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Abstract—Continuous integration (CI) pipelines are commonly
used to execute regression tests before pull requests are merged.
Regression test selection (RTS) aims to reduce the required
testing effort and feedback time for developers. However, existing
RTS techniques are imprecise for tests with cross-language links
to compiled C++ binaries or unsafe if tests use external files.
This is problematic because modern software in fact involves
several programming languages and (non-)code artifacts such as
configuration files. In this paper, we present BINARYRTS, a novel
RTS technique that leverages dynamic binary instrumentation to
collect the covered functions and accessed external files for each
test. BINARYRTS then selects tests depending on changes issued
to C++ binaries or external (non-)code artifacts. When evaluating
BINARYRTS in our large-scale industrial context, we are able
to exclude on average up to 74% of tests without missing real
failures. We release BINARYRTS as the first publicly available
RTS tool for software involving C++ code.

Index Terms—Software testing, regression test selection, C++,
cross-language links, multi-language software, non-code artifacts

I. INTRODUCTION

Regression testing is a software testing activity that checks if

changes have negatively impacted existing system behavior []1]].

In modern development practices, continuous integration (CI)
pipelines are commonly used to regularly build the software and
run its regression test suite [2]-[4]. The most straightforward
testing strategy is retest-all, which executes every test case
after each change. However, if fast feedback for developers
is crucial or testing resources are limited, executing all tests
from a large test suite is often prohibitively costly [5], [6].
To address this problem, regression test selection (RTS) has
been studied since the 1970s [7] to reduce the testing effort
by only running a subset of test cases [2[]-[4], [8]-[17]. An
RTS technique is considered safe, if this subset of test cases
contains all tests that potentially expose a fault [|18].
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At IVU Traffic Technologiesﬂ CI pipelines execute a
regression test suite consisting of more than 25,000 unit,
integration, and system tests written in C++ and Java before pull
requests are merged into release branches. However, running
the full test suite for each pull request yields intolerable
feedback times of several hours, despite a high degree of test
parallelization. Therefore, we have developed and successfully
deployed a file-level RTS technique for Java tests at IVU in
prior work [[19]. Yet, due to the complex nature of the multi-
language code base at IVU, two problems remained unsolved:
first, the majority of the 13.5 million lines of code (LOC) and
the test suite is written in C++. These C++ regression tests
are not supported by our current RTS solution, as file-level
techniques are impractical for languages that compile to large
binary files [20]. Second, there exist several thousand Java
tests that use the Java Native Interface (JNI) to interact with
dynamic-link libraries (DLLs) built from the C++ code. Hence,
if any C++ source file that is part of a DLL changes, every
test accessing this binary file is selected. In short, file-level
per-test execution traces are too imprecise when Java tests use
cross-language links to C++ binaries [19].

Although several language-agnostic, yet inherently unsafe
RTS approaches are reportedly used in industry [2], [4], [17],
[21]], research on safe RTS for C++ software is relatively sparse:
while most early RTS research considered (binary) compiled
languages such as C or C++ [8]], [9l, 18], [22]-[25]], recently
proposed RTS techniques focus on Java [[11]-[|13]], [20], [26]-
[28]. Since C++ itself, the size and frequency of regression
testing, as well as development tool chains have significantly
evolved, insights on the design and benefit of RTS in modern,
large-scale industrial C++ software are largely missing [29]. To
our knowledge, in the past decade, only two published studies
proposed RTS techniques for C++ software [29], [30]. However,
these techniques (1) are only suitable for C++ projects using
the LLVM [31]] compiler infrastructure, (2) do not cope with
cross-language links to C++ binaries, (3) ignore changes to
external files, e.g., non-code artifacts, and (4) either do not

'IVU Traffic Technologies is one of the world’s leading providers of public
transport software solutions.



support dynamic linking of libraries or operating systems other
than Linux [29], [30]. New approaches for RTS in modern
C++ software and their industry-scale evaluation are therefore
essential to address these gaps in research and practice [32].

In this paper, we present BINARYRTS, a novel RTS tech-
nique for software using C++ binaries throughout the testing
process. The analyzed tests can be written in C++ or any other
language with interoperability to native binaries, e.g., Java tests
with cross-language links using the JNI. BINARYRTS leverages
dynamic binary instrumentation to collect (1) covered functions
and (2) accessed external files for each test. This allows more
accurate and reliable test selection, as changes to C++ binaries,
non-code artifacts, or source files in other (domain specific)
languages, can be properly attributed to affected tests. The
instrumentation and analysis within BINARYRTS is compiler-
agnostic, supports C and C++ binaries out-of-the-box, and
can be transferred to different platforms as well as operating
systems, and other compiled languages.

We evaluate BINARYRTS in IVU’s large-scale CI infrastruc-
ture by analyzing 385 pull requests across two release branches
covering more than 1,000 commits. To investigate saved testing
effort with BINARYRTS, we measure the test selection ratio for
the C++ test suite and the cross-language Java test suite. Our
results show that BINARYRTS selects on average 26%-37%
of C++ tests and 57%—64% of Java tests. BINARYRTS never
fails to select tests that reveal actual regressions in the studied
pull requests. Due to these promising results, IVU is currently
deploying BINARYRTS to all release branches. We provide
BINARYRTS as the first publicly available C++ RTS tool to
foster regression testing research on C+

II. TESTING C++ PULL REQUESTS AT IVU

In the following, we explain the system under test and the
testing process for C++ pull requests at IVU. We also elaborate
on the few existing solutions for RTS in C++ software and
their drawbacks in the given context.

A. System Description

The source code for the main IVU software resides in a
monolithic repository. There are two major subtrees in the
repository, one with mainly C++ (and some C) sources (9.5M
LOC) and one with mainly Java code (4} LOC). Besides these
two main general purpose programming languages (GPLs), IVU
makes significant use of non-code artifacts, such as CSV or
plain text files, as well as other GPLs and domain specific
languages (DSLs), e.g., TypeScript or XML.

While the Java source code is generally structured and built
using Maven [33]], the C++ sources are compiled through a
self-maintained meta build tool (called BT hereafter). BT wraps
Microsoft’s C++ compiler toolchain [34], as most IVU software
products target Microsoft Windows.

The C++ subtree contains code that compiles into 300+
executable binaries, including 200+ test executables and various
applications. Alongside, 700+ binary DLLs are built from

2BINARYRTS on GitHub: https:/github.com/tum-i4/binary-rts

the subtree, which are linked against test executables and
applications, both, at load-time and run—timeﬂ

For regression testing, unit, integration, and system tests
are written in C++ or in Java. C++ tests are written using
GoogleTest [35] and reside in the C++ subtree, whereas Java
tests use JUnit [[36] and reside in the Java subtree. However,
since parts of the persistence logic are only implemented in
C++, many Java tests heavily use the JNI to call C++ code
for populating the database. In production, Java and C++
runtimes are usually separated. They are intertwined via JNI
only to achieve two goals: (1) synchronization between the
data generating parts in C++ and the data consuming parts
in Java by using a single thread, and (2) allowing the test
to run on an open database transaction which can easily be
rolled back instead of having to commit and remove test data.
For instance, a Java test might initiate a database session from
within the Java virtual machine (JVM) process, hand the pointer
to the session over to native code via JNI, load a few dozens
DLLs at run-time and use them to generate test scenarios in
the database, return control to the JVM to continue test case
execution; then, update the test scenario by invoking native
code again, return to the test case in the JVM, and finally
clean up the database session from native code. This way,
even complex test scenarios can be tested in a close-to-reality
environment, which reduces the risk of late integration issues
during release testing. However, these complex tests come at
considerable costs: running the C++ and Java test suite takes
up to 3 hours, despite high parallelization. This suggests to
use RTS for more cost-effective, change-oriented testing.

In previous work, we discussed our build system aware
multi-language RTS approach which we successfully deployed
at IVU [19]. It uses system call analysis to trace file accesses
and already takes into account that a test’s outcome can be
affected by changes to source code of multiple programming
languages, non-code artifacts, and build system configuration
files. However, the approach is limited to Java tests and
imprecise in the case of C++ changes due to the analysis
at file-level granularity: in case a DLL is changed, all Java
tests that access the DLL during testing are selected, even if
they do not execute the changed C++ code. At IVU, more than
16,000 regression tests are either part of binary executables or
use DLLs at run-time. Hence, this paper focuses on precise RTS
for C++ and Java tests that use C++ binaries, i.e., executables
or DLLs.

B. C++ Pull Request CI Pipeline

IVU usually provides support for the last ten released
versions of their software products. Therefore, release branches
are maintained next to the main development branch. Whenever
developers want to integrate changes into any of these branches,
they create a pull request. For each pull request, a CI pipeline is
created that builds, analyzes, and tests the introduced changes.

If a pull request comprises changes related to the C++
subtree, the C++ code is analyzed, built, and tested through BT.

3We distinguish between run-time (during execution), run time (timespan
taken by a run), and runtime (program execution environment) in this paper.
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Since a full C++ build, even with high parallelization, takes
roughly an hour, BT uses a shared remote compile cache and
only compiles binaries depending on changed sources. BT also
steers the C++ test execution and only runs those C++ test
executables that are either directly or transitively affected by
the changes. Yet, this module-level test selection is too coarse-
granular: even very small changesets often require running
thousands of tests.

Since many Java tests also make use of C++ binaries built
from the C++ subtree, more precisely DLLs, these tests should
also be executed for changes to the C++ subtree. In the case
of changes to the C++ and Java subtree, the Java tests are
currently selected by the established file-level RTS approach
for Java tests [[19]. However, for C++-only changesets, running
selected Java tests has recently been deactivated due to the
significant time overhead even for small changesets, since the
selection is too imprecise (see Sec. [[I-A). Although developers
are encouraged to check the main CI pipelines of the target
branch within the next day after their pull request has been
merged, this imposes the risk of missing failures and, even
worse, bugs slipping into release branches.

Fig. [T summarizes how both Java and C++ tests can be
affected by changes to binaries built from the C++ code base.
C++ binaries
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Fig. 1. C++ pull requests affecting Java and C++ tests

C. Existing C++ Test Selection Approaches

Over the past roughly 45 years, numerous RTS techniques
have been proposed that harness static or dynamic program anal-
ysis at the level of basic blocks [9]], [[10]], [37], functions [13]],
(26, [29]I, [30]l, classes or files [11]I-[13[I, [19], [20], [27], [28],
[38], or modules [14], [38]], [39]. In the following, we iterate
over RTS approaches for C++ software and outline why they
are not applicable at IVU.

Early RTS research targeted compiled languages such as
C 8], [22], [40] or C++ [9], [23]-[25], [41]. However, the de-
scribed approaches were either never actually implemented [9],
[41] or evaluated on small programs with a few unit tests rather
than industrial-scale C++ projects [22], [24], [25]]. Furthermore,
most of the used analysis tools are not available today or
cannot analyze modern C++ code bases, since the language
and compilers have significantly evolved [29].

To our knowledge, in the past decade only two RTS
approaches targeting C++ software have been presented, which
have the following limitations in the given context: Fu et al. [29]]

propose RTS++, a static, function-level RTS technique. RTS++
relies on function call graphs constructed from LLVM bitcode
and therefore can only analyze C++ projects targeting LLVM.
Thus, RTS++ is not applicable to IVU’s C++ code base, where
compiling with clang [42] is possible, but linking can only
be done using Microsoft’s C++ compiler toolchaixﬂ Yet, more
importantly, RTS++ requires linking all libraries statically into
a single binary test executable. While this may not be an issue
in the comparatively small open-source projects which RTS++
has been evaluated on, it is infeasible at the scale of IVU, where
many test executables and Java tests use the same hundreds of
dynamically linked libraries.

To perform RTS for integration testing of distributed, large-
scale C++ web services at Google, Zhong et al. [30] develop
TESTSAGE, a dynamic, function-level RTS technique. Similar
to RTS++, TESTSAGE is limited to LLVM-based projects that
run on Linux or a few BSD descendants [43]], whereas IVU
targets the Windows operating system. TESTSAGE is further
built on top of Google-internal infrastructure and code analysis
tooling (e.g., PIPER), which arguably limits transferability.

Besides, none of the proposed RTS techniques for C++
software has considered changes to non-code artifacts or source
code of languages other than C or C++, even though they might
affect test behavior [19]], [20], [44]. Next to these conceptual
and technical limitations, we did not find any publicly available
tools that implement these RTS techniques.

In summary, we require an RTS technique that is (1) capable
of analyzing tests which use arbitrary binaries at run-time,
with the flexibility to support different compilers and operating
systems; (2) aware of changes to non-code artifacts or source
code of programming languages other than C or C++ that
may affect test behavior. This motivates BINARYRTS, a novel
dynamic RTS technique, which we describe in the next section.

III. BINARYRTS TECHNIQUE

This paper introduces BINARYRTS, the first RTS technique
that harnesses dynamic binary instrumentation to reliably select
affected regression tests that use C++ binaries or access external
files, e.g., source files from other languages or non-code
artifacts. In the following, we first explain how BINARYRTS
dynamically analyzes and instruments C++ and system binaries
to generate per-test execution traces (i.e., test traces), that
include covered functions as well as accessed files. Second,
we elaborate on the change-based test selection performed for
C++ pull requests. Last, we explain how BINARYRTS has
been integrated into IVU’s CI test infrastructure.

A. Dynamic Binary Analysis

In order to implement any dynamic RTS technique, run-
time information about tests is required, i.e., per-test execution
traces. To analyze the run-time behavior of a program, the
target program needs to be instrumented or run in a monitored
environment. Instrumentation refers to analysis code added to
the program, which is executed as part of the normal program

4There is an ongoing effort to improve clang’s compatibility with MSVC
projects: https://clang.llvm.org/docs/MSVCCompatibility.html
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execution [45]], [46]. Programs can either be instrumented
statically, before the program runs, or dynamically, at program
run-time. Instrumentation code can further be added through
source code analysis or binary analysis. While the former
is typically specific to the language and compiler, the latter
is language- and compiler-agnostic but often more difficult
to implement and more expensive in terms of run time
overhead [45]. Yet, over the past two decades, instrumentation
frameworks such as DynamoRIO [46], Intel PIN [47], or
Valgrind [45] have evolved that ease the implementation of
more efficient dynamic binary analysis (DBA) tools.
Nonetheless, existing dynamic RTS solutions rely on static
source code analysis [30]. BINARYRTS is thus the first
proposed RTS technique that leverages DBA to obtain per-test
execution traces. In its current implementation, BINARYRTS
relies on DynamoRIO [46]], a popular and mature DBA
framework [48]], which supports a variety of operating systems
and processor architectures, including Windows and x86-64,
the primary target at IVU. DynamoRIO provides powerful
application programming interfaces (APIs) to analyze and
instrument basic blocks and to trace system call invocations.
Therefore, DynamoRIO acts as a process virtual machine, by
taking over control of the process executing the binary; it then
creates and maintains a so-called code cache which contains
a copy of the original code from the binary augmented by
any added instrumentation code. Furthermore, DynamoRIO
allows defining callback functions that are called whenever a
new binary modulef] is pulled into the process [46|. This way,
BINARYRTS can also analyze and instrument basic blocks
from all DLLs that are dynamically loaded during execution.
Since this flexibility naturally introduces run time overhead,
we discuss performance considerations and implementation

issues in Sec. [V-C
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Fig. 2. Process for BINARYRTS instrumentation and test trace collection with
covered basic block (BB) and accessed file

Fig. [2] illustrates how BINARYRTS obtains per-test ex-
ecution traces using DBA: first, during test execution ),

SWe stick to the DBA terminology, by collectively referring to binaries such
as executables or DLLs as modules.

when a basic block is loaded into the code cache, BINA-
RYRTS instruments it by (1) calculating its relative offset to
the enclosing module’s start address, (2) storing the triple
(module id, offset, hit count) in a table-like data structure,
which keeps track of covered basic blocks, and (3) adding
a single instruction at the beginning of the basic block to
increment the hit count. Since DynamoRIO only loads basic
blocks into the code cache when they are first executed or after
cache invalidation, no irrelevant basic blocks are instrumented.
Furthermore, BINARYRTS registers a dump event listener to
write the basic block table to an output file (see Covered BB
offsets in Fig. 2), either upon receiving the process exit event
or a custom dump event. This can be triggered from the target
program, e.g., after each test case (see Sec. [[IlI-C)). Alongside,
BINARYRTS sets up interceptor functions that are called before
system calls related to file accesses are invoked. BINARYRTS
then extracts the requested file path from the provided system
call arguments and stores it in a vector which is also written to
a file by the dump event listener (see Accessed files in Fig. [2).

Second, in the post-processing stage e, all covered basic
block offsets are resolved by querying the debug symbols using
DynamoRIO’s symbol access library. Note that BINARYRTS
does not require debug builds, but merely debug symbols
generated during compilation. These allow determining the
source line a basic block offset corresponds to. Nevertheless,
coverage will be more precise with debug builds. At IVU, we
use release builds with function inlining disabled, to reliably
detect all covered functions. Once the source line information
has been obtained, source lines need to be mapped to C++
functions, both member or non-member functions. BINARYRTS
currently uses the popular utility program ctags [49] to
efficiently obtain C++ function declarations and definitions
without the need for a preprocessor or compiler. We discuss
extensions for compiler-specific function parsing in Sec.
BINARYRTS also supports resolving symbols during test
execution, but shifting the work to a post-processing stage
has been significantly more efficient at IVU.

Last, once each covered basic block has been resolved to
its enclosing function, we generate per-test execution traces
in a third step 0 These traces contain the functions and
external files a single test is associated with. Hereby, a
function is stored with the attributes file, signature (name and
parameters), class (optional), namespace (optional), and meta-
data (e.g., start/end line, virtual, static). A function’s
identifier is constructed by concatenating the optional scope
attributes, namespace and class, and the function signature,
e.g., ivu::Foo: :bar (int x). These test traces can then
be used to select tests in pull requests, as we describe next.

B. Changed-based Test Selection

Each pull request contains a set of changes, including
additions, deletions, or modifications of files. Fig. [3] depicts that
the analysis of a pull request changeset triggers the computation
of affected functions and files. By combining these affected
entities with the provisioned test traces, BINARYRTS can select
the set of affected test cases.
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The way BINARYRTS analyzes changesets is loosely in-
spired by Rothermel et al. [9]] and Vokolos and Frankl [50]], who
use the Unix diff utility to locate differences between two
program versions: we use git diff [51] to determine added,
deleted, or modified files between the pull request branch (new
revision) and the target release branch (old revision). Then,
we run the change impact analysis shown in Algorithm
(simplified for presentation purposes) to compute affected
functions and files, and finally derive the selected tests.

Algorithm 1: Change Impact Analysis and Test Selec-
tion
Input: Changeset, Test Traces
Output: Selected Tests
1 functions «+ {}
2 files « {}
3 foreach file € changeset do

4 if isCppFile(file) then
5 if isAdded(file) then
6 newFunctions < getFunctions(file.newRev)
/+ account for build system changes
x/
7 functions <~ stripFile(newFunctions)
8 else if isDeleted(file) then
9 t functions <~ getFunctions(file.oldRev)
10 else
1 functions <~
findAffectedFunctions(file.oldRev,
file.newRev)
12 else
/* add external files, e.g., XML or SQL
*/
13 files < file
/* query test traces for affected tests x/

14 tests < findAffectedTests(files, traces)

15 tests < findAffectedTests(functions, traces)
16 return tests

The algorithm iterates over each file in the changeset and
checks if the file has a C++ file extension (e.g., .h or .cpp).
If not, the file is added to the set of affected files, since every

test accessing this external file should be selected. If yes, the
algorithm distinguishes between added, deleted, or modified
files in the git repository. For added and deleted files, all
functions in the file are added to the set of affected functions.
Yet, for added files, these functions cannot exist in the test traces.
Therefore, we strip the file attribute of the added functions
to mark all functions with similar signature as affected. The
rationale behind this over-approximation is that BINARYRTS
aims to be agnostic about the build system. If a new source file
Fle 1s added, which contains an implementation of function
f, f could already be implemented in an existing source file
F,4. Based on its configuration, the build system decides
which source files to compile. Hence, if the configuration was
changed to compile F},.,, instead of F;4, tests covering f will
use the new implementation and are thus affected.

For modified files, more elaborate change impact analysis
is required as depicted in Algorithm [2} first, we iterate over
all functions from the new and old revision of the modified
file to determine all modified functions. Therefore, we check
whether the function body has changed by comparing the code
inside the body for textual equivalence, excluding comments
and whitespaces. Due to static and dynamic dispatch in C++, a
newly added function can affect the run-time program behavior,
even in the absence of other changes, such as a modification
of an existing function:

« Function Overloading: If a new function is added that
has the same name as an existing function, but different
parameters (e.g., foo (int) and foo (short)), the
compiler determines and uses the most suitable function
at each call site. BINARYRTS therefore marks functions
with the same name as the added one as affected. We limit
ourselves to functions in the same file, since marking all
functions with the same name can lead to high imprecision.

« Virtual Function Overriding: If a new member function
is added to class B that overrides a virtual member
function in B’s parent class A, due to dynamic dispatch,
all uses of the parent’s member function need to be marked
as affected. BINARYRTS thus marks all member functions
with similar signature of any class (or struct) as affected.

¢ (Scope) Function Overriding: C++ allows defining
functions in global, class, namespace, or local scopes
and if multiple functions with similar signature exist in
different scopes, it is up to the compiler to decide at each
call site which function to call. Thus, if a new non-global
function is added, BINARYRTS will by default mark all
functions with similar signature as affected.

We also mark all deleted functions as affected to select all
tests that previously executed the deleted function.

By handling the scenarios for static and dynamic dispatch as
described, we deliberately design BINARYRTS to prefer safety
over precision. We still remain flexible by not requiring more
elaborate (and costly) compiler-specific static analysis which
might be more accurate [9]. However, BINARYRTS provides
run-time options to skip these over-approximations to trade
increased RTS precision for reduced safety.



Algorithm 2: Finding Affected Functions
Input: Old (oldRev) and New (new Rev) File Revision
Output: Affected Functions

1 Function findAffectedFunctions(oldRev, newRev):

2 affected + {}
/+ find modified or newly added functions x/
3 foreach f,,.., € getFunctions(newRev) do
4 isAddedFunction < true
5 foreach f,;; € getFunctions(oldRev) do
6 if foiq.identifier = fycq.identifier then
/+ functions with changed body x/
7 if hasBodyChanged( foiq, fnew) then
8 t affected &~ frew
9 isAddedFunction <+ false
10 break
11 if isAddedFunction then
/* new overloading function */
12 if hasParameters( fyc.,) then
13 t affected <~ stripParameters( fpew)
/* new virtual overriding function x/
14 if isVirtualOverride( f,¢.,) then
15 t affected <- replaceClass(frew, *)
/* new scope overriding function x/
16 else if — hasGlobalScope( f,¢.) then
17 t affected <~ stripScope(frew)
/% find deleted functions */
18 foreach f,; € getFunctions(oldRev) do
19 isDeletedFunction < true
20 foreach f,,.., € getFunctions(newRev) do
21 if fiq.identifier = fycq.identifier then
22 isDeletedFunction < false
23 break
24 if isDeletedFunction then
25 L affected <&~ fotd
26 return affected

In addition, BINARYRTS has a run-time option to han-
dle changes to non-functional code entities (e.g., macros,
global/member variables) [22]: we use ctags to locate all
non-functional entities inside a C or C++ file, determine if
they have changed, and then, similar to White er al. [235],
perform a text-based lookup for (calling) functions that use
the changed entity. These functions are then added to the set
of affected functions. We further discuss this run-time option

in Sec.

We list all run-time options in Sec. [[V-A3|and evaluate them
regarding their impact on safety and precision in our empirical
study at IVU (see Sec. [[V).

Finally, the affected tests are computed by querying the test

traces with the affected functions and files. BINARYRTS uses
efficient hash tables to minimize the time for finding tests that
use affected functions or files. We provide measurements for
the run time of the change impact analysis and test selection

in Sec. [[V-C3|

C. Integration into Pull Request CI at IVU

We integrated BINARYRTS into IVU’s infrastructure as
follows: to obtain test traces, we created new test tracing
pipelines for each release branch considered in our evaluation
(see Sec. [IV). These tracing pipelines run all C++ and Java
tests during off-peak hours (at night or on the weekend) with
BINARYRTS’s instrumentation enabled. For C++ tests, we add
a GoogleTest test listener to BINARYRTS, which triggers a
dump event after test setup and for every test case. BINARYRTS
supports all GoogleTest test case types, including value- or
type-parameterized tests [29], accounts for changes to (global)
test setup code, and always selects newly added test cases. For
Java tests, we use a Java agent [52] to attach BINARYRTS to
the JVM process before the JUnit test suite starts. Similar to
prior research [[19], [20], [53]], [54], we run each JUnit test suite
in a forked JVM process for better test isolation and reliability.
As the covered basic blocks will be dumped upon receiving
the JVM process exit event, we do not need to trigger custom
dump events for Java tests.

Once the test traces have been created for a release branch,
they are serialized and stored on a network drive and can then
be used inside pull requests for this release branch.

IV. EVALUATION

To evaluate BINARYRTS in a real-world industrial context,
we perform a large-scale study in IVU’s CI infrastructure.
Our goal is to empirically determine the cost-effectiveness of
BINARYRTS in terms of saved testing effort and how many
real test failures BINARYRTS fails to select. In addition to the
commonly used retest-all baseline, we compare BINARYRTS
to IVU’s internal module-level C++ test selection (BT) and our
DLL-level Java test selection from prior work [[19]. We further
aim to understand precision and safety trade-offs for different
run-time options of BINARYRTS (see Sec. [[II-B). Overall, we
seek to answer the following research questions (RQs):

« RQ;: How much testing effort can BINARYRTS save for

C++ tests compared to retest-all and module-level RTS?
¢ RQ2: How much testing effort can BINARYRTS save for
cross-language Java tests compared to DLL-level RTS?

« RQj3: How safe is BINARYRTS for changesets of pull

requests in terms of real missed test failures?

A. Experimental Setup

1) Evaluation Branches: To conduct our experiments, we
first pick two release branches, one rather old release branch
receiving mainly maintenance changes ([2)s) and one recent
release branch with ongoing feature development (Rp). As
shown in prior work, there can be significant differences in RTS
effectiveness depending on the type of the release branch [19].
For both branches, we set up separate test tracing CI pipelines



which run in off-peak hours, as described in Sec. [[lI-C| Then,
we modify the pull request pipelines for R, and Rp: inside
each pull request rurﬂ we invoke BINARYRTS to compute
selected C++ and Java tests using the most recent test traces
for the respective target release branch.

2) Evaluation Metrics: For each pull request run, we
measure the reduction in testing effort by comparing (1) the
number of selected tests and (2) their cumulative duration
against the set of tests selected by a baseline regression testing
strategy. Related research usually compares RTS techniques
against a retest-all testing strategy [19]l, [29]], [30], [55]l, which
we adopt for RQ;. However, since the state-of-practice at IVU
is better reflected by BT’s module-level RTS strategy for C++
tests (RQ;) and our DLL-level RTS strategy for Java tests
(RQ2), we add these as more realistic baseline strategies.

For RQ;, we also report how often BINARYRTS excludes
entire test executables. IVU’s integration tests require a costly
(global) database setup, which is performed when the process is
started. Thus, skipping an entire test executable can significantly
reduce overall test time.

Regarding RQs, recall that for C++-only pull requests,
executing Java tests has currently been deactivated in the pull
request CI pipelines, due to high execution times even with
DLL-level RTS (see Sec. [[I-B). Yet, to perform our evaluation,
we require the actual test verdicts and run time of Java tests.
Therefore, we run the missing Java tests for C++-only pull
requests in off-peak hours (at night and on the weekend) as
selected by our DLL-level RTS strategy.

An RTS technique is considered safe, if it selects all tests
that potentially expose a fault [I8]. While safety for existing
RTS techniques has been (semi-)formally proven under the
assumption of code changes [9], [20], [27]-[29],, prior research
has shown that outdated test traces [[19], or changes related
to non-code artifacts or cross-language links [14]], [20], [44],
can compromise RTS safety. Hence, to perform a fair
evaluation of RTS safety, we need to inspect all test failures
that were not selected by BINARYRTS to understand if they
actually reflect real regressions introduced in the respective
pull requests. We discuss practical challenges in distinguishing
between real regressions and flaky failures in Sec. [[V-B]

3) BINARYRTS Configuration: Prior research has not yet
investigated how testing effort and safety are affected by
different levels of change impact analysis depth (see our
discussion on static and dynamic dispatch in Sec. [lI-B). We
are particularly interested in these trade-offs, as they provide
practical guidelines on how to calibrate BINARYRTS during
operation. Therefore, we run and compare BINARYRTS with
the following run-time option configurations:

e Bgim: Disables all run-time options

o Boyerioad: Bsiim —+ function overloading analysis

o Boyerride: Bsiim + function overriding analysis

e Buirtual: Bsiim + virtual function overriding analysis
e Bpon-functional: Bsism + non-functional entity analysis

6Recall that a new CI pipeline run is triggered whenever the pull request is
updated, i.e., if one or more commits are added.

e Bpyi: BINARYRTS default; enables all run-time options

B. Results

We collect the dataset for evaluating BINARYRTS across
four weeks of development, covering a total of 385 pull requests
with 587 CI pipeline runs and more than 1,000 commits. Pull
requests for Rp are more common (288) and have a larger
median changeset size of 9 files than pull requests on R;; (97)

with a median of 2 changed files.
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Fig. 4. Distribution of selected C++ test ratio of BINARYRTS configurations
and BT compared to retest-all across all pull request runs
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RQ1: C++ Testing Effort: Fig. [d] shows the distribution of
the ratio of selected C++ tests compared to retest-all across all
pull request runs on the two branches R and Rp for different
BINARYRTS configurations as well as BT. Note that while
pull request CI pipelines only execute C++ tests selected by
the static module-level RTS strategy of BT, BT still outputs a
retest-all test report after execution. It can do so since it caches
test results from unaffected test cases and can thereby report
test verdicts from all executed plus cached tests. We compute
the distribution plots for BT and all BINARYRTS configurations
from these retest-all reports and the selected tests from BT
and BINARYRTS, respectively. The results indicate that BT
selects on average 51% (Rjs) and 63% (Rp) of tests, whereas
BINARYRTS selects on average 26% and 37% of tests with
By configuration and 21% and 30% with By,,. Moreover,
the median selection ratios are 84% and 84% (BT), 0.5% and
6.5% (Bfu), and 0.5% and 1.5% (Biim,).

In addition to the ratio of selected C++ tests, we compare
the relative test duration for the different strategies against
retest-all: the average relative test durations are 58% and 70%
(BT), 32% and 44% (Bfu), and 26% and 36% (Bsiipm,).
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Fig. 5. Distribution of selected test executables ratio of BINARYRTS
configurations and BT compared to retest-all across all pull request runs



The test execution costs are not only driven by the test
duration, but also by the time required for process initialization
and global (database) test setup for each test executable. Hence,
if C++ test executables are skipped because no tests inside have
been selected, end-to-end execution time for testing decreases.
Therefore, we report the distribution of the ratio of selected
test executables across all pull requests in Fig. [5]

Overall, we find that BINARYRTS saves considerably more
testing effort than BT for both branches. Similar to our previous
observations , the achieved savings for the maintenance
branch (Rjs) are higher than for the development branch (Rp).
The difference between BINARYRTS configurations is small
regarding the average test selection ratio (<7 pp), but becomes
more visible when looking at the median test selection ratio
where B, selects more than four times as many tests as By,
for Rp. We discuss the impact on safety in RQ3. BINARYRTS
further selects on average only 20% (R;s) and 30% (Rp) of
C++ test executables with Bp,;;, whereas BT selects 40% and
52% test executables, respectively.

SUMMARY RQ;. We find that BINARYRTS selects on
average 26% (Ry;) and 37% (Rp) of all C++ tests with
By on two release branches, whereas BT selects 51% and
63%, respectively. In 50% of the pull request runs on Rp,
By selected more than four times as many test cases as
Bgtim. BINARYRTS further reduces the number of C++
test executables by 80% (Ryr) and 70% (Rp).

RQs: Java Testing Effort: In our prior study [19], we were
able to save on average 42% of execution time for cross-
language Java tests compared to retest-all using a file-level RTS
strategy. However, in case of C++ changes, we encountered
problems of imprecise test selection, since a test that uses
a DLL is selected whenever changes are made to that DLL,
regardless of whether the test covers the changed code or not.

To investigate the effectiveness of BINARYRTS for cross-
language Java tests at IVU, we compare BINARYRTS against
our file-level—or rather, DLL-level —RTS strategy. Similar to
this pre-existing strategy, BINARYRTS selects Java tests at the
level of JUnit test suites [[19].
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Fig. 6. Distribution of selected Java test ratio of BINARYRTS configurations
compared to DLL-level RTS across all pull request runs
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Fig. [6] depicts the test selection ratios for the different config-
urations of BINARYRTS. The results show that BINARYRTS
with By, selects on average 57% (f25r) and 64% (R p) of the

Java tests selected by the pre-existing DLL-level RTS strategy.
The median selection ratios are higher at 89% and 99% (Bjy1),
and 18% and 80% (Bgiim,)-

In summary, we find that while BINARYRTS can be much
more effective than DLL-level RTS for Java tests, DLL-level
RTS selects almost the same number of tests in roughly 50%
of pull request runs as By, for Rp. We expect the reason to
be that Java tests often use largely similar parts of the C++
code for their test setup and, therefore, are selected altogether
for changes to core C++ components.

SUMMARY RQg2. We find that BINARYRTS (By,;) selects
on average 57% (Ryr) and 64% (Rp) of the Java tests
selected by DLL-level RTS on two release branches. DLL-
level RTS still performs comparatively well in roughly 50%
of pull request runs for Rp.

RQs3: Safety: To assess the safety of BINARYRTS for
different configurations, we compare the failed tests in a pull
request run to the tests that BINARYRTS would have selected.
If a test has failed in a pull request run and has not been
selected by BINARYRTS, we need to check if this missed
failure represents a real regression introduced in the pull request.
Therefore, we check in the following order if the test (1)
already failed on the target release branch, (2) failed due to
infrastructure issues, (3) is a known flaky test, i.e., a test with
non-deterministic result, or (4) a newly detected flaky test which
both, fails and passes within 100 reruns. We manually validate
all missed failures, since especially test failures of categories (2)
and (3) are sometimes difficult to automatically recognize from
stack traces and often require discussion with IVU developers.
If steps (1)—(3) do not provide a clear indication, we rely on
rerunning tests (4) to detect flakiness, as is common practice
in industry [57]-[59].

In total, we manually checked 179 pull request runs with
missed C++ and Java test failures. The majority of missed
failures either have already existed on the target branch or can
be attributed to infrastructure issues, mainly database access
problems. Most flaky tests we encounter are already known,
but we still find a handful of new flaky tests that we reported to
the responsible developers. Interestingly, we almost exclusively
find flaky tests on Rp, indicating that flaky tests seem to get
fixed eventually before a software version release.

Overall, we do not find any missed failures that are related
to the changes introduced in the corresponding pull request for
Byyi. For By, we also do not find any real missed failures.
Despite these results, there are several sources for potential
unsafe RTS behavior which we discuss in Sec. [V-C1l

SUMMARY RQj3. We find that BINARYRTS detects all
real regressions in the considered pull requests with all
configurations.

C. Discussion

Next, we discuss weaknesses and possible improvements
regarding safety, precision, and efficiency of BINARYRTS, and



share feedback from IVU developers.

1) Safety: We expect BINARYRTS to be safe for changes
to C++ functions if all run-time options are enabled (Byy,),
as BINARYRTS was designed following the example of
safe function-level RTS techniques for C++ [29]], [30]. In
contrast with BT, which is only safe for changes to C++ files,
BINARYRTS is further aware of changes to external files, thus
ruling out a common source of unsafe RTS behavior [20], [56].

Yet, similar to existing techniques [[19]], [30], BINARYRTS
can be unsafe if test traces are outdated. At IVU, we run the
tracing CI pipelines to update test traces for release branches in
off-peak hours, but at least once per week. Another source for
potential safety violations is that BINARYRTS (B,yerioad) Only
marks overloaded functions within the same file as affected by
static dispatch (see Sec. [[II-B). Moreover, since BINARYRTS
operates at run-time, expressions evaluated at compile-time,
e.g., macros or constexpr, are only considered if analysis for
non-functional changes is enabled (B, on-functional). However,
the text-based search to find usages of non-functional entities
can become expensive for large C++ code bases if all parent
directories of the changed source file are recursively searched.
Therefore, BINARYRTS provides a parameter to control how
many levels of parent directories to visit during the search.
Safety violations can possibly occur if this parameter is set
too low and thus functions making use of the changed non-
functional entity are not marked as affected. Based on IVU
conventions for the use of non-functional entities, we set the
parameter to 2. Additionally, BINARYRTS allows defining a
regular expression to match files that should trigger a retest-all
strategy to anticipate context-specific safety challenges.

Due to these limitations and because prior research has
revealed safety violations of supposedly safe RTS solutions [56],
we conduct the safety trade-off experiments for RQs.

2) Precision: Since prior RTS research has studied more
coarse-grained and less precise RTS at the level of files for Java
and C# projects [[11]], [19], [20], [27]], [38]], we also investigate
how our results from RQ; change if we aggregate our function-
level test traces to file-level test traces. The results show that
BINARYRTS with file-level analysis selected on average 41%
(Rar) and 49% (Rp) of C++ tests. Hence, function-level gives
better precision than file-level analysis.

We further see potential for improvement in how BINA-
RYRTS deals with static and dynamic dispatch (see Sec. [[I1I-B).
Currently, we resort to over-approximation approaches as we
rely on the compiler-agnostic, yet simple analysis tool ctags
to locate and parse functions. However, with more elaborate
static analysis from C++ compilers, we could reduce the set
of affected functions due to static and dynamic dispatch.

3) Efficiency: BINARYRTS is specifically designed to have
low overhead inside CI pipelines of pull requests to compute
the set of selected tests, commonly called the analysis phase of
RTS systems [[13]], [29]]. The time for selecting tests with By,
the configuration with maximum overhead, was on average
roughly 30 seconds, where reading and deserializing test traces
from disk took most of the time. This could be further improved
by using a database to minimize involved I/O.

For the so-called collection phase, i.e., when collecting per-
test execution traces in dedicated CI pipelines, we observe
relatively high instrumentation overhead of roughly a factor of
2-3. While allowing compiler-agnostic code and system call
instrumentation, the overhead introduced by dynamic binary
instrumentation is generally expected to be higher than for
static source code instrumentation (often several times slower
than the original program) [45]], [60], [61]. Other instrumen-
tation tools for C or C++, such as OpenCppCoverage or
CodeCoverage.exe by Microsoft, exhibit similarly high
overhead [62]]. Moreover, DynamoRIO has been shown to
have significant performance impact in other contexts as
well [47], [|63]). It also lacks support for efficiently instrumenting
dynamically generated code [|64]. Therefore, we need to disable
the JVM’s just-in-time compiler when tracing Java tests which
further increases instrumentation overhead. However, since
the CI pipelines that collect the per-test execution traces are
executed offline [13]], meaning in off-peak hours independently
of any pull requests, the instrumentation overhead does not
impact the development process. To further increase the tracing
frequency, we envision improvements related to using more
lightweight binary instrumentation solutions (BINARYRTS
has experimental support for the DBA tool Frida [65]) or
implementing source code instrumentation through source-to-
source transformation using clang. If the latter is properly
implemented, compiling and linking the transformed source
code would still be possible with any compiler and linker.

4) Developer Feedback: We have continuously discussed the
design of BINARYRTS and its evaluation with IVU engineers to
establish broad support among developers and testers. As they
see great value in the proposed RTS solution, we are currently
integrating BINARYRTS into all release branches. Moreover,
developers have suggested to implement further developer-
aiding tools for test coverage visualization and test gap analysis
based on the test traces collected with BINARYRTS.

D. Threats to Validity

1) External Validity: BINARYRTS has been designed to
suit the context-specific challenges at IVU and, therefore,
our findings do not necessarily generalize to other software
projects inside and outside of IVU. Moreover, even though
BINARYRTS also supports Linux and multiple platforms, our
evaluation at IVU was performed on C++ software built with
Microsoft’s compiler toolchain to x86-64 binaries on Windows.
Nevertheless, our results confirm prior RTS research on C++
software that reported significant savings in testing effort [29],
[30]. We publish the source code of BINARYRTS to ease
transferability to other projects beyond the context of IVU.

Another threat to validity emerges from the fact that, similar
to previous studies [14f], [19], [55], we use test durations
from test reports to measure test execution time. GoogleTest
measures test durations only in millisecond resolution, which
may distort results as some fast-running unit tests sometimes
take less than one millisecond to execute. To address this threat,
we also report the ratio of selected tests and test executables.



The latter provides an indication regarding savings in (global)
test setup costs, which can be substantial at IVU.

2) Internal Validity: Internal threats stem from the imple-
mentation of BINARYRTS, mainly related to using DynamoRIO
for analyzing and instrumenting C++ binaries, and ctags
for parsing C++ source files. To address these threats, we
manually validated selection results with IVU engineers and
wrote automated unit and integration tests for BINARYRTS.

V. RELATED WORK

We have referenced several RTS techniques throughout this
paper that have motivated and partly inspired BINARYRTS (see
Sec. [[-C). Below, we list studies targeting C or C++ software
that we consider to be most relevant for this work.

Early related RTS research was primarily on C software. In
1994, Chen et al. [22] presented TESTTUBE, an RTS technique
for C programs. Similar to BINARYRTS, it tracks covered
functions and non-functional entities per test case. TESTTUBE
employs source code instrumentation and static analysis, and
selects a test if any of its covered entities has changed.
Rothermel and Harrold [8]], [40] proposed DEJAVU, an RTS
technique for C which uses static control flow graphs and edge-
level test traces obtained through source code instrumentation
to compute affected tests. Using this fine-grained analysis,
DEJAVU is safe for C code modifications [[60], [67]].

Later, Rothermel et al. [9] extended DEJAVU to object-
oriented C++ software. Therefore, they combine interprocedural
and class control flow graphs with edge-level test traces. Their
proposed RTS technique also accounts for dynamic dispatch
and polymorphism, but, due to the lack of adequate C++
analysis and instrumentation tools at the time, it was not
actually implemented. In 1995, Kung et al. [23] presented an
RTS technique for C++ based on static class dependency graphs.
Using these graphs they compute a class firewall (see also
Leung et al. [68])), that is the set of classes affected by changes,
and derive which tests need to be selected to retest affected
classes. Jang et al. [24] and White et al. [25] extended the class
firewall approach for C++ software to improve precision and
safety by adding fine-grained change impact analysis and data
flow analysis, respectively. The class firewall approach has also
inspired the development of DEJAVOO [10] and STARTS [12]],
[28]], two class-level static RTS techniques for Java.

In the past decade, only two studies on RTS in C++ software
were published, which we deem as most related to this work:
Fu et al. [29] presented RTS++, a static RTS technique
operating on function call graphs. RTS++ targets modern
C++ programs that compile to LLVM bitcode and use the
GoogleTest testing framework. Fu et al. evaluated RTS++ on
11 open-source projects and find that the number of selected
tests is on average reduced by 61% compared to retest-all.
RTS++ is not applicable at IVU, as it requires all libraries to
be statically linked into a single executable binary.

To address integration and system testing in large-scale
C++ web services at Google, Zhong et al. [30] developed
TESTSAGE, a dynamic RTS technique for distributed systems.
When deploying TESTSAGE to Google testing infrastructure,

they achieved up to 50% reduction in testing time. TESTSAGE
also targets LLVM-based projects, as it relies on a customized
version of XRAY, a function instrumentation tool for LLVM.
TESTSAGE further uses Google’s internal version control
system and code analysis tool PIPER to perform change
impact analysis for test selection. In contrast, BINARYRTS is
based on publicly available tools and frameworks, and, due
to the employed binary instrumentation, works with different
compilers, operating systems, and binary formats.

In two previous studies, we have studied unsafe and safe
RTS techniques to implement RTS for the multi-language code
base at IVU [[19]], [55]. Unsafe RTS is typically language-
agnostic, as it relies only on readily available CI and version
control system (VCS) metadata [55]. We found that the best
performing unsafe RTS technique saved on average 19.8% of
testing time while 93.4% of failures were still detected on the
main development branch. Since unsafe RTS is not suitable
for pull requests to release branches, we developed a safer
RTS approach for Java [19]. This new approach is akin to
ExsTAzI [11], [27] and RTSLINUX [20]], two file-level RTS
techniques for Java, and tracks opened files for each test through
system call analysis. Similar to BINARYRTS, this makes it
safe for changes to external files, such as configuration files,
as well as source files in other programming languages, such
as SQL or XML. Furthermore, the approach is build system
aware, meaning it accounts for changes to the build system
configuration, and selectively builds only those Java modules
required for testing; this resulted in a an end-to-end CI pipeline
time reduction for Java by 50%-63% on average. However,
we also found that the file-level analysis granularity was too
coarse grained when Java tests accessed DLLs, as it results in
most tests being selected upon any C++ changes. BINARYRTS
is built on top of these insights and provides a practical RTS
solution for tests that use C++ binaries either directly (C++
tests) or through cross-language links (Java tests).

To summarize, no prior RTS research analyzes regression
tests which use arbitrary C++ binaries, accounts for multi-
language source files and non-code artifacts, or performs
dynamic binary instrumentation for RTS. We are the first to
evaluate C++ RTS for pull requests in industry-scale CI.

VI. CONCLUSION

In this paper, we present BINARYRTS, a dynamic RTS
technique for reliably selecting tests that use C++ binaries
during execution. It harnesses dynamic binary instrumentation
to monitor covered functions and accessed files for each
test at run-time. This way, BINARYRTS is also aware of
cross-language links to source files in other programming
languages and non-code artifacts used during testing. We
evaluate BINARYRTS in IVU’s large-scale CI infrastructure
on roughly 16,000 C++ and Java tests, some of which cover
code from hundreds of C++ binaries. Our results indicate that
BINARYRTS excludes on average 63%—74% of C++ tests and
36%—43% of Java tests, thereby reducing test duration by on
average up to 68% against a naive retest-all baseline. The
improved testing time directly translates to faster feedback



in CI testing, boosting developer efficiency and satisfaction,
which is why IVU is currently deploying BINARYRTS to all
release branches. To foster RTS research on languages other
than Java, we publish BINARYRTS and its source code as the
first publicly available RTS tool for C++ software.

ACKNOWLEDGMENTS

We thank Dennis Bracklow, René Dammer, Stefan Golas,
Maximilian Pohl, and Stefan Sieber for their support. This
work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant Q-Soft 011S22001B.
The responsibility for this article lies with the authors.

[1]

[2]

[5

=

[6]

[7

—

[8

—

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

H. K. Leung and L. White, “Insights into regression testing,” in
Proceedings of the International Conference on Software Maintenance,
1989, pp. 60-69.

S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,’
in Proceedings of the International Symposium on the Foundations of
Software Engineering, 2014, pp. 235-245.

A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan,
“Fastlane: Test minimization for rapidly deployed large-scale online
services,” in Proceedings of the International Conference on Software
Engineering, 2019, pp. 408-418.

M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive test
selection,” in Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice, 2019, pp. 91-100.

K. Fischer, F. Raji, and A. Chruscicki, “A methodology for retesting
modified software,” in Proceedings of the National Telecommunications
Conference, 1981, pp. 1-6.

S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing Verification and Reliability,
vol. 22, pp. 67-120, 2012.

K. F. Fischer, “A test case selection method for the validation of software
maintenance modifications,” in Proceedings of International Computer
Software and Applications Conference, 1977, pp. 421-426.

G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection
technique,” ACM Transactions on Software Engineering and Methodology,
vol. 6, pp. 173-210, 1997.

G. Rothermel, M. J. Harrold, and J. Dedhia, “Regression test selection
for c++ software,” Software Testing, Verification and Reliability, vol. 10,
pp. 77-109, 2000.

A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2004, pp. 241-251.

M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test
selection,” in Proceedings of the International Conference on Software
Engineering, 2015, pp. 713-716.

O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in Proceedings of the International Conference on Automated
Software Engineering, 2017, pp. 949-954.

L. Zhang, “Hybrid regression test selection,” in Proceedings of the
International Conference on Software Engineering, 2018, pp. 199-209.
A. Shi, P. Zhao, and D. Marinov, “Understanding and improving
regression test selection in continuous integration,” in Proceedings of
the International Symposium on Software Reliability Engineering, 2019,
pp. 228-238.

E. Knauss, M. Staron, W. Meding, O. Soder, A. Nilsson, and M. Castell,
“Supporting continuous integration by code-churn based test selection,” in
Proceedings of the International Workshop on Rapid Continuous Software
Engineering, 2015, pp. 19-25.

B. Busjaeger and T. Xie, “Learning for test prioritization: An industrial
case study,” in Proceedings of the International Symposium on the
Foundations of Software Engineering, 2016, pp. 975-980.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2017, pp. 12-22.

>

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]
(36]
(37]

[38]

[39]

[40]

[41]

G. Rothermel and M. J. Harrold, “A framework for evaluating regression
test selection techniques,” in Proceedings of the International Conference
on Software Engineering, 1994, pp. 201-210.

D. Elsner, R. Wuersching, M. Schnappinger, A. Pretschner, M. Graber,
R. Dammer, and S. Reimer, “Build system aware multi-language
regression test selection in continuous integration,” in Proceedings of the
International Conference on Software Engineering: Software Engineering
in Practice, 2022, pp. 87-96.

A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across jvm boundaries,” in Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2017, pp. 809-820.

R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection
and prioritization using machine learning: a systematic literature review,”
Empirical Software Engineering, vol. 27, pp. 1-34, 2022.

Y. E. Chen, D. S. Rosenblum, and K. phong Vo, “Test tube: a system
for selective regression testing,” in Proceedings of the International
Conference on Software Engineering, 1994, pp. 211-220.

D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall,
test order, and regression testing of object-oriented programs,” Journal
of Object-Oriented Programming, vol. 8, pp. 51-65, 1995.

Y. K. Jang, M. Munro, and Y. R. Kwon, “An improved method of selecting
regression tests for c++ programs,” Journal of Software Maintenance
and Evolution, vol. 13, pp. 331-350, 2001.

L. White, K. Jaber, B. Robinson, and V. Rajlich, “Extended firewall
for regression testing: An experience report,” Journal of Software
Maintenance and Evolution, vol. 20, pp. 419-433, 2008.

L. Zhang, M. Kim, and S. Khurshid, “Faulttracer: A spectrum-based
approach to localizing failure-inducing program edits,” Journal of
Software: Evolution and Process, vol. 25, pp. 1357-1383, 2013.

M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2015, pp.
211-222.

O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in Proceedings of the International Symposium on Foundations
of Software Engineering, 2016, pp. 583-594.

B. Fu, S. Misailovic, and M. Gligoric, “Resurgence of regression test
selection for c++,” in Proceedings of the International Conference on
Software Testing, Verification and Validation, 2019, pp. 323-334.

H. Zhong, L. Zhang, and S. Khurshid, “Testsage: Regression test selection
for large-scale web service testing,” in Proceedings of the International
Conference on Software Testing, Verification and Validation, 2019, pp.
430-440.

LLVM, “Llvm compiler infrastructure.” [Online]. Available: https:
/Mlvm.org/

M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in
Proceedings of the International Working Conference on Source Code
Analysis and Manipulation, 2018, pp. 1-23.

A. Maven, “Maven.” [Online]. Available: https://maven.apache.org
Microsoft, “Msvc c++ toolset.” [Online]. Available: https://docs|
microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp

Google, “Googletest.” [Online]. Available: https://google.github.io/
googletest/

JUnit, “Junit 5,” 2021. [Online]. Available: https://junit.org/junitS

M. J. Harrold, A. Orso, J. A. Jones, T. Li, M. Pennings, S. Sinha,
A. Gujarathi, D. Liang, and S. A. Spoon, “Regression test selection for
java software,” ACM SIGPLAN Notices, vol. 36, pp. 312-326, 2001.
M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs. module-
level regression test selection for .net,” in Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2017, pp. 848-853.

A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka,
“Optimizing test placement for module-level regression testing,” in
Proceedings of the International Conference on Software Engineering,
2017, pp. 689-699.

G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regression
test selection,” in Proceedings of the International Conference on Software
Maintenance. 1EEE, 1993, pp. 358-367.

, “Selecting regression tests for object-oriented software,” in
Proceedings of the International Conference on Software Maintenance,
1994, pp. 14-25.



https://llvm.org/
https://llvm.org/
https://maven.apache.org
https://docs.microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp
https://docs.microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp
https://google.github.io/googletest/
https://google.github.io/googletest/
https://junit.org/junit5

[42
[43]

[44]

[45]
[46]

[47]

(48]
[49]
[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Clang, “Clang compiler.” [Online]. Available: https://clang.llvm.org/
LLVM, “Llvm xray function call tracing.”” [Online]. Available:
https://llvm.org/docs/XRay.htm

D. Elsner, R. Wuersching, M. Schnappinger, and A. Pretschner, “Probe-
based syscall tracing for efficient and practical file-level test traces,” in
Proceedings of the International Conference on Automation of Software
Test, 2022, pp. 126-137.

N. Nethercote, “Dynamic binary analysis and instrumentation or building
tools is easy,” Ph.D. dissertation, University of Cambridge, 11 2004.
D. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, MIT, 9 2004.

C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. I. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
Conference on Programming Language Design and Implementation,
2005, pp. 190-200.

DynamoRIO, “Dynamorio.” [Online]. Available: https://dynamorio.org
ctags, “Universal ctags.” [Online]. Available: https://ctags.io

F. I. Vokolos and P. G. Frankl, Pythia: A regression test selection tool
based on textual differencing. Springer, 1997.

git, “git.” [Online]. Available: https://git-scm.com

“Java agent api,” 2017. [Online]. Available: https://docs.oracle.com/
javase/9/docs/api/java/lang/instrument/package-summary.html

J. Bell and G. Kaiser, “Unit test virtualization with vmvm,” in Proceedings
of the International Conference on Software Engineering, 2014, pp. 550—
561.

P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric,
“Debugging the performance of maven’s test isolation: Experience report,”
in Proceedings of the International Symposium on Software Testing and
Analysis, 2020, pp. 249-259.

D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically
evaluating readily available information for regression test optimization in
continuous integration,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2021, pp. 491-504.

C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for checking
regression test selection tools,” in Proceedings of the International
Conference on Software Engineering, 2019, pp. 430-441.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” Proceedings of the
International Conference on Software Engineering, pp. 433-444, 2018.
M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developers perspective,” in Proceedings of the ACM Joint
Meeting European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. Association for Computing
Machinery, Inc, 8 2019, pp. 830-840.

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A
study on the lifecycle of flaky tests,” in Proceedings of the
International Conference of Software Engineering, 2020, pp. 1471-
1482. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/a-study-on-the-lifecycle-of-flaky- tests/

V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

A. Engelke and M. Schulz, “Instrew: Leveraging llvm for high
performance dynamic binary instrumentation,” in Proceedings of the
International Conference on Virtual Execution Environments, 2020, pp.
172-184.

CQSE, “Performance impact of c++ profilers.” [Online].
Available: https://docs.teamscale.com/howto/setting-up- profiler-tga/cpp/
#performance-impact

M. A. B. Khadra, D. Stoffel, and W. Kunz, “Efficient binary-level
coverage analysis,” in Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 1153-1164.

B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao, “Optimizing
binary translation of dynamically generated code,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2015,
pp. 68-78.

Frida, “Frida.” [Online]. Available: https://frida.re/

G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” IEEE Transactions on Software Engineering, vol. 22, pp.
529-551, 1996.

G. Rothermel, “Efficient, effective regression testing using safe test
selection techniques,” Ph.D. dissertation, Clemson University, 5 1996.

[68] H. K. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proceedings of the International

Conference on Software Maintenance.
290-301.

IEEE Computer Press, 1990, pp.


https://clang.llvm.org/
https://llvm.org/docs/XRay.htm
https://dynamorio.org
https://ctags.io
https://git-scm.com
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/
https://docs.teamscale.com/howto/setting-up-profiler-tga/cpp/#performance-impact
https://docs.teamscale.com/howto/setting-up-profiler-tga/cpp/#performance-impact
https://frida.re/

	Introduction
	Testing C++ Pull Requests at IVU
	System Description
	C++ Pull Request CI Pipeline
	Existing C++ Test Selection Approaches

	BinaryRTS Technique
	Dynamic Binary Analysis
	Changed-based Test Selection
	Integration into Pull Request ci at IVU

	Evaluation
	Experimental Setup
	Evaluation Branches
	Evaluation Metrics
	BinaryRTS Configuration

	Results
	Discussion
	Safety
	Precision
	Efficiency
	Developer Feedback

	Threats to Validity
	External Validity
	Internal Validity


	Related Work
	Conclusion
	References

