give the opportunity to choose between both types of regions and are built for the

analysis of bisulfite sequencing data. Another relevant aspect to consider when performing a bioin-

formatic analysis is that not all users have experience with programming, hence a tool to be used by

as many users as possible has to be user-friendly and of easy implementation. Most of the tools, as

shown in Supplementary Table 5.2, are available in the Bioconductor library of R, a few are available

as a command line tool and rarely available as a graphical user interface (GUI).

1.9 Aim of the study

Aim 1

One of the aims of this study is to assess the reproducibility and consistency of the PDAC subtypes

proposed by Collisson et al. [89], Moffitt et al. [88] and Bailey et al. [90] and give a first critical eval-

uation of Puleo et al. [91] subtypes, whose assessment is still poor. The skepticism raised by the

literature stimulated us to perform further analysis to verify the generalizability of the PDAC sub-

classes, elucidate potential biases and, from them, contribute to the complex understanding of PDAC

heterogeneity.

Aim 2

Numerous tools have been proposed for the discovery of DMRs, however, only few of them return

interpretable and accurate results as well as easy implementation. A second aim of this study is the

presentation of Dimmer 2.0, a tool for de novo DMRs search first released in 2016 by Almeida et al.

[172]. We present an upgraded and extended version of the tool, followed by its application to two

study cases:

• PDAC is characterized by its lethality linked to a high metastatic rate which makes the heal-

ing process challenging. Metastasis and aggressiveness of the disease are highly related to the

rich stromal environment and the ECM compound, which is known to be influencing tumor

progression and spread. The first site where PDAC grows metastasis is the liver because of its

location concerning the pancreas and because of the abundance of blood vessels. However,

whether aberrant methylation plays a role in the metastatic spread is still unknown. To elu-
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cidate this aspect, we apply Dimmer 2.0 to PDAC primary and liver-matching metastasis to

reveal potential epigenetic markers linked to tumor diffusion.

• Epigenetics might elucidate mechanisms able to explain the aggressiveness that characterizes

malignant meningioma, thus we compare its methylation status with the one found in benign

tumors.

Aim 3

High tumor budding activity has been found associated with an advanced stage of cancer and spread

metastasis, leading to a poorer survival [173]. Established cut-offs are arbitrarily decided andonly suc-

cessively their survival impact is examined [148, 149]. Third aim of this thesis is to identify a robust

and prognostically relevant grading system for SCC of the lung based on tumor budding. Addition-

ally, STAS foci, distance of STAS in alveoli, minimal cell nest size, stromal content and immune cell

infiltration are examined for a cut-off associated with survival. All the aforementioned histomorpho-

logical traits are analyzed in relationship with death risk, disease progression and relapse to assess

their role as potential markers for lung-SCC. Molecular features that drive TB and that can be used as

prognostic markers still need to be investigated. Third aim extends to understanding the relationship

between TB and diverse molecular profiles, with the final goal of identifying the molecular features

that are able to explain the role and origin of this histological phenomenon. A deep understanding

of TB can help assess its potential key role as a prognostic biomarker.
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2 Material and Methods

2.1 Data

2.1.1 PDAC

PDAC trascriptomic data used was downloaded from public repositories and consists of seven mi-

croarray expressionmatrices and two RNA-Seq expression datasets. Four of these dataset correspond

to the ones fromMoffitt, Collisson, Bailey andPuleo plus five additional datasets (ICGC-Array, TCGA-

PAAD, Badea et al. [174], Sandhu et al. [175] and Yang et al. [176]). From the publications of Moffitt,

Collisson, Bailey and Puleo we obtained the subtypes labels assigned to the samples and the lists of

genes used as signatures.

Moffitt andCollissonmicroarray expressiondatawere downloaded from the public repositoryGEO

(accession codes GSE71729 and GSE17891). Data were downloaded already normalized and no fur-

ther preprocessing was performed. Non-primary PDAC samples are filtered out.

Data from Bailey was obtained by author correspondence in a table of RSEM counts. The data

is RNA-Seq gene expression (ICGC PACA-AU) and it was normalized by us with DESeq2 4.2. with

the variance stabilizing transformation method. As before, we only kept primary samples and we

additionally removed samples of non-ductal histological subtypewhichwere included in the obtained

matrix.

Puleo microarray profiles were obtained from ArrayExpress under the accession code E-MTAB-

6134.

Wedownloaded from the International CancerGenomeConsortium (http://www.icgc.org) a dataset

of microarray expression data, available under the project PACA-AU. Data was already pre-processed

and we further filtered out non-primary samples and non-ductal histological subtype samples.

From the Xena Browser [177] we downloaded the RNA-Seq expression matrix of the TCGA-PAAD

project. The matrix, obtained in a log2 counts format, was transformed to counts prior to normaliza-

tion in DESeq2 4.2. through the variance stabilizing transformation.

From GEO we downloaded the remaining three matrices: Badea et al. (GSE15471), whose replicate

samples were excluded, Sandhu et al. (GSE60980), and Yang et al. (GSE62452).

The gene nomenclature used is gene symbols. In the case of translation from probe ids, whenever

a gene name is linked to multiple probes the median value is taken.

http://www.icgc.org
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2.1.2 Matched PDAC primary and liver metastasis

DNA methylation data for PDAC and the corresponding liver metastasis was obtained from tissue

samples collected from patients by the University of Heidelberg. The samples are 11 pairs of PDAC

primary and liver metastasis belonging to the same patient. DNA was quantified with the TaqMan®

RNAsePDetectionAssay and extracted from FFPE samples usingMaxwell® RSC BloodDNAKit. Af-

ter bisulfite conversion, FFPE samples were treatedwith the Infinium FFPEDNARestore Kit for FFPE

restoration to avoid nucleic acid degradation that might derive from FFPE samples. DNA methyla-

tion was generated using Infinium MethylationEPIC BeadChip arrays (Illumina) following the orig-

inal protocol. For the comparison between primary PDAC and liver metastasis idat files were used,

with a total of 866 091 CpGs used for the comparison.

2.1.3 Meningioma

Samples were collected and prepared for DNA methylation analysis by the University Hospitals of

Heidelberg and Mannheim between 2015 and 2018 and published in [178]. Samples were stored as

fresh frozen tissues, as well as FFPE and only samples rich in tumor cells were considered. In the case

of frozen tissue, Invisorb®Genomic DNAKit II protocols were implemented for DNA isolation, while

Maxwell® 16 FFPE Plus LEV DNA Kit protocols were used for FFPE samples. DNA is then treated

with bisulfite before data retrieval, performed with both Illumina Infinium 450k and EPIC array with

the use of Illumina iScan for the BeadChips scan which returns .idat files. Additional details about

sample preparation and processing are described in the work published by Capper et al. [178].

The set is made of 414 samples, of which 355 are classified as benign and 59 as malignant. Only

CpGs shared between samples were considered, for a total of 375 197 loci.

2.1.4 Lung-SCC

All the data used for discovery (both molecular and clinical) are part of the TCGA-LUSC project,

generated by TCGA (https://www.cancer.gov/tcga), with the exception of the validation cohort that

was independently generated.

2.1.4.1 Clinical and morphological traits

Study dataset. Digitalized H&E tissue slides suitable for histopathologic evaluation were obtained

from theGDCData Portal (https://portal.gdc.cancer.gov) and theywere analyzedwith the ImageScope

x64. Samples with low quality or tumor type different from lung-SCCwere excluded. Data used con-

sists of 335 samples.

Clinical data. Overall survival (OS) and progression-free interval (PFI) were used for survival

analysis, wereOSmeasures the length of the life of a patient after diagnosis, while PFI is considered as
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the amount of time a patient does not register a progression of the disease, during or after a treatment.

AJCC stage IV was merged with stage III because only few samples were available.

Tumor budding. Lowmagnification was used for analyzing the area most enriched in tumor buds.

TB was counted in absolute numbers in ten consecutive high-power fields (HPF) in light microscopy

(40x magnification in the slide), where one HPF corresponds to a field of diameter 0.38 mm. A tumor

bud is defined as a cluster of fewer than five cells (aswell as a single cell) located in the stroma adjacent

to the tumor bulk.

STAS and distance in alveoli. For STAS is considered the count of tumor cells that detached from

the tumor bulk and are found in the alveoli [157]. Only cells with undamaged perimeter are consid-

ered. Distance of STAS was counted in the number of alveoli between perimeter of bulk and the most

distant point of STAS.

Immune cell and stroma estimation. Area inside the perimeter of the tumor was analyzed to

estimate stroma compound and immune cell infiltration, at low-power magnification. Necrosis or

alveolar macrophages observed in the area are excluded. At higher magnification, lymphocytes are

searched and their presence in the tumor area is estimated in percentage. Suggestions from Hendry

et al. [179] were followed for immune cell measurements.

Stromal proportion was also estimated in percentage, dividing the fibrous regions observed in the

area by the entire area of the tumor.

Minimal cell nest size. Minimal cell nest size (MCNS) represents the number of cells in the smallest

buds [180].

Existing grading system. A TB grading systempreviously establishedwas used for assessing prog-

nostic impact [148, 149]. The categories are G1, G2 andG3, based on the a amount of tumor buds com-

bined with MCNS. To samples with amount of buds from 1 to 14 is assigned 1 point while 2 points if

more than 14. One point is assigned if MCNS is more than 15, two points is size is from 5 to 15 cells,

three points if size is from 2 to 4 and four points to single cells. For each sample, points are summed

up. Group G1 is assigned to samples that registered two or three points, G2 to samples with four, five

or six points while samples with 7 points are categorized as G3.

Validation dataset. Samples for validation are collected by the Department of Thoracic Surgery of

the University Hospital of Heidelberg during the years from 2010 to 2017. Samples were obtained as

H&E-stained slides from the tissue bank in Heidelberg (Germany) of the National Center for Tumor

Diseases (reference number S-2021-315).The cohort consists of 346 lung-SCC samples and survival

analyzed are OS and disease-free survival, which measures the amount of time a patient is free of the

disease (disease-free survival (DFS)), after a treatment.

All the histopathologic examination were carried out by Fabian Stögbauer andMelanie Boxberg, as

deeper described in [134].
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2.1.4.2 Omics data

Molecular data was downloaded from the Xena Browser under the project TCGA-LUSC [177].

The molecular data used are gene expression, protein expression, non-silent mutation, and DNA

methylation. Only samples with TB information will be considered (333 for gene expression, 123 for

protein expression, 322 for non-silent mutation, and 247 for DNA methylation).

The gene expression profile (RNA-Seq) of 333 samples was obtainedwith Illumina HiSeq 2000 plat-

form and downloaded as 𝑙𝑜𝑔2(𝑥 + 1) normalized RSEM counts. Genes with more than 30% of zeros

are deleted.

Protein expression was obtained with the reverse phase protein array technique (RPPA) and next

quantified with the SuperCurve Fitting method. We downloaded the data already normalized with

replicate-base normalization. Data (123 samples) were downloaded and no pre-processing step was

applied.

Binary non-silent mutations (SNPs and indels) were downloaded at the gene level for 322 samples.

Genes with at least 98% of zeros were removed from the data.

DNA methylation is obtained at the CpG level where methylation was profiled with Illumina In-

finium HumanMethylation450 (450K). The data table consists of 247 samples. Methylation values are

in the 𝛽-value unit. We further filtered out loci with at least 20% of missing values. K-nearest neigh-

bors was used for CpG with less than 20% of missing values, using Scikit-learn 0.24.2 in Python.

We assessed the association between TB and the gene expression-based lung-SCC subtypes pub-

lished by Wilkerson et al. [181]. The subtype calls for each sample were downloaded from a study

conducted by TCGA [153].

2.2 Machine learning methods for omics data analysis

Bioinformatics processes biological and clinical data with a combination of computational tools, and

statistical and mathematics approaches. Molecular data availability and size keep growing and the

advancement in algorithm and programming development enables the bioinformatics field to rapidly

expand. An important focus is addressed on methods development and mathematical models that

can support decisions andgive predictions. The process of extracting information fromagivendataset

is often performed by machine learning. Defined as an artificial intelligence subfield, machine learn-

ing creates automated models able to learn and adapt, returning informative conclusions based on

the data pattern. A key task of machine learning is the ability to handle large amounts of data and

perform multiple analyses divided into predictive, descriptive, and prescriptive. The predictive analysis,
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in the case of biomedicine, predicts survival, disease relapse, or therapy efficacy; the descriptive type

is used to observe a phenomenon or condition from a given dataset and explain it; the prescriptive

type is used to support a decisional action to optimize the outcome. Machine learning has multiple

applications in the field of bioinformatics, including biomarker discovery, protein structure predic-

tion, cancer type classification, outcome prediction, drug discovery, and repurposing but also the

processing of digital images and text.

Machine learning techniques can be categorized into three groups: supervised, unsupervised, and

reinforcement. Supervised techniques are used to make predictions and use datasets where the ob-

servations are labeled. The model uses the labels to learn how to classify new observations together

with the use of initial training data. Supervised techniques can be further distinguished into classifi-

cation (e.g. random forest, k-nearest neighbors, support vector machines) and regression (e.g. linear

and logistic regression) techniques. Unsupervised techniques, contrarily to supervised, do not use

any labeled data and are employed for hidden pattern recognition. Clustering and dimensionality

reduction are the two main categories of unsupervised machine learning, where examples of meth-

ods are k-means and hierarchical clustering for the first case and principal component analysis for the

second one. Reinforcement learning is based on a machine being able to adapt to the environment it

is located in by learning from its errors, following a reward/punishment approach. The interaction

with the environment is used to teach the machine the best behavior to optimize the rewards.

Linear regression

Linear regression [182] is a supervised technique employed to model the relationship between one

or more predictive features and a response variable. The concept behind linear regression is to build

a model capable of explaining such a relationship as well as possible and quantify its strength and

statistical reliability. The model searches for the line that best fits the data. The classic linear regres-

sion equation is 𝑌 = 𝑎 + 𝑏𝑋, where 𝑌 is the dependent variable and 𝑋 a matrix whose columns are

the independent variables. With linear regression, we can observe how much 𝑋 can explain 𝑌. The

regression coefficient 𝑏 tells how much 𝑌 changes, on average, if 𝑋 changes one unit. The relation-

ship can be positive, where the increase of 𝑋 corresponds to an increase in 𝑌, or negative, where

the increase of 𝑋 corresponds to a decrease in 𝑌. Each coefficient is assigned a p-value, indicating

whether the relationship expressed by the coefficient is statistically significant. Least-squares is the

best known regression method [183]. It looks for the line that minimizes the (average) distance from

the regression line to all data points of a given dataset. Such distance takes the name of residual (see

Figure 2.1), a measure of error representing the variation of 𝑌 that is not explained by 𝑋. Hence the

goal of the least-square method is to minimize the sum of square residuals, here is the name of the

method.

Important in linear regression are the key assumptions that have to be respected: nomulticollinear-

ity, when, in the case of multivariate regression, variables are highly correlated with one another; no
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Figure 2.1 Least-square method works by fitting a line to the data and moving it until the
optimal line is found, which is the one with the least sum of squared residuals.

correlation with residuals, when the errors are highly correlated with the target variable; normality

and homoscedasticity of residuals, the errors should follow a normal distribution and have equal vari-

ance; linearity, which assumes that the dependent variable is a linear combination of the independent

variables and the additional coefficients, if any.

Random forest

Random forest is part of the decision tree learning, the branch of machine learning that performs

decision-making based on a tree model [184]. Being a classification method, it follows a supervised

approach where classes are known and the algorithm predicts to which class an observation belongs.

The model consists of an ensemble of individual decision trees, where a tree is a representation of a

chain of decisional processes [184]. Starting from a feature, represented by a node, two branches are

generated by classifying the observation in groups according to a condition. Each branch terminates

with a node from which new branches will be created. After every split, the model measures the

homogeneity, also called purity, of the child nodes. Gini index and entropy are some of the most

common purity measures [185]. In this way, a tree is built by progressively categorizing the observa-

tion until reaching groups with the highest homogeneity. Hence, a tree performs a classification thus

it returns a predicted class. As mentioned, random forest is made of multiple decision trees, where

their construction is independent and the class predicted by most of the trees will establish the final

prediction. This approach is named majority vote. A random forest model is illustrated in Figure 2.2.

The trees in themodel are built under a bagging procedure aggregating trees, each of thembuilt based

on bootstrapping, hence by random sampling with replacement a subgroup of observation from the

initial set of observations. All trees are independent and identically distributed. The characteristics

of random forest make it ideal for limiting overfitting, a condition when the predictions fit too well

the data it was trained on, limiting its suitability for other independent sets of data. This is because
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random forest is trained on a set of randomized and independent trees, which maintains low bias

while reducing the variance of the model.

Figure 2.2 Example of a random forest model. The model is made of an ensemble of independent
decisional trees where each of them returns a predicted class. The final prediction is given by the

class that was predicted the most, following the rule of majority vote.

Hierarchical clustering

Hierarchical clustering [186] is a common clustering method that works by organizing observations

in homogeneous clusters following a hierarchical structure. There are two ways of performing hier-

archical clustering, an agglomerative and a divisive way. Agglomerative hierarchical clustering starts

by taking each data point as independent cluster and progressively agglomerating them until only

one cluster is left. The aggregation occurs bymerging clusters based on their similarity; whether clus-

ters are similar or not is determined by a linkage measure such as single linkage, complete linkage or

average linkage [187]. The result of such consequent agglomeration is a dendrogram, a clustering tree

that reflects the order of the clusters (see Figure 2.3). Divisive clustering works as the agglomerative

but in the opposite direction, starting from one big cluster which contains all the observations and

progressively splitting it into subclusters until reaching single data point clusters.
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Figure 2.3 Representation of agglomerative and divisive hierarchical clustering where the final
clustering procedure reflects a hierarchical structure.

2.3 Computational methods for cancer subtyping

The role of a subtyping signature is to reflect the molecular changes between samples belonging to

different subtypes and arrange them in homogeneous categories. Based on diverse molecular data

such as genetic variant, gene expression, miRNA, and DNA methylation, potential signatures are

computationally identified with the use of algorithms based on pattern recognition in an unsuper-

vised setting, like clustering techniques, or supervised like k-nearest centroids, where subtype labels

are known a priori. The goal of the analysis is to divide samples into categories that usually reflect

cancer aggressiveness, stage, metastatic presence, risk of relapse, and survival expectation as well as

different cellular compositions. Starting from a feature-by-sample table, the analysis goal is to iden-

tify those features that better differentiate the samples. Hierarchical clustering is often used in the

context of tumor subtyping. The 50 genes for breast cancer classification proposed by PAM50 [188]

have been obtained by applying hierarchical clustering on gene expression profiles from 189 breast

cancer samples. Out of 189, 122 samples show five clear gene expression patterns, indicating five

subtypes. A gene signature was established by taking the ten most cluster-specific genes per subtype,

here the number 50. The authors offer centroids for the sample classifications, computed with the

nearest centroids classifier. Roepman et al. [189] identified three intrinsic colorectal cancer subtypes

with the implementation of hierarchical clustering on mRNA profiles of a 188 samples cohort. Three

subtype-specific signatures are proposed, made of 32, 53, and 102 genes. The signatures were es-

tablished by computing a pairwise t-test combined with cross-validation. Another popular method

is consensus clustering-based non-negative matrix factorization. Non-negative matrix factorization

(NMF) [190] is a dimensionality reduction technique used for feature extraction. NMF decomposes a

starting matrix 𝑉 of dimension 𝑚 × 𝑛, where all elements are non-negative, into the product of two

matrices, one named feature matrix 𝑊 (𝑚 × 𝑘) and a second one named coefficient matrix 𝐻 (𝑘 × 𝑛),

both non-negative. The values of 𝑊 and 𝐻 are iteratively changed until the best approximation of

V is reached. The resulting feature matrix is a set of 𝑘 new latent features deriving from the linear

combination of the original features. In biomedicine, the features are usually biological components
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helpful for interpreting the meaning of the data composition. NMF is commonly used together with

consensus clustering and cophenetic coefficient to determine the optimal number of clusters. Con-

sensus clustering-basedNMF for subtypes discovery see its implementation in numerous studies [88–

90, 191], with different ways of retrieving meaningful subtype-related features. A common approach

combined with NMF is the multi-class significance analysis of microarray (SAM). SAM computes t-

test and data permutation to verify whether the expression of a gene is significantly different across

groups. Such an approach for the identification of cancer subtypes and associated gene signature was

implemented in the study of colorectal cancer [191] and allowed the identification of five classes of

colorectal cancer from mRNA data and a signature of 786 genes. The same procedure was used for

the study of pancreatic ductal adenocarcinoma implemented by Collisson et al. [89] and Bailey et al.

[90], discussed more in detail in the next chapter.

After assigning samples to clusters, these have to be translated into subtypes by recognizing their

biological insight. Subtypes are defined as groups with distinct molecular and clinical characteris-

tics and their delineation is crucial for precision medicine. Different subtypes are linked to different

survival outcomes, thus analyzing the association with survival information is a fundamental step

for the aggressiveness assessment. Subtypes are further distinguished by composition, hence further

characterization is carried out by estimating the TME and the cell types populating the samples, such

as immune cells. Gene-set enrichment analysis on the genes most enriched in each subtype helps

discover the mechanisms and functions they are involved in and that distinguish the subtypes.

2.4 Computational methods for PDAC signatures evaluation

This section contains the descriptions of methods used for the computational evaluation of transcrip-

tomic derived PDAC signatures proposed by Moffitt et al. [88], Collisson et al. [89], Bailey et al. [90]

and Puleo et al. [91].

We first observe the signatures’ behavior in clustering independent datasets and as subtypes pre-

dictors. Next, we implement additional analyses to understand their prognostic difference, their func-

tional activity, and their cellular content. We finally compare the performance of the real signatures

with the one obtained when using a random gene panel or shuffled subtypes labels. A schematic

summary of the main steps is shown in Figure 2.4.

2.4.1 Expression distribution

Assuming that a gene part of a signature might be representative of one subtype, hence not active

in the others, we expect it to carry a different expression distribution across different subtypes. To

evaluate such difference, we use for each gene in the signature the Wilcoxon test and Kruskal-Wallis

test (both two-sided) to compare two groups or more. A deeper investigation is dedicated to Puleo,
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Figure 2.4 Overview of the main analysis performed for signatures evaluation. Starting from the
data collection, established signatures with relative subtype calls plus the download of nine
independent validation datasets are obtained. The first analysis is clustering the datasets by

using the gene panels (a), followed by building classification models based on the signatures and
the subtyping schemas (b). Three additional analyses are performed on the predicted subtypes

to assess their cell composition through single-cell cell deconvolution (c.1), their functional
pathways with enrichment analysis (c.2), and their survival differences (c.3). Finally, robustness

analysis (d) is performed. Figure from [113].

whose five subtypes are compared in a pairwise fashion, with one subtype against the other four.

Bonferroni correction (p-value <0.05) is applied to any case. SciPy 1.6.0 in Python is used.

2.4.2 Clustering for subtypes reproducibility assessment

We adopted the agglomerative hierarchical clustering technique and truncated the dendrogram at the

number of subtypes to reproduce. Before performing the clustering we apply z-score transformation

to the data and we filter only the genes from the signatures. This step is performed by taking one

dataset and one signature at a time, and submitting the reduced dataset to agglomerative hierarchical

clusteringwith correlation asmetric and determining the two (Moffitt), three (Collisson), four (Bailey)

or five (Puleo) subtypes. We used two statistical tests, the Wilcoxon rank sum test for two clusters

comparison and the Kruskal-Wallis test otherwise, to assess the difference in expression between the

obtained clusters. Both tests are used by taking the genes in the signature, one by one, computed two-

sided and the returned p-values are Bonferroni corrected (p-value <0.05). We included Rank Index
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(RI) and Adjusted Rand Index (ARI) to quantify, in percentage, how much real subtypes match the

clusters.

2.4.3 Comparison with molecular gradient

The clusters were compared with PAMG scores for each of the nine cohorts. The computation of

PAMG is based on four independent datasets, where two are from ICGC (array and RNA-Seq), one

from Puleo, and one from PDX. The set of nine datasets collected also contains the first three data just

listed, thus we attribute them to the PAMG scores computed on the corresponding data. For the re-

maining datasets, we used the PAMG scores computed on data from the same platform. Scores were

computed by Dr. Nicolas Fraunhoffer and Dr. Nelson Dusetti, which we acknowledge. We addition-

ally perform Cox regression on PAMG, implemented in Python with the Lifelines 0.25.9 package.

2.4.4 Use of the signatures to build a subtypes prediction model

The subtype calls for the nine datasets were classifiedwith the random forest technique, implemented

with default parameters in Python using the Random Forest Classifier package in Scikit-learn 0.24.2.

Before building the prediction model, we combine the nine datasets considering only the intersect-

ing genes. Each dataset comes from a different source, the samples were prepared under different

settings and the data were obtained using different techniques. To remove such confounding factors,

we performed a data correction by removing the influence derived from the different origins of the

data. We can see how the data adjustment helped remove source influence with a principal compo-

nent analysis shown in Supplementary Figure 5.2. This step was carried out in R using the function

RemoveBatchEffect in the limma library, version 3.48.1.

We applied z-score transformation before using random forest for PDAC subtypes prediction. All

four signatures and the four sets of subtypes with related data were used for constructing prediction

models, sixteen in total. In this way, each of the nine datasets has a label predicted for the four sub-

type groups based on the four signatures. The workflow for building a prediction model starts from

taking the datasets used in the discovery studies, one by one, together with their subtype labels, and

keeping only the genes in the signatures, taking one signature and a time. How the models are built

is graphically explained in Figure 2.5.

2.4.5 Assessment of signatures robustness

A signature is robust when it performs better than a set of random genes. We want to know how

robust the signatures are, both in clustering the samples and predicting their subtype. The robustness

in classification is measured by comparing the prediction accuracy of the models when using three

different setups: predicting using the signature genes, predicting using a set of random genes of the

same size, and predicting using the signature genes but randomizing the class labels. Each of them is
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Figure 2.5 Schematic overview on the construction of the sixteen prediction models. Figure from
[113].

computed 1000 times and computing average 5-fold cross-validation for performance comparison. To

evaluatewhether the signatures are robustwhen clustering, we assess the overlap of the clusterswhen

using the true signatures and the oneswhen using randomgenes. Such overlap ismeasuredwithARI.

ARI was further implemented for pairwise comparison of the random genes-derived clusters.

To summarize the ARI just computed and evaluate the difference between them, the strictly stan-

dardized mean difference (SSMD) was used. Taking two independent groups with unequal variance,

named 1 and 2, with 𝜇 and 𝜎2 as their mean and standard deviation, we calculated SSMD using the

formula: 𝛽 = 𝜇1−𝜇2√
𝜎2

1+𝜎2
2
.

2.4.6 Cell deconvolution and ssGSEA

To investigate the cell types present in the bulk datasets, we performed cellular deconvolution taking a

pancreatic cells signaturematrix based on the single-cell RNA-Seq data obtained from normal human

pancreas from Tosti et al. [192]. Deconvolution was then implemented using CIBERSORTx [193].

To better comprehend the behavior and biological meaning of the genes in every dataset, we com-

pute single sample gene set enrichment analysis (ssGSEA). Such analysis computes enrichment scores
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aggregated at the gene level, able to represent the functionalities of the genes and determine whether

they are upregulated or downregulated. ssGSEA makes possible the comparison of the pathways

enriched in different samples. To determine in which pathway lies the difference between the pre-

dicted subtypes, we compute t-test (two-sided) and ANOVA, followed by multiple testing correction

(Bonferroni p-value < 0.05). Thanks to these two tests, we can filter the enrichment terms which show

significantly different activity between subtypes, represented by the enrichment score. After filter-

ing significant pathways and functional terms, we further want to identify in which specific subtype

the term is enriched. We do so by taking the average enrichment score registered in every subtype.

The term is considered up- or down-regulated based on whether the average value has a positive or

negative sign, respectively. This is performed for each term individually while considering that for

each dataset we have sixteen predicted labels. We performed the analysis with GSEApy 0.10.5 [194–

196] (Python) using two databases for pathway terms, KEGG [197] and Reactome [198], and the Gene

Ontology terms (cellular components, biological processes, and molecular functions) [199].

2.4.7 Prognostic relevance evaluation

Assessing the prognostic importance of a set of predicted subtypes is crucial for tumor stratification.

We use the log-rank test to perform survival analysis and evaluate differences in survival between the

predicted subtypes. The test is computed in a pairwise manner using the Lifelines Python package,

version 0.25.9 and only on the datasets where survival times are known (seven datasets).

2.5 Dimmer 2.0 for the discovery of de-novo DMRs

In this section we present Dimmer 2.0, an extended version of the tool Dimmer, released in 2016 by

Almeida et al. [172]. We first describe the workflow, highlighting novelties and corrections that have

applied since its first release, next, we explain and illustrate step by step the algorithm used for DMRs

discovery. The pipeline can be described in four main steps, summed up in Figure 2.6.

Dimmer 2.0 offers wide applicability starting from the input data. Data can come from array assay,

in either raw format or pre-processed 𝛽-value matrix, or BS-Seq as bismark output files (Figure 2.6,

(1.1)). A second input file named sample annotation file is required. This file contains sample IDs and

information about the samples which are needed for the upcoming analysis as well as eventual con-

founding factors to consider in case of regression analysis. The variable of interest is specified in the

annotation file which can be dichotomous (e.g. sick/healthy) or continuous (e.g. age). This variable

determines whether the DML will be established with a t-test or linear regression (Figure 2.6, (1.2)).

In the case of a dichotomous study, Dimmer 2.0 offers the option of designing a paired analysis (e.g.

before/after treatment). Once the upload step is done, the data are processed and quality checked. In

this step are performed loci filtering and background noise correction are followed by quantile nor-

malization, which estimates and accounts for sex (Figure 2.6, (2)). The cleaning and processing step
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Figure 2.6 Pipeline of Dimmer 2.0 consists of four steps, starting from the data input
(methylation profile (1.1) and samples information (1.2)). Once data is uploaded, quality control,
filtering, processing and normalization are executed (2). Step (3) is responsible for differentially

methylated loci (DML) identification, returning five types of p-value (original, FDR, FWER,
Step-down minP, empirical) which the user can choose from to define whether a locus should be
considered significantly differentially methylated or not. The output of step (3) plots the distance
between loci and methylation difference for each locus as well as volcano plots. Such figures are
meant to support the user in the p-value type decision. The next and final step is the DMR search
(4) using the default parameters or the ones passed in the input. A permutation test is used to

ensure the DMRs returned are statistically significant. (*) indicates novelties introduced with the
update of Dimmer and (**) indicate what was updated or fixed from the first version of the tool.
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is available for both 450k and EPIC array data and is based on the adaptation of the minfi R package

[161] while cell composition estimation is currently possible only for 450k. Dimmer 2.0 is now ready

for identifying DML, computing either a t-test or linear regression analysis for each of the genomic

positions of the input data and returning a p-value associated with each locus. The original p-values

are corrected following three multiple testing correction techniques, the Benjamini-Hochberg False

Discovery Rate (FDR) [200], the family-wise error rate (FWER) and the Step-down minP [201]. An

additional p-value type is obtained by shuffling the sample labels before the t-test/regression anal-

ysis, returning a distribution of empirical p-values (Figure 2.6, (3)). The user can choose among five

p-values types and the decision process is guided by showing figures with their distributions and

volcano plots. Additional results such as loci methylation difference and distance are displayed to

help the user to choose parameters for the DMRs search step. The final step is the research of DMRs

based on the previously identified DML, using the search algorithm which is described in the next

section.

2.5.1 Novelties

One of the biggest innovations in Dimmer 2.0 is the support of bisulfite sequencing data. The user

can upload a Bismark output directly in the tool. Additionally, Dimmer 2.0 can now work with al-

ready processed methylation data thanks to the possibility of uploading a 𝛽-value matrix that can be

previously customized, from either 450k or EPIC array. Idat files from different array versions do not

necessarily have the same set of loci. In these cases, only common loci across samples are analyzed

while the additional ones are ignored. In this way, idat files from different EPIC array versions are

now supported. Quality control and pre-processing correspond to the one in the first released ver-

sion of the tool, with a difference in setting the preprocessing step as optional. Furthermore, there

is now the chance to export the normalized and processed data table. To further narrow down the

DMR discovery, we introduced an additional criterion where the user can decide the minimummean

methylation difference a candidate region must have. We introduce a new approach for computing

individual p-values for every DMR. In the old approach, each region had an FDR p-value but indi-

vidual DMRs composition was not considered, ending upwith the same FDR for DMRs of equal size.

The new approach works by sampling from the genome a set of random regions (100.000 by default)

of the same size and the same number of loci. The p-values of such loci, computed in the DML search

step, are combined using Fisher’s method [202]. The method returns a score for each of the random

regions and the set of scores is used as a background distribution to obtain a p-value for every DMR

identified.
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2.5.2 Corrections

Besides the extensions, we fixed some logical bugs and significantly improved some existing features.

We debugged the paired-samples data analysis, where two consecutive samples from the sample

annotation file were considered pairs. While the original version of Dimmer provided FDR correction

for loci p-values, the correction was not implemented. We fixed this issue and now FDR correction is

correctly executed. DMR search speed performance was optimized. The first version of Dimmer used

to count the amount of DML and exceptions every time the sliding windowwas shifted, consuming a

significant amount of time. Now the counts arememorized so that exceptions don’t have to be counted

again, reducing the runtime considerably, especially in cases of abundant DML. Besides these major

adjustments, we further fixed minor bugs and applied small backend improvements.

2.5.3 The detection algorithm

The method used by Dimmer 2.0, already introduced with the first Dimmer release [172], is based on

a sliding genomic window.

Figure 2.7 Graphical representation of the DMRs search algorithm in Dimmer 2.0. (A) Once
CpGs are classified as differentially/non-differentially methylated, the algorithm places a

genomic window of fixed size on the genome and checks whether in the window there are at
most 𝑘 non-differentially methylated loci. (B) The window is used to scan the genome as long as
criteria are respected. The overlap of the regions that satisfy the criteria will be a potential DMR,

trimming the starting and/or ending CpGs in case they are non-differentially methylated.

The algorithm starts by taking awindowof fixed size, decided by the user, andmoving thiswindow

along the genome until a region with at most 𝑘 exceptions is found. An exception is defined as a

non-differentially methylated position where a position to be significantly differentially methylated

has an associated p-value lower than a significant threshold. This means that if the window size

is of five loci and the number of exceptions is two, the candidate region must contain three DML

43



2.6 Methods for DMRs evaluation 44

(Figure 2.7 (A)). Moreover, loci have to be distant at most 𝑛 base pairs, with 𝑛 defined by the user.

The window is moved forward until requirements are not satisfied anymore. Overlapping windows

that satisfy the criteria are considered DMR (Figure 2.7 (B)). Additional criteria to establish whether a

position is considered significant in the DMR search is the minimum methylation difference desired.

Dimmer 2.0 controls for region width by asking the user the maximum distance allowed between

CpGs when scanning the genome (Figure 2.6, (4)). The last step is a permutation test to assess the

statistical significance of the candidate DMRs. The labels significantly/non-significantly differentially

methylated at the CpG level are randomized and the DMR research is computed again. The goal is

to assess the chances of discovering the same DMRs on permuted data. Dimmer 2.0 is available as

a command-line tool and graphic user interface (GUI) at https://github.com/baumbachlab/Dimmer/
releases/tag/2.2. GUI is only available for array-based data, hence BS-Seq data can be only analyzed

using the command-line version of the tool.

2.5.4 Implementation on two study cases

Dimmer 2.0 is used two study cases, the first is primary PDAC versus metastasis and the second is

meningioma benign versus malignant samples. In both cases, Dimmer 2.0 is performed with the im-

plementation of a t-test and empirical p-values are considered. All default parameters are used, except

for the required minimum mean difference at the loci level, set to 0.1. PDAC versus metastasis is an-

alyzed in a paired setting because of the primary samples and the matching metastasis coming from

the same patient, differently from the meningioma case where the analysis is unpaired.

2.6 Methods for DMRs evaluation

The DMRs obtained are investigated with the implementation of different techniques to retrieve bio-

logical insight.

EpiRegio [203] is a repository of regulatory elements (REMs) and it looks for non-coding DNA

regions that overlap with a set of genomic regions of interest. Epiregio additionally returns a set of

genes associated with those matching REMs. We executed Epiregio using the region query option on

the web server application with a 50% REMs overlap percentage. Functional analysis on the regions

was performed with the g:GOSt function of the online tool g:Profiler (version 𝑒107𝑒 𝑔54𝑝17𝑏 𝑓 42210)

[204].

The biological interpretation of the regions is additionally carried out with the use of GREAT (Ge-

nomic Regions Enrichment of Annotations Tool) [205], a web application for identifying genes in the

proximity of a set of imputed regions. GREAT is particularly designed for working on cis-regulatory

regions and aims to elucidate themechanisms involved in the regions by performing enrichment anal-

ysis on the neighbor genes. The region-genes association is done by taking the gene regulatory do-
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mains that overlap the regions of interest. The regions-genes association is performed under GREAT

default settings, meaning a gene is attributed to each regulatory domain that is located at a distance

of a minimum of 5 kb upstream and 1 kb downstream of the transcription starting site (TSS). The

regulatory domain is further expanded both up- and downstream up to 1000 kb to the closest gene.

Only statistically significant terms are shown, where a term is considered significant when both the

binomial test performed over the regions and the hypergeometric test performed over the genes have

FDR adjusted p-value < 0.05. GREAT version used is 4.0.4.

A gene’s promoter or UTR region that overlaps with DMRs, suggests the possibility of an alteration

in the gene transcription and expression, as a consequence of the presence of an epigenetic alteration.

We additionally focus on the analysis of such genes, identified in R 4.1.0 with the use of the function

runseq2gene, part of seq2pathway 1.30.0 [206]. Only coding genes are considered.

Gene enrichment analysis of the genes obtained is performed in Python using the GSEApy 0.10.5

[207] library. Only statistically significant termswith adjusted p-value lower than a significant thresh-

old of 0.05 are shown.

2.7 Method for the delineation of a prognostic-relevant TB cut-off

Survival relevant cut-offs for the morphologic traits described in section 1.6 were identified. The ap-

proach adopted is based on splitting the samples in two group and assessing the difference of the two

survival curves with the implementation of the Log-Rank test. This step is repeated for each value

and the one that registered the lowest p-value is taken as cut-off. Whether cut-offs are robust or not

was assessed with Kaplan-Meier survival analysis after shuffling time points and events. Multivari-

ate survival analysis was conducted with Cox-regression model including age, sex and AJCC stage

as confounding factors.

2.8 Computational analysis of the association of TB with molecular data

The identification of features significantly associated with TB was carried out in two ways, distin-

guishing somatic mutation (binary data type 0/1 where 1=mutation and 0 otherwise) from the other

three data types, all continuous data.

The link between gene mutations and TBwas assessed by computingWelch’s t-test taking one gene

at a time. We collect the p-values returned by each test and adjust them for multiple testing (FDR).

Genes with corrected p-value < 0.05 are considered significant. The test was implemented in SciPy

1.5.2, in Python.
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A univariate linear regression is used to test each gene from the gene expression, protein from pro-

tein expression and CpGs from the DNA methylation data table.

The implementation of the regression model is preceded by an additional filtering step. Molecular

variables are filtered based on their variability, measured in median absolute deviation (MAD). In the

case of gene expression, only the 5000 genes with the highest MADwere kept for analysis. In the case

of DNA methylation, only the 10.000 CpGs with the highest MAD were used. The protein expression

matrix contains 131 proteins and all of them were kept. As for Welch’s t-test on mutational data, we

collected the p-values retrieved by the multiple univariate linear regression and applied FDR correc-

tion to identify the features with significant p-value (<0.05).

Before performing the regression model, TB was normalized by converting values to a logarithmic

scale. The implementation of linear regressionwas done in Pythonwith the statsmodelmodule (0.12.2).

Significant CpGs were mapped to genes. We considered the genes whose promoter region was

mapped with significant CpGs, assuming TSS200 and TSS1500 as gene promoter regions. The map-

ping was done using the IlluminaHumanMethylation450kanno.ilmn12.hg19 package of R, version

0.6.0.

Correlation between significant molecular features is measured with Pearson correlation and Point

Biserial correlation, both implemented using SciPy in Python, version 1.5.2.

2.8.1 Pathway enrichment analysis

Enrichment analysis was done using WikiPathway [208], BioPlanet [209], KEGG [197] and Reactome

[198] pathways repositories. Results non statistically significant (adjusted p-value < 0.05) were filtered

out. Analysiswas carried out in Pythonwith the use of theGseapy 0.10.8 library, while the enrichment

dot plot was obtained using the two R packages enrichplot 1.12.3 and multienrichjam 0.0.55.900.

2.8.2 Association with published lung-SCC molecular subtypes

TB activity was assessed in relation to different lung-SCC subtypes. We consider the four molecular

subtypes proposed by Wilkerson et al. [181], obtained via consensus clustering on mRNA expression

from a set of 382 squamous cell carcinoma samples. The four subtypes are primitive, classical, secre-

tory, and basal. A study carried out by TCGA classified the samples from the TCGA-LUSC project

into the four subtypes [153]. We use these predicted labels to test whether TB is characteristic of differ-

ent subtypes or not. ANOVA was performed to assess the association between TB and the subtypes,
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further compared in a one vs all approach with a t-test. Python SciPy 1.5.2 was used for the two tests

and a significance threshold of 0.05 was considered.
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3 Results

3.1 Transcriptome subtypes in PDAC are inconsistent

All the methods used in this section are described in section 2.4. The analyses were conducted

in Python 3.7.3 and R 4.1.0 and the code is stored in a GitHub repository at https://github.com/
biomedbigdata/PDAC-molecular-classifier-validation.

The first hypothesis we want to test is that, taking a gene signature, the expression distribution of

each gene appears different between subtypes, where values are higher in the subtype the gene is

representing and lower otherwise. Figure 3.1, shows Collisson subtypes as the classes most similar in

expression, nomatter what genes are used. On the other hand, Puleo subtypes appear to be extremely

different for every signature used. However, the test only tells if there is a difference without giving

any further information. For this reason, we perform additional analysis on Puleo subtypes, this

time comparing them in pairs to see if the high difference was mostly driven by one subtype. The

pairwise comparison output shows one subtype standing up respectfully to the others, which is the

Pure Classical subtype, followed by Desmoplastic, as shown in Supplementary Figure 5.3.

Figure 3.1 Comparison of the expression distribution of the subtypes, for each signature. Each
gene of the signature is used to isolate the expression distribution for every subtype and perform
the Wilcoxon rank sum test for two groups comparison and the Kruskal-Wallis test otherwise.
The distributions of Bonferroni-corrected −𝑙𝑜𝑔10 of the p-values are shown. The significance
threshold for p-value < 0.05 is represented by a horizontal dashed line. Figure from [113].
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3.1.1 Supervised and unsupervised analysis reveal poor subtypes reproducibility

Unsupervised analysis

After observing if the genes in the signatures have different values for different subtypes, we continue

testing the signature’s ability in clustering samples of nine cohorts. As we did in the previous section,

where we compared the expression distribution of subtypes to assess their difference, we do the same

here, comparing the clusters taking one gene at a time and showing the adjusted p-value distribution

below every heatmap (Figure 3.2).

The clusters obtained on the dataset used for the signature discovery accurately match the true

subtypes in the case of Moffitt and Puleo (Supplementary Figure 5.4 A.1 and A.4), as indicated by

RI and the distribution of significant p-values. However, this is not always the case. For Collisson

and Bailey (Supplementary Figure 5.4 A.2 and A.3), the distribution of p-values hardly reaches the

level of significance while the overlap among clusters is high. Similar result variability is observed

when doing clustering on independent data, showing either a good classes overlap or a good adjusted

p-values distribution. A different case is where there is both a good overlap and significance in the

distribution of p-values aswe can see, for instancewhen using the Bailey signature to cluster the Puleo

dataset (Figure , D.3). The clusters are compared to the molecular gradient PAMG [123], designed to

predict patients’ prognosis. The subtypes we are investigating have different prognoses and, in some

cases, like the dichotomous Basal and Classical from Moffitt, extreme. With this assumption, even

though PAMG is represented as a continuum, we expect its scores to match the expected survival

associated with the different subtypes, which are low scores for low survival and high otherwise. We

found sampleswith lower values of PAMGgrouped in clusters that correspond to theworst-prognosis

subtypes (basal, squamous and quasi-mesenchymal), and the opposite subtypes, the classical-like

subtypes, are represented by high PAMG scores.

Supervised analysis

Going further with the analysis, we meet the constraint of having subtype calls for a limited number

of datasets. To overcome this issue, we classify PDAC subtype labels for each dataset, with predic-

tion models built combining the four subtype schemes with the four signatures. The total number of

models is sixteen and their construction is explained in Figure 2.5 under the 2.4.4 method section. The

models are applied to the nine datasets and the predicted classes are compared with the real labels,

when available, to see if there is an agreement (Supplementary Figure 5.5). Interestingly, we found

that the predicted labels are made of a mixture of the real labels. An example is the case of the binary

classification proposed by Moffitt. Basal samples are expected to be predicted as basal-like subtypes

(Quasi-Mesenchymal, Squamous and Pure Basal/Stroma Activated/Desmoplastic according to Col-

lisson, Bailey and Puleo schemes), but what we observe is that labels predicted for these samples are

mixed basal and classical (Supplementary Figure 5.5).
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Figure 3.2 Results from hierarchical clustering. The four datasets from Moffitt (A), Collisson (B),
Bailey (C) and Puleo (D) are clustered keeping only the genes in the signatures. Below the

heatmaps is placed a boxplot with the −𝑙𝑜𝑔10 adjusted p-values distribution, where the p-values
are obtained from the Wilcoxon rank sum and Kruskal-Wallis test, computed to compare two
clusters or more, respectively. Overlap between clusters and real subtypes is indicated with RI

and ARI and shown in percentage on the left of every heatmap. A color bar with PAMG scores is
included. Figure from [113].

The possible explanation is that the models are not suitable to reproduce the subtypes. The clus-

tering results already showed how subtypes lack reliability, and what is observed in Supplementary

Figure 5.5 might be the consequence of a poor consensus between the subtypes proposed by the four

studies. We then executed the classification models 1000 times and saved their accuracy from 5-fold

cross-validation. The average accuracy is shown in Figure 3.3. What appears from the performance

result is that the signatures from Moffitt and Puleo perform the worst in predicting Bailey classes.

More generally speaking, Moffitt’s signature shows the worst accuracy. On the other hand, Moffitt

subtypes seem to always be correctly predicted, possibly helped by the fact that a binary classification

is less complex to reproduce.

Figure 3.3 5-fold cross-validation mean accuracy from 1000 repeated classifications. Results are
divided by signatures, where each signature is used to predict the four subtype schemes. Badea
et al. [82] samples were classified and made available by Collisson, thus included in this analysis.

Figure from [113].

3.1.2 Signatures show lack of robustness

A signature is reliable for the subtyping of PDAC when not only it can predict the classes it was built

for but also when, compared to other sets of genes, is the one that can do it best. This means that
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between the subtypes and the genes representing them, there is a meaningful connection. Numerous

studies have already discovered how signatures can be equal to or even less performant than using

random features [106]. We evaluate the signatures robustness by observing how a set of randomgenes

behavewhen used for the same purpose. We assess the signatures in both clustering and classification

settings [82, 210].

We perform the same procedure of using the signatures to cluster the samples of the nine datasets,

this timewith a set of random genes of the same size as the signature. To assess the similarity between

the clusters obtained in the first step and the second one, we compute ARI. We additionally compute

pairwise ARI only between random genes-derived clusters. The similarity between real clusters and

randomly obtained clusters appears very low, close to zero, as shown in Supplementary Figure 5.6.

ARI distributions shown in Supplementary Figure 5.6 are summed up in Figure 3.4 by computing

Figure 3.4 SSMD to compare the ARI computed between the true signatures clusters and the
random signatures clusters and the ARI computed taking the random signatures clusters in
pairs. The nine datasets are aligned on the x-axis while the four signatures are placed on the

rows in ascending order, from the smallest to the biggest. Values, expressed in absolute values,
indicated the good and bad robustness of the signatures. Figure from [113].

SSMD between the ARI of real vs randomly derived clusters and the pairwise ARI of random vs ran-

dom. From these results, we found a dataset-related difference. However, comparing the signatures

we can see an increase in the SSMD values as increasing the size of the signatures, ending with the

Puleo signature whose clusters are the ones diverging the most from the clusters generated by a ran-

dom signature.

The same ideawas appliedwhen evaluating how robust the signatures arewhen used as predictors.

We took themean 5-fold cross-validation accuracy obtained from the predictionmodels executed 1000

times on the data with known subtypes, and repeated the same but with two modifications. A first
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Figure 3.5 Distribution of mean 5-fold cross-validation accuracy obtained by executing 1000
times the three types of prediction models: the first trained using true signatures, the second

trained using random genes, and a third trained on randomized subtype labels keeping the true
signatures. Figure from [113].

Table 3.1 The maximum accuracy reached by the model trained on true signature (a), random
genes (b), and shuffled labels (c). The highest values among the three models are expressed in

bold. Cases, where random genes outperformed signatures or returned the same average
accuracy, are indicated with (*), (**), (***), (****). Table from [113].

Data and subtypes: Moffitt

Signature: Moffitt Collisson Bailey Puleo

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.95 0.84 0.75 0.91 0.85 0.73 0.91 0.84 0.73 0.92 0.85 0.74

Data and subtypes: Collisson

Signature: Moffitt (***) Collisson Bailey Puleo

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.7 0.78 0.69 0.82 0.77 0.8 0.81 0.74 0.7 0.77 0.74 0.7

Data and subtypes: Bailey

Signature: Moffitt (*) Collisson (****) Bailey Puleo (**)

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.51 0.71 0.44 0.75 0.75 0.5 0.94 0.72 0.45 0.65 0.81 0.47

Data and subtypes: Puleo

Signature: Moffitt Collisson Bailey Puleo

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.71 0.66 0.33 0.69 0.64 0.35 0.73 0.7 0.35 0.78 0.69 0.34
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modification trains the model on a set of random genes and a second one is using the real signatures

but shuffling the class labels. Results are shown in Figure 3.5 where the distribution of mean accuracy

is compared between the three types of models. Accuracy from the random genes and themodel with

shuffled labels reaches values that are comparable to the ones returned by the signature-basedmodels,

and in some cases even higher.

More specifically, we collected the highest values registered in the 1000 runs, available in Table 3.1.

The prediction of Bailey subtypes was the most critical one, indeed, three out of the four examined

signatures performed worse (Table 3.1 (*), (**)) or equal (Table 3.1 (****)) to random genes. The same

outcome is observed when using the Moffitt signature for the prediction of Collisson subtypes (Table

3.1 (***)).

3.1.3 Cell deconvolution confirms normal tissue contamination

After focusing on the evaluation of the signatures’ performance and robustness, we now move the

focus to the meaning of the subtypes predicted by the sixteen models. Even though the subtypes pre-

dicted do not correspond to the clinically established ones, they might still carry biological meaning.

The isolation of pancreas-specific cellswill help investigate their role in the different PDAC subgroups.

For each of the nine datasets, single-cell deconvolution estimated the enrichment of each cell in every

sample, as shown in Supplementary Figure 5.7. A first overview suggests that results are conditional

to the dataset used. We found the ADEX and Exocrine-like subtypes from Bailey and Collisson to be

enriched in acinar cells, corroborating the hypothesis on the presence of healthy tissue in the sam-

ples used by the authors (results from one of the nine cohort in Figure 3.6). Immune cell infiltration,

macrophages in particular, was observed in the Immunogenic predicted samples in Badea et al., Yang

et al. and ICGC-Array, more specifically when Bailey signature is used for prediction. Additionally,

macrophages are abundant in the Desmoplastic subtype together with a high presence of acinar cells.

Ductal cell typeswere foundparticularly expressed in classical-like subtypes. After examining the cel-

lular composition we want to investigate which are the active pathways and the functionalities linked

to the subtypes. Results are collected in the Supplementary Figure 5.8 while one representative result

is Figure 3.7. For sake of simplicity, we only plot the first 30 terms found significantly associated with

most of the datasets. Mostly enriched activities were found related to fatty acid and lipid metabolism

and metabolic pathways in general. For instance, metabolic activity is downregulated in the Basal

subtype, visible in 3.7. Samples predicted to be Exocrine-like were expressed by cytochrome P450,

where the characteristic of being drug-resistant was already discovered by Noll et al. [211].
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Figure 3.6 Cell deconvolution of the dataset used by Moffitt et al. Samples on the column and cell
types on the rows, where the values in the heatmap represent the proportion of each cell type in
the samples. The top color bars indicate the labels predicted by the 16 models. Figure from [113].
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Figure 3.7 KEGG pathways that are mostly associated with the predicted subtypes. Terms are
sorted in descending order, starting from the one found significantly enriched in the highest

number of predictions. Only the top 30 terms are shown. Table cells are colored according to the
number of times a term was significantly associated with the subtypes, going from zero to

sixteen given the sixteen predictive models. The vertical color bars indicate in which subtype the
term is mostly enriched and if it’s up-/down-regulated. Figure from [113].

3.1.4 Basal/classical as the most prognostically-relevant subtypes

We want to evaluate whether the classes we predicted with the use of the 16 models not only differ

in survival but also if their difference reflects what the authors observed with their analysis. We took

the seven datasets with available survival information and performed survival analysis. A pairwise

log-rank test was used on the predicted subtypes and −𝑙𝑜𝑔10 of the p-values are shown in Figure 3.8.

A first observation is that Classical-Basal survival was found significantly different (a), as claimed

by the own authors. The main observation from the other subtypes is the predominant difference

between basal-like and classical-like subtypes, particularly visible in Figure 3.8 (b) and (d.2).
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Figure 3.8 Survival analysis to compare survival curves of predicted subtypes. Analysis
conducted with a pairwise log-rank test and −𝑙𝑜𝑔10 of the p-value is stored in heatmaps divided
by subtype schemes: (a) Moffitt, (b) Collisson, (c) Bailey and (d.1) and (d.2) Puleo. Results are
divided by datasets, placed on the rows, and signatures, on the columns. Figure from [113].
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3.2 De novo discovery of differentially methylated regions in PDAC and
meningioma

3.2.1 Results on primary PDAC and matched liver metastasis

We used Dimmer 2.0 to investigate the molecular conditions that trigger PDAC progression and ag-

gressivity. We compared the methylation status of 11 PDAC samples with their corresponding liver

metastasis and identified 708 statistically significant DMRs. The regions found significant are long, on

average, 573 base pairs (Figure 3.9, left) and contain approximately 11 significant CpGs, with an aver-

age CpG density of 0.02 (Figure 3.9, right). One of the regions detected is located in chr16:56 641 998-

Figure 3.9 Distribution of the width of the 708 DMRs returned by Dimmer 2.0 (left) measured in
base pairs and distribution of the region’s density (right) measured as the amount of CpGs found

significant inside a region.

56 642 130, shown in Figure 3.10. Enrichment analysis revealed a small cluster of proteins linked to

zinc homeostasis, as shown in Table 3.2. Zinc plays a fundamental role in cellular functions and zinc

dysregulation may affect the immune reaction, the organism’s cellular life balance, and endocrine

functions. Zinc deficiency is also linked to gastrointestinal diseases and particularly in the pancreas

[212]. To assign biological meaning to the DMRs returned, we implement functional enrichment anal-

ysis by following three approaches useful for genomic regions interpretation. We first implemented

EpiRegio and found 146 REMs with 144 associated genes. Genes found significantly enriched in the

zinc regulation pathways are MT1A, MT1G and MT1H, which belong to the metallothioneins (MT)

protein family, and SLC39A7, a protein coding genewith zinc transport function. Zinc in the pancreas

playsmultiple tasks such as insulin regulation and engagement in glucagon secretion. The role ofMT

in the context of cancer metastasis is known to be linked to drug resistance and tumor progression
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[213]. An example is the case of MT1G, known to have a tumor suppressor andmetastasis prevention

role.

Figure 3.10 Genomic view of one of the DMR identified by Dimmer 2.0 from comparing primary
PDAC versus their matching liver metastasis. Region located on chromosome 16, starting at
56 641 998 and ending at 56 642 130. The view was obtained through the Ensemble Genome

Browser [53].

Table 3.2 Enrichment analysis of the 144 genes associated with the REMs identified by EpiRegio.
Only significant terms with adjusted p-value < 0.05 are shown. Gene set repositories that

registered significant terms are WikiPathway, Reactome and Biological Processes (BP) from Gene
Ontology terms.

Repository Term Overlap Adjusted p-value Genes

WikiPathway Zinc homeostasisWP3529 4/36 0.011 MT1A, MT1G, MT1H,
SLC39A7

Reactome Response to metal ions R-
HSA-5660526

3/11 0.008 MT1A, MT1G, MT1H

Reactome Metallothioneins bind
metals R-HSA-5661231

3/11 0.008 MT1A, MT1G, MT1H

GO BP cellular zinc ion home-
ostasis (GO:0006882)

4/28 0.021 MT1A, MT1G, MT1H,
SLC39A7

GO BP zinc ion homeostasis
(GO:0055069)

4/30 0.021 MT1A, MT1G, MT1H,
SLC39A7

When the gene promoter is hypermethylated, the expression ofMT1Gdecreases, resulting in PDAC

cells resistant to chemotherapy [214]. The relationship between the downregulation of MT1G and
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cancer progression was also observed in hepatocellular carcinoma and it was linked to the activation

of cancer pathways like nuclear factor 𝜅B (NF-𝜅B) pathway, a family of transcription factors involved

in immune response regulation and B cells apoptosis prevention [215]. TheNF-𝜅B transcription factor

is also proved to be linked with the transcription of genes that regulate cell proliferation promotion

[216]. High expression levels of SLC39A7 were found linked to poor prognosis andmetastasis spread

in the case of colorectal and breast cancer [217, 218]. We continue investigating the biological meaning

of the DMRs by looking at the genes whose TSS is associated with them. The GREAT tool identified

928 associated genes and returned significantmolecular functions and biological processes performed

by these genes, thanks to GO enrichment analysis, reported in Table 3.3.

Table 3.3 GREAT output showing GO enrichment analysis on the genes with TSS nearby or
matching the DMRs retrieved comparing PDAC and liver metastasis. Statistically significant

Biological Processes (BP) and Molecular Function (MF) terms with FDR adjusted p-value < 0.05
in both binomial and hypergeometric tests.

Repository Term Binomial FDR p-

value

Hypergeometric

FDR p-value

GO BP Regulation of toll-like receptor signaling

pathway

0.041 0.008

GO BP Regulation of transcription involved in

cell fate commitment

0.043 7.759e-05

GO MF Transcriptional activator activity, RNA

polymerase II transcription regulatory re-

gion sequence-specific binding

1.972e-06 1.268e-10

GO MF Transcriptional activator activity, RNA

polymerase II core promoter proximal re-

gion sequence-specific binding

9.628e-07 1.71e-09

GO MF Transcription factor activity, RNA

polymerase II distal enhancer sequence-

specific binding

1.122e-06 2.233e-11

Interesting is the enriched regulation of toll-like receptor (TLR) signaling pathways, responsible for

the innate immune response when a pathogen is detected. The activation of TLRs leads to the activa-

tion of theNF-𝜅B pathway [219]. While GREAT enrichment analysis exclusively focuses onGO terms,

we additionally performed functional pathway analysis on the associated genes returned by GREAT.

Results are shown in Table 3.4. We found enrichment in the pathway involved in the regulation of

gene expression in early pancreatic precursor cells. Engaged in the pathway is NR5A2, a gene whose

overexpression has been found linked to PDAC cell mobility and infiltration [220]. Because of the
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negative correlation between gene activity and DNA methylation status, where altered methylation

in gene promoters can influence the binding of the transcription factor, we want to observe whether

the DMRs are located in proximity or coincide with gene promoters.

Table 3.4 Functional pathway analysis of the 928 genes found associated with the DMRs.
Analysis executed using Reactome and KEGG pathway databases. Only significant terms with

FDR-adjusted p-value < 0.05 are reported.

Repository Term Overlap Adjusted
p-value

Genes

Reactome TNFs bind their physiological re-
ceptors R-HSA-5669034

7/24 0.034 EDARADD, TN-
FSF18, TNFRSF6B,
TNFSF4, CD27, TN-
FRSF25, TNFRSF1A

Reactome Regulation of beta-cell development
R-HSA-186712

8/32 0.034 NEUROD1, NR5A2,
HNF4A, ONECUT1,
PDX1, SLC2A2,
PAX6, NKX6-1

Reactome Nuclear Receptor transcription
pathway R-HSA-383280

10/51 0.034 THRB, NR5A2,
HNF4A, NR1I2,
RORC, ESRRG,
NR2E1, NR3C1,
NR0B2, ESR1

Reactome Circadian Clock R-HSA-400253 11/63 0.035 SREBF1, F7, RAI1,
CPT1A, MEF2C,
CRTC1, CRY2, CUL1,
SIK1, NR3C1, HIF1A

Reactome Regulation of gene expression in
beta cells R-HSA-210745

6/20 0.045 NEUROD1, HNF4A,
PDX1, SLC2A2,
PAX6, NKX6-1

Reactome Regulation of gene expression in
early pancreatic precursor cells R-
HSA-210747

4/8 0.048 NR5A2, ONECUT1,
PDX1, NKX6-1

KEGG Maturity onset diabetes of the
young

9/26 0.0004 NEUROD1, NR5A2,
HNF4A, ONECUT1,
PDX1, SLC2A2,
PAX6, NKX6-1,
MNX1

We identified the genes whose promoter overlaps the DMRs and performed functional enrichment

analysis. The genes found are 350 and the enrichment analysis results are reported in Table 3.5. Table

3.5 shows enrichment in glycosphingolipids (GSLs), biomolecules located in the cell plasma mem-

brane, known for their regulator function of different cells. Changes in GSLs expression have been

found linked to cancer growth and are used as biomarkers for immune-based cancer treatment [221].
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Table 3.5 Enrichment analysis on the genes with promoter regions overlapping the DMRs.
Analysis performed on the gene ontology Biological Processes (BP) and Molecular Function

(MF). Only statistically significant terms with FDR-adjusted p-value < 0.05 are shown.

Repository Term Overlap Adjusted
P-value

GO MF sialyltransferase activity (GO:0008373) 5/21 0.008

GO MF double-stranded DNA binding (GO:0003690) 26/651 0.011

GO MF alpha-N-acetylneuraminate alpha-2 8-sialyltransferase activity
(GO:0003828)

3/6 0.011

GO MF sequence-specific DNA binding (GO:0043565) 26/707 0.024

GO MF sequence-specific double-stranded DNA binding (GO:1990837) 26/712 0.024

GO MF RNA polymerase II cis-regulatory region sequence-specific DNA
binding (GO:0000978)

36/1149 0.03

GO MF DNA-binding transcription activator activity RNApolymerase II-
specific (GO:0001228)

15/333 0.038

GO MF RNA polymerase II transcription regulatory region sequence-
specific DNA binding (GO:0000977)

40/1359 0.038

GO MF cis-regulatory region sequence-specific DNA binding
(GO:0000987)

35/1149 0.039

GO MF glutathione transferase activity (GO:0004364) 4/27 0.04

GO BP glycosphingolipid biosynthetic process (GO:0006688) 5/16 0.012

Dysregulation of the GSLs is common and occurs after translation, used as therapeutic and diagnos-

tic markers for multiple cancer types such as breast and colorectal cancer, glioblastoma and recently

explored in the context of PDAC progression [222–225]. Literature shows a growing demonstration

of the link between aberrant GLSs expression and cancer signaling pathways such as the epithelial-

to-mesenchymal transition (EMT), an event associated with the metastatic promotion and malignant

cells diffusion [226]. Genes found enriched in GSLs biosynthetic process are ST8SIA1, B3GALT4,

ST8SIA4 ST8SIA5, and ST6GALNAC5. ST8SIA1 and ST8SIA4 are known to be responsible for metas-

tasis outgrowth in breast cancer [227, 228], ST8SIA5 was observed hypermethylated in PDAC [212]

and ST6GALNAC5 was found responsible for promoting PDAC resistance to the chemotherapy gem-

citabine [229].

3.2.2 Results on benign and malignant meningioma

We investigate the role of DNA methylation in the progression of meningioma from benign to ma-

lignant. We applied Dimmer 2.0 intending to find potential epigenetic markers able to explain the

differentiation between the two diagnostic stages. Dimmer 2.0 identified 2100 statistically signifi-

cant DMRs, with an average width of 985 base pairs and an average density (number of CpGs/DMR

width) of 0.01, with 10 CpGs per region, on average. Density andDMRs size distribution is illustrated
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in Figure 3.11). Visualization of one of the DMRs is proposed in Figure 3.12 and has as coordinates

chr6:30 711 073-30 712 559.

Figure 3.11 Distribution of the width of the 2100 DMRs returned by Dimmer 2.0 (left) measured
in basepairs and distribution of the region’s density (right) measured as the amount of CpGs

found significant inside a region.

Figure 3.12 Genomic view of the DMR identified by Dimmer 2.0 from comparing benign
meningioma samples versus malignant ones. Region located on chromosome 6, starting at
30 711 073 and ending at 30 712 559. The view is obtained through the Ensemble Genome

Browser [53].

The implementation of Epiregio found 383 significant REMS with 369 associated genes. However,

enrichment analysis on the genes did not identify any significant term. With GREAT we identified
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2264 genes overlapping the DMRs by their TSS. GREAT performs enrichment analysis on the genes

using GO terms, where genes were found engaged in embryonic organ morphogenesis and devel-

opment, protein binding, and regulation of transcriptional activity. Results are reported in Supple-

mentary Table 5.3. An independent pathway enrichment analysis revealed enrichment in cancer-

related pathways and genes involved in beta cell regulation (Table 3.6). Interesting is the enrichment

of PI3K/AKT, a signaling pathway with a fundamental function in cell cycle regulation, known to be

dysregulated in numerous cancer types [230]. Moreover, it has been proved a connection between

the activation of PI3K/AKT and later stages of meningioma, explaining the progression to more ag-

gressive conditions, thus proposed as a therapeutic target [231]. By overlapping DMRs with gene

promoters, we identified 845 genes, particularly the enrichment of HOX genes, potential prognostic

markers [232]. Pathway analysis showed enrichment in several cell types, such as neurons, stem cells,

and epithelial cells. Results are available in Supplementary Table 5.4.
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Table 3.6 Functional pathway analysis of the 2264 genes associated with the DMRs. Analysis
executed using Reactome and KEGG pathway databases. Only significant terms with

FDR-adjusted p-value < 0.05 are reported.

Repository Term Overlap Adjusted

p-value

Reactome Developmental Biology Homo sapiens R-HSA-

1266738

139/786 4.63E-05

Reactome Regulation of beta-cell developmentHomo sapiens R-

HSA-186712

16/32 4.63E-05

Reactome Constitutive Signaling by Aberrant PI3K in Cancer

Homo sapiens R-HSA-2219530

20/61 0.003

Reactome Transcriptional regulation of pluripotent stem cells

Homo sapiens R-HSA-452723

15/42 0.0069

Reactome PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

Homo sapiens R-HSA-6811558

23/83 0.0069

Reactome Activation of anterior HOX genes in hindbrain devel-

opment during early embryogenesisHomo sapiens R-

HSA-5617472

24/89 0.0069

Reactome Activation ofHOXgenes during differentiationHomo

sapiens R-HSA-5619507

24/89 0.0069

Reactome Negative regulation of the PI3K/AKT network Homo

sapiens R-HSA-199418

24/90 0.007

Reactome Regulation of gene expression in early pancreatic pre-

cursor cells Homo sapiens R-HSA-210747

6/8 0.007

Reactome Regulation of gene expression in beta cells Homo

sapiens R-HSA-210745

9/20 0.0189

KEGG Maturity onset diabetes of the young 16/26 3.77E-07

KEGG Signaling pathways regulating pluripotency of stem

cells

37/143 0.0002

KEGG Gastric cancer 34/149 0.0037

KEGG Neuroactive ligand-receptor interaction 61/341 0.0103

KEGG Parathyroid hormone synthesis, secretion and action 25/106 0.0103

KEGG Transcriptional misregulation in cancer 38/192 0.0135

KEGG Basal cell carcinoma 16/63 0.0365
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3.3 The amount of tumor buds serves as a prognostic marker in
histomorphology

We used the established grading system [148, 149] to grade the samples of the study cohort according

to their TB activity. This grading appeared not survival relevant for neither OS nor PFI (p-value

for OS=0.28, for PFI=0.45). Hence, we identified a cut-off that is prognostically significant for four

morphological traits of lung-SCC: TB, STAS, the distance of STAS in the alveoli, and immune cell

infiltration. The amount of stromawas also tested for its prognostic role but no significant cut-off was

found. For TB counts the cut-off identified is of two tumor buds. Hence, patients are divided into two

groups according to the number of buds found in 10 HPF, where one group represents low budding

activity (zero or one bud) and the second group represents the high activity (two buds or more) with

a p-value of 0.009 (Figure 3.13 A). The same cut-off was identified for the amount of STAS observed

(low STAS if zero or one, high STAS otherwise), with a p-value of 0.009 (Figure 3.13 B). In the case

of the distance of STAS in alveoli, a cut-off of three was determined and samples are considered as

limited in distance in case the number of alveoli is between zero and two, and extensive in case of three

or more alveoli, with p-value=0.01 (Figure 3.13 C). In the case of immune cell infiltration, the survival

of patients differs the most when divided into low and high immune cell content with a cut-off of

2% (p-value=0.006) (Figure 3.13 D). Minimum cell nest size was also considered and a cut-off of three

cells was identified to determine whether a cell nest is to be considered small (less than three cells)

or large (three or more cells). Cut-off for the amount of stroma was found at 35%, grouping patients

into low and high presence of stroma. The cut-offs identified for stroma content and minimum cell

nest size did not appear to be useful for prognostic stratification either for OS or for PFI.

Cut-offs for TB, STAS, and immune cells content failed to predict PFI (p-value = 0.8, 0.14, 0.97, re-

spectively) contrary to distance of STAS (p-value=0.03). To further assess the prognostic impact of the

cut-offs, additional survival analysis was conducted with Cox-regression including age, sex, AJCC

stage as risk factors for both OS and PFI. Higher risk of death for patients with high TB (HR=3.57, p-

value=0.02), high STAS (HR=3.13, p-value=0.01), an extensive distance of STAS in alveoli (HR=2.63,

p-value=0.03) and rich immune cell infiltration (HR=3.08, p-value=0.01) as shown in Figure 3.14, left.

High risk of disease progression was observed for patients with a high number of STAS (HR=1.96, p-

value=0.04), and an extensive distance of STAS (HR=2, p-value=0.03), while high immune cell content

is predictive for a reduced disease progression (HR=0.38, p-value=0.05). The amount of buds was not

a determinant for PFI (HR=0.96, p-value=0.87) while stage III/IV, considered in the interrelation with

the age, sex AJCC stage and TB, is predictive of PFI. The same result was observed when consider-

ing richness in immune cell infiltration, where stage III/IV is linked to an increased risk of disease

progression. Models with age, sex, AJCC stages and STAS or distance of STAS were not significant.

Summary of the results is in Figure 3.14.
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Figure 3.13 Kaplan-Meier plot of the TCGA dataset. Survival anlalysis conducted on OS. The two
survival curves are obtained using the cut-off identified for TB (A), STAS (B), distance of STAS in

alveoli (C) and immune cell proliferation (D). Figure from [134], with permission of Elsevier.
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Figure 3.14 Cox regression of the TCGA cohort. Analysis performed on TB, STAS, distance of
STAS in alveoli and immune cell proliferation presented one after the other an divided by OS
(left) and PFI (right). For each variable hazard-ratio (HR), confidence interval (CI) and p-value

are shown. Table from [134], with permission of Elsevier.
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An independent cohort is used to assess the validity of the cut-offs in dividing patients byprognosis.

We performed a univariate survival analysis where a log-rank test was used to assess the difference in

OS between the two groups of samples identified by the cut-offs of four variables: TB, STAS, distance

of STAS and immune cells infiltration. Results show survival curves significantly different based on

TB, STAS, distance of STAS but not on immune cells content, as illustrated in Figure 3.15. This time,

besides OS, also the time a patient is disease-free after treatment was investigate. Analysis on DFS

found a p-value lower than 0.001 for TB, distance of STAS and STAS, while p-value=0.81 for immune

cells infiltration.

Predictive models were built for the four variables independently, with age, sex and AJCC stage as

additional risk factors. Cox regression shows comparable results between OS and DFS. If the patient

is at stage III/IV and presents a high TB activity, the death risk is increased, as well as the disease

relapse. The same conclusion can be taken when considering STAS and distance of STAS. Results are

summarized in Figure 3.16.
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Figure 3.15 Kaplan-Meier plot of the validation dataset. Survival anlalysis conducted on OS. The
two survival curves are obtained using the cut-off identified for TB (A), STAS (B), distance of
STAS in alveoli (C) and immune cell proliferation (D). Figure from [134], with permission of

Elsevier.
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Figure 3.16 Cox regression of the validation cohort. Analysis performed on TB, STAS, distance of
STAS in alveoli and immune cell proliferation presented one after the other an divided by OS
(left) and DFS (right). For each variable hazard-ratio (HR), confidence interval (CI) and p-value

are shown. Table from [134], with permission of Elsevier.
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3.4 Gene expression analysis reveals EMT as potential TB driver

3.4.1 Single-omics analysis

Analysis of the relationship between expression and TB returned 595 statistically significant genes.

The regression coefficients linked to each gene used as predictors in the analysis suggest how intense

their relationship with TB is. In Table 3.7 we display the five statistically significant genes with the

highest coefficients.

Table 3.7 Five of the 595 statistically significant genes identified by linear regression using
univariate gene expression, top 5 with the highest regression coefficients.

Gene name Adjusted p-value Coefficient

TNFRSF12A 3.93E-08 0.478

KCNN4 4.06E-08 0.471

DAPL1 8.63E-07 -0.437

TMPRSS11A 6.19E-06 -0.412

IL11 6.37E-06 0.41

The first two genes, TNFRSF12A and KCNN4, are known for their contribution to metastasis inva-

sion. TNFRSF12A (tumor necrosis factor receptor superfamily, member 12A) is a protein-coding gene

responsible for the production of the TWEAK cytokine, a protein part of the TNF superfamily of re-

ceptors involved in the activation of the AKT signaling pathway. AKT pathway plays a fundamental

role in cancer promotion, stimulating cell migration and preventing cell apoptosis [233]. TNFRSF12A

is known to be up-regulated and overexpressed in cancer, it is additionally linked tometastasis forma-

tion and reduced patient survival, making it a prognostic biomarker and drug target for glioma [234],

breast cancer [235], gastric cancer [236] and pancreatic cancer [237]. Numerous studies demonstrated

the oncogenic role of KCNN4 in promoting tumor development and resistance to chemotherapy [219,

238, 239]. In lung adenocarcinoma, the silencing of KCNN4 was found responsible for malignant cell

death induction and the suppression of cell invasion mechanisms [240]. To gain insight into the 595

genes we performed pathway enrichment analysis. Results see the genes strongly associated with

cell invasion mechanisms given the enrichment in the pathway responsible for EMT, corroborating

the hypothesis of EMT as a driver for TB. Enrichment analysis results performed on WikiPathway

are illustrated in Figure 3.17. It is possible to see which gene is involved in which pathway in Sup-

plementary Figure 5.9. An additional enrichment analysis carried out using the pathway repository

BioPlanet found an enrichment in WNT signaling pathway (p-value = 4.619E-13), further supporting

the involvement of EMT in the TB development. Genes found involved in the WNT signaling belong

to the Collagen type 1 family and ADAMS gene family.
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Figure 3.17 Pathways significantly enriched in the 595 significant genes. Enrichment analysis
was performed using WikiPathways as a pathways repository. The figure shows the interaction
between pathways based on the intersecting genes. The width of the edges is proportional to the
number of genes the two terms have in common while the size of the nodes is determined by the

size of the gene set. The nodes’ color reflects the adjusted p-value of each term.
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DNAmethylation levels of 543 CpGs were found significantly associated with TB. Aberrant methy-

lation in the gene promoter region is known to be responsible for altered gene activity such as gene

silencing or activation. We retrieved those genes whose promoter region includes at least one of the

543 CpGs, collecting a list of 76 genes. As for gene expression, we use enrichment analysis to identify

the biological functionalities of the genes. High enrichment was found in the glucuronidation path-

way (Table 3.8), a phase II metabolic reaction responsible for the metabolism of chemical substances

and known for its involvement in drug inactivation. Genes found involved in this mechanism be-

longs to the UDP-glucuronosyltransferases (UGT) gene family, known as drug targets. Indeed, high

expression levels of UGT genes have been found responsible for the inefficacy of a wide variety of

drugs [241, 242].

Table 3.8 Pathway enrichment analysis performed on the 76 genes whose promoter regions were
found enriched with methylated CpGs associated with TB. Repositories shown are WikiPathway

and Reactome and only significant terms (adjusted p-value < 0.05) are reported.

Repository Term Overlap Genes Adjusted p-value
WikiPathway Glucuronidation 5/26 UGT1A10, UGT1A9,

UGT1A8, UGT1A7,
UGT1A6

3.98E-06

WikiPathway Codeine and Morphine Metabolism 4/15 UGT1A10, UGT1A9,
UGT1A8, UGT1A6

1.18E-05

WikiPathway Metapathway biotransformation
Phase I and II

5/183 UGT1A10, GPX2,
UGT1A9, UGT1A7,
UGT1A6

0.016

WikiPathway Aryl Hydrocarbon Receptor Path-
way

3/46 UGT1A9, UGT1A7,
UGT1A6

0.016

WikiPathway Irinotecan pathway 2/13 UGT1A10, UGT1A9 0.02

WikiPathway Estrogen metabolism 2/18 UGT1A9, UGT1A6 0.03

WikiPathway NRF2 pathway 4/146 GPX2, UGT1A9,
UGT1A7, UGT1A6

0.03

WikiPathway Tamoxifen metabolism 2/21 UGT1A10, UGT1A8 0.033

Reactome Glucuronidation 4/20 UGT1A9, UGT1A8,
UGT1A7, UGT1A6

0.0001

Only one protein, MIG6, was found significantly associated with TB. MIG6 (also called ERRFI1) is

well known for its tumor suppressor key role [243], found down-regulated in multiple cancer types

like breast [244] and lung cancer [245]. MIG6 negatively regulates EGFR, a protein involved in the

activation of signaling pathways like PI3K-AKT, responsible for cell migration promotion, by inhibit-

ing the catalytic activity [246]. The development of chemotherapy drugs targeting EGFR inhibition

showed promising results in improving lung cancer patients’ survival [247]. However, the identifi-

cation of drug-resistant cases addressed researchers in further analysis to elucidate the role of EGFR
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as a therapeutic target [248] and focus on its interaction with MIG6 taking this last one as a poten-

tial target in lung cancer [249]. Moreover, the activity of MIG6 was found to be dependent on EGFR

expression level in cancer cells that, when low, affects MIG6 activity in regulating AKT and PHLPP,

linked to tumorigenesis promotion [250]. Nevertheless, In this analysis MIG6 was found positively

associated with TB with a regression coefficient of 3.97, suggesting that its role in the TB activity of

lung cancer requires further study. TB was found associated with mutations in 281 genes. We identi-

fied frequently mutated genes that are involved in phosphoinositides metabolism, with seven out of

the 281mutated genes involved in it (PLCB4, MTMR3, MTMR12, INPP5D, PLCE1, PLCH1, PIK3C2B).

Interesting is the case of PIK3C2B, a protein-coding gene part of the PI3K family, found linked to TB

(Welch’s t-test = 3.78). It is involved in signaling pathways and cell migration regulation and its mu-

tation might affect cancer progression [251, 252]. The presence of a somatic mutation in PIK3C2B was

found in non-squamous cell lung cancer [253]. Hence, a mutation in PIK3C2Bmight be linked to high

activity TB hence to a worst prognosis.

3.4.2 Multi-omics integration suggests a link to epigenetic activity

Among the genes obtained from the analysis onmethylation, there is glutathione peroxidase 2 (GPX2).

The role of GPX2 is to maintain the cell status by protecting it against oxidative damage caused by

lipid peroxidation. Literature determined that overexpression of GPX2 is found in different cancer

types, including non-small cell lung cancer, associated with poorer survival of the patients [254].

Results found one CpG (cg26155983) in the promoter region of GPX2. This CpG is significantly as-

sociated with TB (regression coefficient = 0.29) it has a methylation level of 𝛽 value = 0.6. Moreover,

it’s negatively correlated with the gene expression level(Pearson correlation coefficient = -0.79, see

Figure 3.18), suggesting that gene transcription is potentially inhibited by epigenetic activity. How-

ever, the GPX2 expression level was also found negatively linked to TB in lung-SCC (regression

coefficient of -0.27). Other genes with methylated promoters significantly associated with TB are

UGT1A6/7/8/9, involved in the metabolic pathway as shown in the previous section. As for GPX2,

expression of UGT1A6/7/9 was also found negatively linked to TB. Methylation intensity in the pro-

moters of UGT1A6 and UGT1A9 is similar (𝛽-value = 0.7) and both show a high negative correlation

with expression (respectively -0.74 and -0.76 Pearson correlation), as illustrated in Figure 3.18. The

gene expression of these two genes was also found significantly linked to TB.

Expression of proteinMIG6was found positively associatedwith TB.However, the negative expres-

sion levels of the protein (average of -0.14) together with the methylated promoter of the associated

gene (average 𝛽-value=0.38) suggests a possible epigenetic silencing of the protein transcription. This

hypothesis was further supported by the negative correlation (-0.29) observed between methylation

values and gene expression, while no correlation was registered between methylation and protein

expression. However, it is not clear what possible functionality MIG6 has in the context of tumor

budding located in lung-SCC cancer patients. Further experimental analysis should be carried out to
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better understand the role of this gene. The seven mutated genes associated with TB and involved

in phosphoinositides (PLCB4, MTMR3, MTMR12, INPP5D, PLCE1, PLCH1, PIK3C2B) were found

highly expressed though expression levels were found not correlated with the presence or absence of

a somatic mutation.

Figure 3.18 Pearson correlation computed between gene expression profile and average promoter
methylation for UGT1A6, UGT1A9 and GPX2. The expression and methylation level of the three

genes was found significantly associated with TB activity.

3.4.3 TB is significantly associated with published molecular lung-SCC subtypes

Primitive, classical, secretory and basal are four molecular subtypes identified for lung-SCC and pub-

lished in 2010 by Wilkerson and colleagues [181]. We investigated whether TB activity differs across

the four subtypes and we found the difference to be statistically significant (p-value = 0.01) suggest-

ing that the subtypes are characterized by diverse amount of buds. We further tested the subtypes’

Figure 3.19 Tumor budding distribution of the four molecular subtypes proposed by Wilkerson
[181]. The density curve of the Secretory subtype differs from the others.

differences by comparing them with each other in a one vs others comparison. The subtype which
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distinguishes itself from the others is the secretory subtype (p-value = 0.001). The basal subtype

registered a p-value of 0.08 while the two remaining subtypes, primitive (p-value = 0.51) and classi-

cal (p-value = 0.39), are both not significant. Furthermore, comparing the distribution of tumor buds

countwe notice a different behavior in the secretory subtype, characterized by highermean and larger

standard deviation, as illustrated in Figure 3.19.
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4 Discussion

Computational evaluation of published molecular PDAC signatures

In oncology, the delineation of which tumor type affects a patient is crucial to designing a precise

treatment approach, which coincides with the aim of the first project we presented. The complexity

of PDAC is well known, with high heterogeneity of the tumormass and the tumormicroenvironment,

and a high metastatic spread that makes this cancer type one of the most deadly. Numerous studies

focused their research on identifying the subtypes PDAC differentiates in and the genetic markers

that explain this differentiation. We performed an extensive analysis to understand the limits of four

of the main established signatures for PDAC subtyping. Despite the promising results shown by the

four studies ([88–91]), some main points were fully investigated yet, such as the reproducibility of the

subtypes on independent datasets or the signatures’ robustness. Additionally, besides the reliabil-

ity of the subtype schemes in their existence, their composition and quantity across different studies

show disagreement, where even just the number of subtypes still remains an open issue. A common

conclusion we reached after the computational analyses is the fact that the subtypes are built fitting

the dataset used for discovery, reflecting its specific composition and data preparation. Indeed, not all

the subtypes can be reproduced on external datasets. Instability on the number of subtypeswas firstly

detected from clustering analysis where the clusters obtained not only do not always match the real

labels but some of the subtypes aremade of only one sample, meaning that a lower number of clusters

would be preferred. An example is the clusters aimed to reproduce Bailey subtypes, where three sub-

types rather than the proposed four seemmore suitable, insinuating that a normal cell contamination

was believed to be a distinct subtype. This was confirmed by cell deconvolution where healthy acinar

cells were found enriched in the samples predicted as ADEX (Bailey) and as Exocrine-like (Collisson).

We believe that in the data used by these two studies there is a cluster of healthy cells particularly

prevalent in some samples, whichi influenced the classes identification. In samples predicted as Im-

munogenic (Bailey) and Desmoplastic (Puleo) we found the presence of macrophages, denoting a

possible immuno-contamination. Further investigation should be addressed in understanding the

immunogenicity of PDAC when contemplating a subtypes identification. Samples rich in immune

cells such as T-cells and macrophages have been linked to poor prognosis and cancer aggressiveness,

however, whether the immune reaction should be considered or not a subtype should be indepen-

dently validated [255–258]. Bailey andPuleo’s signatures reported better performance in classification

when compared to the other two studies, Moffitt and Collisson. Furthermore, the Bailey signature
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was found as the most robust classifier when compared with random genes or the use of a shuffled

target labels in the prediction model. Other signatures registered an overall performance better than

randomized models, however, there have been observed cases of random signatures reaching equal

or even higher accuracy. Subtypes like Immunogenic and ADEX (from Bailey), Exocrine-like (from

Collisson), and Desmoplastic (from Puleo) require analysis at a more detailed level. With our analy-

sis, we confirm the essential classification in the two classes basal-like and classical-like as the most

solid and stable stratification, also demonstrated by survival analysis which sees the two diverging

subtypes as the most prognostically different. The binary classification was additionally proven to be

a successful determinant for patient survival and therapeutic outcome byRashid and colleagues [116].

The authors propose a classifier named PurIST, able to predict whether a PDAC sample belongs to

a basal or classical configuration, additionally showing promising prediction for chemotherapy reac-

tion and prognosis. To be clinically applicable, clinical trials should be used to evaluate PurIST. Even

though a two-tumor class appears to be robust, it also showed limitations and discrepancies [121, 150,

259]. The studies proposed by Moffitt, Collisson, Bailey, and Puleo certainly contributed to getting

closer to elucidating the possible existing PDAC subgroup types. With our study, we demonstrated

that the combination ofmachine learning techniques with high-throughput data is not enough for the

purpose: we found inconsistencies and weak points that we can use as the foundation from which to

continue the challenge of PDAC stratification. We believe that the different sample composition and

data preparation are the first issues to be responsible for the subtype disagreement across studies.

Only Moffitt and Collisson performed tumor microdissection and only Bailey and Puleo accounted

for immune cell infiltration; on the other hand, only Bailey and Collisson considered the exocrine

features as one independent subtype. Moreover, all these studies implemented an unsupervised ap-

proach, and the use of such analysis for subtype identification should be followed by an intensive

evaluation on independent cohorts to confirm the veracity of the clusters found, validation that is

either missing or performed superficially. Given the results achieved, we think that PDAC subtype

identification might benefit from a different approach. In the literature, it has been raising the con-

cept of a continuous tumor stratification, as it might better resemble the biological and clinical traits of

PDAC [123]. The comparison between predicted and real subtype classes revealed a mismatch. How-

ever, such a mismatch might reinforce the hypothesis of a spectrum representing PDAC progression

and change of morphology from a classical-like state to a more basal-like state. We strongly believe

that future studies should focus on the concept of PDAC stratification as a continuum instead of mu-

tually exclusive classes, given that one patient can present characteristics belonging to more than one

class which can explain a sample misclassification or non classification. We observed the impact that

cell heterogeneity, stroma, and TME have on PDAC stratification, therefore we consider that the use

of single-cell profiling can provide crucial insights to understand the real composition of the tumor

[122, 260–264]. Together with the use of single-cell data, we also believe that an omics data integration

can give a broader picture of PDAC configuration and it can help reveal the mechanisms that drive its
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differentiation [265, 266]. All these aspects need consideration to avoid creating models that are only

suitable for the data used for their construction and not for external data, and we stress the impor-

tance of the validation of the results obtained as one of the take-home messages. Indeed, although

bioinformatics research often shows promising biomarkers, these should be cautiously validated in

their prediction accuracy, robustness, and reproducibility as well as their clinical utility.

De-novo DMRs discovery with Dimmer 2.0

With the second project, we offer a full pipeline for epigenome-wide differential study, which is an

extended version of Dimmer ([172]). We have carefully surveyed the available methods for the dis-

covery of differentially methylated regions (DMRs) and decided to upgrade Dimmer and propose

Dimmer 2.0, a tool of easy implementation and results interpretation while ensuring reliability and

robustness. It is common knowledge that the study of epigenetic marks is challenging yet of high

relevance, and that epigenetic changes are often responsible for the initiation of new diseases or for

creating conditions that enhance their progression. Methylation is measured for hundreds of thou-

sands of genomic locations and the manipulation of such a big dataset can be demanding. Moreover,

even after allocating where the alteration took place, linking that change to the phenotype might be

challenging. Such a complex scenario stimulated us to provide a tool that can help scientists for a

faster understanding of how methylation contributes to a phenotype. Methylation data can be gen-

erated from multiple platforms and presented in different formats. While numerous tools focus on a

single platform, either array or sequencing-based and exclusively rawfiles, Dimmer 2.0 has the advan-

tage of being suitable for both raw and preprocessed array platform data and sequencing technology

data. Dimmer 2.0 is designed for the identification of de novo DMRs, for which the discovery of new

biological insight is made possible. In Dimmer 2.0 a broad range of parameters can be modified to

fit personal requirements and give the user the power to analyze different case studies (e.g. continu-

ous phenotype or paired studies); moreover, it can work with both CpG and non-CpG contexts, not

always possible in other DMR discovery tools. To test the significance of DMRs and minimize the

amount of false positive regions (type 1 error), the best approach is to perform a permutation test on

the final set of returned regions. Tools available in the literature rarely offer the chance to perform

permutation analysis. The only ones including permutation are dmrseq [267] and the tools imple-

menting the bump hunting algorithm (ChAMP [268] and Minfi [161]). A strength of Dimmer 2.0 is

the easy implementation thanks to the dual availability of GUI and command line tool which makes

it user-friendly and does not require any coding ability or previous computation. We further com-

pared the characteristics of Dimmer 2.0 with the main tools published and highlighted its capability

in identifying de novoDMRs and ensuring statistically significant results. A table containing the main

existing tools and their characteristics can be found in Supplementary Table 5.2. We demonstrated the

potential of Dimmer 2.0 using two distinct study cases and assessed the output in multiple ways to

gain biological insight. We first compare paired samples of PDACprimary tumor to livermetastasis to
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unravel the epigeneticmechanisms linked tometastasis formation. TheDMRs obtainedwere found to

intersect regulatory elements involved in maintaining the stability of intracellular zinc level. Indeed,

cells with a decreased zinc amount are linked to malignancies and cell growth. From the DMRs, we

further obtained the genes whose TSS region matches the DMRs. Such genes were found involved

in the Toll-like receptor signaling pathway which plays a key role in the innate immune response of

an organism and in the regulation of the NF-𝜅B pathway, whose activation triggers cell proliferation,

angiogenesis, and EMT. The second study case sees the comparison of methylation status of benign

meningioma patients versusmalignant ones. The DMRswe identifiedwere found involved in the dys-

regulation of the PI3K/AKT pathway, known to affect meningioma progression. Additionally, the

identified DMRs were found overlapping with the promoter regions of the HOX gene family. Methy-

lation and expression levels of the HOX genes were found higher in the more advanced meningioma

stages by some studies [269, 270]. Overall, with this study we showed the strength of Dimmer 2.0

presenting its novelties and advantages over other existing tools which makes it a solid choice for the

analysis of methylation. Moreover, we showed the ability of Dimmer 2.0 to improve the biological

understanding by identifying the mechanisms regulated by DNA methylation that are responsible

for differentiating conditions.

Unraveling the prognostic and molecular role of tumor budding in lung-SCC

Lung cancer is one of the leading cancer types with lung squamous cell carcinoma (lung-SCC) as one

of the prevalent histological subtypes. Late diagnosis and highmorbidity are a few of the main issues

leading to a low therapy response rate. While prevention is still the main solution for a successful

recovery, the progression in the personalised medicine research field represents a prominent aspect

of treating patients in the most targetable way. To do so, it is fundamental to understand what dif-

ferentiates tumor samples of the same kind. Different patients have different survival and reaction

to treatments and with the analysis of their morphological and molecular aspects, it was possible

to delineate prognostic biomarkers. Besides traditional platinum-based chemotherapy, progress has

beenmade in the field ofmolecular-based therapies [271]. Identifiedmolecular alterations are already

used for the development of therapies targeted to patients affected by squamous cell lung cancer [272],

however not yet for lung-SCC. Histomorphological traits have been proposed to categorize lung-SCC

samples by prognosis, including tumor-stroma ratio and tumor-infiltrating lymphocytes. These as-

pects are prognostic biomarkers with the potential to improve the disease’s early detection, but not

yet fully investigated [273]. With the third project, we assessed the prognostic role of tumor bud-

ding and other histomorphological traits that characterize lung-SCC. We identified cut-offs for tumor

budding, STAS, distance of STAS in alveoli and immune cell infiltration that efficiently worked as a

stratification system for patients with different prognosis. Results on the study cohort showed that

a high budding activity increases the risk of death, as well as STAS foci and an extensive distance

between the farthest STAS and the tumor bulk. On the other hand, we observed a richer immune cell

81



82

infiltration linked to a more positive prognosis. Looking at the progression-free interval, we found

that the progression of the disease appeared not to be affected by these traits, except for the distance

of STAS in alveoli, where a longer distance might promote disease progression. We further assessed

the validity of the four traits using a validation cohort, which corroborates our finding of TB, STAS,

and the distance of STAS. Interesting is the case of immune cell infiltrationwhere the cut-off identified

was not significant in the external cohort. Studies identified the role of the immune compartment as

ambiguous since it has been linked to both tumor suppressor and promoting role [274]. The immune

compound might not be a determinant for prognosis, hence we invite a deeper investigation of the

immune compartment, known to be rich and heterogeneous in cancer [275]. In the second part of

the project, we studied the potential biological processes and pathways that drive TB. Despite the

prognostic impact of TB being already well studied [276–278], the mechanisms that explain why TB

worsens survival are still unknown. We performed an association study based on multiple omics

profiles including gene expression, protein expression, DNA methylation, and somatic mutation to

identify the molecular features that help understanding the biological role of TB in tumorigenesis

and that can potentially be targeted for therapeutic purposes. The association with gene expression

data revealed an enrichment in EMT. This mechanisms might explain the presence of TB, hence it

can be the potential TB driver which ultimately leads to the initiation of cancer metastasis [279]. We

found two genes, TNFR12A and KCNN4 highly expressed and with a positive relationship with TB.

TNFR12A andKCNN4 are both known as oncogenes and responsible for activatingmetastasis spread

and known for their involvement in the EMTprocess [280]. TNFR12A andKCNN4 constitute possible

therapeutic targets for lung-SCC because of their high association with TB, albeit experimental vali-

dation is needed to fully confirm their validity. GPX2 is normally found overexpressed in lung cancer

[254]. Our results found methylated the promoter region of GPX2 and the RNA expression nega-

tively associated with TB. Indeed, methylation in the GPX2 promoter was found positively linked to

TB and negatively correlated with gene expression, suggesting gene silencing as a result of hyper-

methylation. However, the epigenetic role of this gene in lung-SCC is not yet fully investigated. We

believe that studying the presence of GPX2 in patients with tumor budding with a focus on epige-

netic mechanisms might help disclose the mechanisms behind TB. UGT1A6 and UGT1A9 are known

to be involved in drug inactivation and we found a positive link between TB and their methylation

status. The tumor suppressor role of MIG6 is widely known in the literature [281, 282]. However, our

analysis returned contrasting results showing a positive association with the protein expression level

of MIG6 with TB. A closer look at a possible link with methylation activity was done and revealed no

correlation with protein expression but a negative one with the expression of the gene. Patients with

mutated PIK3C2B versus notmutated show significantly different TB amounts, indicating that the rise

of TB might be caused by a somatic mutation in this gene. We additionally investigated the presence

of different TB quantities in lung-SCC molecular-based subtypes, finding significant results showing

how different subtypes are characterized by a different amount of TB. We found molecular features
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whose altered methylated activity represents a promising starting point for further analysis and we

believe that the study of TB from an epigenetic point of view might give relevant clarification on how

and why TB begins and how it affects prognosis. The prognostic role of the aforementioned poten-

tial biomarkers should be investigated with an analysis of survival to assess whether they are also

predictive of survival outcomes. However, the availability of independent cohorts with TB counts

per sample is scarce, limiting the computational evaluation of our findings. Moreover, there is one

open question which is whether the cells located in the buds are molecularly different from the ones

in the bulk is still unknown. The advancement of spatial transcriptomics offers a powerful tool at an

extremely detailed level thanks to the combination of spatial data with single-cell expression, and we

believe that such an approach could help reveal if there is a change in molecular profile when a cell

disassociates from the bulk to become bud [283].
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5 Conclusion and Outlook

Thanks to the advancement in the field of biotechnologies, the amount of data available increased

exponentially allowing the analysis of complex diseases at a very detailed genomic level. However,

this huge amount of data cannot be investigated without the use of proper tools designed for infor-

mation mining. Bioinformatics plays a crucial role in combining large data with mathematical and

statistical methods, offering completely new perspectives. Such an approach supports research that is

progressively moving towards making clinical and therapeutic decisions as personalized as possible.

Patients affected by complex diseases, especially in the case of cancer, are characterized by personal

molecular hallmarks and even a same disease can be triggered by different causes and it can develop

following different directions addressed by personal genetic heritage or environment.

With these three projects, we focus our attention on the validation and identification of biomarkers.

The field of biomarker discovery is intensely working to assist early disease discovery with the final

goal of timely and targeted intervention. Research studies in the field of translational oncology are

more andmore focused on omics and especially onmulti-omics with the need to assist traditional ap-

proaches like histopathological examinations. Moreover, behind the combination of molecular data

frommultiple levels, there is the intention of a broader comprehension of the diseases. The identifica-

tion and understanding of biomarkers are possible with a holistic approach including the observation

of multiple molecular levels together with clinical data for an accurate overview of a patient. More-

over, molecules from different omics data might not be relevant singularly but their combination un-

ravels unseenmechanisms. The study of genomics is the widest and the one with the highest applica-

tion in clinical practice. Genes mutation and CNV have been intensively investigated and proposed

as prognostic and diagnostic biomarkers and with the development of NGS techniques, transcrip-

tomics and epigenomics are increasingly studied, with transcriptome as the most analyzed. Indeed,

the analysis of altered expression levels can be informative to determine the mechanisms that trig-

gered a disease. What initiated the disorder can be the consequence of numerous interplaying factors

like the study of gene expression together with DNA methylation, proven to be a regulator of genes’

activity. However, there is is the urge for a novel analytical approach for multi-omics investigation

which allows the combination of more than only two or three omics data types, which is currently

done for sake of interpretability and computational implementation. A possible approach could be to

reduce the study field with the use of what is known and use it as a starting point to investigate novel

information. Nevertheless, the analysis of multiple omic levels can still be considered an emerging
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field since the literature on the topic is still scarce. However, promising findings have been shown and

intensive research on machine learning techniques will assist scientists in overcoming this challenge.

Large-scale biological data gives the advantage of highly detailed information, however, it also brings

the necessity to know how to gainmeaningful information from it. Moreover, data is affected by noise

and technical biases and it can be computationally expensive given the size. Machine learning con-

tributes to quickly examining the big amount of data, while still considering important aspects such

as a check of data quality, cleaning, and standardization, to allow the discovery of statistically robust

and reliable findings.

One of the main challenges in the field of biomarker discovery is the clinical applicability of com-

putationally discovered biomarkers, which is still low. Analyses are often not extensively validated

and their reproducibility is critical. Important signs of progress are underway in deep learning and

the analysis of extensive data in a multivariate setting is key to identifying biomarkers.

The motivation behind the development of these Ph.D. projects is the contribution that bioinfor-

matics can give to precision oncology by understanding cancer biology thanks to the combination of

machine learning techniques with omics data. The implementation of existing and new approaches

helped us to make a step forward in the direction of personalized medicine. Despite all the progress

made in biomedical research, cancer remains part of a complex system of internal and external factors

and it should be studied in its totality. Biologists, clinicians, pathologists, and bioinformaticians work

for the same purpose and we encourage them to closely collaborate, hoping to reach a moment when

all these scientific figures actively work together to defeat one of the biggest medical challenges.
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Declaration of contribution

Contribution to project 1 - An extensive computational evaluation of published gene
signatures for PDAC subtyping

This project was started and executed by me as part of the Big Data in Biomedicine group at the

Technical University of Munich, under the direct supervision of Dr. Markus List, Prof. Dr. Tim

Kacprowski, Dr. med. vet. Katja Steiger and Nicole Pfarr. I designed and developed the analysis

pipelines and implemented them. This work resulted in a publication, published in NAR Cancer on

October 17th, 2022, under the Cancer Computational Biology section [113].

Contribution to project 2 - Dimmer 2.0

I contributed to the development of Dimmer 2.0, an improved version of Dimmer [172] released in

2016 by Almeida and colleagues. This project was carried out in collaboration with Johannes Kersting

and Alex Dietrich from the group of Big Data in Biomedicine under the direct supervision of Dr.

Markus List. I contributed to testing the tool on novel generated data whilst collaborating on the tool

improvement and expansion and testing the new functionalities.

Contribution to project 3 - An analysis on the prognostic role and molecular profile of
tumor budding in lung-SCC

This work was performed in collaboration with Dr. med. Melanie Boxberg and Dr. med. Fabian

Stögbauer under the direct supervision of Prof. Dr. Tim Kacprowski. The work was divided into

two projects, where in the first one I gave my contribution to identify a prognosis-relevant cut-off

for the tumor budding trait and spread through air spaces variable in lung-SCC and validating it

with survival analysis. This work was published on May 2nd, 2022 [134]. The second project aims to

investigate the relationship between tumor budding and molecular features. In the second project, I

designed and performed all the analysis and a manuscript is in preparation.
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Abbreviations

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

RSEM RNA-Seq by Expectation-Maximization

ROC Receiver operating characteristic

AUC Area under the ROC curve

FFPE Formalin-Fixed Paraffin-Embedded

H&E Hematoxylin and Eosin

AJCC American Joint Committee on Cancer

BRCA BReast CAncer gene

TP53 Tumor Protein P53

KRAS Kirsten rat sarcoma virus

CDKN2A Cyclin Dependent Kinase Inhibitor 2A

SMAD4 Mothers against decapentaplegic homolog 4

FGFR Fibroblast growth factor receptors

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

EGFR Estimated glomerular filtration rate

PTEN Phosphatase and tensin homolog

APC Adenomatous polyposis coli

BRAF v-raf murine sarcoma viral oncogene homolog B1

MAPK Mitogen-activated protein kinase

PI3K Phosphoinositide 3-kinases

mTOR Mammalian target of rapamycin

MHC Major histocompatibility complex

IL-1 Interleukin-1

PD-L1 Programmed death-ligand 1

PD-1 Programmed cell death protein 1

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

MT1A/G/H Metallothionein 1A/1G/1H

SLC39A7 Solute carrier family 39 member 7

NR5A2 Nuclear Receptor Subfamily 5 Group A Member 2
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B3GALT4 Beta-1,3-galactosyltransferase 4

ST8SIA4/5 ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 4/5

ST6GALNAC5 ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 5

HOX Homeotic genes

KCNN4 Potassium Calcium-Activated Channel Subfamily N Member 4

MIG6 Alias of ERRFI1

ERRFI1 ERRFI1

EGFR Epidermal Growth Factor Receptor

PHLPP PH Domain And Leucine Rich Repeat Protein Phosphatase 1

LCB4 Sphingoid long chain base kinase 4

MTMR3/12 Myotubularin Related Protein 3/12

INPP5D Inositol Polyphosphate-5-Phosphatase D

PLCE1 Phospholipase C Epsilon 1

PLCH1 Phospholipase C Eta 1

PIK3C2B Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta

UGT1A6/7/8/9/10 UDP Glucuronosyltransferase Family 1 Member A6/A7/A8/A9/A10

ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs
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Table 5.2 List of tools for the DMRs search.

Tool Num. of
groups com-
pared (2, 2+,
continuous)

Data protocol
(Array, BS-seq)

Input format Preprocessing Batch correction, con-
founding factor correc-
tion

Context (CpG,
CpG and non-
CpG)

DMRs type
(predefined, de
novo, both)

BiSeq 2 BS-seq Bismark out-
put

smoothing - CpG Both

Bsmooth
(bsseq)

2 BS-seq Table with
methylation
read counts

smoothing - CpG and non-
CpG

De novo

ChAMP
pipeline (bum-
phunter)

2+ Array Idat filter by cover-
age, normaliza-
tion, smoothing

Cell composition esti-
mation, batch effect cor-
rection

CpG De novo

ChAMP
pipeline (Pro-
beLasso)

2 Array Idat filter by cover-
age,normalization

Cell composition esti-
mation,batch effect cor-
rection

CpG De novo

COHCAP 2+ Array, BS-seq 𝛽-values /
methylation
% / bismark
output

- - CpG Predefined

Dimmer 2.0 2, continuous Array, BS-seq Idat / 𝛽-
values / bis-
mark output
/ customed 𝛽-
values matrix

Filter by cov-
erage, back-
ground correc-
tion

Cell composition esti-
mation, adjust for co-
variates, sex prediction

CpG and non-
CpG

De novo

DMAP 2 BS-seq Bismark out-
put

filter by cover-
age

- CpG and non-
CpG

De novo

DMRcaller 2 BS-seq Bismark out-
put

filter by cover-
age,smoothing

- CpG and non-
CpG

Both

DMRcate 2 Array, BS-seq M-values /
bismark out-
put

filter by posi-
tion

- CpG De novo

DMRfinder 2+ BS-seq Bismark out-
put

filter by cover-
age

- CpG De novo

dmrseq 2+ BS-seq Bismark out-
put / table
with methy-
lation read
counts

smoothing,filter
by coverage

Adjust for covariates CpG De novo

DSS-general 2+ BS-seq Bismark out-
put / table
with methy-
lation read
counts

- Adjust for covariates CpG De novo

edgeR 2+ BS-seq Bismark out-
put

filter by cover-
age, normaliza-
tion (dispersion
and size)

Adjust for covariates CpG Predefined

eDMR 2 BS-seq Output of
methylkit or
DML results
in bed format

- - CpG De novo

GetisDMR 2 BS-seq Bismark out-
put

- Adjust for covariates CpG De novo

HOME 2+, time series BS-seq Table with
methylation
read counts

- - CpG and non-
CpG

De novo

methylKit 2+ BS-seq Table with
methylation
% / bismark
output

filter by cover-
age, correction
for overdisper-
sion

Adjust for covariates,
batch effect correction

CpG and non-
CpG

De novo

methylPipe 2+ BS-seq Bismark out-
put

smoothing - CpG and non-
CpG

Both

methylSig 2, continuous BS-seq Bismark out-
put

filter by cover-
age, filter by po-
sition

Adjust for covariates CpG and non-
CpG

Both

metilene 2 BS-seq Bed file with
methylation
ratio

- - CpG Both

minfi pipeline
(bumphunter)

2 Array Idat Filter by po-
sition, back-
ground correc-
tion, normaliza-
tion

Cell composition esti-
mation, sex prediction

CpG De novo

RADMeth 2 BS-seq Table with
case and con-
trol methyla-
tion propor-
tion

- Adjust for covariates,
batch effect correction

CpG and non-
CpG

De novo

RnBeads 2 Array, BS-seq Idat / 𝛽-
values / table
with methy-
lation read
counts

filter by cover-
age, normaliza-
tion

Adjust for covariates,
cell composition es-
timation, batch effect
correction, sex and age
prediction

CpG Predefined
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Tool P-values for each DMR Permutation Graphic output Language Implementation Reference
BiSeq - - Plots R R (Bioconduc-

tor)
[160]

Bsmooth
(bsseq)

- - Plots R R (Bioconduc-
tor)

[166]

ChAMP pipeline
(bumphunter)

Yes Yes Plots R R (Bioconduc-
tor), R shiny
app

[268]

ChAMP pipeline
(ProbeLasso)

Yes - Plots R R (Bioconduc-
tor), R shiny
app

same [268]

COHCAP - - Plots R/Java R (Bioconduc-
tor), GUI

[284]

Dimmer 2.0 Yes Yes Plots Java GUI, command line tool current study
DMAP Yes - - C Command line

tool
[285]

DMRcaller Yes - Plots R R (Bioconduc-
tor)

[286]

DMRcate Yes - Plots R R (Bioconduc-
tor)

[169]

DMRfinder - - - R and Python Command line
tool

[167]

dmrseq Yes Yes Plots R R (Bioconduc-
tor)

[267]

DSS-general - - Plots R R (Bioconduc-
tor)

[287]

edgeR Yes - Plots R R (Bioconduc-
tor)

[170]

eDMR Yes - Plots R R package [288]
GetisDMR - - - C++, R Command line

tool
[289]

HOME - - - Python python package [290]
methylKit - - Plots R R (Bioconduc-

tor)
[168]

methylPipe Yes - Plots R R (Bioconduc-
tor)

[165]

methylSig - - Plots R R (Bioconduc-
tor)

[163]

metilene Yes - Plots C Command line
tool

[164]

minfi pipeline
(bumphunter)

Yes Yes - R R (Bioconduc-
tor)

[161]

RADMeth - - - C++ Command line
tool

[291]

RnBeads Yes - Plots R R (Bioconduc-
tor)

[171]
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Table 5.3 GREAT output showing gene ontology enrichment analysis on the genes with TSS
nearby or matching the regions found with significant different methylation level between

benign and malignant meningioma samples. Statistically significant Biological Processes (BP)
and Molecular Function (MF) terms with FDR adjusted p-value < 0.05 in both binomial and

hypergeometric tests. Only top 20 most significant terms are shown.

Repository Term Binomial FDR p-
value

Hypergeometric FDR
p-value

GO MF sequence-specific DNA binding 1.36E-119 3.93E-63

GO MF transcription factor activity, sequence-
specific DNA binding

1.86E-90 1.11E-46

GO MF RNA polymerase II transcription factor ac-
tivity, sequence-specific DNA binding

1.40E-86 2.83E-49

GO MF regulatory region DNA binding 2.52E-72 2.35E-42

GO MF regulatory region nucleic acid binding 3.51E-72 2.38E-42

GO MF RNA polymerase II regulatory region
sequence-specific DNA binding

1.26E-71 3.26E-39

GO MF transcription regulatory region DNA bind-
ing

2.57E-71 1.09E-41

GO MF RNA polymerase II regulatory region DNA
binding

3.24E-71 4.94E-39

GO MF transcription regulatory region sequence-
specific DNA binding

6.84E-68 8.42E-39

GO MF sequence-specific double-stranded DNA
binding

1.60E-66 7.65E-37

GO MF double-stranded DNA binding 1.59E-63 2.11E-33

GO MF transcriptional activator activity, RNA
polymerase II transcription regulatory
region sequence-specific binding

2.02E-56 3.09E-32

GO MF transcription factor activity, RNA poly-
merase II core promoter proximal region
sequence-specific binding

2.10E-46 1.25E-26

GO MF RNApolymerase II core promoter proximal
region sequence-specific DNA binding

1.80E-38 3.70E-21

GO MF core promoter proximal region DNA bind-
ing

7.57E-38 4.90E-22

GO MF core promoter proximal region sequence-
specific DNA binding

1.21E-37 2.62E-21

GO MF transcriptional activator activity, RNA
polymerase II core promoter proximal
region sequence-specific binding

2.03E-35 6.55E-21

GO MF transcriptional repressor activity, RNA
polymerase II transcription regulatory
region sequence-specific binding

4.57E-21 3.50E-11

GO MF HMG box domain binding 1.86E-15 2.01E-07

GO MF transcriptional repressor activity, RNA
polymerase II core promoter proximal
region sequence-specific binding

2.92E-14 1.51E-05
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Table 5.4 Enrichment analysis on the genes with promoter regions overlapping the DMRs.
Analysis performed on the gene ontology Biological Processes (BP) and Molecular Function
(MF), and the pathway repositories Reactome and KEGG. Only top 20 statistically significant

terms with FDR adjusted p-value < 0.05 are shown.

Repository Term Overlap Adjusted
p-value

Reactome Activation of anterior HOX genes in hindbrain development dur-
ing early embryogenesis Homo sapiens R-HSA-5617472

14/89 0.0085

Reactome Activation of HOX genes during differentiation Homo sapiens R-
HSA-5619507

14/89 0.0085

Reactome Regulation of beta-cell development Homo sapiens R-HSA-
186712

8/32 0.0114

Reactome GPCR ligand binding Homo sapiens R-HSA-500792 36/447 0.0315

Reactome Regulation of gene expression in early pancreatic precursor cells
Homo sapiens R-HSA-210747

4/8 0.0315

Reactome Amino acid transport across the plasma membrane Homo sapi-
ens R-HSA-352230

7/31 0.0344

Reactome Transcriptional regulation of pluripotent stem cells Homo sapi-
ens R-HSA-452723

8/42 0.0376

Reactome Ras activation uopn Ca2+ infux through NMDA receptor Homo
sapiens R-HSA-442982

5/17 0.049

Reactome POU5F1 (OCT4), SOX2, NANOG repress genes related to differ-
entiation Homo sapiens R-HSA-2892245

4/10 0.049

KEGG Maturity onset diabetes of the young 10/26 1.31E-05

KEGG Neuroactive ligand-receptor interaction 33/341 0.0012

GO CC integral component of plasma membrane (GO:0005887) 109/1454 6.39E-07

GO CC nucleus (GO:0005634) 242/4484 0.0012

GO CC intracellular membrane-bounded organelle (GO:0043231) 262/5192 0.0362

GO MF sequence-specific DNA binding (GO:0043565) 137/707 1.31E-50

GO MF sequence-specific double-stranded DNA binding (GO:1990837) 133/712 2.27E-47

GO MF double-stranded DNA binding (GO:0003690) 125/651 7.83E-46

GO MF RNA polymerase II transcription regulatory region sequence-
specific DNA binding (GO:0000977)

182/1359 2.23E-44

GO MF RNA polymerase II cis-regulatory region sequence-specific DNA
binding (GO:0000978)

163/1149 1.27E-42

GO MF cis-regulatory region sequence-specific DNA binding
(GO:0000987)

162/1149 4.67E-42
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5.2 Supplementary Figures

Figure 5.1 Amount of genes in common across signatures from the four studies.

Figure 5.2 Visualization in principal component analysis (PCA) of the nine validation datasets,
before (left) and after (right) batch effect correction.
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Figure 5.3 Comparison of Puleo et al. subtypes carried out with Wilcoxon test in a pairwise
setting, taking one gene at a time for each of the four signatures. P-values are subject to multiple

testing correction and −𝑙𝑜𝑔10 of the p-value is shown
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Figure 5.4 Clustering of the nine datasets using the genes from the four signatures Moffitt et al.,
Collisson et al., Bailey et al. and Puleo et al.. (A) When the datasets and the signatures come from
the same study; (B) clustering of the remaining five datasets. Each gene in a signature is assessed
comparing the expression distribution of the obtained clusters, using Wilcoxon rank sum test for
two clusters and Kruskal-Wallis test for three, four and five. The p-values obtained are −𝑙𝑜𝑔10

transformed and shown in a boxplot with a red dashed line representing the significance
threshold (p-value=0.05). (*) Badea et al. dataset has real labels assigned by Collisson et al., which

are compared with the obtained clusters.

118



5.2 Supplementary Figures 119

119



5.2 Supplementary Figures 120

120



5.2 Supplementary Figures 121

121



5.2 Supplementary Figures 122

Figure 5.5 Predicted classes are compared with the real classes, for each dataset where labels are
available. Train datasets are (a) Moffitt et al., (b) Collisson et al., (c) Bailey et al. and (d) Puleo et
al., used for building prediction models using, one by one, the four signatures. Each model is
used on the nine datasets to classify their samples. Only datasets with real labels available are

collected in this figure to check the agreement between predicted and pre-assigned subtypes. For
samples in Collisson et al. and Badea et al. no prediction of Immune Classical subtype was found.
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Figure 5.6 Adjusted Rand Index (ARI) is used for evaluating the clustering robustness of the
signatures. From top to bottom: clusters derived using Moffitt et al., Collisson et al., Bailey et al.

and Puleo et al. signatures are compared with the ones identified when employing random genes
of the same size of the signature (Real vs Random). ARI is also used for a pair-wise comparison
between clusters deriving from the use of random gene sets (Random vs Random). Comparison
between clusters obtained with the use of real signatures and clusters obtained with the use of
the same number of genes, but random (Real vs Random). To assess the comparison, Adjusted
Rand Index (ARI) is computed. The clusters obtained from random genes are further evaluated

with a pairwise ARI (Random vs Random).

130



5.2 Supplementary Figures 131

131



5.2 Supplementary Figures 132

Figure 5.7 Cell deconvolution estimated the healthy pancreas cell types proportion in each of the
nine dataset. Clustering analysis is used to identify enrichment of particular cells in the

predicted subtypes, shown on top of each heatmap.
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Figure 5.8 ssGSEA results. Each of the nine validation dataset was subject to ssGSEA, results
from Reactome pathways repository and the GO terms are shown below where only the 30 terms

found most associated across the nine cohorts are reported. Additionally, whether a term is
up-/down-regulated is shown on the left of the heatmap.
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Figure 5.9 Results from the enrichment analysis performed on the genes whose expression was
found significantly associated with TB. For each term, part of the WikiPathway repository, is

possible to see the genes enriched. Only significant terms (p-value < 0.05) are shown.
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