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Abstract   
  

Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide and is heavily 

associated with changes in microbiota. We recently developed a microbiota-dependent 

mouse model of CRC, based on intestinal epithelial cell-specific activation of the nuclear p50 

fragment of Activating Transcription Factor 6 (nATF6). Alterations in various taxa were 

observed, however, their exact involvement and what underlies these changes remained 

unclear. We hypothesised that transgenic nATF6 activation and downstream signalling 

integrate with the microbiota to promote tumour formation. The aim of this work was to perform 

an in-depth characterisation of microbial changes to assess whether nATF6 activation shapes 

a pro-tumorigenic microbiota and how, as well as evaluate the contribution of nATF6 activation 

and microbial signalling to chronic inflammation-driven tumour formation.  

We examined microbial changes in nAtf6IEC mice across tumour development, from pre-

tumour to tumour onset and progression, using 16S rRNA sequencing to differentiate between 

taxa which putatively initiate tumorigenesis and those merely associated with onset, and 

validated these findings using a newly developed method to spatially map colonic mucosal 

bacteria. To address the role of chronic inflammation in nATF6-driven intestinal tumour 

formation, we generated a novel mouse model crossing nAtf6IEC mice with Il10-/- mice – a 

model of colitis - and performed phenotypic characterisation as well as the same extensive 

microbiota profiling. Finally, we performed untargeted metabolomics of luminal content and 

employed data-integration methods in both mouse models to identify associations between 

microbial changes and altered metabolites.  

Here we delineated changes in microbial composition occurring with tumour development in 

biallelic nAtf6IEC mice (tg/tg), identifying several important mucosa-associated taxa. Further, 

we validated these taxa in a second spatially resolved cohort, mapping them to tumour sites. 

In nAtf6tg/wt;-/- mice, nATF6 activation combined with Il10 knockout, led to tumour formation 

with an incidence of approximately 75%, and exacerbated colitis, post-tumour. This was 

accompanied by a loss of goblet cells, increased microbial penetration into the mucus layer 

as well as shifts in mucosa-associated microbiota. Finally, we identified a role for nATF6 

activation in modulating the intestinal microbiota via the alteration of lipid metabolism. 

Untargeted metabolomics of luminal contents in nAtf6IEC and nAtf6IEC;Il10-/- mice 

demonstrated a clear enrichment of lipids and long-chain fatty acid (LCFA) species, which 

were associated with tumour-associated changes in microbiota composition. Moreover, LCFA 

were enriched pre-tumour and correlated with changes in driver taxa abundance. Predicted 

metagenomics revealed an enrichment of genes related to fatty acid metabolism, particularly 

oleate hydratase (ohyA), an enzyme involved in LCFA detoxification. Accordingly, the major 

product of ohyA, 10-hydroxystearic acid, was enriched in tumour samples, further linking the 

modified microbiota to nATF6-altered fatty acid metabolism. Linking the altered fatty acid 

milieu to microbiota changes, ex vivo incubation with enriched LCFA, led to a marked 

alteration in microbiota composition, increasing the predicted abundance of ohyA. These 

results demonstrate a role for nATF6 activation in indirectly modifying the gut microbiota and 

supporting the presence of putatively pro-tumorigenic microbes. In susceptible hosts, chronic 

nATF6 activation may therefore promote colonisation or expansion of potentially harmful taxa 

which could promote disease.  
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1. Introduction  
  

1.1 The Microbiota   
  

1.1.1 Gut Microbiota  

  

The human body is colonised by trillions of microorganisms encompassing bacteria, archaea, 

single-celled eukaryotes, and viruses. Collectively, this group, their genomes, metabolic 

activity, as well as their habitat and environmental conditions is termed the microbiome, while 

microbiota refers to the assemblage of these microorganisms themselves1. In recent years, 

the microbiome has been the focus of intense research and has been shown to play a crucial 

role in health and disease2. The advent of culture-independent methods, such as 16S rRNA 

sequencing and shotgun metagenomics have allowed microbial community surveys to 

become routine and enabled large-scale international projects such as the human microbiome 

project (HMP), and MetaHIT and more recently, region-specific projects such as the Dutch 

Microbiome project and the Flemish gut flora project, which have catalogued the microbiome 

across various populations, body sites and disease states3–8. Moreover, metabolomics, 

representing the functional readout of the microbiome as well as gnotobiotic mouse models, 

where the microbiome composition is known or absent, have further enabled causal links 

between microbiome function and disease9. The “gut microbiota” refers to the microbiota 

associated with the gastrointestinal (GI) tract. Due to the non-invasive method of sample 

collection, faeces is most often used as a proxy for the gut microbiota and assumed to 

represent an amalgamation of the entire GI tract10. The total microbial load differs along the 

GI tract however, with the colon harbouring the greatest diversity and load (~1011 CFU/ml)11.  

In healthy adults, gut microbiota is dominated by taxa belonging to the phyla Firmicutes and 

Bacteroidetes5. At lower taxonomic ranks however, microbiota composition is highly variable 

between individuals but exhibits a considerable degree of functional redundancy, indicative of 

strong environmental selection12–14. Indeed, gut microbes and their hosts have evolved 

commensal and mutualistic relationships over millions of years, resulting in a tightly intertwined 

biology15.  

  

1.1.2 Microbial environments within the Gastrointestinal tract  
  

A variety of discrete microbial environments exist within the GI tract, from the oral cavity to the 

rectum, shaped by the changing environmental conditions at each site11. The oral cavity is the 

start site of digestion, and functions to enable breathing, secretion of saliva and enzymatic 

digestion of food. Collectively these functions shape the microbial assemblage, existing in this 

habitat. Salivary flow, food intake and high oxygen levels restrict which species can reside 

there and by extension their functions. Exemplifying this, the oral microbiota is dominated by 

aerobes or facultative anaerobes, mainly from the phyla Actinobacteria, Bacteroidetes, 

Firmicutes, Fusobacteria and Proteobacteria5. Despite these restrictive conditions, over 1000 

species have been identified in the mouth and any one site can contain approximately 50 

different species16,17. Indeed, the oral microbiota is the second most diverse environment after 

the gut microbiota, defined by species such as Corynebacterium, Streptococcus, Veillonella 

and Porphyromonas18.  
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Moving down the GI tract, the stomach, presents an unforgiving environment for microbial 

colonisation, functioning to digest food by acid breakdown and peristaltic action. For this 

reason, microbial biomass is at its lowest in the entire GI tract in the stomach, estimated to 

contain around 101-103 CFU/ml11. Indeed, the stomach was once thought to be sterile or only 

transiently colonized, however a resident microbiota does exist here, mostly comprising taxa 

from the genera Prevotella, Streptococcus, Veillonella, Rothia, Haemophilus, Lactobacillus 

and Helicobacter19–21. The murine stomach is similar; however, it also contains significant 

quantities of Lachnospiraceae and Bacteroidales taxa22.  

The small, and in particular, the large intestine (LI) are the most densely populated and well-

characterised environments in the entire GI tract13. The small intestine (SI) mainly functions to 

absorb nutrients, aid digestion and plays a key role in mucosal immunity23. Microbial load in 

the SI is lower than that of the LI, likely due to the low pH and abundance of antimicrobial 

molecules such as bile acids and digestive enzymes, while transit time is also significantly 

faster (~5 hours in the SI, compared to ~30 in the colon), hindering establishment of microbial 

communities, and resulting in highly dynamic microbial communities24,25. Several physical and 

chemical gradients along the SI also licence increased microbial colonisation, with the 

concentration of antimicrobial compounds as well as oxygenation decreasing along the length 

of the SI, while pH and mucus layer thickness increase11. In concordance with increasingly 

permissive environments along the SI, microbial biomass increases from approximately 

103105 CFU/ml in the Duodenum to 107-108 in the distal Ileum, where bacterial load 

approaches that found in the caecum or colon26. In mice and humans, the proximal SI is 

dominated by facultative anaerobes or microaerophilic taxa such as Streptococcus, 

Escherichia and Clostridium species in humans and members of Enterobacteriaceae and 

Lactobacillaceae in mice respectively22,27–30. In both cases however, with increasing distance 

and reduced oxygen, these taxa are gradually replaced by obligate anaerobes27,30.  

The caecum and proximal colon are the major sites of microbial fermentation. In humans and 

other omnivorous animals, the caecum is small and believed to be similar to the SI microbiota, 

however, due to difficulties in sampling, few studies have profiled the microbiota from this 

region. In herbivores such as mice, however, the caecum is large and populated by a diverse 

and abundant population of microbes, mostly from the families Muribaculaceae and 

Lachnospiraceae, which function to breakdown indigestible plant fibres22,31,32. In the colon, the 

slow transit time, anaerobic environment and lack of simple carbon sources present a 

significant selective force, favouring the growth of fermentative bacteria such as 

Bacteroidaceae and Clostridiaceae in humans and Bacteroidaceae and Prevotellaceae in 

mice11,22,33.   

Microbiota not only differ along the longitudinal axis however but also along the lateral axis, 

with mucosal microbial communities representing distinct populations33–35. This lateral axis, 

however, is relatively underexplored in comparison to luminal communities, in part due to 

sampling difficulties, particularly in humans. Current methods require invasive sampling, and 

as such most of what is currently known regarding mucosa-associated bacteria comes from 

animal studies. Nevertheless, due to their proximity to the epithelium, mucosa-associated 

bacteria are attracting increasing interest as potential key modulators of host health.  

1.1.3 Mucosa-associated microbiota   

  

The entire SI and Colon is either completely or partially coated with a mucus layer consisting 

of gel-forming mucins, glycoproteins, lipids, and salts that function to lubricate luminal contents 

and act as a physical and chemical barrier against potentially immunogenic resident 
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commensals36,37. Goblet cells, found throughout the GI tract, continuously secrete mucins, 

forming the mucus hydrogel. As well as presenting a physical and chemical barrier to 

microbes, the mucosal environment also acts as an immune barrier, enriched in antimicrobial 

peptides and immunological factors, such as secretory IgA, which binds microbes and their 

products to prevent translocation, and secreted proteins such as Ly6/PLAUR domain 

containing 8, zymogen granulae protein 16 and Resistin-like molecule β, which segregate the 

inner mucus layer and the microbiota38–42. Together these factors further restrict microbial 

colonisation40,43–45. Moreover, recent work has identified an enrichment of bacteriophages in 

mucosal layers of various organisms, via binding to mucus glycoproteins, providing an 

additional layer to limit mucosal bacteria46. Together, these function to restrict microbial contact 

with the epithelium. Breakdown of this crucial barrier, on the other hand, is often implicated in 

inflammatory and malignant intestinal pathologies. In a healthy colon, the mucus layer is 

divided into an outer densely colonised layer and an inner layer, mostly devoid of bacteria, 

however patients with ulcerative colitis (UC) as well as animal models of UC, show defective 

mucus, with increased bacterial penetration, which may precipitate disease47–49. Similarly, in 

mice deficient in Muc2, which encodes the major component of intestinal mucus, bacteria 

penetrate into colonic crypts, ultimately leading to colitis and tumour formation50. Thus, tight 

regulation of the mucosal barrier is necessary to maintain intestinal homeostasis and prevent 

disease.  

In spite of the tightly regulated host control and harsh environment, the mucosal layer in all 

segments of the intestine harbours a complex microbial community, colonised by highly 

specialised microbes (Figure 1)51. The mucosal microbiota has long been known to differ from 

the luminal environment. Histological examinations of stained tissue sections in the 1960s and 

1970s reported the presence of distinct “fusiform-shaped” bacteria in the mucosal layer52,53. 

More recent studies in mice have profiled the mucosal microbiota using 16S rRNA sequencing. 

Laser-capture microdissection has been used to delineate differences in mouse colonic 

mucosal and luminal microbiota, with an increased abundance of Lachnospiraceae and 

Ruminococcaceae observed in interfold regions compared to the lumen33. At the species level, 

Akkermansia muciniphila, several Bacteroides and Eubacterium spp. as well as 

Faecalibacterium prausnitzii have been identified in humans, while in mice Lactobacillus, A. 

muciniphila and Mucispirillum are enriched54,55. Additionally, using aspirates of colonic mucosa 

and colonic content, Li et al identified both taxonomic and functional differences between these 

sites. Here the authors utilised a combination of gnotobiotic mouse models and RNAseq to 

associate bacterial transcription with environment, showing that, in monocolonised mice, the 

same species could have a different transcriptional profile depending on the compartment they 

were residing in56.  

 

Besides the densely populated outer layer, a specific core-microbiota populating the crypts of 

the murine caecum and proximal colon has also been identified. Pedron et al found an 

enrichment of Firmicutes and Proteobacteria in crypts, including aerobic species suggesting 

the presence of a highly specialised niche35. Rarely, some microbial taxa may also directly 

associate with the epithelium. Although this is often associated with pathogenic 

microorganisms or inflammatory/malignant disorders disrupting the mucosal barrier, there are 

examples of symbiotic epithelial-associated bacteria, such as Segmented Filamentous 

Bacteria, which adhere to the ileal epithelium stimulating a strong Th17 response57. 

Commensal epithelial-adherent taxa are also likely present in the colon; some Lactobacillus 

species for example, possess genetic loci associated with adherence, and various members 

of this species are often found in close association with the colonic epithelial surface58–61. The 

various layers of microbiota structure, from lumen to mucosa to epithelium, are driven by the 

selective forces present in the local microenvironment. Thus, under homeostatic conditions, 
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the host environment selects for benign or beneficial taxa, with the spatial structure and 

segregation of bacteria from host, key to avoiding potentially hazardous interactions. As of yet, 

no fine-scale investigations into how microbiota spatial organisation is altered in disease have 

been conducted, however disruption in microbial niches and spatial structuring on a broader 

scale is a common event in the pathogenesis of several intestinal diseases, thus deeper 

investigation of this is key to fully disentangle how local spatial structure impacts microbe-host 

interactions to develop a more complete picture of microbial ecology in the GI tract62.   

 

 

Figure 1. Mucosa-associated bacteria and mucosal defence. The colonic digesta in mice mainly 
comprises taxa from the families Bacteroidaceae, Prevotellaceae and Clostridiaceae, whereas the 
mucosal layer is dominated by Lachnospiraceae and Ruminococcaceae. The host restricts microbial 
colonisation in the inner mucus layer and crypts by secreting antimicrobial peptides, IgA, and anchoring 
Bacteriophages, however a crypt-core microbiota and even epithelial-associated bacteria are still present. 
Created with BioRender.com   
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1.1.4 Microbe-host interactions in health and disease   

  

Lying at the interface between the luminal microbial milieu and the mucosal immune system, 

the intestinal epithelium functions to absorb nutrients and provide a physical barrier separating 

host from microbiota. Composed of a single layer of rapidly renewing intestinal epithelial cells 

(IECs), the epithelium can be broadly categorised into two major lineages: absorptive, 

comprising enterocytes and M cells, and secretory, comprising Paneth cells, Tuft cells, goblet 

cells and enteroendocrine cells63. The high turnover rate of the epithelium, renewing 

approximately every 3-5 days, is maintained by intestinal stem cells (ISC) residing at the 

bottom of crypts, termed crypt-based columnar cells64,65. These continuously dividing cells, 

give rise to all the differentiated cell types present in the epithelium. Considering the constantly 

dividing nature and unlimited expansion potential of ISCs, adequate protection from the 

luminal environment and microbial products is necessary to restrict the development of 

malignancies63.  

Under homeostatic conditions, the intestinal epithelium, and the mucosal immune system 

coordinate to keep the microbiota in check. Here, IEC function and metabolism is key, acting 

as the “middleman” between microbiota and the immune system, relaying stimuli to immune 

cells in the lamina propria66,67. This is partially governed by the action of Pattern-Recognition 

receptors (PRR), like Toll-like receptors (TLRs), which are expressed on the apical and 

basolateral surface of IECs, as well as intracellular variants, like Nod-like receptors 

(NLRs)68,69. These receptors sense microbial ligands such as lipopolysaccharide, lipoteichoic 

acid or flagellin and activate NF-κB, leading to secretion of cytokines and chemokines, priming 

mucosal immune cells and leading to increased secretion of antimicrobial peptides and 

mucus67,70,71. Although these receptors play an important role in mediating host-microbe 

signalling, there are a limited repertoire of PRRs, indicating other means of communication 

between the microbiota and host may be more important in the maintenance of homeostasis69.  

Metabolic cues from the microbiota also impact host function. The microbiota produces a 

broad variety of metabolites, small molecules derived from intermediates or end products of 

microbial metabolism, which exert a wide array of biological effects. Perhaps the best studied 

of these are short-chain fatty acids, produced by bacterial fermentation of dietary fibre. 

Acetate, propionate, and butyrate comprise 95% of the intestinal SCFA pool, occurring in an 

approximately 60:20:20 ratio respectively72,73. IECs can recognise SCFA, via G-protein 

coupled (GPCR) or free fatty acid receptors (FFAR), through which SCFA are involved in the 

regulation of a myriad of host functions74,75. As well as providing a major source of fuel for 

IECs, butyrate has been shown to regulate the production of antimicrobial peptides and 

additionally modulate IEC transcription through Histone deacetylase activity76–78. Moreover, 

both propionate and butyrate activate peroxisome proliferator receptor gamma (PPARγ) which 

can activate beta-oxidation in IECs, consuming oxygen and facilitating the maintenance of an 

anaerobic environment in the gut79,80. Bile acids (BA) are another well-studied class of 

microbial metabolites, produced via microbial transformation of primary bile acids in the colon. 

BAs interact with IECs via the Farnesoid-X receptor (FXR) and G-protein-coupled bile acid 

receptor 1 (GBPAR1, also known as TGR5) and have been shown to play an important role in 

the regulation of mucosal immunity, for example, by promoting immune tolerance, via 

modulation of Treg differentiation81–83. More recently, certain tryptophan metabolites, acting 

via the Aryl-hydrocarbon receptor (AhR) have also been shown to play an important role in 

host-microbe interactions in the gut, by stimulating colonic motility through the activation of 

the serotonin type 4 receptor (5-HT4R)84.  
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Host function alters microbiota composition but at the same time, microbiota metabolites alter 

host function. Hence, regulation of microbe-host interactions is bi-directional. Given the nature 

of this relationship, shifts in the state of one constituent can affect the other. Although many 

microbial products and metabolites, play crucial roles in maintaining intestinal homeostasis, 

others can also impact the host negatively under certain conditions. Some microbial 

metabolites, such as hydrogen sulphide (H2S) or indoleamines can disrupt IEC function or be 

genotoxic in large quantities, thus an increase in the abundance of microbes producing these 

metabolites may perturb IEC function85–87. On the host side, mice lacking intestinal TLRs or 

NLRs are highly susceptible to colitis and cancer, mediated by microbial encroachment into 

the inner mucus layer, further stressing the importance of correct IEC function in regulating 

microbe-host interactions88–90. Indeed, disruption of the mucosal barrier is a common feature 

of multiple GI diseases, including inflammatory bowel diseases (IBD) and colorectal cancer 

(CRC)49,91. Interestingly, in inflammatory conditions such as IBD, an enrichment of mucolytic 

taxa such as Ruminococcus has been found, implying that the microbiota themselves can 

affect the mucus layer92. Regardless of the source of dysregulation, a disrupted mucosal 

barrier disturbs compartmentalisation of the microbiota, allowing potentially harmful microbes 

and metabolites to access the epithelial layer.  

  

1.2 Colorectal cancer and the Microbiota  
  

1.2.1 Colorectal cancer – epidemiology, risk factors and mechanisms  
  

CRC is one of the most common cancers in men and women and a leading cause of cancer-

related death93. CRC is most common in individuals over 50 however incidence is rising in 

younger age groups 94. Hereditary diseases such as lynch syndrome and Familial 

adenomatous polyposis present an increased risk for developing CRC, but cases with a 

genetic predisposition such as these only account for a small number of total CRCs94. 

Sporadic cases account for 70-80% of all CRC incidence, suggesting that environmental 

factors play a central role in the development of disease95,96. CRC incidence is often 

associated with increased industrialization, with a sedentary lifestyle and diet high in saturated 

fat and sugars believed to be associated with the increased incidence observed in Western 

developed countries97,98. Indeed, the highest rates of CRC incidence are found in Europe, 

North America, Oceania and East Asia, and in countries with a high or very high human 

development index (HDI), rates are ~3.5 times higher in men and ~4 times higher in women 

compared to those with a low or medium HDI99. Furthermore, as many developing countries 

transition from a low HDI to a high HDI, their incidence of CRC increases100. Troublingly, 10% 

of all new cases in Western countries occur in individuals under 50 and, although incidence 

and mortality rates are declining overall, both are increasing in this demographic94,101.  

The lack of a strong genetic component and the increasing incidence in younger populations 

further support a role for environmental factors in driving disease. Several modifiable lifestyle 

factors appear to increase disease risk. For example, diet appears to play a crucial role, with 

diets high in red and processed meats strongly associated with increased risk102,103. Certain 

compounds present within meat, such as haem or choline have been associated with CRC 

and chemical products of the cooking process such as heterocyclic amines and polycyclic 

aromatic hydrocarbons are directly carcinogenic104–106. Obesity is another risk factor for CRC 

development; each increase of 5kg/m2 in BMI constitutes a 5% increase in risk, with comorbid 

conditions like metabolic disorders, insulin resistance and low-grade systemic inflammation 
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additionally presenting increased CRC risk103,107,108. Beyond diet, other risk factors include 

alcohol consumption and smoking, both of which are strongly associated with increased 

incidence in younger populations103,109. IBD, particularly UC and colonic Crohn’s disease (CD) 

also present a greatly increased risk of developing CRC, also termed colitis-associated cancer 

(CAC). Epidemiological meta-analyses have demonstrated that 30 years of active disease 

results in an increased risk of developing CRC of 8% and 18% for CD and UC patients, 

respectively110.  

Regardless of the initiating factor, tumour development occurs via the progressive 

accumulation of mutations, activating oncogenes and inactivating tumour suppressor genes, 

ultimately leading to the “hallmarks of cancer”: sustained proliferation, inflammation, 

resistance to cell death, genome instability and immune evasiveness amongst others111,112. 

This evolution of a healthy epithelium to CRC generally follows a predictable pattern of 

histopathological and genetic and epigenetic alterations occurring in parallel. In the majority 

of CRC cases (70-90%), progression of normal colon cells to cancer arises according to the 

adenoma-carcinoma sequence, where aberrant crypts evolve into adenomas and then further 

progress into advanced adenoma before finally leading to cancer111,113,114. A small number of 

CRCs arise according to the serrated neoplasia pathway, which occurs with an initial 

hyperplastic polyp, advancing to a sessile serrated polyp before giving rise to 

adenocarcinoma111,115. These pathways involve distinct genetic and epigenetic changes 

occurring in a specific order115. The adenoma-carcinoma sequence is typically initiated by loss 

of Adenomatous polyposis coli (APC) function, leading to increased Wnt/β-catenin signalling, 

promoting increased cell proliferation and survival. This is followed by activation of KRAS 

proto-oncogene (KRAS), initiating Mitogen-activated protein kinase (MAPK) and 

Phosphoinositide-3-kinase (PI3K) signalling which further encourage proliferation and 

resistance to cell death. Finally, subsequent loss of function of Tumour protein P53 (TP53) 

occurs, leading to the loss of genome stability111,113. Recent work has challenged this dogma 

however, suggesting loss of TP53 function may occur before KRAS, as well as implicating 

KRAS activation in invasion and metastasis112,116. The serrated neoplasia pathway, on the 

other hand, occurs via KRAS and B-Raf proto-oncogene (BRAF) mutations and subsequent 

CpG island hypermethylation111. As well as having a different aetiology, CAC also has a 

different pathogenesis than sporadic CRC117. Mechanistically, the chronic inflammation which 

occurs in IBD promotes the development of genetic aberrations, many of which also occur in 

sporadic CRC, however, the order and frequency in which these mutations appear, often differ. 

TP53 loss occurs as an early event in CAC pathogenesis, whereas in sporadic CRC this 

usually occurs later118. Moreover, APC function is lost late in the pathogenesis of CAC and 

only in a minority of cases (<50%). Similar to sporadic CRC, the Wnt/β-catenin pathway is 

upregulated in the majority of early dysplastic lesions; however, this occurs via a different 

mechanism - likely inflammation - and independently of APC loss117,119. KRAS mutations also 

occur late in the pathogenesis of CAC,  however they are rare and only present in ~20% of 

cancers120. CAC similarly follows a predictable sequence of histopathological and genetic 

changes; however, this too differs from sporadic CRC (Figure 2). In contrast to the adenoma-

carcinoma sequence, disease progression in CAC is defined by the “inflammation-dysplasia-

carcinoma” sequence117. Nevertheless, both diseases are defined by the progressive 

accumulation of mutations which encourage the development of the hallmarks of cancer.  

Lying at the interface between environmental risk factors, IBD and CRC/CAC, is the gut 

microbiota, with each risk factor separately associated with shifts in microbiota composition 

and function, potentially inducing dysbiosis or expansion of potentially pathogenic species 

which may promote tumorigenesis3,105,121,122. Moreover, many of these risk factors lead to 

disruption in intestinal homeostasis or barrier function, enabling the encroachment of resident 



8  

  

microbes towards the epithelium, promoting inflammation and oxidative stress which may 

encourage tumour development. Considering this, microbiota changes may therefore be 

responsible for driving increased CRC incidence.  

 

Figure 2. Pathogenesis of Colorectal and colitis-associated cancer. The adenoma-carcinoma 
sequence (top) and the inflammation-dysplasia-carcinoma sequence (bottom), annotated with typical 
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mutations in tumour suppressor genes and oncogenes and the stage at which they occur. The hallmarks 
of cancer and where they occur in the pathogenesis of CRC and CAC are shown below the respective 
pathway. Created with BioRender.com 

1.2.2 Role of the microbiota in spontaneous and colitis-associated colorectal 

cancer  
  

Accumulating evidence links changes in the microbiota to CRC. Recent large-scale meta-

analyses of shotgun metagenomic data have identified distinct cross-cohort taxonomic and 

functional signatures of CRC in faecal samples, providing potential population-level 

biomarkers105,123–125. However, whether the presence of those organisms is a cause or 

consequence of tumour formation remains unclear and mechanistic data linking many of these 

microbes to CRC pathogenesis is also lacking. Nevertheless, initial surveys of faecal and 

biopsy samples from CRC patients identified Fusobacterium nucleatum sequences as 

enriched in CRC patients and recently, several more bacterial strains such as Bacteroides 

fragilis and Escherichia coli, as well as F. nucleatum, have been mechanistically linked to CRC 

pathogenesis126–129. F. nucleatum, for example, has been shown to bind E-cadherin via the 

fadD adhesin, activating the Wnt/β-catenin signalling pathway130. Furthermore, F. nucleatum 

can also elicit immune suppression by binding to immunoinhibitory receptors such as 

Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) and T Cell 

Immunoreceptor With Ig And ITIM Domains (TIGIT)131. B. fragilis is a common gram-negative 

gut bacterium and normally commensal, however a specific subtype termed enterotoxigenic 

B. fragilis (ETBF), expressing the zinc-dependent metalloprotease Bacteroides fragilis toxin 

(BFT) has been identified in biofilm-positive tumours in CRC patients and pre-cancerous 

lesions132,133. ETBF can induce tumour formation by inducing colitis via the production of BFT, 

which cleaves E-cadherin, triggering Wnt/β-catenin signalling and reducing epithelial barrier 

integrity133. E. coli is another typical inhabitant of the healthy human gut, yet some strains 

encode the polyketide synthase (pks) genomic island enabling them to produce colibactin, a 

potent genotoxin. Importantly, these pks+ E. coli have also been found in colonic lesions from 

CRC patients129,134. Microbial metabolites may also play a role in tumour formation. Elevated 

levels of secondary bile acids in CRC have been identified by multiple studies and have been 

shown to promote DNA damage124,135–137. Furthermore, an increased abundance of sulphate-

reducing bacteria like Desulfovibrio and Bilophila – which produce the genotoxic metabolite 

H2S, is also associated with an increased risk of CRC138,139. In spite of clear evidence that the 

microbiota and their metabolites are involved in CRC pathogenesis in animal models, 

questions remain over which taxa actually initiate disease and which merely promote further 

progression.  

The majority of CRC-associated taxa have been identified from stool samples, which may not 

accurately reflect microbial communities at the tumour site. Indeed, tumour biopsies differ 

significantly from paired stool samples, and faecal microbiota has been shown to poorly predict 

adenoma, suggesting early changes in microbiota composition might only be evident at the 

mucosa140–142. In this regard, understanding of the microbial changes which occur before and 

during tumour onset at the mucosa is important to delineate those which initiate disease and 

those which promote progression.  

1.2.3 Microbial succession in multistep colorectal carcinogenesis   
  

A handful of theoretical models exist to explain microbial succession in CRC, however one of 

the models which has gained the most traction is the “driver-passenger” hypothesis. In this 
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model, drivers – resident species with the potential to promote disease in susceptible hosts – 

induce tumour formation, leading to irreversible changes in the intestinal environment. Unable 

to properly adapt to the altered conditions, driver microbes decrease in abundance or die out 

and are overtaken by so-called passengers – microbes which are able to exploit the newly 

established niche – that may be benign or may promote cancer progression143 (Figure 3). 

Driver bacteria are believed to promote tumorigenesis by inducing DNA damage or a 

hyperproliferative phenotype in IECs. Suggested examples include pks+ E. coli, which can 

induce double-strand breaks, aneuploidy, and improper cell division134. Short-term exposure 

of organoids to this pks+ E. coli has also been shown to induce similar genomic aberrations 

to those seen in CRC, which may implicate this species as a potential driver144,145. 

Nevertheless in vivo evidence to support the role of pks+ E. coli and indeed other CRC-

associated bacteria, as drivers of disease is currently lacking, in part due to the limited number 

of studies utilising longitudinal or time-series study designs. A recent study examining different 

CRC patients across the adenoma-carcinoma sequence however identified microbial and 

metabolite differences between different tumour stages in CRC, finding Bacteroides and 

branched-chain amino acids enriched in adenomas, and Fusobacterium and amino acid 

derivatives enriched in later stages124. Furthermore, in silico analyses using metabolic 

modelling, have demonstrated that many CRC-enriched taxa likely depend on CRC-enriched 

metabolites, implying cross-sectional studies may mostly identify passenger rather than driver 

bacteria146.  

Passenger bacteria may still have some capacity to promote tumour formation though, as 

colonisation with microbiota from CRC patients in genetically susceptible controls has been 

observed to induce a higher tumour multiplicity than colonisation with that from healthy 

controls147. Similarly, F. nucleatum has been identified as a passenger bacterium and observed 

to increase in abundance with increasing cancer stage, yet its colonisation in certain 

genetically susceptible mice generally leads to an enhanced tumour burden124. This may 

suggest that, although the driver-passenger model may represent a useful framework, it is 

likely incomplete. It is certainly possible for example, that taxa which promote disease are also 

able to adapt to the change in environment and thus do not appear to change in abundance 

post-tumour-onset. Questions also remain over what would enable driver taxa to promote 

tumour formation in the first place. Very few studies to date have examined microbial changes, 

along the adenoma-carcinoma sequence, while the analysis of microbial changes prior to 

polyp formation would require large, longitudinal cohorts followed over many years. 

Considering the difficulty in determining microbial changes occurring with CRC initiation and 

progression in clinical cohorts, genetically susceptible mouse models represent a more 

practical approach for identifying causal microbes and potential triggers for the switch from a 

commensal to a pro-tumorigenic microbe, as well as shifts in community composition.  
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Figure 3. The driver-passenger model of colorectal tumorigenesis. Before tumour onset, 

environmental or genetic susceptibility allows colonisation/expansion of driver taxa which initiate 

tumorigenesis by damaging the epithelium. Upon tumour formation, the local milieu is altered, leading 

to expansion of so-called passenger taxa at the expense of drivers. Created with BioRender.com  

 

1.2.4 Microbial-driven models of CRC   
  

Although a variety of mouse CRC models exist including chemically induced models such as 

azoxymethane/dextran sodium sulphate (AOM/DSS) and patient-derived xenograft models, 

there are currently only a handful of spontaneous models148. Within the spontaneous models, 

the most commonly used is the Apcmin/+ mouse, driven by a truncation mutation in the murine 

homolog of the tumour suppressor gene adenomatous polyposis coli (Apc). Apcmin/+ mice 

develop spontaneous tumours and are often combined with other genetic alterations to 

determine modifiers of tumorigenesis149,150. In addition to investigating other genetic loci, many 

researchers have focused on the microbiota as a modulator of tumour formation, with germfree 

(GF) Apcmin/+ mice developing fewer tumours in the SI compared to conventional 

counterparts151. Despite the common use of this model in CRC research, the human relevance 

is questionable. Unlike human CRC, Apcmin/+ mice primarily develop tumours in the SI and the 

hereditary condition forming the basis for the model, only accounts for a small proportion of 

human cancers96. Moreover, although the microbiota is certainly involved in promoting tumour 

formation, they are not necessary, thus limiting its use in investigating microbes actively driving 

disease151,152.  

In recent years, a small number of purely microbiota-driven models of CRC and CAC have 

been discovered. Overexpression (OE) of Zeb2, a transcription factor involved in the epithelial-

to-mesenchymal transition was recently shown to induce colonic tumour formation, dependent 

on the microbiota153. Zinc finger protein 90 homolog (Zfp90) has also been demonstrated to 
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promote inflammation-driven tumour formation in mice, an effect which is abrogated by 

microbiota depletion154. Similarly, work from our laboratory demonstrated that the OE of the 

active nuclear fragment of activating transcription factor 6 (nATF6) induced colonic tumour 

formation independent of colonic inflammation and dependent on microbiota presence155. 

Importantly, microbiota-dependent models such as these will facilitate the identification of 

driver taxa or communities, while simultaneously allowing the identification of novel host 

processes governing microbe-host interactions in CRC.  

  

1.3 The unfolded protein response and ATF6 in health and disease   
  

1.3.1 Unfolded protein response and ATF6  

  

ATF6 is a transmembrane endoplasmic reticulum resident protein in the bZIP family of 

transcription factors. Along with Inositol-requiring enzyme 1-alpha (IRE1α) and protein kinase 

R-like endoplasmic reticulum kinase (PERK), ATF6 comprises the endoplasmic reticulum (ER) 

unfolded protein response (UPRER), an evolutionary conserved mechanism to alleviate 

intracellular stress induced by the accumulation of misfolded or unfolded proteins156. Under 

normal conditions, ATF6 and the other arms of the UPRER are kept in an inactive state by 

Glucose-regulated protein 78 (GRP78), however, upon accumulation of unfolded proteins, 

GRP78 binds to the exposed hydrophobic domains and dissociates from the three UPRER 

transmembrane proteins. Each arm of the UPRER initiates a separate program, aiming to 

restore proteostasis or, in the case this cannot be achieved, terminal apoptosis (Figure 4). 

PERK acts by attenuating global translation via phosphorylation of Eukaryotic translation 

initiation factor 2A (eIF2α). IRE1α, on the other hand, dimerises and autophosphorylates upon 

activation, exposing its RNase domain, resulting in splicing of X-box binding protein 1 (XBP1) 

mRNA. XBP1 upregulates genes involved in folding, secretion, ER-associated protein 

degradation (ERAD) and also lipid synthesis157,158. Additionally, via regulated IRE1αdependent 

decay (RIDD), IRE1α itself is involved in the degradation of mRNA and miRNA158. ATF6 acts 

in concert with XBP1 and upon UPRER induction, translocates to the Golgi where it is cleaved 

by S1P and S2P proteases into the active p50 fragment of ATF6 (nATF6). This fragment then 

translocates to the nucleus where it induces transcription of chaperones and other proteins 

involved in folding and maturation. By limiting newly synthesised proteins and increasing the 

activity of protein folding and secretion machinery, these three pathways cooperate to resolve 

ER stress. Proper functioning of the UPRER is therefore crucial to maintain proteostasis and 

normal cellular function.  
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Figure 4. Activation of the endoplasmic reticulum unfolded protein response. Upon sensing of 
unfolded proteins GRP78 (BiP) dissociates from the three signal transducers, ATF6, PERK and IRE1α, 
activating them. ATF6 and IRE1α mediated transcription of XBP1, function to increase degradation 
capacity and synthesis of chaperones, while PERK functions mainly to attenuate translation, reducing the 
folding burden on the cell. Created with BioRender.com  

1.3.2 ATF6 beyond the unfolded-protein response   

  

The ER is a multifaceted organelle with diverse functions. Amongst these, the ER plays an 

important role in the synthesis of secreted and membrane-bound proteins and the synthesis 

of cellular lipids159. The ER is thus intimately involved in metabolism and perturbations to ER 

function can therefore have knock-on effects on cellular metabolism. Accordingly, each of the 

three arms of the UPRER has also been shown to play an important role in metabolic regulation, 

particularly regarding lipids. IRE1α/XBP1, for example, regulates genes involved in lipid 

synthesis160,161. With respect to ATF6, the Site 1 and Site (S1P/S2P) proteases which cleave 

ATF6 into its active fragment, also act on Sterol regulatory element binding protein 2 

(SREBP2), a primary regulator of cholesterol metabolism, in a similar manner. OE of nAtf6 

inhibits SREBP2 target gene expression, implying that ATF6 activation can indirectly regulate 

lipid metabolism162. Moreover, various studies have demonstrated a role for hepatic ATF6 in 

modulating lipid metabolism. Here nAtf6 OE, upregulated genes involved in fatty acid 

synthesis and elongation, ultimately leading to steatosis in mouse and zebrafish models of 

disease163,164. Importantly, lipotoxic stress can also activate ATF6 directly, mediated by certain 

sphingosine and ceramide lipids. This non-canonical activation initiates an alternative 

transcriptional program, preferentially activating genes related to lipid metabolism as well as 

ER chaperones165.   
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As well as playing a role in the modulation of metabolism, ATF6 also appears to play a role in 

immunity. In a murine model of liver ischemia, prolonged activation of ATF6 in Kupffer cells 

alters the response to TLR stimulation, simultaneously increasing pro-inflammatory and 

decreasing anti-inflammatory cytokines166. In vitro evidence also supports the involvement of 

ATF6 in NF-κB activation via phosphorylation of Akt167. The exact extent of ATF6 involvement 

in both metabolism and immune regulation remains unclear, and it is unknown whether this 

involvement is restricted to certain cell types or conditions. The UPRER is particularly important 

in cells with a high secretory requirement, such as B-cells and many cells of the intestinal 

epithelium, thus ATF6 signalling likely plays a more central role in these cell types168–171. 

Indeed, IECs are highly secretory and additionally have high energy requirements, while 

facing constant immunological onslaught from the resident microbiota. Linking ATF6 to 

immune regulation and metabolism, Acyl-CoA synthetase long chain family member 1, an 

enzyme converting free fatty acids into fatty acyl-CoA esters, was recently found to induce 

ATF6 signalling in IECs, activating NF-κB and leading to expression of Tnfα172. Certain aspects 

of metabolic and immune signalling in IECs may therefore converge on ATF6, indicating 

disruptions to this pathway could have knock-on effects beyond its role in the UPRER and 

restoring proteostasis.  

1.3.3 ATF6 in intestinal disease   
  

Activation of the UPR is normally short-lived or terminates in apoptosis of the cell, however 

unresolved or chronic ER stress is involved in various metabolic and inflammatory disorders, 

particularly in the intestine157,173. Deletion of Ire1α or Xbp1 in chemically induced models of 

colitis, for example, leads to enhanced ER stress, breakdown of barrier function, concomitant 

loss of goblet cells and Paneth cells, aggravating colitis174,175. Additionally, aberrations in ATF6 

signalling have also been identified in IBD172,176. Recently, we identified a link between 

transgenic activated ATF6 and CRC. Biallelic activation of nATF6 in murine IECs, resulted in 

spontaneous intestinal tumorigenesis, with a loss of goblet cells and increased microbial 

penetration close to the epithelium preceding tumour onset. Importantly, tumours in this model 

occurred in the proximal colon, unlike many existing animal CRC models, and a subset of 

patients in The Cancer Genome Atlas (TCGA) demonstrated genomic and transcriptomic 

aberrations in ATF6 which was associated with reduced disease-free survival,  suggesting this 

model is human relevant155. Several other lines of evidence further support the involvement of 

ATF6 in human intestinal cancers. Hanaoka et al identified an increase in ATF6 in 

precancerous lesions in CAC and CRC, finding high expression could predict neoplastic 

transformation with high accuracy177. Additionally, ATF6-mediated upregulation of the 

oncogene Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been found to 

contribute to poor prognosis by maintaining cancer cell survival178.  

These findings hint at an important yet relatively unexplored role for ATF6 in intestinal 

tumorigenesis, with potential mechanisms underpinning its involvement remaining elusive. As 

nATF6-driven tumour formation was dependent on the gut microbiota, with microbial changes 

occurring upon nATF6 activation prior to tumour formation, a finding further supported by 

transfer recapitulating disease state, the missing link between ATF6 and CRC may centre on 

its as-yet-unknown ability to modulate gut microbiota composition.  
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2. Aims & Study Objectives     
  

The role of the microbiota in CRC is well established, with various microbial taxa associated 

with tumour formation. Despite this, whether associated microbes are there as a cause or 

consequence and whether those directly involved instigate tumorigenesis or merely promote 

progression remains to be seen. Moreover, patterns of microbial succession occurring 

alongside tumour development are also poorly understood.  

To delineate putatively causal from bystander microbes in CRC, a greater understanding of 

patterns of microbial succession during tumorigenesis is necessary. Given the difficulty in 

longitudinally sampling human patients over the necessary period to characterise pre-and 

post-tumour microbiota, suitable mouse models are needed to test this hypothesis. In most 

current models however, tumorigenesis, although often exacerbated by the microbiota, 

generally occurs independently of microbial involvement, presenting difficulties in dissecting 

their exact contribution to disease. Previous work from our laboratory identified a role for 

biallelic transgenic activation of activating transcription factor 6 (nATF6) in instigating 

microbiota-dependent tumorigenesis155. Notably, transfer from transgenic mice as well as 

control mice at pre-tumour timepoints into susceptible mice led to tumour formation, 

suggesting nATF6 activation might shape a pro-tumorigenic microbiota, which is already 

established pre-tumour.  

Here we aimed to utilise nATF6-driven models as a platform to examine microbial changes 

prior to, at onset and with tumour progression in both CRC and CAC. To this end, we utilised 

16S rRNA profiling of both luminal and mucosa-associated microbiota, developed an 

innovative method of describing the spatial organisation of microbial communities and 

performed untargeted metabolomics. We additionally characterised a novel model for CAC 

and implemented the same in-depth characterisation of the microbiota and metabolome.  

Herein, this thesis is broadly split into six parts. The first section describes the characterisation 

and contrast of microbial communities from different environments in nAtf6IEC mice. We utilised 

16S rRNA sequencing, to determine the utility of mucosa-associated microbiota in identifying 

bacteria driving tumour formation over that of luminal communities. Secondly, we set out to 

understand the spatial structure of mucosal microbial communities at millimetre resolution and 

explore how this changes under tumorigenic conditions. Here, we designed a sampling 

scheme sectioning the mouse colon into 0.5 x 0.5cm plots, to probe alterations in spatial 

organisation. Third, to examine microbial contribution to disease in the context of chronic 

inflammation, we crossed nAtf6IEC mice with Interleukin-10 deficient (Il10-/-) mice generating an 

nATF6-driven model of CAC and assessed the impact of combined monoallelic nATF6 

activation and Il10 knockout (KO) on tumour formation and IEC function. In the fourth and fifth 

parts of this work, we additionally carried out the same microbiota characterisation as with the 

nAtf6IEC model, to determine if similar patterns of microbial succession hold in a model of CAC. 

Finally, to understand how nATF6 activation and tumour presence alter the metabolite 

environment and link microbial shifts to host changes, we performed an integrated analysis of 

the mucosal microbiota and host/microbial metabolome.  
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3. Materials & Methods   
  
3.1 Phenotypic characterisation   
  
3.1.1 Ethics statement, mouse breeding and housing  

  
Mouse experiments were approved and carried out in accordance with the regulations of the 

relevant local authority (Regierung Oberbayern: Breeding proposals:  55.2-1-54-2532- 217-14 

/ 55.2-2532.Vet_02-20-58). All experimental animals were housed in the Specific-pathogen 

free (SPF) mouse facility at the Technical University of Munich. (School of Life Sciences, 

Weihenstephan). To mitigate potential cage effects, mice of different genotypes were 

cohoused where possible179. The nAtf6IEC;Il10-/- mouse model was first generated within the 

thesis work of Elena Lobner180. Here nAtf6IEC;Villin-Cre mice were crossed with Interleukin 10 

(Il10) KO mice on the same genetic background (C57BL/6). The different genotypes used in 

this study are described in Table 1. Mice received a standard chow diet (Ssniff, Soest, 

Germany), and autoclaved water ad libitum and were maintained under constant 12-hour 

light/dark cycles at 24-26°C. Due to the severe phenotype of transgenic mice, experimental 

animals were carefully monitored and scored based on changes in stool consistency, weight 

loss, rectal prolapse or other signs of poor health, and euthanised if a combined score >20 

was reached.   

  
Table 1. Mouse lines and genotype descriptions. 

Mouse Model  Genotypes  Characteristics  

nAtf6IEC  nAtf6fl/fl  Floxed controls.  

nAtf6tg/wt  Monoallelic Villin-Cre driven constitutive 

expression of nAtf6 in IECs   

nAtf6tg/tg Biallelic Villin-Cre driven constitutive expression 

of nAtf6 in IECs  

nAtf6IEC;Il10-/-  nAtf6fl/fl;-/-  Floxed controls + Global Il10 knockout  

nAtf6tg/wt;-/-  Monoallelic Villin-Cre driven constitutive 

expression of nAtf6 in IECs + Global Il10 

knockout  

  

3.1.2 Gnotobiotic Mice  

  
GF mice were housed at the Technical University of Munich (School of Life Sciences, 

Weihenstephan). GF status was maintained by housing in sterile isolators and checked by 

cultivating faecal samples on Wilkens-Chalgren Anaerobe (WCA) agar (Oxoid, Basingstoke, 

UK) as well as periodic gram-staining of faecal smears.  

  

3.1.3 Genotyping  

   

Tail biopsies or ear punches from nAtf6IEC and nAtf6IEC;Il10-/- mice were placed in lysis buffer 

containing 10 mM Tris-HCl, 50 mM KCl, 0.45 % Nonidet P40, 0.45 % Tween 20. 0.5 mg/mL 

Proteinase K was added to this mixture and samples were incubated overnight at 65°C.  
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Proteinase K was then inactivated by incubation at 95 °C for 10 min. 1 μl of tail DNA was 

added to a solution containing 10μl 2x Onetaq Master mix (NEB, Ipswich, MA, USA), and the 

respective primer combinations. Primer sequences and PCR cycling conditions are given in  

 

Table 2. Genotyping primers used in this study. 

Target  Sequence (Concentration [nM])  Product 

Size  
Program  Temperature 

(°C)/Time (S)   

nAtf6  
(Rosa 26  
locus)  

5-TCCCTCGTGATCTGCAACT-3 [125]  
5-ATCAGAGCAGCCGATTGTC-3 [125]  
5-GGCGGATCACAAGCAATAAT-3 [125]  

WT: 262  
Mod: 300  

Initial  
Denaturation  

94/60  

Denaturation  

  

94/20  

  
  

  
x30  Annealing  

  

58/20  

Extension  68/20  

Final Extension  68/60  

Il10-/-  5-GTGGGTGCAGTTATTGTCTTCCCG-3  
[200]   
5-GCCTTCAGTATAAAAGGGGGACC-3  
[200]   
5-CCTGCGTGCAATCCATCTTG-3 [200]  

WT: 200 

KO: 450  
Initial  
Denaturation  

94/60  

Denaturation  94/20  

  
  
x35  

Annealing  58/20  

Extension  68/30  

Final Extension  68/60  

Villin-Cre  5-GACCATATCCACCGAGTCC-3 [300]  
5-AGGAATGCGATGAAGTAGAGC-3 [300]  
5-CCTTCAGCAAGAGCTGGG-3 [400]  
5-GAGACTCTGGCTACTCATCCAGC-3  
[400]  

DNA: 585 

TG: 300  
Initial  
Denaturation  

94/60  

Denaturation  94/15    
x30  

  

Annealing  58/15  

Extension  68/20  

Final Extension  68/60  

  

3.1.4 Histology and tissue staining  

  

Intestinal sections were excised and opened longitudinally immediately after euthanisation. 

Sections were rolled using the “Swiss roll” method and subsequently fixed in 4% phosphate-

buffered formaldehyde for 48 hours181. Samples were dehydrated automatically using a Leica 

TP1020 (Soest, Germany), before embedding in paraffin (VWR, Ismaning, Germany; Leica 

EG1150C). Unless otherwise specified, tissue sections were cut at 5μm (Leica RM2255).  

3.1.4.1 Haematoxylin & Eosin staining  

  

Sections were incubated for 15 minutes at 65°C. Deparaffinisation, rehydration and 

subsequent Haematoxylin (Medite, Burgdorf, Germany) and 0.2% Eosin (Medite, Burgdorf, 

Germany) staining, including a bluing step (bluing reagent; Fisher, Dreieich, Germany), was 

automated using a Leica ST5020 (Soest, Germany). Slides were mounted using xylene-based 

mounting medium (DPX new, Merck-Millipore, Darmstadt, Germany).  

3.1.4.2 Periodic acid-Schiff/alcian blue (PAS/AB) staining  

  

Formalin-fixed paraffin-embedded (FFPE) sections were deparaffinised, before staining with 

alcian blue solution (Fisher Scientific, Dreieich, Germany) for 1 minute to stain acidic mucins 
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(0.5 % volume/volume in 3% acetic acid, pH 2.5). The sections were treated with periodic acid 

solution (0.5%) for 8 minutes before staining for neutral mucins with Schiff’s reagent. Colour 

was developed with two washes in warm water for 2.5 minutes before counterstaining with 

haematoxylin, dehydration, and subsequent mounting with xylene-based mounting medium 

(Merck KGaA, Darmstadt, Germany). Goblet cell numbers were counted in five separate 

regions of approximately ten crypts, averaged, and expressed as the mean number of goblet 

cells per 100μm2. 3.1.4.3 Carnoy fixation   

To preserve the mucus layer for Fluorescent in situ hybridisation, unopened and rolled 

intestinal sections were pinned using a needle and fixed overnight in Carnoy’s solution (60% 

Anhydrous absolute methanol, 30% Chloroform and 10% Glacial acetic acid v/v). Sections 

were dehydrated by subsequent washes in anhydrous methanol (2 x 30 minutes), absolute 

ethanol (2 x 15 minutes), xylene/ethanol 1:1 (5 minutes) and finally xylene (2 x 5 minutes) 

before paraffin embedding.  

3.1.5 Histopathological analysis  

  

Combined tumour and inflammation scoring of intestinal sections was carried out in 

collaboration with Dr. Katja Steiger and Dr. Marianne Reiser, Institute of Pathology, Klinikum 

Rechts der Isar. Haematoxylin and Eosin (H&E)-stained tissue sections were scored blinded, 

based on immune cell infiltration into the mucosa/submucosa and muscle layer, epithelial 

damage, and atypia/dysplasia as previously described152,182. Additionally, dysplasia 

associated with inflammation was also considered in the resulting combined score.  

3.1.6 Immunohistochemical/-fluorescent staining  

  

Immunohistochemical (IHC) and immunofluorescence (IF) staining of tissue sections was 

carried out as previously described183. In brief, slides were deparaffinised and rehydrated 

before antigen unmasking by boiling in 10Mm citrate buffer at pH 6.0 for 23 minutes. To inhibit 

nonspecific binding, sections were blocked for 1 hour according to the species the secondary 

antibody was raised in (Blocking buffer: PBS, 5% serum according to secondary species, 0.3% 

Triton X-100). Respective antibodies were diluted in antibody dilution buffer (PBS, 1% BSA, 

0.3% Triton X-100) to working concentration (Table 3), and incubated with the sections 

overnight at 4°C. In the case of IHC, the signal was developed with DAB (10x; Fisher Scientific, 

Dreieich, Germany) before counterstaining with haematoxylin and subsequent mounting. IF 

sections were incubated with the secondary antibody for 1 hour at room temperature and 

mounted using a water-based mounting medium (Aquatex; Merck KGaA, Darmstadt, 

Germany). Image acquisition was performed using a PreciPoint M8 microscope (Precipoint, 

Freising, Germany) and a Fluoview FV10i microscope (Olympus, Shinjuku, Japan) for IHC 

and IF respectively.  

3.1.7 Fluorescence in situ hybridisation (FISH)  
  

Fluorescent in situ hybridisation staining was carried out as previously described155. Briefly, 

sections were deparaffinised, rehydrated, and fixed in 4% PBS-buffered formaldehyde for 15 

minutes. Tissue sections were then washed before permeabilisation in a lysis buffer (1.2% 

Triton-X-100 solution, 20Mm Tris, 2Mm EDTA), supplemented with 40mg/ml lysozyme, for 45 

minutes at 37°C. For hybridisation, sections were incubated with Cy5-conjugated EUB338 (5- 

GCTGCCTCCCGTAGGAGT-3’)  or  scrambled  FITC  labelled  nonEUB  (5‘- 
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ACATCCTACGGGAGGC-3’) as a negative control in 100μl sterile hybridisation buffer (20 

mmol/L Tris/0.9 mol/L NaCl and 0.01% volume/volume sodium dodecyl sulphate solution, pH 

7.3) overnight at 46°C. Sections were co-stained with Rhodamine-conjugated anti-Ulex 

europaeus agglutinin I (UEA1) (Table 3) and counterstained with 4,6-diamidino-2phenylindole 

(DAPI; Sigma-Aldrich, Taufkirchen, Germany), before mounting in water-based mounting 

medium (Aquatex; Merck KGaA, Darmstadt, Germany). Bacterial distance to the epithelium 

was quantified using Volocity software (Quorum technologies, Guelph, ON, Canada). In each 

colonic compartment (Proximal and Distal) five separate random measurements were taken 

within five separate regions and averaged.  

 

Table 3. Antibodies used for immunofluorescence and immunohistochemistry and their respective 
concentrations. 

Primary Antibody  Manufacturer   Dilution   

IHC    

GRP78  Abcam, Cambridge (UK)  1:200  

Ki67  Cell Signaling Technology, (Danvers, MA, 

USA)  
1:400  

IF    

HA-tag  Abcam, Cambridge (UK)  1:100  

Secondary Antibody  Manufacturer   Dilution   

Donkey anti-rabbit secondary 

Antibody Alexa Fluor 546  
Life Technologies, Carlsbad, CA  1:200  

Donkey anti-rabbit, Horseradish 

peroxidase  
Dianova, Hamburg, Germany  1:300  

Other  Manufacturer   Dilution   

UEA1-Rhodamine  Novus Biologicals (Littleton, CO, USA)  1:1000  

DAPI  Sigma- Aldrich, Taufkirchen, Germany  1:1000  

  

3.1.8 Gene expression analysis  

  

RNA was isolated from whole colonic Swiss roll sections stored in Optimal cutting temperature 

compound (Richard-Allan Scientific™ Neg-50™; Thermo Fisher, Kalamazoo, MI, USA) at 

80°C. Sections were resuspended in RA1 buffer (Macherey Nagel, Düren, Germany) before 

homogenisation using a 23-gauge sterile needle and 10μm/ml Dithiothreitol (DTT; Roth, 

Karlsruhe, Germany) was added as a reducing agent. RNA was then extracted using the 

Nucleospin RNA mini kit (Macherey Nagel, Düren, Germany l), according to the 

manufacturer’s instructions. Extracted RNA was measured using a Nanodrop ND-1000 

Spectrophotometer before synthesis of cDNA from a total of 500ng RNA. RNA was converted 

to cDNA using the MMLV point mutant kit (Promega, Mannheim, Germany), using random 

hexamers to prime synthesis and Moloney Murine Leukaemia virus (MMLV) reverse 

transcriptase (all from Promega, Mannheim, Germany). Cycling conditions and components 

of the reaction mixture are detailed in Table 4. Gene expression was measured using a Roche 

Lightcycler 480 (Roche, Mannheim, Germany), utilising a probe-based method (universal 

probe library, Roche, Mannheim, Germany). Expression was calculated using the 2–∆∆Ct 

method and normalised to Gapdh. Primer sequences used in this study and their respective 

UPL probes are shown in Table 5.  
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Table 4. Protocol for cDNA synthesis. 

cDNA synthesis Components  Volume per sample (μl) 
Random-Hexamer [200ng/μl]  1  

  5 minutes 70°C 
5 minutes 4°C 

5x Strand Buffer (Promega)  5  
Molecular grade H2O  3.1  
rRNasin® (Promega)  0.65μl 
dNTP Mix 10mM  1,25μl  
MMLV (200U/μl) (Promega)  1μl  

10 minutes 25°C 
50 minutes 48°C 

 

 

 
Table 5. qPCR primers used in this study. 

Primer Name  Sequence   Probe Number  

Atf6 endogenous  F: 5-GGACGAGGTGGTGTCAGAG-3 

R: 5-GACAGCTCTTCGCTTTGGAC-3  
110  

Atf6-total  F: 5-CCACCAGAAGTATGGGTTCG-3 R: 

5-GGTTCTTTATCATCCGCTGCT-3  
73  

CXCL10 (IP-10)  F: 5-AATGAAAGCGTTTAGCCAAAAA-3 R: 

5-AGGGGAGTGATGGAGAGAGG-3  
56  

Gapdh  F: 5-TCCACTCATGGCAAATTCAA-3 R: 

5-TTTGATGTTAGTGGGGTCTCG-3  
9  

Grp78  F: 5-CTGAGGCGTATTTGGGAAAG-3 R: 

5-TCATGACATTCAGTCCAGCAA-3  
105  

Muc2  F: 5-GGCAGTACAAGAACCGGAGT-3 R: 

5-GGTCTGGCAGTCCTCGAA-3  
66  

Oasis  F: 5-GATGGAGGACACCACTCAAGA-3 R: 

5-CCATGATGGAGCACAGCTT-3  
81  

Tff3  F: 5-GTAACAACCGTGGCTGCTG-3 R: 

5-GAGCCTGGACAGCTTCAAAA-3  
109  

Tnfα  F: 5-TGCCTATGTCTCAGCCTCTTC-3 R: 

5-GAGGCCATTTGGGAACTTCT-3  
49  

  

3.1.9 ELISA measurement of Lipocalin-2  

  

To generate faecal water for ELISA, frozen faecal samples were thawed, and a small portion 

of sample removed using a sterile spatula. This was then placed into a sterile pre-weighed 

Eppendorf tube containing 0.5mm glass beads. Based on the weight, samples were diluted 

1:10 in sterile PBS and vortexed for 1 minute before centrifugation at 1000×g for 5 minutes. 

The resultant supernatant was transferred to a new Eppendorf tube and centrifuged again at 

6000×g for 5 minutes. Samples were stored at -20°C before use. Lipocalin-2 was measured 

using the LEGEND MAX™ Mouse NGAL (Lipocalin-2) ELISA Kit (Biolegend, San Diego, CA, 

USA), according to the manufacturer’s instructions. Concentration was determined using the 

standard curve method and expressed as nanograms per gram of faecal content.  
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3.2 Microbiota analysis   
  

3.2.1 Sampling of mouse colonic mucosa-associated microbiota  
  

To sample colonic tissue for the analysis of mucosa-associated microbiota, mice were 

euthanised, the colon removed and then opened longitudinally before clearing of colonic 

content using a sterile needle. The tissue was then washed with sterile PBS until residual 

content was removed. Tissue sections were then excised using a sterile scalpel, pre-treated 

with DNA Away™ (Fisher Scientific, Dreieich, Germany) to destroy contaminating DNA 

fragments. For the analysis of spatial microbiota, the entire colon was laid on a 0.5cm x 0.5cm 

grid and individually sectioned using a scalpel and cleaned with 80% ethanol between each 

cut. Each separate 0.5cm x 0.5cm section was considered an individual sample and frozen at 

-80 °C before DNA extraction and sequencing (Figure 5). All steps were carried out in a 

laminar flow cabinet.  
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Figure 5. Schematic of spatial organisation experimental design.  

3.2.2 Ex vivo cultivation of caecal content and long-chain fatty acid co-culture  
  

Caecal content was harvested, immediately after euthanisation, from three nAtf6fl/fl and 

nAtf6fl/fl;-/- control mice respectively and diluted 1:10 in 40% glycerol before storage at -80°C. 

On the day of the experiment, caecal content was thawed under anaerobic conditions for 5 

minutes, then left for a further 10 minutes to allow particulates to settle. The supernatant was 

then removed, and samples were diluted 1:25 in BBL™ Chopped Meat Carbohydrate Broth 

(BD Diagnostics, Sparks, MD, USA) and then pooled according to genotype. Three technical 

replicates of 200μl were pipetted per timepoint and genotype, to which 2μl of a long-chain fatty 

acid solution containing 0.5μmol Nervonic acid (24:1, n−9) and 2μmol each of Behenic (22:0) 

and Eicosanoic acid (20:0) was added. 0-hour samples were immediately harvested, while the 

remaining samples were incubated for 7 hours, in an anaerobic cabinet at 37°C.  
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3.2.3 Microbial DNA extraction from mouse caecal content  

  

DNA extraction from frozen caecal content was carried out using a modified version of the 

protocol described by Godon et al184. Briefly, caecal samples were homogenised by vortexing 

and transferred to autoclaved screw-cap Eppendorf tubes containing 500mg silica beads 

(0.1mm Carl Roth) and kept on ice. To this, 600μl of DNA stabiliser (Macherey Nagel, Düren,  

Germany), 250μl 4M Guanidine thiocyanate and 500μl N-laurolyl-sarcosine was added. 

Samples were incubated under moderate shaking (700rpm) for 1 hour at 70°C. Lysis was 

achieved via mechanical disruption with a FastPrep ®-24 bead beater (MP Biomedicals, 

Eschwege, Germany) using three 40-second cycles at a speed of 6.5 m/s. 15mg 

Polyvinylpyroliddone (PVPP; Sigma-Aldrich, Taufkirchen, Germany) was added to 

homogenate to remove phenol contamination, before centrifugation at 15,000×g for 3 minutes 

at 4°C. The resulting supernatant was recovered, and centrifuged again under the same 

conditions, resulting in a clear supernatant containing lysed bacterial cells. To this mixture, 

10mg/ml RNase was added to degrade bacterial RNA and incubated at 37°C for 30 minutes 

under constant shaking (700rpm). The resulting genomic DNA was then purified using the 

NucleoSpin ® gDNA clean-up kit (Macherey Nagel, Düren, Germany), according to the 

manufacturer’s instructions. The concentration and purity of extracted genomic DNA was 

determined using a Nanodrop ND-1000 Spectrophotometer. Samples were stored at -20°C 

before sequencing.  

3.2.4 Microbial DNA extraction from mouse colonic tissue   

  

3.2.3.1 DNA extraction and clean-up  

  

DNA extraction from colonic tissue was performed using enzymatic digestion. Where possible 

samples were extracted using the same kit batch, to limit differences in inherent kit 

contamination between different batches185. Tissues were placed in 180μl sterile lysis buffer 

(20Mm Tris/HCL, 2Mm EDTA, 1% Triton-X100; pH 8 supplemented with 20mg/ml lysozyme) 

and incubated for 1 hour in a shaking incubator (950rpm) at 37°C. 10mg/ml Proteinase K 

(Macherey Nagel, Düren, Germany) was then added, and samples were incubated for 1-3 

hours (until complete lysis of the tissue was obtained) at 56°C under moderate shaking 

(950rpm). Downstream lysis and clean-up were performed using the Nucleospin tissue kit 

(Macherey Nagel, Düren, Germany) according to the manufacturer’s instructions. The 

concentration and purity of extracted genomic DNA was determined using a Nanodrop 

ND1000 Spectrophotometer. Extracted DNA was stored at -20°C before sequencing.  

3.2.3.1 Spike-in   

  

In order to quantitatively determine the number of 16S rRNA gene copies in a given sample a 

known amount of artificially constructed 16S rRNA sequences were added. Spiked samples 

were processed as above, except mucosal samples were weighed before and after the 

addition of lysis buffer to which 1μl solution containing artificially constructed 16S rRNA 

sequences at a concentration of 150pg/ml prior to extraction. Spike-in sequences were 

adapted from Tourlousse et al. and are listed in Table 6186.  
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Table 6. Spike-in DNA sequences. 

Name  Length  

Ec5001  1525  

Ec5002  1525  

Ec5003  1525  

Ec5004  1525  

Ec5005  1525  

Ec5501  1525  

Ec5502  1525  

Ec6001  1525  

Bv5501  1520  

Ca5501  1495  

Ga5501  1508  

Tb5501  1554  

  

3.2.4 Microbial DNA extraction from ex vivo cultivated caecal content  
  

Microbial suspensions were centrifuged at 8000×g for 5 minutes to pellet bacteria. DNA was 

subsequently extracted using the Nucleospin Microbial DNA kit (Macherey Nagel, Düren, 

Germany), following the manufacturer’s instructions except DNA was eluted in 25μl, instead 

of 100μl to increase concentration. Lysis was achieved using a FastPrep ®-24 bead beater 

(MP Biomedicals, Eschwege, Germany) using a single 40-second cycle at a speed of 6.0 m/s.  

3.2.5 16S rRNA amplicon sequencing   
  

High throughput amplicon sequencing of the 16S rRNA gene was carried out as previously 

described187. In brief, the V3 and V4 hypervariable regions were amplified via a 2-step 

protocol, using the 341f and 785r primer pair (341f 5’-CCTACGGGNGGCWGCAG-3’, 785r 

5’GACTACHVGGGTATCTAATCC-3’). With 10x15 cycles for caecal content samples and 

15x15 for mucosal samples. Samples were barcoded with a double index, according to Kozich 

et al188. The resulting amplicons were purified using AGENCOURT AMPure XP Beads 

(Beckman Coulter, Krefeld, Germany), pooled in equimolar ratios and then sequenced on an 

Illumina MiSeq system (Illumina, San Diego, CA, USA), in paired-end mode (2 x 275bp). Raw 

reads were processed using IMNGS, which wraps the UPARSE/USEARCH software 

pipeline189,190. Sequences were demultiplexed, trimmed to first base with a quality score <3 

and merged. To remove spurious sequences, a length filter was applied based on the expected 

amplicon size of 444bp, removing those smaller than 300 and larger than 600bp. The resulting 

paired sequences were then dereplicated and denoised using UNOISE3, to generate 

Amplicon sequence variants (ASVs; also known as zero-radius OTUs or zOTUs), reflecting 

true biological sequences191. Artificial 16S rRNA sequences in spiked samples were first 

enumerated and then removed using a custom python script, running BLAST to align ASV 

reference sequences against the spike sequences192. Taxonomy was assigned using the RDP 

classifier version 2.11193. Samples with less than 5000 total reads were excluded from further 

analysis. Since low biomass samples are susceptible to contamination which can lead to 

spurious conclusions, all mucosal samples were further processed with the R package 

decontam to remove putative contaminants194. This package utilises the relationship between 

pooled DNA concentration prior to sequencing and the prevalence and abundance of taxa in 

negative controls to identify putative contaminants. Identification of contaminants was 
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performed with the isContaminant function using default parameters. Downstream analyses 

were performed using Rhea and phyloseq195,196. Briefly, ASV tables were normalised using 

minimum sum scaling or relative abundance. Alpha diversity was measured using Richness, 

Shannon Effective and for phylogenetic diversity, Faith’s phylogenetic diversity (Faith’s PD)197. 

To assess differences between groups, beta diversity was calculated based on generalized 

UniFrac distance (GUniFrac)198. Mean GUniFrac dissimilarity for a given sample was 

calculated as the dissimilarity to the respective control mean. Differentially abundant taxa were 

identified using the Linear Discriminant analysis Effect size (LEfSe) algorithm, with a Linear 

discriminant analysis threshold (LDA) threshold of 3.0, to limit false positives199,200. The total 

16S copy number based on spike-in measurement was calculated using the formula:   

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =  
(

𝑠
𝑟

) ∗ 𝑛

(
𝑏
𝑤)

 

where s is the spike-in reads per sample, r, a randomly chosen sample to adjust to, n spike 

DNA concentration in ng, b bacterial reads per sample and w, the weight of the respective 

sample.  

3.3 Metabolomic analysis   
  

3.3.1 Untargeted metabolomics  

  

Untargeted metabolomics measurement was performed in collaboration with Sinah Reiter, 

Miriam Wimmer (Chair of Food Chemistry and Molecular Sensory Science, Technical 

University of Munich) and Andreas Dunkel (Leibniz-Institute for Food Systems Biology at the 

Technical University of Munich).  

3.3.1.1 Sample preparation   

  

Sample preparation was performed as previously described187. Briefly, mouse caecal content 

(~20mg) or tissue (~25mg) was mixed with 1ml methanol-based extraction solvent in a 2ml 

bead beater tube (CKMix 2ml, Bertin Technologies, Montigny-le-Bretonneux, France) filled 

with ceramic beads (1.4 mm and 2.8 mm ceramic beads). Samples were then homogenised 

using a bead beater (Precellys Evolution, Bertin Technologies) supplied with a Cryolys cooling 

module (Bertin Technologies, cooled with liquid nitrogen) three times for a duration of 20 

seconds, at a speed of 8000rpm. Subsequently, the resulting suspension was centrifuged for 

10 minutes, at 6000rpm. Finally, 100μl of supernatant was mixed with 20μl internal standard 

solution (7 µmol/l) and injected into the Liquid chromatography time-of-flight mass 

spectrometer (LC-TOF-MS) system for untargeted analysis.  

3.3.1.3 Liquid Chromatography-Time of Flight-Mass Spectrometry (LC−TOF-MS)     

  

Untargeted LC-TOF-MS analysis was carried out as described in Metwaly et al 2020187. Briefly, 

untargeted analysis was performed on an ExionLC Ultra-high performance liquid 

chromatography (UHPLC) system (Sciex, Darmstadt, Germany), connected to a 6600 

TripleTOF instrument (Sciex, Darmstadt, Germany) operating in positive and negative 

electrospray mode and calibrated using ESI positive and negative calibration solutions (Sciex, 

Darmstadt, Germany). UHPLC phase separation was performed in reverse as well as 

hydrophilic interaction stationary phase (HILIC), on a Kinetex C18 column (Phenomenex, 
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Aschaffenburg, Germany) and ACQUITY BEH Amide column (Water, Eschborn, Germany) 

respectively. Mass spectrometry was performed using SWATH mode, with fragment spectra 

recorded in high-sensitivity mode.  

3.3.1.4 Metabolomics Data processing   

  

Metabolomics data processing was performed as described previously187. Briefly, Raw data 

files were converted into Reifycs Abf (Analysis Base File) files and subsequent untargeted 

peak picking was performed using MS-DIAL software (version 3.5274)201. Alignment was 

performed across all samples and the peak area of individual features were exported for 

further analysis using the R statistical software environment. Peak normalisation was based 

on QC samples, employing the method described in Wehrens et al 2016202. All features were 

then combined into a single table and further normalised according to sample weight, before 

analysis.  

3.4 Bioinformatics & Statistical Analysis  
  

3.4.1 Functional potential prediction    
  

To calculate predicted functional profiles based on 16S rRNA sequencing data, we utilised 

PICRUSt2 version 2.3203. FASTA files of representative sequences and minimum sum scaled 

ASV tables were used as input for the command: picrust2_pipeline.py, which runs the full 

PICRUSt2 pipeline, aligning and placing the sequences into a reference tree, calculation of 

16S copy number, Enzyme Commission (EC) and KEGG orthologs abundances, adjustment 

of these by 16S abundance and finally infers MetaCyc pathways by collapsing EC numbers 

according to their associated metabolic pathway. All PICRUSt2 data were generated in a high-

performance computing environment, utilising the Linux-cluster system at the Leibniz 

Rechenzentrum, Garching.  

3.4.2 Statistical analysis    
  

3.4.2.1 Inferential statistics   

  

Statistical analyses were carried out using R (R software foundation, Vienna, Austria) or 

GraphPad Prism (version 9.00; GraphPad Software, San Diego, CA, USA). For comparing the 

mean of two groups, unpaired student’s t-test or Wilcoxon test was used where appropriate. 

Differences between multiple groups were tested using ANOVA or Kruskal-Wallis tests. For 

testing differences in frequency, Fisher’s exact test was used. Effect sizes were determined 

using the effsize R package, employing Cohen’s d, which is calculated as the mean difference 

divided by the standard deviation for each pairwise difference. To test for differences in beta 

diversity, multivariate statistical testing was conducted using Permutational multivariate 

analysis of variance (PERMANOVA)204. Trends in spatial data were detected using locally 

estimated scatterplot smoothing (LOESS), an extension of nonlinear regression, as 

implemented in the stat_smooth function of ggplot2205. For hierarchical clustering of metabolite 

intensities, Ward’s method was used206. Multiple comparisons were controlled using the 

method of Benjamini & Hochberg207. Unless otherwise specified all data are presented as the 

mean ± standard deviation, p-values < 0.05 were considered statistically significant (p<0.05=*, 

p<0.01=**, p<0.01=***, p<0.001=****).  
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3.4.2.2 Machine Learning  

  

Supervised classification of mucosal and luminal microbial profiles was performed using the 

SIAMCAT R package, utilising ridge-regression, L1- regularised lasso regression and random 

forest models, which were chosen based on the ease of interpretation of model output140,208. 

To account for differences in sample size between mucosal and luminal data, mucosal data 

was randomly subsampled to match luminal. Prior to model training, low prevalent features - 

defined as those present in less than one-third of samples -were removed, and the data 

transformed using a centred log-ratio transform. Feature selection was performed using an 

area under the curve (AUC) threshold of 0.75 and nested within the cross-validation (CV) 

procedure to avoid artificial inflation of model AUC. All models were trained using five-fold CV, 

or in case of smaller sample size (<50 total samples), leave-one-out CV (LOOCV), each with 

five rounds of resampling.  

3.4.3 Multi-omic data integration  
  

Integration of metabolomic and microbiota data was performed on log-transformed, scaled, 

and centred log-ratio (clr) transformed metabolite and ASV matrices, respectively. General 

associations between the microbiota and metabolites were identified using a multi-block 

sparse partial least squares discriminant analysis (sPLS-DA) model with seven components 

and 10-fold CV, as implemented in the DIABLO framework of the mixOmics R package209,210. 

Associations between ASVs and metabolites were determined using Spearman’s rank 

correlation, using the corrr R package211.  
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4. Results  
  

4.1 Mucosa-associated microbiota dysbiosis in nAtf6IEC mice    
  

4.1.1 IEC-specific activation of nATF6 alters mucosa-associated microbiota in  

the absence of tumour formation  
  

We previously showed transgenic nATF6 activation in the intestinal epithelium alone is enough 

to alter caecal microbiota, however mucosa-associated communities have been shown to be 

more resilient to environmental insult, possibly due to the harsh conditions of mucosal 

microenvironments and/or protection mediated by the mucus layer155,212. To determine if 

nATF6 activation, in the absence of tumour presence, could alter microbial profiles we 

compared nAtf6tg/wt mice to nAtf6fl/fl controls. To assess within sample diversity, we utilised 

multiple alpha diversity metrics, allowing us to individually determine different components of 

sample diversity, namely the total number of observed ASVs (richness), evenness (Shannon 

Effective), and phylogenetic diversity (Faith’s PD). Alpha diversity, either taxonomic (richness 

and Shannon Effective) or phylogenetic (Faith’s PD) did not differ at 5 or 12 weeks but was 

significantly increased in 20-week-old nAtf6tg/wt mice (Figure 6A). Next, to determine between 

sample differences, we utilised GUniFrac distance to measure beta diversity. This metric takes 

both species abundances and genetic relatedness into account while giving less weight to 

rare and highly abundant lineages, allowing the detection of a wider range of differences in 

composition between samples compared to other metrics198. Beta diversity showed the 

opposite trend, with obvious separation in GUniFrac distance at 5 weeks, which gradually 

decreased with age. Despite this, PERMANOVA results indicated mucosa-associated 

microbiota was significantly different at all timepoints, independent of cage effects (Figure 6B 

and D). To identify ASVs affected by nATF6 activation, we performed differential abundance 

analysis using LEfSe199. Members of Lactobacillus, Odoribacter, Lachnospiraceae, 

Porphyromonadaceae and Clostridiales were enriched in nAtf6tg/wt mice, while control enriched 

ASVs were almost entirely classified as Lachnospiraceae, along with a single member of 

Alistipes (Figure 6C). Taken together this suggests nATF6 activation also modulates the 

mucosa-associated microbiota.  
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Figure 6. Monoallelic activation of nATF6 alters the colonic mucosal microbiota. (A) Species 
Richness, Shannon Effective diversity, Faith’s phylogenetic diversity and (B) beta diversity, based on 
generalized UniFrac distance at each timepoint between nAtf6tg/wt mice and controls. (C) Differentially 
abundant taxa between nAtf6fl/fl and nAtf6tg/wt mice at 20 weeks of age. (D) NMDS plot of generalized 
UniFrac distance between nAtf6fl/fl and nAtf6tg/wt mice including all timepoints, labelled by cage. 
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Since monoallelic activation of nATF6 clearly modulated the mucosa-associated microbiota, 

we next examined the impact of biallelic nATF6 activation alone on mucosa-associated 

communities, comparing microbial profiles of 5-week-old nAtf6fl/fl to nAtf6tg/tg mice. Firstly, to 

confirm if biallelic nATF6 activation did indeed alter mucosa-associated microbiota we 

examined alpha and beta diversity. No significant differences in any alpha diversity metric 

could be detected, however nAtf6tg/tg mice did show a reduced trend across all tested metrics 

(Figure 7A). Beta diversity analysis based on GUniFrac distance however, showed a marked 

difference between genotypes, indicating biallelic nATF6 activation modulates community 

composition but not diversity (Figure 7B). Next, to determine whether increasing gene dose 

(i.e., monoallelic or biallelic) is associated with the degree of perturbation in mucosa-

associated microbiota, we calculated the mean GUniFrac dissimilarity per group relative to the 

control mean, for all genotypes (nAtf6fl/fl, nAtf6tg/wt, nAtf6tg/tg) at 5-weeks. Accordingly, both 

nAtf6 genotypes were significantly different to nAtf6fl/fl control, and an increasing gradient could 

be observed from nAtf6tg/wt to nAtf6tg/tg mice, although the difference was not statistically 

significant (Figure 7C). Finally, to examine this association in more detail, we correlated 

GUniFrac dissimilarity, as well as each alpha diversity metric with the expression of the Atf6 

transgene and Grp78, as measured by qPCR. Grp78, but not Atf6 expression, negatively 

correlated with all alpha diversity metrics except Faith’s PD, and correlated positively with 

mean GUniFrac dissimilarity, suggesting modulation of microbial communities occurs 

downstream of nATF6 activation (Figure 7D). Together, these data support augmented 

modulation of mucosa-associated microbial communities, with increasing Atf6 gene dose.  
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Figure 7. Increasing gene dose augments modulation of colonic mucosa-associated microbiota 

at the 5-week timepoint. (A) Mucosal alpha diversity in nAtf6IEC mice comparing 5-week-old nAtf6fl/fl 

and nAtf6tg/tg mice. Left to right: Richness, Shannon Effective and Faith’s Phylogenetic diversity. (B) Beta 

diversity profiles based on generalized UniFrac distance in between 5-week-old nAtf6fl/fl and nAtf6tg/tg 

mice. (C) Mean generalized UniFrac distance relative to control across nAtf6fl/fl, nAtf6tg/wt and nAtf6tg/tg 

sample. (D) Correlation between relative expression, as measured by qPCR (2-ΔΔCt), of Atf6 and Grp78 

and community diversity metrics (Clockwise from top left: Mean Generalized Unifrac Distance, 

Richness, Shannon Effective and Faith’s Phylogenetic diversity).  

4.1.2 Mucosa-associated microbiota improves classification of phenotype   

  

Caecal microbiota profiles provide a snapshot of one of the densest and most diverse 

environments in the murine host, yet may not accurately represent microbes underlying 

disease, particularly in conditions where the pathological site lies at the intestinal epithelium 

such as CRC142. Considering this, we set out to characterise tumour-associated microbiota to 

determine if this can improve identification of disease-associated taxa. To confirm that tumour-

presence altered the mucosa-associated microbiota, we focused on 12- and 20-week-old 

nAtf6fl/fl and nAtf6tg/tg mice. We calculated various alpha diversity metrics, observing no 

differences between tumour-bearing nAtf6tg/tg and nAtf6fl/fl at either timepoint (Figure 8A). 

Nonparametric Spearman’s rank correlation however, identified a significant correlation 

between tumour number and Shannon Effective diversity, indicating tumour burden has a 

more significant impact on diversity than tumour presence alone (Figure 8B). Analysis of beta 

diversity based on GUniFrac distance was used to compare microbial profiles between tumour 

(nAtf6tg/tg) mice and controls (nAtf6fl/fl). In contrast with alpha diversity, tumour presence 

significantly impacted mucosa-associated microbiota, with both tumour timepoints clearly 
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distinct from non-tumour controls (Figure 8C). To identify mucosa-associated bacteria 

associated with tumour presence, we next determined differentially abundant taxa. Tumour-

enriched taxa consisted mostly of ASVs classified as Lactobacillus and Turicibacter and 

additionally several other single ASVs classified as Porphyromonadaceae, Odoribacter and 

Romboutsia. On the other hand, depleted ASVs almost entirely comprised Lachnospiraceae, 

as well as a single Anaerotruncus species, suggesting tumour presence markedly disrupts 

mucosa-associated microbiota (Figure 8D).  

  

 

Figure 8. Mucosa-associated microbiota profiles are markedly altered in tumour-bearing nAtf6IEC 

mice. (A) Mucosal alpha diversity in nAtf6IEC mice comparing tumour and non-tumour in between 12 

and 20-week samples. Left to right: Richness, Shannon Effective and Faith’s Phylogenetic diversity. (B) 

Spearman’s rank correlation between each measure of alpha diversity and tumour number. (C) Beta 

diversity profiles based on generalized UniFrac distance in 12 and 20-week samples. (D) Differentially 

abundant taxa between nAtf6fl/fl and nAtf6tg/tg mice at tumour timepoints, identified by LEfSe analysis 

(LDA threshold = 3.0).  

Tumour mucosal samples were clearly altered compared to controls, however, the question 

remained whether mucosa-associated microbiota provides any additional utility over luminal 

samples in identifying tumour-associated taxa. To this end, we utilised machine learning (ML) 

models which facilitate recognition of complex patterns in high-dimensional datasets. Random 

forest (RF), L1-regularised lasso (L1L) and Ridge regression (RR) models were trained on 

mucosal and luminal data separately from the same mice, using repeated LOOCV to estimate 

model performance. Models trained on luminal data achieved AUC values of 0.97, 0.96 and 

0.96, respectively. With the exception of the L1L model (AUC = 0.92), all models trained on 
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mucosal data achieved higher accuracy (RF = 0.99, RR = 0.97) (Figure 9A). Since the 

distribution of samples skewed towards non-tumour over tumour, Precision-Recall curves 

were also generated to ensure models could accurately discriminate classes. Besides the 

mucosal L1L model, precision-recall was high across all models, suggesting tumour samples 

could generally be accurately distinguished from non-tumour (Figure 9B). Supporting the 

increased utility over luminal, two out of three models trained on mucosal data showed 

significantly higher AUC values across all LOOCV repetitions (Figure 9C).  

To determine features underlying the enhanced prediction capability of mucosal data, we 

extracted features included in at least 50% of repeats across all three model types (RF, L1L 

and RR). Mucosal features in tumour samples were dominated by taxa known to be associated 

with the murine colonic-mucosa such as Lactobacillus and Alistipes, while luminal features 

mostly comprised Parabacteroides, indicating mucosa-associated taxa could play an 

important role in tumorigenesis59,213. (Figure 10A and B).   
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Figure 9. Machine learning models trained on mucosa-associated microbiota profiles better 

discriminate phenotype compared to luminal. (A) ROC curves comparing classification accuracy of 

Random Forest, L1-penalised Lasso and Ridge regression models built on luminal and mucosal data, 

respectively. Mucosal data was randomly subsampled to match luminal sample size (total n=63, random 

subsample=54). Models were trained using repeated 5-fold cross-validation (CV). (B) Precision-Recall 

curves from each model trained. (C) Comparison of AUCROC values for each model trained, comparing 

luminal and mucosal datasets.  
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Figure 10. Consensus of discriminating features between non-tumour and tumour phenotypes 
across all trained models. (A) Luminal content and (B) Mucosa-associated microbiota. Heatmap depicts 
z-score of Log10 transformed abundances. 
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4.1.3 Analysis of fold change within and between phenotypes differentiates taxa 

associated with tumour initiation and onset in nAtf6tg/tg mice   

  

Having established the utility of mucosal over luminal data in identification of tumour-

associated taxa, we next sought to differentiate those merely associated with tumour presence 

and those likely driving tumour-formation. Towards this end, we utilised the driver-passenger 

model, as a framework for microbial changes between pre-tumour and tumour onset. The 

driver-passenger model is a theory of microbial involvement in CRC, whereby drivers initiate 

tumour formation, altering the local milieu and allowing other taxa (passengers) to establish 

themselves in the newly created niche143. To investigate whether microbial communities 

changed significantly from pre-tumour to tumour onset, we examined diversity between the 5- 

and 12-week timepoints in nAtf6tg/tg mice. Both richness and Faith’s PD were significantly 

increased at 12 weeks compared to the 5-week timepoint, while a trend of increasing Shannon 

Effective diversity was also observed (Figure 11A). Analysis of beta diversity based on 

GUniFrac distance however, revealed both timepoints to be distinct from one another, 

suggesting that microbial shifts do indeed occur from pre-tumour to tumour-onset (Figure 

11B).  

We next examined microbial changes between the pre-tumour timepoint (5-weeks) and 

tumour onset (12-week), reasoning those taxa that decrease in abundance from pre-tumour 

to tumour would putatively represent drivers and those that increase, passengers. Hence, we 

calculated the fold change (FC) and defined a threshold of 1.5 Log2 FC and FDR-adjusted p-

value of 0.05 as indicative of a significant shift. Using this method, we identified ASVs 

classified as Mucispirillum, Anaerotruncus and Lachnospiraceae as putative initial driver (ID) 

taxa in nAtf6tg/tg mice and Lactobacillus, Bacteroides, Parabacteroides, Alistipes, Alloprevotella 

as passengers (Figure 11C). This suggests in nAtf6tg/tg mice that microbial shifts occur in 

concordance with the driver-passenger model.  

The driver-passenger model in its current form, however, only covers microbes which 

demonstrate clear shifts between pre-tumour and tumour onset, yet many gut microbes are 

highly adaptable to changing environments and would be discounted under this model, as 

they may not demonstrate significant shifts in abundance214. We sought to identify a third 

group of taxa, which we term sustained drivers (SD), defined as those that do not change 

between pre-tumour and tumour-onset but are enriched in susceptible mice compared to 

controls. Using this approach, we additionally identified several taxa matching these criteria, 

mostly composed of members of Lactobacillus, Odoribacter, Bacteroides and Alistipes 

(Figure 11D). Heatmap visualisation of the identified ID, SD, and passenger taxa confirmed 

that shifts in their abundance were restricted to nAtf6tg/tg mice, and not related to age or 

genotype factors (Figure 11E).  

A number of existing studies, aiming to examine changes between pre-tumour and tumour 

onset in the context of the driver-passenger hypothesis have generally done so by comparing 

tumour mucosa, to non-tumour adjacent mucosa, under the assumption that driver taxa may 

still be present where neoplastic transformation has not yet occurred215–217. However, there 

are conflicting reports on whether tumours and adjacent mucosa differ microbially. We 

therefore aimed to assess whether tumour and adjacent mucosa from the same mouse 

differed in terms of microbial composition and whether adjacent mucosa could be utilised to 

validate driver taxa. At the level of alpha diversity, no significant differences could be detected 

in species richness, Shannon Effective or Faith’s PD (Figure 12A). Similarly, on the level of 

beta diversity microbial profiles from each sample type clustered together (Figure 12B). These 
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data suggest despite a difference in phenotype, the microbiota between tumour and adjacent 

mucosa did not differ. Next, to determine if the distribution of ID and SD taxa was altered 

between tumour and adjacent mucosa, we compared their relative abundance. Overall, 

abundance of ID and SD did not show any major shifts between tumour and adjacent mucosa, 

indicating adjacent non-tumour mucosa cannot be used to identify ID or SD (Figure 12C).  

 

Figure 11. Identification of putative passenger and driver taxa in nAtf6tg/tg mice. (A) Alpha diversity 

(left to right: Species Richness, Shannon Effective and Faith’s Phylogenetic) and (B) NMDS plot of beta 

diversity between 5 - and 12-week timepoints in nATF6tg/tg mice. (C) Volcano plot of differential ASVs 
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between 5- and 12-week nAtf6tg/tg mice. Coloured squares highlight significant taxa with an FDR-

corrected p-value <0.05. Red represents putative initial drivers and blue putative passengers. (D) 

Volcano plot of differential ASVs between non-tumour nAtf6fl/fl controls and nAtf6tg/tg tumour mice. The 

coloured square highlights significant taxa with an FDR-corrected p-value <0.05. Yellow represents 

putative sustained drivers. (E) Heatmap of initial driver (ID) and passenger (P) abundances at 5 and 12- 

weeks in nAtf6fl/fl controls and nAtf6tg/tg mice.  

 

Figure 12. Driver taxa in nAtf6tg/tg mice are not tumour specific. (A) Mucosal alpha diversity in 

tumour and adjacent samples from nAtf6tg/tg mice. Left to right: Richness, Shannon Effective and Faith’s 

Phylogenetic diversity. (B) NMDS plot of beta diversity of tumour and tumour-adjacent microbial profiles 

based on generalized UniFrac distance. (C) Heatmap of initial and sustained driver genera abundance 

between tumour and adjacent mucosa. Data are presented as z-scores of Log10 transformed 

abundances.  

4.2 Spatial organisation of mucosa-associated microbiota in nAtf6IEC mice   
  

4.2.1 Microbiota profiles in nAtf6IEC mice vary along the colon and are altered by 

tumour presence  
  

Having confirmed the utility of mucosa-associated over luminal communities and identified 

putative driver and passenger taxa we next sought to understand how tumour presence alters 

spatial structure of the microbiota and where taxa of interest localise to. The spatial 

compartmentalisation and organisation of microbiota is thought to play an important role in 
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microbe-host interactions. The local mucosal environment varies along the length of the GI 

tract in terms of oxygen gradient, pH, and available nutrients, governing the bacteria present, 

which in turn may impact the host13. Several other studies have examined spatial microbial 

differences along the length of the murine colon, including in mucosa-associated communities, 

finding broad community level differences along the longitudinal axis and a key role for diet in 

modulating spatial structure34,218. Despite this, spatial structuring of the murine colonic 

microbiota has not yet been examined in the context of tumorigenesis. Upon tumour formation, 

the local environment is heavily altered, which likely disrupts mucosa-associated microbiota 

and their spatial structuring219,220. To identify spatial alterations in mucosa-associated 

microbiota driven by tumour formation, we sought to generate spatially resolved microbial 

profiles along the longitudinal axis of the colon. We defined and sampled 0.5 x 0.5cm plots 

from the colonic mucosa of 12-week-old nAtf6tg/tg and nAtf6fl/fl mice and performed 16S rRNA 

sequencing on each plot individually, allowing us to determine spatial structuring of microbiota 

at tumour onset and to map ASVs to particular sites.  

We have previously shown that tumours in nAtf6tg/tg are mainly restricted to the proximal colon, 

however it is not clear if certain sites are more susceptible than others155. We therefore 

recorded the site where each tumour occurred and calculated site incidence. Tumours did not 

occur beyond site ten, approximating the boundary between the mid and distal colon. 

Incidence was relatively evenly distributed within this boundary however, peaking at 50% in 

sites four and eight, suggesting each site within the proximal to mid-colon may be equally 

susceptible to tumour development (Figure 13A). To investigate the impact of tumour 

formation on microbial diversity, we calculated the mean Shannon Effective diversity at each 

site in nAtf6fl/fl and nAtf6g/tg genotypes. A clear reduction was observed at all sites in nAtf6tg/tg 

mice, though the difference was more obvious in sites where tumours occurred (Figure 13B). 

We next examined taxonomic differences between and within genotypes at the family level. 

Across all sites, communities were broadly similar, implying microbial shifts occur at lower 

taxonomic ranks. Nevertheless, a clear expansion of taxa from the families Deferribacteraceae 

and Lactobacillaceae was evident in nAtf6tg/tg mice, indicating tumour presence and/or nATF6 

activation can modulate spatial structure of colonic mucosa-associated microbiota (Figure 

13C).  
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Figure 13. Mucosa-associated microbial profiles differ along the length of the colon irrespective of 
phenotype. (A) Tumour incidence by site from proximal to distal. (B) Mean Shannon Effective diversity at 
each site along the colon in nAtf6fl/fl mice (top) and nAtf6tg/tg mice (bottom). The magnitude of change 
between genotypes (Cohen’s d effect size) is displayed beneath. (C) Family-level bacterial composition at 
each site in nAtf6fl/fl (left) and nAtf6tg/tg mice (right). 

 

Since limited family-level shifts were observed, we investigated differentially abundant ASVs 

between genotypes, across all sites. Colonic length in  nAtf6tg/tg was in some cases longer than 

in nAtf6fl/fl mice thus we limited our analysis to shared sites (one to 15). Site-by-site differential 

abundance was conducted using LEfSe analysis, using an LDA threshold of 3.0. To enable 

visualisation, we limited the number of taxa shown to the top five where possible, sorted by 
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LDA score. Striking differences were observed between genotypes, with known mucosal 

dwelling members from the families Lachnospiraceae and Ruminococcaceae consistently 

enriched in nAtf6fl/fl mice, especially in proximal regions, while members of 

Porphyromonadaceae dominated distal regions. In nAtf6tg/tg mice however, enriched taxa in 

all sites were dominated by members of Lactobacillus, Mucispirillum and Odoribacter, 

indicative of environment-wide microbial shifts and spatial homogenisation in tumour mice 

(Figure 14).  
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Figure 14. Differentially abundant taxa between genotypes vary by site. Site-by-site comparison of 
the top five differentially abundant taxa between genotypes as determined by LEfSe analysis, ranked by 
LDA score (LDA threshold = 3.0). 

  

4.2.1 ATF6 activation drives spatial microbial alterations   

  

Microbial changes were clearly observed at each site along the length of the colon in  nAtf6tg/tg 

mice, however not all of these sites are the same in terms of phenotype and whether these 
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changes were due to tumour formation, nATF6 activation or a combination remained unclear. 

To assess whether tumour formation or nATF6 activation was the main driver of community 

change, we compared alpha and beta diversity between and within genotypes. We grouped 

samples by mucosal phenotype into control, non-tumour (NT), tumour-adjacent (TA) and 

tumour (T). No significant differences were observed in Richness, although a trend of 

reduction compared to control was observed in all nAtf6tg/tg sample types. Independent of 

mucosal phenotype, Shannon Effective diversity was significantly reduced in nAtf6tg/tg mice 

compared to control, indicating a reduction in species evenness rather than total species 

number in nATF6 overexpressing samples (Figure 15A). We additionally measured total 

microbial load using a known concentration of artificial spike-in sequences, allowing us to 

calculate the total number of 16S copies186. Interestingly, microbial load was increased in T 

mucosa compared to nAtf6fl/fl control and NT nAtf6tg/tg mucosa (Figure 15B). At the level of 

beta diversity, microbial profiles separated by phenotype, with shifts most apparent between 

all nAtf6tg/tg mucosa and control (Figure 15C). These limited changes observed within 

susceptible nAtf6tg/tg mucosa compared to between genotypes support a central role for nATF6 

activation in the modulation of microbial community structure while suggesting a more limited 

role of tumour presence.  

We next aimed to assess the impact of nATF6 activation and tumour formation on individual 

taxa. We employed LEfSe analysis comparing tumour, tumour-adjacent and non-tumour 

mucosa each with mucosa from nAtf6fl/fl controls. Taxa differentially abundant in nAtf6tg/tg 

varied between the three-different phenotypes, with non-tumour mostly enriched in members 

of Lactobacillus, tumour-adjacent in Mucispirillum and tumour tissue in Lachnospiraceae 

(Figure 16A, B and C). An enriched core set of the same ASVs was shared between all  

nAtf6tg/tg mucosal samples however, comprising ASVs classified as Mucispirillum, Odoribacter 

and Lactobacillus, taxonomically resembling those previously identified as drivers. Together 

these results indicate that nATF6 activation supports widespread colonisation of putative driver 

microbes, regardless of mucosal phenotype.  
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Figure 15. ATF6 activation is the major driver behind microbial community alterations. (A) Mucosal 
alpha diversity in nAtf6IEC mice across various phenotypes: Control (CTRL), Non-tumour (NT), Tumour-
adjacent (TA) and Tumour (T). Left to right: Richness and Shannon Effective. (B) Total 16S rRNA copy 
number as estimated by artificial spike-in DNA. Presented as Log10 copy number. (C) NMDS plot of beta 
diversity, based on generalized UniFrac distance comparing control mucosa from nAtf6fl/fl mice to Non-
tumour (NT), Tumour-adjacent (TA) and tumour (T) mucosa from nAtf6tg/tg mice. 
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Figure 16. nAtf6tg/tg mucosal samples share a core set of enriched taxa. LEfSe analysis of differentially 
abundant taxa comparing (A) Non-tumour (NT) nAtf6tg/tg mucosa, (B) Tumour-adjacent (TA) mucosa and 
(C) Tumour (T) mucosa, with control (CTRL) as a reference. An LDA score threshold of 3.0 was applied 
across all analyses. Shared nAtf6tg/tg enriched taxa are highlighted with a star symbol. 

4.2.2 Putative microbial drivers are reproducible across cohorts  

  

As all three of the taxa in the core set of shared ASVs were taxonomically related to the 

previously identified ID/SD taxa, we aimed to test whether the ID, SD, as well as passenger 

we had identified previously, could be detected in this independent cohort of nAtf6tg/tg mice. 

ASV sequences from the mucosal dataset were aligned against sequences from our spatially 

resolved dataset using BLAST192. To account for minor differences in error profiles between 

different sequencing runs, we allowed for a single mismatch between sequences. Across all 

nAtf6tg/tg samples, we identified ASVs matching 100% of the ID, 80% of SD and 97% of 

passengers, suggesting consistency across cohorts (Figure 17A). We next examined the 

absolute abundance of each group along the length of the colon in nAtf6tg/tg mice. ID load was 

focused in the proximal third of the colon, while both SD and passenger demonstrated similar 

abundance across all sites (Figure 17B). Furthermore, each of the three, core enriched ASVs, 

was confirmed as either an initial driver (ASV_7; Mucispirillum) or sustained driver (ASV_21; 

Lactobacillus, ASV_168; Odoribacter) taxa (Figure 17C). Together, these findings validate a 

robust set of ASVs in line with the driver-passenger model in nAtf6tg/tg mice.  
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Figure 17. Driver and passenger taxa are reproducible across cohorts. (A) Number of detected/not 

detected (ND) driver-passenger ASVs based on BLAST alignment. Not detected refers to ASV 

sequences which did not generate significant alignments with any sequences in this cohort. (B) Log10 

absolute abundance of initial, sustained driver and passenger taxa along the length of the colon in 

nAtf6tg/tg mice, showing distribution among nAtf6tg/tg mice underneath. Trends are visualised using 

LOESS regression. (C) Phylogenetic tree of driver and passenger taxa, highlighting enriched core 

ASVs.  

Next, to examine where these three ASVs localised to, we performed spatial mapping of their 

absolute abundance along the length of the colon. Since nATF6 activation in nAtf6tg/tg mice 

appeared to support the presence of a number of ID and SD taxa we next explored the extent 

of this enrichment, and where these taxa localised to. Under the driver-passenger model, ID 
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are proposed to be indigenous, and it is possible that SD are as well. This implies these taxa 

colonise a healthy mucosa without a genetic or environmental trigger but may be restricted to 

certain locations. We therefore hypothesised that nATF6 drives expansion of ID and SD taxa. 

Supporting this, spatial mapping of Log10 transformed absolute abundance revealed a clear 

enrichment of each of the three driver ASVs in nAtf6tg/tg mice, indicating nATF6 activation 

licences expansion of ID and SD taxa range, including into regions where tumours never 

occur. Notably, this expansion was more apparent in SD taxa than ID. Driver abundance was 

also significantly increased at multiple sites compared to  nAtf6fl/fl control; however, this did not 

occur at all sites, suggesting nATF6 activation may enable these taxa to expand their habitat 

range but not necessarily abundance. (Figure 18A, B and C). Together, this indicates nATF6 

activation enables widespread colonic colonisation of driver microbes.   
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Figure 18. nATF6 activation licences widespread expansion of driver taxa. Spatial maps comparing 

Log10 transformed mean absolute abundance of driver taxa between nAtf6fl/fl and nAtf6tg/tg mice, showing 

(A) ASV_21; Lactobacillus, (B) ASV_7; Mucispirillum and (C) ASV_168; Odoribacter. The distribution 

amongst all mice is shown underneath, using LOESS regression to visualise trends. Individual nAtf6fl/fl 

samples are shown in grey, while nAtf6tg/tg samples are shown in pink.  
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4.3 Characterisation of the nAtf6IEC;Il10-/- Phenotype   
  

4.3.1 Basic characterisation of a novel nATF6-driven model of colitis-associated 

cancer   
  

We previously demonstrated that DSS-induced acute inflammation induced tumour formation 

in nAtf6tg/wt mice, however, the contribution of long-term inflammatory activation remains 

unclear155. To investigate the effect of chronic inflammation on tumour development in non-

susceptible nAtf6tg/wt
 mice we generated a new model crossing nAtf6IEC mice with a global Il10 

KO (Figure 19A and B). Absence of Il10 was confirmed by genotyping PCR, while HA-tag 

staining, and qPCR showed clear activation of the Atf6 transgene (Figure 19C, D and E). 

Upon activation, Atf6 induces the transcription of target genes, including Grp78. Thus, to 

confirm downstream Atf6 signalling, we performed IHC staining for GRP78 and additionally 

measured its expression via qPCR. In nAtf6tg/wt;-/- mice GRP78 staining was markedly 

enhanced compared to nAtf6fl/fl;-/- control, while expression of Grp78 mRNA was enhanced ~10 

fold, clearly indicating nATF6-mediated activation (Figure 19F and G).   
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Figure 19. The nAtf6IEC;Il10-/- mouse model. (A) Genomic organisation of the nAtf6IEC;Il10-/- mouse 
model. nAtf6 mice were generated using the highlighted targeting vector (upper) and crossed with Il10-/- 
mice. (B) Example breeding scheme of the nAtf6IEC;Il10-/- mouse line. (C) Confirmation of global Il10 KO 
in both genotypes. (D) nATF6 transgene localisation in the colonic epithelium, detected by 
immunofluorescent staining of HA-tag. (E) Atf6 (endogenous + total) mRNA expression in whole colonic 
tissue. (F) Immunohistochemical staining of GRP78 in nAtf6tg/wt;-/- mice. (G) Grp78 mRNA expression in 
whole colonic tissue.   

We next performed phenotypic characterisation of nAtf6IEC;Il10-/- mice, to assess whether Il10 

KO could lead to tumour formation. nAtf6tg/tg;-/- mice showed very poor survival, with the 

majority of animals reaching abortion criteria before the age of 7 weeks, thus these mice were 

excluded from further experiments. Substantially reduced survival was also observed in 
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nAtf6tg/wt;-/- mice, comparable to that of nAtf6tg/tg mice. No reduced survival was observed in the 

nAtf6fl/fl;-/- controls however, despite their predisposition to intestinal inflammation (Figure 

20A)221. With respect to tumorigenesis, the combination of monoallelic nATF6 activation and 

Il10 KO clearly restored susceptibility to tumour formation in the proximal and mid-colon 

(Figure 20B). Susceptibility, however, was not restored to the level of the nAtf6tg/tg mouse, with 

only approximately 70% of all mice developing tumours – termed Responders (R) - while the 

other animals – termed Non-responders (NR) - remained tumour-free (Figure 20D and E). In 

spite of the lack of tumour formation in NR mice, HA-tag staining of nATF6 and GRP78 staining 

intensity was comparable to tumour-bearing responder mice (Figure 20C). Tumour number 

did not differ between timepoints but was notably lower than the nAtf6tg/tg reference (Figure 

20G and D). To assess whether tumour formation was associated with enhanced proliferation, 

histological staining for Ki-67 was conducted. Regardless of tumour status, an increased 

presence of Ki-67+ IECs was observed in tumour-susceptible mice (Figure 20F). Taken 

together, these results suggest that Il10 KO modulates the susceptibility of monoallelic nAtf6-

overexpressing mice to colorectal tumorigenesis.   
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Figure 20. Il10 knockout enhances susceptibility to tumorigenesis but does not restore 

homozygous risk. (A) Kaplan-Meier survival curve of nAtf6fl/fl;-/-, nAtf6tg/wt;-/- and nAtf6tg/tg;-/- genotypes 

in comparison to nAtf6IEC mice. (B) Representative macroscopic images of the colon of tumour-free 

nAtf6tg/wt mice, an nAtf6tg/wt:-/- non-responder and an nAtf6tg/wt:-/- responder (left to right) (C) 

Immunofluorescent nuclear HA-tag staining showing activation of nATF6 (top), and 

Immunohistochemical staining showing GRP78 activation (bottom) in NR nAtf6tg/wt;-/- mice. (D) 

Percentage tumour incidence and number in nAtf6IEC mice shown as a reference. (E) Percentage 

tumour incidence in nAtf6IEC;Il10-/- mice. The percentage of non-responder (NR) mice is shown in green. 

(F) Representative IHC staining of the proliferation marker Ki67. (G) Tumour number in nAtf6IEC;Il10-/- 

mice.  
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4.3.2 nATF6 activation enhances colitis in nAtf6tg/wt;-/- mice.  

  

Il10 KO disrupts the ability to suppress inflammation, pre-disposing mice to colitis and 

tumorigenesis, however mice on different backgrounds show varying degrees of severity, with 

C57BL/6 mice – the genetic background of nAtf6IEC;Il10-/- mice - tending to develop a less 

severe phenotype222. ATF6 on the other hand, has been shown to potentiate intestinal 

inflammation172. Here, we aimed to determine whether the combination of nATF6 activation 

and Il10 KO led to increased intestinal inflammation. Gross measures of inflammatory status 

showed increased spleen weight and enhanced susceptibility to rectal prolapse in nAtf6tgwt-/- 

mice (Figure 21A and B). H&E staining and subsequent histological scoring revealed 

disruptions in tissue architecture and enhanced leukocyte infiltration compared to control 

(Figure 21C and E). NR also tended to show reduced inflammation compared to R and 

supporting this, tumour number correlated positively with inflammatory score (Figure 21D). 

On the molecular level, gene expression of the pro-inflammatory cytokine TNFα was 

upregulated at 12 and 15+ weeks. Gene expression of the chemokine IP-10 was also 

upregulated in nAtf6tg/wt;-/- mice but only reached significance at 12 weeks (Figure 21F). Other 

markers, such as IFNγ, IL-6, IL-12p35, IL-22 and CXCL1 were also measured, however 

expression of these cytokines could not be detected (data not shown). To confirm the presence 

of inflammation on the protein level in these mice, we measured Lipocalin-2 (LCN2) in faecal 

samples using ELISA. LCN2 is produced by IECs in response to inflammation, acting to limit 

bacterial iron acquisition and often used as a marker of inflammation in Il10-/- mice223–225. LCN2 

was clearly enriched in nAtf6tg/wt;-/- mice with increased concentrations observed in both R and 

NR (Figure 21G). Taken together, these results suggest combined nATF6 activation and Il10 

KO leads to an increased tendency towards intestinal inflammation.   
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Figure 21. nAtf6tg/wt;-/- mice display enhanced colitis compared to nAtf6fl/fl;-/- mice. (A) Cumulative 
percentage prolapse incidence in nAtf6IEC;Il10-/- mice. (B) Body-weight normalised spleen weight in 
nAtf6IEC;Il10-/- mice. (C) Inflammation score in colonic Swiss roll sections. (D)  Non-parametric 
Spearman’s rank correlation of tumour number and inflammation score. (E) Representative H&E- 

stained sections of intestinal Swiss rolls. Left to right: nAtf6fl/fl;-/-, nAtf6tg/wt;-/- NR and nAtf6tg/wt;-/- R at 2x 
magnification (Scale bar: 1mm). Zoomed-in sections at 20x magnification are shown below each image 
(Scale bar: 100µm). (F) Cytokine expression in whole colonic tissue sections. (G) Faecal Lipocalin2 
(LCN2), as measured by ELISA.  
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Chronic inflammation and epithelial damage can affect secretory cell number and function in 

the intestinal epithelium, leading to disruption of the mucosal barrier. We previously showed 

biallelic activation of nATF6 in IECs led to reduced goblet cell number155. To assess the 

combined impact of chronic inflammation and monoallelic nATF6 activation on goblet cells we 

performed PAS/AB staining of colonic Swiss rolls and quantified goblet cell (GC) numbers. GC 

numbers were noticeably reduced in the proximal colon of nAtf6tg/wt;-/- mice, at the 12- and 15+-

week timepoints but did not significantly differ at 5 weeks (Figure 22A). In the distal colon, the 

same pattern emerged, however the reduction in GC numbers was not as drastic (Figure 

22B). To confirm impaired goblet cell function, we performed qPCR measurement of Muc2, 

which encodes the major gel-forming mucin in colonic mucus. Expression of Muc2 was 

significantly reduced at all timepoints, confirming the altered GC phenotype (Figure 22C). GC 

number correlated negatively with histological score, suggesting colitis, rather than nATF6 

activation was the major driver behind GC reduction in nAtf6tg/wt;-/- mice (Figure 22D).  

   



56  

  

 

Figure 22. Goblet cell loss occurs after tumour-onset and is associated with inflammation. 

Representative PAS/AB staining of mucin-filled goblet cells (GC’s) in the proximal (A) and (B) distal 

colon in nAtf6fl/fl:-/-, nAtf6tg/wt;-/- NR and R mice (left to right). Scale bar: 100µm. Dotplots (right) show the 

quantification of GCs per 100µm2. (C) Expression of Muc2 in whole colonic tissue extract. Data is shown 

relative to the nAtf6fl/fl;-/- control. (D) Non-parametric Spearman’s rank correlation of inflammation score 

and GC per 100µm2.  

4.3.3 Tumorigenesis in nAtf6tg/wt;-/- mice is microbiota-driven  

  

The intestinal mucus layer is important to limit contact between commensal bacteria and the 

epithelial layer. In the healthy murine colon, this is composed of two layers, a loose outer layer 

densely populated by microbiota and a thick inner layer mostly devoid of bacteria47. To assess 

the impact of reduced goblet cell number on the thickness of the mucus layer and bacterial 

penetration, we performed combined Fluorescent in situ hybridisation (FISH with EUB338), 
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targeting bacterial 16S rRNA and IF staining of UEA1 lectin (Ulex Europaeus Lectin 1), to 

visualise mucus, on Carnoy fixed colonic tissue sections. Concordant with the reduction in 

goblet cell numbers, mucus thickness was reduced and bacterial penetration into the inner 

mucus layer was enhanced in nAtf6tg/wt;-/- mice in the proximal colon. Additionally, the inner 

mucus layer appeared less structured and, in some cases, almost absent (Figure 23A). 

Interestingly, the same pattern was observed in the distal colon, however penetrating bacteria 

remained at a considerable distance from the epithelium and the reduction in mucus thickness 

was not as apparent as in proximal regions (Figure 23B). Taken together, these findings 

support microbial involvement in tumorigenesis.   
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Figure 23. Enhanced mucus penetrability accompanies tumorigenesis. Fluorescent in situ 
hybridisation (FISH) targeting 16S rRNA (EUB338 probe) in combination with immunostaining of mucus 
(UEA1) in the proximal (A) and (B) distal colon in nAtf6fl/fl;-/- and nAtf6tg/wt;-/- mice (Scale bars 100µm). Nuclei 
were counterstained with DAPI. Bacterial distance to the epithelium was quantified by measuring the 
distance to the epithelium in five different regions within the proximal colon for each mouse (right panel). 

We previously showed that tumour development in the nAtf6IEC mouse was dependent on the 

microbiota and that GF mice remain healthy155. GF nAtf6IEC;Il10-/- mice were generated 

separately to this work to determine if tumorigenesis was also microbiota-dependent in this 
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model. GF nAtf6tg/wt;-/- mice also did not develop tumours even after ~30 weeks of age (data 

not shown; Janine Kövilein, Unpublished doctoral thesis).  

Since tumour formation was microbially driven, we sought to assess whether a dysbiotic 

microbiota could be observed in nAtf6tg/wt;-/- mice. Caecal microbiota was collected at three 

endpoints, 5, 12 and 15+ weeks and profiled using 16S rRNA sequencing. To examine 

changes before and after tumour onset, we grouped 12 and 15-week+ samples into 12-week+ 

(post-tumour) and compared them to 5-week (pre-tumour). Analysis of beta diversity revealed 

clear separation between nAtf6tg/wt;-/- and nAtf6fl/fl;-/- controls, with significant separation already 

apparent before tumour-onset (p-value = 0.042) (Figure 24A). Alpha diversity analysis did not 

reveal any significant differences between genotypes except for Faith’s PD which was 

decreased in 12-week+ samples (Figure 24B). To investigate individual taxa altered between 

conditions, LEfSe biomarker analysis was used at both 5-week and 12-week+ timepoints. 

Interestingly, abundance shifts were much more pronounced between genotypes at 5 weeks, 

suggesting caecal microbial dysbiosis precedes tumorigenesis in nAtf6tg/wt,-/- mice and further 

implicating the microbiota in disease (Figure 24C).   
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Figure 24. Caecal dysbiosis precedes tumorigenesis in nAtf6tg/wt;-/- mice. (A) Beta diversity profiles of 
the microbiota in nAtf6IEC;Il10-/- SPF mice, at 5-week (left) and 12-week+ (right) timepoints. (B) (Left to 
Right) Species Richness, Shannon Effective diversity, and Faith’s phylogenetic diversity between 5-week 
and 12-week+ timepoints. (C) Heatmap of differentially abundant features between genotypes, showing 
5-week (left) and 12-week+ (right) timepoints. Data are presented as z-scores of Log10-transformed 
abundances. 
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4.4 Mucosa-associated dysbiosis in nAtf6IEC;Il10-/- mice   
  

4.4.1 Mucosa-associated microbiota profiles are altered regardless of tumour 

status in nAtf6tg/wt;-/- mice.  

  

Since nAtf6tg/wt;-/- displayed many of the same phenotypic hallmarks as nAtf6tg/tg mice, again 

clearly indicating involvement of mucosa-associated microbiota, we next characterised these 

communities in the inflammation-driven nAtf6IEC;Il10-/- model. Taxonomic and phylogenetic 

measures of alpha diversity were significantly decreased at tumour-onset but not at 15 weeks+ 

(Figure 25A). Beta diversity analysis based on GUniFrac distance showed significant 

separation between tumour and non-tumour with microbial profiles from NR mice lying in 

between the two groups (Figure 25B). Differentially abundant ASVs were identified using 

LEfSe. Those belonging to the genera Mucispirillum, Desulfovibrio and Bacteroides were 

enriched in tumour-bearing mice, while Lachnospiraceae and Roseburia species were 

depleted, indicating tumour presence also alters microbial communities in the nAtf6IEC;Il10-/- 

model (Figure 25C).  

 

Figure 25. Mucosa-associated microbiota profiles are altered regardless of tumour status in 
nAtf6tg/wt;-/- mice. (A) Mucosal alpha diversity in nAtf6IEC;Il10-/- mice comparing tumour and non-tumour in 
12-week and 15-week+ samples. Left to right: Richness, Shannon Effective and Faith’s Phylogenetic 
diversity. (B) NMDS plot of beta diversity profiles based on generalized UniFrac distance in 12-week and 
15-week+ plus samples. (C) Differentially abundant taxa between nAtf6fl/fl;-/- and nAtf6tg/wt;-/- mice, identified 
by LEfSe analysis. (LDA threshold = 3.0). 



62  

  

4.4.2 Mucosa-associated microbiota enables discrimination of microbial 

profiles between nAtf6IEC;Il10-/- mice   

  

Since characterisation of the host phenotype did not reveal any clear differences between R 

and NR mice, we sought to assess microbial differences between these groups. Secondary to 

this, we also compared differences in caecal microbiota of R and NR to those in mucosal, to 

determine if this was indeed a better readout for identifying tumour-associated taxa. Significant 

differences in alpha diversity were observed across all metrics (Richness, Shannon Effective 

and Faith’s PD) in mucosal but not caecal data, with the latter displaying considerable 

variability, particularly in responder mice (Figure 26A and B). Beta diversity analysis 

supported this, showing that caecal microbiota profiles of R from NR mice did not significantly 

differ, however mucosal did, even after random subsampling to an equal sample size. To 

ensure the robustness of this effect, we generated ten further random sub-samples of the 

mucosal dataset and calculated differences in GUniFrac distance using PERMANOVA. In 

each subset, a significant difference was observed confirming mucosal microbiota is altered 

across all samples (Figure 26C and D). Intriguingly, the same effect was also observed 

between nAtf6fl/fl;-/- control mice and NR, indicating mucosal microbiota is altered even in the 

absence of tumours (Figure 26E and F). Together, these findings are suggestive of a tumour-

relevant mucosa-associated microbial signature which is not present in luminal communities.   
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Figure 26. Mucosa-associated microbiota profiles separate responders from non-responders. 

(A) Luminal and (B) Mucosal alpha diversity in nAtf6fl/fl;-/- control mice, Non-responder (NR) and 

Responder (R) nAtf6tg/wt;-/- mice. Left to right: Richness, Shannon Effective and Faith’s phylogenetic 
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diversity. (C) NMDS plots of Luminal and (D) Mucosal beta diversity, between NR and R nAtf6tg/wt;-/- mice 

based on generalized UniFrac distance. The distribution of PERMANOVA p-values from ten random 

subsamples of mucosal data is shown on the right. Luminal (E) and Mucosal (F) beta diversity between 

CTRL and NR mice.  

To confirm that mucosal microbiota better represents taxa associated with disease than 

luminal, we trained various ML models to classify phenotype on both datasets separately, 

employing RF, L1L and RR models. Mucosal consistently outperformed luminal in each model 

tested, with mean AUC values of 0.83, 0.94 and 0.88 for the RF, L1L, and RR models 

respectively (Figure 27A). Precision and recall were also considerably higher in mucosal, 

indicating models trained on this data could accurately predict both classes (Figure 27B). 

Since we repeatedly performed cross-validation, we could extract AUC values for each model 

built and test whether the differences were statistically significant. Across all models, mucosal 

data was significantly better at predicting phenotype than luminal (Figure 27C). Surprisingly 

however, discriminating taxa shared between models were taxonomically similar between 

environments, with Parabacteroides species identified in both environments (Figure 28A and 

B). Taken together, these data point to an inherent tumour-associated microbial signature in 

mucosa-associated microbial profiles from nAtf6tg/wt;-/- mice, which is less apparent, though still 

detectable in luminal communities.  
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Figure 27. Machine learning models trained on mucosal microbiota profiles better discriminate 
phenotype compared to luminal. (A) ROC curves comparing true vs false positive rates of Random 
Forest, L1-penalised Lasso and Ridge regression models built on luminal and mucosal data, respectively. 
Mucosal data was randomly subsampled to match luminal sample size (original n=57, subsampled=49). 
Models were trained using repeated 5-fold cross-validation. (B) Precision-Recall curves for each of the 
models utilised. (C) Comparison of AUCROC values for each model trained, comparing luminal and 
mucosal datasets. 
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Figure 28. Consensus of discriminating features between non-tumour and tumour phenotypes 
across all trained models. (A) Luminal content and (B) Mucosal microbiota. Heatmap depicts z-score of 
Log10 transformed abundances. 
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4.4.4 Mucosa-associated populations do not shift significantly from pre- to 

post-tumour in nAtf6tg/wt;-/- mice.  

  

To date, little is known about the microbial changes which occur along the inflammation-

dysplasia-carcinoma sequence. Additionally, considering the strong disruption mediated by 

chronic inflammation or Il10 KO on the microbiota, it remains unclear whether the assumptions 

of theoretical models such as the driver-passenger model would still hold226–228. Beta diversity 

analysis of microbial profiles between 5- and 12-week timepoints indicated microbial profiles 

clustered together, however were still significantly different (p-value = 0.034), indicative of 

minor changes between timepoints (Figure 29A). No passenger or driver taxa could be 

detected using a Log2 FC threshold of 1.5 and FDR-corrected p-value of 0.05 between these 

timepoints, suggesting that in this model of CAC, major taxonomic shifts do not occur with 

tumour onset (Figure 29B). We therefore tested whether the additional group we identified in 

nAtf6tg/tg mice, SD, were present. Applying this concept, we found several SD classified as 

Lachnospiraceae, Lactobacillus, Mucispirillum and Bacteroides in nAtf6tg/wt;-/- mice (Figure 

29C). No differences could be observed between tumour and tumour-adjacent samples, again 

confirming this approach could not be used to identify passengers and drivers (Figure 29D).  

To test whether differences in the abundance of sustained-driver taxa might explain why NR 

mice do not develop tumours, we examined their abundance across phenotypes, comparing 

control, NR, tumour-adjacent and tumour mucosal samples. The majority of SD taxa, with the 

exception of Lachnospiraceae members, were clearly enriched in tumour and tumour-adjacent 

samples compared to control and NR mucosa, suggesting they may be involved in tumour 

formation (Figure 29E).  
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Figure 29. Mucosal microbiota shifts from pre- to post-tumour are not consistent with the driver-
passenger model in nAtf6tg/wt;-/- mice. (A) NMDS plot of beta diversity between 5 and 12-week 
timepoints. (B) Volcano plot of differential ASVs between pre-tumour and tumour-onset. Coloured squares 
highlight significant taxa with an FDR-corrected p-value <0.05. Red represents putative drivers and blue 
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putative passengers. (C) Volcano plot of differential ASVs between tumour and non-tumour which did not 
differ between 5-week and 12-week timepoints but were enriched in nAtf6tg/wt;-/- mice compared to nAtf6fl/fl;-

/- controls. The yellow square in the upper right quadrant highlights significant taxa with an FDR-corrected 
p-value <0.05, termed sustained drivers. (D) Beta diversity plot of tumour and tumour-adjacent microbial 
profiles based on generalized UniFrac distance. (E) Heatmap of z-score transformed Log10 abundances 
of sustained drivers, comparing genotypes and mucosal phenotypes. 

4.5 Spatial organisation of mucosa-associated microbiota in nAtf6IEC;Il10/- 

mice  
  

4.5.1 Spatial community structure of microbial communities does not 

significantly differ between nAtf6fl/fl;-/- and nAtf6tg/wt;-/- mice  

  

Having characterised the mucosa and tumour-associated microbiota in nAtf6IEC;Il10-/- mice, 

we next sought to better understand spatial patterns in tumour occurrence and microbial 

composition. We utilised the same spatial sampling design as used in the nAtf6IEC model and 

again recorded tumour incidence by site. In nAtf6tg/wt;-/- mice, tumours were concentrated in 

extreme proximal regions, with all responder mice developing tumours in sites 1 and 2. 

Tumours did not occur in the distal portion of the colon (Figure 30A). To gain insight into how 

spatial differences in tumour incidence might impact the microbiota, we calculated the mean 

Shannon Effective diversity at each site in each genotype and phenotype. Limited differences 

were observed between the nAtf6fl/fl;-/-, nAtf6tg/wt;-/- NR and nAtf6tg/wt;-/- R mice, however a 

decrease in diversity in the distal portion of the colon was apparent in nAtf6fl/fl;-/- as well as 

nAtf6tg/wt;-/- R mice, with NR displaying the opposite trend (Figure 30B). Accordingly, family-

level microbial compositions were generally very similar, with the exception of a notable 

expansion of Lactobacillaceae and Deferribacteraceae in  nAtf6tg/wt;-/- mice (Figure 30C).  
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Figure 30. Mucosal microbial profiles show limited community level shifts between different sites 
in nAtf6IEC;Il10-/- mice. (A) Tumour incidence by site from proximal to distal. (B) Mean Shannon Effective 
diversity at each site along the colon in nAtf6fl/fl;-/- (top), nAtf6tg/wt;-/- NR (middle) and  nAtf6tg/wt;-/- R mice 
(bottom). The magnitude of change between nAtf6tg/wt;-/- R and nAtf6fl/fl;-/- controls (Cohen’s d effect size) is 
displayed beneath. (C) Family level bacterial composition at each site in nAtf6fl/fl;-/- (left) and nAtf6tg/wt;-/- R 
mice (right). 
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As site-by-site differences at the community level were minimal, we explored whether 

differences may exist at the ASV level. To this end, we explored ASV differences between 

genotypes at each site using LEfSe. Since there was only a single NR mouse, these samples 

were excluded from further analysis. Changes in individual taxa were patchy in control sites 

with most changes occurring in the proximal colon. These sites were consistently enriched in 

Lachnospiraceae and further down the colon, Bacteroides ASVs. In nAtf6tg/wt;-/- R mice a similar 

pattern was observed with most changes occurring in sites one to nine, where tumours occur. 

At these sites, enriched ASVs were mostly classified as Mucispirillum, Lactobacillus and 

Lachnospiraceae. Minimal or no differences were identified at many sites however, particularly 

in the distal portions of the colon, indicating changes in taxonomic composition occur at 

specific sites along the length of the colon (Figure 31).   
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Figure 31. Differentially abundant taxa are mainly restricted to tumour-susceptible sites. Site-by-

site comparison of the top five differentially abundant taxa between nAtf6fl/fl;-/- and nAtf6tg/wt;-/- responder 

mice as determined by LEfSe analysis, ranked by LDA score (LDA threshold = 3.0). ND = not detected, 

indicating sites where no differentially abundant ASVs in a given phenotype were identified.  
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4.5.2 Mucosa-associated microbiota alterations are restricted to tumour-

susceptible sites  

  

Since tumour localisation along the colon differs between animals, we next explored whether 

stratifying samples accordingly would reveal further microbial shifts. We grouped mucosa 

samples into control, comprising samples from nAtf6fl/fl;-/- mice and nAtf6tg/wt;-/- samples into NT, 

TA and T and calculated alpha and beta diversity as well as microbial load. Surprisingly, 

Shannon Effective diversity was significantly increased in TA samples, compared to control 

and NT mucosa, however no other differences or trends among alpha diversity metrics were 

observed (Figure 32A). Microbial load was also similar between groups, with the exception of 

NT mucosa which showed significantly reduced 16S copy number compared to control 

mucosa (Figure 32B). In line with the limited differences along the length of the colon between 

nAtf6fl/fl;-/- and nAtf6tg/wt;-/- R, we observed no clear difference in beta diversity between 

genotypes, suggesting monoallelic nATF6 activation may not significantly alter microbial 

community structure in Il10 KO mice. Within nAtf6tg/wt;-/- R mice, however, considerable 

variability was observed between tissues, particularly between T/TA and NT sites, indicating 

that although spatial microbial changes are limited between genotypes, tumour-relevant 

alterations may occur within the colon of nAtf6tg/wt;-/- mice (Figure 32C). Since many of the 

limited microbial changes that were observed, tended to be more apparent in the proximal 

colon, we reasoned that shifts in mucosa-associated microbiota may preferentially occur in 

the tumour-susceptible proximal region as opposed to the tumour-free distal (Figure 32D). 

Supporting this, tumour-susceptible regions were significantly different to non-tumour regions 

in terms of beta diversity (Figure 32E). Furthermore, tumour-susceptible regions also 

demonstrated increased GUniFrac dissimilarity to control, indicating changes at these sites 

are more pronounced (Figure 32F). To assess which ASVs were enriched in tumour- 

susceptible sites, we compared samples from these locations to nAtf6fl/fl;-/- controls. Multiple 

ASVs were identified as enriched in tumour-susceptible sites compared to controls. 

Intriguingly, the majority of these ASVs were classified as Mucispirillum, Lactobacillus and 

Bacteroides, taxonomically resembling SD taxa (Figure 32G). Taken together, this indicates 

microbial changes in nAtf6tg/wt;-/- R mice do not occur along the length of the colon but rather 

are focused in proximal tumour-susceptible regions.  
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Figure 32. Alterations in mucosa-associated microbiota in nAtf6tg/wt;-/- responder mice are 

restricted to tumour-susceptible sites. (A) Mucosal alpha diversity in nAtf6IEC;Il10-/- mice across 

various mucosal phenotypes. Left to right: Richness and Shannon Effective. (B) Total 16S rRNA copy 

number as estimated by artificial spike-in DNA. Presented as Log10 copy number. (C) NMDS plot of beta 
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diversity, based on generalized UniFrac distance comparing mucosa between genotypes and within 

nAtf6tg/wt;-/- responder mice. (D) Representative macroscopic image of a longitudinally excised colon 

from an nAtf6tg/wt:-/- mouse depicting tumour-susceptible and non-tumour regions. (E) NMDS plot of beta 

diversity, based on generalized UniFrac distance comparing tumour-susceptible (TS) to non-tumour 

mucosa within nAtf6tg/wt;-/- responder mice, (F) Mean generalized UniFrac dissimilarity to control between 

tumour-susceptible (TS) and non-tumour sites in nAtf6tg/wt;-/- responder mice. (G) Differentially abundant 

taxa between tumour-susceptible sites and controls as determined by LEfSe analysis, ranked by LDA 

score (LDA threshold = 3.0). 

4.5.3 Driver taxa are robust across cohorts and localise to tumour-susceptible 

sites  
  

Since several of the ASVs enriched in nAtf6tg/wt;-/- R mice compared to  nAtf6fl/fl;-/- taxonomically 

resembled those identified as SD, we aimed to test whether the taxa we previously identified 

were detectable in a separate cohort of mice. SD sequences from the mucosal dataset were 

aligned against those from the spatial cohort using BLAST. Importantly, we were able to detect 

all 17 sequences, while analysis of SD load (16S copy number) and distribution revealed a 

significant enrichment in nAtf6tg/wt;-/- R mice, predominantly in the proximal portion of the colon 

(Figure 33A and B). Accordingly, the total 16S copy number of SD taxa was significantly 

higher in the tumour-susceptible half of the colon compared to the non-tumour region (Figure 

33C), indicating these taxa are more abundant where tumours occur. Next, to analyse the 

individual spatial distributions of SD ASVs, we mapped the total 16S copy number by site. 

Since several Mucispirillum, a Bacteroides and a Lactobacillus ASV were enriched in tumour-

susceptible sites, we focused on these taxa. As there is only a single host-associated species 

in the genus Mucispirillum, and several ASVs may derive from the same organism we used 

the ASV with the highest LDA score as a representative for all ASVs classified Mucispirillum229. 

In all cases, mean abundance of SD taxa appeared increased in nAtf6tg/wt;-/- R mice compared 

to nAtf6fl/fl;-/- mice and mainly localised to tumour-susceptible sites. Statistical comparison 

indicated the Mucispirillum ASV was significantly increased in most of the proximal colon, while 

the Bacteroides SD ASV was only significantly enriched at a single site. Surprisingly, the 

Lactobacillus ASV did not reach significance at any site, however, an increased trend was 

observed in tumour samples. Taken together, these data indicate SD taxa are enriched in 

tumour-susceptible regions and localise to sites where tumours occur thus confirming their 

status as SD and further implicating them in tumorigenesis (Figure 33D).  
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Figure 33. Sustained driver ASVs localise to tumour-susceptible sites. (A) Number of detected 

sustained-driver ASVs based on BLAST alignment. (B) Log10 absolute abundance of sustained driver 

taxa along the length of the colon in nAtf6fl/fl;-/- and nAtf6tg/wt;-/- responder mice, with distribution among 

nAtf6tg/wt;-/- responders depicted underneath. Trends are visualised using LOESS regression. (C) 16S 

copy number of sustained drivers comparing tumour-susceptible colonic regions to non-susceptible. (D) 

Spatial maps of Log10 transformed absolute abundance of the three most abundant sustained driver  
ASVs in each genus between genotypes. The distribution amongst all mice is shown underneath, using  
LOESS regression to visualise trends. Individual nAtf6fl/fl;-/- samples are shown in grey, while nAtf6tg/wt;-/- 

responder samples are shown in pink.  
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4.6 Metabolomics links tumour-associated taxa to the nATF6 metabolite 

environment   
  

4.6.1 nATF6 activation and associated tumour formation alters the intestinal  

lipid environment   

  

nATF6 activation clearly played an important role in modulating microbial composition, 

however the mechanism underlying this remained unclear. Since intestinal inflammation is not 

observed prior to tumour formation in nAtf6tg/tg mice we examined changes in metabolism 

which might explain the observed changes in microbial composition. Aberrant ATF6 signalling 

has been linked to metabolic alterations, particularly lipid metabolism via SREBP2162. To test 

the effect of nATF6 activation on the metabolome, we performed untargeted metabolomics on 

caecal content using LC-TOF-MS. Focusing on alterations driven by nATF6 itself, rather than 

that of the tumour, we compared metabolite profiles between nAtf6fl/fl and nAtf6tg/wt mice to 

assess the impact of monoallelic nATF6 activation alone on the metabolome. Principal 

component analysis of metabolite profiles from nAtf6fl/fl controls and nAtf6tg/wt mice revealed 

significant alteration of the caecal metabolome in nAtf6tg/wt mice at all timepoints (Figure 34A). 

We next examined the individual metabolites underlying these differences. Differential 

features were determined by calculating fold change and testing for statistical significance 

using pairwise t-tests. After adjusting for multiple comparisons, differentially enriched nATF6 

regulated metabolites mostly comprised lipid species such as long-chain fatty acids (LCFA), 

phospholipids and sphingolipids (Figure 34B). To examine these changes in greater detail, 

we focused on two of the most significantly regulated annotated features: an unknown C20 

hydroxy fatty acid and Lysophosphatidylcholine O-18:1. Compared to controls, these 

metabolites were enriched at all timepoints supporting a role for nATF6 activation in altered 

lipid metabolism (Figure 34C).  

To understand how tumour presence alters the metabolite environment in nAtf6IEC mice, we 

next explored metabolite changes in the lumen, between phenotypes. Principal component 

analysis revealed a drastic difference in caecal metabolome between tumour-bearing mice 

and non-tumour mice (Figure 35A). Differential enrichment analysis demonstrated a depletion 

of peptide metabolites and sphingolipids in  nAtf6tg/tg mice at tumour timepoints, while LCFA 

and other complex lipid species were enriched. Both of the highly enriched metabolites (C20 

hydroxy fatty acid and LPC O-18:1) in nAtf6IEC mice were also found in tumour mice further 

suggesting nATF6 may drive changes in these metabolites (Figure 35B). Thus, to delineate 

the metabolites driven by nATF6 activation and those associated with tumour formation, we 

generated a heatmap of differential metabolites. Hierarchical clustering revealed three 

metabolite clusters, a non-tumour enriched group mostly comprising dipeptides and 

sphingolipids, an nATF6-driven group made up of lysophospholipid/phospholipid and 

sphingolipid metabolites. Finally, the remaining cluster appeared to be specific to nAtf6tg/tg mice 

and mostly comprised lysophospholipids, and LCFA (Figure 35C).  
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Figure 34. nATF6 activation alters the luminal metabolome, independent of tumour formation. (A) 
PCA of metabolite profiles comparing nAtf6fl/fl controls (blue) to monoallelic ATF6 overexpressing nAtf6tg/wt 
mice (green), at each timepoint. (B) Volcano plot of differentially enriched metabolites between nAtf6fl/fl 
and nAtf6tg/wt mice across all timepoints (Log2 fold change threshold = 0.58, p-value threshold = 0.05). (C) 
Boxplots of select highly enriched metabolites in nATF6 overexpressing mice. Data are presented as 
normalised log-transformed feature intensity (LogInt). 
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Figure 35. The nAtf6tg/tg tumour metabolite environment is enriched in lipids and depleted in amino 
acids and peptides, prior to tumour onset. (A) PCA of metabolite profiles comparing tumour to non-
tumour nAtf6IEC across all timepoints. (B) Volcano plot of differentially enriched metabolites between 
tumour and non-tumour nAtf6IEC mice (Log2 fold change threshold = 0.58, p-value threshold = 0.05). (C) 
Heatmap of scaled differentially enriched metabolites, sorted by genotype and age. Rows are clustered 
using Ward’s method. 

We next sought to identify differences in caecal metabolites between phenotypes, in the 

nAtf6IEC;Il10-/- model. To assess global differences in metabolite profiles we carried out 

principal component analysis at each timepoint. Genotypes were similar at 5 weeks, with 

tumour samples deviating further from controls with increasing age. Overall, however, limited 

differences were observable between groups, regardless of tumour status (Figure 36A). We 

next examined metabolite differences between tumour and non-tumour mice. Caecal 

metabolomes of nAtf6tg/wt;-/- tumour mice showed an enrichment of lipids compared to controls, 

with several LCFA, a fatty ester and a lysophospholipid species highly enriched at all ages. To 

identify nATF6-driven versus tumour-driven metabolites, we performed hierarchical clustering 
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of differential metabolites, utilising NR mice as a comparison. In line with the PCA analysis, no 

clear shifts could be observed between NR and R, nor between timepoints, implying nATF6 

activation or the combination of Il10 KO and nATF6 activation underlies the altered 

metabolome (Figure 36B).  

 

Figure 36. Fatty acid derivatives and other lipids define the nAtf6tg/wt;-/- metabolite milieu. (A) PCA 

of metabolite profiles comparing tumour to non-tumour nAtf6IEC;Il10-/- across all timepoints. (B) Heatmap 

of scaled differentially enriched metabolites, sorted by genotype and age. Rows are clustered using 

Ward’s method.  

A clear enrichment of lipids in tumour mice could be observed in both mouse models, however, 

the question remained whether this lipid enrichment is host or bacteria derived as metabolite 

profiles from caecal content likely reflect a mixture of host and microbial metabolites. 

Metabolite profiles of intestinal tissue, on the other hand, are dominated by host metabolites. 

Thus, to exclude microbially derived metabolites, we performed untargeted metabolomics of 
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colonic tissue from nAtf6IEC and nAtf6IEC;Il10-/- mice to determine whether the caecal lipid 

enrichment could be recapitulated in tissue. Differential enrichment analysis between 

phenotypes in nAtf6IEC revealed a clear enrichment of fatty acids, particularly LCFA, as well 

as lysophospholipids and their derivatives, in tumour mice implicating the host as the source 

of the observed lipid enrichment (Figure 37A). Next, to explore whether these metabolites 

were the same as those enriched in caecal content of nAtf6IEC tumour-bearing mice, we 

matched them by annotation. Of the 27 LCFA/lysophospholipid metabolites which were 

detected as enriched in caecal content, 17 of them could be detected in the tissue dataset. 

Furthermore, 10 of these were identified as significantly different between phenotypes in 

nAtf6IEC mice. Importantly, the majority also displayed the same direction of enrichment (8/10), 

with the exception of FA 22:4 and LPC 18:2 which were enriched in non-tumour mice in the 

caecal dataset (Figure 37B and C). We repeated this analysis for nAtf6IEC;Il10-/- mice and 

similarly identified an enrichment of fatty acids and lysophospholipids in tumour mice, 

however, of the three metabolites from these classes, which were enriched in caecal content 

on nAtf6IEC;Il10-/- tumour mice, only two were detected in tissue, and none differed between 

groups (Figure 37D and E). Taken together, this data supports the host as the source of the 

observed LCFA and lysophospholipid enrichment in nAtf6IEC tumour-bearing mice but indicates 

in nAtf6IEC;Il10-/- tumour mice, LCFA enrichment may be derived from elsewhere.  
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Figure 37. Fatty acid and lysophospholipids are enriched in colonic tissue of nAtf6tg/tg and 

nAtf6tg/wt;-/- mice. (A) Volcano plot of differentially enriched metabolites between tumour and non-tumour 

nAtf6IEC mice in colonic tissue (Log2 fold change threshold = 0.58, p-value threshold = 0.05). (B)  
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Venn diagram of the overlap between nAtf6IEC tumour-enriched metabolites in caecal content (grey) and 

those detected (orange) or significant (green) in the colonic tissue metabolome. (C) Boxplots of shared 

regulated metabolites between caecal content and tissue in nAtf6IEC tumour mice. Data are presented 

as normalised log-transformed feature intensity (LogInt). (D) Volcano plot of differentially enriched 

metabolites between tumour and non-tumour nAtf6IEC;Il10-/- mice (Log2 fold change threshold = 0.58, p-

value threshold = 0.05). (E) Venn-diagram of the overlap between nAtf6IEC;Il10-/- tumour enriched 

metabolites in caecal content (grey) and those detected (orange) or significant (green) in the colonic 

tissue metabolome.  

4.6.2 Multi-omic integration links host-altered fatty-acid environment to tumour-

associated microbiota   

  

Next, to determine associations between the metabolome and microbiota in the context of 

tumorigenesis, we performed multi-omic data integration using sPLS-DA, implemented in the 

mixOmics R package209,210. sPLS-DA is an extension of partial least-squares regression which 

identifies a set of features best-discriminating classes. Here we sought to investigate whether 

the observed metabolite changes are covariant with microbial alterations. Since 12- and 20-

week-old nAtf6tg/tg mice, showed similar changes in metabolites, especially LCFA, and lipids, 

we grouped them to increase sample size. In nAtf6IEC mice, sPLS-DA scores plot of the first 

two components of the model indicated the identified set of features separated non-tumour 

and tumour samples along the first component (Figure 38A). To examine whether the 

discriminating metabolites and ASVs were associated with each other, we investigated their 

correlations along the first component, using a threshold of 0.7, revealing a distinct cluster of 

tumour-enriched metabolites and ASVs (Figure 38B). To investigate these correlations further, 

we extracted fully annotated loadings from the first component of the sPLS-DA model which 

were predictive of tumour phenotype and then sorted by feature importance, for ASVs and 

metabolites separately. Microbial loadings were dominated by ASVs classified as 

Lactobacillus and additionally included several Romboutsia and Turicibacter species. 

Metabolite loadings on the other hand were mostly represented by LCFA and 

lysophospholipids, indicating that the observed enrichment of these metabolites is associated 

with microbial changes (Figure 38C).  
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Figure 38. Multi-omic integration links tumour-associated taxa to altered lipid environment in 

nAtf6tg/tg mice. (A) sPLS-DA score plot coloured by phenotype nAtf6IEC mice. (B) Circos plot of highly 

correlated (r ≥ 0.7) features between blocks. The ASV block is depicted in red, while the metabolome 

block is shown in light blue. Orange lines indicate a positive correlation. The height of the line 

surrounding the plot indicates the group (NT in blue or T in red) which a given feature is associated with. 

(C) Loadings plots of the top 30 annotated highly correlated features discriminating tumour from non-

tumour, showing ASVs (left) and metabolites (right). Features are sorted by importance.  

As metabolomic analysis revealed a similar enriched of LCFA and lysophospholipids in 

nAtf6tg/wt;-/- mice as in nAtf6tg/tg, we repeated the same integrated analysis for nAtf6IEC;Il10-/- 

mice, excluding NR samples. Non-tumour and tumour samples (12 and 15-week+) clearly 

separated along the first component indicating the identified signature could discriminate 

phenotype (Figure 39A). Next, to determine associations between features, we examined 

intra-block correlations in the first component (ASV-Metabolome), using an absolute threshold 
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of 0.7. We observed a small cluster of mostly positively correlated ASVs, and metabolites 

enriched in tumour, with two control-enriched negative correlations (Figure 39B). Extracting 

the top 30 most important annotated features for ASVs and metabolites separately, identified 

Parabacteroides, Desulfovibrio, Bacteroides and Mucispirillum ASVs as discriminative, while 

metabolites were again dominated by LCFA and lysophospholipids (Figure 39C).  

  

 

Figure 39. Multi-omic integration links tumour-associated taxa to altered lipid environment in 

nAtf6tg/wt;-/- mice. (A) sPLS-DA score plot coloured by phenotype in nAtf6IEC;Il10-/- mice. Non-tumour  
(NT), excluding NR mice is shown in blue, with Tumour (T) in red. (B) Circos plot of highly correlated (r  
≥ 0.7) features between blocks. The ASV block is depicted in red, while the metabolome block is shown 

in light blue. Orange lines indicate a positive correlation, while black lines indicate negative. The height 

of the line surrounding the plot indicates the group (NT in blue or T in red) which a given feature is 
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associated with. (C) Loadings plots of the top 30 annotated highly correlated features discriminating 

tumour from non-tumour, showing ASVs (left) and metabolites (right). Features are sorted by 

importance.  

Several LCFA appeared to be linked to the microbiota in nATF6-driven tumour environments, 

however, it remained unclear if enrichment of these particular LCFA was driven by the tumour 

or by nATF6 activation. It is known that tumour cells demonstrate an increase in de novo fatty 

acid synthesis. Fatty acid synthase (FASN) – an enzyme which catalyses de novo fatty acid 

synthesis - is often upregulated in colorectal cancer and is a predictor of poor prognosis, 

though ATF6 can also upregulate FASN expression164,230–232. Hence, we further examined the 

enrichment of microbiota correlated LCFAs at each timepoint. Several LCFA metabolites were 

already enriched at 5-weeks in nAtf6tg/tg mice. Moreover, the majority of other LCFAs showed 

an increased trend in nAtf6tg/tg mice but did not reach significance. The extent of enrichment 

also appeared to increase at tumour timepoints, with 12- and 20-week-old nAtf6tg/tg mice 

displaying an enrichment of most microbiota-correlated LCFAs. An unknown C20 hydroxy fatty 

acid and Nervonic acid (FA 24:1) were the only LCFAs which were enriched at all three 

timepoints, however (Figure 40A). The majority of microbiota correlated LCFAs in nAtf6tg/tg 

mice, weakly correlated with tumour number, however most were not significant, with the 

exception of Nervonic acid and FAHFA 5:0/22:3. This indicates that rather than being the 

source, in this context, tumour presence increases the LCFA pool (Figure 40B).  

In nAtf6tg/wt;-/- mice a similar pattern was observed and again the C20 hydroxy fatty acid was 

consistently enriched, along with behenic acid (FA 22:0). Interestingly, 10-hydroxstearic-acid, 

a known product derived from microbial fatty acid hydration of oleic acid was enriched in 

12week and 15-week+ mice (Figure 41A). No LCFAs significantly correlated with tumour 

number, suggesting an alternative source besides tumour metabolism underlies their 

enrichment (Figure 41B). Together these data suggest LCFA enrichment occurs prior to 

tumour formation and is promoted by nATF6.  
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Figure 40. Microbiota correlated long-chain fatty acids are enriched in nAtf6tg/tg mice. (A) Boxplots 
of microbiota-correlated Long-chain fatty acids in nAtf6IEC mice. (B) Spearman’s rank correlation between 
each microbiota-associated fatty acid and tumour number in nAtf6tg/tg mice, with correlation coefficient and 
p-value indicated. Data are presented as normalised log-transformed feature intensity (LogInt).  
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Figure 41. Microbiota correlated long-chain fatty acids are enriched in nAtf6tg/wt;-/- mice. (A) 

Boxplots of microbiota-correlated Long-chain fatty acids in nAtf6IEC;Il10-/- mice. (B) Spearman’s rank 

correlation between each microbiota-associated fatty acid and tumour number in nAtf6tg/wt;-/- mice, with 

correlation coefficient and p-value indicated. Data are presented as normalised log-transformed feature 

intensity (LogInt).  

 

Alterations in the level of LCFA in the intestinal lumen has been shown to modulate the 

intestinal microbiota233,234. Having established the association between these compounds and 

the microbiota in the tumour environment, we next explored whether they could explain the 

observed shifts in any of the identified driver taxa by computing correlation networks between 
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each of the microbiota-covariant fatty acids, clr-transformed abundance of ID/SD ASVs, as 

well as community metrics (alpha and beta diversity) to assess whether these compounds 

modified community structure, or ID/SD presence was indirectly modified by LCFA. In nAtf6tg/tg 

mice, the majority of driver taxa were positively correlated with at least one LCFA at 5 weeks, 

however a cluster of highly positively correlated ASVs and metabolites was observed 

comprising an unknown 20-carbon hydroxy fatty acid, docosapentanoic acid (FA 22:5), 

nervonic acid (FA 24:1) and a Fatty acid ester of hydroxy fatty acid (FAHFA 22:6/3:0), along 

with ASVs classified as Lactobacillus and to a lesser extent Mucispirillum. Interestingly, 

docosahexanoic acid (FA 22:6) correlated negatively with several alpha diversity metrics 

(Richness and Shannon Effective) as well as positively with GUniFrac dissimilarity, suggesting 

this LCFA may alter community structure which could allow ID/SD taxa to colonise. Supporting 

this Mucispirillum was positively correlated with docosahexanoic acid. Lactobacillus species 

continued to show strongly positive correlations with LCFA at tumour onset supporting their 

status as SD, however, Mucispirillum ASVs only demonstrated negative correlations with 

LCFA. Surprisingly, Odoribacter taxa tended to show generally negative correlations across 

both timepoints (Figure 42A).  

In nAtf6tg/wt;-/- mice, correlations were more consistent between timepoints, likely reflecting the 

lack of microbial alterations, with Mucispirillum ASVs highly correlated with multiple FAHFA’s, 

while Lactobacillus were positively correlated with almost all LCFA species, except for 10-

hydroxystearic acid and an unknown C20 hydroxy fatty acid at the tumour timepoint only. 

Bacteroides however was negatively correlated with several LCFA at 5 weeks and highly 

correlated after tumour onset at 12 weeks (Figure 42B). Intriguingly, all LCFA correlated 

positively with Richness and Shannon Effective diversity at 5 weeks, and negatively at 12 

weeks, suggesting the impact of LCFA on microbial community modulation is timepoint 

dependent in nAtf6tg/wt;-/- mice. Taken together, this data suggests that the nATF6-driven 

increase in LCFA may modulate the colonisation of putative driver microbes, either directly or 

indirectly by altering community structure.  
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Figure 42. nATF6-enriched long-chain fatty acids modulate driver colonisation. Spearman’s rank 
correlation networks of microbiota-correlated fatty acid species, clr-transformed driver taxa abundances 
and community metrics using a correlation threshold (r) of 0.5, at 5 and 12-week timepoints in (A) nAtf6tg/tg 

and (B) nAtf6tg/wt;-/- mice. 

4.6.3 Long-chain fatty acids modulate microbial composition   

  

Many LCFA compounds are toxic to bacteria, particularly gram-positive taxa which require 

detoxification mechanisms to grow in fatty acid-rich environments235. To understand whether 

this enrichment might impact microbial function, we used PICRUSt2 to generate predictions 
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of genomic content203. Predicted metagenomes were grouped into MetaCyc pathways and 

filtered to remove low-abundant pathways and assessed for differential abundance236. 

Focusing on changes in fatty acid metabolism, a clear enrichment of related pathways was 

observed in nAtf6tg/tg mice from 5 to 12 weeks. A similar, weaker enrichment was observed 

between tumour and non-tumour samples (Figure 43A). No differentially abundant pathways 

were present between 5 and 12 weeks in nAtf6tg/wt;-/- mice, reflecting the observed lack of ID 

and P in these mice, however fatty acid metabolism-related pathways were enriched in tumour 

environments compared to non-tumour, indicating a microbial response to the altered fatty 

acid milieu (Figure 43B).  

The majority of identified driver taxa were gram-negative, displaying mostly positive or neutral 

correlations with the identified LCFA, however in both mouse models, a gram-positive 

Lactobacillus SD species was highly correlated with multiple LCFA across the 5 and 12-week 

timepoints. Certain Lactobacilli can survive fatty acid-rich environments via the action of 

hydratases such as oleate hydratase (OhyA; EC:4.2.1.53) which detoxify fatty acids by 

converting them into hydroxy fatty acids, thus we explored whether the predicted abundance 

of this gene differed between tumour and non-tumour mice and calculated the ratio of taxa 

predicted to encode ohyA versus those not predicted to encode ohyA237–239. In nAtf6IEC mice 

and nAtf6IEC;Il10-/- mice an increase in ohyA relative abundance was observed in tumour-

bearing mice. The ratio of ohyA+ to ohyA- was clearly increased in all nAtf6tg/tg mucosal 

phenotypes compared to non-tumour controls, however in nAtf6tg/wt;-/- mice, a significant 

increase was only observed in tumour-adjacent mucosa (Figure 43C and E). Supporting the 

enrichment of ohyA, its main product: 10-hydroxystearic acid, was increased in tumour 

samples in both mouse models (Figure 43D and F). Lastly, to associate ohyA presence with 

the capacity of Lactobacilli SD taxa to thrive in LCFA-rich environments, we examined the 

taxonomic contributions to predicted functional shifts in ohyA abundance in nAtf6IEC and 

nAtf6IEC;Il10-/- mice. In both mouse models, Lactobacillus accounted for the largest share of 

ohyA relative abundance, making up 60.3% and 34.6% in nAtf6tg/tg and nAtf6tg/wt;-/- mice, 

respectively (Figure 43G). Taken together, these results indicate microbial adaptation to the 

altered fatty acid environment and support a role for nATF6-mediated LCFA enrichment in 

supporting colonisation of tumour-associated taxa.  
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Figure 43. Evidence of microbial adaptation to the altered fatty acid environment. (A) Volcano plot 
of differentially abundant pathways (Log2 fold-change 0.32, adjusted p-value <0.05) predicted by 
PICRUSt2 comparing 5-week (pre-tumour) and 12-week (post-tumour) timepoints (left) in nAtf6tg/tg mice 
and non-tumour controls to tumour-bearing mice (right). Pathways related to fatty acid metabolism are 
highlighted in yellow. (B) Volcano plot of differentially abundant pathways (Log2 fold-change 0.32, adjusted 
p-value <0.05) between non-tumour nAtf6fl/fl;-/- and tumour-bearing nAtf6tg/wt;-/- mice. Pathways related to 
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fatty acid metabolism are highlighted in yellow. (C) Relative abundance of oleate hydratase (ohyA) in 
tumour and non-tumour nAtf6IEC mice (left), and the ratio of ohyA positive to ohyA negative taxa across 
various mucosal phenotypes (right). (D) Relative intensity of the major product of ohyA: 10-hydroxystearic 
acid in caecal samples from nAtf6IEC mice. Data are presented as normalised log-transformed feature 
intensity (LogInt). (E) Relative abundance of oleate hydratase (ohyA) in tumour and non-tumour 
nAtf6IEC;Il10-/-mice (left), and the ratio of ohyA+ to ohyA- taxa across each mucosal sample type (right). 
(F) Relative intensity of 10-hydroxystearic acid in caecal samples from nAtf6IEC;Il10-/- mice. (G) Top six 
contributors to ohyA relative abundance in tumour-bearing nAtf6tg/tg (left) and nAtf6tg/wt;-/- (right) as 
predicted by PICRUSt2. Minor contributors are grouped into the other category. 

The increased fatty acid pool in mice with activated nATF6 appeared to instigate a microbial 

response as evidenced by the increased predicted abundance of ohyA and increased levels 

of its product, 10-hydroxystearic acid. The tumour microenvironment is likely also fatty acid 

rich however, and it remained unclear whether these LCFA could promote the same microbiota 

changes seen in nAtf6tg/tg and nAtf6tg/wt mice, in a normal caecal environment. Thus, we tested 

whether a cocktail of the nATF6 enriched LCFA (Nervonic; FA 24:1, Behenic; FA 22:0 and 

Eicosanoic acid; FA 20:0) could promote the same microbial changes in a non-tumour-

susceptible environment. Accordingly, we co-cultured caecal content from three nAtf6fl/fl and 

nAtf6fl/fl;-/- controls, with this LCFA mixture to determine if we could recapitulate the observed 

microbial shifts (Figure 44A). Strikingly, LCFA co-culture led to marked, shifts in microbial 

composition, leading to the homogenisation of two distinct microbial environments from 

different mouse models (Figure 44B and C). Finally, to determine whether co-culture with 

LCFA reflected the functional changes seen in vivo we used PICRUSt2 to generate predicted 

metagenomic profiles and examined the relative abundance of ohyA. After 7h of coculture, 

ohyA predicted abundance was increased four-fold, regardless of genotype, indicating that 

LCFA likely selects for bacteria which encode this gene (Figure 44D). Taken together, these 

results recapitulate the microbial response seen in vivo in nAtf6 mice and further implicate 

LCFA in modulating the microbiota.  
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Figure 44. Ex vivo co-culture with LCFA recapitulates in vivo shifts in microbial composition and 
predicted function in caecal content from non-susceptible mice. (A) Experimental design schematic 
of caecal content and LCFA co-culture. (B) Taxonomic composition of ex vivo cultivated caecal content in 
nAtf6fl/fl (left) and nAtf6fl/fl;-/- (right) genotypes, before and after LCFA co-culture. (C) NMDS plot of 
generalized UniFrac distance between samples at 0h after LCFA addition and 7h after in non-tumour 
nAtf6fl/fl and nAtf6fl/fl;-/- samples. (D) Relative abundance of the predicted abundance of ohyA before and 
after LCFA addition, in both genotypes. 
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5. Discussion   
  

In the present work, we comprehensively examined microbial community shifts in nATF6-

driven mouse models of colorectal tumorigenesis. We additionally generated and 

characterised a novel microbiota-dependent model of CAC, which, alongside our nAtf6IEC 

model, provides a human-relevant framework for dissecting microbe-host interactions in 

chronic inflammation-driven and sporadic CRC, respectively. To determine microbial factors 

underlying tumour formation, we characterised colonic mucosal communities, demonstrating 

these communities have a greater utility than luminal for identifying phenotype-relevant taxa. 

Additionally, we examined microbial changes occurring along tumour initiation and 

progression, identifying putative drivers of tumorigenesis, and spatially associating them with 

tumours. Finally, we utilised multi-omic data integration to link nATF6-induced changes in lipid 

metabolism, particularly that of LCFA, with alterations in microbiota and uncovered potential 

microbial adaptations to the altered lipid environment.  

  

5.1 Identification of microbial shifts between pre-tumour and tumour 

onset in an nATF6-dependent model of sporadic colorectal tumorigenesis  
  

We previously identified a microbiota-dependent tumour-promoting role of nATF6 activation, 

accompanied by loss of mucus structure, dysbiosis and microbial penetration close to the 

epithelium155. However, whether this phenotype is driven by transiently colonising luminal taxa 

or resident mucosal microbes, and exactly which members of the microbiota are involved, was 

not clear. A handful of studies have identified pro-oncogenic bacteria enriched in adenoma 

samples; however, questions remain over whether these taxa initiate disease, as adenoma 

formation induces metabolic alterations which likely impact the local microenvironment, thus 

altering microbial composition124,240,241. Furthermore, little is known about what triggers may 

enable putative driver taxa to expand in habitat or abundance and assume a tumour-promoting 

role in the first place.  

Here we examined microbial changes along the sequence of tumour development in the 

context of nATF6-driven tumorigenesis, using the driver-passenger model as a framework. 

The vast majority of existing human CRC studies have profiled stool as a proxy for the gut but 

tumour-driver or indeed passenger bacteria may not be well represented in stool, or other 

luminal samples. Although murine models present the opportunity to explore additional 

environments, most studies have similarly examined stool or caecal content. We addressed 

this problem by performing 16S rRNA sequencing of both luminal and mucosal communities, 

extensively characterising the mucosal microbiota across tumour development and space, at 

tumour onset. ML classifiers trained on mucosal data achieved higher performance in 

discriminating phenotype in 2/3 models compared to luminal, suggestive of an inherent 

tumour-associated microbiota signal present in mucosal communities. Our results 

demonstrate that microbial profiling of luminal contents may therefore miss disease-relevant 

taxa, indicated by lower accuracy. In line with this finding, several discrepancies have been 

observed between the faecal and mucosal microbiota in CRC, though no studies have 

compared this directly. Nevertheless, indirect evidence indicates that certain taxa linked to 

CRC are detected at higher frequencies in mucosal biopsies than stool, including putative 

driver taxa such as pks+ E. coli strains129,242. Moreover, Saffarian et al identified a core 
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microbiota specific to colonic crypts in cancer patients, largely comprising aerobic non-

fermentative Proteobacteria which show low abundance in faecal samples (<1%)243.  

 

Considering the often-stringent abundance and prevalence filtering applied before applying 

ML on 16S rRNA sequencing data, it is likely these taxa would be removed from faecal data 

or may even not be detected at all140,244. It is important to note however, that the ML models 

we trained on luminal data could still predict phenotype with high accuracy, thus in this context, 

disease relevant ASVs may be partially diluted out in the luminal environment, explaining the 

decreased AUC compared to mucosal.  

To delineate taxa putatively driving tumour formation and those merely associated with tumour 

onset, we analysed shifts between pre-tumour and tumour-onset mucosal samples, identifying 

several groups of taxa which displayed abundance changes in accordance with the driver-

passenger model. We additionally identified a further group, SD, which maintain their 

abundance between pre-tumour and tumour onset. Our study is unique in examining mucosal 

microbial alterations from pre-tumour to tumour onset. Existing studies examining microbial 

succession in the driver-passenger hypothesis have generally compared tumour mucosa to 

adjacent healthy mucosa, however findings from our study and others suggest that microbial 

communities do not significantly differ between these tissues142,215,216. Furthermore, we also 

observed limited differences compared to non-adjacent healthy mucosa, potentially indicative 

of spatial homogenisation. Evidence from human patients corroborates this homogenisation; 

Murphy et al analysed the microbial communities of multiple tumours from each participant, 

finding profiles only differed between samples and not within, regardless of the distance 

between tumour sites217. Nevertheless, others have reported differences between on and off-

tumour profiles, including those without a considerable distance between sampling sites, 

which may suggest spatial homogenisation depends on the underlying genetic or 

environmental trigger245,246. Indeed, although our results indicated nATF6 activation as the 

major driver of microbial change, tumour presence also exerted a minor additional effect, 

making it difficult to untangle changes driven by nATF6 activation and those driven by the 

tumour. Regardless, examination of microbial changes pre-tumour excludes any impact the 

tumour may have on surrounding microbiota and is therefore preferable for the identification 

of driver microbes.  

By analysing putative driver taxa across multiple distinct cohorts, we narrowed down ID taxa 

to Mucispirillum and Lachnospiraceae and SD to taxa mostly comprising Odoribacter, 

Lactobacillus, Porphyromonadaceae. Much of these genera have previously been associated 

with tumorigenesis, with multiple taxa from Porphyromonadaceae enriched in CRC, while 

recently a Lachnospiraceae species, Lachnoclostridium, has been identified as a biomarker 

of adenoma105,122,247. Similarly, in mice, an increase in Mucispirillum LPS transcription was 

associated with tumour formation in a Smad3-/- model of CRC248. Interestingly and in contrast 

with our data, Lactobacillus species have generally been found to be negatively associated 

with and even impede or restrict tumorigenesis. For example, L. gallinarum produces indole 

metabolites which inhibit tumour formation in ApcMin/+ and AOM-DSS mouse models of 

tumourigenesis249. On the other hand, other Lactobacillus-derived indole metabolites have 

been shown to impair anti-tumour immunity in pancreatic cancer250. Moreover, the normally 

commensal L. reuteri can translocate across the epithelial barrier in lupus-prone hosts, 

worsening disease251. This protective-harmful dichotomy in Lactobacillus species may 

therefore be context or species/strain dependent. Importantly, the driver-passenger model 

does not currently account for adaptable bacteria, which can adapt to changing conditions 

after tumour onset. Our finding of the presence of SD extends the hypothesis to incorporate 

these taxa. Several taxa have already been identified as both passengers and drivers, for 
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example, Streptococcus gallolyticus, which has been shown to alternatively promote 

tumorigenesis by increasing epithelial cell proliferation and to outcompete other resident 

species upon tumour formation252,253. Rather than existing as both a driver and passenger, we 

posit that the taxa we identified and those like S. gallolyticus are SD, likely comprising 

adaptable species which adjust their metabolism to changing conditions.  

We additionally found that in the absence of tumour formation, nATF6 activation alone is 

enough to significantly alter mucosal microbiota, in line with previous results in luminal 

communities. Little is known regarding how ATF6 and indeed other arms of the UPR may 

impact microbial composition, but given its position and function within the cell, it is likely 

mediated indirectly by downstream targets. Alterations in the function of other intracellular 

organelles, known to modulate gut microbiota composition, for example, mitochondria, 

influence composition via production of reactive oxygen species254, Similar to our previous 

study where nATF6 conditioned microbial communities promoted enhanced tumour formation 

in GF nAtf6tg/tg mice, nATF6 activation appeared to support colonisation by ID/SD microbes155. 

This was clearly evidenced by the similarities in differentially abundant taxa on and off tumour 

sites and the observed habitat expansion of ID/SD taxa, particularly Mucispirillum, 

Lactobacillus and Odoribacter ASVs. Notably, all of these taxa are normal residents of the 

colonic mucosa, however in nAtf6fl/fl control mice we found them to be either lowly abundant 

or restricted to certain sites59,255. Recently, microbial migration from distant environments to 

disease sites has been observed in various pathologies. For example, many oral taxa are 

found in tumours from CRC patients, and alterations in the oral microbiota can predict 

disease10,62. Migration likely occurs on smaller scales as well, for example between intestinal 

compartments. In line with this, caecal Lactobacillus populations in mice have been shown to 

mostly be derived from the stomach256,257. Such migration could also be potentially deleterious 

for the host under disease conditions, however, particularly when the epithelium is exposed. 

Expression of several receptors interfacing with microbial ligands in the colonic epithelium are 

highly spatially segregated, including those which have been shown to play a key role in 

tumorigenesis such as Wnt and Toll-like receptors68,258. Similarly, the thickness of the mucus 

layer is not consistent throughout the colon, with the distal colon possessing a thicker and 

more structured mucus layer, compared to the proximal259. Expansion of certain bacteria 

outwith their normal locale may therefore lead to unwanted stimulation, potentially promoting 

proliferation, and instigating tumorigenesis. Collectively, these results further understanding of 

alterations in microbial community structure and composition occurring with tumour 

development and support a role for ATF6 in promoting mucosal colonisation of putatively 

oncogenic microbes.  

5.2 Generation and microbial characterisation of a novel model for colitis- 

associated cancer  
  

While the use of IL-10 deficient mice – with or without additional triggers - as a model for colitis 

and subsequent CAC is well established, the combined effect of disrupted immunoregulation 

and UPR activation are unknown. Similarly, to our knowledge only a handful of microbiota-

dependent models of CAC, currently exist153,154. Thus, there is a significant need for suitable 

animal models to study microbe-host interactions in the context of CAC. Here we introduce a 

novel microbiota-driven model of CAC and extensively characterise the mucosal microbiota to 

identify tumour-associated bacteria.  

Work from our laboratory previously identified a role for nATF6 in tumour formation in 

homozygous mice, with heterozygous mice never developing tumours without an additional 
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trigger, such as acute inflammation155. Our results demonstrate that chronic low-grade 

inflammation, induced by IL-10 loss can also trigger tumorigenesis. Comparison of gross 

measures of inflammation, cytokine expression and protein-based markers of intestinal 

inflammation revealed increased inflammation in nAtf6 overexpressing mice, suggesting that 

the combination of Il10 KO and nATF6 activation in IECs can exacerbate colitis. In line with 

these results, ATF6 has been previously identified as a marker of pre-cancerous lesions in 

CAC and has been demonstrated to increase expression of proinflammatory cytokines in 

vitro172,177. In concert with an existing genetic susceptibility, nATF6 activation in IECs may 

therefore exacerbate inflammation or disrupt intestinal homeostasis, nudging IECs towards an 

oncogenic phenotype. Interestingly, despite the considerable inflammation observed at later 

timepoints, tumour formation was not preceded by a marked colitic phenotype in susceptible 

nAtf6tg/wt;-/- mice but only became apparent after tumour onset. Histological score did, however, 

correlate with an increase in tumour burden, which may indicate that in this context 

inflammation may be more important in tumour progression, rather than initiation. Although 

inflammation is generally involved in both, here, other functions disrupted by the loss of IL-10 

signalling may be involved. IL-10 not only suppresses pro-inflammatory signalling but also 

plays a key role in homeostasis of the intestinal epithelium, governing epithelial barrier 

integrity, IEC differentiation and mucus production260–263. To assess alterations in the mucosal 

barrier in nAtf6tg/wt;-/- mice we measured GC numbers and mucus penetrability, finding reduced 

GC numbers and decreased distance between bacteria and the epithelium post-tumour. 

Importantly, IL-10 maintains folding capacity under ER stress, thus the absence of IL-10 and 

unresolved ER stress in this model likely leads to a severely reduced capacity to produce 

mucus261. As mucus plays a key role in segregating potentially immunostimulatory microbes 

from host cells, disruption can lead to disease. Enhanced bacterial penetration of the mucus 

layer, increases the possibility of bacterial interaction with the epithelium and has been found 

in various other mouse models of CRC as well as in patients153,154,264.  

To assess the role of the mucosal microbiota in tumour formation in nAtf6tg/wt;-/- mice we again 

carried out microbial profiling across tumour progression, as well as spatial profiling, observing 

limited differences in microbial community structure overall. Certain findings from bulk mucosal 

data contrasted with the spatial analysis, particularly with regard to alpha diversity. Species 

richness, evenness and phylogenetic diversity were significantly reduced at 12 weeks in 

tumour compared to non-tumour in the bulk mucosal dataset, however spatial data did not 

support this at every site, indicating that such reductions are likely site-specific and do not 

occur consistently along the length of the colon. Supporting this, significant variation was 

observed in alpha diversity along the colon, with distal portions displaying reduced diversity 

independent of genotype, while stratification by region – comparing tumour-susceptible 

locations to controls – revealed an increase in the magnitude of microbial change. Spatially 

resolved data may therefore be particularly important in the context of CAC, as this method 

may identify alterations that analysis of individual sites cannot. Indeed, inflammation in the 

Il10-/- mouse model is often patchy, which could be a plausible explanation for the observed 

site-specific differences221. It is possible that microbial alterations as well as tumour formation, 

require both inflammation and nATF6 activation, and that this combination may not be present 

along the entire length of the colon. The majority of tumours in nAtf6tg/wt;-/- mice occurred at 

sites one and two, in the extreme proximal colon, which may indicate that this combination 

most often occurs here. Considering the colonic mucus layer exhibits an increasing thickness 

and density gradient along the length of the colon, these two sites, microbial contact with the 

epithelium and resultant inflammation is more likely here than elsewhere in the nAtf6tg/wt;-/- 

colon259. Subsequent work could address this by examining the spatial distribution of colitis in 

nAtf6tg/wt;-/- mice. The limited microbial community changes observed between genotypes 

without stratification however are in contrast with other models of CAC, where generally 
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marked changes in both alpha and beta diversity and microbial composition are present153,154. 

This inconsistency and the overall limited differences between genotypes may alternatively 

imply monoallelic nATF6 activation has a restricted impact on the microbiota in Il10 KO mice. 

Given IL-10’s role as a key mediator of intestinal homeostasis, particularly in tolerance to 

commensal antigens, its loss may therefore supplant community level effects driven by nATF6 

or tumour presence260,265. Our study is limited in this regard however, as we did not include 

nAtf6tg/wt;+/+ controls to specifically address the microbial impact of Il10 KO.  

We additionally tested the driver-passenger model in nAtf6tg/wt;-/- mice as a framework to 

explain microbial changes occurring with tumour development and were unable to identify any 

alterations between pre-tumour and post-tumour timepoints. This would suggest this model 

may not explain microbial succession in CAC development. Several CRC-associated 

microbes have been identified as enriched in IBD patients, such as pks+ E. coli and F. 

nucleatum, which may imply that the conditions present prior to tumour formation in CAC may 

already select for tumour-promoting microbes129,228,266. Despite this, it is important to note that 

the microbiota under chronic inflammation shows significant temporal variability which even 

with our moderate sample size may impede identification of passenger and driver taxa3. 

Notwithstanding, under our proposed expansion of the driver-passenger model, we could 

identify several SD ASVs, classified as Bacteroides, Lactobacillus and Mucispirillum, all of 

which were decreased in NR mice and preferentially localised to tumour-susceptible proximal 

sites over distal regions. Of note, we also identified Mucispirillum as an ID in the nAtf6IEC 

model, implicating this microbe in tumour formation in two disparate models. Yet, why 

Mucispirillum was identified as an ID in one model and SD in the other is unclear. Mucispirillum 

can utilise nitrate as a terminal electron acceptor, which is particularly abundant in the inflamed 

gut, promoting the expansion of pro-inflammatory bacteria, thus it may be able to sustain its 

presence in the nAtf6IEC;Il10-/-  model by exploiting nitrate, whereas in the nAtf6IEC model, the 

comparative lack of inflammation could select against its presence55,155. Nevertheless, the 

identification of Mucispirillum as a driver taxon in two different models, warrants further 

research, to better understand its potential role in tumorigenesis.  

Microbiota-dependent models such as the nAtf6IEC;Il10-/- are essential if the involvement of 

microbes in CRC and CAC is to be clinically realised as they facilitate the disentanglement of 

host-related and microbiota-related mechanisms. Here we have introduced and characterised 

a microbiota-driven mouse model for CAC, uncovered a key role for the combined action of 

nATF6 activation and Il10 KO in disrupting intestinal homeostasis, and identified putative 

microbes driving tumour formation.  

5.3 Linking shifts in metabolite environment to tumour-associated 

microbiota  
  

UPR signalling has been demonstrated to play a crucial role in intestinal 

homeostasis155,172,175,267,268. Our previous results indicated nATF6 activation can modulate the 

microbiota towards a pro-tumorigenic state, however the mechanism by which this occurs 

remained elusive. During ER stress ATF6 has been shown to promote inflammatory signalling, 

which could explain the altered intestinal microbiota, yet tumorigenesis occurs independent of 

inflammation in nAtf6IEC mice, and additionally did not precede tumour formation in 

nAtf6IEC;Il10-/- mice, indicating nATF6 alters the intestinal environment by other means155,228. 

Since tumour formation and indeed nATF6 activation brings marked changes in metabolism, 

we focused on the metabolome as a potential actor in mediating these alterations269,270. Here 

we performed untargeted metabolomics to determine nATF6-driven alterations in the intestinal 
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metabolite milieu and additionally integrated mucosal microbiota profiles with metabolomic 

profiles of luminal content to understand how nATF6 activation and associated tumour 

formation modulate microbial communities, as well as identifying metabolite alterations which 

may modulate driver colonisation.  

 

Untargeted LC−TOF-MS measurement of caecal samples revealed a significant impact of 

nATF6 activation on the luminal metabolite environment, leading to a clear enrichment of fatty 

acid and phospholipid derivatives. A similar lipid enrichment was observed in tumour samples 

from both nAtf6tg/tg mice and nAtf6tg/wt;-/- mice, however many of these lipid species were 

already enriched before tumour onset, implicating nATF6 as the main driver behind this 

observation. What remains less clear however, is the exact source of this lipid enrichment and 

whether this arises from host or microbial changes. Untargeted measurement of tissue 

samples from nAtf6tg/tg mice revealed an increased presence of similar LCFA and 

lysophospholipids as in caecal content suggesting these metabolites are host-derived in this 

model, however this was not observed in nAtf6tg/wt;-/- mice. Notably, fewer differential 

metabolites were identified in nAtf6tg/wt;-/- compared to control than in nAtf6tg/tg mice, in both 

caecal and tissue. Since Il10 KO has been demonstrated to induce alteration in fatty acids 

(including LCFA), this may mask differences between genotypes, while still increasing the 

overall lipid pool compared to Il10  positive and floxed nAtf6 WT mice271,272. Future work could 

address this by comparing nAtf6fl/fl;-/- and nAtf6tg/wt;-/- mice to nAtf6fl/fl;+/+ mice to comprehensively 

characterise metabolite changes induced by both Il10 KO and monoallelic nATF6 activation. 

Nevertheless, although bacteria produce both LCFA and lysophospholipids, the observed 

enrichment in nAtf6tg/wt;-/- is likely also host-derived273. Despite the fact that the same 

metabolites enriched in caecal content of tumour-bearing nAtf6tg/wt;-/- mice, were not observed 

in colonic tissue, several other lysophospholipids and fatty acid derivatives were increased, 

suggesting altered host metabolism is at least partially involved.  

It is well established that the UPR plays an important role in lipid metabolism, particularly XBP1 

which upregulates genes involved in lipid synthesis upon activation160,161,274. ATF6 thus also 

indirectly modulates lipid metabolism via activation of XBP1275. Less is known however, 

regarding the specific contribution of ATF6 to lipid metabolism. Recently, a non-canonical lipid-

mediated mechanism of ATF6 activation was discovered which triggers an alternative 

transcriptional program, upregulating genes involved in lipid metabolism165. Similarly, nAtf6 

OE in the zebrafish liver has been demonstrated to upregulate fatty acid synthase (FASN) and 

other targets involved in fatty acid elongation164. In line with our observation, this would support 

a role for nATF6 activation in modulating lipid and in particular fatty acid metabolism. How 

exactly an nATF6-driven increase in fatty acid synthesis or elongation would translate into 

increased fatty-acid pool in the intestinal lumen, however, remains uncertain. Under normal 

physiological circumstances, colonic epithelial cells renew approximately every 3-days, where 

old cells undergo apoptosis and are shed into the lumen276. Increased epithelial shedding is 

evident in multiple pathologies, particularly those involving disruption to the gut barrier, thus 

an increase in nATF6-driven fatty acid synthesis and/or elongation and concomitant shedding 

could underlie the observed altered luminal LCFA pool277,278. Indeed, the observed increase in 

LCFA host tissue in nAtf6tg/tg mice would support this. Considering the observation that the 

majority of regulated metabolites in nAtf6 mice, comprised lysophospholipids and LCFAs, an 

alternative explanation is that nATF6 activates phospholipases, which could cleave epithelial 

membrane phospholipids, into lysophospholipids and fatty acids, releasing them into the 

intestinal lumen279. Activation of the ATF6α isoform of ATF6 has been shown in vitro to increase 

the release of arachidonic acid via the phospholipase Pla2g4a in prostate cancer-derived 

cells, which may indicate that ATF6 can regulate phospholipase activity in other cell types as 

well. Furthermore, we previously demonstrated Signal transducer and activator of transcription 
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3 (STAT3) activation in nAtf6tg/tg mice, of which the phospholipases Pla2g2a and Pla2g5 are 

known targets155,280. Regardless of the mechanism, nATF6 activation clearly increases the 

luminal LCFA pool, altering the intestinal microenvironment.  

To examine how changes in the metabolite environment relate to microbial alterations we 

performed multi-omic integration of mucosal microbiota data with luminal untargeted 

metabolomic data. In both mouse models, the altered fatty acid environment and associated 

increase in LCFA appeared to be linked to the microbiota and correlated with driver 

abundance. Many free fatty acids, in particular, LCFA are bactericidal or bacteriostatic, thus 

changes in the concentrations of these compounds in the gut are likely to have a knock-on 

effect on the microbiota281,282. Indeed, shifts in intestinal LCFA composition have previously 

been linked to changes in microbiota. In a mouse model of alcoholic liver disease, dysbiosis 

was accompanied by a reduction in saturated LCFA levels, while LCFA supplementation 

restored a normal microbiota234. Moreover, microbially derived LCFA can themselves, alter 

microbiota composition. Here we observed a marked increase in LCFA levels. Considering the 

antibacterial effects of these compounds it is possible that the nATF6-driven increase in LCFA 

leads to a population-level decline of normal microbiota, allowing more FA-resistant taxa to 

gain a foothold. This is further supported by the fact that many taxa which are normally resident 

in the colonic mucosa such as Lachnospiraceae and Ruminococcaceae are Gram-positive 

taxa, which are particularly sensitive to LCFA-induced toxicity, and accordingly, both were 

decreased in tumour environments283. In parallel with this, the majority of ID and SD taxa 

identified were Gram-negative, which are intrinsically more resistant to killing by LCFA284. 

Intriguingly, Lactobacillus was identified as a SD in both models and appeared to be highly 

correlated with the observed fatty acid enrichment in nAtf6 overexpressing environments. 

Lactobacilli are Gram-positive but can survive in fatty acid-rich environments via the action of 

ohyA235,285. Predicted genomic content suggested an enrichment of ohyA in tumour samples, 

with its major product 10-hydroxystearic acid also tumour enriched. Further supporting these 

observations, ex vivo co-culture of caecal content from non-tumour nAtf6fl/fl and nAtf6fl/fl;-/- mice, 

led to Lactobacillus-dominated communities, reflecting the compositional changes seen in 

nAtf6tg/tg and nAtf6tg/wt;-/- genotypes. Subsequent work could confirm this in vivo via gavage of 

LCFA to control genotypes and measuring microbial composition to determine if these 

changes recapitulate those seen in nAtf6tg/tg and nAtf6tg/wt;-/- mice. Together, this may indicate 

a novel mechanism by which nATF6 activation can indirectly alter the composition of the gut 

microbiota and promote colonisation by driver microbes. It is important to note however, that 

our study did not directly address the impact of these LCFA on individual microbes, thus the 

observed associations could also reflect indirect effects.  

Concluding Remarks   
  

A growing list of bacteria are increasingly linked to CRC, yet distinguishing between those 

directly instigating tumour formation, those promoting progression and bystanders remains 

challenging. Moreover, mechanisms which might licence driver bacteria to initiate 

tumorigenesis are also poorly understood. This work is unique in employing the driver-

passenger model as a framework to separate putative tumour-initiating taxa from bystanders 

and also represents one of the first efforts to investigate microbial changes occurring in parallel 

with tumour development experimentally in CRC and CAC mouse models. We find evidence 

of marked shifts in microbial composition between pre-tumour and tumour onset in 

inflammation-independent models of CRC but not in CAC and propose that understanding of 

microbial succession in CRC should be extended to include adaptable microbes which can 

survive or potentially thrive in changing environmental conditions. Furthermore, we provide a 
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method by which individual ASVs can be directly mapped to tumour sites within the colon, 

further facilitating identification of tumour-associated microbiota. Additionally, we link nATF6-

activation-mediated changes in the intestinal fatty acid pool to changes in the microbiota. 

Given the potent antimicrobial activity of many fatty acids, particularly longer chain varieties, 

this may represent a previously unknown method by which the host can alter the microbiota, 

and by which dysbiosis is induced in disease states.  

Future work could expand on this by examining the identified putative driver taxa’s ability to 

promote disease. Colonisation with single driver strains or consortia in susceptible GF mice, 

for example, would conclusively prove whether or not these taxa are true drivers, either alone 

or in combination. Furthermore, feeding experiments with microbiota-correlated LCFAs in non-

susceptible mice would allow validation of their microbial composition-altering effects, as well 

as addressing whether exogenous administration of these metabolites can increase the 

abundance of driver microbes. Building upon this as a framework for identification of tumour-

promoting microbes and environmental mechanisms underlying their colonisation will facilitate 

the development of targeted interventions to prevent or impede CRC.  
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Glossary  
  

16S  

  

16S rRNA small ribosomal subunit. Composed of conserved and 

hypervariable regions which can be used as a molecular barcode to 

profile bacteria and archaea.  
Alpha diversity  

  

Species diversity within samples. Measures include Richness, 

Shannon Effective, and Faith’s phylogenetic diversity.  

ASV  

  

Amplicon sequence variant. Error-corrected reads representing true 

biological sequences. Also known as Exact sequence variants (ESV), 

sub-operational-taxonomic units (sOTU) or zero-radius operational-

taxonomic units (zOTU)  
AUC (AUCROC)  

  

Area under the receiver operator curve. A measure used to assess 

the predictive accuracy of a machine learning model to discriminate 

between classes.  
Beta diversity  Between sample diversity. A measure of how dissimilar samples are.  
Clr  

  

Centred-log ratio transform. A data transformation computed by 

calculating the log-ratio of each taxon relative to the geometric 

mean.  
Cross-validation (CV)  

  

A method of estimating the generalizability of a machine learning 

model by resampling a subset of data.  

Dysbiosis   

  

An altered microbiota state usually associated with disease and 

often characterised by low diversity and an increased abundance of 

potentially harmful microbes.  
Evenness  

  

A diversity measure reflecting the proportion of species of equal 

abundance within a sample.  

Faith’s phylogenetic  
diversity  

  

A phylogenetic measure of alpha diversity, calculated as the sum of 

branch lengths in a phylogenetic tree.  

False-discovery rate   
Proportion of findings falsely identified as significant.  

  

Germfree (GF)  Animal models lacking a natural microbiome.  
Gnotobiotic  Animal models with a known, defined microbiome composition. 

Includes GF and consortia or mono-colonized animals.  
GUniFrac  Generalized UniFrac. An extension of the UniFrac algorithm which 

gives less weight to rare and highly abundant lineages, allowing 

more broad changes in composition to be detected.  
Microbiota   A microbial population in a given, well-defined environment.  
Microbiome  Refers to a group of microorganisms, their genomes, metabolic 

activity, habitat, and environmental conditions.  
Metabolome  The small-molecule component of the microbiota.  
Metagenome  The entire gene content present in a given sample, including 

functional potential.  
NMDS  Non-metric multidimensional scaling. An ordination method which 

attempts to represent distances between samples, as closely as 

possible in a low-dimensional space.  
PERMANOVA  Non-parametric multivariate ANOVA. Used to assess differences in 

beta diversity between groups.  
Machine learning  Use of data and algorithms to learn from data, identify patterns and 

generate predictions without explicit instruction.  
Shannon Effective diversity   Alpha diversity measure. Accounts for the number of observed 

species as well as evenness. Expressed as the exponent of the 

Shannon index.  
Richness  Alpha diversity metric measuring the total number of observed 

species/ASVs.  
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ROC  Receiver-operator curve. Visual aid to assess machine learning 

classifier performance, plotting true positive rate against false 

positive rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107  

  

Abbreviations  
  

A. muciniphila  Akkermansia muciniphila   

ASV  Amplicon sequence variant  

ATF6  Activating transcription factor 6  

APC  Adenomatous polyposis coli  

AUC   Area Under the Curve  

BA  Bile acid  

B. fragilis  Bacteroides fragilis  

BLAST  Basic Local Alignment Search Tool  

BMI  Body Mass Index  

BRAF  B-Raf proto-oncogene/v-Raf murine sarcoma viral oncogene homolog B  

CAC  Colitis-associated cancer  

CD   Crohn’s Disease  

CFU   Colony Forming Unit  

CIP2A  Cellular Inhibitor of PP2A  

CLR  Centred-log ratio transformation   

CRC  Colorectal cancer  

CXCL1  C-X-C motif chemokine ligand 1    

DAB  3,3′-Diaminobenzidine  

dNTP   Deoxy-nucleotide triphosphate  

E. coli   Escherichia coli   

EC  Enzyme Commission   

EDTA  Ethylenediaminetetraacetic acid  

eIF2α  Eukaryotic Initiation Factor 2  

ELISA  Enzyme-linked immunosorbent assay  

ER  Endoplasmic reticulum  

ERAD  Endoplasmic reticulum-associated protein degradation   

ETBF  Enterotoxigenic Bacteroides fragilis  

F. nucleatum   Fusobacterium nucleatum  

FASN  Fatty acid synthase  

FC  Fold-change  

FDR  False-discovery rate  

FFPE  Formalin-fixed paraffin-embedded   

FISH   Fluorescent in situ hybridisation   

GAPDH   Glyceraldehyde 3-phosphate dehydrogenase   

GC  Goblet cell   

GF   Germ-free  

GI   Gastrointestinal  

GRP78  Glucose-regulated protein 78  

GUniFrac  Generalized UniFrac  

H&E    Haematoxylin & Eosin  

HA  Hemagglutinin  

HDI  Human development index  

HMP   Human Microbiome Project  

IBD   Inflammatory Bowel Disease  

ID  Initial driver  
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IEC  Intestinal epithelial cell  

IF   Immunofluorescence  

IFNγ  Interferon-gamma  

IgA   Immunoglobulin A  

IHC   Immunohistochemistry   

IL  interleukin  

IP-10/CXCL10  Interferon gamma-induced protein 10/C-X-C motif chemokine ligand 10  

IRE1α  Inositol requiring enzyme 1-alpha  

ISC  Intestinal stem cell  

KEGG  Kyoto Encyclopedia of Genes and Genomes  

KO  Knockout  

KRAS  KRAS proto-oncogene/Kirsten Rat Sarcoma Viral Oncogene Homologue  

L1L  L1-regularised lasso regression  

L. reuteri  Lactobacillus reuteri  

LCFA  Long-chain fatty acid  

LC-TOF-MS   Liquid Chromatography-Time of Flight-Mass Spectrometry  

LDA   Linear discriminant analysis   

LEfSe   Linear discriminant analysis Effect Size  

LI  Large intestine   

LOOCV  Leave-one-out cross-validation   

LPCN2   Lipocalin-2  

LPS   Lipopolysaccharide  

ML  Machine learning  

MMLV  Moloney Murine Leukaemia Virus Reverse Transcriptase  

MS   Mass Spectrometry  

MyD88  Myeloid differentiation primary response 88   

NF-κB  Nuclear factor-kappa B  

NLR  Nod-like receptor  

NMDS    Non-Metric Multidimensional Scaling  

NR   Non-responder  

OE  Overexpression  

ohyA   oleate hydratase   

PAS/AB  Periodic acid Schiff-alcian blue   

PBS   Phosphate Buffered Saline  

PCA   Principle Component Analysis  

PCR   Polymerase Chain Reaction   

PERK  PKR-like ER kinase   

pH   potential of hydrogen  

PICRUSt2     

Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 2  

Pla2g  Phospholipase A2   

PRR  Pattern recognition receptor  

QC  Quality control  

qPCR   Quantitative Polymerase Chain Reaction  

R   Responder   

RDP   The Ribosomal Database Project  

RF  Random Forest  

RIDD  Regulated IRE1α-dependent decay  
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ROC   Receiver operating characteristic Curve  
RR  Ridge regression   

rRNA   Ribosomal ribonucleic acid  

RT   Room Temperature  

S1P/S2P  Site 1/2 protease   

SCFA   Short Chain Fatty Acids  

SD  Sustained driver  

SI  Small intestine  

SPF   Specific Pathogen Free  

sPLS-DA  Sparse partial least-squares discriminant analysis   

SREBP2  Sterol regulatory element-binding protein 2  

STAT3   Signal transducer and activator of transcription 3  

S. gallolyticus  Streptococcus gallolyticus  

TCGA  The Cancer Genome Atlas   

TLR  Toll-like receptor  

TNFα   Tumour necrosis factor alpha  

TP53  Tumor protein P53/Tumour suppressor P53  

TRIF   TIR-domain-containing adapter-inducing interferon-β  

UC   Ulcerative Colitis   

UEA1  Ulex Europaeus Lectin 1  

UHPLC   Ultra-High Performance Liquid Chromatography  

UPL   Universal Probe Library  

UPR  Unfolded protein response  

V3/V4   16S hypervariable regions 3 and 4  

WCA   Wilkins-Chalgren-Anaerobe Agar  

WT   Wildtype  

XBP1  X-box binding protein 1   
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