
TECHNICAL UNIVERSITY MASSACHUSETTS INSTITUTE
OF MUNICH OF TECHNOLOGY

DEPARTMENT OF DEPARTMENT OF
INFORMATICS AERONAUTICS AND ASTRONAUTICS

Master’s Thesis in Robotics, Cognition and Intelligence

Minimizing Collision Risk in Density-based
Motion Planning

Laura Lützow

TECHNICAL UNIVERSITY MASSACHUSETTS INSTITUTE
OF MUNICH OF TECHNOLOGY

DEPARTMENT OF DEPARTMENT OF
INFORMATICS AERONAUTICS AND ASTRONAUTICS

Master’s Thesis in Robotics, Cognition and Intelligence

Minimizing Collision Risk in Density-based
Motion Planning

Minimierung des Kollisionsrisikos in dichte-basierter
Bewegungsplanung

Author: Laura Lützow
Supervisor: Prof. Dr.-Ing. Matthias Althoff, TUM
Advisor: Assistant Prof. Chuchu Fan, MIT
Submission Date: September 15th, 2022

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

Munich, September 15th, 2022 Laura Lützow

Acknowledgments

This thesis summarizes the research which I did during the last half year at the
Reliable Autonomous Systems Lab at Massachusetts Institute of Technology. First, I
want to thank Prof. Matthias Althoff who showed great trust in my abilities and helped
me with organizing my master thesis abroad. Without him, the opportunity to write
my thesis at MIT would not have arisen. Second, I want to thank my supervisor at MIT,
Assistant Prof. Chuchu Fan, for giving me the chance to write my master thesis in her
Lab and for the guidance and support she provided during my research.

Another big thanks goes to my lab mates, Sydney Dolan, Charles Dawson, Yue Meng,
Songyuan Zhang and Kathleen Xu, who welcomed me with open arms and helped me
with settling in. For my research I was supported by Yue Meng and Andres Chavez
Armijos and I am very grateful for their advice during project meeting and the help
they provided for transforming the thesis into a conference submission. I also want
to thank everyone from VISTA, the vising student association at MIT, and SMITE, the
Ultimate Frisbee team, who made my time in Boston so remarkable. In particular, I
want to mention Huyen-Tram Tran, Giulia Pozzi, Jonas Oldenstädt, Tobias Lucas, Chris
Quinn and David Werder.

As my studies will end with the submission of my thesis, I also want to thank everyone
who supported me in the last six years. A big thanks goes to my friends and fellow
students for making the last six years the most exciting time in my life. Especially, I want
to thank Sarah Löcklin, Elisabeth Piontkowskie, Stefan Menger, Maximilian Kloppe,
Finn Süberkrüb, Maxime Thibault, Victoria Stoisser and Julia Panzer.

My family deserves one of my greatest thanks. I want to thank my parents, Pia and
Volker, and my sisters, Svenja and Lisa, for their unconditional support and for always
being there for me.

Notations

Abbreviations

CCM control contraction metric
CRI collision risk increase
FPE Fokker-Planck equation
GCI goal cost increase
ICI input cost increase
LE Liouville equation
MPC model predictive control
PDE partial differential equation

Conventions

a scalar
a vector
aT transposed vector a
||a|| Euclidean norm of vector a
A matrix
□̇ first time derivative of scaler, vector or matrix □

□̂ approximated value of □

□(t) □ at time t
□(·) time trajectory of □

Subscripts and Superscripts

ai element in the ith row of vector a
A:i ith column of matrix A
Aij element in the ith row and jth column of the matrix A
□∗ reference
□(i) sample i

iv

Notations

Variables

a longitudinal acceleration
cx x-position in grid coordinates
cy y-position in grid coordinates
Gx gradient of obstacle occupation probabilities in x-direction
Gy gradient of obstacle occupation probabilities in y-direction
g density concentration function
glog logarithmic density concentration function
J cost for trajectory optimization
L loss for neural network training
M contraction metric
N number of prediction time points
Pcoll collision probability between obstacles and the ego vehicle
Pego occupation probability by the ego vehicle
Pocc occupation probability by obstacles
px x-position in real-world coordinates
py y-position in real-world coordinates
rtube radius of the tube in tube-based model predictive control
s step size
S number of samples
t time
tk kth discrete time point
u input vector
Up input parameters
W dual contraction metric
v velocity
x state vector
α weighting factors
δx infinitesimal displacement between the solution and a neighboring one
∆t time increment between two consecutive time points
θ heading angle
θbias sensor bias on heading angle measurement
λ contraction rate
ρ density
Φ flow map
ω yaw rate

v

Abstract

This thesis presents a novel approach for density-based motion planning in dynamic
environments. Many state-of-the-art motion planners have difficulties to reach the
target in crowded, uncertain environments while keeping the collision probability small.
Thus, the main objective for the proposed motion planner is to find trajectories which
lead to a target position with minimal collision risk. As we additionally consider an
uncertain initial state in form of a given density distribution, we will utilize density-
based reachability, i.e., we will estimate the state density distribution which will be
reached in the future and use it to compute and minimize the collision risk.

The proposed approach consists of three main components: First, a tracking controller
will be synthesized such that trajectories starting from all possible initial states stay in
the vicinity of a reference trajectory. To guarantee good tracking performance, even
under disturbances, we will use contraction theory. The second component is a neural
network which approximates the state density distribution for the closed-loop dynamics
along the reference trajectory. Finally, a gradient-based optimization procedure will be
used to optimize the reference trajectory in order to minimize the collision risk.

To evaluate the performance, the motion planning approach is applied to an au-
tonomous car and we show that the approach outperforms state-of-the-art motion
planners in a large number of dynamic environments. Furthermore, we demonstrate
that the concept can be applied to real-world data without modification.

vi

Contents

Acknowledgments iii

Notations iv

Abstract vi

1. Introduction 1
1.1. Objectives . 2

1.1.1. Problem Formulation . 2
1.1.2. Proposed Solution . 2

1.2. Related Work . 4
1.2.1. Motion Planning under Uncertainty 4
1.2.2. Density Control . 6
1.2.3. Contraction Theory . 7

1.3. Contributions . 7
1.4. Outline of the Thesis . 8

2. Preliminaries 9
2.1. Density Evolution . 9

2.1.1. Fokker-Planck Equation . 9
2.1.2. Liouville Equation . 10

2.2. Contraction Analysis . 11

3. Prediction of the Collision Probability 14
3.1. Controller Synthesis . 14
3.2. Density Estimation with Neural Networks 15
3.3. Computing the Collision Probability . 18

4. Optimization of the Reference Trajectory 20
4.1. The Cost Function . 20

4.1.1. Goal, Input and State Space Cost . 20
4.1.2. Collision Cost . 21

4.2. The Optimization Approach . 23
4.2.1. Initialization . 24
4.2.2. Local Optimization with Density Predictions 25

vii

Contents

5. Application to Autonomous Cars 28
5.1. Dubins’ Car Model . 28
5.2. Implementation . 29

5.2.1. Contraction Controller . 29
5.2.2. Neural Density Predictor . 31
5.2.3. Trajectory Optimization . 33

5.3. Ablation Study for the Optimization Method 33
5.3.1. Search-based Trajectory Optimization 35
5.3.2. Sampling-based Trajectory Optimization 36
5.3.3. Comparison of the Optimization Methods 37

6. Motion Planning Results 41
6.1. Baseline Methods . 41

6.1.1. Conservative Motion Planners . 41
6.1.2. Online Motion Planners . 42
6.1.3. Approximation of the Optimal Solution 44

6.2. Comparison . 45
6.2.1. Evaluation in Artificial Environments 45
6.2.2. Validation with Real-World Data . 49

7. Conclusions 55
7.1. Limitations . 55
7.2. Future Work . 56

A. Implementation Details 58
A.1. State and Input Space . 58
A.2. Parameters . 58

B. Numerical Results 59
B.1. Neural Contraction Controller . 59
B.2. Neural Density Predictor . 59
B.3. Evaluation of the Optimization Methods 60
B.4. Safe MPC . 62
B.5. Evaluation of the Motion Planning Methods in Artificial Environment . . 63
B.6. Evaluation of the Motion Planning Methods in Real-world Environment . 71

List of Figures 76

List of Tables 79

Bibliography 80

viii

1. Introduction

Every day, 3287 people on average die in car accidents making these accidents the
ninth leading cause of death1. As more than 60% of them occur because of human
errors [1], the application of autonomous cars is promised to significantly decrease this
number. However, before autonomous cars can be used in everyday life, they have to
meet certain safety standards. For one, we want to have guarantees that the car stays
in the admissible state space, i.e., it should stay on the street and respect the speed
limit. Furthermore, we want to reach the goal in a reasonable amount of time, and
finally, collisions with obstacles or other traffic participants should be avoided by all
means. Therefore, providing safety certificates is one key challenge in motion planning
for autonomous systems.

Because of uncertainties such as measurement errors, external disturbances or model
errors, we cannot precisely predict the future state of the vehicle and the environment
which leads to more difficulties in making safety statements about a planned trajectory.
To deal with these uncertainties, there are two main directions for motion planning:
Conservative approaches focus on safety by considering all possible situations, e.g.,
with reachability analysis [2], by planning a safe trajectory for the worst case [3] or
by computing safe sets in which safety can be guaranteed for a contained trajectory
[4, 5]. Alternatively, many motion planning approaches target probabilistic safety.
By predicting the most likely future states of the environment, they can plan less
conservative trajectories which are safe with a high probability [6, 7]. As unsafe behavior
of autonomous systems can lead to collisions and hence, could result in serious damage,
only having probabilistic guarantees may not seem satisfactory in numerous applications.
However, there are many cases in which a guaranteed safe trajectory cannot be found.
For instance, we usually cannot find a path with zero collision probability for an
autonomous car in crowded real-world environments. While in many situation we
prefer to stop or revert to a fail-safe emergency maneuver [8] if the collision probability
is nonzero, there are other situations where a higher collision risk is acceptable. Finding
the trajectory with the smallest collision risk is in these situations of utmost importance
and topic of this thesis.

The problem formulation as well as a description of the solution concept will be given
in Section 1.1, while Section 1.2 presents an overview of related work. In Section 1.3, the
contributions of this thesis are listed. The thesis outline is provided in Section 1.4.

1https://safer-america.com/car-accident-statistics/#Global, Accessed: 2022-08-29

1

1. Introduction

1.1. Objectives

In the course of this thesis, a motion planning approach for autonomous systems under
state uncertainties is developed. The exact problem will be described in Section 1.1.1,
while Section 1.1.2 presents an overview of the proposed solution.

1.1.1. Problem Formulation

This thesis solves the problem of defining an optimal control policy for a given au-
tonomous system and environment setup. The system shall be steered to the goal state
while minimizing the collision probability with possible dynamic obstacles. Further-
more, the state and input constraints must be satisfied, and the system dynamics can be
nonlinear in the states.

In contrast to standard motion planning problems, we consider an uncertain initial
state following an arbitrary but known probability density function. During the execu-
tion of the control policy, the state can be measured and used for closed-loop control.
However, because of limited computational power and the time constraints for real-time
executability, the online computations of the controller have to be simple. Furthermore,
we consider imperfect measurements due to sensor bias.

Additionally, probabilistic predictions for the evolution of the environment are given.
Namely, we know for each position in the environment the probability of it being
occupied by an obstacle at a certain point in time. The position of the vehicle at this time
depends on the initial state and hence also follows a certain probability distribution.
The overlap of this state distribution with the predicted obstacle positions yields the
collision probability.

Thus, the algorithm should find a general control strategy which minimizes the cost
function and satisfies the constraints for the uncertain initial states despite sensor errors.
The motion planning problem is summarized in Fig. 1.1 and visualized in Fig. 1.2.

1.1.2. Proposed Solution

We will split our motion planning approach into three phases:

• Preparation Phase: This phase contains all computations and preparations which
are independent of the environment setup (they only depend on the dynamics
of the autonomous system) and is executed prior to the actual motion planning
process. Since these computations have to be done only once for a given dy-
namical system, the preparation phase does not have any strict restrictions on its
computational complexity.

• Planning Phase: In this phase, we want to find the optimal control strategy for a
certain environment setup which is specified by the initial density distribution,
the goal state and the environment predictions. Directly after the planning phase,

2

1. Introduction

Given Inputs

• system dynamics

• goal state

• initial state density distribution

• predicted occupancy probabili-
ties for the environment

Desired Output

• control policy which
– steers the system to the goal state
– satisfies state and inputs constraints
– minimizes the collision risk

Motion
Planning

Algorithm

Figure 1.1.: Problem description.

x
Initial
state

Goal

Obstacles

(a) Standard motion planning
problem: The initial state
and the environment is con-
sidered as exactly known.

Uncertain
initial state

Goal

Occupancy
Probabilities

(b) Motion planning problem considered in this thesis:
The initial state is uncertain and given by an arbitrary
probability distribution. The environment is uncertain
and described by occupancy probabilities.

Figure 1.2.: Visualization of the motion planning problem. We want to find a control
strategy which steers the system to the goal state for all possible initial states
while satisfying the constraints and minimizing the collision risk.

Preparation Phase

• synthesis of the tracking
controller

• training of the neural net-
work to predict the state
density distribution

Planning Phase

• prediction of the collision
probability

• optimization of the refe-
rence trajectory

Control Phase

• execution of the tracking
controller to follow the
reference trajectory

System Dynamics
Environment Setup

(initial density distribution, goal
state, environment predictions)

State Measurements
(with sensor bias)

Figure 1.3.: Phases of the motion planning algorithm

3

1. Introduction

the planned motion gets executed. As short planning times are desired, the
computational complexity should be low.

• Control Phase: This phase denotes the online execution of the planned con-
trol strategy by the autonomous system. In this phase, we can only do minor
computations like computing the output of a simple feedback controller.

An overview of the phases and their elements is provided in Fig. 1.3. The proposed
motion planning approach can now be described as follows:

In the preparation phase, we design a tracking controller which will use real-time state
measurements to track a reference trajectory. To guarantee that the considered system
stays in the neighborhood of the reference trajectory despite the initial state uncertainties
and disturbances, we will use contraction theory for the controller synthesis. The
synthesis has to be done only once since the controller can be used for all reference
trajectories and hence for all environment setups, as long as the dynamic system stays
the same. By assuming the execution of the tracking controller in the control phase, the
problem for the planning phase is simplified to finding the optimal reference trajectory.
As we want to have short planning times, we need an efficient way to compute the
collision probability along this reference trajectory. On this account, we will train a
neural network which predicts the evolution of the state density distribution dependent
on the reference trajectory and the initial state distribution.

In the planning phase, we optimize the reference trajectory by minimizing a differen-
tiable collision risk with a gradient-based algorithm. The collision risk can be computed
efficiently by using the density predictions of the neural network.

In the control phase, the tracking controller is applied such that the system follows
the optimized reference trajectory in real-time. The controller uses state measurements
which can be inaccurate because of sensor bias.

An example environment and the solution strategy is visualized in Fig. 1.4. For better
visualizability, only stationary obstacles are considered.

1.2. Related Work

In the following, the state of the art and a review of relevant literature is provided.
Firstly, the general topic of motion planning in uncertain environments is investigated
in Section 1.2.1. Section 1.2.2 presents methods to predict or control the state density
function for dynamical systems, followed by a short overview of related work using
contraction theory in Section 1.2.3.

1.2.1. Motion Planning under Uncertainty

To plan safe trajectories for autonomous systems, the state and evolution of the environ-
ment has to be considered, e.g., in autonomous driving the movement of other traffic
participants has to be predicted.

4

1. Introduction

Uncertain
initial state

Goal

Reference
trajectory

System
trajectories

Occupancy
Probabilities

(a) Step 1: The control pol-
icy is defined. We will
use a tracking controller
such that all possible sys-
tem trajectories stay close
to a given reference trajec-
tory.

Predicted
density

at time tk

(b) Step 2: Dependent on the
reference trajectory, the
density distribution for the
controlled system can be
predicted at each time step.

Optimized
reference
trajectory

Predicted
density

at time tk

(c) Step 3: The reference
trajectory is optimized on
the basis of the density
predictions in order to
minimize the collision risk.

Figure 1.4.: Proposed solution. We want to find a control strategy which minimizes the
collision probability for all possible initial states. The collision probability
can be computed from the positional overlap between the state density
distribution of the considered system (blue) and the possible positions of
obstacles specified by the occupancy probabilities (black).

The authors of [9] differentiate between physic-based methods which use dynamic
or kinematic models and Bayesian filters, and methods with learning components for
improved modelling of long term dependencies. The output of the prediction model can
be the intention of the pedestrians (e.g., crossing the street), trajectories or occupancy
maps. For our motion planning approach, we consider occupancy maps which assign to
each location on the map a probability that this location is occupied. These maps can be
obtained from neural networks [10], Markov chains [11] or via reachability analysis [12].

The objective in motion planning is to find a trajectory which minimizes some cost
function while leading the system to a specified state, satisfying the kinematic and
input constraints and avoiding collision. There is a vast amount of publications dealing
with this problem while considering environment predictions in the form of occupancy
maps. These publications use probability navigation functions [13] which attract the
system to the target position while repelling it from areas with high collision probability,
chance-constrained RRT [14] or general constrained optimization techniques [15]. All
of these methods assume that the initial state is exactly known, but this knowledge is
often not given in the real world. Because of sensor uncertainties we can just make

5

1. Introduction

probabilistic guesses about the initial state. As a consequence, it is desirable to use the
probability density distribution of the initial system state for motion planning.

1.2.2. Density Control

There are many publications doing motion planning for Gaussian distributed initial
states. Under linear dynamics, just the mean and covariance of the density distribution
will change over time [16]. As it is possible to control the first two moments separately
and independently, systems can be easily steered to arbitrary Gaussian distributions.
The corresponding optimal control problems can be solved by convex programming
[17].

As soon as nonlinear dynamics or non-Gaussian distributions are considered, con-
trolling the density distribution becomes more challenging. Several publications deal
with the covariance steering problem for nonlinear systems where they try to find the
input signal to change the covariance of a Gaussian state distribution in a predefined
way [18, 19, 20]. However, these methods are not directly applicable to non-Gaussian
state distributions.

The control of arbitrary density distributions can be closely related to optimal trans-
port theory where a given distribution is rearranged while the cost of transport is
minimized [21]. In [22], the optimal state feedback policy for this task is obtained by
solving the Hamilton-Jacobi-Bellman equation. This is achieved by reformulating the
control problem as a Schrödinger bridge problem and solving the Schrödinger sys-
tem with fixed point recursion. Additionally, state constraints as required for obstacle
avoidance can be considered [23]. By capitalizing the differential flatness of a kinematic
bicycle model, this density control method can also be applied to safe lane changing in
autonomous driving [24]. In addition to the fact that this approach can only be used for
full state feedback linearizable systems, the convergence of the fixed-point recursion
cannot be guaranteed.

Instead of optimizing the density and motion trajectory at once, an iterative optimiza-
tion strategy can be utilized by splitting the problem into the density prediction part
and the subsequent policy optimization:

In [25], a duality relationship between the density function which follows the Liouville
equation and the value function of optimal control problems is proved. Thus, the
problem can be solved with a primal dual algorithm alternating between the solution
of the Liouville equation to get the density for a given control policy and updating the
policy with the Hamilton-Jacobi-Bellman equation. However, the computational effort
for solving the Hamilton-Jacobi-Bellman equation is quite high.

The duality of the density function to Q functions is shown and leveraged in [26].
By optimizing a modified Q function with model-free reinforcement learning, time-
invariant density constraints are enforced and the convergence to a near-optimal solution
can be proved.

In [27], the complexity of solving the Hamilton-Jacobi-Bellman equation is circum-
vented by using a perturbation method and nonlinear programming. A reference

6

1. Introduction

trajectory is generated and tracked by a tracking controller. The density distribution
along this reference trajectory is predicted and if the resulting collision probability is
smaller than a certain threshold, the trajectory is considered safe and gets accepted.
Otherwise, the trajectory segment where a high collision probability was detected is
perturbed and then checked again. One big limitation of this approach is its computation
time - the collision checking is computationally complex and it cannot be guaranteed
that a safe trajectory in the neighborhood of the initial trajectory will be found nor
how many iterations will be needed. Furthermore, this approach only tries to reach a
certain safety level, but no optimality statements can be made. This thesis uses a similar
approach to [27] with more efficient collision probability computations and an improved
optimization algorithm. Additionally, a tracking controller with convergence guarantees
will be synthesized by using contraction theory.

1.2.3. Contraction Theory

The foundations for contraction theory were laid by Winfried Lohmiller and Jean-
Jacques E. Slotine [28] providing a strong tool for analyzing the stability of nonlinear
systems and synthesizing guaranteed stable controllers. While contraction controllers
were extensively applied to dynamic systems with stochastic disturbances [29, 30, 31],
only few publications consider uncertain initial conditions. In [32], the initial density
distribution is over-approximated by a ball induced by the Finsler distance. Using
contraction theory, the contraction rate of this ball can be computed such that the
maximum extensions of the density distribution can be calculated for each point in time.

How the density distribution of linear systems can be steered to a prescribed distri-
bution shape is analyzed in [33]. However, this method cannot be applied to general
nonlinear systems.

To the best of the authors knowledge, there is no work combining contraction theory
with density control for nonlinear systems.

1.3. Contributions

Our motion planning approach has several advantages over prior work: The approach
is valid for arbitrary initial probability distributions and nonlinear system dynamics.
By predicting the probability distribution at each point in time, the approach is not
over-cautious and can provide good estimates for the collision probabilities. Because
of the neural network approximation of the closed-loop dynamics and the density
function, and an efficient optimization framework, small planning times can be achieved.
The resulting control strategy can be executed in real-time with low computational
complexity. Additionally, the resulting trajectory is optimal in a given cost criteria
and the gradient-based optimization method can easily overcome bad local minima by
comparing the results of different start conditions.

Other main contributions of this thesis are:

7

1. Introduction

1. We are the first to connect contraction theory with density control for nonlinear
systems.

2. We provide an efficient method to compute the collision probability for closed-loop
dynamics and an effective gradient-based algorithm for its optimization.

3. We apply the approach to a simulated autonomous vehicle and compare its
performance with state-of-the-art motion planning methods in a large number of
time-variant environments.

4. We validate the approach with real-world data.

1.4. Outline of the Thesis

After having introduced the topic and related work in Chapter 1, Chapter 2 provides an
overview of the theoretical fundamentals used in this thesis. The basics for predicting
the state density distribution are explained. In this regard, we present the Fokker-Plank
equation and the Liouville equation and describe solution methods. In the second part
of the chapter, an introduction to contraction analysis is given and important results for
synthesizing a contraction controller are derived.

Chapter 3 deals with the computation of the collision probability. First, we introduce
the neural contraction controller which is used to track the reference trajectory and
describe the training process. Next, the neural network to predict the state density
distribution along the reference trajectory is presented, followed by the description of
the collision probability estimation procedure.

The optimization method to minimize the collision probability is discussed in Chap-
ter 4. The composition of a differentiable cost function is explained and the cost
computation algorithm is given. Furthermore, we describe the gradient-based optimiza-
tion method which consists of an initialization process to overcome local minima and a
subsequent optimization algorithm to minimize the overall collision probability.

In Chapter 5, the motion planning approach is applied to an autonomous car and
time-variant environments. First, the implementation is described and the performance
of the controller, of the density predictor and of the optimization method is analyzed.
Additionally, an ablation study for the optimization method is given where the gradient-
based approach is compared with a search-based and a sampling-based method.

Finally, we evaluate the performance of the overall motion planning approach in Chap-
ter 6. We explain the necessity of including the collision probability in the cost function
and describe state-of-the-art motion planners which can be used as baselines. Simulation
results are provided for artificially generated environments and for environments based
on real-world data.

Chapter 7 concludes the thesis. Limitations of the motion planning approach are
given and an overview of possible future research directions is presented.

8

2. Preliminaries

To plan safe trajectories for autonomous systems, we have to consider the uncertainties
of the real world. These uncertainties can result from imperfect measurements or model
inaccuracies since generally the environment and the system can never be modeled
exactly. This thesis concentrates on uncertainties in the initial state in form of a given
probability density distribution. To predict the evolution of the probability density
function, the Liouville equation is solved with a neural network. To track the reference
trajectory despite the initial state uncertainties a contraction controller is leveraged. The
fundamentals of these topics are presented in this chapter:

The basics about the evolution of the density function are given in Section 2.1 where
the first part deals with the general Fokker-Planck equation and the second part focuses
on the solution of the Liouville equation to approximate the density for deterministic
systems. The chapter concludes with a brief introduction to contraction theory in
Section 2.2.

2.1. Density Evolution

The density function describes the distribution of states in the state space. If the integral
of the density function over the whole state space sums up to one, this function can be
called probability density function. Thus, its value ρ(x, t) denotes the probability density
that the system resides around state x at time t. To predict the collision probability
of the system for a given control input, the evolution of the density function must be
computed.

In general, the evolution of the density function follows the Fokker-Planck equation
which is the topic of Section 2.1.1. Under certain assumptions, this equation can be
simplified to the Liouville equation which is discussed in Section 2.1.2.

2.1.1. Fokker-Planck Equation

The Fokker-Planck equation (FPE) describes the evolution of the density function for
dynamic systems in the presence of uncertainties. In this subsection, we consider the
general dynamical system which follows the stochastic differential equation

ẋ = f(x, u) + G(x, u)Γ(t), (2.1)

where x(t) is the state, u(t) is the control input, Γ(t) is a Gaussian white noise process
with the correlation function Qδ(t1 − t2) and δ(·) is the Dirac delta function. The

9

2. Preliminaries

arguments of x and u are omitted in this chapter due to better readability. The density
distribution ρ(x, t) of this stochastic system satisfies the FPE [34, 35]:

∂

∂t
ρ(x, t) = −

n

∑
i=1

∂

∂xi

(
f(x, u) +

1
2

∂G(x, u)
∂x

QG(x, u)
)

i
ρ(x, t) (2.2)

+
n

∑
i=1

n

∑
j=1

∂2

∂xi∂xj

(1
2

G(x, u)QGT(x, u)
)

ij ρ(x, t), (2.3)

where □ij is the element in the ith row and jth column of the matrix □ and □i denotes the
element in the ith row of the vector □. Since the solution should be a valid probability
distribution, it has to be positive everywhere and its integral over the whole state space
should be one.

Even by assuming a constant diffusion coefficient, i.e., G(x, u) = G, which corre-
sponds to additive Gaussian noise, this second-order partial differential equation (PDE)
is very difficult to solve. The analytical solution can only be obtained for special dynam-
ical models under strict conditions. Numerical methods for approximating the solution
such as finite element methods or finite difference methods are prone to discretization
error and often require substantial computing resources, especially when computing
in two- or higher-dimensional domains [35]. As an alternative, the FPE can be solved
with deep learning by directly enforcing the PDE and the positivity and normalization
constraints on the outputs of an artificial neural network. However, this was previously
done only for the stationary FPE, i.e., ∂

∂t ρ(x, t) = 0, [36, 35, 37] or for systems with less
than three dimensions [38]. Furthermore, no work considered the dependence of the
system dynamics on some control input. Consequently, for exactly approximating the
density evolution of a controlled stochastic system with more than two dimensions, a
very big neural network and large training times would be necessary. Thus, we will
assume in the following that the stochastic noise in Eq. (2.1) is negligible resulting in a
much simpler evolution equation.

2.1.2. Liouville Equation

For a general deterministic system

ẋ = f(x, u), (2.4)

the FPE simplifies to the Lioville equation (LE)

∂ρ(x, t)
∂t

= −
n

∑
i=1

∂

∂xi
fi(x, u) ρ(x, t), (2.5)

a quasi-linear, first-order PDE [39]. While the closed-form solution of the LE cannot be
calculated for most systems, the density can be easily evaluated along trajectories by
transforming the PDE to the ordinary differential equation [25]

[
ẋ

ρ̇(x, t)

]
=

[
f (x, u)

−
(
∇x · f (x, u)

)
ρ(x, t)

]
, (2.6)

10

2. Preliminaries

where ∇x ·
(
ρ(x, t) · f (x, u)

)
= ∑n

i=1
∂

∂xi
fi(x, u) ρ(x, t) is the divergence of the vector field

ρ(x, t) · f (x, u). Thus, for a given initial density distribution ρ0, the density evolution
can be predicted by uniformly sampling initial conditions x0 from the support of ρ0

and solving Eq. (2.6) at the prediction time tp with initial condition x(0) = x0 and
ρ(x, 0) = ρ0(x0). With interpolation methods the whole density distribution at time tp

can be constructed [40].
In [41], the prediction process is accelerated by training a neural network to solve

Eq. (2.6). Since the closed-form solution for the density

ρ
(
Φ(x0, u, t), t

)
= ρ0(x0) exp

(
−

∫ t

0
∇x · f

(
Φ(x0, u, τ), u

)
dτ

)

︸ ︷︷ ︸
g(x0, u, t)

(2.7)

is linear in the initial condition ρ0(x0), it is sufficient to learn the flow map x(t) =

Φ(x0, u, t) and the density concentration function g(x0, u, t) from the inputs x0, u and t.
By scaling the density concentration function of a trajectory with its initial density, the
true density evolution can be recovered.

2.2. Contraction Analysis

To make the autonomous system track a reference trajectory, a contraction controller
will be used in this thesis. This section concentrates on the theoretical fundamentals for
the controller synthesis and thereby mostly summarizes the results from [28] and [42]
about contraction analysis:

Contraction analysis is used for studying the stability of nonlinear systems by evaluat-
ing its differential dynamics along solutions. Convergence of all neighboring solutions
to each other implies global exponential convergence to a single trajectory.

In this thesis, we consider control-affine nonlinear systems of the form

ẋ = a(x) + B(x)u︸ ︷︷ ︸
f(x,u)

. (2.8)

It is assumed that a(x) and B(x) are smooth functions and u(t) is at least piecewise-
continuous. A valid solution

(
x(t), u(t)

)
satisfies the dynamics in Eq. (2.8) for all

t ∈ R+. The reference trajectory
(
x∗(t), u∗(t)

)
as the trajectory which we want our

system to follow has to be a solution of Eq. (2.8).
To make statements about the behavior of trajectories with respect to each other, the

differential dynamics of the system have to be analyzed. The differential dynamics are
defined along the solution

(
x(t), u(t)

)
according to

δ̇x(t) = A(x, u, t)δx(t) + B(x, t)δu(t), (2.9)

where A(x, u, t) = ∂a
∂x + ∑m

i=1
∂B:i
∂x ui , B:i(x) is the ith column of B(x) and δx(t) is the

infinitesimal displacement between the solution and a neighboring one at time t. Apply-
ing the smooth feedback control law u(t) = k(x, t) + v(t) and denoting the derivative

11

2. Preliminaries

∂k
∂x by K(x, t) leads to the closed-loop system

δ̇x(t) =
(
A(x, u, t) + B(x, t)K(x, t)

)
δx(t). (2.10)

For clarity, the arguments of the functions are omitted in the following.
The rate of change of the squared displacement can be computed with

d
dt
(δT

x δx) = 2δT
x δ̇x (2.11)

= 2δT
x (A + BK)δx (2.12)

≤ 2λmaxδT
x δx, (2.13)

with λmax being the largest eigenvalue of 0.5
(
(A + BK) + (A + BK)T). If λmax(x, t)

is uniformly strictly negative in a region x ∈ χ which is equivalent to A + BK being
uniformly negative definite, any infinitesimal displacement in this region converges
exponentially towards zero. Thus, the system is called contracting with rate λmax.

This result can be generalized to arbitrary metrics using the differential coordinate
transformation Θ(x, t). The displacement in generalized coordinates δz can be computed
with

δz = Θδx. (2.14)

The time derivative of δz is now defined as

δ̇z = Θ̇δx + Θδ̇x (2.15)

=
(
Θ̇ + Θ(A + BK)

)
Θ−1δz (2.16)

which leads to the rate of change of the squared displacement

d
dt
(
δT

z δz
)
= 2δT

z δ̇z (2.17)

= 2δT
z
(
Θ̇ + Θ(A + BK)

)
Θ−1δz (2.18)

= 2δT
x ΘT(Θ̇ + Θ(A + BK)

)
δx (2.19)

= δT
x
(
Ṁ + M(A + BK) + (A + BK)TM

)
δx, (2.20)

where the last line is obtained by replacing ΘTΘ(A + BK) with its symmetric part and
by setting M = ΘTΘ. If the controller makes the closed-loop system strictly contracting
with rate λ in the metric M, i.e. d

dt (δ
T
x Mδx) ≤ −λδT

x Mδx, it was proven in [42] that

Ṁ + M(A + BK) + (A + BK)TM < −2λM. (2.21)

Consequently, for δx ̸= 0 and δT
x MB = 0, it holds that

δT
x
(
Ṁ + MA + ATM + 2λM

)
δx < 0. (2.22)

12

2. Preliminaries

Thus, every displacement δx which is orthogonal to the span of actuated directions B:i(x)
has to be naturally contracting with rate λ. An uniformly bounded metric M fulfilling
these equations is called control contraction metric. Eq. (2.22) can be convexified with
the change of variables η = Mδx and W = M−1 where the matrix W is called the dual
contraction metric. This leads to the condition

ηTB = 0 =⇒ ηT(−Ẇ + AW + WAT + 2λW)η < 0. (2.23)

Furthermore, [43] shows that the tracking error between trajectory x(t) and reference
trajectory x∗(t) can be upper-bounded by

||x(t)− x∗(t)||2 ≤
√

m
m

exp (−λt) ||x(0)− x∗(0)||2 (2.24)

if Eq. (2.21) is fulfilled and if M is bounded by mI ≤ M ≤ mI.

13

3. Prediction of the Collision Probability

In this thesis, we want to find the control policy which minimizes the collision probability.
Therefore, this chapter focuses on the steps to predict the collision probability for a
given control policy, whereas the next chapter will deal with its minimization.

The control policy depends on the initial state which is not known exactly during
the planning phase. Though, we want to have small optimization times and thus, we
cannot plan a separate control policy for all possible initial states. Hence, we have
to make restrictions about the space of possible control policies. Analog to [27], we
will confine the planning algorithm to the optimization of a reference trajectory which
is independent of the exact initial state but will be tracked with an online feedback
controller. The synthesis of the controller is described in Section 3.1, whereas Section 3.2
focuses on the prediction of the density distribution along a given reference trajectory.
Based on these density predictions, the collision probability can be computed which is
the topic of Section 3.3.

3.1. Controller Synthesis

First, we have to create a controller to track the reference trajectory. The system dynamics
for an arbitrary control-affine system are given by Eq. (2.8). A valid reference trajectory
must be a solution of these dynamics, i.e., the reference trajectory x∗(t) satisfies

ẋ∗ = a(x∗) + B(x∗)u∗. (3.1)

In the following, we want to find a controller u(x, x∗, u∗) which steers the trajectories of
all possible initial states to the neighborhood of the reference trajectory. Since the true
initial state and thus the initial deviation from the reference trajectory is unknown, the
controller has to be able to deal with big tracking errors. Moreover, we would like to
have formal guarantees on the convergence to ensure good tracking performance for all
initial states and despite imperfect measurements, e.g., due to sensor bias.

These requirements can be met by contraction theory: If a valid control contraction
metric (CCM) exists, a controller which is contracting for any reference trajectory can
be computed [42]. Furthermore, bounds on the evolution of the tracking error can be
provided [43].

However, the synthesis of a CCM is not a trivial task and relies on several assumptions
on the structure of the dynamical system. The subsequent controller synthesis, usually
conducted through the computation of the CCM’s geodesics [44], is computationally
challenging as well. As we would like to have a motion planning approach which is

14

3. Prediction of the Collision Probability

easily applicable to different dynamic systems, we will use the method from [43] to
automatically learn the contraction metric and the contraction controller:

To enforce the symmetry and the positive definiteness, the dual contraction metric
W(x) is computed with

W(x) = N1(x)TN1(x) + wI,

where w is the predefined lower bound for the smallest eigenvalue of W. The matrix
N1(x) is approximated by a neural network with the input x. Simultaneously, the
contraction controller is learned using two separate neural networks N2(x, x∗) and
N3(x, x∗) which take the sample points (x, x∗) as input. The controller output can then
be evaluated using

u(x, x∗, u∗) = N2(x, x∗) · tanh
(
N3(x, x∗) · (x− x∗)

)
+ u∗. (3.2)

During the training, the loss function

Lw = Cu + Cw + C1 + C2

gets minimized. The loss term Cu enforces Eq. (2.21) which describes the sufficient
condition for the closed-loop system to be contracting, while the term Cw tries to
minimize the overshoot of the tracking error (see Eq. (2.24)). C1 and C2 are two auxiliary
loss terms which enforce sufficient conditions for the learned metric to be a valid CCM.
The latter are supposed to improve the training and guide the optimization. A more
detailed description of the training process and theoretical convergence guarantees are
given in [43].

To get the control signal, we only need to feed the given reference trajectory and
the measured state into the trained controller network. Hence, just a small number of
simple computations are necessary in the control phase.

3.2. Density Estimation with Neural Networks

The next step is to predict the density for the system

ẋ = f
(
x, u(x, x∗, u∗)

)
(3.3)

controlled by the contraction controller from Section 3.1 and dependent on the reference
trajectory (x∗, u∗). For simplicity, we do not consider the physical dimensions of the
system in this thesis but assume that we plan for a point.

The density at time tk ∈ {t0, t1, ..., tN}, where tN is the prediction horizon, can be
computed using the Liouville equation (see Eq. (2.5)). Since the Liouville equation
usually cannot be solved analytically, the approach of [41] is utilized and a neural
network is trained to approximate the density concentration function and the flow map.

The state trajectory and the evolution of its density can be computed by numerically
integrating Eq. (2.6) with the forward Euler method. Since the density values get very

15

3. Prediction of the Collision Probability

large very quickly, we will compute the logarithm of the density to avoid numerical
issues. This leads to the Euler scheme:

log(ρ(tk)) = log
(

ρ(tk−1)−
(
∇x · f(tk−1) ρ(tk−1) ∆t

))
(3.4)

= log(ρ(tk−1)) + log
(

1−∇x · f(tk−1) ∆t
)

, (3.5)

where ρ(tk) and f(tk) denote the estimates ρ(x(tk), tk) and f
(
x(tk), u(x(tk), x∗(tk), u∗(tk))

)

for the time tk, respectively, and ∆t = tk+1 − tk is the time increment.
From Eq. (2.7), we know that the change of density along a trajectory is independent

of its initial density value. Consequently, it is desirable to directly estimate this change,
the so-called density concentration function. Here, we concentrate on the logarithm of
the density concentration function which can be described by

glog(x(tk), tk) = log
(

g(x(tk), tk)
)

(3.6)

= −
∫ tk

0
∇x · f

(
x(τ), u(x(τ), x∗(τ), u∗(τ))

)
dτ. (3.7)

On this basis, we can train a neural network to predict the density and the state
evolution. Since the density and state predictions depend on the reference trajectory
{x∗(·), u∗(·)}, we need an efficient representation for it that we can use as input for
the neural network: Here, we parameterize the reference input trajectory with the
parameters Up such that u∗(·) can be unambiguously reconstructed by

u∗(t) = h(Up, t). (3.8)

Possible choices are polynomial parametrizations (i.e., Up represents the coefficients of a
predefined polynomial structure), sine and cosine representations or discretizations (i.e.,
Up specifies the input values for certain points in time which are held constant until the
next time point is reached). As the reference state trajectory x∗(·) is fully described by
the initial reference state x∗(0) and the input trajectory u∗(·), we can use {x∗(0), Up} as
input for the neural network.

The training data for the neural network can be generated by computing the state tra-
jectories and the logarithmic density concentration function for various initial conditions
and input parameters. Instead of the actual state x(tk), we will predict the deviation of
the reference trajectory xe(tk) = x(tk)− x∗(tk). This adaption changes the computational
complexity only slightly and leads to better training results.

The neural network is then trained by minimizing the cost

L (x(0), Up, tk) =
(
x̂e(tk)− xe(tk)

)2

︸ ︷︷ ︸
Lx

+ αg
(

ĝlog(x(tk), tk)− glog(x(tk), tk)
)2

︸ ︷︷ ︸
Lg

(3.9)

for randomly sampled initial conditions x(0), input parameters Up and points in time tk,
where x̂e(tk) and ĝlog(x(tk), tk) are the neural network predictions for the state deviation

16

3. Prediction of the Collision Probability

Neural
density
network

Liouville
Equation

Integration
of the

dynamics

Calculate
Reference
Trajectory

Loss function
L

-

Inputs:
x∗(0)
Up
tk

xe(0)

x(tk)

x∗(tk)

xe(tk)glog(x, tk)

Outputs:
x̂e(tk),
ĝlog(x, tk)

Training

Figure 3.1.: Training of the density neural network. We sample initial reference states
x∗(0), input parameters Up, prediction time points tk and initial deviations
of the reference trajectory xe(0) and use them as input for the neural network.
The network outputs the deviation of the reference trajectory at time point
tk, x̂e(tk), and the logarithmic density function at time tk, ĝlog(x, tk). The
true values for xe(tk) and glog(x, tk) can be estimated by integrating the
system dynamics and solving the Liouville equation, respectively. Finally,
the network weights can be optimized by minimizing the loss function from
Eq. (3.9).

and the logarithmic density concentration function, respectively. The training process
and the neural network inputs and outputs are visualized in Fig. 3.1.

By knowing the initial density ρ(x(0), 0) at state x(0), the density ρ̂(x(tk), tk) can be
predicted with Eq. (2.7) which leads to

ρ̂(x(tk), tk) = ρ(x(0), 0) exp
(

ĝlog(x(tk), tk)
)

. (3.10)

Finally, the overall density distribution ρ(·, tk) can be approximated by sampling a
large number of initial conditions from the support of the initial density distribution,
predicting their density evolution with the trained neural network and interpolating
and normalizing the results. This procedure is illustrated in Fig. 3.2.

17

3. Prediction of the Collision Probability

Neural
density
network

Calculate
Reference
Trajectory

+

Density
Prediction

Density
Interpolation

Inputs:
x∗(0)
Up
tk

{x(i)e (0)}S
i=1

{ρ(x(i)(0), 0)}S
i=1

Outputs:
ρ̂(·, tk)

x∗(tk)

{x̂(i)e (tk)}S
i=1

{ĝlog(x(i), tk)}S
i=1

{x̂(i)(tk)}S
i=1

{ρ̂(x(i)(tk), tk)}S
i=1

Figure 3.2.: Density prediction process. To predict the density at time tk around the
reference trajectory defined by x∗(0) and Up, we first sample S initial states
x(i)(0) from the support of the initial density distribution and calculate the
resulting initial deviation x(i)e (0). Then, we compute the outputs of the
neural network for all input tensors {[x∗(0), Up, tk, x(i)e (0)]}S

i=1. Finally, the
density distribution can be approximated by using Eq. (3.10) on the network
outputs and by interpolating and normalizing {ρ̂(x(i)(tk), tk)}S

i=1 in order to
receive a valid probability density distribution.

3.3. Computing the Collision Probability

In this thesis, we assume that probabilistic predictions for the evolution of the environ-
ment are given. Although we just consider two-dimensional environments, the approach
can be easily expanded to higher dimensions.

Furthermore, we use a discrete representation of the environment. Namely, the
environment is discretized along its x-axis in Cx equally spaced bins and along its
y-axis in Cy bins resulting in Cx · Cy grid cells which can be indexed by (cx, cy). For
each grid cell (cx, cy) and point in time tk, the probability Pocc(cx, cy, tk) that cell (cx, cy)

is occupied by an obstacle at time tk is known. Obstacles could be lane separators,
road users like pedestrians, cyclists or other vehicles, or objects like traffic signs or fire
hydrants. The occupation probabilities can in general be generated by environment
predictors as described in [10, 11, 12] and will be stored in a 3-dimensional tensor
where the first two dimensions mark the x- and y-position of the grid cell and the third
dimension symbolizes the time. The discretization of the environment is illustrated in
Fig. 3.3.

18

3. Prediction of the Collision Probability

t0 t1

cx

cy

t0

cx

cy

t1

Figure 3.3.: Discretization of the environment: The two left figures show predictions
of an example environment for the times t0 and t1. These predictions are
usually very uncertain and can be converted to occupation grids where we
assign to each grid cell the probability that it is occupied. The occupation
probabilities are visualized in the right part of the figures - the darker the
grid cell, the higher is its occupation probability.

Next, we compute the density distribution of the position of our ego vehicle as follows:

1. We randomly sample initial states {x(i)(0)}N
i=1 from the support of the given initial

density distribution and compute the initial deviation from the reference trajectory
{x(i)e (0)}N

i=1.

2. Since we assume in this chapter, that the reference inputs and the reference
trajectory is given, we can use the approach from Fig. 3.2 to predict the density
{ρ̂(x(i)(tk), tk)}N

i=1.

3. To get a 3-dimensional tensor with the occupation probabilities of the ego vehicle,
Pego(cx, cy, tk), we use the binning approach from [40] where we assign the cor-

responding grid cell (c(i)x , c(i)y) in the discretized environment to each predicted
sample position x̂(i)(tk). The densities of all samples falling into the same grid cell
are averaged and the result is stored in the tensor at the corresponding grid cell
and time position. Lastly, to get the probability density, the sum over the x- and
y-dimension must be normalized to 1.

To analyze the collision probability for cell (cx, cy), both tensors of occupation proba-
bilities are multiplied element-wise:

Pcoll(cx, cy, tk) = Pocc(cx, cy, tk)⊙ Pego(cx, cy, tk). (3.11)

Summing the resulting tensor over the x and y dimension at a certain point in time,
gives the overall collision probability at this time:

Pcoll(tk) =
Cx

∑
cx=1

Cy

∑
cy=1

Pcoll(cx, cy, tk). (3.12)

19

4. Optimization of the Reference Trajectory

After being able to compute the collision probability for a given reference trajectory,
we now want to find the reference trajectory which minimizes the collision probability
while reaching the goal state and satisfying the dynamic and state space constraints. On
that account, we create a cost function containing terms for all optimization objectives in
Section 4.1. This cost will be minimized with a gradient-based optimization algorithm
which is described in Section 4.2.

4.1. The Cost Function

The cost function provides a score on the performance of a given input parametrization
Up and the resulting state and input trajectory

(
x(·), u(·)

)
with regard to the opti-

mization objectives. Here, we want to minimize collisions, reach the goal, utilize little
input actuation and have a state trajectory in the valid state space. Hence, we have
four objectives which results in fours terms for our cost function. Each term will be
weighted by a factor α according to its importance (e.g., minimizing the control effort is
a secondary goal such that its corresponding weighting factor should be small). Thus,
we get the following cost function to evaluate trajectory

(
x(·), u(·)

)
:

J
(
x(·), u(·)

)
=αgoal Jgoal + αinput Jinput + αbounds Jbounds + αcoll Jcoll. (4.1)

The cost terms Jgoal, Jinput and Jbounds will be presented in Section 4.1.1, while Sec-
tion 4.1.2 explains the computation of Jcoll. All four terms depend on the trajectory, but
the arguments are omitted to improve the readability.

4.1.1. Goal, Input and State Space Cost

The first term, Jgoal, penalizes the distance from the final state of the state trajectory to
the goal state, weighted by the final density of the trajectory, and the second term Jinput

tries to minimize the control effort. They can be calculated with

Jgoal = ρ(x(tN), tN)
(
x(tN)− xgoal

)TQgoal
(
x(tN)− xgoal

)
(4.2)

Jinput =
N−1

∑
k=0

u(tk)
TQinputu(tk) (4.3)

where tN is the final time, xgoal is the goal state which the ego vehicle is supposed to
reach and Q are weighting matrices.

20

4. Optimization of the Reference Trajectory

The term Jbounds aims to keep the state trajectory in the valid state space and is
computed with

Jbounds =
N

∑
k=0

ρ(x(tk), tk)
((

x(tk)− xmin
)TQmin(x(tk))

(
x(tk)− xmin

)

+
(
x(tk)− xmax

)TQmax(x(tk))
(
x(tk)− xmax

))
(4.4)

where xmin is the minimum and xmax the maximum bound for the state space, and
Qmin(x(tk)) and Qmax(x(tk)) are diagonal matrices with the diagonal elements

Qmin,jj(x(tk)) =

{
1 if xj(tk) < xmin,j

0 else and
(4.5)

Qmax,jj(x(tk)) =

{
1 if xj(tk) > xmax,j

0 else
(4.6)

respectively, where xj denotes the jth element of the vector x.

4.1.2. Collision Cost

The last term, Jcoll, describes the cost for high collision probabilities and is more difficult
to compute. Due to the non-differentiability of the implemented interpolation and
binning method from [40], the collision probability cannot be minimized directly by a
gradient-based optimization algorithm. Instead, we compute a differentiable collision
cost for x(tk) as follows:

1. We compute the direction for each grid cell which leads to a decrease of occupation
probability at a given time tk. This can be done by comparing the occupation
probabilities of adjoining cells in x- and y-direction and computing the gradient
tensors Gx and Gy

Gx(cx, cy, tk) =
Pocc(cx + s, cy, tk)− Pocc(cx − s, cy, tk)

2s
(4.7)

Gy(cx, cy, tk) =
Pocc(cx, cy + s, tk)− Pocc(cx, cy − s, tk)

2s
(4.8)

where we use s = 1 as step size. The computation of Gx is illustrated in Fig. 4.1b
for the example environment from Fig. 4.1a. However, we can see the problem
of using a small step size s in Fig. 4.1b: The gradient is zero at the left and right
side of the grid map and in the middle of the obstacle where we have areas of
constant occupation probabilities. Since the collision probability is nonzero at
these cells, we want to have a nonzero gradient which gives us the direction of
collision probability decrease. Hence, we have to consider a bigger neighborhood
and repeat the gradient computation in these cells, which leads to the procedure

21

4. Optimization of the Reference Trajectory

cx

cy

(a) Pocc(tk)

cx

cy

(b) Gx(tk) after one iteration
with s = 1

cx

cy

(c) Final Gx(tk)

Figure 4.1.: Visualization of the occupation probability Pocc and the resulting gradient
tensor Gx at time tk. The darker the color, the higher the absolute value
of the occupation probability or the gradient. Blue cells denote a positive
gradient in x-direction, red cells a negative gradient and white cells have
zero gradient.

depicted in Algorithm 1. Reasonable values for the step size parameters sstart and
sdiff are 5 and 10, respectively. The final gradient tensor is visualized in Fig. 4.1c.

This step has to be done only once at the beginning of the optimization procedure
and can be computed efficiently by shift functions operating on the whole 3-
dimensional occupation probability tensor.

2. Next, we check in which grid cell the sample x(tk) lies. If at least one of the
corresponding gradients is nonzero, we can compute the desired grid position
(cx,des(x(tk)), cy,des(x(tk))) by following the direction of the gradients

cx,des(x(tk)) = cx(x(tk)) + βGx(cx, cy, tk) (4.9)

cy,des(x(tk)) = cy(x(tk)) + βGy(cx, cy, tk) (4.10)

where β is the step wide and the operators cx(x) and cy(x) map the state x onto
its corresponding grid position in x- and y-direction, respectively.

Next, the desired position in grid coordinates,
(
cx,des(x), cy,des(x)

)
, can be trans-

formed to the real-world position
(

px,des(x), py,des(x)
)
.

3. The collision cost of sample x(tk) can now be computed by measuring the squared
distance between its x- and y-position and the desired x- and y-position. By
trying to minimize the squared distance, sample x(tk) is pulled to a position with
lower occupation probability and the bigger the gradient, the larger is the pull.
Additionally, the squared distance gets weighted by the collision probability the
sample x(tk) induces:

Pcoll(x(tk)) = Pocc
(
cx(x(tk)), cy(x(tk)), tk

)
· ρ(x(tk), tk) . (4.11)

22

4. Optimization of the Reference Trajectory

Algorithm 1 Computation of the Gradient Tensors

1: function ComputeGrad(Pocc)
2: for cx ∈ {1, ..., Cx} do
3: for cy ∈ {1, ..., Cy} do
4: for k ∈ {0, ..., N} do
5: s← 1
6: Gx(cx, cy, tk)← Eq. (4.7)
7: Gy(cx, cy, tk)← Eq. (4.8)
8: s← sstart

9: while Gx(cx, cy, tk) == 0 and Gy(cx, cy, tk) == 0 and
Pocc(cx, cy, tk) > 0 do

10: Gx,new(cx, cy, tk)← Eq. (4.7)
11: Gy,new(cx, cy, tk)← Eq. (4.8)
12: Gx(cx, cy, tk)← Gx(cx, cy, tk) + s · Gx,new(cx, cy, tk)

13: Gy(cx, cy, tk)← Gy(cx, cy, tk) + s · Gy,new(cx, cy, tk)

14: s← s + sdiff

15: return Gx, Gy

Consequently, the overall collision cost for the trajectory x(·) can be calculated
with

Jcoll =
N

∑
k=0

Pcoll(x(tk))
((

px(x(tk))− px,des(x(tk))
)2

+
(

py(x(tk))− py,des(x(tk))
)2
)

.

(4.12)

This cost will be termed collision risk from now on. The procedure for computing
the collision risk is summarized in Algorithm 2.

Finally, the overall cost can be minimized, e.g., by gradient descent or with the ADAM
optimizer [45].

4.2. The Optimization Approach

In the planning phase, we want to find the optimal reference trajectory after having
received a new environment setup (initial distribution, goal state and the environment
prediction). In order to keep the planning time small, the optimization approach should
have low computational complexity. Furthermore, we want to overcome bad local optima
of the cost function presented in the previous section, which leads to the following two
step procedure: First, we generate a certain number of random input trajectories, which
are optimized without considering the uncertain initial state. This step is explained in
Section 4.2.1. The trajectory which has the lowest final cost is chosen to be optimized
with the density predictions. Section 4.2.2 presents this part in detail.

23

4. Optimization of the Reference Trajectory

Algorithm 2 Computation of the Collision Risk

1: function ComputeCollRisk(Pocc, Gx, Gy, x(·), ρ(·))
2: for k ∈ {0, ..., N} do
3: px(tk), py(tk)← get position of sample x(tk) in real-world coordinates
4: cx(tk), cy(tk)← transform (px(tk), py(tk)) to grid coordinates
5: cx,des(tk)← Eq. (4.9)
6: cy,des(tk)← Eq. (4.10)
7: px,des(tk), py,des(tk)← transform (cx,des(tk), cy,des(tk)) to position in

real-world coordinates
8: Pcoll(tk)← Eq. (4.11)

9: Jcoll ← Eq. (4.12)
10: return Jcoll

4.2.1. Initialization

As the optimization with the whole density distribution is computationally complex and
can get easily stuck in local minima of the cost landscape, we want to find a good initial
guess first. This can be achieved by discretizing the input parameter space and using
search methods. Since the performance of a search approach depends massively on the
discretization (large discretization steps easily overlook good trajectories while small
steps lead to long computation times), we rather choose a gradient-based optimization
approach which is depicted in Algorithm 3 and shortly explained in the following. Two
other optimization methods are presented in Section 5.3 where an ablation study is
conducted.

For the gradient-based approach, we randomly sample M parameter sets {U(i)
p }M

i=1

and generate the corresponding reference input trajectories {u(i)
∗ (·)}M

i=1 with Eq. (3.8).

Next, we compute the reference state trajectories {x(i)∗ (·)}M
i=1 by integrating the dynamics

Eq. (3.1) starting from the initial state x∗(0). The initial state can be chosen as the mean
of the given initial density distribution and is the same for all M trajectories. Now, we
calculate the cost J

(
u(i)
∗ (·), x(i)∗ (·)

)
for each trajectory and update the input parameters

{U(i)
p }M

i=1 with gradient descent until a certain number of iterations is reached. For
computing the different cost terms, we do not consider the initial state uncertainty and
hence, assume that the density of each state is one.

Since we first want to guide the trajectories to the goal, we initialize αbounds and αcoll
in Eq. (4.1) for all trajectories with zero. At each optimization iteration and for each
trajectory pair, we check if the distance to the goal is smaller than a certain threshold. If
this condition is fulfilled for one trajectory, the corresponding αbounds is set to a nonzero
value such that the state space constraints get enforced. For all trajectories where
αbounds ̸= 0, we do another check: If the state space constraints are met, the collision cost
will be considered by setting αcoll to a nonzero value. This cost calculation procedure
ensures that the trajectories are first steered to the goal, are next moved to the valid

24

4. Optimization of the Reference Trajectory

Algorithm 3 Finding a Good Initial Trajectory

1: function FindInitialTrajectory(Pocc, Gx, Gy, x∗(0), xgoal)

2: {U(i)
p }M

i=1 ← randomly sampled from admissible input parameter space
3: for i ∈ {1, ..., M} do simultaneously
4: ρ(i)(·)← 1
5: αbounds ← 0
6: αcoll ← 0
7: j← 0
8: while j < jmax do
9: if j > 0 then

10: Up,i ← update with gradient descent on J(i)

11: u(i)(·)← Eq. (3.8) with U(i)
p

12: x(i)(·)← integration of Eq. (3.1) with u(i)(·) and starting at x∗(0)
13: Jgoal ← Eq. (4.2)
14: Jinput ← Eq. (4.3)
15: Jbounds ← 0
16: Jcoll ← 0
17: if αbounds == 0 and Jgoal sufficient small then
18: αbounds ← nonzero value
19: if αbounds > 0 then
20: Jbounds ← Eq. (4.4)
21: if αcoll == 0 and Jbounds sufficient small then
22: αcoll ← nonzero value
23: if αbounds > 0 then
24: Jcoll ← ComputeCollRisk(Pocc, Gx, Gy, x(i)(·), ρ(i)(·))
25: J(i) ← Eq. (4.1)

26: imin ← arg mini J(i)

27: return U(imin)
p

state space and only then get optimized with regard to collisions. This procedure saves
computation effort and leads to good trajectories much faster than when considering all
cost terms from the beginning.

For computational efficiency, we parallelize the algorithm and optimize all input
parameter sets {U(i)

p }M
i=1 simultaneously. Finally, we compare the cost of all optimized

parameter sets and return the set with the lowest cost.

4.2.2. Local Optimization with Density Predictions

In the next step, we locally optimize the best parameter set from Section 4.2.1 by taking
the initial state uncertainties into our consideration. The proposed approach is shown

25

4. Optimization of the Reference Trajectory

Algorithm 4 Local Density Optimization

1: function OptimizeTrajectory(Pocc, Gx, Gy, x∗(0), xgoal, Up, ρ(·, 0))
2: {x(i)(0)}S

i=1 ← randomly sampled from the support of ρ(·, 0)

3: ∀i : x(i)e (0)← x(i)(0)− x∗(0)
4: ∀i : ρ(i)(0)← ρ(x(i)(0), 0)
5: j← 0
6: while j < jmax do
7: if j > 0 then
8: Up ← update with gradient descent on J

9: u∗(·)← Eq. (3.8) with Up

10: x∗(·)← integration of Eq. (3.1) with u∗(·) and starting at x∗(0)
11: for i ∈ {1, ..., S} do simultaneously
12: x(i)e (·), g(i)log(·)← predict with density neural network

13: ρ(i)(·)← Eq. (3.10) and normalize over all samples
14: x(i)(·)← x(i)e (·) + x∗(·)
15: Jgoal ← Eq. (4.2)
16: Jinput ← Eq. (4.3)
17: Jbounds ← Eq. (4.4)
18: Jcoll ← ComputeCollRisk(Pocc, Gx, Gy, x(i)(·), ρ(i)(·))
19: J(i) ← Eq. (4.1)

20: J ← ∑S
i=1 J(i)

21: return Up

in Algorithm 4.
First, we randomly sample S initial states {x(i)(0)}S

i=1 from the given initial density
distribution ρ(·, 0). Starting from the previously optimized parameter set Up from
Section 4.2.1, we compute the corresponding reference input trajectory u∗(·) and refer-
ence state trajectory x∗(·). We use the input parameters Up, the initial deviation of the

sampled states from the reference trajectory x(i)e (0), the initial reference state x∗(0) and
the initial density of the sample points ρ(x(i)(0), 0) as an input for the neural density
predictor from Section 3.2, and approximate the state trajectories x(i)(·) as well as their
density ρ(x(i)(·), ·). Next, we can compute the costs J(i) of all reference input trajectory -
sample trajectory pairs (u∗(·), x(i)(·)). The cost computation can be done simultaneously
for all samples. If the maximum number of optimization iterations is not reached, we
calculate the gradient of the overall cost ∑S

i=1 J(i) and optimize the input parameters.
By doing so, this approach is similar to the initialization procedure from Section 4.2.1

with the following differences:

• We optimize one set of input parameters, but we consider S possible state tra-
jectories resulting from the uncertain initial state, whereas in Section 4.2.1, we

26

4. Optimization of the Reference Trajectory

simultaneously optimize M parameters sets but just consider the reference trajec-
tory for each set.

• We use all cost terms of the cost function from the beginning. As we start from
a good initial guess, we can assume that the state trajectories already lead to the
goal and lie in the valid state space at the beginning.

• We predict the density evolution for each sample and use it for computing the
cost terms.

The overall optimization procedure is depicted in Algorithm 5.

Algorithm 5 Optimization Procedure

1: function PlanTrajectory(Pocc, ρ(·, 0), xgoal)
2: x∗(0)← mean of ρ(·, 0)
3: Gx, Gy ← ComputeGrad(Pocc)
4: Up,init ← FindInitialTrajectory(Pocc, Gx, Gy, x∗(0), xgoal)
5: Up,opt ← OptimizeTrajectory(Pocc, Gx, Gy, x∗(0), xgoal, Up,init, ρ(·, 0))
6: return Up,opt

27

5. Application to Autonomous Cars

While the motion planning approach can be applied to all kind of autonomous systems,
it will be illustrated here for the example of self-driving cars.

First, the vehicle model will be described in Section 5.1. Next, details for implementing
the contraction controller, the neural density predictor and the optimization method are
presented in Section 5.2 and their performance is analyzed. In Section 5.3, we compare
the gradient-based optimization method with a search-based and a sampling-based
approach in large number of simulated environments.

5.1. Dubins’ Car Model

The system will be described by a simple kinematic car model which was first character-
ized by Dubins in [46]. It can be controlled by the two inputs u(t) = [ω(t), a(t)]T where
ω(t) is the angular velocity and a(t) is the longitudinal acceleration, and its states are
given by

ṗx(t) = v(t) cos (θ(t)) (5.1)

ṗy(t) = v(t) sin (θ(t)) (5.2)

θ̇(t) = ω(t) (5.3)

v̇(t) = a(t), (5.4)

where px(t) is the position along the x-axis in a global coordinate system, py(t) is the
position along the y-axis, θ(t) is the heading angle and v(t) is the longitudinal velocity
of the vehicle at time t.

As we usually do not have a perfect model or completely precise measurements,
we want to demonstrate that the controller can also cope with disturbances. However,
the LE which is used to generate the training data cannot be used to compute the
density for systems with stochastic disturbances - for this case, we would have to use
the FPE which is much more difficult to solve. To be able to use the LE, we have
to consider deterministic disturbances. Hence, we choose to implement a constant
sensor bias θbias for measuring the heading angle which leads to the augmented state

28

5. Application to Autonomous Cars

x(t) = [px(t), py(t), θ(t), v(t), θbias(t)]T and the dynamics

ẋ(t) =

ṗx(t)
ṗy(t)
θ̇(t)
v̇(t)

θ̇bias(t)

=

v(t) cos (θ(t))
v(t) sin (θ(t))

ω(t)
a(t)

0

. (5.5)

For the targeted motion planning problem, we want to compute a controller which
allows the system to converge to and track a given reference trajectory x∗(t) independent
of the uncertain initial state. Since the dynamics can be written in the input-affine form

ẋ(t) =

v(t) cos (θ(t))
v(t) sin (θ(t))

0
0
0

︸ ︷︷ ︸
a(x)

+

0 0
0 0
1 0
0 1
0 0

︸ ︷︷ ︸
B(x)

[
ω(t)
a(t)

]

︸ ︷︷ ︸
u(t)

, (5.6)

the contraction theory presented in Section 2.2 can be used for computing a tracking
controller u(t) = u(x̂(t), x∗(t), u∗(t)) where x̂(t) denotes the measured state

x̂(t) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

x(t) (5.7)

and x∗(t) is the reference state, i.e.,

x∗(t) = [px∗(t), py∗(t), θ∗(t), v∗(t), 0]T . (5.8)

5.2. Implementation

This section describes the implementation of the proposed motion planning algorithm
applied to Dubins’ Car Model. First, the controller for the car dynamics is synthesized
and its performance is visualized. Furthermore, we analyze the neural density predictor
and evaluate the optimization method.

5.2.1. Contraction Controller

To track the reference trajectory, we implement the contraction controller from Section 3.1.
In [43], the matrices N2 and N3 of the controller (see Eq. (3.2)) are approximated by two
2-layer neural networks with 128 hidden neurons which leads to a small training loss

29

5. Application to Autonomous Cars

in the considered state space. However, to be able to solve a large number of motion
planning tasks, we have to extend the state and input space. The bounds of the original
and of the new state space are presented in Table A.1 in the appendix. Since the original
2-layer controller leads to a high training loss in the extended state space, we increase
the size of the neural networks. For motion planning, we will use a controller with
3-layer neural networks which can significantly decrease the training loss.

To evaluate its tracking performance, we apply the contraction controller to a large
number of states and reference trajectories. The resulting tracking errors for one
example reference trajectory are visualized in Fig. 5.1. Fig. 5.1a shows the case of perfect
measurements where all trajectories converge very fast to the reference trajectory. In
Fig. 5.1b the controller is not able to measure the heading angle exactly because of sensor
bias and hence, complete convergence to the reference trajectory cannot be achieved.
Nevertheless, the contraction controller is still able to keep the trajectories in the vicinity
of the reference which is desirable for motion planning.

(a) Perfect measurements. (b) With sensor bias.

Figure 5.1.: Tracking performance of the neural contraction controller. First, a reference
trajectory is randomly generated and 50 initial states are sampled from
the initial density distribution. Then, the resulting state trajectories can be
computed by applying the tracking controller. The figures at the top show
the trajectories in the x-y plane, while the time curve of the tracking error is
given below.

30

5. Application to Autonomous Cars

5.2.2. Neural Density Predictor

Next, we train a neural network to predict the density distribution along the reference
trajectory. For this, we use the descriptions from Section 3.2 to generate the training
data for Dubins’ car dynamics and parameterize the reference input trajectory by the
matrix Up such that

u∗(t) =

Up:1 if 0 s ≤ t < 1 s

Up:2 if 1 s ≤ t < 2 s

· · ·
Up:10 if 9 s ≤ t < 10 s

, (5.9)

where Up:i is the ith column of Up. After comparing the loss curves of different
hyperparameter configurations, we decide on an architecture with seven layers and
150 neurons. Furthermore, we choose the factor αg in the cost function Eq. (3.9) to
be quite small such that we have similar magnitudes for the density error Lg and the
state prediction error Lx. The loss curve for the final hyperparmater configuration is
displayed in Fig. 5.2.

Figure 5.2.: Final loss curve for the training of the neural density predictor with
αg = 0.0005.

Although, the loss for predicting the logarithmic density concentration function is still
quite high, the predictions for the whole density distribution are similar to the results of
the LE. This is visualized in Fig. 5.3. Hence, the density network provides acceptable
approximations of the density distribution. Additionally, the computation times are very
small: While the prediction of the 10 s-state and -density trajectories starting from 500
initial states takes on average 11.6 s when integrating the system dynamics and using
the Liouville equation, the density network decreases this time to 0.3 s. The numerical
data is provided in Appendix B.2.

Consequently, the network can be used to accelerate the computation of the density
and state trajectories in our motion planning approach.

31

5. Application to Autonomous Cars

(a) Prediction for tk = 0.5 s. (b) Prediction for tk = 5 s. (c) Prediction for tk = 10 s.

Figure 5.3.: Performance of the neural density predictor. To generate the heatmap
plots, we sample 1000 initial states from the support of the given density
distribution (here, we assume an uniform distribution with a cuboid support)
and predict their density for a random reference trajectory with the Liouville
equation as ground truth and with the trained neural network (here, we
use the same reference trajectory as in Fig. 5.1). Finally, we interpolate and
normalize the results.

32

5. Application to Autonomous Cars

5.2.3. Trajectory Optimization

Lastly, we implement the algorithm from Chapter 4 to plan the reference trajectory. As
we only want to reach a certain final position but do not have any requests for the final
velocity and heading angle, we use the following weighting matrix for the goal cost:

Qgoal =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

As weighting matrix Qinput we use the identity matrix and the cost factors α are chosen
in such a way that the resulting overall cost gradient is very sensible to Jgoal and Jcoll
but is dominated by Jbound if the trajectory is out-of-bounds. The values are displayed
in Appendix A.2. Furthermore, we clip the gradient if its absolute value becomes too
big, to avoid large jumps during the optimization.

The costs which result from the trajectory optimization for an example motion
planning task are illustrated in Fig. 5.4.

In Fig. 5.4a, we can see that the collision risk is considered (i.e., αcoll is set to a nonzero
value) after 24 iterations in the initialization procedure, as the goal cost has become
sufficiently small. During the density optimization procedure in Fig. 5.4b, all cost terms
are included from the beginning. Since the trajectory does not violate any state space
constraints during the whole optimization procedure, Jbounds is zero at every iteration.

Both curves show that the costs are consistently decreased and hence, the optimization
method is effective. However, the slope shrinks and after 100 iterations only minor
improvements are achieved. Hence, to minimize the planning time we can set the
maximum number of iteration to 100.

A comparison with other optimization methods as well as an analysis of its average
computation time is provided in the next section.

5.3. Ablation Study for the Optimization Method

To evaluate the performance, we compare the proposed gradient-based optimization
method with a sampling-based and a search-based approach. We use the same solution
concept, i.e., we plan a reference trajectory which is tracked by a contraction con-
troller and utilize the same neural density predictor. Just the method for the trajectory
optimization will be exchanged.

After introducing the two alternative optimization approaches in Section 5.3.1 and
Section 5.3.2, we show the superiority of our method in a large number of simulated
environments in Section 5.3.3.

33

5. Application to Autonomous Cars

(a) Example cost curve of the initialization procedure.

(b) Cost curve of the density optimization procedure.

Figure 5.4.: Cost curves of the gradient-based optimization method. First, we optimize
100 random trajectories with Algorithm 3 (initialization procedure). Then,
the best one gets optimized with Algorithm 4 (density optimization proce-
dure).

34

5. Application to Autonomous Cars

5.3.1. Search-based Trajectory Optimization

For the search-based method, we investigate a greedy best-first search in the parameter
space Up = [Up:1, Up:2, ..., Up:10] where each vector Up:i can take the following values:

Up:i ∈ {
[

k1 · ∆u1

k2 · ∆u2

] ∣∣∣∣ umin ≤
[

k1 · ∆u1

k2 · ∆u2

]
≤ umax, k1, k2 ∈ Z}, ∀i ∈ {1, 2, ..., 10}, (5.10)

and ∆u = [∆u1, ∆u2]T is the discretization step.
To start the search, we evaluate the cost for all possible values of Up = [Up:1]. This is

done by recovering the input trajectory for the first second with Eq. (5.9) and computing
the first segment of the reference trajectory. Then, the cost of each of these short
trajectories is calculated with

Jsearch = αgoal Jgoal + αcoll Jcoll, (5.11)

where Jgoal and Jcoll is computed with the algorithm from Section 4.1. Furthermore, we
check if the trajectories lie in the valid state space. Finally, we add all investigated values
of Up = [Up:1], for which the state constraints are fulfilled, together with their costs to
the frontier.

For the next search iterations, we remove the node with the lowest cost, Up,best, from
the frontier and expand it with all possible values of Up:i from Eq. (5.10) where i is
the number of columns of Up,best plus one. We compute the costs for the resulting
trajectories described by the extended Up = [Up,best, Up:i] and add the valid ones to the
frontier. This process is repeated until a trajectory with the length of 10 s is found (i.e.,
the node Up,best consists of ten columns). If this trajectory ends close to the goal position,
we accept the trajectory as the solution of the search. If the distance to the goal is bigger
than a certain threshold, we remove the trajectory from the frontier and continue with
the search. How the search tree could look like after four search iterations is visualized
in Fig. 5.5.

By tuning the parameters αgoal and αcoll of the cost function, we can adjust the
weighting of quickly reaching the goal versus emphasizing the minimization of the
collision probability in the search process. If αgoal is too small, the search will focus on
trajectories with low collision probability, but it will take a long time until a trajectory
leading to the goal will be found.

In addition, we implement two heuristics to avoid expanding unpromising trajectories
and hence save computation time. For this, we compute the heading angle which
would be necessary to reach the goal position from the end of the reference trajectory
in a straight line and compare it with the actual heading angle of the last state. If the
difference between both angles is bigger than a threshold, we assume that the trajectory
does not lead to the goal and remove it from the frontier. Similarly, we calculate the
average velocity which would be necessary to reach the goal at the final time tN = 10 s
starting from the last state of the reference trajectory. If this velocity is larger than the
maximum possible velocity, we know that the trajectory is not able to reach the goal in
time and we remove it from the frontier.

35

5. Application to Autonomous Cars

Up =

[]

Jsearch = 0

extended in
iteration 1

Up =

[
0 · ∆u1
0 · ∆u2

]

Jsearch

Up =

[−1 · ∆u1
0 · ∆u2

]

Jsearch

extended in iteration 2

Up =

[
0 · ∆u1
−1 · ∆u2

]

Jsearch

Up =

[
0 · ∆u1
1 · ∆u2

]

Jsearch

Up =

[
1 · ∆u1
0 · ∆u2

]

Jsearch

extended in iteration 3
...

...

Up =

[−1 · ∆u1 0 · ∆u1
0 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[−1 · ∆u1 −1 · ∆u1
0 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[−1 · ∆u1 0 · ∆u1
0 · ∆u2 1 · ∆u2

]

Jsearch

extended in iteration 4
...

...

Up =

[
1 · ∆u1 0 · ∆u1
0 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[
1 · ∆u1 −1 · ∆u1
0 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[
1 · ∆u1 0 · ∆u1
0 · ∆u2 1 · ∆u2

]

Jsearch

...

...

Up =

[−1 · ∆u1 0 · ∆u1 0 · ∆u1
0 · ∆u2 1 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[−1 · ∆u1 0 · ∆u1 −1 · ∆u1
0 · ∆u2 1 · ∆u2 0 · ∆u2

]

Jsearch

Up =

[−1 · ∆u1 0 · ∆u1 0 · ∆u1
0 · ∆u2 1 · ∆u2 1 · ∆u2

]

Jsearch

...

...

Figure 5.5.: Example search tree after four iterations. The node with the lowest cost at
the current iteration (framed in red) is extended and then removed from the
frontier.

Next, we have to tune the discretization step ∆u which determines the size of the
search space and consequently has a big influence on the computation time. While
∆u = [0.5, 0.5]T leads to intractable long computation times, the step ∆u = [2, 2]T is
too coarse such that trajectories leading to the vicinity of the goal cannot be found in
many environments. However, the search algorithm is able to find a valid solution with
∆u = [1, 2]T (we choose the discretization step for the input ω to be smaller than for a
since we assume that the collision probability of a trajectory is more sensible to ω) in
six to eight minutes. By constraining the input parameters to be pairwise equal, i.e.,
Up:i = Up:i+1 ∀i ∈ {1, 3, 5, 7, 9}, we are able to find solutions in about the same time for
∆u = [1, 1]T.

5.3.2. Sampling-based Trajectory Optimization

As the performance of the search-based method is severely limited by the discretization
of the possible values of Up:i, we also implement a more flexible sampling-based method
where Up:i can take every value in the given input bounds.

36

5. Application to Autonomous Cars

At the beginning, we randomly sample Up:1 from a Gaussian distribution with mean
[0, 0] and clip it at the input bounds, such that

Up:1 ∈ {Up:i|umin ≤ Up:i ≤ umax} . (5.12)

Next, we evaluate the cost for the trajectory described by Up = [Up:1] with the cost
function from Eq. (5.11). The trajectory and its cost is saved if the trajectory fulfills the
state space constraints as well as the heading angle and the velocity heuristic from the
previous subsection.

In the next iterations, we first randomly decide if we want to start a new trajectory
by sampling Up:1 whereas the probability for starting a new trajectory decreases with
the number of saved trajectories. If we decide against a new trajectory, an already
saved trajectory will be extended with a randomly sampled Up:i. Which trajectory gets
extended is chosen randomly where the probability for each trajectory depends on its
cost and the number of times it has been extended previously, i.e., a trajectory with
low cost and which has not been extended before has a higher chance of being chosen.
Trajectories which have reached the maximum duration of 10 s will not be extended
anymore.

The sampling and extension process is terminated as soon as a 10 s-trajectory is found
which has a low collision probability and reaches the vicinity of the goal.

5.3.3. Comparison of the Optimization Methods

Lastly, we want to compare the performance of the three optimization approaches in
terms of computation time and final cost. For this, we generate a large number of
simulated environments, i.e., streets with a random number of uncertain stationary and
dynamic obstacles. The obstacle sizes, positions, uncertainties and velocities are chosen
randomly. As stated in Section 3.2, we do not consider the physical dimensions of the
ego vehicle when predicting the future density distribution. Furthermore, the goal state
and the distribution for the initial state is given.

Next, we compute the reference trajectories for each environment with the three opti-
mization methods while measuring the computation times. Two example environments
and the optimized trajectories are presented in Fig. 5.6. For visualization purposes, we
only consider non-moving obstacles in the displayed environments.

The collision risks and goal costs for the optimized reference trajectories are evaluated
by sampling a large number of initial states from the given initial distribution and
predicting the resulting state and density trajectories. With these values, we can compute
the collision and goal costs as described in Section 4.1. While we use the neural density
predictor for approximating the density and state trajectories in the optimization process,
we will utilize the system dynamics and the Liouville equation to calculate the true
trajectories in the evaluation procedure.

We will use the following criteria for the comparison:

37

5. Application to Autonomous Cars

(a) Example 1. (b) Example 2.

Figure 5.6.: Optimized trajectories in artificial, stationary environment. Obstacles are
colored in tones of gray and black - the darker the color, the higher the
probability that the position is occupied by an obstacle.

• Failure Rate: The failure rate describes the percentage of environments where the
considered method did not find a solution within five minutes. Failure cases are
not considered when computing the average computation time or the cost scores.

• Computation Time: The average computation time for each optimization method
can be computed with

1
E

E

∑
j=1

T(j)
□ ,

where □ ∈ {grad, search, sampling} denotes the optimization method, E is the
number of evaluated environments where the method did not fail and T(j)

□ is the
computation time which method □ takes to find a valid solution in environment j.

38

5. Application to Autonomous Cars

• Collision Risk Increase (CRI): We first calculate the difference of the collision
risk of the considered method and the minimum reported collision risk for each
environment. The CRI can then be computed by taking the average over all
environments, i.e.,

CRI□ =
1
E

E

∑
j=1

(J(j)
coll, □

−min
△

J(j)
coll, △) . (5.13)

This criteria states how much the collision risk is increased on average compared
to the best possible method.

• Goal Cost Increase (GCI): The GCI is computed analog to the CRI with

GCI□ =
1
E

E

∑
j=1

(J(j)
goal, □

−min
△

J(j)
goal, △) . (5.14)

• Input Cost Increase (ICI): Similarly, we compute the criteria for the control effort
with

ICI□ =
1
E

E

∑
j=1

(J(j)
input, □ −min

△
J(j)
input, △), (5.15)

where Jinput, □ is calculated with Eq. (4.3).

The results of the comparison are presented in Fig. 5.7 for 20 randomly generated
environments. The detailed numerical data is given in Appendix B.3.

Failure Rate [%]
0

20

40

0

25

35

CRI GCI ICI
0

2

4

6

8

1.55

0.00 0.12
1.26

1.83

3.783.85

7.76

0.06

Gradient Search Sampling

Computation Time [s]
0

50

100

150 131
147

49

Figure 5.7.: Comparison of the optimization methods.

From the figure, we can see that the proposed gradient-based approach achieves
good results in all criteria. It was always able to provide a valid solution while the
search-based method failed in five and the sampling-based in seven of the twenty
environments. Furthermore, the distance from the final state of the planned trajectory to
the goal was on average 0.2 m and therefore much smaller compared with the solutions
of the search-based (1.4 m) and the sampling-based method (2.8 m). Additionally, the

39

5. Application to Autonomous Cars

collision risk of the gradient-based approach is very small in most environments and
the computation time is acceptable.

The average collision risk of the search-based method is a bit smaller compared
to the gradient-based method, but the computation time is bigger and the goal and
input cost are significantly higher. We could improve the goal cost by lowering the
distance-to-the-goal threshold which is used for accepting trajectories, but this would
significantly increase the computation times.

The sampling-based method needs the least computation time and results in input
costs similar to the gradient-based approach. However, the collision and the goal cost
are much larger compared to the other two optimization methods.

In general, the performance of the search- and the sampling-based methods gravely
depends on the tuning of the hyperparameters, such as discretization steps, sampling
parameters or acceptance thresholds, while we only need to adjust the cost function for
the gradient-based approach. Especially, the sampling-based method is very sensitive -
small parameter changes can enormously increase the failure rate. We did not find any
hyperparameter configuration which was able to decrease the costs without resulting in
a large increase in computational complexity and failure rate.

To evaluate the reliability of each method, we also have a look at the standard
deviation of the computation time. The gradient-based method has by far the most
stable computation time with σgrad = 5 s since we use a fixed number of optimization
iterations. The computation time of the search-based method and the sampling-based
method varies significantly (σsearch = 69 s and σsampl = 49 s).

As a consequence, we can say that the gradient-based approach is best suited for
trajectory optimization. It reliably provides reference trajectories with low costs in
acceptable computation times.

40

6. Motion Planning Results

In this chapter, we validate the performance of the overall motion planning approach
by comparing it with baseline methods. Since most traditional motion planners cannot
cope with uncertain initial states, we assume that the baseline methods start planning
after the first state measurement was observed.

The proposed density planner, on the other hand, plans the reference trajectory for
the given density distribution but without knowing the exact initial state in advance.
After the true state was measured, solely the tracking controller gets executed to track
the planned reference trajectory.

First, we present state-of-the-art motion planners and adapt them to the considered
motion planning task in Section 6.1. At this point, we also show the necessity to include
the collision probability in the objective function instead of constraining it to be below a
threshold. In Section 6.2, we test the motion planning methods in artificially simulated
environments and in environments generated from real-world data and demonstrate
that the proposed approach can outperform the baseline methods.

6.1. Baseline Methods

In this section, we present alternative motion planning methods which will be used
for validating the proposed density planner. First, we will look at conservative motion
planners in Section 6.1.1 to motivate why we should consider the collision probability in
the cost function. In Section 6.1.2, we will introduce a standard and a tube-based model
predictive control algorithm which can be used for online motion planning. Finally, we
try to approximate the optimal solution with an oracle in Section 6.1.3.

6.1.1. Conservative Motion Planners

In this thesis, we concentrate on motion planning in very crowded environments. As
there is no guarantee that a path to the goal with zero collision probability exists,
conservative motion planning algorithms which try to find a completely safe trajectory
will fail. This is demonstrated by the implementation of a model predictive control (MPC)
algorithm which enforces zero collision probability in its constraints. The resulting

41

6. Motion Planning Results

optimization problem can be described by

min
u,x

JstandardMPC(th) (6.1)

s.t. x(tk+1) = f (x(tk), u(tk)), ∀k ∈ {h, h + 1, ..., h + H − 1}
Pocc(x(tk), tk) = 0, ∀k ∈ {h, h + 1, ..., h + H}
umin ≤ u(tk) ≤ umax, ∀k ∈ {h, h + 1, ..., h + H − 1}
xmin ≤ x(tk) ≤ xmax, ∀k ∈ {h, h + 1, ..., h + H},

where H is the prediction horizon, th is the current point in time and Pocc(x(tk), tk)

describes the probability that the position of state x(tk) is occupied in the given envi-
ronment at time tk. Since we start planning after the initial state was observed, the
density for the resulting trajectory is one and the collision probability of the trajectory,
Pcoll(x(tk), tk), is equal to Pocc(x(tk), tk).

Furthermore, we use a quadratic cost function which tries to minimize the control
effort and the Euclidean distance from the final state to the goal:

JstandardMPC(th) = αinput

h+H−1

∑
k=h

u(tk)
TQinputu(tk)

+ αgoal
(
x(th+H)− xgoal

)TQgoal
(
x(th+H)− xgoal

)
, (6.2)

where α and Q are the same weighting factors and matrices as in the cost function of
the density planner. To solve this problem at each MPC iteration, we use the nonlinear
optimization framework casadi [47] and the interior point optimizer (ipopt) [48].

Next, we run the MPC in twenty environments and report the results in Appendix B.4.
Although the solver is allowed to use a high number of iterations (the computation time
per iteration is almost thrice as long as the admissible time for real-time control), it is
not able to find a trajectory which fulfills the constraints of Problem (6.1) in 18 of 20
environments. Since the above optimization problem considers the ideal case (i.e., no
disturbances or model errors), other more sophisticated motion planning approaches
which consider all possible states, such as tube-based MPC [49], or the worst-case
disturbances, like robust MPC [3, 50], will not be able to find a guaranteed safe path as
well. By increasing the threshold of the accepted collision probability as in stochastic
MPC [6, 7], the failure rate could be decreased. However, while a large threshold
would lead to trajectories with high collision probability, the minimum possible value
which still leads to valid trajectories depends on the uncertainty and the obstacles in the
environment and cannot be predicted in advance.

Consequently, it is preferable to include the collision probability in the optimization
objective as described in this thesis.

6.1.2. Online Motion Planners

We showed in the previous section that paths with zero collision probability cannot
be found in most of the environments and that it is difficult to specify a maximum

42

6. Motion Planning Results

collision probability threshold in advance. Hence, to evaluate the performance of the
proposed density planner, we have to compare it with other collision-minimizing motion
planning approaches. As the state-of-the-art for real-time optimal control is MPC, we
will adapt two MPC algorithms to the given motion planning task by including the
collision probability in the cost function.

The first MPC implementation does not consider any disturbances or model uncer-
tainties. Thus, the optimization problem is similar to Problem (6.1) but with an extended
cost function and without the collision probability constraint:

min
u,x

JstandardMPC + αcoll

h+H

∑
k=h

(
Pcoll(x(tk), tk)

)2 (6.3)

s.t. x(tk+1) = f (x(tk), u(tk)), ∀k ∈ {h, h + 1, ..., h + H − 1}
umin ≤ u(tk) ≤ umax, ∀k ∈ {h, h + 1, ..., h + H − 1}
xmin ≤ x(tk) ≤ xmax, ∀k ∈ {h, h + 1, ..., h + H} .

As the optimization problem will be solved online at each discrete point in time, the
prediction horizon H must be chosen sufficiently small.

In the presence of model uncertainties, the system is not able to precisely follow the
nominal trajectory x(·) which was optimized in Problem (6.3). Hence, the collision
probability of the true state trajectory can be much larger than the minimized collision
probability of the nominal trajectory. As a consequence, this implementation will
perform badly when the state measurements are not perfect but biased.

For that reason, we implement a second motion planner which is more conservative
and able to deal with uncertainties. Since the system can be kept in the neighborhood of
the nominal trajectory and we want to minimize the collision probability of all possible
trajectories, we choose a tube-based MPC:

First, we compute a tube which contains all possible trajectories. Then, we can
minimize the overall collision probability of this tube which result in the following
optimization problem:

min
u,x

JstandardMPC + αcoll

h+H

∑
k=h

∫

ϵ∈T

(
Pcoll(x(tk) + ϵ, tk)

)2 dϵ (6.4)

s.t. x(tk+1) = f (x(tk), u(tk)), ∀k ∈ {h, h + 1, ..., h + H − 1}
umin ≤ u(tk) ≤ umax, ∀k ∈ {h, h + 1, ..., h + H − 1}
xmin ≤ x(tk) + ϵ ≤ xmax, ∀k ∈ {h, h + 1, ..., h + H}, ∀ϵ ∈ T ,

where the tube is defined by T = {ϵ | ||ϵ|| ≤ rtube} and the radius of the tube, rtube,
depends on the system dynamics and the uncertainties. As the collision probability only
depends on the current x- and y-position, the tube will only consider deviations in these
states.

Next, we want to estimate the necessary tube size. For this, we first look at the
deviation of the desired position (p∗x(tk+1), p∗y(tk+1)) (the position which we would

43

6. Motion Planning Results

reach without sensor bias) from the actual position (px(tk+1), py(tk+1)) (the position
which results from the biased sensor measurement). The deviation for the x-position
can be described by

px(tk+1)− p∗x(tk+1) =
(

px(tk) + v(tk) cos(θ(tk) + θbias)∆t
)
−

(
px(tk) + v(tk) cos(θ(tk))∆t

)

= v(tk)
(
cos(θ(tk) + θbias)− cos(θ(tk))

)
∆t. (6.5)

Since 0 ≤ v ≤ 10 m/s, ∆t = 0.1 s and

max
θ(tk),|θbias|≤π/8

| cos(θ(tk) + θbias)− cos(θ(tk))| = cos(
7
16

π)− cos(
9

16
π) ≈ 0.39, (6.6)

the bias results in a worst-case deviation of 0.39 m in x-direction from the nominal
trajectory after one time step. Analog computations can be done for the maximum
deviation in y-direction. As the maximum deviations in x- and y-direction cannot be
reached at the same time (different heading angles θ(tk) lead to the maxima), we can
overapproximate all possible positions at the next time point by a tube with radius
rtube = 0.5 m. Additionally, we will test a more conservative tube with rtube = 1 m which
contains all possible trajectories for two time steps. Larger tube sizes should result in
more far-sighted behavior, but as the computational complexity of the optimization
problem increases exponentially with the tube radius, we did not consider bigger tube
sizes. Even with rtube = 0.5 m, the computational complexity is quite high such that
high-performance solvers are necessary to obtain a solution in real-time. To achieve
smaller computation times, we will also test a tube with rtube = 0.2 m.

The performance of the motion planners will be evaluated in Section 6.2.

6.1.3. Approximation of the Optimal Solution

In the previous section, we introduced baseline methods which can be used for online
motion planning and thus, could be used as alternatives to the proposed density planner.
However, these methods also have their drawbacks, but, as the minimal achievable
collision probability varies from environment to environment, it is difficult to tell if a
high collision risk results from bad performance of the motion planner or from a very
crowded environment. Hence, it is desirable to approximate the minimal achievable
costs for each environment and include them in the comparison. How we find the
minimum costs will be explained in the following.

First, we assume that the minimum costs are achieved by an oracle which computes
the optimal solution of Problem (6.3) with h = 0 and H = N. To be able to find the
optimal solution, we will not consider computation time constraints or uncertainties.
Thus, we will assume that the oracle knows the true initial state and system model
exactly when starting the planning.

Problem (6.3) will then be solved by nonlinear programming. However, as the cost
function is not convex due to the collision probability term, the solver is not guaranteed
to find the global optimum. To overcome local minima, we will solve the optimization

44

6. Motion Planning Results

problem repeatedly for different initializations, and hope that the best-found solution
will be close to the optimal solution in the considered environment. However, it
is important to note that the oracle approximates the minimal achievable costs but
cannot be used as an alternative to the proposed density planner. Its computations
are based on more information (we assume that the true initial state is given when
starting the planning, while the density planner is only allowed to know the initial
density distribution) and, as the oracle uses open-loop control, it is not able to deal with
disturbances such as sensor bias.

The motion planning results are provided in the following section.

6.2. Comparison

After having introduced the baseline methods in the previous section, we now compare
them with the proposed density planner. To evaluate the performance of each method,
we analyze the planned trajectories which are computed as follows:

Before starting the actual motion, the density planner computes the reference trajec-
tory for the given environment specifications, i.e., the initial density distribution, the
occupation grid and the goal state are known. Next, we will sample an initial state
from the density distribution and plan the input trajectories with each of the motion
planners where we assume that we can measure the state every 0.1s. The gradient-based
approach will use the contraction controller to track the reference trajectory while the
MPC algorithms solve Problem (6.3) or Problem (6.4) at each point in time for the
horizon H = 10. We will test the online motion planners with perfect and with biased
measurements. The oracle, on the other hand, plans the whole state trajectory after
having obtained one perfect measurement of the initial state. It solves Problem (6.3) for
the horizon H = N = 100 for 10 different random initializations. The solution with the
lowest cost is chosen as the final solution of the oracle.

Next, the trajectories for a large number of simulated environments can be evaluated
by computing the CRI, the GCI and the ICI with Eq. (5.13), Eq. (5.14) and Eq. (5.15).
Furthermore, we will compute the failure rate of each planner where a failure is reported
if a solution violates the state space constraints, if the final distance to the goal is bigger
than 4.5m or if the resulting collision risk is higher than 10.

The results are provided in the next two subsections: In Section 6.2.1, we compare the
motion planners in artificially generated environments before we show in Section 6.2.2
that the proposed motion planning concept can be easily applied to real-world data as
well.

6.2.1. Evaluation in Artificial Environments

In this section, we analyze the motion planning methods in a large number of artificially
generated environments. Analog to Section 5.3.3, the environments are created by
simulating obstacles with randomly sampled positions, dimensions and uncertainties

45

6. Motion Planning Results

along an artificial street. Two example environments and the trajectories planned with
the density planner, the normal MPC, the tube-based MPC with rtube = 1 m and the
oracle are presented in Fig. 6.1. For better visualizability, we only consider stationary
obstacles in the displayed environments.

(a) Example 1. (b) Example 2.

Figure 6.1.: Final trajectories in artificial, stationary environment. Obstacles are colored
in tones of gray and black - the darker the color, the higher the probability
that the position is occupied by an obstacle.

In the environment illustrated in Fig. 6.1a, the density planner, the MPC and the
oracle are able to find trajectories with almost zero collision probability. However, the
tube-based MPC does not reach the goal since the considered tube with rtube = 1 m is
not able to fit through the narrow corridor at (px = 2 m, py = −11 m) with low collision
probability.

Fig. 6.1b shows a more crowded environment which leads to higher failure rates and

46

6. Motion Planning Results

bigger costs: The oracle is not able to find a solution for optimization problem Eq. (6.3)
for all initializations. Also the tube-based MPC is not able to reach the goal since the
corridor between the obstacles are too narrow. The density planner finds a trajectory
to the goal but collides with an obstacle at (px = 1 m, py = −5 m). The collision could
be caused by the usage of inaccurate density prediction for the optimization of the
reference trajectory at this position. The trajectory of the normal MPC shows low
collision probability and reaches the vicinity of the goal. However, the vehicle passes
the obstacle at (px = 1 m, py = −5 m) very closely. In the case of disturbances, the true
trajectory would deviate from the planned path and it could come to a collision as well.
Furthermore, as the MPC always minimizes the distance from the last predicted state to
the goal, it only asymptotically approaches the goal position which leads to the spiral at
the end of the trajectory.

Next, we evaluate the motion planners in 50 artificially generated environments. The
condensed results are visualized in Fig. 6.2 and the detailed numerical data can be
found in Appendix B.5.

In Fig. 6.2a, we can see that the density planner is the most reliable method since
it finds a valid trajectory in 45 of 50 environments when using perfect measurements.
Furthermore, all trajectories end very close to the goal, with an average distance of 0.71m,
and the input cost is very low. The collision risk in Fig. 6.2b is a bit higher compared to
the other motion planning approaches, but this is mainly due to the validity threshold.
Even in environments where the density planner performs worse than the other methods,
it is still able to reach the goal and stay below the acceptance threshold for the collision
risk such that the "bad" trajectory is considered in the computations of the CRI. The
other planners, on the other hand, either reach the goal with a very low collision risk or
are very far off such that a failure is reported and the bad trajectory is discarded.

When the measurements are biased, the failure rate is only slightly higher which shows
that the density planner is able to deal with these deterministic disturbances. Moreover,
the collision risk is on average even lower compared to the case of perfect measurements.
One reason for this is that the planner reports failures in the environments 37 and
41 (see Table B.9) when using biased measurements. However, when using perfect
measurements the trajectories in these environments get accepted but show a much
higher collision risk compared to the best possible trajectory which significantly rises
the CRI.

The failure rate of the normal MPC depends largely on the quality of the measure-
ments. As it does not consider disturbances in the optimization problem, the failure
rate is much higher if the sensor measurements are biased. Furthermore, the MPC has
troubles to reach the goal in crowded environments: The vehicle does not move in the
direction of the goal when the collision risk on the way to the goal is higher when
the actual cost decrease for getting close to the goal. Since the tube-based MPC plans
the trajectories to be more conservative and more safe, it has even more difficulties in
crowded environments. The larger the tube, the bigger is the increase of the collision risk
when driving through the crowded environment and hence, the higher are the number

47

6. Motion Planning Results

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0

50

100

10
22

68 74
84

20
12

50

74 76
88

Fa
ilu

re
R

at
e

[%
]

Perfect Measurements Biased Measurements

(a) Failure rate.

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0.0

0.5

1.0

1.5 1.28

0.47

0.12

0.57

0.15
0.33

0.64

1.10

0.35 0.35
0.16

C
R

I

Perfect Measurements Biased Measurements

(b) Collision risk.

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0

2

4

0.34

1.95

5.01

1.55 1.84

0.380.37

2.99

5.01

2.88

1.05

G
C

I

Perfect Measurements Biased Measurements

(c) Goal cost.

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0

5

10

0.06

5.41 5.94
7.07

8.81

2.32

0.06

5.58 6.22 6.48

8.95

IC
I

Perfect Measurements Biased Measurements

(d) Input cost.

Figure 6.2.: Comparison of the motion planning approaches in artificial environments.

48

6. Motion Planning Results

of failures. As the tube-based MPC only reaches the goal if it has found a path with low
collision probability for the whole tube, the collision risks of the accepted trajectories
are very small. Additionally, we can see that the tube-based MPC is much more robust
against disturbances than the normal MPC. The failure rate and the average collision risk
when using biased measurements are almost equal to the ideal case when using perfect
measurements. However, because of the short planning horizon, an MPC-controlled
vehicle does not move very far-sighted which leads to big input changes. Consequently,
the input costs in Fig. 6.2d are quite high for all the MPC algorithms.

As the oracle solves the same optimization problem for the whole planning horizon at
once, the resulting motion is very far-sighted which leads to small input costs. Further-
more, the collision and the goal costs are very small which indicates that the trajectories
planned by the oracle are good approximations of the optimal solutions. Also the failure
rate is low, but this mainly comes from the large number of differently-initialized trials.
The solver is only able to find a solution for one third of the initializations on average.

Lastly, we will look at the computation times in Fig. 6.3. Fig. 6.3a shows the plan-
ning time which the algorithms need before starting the online control. The density
planner takes on average 131 s to compute the reference trajectory. As the oracle solves
optimization problem Eq. (6.3) for ten different initializations, the resulting planning
time is very big. In addition, the oracle requires the true initial state when starting
the planning while the density planner only needs the initial density distribution. The
MPCs solve the corresponding optimization problems online and consequently do not
need any planning time in advance. On the other hand, the online computational
complexity of the MPC algorithms is very high, see Fig. 6.3b. Only the normal MPC
and the tube-based MPC with rtube = 0.2 m are able to solve the optimization problem
in approximately real-time (we use a time step of ∆t = 0.1 s) with the utilized hard-
ware1. The density planner only needs to compute the output of the neural contraction
controller to follow the precomputed reference trajectory. Hence, the resulting online
computational complexity is very low. As the oracle plans the whole motion in advance,
it does not perform any online calculations.

6.2.2. Validation with Real-World Data

After having analyzed the motion planners in the artificially generated environments,
we now want to show that they can be applied to real-world environments without
modifications. The only requirement is that we know the occupancy maps at each point
in time. Normally, these maps would be forecasted with environment predictors by
using current and past observations. Here, we will use the inD dataset [51] which
contains a collection of naturalistic vehicle, bicyclist and pedestrian trajectories recorded
at German intersections by drones. First, we transform the recordings to occupation
maps and, as environment predictions are usually very uncertain, we add some more
uncertainty around each traffic participant. After having specified a start and a goal

1CPU: AMD Ryzen Threadripper 3990X (2.9GHz), GPU: NVIDIA A4000 16GB

49

6. Motion Planning Results

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0

500

1,000

1,500

131
0 0 0 0

1,340
Pl

an
ni

ng
Ti

m
e

[s
]

(a) Offline planning time.

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle
0

0.5

1

∆t 8 · 10−4
0.12 0.11

0.25

0.88

0C
om

pu
ta

ti
on

Ti
m

e
[s

]

(b) Online computation time.

Figure 6.3.: Computation times of the motion planning approaches.

state, the motion planners can be applied in the same way as for the artificially generated
environments.

To evaluate the performance, we will look at the recordings at three different in-
tersections. The resulting occupation maps at a random point in time as well as the
trajectories planned by the density planner, by the normal MPC, by a tube-based MPC
with rtube = 0.5 m and by the oracle are displayed in Fig. 6.4. We choose the tube radius
to be 0.5 m as a compromise between robustness and low computational complexity.

In Fig. 6.4a, all three online planners are able to reach the goal with zero collision
probability. While the trajectory of the normal MPC passes very close to the obstacles,
the density planner and the tube-based MPC always keep some distance to the obstacles
and hence, their trajectories are more robust against disturbances. The oracle does not
find a solution in this environment. In general, we observed that the oracle often fails in
stationary environments while it has quite a low failure rate in dynamic environments.
The reason for this could be that moving obstacles lead to a time-varying cost landscape
and less stationary local optima where the solver can get stuck.

In Fig. 6.4b, all motion planners succeed in finding a trajectory to the goal with low
collision risk. Almost the same applies to Fig. 6.4c, only the trajectory of the oracle leads
to high collision risks. It seems to be stuck in a local optimum since small changes of
the trajectory, especially at (px = 25 m, py = −15 m), would lead to higher collision
probabilities.

50

6. Motion Planning Results

(a) Intersection 1.

(b) Intersection 2.

Figure 6.4.: Final trajectories in stationary environment generated with real-world data.
Other traffic participants are visualized by ellipses in tones of gray (the
darker the color, the higher the probability that the position is occupied).
The area beyond the street boundaries or outside of the observation area of
the drones is colored in black.

51

6. Motion Planning Results

(c) Intersection 3.

Figure 6.4.: Final trajectories in stationary environment generated with real-world data.
Other traffic participants are visualized by ellipses in tones of gray (the
darker the color, the higher the probability that the position is occupied).
The area beyond the street boundaries or outside of the observation area of
the drones is colored in black.

Next, we will look at the results from applying the density planner, the normal MPC,
the tube-based MPC with rtube = 0.5 m and the oracle to the real-world environments.
To generate the data, we randomly sample start and goal positions for ten random time
periods in recordings of each intersection, and compute the costs for each planner. The
condensed results are visualized in Fig. 6.5 and the numerical data can be found in
Appendix B.6.

The most expressive criteria is the failure rate in Fig. 6.5a since it shows us in how
many environments the motion planners find a trajectory leading to the goal with
acceptable collision risk. The best results are achieved by the density planner; it finds
a path to the goal in 24 of 30 environments for the case of perfect measurements.
When using biased measurements, the failure rate is only slightly higher which again
underlines the robustness of the planner. Also the failure rate of the oracle is acceptable;
it finds valid trajectories in 19 environments. The normal MPC fails in more than half of
the environments with a big difference between the ideal and the biased case. As the
tube-based MPC is more robust, the failure rate between both measurement types is

52

6. Motion Planning Results

Density
Planner

MPC MPC
rtube = 0.5m

Oracle
0

20

40

60

80

20

53
60

37

23

70
63

Fa
ilu

re
R

at
e

[%
]

Perfect Measurements Biased Measurements

(a) Failure rate.

Density
Planner

MPC MPC
rtube = 0.5m

Oracle
0

1

2

0.26

1.90

0.13
0.370.44 0.57

1.77

C
R

I

Perfect Measurements Biased Measurements

(b) Collision risk.

Density
Planner

MPC MPC
rtube = 0.5m

Oracle
0

2

4

0.48

3.96
4.74

0.07
0.57

4.00
4.50

G
C

I

Perfect Measurements Biased Measurements

(c) Goal cost.

Density
Planner

MPC MPC
rtube = 0.5m

Oracle
0

2

4

6

0.11

4.04
4.87

0.79
0.11

3.75

5.84

IC
I

Perfect Measurements Biased Measurements

(d) Input cost.

Figure 6.5.: Comparison of the motion planning approaches in real-world environments.

very small. If we compare the performance of both MPCs, we can say that the normal
MPC shows better results in the ideal case since it is less conservative but, if we have
disturbances such as sensor bias, the tube-based MPC should be used.

In Fig. 6.5b, the CRI is illustrated. We can see that the density planner shows very
good results which are even better than the oracle when using ideal measurements. The
collision risk is only slightly higher when using biased measurements.

As the collision risks of the MPCs vary a lot (see Table B.16 to Table B.18), it is difficult
to differentiate between a failure case and bad performance. Hence, the CRI is less
meaningful for these methods. For instance, the difference in the CRI between the
biased and ideal case for the normal MPC, comes mainly from two environments, seed
7 in Table B.17 and seed 0 in Table B.18. In these environments, the collision risk of
the MPC in the ideal case is just below the acceptance threshold but much worse than
the best possible collision risk. As a consequence, these environments considerably
influence the CRI. However, in the case of biased measurements, the collision risk is
above the acceptance threshold such that a failure is reported and the environments do
not get considered in the computation of the CRI. Similar things can be observed for the
tube-based MPC (see seed 1 in Table B.17 and seed 8 in Table B.18).

Fig. 6.5c and Fig. 6.5c display the GCI and ICI for each planner. The density planner
and the oracle have very small goal and input costs, while the costs for the MPC

53

6. Motion Planning Results

algorithms are quite high which mostly results from the short prediction horizon.
Except for the big variations of the MPC collision risks, the results are about the same

as for the artificially generated environments. The density planner is again the most
reliable motion planning method. Its trajectories lead to the goal while having a low
collision probability. Hence, the proposed approach can successfully be used for motion
planning in the real world.

54

7. Conclusions

This chapter concludes the thesis. First, we want to describe the limitations of the
proposed motion planning concept in Section 7.1. In Section 7.2, future research
directions will be presented.

7.1. Limitations

The weakest point of the proposed motion planner is the neural density predictor.
Although the predictions are in general quite good, in some cases the density network is
not able to approximate the true distribution, and by optimizing the reference trajectory
with bad density predictions, the resulting state trajectories can lead to high collision
costs.

Furthermore, to use the motion planner in the real world, we need good predictions
for the evolution of the environment. With the utilized hardware, the planner takes
about 130s to plan the reference trajectory which means that the environment predictor
must be able to look far (130s plus the planning horizon) ahead. Predictions with such
a long prediction horizon can usually only be generated if we assume that an exact
map of the traffic infrastructure is known and that the ego vehicle can communicate
with possible obstacles about their future positions. However, the planning time can
be considerably decreased by using more powerful hardware and a more efficient
implementation in C or C++.

The cost function also leaves room for improvements. By summing the cost over all
sample trajectories, regions in the state space with high density have an unproportional
high influence on the overall cost compared to regions with smaller density: First, there
are more trajectories in this area which get considered in the cost function, and second,
the cost of each trajectory gets weighted by its density. Additionally, the structure of
the collision cost makes it difficult for the ego vehicle to be close to obstacles whose
positions are known exactly since the resulting high occupation probability gradients
lead to a large repulsion.

Another limitation of the approach is the exchangeability of the system dynamics.
Firstly, we have to train a new contraction controller and a new density predictor
when the system dynamics are changed. The training times largely depend on the
dimensionality of the system and are usually quite long. Furthermore, the usage of
the LE for the supervised learning of the density network requires that the system
dynamics are deterministic and known exactly. Additionally, to be able to use the
contraction controller, the dynamics must be linear in the inputs. However, the motion

55

7. Conclusions

planning concept does not require the usage of contraction theory. In general, any
well-performing tracking controller could be used as long as the density network is
able to predict the resulting closed-loop dynamics. The contraction controller has the
advantage that bounds for the maximum tracking error can be provided. Furthermore,
the resulting collision risks should be lower since all state trajectories are guaranteed to
stay close to the reference trajectories, even in the case of disturbances.

7.2. Future Work

The usage of other tracking controllers and their influence on the accuracy of the density
predictor should be investigated in the future. We can imagine that simpler controller
concepts lead to better density predictions since the approximation of the resulting
closed-loop dynamics is easier.

On the other handy, more sophisticated network types and training methods could be
used to improve the density network, e.g., the use of recurrent neural network seems
promising and dropout layers or skip connections could be tested.

The current network approximates the density distribution pointwise, i.e., it predicts
the density of a large number of input samples, and with interpolation and normal-
ization, the final distribution can be estimated. Another approach which should be
considered in the future is the usage of multi-dimensional convolutional neural net-
works to approximate the whole density distribution at once. This way, we could get
a differentiable expression of the collision probability which consequently could be
minimized directly instead of minimizing the collision risk of density-weighted sample
trajectories.

Another possible future research direction would be the derivation of safety certificates.
If we were able to bound the maximum density prediction errors, we could provide
performance guarantees for the motion planning concept by analyzing the optimization
method. These guarantees could also be probabilistic.

As most disturbances are of stochastic nature, we would like to generalize the motion
planning approach to stochastic systems in the future. For this, it would be necessary
to solve the FPE instead of the LE to generate the training data. However, the FPE
is difficult to solve directly, especially for high-dimensional systems, and we would
need a large amount of data for the supervised learning of the density network. As a
consequence, the usage of a physics-informed neural network [52] seems promising.
Instead of relying purely on training data, the physics-informed neural network could
enforce the FPE directly on its outputs by including the equation in its loss function.

Furthermore, by using a simpler tracking controller (without the rigorous convergence
guarantees of contraction theory), the approach could be applied to nonlinear system
which are not affine in the control input.

Finally, we would like to apply the motion planning approach to real vehicles and
evaluate its performance while using occupation maps generated by true environment
predictors. To predict the true density distribution and collision probability, the vehicle

56

7. Conclusions

dimensions must be considered. Additionally, to decrease the prediction horizon for the
environment predictors and thus make the predictions more reliable, the planning time
should be significantly reduced. This could be done by using more powerful computing
hardware, optimizing the implementation for speed and translating the code to a faster
programming language such as C or C++.

57

A. Implementation Details

A.1. State and Input Space

Table A.1.: State and Input Space for the Neural Contraction Controller

Original State and Input
Space from [43]

Extended State and Input
Space for Motion Planning

x-position px [m] px ∈ [−5, 5] px ∈ [−50, 50]

y-position py [m] py ∈ [−5, 5] py ∈ [−50, 50]

Heading angle θ [rad] θ ∈ [−π, π] θ ∈ [−π, 3π]

Velocity v [m/s] v ∈ [1, 2] v ∈ [0, 10]

Initial deviation of the
reference trajectory
xe(0) = x(0)− x∗(0)

x(i)e (0) ≥ [−1,−1,−1,−1]T ,
x(i)e (0) ≤ [1, 1, 1, 1]T

x(i)e (0) ≥ [−2,−2,−1,−1]T ,
x(i)e (0) ≤ [2, 2, 1, 1]T

Angular velocity
ω [rad/s]

ω ∈ [−3, 3] ω ∈ [−3, 3]

Longitudinal
acceleration a [m/s2]

a ∈ [−3, 3] a ∈ [−3, 3]

A.2. Parameters

Table A.2.: Cost Function of Gradient-based Optimization Algorithm

Parameter Description Value

αbounds weight for keeping the trajectory in the valid state space 10

αcollision weight for collision cost 0.1

αgoal weight for goal cost 0.01

αinput weight for input cost 1e-4

58

B. Numerical Results

B.1. Neural Contraction Controller

Table B.1.: Computation Time [ms]

Measurement 0 1 2 3 4 5 6 7 8 9 Mean

NN 0.76 0.76 0.77 0.77 0.76 0.81 0.77 0.76 0.78 0.77 0.771

B.2. Neural Density Predictor

Table B.2.: Computation Time [s]

Measurement 0 1 2 3 4 5 6 7 8 9 Mean

NN Prediction 0.37 0.27 0.28 0.29 0.30 0.28 0.33 0.28 0.32 0.30 0.302

LE and Dynamics 10.68 10.70 10.95 11.21 10.99 11.86 12.44 12.06 13.8 11.53 11.622

59

B. Numerical Results

B.3. Evaluation of the Optimization Methods

Table B.3.: Collision Costs

Environ-
ment
Seed

Optimization Method

Gradient-
based

Search-
based

Sampling-
based

0 0.062 1.346 1.632

1 2.617 0.939 4.606

2 3.862 - 6.221

3 11.989 1.597 8.013

4 0.047 2.200 2.556

5 6.470 - -

6 0.420 1.833 -

7 0.315 - -

8 0.633 1.208 -

9 0.643 1.102 0.858

10 0.069 0.261 13.948

11 0.096 0.663 1.373

12 0.313 1.598 7.841

13 0.541 10.379 -

14 12.955 0.911 2.798

15 9.959 5.783 7.692

16 6.182 - -

17 0.964 - 4.044

18 3.046 0.403 4.098

19 0.355 1.532 -

Table B.4.: Goal Costs

Environ-
ment
Seed

Optimization Method

Gradient-
based

Search-
based

Sampling-
based

0 0.087 3.112 12.962

1 0.218 9.793 8.035

2 0.038 - 10.801

3 0.048 2.423 2.474

4 0.104 2.135 3.000

5 0.410 - -

6 0.135 0.641 -

7 0.392 - -

8 0.228 0.587 -

9 0.115 1.111 10.761

10 0.018 1.074 6.178

11 0.196 2.441 9.829

12 0.116 0.610 7.727

13 0.050 1.250 -

14 0.090 1.877 0.870

15 0.107 0.912 16.809

16 2.750 - -

17 0.697 - 5.006

18 0.101 0.696 8.306

19 0.077 0.533 -

60

B. Numerical Results

Table B.5.: Control Costs

Environ-
ment
Seed

Optimization Method

Gradient-
based

Search-
based

Sampling-
based

0 0.377 4.600 0.497

1 0.551 4.500 0.257

2 0.515 - 0.647

3 1.320 3.600 0.324

4 0.477 4.800 0.740

5 0.981 - -

6 0.328 4.600 -

7 0.933 - -

8 0.546 2.700 -

9 0.363 2.500 0.590

10 0.510 5.400 0.427

11 0.526 4.100 0.457

12 0.452 4.300 0.478

13 0.489 3.200 -

14 0.448 3.400 0.282

15 0.816 3.800 0.429

16 0.562 - -

17 0.635 - 0.385

18 0.705 4.600 0.467

19 0.356 4.300 -

Table B.6.: Computation Time

Environ-
ment
Seed

Optimization Method

Gradient-
based

Search-
based

Sampling-
based

0 131.241 219.305 27.638

1 128.880 213.447 21.743

2 138.425 - 15.631

3 147.981 93.570 12.651

4 124.687 92.860 139.947

5 129.103 - -

6 124.629 96.795 -

7 126.193 - -

8 127.950 132.996 -

9 126.676 167.600 45.570

10 130.001 67.073 50.723

11 127.741 245.814 24.265

12 131.843 89.575 16.705

13 130.173 74.287 -

14 129.357 181.503 36.685

15 130.098 216.660 63.228

16 132.400 - -

17 130.531 - 14.419

18 132.716 245.415 167.713

19 131.034 59.336 -

61

B. Numerical Results

B.4. Safe MPC

Table B.7.: Motion Planning Results for the Safe MPC

Environ-
ment
Seed

Goal Cost Input Cost Computation Time
for One MPC
Iteration [s]

0 - - -

1 - - -

2 - - -

3 - - -

4 6.291 7.621 0.28

5 - - -

6 - - -

7 - - -

8 - - -

9 - - -

10 3.344 7.370 0.30

11 - - -

12 - - -

13 - - -

14 - - -

15 - - -

16 - - -

17 - - -

18 - - -

19 - - -

62

B. Numerical Results

B.5. Evaluation of the Motion Planning Methods in Artificial
Environment

Table B.8.: Collision Costs in Artificial Environment, Part 1

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

0 0.000 0.302 0.070 0.165 0.000 - 0.235 0.070 - 1.193 0.000

1 3.118 0.079 0.056 0.155 0.032 0.083 1.722 0.007 0.000 0.000 0.000

2 2.848 0.173 2.660 0.765 0.076 0.004 - 0.517 - - 1.713

3 4.210 0.797 2.382 2.625 - 0.000 - - 0.143 0.111 -

4 0.067 0.144 0.028 - 0.007 0.124 0.000 0.185 - - 0.000

5 6.633 4.119 - 1.804 0.024 - 1.496 3.896 - - 0.719

6 0.320 0.134 0.199 - 0.025 0.000 0.087 - - - 0.002

7 0.340 0.300 0.468 1.300 0.000 0.000 0.262 16.852 0.001 0.000 7.683

8 0.655 0.917 0.175 - 0.005 0.381 - - - - 0.000

9 0.568 1.030 1.591 2.293 0.001 0.030 0.181 - - 0.361 0.001

10 0.018 0.106 0.061 0.073 0.000 0.000 0.000 0.000 0.000 0.002 0.000

11 0.094 0.009 1.969 2.102 0.000 0.211 0.125 0.122 - - 0.000

12 0.381 0.183 0.183 - 0.017 0.005 0.000 0.000 0.080 - 0.000

13 0.509 0.733 0.145 0.868 - - 0.046 0.465 0.685 0.841 0.161

14 8.568 0.417 0.856 - 0.021 0.035 0.428 0.152 - - 0.064

15 - 0.345 0.129 - 0.170 1.752 11.481 - - - 0.033

16 4.733 3.775 - - 0.359 0.005 0.030 0.361 0.187 0.202 -

17 0.659 2.568 0.943 1.286 0.025 0.567 1.057 0.580 - - -

18 3.462 0.062 0.189 0.208 0.176 0.009 0.035 0.025 0.466 0.162 -

19 0.361 1.040 2.040 4.327 0.011 0.003 4.208 - - - 0.000

20 0.862 0.897 0.239 0.350 0.469 0.313 0.215 0.784 0.238 0.344 0.764

21 2.193 0.216 2.277 1.008 0.000 0.000 0.000 0.854 0.000 0.000 0.135

22 - - - - 0.053 - 0.070 - - - 2.889

23 2.377 0.033 0.148 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000

24 0.398 0.956 0.079 - 0.000 0.014 0.000 0.102 0.000 0.000 0.109

63

B. Numerical Results

Table B.9.: Collision Costs in Artificial Environment, Part 2

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

25 - - 0.373 - 0.956 - 0.633 0.627 0.845 - 1.991

26 - - - - 0.000 0.000 0.000 0.000 - 0.036 0.139

27 1.541 1.199 0.184 0.161 0.000 0.000 0.000 0.000 0.000 - -

28 0.087 0.258 0.090 - 0.000 0.109 0.000 0.000 0.000 0.000 0.027

29 0.000 0.000 - - 0.000 0.045 0.159 0.152 0.169 0.171 0.000

30 0.169 0.440 - 0.512 1.119 0.016 0.000 0.175 0.000 0.000 0.000

31 0.174 0.481 0.129 0.329 34.409 2.242 2.596 0.196 0.397 5.272 0.290

32 0.170 0.137 0.156 - 0.003 0.243 0.000 0.000 0.000 - 0.012

33 - - - - 1.083 0.386 0.608 0.204 - 0.063 0.086

34 2.000 1.879 0.049 - 0.327 - 0.417 - 0.000 0.000 -

35 0.484 0.489 0.823 1.367 0.000 0.013 0.000 0.000 0.000 0.000 -

36 1.297 1.653 1.813 7.945 - - - - - - 0.118

37 3.517 - - - 0.005 0.000 0.000 3.839 - 0.000 -

38 0.119 0.049 0.130 - 0.000 0.005 0.637 - 0.000 - 0.002

39 0.013 0.009 0.128 0.236 0.000 - 0.000 0.000 0.000 0.036 0.000

40 0.110 0.062 0.473 - 0.000 0.000 0.000 0.000 0.000 0.000 1.158

41 4.097 19.367 0.015 0.249 0.000 - 0.649 0.408 - 0.012 0.302

42 1.227 0.573 0.068 0.150 0.000 - 0.000 0.000 0.000 - 0.043

43 0.251 0.021 1.045 - 0.020 0.045 0.000 - 0.000 0.000 0.000

44 0.327 0.323 57.018 - 0.217 0.390 0.005 0.065 - 0.007 0.471

45 5.948 6.338 2.874 3.277 3.287 - 1.150 1.098 - 2.424 -

46 0.064 0.100 0.297 0.351 0.000 0.000 - 0.418 0.000 0.085 -

47 0.116 0.321 0.048 - 0.015 0.014 0.202 0.091 0.150 0.193 0.065

48 0.169 0.103 0.098 0.102 14.236 0.044 0.000 0.000 0.000 0.000 0.000

49 2.814 1.580 0.132 33.674 14.596 12.560 - 0.148 - 0.003 0.001

64

B. Numerical Results

Table B.10.: Goal Costs in Artificial Environment, Part 1

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

0 0.275 1.293 5.247 11.691 0.388 - 51.230 64.301 - 103.315 0.000

1 0.165 0.015 0.882 0.882 528.004 527.573 0.976 7.368 527.620 531.308 0.000

2 0.254 0.019 0.914 0.934 722.738 728.893 - 134.857 - - 0.011

3 0.031 0.006 6.016 2.382 - 536.019 - - 0.880 0.951 -

4 0.270 0.866 5.519 - 13.473 2.673 29.034 14.124 - - 0.000

5 0.059 0.071 - 18.873 799.220 - 2.377 1.854 - - 5.000

6 0.157 0.007 3.683 - 4.929 870.207 4.132 - - - 0.000

7 0.412 1.046 0.712 0.453 734.031 729.418 186.722 135.265 146.635 143.608 0.009

8 0.114 0.641 0.939 - 0.929 14.483 - - - - 0.000

9 0.302 0.828 7.530 2.951 4.126 19.350 133.762 - - 50.031 0.000

10 0.211 0.734 1.777 2.019 3.231 3.498 0.965 0.887 0.538 0.770 0.000

11 0.291 0.007 0.896 0.963 0.846 0.937 0.750 5.085 - - 0.000

12 0.336 0.129 0.892 - 0.944 0.986 0.660 0.909 0.907 - 0.000

13 0.332 0.038 0.891 17.905 - - 0.885 0.994 0.894 0.963 0.000

14 0.119 0.017 6.327 - 504.502 504.785 132.027 505.395 - - 0.000

15 - 0.055 0.938 - 0.872 0.835 139.896 - - - 0.000

16 5.407 2.773 - - 12.818 37.894 125.779 23.471 149.988 115.013 -

17 1.868 3.986 0.961 0.998 710.313 0.739 4.581 43.530 - - -

18 0.495 0.078 0.948 0.992 812.868 241.252 0.900 0.985 4.678 0.988 -

19 0.279 1.586 0.982 0.935 19.010 19.313 2.270 - - - 0.000

20 0.161 0.171 0.342 0.782 194.582 135.116 205.800 181.627 216.865 500.619 0.000

21 0.301 0.034 0.627 0.908 654.711 654.819 372.833 465.114 389.985 526.118 0.000

22 - - - - 115.780 - 150.726 - - - 15.746

23 0.294 0.067 0.950 - 0.847 0.951 241.487 0.664 268.291 251.977 0.000

24 0.226 0.712 0.912 - 65.326 0.642 69.341 69.285 77.592 75.921 0.097

65

B. Numerical Results

Table B.11.: Goal Costs in Artificial Environment, Part 2

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

25 - - 0.999 - 0.899 - 128.423 0.728 121.509 - 0.000

26 - - - - 424.531 408.041 425.830 419.849 - 439.783 0.000

27 0.518 0.624 0.665 0.493 888.700 882.288 886.679 891.183 643.756 - -

28 0.271 0.383 0.884 - 666.133 665.211 678.258 677.579 697.742 712.626 0.000

29 0.268 0.145 - - 273.896 180.039 163.926 238.887 295.935 288.194 0.000

30 0.321 0.932 - 7.512 18.072 0.864 790.486 55.090 219.189 62.914 0.000

31 0.093 0.239 0.951 0.734 123.076 0.647 155.850 22.917 156.617 165.642 0.000

32 0.184 0.014 0.950 - 49.774 26.228 0.957 685.219 663.717 - 0.026

33 - - - - 466.365 426.256 942.770 664.859 - 778.761 0.000

34 1.228 0.950 0.885 - 118.365 - 146.346 - 809.737 465.872 -

35 1.833 1.841 0.795 0.779 122.367 151.106 128.105 127.512 70.153 138.993 -

36 0.279 0.962 0.690 0.969 - - - - - - 0.000

37 0.431 - - - 896.961 891.848 891.430 616.927 - 931.708 -

38 0.296 0.004 0.561 - 57.104 71.660 148.541 - 4.420 - 0.000

39 0.135 0.103 0.981 0.969 0.930 - 0.984 0.854 1.694 1.810 0.000

40 0.245 0.037 17.763 - 442.778 443.437 453.453 453.576 475.854 469.342 10.352

41 1.914 2.800 0.998 0.586 0.633 - 92.052 640.321 - 511.318 0.009

42 0.092 0.017 0.889 0.841 562.547 - 579.725 571.651 604.502 - 0.000

43 0.197 0.012 50.559 - 29.046 46.808 590.285 - 615.575 611.712 0.000

44 0.293 0.001 49.772 - 42.795 134.105 139.383 142.453 - 225.353 0.050

45 1.190 1.352 0.999 0.944 182.752 - 476.945 478.133 - 210.234 -

46 0.148 0.225 29.065 27.965 855.903 851.089 - 307.933 471.849 473.105 -

47 0.279 0.044 0.924 - 317.179 315.992 324.941 324.729 478.964 479.922 0.000

48 0.249 0.164 0.196 0.346 0.797 20.687 0.653 0.304 0.759 0.890 0.000

49 0.029 0.062 0.981 0.951 3.451 59.480 - 349.035 - 390.130 0.000

66

B. Numerical Results

Table B.12.: Input Costs in Artificial Environment, Part 1

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

0 0.377 0.377 6.704 6.807 3.928 - 11.545 9.687 - 11.767 0.250

1 0.551 0.551 6.087 6.326 4.373 8.923 7.266 7.842 6.501 7.987 0.483

2 0.515 0.515 7.502 7.240 5.769 5.183 - 11.949 - - 9.322

3 1.320 1.320 6.222 6.773 - 5.176 - - 8.500 10.140 -

4 0.477 0.477 6.383 - 8.810 9.067 10.193 8.595 - - 2.853

5 0.981 0.981 - 6.847 6.817 - 6.832 7.368 - - 5.485

6 0.328 0.328 6.146 - 7.784 1.570 7.932 - - - 2.326

7 0.933 0.933 4.590 4.608 4.504 4.014 6.938 11.503 10.958 10.894 5.752

8 0.546 0.546 6.091 - 5.756 8.921 - - - - 0.159

9 0.363 0.363 8.258 8.240 4.838 5.814 11.614 - - 14.133 2.326

10 0.510 0.510 6.257 6.194 7.645 6.469 6.009 5.271 8.459 8.392 0.011

11 0.526 0.526 6.039 6.328 8.545 7.210 5.568 7.537 - - 0.301

12 0.452 0.452 6.060 - 5.622 7.786 3.850 7.908 11.851 - 0.244

13 0.489 0.489 5.663 6.830 - - 9.589 10.305 9.426 10.207 3.769

14 0.448 0.448 6.829 - 7.933 7.243 8.312 8.480 - - 4.840

15 - 0.816 6.876 - 6.056 6.260 11.443 - - - 5.015

16 0.562 0.562 - - 9.750 9.086 8.270 11.765 8.365 10.389 -

17 0.635 0.635 6.055 6.302 7.918 6.918 9.260 10.699 - - -

18 0.705 0.705 6.408 6.556 6.141 7.242 7.198 6.824 11.967 11.616 -

19 0.356 0.356 6.751 6.953 7.857 6.821 11.125 - - - 1.395

20 0.553 0.553 6.478 6.491 10.501 8.559 9.749 8.574 11.329 9.603 3.980

21 1.181 1.181 7.921 7.493 4.308 4.444 5.598 10.659 7.122 5.327 5.487

22 - - - - 7.690 - 10.971 - - - 3.080

23 0.516 0.516 6.451 - 5.767 4.133 5.663 7.296 7.513 11.145 0.141

24 0.656 0.656 6.857 - 2.773 3.926 3.064 7.029 2.011 2.351 4.563

67

B. Numerical Results

Table B.13.: Input Costs in Artificial Environment, Part 2

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal bias ideal

25 - - 6.291 - 7.949 - 9.844 3.535 11.567 - 5.014

26 - - - - 2.898 2.659 5.512 5.285 - 9.163 4.061

27 0.399 0.399 3.771 3.509 3.235 2.241 2.054 1.862 9.133 - -

28 0.756 0.756 6.023 - 3.866 4.613 3.887 4.220 4.886 3.982 2.350

29 0.487 0.487 - - 6.125 8.310 8.866 6.430 9.602 9.462 2.106

30 0.661 0.661 - 7.581 7.690 7.220 6.738 7.708 8.713 6.915 2.787

31 0.930 0.930 4.743 3.833 10.072 6.055 12.084 10.039 14.431 12.749 2.716

32 0.544 0.544 6.520 - 6.154 6.839 5.389 4.379 5.060 - 3.958

33 - - - - 9.560 8.084 10.738 9.056 - 10.981 2.291

34 1.016 1.016 4.774 - 9.211 - 9.789 - 8.856 10.030 -

35 0.621 0.621 6.215 6.144 2.092 5.795 2.221 2.078 2.545 3.207 -

36 0.350 0.350 7.458 7.253 - - - - - - 4.319

37 0.331 - - - 4.948 5.154 4.333 8.431 - 2.702 -

38 0.687 0.687 4.218 - 6.304 5.873 7.622 - 8.530 - 3.749

39 0.478 0.478 5.432 6.785 4.699 - 9.854 6.524 8.453 9.220 0.084

40 0.886 0.886 6.152 - 1.906 2.814 2.427 2.525 3.938 4.429 5.915

41 1.632 1.632 1.741 3.614 2.265 - 10.013 10.425 - 11.158 6.767

42 0.886 0.886 9.190 8.948 4.257 - 4.202 4.338 5.720 - 2.437

43 0.711 0.711 5.855 - 7.957 6.723 3.814 - 4.062 5.408 3.279

44 1.236 1.236 6.430 - 8.753 7.113 8.926 7.537 - 11.508 5.937

45 2.335 2.335 8.707 5.251 7.535 - 9.283 7.848 - 10.021 -

46 1.114 1.114 5.348 5.331 2.021 2.023 - 5.518 5.711 6.843 -

47 1.094 1.094 6.009 - 4.086 3.865 7.544 6.818 9.847 9.264 4.201

48 0.682 0.682 3.879 3.791 8.267 7.935 7.558 6.504 7.118 7.038 0.316

49 0.736 0.736 5.480 4.759 9.589 9.494 - 7.542 - 9.331 3.481

68

B. Numerical Results

Table B.14.: Computation Times (MPC: average computation time per iteration, Oracle:
overall computation time), Part 1

Environ-
ment
Seed

Motion Planning Approach

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal

0 0.06 0.07 0.12 - 0.26 0.25 - 0.88 1005.91

1 0.06 0.06 0.11 0.11 0.26 0.26 0.87 0.87 1263.46

2 0.09 0.09 0.11 0.11 - 0.25 - - 1830.58

3 0.11 0.11 - 0.11 - - 0.90 0.88 -

4 0.06 - 0.11 0.11 0.26 0.25 - - 1701.15

5 - 0.10 0.11 - 0.25 0.25 - - 1540.91

6 0.09 - 0.11 0.11 0.25 - - - 1373.18

7 0.09 0.08 0.11 0.11 0.25 0.25 0.89 0.89 1747.57

8 0.08 - 0.12 0.11 - - - - 1028.28

9 0.10 0.10 0.11 0.11 0.25 - - 0.87 1183.48

10 0.06 0.07 0.11 0.11 0.26 0.26 0.90 0.91 722.04

11 0.08 0.09 0.12 0.12 0.27 0.26 - - 947.12

12 0.08 - 0.12 0.12 0.26 0.26 0.90 - 442.60

13 0.11 0.10 - - 0.26 0.26 0.90 0.90 1423.77

14 0.09 - 0.11 0.11 0.25 0.25 - - 1778.37

15 - 0.07 - 0.12 0.12 0.26 - - 1403.82

16 - - 0.11 0.11 0.25 0.25 0.87 0.88 -

17 0.13 0.13 0.11 0.12 0.26 0.25 - - -

18 0.10 0.09 0.11 0.12 0.26 0.26 0.88 0.91 -

19 0.10 0.11 0.12 0.12 0.25 - - - 1471.70

20 0.11 0.12 0.11 0.11 0.25 0.25 0.86 0.86 1390.21

21 0.12 0.12 0.11 0.11 0.25 0.25 0.87 0.88 1479.86

22 - - - 0.11 - 0.26 - - 1662.03

23 0.10 - 0.12 0.12 0.25 0.26 0.88 0.87 1026.21

24 0.12 - 0.11 0.12 0.25 0.25 0.88 0.87 1376.66

69

B. Numerical Results

Table B.15.: Computation Times (MPC: average computation per iteration, Oracle: over-
all computation time), Part 2

Environ-
ment
Seed

Motion Planning Approach

MPC MPC
rtube = 0.3m

MPC
rtube = 0.5m

MPC
rtube = 1m

Oracle

ideal bias ideal bias ideal bias ideal bias ideal

25 0.12 - 0.12 - 0.25 0.26 0.87 - 783.60

26 - - 0.12 0.11 0.25 0.25 - 0.88 1240.37

27 0.16 0.16 0.11 0.11 0.25 0.25 0.87 - -

28 0.13 - 0.11 0.11 0.25 0.25 0.87 0.87 1258.37

29 - - 0.11 0.11 0.25 0.26 0.87 0.88 872.85

30 - 0.14 0.11 0.12 0.26 0.26 0.87 0.87 856.90

31 0.15 0.15 0.12 0.12 0.25 0.26 0.87 0.87 717.44

32 0.14 - 0.11 0.12 0.27 0.27 1.14 - 1231.44

33 - - 0.11 0.11 0.25 0.25 - 0.87 1313.27

34 0.14 - 0.11 - 0.25 - 0.87 0.87 -

35 0.15 0.14 0.11 0.11 0.25 0.25 0.88 0.87 -

36 0.16 0.16 - - - - - - 1322.80

37 - - 0.11 0.11 0.25 0.25 - 0.86 -

38 0.12 - 0.11 0.11 0.25 - 0.87 - 1489.50

39 0.13 0.13 0.12 - 0.26 0.26 0.87 0.87 244.90

40 0.12 - 0.11 0.11 0.25 0.25 0.88 0.88 1561.83

41 0.12 0.12 0.12 - 0.25 0.25 - 0.86 1329.98

42 0.13 0.13 0.11 - 0.25 0.25 0.86 - 1578.71

43 0.14 - 0.11 0.11 0.25 - 0.88 0.88 189.31

44 0.15 - 0.11 0.11 0.25 0.25 - 0.88 1694.98

45 0.15 0.16 0.11 - 0.26 0.26 - 0.88 -

46 0.12 0.12 0.11 0.11 - 0.25 0.87 0.87 -

47 0.12 - 0.11 0.11 0.25 0.25 0.87 0.87 1781.09

48 0.13 0.13 0.12 0.11 0.26 0.26 0.90 0.90 376.97

49 0.12 0.12 0.11 0.12 - 0.25 - 0.88 836.87

70

B. Numerical Results

B.6. Evaluation of the Motion Planning Methods in Real-world
Environment

Table B.16.: Collision Costs in Real-world Environment, Intersection 1 (Recording 8)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.000 0.351 0.000 0.255 - - 0.000

1 0.000 0.000 1.095 - 0.000 - 0.000

2 0.963 4.674 16.413 789.681 1.098 - -

3 291.159 94.469 1.073 - - - 191.920

4 380.574 865.553 12.855 14.790 - - -

5 0.000 0.016 105.995 - - 0.489 0.000

6 0.064 0.210 17.600 - - 51.906 -

7 0.317 1.383 0.286 381.818 0.063 0.000 0.000

8 0.105 0.000 383.276 190.654 0.000 0.000 0.000

9 0.000 0.000 76.216 32.889 0.637 0.000 0.000

71

B. Numerical Results

Table B.17.: Collision Costs in Real-world Environment, Intersection 2 (Recording 26)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.000 0.000 0.396 0.553 0.000 5.039 871.701

1 0.000 0.000 14.011 15.972 28.062 9.551 17.388

2 0.000 0.000 7.752 1.568 0.000 0.853 0.000

3 684.435 199.938 52.485 18.194 0.000 0.000 0.060

4 243.478 924.664 45.859 101.700 - 68.362 -

5 0.000 0.000 0.835 1.418 31.414 37.408 -

6 0.000 0.000 12.828 1.662 14.434 11.509 5.587

7 2.333 2.271 6.568 302.201 2.152 32.060 2.198

8 0.000 0.000 0.000 0.000 0.000 2.646 0.000

9 685.123 - 7.685 7.205 7.877 7.498 6.766

Table B.18.: Collision Costs in Real-world Environment, Intersection 3 (Recording 30)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.000 380.180 8.693 292.344 0.091 0.377 0.000

1 0.638 0.567 0.538 0.642 0.611 0.329 1.726

2 1.418 0.530 0.649 2.865 0.610 0.587 0.448

3 1.751 0.022 16.219 26.759 0.136 0.000 191.607

4 1.417 1.557 0.692 0.685 0.140 0.014 0.000

5 0.737 0.699 4.872 0.746 2.721 1.202 0.815

6 1.544 1.293 2.625 3.661 0.224 - 0.196

7 0.280 1.681 979.343 - 0.186 0.176 -

8 0.000 0.000 3.275 14.059 249.939 9.040 0.000

9 62.224 24.321 3.174 194.731 10.594 - -

72

B. Numerical Results

Table B.19.: Goal Costs in Real-world Environment, Intersection 1 (Recording 8)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

20 0.066 0.329 10.106 10.013 - - 0.000

21 0.208 0.008 20.684 - 14.677 - 0.000

22 0.415 0.047 0.784 0.826 54.322 - -

23 3.514 3.153 39.070 - - - 0.000

24 0.851 1.831 5.385 3.949 - - -

25 0.125 0.011 11.391 - - 0.985 0.000

26 0.185 0.582 0.803 - - 0.408 -

27 0.262 0.871 0.796 0.875 14.863 77.812 0.000

28 2.155 3.035 0.926 0.886 0.731 43.096 0.000

29 0.292 1.095 6.690 10.389 20.593 19.478 0.000

Table B.20.: Goal Costs in Real-world Environment, Intersection 2 (Recording 26)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.167 0.529 0.535 4.491 0.753 0.932 0.000

1 0.344 0.055 0.839 0.870 84.999 9.230 0.000

2 0.422 0.002 17.852 96.183 5.460 23.713 0.000

3 0.182 0.044 0.761 4.593 298.819 300.705 0.000

4 6.823 7.074 31.279 18.736 - 320.212 -

5 2.350 2.048 0.921 0.937 9.825 11.013 -

6 0.109 0.013 0.894 0.938 0.975 0.850 0.000

7 0.146 0.384 14.939 0.881 0.973 338.277 0.000

8 0.626 1.745 6.170 9.299 0.500 0.683 0.000

9 1.612 - 0.909 0.697 0.728 0.961 0.000

73

B. Numerical Results

Table B.21.: Goal Costs in Real-world Environment, Intersection 3 (Recording 30)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.271 0.932 0.855 57.533 13.202 0.949 0.000

1 0.458 0.062 0.953 5.035 49.776 58.762 1.452

2 0.413 0.036 0.835 22.305 4.852 10.631 0.000

3 2.434 1.708 3.267 5.318 0.207 0.246 0.000

4 0.400 1.004 0.881 5.049 153.172 271.948 0.000

5 0.003 0.010 35.114 0.722 943.510 5.376 0.000

6 1.188 0.481 0.814 35.650 279.015 - 0.000

7 0.286 0.825 0.549 - 0.552 0.771 -

8 0.084 0.204 20.247 13.297 342.498 644.610 0.000

9 4.102 5.688 0.844 0.790 543.894 - -

Table B.22.: Input Costs in Real-world Environment, Intersection 1 (Recording 8)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.428 0.428 5.004 4.598 - - 0.170

1 0.281 0.281 5.716 - 6.482 - 0.062

2 0.549 0.549 5.874 5.934 7.954 - -

3 1.370 1.370 4.415 - - - 1.509

4 1.003 1.003 6.572 6.411 - - -

5 0.706 0.706 7.874 - - 7.570 0.176

6 0.339 0.339 2.728 - - 6.780 -

7 0.710 0.710 7.632 7.610 8.857 6.167 0.952

8 0.542 0.542 5.794 6.581 8.370 6.683 0.080

9 0.432 0.432 6.619 6.085 7.511 10.247 0.105

74

B. Numerical Results

Table B.23.: Input Costs in Real-world Environment, Intersection 2 (Recording 26)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.440 0.440 1.275 3.453 5.072 7.439 4.747

1 0.927 0.927 4.404 5.185 11.410 10.608 6.518

2 0.840 0.840 7.194 5.196 7.856 7.335 0.458

3 0.675 0.675 7.178 6.021 6.690 6.228 1.320

4 1.503 1.503 4.370 3.912 - 7.354 -

5 1.025 1.025 2.331 2.236 5.240 6.124 -

6 0.523 0.523 5.175 4.560 5.729 5.231 2.517

7 1.016 1.016 5.463 7.613 6.673 8.929 2.519

8 0.740 0.740 3.675 3.502 0.813 5.355 2.011

9 0.552 - 6.548 6.516 2.644 6.033 3.707

Table B.24.: Input Costs in Real-world Environment, Intersection 3 (Recording 30)

Environ-
ment
Seed

Motion Planning Approach

Density
Planner

MPC MPC
rtube = 0.5m

Oracle

ideal bias ideal bias ideal bias ideal

0 0.364 0.364 5.081 6.245 5.839 6.873 0.509

1 0.742 0.742 6.041 5.173 7.764 6.907 5.643

2 0.475 0.475 5.499 3.867 6.370 5.208 0.990

3 1.393 1.393 6.083 6.169 3.080 2.317 3.740

4 0.617 0.617 5.104 6.187 5.170 4.803 0.640

5 1.050 1.050 6.232 5.474 13.449 6.697 3.400

6 0.541 0.541 5.614 7.435 7.704 - 1.533

7 0.437 0.437 3.192 - 5.217 4.600 -

8 1.133 1.133 5.417 4.904 9.618 8.836 0.713

9 0.794 0.794 6.762 6.864 11.845 - -

75

List of Figures

1.1. Problem description. 3

1.2. Visualization of the motion planning problem. We want to find a control
strategy which steers the system to the goal state for all possible initial
states while satisfying the constraints and minimizing the collision risk. 3

1.3. Phases of the motion planning algorithm 3
1.4. Proposed solution. We want to find a control strategy which minimizes

the collision probability for all possible initial states. The collision prob-
ability can be computed from the positional overlap between the state
density distribution of the considered system (blue) and the possible
positions of obstacles specified by the occupancy probabilities (black). . . 5

3.1. Training of the density neural network. We sample initial reference
states x∗(0), input parameters Up, prediction time points tk and initial
deviations of the reference trajectory xe(0) and use them as input for
the neural network. The network outputs the deviation of the reference
trajectory at time point tk, x̂e(tk), and the logarithmic density function
at time tk, ĝlog(x, tk). The true values for xe(tk) and glog(x, tk) can be
estimated by integrating the system dynamics and solving the Liouville
equation, respectively. Finally, the network weights can be optimized by
minimizing the loss function from Eq. (3.9). 17

3.2. Density prediction process. To predict the density at time tk around the
reference trajectory defined by x∗(0) and Up, we first sample S initial
states x(i)(0) from the support of the initial density distribution and calcu-
late the resulting initial deviation x(i)e (0). Then, we compute the outputs
of the neural network for all input tensors {[x∗(0), Up, tk, x(i)e (0)]}S

i=1. Fi-
nally, the density distribution can be approximated by using Eq. (3.10) on
the network outputs and by interpolating and normalizing {ρ̂(x(i)(tk), tk)}S

i=1
in order to receive a valid probability density distribution. 18

3.3. Discretization of the environment: The two left figures show predictions
of an example environment for the times t0 and t1. These predictions are
usually very uncertain and can be converted to occupation grids where we
assign to each grid cell the probability that it is occupied. The occupation
probabilities are visualized in the right part of the figures - the darker the
grid cell, the higher is its occupation probability. 19

76

List of Figures

4.1. Visualization of the occupation probability Pocc and the resulting gradient
tensor Gx at time tk. The darker the color, the higher the absolute value
of the occupation probability or the gradient. Blue cells denote a positive
gradient in x-direction, red cells a negative gradient and white cells have
zero gradient. 22

5.1. Tracking performance of the neural contraction controller. First, a refer-
ence trajectory is randomly generated and 50 initial states are sampled
from the initial density distribution. Then, the resulting state trajectories
can be computed by applying the tracking controller. The figures at the
top show the trajectories in the x-y plane, while the time curve of the
tracking error is given below. 30

5.2. Final loss curve for the training of the neural density predictor with
αg = 0.0005. 31

5.3. Performance of the neural density predictor. To generate the heatmap
plots, we sample 1000 initial states from the support of the given density
distribution (here, we assume an uniform distribution with a cuboid
support) and predict their density for a random reference trajectory
with the Liouville equation as ground truth and with the trained neural
network (here, we use the same reference trajectory as in Fig. 5.1). Finally,
we interpolate and normalize the results. 32

5.4. Cost curves of the gradient-based optimization method. First, we optimize
100 random trajectories with Algorithm 3 (initialization procedure). Then,
the best one gets optimized with Algorithm 4 (density optimization
procedure). 34

5.5. Example search tree after four iterations. The node with the lowest cost at
the current iteration (framed in red) is extended and then removed from
the frontier. 36

5.6. Optimized trajectories in artificial, stationary environment. Obstacles are
colored in tones of gray and black - the darker the color, the higher the
probability that the position is occupied by an obstacle. 38

5.7. Comparison of the optimization methods. 39

6.1. Final trajectories in artificial, stationary environment. Obstacles are col-
ored in tones of gray and black - the darker the color, the higher the
probability that the position is occupied by an obstacle. 46

6.2. Comparison of the motion planning approaches in artificial environments. 48
6.3. Computation times of the motion planning approaches. 50
6.4. Final trajectories in stationary environment generated with real-world

data. Other traffic participants are visualized by ellipses in tones of
gray (the darker the color, the higher the probability that the position
is occupied). The area beyond the street boundaries or outside of the
observation area of the drones is colored in black. 51

77

List of Figures

6.4. Final trajectories in stationary environment generated with real-world
data. Other traffic participants are visualized by ellipses in tones of
gray (the darker the color, the higher the probability that the position
is occupied). The area beyond the street boundaries or outside of the
observation area of the drones is colored in black. 52

6.5. Comparison of the motion planning approaches in real-world environments. 53

78

List of Tables

A.1. State and Input Space for the Neural Contraction Controller 58
A.2. Cost Function of Gradient-based Optimization Algorithm 58

B.1. Computation Time [ms] . 59
B.2. Computation Time [s] . 59
B.3. Collision Costs . 60
B.4. Goal Costs . 60
B.5. Control Costs . 61
B.6. Computation Time . 61
B.7. Motion Planning Results for the Safe MPC 62
B.8. Collision Costs in Artificial Environment, Part 1 63
B.9. Collision Costs in Artificial Environment, Part 2 64
B.10. Goal Costs in Artificial Environment, Part 1 65
B.11. Goal Costs in Artificial Environment, Part 2 66
B.12. Input Costs in Artificial Environment, Part 1 67
B.13. Input Costs in Artificial Environment, Part 2 68
B.14. Computation Times (MPC: average computation time per iteration, Oracle:

overall computation time), Part 1 . 69
B.15. Computation Times (MPC: average computation per iteration, Oracle:

overall computation time), Part 2 . 70
B.16. Collision Costs in Real-world Environment, Intersection 1 (Recording 8) . 71
B.17. Collision Costs in Real-world Environment, Intersection 2 (Recording 26) 72
B.18. Collision Costs in Real-world Environment, Intersection 3 (Recording 30) 72
B.19. Goal Costs in Real-world Environment, Intersection 1 (Recording 8) . . . 73
B.20. Goal Costs in Real-world Environment, Intersection 2 (Recording 26) . . . 73
B.21. Goal Costs in Real-world Environment, Intersection 3 (Recording 30) . . . 74
B.22. Input Costs in Real-world Environment, Intersection 1 (Recording 8) . . . 74
B.23. Input Costs in Real-world Environment, Intersection 2 (Recording 26) . . 75
B.24. Input Costs in Real-world Environment, Intersection 3 (Recording 30) . . 75

79

Bibliography

[1] S. Bundesamt. “Verkehrsunfälle.” In: Fachserie 8 Reihe 7 (2019).

[2] M. Althoff. “Reachability Analysis and Its Application to the Safety Assessment
of Autonomous Cars.” PhD thesis. 2010.

[3] J. Lofberg. “Approximations of closed-loop minimax MPC.” In: 42nd IEEE Interna-
tional Conference on Decision and Control. Vol. 2. 2003, 1438–1442 Vol.2.

[4] S. Rakovic, E. Kerrigan, K. Kouramas, and D. Mayne. “Invariant approximations
of the minimal robust positively Invariant set.” In: IEEE Transactions on Automatic
Control 50.3 (2005), pp. 406–410.

[5] F. Gruber and M. Althoff. “Computing Safe Sets of Linear Sampled-Data Systems.”
In: IEEE Control Systems Letters 5.2 (2021), pp. 385–390.

[6] A. Mesbah. “Stochastic Model Predictive Control: An Overview and Perspectives
for Future Research.” In: IEEE Control Systems Magazine 36.6 (2016), pp. 30–44.

[7] A. Wang, A. Jasour, and B. C. Williams. “Non-Gaussian Chance-Constrained
Trajectory Planning for Autonomous Vehicles Under Agent Uncertainty.” In: IEEE
Robotics and Automation Letters 5.4 (2020), pp. 6041–6048.

[8] C. Pek and M. Althoff. “Fail-Safe Motion Planning for Online Verification of Au-
tonomous Vehicles Using Convex Optimization.” In: IEEE Transactions on Robotics
37.3 (2021), pp. 798–814.

[9] M. Gulzar, Y. Muhammad, and N. Muhammad. “A Survey on Motion Prediction
of Pedestrians and Vehicles for Autonomous Driving.” In: IEEE Access 9 (2021),
pp. 137957–137969.

[10] S. Hoermann, M. Bach, and K. Dietmayer. “Dynamic Occupancy Grid Prediction
for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic
Labeling.” In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
2018, pp. 2056–2063.

[11] J. Wu, J. Ruenz, and M. Althoff. “Probabilistic Map-based Pedestrian Motion
Prediction Taking Traffic Participants into Consideration.” In: 2018 IEEE Intelligent
Vehicles Symposium (IV). 2018, pp. 1285–1292.

[12] M. Koschi, C. Pek, M. Beikirch, and M. Althoff. “Set-Based Prediction of Pedestri-
ans in Urban Environments Considering Formalized Traffic Rules.” In: 2018 21st
International Conference on Intelligent Transportation Systems (ITSC). 2018, pp. 2704–
2711.

80

Bibliography

[13] S. Hacohen, S. Shoval, and N. Shvalb. “Probability Navigation Function for Stochas-
tic Static Environments.” In: International Journal of Control, Automation and Systems
17 (2019), 2097–2113.

[14] G. Aoude, B. Luders, and J. Joseph. “Probabilistically safe motion planning to
avoid dynamic obstacles with uncertain motion patterns.” In: Autonomous Robots
35 (2013), pp. 51–76.

[15] Z. Huang, W. Schwarting, A. Pierson, H. Guo, M. Ang, and D. Rus. “Safe Path Plan-
ning with Multi-Model Risk Level Sets.” In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2020, pp. 6268–6275.

[16] Y. Chen, T. T. Georgiou, and M. Pavon. “Optimal Steering of a Linear Stochas-
tic System to a Final Probability Distribution, Part I.” In: IEEE Transactions on
Automatic Control 61.5 (2016), pp. 1158–1169.

[17] K. Okamoto and P. Tsiotras. “Optimal Stochastic Vehicle Path Planning Using
Covariance Steering.” In: IEEE Robotics and Automation Letters 4.3 (2019), pp. 2276–
2281.

[18] J. Ridderhof, K. Okamoto, and P. Tsiotras. “Nonlinear Uncertainty Control with
Iterative Covariance Steering.” In: 2019 IEEE 58th Conference on Decision and Control
(CDC). 2019, pp. 3484–3490.

[19] Y. Chen. Covariance Steering for Nonlinear Control-affine Systems. Aug. 2021.

[20] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen. “Nonlinear Covariance Control via
Differential Dynamic Programming.” In: 2020 American Control Conference (ACC).
2020, pp. 3571–3576.

[21] V. Krishnan and S. Martínez. “Distributed Optimal Transport for the Deployment
of Swarms.” In: 2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 4583–
4588.

[22] K. F. Caluya and A. Halder. “Finite Horizon Density Steering for Multi-input State
Feedback Linearizable Systems.” In: 2020 American Control Conference (ACC). 2020,
pp. 3577–3582.

[23] K. F. Caluya and A. Halder. “Reflected Schrödinger Bridge: Density Control with
Path Constraints.” In: 2021 American Control Conference (ACC) (2021), pp. 1137–
1142.

[24] S. Haddad, K. F. Caluya, A. Halder, and B. Singh. “Prediction and Optimal
Feedback Steering of Probability Density Functions for Safe Automated Driving.”
In: IEEE Control Systems Letters 5.6 (2021), pp. 2168–2173.

[25] Y. Chen and A. D. Ames. Duality between density function and value function with
applications in constrained optimal control and Markov Decision Process. 2019.

[26] Z. Qin, Y. Chen, and C. Fan. “Density Constrained Reinforcement Learning.” In:
Proceedings of the 38th International Conference on Machine Learning. Vol. 139. PMLR,
2021, pp. 8682–8692.

81

Bibliography

[27] Y. Meng, Z. Qiu, M. T. B. Waez, and C. Fan. “Density of Reachable States and
How to Use it for Safe Autonomous Motion Planning.” In: NASA Formal Methods
Symposium (NFM) (2022).

[28] W. Lohmiller and J.-J. E. Slotine. “On Contraction Analysis for Non-linear Sys-
tems.” In: Automatica 34.6 (1998), pp. 683–696. issn: 0005-1098.

[29] Q.-C. Pham, N. Tabareau, and J.-J. Slotine. “A Contraction Theory Approach to
Stochastic Incremental Stability.” In: IEEE Transactions on Automatic Control 54.4
(2009), pp. 816–820.

[30] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone. “Robust online motion plan-
ning via contraction theory and convex optimization.” In: 2017 IEEE International
Conference on Robotics and Automation (ICRA). 2017, pp. 5883–5890.

[31] H. Tsukamoto and S.-J. Chung. “Convex Optimization-based Controller Design
for Stochastic Nonlinear Systems using Contraction Analysis.” In: 2019 IEEE 58th
Conference on Decision and Control (CDC). 2019, pp. 8196–8203.

[32] M. Dresscher and B. Jayawardhana. “Prescribing transient and asymptotic be-
haviour of non-linear systems with stochastic initial conditions.” In: 2017 IEEE
56th Annual Conference on Decision and Control (CDC). 2017, pp. 1957–1962.

[33] M. Dresscher and B. Jayawardhana. “Prescribing transient and asymptotic be-
haviour to deterministic systems with stochastic initial conditions.” In: International
Journal of Control 94.12 (2021), pp. 3506–3519.

[34] G. Terejanu, P. Singla, T. Singh, and P. D. Scott. “Uncertainty Propagation for
Nonlinear Dynamic Systems Using Gaussian Mixture Models.” In: Journal of
Guidance, Control and Dynamics 31.6 (2008), pp. 1623–1633.

[35] Y. Xu, H. Zhang, Y. Li, K. Zhou, Q. Liu, and J. Kurths. “Solving Fokker-Planck
equation using deep learning.” In: Chaos: An Interdisciplinary Journal of Nonlinear
Science 30.1 (2020).

[36] J. Zhai, M. Dobson, and Y. Li. “A deep learning method for solving Fokker-Planck
equations.” In: Proceedings of the 2nd Mathematical and Scientific Machine Learning
Conference. Ed. by J. Bruna, J. Hesthaven, and L. Zdeborova. Vol. 145. Proceedings
of Machine Learning Research. PMLR, 2022, pp. 568–597.

[37] W. Sun, J. Feng, J. Su, and Y. Liang. “Data driven adaptive Gaussian mixture
model for solving Fokker-Planck equation.” In: Chaos 32.3, 033131 (2022).

[38] V. Holubec, K. Kroy, and S. Steffenoni. “Physically consistent numerical solver for
time-dependent Fokker-Planck equations.” In: Phys. Rev. E 99 (3 2019), p. 032117.

[39] M. Ehrendorfer. “The Liouville Equation and Prediction of Forecast Skill.” In:
Predictability and Nonlinear Modelling in Natural Sciences and Economics. Ed. by J.
Grasman and G. van Straten. Dordrecht: Springer Netherlands, 1994, pp. 29–44.
isbn: 978-94-011-0962-8.

82

Bibliography

[40] P. Sun, C. Colombo, M. Trisolini, and S. Li. “Comparison of continuity equation
and Gaussian mixture model for long-term density propagation using semi-
analytical methods.” In: Celestial Mechanics and Dynamical Astronomy 134.22 (2022),
pp. 1–30.

[41] Y. Meng, D. Sun, Z. Qiu, M. T. B. Waez, and C. Fan. “Learning Density Distribution
of Reachable States for Autonomous Systems.” In: (2021).

[42] I. R. Manchester and J.-J. E. Slotine. “Control Contraction Metrics: Convex and In-
trinsic Criteria for Nonlinear Feedback Design.” In: IEEE Transactions on Automatic
Control 62.6 (2017), pp. 3046–3053.

[43] D. Sun, S. Jha, and C. Fan. “Learning Certified Control using Contraction Metric.”
In: Conference on Robot Learning (CoRL). Nov. 1, 2020.

[44] K. Leung and I. R. Manchester. “Nonlinear stabilization via Control Contraction
Metrics: A pseudospectral approach for computing geodesics.” In: 2017 American
Control Conference (ACC). 2017, pp. 1284–1289.

[45] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” In: CoRR
abs/1412.6980 (2015).

[46] L. Dubins. “On Curves of Minimal Length with a Constraint on Average Curvature,
and with Prescribed Initial and Terminal Positions and Tangents.” In: American
Journal of Mathematics 79.3 (1957), pp. 179–202.

[47] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi
– A software framework for nonlinear optimization and optimal control.” In:
Mathematical Programming Computation 11.1 (2019), pp. 1–36.

[48] A. Waechter. “Getting Started with IPOPT in 90 minutes: Short tutorial.” English
(US). In: Combinatorial Scientific Computing. 2009.

[49] S. Yu, H. Chen, and F. Allgöwer. “Tube MPC scheme based on robust control
invariant set with application to Lipschitz nonlinear systems.” In: 2011 50th IEEE
Conference on Decision and Control and European Control Conference. 2011, pp. 2650–
2655.

[50] R. Ghaemi, J. Sun, and I. V. Kolmanovsky. “Robust Control of Constrained Linear
Systems With Bounded Disturbances.” In: IEEE Transactions on Automatic Control
57.10 (2012), pp. 2683–2688.

[51] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. “The inD
Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Inter-
sections.” In: 2020 IEEE Intelligent Vehicles Symposium (IV). 2020, pp. 1929–1934.

[52] M. Raissi, P. Perdikaris, and G. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations.” In: Journal of Computational Physics 378
(2019), pp. 686–707. issn: 0021-9991.

83

	Acknowledgments
	Notations
	Abstract
	Introduction
	Objectives
	Problem Formulation
	Proposed Solution

	Related Work
	Motion Planning under Uncertainty
	Density Control
	Contraction Theory

	Contributions
	Outline of the Thesis

	Preliminaries
	Density Evolution
	Fokker-Planck Equation
	Liouville Equation

	Contraction Analysis

	Prediction of the Collision Probability
	Controller Synthesis
	Density Estimation with Neural Networks
	Computing the Collision Probability

	Optimization of the Reference Trajectory
	The Cost Function
	Goal, Input and State Space Cost
	Collision Cost

	The Optimization Approach
	Initialization
	Local Optimization with Density Predictions

	Application to Autonomous Cars
	Dubins' Car Model
	Implementation
	Contraction Controller
	Neural Density Predictor
	Trajectory Optimization

	Ablation Study for the Optimization Method
	Search-based Trajectory Optimization
	Sampling-based Trajectory Optimization
	Comparison of the Optimization Methods

	Motion Planning Results
	Baseline Methods
	Conservative Motion Planners
	Online Motion Planners
	Approximation of the Optimal Solution

	Comparison
	Evaluation in Artificial Environments
	Validation with Real-World Data

	Conclusions
	Limitations
	Future Work

	Implementation Details
	State and Input Space
	Parameters

	Numerical Results
	Neural Contraction Controller
	Neural Density Predictor
	Evaluation of the Optimization Methods
	Safe MPC
	Evaluation of the Motion Planning Methods in Artificial Environment
	Evaluation of the Motion Planning Methods in Real-world Environment

	List of Figures
	List of Tables
	Bibliography

