
Technische Universität München

TUM School of Computation, Information and Technology

Closing the Loop: 3D Object Tracking for
Advanced Robotic Manipulation

Manuel Stoiber

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr. rer. nat. Achim J. Lilienthal

Prüfer der Dissertation:

1. Priv.-Doz. Dr. rer. nat. Rudolph Triebel
2. Prof. Andrew J. Davison, Ph.D.

(Imperial College London, UK)
3. Prof. Dr.-Ing. Alin Albu-Schäffer

Die Dissertation wurde am 03.02.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 13.11.2023 angenommen.

Acknowledgments

The following work was created during my time at the Institute of Robotics and
Mechatronics of the German Aerospace Center (DLR) in Oberpfaffenhofen, Germany.
I started with my research as a master’s student in 2018 and was able to continue my
work as a research scientist. It was a great learning experience where I not only got
insights into research and academia but also got a glimpse into the future of robotics
and computer vision. I want to thank all the forward-looking friends and colleagues at
the institute who were always helpful no matter the question and every day contribute
to a cooperative and friendly working environment.

Special thanks go to Priv.-Doz. Dr. Rudolph Triebel for introducing me to the world of
academia and for supervising this thesis. His unwavering support, as well as continued
feedback, greatly contributed to my research. Also, I deeply appreciate his trust and
the flexibility he granted me in finding my own way. I would also like to sincerely
thank Prof. Dr. Alin Albu-Schäffer for welcoming me to DLR, for supervising my
master’s thesis, and for assuming the third examiner role for this thesis. His vision for
robotic manipulation inspired the foundations of this work, and his continued interest
was highly motivating. My deepest gratitude also goes to Dr. Klaus H. Strobl and Dr.
Martin Pfanne. They both acted as my mentors and supported me in numerous ways by
answering questions, providing feedback, and discussing fruitful ideas. Also, I would
like to thank Martin for supervising my master’s thesis.

During my work at DLR, the humanoid robot David was my primary research platform.
I would like to thank my friends and colleagues from the David team who continuously
extend and maintain the system. In particular, my gratitude goes to Dr. Martin Pfanne
and Ana Elvira Huezo Martin, who helped me with numerous experiments on the
system. Also, I would like to thank the head of the David team Sebastian Wolf for his
continued support. In addition, for the integration of the developed tracker on the
MiroSurge system for minimal-invasive robotic surgery, special thanks go to Florian
Steidle and Anne Elisabeth Reichert.

Moreover, I thank everyone who contributed to various publications. In addition to
previously mentioned colleagues, I would like to highlight the help of Martin Sunder-
meyer and Wout Boerdijk, with whom I created the RTB dataset. Many thanks also go to
the students Anne Elisabeth Reichert, Mariam Elsayed, and Jakob Rothe for their work.
My deepest gratitude also goes to Jakob Bachler, Dr. Klaus H. Strobl, Anne Elisabeth
Reichert, and Maximilian Ulmer for proofreading this dissertation. Furthermore, I want
to sincerely thank Prof. Andrew J. Davison from Imperial College London for taking the
second examiner role for this thesis.

Finally, I would like to thank my family and friends for their continued love and
support. My deepest gratitude goes to my girlfriend Daniela for her love and patience
and for keeping me company during numerous home-office days. Without you, the last
few years would not have been the same.

Abstract

In robotics, it is often assumed that the world is static, forward kinematics are perfectly
known, and interactions are fully deterministic. However, while those assumptions
are true for some applications, in general, they significantly limit the complexity of
manipulation tasks and the design of robotic hardware. To overcome such limitations,
this thesis focuses on 3D object tracking techniques for advanced robotic manipulation.
The goal is to develop a flexible and efficient algorithm that uses camera data to provide
continuous pose estimates for the robot’s end effector and relevant objects. Given such
feedback, it is possible to adopt more human-like visual servoing approaches, react to
changes in the environment, and facilitate safe and efficient robot designs.

The first main contribution of this work is a highly-efficient approach to region-based
object tracking. It features a well-founded probabilistic model that considers image
information sparsely along so-called correspondence lines. Experiments demonstrate
that the algorithm performs significantly better than existing region-based methods
while being approximately one order of magnitude faster. Subsequently, based on this
approach, an extension to multi-modality tracking is discussed. The method allows to
fuse depth, texture, and multi-region information from various cameras in a highly-
modular probabilistic formulation. Again, experiments on different datasets show that
the resulting algorithm is highly efficient and outperforms both conventional and deep
learning-based methods by a considerable margin. Finally, the third part of this thesis
considers the tracking of multi-body objects, which are composed of rigid bodies that
are connected by joints. For this, a flexible framework is proposed that allows the
extension of existing rigid object tracking methods to multi-body tracking. It considers
both tree-like and closed kinematic structures and facilitates the flexible configuration of
joints and constraints. For a detailed evaluation, a highly-realistic synthetic dataset is
introduced that features a large number of sequences and various robots. Experiments
demonstrate the excellent performance of the developed framework and tracker.

All theoretical concepts are implemented into the multi-body, multi-modality, and
multi-camera tracking library M3T, which we released as open-source software. It
provides a highly-modular architecture that supports a wide range of kinematic struc-
tures, object characteristics, and camera setups. In addition, the algorithm allows the
incorporation of robot joint measurements of varying accuracy and reliability. In real-
world experiments on the humanoid robot David and the MiroSurge system, it is used to
continuously provide the pose and configuration of manipulated objects and robot end
effectors. The developed approach thereby allows to close the perception-action loop
and facilitates new capabilities for advanced robotic manipulation.

iii

Contents

Acknowledgments i

Abstract iii

Contents v

List of Abbreviations ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

1. Introduction 1

1.1. Motivation . 1
1.2. Requirements . 3
1.3. Existing Techniques . 5
1.4. Contribution . 6
1.5. Outline . 9

2. Related Work 11

2.1. Introduction . 11
2.2. Edge-based Tracking . 11
2.3. Keypoint-based Tracking . 12
2.4. Direct Optimization . 13
2.5. Region-based Tracking . 14
2.6. Depth-based Tracking . 15
2.7. Deep Learning-based Tracking . 16
2.8. Multi-body Tracking . 17

3. Region-based Tracking 21

3.1. Introduction . 21
3.2. Correspondence Line Model . 22

3.2.1. Correspondence Lines . 22
3.2.2. Probabilistic Model . 23
3.2.3. Discrete Scale-space Formulation 24
3.2.4. Smoothed Step Functions . 26
3.2.5. Posterior Probability Distribution 28

3.3. 3D Object Tracking . 30
3.3.1. Preliminaries . 30

v

CONTENTS

3.3.2. Sparse Viewpoint Model . 32
3.3.3. Joint Posterior Probability . 32
3.3.4. Optimization . 33
3.3.5. Gradient and Hessian Approximation 35

3.4. Implementation . 37
3.4.1. Sparse Viewpoint Model . 37
3.4.2. Color Histograms . 38
3.4.3. Tracking Process . 38
3.4.4. Occlusion Handling . 39

3.5. Evaluation . 40
3.5.1. RBOT Dataset . 41
3.5.2. OPT Dataset . 44
3.5.3. Parameter Analysis . 46
3.5.4. Discussion . 48

3.6. Conclusion . 49

4. Multi-modality Tracking 51

4.1. Introduction . 51
4.2. Probabilistic Model . 53

4.2.1. Framework . 53
4.2.2. Depth Modality . 54
4.2.3. Texture Modality . 55
4.2.4. Multi-region Tracking . 57

4.3. Implementation . 59
4.4. Evaluation . 61

4.4.1. YCB-Video Dataset . 62
4.4.2. OPT Dataset . 65
4.4.3. Choi Dataset . 67
4.4.4. Ablation Studies . 68
4.4.5. Global Pose Estimation . 71
4.4.6. Pose Refinement . 72

4.5. Conclusion . 74

5. Multi-body Tracking 77

5.1. Introduction . 77
5.2. Framework . 78

5.2.1. Rigid Objects . 78
5.2.2. Tree-like Structures . 79
5.2.3. Closed Kinematic Structures . 80

5.3. Parameterization . 81
5.3.1. Preliminaries . 82
5.3.2. Body Jacobians . 82
5.3.3. Constraint Equations . 84

vi

CONTENTS

5.3.4. Pose Update . 86
5.4. Implementation . 87
5.5. Evaluation . 89

5.5.1. Robot Tracking Benchmark . 89
5.5.2. Metrics . 92
5.5.3. Kinematic Configuration . 92
5.5.4. Constraint Convergence . 94
5.5.5. Comparison . 96
5.5.6. Limitations . 97

5.6. Conclusion . 98

6. Applications 99

6.1. Introduction . 99
6.2. The M3T Library . 100

6.2.1. Architecture . 100
6.2.2. Tracking Process . 105
6.2.3. Initialization . 107
6.2.4. Proprioception . 108

6.3. The Humanoid Robot David . 111
6.3.1. Robot System . 111
6.3.2. Tracker Configuration . 113
6.3.3. Grasp State Estimation . 114
6.3.4. Example Applications . 114

6.4. The MiroSurge System . 117
6.4.1. Robot System . 117
6.4.2. Tracker Configuration . 118
6.4.3. Example Experiments . 119

7. Conclusion 121

7.1. Summary . 121
7.2. Future Work . 123

Appendices 127

A. Extended Probabilistic Model . 127
B. Derivative of Log-Posterior . 128
C. Closed-form Posteriors . 130
D. Inverse-Variance Weighting . 131
E. Derivatives of Constraint Equations . 131

E.1. Rotational Constraint . 132
E.2. Translational Constraint . 134

F. Properties of the Variation Matrix . 135
G. Constraint Convergence . 136

G.1. Rotational Constraint . 137

vii

CONTENTS

G.2. Translational Constraint . 138
H. Adjoint Equivalence . 139
I. Derivatives of Orthogonality Constraints 140

Bibliography 141

viii

List of Abbreviations

1D One-dimensional . 23

2D Two-dimensional . 11

3D Three-dimensional . 2

6DoF Six degrees of freedom . 3

AAE Augmented Autoencoder . 71

ADD Average-distance . 62

ADD-S Average-shortest-distance . 62

AR Augmented reality . 3

AUC Area-under-curve . 45

CAD Computer-aided design . 12

CNN Convolutional neural network . 6

CPU Central processing unit . 42

EKF Extended Kalman Filter . 17

FPS Frames per second . 65

GPU Graphics processing unit . 12

GT Ground-truth . 41

ICP Iterative Closest Point . 14

ID Identifier . 87

IM Iterative matching . 73

IMU Inertial measurement unit . 17

LN Links and Nodes . 113

MH Multi-hypothesis . 73

MOT Multiple object tracking . 5

PDF Probability density function . 53

PnP Perspective-n-Point . 107

RGB Red-green-blue . 17

RGB-D Red-green-blue-depth . 17

RMS Root-mean-square . 67

RTB Robot Tracking Benchmark . 7

SDF Signed distance function . 65

SLAM Simultaneous localization and mapping 5

ix

List of Abbreviations

UKF Unscented Kalman Filter . 17

YCB Yale-CMU-Berkeley . 62

x

List of Figures

1.1. Manipulation of a mug object by the robot David 2

3.1. Optimization process with converging correspondence lines 22
3.2. Definition of a correspondence line in an image 23
3.3. Scale-space projection for a correspondence line 25
3.4. Smoothed step functions . 27
3.5. First-order derivatives of the log-posterior 29
3.6. Posterior probability distributions . 29
3.7. Object rendering with sampled points and normal vectors 31
3.8. Contour variation along multiple correspondence lines 34
3.9. Discrete posterior probability distribution 36
3.10. Occlusion handling strategy . 40
3.11. Objects in the RBOT dataset . 41
3.12. Sequences in the RBOT dataset . 42
3.13. Images from the OPT dataset . 45
3.14. Tracking success and AUC scores over different parameter values 47

4.1. Multi-modality tracking using depth, texture, and multi-region 52
4.2. Single-region and multi-region models of a robotic end effector 58
4.3. Contour validation for elevated edges . 58
4.4. Contour validation and continuous distance calculation 59
4.5. Images from the YCB-Video dataset . 62
4.6. YCB objects that are suitable for multi-region tracking 63
4.7. Images from the Choi dataset . 67
4.8. Convergence plots for the YCB-Video, OPT, and Choi datasets 70

5.1. Examples for the tracking of kinematic structures 78
5.2. Relation between variation parameters in a kinematic structure 80
5.3. Transformations for a body that is connected to its parent by a joint . . . 83
5.4. Transformations between two bodies that share a constraint 84
5.5. Point validation strategies for the region and depth modality 88
5.6. Images of robots included in the RTB dataset 90
5.7. Images of depth qualities provided by the RTB dataset 91
5.8. Optimization time over the number of bodies for different configurations 94
5.9. Error convergence plots for different constraints 95

6.1. Example tracker configuration using the M3T library 104
6.2. Initialization with automatic detection and refinement 108
6.3. Link configuration to consider joint measurements 111
6.4. The humanoid robot David . 112

xi

LIST OF FIGURES

6.5. Grasping of objects in the David dishwasher demonstration 115
6.6. Pose predictions for the David hand with and without tracking 115
6.7. Examples for in-hand manipulation . 116
6.8. Typical setup of the MiroSurge system . 117
6.9. Manipulation of a cylinder using the MICA instrument 119

xii

List of Tables

3.1. Tracking success on the RBOT dataset . 43
3.2. Average runtimes for region-based tracking algorithms 44
3.3. AUC scores on the OPT dataset . 46

4.1. Geometries and renderings for multi-region model generation 61
4.2. ADD and ADD-S scores on the YCB-Video dataset 64
4.3. Average framerates and hardware requirements 65
4.4. AUC scores on the OPT dataset . 66
4.5. Mean RMS errors on the Choi dataset . 68
4.6. Comparison of different feature descriptors 69
4.7. Ablation study for individual components of the M3T tracker 70
4.8. Comparison with global 6DoF pose estimation methods 71
4.9. Evaluation of the M3T algorithm for pose refinement 73
4.10. Ablation study for pose refinement . 74

5.1. Characteristic numbers and thresholds for RTB objects 91
5.2. Comparison of different kinematic configurations 93
5.3. ADD and ADD-S scores on the RTB dataset for different difficulty levels 96
5.4. ADD and ADD-S scores on the RTB dataset for different depth qualities . 97

xiii

List of Algorithms

3.1. Tracking step . 39

6.1. Tracking process . 105
6.2. Detecting step . 106
6.3. Starting step . 106
6.4. Tracking step . 106

xv

1
Introduction

1.1. Motivation

Imagine you have to remove a mug from a dishwasher with closed eyes and wearing a
thick glove. With your most essential senses impeded, even such a simple task might
turn into a challenge. While you probably remember the mug’s rough location from the
moment you closed your eyes, you will most likely not move your hand to the perfect
location. Even if, by chance, the object is within reach when you try to grasp it, the mug
might move in ways that you cannot anticipate. Once the object is in your hand, you
have to turn it into an upright position and place it at the desired location. If you get
lucky, it lands close to where you intended, wobbling only a little. It might, however, be
completely off, tip over, or fall down. Given the high probability of failure, in general,
humans do not solve manipulation tasks in this way. Instead, they use continuous visual
and tactile feedback from their eyes, muscles, and skin. Based on this information, they
are able to close the perception-action loop, allowing them to continuously react and
adapt to changes in the environment and the object’s location.

In contrast to humans, most robotic systems have to solve manipulation tasks without
that kind of feedback. For many applications, objects are placed at a defined initial
location, or their pose is estimated from a single image. Manipulation is then executed
blindly without continuous feedback. To increase robustness and enable at least some
tasks, simplifications have to be made. In most cases, the environment is considered to
be static, without objects moving in unpredictable ways before or during manipulation.
Also, to know the end effector’s location relative to the world or a camera coordinate
frame, robots are supposed to be stiff and provide high-quality joint measurements.
While robots are successfully deployed in many applications where those constraints
are fulfilled, the described simplifications significantly limit both the complexity of
manipulation tasks and the design of robotic hardware.

The static world assumption does, for example, not allow for humans to interact with
objects after poses were estimated. Also, very precise robot motion is required to ensure
nothing moves in unpredictable ways. Handling a diverse set of objects with flexible but
imprecise end effectors, such as robotic hands, is often very difficult. Instead, in many
cases, a task- and workpiece-specific setup with dedicated grippers and fixtures has to be
employed. Moreover, complex yet natural interactions like the manipulation of an object
within a robotic hand remain impossible. In addition, the requirement for high-quality
forward kinematics also imposes constraints on the design of robotic hardware. In order

1

1. Introduction

Figure 1.1.: Manipulation of a mug object by the humanoid robot David. Pose predictions
from a 3D object tracking approach are visualized as an overlay. Without
accurate predictions for the mug and robot, the task would be unfeasible.

to know the relative location between robot joints, a very stiff mechanical structure is
required, adding weight and cost. Also, joint measurements have to be highly accurate.
For example, tendon-driven mechanisms, where sensors are placed at the end of cables
that are exposed to elastic elongation, friction, imprecise guides, and decalibration, are
highly problematic. Furthermore, soft mechanisms with purely elastic elements, for
which forward kinematics are difficult to estimate, typically remain impractical.

To overcome such limitations, this thesis focuses on the development of three-
dimensional (3D) object tracking techniques for advanced robotic manipulation. Using
camera data, our goal is to continuously provide the pose and configuration of known
objects and robots. Together with tactile information, this visual feedback can be used to
control interactions with objects and the environment. Consequently, more lightweight
and elastic mechanical structures can be deployed, leading to more dynamic and cost-
efficient robots. In addition, soft and elastic components can be realized, which increase
the robustness of systems to collisions and improve the safety for human-robot collabo-
ration. Finally, continuous feedback is also critical for robots to react to changes in the
environment. Given those capabilities, it is possible for humans to interact with objects
during operation. Also, it facilitates the effective use of complex end effectors such as
robotic hands and the creation of more advanced manipulation skills.

An example sequence that illustrates the usage of 3D object tracking for robotic
manipulation is given in Fig. 1.1. The sequence shows the humanoid robot David, which
features a fully elastic design, grasping a mug and placing it on a tray. Given imprecise
forward kinematics and unpredictable object movements, the task would be unfeasible
without continuous pose predictions. In summary, with the development of new 3D
object tracking techniques, our goal is to close the perception-action loop and allow
robots to adopt more human-like strategies for object manipulation.

2

1.2. Requirements

1.2. Requirements

In the following, we build on the motivation to continuously provide the pose and
configuration of known objects and robots using camera data. While 3D object tracking
is also highly important for augmented reality (AR), where digital information is
imposed on real-world images, in this work, we focus on robotic manipulation. Note,
however, that requirements are mostly the same and that developed solutions can often
be applied in both fields. For our research, we also concentrate on tracking instead
of detection and global pose estimation. While global estimation algorithms search
for an object in a single image and over the entire pose domain, tracking follows an
object over consecutive images and uses local optimization. For the initialization of
the tracker, prior knowledge or global detection and pose estimation algorithms can be
used. Because of the simplified task, tracking is typically more efficient and accurate.
Also, it often produces more consistent results. Consequently, we believe that tracking is
better suited to provide continuous feedback for robotic manipulation. Based on our
focus on tracking and the general task of advanced robotic manipulation, the following
requirements are derived:

❘♦❜✉st Since tracking uses local optimization, it is possible that objects get lost and
predictions become erroneous. In such a case, it is often impossible to recover
the correct pose without global pose estimation. For real-world applications, it is
critical to ensure robustness and make such events as rare as possible. Typically,
tracking loss can happen if the motion from one image frame to the next is too
big. Also, tracking can fail if information is missing or ambiguous because of
effects such as occlusions, motion blur, textureless surfaces, object symmetries, or
background clutter. It is, therefore, crucial that the tracker has a large basin of
convergence and robustly considers a diverse set of information.

❆❝❝✉r❛t❡ In order for a robot to grasp an object and manipulate it, sufficient accuracy
is essential. While there is no upper limit with respect to accuracy, since higher
will always be better, our goal is to support manipulation tasks humans encounter
in everyday life. As described in the motivation, a typical example could be
the grasping and positioning of a mug. To successfully execute such a task, a
translational error below one centimeter and a rotational error of a few degrees
are desirable. In contrast to augmented reality, it is thereby not only important to
have small errors in image space, but that predictions are accurate in 3D space for
all six degrees of freedom (6DoF).

❋❛st Because visual feedback is used by robots to react to changes in the environment,
speed is critical. In most cases, this means that tracking algorithms should be able
to process every image provided by the camera. Also, to ensure responsiveness
and avoid instabilities in control algorithms, low latency is required. Given that
consumer cameras typically run at a frequency of 30 Hz, this can be seen as a lower
bound for the speed of a tracking algorithm. In addition, since frame-to-frame

3

1. Introduction

pose differences decrease if more images are considered, using all available frames
further improves robustness.

❊✣❝✐❡♥t In real-world robotic systems, a large number of computational processes,
which range from control to planning, have to be executed in parallel. As a
consequence, computational resources are often highly contested. This is especially
true for mobile platforms, where both energy and space are constrained. Also,
streaming images to external servers is often difficult and adds additional delay
that should be avoided for highly dynamic tasks. To ensure that tracking methods
can be used on mobile platforms with a limited computational budget, it is
important that algorithms are as efficient as possible.

❑✐♥❡♠❛t✐❝ ❙tr✉❝t✉r❡s Many real-world objects consist of connected bodies that form
kinematic structures. Typical examples range from various tools over furniture
and appliances to complex machines. Most prominently for our task, almost
every robot is a multi-body system, where individual links are connected by joints.
While, in theory, individual bodies could be tracked independently, in most cases,
this makes the task unfeasible. Consequently, to provide high-quality predictions
for robotic end effectors, it is essential to consider kinematic information.

Pr♦♣r✐♦❝❡♣t✐♦♥ Robotic systems provide a wide variety of sensory data. Prominent
examples are joint sensors that measure the relative location between individual
links. While this kind of proprioception can be found in almost every robot, the
quality of measurements varies widely. Examples range from highly-accurate
industrial robots to soft or tendon-driven mechanisms where sensors only pro-
vide a rough estimate. Nevertheless, independent of accuracy, information from
joint measurements is highly valuable. Since proprioception restricts the relative
pose between individual bodies and, in some cases, the camera, it significantly
constrains the optimization and helps to improve robustness. In addition, if errors
are small, measurements can also be used to improve accuracy.

▼♦❞✉❧❛r In general, a wide variety of robotic manipulators exists. Kinematic structures
range from simple chains and trees, which can be found in articulated robots, to
closed structures, such as parallel robots. Individual links are often connected
by revolute, prismatic, or spherical joints, for which sensors might or might
not provide measurements. Also, while some robots only use color cameras,
others integrate depth sensors. In addition to system-dependent aspects, object
characteristics can also vary widely. Examples include objects without texture,
various symmetries, or surface properties that are problematic for depth cameras.
To support a wide variety of different robots, kinematic structures, camera setups,
and object characteristics, the tracker has to be highly modular and allow for a
flexible configuration.

❯s❛❜✐❧✐t② Since tracking and pose estimation is only a small part of the full robotics stack,
users might come from different domains with limited experience in computer

4

1.3. Existing Techniques

vision. Together with the desire to quickly integrate new applications, developed
tracking solutions should facilitate a fast and easy configuration of new objects.
Furthermore, it is desirable to require as little data as possible. For example, while
geometric 3D models are often available, creating realistic 3D scans with texture
requires a lot more effort. Likewise, recording or generating training data with
sufficient realism and accurate annotations is typically very time-consuming and
challenging for inexperienced users. Given those considerations, in the case of
similar performance, data-efficient techniques should always be preferred.

1.3. Existing Techniques

In this work, we focus on model-based 3D object tracking. In contrast to multiple object
tracking (MOT) (Luo et al. 2021; Meinhardt et al. 2022; Y. Zhang et al. 2022; Zeng et al.
2022), which follows objects in image space, the goal is to provide object positions
and orientations relative to the camera in 3D space at high frequency. Furthermore,
compared to simultaneous localization and mapping (SLAM) (Davison 2003; Davison
et al. 2007; Newcombe et al. 2011; Forster et al. 2014; Engel et al. 2018; C. Campos et al.
2021), we do not estimate the camera’s pose relative to a mostly static world but assume
a dynamic world for which we estimate the 6DoF poses of multiple moving objects. In
addition, for kinematic structures, we predict object configurations. Together with object
positions and orientations, this directly corresponds to the 6DoF poses of all individual
rigid bodies in the system. In our work, we also assume that, for the estimation, object
models and kinematic structures are known. Compared to category-level trackers (C.
Wang et al. 2020; Weng et al. 2021; Deng et al. 2022), which do not require a model
during inference, model-based techniques are often significantly more accurate and
robust. Also, they fit well with model-based planning and control algorithms. As a
consequence, given the current state of the art, we believe that model-based 3D object
tracking approaches are best suited to provide accurate and robust visual feedback for
closed-loop robotic manipulation. In the following, we provide a short summary of
existing techniques. A detailed overview can be found in Chapter 2.

For model-based 3D object tracking, a wide variety of methods and techniques
exist. In general, techniques can be categorized by their use of edges, keypoints,
direct optimization, object regions, depth information, and deep learning. Edge-based
methods fit edges from the object model to high-intensity gradients in the image (Harris
and Stephens 1988; Drummond and Cipolla 2002). While such methods are able
to track textureless objects, they often struggle with texture and background clutter.
Keypoint-based methods, on the other hand, use characteristic points on the object’s
surface to estimate the pose (Vacchetti et al. 2004; Lourakis and Zabulis 2013). They
typically provide a large basin of convergence and are robust to illumination changes.
However, they require strong texture to provide good results. Methods based on direct
optimization (Crivellaro and Lepetit 2014; Caron et al. 2014) minimize a pixel-wise error
over the object silhouette. While they often have a smaller basin of convergence and are

5

1. Introduction

less robust to illumination changes, they require less varied texture and are typically
more accurate than keypoint-based techniques.

To facilitate the tracking of textureless objects in cluttered environments, region-based
approaches have become very popular (Prisacariu and Reid 2012; Tjaden et al. 2018).
They fit the object model to best explain the segmentation between the object silhouette
and the background based on image statistics such as color. However, while they provide
excellent results in challenging conditions, most methods feature computationally
expensive dense formulations that hardly run in real-time. With the development
of cheap consumer depth cameras, tracking methods that minimize the distance between
the object model and depth measurements have also been developed (Rusinkiewicz
and Levoy 2001; Fitzgibbon 2003). Depending on the depth sensor and image quality,
they are able to track textureless objects and provide accurate results. Finally, data-
driven techniques that use architectures like convolutional neural networks (CNNs) have
also been proposed (Garon and Lalonde 2017; Y. Li et al. 2018). While such methods
hold great promise for the future, they require significant computational resources and
large amounts of training data. Currently, only very few methods run in real-time.
Moreover, because of limited evaluations on benchmarks, it is unclear how current deep
learning-based methods compare to conventional techniques.

Finally, for the tracking of multi-body objects, various methods that combine and
extend different techniques have been developed (Brox et al. 2010; Krainin et al. 2011). In
general, almost all methods either use preimposed constraints based on the formulation
of Lowe (1991) or postimposed constraints according to the work of Drummond and
Cipolla (2002). The algorithm of Lowe (1991) uses Jacobian matrices to describe the
variation of individual measurements with respect to a minimal set of parameters
that describe the pose and configuration of the kinematic structure. The method of
Drummond and Cipolla (2002), on the other hand, first predicts the independent
6DoF variation of individual bodies and later ensures compatibility using velocity
constraints. Both formulations have been applied in combination with various tracking
techniques. Nevertheless, while they work very well for tree-like topologies, they cannot
be applied to closed kinematic structures. Also, while the general concepts were proven
in various publications, only very few modern algorithms are available that allow the
flexible configuration of kinematic structures. Two examples are DART (Schmidt et al.
2015b) and SimTrack (Pauwels and Kragic 2015). While DART uses depth information,
SimTrack integrates depth and optical flow, which is a variant of direct optimization.
However, with an already outdated optical flow approach and only a very limited set
of considered information, both algorithms fall short of the full potential that modern
tracking techniques offer.

1.4. Contribution

The following work improves and combines existing model-based 3D object tracking
techniques while considering their suitability for advanced robotic manipulation. All

6

1.4. Contribution

developed approaches are integrated into a highly-modular library for multi-body,
multi-modality, and multi-camera tracking that we call M3T. The library is open-source
since 2020 and has been well-received by the community.1 For our approach, we
start with region-based tracking. Given that many robots and man-made objects have
uniform surfaces without rich texture, such techniques are particularly well-suited for
our domain. Existing region-based methods, however, typically feature computationally
expensive dense formulations that contradict our requirements for efficiency and speed.
To overcome such limitations, we develop a novel sparse formulation that bridges this
gap in efficiency and, in addition, improves tracking quality.

Based on this method, we design a modular approach that allows the flexible com-
bination of multiple modalities. We thereby consider depth, texture, and multi-region
information. The depth modality minimizes the distance of surface points, while the
texture modality uses keypoint features, and the multi-region approach extends region-
based tracking to consider different regions on the object surface. While single-region
and depth work very well for textureless objects, for which only geometric information
is available, multi-region and texture are able to consider visual appearance. For the
developed multi-modality tracker, we conduct a detailed evaluation that shows that our
approach is highly efficient and outperforms existing methods by a considerable margin.
In addition, we check the algorithm’s potential for pose refinement, which is typically
conducted after global 6DoF pose estimation. Finally, the evaluation not only allows us
to assess our own approach but also to gain new insights into the current state of deep
learning-based object tracking.

Subsequently, to consider kinematic structures, a multi-body tracking framework is
developed. It facilitates the flexible configuration of joints and constraints between
individual rigid bodies. The framework not only supports tree-like topologies but also
allows the accurate modeling of closed kinematic structures, which are present in various
robots and mechanisms. With respect to rotational constraints, particularly noteworthy
are novel equations that cover the entire rotation space and which ensure that the
algorithm converges in a single iteration. After an extension of the previously developed
multi-modality tracker to multi-body tracking, a detailed evaluation is conducted. For
this, the Robot Tracking Benchmark (RTB) is introduced. It is a highly-realistic synthetic
dataset that features a large number of sequences and various robots. It was generated
using the procedural rendering pipeline BlenderProc and is publicly available2.

Finally, we extend our multi-body, multi-modality, and multi-camera 3D object track-
ing library M3T to incorporate joint measurements of varying accuracy. The resulting
approach is integrated into the humanoid robot David (Grebenstein et al. 2011) and
the system for minimal-invasive robotic surgery MiroSurge (Hagn et al. 2010). In both
systems, the tracker continuously provides pose estimates for manipulated objects and
robot end effectors. It thereby allows to close the perception-action loop. In detail, the
most important contributions of our work are as follows:

1❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴✸❉❖❜❥❡❝t❚r❛❝❦✐♥❣
2❤tt♣s✿✴✴③❡♥♦❞♦✳♦r❣✴r❡❝♦r❞✴✼✺✹✽✺✸✼

7

https://github.com/DLR-RM/3DObjectTracking
https://zenodo.org/record/7548537

1. Introduction

❙♣❛rs❡ ❘❡❣✐♦♥ ❆♣♣r♦❛❝❤ A sparse formulation that introduces so-called correspon-
dence lines, which model the probability of the object’s contour location. The
approach also features a highly-efficient scale-space formulation, as well as an
optimization strategy that differentiates between global and local views.

❊①t❡♥❞❡❞ ❙❡❣♠❡♥t❛t✐♦♥ ▼♦❞❡❧ Novel smoothed step functions for region-based track-
ing that allow the modeling of both local and global uncertainties. For the resulting
probabilistic model, a detailed theoretical analysis is presented that shows how
different parameter settings affect the posterior probability distribution of the
contour location.

▼✉❧t✐✲♠♦❞❛❧✐t② ❚r❛❝❦✐♥❣ A highly-efficient, flexible tracking algorithm that combines
depth, texture, and multi-region information. The previously developed single-
region approach is thereby extended to multi-region tracking. Experiments com-
pare our algorithm to state-of-the-art 3D object tracking and global pose estimation
methods, assess the algorithm’s potential for pose refinement, and allow us to gain
new insights into the performance of deep learning-based tracking techniques.

▼✉❧t✐✲❜♦❞② ❚r❛❝❦✐♥❣ A unified framework that combines both the projection to a min-
imal parameterization and the application of pose constraints into a single for-
mulation. It is the first approach that allows the accurate modeling of closed
kinematic structures. Based on this framework, which allows the integration of
any method that uses Newton-like optimization, a multi-body, multi-modality,
and multi-camera tracker is developed.

❘♦t❛t✐♦♥❛❧ ❈♦♥str❛✐♥t ❊q✉❛t✐♦♥s Equations to implement rotational constraints that
directly operate on the rotation vector and cover the entire space of possible
rotations. For the equations, a thorough mathematical proof is derived that shows
that our constraints enforce an exact solution for which pose differences converge
in a single iteration.

❘♦❜♦t ❚r❛❝❦✐♥❣ ❇❡♥❝❤♠❛r❦ A synthetic dataset with a large number of sequences and
various moving robots that facilitates the quantitative evaluation of multi-body
tracking algorithms. The dataset contains not only photo-realistic sequences but
also provides different depth qualities to simulate real-world conditions.

▼✸❚ ▲✐❜r❛r② A multi-body, multi-modality, and multi-camera tracking algorithm that
supports a wide range of kinematic structures, object characteristics, and camera
configurations. It is able to consider known and unknown occlusions, is highly
efficient, and provides results in real-time. The overall framework is very modular
and allows a flexible combination of different components such as cameras, links,
constraints, modalities, viewers, detectors, refiners, publishers, and subscribers.

❙②st❡♠ ■♥t❡❣r❛t✐♦♥ The developed tracker is integrated into the humanoid robot David

and the MiroSurge system for robotic surgery. In both cases, it utilizes camera

8

1.5. Outline

images and constrains predictions using joint measurements. By providing contin-
uous estimates for the pose and configuration of manipulated objects and robotic
end effectors, the tracker is able to facilitate new manipulation capabilities.

1.5. Outline

This work is motivated by a preceding master’s thesis (Stoiber 2019) and incorporates
material from multiple publications in conferences and journals that build on each
other. Inspired by their causal structure, the thesis is organized as follows: In Chapter 1,
we explain why 3D object tracking is essential for advanced robotic manipulation and
discuss requirements that follow from this application. After a short overview of existing
techniques, the contribution of this thesis is summarized. Chapter 2 presents related
work and gives a detailed survey of 3D object tracking methods, categorized by their use
of edges, keypoints, direct optimization, object regions, depth data, and deep learning.
In addition, techniques and algorithms for multi-body tracking are discussed.

Subsequently, we start with the presentation of our own work. Chapter 3 thereby
considers region-based tracking based on SRT3D (Stoiber et al. 2020; Stoiber et al. 2022a)
and also includes modifications proposed for ICG (Stoiber et al. 2022b). The chapter first
presents the derivation of a probabilistic correspondence line model. This is followed by
the development of a highly-efficient 6DoF tracking approach that utilizes this model.
After providing implementation details, a thorough evaluation is presented. In Chapter 4,
a multi-modality tracker is introduced that allows the combination of depth, texture,
and multi-region information. It includes developments and experiments from ICG

and ICG+ (Stoiber et al. 2022b; Stoiber et al. 2023a). After providing a probabilistic
model for each modality, implementation details are discussed. This is followed by
a thorough evaluation that distinguishes between geometry-based tracking and the
additional incorporation of visual appearance. Lastly, Chapter 5 covers multi-body
tracking based on Mb-ICG (Stoiber et al. 2023b). It starts by introducing a general
framework that is independent of a particular parameterization. Afterwards, equations
required for joints and constraints are derived for the axis-angle representation. For the
developed constraint equations, we also analyze convergence properties. Subsequently,
implementation details and extensions compared to previous algorithms are discussed.
Finally, after introducing the RTB dataset, the chapter is concluded with a thorough
evaluation that assesses the developed framework and tracker.

Given the proposed approach, Chapter 6 focuses on applications in the real world.
For this, we first provide an overview of the developed open-source library M3T and
explain its architecture. In addition, the initialization of the tracker is discussed, and an
approach for the incorporation of measurements from joint sensors is presented. Based
on the M3T library, we then consider the integration into the humanoid robot David and
the MiroSurge system for minimal-invasive robotic surgery. Finally, Chapter 7 concludes
this thesis with a summary of our work and a discussion of possible future research
directions.

9

2
Related Work

2.1. Introduction

For the task of model-based 3D object tracking, a wide variety of methods and different
techniques exist. Based on surveys (Lepetit and Fua 2005; Yilmaz et al. 2006), as well as
recent developments, they can be categorized by their use of edges, keypoints, direct
optimization, object regions, depth data, and deep learning. In the following, the current
state of the art for those techniques is introduced. Most of the discussed methods
thereby only consider rigid objects. Approaches that facilitate the tracking of multi-body
systems with joints and constraints are discussed separately in the final section. Note
that Sections 2.3, 2.5, and 2.8 are based on previous publications (Stoiber et al. 2023a;
Stoiber et al. 2022a; Stoiber et al. 2023b).

2.2. Edge-based Tracking

While some early approaches fitted the object model to previously extracted edges in
the image (Lowe 1992; Gennery 1992), most algorithms simply look for strong gradients
around the current estimate without using global edge detection. One of the most
prominent methods that established this approach is RAPID (Harris and Stennett 1990).
It searches for strong gradients along lines perpendicular to the projected contour to
find correspondence points. Based on those 2D-3D correspondences, it then optimizes
the object pose. To improve the robustness of this approach, Armstrong and Zisserman
(1995) suggested the detection of outliers using RANSAC (Fischler and Bolles 1981),
while G. Simon and Berger (1998) and Drummond and Cipolla (2002) proposed the
integration of robust estimators. Also, Marchand et al. (2001) incorporated a robust
estimator, as well as a motion model, to first estimate a two-dimensional (2D) affine
transformation. Subsequently, for the full 6DoF pose, their method iteratively minimizes
a cost function based on image gradients and contour normal vectors. A similar cost
function was later adopted by Bugaev et al. (2018). However, they used Basin-hopping
to refine a pose that is first estimated using optical flow. In another approach, Comport
et al. (2006) formulated 3D object tracking in terms of virtual visual servoing and
analytically computed the distance to geometric primitives. Also, Imperoli and Pretto
(2015) proposed a representation that encodes the minimum distance to an edge point
in a joint location and orientation space, which can also be used for pose refinement.

11

2. Related Work

To further improve robustness, the consideration of multiple edge hypotheses along
search lines was also suggested. One of the first algorithms was developed by Vacchetti
et al. (2004). It was later extended by Wuest et al. (2005) with the integration of Gaussian
mixture models. A combined method that uses keypoint features and edges was also
designed by Rosten and Drummond (2005). A different way to improve robustness in
highly-cluttered scenes is the incorporation of region information. The first approach
that goes in this direction was developed by Seo et al. (2014). It uses region information
and optimal local searching to evaluate possible correspondences. The algorithm was
later extended by G. Wang et al. (2015), who integrated global optimal searching with
a graph model. The method of Huang et al. (2020) filters points in a similar way but,
in addition, utilizes region-based confidence values. Apart from filtering points, the
combination of region and edge information into a single energy function was proposed
by J.-C. Li et al. (2021). Finally, X. Sun et al. (2021) developed a so-called contour part
model, where contour patches are matched to gradients in the image.

A different direction, which, again, has the goal of improving robustness in challenging
environments, is the use of particle filtering. While Isard and Blake (1998) showed that
particle filters can be used for tracking, Pupilli and Calway (2006) developed the first
model-based 3D object tracking method. Later, Klein and Murray (2006) implemented
an approach that utilizes the graphics processing unit (GPU) to track objects in real-
time. In another approach, Mörwald et al. (2009) incorporated both edges from a 3D
computer-aided design (CAD) model and unmodeled edges from object texture. Also,
Teulière et al. (2010) assigned multiple edge hypotheses to different classes that are
integrated into a particle filter. A highly-efficient approach that utilizes particle- and
pixel-level parallelism on the GPU was later developed by Brown and Capson (2012). At
the same time, Choi and Christensen (2012a) integrated keypoint features to initialize
particles, used RANSAC to validate edge correspondences, and adopted autoregressive
state dynamics to guide particles effectively. Also, in a later work, Choi and Christensen
(2012b) proposed the utilization of particle annealing and to use Chamfer matching
of edge templates instead of keypoint features for initialization. Finally, B. Wang et al.
(2019) developed a method that employs a distance transform from extracted edges and
a particle filter that validates poses based on the consistency of edge directions.

2.3. Keypoint-based Tracking

To consider texture information, keypoint-based methods are very popular. In general,
keypoint features mark distinct locations on the object surface and provide a descriptor
that depends on the surrounding region. For 3D object tracking, most methods recon-
struct 3D points, establish 2D-3D correspondences, and then optimize for the pose. Both
Vacchetti et al. (2004) and Lourakis and Zabulis (2013) followed this approach. To obtain
3D model points, their methods use pre-registered reference frames and then minimize
the reprojection error in the image. In addition, inspired by Shan et al. (2001), Vacchetti
et al. (2004) developed a local bundle adjustment technique, which uses homographies

12

2.4. Direct Optimization

to approximate transfer functions that project keypoints between frames. In contrast to
those methods, Brox et al. (2010) proposed the utilization of a mesh model to reconstruct
3D points and minimize an error in 3D space. Similarly, Krainin et al. (2011) used depth
images to determine the 3D location of keypoints. Their algorithm then optimizes the
3D point-to-point distance to estimate the object’s pose.

For keypoint features, a wide variety of detectors and descriptors has been developed.
Work can thereby be traced back to Moravec (1980) and Harris and Stephens (1988).
Especially with the development of SIFT (Lowe 2004), which is both highly accurate
and robust, the use of keypoint features became very popular. Approaches inspired by
SIFT that improve computational efficiency were later presented with SURF (Bay et al.
2006), DAISY (Tola et al. 2010), or KAZE (Alcantarilla et al. 2012). Also, to improve the
speed of feature detection, the intensity-based algorithm FAST (Rosten and Drummond
2005) was developed. It was further improved with the ORB detector (Rublee et al.
2011), which selects features using the Harris response. Together with lightweight
binary descriptors such as BRIEF (Calonder et al. 2010), ORB (Rublee et al. 2011), BRISK

(Leutenegger et al. 2011), or FREAK (Alahi et al. 2012), highly-efficient algorithms can
be designed. In recent years, variants that use deep learning at various stages have
also been developed. Prominent examples are LIFT (Yi et al. 2016), DSAC (Brachmann
et al. 2017), SuperPoint (DeTone et al. 2018), D2-Net (Dusmanu et al. 2019), SuperGlue

(Sarlin et al. 2020), or LoFTR (J. Sun et al. 2021). However, while those approaches show
excellent results, they are often less efficient than conventional methods. Consequently,
they are not well-suited to provide real-time feedback for robotic manipulation with
limited computational resources. For a comprehensive survey on deep learning-based
keypoint features and techniques, we refer interested readers to Ma et al. (2021).

2.4. Direct Optimization

In addition to keypoint features, direct optimization is also used to incorporate texture
information. Most approaches are thereby inspired by Lucas and Kanade (1981). Their
method minimizes the photometric difference between two images and is widely used
for image alignment. Based on the original algorithm, numerous modifications were
proposed that are summarized in a survey by Baker and Matthews (2004). While early
model-based 3D object tracking approaches considered planes on the object surface
(Jurie and Dhome 2002) or primitive geometries such as cylinders (La Cascia et al. 2000),
the approach was later extended to arbitrary shapes (Sepp 2006). Also, instead of directly
using pixel intensities, Crivellaro and Lepetit (2014) developed so-called Descriptor Fields,
which improve performance for poorly-textured and specular objects. In contrast to this
approach, Caron et al. (2014) suggested the use of mutual information between rendered
and real-world images. Later, a constrained objective function that considers intensity
variations using surface normals under the Lambertian assumption was proposed by Seo
and Wuest (2016). Also, with Dense Feature Fields and dynamic template rendering, the
approach of Crivellaro and Lepetit (2014) was extended by Zhong et al. (2018). Finally,

13

2. Related Work

combinations with region-based techniques were developed by Zhong and L. Zhang
(2019), Y. Liu et al. (2020), and F. Liu et al. (2021).

Similar to direct optimization, methods that use optical flow have also been inspired by
Lucas and Kanade (1981). However, instead of directly regressing the pose, algorithms
first estimate the relative motion of each pixel from one frame to the next. Based on this
data, they then compute the pose transformation of objects. A method that uses this
approach together with region- and keypoint-based techniques was developed by Brox
et al. (2010). Later, Pauwels et al. (2013) combined depth and optical flow. Also, to avoid
drift, they proposed an approach they call Augmented Reality Flow. It computes optical
flow between the current image and a rendering of the object model. The method was
later extended for the tracking of articulated objects (Pauwels et al. 2014).

2.5. Region-based Tracking

Region-based methods use image statistics to differentiate between a foreground region
corresponding to the object and a background region. Typically, color statistics are used
to model the membership of each pixel. Based on the two regions, the goal is to find
the object pose and corresponding silhouette that best explains the segmentation of the
image. The potential of this technique was already demonstrated by early approaches
that treated segmentation and pose tracking as independent problems (Schmaltz et al.
2012; Brox et al. 2010; Rosenhahn et al. 2007). Dambreville et al. (2008) later combined
the two processes in a single energy function, leading to improved tracking robustness.
Building on this approach and including the pixel-wise posterior membership of Bibby
and Reid (2008), Prisacariu and Reid (2012) developed PWP3D, a real-time-capable
algorithm that uses a level-set pose embedding. It is the foundation of almost all
state-of-the-art region-based methods.

Based on PWP3D, multiple algorithms were proposed that incorporate additional
information, extend the segmentation model, or improve efficiency. For the combination
of depth and region, Kehl et al. (2017) suggested an extension of the original energy
function with a term that is based on the Iterative Closest Point (ICP) algorithm (Besl
and McKay 1992). In a different approach, Ren et al. (2017) tightly coupled region and
depth information in a probabilistic formulation that uses 3D signed distance functions.
To consider object texture, combinations with direct optimization using pixel intensity
values (Y. Liu et al. 2020; Zhong and L. Zhang 2019) or descriptor fields (F. Liu et al. 2021)
were also proposed. Also, as discussed previously, multiple methods were designed
that combine region and edge information (Seo et al. 2014; G. Wang et al. 2015; Huang
et al. 2020; X. Sun et al. 2021). To improve occlusion handling, Zhong et al. (2020a)
suggested the use of learning-based object segmentation, while Huang et al. (2022)
utilized edge-based contour constraints. Finally, the incorporation of measurements
from a mobile phone’s inertial sensor was suggested by Prisacariu et al. (2015).

Another approach that potentially improves tracking is the extension of the segmen-
tation model. For this, Zhao et al. (2014) extended the appearance model of PWP3D

14

2.6. Depth-based Tracking

with a boundary term that considers spatial distribution regularities of pixels. Later,
Hexner and Hagege (2016) proposed using local appearance models that were inspired
by the localized contours of Lankton and Tannenbaum (2008). The idea was further im-
proved by Tjaden et al. (2018) with the development of temporally consistent local color
histograms. Also, Zhong et al. (2020b) proposed a method that introduces polar-based
region partitioning and edge-based occlusion detection.

To improve the energy function’s optimization, Zhao et al. (2014) suggested a particle-
filter-like stochastic technique that initializes a subsequent damped Newton method. For
better efficiency, a hierarchical rendering approach that uses the Levenberg-Marquardt
algorithm was developed by Prisacariu et al. (2015). In another work, Tjaden et al.
(2018) proposed the use of a Gauss-Newton method to improve convergence. Apart
from optimization, another idea towards better efficiency is the utilization of simplified
signed distance functions in the probabilistic segmentation model (Y. Liu et al. 2020).
Also, Kehl et al. (2017) suggested employing precomputed contour points to represent
the object’s 3D geometry and calculating the energy function along rays.

2.6. Depth-based Tracking

Depth-based methods minimize the distance between the surface of a 3D model and
measurements from a depth camera. While high-quality depth cameras only recently
became affordable, algorithms that utilize this kind of information have a long history.
One of the most prominent methods is the Iterative Closest Point (ICP) approach of Besl
and McKay (1992). The algorithm registers two point sets by iteratively establishing
correspondences between closest points and subsequently minimizing their distance.
Starting from the original ICP algorithm, many variants have been developed.

According to a survey from Rusinkiewicz and Levoy (2001), as well as more recent
work from Pomerleau et al. (2015), most algorithms share a similar structure. Typically,
they only differ with respect to point selection, matching, rejection, weighting, error
metrics, or optimization techniques. For point selection, examples include methods
that use all points (Besl and McKay 1992), sample points uniformly (Turk and Levoy
1994), select random points (Masuda et al. 1996), or choose points at locations with high
color intensity gradients (Weik 1997). To establish correspondences, different matching
algorithms have been developed. In addition to closest point selection, methods search
for points along the normal vector (Chen and Medioni 1992), project source points into
the destination image (Blais and Levine 1995), or perform a search close to projected
points (Dorai et al. 1998). After matching, point pairs that are regarded as outliers can
be rejected. Typical examples include removing pairs for which the euclidean distance
or the angle between normal vectors is above a certain threshold (Pulli 1999). Also,
it is possible to only consider the best n percent (Pulli 1999), eliminate pairs that are
not consistent with neighboring pairs (Dorai et al. 1998), or reject points on image
boundaries (Turk and Levoy 1994). To weight individual pairs, one can again use the
euclidean distance (Godin et al. 1994). Other options include the compatibility of surface

15

2. Related Work

normals and estimates for sensor noise (Rusinkiewicz and Levoy 2001). Finally, for
optimization, the point-to-point (Besl and McKay 1992) and point-to-plane (Chen and
Medioni 1992) error metrics are most popular. While the first directly uses the euclidean
distance, the second calculates the distance along the normal vector. The optimization is
then conducted by repeatedly establishing correspondences and minimizing the error.
In addition, methods exist that extrapolate in the transform space (Besl and McKay 1992)
or perturb initial conditions (D. A. Simon 1996).

Based on the ICP approach and its variants, different tracking algorithms have been
developed. Because of high efficiency and good convergence properties, many methods
combine projective data association (Blais and Levine 1995) and the point-to-plane error
metric (Chen and Medioni 1992). One example that uses this combination is the tracker
of Salas-Moreno et al. (2013), which is employed in the SLAM++ algorithm. It is used
to estimate both the poses of individual objects and the camera. In the method, the
error is computed densely over all points, and the Huber norm is utilized to consider
outliers. Projective data association and the point-to-plane error metric are also used in
the approach of Pauwels et al. (2013), which densely combines depth and optical flow.
Finally, Tan et al. (2017) and Kehl et al. (2017) also adopted the same combination. Both
methods consider depth information using a sparse set of precomputed surface points
and normal vectors. In addition, similar to their previous work (Tan and Ilic 2014), Tan
et al. (2017) proposed the use of random forests to predict the relative pose.

Apart from algorithms based on ICP, methods that utilize signed distance functions
have also been developed. According to the original formulation of Fitzgibbon (2003),
the space around the object is thereby voxelized. Parameters that depend on the surface
distance, such as gradient vectors, can be precomputed. Instead of calculating corre-
spondences, depth measurements are simply projected into this voxel space. Prominent
examples that use this technique include the method of Ren and Reid (2012) and the
articulated tracking approach DART by Schmidt et al. (2015b).

Finally, approaches that employ filtering techniques instead of gradient-based opti-
mization have also been developed. Examples include the method of Wüthrich et al.
(2013), which uses a Rao-Blackwellised particle filter to estimate the object pose. The
approach was later extended to articulated objects by Cifuentes et al. (2017) using a
so-called Coordinate Particle Filter (Wüthrich et al. 2015). In another approach, Choi and
Christensen (2013) proposed the combination of photometric and geometric features
to determine the likelihood of each particle. Also, to make tracking fast and reliable
even with a small number of particles, Krull et al. (2015) used the concept of 3D object
coordinates. Furthermore, Issac et al. (2016) adopted robust Gaussian filtering (Wüthrich
et al. 2016) to effectively consider outliers.

2.7. Deep Learning-based Tracking

While deep learning has proven highly successful for global 6DoF pose estimation
(Haugaard and Buch 2022; Lipson et al. 2022; G. Wang et al. 2021; He et al. 2021; Labbé

16

2.8. Multi-body Tracking

et al. 2020; Hodaň et al. 2020; Sundermeyer et al. 2018), deep learning-based tracking
methods were only recently proposed. Many approaches are inspired by pose refinement
and predict the relative pose between object renderings and subsequent images. One of
the first methods that follows this approach was developed by Garon and Lalonde (2017).
It regresses the pose based on color and depth data. To make predictions robust to visual
ambiguity and symmetry, Manhardt et al. (2018) proposed a loss function that evaluates
the alignment of object contours. At the same time, Y. Li et al. (2018) developed DeepIM.
The method introduces both a new loss function and an untangled pose representation
that is independent of the object’s coordinate frame and size. Both methods only utilize
red-green-blue (RGB) images. Later, Marougkas et al. (2020) developed a method that
uses red-green-blue-depth (RGB-D) images and introduced multiple parallel soft spatial
attention modules to handle background clutter and occlusions. Also, Wen et al. (2020)
proposed se(3)-TrackNet, which employs Lie algebra to represent 3D orientations and
a new loss function. The incorporation of inertial data from an inertial measurement
unit (IMU) sensor was investigated by R. Ge and Loianno (2021).

In addition to those render-and-compare algorithms, Deng et al. (2021) developed
PoseRBPF. It uses a Rao-Blackwellized particle filter that decouples rotation and trans-
lation and encodes the rotation using pose-representative latent codes (Sundermeyer
et al. 2018). In another approach by Piga et al. (2021), deep learning was adopted to
segment point clouds, and an Unscented Kalman Filter (UKF) was used to track objects
based on depth information. Also, Zheng et al. (2022) proposed the incorporation of
a prior that is based on the object’s motion history into a temporally primed tracking
framework. Finally, Piga et al. (2022) combined real-time optical flow with low-frequency
deep learning-based instance segmentation and global 6DoF pose estimation. Using this
combination, they synchronized predictions with a Kalman filtering approach and were
able to provide results at high framerates.

2.8. Multi-body Tracking

In contrast to the previously provided survey on tracking techniques, the following
section gives a detailed overview on multi-body object tracking. We thereby focus on
gradient-based approaches and rigid models. Elastic objects such as human hands or
bodies are only briefly discussed. While early methods (Hogg 1983; Gavrila and Davis
1996) employed search algorithms to determine the pose and configuration of objects,
Lowe (1991) proposed the use of nonlinear least-squares optimization. He showed that
the approach is both robust and efficient, and allows to determine the state of articulated
objects for large frame-to-frame motion. Similar techniques were later adopted for model-
based hand tracking (Rehg and Kanade 1994) and to recover human body configurations
(Bregler and Malik 1998). Also, Nickels and Hutchinson (2001) proposed the tracking
of articulated objects using feature points in an Extended Kalman Filter (EKF). Finally, a
more formal derivation motivated by the Lagrange-d’Alembert formulation in classical
physics was presented by Comport et al. (2007). In all those methods, Jacobian matrices

17

2. Related Work

that describe the variation of individual points or measurements for a minimal set of
parameters are derived.

In contrast to the use of a minimal parameterization, Drummond and Cipolla (2002)
proposed an approach that adopts Lagrange multipliers in combination with a Lie
group formalism. Their method first predicts the 6DoF pose variation of all rigid
bodies independently and later ensures compatibility using velocity constraints. A
detailed comparison of this postimposed approach compared to preimposed methods
using Jacobians was presented by T. E. d. Campos et al. (2006). Their experiments
demonstrate that results for the two techniques are identical. Also, they showed that
while postimposed constraints are very efficient for simple kinematic chains and allow
temporary constraints, preimposed methods scale better for more complex tree-like
kinematic structures. In contrast to those mathematically exact constraints, approaches
that minimize the Mahalanobis distance (Demirdjian et al. 2003) or that introduce soft
revolute joints (Mündermann et al. 2007) were also proposed.

Based on the presented principles to model kinematic structures, various methods that
employ different tracking techniques have been developed. Approaches that consider
depth information using the ICP algorithm were proposed by Dewaele et al. (2004) and
Pellegrini et al. (2008). Later, Brox et al. (2010) fused information from region fitting,
dense optical flow, and SIFT features. Similarly, Krainin et al. (2011) combined SIFT

features and dense color information with ICP-like depth measurements. Information
from depth sensors and joint encoders was utilized by Klingensmith et al. (2013).
Also, Bohg et al. (2014) used joint positions that are predicted using pixel-wise part
classification on depth images. Similarly, Rauch et al. (2018) employed pixel-wise part
classification but directly considered depth values instead of joint positions. Lately, an
algorithm that fuses region and dense color information was presented by Y. Liu and
Namiki (2021). With DART, Schmidt et al. (2015b) developed a general user-friendly
method that extends 6DoF tracking with signed distance functions to articulated objects.
Later, Schmidt et al. (2015a) further extended it to avoid interpenetration of bodies and
to make use of contact information from sensors. The integration of DART with a tactile
sensor was also studied by Izatt et al. (2017). A similarly general method that uses dense
optical flow and ICP-like depth measurements was developed by Pauwels et al. (2014).
With the extension to multiple movable cameras, the algorithm was later renamed
to SimTrack (Pauwels and Kragic 2015). Except for SimTrack, which implements the
postimposed constraints of Drummond and Cipolla (2002), most methods use preimposed

formulations similar to the approach of Lowe (1991).

Apart from gradient-based methods, other optimization techniques were also adopted
for the tracking of multi-body objects. In the work of Hebert et al. (2012), a UKF was
used to fuse different sources of information. A method that employs a Random Forest to
directly regress to joint angles was proposed by Widmaier et al. (2016). Also, Cifuentes
et al. (2017) used the Coordinate Particle Filter (Wüthrich et al. 2015) to track robot
manipulators, considering information from both depth images and joint measurements.
In another approach, Zuo et al. (2019) employed deep learning to recognize 2D keypoints

18

2.8. Multi-body Tracking

on a robot and use them to infer its configuration. Finally, Labbé et al. (2021) proposed
RoboPose, a render-and-compare strategy to estimate the joint angles of a known robot
from a single image. In addition to methods for rigid objects, a large amount of work
on the tracking of human hands and bodies exists. While deep learning has become
highly popular for those tasks (Zimmermann and Brox 2017; Kanazawa et al. 2018; L. Ge
et al. 2019), some model-based methods still use the original formulation of Lowe to
consider the underlying kinematic structure (Tan et al. 2016; Taylor et al. 2016; Han
et al. 2020). However, because techniques like keypoint detection and regularization are
highly optimized for their respective domains, there is no straightforward application of
such algorithms to arbitrary multi-body systems.

19

3
Region-based Tracking

3.1. Introduction

In the following chapter, we focus on region-based tracking. In general, such techniques
use image statistics to differentiate between a foreground region that corresponds to
the object and a background region. Based on the two regions, the goal is to find the
object pose and corresponding silhouette that best explains the segmentation of the
image. The big advantage of such approaches is that they are able to reliably track a
wide variety of objects in cluttered scenes, requiring only a monocular RGB camera
and a textureless 3D object model. The only main assumption is that the object and
background are distinguishable. As a consequence, region-based techniques are perfectly
suited for textureless objects. Also, methods are typically robust to motion blur, making
it possible to track fast-moving objects. However, while those properties are perfect
for the tracking of textureless robots, most methods feature computationally expensive
dense formulations that contradict our requirements for efficiency and speed.

In the following, we, therefore, present a sparse region-based approach that bridges
this gap in efficiency. Our method considers image information sparsely along so-
called correspondence lines that model the probability of the object’s contour location.
To further improve efficiency, a discrete scale-space formulation is developed. In
addition, we introduce smoothed step functions that consider a defined global and local
uncertainty and analyze their effect on the posterior probability. The joint posterior
probability for the object pose is then described using a pre-rendered sparse viewpoint
model. Subsequently, the function is maximized using Newton optimization with
Tikhonov regularization. We thereby differentiate between global and local optimization,
using a novel approximation for the first-order derivative employed in the Newton
method. In multiple experiments on the RBOT (Tjaden et al. 2018) and OPT (Wu et al.
2017) datasets, it is demonstrated that the resulting algorithm improves the state of the
art by a significant margin, both in terms of runtime and quality. An illustration of the
tracking process with converging correspondence lines is shown in Fig. 3.1.

Note that the chapter is based on SRT3D (Stoiber et al. 2022a) and a corresponding
preceding publication (Stoiber et al. 2020). In addition, it includes modifications pro-
posed for ICG (Stoiber et al. 2022b), which include the re-scaling of posterior probability
distributions and the handling of occlusions. All experiments were conducted with the
latest implementation in the M3T tracking library.

21

3. Region-based Tracking

s = 5 s = 2 s = 1

Figure 3.1.: Optimization process of the developed region-based method featuring the
Ape object from the RBOT dataset (Tjaden et al. 2018). The image on the
left shows a rendered overlay of the object model for the initial pose. The
estimated pose after the optimization is visualized in the image on the
right. The three illustrations in the middle show yellow correspondence
lines for different scales s. High probabilities for the contour location
are illustrated in red. Pixel-wise posterior probabilities that describe the
probability that a pixel belongs to the background are encoded in grayscale
images. Note that during tracking, pixel-wise posteriors are only calculated
along correspondence lines.

3.2. Correspondence Line Model

The following section provides a detailed derivation of the probabilistic correspondence
line model, which describes the probability of the object’s contour location. We thereby
start with a geometric definition of correspondence lines. This is followed by a proba-
bilistic model that considers the segmentation of a correspondence line into foreground
and background. To improve computational efficiency, we then extend this model and
provide a discrete scale-space formulation. Finally, novel smoothed step functions are
introduced, and their effect on the contour location’s posterior probability is discussed.

3.2.1. Correspondence Lines

In contrast to most state-of-the-art algorithms, we do not consider image information
densely over the entire image. Instead, inspired by RAPID (Harris and Stennett 1990),
pixel values are processed sparsely along so-called correspondence lines. The name
correspondence line is motivated by the term correspondence point used in ICP (Besl
and McKay 1992). Similar to ICP, correspondences are first defined, and the optimization
with respect to them is then conducted in a second step. While for ICP, individual 3D
points are used as data, multiple pixel values along a line are considered in our case. A
visualization of a single correspondence line is shown in Fig. 3.2.

Similar to the commonly used image definition III : ΩΩΩ → {0, . . . , 255}3, we formally
denote a correspondence line as a map lll : ω → {0, . . . , 255}3. In this notation, ΩΩΩ ⊂ R2

describes the image domain while ω ⊂ R is considered the correspondence line domain.

Image values yyy, which are typically accessed using the image coordinate xxx =
[
x y

]⊤

22

3.2. Correspondence Line Model

r
d

ωb
ccc

nnn

ωf

Figure 3.2.: Correspondence line in an image defined by a center ccc and a normal vector
nnn. The illustration shows pixels along the correspondence line as well as
the foreground region ωf in yellow and the background region ωb in blue.
The contour distance d points from the correspondence line center to an
estimated contour, indicated by a dashed line.

and the image function yyy = III(xxx), are described using the line coordinate r and the
correspondence line function yyy = lll(r). Correspondence lines are located in the image
and remain fixed once they have been established. The location and orientation of each

correspondence line is defined by a center ccc =
[
cx cy

]⊤ ∈ R2 in image coordinates and

a normal vector nnn =
[
nx ny

]⊤ ∈ R2, with ∥nnn∥2 = 1. Using this definition, the relation
between an image III and a correspondence line lll is expressed as follows

lll(r) = III(ccc + rnnn), (3.1)

where image coordinates in III are rounded to the center of the next closest pixel.

3.2.2. Probabilistic Model

Inspired by the generative model of Bibby and Reid (2008), we derive a probabilistic
model for the segmentation of a correspondence line into a foreground region ωf and
a background region ωb. Note that this is the one-dimensional (1D) equivalent of the
segmentation of a 2D image into the regions Ωf and Ωb. We assume that there is only
one transition between foreground and background. The location of this transition
relative to the correspondence line center ccc is described by the contour distance d ∈ R,
which is visualized in Fig. 3.2.

To derive the probabilistic model, we first describe the formation process for a single
pixel on the correspondence line. The joint probability distribution is thereby written as

p(r, yyy, d, m) = p(r | d, m)p(yyy | m)p(m)p(d), (3.2)

where m ∈ {mf, mb} is the model parameter that can denote either foreground or
background. If we condition this distribution on the image value yyy, we obtain

p(r, d, m | yyy) = p(r | d, m)p(m | yyy)p(d). (3.3)

23

3. Region-based Tracking

Following Bibby and Reid (2008), we use Bayes’ theorem and the marginalization over
m to calculate the pixel-wise posterior probability

p(mi | yyy) =
p(yyy | mi)p(mi)

∑j∈{f,b} p(yyy | mj)p(mj)
, i ∈ {f, b}, (3.4)

where p(yyy | mf) and p(yyy | mb) are probability distributions that describe how likely
it is that a specific color value is part of the foreground region or the background
region, respectively. The two distributions can be estimated by calculating two color
histograms, one over the foreground region and one over the background region. A
detailed explanation of their computation is given in Section 3.4.2. Using the knowledge
that foreground and background are equally likely along the correspondence line, i.e.
p(mf) = p(mb), we obtain

p(mi | yyy) =
p(yyy | mi)

p(yyy | mf) + p(yyy | mb)
, i ∈ {f, b}. (3.5)

Finally, based on Eq. (3.3), we are able to marginalize over m and condition on r to
express the posterior probability for the contour distance d as

p(d | r, yyy) =
1

p(r) ∑
i∈{f,b}

p(r | d, mi)p(mi | yyy)p(d). (3.6)

To calculate the posterior probability over the entire correspondence line domain ω,
we assume pixel-wise independence and, based on Eq. (3.6), write

p(d | ω, lll) ∝ ∏
r∈ω

∑
i∈{f,b}

p(r | d, mi)p(mi | lll(r)). (3.7)

Note that p(r) and p(d) are considered to be uniform and constant and are therefore
dropped. Also, while pixel-wise independence does not hold in general, it is a well-
established approximation that allows us to avoid ill-defined assumptions for spatial
regularities and is close enough to reality to yield good results. The conditional line
coordinate probability p(r | d, m) will be discussed in Section 3.2.4. Similar to the
probabilistic model of Bibby and Reid (2008), which describes the probability of a shape
kernel given information from an image, Eq. (3.7) provides the probability of the contour
distance d given data from a correspondence line.

3.2.3. Discrete Scale-space Formulation

Estimating the distribution of posterior probabilities p(d | ω, lll) is computationally
expensive since, for each distance d, the product in Eq. (3.7) has to be computed over
the entire domain ω. This results in quadratic complexity for the calculation of the
entire distribution. In contrast, pixel-wise posterior probabilities p(m | yyy) are used in
the posterior probability calculation of multiple distances d, leading to linear complexity.
Consequently, shifting computation from the calculation of the distribution to the

24

3.2. Correspondence Line Model

ccc

∆r

∆r + s
Ån

r

rs

∆r − s
Ån

−1 0 1

d

ds

Figure 3.3.: Example of the relation between the unscaled space r along the correspon-
dence line and the scale space rs. Neighboring pixels that are combined into
segments are visualized by the same color in blue or yellow. Blue and yellow
dots indicate the center of each segment and the corresponding discretized
value in the scale space. An example of the contour distance is illustrated in
red. The offset ∆r is chosen in a way that ensures that discretized values in
the scale space are the same for all correspondence lines. In this example,
∆r points to the closest edge between pixels.

calculation of pixel-wise posterior probabilities allows us to improve computational
efficiency. Also, it is advantageous to normalize correspondence lines in a way that
ensures that a line coordinate pointing to a segment center for one correspondence line
points to a segment center for all correspondence lines. This uniformity can be used
in the precalculation of values for the conditional line coordinate probability to further
improve efficiency.

In the following, we thus develop a discrete scale-space formulation that combines
multiple pixels into segments. In addition, the formulation projects from the continuous
space along the correspondence line into a discrete space that is independent of a
correspondence line’s location and orientation. An illustration of this transformation is
shown in Fig. 3.3. Both line coordinates and contour distances are projected as follows

rs = (r − ∆r)
Ån
s

, (3.8)

ds = (d − ∆r)
Ån
s

, (3.9)

with s ∈ N+ the scale that describes the number of pixels combined into a segment,
Ån = max(|nx|, |ny|) the major absolute normal component that projects a correspondence
line to the closest horizontal or vertical image coordinate, and ∆r ∈ R the offset from
the correspondence line center ccc to a defined pixel location.

Based on Eq. (3.7), the posterior probability in the discrete scale space is calculated as

p(ds | ωs, llls) ∝ ∏
rs∈ωs

∑
i∈{f,b}

p(rs | ds, mi)p(mi | llls(rs)), (3.10)

where ωs is the scaled correspondence line domain and sss = llls(rs) a set-valued function
that maps from the scaled line coordinate rs to the segment sss, which is a set of the closest

25

3. Region-based Tracking

s pixel values yyy. Similar to pixel-wise posteriors in Eq. (3.5) and assuming pixel-wise
independence, segment-wise posteriors are defined as

p(mi | sss) =

∏
yyy∈sss

p(yyy | mi)

∏
yyy∈sss

p(yyy | mf) + ∏
yyy∈sss

p(yyy | mb)
, i ∈ {f, b}. (3.11)

The derived formulation allows to efficiently cover the correspondence line domain ω,
using the scale parameter s to set the segment size and to adjust between accuracy and
efficiency. In the following, we will again drop the index s for all variables to simplify
the notation. Note, however, that all definitions and derivations are valid both for the
original space and for the discrete scale-space formulation.

3.2.4. Smoothed Step Functions

To model the conditional probabilities of the line coordinate p(r | d, mf) and p(r | d, mb),
most state-of-the-art algorithms (Zhong et al. 2020b; Tjaden et al. 2018) use the following
smoothed step functions that are based on the arctangent

hf(x) =
1
2
− 1

π
tan−1

(
x

sh

)
, (3.12)

hb(x) =
1
2
+

1
π

tan−1
(

x

sh

)
, (3.13)

where x = r − d describes the distance from the line coordinate r to the contour and
the slope parameter sh ∈ R+ models a local uncertainty with respect to the exact
location of the foreground and background transition. Considering the plots of those
functions in Fig. 3.4, one notices that the functions quickly converge towards either zero
or one for increasing absolute values of x = r − d. Except for a small area around zero,
the functions assume that, given the model m and the contour distance d, one knows
perfectly on which side of the contour the line coordinate r lies. In the following, we
will argue that for real-world applications, this assumption is wrong.

While the pixel-wise posterior probability in Eq. (3.5) provides very good predictions
for the model m, it is still an imperfect simplification of the real world. Typical effects that
are not considered by the statistical model are image noise or fast appearance changes
that can lead to pixel colors that are not yet present in the color histograms. Another
effect originates from pixels that are wrongly classified due to imperfect segmentation
and that are then assigned to the wrong color histograms. Finally, there also remains the
question if a statistical model that purely relies on pixel colors is sufficient to capture all
the statistical effects in the real world and is able to perfectly predict the model m.

To take those limitations into account and consider a constant global uncertainty in

26

3.2. Correspondence Line Model

1
hf(x)

x0 4−4 2−2

hb(x)

6−6

αh = 1
3 , sh = 1 αh = 1

3 , sh → 0αh = 1
2 , sh = 1

Figure 3.4.: Smoothed step functions hf and hb that model the conditional line coordinate
probabilities p(r | d, mf) and p(r | d, mb). The functions from Eqs. (3.12)
and (3.13) used by Zhong et al. (2020b) and Tjaden et al. (2018) are illustrated
by gray lines for a slope parameter sh = 1. For the proposed functions in
Eqs. (3.14) and (3.15), dash-dotted red lines correspond to αh = 1

3 and sh = 1.
Also, dotted blue lines show the functions for αh = 1

3 and sh → 0, while
dashed yellow lines illustrate the proposed functions for αh = 1

2 and sh = 1.

addition to local uncertainty, we propose the following functions

hf(x) =
1
2
− αh tanh

(
x

2sh

)
, (3.14)

hb(x) =
1
2
+ αh tanh

(
x

2sh

)
, (3.15)

with the amplitude parameter αh ∈ [0, 0.5] and the slope parameter sh ∈ R+. Note that
we also replace the arctangent with the hyperbolic tangent function. In the next section,
we will prove that, under some conditions, this results in a Gaussian distribution for the
posterior probability. Examples of the proposed functions are shown in Fig. 3.4.

In addition to viewing αh as a simple amplitude parameter, we are able to demonstrate
that there is also another interpretation. For this, we assume that the model m is extended
with a third class mn. This class considers external effects that are independent of the
foreground and background model mf and mb. For this scenario, we can show that
p(mf) = p(mb) = αh and that p(mn) = 1 − 2αh. Following this interpretation, the
amplitude parameter, therefore, allows us to set the probability that a pixel’s color is
generated by the foreground or background model in contrast to some other effects that
are considered as noise. This again shows that the amplitude parameter αh is able to
model a constant, global uncertainty. Note that in this scenario, smoothed step functions
with αh = 1

2 are used, and a constant function p(r | d, mn) =
1
2 is adopted for the noise

model. A detailed derivation of this extended model and a proof of its equivalence to
the use of the functions in Eqs. (3.14) and (3.15) is given in Appendix A.

27

3. Region-based Tracking

3.2.5. Posterior Probability Distribution

Given the smoothed step functions hf and hb that model the conditional line coordinate
probabilities p(r | d, mf) and p(r | d, mb), the final expression of the posterior probability
distribution from Eq. (3.7) can be written as

p(d | ω, lll) ∝ ∏
r∈ω

hf(r − d)pf(r) + hb(r − d)pb(r), (3.16)

with the abbreviations pf(r) = p(mf | lll(r)) and pb(r) = p(mb | lll(r)). In the following, we
provide a detailed analysis to understand how the slope parameter sh and the amplitude
parameter αh affect this distribution. We thereby assume a contour at the correspondence
line center and step functions for the pixel-wise posteriors pf and pb. Note that the
assumption of step functions corresponds well with real-world experiments that show
that, in most cases, there is a distinct split between foreground and background.

For the analysis, we write the posterior probability distribution in continuous form
for an infinite correspondence line and infinitesimally small pixels

p(d | ω, lll) ∝
∞

∏
r=−∞

(
hf(r − d)pf(r) + hb(r − d)pb(r)

)dr. (3.17)

We then start with the calculation of the first-order derivative of the logarithmic pos-
terior with respect to the contour distance d. Based on a detailed derivation given in
Appendix B, the obtained closed-form solution is

∂ ln
(

p(d | ω, lll)
)

∂d
= −2 tanh−1

(
2αh tanh

(
d

2sh

))
. (3.18)

A visualization of this function for different slope and amplitude parameters αh and
sh is given in Fig. 3.5. The plot shows that the amplitude parameter αh controls not
only the amplitude of hf and hb but also the amplitude of the first-order derivative. For
αh = 1

2 , the first-order derivative converges to a linear function. At the same time, the
parameter sh affects both the slope of hf and hb and the slope of the first-order derivative.
For sh → 0 it leads to a perfect step function.

For the two edge cases with αh = 1
2 and sh → 0, Eq. (3.18) can be simplified, and we

are able to calculate a closed-form solution for the posterior probability distribution. In
the case of αh = 1

2 , the posterior probability distribution results in a perfect Gaussian

p(d | ω, lll) =
1√

2πsh
exp

(
− d2

2sh

)
, (3.19)

where the slope parameter sh is equal to the variance. In the case of sh → 0, which leads
to sharp step functions for hf and hb, the posterior probability distribution becomes a
perfect Laplace distribution

p(d | ω, lll) =
1
2b

exp
(
− |d|

b

)
, b =

1

2 tanh−1(2αh)
, (3.20)

28

3.2. Correspondence Line Model

−2

2

∂ ln(p(d|ω,lll))
∂d

d4−4 2−2−6 6

αh = 1
3 , sh = 1

αh = 1
2 , sh = 1

αh = 1
3 , sh → 0

Figure 3.5.: First-order derivatives of the log-posterior with respect to the contour dis-
tance d for different slope and amplitude parameters sh and αh. The dash-
dotted red line shows the derivative for αh = 1

3 and sh = 1, which yields a
function with a smooth transition from an upper bound to a lower bound.
The dashed yellow line shows the function for αh = 1

2 and sh = 1. This
produces a linear first-order derivative. Finally, using αh = 1

3 and sh → 0
results in a perfect step function illustrated by the dotted blue line.

p(d | ω, lll)

d4−4 2−2−6 60

0.5

αh = 1
3 , sh = 1

αh = 1
2 , sh = 1

αh = 1
3 , sh → 0

Figure 3.6.: Posterior probability distributions for different slope and amplitude param-
eters sh and αh. The dash-dotted red line shows the function for αh = 1

3
and sh = 1, which leads to a very flat distribution. Note that the function
was computed numerically. Using αh = 1

2 and sh = 1 results in a perfect
Gaussian distribution shown by the dashed yellow line. The parameters
αh = 1

3 and sh → 0, on the other hand, yield a perfect Laplace distribution
for the posterior probability that is illustrated by a dotted blue line.

where b ∈ R+ is the scale parameter of the Laplace distribution that depends on αh.
A detailed derivation of the two functions is provided in Appendix C. Examples for
both distributions, as well as a mixed posterior distribution with sh = 1 and αh = 1

3 ,
are visualized in Fig. 3.6. The plot shows that while the Laplace distribution has a
pronounced peak, the Gaussian distribution has a smoothed maximum for which nearby
values have similarly high probabilities. This coincides with our intuition that the slope
parameter sh controls local uncertainty, allowing multiple values d to be almost equally
likely. At the same time, the amplitude parameter αh controls the size of the peak

29

3. Region-based Tracking

compared to its surroundings, effectively controlling global uncertainty. Combining
the two parameters in a mixed distribution results in a function that is able to consider
both local and global uncertainty simultaneously. Given the detailed knowledge about
correspondence lines and the posterior probability distribution, we are now able to
develop a sparse approach to region-based 3D object tracking.

3.3. 3D Object Tracking

In this section, we first define basic mathematical concepts. This is followed by the
description of a sparse viewpoint model, which avoids the rendering of the 3D model
during tracking. By combining this representation of the geometry with the correspon-
dence line model developed in the previous section, we are able to formulate a joint
posterior probability with respect to the object pose. This probability function is then
maximized using Newton optimization with Tikhonov regularization. Finally, we define
the required gradient vector and Hessian matrix for the Newton method. We thereby
differentiate between global and local optimization to ensure both fast convergence and
high accuracy.

3.3.1. Preliminaries

In the following work, we define 3D model points as XXX =
[
X Y Z

]⊤ ∈ R3 and use the

tilde notation to write the homogeneous form X̃̃X̃X =
[
X Y Z 1

]⊤
. For the projection

of a 3D model point XXX into the image space, we assume an undistorted image and use
the pinhole camera model

xxx = πππ(XXX) =

[
X
Z fx + px
Y
Z fy + py

]
, (3.21)

with fx and fy the focal lengths and px and py the principal point coordinates given in
units of pixels. The inverse operation, which is the reconstruction of a 3D model point
from an image coordinate xxx and corresponding depth value dZ along the optical axis,
can be written as

XXX = πππ−1(xxx, dZ) = dZ




x−px

fx
y−py

fy

1


 . (3.22)

To describe the relative pose between the model reference frame M and the camera
reference frame C, we use the homogeneous matrix CTTTM ∈ SE(3). For the transformation
of a 3D model point, we can then write

CX̃̃X̃X = CTTTM MX̃̃X̃X =

[
CRRRM CtttM

000 1

]
MX̃̃X̃X, (3.23)

where CX̃̃X̃X and MX̃̃X̃X are 3D model points written in the camera reference frame C and the
model reference frame M, respectively, and where CRRRM ∈ SO(3) and CtttM ∈ R3 are the

30

3.3. 3D Object Tracking

M

z

x

y

C

x

z

y
CTTTM

Figure 3.7.: Illustration of a 2D rendering computed from a 3D mesh model. The
model reference frame M is shown at the center of the object, while a
camera reference frame C is shown at the upper right corner of the image.
The transformation from the model to the camera reference frame that
is described by CTTTM is indicated by a dashed arrow. The contour of the
rendered model is highlighted by a yellow line. Red points and blue arrows
illustrate 2D contour points and approximated normal vectors.

rotation matrix and the translation vector that define the transformation from M to C.
An illustration of the two reference frames and a homogeneous transformation matrix is
given in Fig. 3.7.

For small variations, the axis-angle representation, which is a minimal representation,
is used. With the exponential map, the rotation matrix writes as

RRR = exp([rrr]×) = III + [rrr]× +
1
2!
[rrr]2× +

1
3!
[rrr]3× + ..., (3.24)

where [rrr]× is the skew-symmetric cross-product matrix of rrr ∈ R3. By neglecting higher-
order terms of the series expansion, Eq. (3.24) can be linearized. We are then able to
write the linear variation of a 3D model point in the camera reference frame C as

CX̃̃X̃X(θθθ) =

[
CRRRM CtttM

000 1

] [
III + [θθθr]× θθθt

000 1

]
MX̃̃X̃X, (3.25)

with the rotational variation θθθr ∈ R3, the translational variation θθθt ∈ R3, and the
full variation vector θθθ⊤ =

[
θθθ⊤r θθθ⊤t

]
. Note that, since the object is typically moved

significantly more than the camera, it is more natural to variate 3D points in the model
reference frame M instead of the camera reference frame C. Also, the variation in the
model reference frame has the advantage that a simple extension of the algorithm to
multiple cameras is possible.

31

3. Region-based Tracking

3.3.2. Sparse Viewpoint Model

In contrast to most state-of-the-art methods, we do not use the 3D geometry in the form
of a mesh model directly. Instead, similar to Tan et al. (2017), we employ a representation
that we call a sparse viewpoint model. To create this model, the 3D geometry is rendered
from a number of nv viewpoints all around the object. Virtual cameras are thereby
placed on the vertices of a geodesic grid that surrounds the object. For each rendering,
nc points xxxi ∈ R2 are randomly sampled from the contour of the model. Subsequently,
the vectors nnni ∈ R2 that are normal to the contour are approximated for each point.
Note that ∥nnni∥2 = 1. An illustration of a rendering with sampled 2D contour points and
normal vectors is shown in Fig. 3.7. Based on those 2D entities, 3D vectors with respect
to the model reference frame are then reconstructed as follows

MX̃̃X̃Xi = MTTTC π̃̃π̃π−1(xxxi, dZi), (3.26)

MNNNi = MRRRC

[
nnni

0

]
, (3.27)

where the tilde notation in π̃̃π̃π−1 indicates that the 3D model point is returned in homo-
geneous form based on Eq. (3.22) and dZi is the depth value from the rendering. Note
that in this case, C denotes the reference frame of the virtual camera from which the ren-
dering was created. In addition to those vectors, we also compute the orientation vector

Mvvv = MRRRC eeeZ that points from the camera to the model center, where eeeZ =
[
0 0 1

]⊤
.

The computed 3D model points, normal vectors, and the orientation vector are then
stored for each view.

The sparse viewpoint model allows for a highly-efficient representation of the model
contour. Given a specific pose with MRRRC and CtttM, the process of rendering the model
and computing the contour reduces to a simple search for the closest precomputed view

iv = arg max
i∈{1,...,nv}

(Mvvv⊤i MRRRC CtttM), (3.28)

and the subsequent projection of the corresponding 3D model points and normal
vectors into the image. Note that this high efficiency is especially important during the
optimization of the joint posterior probability, where the pose changes in each iteration.

3.3.3. Joint Posterior Probability

In the following, we combine the correspondence line model from Section 3.2 with the
developed sparse viewpoint model to define a joint posterior probability with respect
to the pose variation. However, before probabilities can be calculated, the location and
orientation of correspondence lines need to be defined. For this, 3D model points and
normal vectors from the closest view of the sparse viewpoint model are projected into

32

3.3. 3D Object Tracking

the image using the following equations

ccci = πππ
(

CTTTM MX̃̃X̃Xi

)
, (3.29)

nnni ∝
(

CRRRM MNNNi

)
2×1, (3.30)

where the normal vector nnni is normalized to ∥nnni∥2 = 1 and ()2×1 denotes the first two
elements of a vector.

Once all correspondence lines have been defined, we are able to variate the current
pose and calculate contour distances di with respect to the pose variation vector θθθ.
Contour distances are thereby calculated as the distances along normal vectors nnni from
correspondence line centers ccci to projected 3D model points XXXi

di(θθθ) = nnn⊤
i

(
πππ(CXXXi(θθθ))− ccci

)
. (3.31)

Also, the same 3D model points XXXi are used as in the definition of correspondence lines.
Note, however that 3D model points CXXXi and contour distances di also depend on the
current pose estimate CTTTM, which might be different from the pose that was used to
define correspondence lines. An example of multiple correspondence lines with variated
contour distances is shown in Fig. 3.8.

Finally, assuming a number of nc independent correspondence lines and using the
discrete scale-space formulation from Section 3.2.3, the joint posterior probability can be
calculated as

p(θθθ | DDD) ∝
nc

∏
i=1

p(dsi(θθθ) | ωsi, lllsi)
shs2

σr2 Ån2
i , (3.32)

where DDD describes the data from all correspondence lines. Note that the transformation
of contour distances di from the original space to the discrete scale space is given
by Eq. (3.9). In the proposed formulation, we make individual correspondence lines
independent of scale and slope parameters. For this, the derivations from Section 3.2.5
are used, which show that, for the Gaussian case, the variance of the posterior probability
distribution is equal to the slope parameter sh. Following the interpretation that sh

corresponds to a variance in scale space, the unscaled variance in units of pixels is
σ2 = shs2/Ån2

i . Finally, to define our own standard deviation σr that is independent of
those parameters, we have to scale the posterior probability in scale space with shs2/σr

2 Ån2
i .

The user-defined parameter σr thereby gives us the possibility to define the confidence
for each iteration of the optimization, as well as with respect to other modalities. In
summary, the developed formulation describes how well the current pose estimate
explains the segmentation of the image into a foreground region, which corresponds to
the object, and a background region.

3.3.4. Optimization

To maximize the joint posterior probability, we estimate the variation vector θ̂̂θ̂θ and
iteratively update the pose. For a single iteration, the variation vector is calculated using

33

3. Region-based Tracking

d1

d 2

d3

πππ
(

CXXX1(θθθ)
)

πππ
(

CXXX3(θθθ)
)

πππ
(

CXXX2(θθθ)
)

nnn1

nnn2

nnn3

ccc1

ccc2

ccc3

ΩΩΩb

ΩΩΩf

Figure 3.8.: Correspondence lines defined by a center ccci and a normal vector nnni. Variated
contour distances di are measured along the correspondence lines from the
centers ccci to the projected 3D model points CXXXi that depend all on the same
pose variation θθθ. The object contour of the original pose estimate, which
was used to define the correspondence lines, is indicated by a dotted line.
The current estimate of the contour that depends on the pose variation
vector θθθ is shown by a dashed line. The ground truth segmentation that
we try to estimate is given by the foreground region ΩΩΩf in yellow and the
background region ΩΩΩb in blue. Note that while those contours are illustrated
as continuous lines, in our method, they are represented by points and
normal vectors from the closest view of the sparse viewpoint model.

the Newton method with Tikhonov regularization

θ̂̂θ̂θ =

(
− HHH +

[
λrIII3 000

000 λtIII3

])−1

ggg, (3.33)

where ggg is the gradient vector, HHH is the Hessian matrix, III3 the 3 × 3 identity matrix, and
λr and λt are the regularization parameters for rotation and translation, respectively.
The gradient vector and the Hessian matrix are defined as the first- and second-order
derivatives of the joint log-posterior

ggg⊤ =
∂

∂θθθ
ln

(
p(θθθ | DDD)

)∣∣∣
θθθ=000

, (3.34)

HHH =
∂2

∂θθθ2 ln
(

p(θθθ | DDD)
)∣∣∣

θθθ=000
. (3.35)

Using the logarithm has the advantage that scaling terms vanish and products turn
into summations. Note that the Hessian represents the curvature of the distribution at
a specific location, which for Gaussian probability functions is constant and directly
corresponds to the negative inverse variance. Given this probabilistic interpretation, it
can be argued that regularization parameters correspond to a prior probability. This

34

3.3. 3D Object Tracking

prior controls how much we believe in the previous pose compared to the current
estimate described by the gradient and Hessian. Consequently, for directions in which
the Hessian indicates high uncertainty, the regularization helps to keep the optimization
stable and to avoid pose changes that are not supported by sufficient data.

Finally, given a robust estimate for the variation vector, the predicted pose can be
updated as follows

CTTT+
M = CTTTM

[
exp([θ̂̂θ̂θr]×) θ̂̂θ̂θt

000 1

]
. (3.36)

Because of the exponential map, no orthonormalization is necessary. By iteratively
repeating this process, we are able to optimize towards the pose that best explains the
segmentation of the image.

3.3.5. Gradient and Hessian Approximation

In the following, the gradient vector and the Hessian matrix are approximated in a way
that ensures both fast convergence and high accuracy. Using the chain rule, we write

ggg⊤ =
n

∑
i=1

shs2

σr
2 Ån2

i

∂ ln
(

p(dsi | ωsi, lllsi)
)

∂dsi

∂dsi

∂CXXXi

∂CXXXi

∂θθθ

∣∣∣∣
θθθ=000

, (3.37)

HHH ≈
n

∑
i=1

shs2

σr
2 Ån2

i

∂2 ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
2

(
∂dsi

∂CXXXi

∂CXXXi

∂θθθ

)⊤ (
∂dsi

∂CXXXi

∂CXXXi

∂θθθ

) ∣∣∣∣
θθθ=000

. (3.38)

Note that for the Hessian matrix, second-order partial derivatives with respect to dsi and
CXXXi are neglected. Resulting errors are left to the iterative nature of the optimization.
Using Eq. (3.25), the first-order derivative of the 3D model point CXXXi is calculated as

∂CXXXi

∂θθθ
= CRRRM

[
−[MXXXi]× III3

]
. (3.39)

With respect to the scaled contour distance dsi, both Eqs. (3.9) and (3.31) are used to
write

∂dsi

∂CXXXi
=

Åni

s

1

CZ2
i

[
CZinxi fx CZinyi fy −CXinxi fx − CYinyi fy

]
. (3.40)

For the calculation of the required first- and second-order derivatives of the log-posterior,
we differentiate between global and local optimization.

In the case of global optimization, the posterior probability distribution of individual
correspondence lines is approximated by a normal distribution N (dsi | µi, σi

2). The
required mean and standard deviation µi and σi are thereby estimated from a set of
discretized contour distances dsi and their corresponding probability values. An example
of the approximation of a discrete posterior probability distribution is shown in Fig. 3.9.
Based on the normal distribution, the first- and second-order derivatives are calculated

35

3. Region-based Tracking

dsi0−4 2 4

p(dsi | ωsi, lllsi)

N (dsi | µi, σi
2)

−6 6

0.15

µi dsi(θθθ)

p(d−si | ωsi, lllsi)

p(d+si | ωsi, lllsi)

Figure 3.9.: Discrete posterior probability distribution with noisy measurements. For
global optimization, the distribution is approximated by a normal distribu-
tion N (dsi | µi, σi

2). The normal distribution and its mean µi are illustrated
in blue. In the case of local optimization, only two discrete probability
values that are closest to the current estimate of the contour distance dsi(θθθ)

are considered. The two discrete probability values p(d−si | ωsi, lllsi) and
p(d+si | ωsi, lllsi), which are used to approximate the first-order derivative, are
colored in red.

as follows

∂ ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
≈ − 1

σi
2 (dsi − µi), (3.41)

∂2 ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
2 ≈ − 1

σi
2 . (3.42)

The approximated derivatives direct the optimization towards the mean µi, using the
variance σi

2 to consider uncertainty. Note that while in the real world, the mean does not
exactly coincide with the maximum, it is typically quite close. At the same time, using
the approximation has the advantage of fast convergence, and that the optimization
avoids local minima resulting from invalid pixel-wise posteriors and image noise.

Once the optimization is closer to the maximum, the global mean is not a good enough
estimate, and more detailed refinement is required. In such cases, the algorithm switches
to local optimization. We thereby use the probability values of the two discrete contour
distances d−si and d+si that are closest to the current estimate dsi(θθθ) and approximate the
first-order derivatives using a weighting term αs/σi

2 and finite differences

∂ ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
≈ αs

σi
2 ln

(
p(d+si | ωsi, lllsi)

p(d−si | ωsi, lllsi)

)
. (3.43)

For second-order derivatives, again, the global approximation from Eq. (3.42) is used.
Note that weighting the first-order derivative with the variance σi

2 improves robustness
because correspondence lines with high uncertainty are considered less important.
Simultaneously, the step size αs helps to balance the weight and specifies how far
the optimization proceeds, directly scaling the variation vector θ̂̂θ̂θ. The same first- and

36

3.4. Implementation

second-order derivatives can also be derived using inverse-variance weighting and a
constant curvature of 1/αs for the second-order derivative. A detailed derivation of this
interpretation is given in Appendix D.

Finally, apart from the choice of derivatives, the parameterization of smoothed step
functions and the corresponding shape of posterior probability distributions significantly
influences the optimization. To study this effect, we consider the first-order derivatives of
the log-posteriors that are shown in Fig. 3.5. While for Gaussian distributions, linear first-
order derivatives lead to the estimation of the weighted mean over all correspondence
lines, for Laplace distributions, binary derivatives guide the optimization towards the
weighted median. Note that this again corresponds well to the interpretation of local
and global uncertainty modeled by the slope parameter sh and the amplitude parameter
αh. If only local uncertainty exists, it is advantageous to consider the magnitude of
errors in the contour distance and optimize for the mean. At the same time, in the case
of global noise, it is reasonable to only consider the direction of errors and conduct the
optimization with respect to the median.

3.4. Implementation

The following section provides details for the implementation of our approach in
the M3T algorithm and specifies parameter values for the evaluation conducted in
Section 3.5. First, we start with the generation of the sparse viewpoint model and the
calculation of color histograms. This is followed by a description of the tracking process.
Finally, we explain how occlusions can be considered. All mentioned parameter values
are carefully chosen to maximize tracking quality while not requiring unreasonable
amounts of computation.

3.4.1. Sparse Viewpoint Model

For the sparse viewpoint model, nv = 2562 different views are considered. They are
generated by subdividing the triangles of an icosahedron 4 times, resulting in an angle
of approximately 4◦ between neighboring views. Virtual cameras that are used for
the rendering are placed at a distance of 0.8 m to the object center. For all views, the
orientation vector Mvvv and a constant number of n = 200 model points MXXXi and normal
vectors MNNNi are computed. In addition, for each point and view, we also compute so-
called continuous distances for the foreground and background. Continuous distances
describe the distance from the 2D model point xxxi along the line defined by the normal
vector nnni for which the foreground and background are not interrupted by each other.
After their computation in the rendered image, they are converted and stored in meters.
The values are later used by the tracker to disable individual correspondence lines for
which continuous distances are below a certain threshold, and the assumption that only
a single transition between foreground and background is present in the correspondence
line is not sufficiently fulfilled.

37

3. Region-based Tracking

3.4.2. Color Histograms

For the estimation of the color probability distributions p(yyy | mf) and p(yyy | mb), color
histograms are used. Each dimension of the RGB color space is discretized by 32
equidistant bins, leading to a total of 323 = 32768 values. The computation of the color
histograms is started from the current pose estimate or from an initial pose, provided,
for example, by a global 6DoF pose estimation pipeline. Based on this pose, 3D model
points and normal vectors are projected into the image using Eqs. (3.29) and (3.30). In
both the positive and negative directions of the normal vector, the first 20 pixels are
then considered. Pixel colors along this line are assigned to either the foreground or
background histogram, depending on which side of the projected model point they are.
Note that fewer than 20 pixels are considered if a transition between foreground and
background occurs within a shorter distance. Also, in cases where the contour location
is more uncertain, it might be reasonable to use an offset from the center.

Due to motion or dynamic illumination, color statistics of both the foreground and
background are continuously changing during tracking. To take those changes into
account while at the same time considering previous observations, we use online
adaptation. Based on Bibby and Reid 2008, we update the histograms as follows

pt(yyy | mi) = αi p(yyy | mi) + (1 − αi)pt−1(yyy | mi), i ∈ {f, b}, (3.44)

where αf = 0.2 and αb = 0.2 are the learning rates for the foreground and background,
respectively. Note that p(yyy | mi) denotes the observed histogram, while pt(yyy | mi)

and pt−1(yyy | mi) are the adapted histograms of the current and previous time steps,
respectively. For initialization, we directly use the observed histograms instead of
blending them with previous values.

3.4.3. Tracking Process

To start tracking, an initial pose is required, which is typically obtained either from
global object detection and 6DoF pose estimation methods or from dataset annotations.
Based on this prediction and the corresponding camera image, color histograms for
the foreground and background are initialized. After initialization, a tracking step
is executed for each new image that is streamed from the camera. An overview of
computation that is performed in a typical tracking step is given in Algorithm 3.1.

Starting from a new image and the previous pose estimate CTTTM, we first retrieve the
closest view of the sparse viewpoint model. Model points MXXXi and normal vectors
MNNNi are then projected into the image plane to define correspondence lines. After that,
continuous distances from the sparse viewpoint model are used to reject correspondence
lines with distances that are below 3 segments. For the remaining correspondence lines,
the posterior probability distribution p(dsi | ωsi, lllsi) is evaluated at 12 discrete values
dsi ∈ {−5.5,−4.5, . . . , 5.5}. In the calculation, we use 8 precomputed values for the
smoothed step functions hf and hb, corresponding to x ∈ {−3.5,−2.5, . . . , 3.5}. Also, a
minimal offset ∆ri is chosen such that the line coordinates ri point to pixel centers while

38

3.4. Implementation

Algorithm 3.1 Tracking Step

1: Update camera image
2: for i = 1, 2, . . . , 7 do

3: Optional: Render depth image for occlusion handling
4: Find closest view of the sparse viewpoint model
5: Define correspondence lines in the image
6: Compute discrete distributions p(dsi | ωsi, lllsi)

7: for j = 1, 2 do

8: Calculate gradient ggg and Hessian HHH

9: Estimate variation θ̂̂θ̂θ and update pose CTTTM

10: end for

11: end for

12: Update color histograms p(yyy | mf) and p(yyy | mb)

the scaled line coordinates rsi ensure matching values for x = rsi − dsi. In our case, this
means that rsi ∈ Z. Having computed the distributions, two iterations of the regularized
Newton optimization are executed. For the first iteration, the global optimization is
used to quickly converge towards a rough pose estimate. In the second iteration, the
local optimization is employed to refine this pose, using a step size of αs = 1.3. As
regularization parameters, we define λr = 1000 and λt = 30000.

To find the final pose, the process is repeated 7 times. We thereby choose larger
scales for the first iteration and decrease the scale with each consecutive iteration. This
choice has the effect that a large area with low resolution is considered in the beginning,
while short lines with high resolution are used in later iterations. An example of
correspondence lines at different scales is shown in Fig. 3.1. Similarly, the standard
deviation σr is also adjusted with each iteration. This allows us to define our confidence
in the data and the previous estimate, which typically improves with each iteration. In
addition to the scale s and the uncertainty σr, both the amplitude parameter αh and the
slope parameter sh depend on the considered sequence and model quality. We, therefore,
adjust those parameters for every dataset and provide them in the evaluation section.
Finally, having estimated the pose for an image, the prediction is used to update the
color histograms. After that, the tracker waits for a new image to arrive.

3.4.4. Occlusion Handling

While the presented algorithm itself is already quite robust to occlusions, tracking results
can be further improved by explicitly considering them. For this, we use either images
from depth cameras that are close to the color camera or depth renderings that contain
all known objects in the environment. By comparing the expected positions of 3D model
points to depth values, occlusions can be detected, and correspondence lines can be
disabled. For renderings, we simply check if the depth of the model point minus a
user-defined threshold of 30 mm is smaller than the depth value at the corresponding

39

3. Region-based Tracking

Occlusion

Tracked
Object

Model

Figure 3.10.: Visualization of the occlusion handling strategy for depth camera images.
For each blue model point, the considered region is defined by a blue line
with a fixed length and a dotted gray cone. The lower yellow line in each
cone visualizes the depth value that is calculated from the model offset,
while the upper yellow line adds the user-defined threshold. Red lines
indicate minimum depth measurements from the camera. For the right
point, an occlusion is detected since the red depth measurement is smaller
than the expected minimum allowed value in yellow.

image coordinate. For depth cameras, the process is more involved. The main reason
is that depth cameras do not provide perfect images but often produce areas without
measurements. To make the occlusion handling more robust, we have to consider a
bigger region. We, therefore, first compute the minimum depth based on 25 image
values within a quadratic region that corresponds to a patch of 20 × 20 mm. Similarly,
during the generation of the sparse viewpoint model, an offset between the depth of the
sampled model point and the minimum depth within a quadratic region of 20 × 20 mm
is calculated. Finally, the depth of the model point minus the precomputed offset and a
threshold of 30 mm is compared to the minimum measurement from the depth camera.
If it is smaller, the respective correspondence line is rejected. An illustration of this
occlusion handling strategy is shown in Fig. 3.10.

3.5. Evaluation

In this section, we present an extensive evaluation of our approach, which was imple-
mented in the M3T library. Both the RBOT (Tjaden et al. 2018) and OPT (Wu et al. 2017)
datasets are used to compare our method to the state of the art in region-based tracking,
as well as other techniques. We thereby evaluate the quality of the predicted poses
and the speed of the algorithm. Also, a detailed analysis is conducted that assesses
the importance of different parameters introduced in Sections 3.2 and 3.3. Finally, we
discuss essential design considerations and remaining limitations. Videos that show the
performance of a previous version of our approach are available online.1,2

1❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✇❛t❝❤❄✈❂❧✇❤①❙❘♣✇♥✸❨
2❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✇❛t❝❤❄✈❂❚❦❙✵❲❦❞❴✵❧❆

40

https://www.youtube.com/watch?v=lwhxSRpwn3Y
https://www.youtube.com/watch?v=TkS0Wkd_0lA

3.5. Evaluation

Ape⋆ Soda⋄ Vise⋆ Soup⋄ Camera⋆ Can⋆

Cat⋆ Clown⋄ Cube⋄ Driller⋆ Duck⋆ Egg Box⋆

Glue⋆ Iron⋆ Candy⋄ Lamp⋆ Phone⋆ Squirrel

Figure 3.11.: Overview of all objects in the RBOT dataset (Tjaden et al. 2018). Objects
from the LINEMOD dataset (Hinterstoisser et al. 2013) and Rigid Pose

dataset (Pauwels et al. 2013) are marked with ⋆ and ⋄, respectively.

3.5.1. RBOT Dataset

In the following, we first introduce the RBOT dataset, discuss the conducted experiments,
and finally compare our results to the current state of the art. The RBOT dataset consists
of 18 objects that are shown in Fig. 3.11. For each object, four sequences exist: a regular

version, one with dynamic light, a sequence with both dynamic light and Gaussian noise,
and one with dynamic light and an additional squirrel object that leads to occlusion. An
example image for each sequence is shown in Fig. 3.12. Each sequence consists of 1001
semi-synthetic monocular images, where objects were rendered into real-world images
that are recorded from a hand-held camera moving around a cluttered desk.

In the evaluation, experiments are performed as defined by Tjaden et al. (2018). The
required translational and rotational errors are calculated as

et(tk) =
∥∥CtttM(tk)− CtttMGT(tk)

∥∥
2, (3.45)

er(tk) = cos−1
(

trace(CRRRM(tk)
⊤

CRRRMGT(tk))− 1
2

)
, (3.46)

where CRRRMGT(tk) and CtttMGT(tk) are the ground-truth (GT) rotation matrix and translation
vector for the frame k ∈ {0, . . . , 1000}. A pose is considered successful if both et(tk) <

5 cm and er(tk) < 5◦. After initializing the tracker with the ground-truth pose at t0, it
runs until either the recorded sequence ends or tracking is unsuccessful. In the case
of unsuccessful tracking, the algorithm is re-initialized with the ground-truth pose at
tk. For the Occlusion sequence, the method is evaluated with and without occlusion
modeling. In the case of occlusion modeling, where other objects are considered using a

41

3. Region-based Tracking

Regular Dynamic Light Noise Occlusion

Figure 3.12.: Images from the RBOT dataset (Tjaden et al. 2018) with one example image
for the Regular, Dynamic Light, Noise, and Occlusion sequence. Sequences
show the Ape, Candy, Glue, and Vise objects, respectively. In addition, the
Occlusion sequence features a squirrel object that occludes the Vise.

depth rendering, both objects are tracked simultaneously. Unsuccessful tracking of the
occluding squirrel object is not considered in the reported tracking success. Finally, for
our algorithm, we define the amplitude parameter αh = 0.36 and the slope parameter
sh → 0 for the smoothed step functions. Also, we use the scale s = {5, 2, 2, 1} and the
uncertainty σr = {20, 7, 3, 1.5}, where the standard deviation is defined in units of pixels.
Note that the given sets define the value of each iteration, with the last value being used
for all remaining iterations. A detailed analysis of the slope and amplitude parameters
is provided in Section 3.5.3.

Results of the evaluation are shown in Table 3.1. Our approach is compared to the
state of the art in region-based tracking. Also, we include algorithms of Huang et al.
(2020), J.-C. Li et al. (2021), X. Sun et al. (2021), and Huang et al. (2022) that combine
edge and region information. In addition, the method of F. Liu et al. (2021), which uses
descriptor fields and region-based techniques, is also considered. The comparison shows
that M3T performs significantly better than all previous methods, achieving superior
results for most objects and performing best on average. This difference becomes even
larger for purely region-based methods, with our algorithm performing best for almost
all objects and sequences. Considering the average success rate, our approach performs
more than six percentage points better than the combined method of X. Sun et al.
(2021), about seven percentage points better than Huang et al. (2022), and more than
15 percentage points better than the next best, dense, region-based approach by Zhong
and L. Zhang (2019). The superior tracking success compared to all other region-based
methods is especially interesting since, in contrast to them, we do not use an advanced
segmentation model. In theory, this should be a significant disadvantage.

In addition to tracking success, we also compare average runtimes. A summary for
the different algorithms is given in Table 3.2. The evaluation of M3T was conducted on
a computer with an Intel Core i9-11900K central processing unit (CPU) and a NVIDIA

RTX A5000 GPU. In the experiments, an average runtime of 0.9 ms for the case without
occlusion modeling and an average execution time of 5.1 ms for the Modeled Occlusion

scenario were obtained. Note that in the case of occlusion modeling, depth images have

42

3.5. Evaluation

Table 3.1.: Tracking success rates for state-of-the-art approaches on the RBOT dataset
(Tjaden et al. 2018). Methods that are not purely region-based are indicated
by a ⋆. Results are from the corresponding publications. The best results are
highlighted in bold, while the second-best values are underlined.

Approach A
p

e

So
d

a

V
is

e

So
u

p

C
am

er
a

C
an

C
at

C
lo

w
n

C
u

be

D
ri

lle
r

D
u

ck

E
gg

B
ox

G
lu

e

Ir
on

C
an

d
y

L
am

p

P
ho

ne

Sq
u

ir
re

l

A
v

e
ra

g
e

Regular

Tjaden et al. (2018) 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
Zhong et al. (2020b) 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
Huang et al. (2020)⋆ 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 86.9
F. Liu et al. (2021)⋆ 93.7 39.3 98.4 91.6 84.6 89.2 97.9 95.9 86.3 95.1 93.4 77.7 61.5 87.8 65.0 95.2 85.7 99.8 85.5
J.-C. Li et al. (2021)⋆ 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 85.8
X. Sun et al. (2021)⋆ 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 88.1
Huang et al. (2022)⋆ 94.6 49.4 99.5 91.0 93.7 96.0 97.8 96.6 90.2 98.2 93.4 90.3 64.4 94.0 79.0 98.8 92.9 99.8 89.9
M3T (Ours) 99.0 68.1 99.4 96.7 96.8 96.9 99.9 98.7 95.6 97.6 98.1 95.8 81.8 95.2 92.6 97.4 96.2 99.8 94.8

Dynamic Light

Tjaden et al. (2018) 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
Zhong et al. (2020b) 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
Huang et al. (2020)⋆ 91.8 42.3 98.9 89.9 91.3 87.8 97.6 94.5 84.5 98.1 91.9 86.7 66.2 90.9 73.2 97.1 89.2 99.6 87.3
F. Liu et al. (2021)⋆ 93.5 38.2 98.4 88.8 87.0 88.5 98.1 94.4 85.1 95.1 92.7 76.1 58.1 79.6 62.1 93.2 84.7 99.6 84.1
J.-C. Li et al. (2021)⋆ 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 86.7
X. Sun et al. (2021)⋆ 93.8 55.9 99.6 85.6 97.7 93.7 97.7 96.5 78.3 98.6 91.0 91.6 72.1 90.7 63.0 98.9 94.4 100.0 88.8
Huang et al. (2022)⋆ 94.3 48.3 99.5 90.1 94.6 96.1 97.9 97.3 90.9 99.1 92.9 91.5 72.6 94.7 80.0 98.3 95.2 99.8 90.7
M3T (Ours) 99.5 68.7 99.4 96.8 98.1 98.5 100.0 98.8 95.5 97.9 97.5 97.2 87.1 95.3 90.6 97.9 95.5 99.8 95.2

Noise

Tjaden et al. (2018) 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
Zhong et al. (2020b) 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
Huang et al. (2020)⋆ 89.0 45.0 89.5 90.2 68.9 38.3 95.9 72.8 20.1 85.5 92.2 26.8 15.8 66.2 52.2 58.3 65.1 98.4 65.0
F. Liu et al. (2021)⋆ 84.7 33.0 88.8 89.5 56.4 50.1 94.1 66.5 32.3 79.6 94.2 29.6 19.9 63.4 40.3 61.6 62.4 96.9 63.5
J.-C. Li et al. (2021)⋆ 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 71.4
X. Sun et al. (2021)⋆ 92.5 56.2 98.0 85.1 91.7 79.0 97.7 86.2 40.1 96.6 90.8 70.2 50.9 84.3 49.9 91.2 89.4 99.4 80.5
Huang et al. (2022)⋆ 91.0 49.1 95.6 91.0 76.3 54.1 97.1 73.7 27.3 92.8 95.3 30.2 7.8 73.9 56.8 71.4 70.8 98.7 69.6
M3T (Ours) 97.5 65.7 96.1 96.7 87.1 75.7 99.9 90.0 67.2 88.8 97.9 65.0 47.1 84.6 80.5 74.8 85.7 99.2 83.3

Unmodeled Occlusion

Tjaden et al. (2018) 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
Zhong et al. (2020b) 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 78.4
Huang et al. (2020)⋆ 86.2 46.3 97.8 87.5 86.5 86.3 95.7 90.7 78.8 96.5 86.0 80.6 59.9 86.8 69.6 93.3 81.8 95.8 83.6
F. Liu et al. (2021)⋆ 87.1 36.7 91.7 78.8 79.2 82.5 92.8 86.1 78.0 90.2 83.4 72.0 52.3 72.8 55.9 86.9 77.8 93.0 77.6
J.-C. Li et al. (2021)⋆ 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 80.3
X. Sun et al. (2021)⋆ 91.3 56.7 97.8 82.0 92.8 89.9 96.6 92.2 71.8 97.0 85.0 84.6 66.9 87.7 56.1 95.1 89.8 98.2 85.1
Huang et al. (2022)⋆ 92.5 51.5 99.2 90.7 92.1 92.2 97.7 94.2 89.8 98.4 91.3 90.7 66.3 91.7 75.3 95.9 92.1 99.0 88.9
M3T (Ours) 97.1 69.4 99.2 95.5 95.2 96.4 100.0 98.3 93.5 96.8 96.2 95.2 82.8 95.6 90.2 95.8 94.3 99.5 93.9

Modeled Occlusion

Tjaden et al. (2018) 82.0 42.0 95.7 81.1 78.7 83.4 92.8 87.9 74.3 91.7 84.8 71.0 49.1 73.0 46.3 90.9 76.2 96.9 77.7
Huang et al. (2020)⋆ 87.8 45.5 98.1 87.2 89.0 89.8 95.1 91.4 77.4 97.1 87.7 83.0 62.5 88.6 69.7 94.1 86.0 98.9 84.9
Huang et al. (2022)⋆ 93.2 50.6 98.3 89.2 92.6 93.7 95.6 93.4 87.9 97.4 92.0 88.8 69.3 91.8 78.7 96.0 91.9 99.0 88.8
M3T (Ours) 98.6 69.5 99.5 97.4 97.3 96.8 99.9 99.2 94.3 97.5 98.3 96.6 86.0 96.7 91.4 97.1 95.3 99.7 95.1

43

3. Region-based Tracking

Table 3.2.: Average runtimes per frame and usage of a GPU for state-of-the-art ap-
proaches. Methods that are not purely region-based are indicated by a ⋆. For
the occlusion modeling scenario, which considers the tracking of two objects
and the rendering of depth images, values are shown in parenthesis.

Approach No GPU Runtime

Tjaden et al. (2018) ✗ 15.5 ∼ 21.8 ms
Zhong et al. (2020b) ✗ 41.2 ms
Huang et al. (2020)⋆ ✗ 33.1 ms
F. Liu et al. (2021)⋆ ✗ 6.9 ms
J.-C. Li et al. (2021)⋆ ✗ 32.1 ms
X. Sun et al. (2021)⋆ ✗ 40.0 ∼ 50.0 ms
Huang et al. (2022)⋆ ✗ 30.4 ∼ 36.4 ms
M3T (Ours) ✓(✗) 0.9 ms (5.1 ms)

to be rendered, and the reported time is for the simultaneous tracking of two objects.
In comparison, except for the algorithm of F. Liu et al. (2021), for which the execution
time is seven times higher, all other methods report average runtimes that are more than
one order of magnitude larger. The difference is even more impressive since M3T only
utilizes a single CPU core and does not require a GPU. In contrast, most competing
methods typically use multithreading and heavily depend on a GPU. In conclusion,
while different resources and computers were used, the obtained results highlight the
superior efficiency of our sparse region-based method.

3.5.2. OPT Dataset

While the semi-synthetic RBOT dataset features a large number of objects, a difficult,
highly-cluttered background, and perfect ground truth, objects are simulated with
limited realism, and only very little motion blur is applied. Those shortcomings are
complemented by the OPT dataset (Wu et al. 2017), which contains real-world recordings
of 3D-printed objects on a white background with different speeds and levels of motion
blur. In total, the dataset includes six objects and consists of 552 real-world sequences
with various lighting conditions and defined trajectories recorded by a robot arm. An
example image for each object is shown in Fig. 3.13. The sequences are classified into the
following categories: translation, forward and backward, in-plane rotation, out-of-plane
rotation, flashing light, moving light, and free motion.

In the experiments, the metric of Wu et al. (2017) is used. For this, we compute the
average vertex error

ev(tk) =
1
n

n

∑
i=1

∥∥(MX̃̃X̃Xi − MTTTMGT(tk)MX̃̃X̃Xi

)
3×1

∥∥
2, (3.47)

44

3.5. Evaluation

Figure 3.13.: Images from the OPT dataset (Wu et al. 2017), featuring the Soda, Chest,
Ironman, House, Bike, and Jet objects.

with X̃̃X̃Xi a vertex in the 3D mesh geometry of the object, and n the number of vertices.
Tracking is considered successful if ev(tk) < ked, where d is the maximum vertex distance,
and ke is an error threshold. The tracking quality for all frames is then measured using
an area-under-curve (AUC) score that integrates the percentage value of successfully
tracked poses over the interval ke ∈ [0, 0.2]. This results in AUC scores between zero
and twenty. For the tracker, the parameters s = {6, 4, 1}, σr = {25, 10, 2.5}, αh = 0.43,
and sh = 0.5 are used. Also, a larger rotational regularization parameter of λr = 30000
is adopted for the rotationally symmetric Soda object. The main reason is that the object
geometry of the Soda object does not constrain the rotation around the vertical axis. In
such cases, fluctuations in the gradient and Hessian can lead to drift in the object’s
orientation. Using more regularization allows us to mitigate this problem.

Results for our experiments on the OPT dataset are shown in Table 3.3. We thereby
compare M3T to state-of-the-art region-based tracking approaches, as well as edge-based
approaches from Bugaev et al. (2018), J.-C. Li et al. (2021), and Huang et al. (2022). Also,
prominent methods such as PWP3D (Prisacariu and Reid 2012), ElasticFusion (Whelan
et al. 2015), UDP (Brachmann et al. 2016), and ORB-SLAM2 (Mur-Artal and Tardós 2017)
are included. Note that not all algorithms are dedicated 3D tracking solutions. UDP is a
global 6DoF pose estimation method, while ElasticFusion and ORB-SLAM2 are visual
SLAM approaches for camera pose localization that are applied to the silhouette of the
object. For more information on the evaluation of those algorithms, please refer to Wu
et al. (2017).

The comparison shows that our approach performs significantly better than the state
of the art in region-based tracking represented by J.-C. Li et al. (2021), Zhong et al.
(2020b), and Tjaden et al. (2018), with M3T achieving higher AUC scores for each of
the six objects. Also, compared to none region-based approaches, we are able to report
the highest score for four out of six objects and perform best on average. This is even

45

3. Region-based Tracking

Table 3.3.: AUC scores between zero and twenty for the evaluation on the OPT dataset
(Wu et al. 2017), comparing our approach to multiple other algorithms. Values
are taken from Wu et al. (2017) and the respective publications. The best
results are highlighted in bold, while the second-best values are underlined.

Approach Soda Chest Ironman House Bike Jet Avg.

PWP3D 5.87 5.55 3.92 3.58 5.36 5.81 5.01
ElasticFusion 1.90 1.53 1.69 2.70 1.57 1.86 1.87
UDP 8.49 6.79 5.25 5.97 6.10 2.34 5.82
ORB-SLAM2 13.44 15.53 11.20 17.28 10.41 9.93 12.97
Bugaev et al. 2018 14.85 14.97 14.71 14.48 12.55 17.17 14.79
Tjaden et al. 2018 8.86 11.76 11.99 10.15 11.90 13.22 11.31
Zhong et al. 2020b 9.01 12.24 11.21 13.61 12.83 15.44 12.39
J.-C. Li et al. 2021 9.00 14.92 13.44 13.60 12.85 10.64 12.41
Huang et al. 2022 9.07 12.93 8.80 11.15 7.96 11.09 10.17
M3T (Ours) 15.55 17.29 17.50 16.57 13.06 16.14 16.02

more remarkable since ORB-SLAM2, which reports better results for the House object,
uses gradient-based corner features. In contrast to M3T, the algorithm is thus not
constrained to the contour but considers information over the entire silhouette. Also,
the edge-based algorithm of Bugaev et al. (2018), which performs best for the Jet object,
uses basin-hopping for global optimization, and, with an average reported runtime of
683 ms, is not real-time capable. In conclusion, the obtained results demonstrate that
M3T not only performs well on simulated data but also for real-world sequences.

3.5.3. Parameter Analysis

Having evaluated the performance of our approach, we want to foster our understanding
of parameter values that were introduced in Sections 3.2 and 3.3. For this, the average
success rate for the RBOT dataset and the average AUC score for the OPT dataset are
plotted over different parameter values. The plots are shown in Fig. 3.14. Note that the
success rate and AUC score are computed over all objects and sequences. Except for the
analyzed parameters, the same settings as in Sections 3.5.1 and 3.5.2 are used.

For the amplitude parameter αh, we observe that while the parameter significantly
influences the tracking success, the effect on the AUC score is much smaller. Knowing
that the amplitude parameter models global uncertainty, this corresponds well with
the fact that the RBOT dataset features highly-cluttered images while the OPT dataset
contains a constant white background. For the slope parameter sh, the highest tracking
success is observed for sh → 0, and the best AUC score is obtained at sh = 0.5. Again,
this is well explained by the theoretical interpretation according to which the slope
parameter models local uncertainty. Given perfect information about the object geometry,

46

3.5. Evaluation

0.2 0.3 0.4 0.5
70

80

90

100

Amplitude Parameter αh

14

15

16

17

0 0.5 1 1.5
70

80

90

100

Slope Parameter sh

14

15

16

17

0 1 2 3
70

80

90

100

Step Size αs

14

15

16

17

103 104 105 106
70

80

90

100

Regularization λt, 30λr

14

15

16

17

Tracking Success for RBOT dataset

AUC score for OPT dataset

Figure 3.14.: Average tracking success for the RBOT dataset and average AUC score for
the OPT dataset over different values of the amplitude parameter αh, slope
parameter sh, step size αs, and the rotational and translational regularization
parameters λr and λt. For the evaluation of the regularization parameters,
we use the constant relation λt = 30λr.

we do not expect any inconsistency for the semi-synthetic RBOT dataset. At the same
time, for the OPT dataset, with imperfectly 3D printed objects and recorded real-world
images, it is important to explicitly model local uncertainty.

Studying the plot of the step size αs, we observe a relatively large plateau around
one, with maximum values at αs = 1.3, both for the tracking success and the AUC
score. This suggests a low dependency between the parameter and different image
data. Particularly interesting are also the results for αs = 0. For this setting, no local
optimization is conducted, showing the capability of global optimization alone. While
values are slightly smaller, the good results highlight the excellent performance of the
adopted global approximation.

Finally, for the evaluation of regularization, the rotational and translational parameters
are modified simultaneously. To consider the different units of radians and meters,
we define λt = 30λr. Like in previous evaluations of the Soda object, we increase the
rotational parameter and use λr = λt. The resulting plots for the tracking success and the
AUC score demonstrate the high importance of regularization. If values are chosen too

47

3. Region-based Tracking

small, the optimization is unstable for directions in which no or very little information is
available. At the same time, if parameters are too large, the optimization is slowed down,
and the final pose might not be reached. It is thus important to find values that lie in
between. In our experience, a good approximation is to use regularization parameters
that are in the same order of magnitude as the maximum rotational and translational
diagonal elements of the Hessian matrix.

In conclusion, the conducted parameter analysis demonstrates that experimental
results correspond well to theoretical interpretations from Sections 3.2 and 3.3. In
addition to fostering our understanding, this explainability helps to guide the parameter
search for new applications. Moreover, the results in Fig. 3.14 demonstrate that all
parameters are well-behaved, with large plateaus around the maximum and no sudden
jumps. This has the advantage that parameters are easy to tune, with a broad range of
values achieving satisfying results.

3.5.4. Discussion

The conducted experiments demonstrate the excellent performance of our approach. In
the following, we want to discuss design considerations that are essential in achieving
those results and shed some light on remaining limitations. With respect to computa-
tional efficiency, the biggest performance gain is attributed to our novel correspondence
line model and the sparse nature of the method. In addition, the sparse viewpoint
model provides a highly-efficient representation, which requires only a simple search to
obtain the object contour for the current pose. Also, in contrast to dense methods, for
our approach, it is not necessary to compute a 2D signed distance function, but one can
simply use the projected contour distance. Finally, the discrete scale-space formulation
reduces the amount of computation further by combining multiple pixels into segments
and supporting the use of precomputed smoothed step functions.

For the quality of the pose estimate, multiple aspects have to be considered. The first
important factor is the use of smoothed step functions that provide realistic modeling of
local and global uncertainty. Consequently, this leads to reliable posterior probability
distributions for the contour location. Also, due to the one-dimensionality of correspon-
dence lines and the discrete scale-space implementation, we are able to sample values
over posterior probability distributions in reasonable time. This allows us to calculate
the mean and the variance. Both estimates constitute the basis for fast-converging global
optimization that is independent of local minima. In addition, knowledge about the
uncertainty of individual correspondence lines is also used for local optimization, where
numerical first-order derivatives are weighted according to the inverse variance. Finally,
Tikhonov regularization is another important factor. It helps to constrain the estimate
with respect to the previous pose, stabilizing the optimization for directions in which no
or very little information is available.

While the described algorithm achieves remarkable results and works very well in a
wide variety of applications, some challenges remain. The main limitations are thereby
similar to other region-based methods. First, objects have to be rigid, and an accurate

48

3.6. Conclusion

3D model has to be known. Also, the background has to be distinguishable from the
object. If large areas in the background contain colors that are present in the object,
the final result might be perturbed. Another challenge comes from ambiguities where
the object silhouette is very similar in the vicinity of a particular pose. Naturally, in
such cases, there is not enough information, and it is impossible for the algorithm to
predict the correct pose. Similarly, if large parts of the object are occluded, the visible
part of the contour might not fully constrain the pose of the object, leading to erroneous
estimates. Finally, like most tracking approaches, the algorithm can only be used for
local optimization with a limit to the maximum pose difference from one frame to the
next. Most of those limitations will be addressed in the next chapter, where we combine
information from multiple modalities to further improve the robustness, accuracy, and
convergence of our algorithm.

3.6. Conclusion

In this chapter, we proposed a highly-efficient sparse approach to region-based 3D
object tracking that uses correspondence lines to find the pose that best explains the
segmentation of the image. In addition to a thorough mathematical derivation of corre-
spondence lines, we provided a highly-efficient scale-space implementation. Another
important contribution is the introduction of smoothed step functions that allow the
modeling of both local and global uncertainty. The effect of this modeling was analyzed
in detail with respect to both the theoretical posterior probability and the quality of
the final tracking result. For the maximization of the pose-dependent joint posterior
probability, we proposed the use of an initial global optimization towards the mean of
each distribution and a consecutive local optimization that considers discrete probability
values. In addition, for the local first-order derivative, a novel approximation that uses
inverse variance weighting on the finite difference value was developed. Furthermore,
to improve results for real-world applications such as robotic manipulation, a robust
occlusion handling strategy was implemented. Finally, in multiple experiments on the
RBOT and OPT datasets, we demonstrated that our implementation in the M3T library
outperforms the current state of the art in region-based tracking by a considerable
margin both in terms of quality and efficiency.

49

4
Multi-modality Tracking

4.1. Introduction

Combining different techniques and using multiple sources of information greatly helps
to improve tracking quality. In addition to region, some of the most prominent types
of information are depth and texture. Depth-based methods minimize the distance
between a geometric object model and measurements from a depth camera. For the
consideration of texture, both keypoint features and direct optimization are used. While
keypoint-based methods reduce the distance between matching characteristic points,
direct optimization minimizes a pixel-wise error over the object silhouette. Region-
based methods, on the other hand, differentiate between the object silhouette and the
background. In addition, instead of considering the entire object as one single region, it
is possible to distinguish between multiple areas on the object surface. In general, region,
depth, and texture are highly complementary. For example, while region information
works well to constrain in-plane rotation and translation, depth measurements are highly
valuable for the prediction of the out-of-plane rotation and the camera distance. In
addition, texture is able to provide information in cases of inconclusive object geometry,
where techniques based on single-region and depth would fail. Also, while texture
considers local object characteristics, such as text or graphics, multi-region takes into
account global differences from distinct materials and colors.

To utilize this complementary information, the following chapter presents an ap-
proach that implements region, depth, and texture modalities, and allows their flexible
combination. Also, it enables the incorporation of data from multiple cameras for which
the relative pose is known. Because of its modularity, the method can be adapted
to various object characteristics and available sensory information. In the following,
we start with an introduction to the probabilistic framework that is used to combine
information from different modalities and cameras. Subsequently, based on the ICP

algorithm, a depth modality is developed. This is followed by the introduction of a
keypoint-based texture modality that utilizes data from local object appearance. Finally,
using the proposed multi-modality framework, we extend the region approach from
Chapter 3 to multi-region tracking. This allows our method to distinguish between
different regions on the object surface. An illustration of the resulting approach with all
developed modalities is shown in Fig. 4.1.

For our implementation in the M3T library, an extensive evaluation on the YCB-

Video (Xiang et al. 2018), OPT (Wu et al. 2017), and Choi (Choi and Christensen 2013)

51

4. Multi-modality Tracking

Estimate Depth Texture Region 1 Region 2

Figure 4.1.: Tracking of a marker pen using multiple modalities. In the first row, the
initial state of the optimization is shown, while the second row visualizes
the final state. For the left column, a rendered overlay that illustrates the
object in the estimated pose is given. In the visualization of the depth
modality, the correspondence between blue model points and yellow depth
image points is illustrated by red lines. For the texture modality, keyframe
features are given in blue, while detected points from the current frame
are shown in red. Matched features are connected by yellow lines. For the
two region modalities, which consider the pen’s yellow body and black tip,
probabilities that pixels belong to the respective object region are encoded in
grayscale images. Pixels along correspondence lines are thereby illustrated
in yellow with high probabilities for the location of the contour indicated
in red. As before, with a decreasing scale parameter s for the optimization,
correspondence lines become shorter while the resolution is increased.

datasets is conducted. We thereby differentiate between geometry-based tracking and
the combination of all developed modalities. While the first uses single-region and depth,
which are the only sources of information available for textureless objects, the second
also considers visual appearance, combining depth, texture, and multi-region. Our
experiments show that in both cases, M3T outperforms the state of the art with respect
to tracking quality while remaining extremely efficient. Because the evaluation includes
both a wide variety of conventional methods and state-of-the-art deep learning-based
approaches, we also gain new insights into the current state of deep learning-based
tracking. In addition, we compare our method to global 6DoF pose estimation methods
and assess our approach’s potential for highly-efficient pose refinement. Note that the
chapter is based on ICG and ICG+ and the corresponding publications (Stoiber et al.
2022b; Stoiber et al. 2023a). In addition, the texture modality draws from the master’s

52

4.2. Probabilistic Model

thesis of Elsayed (2021). Also, general concepts of the multi-region approach were first
presented in the bachelor’s thesis of Reichert (2021).

4.2. Probabilistic Model

The following section introduces the probabilistic model for our multi-modality tracking
approach. First, we start by developing a general framework that is able to combine
information from multiple modalities and cameras. This is followed by the derivation
of an ICP-based depth modality. To include texture information, a texture modality
that uses keypoint features is then developed. Finally, the sparse region approach from
Chapter 3 is extended to consider multiple regions on the object surface.

4.2.1. Framework

Similar to Chapter 3, we use a probabilistic formulation that expresses the probability
of a particular pose given data considered by the tracking approach. The pose is then
estimated by maximizing this probability density function (PDF). For our multi-modality
tracker, the joint probability over all considered modalities is defined as

p(θθθ | DDD) ∝

nd

∏
i=1

p(θθθ | DDDdi)
nt

∏
i=1

p(θθθ | DDDti)
nr

∏
i=1

p(θθθ | DDDri), (4.1)

where DDDdi is data from a depth modality, DDDti considers data from a texture modality, DDDri

denotes data from a region modality, and θθθ⊤ =
[
θθθ⊤r θθθ⊤t

]
is the pose variation. Note that

while, for texture and depth, only one modality per camera is used, for multi-region,
multiple modalities can be configured per camera. The parameter nr thereby describes
the number of region modalities summed over all cameras.

Like in Section 3.3.4, Newton optimization with Tikhonov regularization is used to
estimate the pose variation

θ̂̂θ̂θ =

(
− HHH +

[
λrIII3 000

000 λtIII3

])−1

ggg, (4.2)

where λr and λt are rotational and translational regularization parameters. The gradient
vector ggg and the Hessian matrix HHH are the first- and second-order derivatives of the
logarithm of the joint PDF in Eq. (4.1). They are defined as

ggg⊤ =
∂

∂θθθ
ln

(
p(θθθ | DDD)

)∣∣∣
θθθ=000

, (4.3)

HHH =
∂2

∂θθθ2 ln
(

p(θθθ | DDD)
)∣∣∣

θθθ=000
. (4.4)

53

4. Multi-modality Tracking

Based on the gradient vectors and Hessian matrices of individual modalities, the full
gradient vector and Hessian matrix can be assembled as follows

ggg =
nd

∑
i=1

gggdi +
nt

∑
i=1

gggti +
nr

∑
i=1

gggri, (4.5)

HHH =
nd

∑
i=1

HHHdi +
nt

∑
i=1

HHHti +
nr

∑
i=1

HHHri. (4.6)

For the depth and texture modality, the gradient vectors gggdi and gggti and the Hessian
matrices HHHdi and HHHti will be defined in Sections 4.2.2 and 4.2.3. For multi-region tracking,
only the sparse viewpoint model that considers the object’s geometry has to be adapted.
The gradient vector gggri and the Hessian matrix HHHri remain the same as in the previous
chapter. They are defined in Section 3.3.5.

Finally, given the calculated variation vector θ̂̂θ̂θ, pose estimates are updated as follows

CTTT+
M = CTTTM

[
exp([θ̂̂θ̂θr]×) θ̂̂θ̂θt

000 1

]
, (4.7)

where C denotes the coordinate frame of an arbitrary depth or color camera. Typically,
only the pose estimate with respect to one camera is calculated using Eq. (4.7). For all
other cameras, the fixed relative transformation is used. By iteratively repeating the
process, one is able to find the object pose that maximizes the joint PDF, considering
depth, texture, and multi-region information from multiple cameras.

4.2.2. Depth Modality

In the following section, we develop a depth modality based on the ICP approach of
Besl and McKay (1992). While signed distance functions (Fitzgibbon 2003) could also
be used, the sparse nature of ICP fits better to the sparse region approach developed
in Chapter 3. As defined by the ICP process, we start with a search of depth image
points that correspond to model points. For this, similar to projective data association
(Blais and Levine 1995; Dorai et al. 1998), a 3D surface point XXXi from the sparse
viewpoint model is first projected into the depth image. Given a user-defined radius
and stride, multiple 3D points within a quadratic area are then reconstructed. The
final correspondence point PPPi ∈ R3 is then selected as the point closest to the point
XXXi in euclidean space. Correspondences with a distance bigger than a threshold are
rejected. Note that techniques such as normal shooting (Chen and Medioni 1992), as
well as rejection strategies based on the median distance (Diebel et al. 2004), the best
percentage (Pulli 1999), and the compatibility of normal vectors (Pulli 1999) were also
tested. However, in the end, this relatively simple procedure worked best.

For the probabilistic model, we formulate a normal distribution that adopts the point-
to-plane error metric of Chen and Medioni (1992). The distance between the 3D surface
point XXXi and the correspondence point PPPi is thereby calculated along the associated

54

4.2. Probabilistic Model

normal vector NNNi. Given data DDDd from a single depth modality, the probability of the
pose variation vector θθθ is expressed by the following normal distribution

p(θθθ | DDDd) ∝
n

∏
i=1

exp
(
− 1

2dZi
2σd

2

(
MNNN⊤

i

(
MXXXi − MPPPi(θθθ)

))2
)

, (4.8)

with

MP̃̃P̃Pi(θθθ) =

[
III − [θθθr]× −θθθt

000 1

] [
MRRRC MtttC

000 1

]
CP̃̃P̃Pi, (4.9)

where the correspondence point PPPi is variated instead of the model point XXXi. This has the
advantage that the normal vector remains fixed, and only one vector has to be variated.
For the linearized inverse variation, we simply use the negative variation vector −θθθ.
Also, note that the user-defined standard deviation σd is scaled by the correspondence
point’s depth value dZi. The scaling takes into account that the number and quality
of depth measurements decrease with the distance to the camera. In addition, it also
ensures compatibility with the region modality’s uncertainty, which is defined in units
of pixels and therefore increases with the camera distance.

Finally, based on the designed PDF, the following gradient vector and Hessian matrix
for a single depth modality can be derived

gggd = −
n

∑
i=1

1
dZi

2σd
2 MNNN⊤

i

(
MXXXi − MPPPi

) [MPPPi×MNNNi

MNNNi

]
, (4.10)

HHHd = −
n

∑
i=1

1
dZi

2σd
2

[
MPPPi × MNNNi

MNNNi

] [
MPPPi × MNNNi

MNNNi

]⊤
. (4.11)

4.2.3. Texture Modality

To consider local object appearance from text, graphics, or patterns, we design a PDF
that uses keypoint features. Note that while direct optimization could also be used, we
believe that the large basin of convergence and high robustness to illumination changes
of keypoint features outweigh the requirement for strong texture. For our method,
keypoints are detected on each new frame within a rectangular region close to the
previous pose estimate. Descriptors from those points are then matched to features from
keyframes. In general, a frame is considered a keyframe if the orientational difference to
existing keyframes exceeds a certain threshold. Note that the use of keyframes helps
to reduce drift and makes tracking more robust. Finally, if a frame is considered a
keyframe, a depth rendering is generated, and keypoints that fall on the object silhouette
are reconstructed using Eq. (3.22). Together with their respective descriptors, unoccluded
3D points are then stored for the keyframe.

Given detected 2D points xxx′i from the current frame and matching 3D model points
MXXXi from keyframes, a PDF can be formulated. Similar to the method of Vacchetti
et al. (2004), we assume a normal distribution for the reprojection error and write the

55

4. Multi-modality Tracking

following function for independent point pairs

p(θθθ | DDDt) ∝
n

∏
i=1

exp
(
− 1

2σt
2 ρtuk

(∥∥xxx′i − xxxi(θθθ)
∥∥

2

))
, (4.12)

with variated model points that are projected into the image space

xxxi(θθθ) = πππ

([
CRRRM CtttM

000 1

] [
III + [θθθr]× θθθt

000 1

]
MX̃̃X̃Xi

)
. (4.13)

The user-defined standard deviation σt takes into account the uncertainty of the texture
modality compared to other modalities. Like the region modality’s standard deviation
σr, it is defined in units of pixels. The term ρtuk denotes the Tukey norm. It minimizes
the effect of outliers from wrong matches and is defined as

ρtuk(x) =

{
c2

6

(
1 − (1 − (x

c)
2)3

)
if |x| ≤ c

c2

6 otherwise
, (4.14)

where c is a constant value that is provided by the user. It is typically set to the maximum
residual error expected for inliers.

Based on the PDF in Eq. (4.12), the gradient vector and the Hessian matrix required for
Newton optimization can be derived. Like in other approaches (Lepetit and Fua 2005),
we thereby first approximate the Tukey norm as a re-weighted quadratic expression

ρtuk
(∥∥xxx′i − xxxi(θθθ)

∥∥
2

)
≈ wi

∥∥xxx′i − xxxi(θθθ)
∥∥2

2, (4.15)

with

wi =
ρtuk(ri)

ri
, ri =

∥∥xxx′i − xxxi

∥∥2
2, (4.16)

where weights wi are considered to be constant and are recalculated in each iteration of
the optimization. For their calculation, residuals ri are evaluated at θθθ = 000. Subsequently,
given those simplifications, the gradient vector and the Hessian matrix can be derived
by applying the chain rule to the logarithm of the PDF as follows

gggt =
n

∑
i=0

− wi

2σt
2

∂ri

∂xxxi

∂xxxi

∂CXXXi

∂CXXXi

∂θθθ

∣∣∣∣
θθθ=000

, (4.17)

HHHt ≈
n

∑
i=0

− wi

2σt
2

(
∂xxxi

∂CXXXi

∂CXXXi

∂θθθ

)⊤ ∂2ri

∂xxxi
2

(
∂xxxi

∂CXXXi

∂CXXXi

∂θθθ

) ∣∣∣∣
θθθ=000

, (4.18)

where second-order partial derivatives with respect to xxxi are neglected. Starting from
Eq. (4.13) and using the pinhole camera model from Eq. (3.21), we calculate the required
partial derivatives as

∂xxxi

∂CXXXi
=

1

CZi
2

[
CZi fx 0 −CXi fx

0 CZi fy −CYi fy

]
, (4.19)

∂CXXXi

∂θθθ
= CRRRM

[
−[MXXXi]× III3

]
. (4.20)

56

4.2. Probabilistic Model

Also, for the residual ri, the following first- and second-order derivatives can be defined

∂ri

∂xxxi
=

[
2 (xi − x′i) 2 (yi − y′i)

]
, (4.21)

∂2ri

∂xxxi
2 = 2 III2. (4.22)

Finally, with the derived gradient vector and Hessian matrix, our multi-modality tracking
approach is able to consider texture information.

4.2.4. Multi-region Tracking

In the following, we build on the sparse region approach presented in Chapter 3 and
extend it to multi-region tracking. This not only has the advantage that additional
information is considered but also facilitates better statistical modeling of individual
regions. In our approach, we consider each region on the object’s surface independently.
This means that only the respective object surface is regarded as foreground while
everything else is defined as background. The technique is very similar to conventional
region-based tracking, which only differentiates between the object silhouette and
the background. Consequently, we can directly adopt the probabilistic formulation
presented in Chapter 3 and simply deploy one modality per region.

To represent the geometry of individual regions, we again use sparse viewpoint
models. As before, they store precomputed 3D contour points and normal vectors for
multiple views all around the object. In addition, the sparse viewpoint model, again,
contains the distances along the normal vector for which the foreground and background
are not interrupted by each other. This information is required during tracking to ensure
that only one transition along each correspondence line exists. In summary, the sparse
viewpoint model thus contains the same information as before. However, since multiple
connecting geometries are considered for multi-region tracking, the generation process
has to be adapted.

In contrast to single-region tracking, sparse viewpoint models for multi-region track-
ing need to consider individual surface patches instead of the entire object. An example
of this is shown in Fig. 4.2. The geometry of surface patches is defined in separate
meshes, which are created by the user. During model generation, those meshes are
rendered from multiple views all around the object to produce silhouette and depth
images. For a particular surface patch that models a region, the silhouette image shows
a distinct pixel value. This allows a simple extraction of the required contour. For the
extracted contour, it is important to validate points and reject view-dependent segments
caused by shadows from neighboring geometries. An example of this is shown in
Fig. 4.3. For the validation, one simply compares the depth value of each contour point
with that of neighboring pixels from other regions. If the depth of those neighboring
pixels is smaller than what can be explained by a typical surface gradient, the contour
point is rejected.

57

4. Multi-modality Tracking

Real-world
Object

Single-region
Model

Multi-region
Model

Figure 4.2.: Region models of a robotic end effector. The image in the middle shows
the 3D model that is used for single-region tracking. In the image on the
right, the geometry is separated into blue and gray surface patches that are
employed for multi-region tracking. In addition, a fixed yellow cylinder for
the gimbal joint and a red shell geometry for the movable pliers are used to
explicitly consider neighboring structures.

Figure 4.3.: Contour validation for a blue region neighbored by two yellow regions. The
left contour point, which is shown as a circle, is invariant to small camera
changes and is therefore accepted. The point on the right, which is marked
by a cross, emerges from an elevated edge of a neighboring geometry. It is
highly view-dependent and is therefore rejected.

In addition to fixed neighboring regions, we also consider movable external bodies for
which the pose relative to the tracked surface can change. Also, we take into account
same-region geometries that model color statistics similar to the main region. Both cases
can be useful for the tracking of kinematic structures, such as robots that consist of
multiple bodies. For movable geometries, one simply needs to create a shell mesh that
covers the entire volume that can be occupied. An example is shown in Fig. 4.2, where
a red mesh considers movable pliers. The geometry is used during the validation to
reject areas of the contour that could become occluded. Also, in the case of same-region

surfaces, it does not make sense to deploy correspondence lines if regions with similar
color statistics neighbor the main region. Affected contour areas are thus also rejected.

58

4.3. Implementation

Foreground Distances Background Distances

same
region

main

movable

fixed

same
region

main

movable

fixed

Figure 4.4.: Example for the validation of contour points and the computation of fore-
ground and background distances. The valid contour is colored in red.
Contour segments that are occluded by a movable body or that neighbor a
same-region body are invalid. Segments on the transition to a fixed body are
only valid if they are invariant to small view changes. For the computation
of foreground distances, only the main and same-region areas can be traversed.
Background distances are stopped by any surface that considers the same
region as the main geometry.

Examples for both cases are shown in Fig. 4.4.
While for the validated contour, points and normal vectors can be sampled as usual,

it is essential to correctly calculate foreground and background distances. This ensures
that all available information is taken into account and only one transition exists along
correspondence lines that are considered. Background distances, which are oriented
outwards, are thereby limited either by the main region itself or by other same-region

areas. Inwards-oriented foreground distances, on the other hand, can only traverse
the main region or same-region bodies that are fixed. Examples for both cases are
again shown in Fig. 4.4. Finally, given the extended sparse viewpoint model that was
developed in this section, we are able to consider multiple object regions while, at the
same time, taking into account neighboring geometries.

4.3. Implementation

The following section provides details for the implementation of the proposed modalities
in the M3T algorithm and defines the parameters used in the evaluation. If not defined
otherwise, the same values are employed in the region modality as in Section 3.4. For
the amplitude and slope parameters, we adopt αh = 0.43 and sh = 0.5, which were
previously used for the evaluation on the OPT dataset. The only main changes for
the region modality consider the discretization of color histograms and the number of
conducted iterations. For color histograms, we decrease the number of bins from 32 to
16, which results in a total of 4096 equidistant bins. Also, we only use 4 instead of 7

59

4. Multi-modality Tracking

iterations for the optimization. Both changes help to further improve efficiency while, at
the same time, they do not significantly affect tracking quality.

For the depth modality, we use a sparse viewpoint model similar to the definition
in Section 3.4.1. The main difference is that we sample points on the object’s surface
instead of the contour. Also, we do not require foreground and background distances.
To explicitly consider occlusions known during model generation, we include the
corresponding geometry in the rendering of each viewpoint. Points are then only
sampled on the main object’s silhouette, which is not occluded. As for the region
modality, the model allows for a highly-efficient representation of the object geometry
and directly provides the required surface points XXXi and normal vectors NNNi.

To find correspondence points PPPi for the depth modality, image values on a quadratic
grid with a stride of 5 mm and a radius equal to the correspondence threshold rd are
considered potential candidates. Both parameter values are projected from meters into
pixels based on the depth of 3D points XXXi. Correspondence points with a distance
bigger than the threshold rd are rejected. Note that both the standard deviation σd

and the threshold rd are adjusted for each iteration. This allows us to define our
confidence in the data and the range in which depth information is considered. Because
characteristics such as depth image quality and frame-to-frame pose differences depend
on the sequence, we adjust the parameters for every dataset and provide them in the
evaluation section. Finally, like for the region modality, individual model points are
subject to occlusion. We, therefore, adopt the same strategy as in Section 3.4.4 and use
information from depth images and renderings to reject occluded points.

For the texture modality, we integrate the BRISK (Leutenegger et al. 2011), ORB

(Rublee et al. 2011), FREAK (Alahi et al. 2012), SIFT (Lowe 2004), and DAISY (Tola
et al. 2010) descriptors from the OpenCV library. Note that FREAK and DAISY are used
in combination with the highly-efficient ORB detector. All other algorithms provide
their own detection method. In general, we found that while SIFT achieves a slightly
higher score, ORB provides the best trade-off between quality and efficiency. A detailed
comparison is given in Section 4.4.4. For ORB, a maximum of 300 feature points are
retrieved, and 3 scale levels that differ by a factor of 1.2 are used. Also, SIFT is run with
3 octave layers, a contrast threshold of 0.04, an edge threshold of 10, and a sigma value
of 0.7. For parameter values of other descriptors, please refer to the source code.

During matching, we use the Hamming distance for binary descriptors and the
euclidean norm for SIFT and DAISY. A match is valid if the distance ratio to the second-
best match is smaller than 0.7. As input to the detector, we use a rectangular image
crop based on the previous pose estimate. If the full object is visible in the image, the
crop is scaled to a defined size of 200 × 200 px. A frame is considered a keyframe if the
orientation difference to the previous keyframe is bigger than 10◦. In the evaluation,
a Tukey norm constant of c = 20 px is used. The standard deviation σt depends on
the dataset and will be defined later. Finally, to check if points from a keyframe are
occluded, we again use the strategy from Section 3.4.4.

For multi-region tracking, our implementation does not require any new equations

60

4.4. Evaluation

Table 4.1.: Geometries featured in renderings for the contour generation, the validation
of contour points, as well as the computation of foreground and background
distances. The + and × symbols indicate the rendering of different pixel
values. For the − symbol, the background value is rendered.

Rendering Main Fixed Movable
Fixed

Same-region
Movable

Same-region

Contour Generation + ×
Occlusion Check − − +
Same-region Check − − + +
Foreground Distance + − − +
Background Distance + − + +

or parameters. Instead, only the generation of the sparse viewpoint model is extended,
with independent modalities taking into account each region. The proposed modifica-
tions of the sparse viewpoint model consider the validation of contour points and the
computation of foreground and background distances. Multiple renderings are thereby
created for each view. An overview of the considered geometries and the rendered pixel
values are provided in Table 4.1. First, the contour generation rendering is used both to
extract the contour of the main geometry and to check the depth values of neighboring
fixed geometries. For the occlusion check, one discards contour points that lie on the
corresponding rendered silhouette. In contrast, for the same-region check, points with
neighboring pixels that are not the background are rejected. Finally, for the computation
of foreground distances and background distances, one proceeds along the respective line
directions until pixel values change or the image ends.

4.4. Evaluation

In this section, we present an extensive evaluation of our approach on the YCB-Video

(Xiang et al. 2018), OPT (Wu et al. 2017), and Choi (Choi and Christensen 2013) datasets.
This allows us to assess our implementation’s robustness, accuracy, and efficiency
compared to the state of the art in 3D object tracking. We thereby not only evaluate
the full configuration of our M3T tracker with all modalities but, in addition, consider
geometry-based tracking with a single region and depth modality. This allows us to
assess the performance that can be expected for the tracking of textureless objects. In
multiple ablation studies, we compare different feature descriptors, demonstrate the
importance of individual components of our method, and evaluate the algorithm’s
convergence. Finally, we also compare our approach to global 6DoF pose estimation
methods and assess results for highly-efficient pose refinement. Videos which show the

61

4. Multi-modality Tracking

Figure 4.5.: Images from all 12 sequences of the YCB-Video dataset (Xiang et al. 2018)
that are used for the evaluation.

performance of current and previous versions of our approach are available online. 1,2

4.4.1. YCB-Video Dataset

The YCB-Video dataset (Xiang et al. 2018) uses 21 Yale-CMU-Berkeley (YCB) objects (Calli
et al. 2015) and considers 12 sequences with a total of 2949 keyframes for evaluation. It
contains both color and depth images. Because it includes additional training sequences,
it is very popular with deep learning-based methods. Example images for each of the 12
sequences are shown in Fig. 4.5. For each frame, the dataset contains ground-truth poses
that were obtained using global refinement on the depth data. Based on those poses,
the average-distance (ADD) error eADD and the average-shortest-distance (ADD-S) error
eADD-S are used for evaluation. The two error metrics were proposed by Hinterstoisser
et al. (2013) and are defined as follows

eADD =
1
n

n

∑
i=1

∥∥(MX̃̃X̃Xi − MTTTMGT MX̃̃X̃Xi

)
3×1

∥∥
2, (4.23)

eADD-S =
1
n

n

∑
i=1

min
j∈[n]

∥∥(MX̃̃X̃Xi − MTTTMGT MX̃̃X̃X j

)
3×1

∥∥
2, (4.24)

1❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✇❛t❝❤❄✈❂◆❢◆③①❳✉♣❳✺✹
2❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✇❛t❝❤❄✈❂q▼r✶❘❍❈s♥❉❦

62

https://www.youtube.com/watch?v=NfNzxXupX54
https://www.youtube.com/watch?v=qMr1RHCsnDk

4.4. Evaluation

002_master_chef_can 003_cracker_box 004_sugar_box 005_tomato_soup_can

006_mustard_bottle 007_tuna_fish_can 008_pudding_box 009_gelatin_box

010_potted_meat_can 021_bleach_cleanser 037_scissor 040_large_marker

Figure 4.6.: YCB objects that are suitable for multi-region tracking. The right image for
each object illustrates the modeled regions in different colors.

where MTTTMGT is the transformation from the ground-truth (GT) to the estimated model
frame, XXXi is a 3D vertex of the mesh model, n is the number of vertices, and ()3×1

denotes the first three elements of a vector. For the evaluation, ADD and ADD-S errors
are used in an area-under-curve score that integrates the percentage of successful frames
over a varying threshold. Based on m frames and a constant maximum threshold of
et = 0.1 m, scores can be calculated using the following simple equation

s =
1
m

m

∑
i=1

max
(

1 − ei

et
, 0
)

. (4.25)

The error ei is thereby either the ADD error eADD or the ADD-S error eADD-S for frame i,
depending on which area-under-curve score is calculated.

Results of the evaluation are shown in Table 4.2. For our algorithm, the parameter
values σr = {25, 15, 10}, σd = {50, 30, 20}, σt = {10, 10, 3}, s = {7, 4, 2}, and rt =

{70, 50, 40} are used, where values are given in units of pixels and millimeters. The
given sets define parameters for each iteration, with the last value used for all remaining
iterations. Occlusions are considered using depth images and the strategy presented in
Section 3.4.4. For multi-region tracking, 12 suitable objects with distinctive regions were
identified. An overview of those objects and the modeled regions is shown in Fig. 4.6.
In the evaluation, our method is compared to DeepIM (Y. Li et al. 2018), se(3)-TrackNet

(Wen et al. 2020), and PoseRBPF (Deng et al. 2021), which are all state-of-the-art deep
learning-based methods. In addition, results from the particle-filter-based approach of
Wüthrich et al. (2013) are also provided.

63

4. Multi-modality Tracking

Table 4.2.: Results on the YCB-Video dataset (Xiang et al. 2018) with ADD and ADD-S
area-under-curve scores in percent. Except for PoseRBPF (Deng et al. 2021),
results are taken from Wen et al. (2020). For DeepIM (Y. Li et al. 2018), the
score over all frames was adjusted to be consistent with the evaluation of other
methods. The best values are in bold, while the second-best are underlined.
Objects with no conclusive geometry are indicated by a ⋆, while objects with
no or very little texture are marked by a ⋄.

Approach Wüthrich DeepIM
se(3)-

TrackNet
PoseRBPF

+ SDF
M3T Geom.

(Ours)
M3T ORB

(Ours)
M3T SIFT

(Ours)

Initial Pose GT GT GT PoseCNN GT GT GT
Re-initialization No Yes (290) No Yes (2) No No No

Objects A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

002_master_chef_can⋆ 55.6 90.7 89.0 93.8 93.9 96.3 89.3 96.7 64.3 89.8 94.0 97.9 94.7 98.0

003_cracker_box 96.4 97.2 88.5 93.0 96.5 97.2 96.0 97.1 82.4 90.4 96.3 98.2 96.8 98.4

004_sugar_box 97.1 97.9 94.3 96.3 97.6 98.1 94.0 96.4 94.3 97.5 96.0 98.3 96.6 98.5

005_tomato_soup_can⋆ 64.7 89.5 89.1 93.2 95.0 97.2 87.2 95.2 77.5 97.9 94.8 98.1 95.2 98.1

006_mustard_bottle 97.1 98.0 92.0 95.1 95.8 97.4 98.3 98.5 96.2 98.4 96.2 98.4 97.1 98.7

007_tuna_fish_can⋆ 69.1 93.3 92.0 96.4 86.5 91.1 86.8 93.6 77.0 95.9 94.5 97.2 94.1 97.1
008_pudding_box 96.8 97.9 80.1 88.3 97.9 98.4 60.9 87.1 73.7 88.8 80.6 90.9 80.4 90.5
009_gelatin_box 97.5 98.4 92.0 94.4 97.8 98.4 98.2 98.6 97.2 98.8 96.9 98.8 96.8 99.1

010_potted_meat_can 83.7 86.7 78.0 88.9 77.8 84.2 76.4 83.5 93.0 97.2 94.8 97.9 95.4 98.1

011_banana⋄ 86.3 96.1 81.0 90.5 94.9 97.2 92.8 97.7 95.5 98.4 94.1 98.2 92.8 98.2
019_pitcher_base⋄ 97.3 97.7 90.4 94.7 96.8 97.5 97.7 98.1 97.0 98.8 97.0 98.8 97.2 98.9

021_bleach_cleanser 95.2 97.2 81.7 90.5 95.9 97.2 95.9 97.0 92.4 97.4 90.1 96.5 91.6 97.0
024_bowl⋆⋄ 30.4 97.2 38.8 90.6 80.9 94.5 34.0 93.0 70.3 98.1 85.9 97.9 84.1 97.9
025_mug⋄ 83.2 93.3 83.2 92.0 91.5 96.9 86.9 96.7 95.5 98.5 94.1 98.3 95.6 98.4
035_power_drill 97.1 97.8 85.4 92.3 96.4 97.4 97.8 98.2 96.6 98.5 96.5 98.4 96.8 98.7

036_wood_block 95.5 96.9 44.3 75.4 95.2 96.7 37.8 93.6 93.7 97.3 94.2 97.5 91.7 96.7
037_scissors⋄ 4.2 16.2 70.3 84.5 95.7 97.5 72.7 85.5 75.6 92.4 93.9 97.4 94.9 97.6

040_large_marker⋆ 35.6 53.0 80.4 91.2 92.2 96.0 89.2 97.3 88.7 97.8 88.2 97.3 94.0 98.1

051_large_clamp⋄ 61.2 72.3 73.9 84.1 94.7 96.9 90.1 95.5 93.7 97.6 94.1 97.7 93.8 97.8

052_extra_large_clamp⋄ 93.7 96.6 49.3 90.3 91.7 95.8 84.4 94.1 84.4 93.7 88.0 95.2 91.8 97.0

061_foam_brick⋄ 96.8 98.1 91.6 95.5 93.7 96.7 96.1 98.3 96.1 98.5 96.2 98.6 94.0 97.9

All Frames 78.0 90.2 82.3 91.9 93.0 95.7 87.5 95.2 86.5 96.3 93.7 97.7 94.3 97.9

For geometry-based tracking, which uses single-region and depth, M3T achieves
state-of-the-art results with respect to the ADD-S metric, outperforming all previous
algorithms. At the same time, results for the ADD score are slightly less competitive.
The main reason for this is that purely geometry-based tracking cannot fully constrain
the pose if the geometry is not conclusive. For example, it is impossible to predict the
correct pose for a rotationally symmetric object. However, even with that handicap,
geometry-based M3T surpasses DeepIM and comes very close to the results of PoseRBPF

for the ADD metric. Finally, for the full configuration of M3T, which combines depth,
texture, and multi-region information, results are further improved. Both with ORB and

64

4.4. Evaluation

Table 4.3.: Average frames per second (FPS) in hertz and hardware requirements for the
CPU and GPU. Except for PoseRBPF (Deng et al. 2021), results are taken from
Wen et al. (2020). Note that PoseRBPF was evaluated without pose refinement
based on signed distance functions (SDFs).

Approach Single
Core

No GPU FPS

Wüthrich ✓ ✓ 12.9 Hz
DeepIM ✗ 12.0 Hz
se(3)-TrackNet ✗ 90.9 Hz
PoseRBPF ✗ 7.6 Hz
M3T Geometry (Ours) ✓ ✓ 1035.7 Hz
M3T ORB (Ours) ✓ ✗ 312.4 Hz
M3T SIFT (Ours) ✓ ✗ 111.7 Hz

SIFT, M3T outperforms the competition by a notable margin. Also, as expected, for the
ADD metric, a considerable difference compared to purely geometry-based tracking
without multi-region and texture can be observed. In conclusion, to the best of our
knowledge, M3T currently reports the highest scores on the YCB-Video dataset.

As discussed in Section 1.2, speed and efficiency are essential in real-world robotic
applications. We thus report the speed and required hardware for all algorithms in
Table 4.3. As in Section 3.5, the evaluation of M3T was again conducted on a computer
with an Intel Core i9-11900K CPU and a NVIDIA RTX A5000 GPU. In comparison, other
approaches were evaluated by Wen et al. (2020) using an Intel Xeon E5-1660 v3 CPU and
a NVIDIA Tesla K40c GPU. The obtained results highlight the outstanding efficiency
of our approach. For example, while geometry-based M3T runs only on a single CPU
core, it is more than one order of magnitude faster than the second-best algorithm
se(3)-TrackNet, which requires a high-performance GPU. Also, although additional
computational resources are required to run the full configuration of the tracker, the
algorithm is still highly competitive. Utilizing a single CPU core, the tracker achieves
an average framerate of 312.4 Hz for the combination with ORB and 111.7 Hz for SIFT.
Also, compared to deep learning-based methods, which heavily depend on parallel
computation, in our approach, the GPU is only required for the occasional reconstruction
of 3D model points in keyframes. As a consequence, it remains mostly idle.

4.4.2. OPT Dataset

While the YCB-Video dataset features challenging sequences in real-world environments
and a large number of objects, ground truth has limited accuracy, and, with a large
threshold of et = 0.1 m, the dataset mostly evaluates robustness. Also, images do not
contain motion blur, favoring texture-based methods. The OPT dataset (Wu et al. 2017),

65

4. Multi-modality Tracking

Table 4.4.: AUC scores between zero and twenty for the evaluation on the OPT dataset
(Wu et al. 2017), comparing our approach to multiple other algorithms. Values
are taken from Wu et al. (2017) and the respective publications. The best
results are highlighted in bold, while the second-best values are underlined.

Approach Soda Chest Ironman House Bike Jet Avg.

PWP3D 5.87 5.55 3.92 3.58 5.36 5.81 5.01
ElasticFusion 1.90 1.53 1.69 2.70 1.57 1.86 1.87
UDP 8.49 6.79 5.25 5.97 6.10 2.34 5.82
ORB-SLAM2 13.44 15.53 11.20 17.28 10.41 9.93 12.97
Bugaev et al. 2018 14.85 14.97 14.71 14.48 12.55 17.17 14.79
Tjaden et al. 2018 8.86 11.76 11.99 10.15 11.90 13.22 11.31
Zhong et al. 2020b 9.01 12.24 11.21 13.61 12.83 15.44 12.39
J.-C. Li et al. 2021 9.00 14.92 13.44 13.60 12.85 10.64 12.41
Huang et al. 2022 9.07 12.93 8.80 11.15 7.96 11.09 10.17
M3T Geometry (Ours) 6.28 15.84 18.00 17.78 16.36 16.02 15.05
M3T ORB (Ours) 16.51 16.97 18.29 18.59 17.13 17.91 17.57

M3T SIFT (Ours) 16.72 17.37 17.93 18.64 16.92 17.82 17.57

which was also used in Section 3.5.2, nicely complements those properties. It includes
a large number of real-world sequences with color and depth images that contain
significant motion blur. Accurate ground truth was obtained using a calibration board.
Example images are shown in Fig. 3.13. For the evaluation, the AUC score, which was
defined in Section 3.5.2, is used. Similar to the ADD and ADD-S metrics, it integrates
the percentage of successfully tracked frames with respect to a variated error threshold.
However, in contrast to those metrics, it also takes into account the object’s size, using a
threshold based on the largest distance between model vertices.

Evaluation results are reported in Table 4.4. Note that since most objects do not
contain distinct regions, multi-region tracking is not considered. Also, since objects
are not occluded, we do not model them explicitly. For our algorithm, the parameters
σr = {15, 5, 1.5}, σd = {35, 35, 25}, σt = {5, 1, 0.5}, s = {6, 4, 1}, and rt = {50, 20, 10} are
used. Also, in contrast to Section 3.5.2, we do not constrain the rotationally symmetric
Soda object with a higher regularization parameter λr. Instead, the same parameters are
used for all objects. This makes the evaluation more challenging for geometry-based
tracking. In the evaluation, we compare M3T to state-of-the-art classical methods that use
different sources of information, including region, edge, texture, and depth. The results
show that our approach performs best for all six objects and improves significantly
on the previously best-performing method of Bugaev et al. (2018). With respect to
geometry-based tracking, we observe that, for most objects, the tracker comes very close
to the full configuration of M3T, which includes texture. However, for the Soda object,
results are a lot worse. The reason for this is that geometry alone is not able to constrain

66

4.4. Evaluation

Figure 4.7.: Images from all 4 sequences of the Choi dataset (Choi and Christensen 2013),
featuring the Kinect Box, Milk, Orange Juice, and Tide objects.

the rotationally symmetric Soda object. It is, therefore, not possible to predict the correct
pose. This, again, highlights the simple fact that, while geometry-based tracking works
well for many objects, for some cases and scenarios, it is important to consider as much
information as possible.

4.4.3. Choi Dataset

To further evaluate the accuracy of our method, we use the Choi dataset (Choi and
Christensen 2013). It features four synthetic sequences with color and depth images that
provide perfect ground truth. Example images for each sequence and object are shown
in Fig. 4.7. To evaluate the accuracy, root-mean-square (RMS) errors for translation and
rotation parameters are calculated. One thereby uses x, y, and z differences between
the translation vectors CtttM and CtttMGT , and differences between the roll, pitch, and yaw
values of the rotation matrices CRRRM and CRRRMGT .

Results of the evaluation are shown in Table 4.5. In the evaluation, we only consider
geometry-based M3T. The main reason is that texture is of low quality for the rendered
objects, showing significant blur and no sharp edges. Also, because frame-to-frame
motion is small and geometries have no local ambiguities, one can expect that the
performance of the full configuration of M3T is very similar. Since no significant
occlusions occur, we do not consider occlusion handling. For our algorithm, the
parameters σr = {5}, σd = {10, 1}, s = {2, 1}, and rt = {10} are used. In the evaluation,
we compare to the particle-based algorithms of Choi and Christensen (2013) and Krull
et al. (2015). Also, we include the learning-based method of Tan et al. (2017), the region-
and depth-based approach of Kehl et al. (2017), and the deep learning-based method
of Manhardt et al. (2018). Our algorithm achieves the highest accuracy for almost all
parameters and performs best on average. Note, however, that since the dataset features
perfect depth and uncluttered color images, results have to be considered as an upper
bound. Nevertheless, the experiments demonstrate that, with good enough data, our
approach is highly accurate.

67

4. Multi-modality Tracking

Table 4.5.: Mean RMS errors for translation and rotation parameters on the Choi dataset
(Choi and Christensen 2013), given in units of millimeters and degrees. Re-
sults are from the respective papers. The best values are highlighted in bold,
while the second-best results are underlined.

Approach Choi Krull Tan Kehl Manhardt M3T (Ours)

Kinect
Box

X 1.84 0.83 0.15 0.76 1.46 0.05

Y 2.23 1.67 0.19 1.09 2.28 0.14

Z 1.36 0.79 0.09 0.38 10.61 0.02

Roll 6.41 1.11 0.09 0.17 1.84 0.02

Pitch 0.76 0.55 0.06 0.18 2.09 0.02

Yaw 6.32 1.04 0.04 0.20 1.23 0.02

Milk

X 0.93 0.51 0.09 0.64 3.89 0.04

Y 1.94 1.27 0.11 0.59 4.25 0.07

Z 1.09 0.62 0.08 0.24 57.68 0.03

Roll 3.83 2.19 0.07 0.41 38.74 0.12
Pitch 1.41 1.44 0.09 0.29 27.62 0.04

Yaw 3.26 1.90 0.06 0.42 42.68 0.11

Orange
Juice

X 0.96 0.52 0.11 0.50 0.65 0.03

Y 1.44 0.74 0.09 0.69 0.69 0.03

Z 1.17 0.63 0.09 0.17 6.49 0.01

Roll 1.32 1.28 0.08 0.12 1.50 0.04

Pitch 0.75 1.08 0.08 0.20 0.68 0.03

Yaw 1.39 1.20 0.08 0.19 0.39 0.05

Tide

X 0.83 0.69 0.08 0.34 1.74 0.02

Y 1.37 0.81 0.09 0.49 0.74 0.03

Z 1.20 0.81 0.07 0.18 10.71 0.01

Roll 1.78 2.10 0.05 0.15 1.78 0.03

Pitch 1.09 1.38 0.12 0.39 1.64 0.04

Yaw 1.13 1.27 0.05 0.37 0.80 0.03

Mean Translation 1.36 0.82 0.10 0.51 8.43 0.04

Mean Rotation 2.45 1.38 0.07 0.26 10.08 0.04

4.4.4. Ablation Studies

In the following, we compare different feature descriptors, demonstrate the importance
of individual components of our method, and assess the algorithm’s convergence. For
feature descriptors and detectors, many approaches exist. To study their effect on our
algorithm’s tracking quality and efficiency, we conduct a comparison of prominent
methods on the YCB-Video (Xiang et al. 2018) and OPT (Wu et al. 2017) datasets. Results
of the evaluation are reported in Table 4.6. The experiments demonstrate that while

68

4.4. Evaluation

Table 4.6.: Comparison of M3T with different feature descriptors on the YCB-Video

(Xiang et al. 2018) and OPT (Wu et al. 2017) datasets. AUC scores are between
0 and 20. ADD and ADD-S area-under-curves scores are given in percent.

Dataset OPT YCB-Video

Features AUC ADD ADD-S FPS

M3T BRISK 17.16 94.2 97.8 121.2
M3T ORB 17.57 93.7 97.7 312.4
M3T FREAK 15.84 91.7 96.9 400.5

M3T SIFT 17.57 94.3 97.9 111.7
M3T DAISY 16.78 93.6 97.6 204.5

SIFT (Lowe 2004) achieves the highest scores, BRISK (Leutenegger et al. 2011) and ORB

(Rublee et al. 2011) also deliver excellent results. At the same time, FREAK (Alahi et al.
2012) achieves the best runtime. However, unfortunately, tracking quality is significantly
worse. Given the small difference for AUC, ADD, and ADD-S scores and the large
difference in runtime between ORB and SIFT, we believe that, in most cases, ORB

provides the best trade-off between quality and efficiency. In the following chapter, we
will therefore use ORB as our default descriptor and detector.

In addition to the effect of different descriptors, we want to assess the importance
of developed modalities, as well as regularization and occlusion handling strategies.
For this, we conduct an ablation study that disables individual components. Results
of the evaluation are shown in Table 4.7. For the region and depth modality, our
experiments show that, while the effect differs between the datasets, each of the two
modalities significantly contributes to the final scores. For texture and multi-region on
the YCB-Video dataset, this is somewhat different. In contrast to the ablation of region
and depth, the obtained scores remain relatively high. The main reason is that both
texture and multi-region help to overcome ambiguities in the object geometry. As a
result, if one is disabled, the other can mostly compensate for the missing information.
Nevertheless, for real-world applications, both techniques have their advantages and use
cases. While, in our experiments, the texture modality achieves better tracking results,
multi-region tracking is robust to motion blur, significantly faster, and does not require
a GPU. Also, the use of each of them highly depends on object characteristics. While the
texture modality performs well in the presence of local features from text or graphics,
multi-region is able to incorporate information from global differences, such as distinct
materials and colors. Finally, the ablation study also demonstrates the importance of
occlusion handling and regularization. Especially for occlusion handling, we observe
a significant difference. For regularization, values on the Choi and OPT datasets are
mostly the same. However, for the more challenging sequences of the YCB-Video dataset,
it remains essential.

69

4. Multi-modality Tracking

Table 4.7.: Ablation study evaluating the importance of individual components of M3T

for results on the Choi (Choi and Christensen 2013), YCB-Video (Xiang et al.
2018), and OPT (Wu et al. 2017) datasets. Translational and rotational errors
are provided in millimeters and degrees. AUC scores are between 0 and 20.
ADD and ADD-S area-under-curve scores are given in percent.

Dataset Choi OPT YCB-Video

Experiment Trans. Rot. AUC ADD ADD-S FPS

M3T Geom. 0.04 0.04 15.05 86.5 96.3 1035.7

M3T (ORB) 0.04 0.04 17.57 93.7 97.7 312.4
W/o Region 0.07 0.06 15.90 22.4 48.6 444.3
W/o Depth 14.75 16.05 17.40 47.5 60.9 426.1
W/o Texture - - 15.05 90.2 96.6 742.2
W/o Multi-region - - - 92.3 96.9 354.8
W/o Occlusion Hand. - - - 85.4 93.0 309.9
W/o Regularization 0.04 0.05 17.40 88.6 94.1 314.6

0 1 2 3 4 5 6
50

60

70

80

90

100

Iterations

ADD-S
ADD

10

12

14

16

18

20

AUC

10−210−2

10−1

100

101

102

103

Trans.
Rot.

Figure 4.8.: Convergence plots for M3T ORB on the YCB-Video, OPT, and Choi datasets
in red, yellow, and blue, respectively. Translational and rotational errors
are provided in millimeters and degrees. AUC scores are between 0 and 20.
ADD and ADD-S area-under-curve scores are given in percent.

Finally, we also want to assess the performance of our algorithm with respect to the
number of iterations conducted by the optimization. Note that we thereby consider the
main iterations as depicted in Algorithm 3.1, which each performs a correspondence
search and two Newton steps. Convergence plots that provide average results for
the considered datasets are provided in Fig. 4.8. The plots demonstrate that with
only three iterations, accurate results are obtained on all three datasets. In conclusion,
independent of accuracy and robustness, the fast convergence of our algorithm ensures
that a maximum of only four iterations is sufficient to obtain excellent results.

70

4.4. Evaluation

Table 4.8.: Comparison with global 6DoF pose estimation methods on the YCB-Video

dataset (Xiang et al. 2018). ADD(S) and ADD-S area-under-curve scores are
given in percent. Results for AAEs (Sundermeyer et al. 2018) and CosyPose

(Labbé et al. 2020) were computed by us.3,4 Scores for all other methods are
from the respective publications. Symmetric objects for which the ADD(S)
metric reports the ADD-S instead of the ADD error are indicated by a ⋆.

Approach PoseCNN AAEs
Dense
Fusion

Cosy
Pose

PVN3D FFB6D
M3T ORB

(Ours)

(Training) Data Real RGB
Textured
3D Model

Real
RGB-D

Real RGB
Real

RGB-D
Real

RGB-D
Untextured
3D Model

Objects A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

A
D

D
(S

)

A
D

D
-S

002_master_chef_can 50.9 84.0 27.1 50.6 - 96.4 37.3 90.6 80.5 96.0 80.6 96.3 94.0 97.9

003_cracker_box 51.7 76.9 32.2 64.5 - 95.5 76.8 94.9 94.8 96.1 94.6 96.3 96.3 98.2

004_sugar_box 68.6 84.3 73.6 88.6 - 97.5 95.2 97.6 96.3 97.4 96.6 97.6 96.0 98.3

005_tomato_soup_can 66.0 80.9 72.3 84.4 - 94.6 90.5 94.6 88.5 96.2 89.6 95.6 94.8 98.1

006_mustard_bottle 79.9 90.2 77.5 90.9 - 97.2 92.7 96.5 96.2 97.5 97.0 97.8 96.2 98.4

007_tuna_fish_can 70.4 87.9 71.2 92.2 - 96.6 93.9 97.5 89.3 96.0 88.9 96.8 94.5 97.2
008_pudding_box 62.9 79.0 47.9 67.7 - 96.5 93.5 96.2 95.7 97.1 94.6 97.1 80.6 90.9
009_gelatin_box 75.2 87.1 74.8 82.9 - 98.1 94.1 96.1 96.1 97.7 96.9 98.1 96.9 98.8

010_potted_meat_can 59.6 78.5 53.6 63.3 - 91.3 75.9 84.0 88.6 93.3 88.1 94.7 94.8 97.9

011_banana 72.3 85.9 13.1 51.6 - 96.6 90.0 95.6 93.7 96.6 94.9 97.2 94.1 98.2

019_pitcher_base 52.5 76.8 77.6 91.7 - 97.1 94.0 97.3 96.5 97.4 96.9 97.6 97.0 98.8

021_bleach_cleanser 50.5 71.9 42.0 62.6 - 95.8 82.1 92.7 93.2 96.0 94.8 96.8 90.1 96.5
024_bowl⋆ 69.7 69.7 79.1 79.1 - 88.2 87.8 87.8 90.2 90.2 96.3 96.3 97.9 97.9

025_mug 57.7 78.0 58.0 80.9 - 97.1 87.8 94.9 95.4 97.6 94.2 97.3 94.1 98.3

035_power_drill 55.1 72.8 61.2 77.9 - 96.0 89.7 95.1 95.1 96.7 95.9 97.2 96.5 98.4

036_wood_block⋆ 65.8 65.8 55.2 55.2 - 89.7 80.5 80.5 90.4 90.4 92.6 92.6 97.5 97.5

037_scissors 35.8 56.2 0.8 7.0 - 95.2 67.6 81.5 92.7 96.7 95.7 97.7 93.9 97.4
040_large_marker 58.0 71.4 55.6 67.6 - 97.5 84.3 93.1 91.8 96.7 89.1 96.6 88.2 97.3
051_large_clamp⋆ 49.9 49.9 72.2 72.2 - 72.9 91.3 91.3 93.6 93.6 96.8 96.8 97.7 97.7

052_extra_large_clamp⋆ 47.0 47.0 59.5 59.5 - 69.8 75.7 75.7 88.4 88.4 96.0 96.0 95.2 95.2
061_foam_brick⋆ 87.8 87.8 56.2 56.2 - 92.5 94.7 94.7 96.8 96.8 97.3 97.3 98.6 98.6

All Frames 60.0 75.9 57.5 72.8 - 93.1 83.8 92.6 91.8 95.5 92.7 96.6 94.7 97.7

4.4.5. Global Pose Estimation

Given the strong results of global detection and pose estimation algorithms, the question
arises whether 3D object tracking is even necessary. To answer this question, we conduct
a comparison with state-of-the-art methods on the YCB-Video dataset (Xiang et al. 2018).
Results are provided in Table 4.8. The evaluation compares our approach to PoseCNN

(Xiang et al. 2018), Augmented Autoencoders (AAEs) (Sundermeyer et al. 2018), DenseFusion

(C. Wang et al. 2019), CosyPose (Labbé et al. 2020), PVN3D (He et al. 2020), and FFB6D

(He et al. 2021). Both AAEs and CosyPose are evaluated by us using source code that is

71

4. Multi-modality Tracking

publicly available.3,4 To ensure compatibility with reported results from PVN3D and
FFB6D, we adopt the ADD(S) score. It is a combined metric that uses ADD-S values for
symmetric objects and ADD errors in all other cases.

The comparison demonstrates that M3T is able to outperform all global 6DoF pose
estimation methods by a considerable margin, achieving better results than the currently
best-performing algorithm FFB6D. This is especially remarkable since FFB6D trains
on a large amount of pose-annotated real-world data that originates from a similar
pose distribution. For many applications, such data is not available. In contrast, M3T

only requires textureless 3D models and no training data. One reason for the superior
performance is that 3D object tracking considers the pose on a frame-to-frame basis.
Starting from a nearby pose and taking advantage of temporal information simplifies
the task significantly compared to global estimation. In addition to quality, efficiency
and speed are other advantages of 3D object tracking. While FFB6D depends on a
high-end GPU and reports a runtime of 75 ms (He et al. 2021), M3T hardly uses the GPU
and requires only 3.2 ms per frame. This is more than one order of magnitude faster.
In conclusion, the results show that while tracking by detection is possible, for many
real-world applications, it is not the most sensible solution. Given the high efficiency
and good performance of M3T, in our opinion, it is best to rely on continuous 3D object
tracking for local pose updates while using global 6DoF pose estimation for initialization
and to ensure long-term consistency.

4.4.6. Pose Refinement

Given that M3T is a local optimization method, it can also be used for pose refinement.
In the following, we assess the performance of M3T for this application. We thereby try
to improve the predictions of PoseCNN (Xiang et al. 2018), AAEs (Sundermeyer et al.
2018), and CosyPose (Labbé et al. 2020) and compare results on the YCB-Video dataset
(Xiang et al. 2018). For the algorithm, we only use multi-region and depth. The reason
for this is that our texture modality only considers the relative pose between frames and
does not provide any absolute constraints on the pose. Also, since temporal information
is not available for pose refinement, color histograms of region modalities are initialized
at each iteration before correspondences are established. While the resulting histograms
do not show the same quality as for tracking, they still include useful information that
helps the algorithm to converge.

Depending on the global 6DoF pose estimation method, errors along the principal
axis can be relatively large. To cope with those bigger errors, we use the parameters
σr = {20, 10, 10}, σd = {300, 100, 25}, s = {5, 5, 3}, rt = {300, 300, 100}, and λt = 1000,
and conduct 7 instead of 4 iterations. For efficiency, strides are increased from 5 mm
to 10 mm. Also, we do not use occlusion handling. Note that while more iterations are
performed and a bigger area is considered, omitting the texture modality helps to save

3❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴❆✉❣♠❡♥t❡❞❆✉t♦❡♥❝♦❞❡r
4❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴②❧❛❜❜❡✴❝♦s②♣♦s❡

72

https://github.com/DLR-RM/AugmentedAutoencoder
https://github.com/ylabbe/cosypose

4.4. Evaluation

Table 4.9.: Refined and unrefined results on the YCB-Video dataset (Xiang et al. 2018).
ADD and ADD-S area-under-curve scores are given in percent. For PoseCNN

(Xiang et al. 2018) with MH ICP, results are from the corresponding publi-
cation. To evaluate the refinement, predictions for PoseCNN are taken from
the YCB_Video_toolbox5 while poses for AAE (Sundermeyer et al. 2018) and
CosyPose (Labbé et al. 2020) are computed using available source code3,4.

Approach PoseCNN AAEs CosyPose

Refinement MH ICP -
M3T

(Ours)
-

M3T
(Ours)

IM
IM + M3T

(Ours)

Objects A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

002_master_chef_can 69.0 95.8 50.0 84.6 70.8 96.7 27.1 50.6 47.6 88.4 37.3 90.6 41.1 97.6

003_cracker_box 80.7 91.8 53.0 77.5 75.8 89.9 32.2 64.5 72.0 90.9 76.8 94.9 78.6 96.4

004_sugar_box 97.2 98.2 68.3 84.5 91.6 96.1 73.6 88.6 89.0 96.7 95.2 97.6 92.7 96.7
005_tomato_soup_can 81.6 94.5 66.1 81.4 86.4 93.6 72.3 84.4 85.7 92.3 90.5 94.6 92.4 95.8

006_mustard_bottle 97.0 98.4 80.8 91.1 94.8 97.9 77.5 90.9 89.1 97.9 92.7 96.5 95.4 98.0
007_tuna_fish_can 83.1 97.1 70.5 88.4 84.8 96.3 71.2 92.2 80.4 97.0 93.9 97.5 93.2 96.9
008_pudding_box 96.6 97.9 62.2 79.3 83.9 91.9 47.9 67.7 69.8 90.3 93.5 96.2 82.3 91.3
009_gelatin_box 98.2 98.8 74.9 87.7 96.9 98.6 74.8 82.9 96.5 98.5 94.1 96.1 96.0 98.3
010_potted_meat_can 83.8 92.8 59.3 78.8 77.4 88.8 53.6 63.3 68.7 75.7 75.9 84.0 76.6 84.2
011_banana 91.6 96.9 72.3 86.3 87.9 95.6 13.1 51.6 28.9 68.5 90.0 95.6 94.4 98.0

019_pitcher_base 96.7 97.8 52.9 77.6 95.0 98.1 77.6 91.7 91.8 97.8 94.0 97.3 96.1 98.3

021_bleach_cleanser 92.3 96.8 50.2 71.7 87.1 95.3 42.0 62.6 76.6 92.0 82.1 92.7 88.9 97.3

024_bowl 17.5 78.3 3.0 69.6 8.4 82.9 17.3 79.1 23.2 82.4 34.5 87.8 33.9 88.5

025_mug 81.4 95.1 58.4 78.8 88.5 96.6 58.0 80.9 89.5 97.6 87.8 94.9 95.2 98.3

035_power_drill 96.9 98.0 55.2 73.2 93.7 97.2 61.2 77.9 92.7 97.0 89.7 95.1 95.3 97.9
036_wood_block 79.2 90.5 26.4 64.3 48.4 77.3 1.6 55.2 7.4 85.1 24.8 80.5 33.2 91.7

037_scissors 78.4 92.2 34.8 55.9 56.5 77.6 0.8 7.0 1.6 8.5 67.6 81.5 82.5 90.7
040_large_marker 85.4 97.2 58.2 71.9 84.8 95.8 55.6 67.6 87.4 94.5 84.3 93.1 91.1 97.7

051_large_clamp 52.6 75.4 24.6 50.1 52.2 76.4 32.8 72.2 43.7 85.2 40.1 91.3 41.3 95.1

052_extra_large_clamp 28.7 65.3 16.3 44.5 29.1 70.8 26.9 59.5 35.0 65.5 40.2 75.7 40.0 75.1
061_foam_brick 48.3 97.1 40.4 88.2 46.2 96.7 19.4 56.2 39.2 79.2 51.7 94.7 52.6 97.5

All Frames 79.3 93.0 53.7 76.3 77.2 92.1 50.5 72.8 70.1 88.8 76.1 92.6 78.5 94.8

computation. As a consequence, we obtain a runtime of 3.2 ms per frame, which is the
same as for 3D object tracking with the full M3T algorithm.

Results of the evaluation are shown in Table 4.9. For the considered global 6DoF
pose estimation methods, both refined and unrefined values are reported. Unrefined
poses are obtained using source code3,4 and predictions5 that are publicly available. In
addition, results from Xiang et al. (2018) are provided, which were obtained using an
extensive multi-hypothesis (MH) ICP refinement that requires more than 10 s per pose (C.
Wang et al. 2019). The evaluation shows that, even for the excellent results of CosyPose,
which were already refined using an iterative matching (IM) approach, M3T is able to

5❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴②✉①♥❣✴❨❈❇❴❱✐❞❡♦❴t♦♦❧❜♦①

73

https://github.com/yuxng/YCB_Video_toolbox

4. Multi-modality Tracking

Table 4.10.: Ablation study comparing unrefined scores with refined results of different
versions of M3T. Values show ADD and ADD-S area-under-curve scores on
the YCB-Video dataset (Xiang et al. 2018) in percent.

Approach PoseCNN AAEs CosyPose

Refinement ADD ADD-S ADD ADD-S ADD ADD-S

M3T 77.2 92.1 70.1 88.8 78.5 94.8
W/o Multi-region 76.8 92.0 69.4 88.3 78.3 94.7
W/o Region 68.7 86.9 62.8 82.9 75.0 92.7
Unrefined 53.7 76.3 50.5 72.8 76.1 92.6

improve predictions for almost all objects. Also, while extensive MH ICP refinement
is slightly better for the ADD score, M3T performs best for the ADD-S score. This is
especially impressive given the huge difference in runtime for the two algorithms.

Finally, we want to ensure that M3T uses both depth and region information for
refinement and that improvements come not only from the ICP-based depth modality.
For this, a short ablation study is conducted, for which results are shown in Table 4.10.
The obtained scores demonstrate that M3T is not just an inflated ICP approach, but
that region information significantly helps to improve performance. Also, while the
difference is not big, multi-region consistently helps to improve results even further.
Given the excellent pose predictions and computational efficiency, we are confident that,
in addition to 3D object tracking, M3T has many applications in pose refinement.

4.5. Conclusion

In this chapter, we extended the previously developed region approach to highly-efficient
multi-modality tracking. The method fuses depth, texture, and multi-region information
in a probabilistic formulation that is able to consider multiple cameras. While depth and
region provide absolute information, texture modalities estimate pose changes relative
to keyframes. Thanks to this relative formulation, no model texture is required, and
an untextured mesh of the object is sufficient for all three modalities. This is highly
advantageous for usability. It significantly reduces the effort of 3D model creation and,
for example, allows us to use CAD models or geometric scans. In summary, the resulting
approach is highly modular and facilitates a flexible combination of different modalities,
depending on the tracked object and available sensory information.

In experiments on the YCB-Video, OPT, and Choi datasets, we showed that M3T out-
performs all existing methods by a considerable margin, both with respect to robustness
and accuracy. In addition, even for purely geometry-based tracking, which considers
information available for textureless objects, our approach achieves state-of-the-art per-
formance. At the same time, M3T shows outstanding efficiency, running at more than

74

4.5. Conclusion

1 kHz on a single CPU core for geometry-based tracking and more than 300 Hz for the
full configuration with all modalities. In a detailed ablation study, we also demonstrated
that the developed modalities are highly complementary and that each component
contributes to the final results. In addition, we analyzed the effect of different feature
descriptors and proved the algorithm’s fast convergence.

Given the performance of our approach, the obtained results suggest that deep
learning-based 3D object tracking techniques do not yet surpass classical methods. This
is especially surprising given that such algorithms require a textured 3D model and, at
the expense of high computational cost and limited real-time capability, can directly
consider vast amounts of information from training data. Also, with respect to global
6DoF pose estimation, we showed that M3T is able to achieve similar or better results
at a fraction of the computational cost. Consequently, to provide continuous feedback
for real-world applications, we believe that a two-stage process that uses global pose
estimation for initialization and 3D object tracking for highly-efficient updates is most
sensible. In addition, experiments demonstrate that global 6DoF pose estimation results
can be further improved using M3T for highly-efficient pose refinement.

75

5
Multi-body Tracking

5.1. Introduction

Kinematic structures that consist of multiple connected bodies are very common in
the real world. They range from simple articulated objects to complex multi-body
systems. Examples range from basic tools such as staplers, scissors, or punchers
over furniture and appliances with moving doors, drawers, or flaps to mechanisms
and machines typically found in industry. Most prominent in the case of robotic
manipulation are robots themselves, which, in general, consist of multiple rigid bodies
that are connected by joints. However, despite their relevance, most 3D object tracking
methods do not consider multi-body systems. While, in theory, algorithms could track
bodies independently, in most cases, the task becomes unfeasible without kinematic
information. As a consequence, many tracking algorithms are not usable in applications
like robotic manipulation that feature kinematic structures.

To overcome this limitation, we propose a flexible framework that allows the extension
of rigid object tracking methods to kinematic structures. Our approach focuses on
Newton-like optimization, which is widely used in various tracking techniques. The
resulting framework allows a flexible configuration with various joints and constraints.
To the best of our knowledge, it is the first that is able to model closed kinematic chains.
In order to project equations from individual rigid bodies to a multi-body system,
Jacobians are used. For closed kinematic chains, a novel formulation that features
Lagrange multipliers is developed. Based on this unified framework, we derive the
required equations for joints and constraints using the axis-angle parameterization. The
developed constraint equations thereby cover the entire space of possible rotations. Also,
in a detailed mathematical proof, we show that our constraint formulation converges in
a single iteration and leads to an exact kinematic solution.

Based on the developed framework, we extend the approach from Chapter 4 to
multi-body tracking. This results in a multi-body, multi-modality, and multi-camera
tracking algorithm that we call M3T. It was already used in Chapters 3 and 4, where
it demonstrated excellent efficiency and tracking quality for rigid objects. Example
images that show M3T for the tracking of kinematic structures are given in Fig. 5.1.
For the evaluation of our algorithm, we introduce the Robot Tracking Benchmark (RTB),
a highly-realistic synthetic dataset that features various robots and a large number
of sequences. Based on this dataset, we conduct a wide variety of experiments that

77

5. Multi-body Tracking

Figure 5.1.: Real-world examples that show the tracking of kinematic structures. To
illustrate the predicted pose and configuration, the object model is rendered
as an overlay. The image on the left shows the tracking of the medical robot
MIRO, which consists of a chain structure with 7 degrees of freedom. In
the right image, the palm, wrist, and forearm of the humanoid robot David

are tracked. The kinematic structure includes multiple closed chains and
consists of 12 individual bodies.

assess the advantages and disadvantages of different kinematic configurations. Also,
the convergence of the derived constraint equations is analyzed for arbitrary cases.
Finally, the evaluation demonstrates that the excellent performance of the previously
developed approach for rigid objects directly transfers to kinematic structures. Note that
the chapter is based on Mb-ICG and the corresponding publication (Stoiber et al. 2023b).
The RTB dataset was created together with Martin Sundermeyer and Wout Boerdijk.

5.2. Framework

In the following, we derive a flexible framework that allows extending tracking algo-
rithms from rigid objects to kinematic structures. For this, the general architecture of
methods compatible with our approach is discussed. This is followed by an extension to
tree-like structures and, finally, to closed kinematic structures. The provided formulation
is very general and allows different pose, joint, and constraint parameterizations.

5.2.1. Rigid Objects

For the task of 3D object tracking, a wide variety of algorithms that use different sources
of information have been developed. Examples of existing techniques can be found in
Chapter 2. Based on the considered data, most methods derive PDFs p(θθθ) or energy
functions E(θθθ) that depend on the pose variation vector θθθ. Given such a function, the
pose that best explains the considered data is found by maximizing the probability

78

5.2. Framework

or minimizing the energy. While different techniques have been employed for this
optimization task, the following framework focuses on Newton-like methods.

As discussed in Chapters 3 and 4, Newton-like optimization iteratively estimates the
variation vector and updates the object pose. The estimated pose variation θ̂̂θ̂θ is thereby
calculated as follows

θ̂̂θ̂θ = −HHH−1ggg, (5.1)

where the gradient vector ggg and the Hessian matrix HHH are the first- and second-order
derivatives of the negative logarithmic probability − ln(p(θθθ)) or the energy function
E(θθθ). Because of the shorter notation, we will derive our approach for the energy
function E(θθθ). Note, however, that with the relation E(θθθ) = − ln(p(θθθ)), exactly the same
equations can be used for PDFs. Finally, Eq. (5.1) is not only limited to classical Newton
optimization with an exact Hessian matrix but also allows the use of approximations
from Gauss-Newton or quasi-Newton methods. As a consequence, many popular
algorithms such as RAPID (Harris and Stennett 1990), PWP3D (Prisacariu and Reid
2012), or the object tracker employed in Slam++ (Salas-Moreno et al. 2013) are compatible
with the developed framework.

5.2.2. Tree-like Structures

In general, tree-like kinematic structures consist of individual bodies that are connected
by joints. All bodies, except for the root, have a single parent. Based on those connections,
the 6DoF pose variation θθθ of each body is described by joint variations θθθj ∈ R

nj along
the kinematic chain from the root. The number nj ∈ [0..6] describes how many degrees
of freedom a particular joint allows for a body relative to its parent. Finally, the
combined variation of a kinematic structure with n bodies is given by all joint variations

θθθ⊤k =
[
θθθ⊤j0 . . . θθθ⊤jn

]
. Note that, in this case, the joint variation θθθj0 directly describes the pose

variation θθθ0 of the root body. An example that shows the relation between individual
parameters in a kinematic structure is given in Fig. 5.2.

Starting from the energy functions Ei(θθθi) of individual bodies, the combined energy
of the kinematic structure can be calculated as the sum of the energy of all bodies

Ek(θθθk) =
n

∑
i=1

Ei(θθθi), (5.2)

where variation vectors θθθi of individual bodies are functions of the combined variation
θθθk. Given the definitions of gradient vectors and Hessian matrices, we can now write

ggg⊤k =
∂Ek

∂θθθk

∣∣∣∣
θθθk=000

=
n

∑
i=1

∂Ei

∂θθθi

∂θθθi

∂θθθk

∣∣∣∣
θθθk=000

=
n

∑
i=1

ggg⊤i JJJi, (5.3)

HHHk =
∂2Ek

∂θθθk
2

∣∣∣∣
θθθk=000

≈
n

∑
i=1

∂θθθi

∂θθθk

⊤ ∂2Ei

∂θθθi
2

∂θθθi

∂θθθk

∣∣∣∣
θθθk=000

(5.4)

≈
n

∑
i=1

JJJ⊤i HHHi JJJi, (5.5)

79

5. Multi-body Tracking

θθθ0

θθθ1 θθθ2

θθθ3 θθθ4 θθθ5

θθθj0

θθθj1 θθθj2

θθθj3 θθθj4 θθθj5

bbb34

bbb14

bbb25

Figure 5.2.: Relation between variation parameters in a kinematic structure. The 6DoF
pose variations θθθ0 to θθθ5 of individual bodies are illustrated as vertices in a
graph. For the root body, the vertex is colored yellow. Connections to parent
bodies and the associated joint variations θθθj1 to θθθj5 are indicated by blue
arrows. For the root body, which does not have a parent, the joint variation
θθθj0 directly describes the pose variation θθθ0. Finally, dashed red lines indicate
the constraints bbb14, bbb34, and bbb25 between bodies.

with gggi and HHHi the gradient vector and the Hessian matrix of the rigid body i. Note that
second-order derivatives of pose variations θθθi with respect to θθθk were neglected. The
Jacobian matrices JJJi describe how the variation of the entire kinematic structure affects
the pose of individual bodies. A detailed derivation of the required body Jacobians is
given in Section 5.3.2. One major difference of our formulation in comparison to the
approach of Lowe (1991) is that we do not calculate the change of each measurement
with respect to the combined variation θθθk. Instead, the change of a body’s measurements
is first computed for the minimal 6DoF pose variation θθθi and then projected to the full
kinematic structure. This has the advantage that the same gradient vectors and Hessian
matrices as for single object tracking can be used. In addition, for kinematic structures
with large numbers of bodies and measurements, it is more efficient.

5.2.3. Closed Kinematic Structures

To model closed kinematic structures, we start from the previously defined tree-like
structures and include additional constraints. A constraint describes any relation
between bodies that can be expressed by a constraint equation bbb(θθθk) = 000. A simple
example is a rotational joint where translational differences normal to the rotation axis
have to be zero. An illustration of the topology of a tree-like kinematic structure with
constraints between individual bodies is shown in Fig. 5.2. Given n constraints, the
full constraint equation for the kinematic structure is written as bbb⊤k =

[
bbb⊤0 . . . bbb⊤n

]
. To

integrate those constraints into the combined energy function Ek(θθθk), we write the
following Lagrangian function

L(θθθk, λλλ) = Ek(θθθk) + bbbk(θθθk)
⊤λλλ, (5.6)

80

5.3. Parameterization

where λλλ is the vector of Lagrange multipliers. To find a solution for θθθk that satisfies the
imposed constraints and minimizes the energy function, the following equation has to
be solved

∇L(θθθk, λλλ) =

[
gggk(θθθk) + BBBk(θθθk)

⊤λλλ

bbbk(θθθk)

]
!
= 000, (5.7)

where the constraint Jacobian BBBk is the first-order derivative of bbbk with respect to θθθk.
Detailed derivations of the constraint function and Jacobian are given in Section 5.3.3.

Analogous to the minimization of the energy function E(θθθ) of a single object, we want
to linearize Eq. (5.7) around θθθk = 000 and iteratively find a solution. For this, we use the
first-order approximations gggk(θθθk) ≈ gggk + HHHkθθθk and bbbk(θθθk) ≈ bbbk + BBBkθθθk to derive the
following linear equation

[
θ̂̂θ̂θk

λ̂̂λ̂λ

]
= −

[
HHHk BBB⊤

k

BBBk 000

]−1 [
gggk

bbbk

]
. (5.8)

Similar to Eq. (5.1), the derived equation is used to estimate θ̂̂θ̂θk and to iteratively
minimize Ek(θθθk) while, at the same time, considering the constraints bbbk(θθθk) = 000. Note
that, in general, given a positive definite Hessian HHHk and unique and non-contradicting
constraint equations that lead to non-zero and linearly independent row vectors in the
constraint Jacobian BBBk, the matrix in Eq. (5.8) is invertible and a unique solution exists
for the estimated variation vector θ̂̂θ̂θk.

Finally, in contrast to the postimposed method of Drummond and Cipolla (2002),
which first predicts unconstrained poses and applies constraints later, our formulation
directly estimates a variation vector that is compatible with constraints. In addition,
the approach is not limited to velocity constraints. Together with our formulation for
tree-like kinematic structures, the developed multi-body tracking framework supports
an efficient minimal parameterization while simultaneously providing the flexibility to
add constraints for closed chains and temporary limitations. It, therefore, combines the
best of both worlds.

5.3. Parameterization

In this section, we derive all equations required to define a kinematic structure. For
the pose parameterization, we focus on the axis-angle representation. Note that while
tracking algorithms based on Euler angles, twist coordinates, or quaternions have also
been developed, in our experience, this parameterization is the most popular. After
an introduction to general mathematical concepts, Jacobian matrices and constraint
equations are derived. In both cases, we allow to lock or free the rotation and translation
along individual coordinate axes, facilitating various joints and constraints. Finally, we
describe how to update the pose of individual bodies.

81

5. Multi-body Tracking

5.3.1. Preliminaries

Like in previous chapters, we use the following transformation matrix ATTTB ∈ SE(3) to
define the pose between two reference frames A and B

ATTTB =

[
ARRRB AtttB

000 1

]
, (5.9)

where ARRRB ∈ SO(3) is a rotation matrix and AtttB ∈ R3 is a translation vector. They
together describe the transformation from B to A. For the variation of poses with a
minimal set of parameters, we again use the axis-angle representation for the rotation
and write

TTT(θθθ) =

[
exp([θθθr]×) θθθt

000 1

]
, (5.10)

where θθθr ∈ R3 and θθθt ∈ R3 are the rotational and translational components of the
variation vector θθθ⊤ =

[
θθθ⊤r θθθ⊤t

]
. The matrix [θθθr]× is the skew-symmetric cross-product

matrix of θθθr. Finally, to project the variation vector θθθ from reference frame B to A, the
following adjoint representation is used

Ad(ATTTB) =

[
ARRRB 000

[AtttB]× ARRRB ARRRB

]
. (5.11)

Based on those general mathematical concepts, we are able to describe kinematic
structures and derive the required body Jacobians and constraint equations.

5.3.2. Body Jacobians

Each body has a defined location relative to its joint and corresponding parent. In the
following, we introduce a general class of joints that allow motion along a user-defined
set of rotational and translational axes. Based on the joint reference frame J, motion
along these directions is modeled by the variation vector θθθj. The full 6DoF pose variation
θθθ of a body’s model frame M given the variation of its parent and joint is then defined as

TTT(θθθ) = MTTTP TTT(θθθp) PTTTJ TTT(ÅθÅθÅθj) JTTTM, (5.12)

where P is the reference frame of the parent and θθθp the corresponding 6DoF variation
vector. An illustration of the transformations is shown in Fig. 5.3. The bar above the
joint variation vector ÅθÅθÅθj indicates the extension of θθθj, which has nj dimensions, to a 6DoF
vector. For a typical joint that only allows movement along specified axes of the joint
frame, we simply set fixed directions to zero.

To project equations of individual bodies to the multi-body system, Jacobians are
used. Given a body’s joint and parent, we are able to formulate a recursive strategy to
calculate the Jacobian. Based on the Jacobian of the parent body JJJp, we calculate

JJJ =
∂θθθ

∂θθθk

∣∣∣∣
θθθk=000

=
∂θθθ

∂θθθp
JJJp +

[
000 ∂θθθ

∂θθθj
000
] ∣∣∣∣

θθθk=000
, (5.13)

82

5.3. Parameterization

P θθθp
M J

ÅθÅθÅθj

θθθ

MTTTP

JTTTM PTTTJ

Body Parent

Figure 5.3.: Visualization of a body that is connected to its parent by a joint. Model,
parent, and joint coordinate frames M, P, and J are illustrated in yellow, blue,
and red, respectively. For the coordinate frames, the corresponding variation
vectors θθθ, ÅθÅθÅθj, and θθθp, as well as the relative homogeneous transformations
JTTTM, PTTTJ, and MTTTP, are shown.

where the partial derivative ∂θθθ
∂θθθj

has to be added at the correct location that corresponds
to the position of θθθj in the vector θθθk. The advantage of this recursive strategy is that it is
not necessary to assemble the derivatives of all individual joints along the kinematic
chain. Instead, we simply consider the kinematic chain using the Jacobian of the parent.
For the root body, the parent Jacobian JJJp is simply zero. To calculate the Jacobian, we
now only require the partial derivatives of the body variation with respect to the joint
and parent variations.

Starting from Eq. (5.12) and knowing that the adjoint representation in Eq. (5.11) can
be used to project variation vectors between reference frames, we write the following
relations

θθθ|θθθj=000 = Ad(MTTTP) θθθp, (5.14)

θθθ|θθθp=000 = Ad(MTTTJ) ÅθÅθÅθj. (5.15)

As can be seen from those equations, the required first-order derivatives are

∂θθθ

∂θθθp

∣∣∣∣
θθθk=000

= Ad(MTTTP), (5.16)

∂θθθ

∂ ÅθÅθÅθj

∣∣∣∣
θθθk=000

= Ad(MTTTJ). (5.17)

Note that Eq. (5.17) considers the derivative with respect to the extended variation
vector ÅθÅθÅθj. To get the first-order derivative ∂θθθ

∂θθθj

∣∣
θθθk=000 with respect to the variation vector

θθθj, one simply assembles the columns from the partial derivative in Eq. (5.17) that are
considered by θθθj. With the derived formulation, we are able to model various joints,
including revolute, prismatic, or spherical joints. For more specific joints, such as
screw connections, it is typically also straightforward to derive the necessary first-order
derivatives as a combination of the motion along individual axes. Instead of directly

83

5. Multi-body Tracking

Mb θθθb

Ma

A

ATTTB(θθθa, θθθb)

θθθa

ATTTMa

MaTTTMb

Body a

Body bB
Mb

TTTB

Figure 5.4.: Illustration of a constraint between two bodies a and b. The model coordinate
frames Ma and Mb, as well as the variation vectors θθθa and θθθb are illustrated
in yellow and blue, respectively. The constraint coordinate frames A and B

associated with bodies a and b are colored in red. The relative transformation
ATTTB(θθθa, θθθb) is calculated from Mb

TTTB, MaTTTMb
, and ATTTMa and is considered in

the constraint equation.

assembling columns from Eq. (5.17), one then simply multiplies with the joint’s partial

derivative ∂ ÅθÅθÅθj
∂θθθj

to get the derivative ∂θθθ
∂θθθj

= ∂θθθ
∂ ÅθÅθÅθj

∂ ÅθÅθÅθj
∂θθθj

required for the body Jacobian.

5.3.3. Constraint Equations

In the following, we derive constraints that consider rotational and translational differ-
ences between two bodies along individual axes. Differences are calculated with respect
to the constraint reference frames A and B, which are defined for the corresponding
bodies a and b. Constrained differences between those two frames are enforced to be
zero. The relative pose between frames A and B, given the pose variation vectors θθθa and
θθθb, is thereby written as

ATTTB(θθθa, θθθb) = ATTTMa TTT(θθθa)
−1

MaTTTMb
TTT(θθθb) Mb

TTTB, (5.18)

where Ma and Mb are the model frames of bodies a and b. An illustration of the
transformation is shown in Fig. 5.4. Based on the relative pose ATTTB(θθθa, θθθb), we define the
extended 6DoF constraint equation for all rotational and translational axes as follows

ÅbÅbÅbab(θθθa, θθθb) =

[
ArrrB(θθθa, θθθb)

AtttB(θθθa, θθθb)

]
, (5.19)

where ArrrB is the rotation vector, and AtttB is the translation vector of the transformation
matrix ATTTB. The rotation vector and the rotation matrix are related by the exponential
map ARRRB = exp([ArrrB]×). Note that, depending on the directions that should be con-
strained, only individual elements of the extended constraint equation ÅbÅbÅbab are used. The
resulting reduced constraint equation is denoted bbbab.

84

5.3. Parameterization

Given a constraint equation, the corresponding constraint Jacobian can be calculated
using body Jacobians JJJ that were derived in the previous section

BBBab =
∂bbbab

∂θθθk

∣∣∣∣
θθθk=000

=
∂bbbab

∂θθθa

∂θθθa

∂θθθk
+

∂bbbab

∂θθθb

∂θθθb

∂θθθk

∣∣∣∣
θθθk=000

(5.20)

=
∂bbbab

∂θθθa
JJJa +

∂bbbab

∂θθθb
JJJb

∣∣∣∣
θθθk=000

. (5.21)

For the required partial derivatives of the extended constraint equation ÅbÅbÅbab with respect
to the pose variations θθθa and θθθb, the calculation is quite lengthy. This is especially
the case for the rotational constraint, which considers the nontrivial change of the
rotation vector ArrrB for the variation of the two bodies. Consequently, we provide the
full derivation in Appendix E and only state the following final results

∂ÅbÅbÅbab

∂θθθa

∣∣∣∣
θθθk=000

=

[−CCC ARRRMa 000
ARRRMa [MatttB]× −ARRRMa

]
, (5.22)

∂ÅbÅbÅbab

∂θθθb

∣∣∣∣
θθθk=000

=

[
CCC ARRRMb

000
−ARRRMb

[Mb
tttB]× ARRRMb

]
. (5.23)

To obtain the derivatives for the reduced constraint equation bbbab, which are required in
Eq. (5.21), one simply assembles the rows from Eqs. (5.22) and (5.23) that correspond to
the constrained axes of coordinate frame A. Finally, given the Jacobians BBBab of individual
constraints, the full constraint Jacobian BBBk can be assembled by row-wise concatenation
of those individual matrices.

The matrix CCC, which is used in the calculated first-order derivatives and which we
call variation matrix, is defined as follows

CCC =
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤, (5.24)

where α ∈ R is the rotation angle and eee ∈ R3 with ∥eee∥2 = 1 is the rotation axis of the
rotation vector ArrrB = αeee evaluated at θθθk = 000. The matrix describes how the rotation
vector ArrrB changes with the variation of a subsequent infinitesimal rotation. It is derived
in Appendix E as part of the first-order derivatives. In Appendix F, we show that the
variation matrix CCC is a normal, non-symmetric, and non-orthogonal matrix that is
directly related to the rotation matrix by

ARRRB = CCC⊤CCC−1 = CCC−1CCC⊤. (5.25)

Also, for the rotation vector ArrrB, we are able to prove that

ArrrB = CCC ArrrB = CCC⊤
ArrrB. (5.26)

This shows that the rotation vector ArrrB is an eigenvector of both the original and
transposed variation matrix CCC.

85

5. Multi-body Tracking

For the approach in Section 5.2.2, which uses body Jacobians to project equations
to a minimal parameterization, only exact solutions are possible. At the same time,
for the constraint approach in Section 5.2.3 and the equations proposed in this section,
kinematic compliance is not apparent. Especially for the rotation, which is highly
non-linear in Euclidean space, one could expect that multiple iterations of the Newton
optimization are required to converge to a kinematically accurate result. However,
in Appendix G, we are able to prove mathematically that this is not the case. In our
proof, the developed constraint equations and Jacobians are introduced into the linear
equations of the Newton optimization. Also, the previously developed property that
ArrrB = CCCArrrB is used. Based on this, we calculate the relative pose change per iteration.
The results demonstrate that both rotational and translational constraints converge to
a kinematically compliant result in a single iteration. While the proof in Appendix G
assumes that constraint coordinate frames are equal to model frames, experiments in
Section 5.5.4 demonstrate that results also hold for more general cases.

If constraint equations are fulfilled and ÅbÅbÅbab = 000, the coordinate frames A and B are
equal, and the variation matrix CCC reduces to the identity matrix. As a consequence, the
derivatives in Eqs. (5.22) and (5.23) turn into the adjoint representations −Ad(ATTTMa) and
Ad(ATTTMb

). A short proof of this is given in Appendix H. The derived expressions directly
correspond to the formulation of Drummond and Cipolla (2002). This equivalence
demonstrates that our approach is an extension of their method. However, the big
advantage of our generalization is that we directly operate on pose differences instead
of velocities. This ensures that even if the pose constraint is not fulfilled initially, our
method will automatically converge to a consistent result. As a consequence, it is
possible to model closed chains or add temporary constraints that are not currently
fulfilled. Both cases are not viable using velocity constraints. In addition, we would like
to highlight the benefits of directly using the rotation vector in the constraint equations.
Compared to other options, such as using orthogonal axes, our formulation has the
advantage that it provides consistent results over the entire space of possible rotations.
We are, therefore, able to recover even from maximum rotational differences of α = π in
a single iteration.

5.3.4. Pose Update

Given the derived Jacobians and constraint equations, we are able to estimate the

variation vector of the kinematic structure θθθ⊤k =
[
θθθ⊤j0 . . . θθθ⊤jn

]
using the linear relation of

the Newton optimization in Eq. (5.8). Similar to the calculation of body Jacobians, we
formulate a recursive strategy for the pose update. With the estimated joint variation θ̂̂θ̂θj

and the pose of the parent, the pose of the body is updated as follows

ATTT+
M = ATTTP PTTTJ TTT(Å̂θ̂Åθ̂Åθj) JTTTM, (5.27)

where A is some arbitrary frame of reference such as the camera frame. Like in Eq. (5.12),
the full 6DoF variation vector Å̂θ̂Åθ̂Åθj has to be used for the calculation of the transformation

86

5.4. Implementation

matrix. Again, it is simply created by adding zeros to the fixed axes of our joint variation.
Note that for the pose of the joint coordinate frame J, either the transformation with
respect to the body JTTTM or the parent PTTTJ is fixed. The other is inferred from the previous
pose estimates of the body and parent, as well as the fixed transformation. While most
of the time, both options are valid, for some joints, which allow, for example, rotation
around two axes, it makes a difference if JTTTM or PTTTJ is fixed. Finally, to update the root
body, which does not have a parent, the following strategy is adopted

ATTT+
M0

= ATTTM0 M0TTTJ0
TTT(Å̂θ̂Åθ̂Åθj0) J0

TTTM0 . (5.28)

It considers the variation with respect to the previous pose estimate in the joint’s frame
of reference. In summary, the developed approach allows us to estimate all body poses
in the kinematic structure, ensuring that variation vectors comply with constraints and
poses are only updated along free joint directions.

5.4. Implementation

The following section uses the developed framework to extend the multi-modality
tracking approach from Chapter 4 to multi-body objects. In addition, for the evaluation,
parameter values that differ from definitions in Sections 3.4 and 4.3 are specified. For
kinematic structures, it is very common that 3D models of bodies intersect or that they
are very close together. Also, different bodies often belong to the same region. To ensure
this does not lead to problems, we have to validate contour and surface points for region
and depth modalities. For the texture modality, no additional checks are required. The
main reason is that, during the computation of keyframes, it is already evaluated if
detected points lie on the visible object silhouette.

To validate surface points from depth modalities, a silhouette image is rendered
that contains all bodies. Based on this image, surface points of a body are considered
valid if they fall on the corresponding silhouette. Note that the same rendering can be
employed for multiple modalities that use the same camera. For contour points from
region modalities, we also render a silhouette image. However, instead of using a unique
identifier (ID) for each body, a region ID is assigned to each body, which is rendered
to the respective silhouette. Bodies with the same region ID belong to the same region
and consider similar color statistics. As described in Section 3.4.1, it is essential that,
for each correspondence line, the body region on the inside and the non-body region
on the outside of the contour are not interrupted for a minimum continuous distance
along the line, which was defined as 3 segments. Consequently, for each contour point,
we check if rendered pixels along the normal vector fulfill this rule. If it is violated,
the contour point is rejected. An illustration of the described validation strategies is
shown in Fig. 5.5. In addition to contour point validation, the silhouette image is also
used to check whether pixel values that should be assigned to color histograms are on
the correct silhouette. If they are on the wrong silhouette, they are ignored. Both the
rendering and validation are repeated for each correspondence search.

87

5. Multi-body Tracking

Region Modality Depth Modality

Figure 5.5.: Validation strategies for the region and depth modality. Valid points are
visualized with a circle, while invalid points are marked by a cross. For the
region modality, the body in the center and lower right corner are rendered
with the same region ID. To check if a contour point is valid, pixels on a
line along the normal vector are evaluated. If the distance to the inside is
interrupted by another silhouette or the distance to the outside is interrupted
by the same silhouette, the corresponding contour point is rejected. For the
depth modality, all bodies are rendered with unique values. Any surface
point that is not on the body’s own silhouette is invalid.

In addition to validation strategies, we allow individual region modalities to share
color histograms. This is especially beneficial if individual bodies are occluded while
other bodies that model the same region are still visible. Also, color histograms consider
more information and, therefore, perform slightly better. Another modification required
for multi-body tracking considers the number of correspondence lines and points
each modality deploys. Since the size of bodies varies widely, the number has to be
dynamically adapted to uniformly cover the contour and surface of all bodies. We,
therefore, scale the number of lines and points according to the surface area and contour
length of a body’s current silhouette relative to a reference area and length. Note that
surface areas and contour lengths can be precomputed and stored for all views of sparse
viewpoint models. In the evaluation in Section 5.5, we use the maximum contour length
and surface area of all views and bodies within an object as reference. Also, except for
the Medical Robot, which is shown in Fig. 5.6, a maximum of 300 correspondence lines
and points is deployed per body. For the Medical Robot, which consists of equally sized
bodies, we only use 100 lines and points to improve computational efficiency.

Like in previous chapters, we use Newton optimization with Tikhonov regularization
for the maximization of the joint probability. The linear relation in Eq. (5.8) is thereby
extended to include the diagonal regularization matrix ΣΣΣ. It is directly added to the
Hessian matrix of the full kinematic structure HHHk. The diagonal elements of ΣΣΣ consist of
the rotational and translational parameters λr = 100 and λt = 1000. They are applied
to the respective rotational and translational components of the full variation vector θθθk.
Finally, the constraint Jacobian BBBk and the Hessian matrix HHHk have very different orders

88

5.5. Evaluation

of magnitude. To ensure stability when solving the linear equation of the optimization,
we use a robust Cholesky decomposition with pivoting.

Since, in the evaluation, our tracker deals with large frame-to-frame pose differ-
ences, we conduct 6 iterations in which correspondences are established. For the scale
parameter of the region modality, we use s = {9, 7, 5, 2}. Also, the correspondence
point threshold of the depth modality, which is given in millimeters, is defined as
rt = {100, 80, 50}, and is sampled with a stride of 8 mm. Note that values for the
thresholds rt and the stride are scaled according to the depth of model points and are
defined at a reference distance of 1 m. In addition to those parameters, we use the
standard deviations σr = {25, 15, 10} and σd = {50, 30, 20}, which are given in pixels
and millimeters, respectively. The provided sets define parameters for each iteration,
with the last value employed in all remaining iterations. Finally, in the evaluation, we
only use geometry-based tracking with a single region and depth modality per body.
The main reason is that objects in the dataset are mostly untextured, and most bodies
are modeled by a single homogeneous material and color. Finally, with the developed
framework and the implementation details described in this section, we are able to use
M3T for a wide variety of open and closed kinematic structures.

5.5. Evaluation

The following section provides a detailed evaluation of the developed framework
and its implementation in the M3T tracker. For this, we introduce the Robot Tracking

Benchmark (RTB), a highly-realistic synthetic dataset that considers multiple robots and
a large number of sequences. Subsequently, the used evaluation metrics are defined.
Based on the dataset, different configurations of kinematic structures are assessed with
respect to quality and efficiency. After this, the convergence of constraints is analyzed.
Finally, a comparison to another state-of-the-art algorithm is provided, and remaining
limitations are discussed. All experiments were again conducted on a computer with
an Intel Core i9-11900K CPU and a NVIDIA RTX A5000 GPU. A video that shows the
performance of our tracker for real-world sequences and that illustrates the RTB dataset
is publicly available.1

5.5.1. Robot Tracking Benchmark

In the past, evaluations of multi-body tracking and pose estimation methods considered
only a very limited number of sequences. Consequently, experiments were typically of a
more qualitative nature (Krainin et al. 2011; Klingensmith et al. 2013; Bohg et al. 2014;
Michel et al. 2015; Pauwels and Kragic 2015; Schmidt et al. 2015a). The main reason is
that diverse real-world data with moving cameras and high-quality pose annotations is
hard to obtain. However, to ensure reliable evaluation results, a sufficient number of
realistic sequences with accurate ground truth is essential.

1❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✇❛t❝❤❄✈❂✵❖❘❩✈❉❉❜❉❥❆

89

https://www.youtube.com/watch?v=0ORZvDDbDjA

5. Multi-body Tracking

Gripper Medical Pliers Medical Robot

Picker Robot Robot Fingers Robot Wrist

Figure 5.6.: Multi-body objects included in the RTB dataset, featuring the Gripper, Medical

Pliers, Medical Robot, Picker Robot, Robot Fingers, and Robot Wrist. The Gripper,
Picker Robot, and Robot Wrist contain closed kinematic chains. Note that
for the Robot Fingers, the wrist is locked, and only finger joints are moving,
while the Robot Wrist features locked fingers and a movable wrist.

We, therefore, introduce the Robot Tracking Benchmark (RTB). It is a novel synthetic
dataset that was developed using the procedural rendering pipeline BlenderProc2 and
which is publicly available3. Example images of the dataset are shown in Fig. 5.6. To
facilitate the creation of the dataset, BlenderProc was extended to load robot models
from URDF files. Also, for the generation of articulated motions, forward and backward
kinematics were integrated. The open-source pipeline produces photo-realistic sequences
with HDRi lighting4 and physically-based materials. Perfect ground-truth annotations
for camera and robot trajectories are provided in the BOP format (Hodaň et al. 2020).
Many physical effects, such as motion blur, rolling shutter, and camera shaking, are
accurately modeled to reflect real-world conditions. For each frame, the following four
depth qualities are available: Ground Truth, Azure Kinect, Active Stereo, and Stereo. They
simulate sensors with different characteristics. While the first quality provides perfect
ground truth, the second considers measurements with the distance-dependent noise
characteristics of the Azure Kinect time-of-flight sensor (Tölgyessy et al. 2021). Smoothed
depth is thereby modeled using random Gaussian shifting, and, at very dark surfaces,
missing measurements are considered. Finally, for the Active Stereo and Stereo qualities,
two stereo RGB images with and without a pattern from a simulated dot projector
were rendered. Depth images were then reconstructed using the SGM algorithm of

2❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴❇❧❡♥❞❡rPr♦❝
3❤tt♣s✿✴✴③❡♥♦❞♦✳♦r❣✴r❡❝♦r❞✴✼✺✹✽✺✸✼
4❤tt♣s✿✴✴♣♦❧②❤❛✈❡♥✳❝♦♠✴❤❞r✐s

90

https://github.com/DLR-RM/BlenderProc
https://zenodo.org/record/7548537
https://polyhaven.com/hdris

5.5. Evaluation

Ground Truth Azure Kinect

Active Stereo Stereo

Figure 5.7.: Depth image qualities provided in the RTB dataset, featuring Ground Truth

with perfect measurements, noise characteristics from an Azure Kinect camera,
and stereo reconstructions from SGM. For Active Stereo, the pattern from a
dot projector is simulated to add additional texture information, while Stereo

operates without a pattern.

Table 5.1.: Characteristic numbers and thresholds for objects included in the RTB dataset.

Gripper
Medical
Pliers

Medical
Robot

Picker
Robot

Robot
Fingers

Robot
Wrist

Number of Bodies 9 5 8 11 16 12
Degrees of Freedom 2 4 7 3 15 2
Closed Chains 4 0 0 6 0 4
Error Threshold et [m] 0.01 0.01 0.1 0.1 0.05 0.05

Hirschmüller (2005). Examples of the four qualities are shown in Fig. 5.7.
The benchmark features 6 robotic systems with different kinematics, ranging from

simple chain and tree topologies to structures with complex closed kinematics. Example
images of all multi-body objects included in the dataset are shown in Fig. 5.6. An
overview of their kinematic structure is given in Table 5.1. For each robotic system, we
provide three difficulty levels: Easy, Medium, and Hard. In all sequences, the kinematic
system is in motion. However, while for Easy, the camera is mostly static with respect
to the robot, Medium and Hard feature faster and shakier motions for both the robot
and camera. Consequently, motion blur increases, which also reduces the quality of
stereo matching. Finally, for each object, difficulty level, and depth image quality, 10

91

5. Multi-body Tracking

sequences with 150 frames are available. In total, this results in 108.000 frames that
feature different kinematic structures, motion patterns, depth measurements, scenes, and
lighting conditions. In summary, given the diverse data, our Robot Tracking Benchmark

allows to extensively measure, compare, and ablate the performance of multi-body
tracking algorithms, which is essential for further progress in the field.

5.5.2. Metrics

For the evaluation on the RTB dataset, we again adopt ADD and ADD-S area-under-
curve scores (Hinterstoisser et al. 2013) and modify them for multi-body structures. The
average-distance (ADD) error eADD and average-shortest-distance (ADD-S) error eADD-S,
which were also used in Section 4.4.1, are thereby computed for each body and frame as
follows

eADD =
1

nv

nv

∑
i=1

∥∥(MX̃̃X̃Xi − MTTTMGT MX̃̃X̃Xi

)
3×1

∥∥
2, (5.29)

eADD-S =
1

nv

nv

∑
i=1

min
j∈[nv]

∥∥(MX̃̃X̃Xi − MTTTMGT MX̃̃X̃X j

)
3×1

∥∥
2, (5.30)

where MTTTMGT is the transformation between the ground-truth (GT) and estimated model
pose, X̃̃X̃Xi is a vertex from the 3D mesh of the body written in homogeneous coordinates,
nv is the number of vertices, and ()3×1 denotes the first three elements of a vector. Note
that, in the case that a rigid body is composed of multiple 3D meshes, one simply
averages the conventional and shortest distance error over all meshes. Based on the
errors of individual bodies and frames eij, we compute the area-under-curve score for
an entire kinematic structure and sequence as follows

s =
1

nbnf

nb

∑
i=1

nf

∑
j=1

max
(

1 − eij

et
, 0
)

, (5.31)

with nb the number of bodies, nf the number of frames, and et an error threshold.
For the computation of ADD and ADD-S area-under-curve scores, we utilize the error
metrics eADD and eADD-S for the error eij, respectively. Error thresholds et that are used
for the considered multi-body objects are given in Table 5.1. They are defined to be
approximately ten percent of each object’s diameter. The resulting score considers each
body equally important, takes into account the size of the kinematic structure, and
rewards accuracy while limiting the impact of bad predictions.

5.5.3. Kinematic Configuration

Using the RTB dataset, we thoroughly evaluate the proposed multi-body tracking frame-
work. For this, we compare four kinematic configurations per object. We thereby
differentiate between (i) independently tracked bodies, (ii) projection to a minimal pa-
rameterization with Jacobians, (iii) constraints using Lagrange multipliers, and (iv) a

92

5.5. Evaluation

Table 5.2.: Comparison of different kinematic configurations on the RTB dataset, showing
ADD-S area-under-curve scores in percent and average runtimes in millisec-
onds. Objects with tree-like kinematic structures are indicated by a ⋆.

Configurations G
ri

p
p

er

M
ed

ic
al

P
lie

rs
⋆

M
ed

ic
al

R
ob

ot
⋆

P
ic

ke
r

R
ob

ot

R
ob

ot
Fi

ng
er

s⋆

R
ob

ot
W

ri
st

A
v

e
ra

g
e

R
u

n
ti

m
e

[m
s]

Independent 21.6 34.6 52.1 21.0 28.5 28.3 31.0 13.2
Projected 71.1 81.7 95.1 54.0 90.0 86.1 79.7 13.5
Constrained 87.4 79.9 92.9 93.7 84.3 96.8 89.2 16.2
Combined 87.9 81.7 95.1 94.7 90.0 97.4 91.1 13.8

combination of projection and constraints. In the combined case, the main configuration is
equal to the projected scenario. However, all chains are closed using additional constraints
from the constrained version.

Results of the evaluation are shown in Table 5.2. The experiments clearly demonstrate
that independent tracking of bodies is not an option for kinematic structures. Also, while
the projection to a minimal parameterization works very well for tree-like structures,
for objects with closed kinematic chains, such as the Gripper, Picker Robot, and Robot

Wrist, it is a significant disadvantage to not use the full kinematic information. Finally,
what is most interesting is the comparison of the constrained and combined configurations.
Even though both include the full kinematic information, the combined version performs
better than the constrained. The main reason for this is a difference in regularization. For
the constrained configuration, regularization considers the full pose variation of each
body independently. On the other hand, for the combined case, relative joint variations
between bodies are regularized. Since bodies in a kinematic structure move relative
to each other and the entire structure moves with respect to the camera, the relative
regularization of the combined configuration is closer to reality. Consequently, using
projection and combining it with constraints to model closed chains works best.

In addition to tracking quality, we also compare computational efficiency. Results in
Table 5.2 show that runtimes for the independent, projected, and combined configurations
are almost equal. For the constrained configuration, it is, however, noticeably larger. To
analyze this difference in more detail, we create an additional experiment that compares
the projected and constrained configurations. We thereby consider a kinematic chain with
one rotational link per body and a variable number of bodies. For the comparison, we
measure the runtime required for a single iteration of the optimization and the pose
update. Results over the number of bodies are given in Fig. 5.8. The plots show a
significant difference between the two configurations. The main reason is that, while for
the constrained version, 11 unknowns are added per additional body, with 6 parameters
for the body pose and 5 for the constraint, only 1 unknown is required in the projected

93

5. Multi-body Tracking

0 10 20 30 40 50
0

2

4

6

Number of Bodies

O
p

ti
m

iz
at

io
n

Ti
m

e
[m

s] Projected
Constrained

Figure 5.8.: Optimization time per iteration for the projected and constrained configuration
over the number of bodies in a kinematic chain.

scenario. Together with the Cholesky decomposition’s computational complexity of
O(n3), which is used to solve the linear system of equations, this explains the obtained
results. Also, while the difference between the two formulations decreases for joints with
more than one degree of freedom, the constrained configuration is never more efficient
than the projected. In conclusion, experiments in this section demonstrate that using
projection where possible and combining it with constraints where necessary works best
both for quality and efficiency.

5.5.4. Constraint Convergence

In Appendix G, we proved mathematically that constraints converge in a single iteration
for the special case of equal model and constraint coordinate frames. In the following,
we analyze the more general case of unequal coordinate frames. For this, random
transformations ATTTMa and BTTTMb

are defined. Also, we start with an initial random
difference ATTTB between constraint reference frames A and B. Transformations are
thereby generated using normalized 3D rotation and translation vectors with a random
orientation from a uniform distribution. The length of those rotation and translation
vectors is then sampled from uniform distributions on the intervals [−1, 1] and [−π, π],
with translations in meters and rotations in radians. Given an initial pose difference
ATTTB, four Newton iterations are conducted. For each iteration, absolute rotation and
translation errors ∥ArrrB∥2 and ∥AtttB∥2 are computed. In total, we evaluate 100.000 random
cases and report error percentiles. Obtained results are visualized in Fig. 5.9. The plots
demonstrate that, like in our proof, both rotational and translational constraints converge
in a single iteration. Also, while we do not report them here, similar results are obtained
if individual components of the rotation and translation are constrained.

To provide additional context, we compare our results to convergence plots that use
orthogonality constraints for the rotation. One thereby enforces orthogonality between

94

5.5. Evaluation

Rotation Vector Constraints (Ours)

0 1 2 3 4
0

π
2

π

0 1 2 3 4
0

0.5

1

Orthogonality Constraints

0 1 2 3 4
0

π
2

π

0 1 2 3 4
0

0.5

1

Rotational errors ∥ArrrB∥2 in [rad] over iterations

Translational errors ∥AtttB∥2 in [m] over iterations

Figure 5.9.: Convergence plots showing rotational and translational errors over iterations
of the Newton method. Initial errors are uniformly distributed with a maxi-
mum of ∥ArrrB∥2 = π and ∥AtttB∥2 = 1 m. For the translation, the constraint
AtttB = 000 is used. For the rotation, we differentiate between our constraints,
which restrict the rotation vector using ArrrB = 000, and orthogonality con-
straints that ensure that axes of reference frame A are orthogonal to axes of
reference frame B. Dark lines visualize error deciles while bright lines show
error percentiles.

the axes of the constraint coordinate frames A and B as follows

brijab(θθθa, θθθb) = Aeee⊤i ARRRB(θθθa, θθθb) Beeej, (5.32)

with the tuple (i, j) ∈ {(x, y), (y, z), (z, x)}. Derivatives that are required for the im-
plementation are given in Appendix I. Convergence plots of the experiment are again
shown in Fig. 5.9. The results demonstrate that multiple iterations are required to
converge to a kinematically compliant result. However, what is even worse is that the
orthogonality requirement is not unique over the space of possible rotations. In total, 7
additional pose configurations exist that fulfill the defined orthogonality constraints. In
Fig. 5.9, those cases are visible in the convergence towards a rotational error of π and 2

3 π.
In conclusion, our experiments demonstrate that, in contrast to other approaches, the
developed constraints converge to a kinematically exact solution over the entire space of
possible rotations while requiring only a single iteration.

95

5. Multi-body Tracking

Table 5.3.: Comparison of tracking algorithms on the RTB dataset, showing ADD
and ADD-S area-under-curve scores in percent and average runtimes in
milliseconds.6 Objects with tree-like kinematic structures are indicated by a ⋆.

Object Gripper
Medical
Pliers⋆

Medical
Robot⋆

Picker
Robot

Robot
Fingers⋆

Robot
Wrist

Average

App. Level A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

A
D

D

A
D

D
-S

DART

Easy 33.9 57.2 29.7 44.9 75.1 86.3 27.9 33.8 54.3 64.8 51.6 63.3 45.4 58.4
Medium 1.4 3.1 11.0 25.5 12.1 20.7 3.2 5.4 2.9 4.7 4.9 8.3 5.9 11.3
Hard 1.4 3.1 8.1 20.1 3.6 7.8 1.0 2.2 1.2 2.1 1.4 2.6 2.8 6.3
All 12.2 21.2 16.2 30.1 30.2 38.3 10.7 13.8 19.5 23.9 19.3 24.7 18.0 25.3

Runtime 4.1 ms 3.7 ms 5.8 ms 9.6 ms 12.8 ms 11.4 ms 7.9 ms

M3T
(Ours)

Easy 92.1 94.1 78.3 86.8 93.1 97.0 96.0 97.3 95.6 96.8 97.9 98.5 92.2 95.1
Medium 81.5 86.7 64.6 79.0 86.5 94.2 90.8 93.6 86.9 91.0 96.6 97.8 84.4 90.4
Hard 78.6 83.0 62.9 79.2 81.8 94.1 90.7 93.0 76.5 82.2 94.0 95.9 80.7 87.9
All 84.1 87.9 68.6 81.7 87.1 95.1 92.5 94.7 86.3 90.0 96.2 97.4 85.8 91.1

Runtime 9.7 ms 6.8 ms 20.5 ms 11.4 ms 16.7 ms 17.5 ms 13.8 ms

5.5.5. Comparison

In addition to the framework’s evaluation, we compare our M3T tracker to another
popular method. For this, we decided to use DART (Schmidt et al. 2015b; Schmidt et al.
2015a). It is one of the few available general-purpose algorithms for the tracking of
kinematic structures. DART uses signed distance functions to consider depth information
and allows the configuration of kinematic structures with both rotational and prismatic
joints. For our evaluation, we use source code that is publicly available5 and leave
all parameters at their default values. Except for the Picker Robot, all experiments are
conducted on the same computer.6 Results of the evaluation are shown in Table 5.3. The
comparison emphasizes the performance of our approach. While for Easy sequences,
DART is still able to track some objects well, for Medium and Hard, most sequences
are impossible. The main reason is that, due to the large pose differences between
frames, the algorithm quickly loses most objects. This suggests that using depth alone
and not being able to model closed kinematic structures significantly limits tracking
performance. In comparison, M3T is able to successfully track almost all objects and
achieves relatively high scores even for sequences in the category Hard.

With respect to runtime, both DART and M3T are able to operate well above 30 Hz,
which is the frequency of most consumer RGB-D cameras. For DART, the largest runtime
is observed for the Robot Fingers, which has the maximum number of bodies. For our

5❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴ts❝❤♠✐❞t✷✸✴❞❛rt
6Due to memory requirements of the Picker Robot, the object’s evaluation with DART had to be conducted

on a computer with an Intel Xeon Gold 6254 CPU and a NVIDIA RTX A6000 GPU.

96

https://github.com/tschmidt23/dart

5.5. Evaluation

Table 5.4.: Tracking results on the RTB dataset for different depth image qualities with
ADD and ADD-S area-under-curve scores in percent.

Approach DART M3T (Ours)

Depth Quality ADD ADD-S ADD ADD-S

Ground Truth 21.1 29.0 88.7 93.0
Azure Kinect 16.2 22.4 87.9 92.5
Active Stereo 18.0 25.3 86.2 91.5
Stereo 16.9 24.5 80.4 87.6

approach, most resources are required for the tracking of the Medical Robot, which uses
a large number of correspondence lines and points. With its highly-optimized CUDA

implementation and the used NVIDIA RTX A5000 GPU, DART is even faster than our
approach. At the same time, for our method, the GPU is only required to validate
contour and surface points. Consequently, it remains mostly idle. Also, the algorithm
runs on a single CPU core. In summary, while differences with respect to runtime and
required computational resources exist, both DART and M3T are highly efficient and
provide real-time performance.

Finally, in addition to difficulty levels, we evaluate both approaches with respect to
different depth image qualities provided in the RTB dataset. Results of the experiments
are given in Table 5.4. For DART, the evaluation shows a notable difference between
Ground Truth and other depth image qualities that are more realistic and imperfect.
In comparison, for our approach, differences between Ground Truth, Azure Kinect, and
Active Stereo are less severe, and results are mostly comparable. Only for Stereo, for
which depth images often have missing measurements and provide considerably less
information, the tracking performance is lower. In summary, the results demonstrate
that M3T does not require perfect depth images. Instead, with a combination of region
and depth information, one is able to achieve high-quality tracking even in challenging
scenarios with imperfect depth measurements.

5.5.6. Limitations

While our framework allows to model various kinematic structures and is compati-
ble with a wide variety of algorithms, some limitations remain. First, it focuses on
approaches that employ Newton-like optimization techniques such as Gauss-Newton,
Levenberg-Marquardt, or quasi-Newton methods. The framework is, therefore, not
compatible with particle-based methods or existing deep learning-based techniques.
Also, in this work, we only derived equations based on the axis-angle representation.
Note, however, that it would be relatively easy to derive the equations required for other
parameterizations. Another limitation comes from the Newton method itself. Because

97

5. Multi-body Tracking

each iteration considers the energy function only at a single point, the algorithm can
get stuck in local minima. Like for most tracking methods, this limits maximum con-
figuration changes and pose differences between frames. Also, algorithms that should
be extended with our framework have to deal with multiple bodies at the same time.
Typical challenges thereby include bodies that are very close together or even intersect.
As in our extension of M3T, it might be necessary to modify the original algorithm to
successfully deal with such cases.

5.6. Conclusion

In this chapter, we developed a framework that allows the extension of existing 6DoF
algorithms to multi-body object tracking. It combines projection to a minimal parame-
terization and the application of pose constraints into a single formulation. With the
efficiency and realistic regularization of projection and the ability to model temporary
connections and additional constraints, it combines the best of both worlds. The re-
sulting formulation allows the modeling of a wide variety of kinematic structures and,
to the best of our knowledge, is the first that accurately considers closed kinematic
structures. In a detailed mathematical proof, as well as in experiments, we were able to
show that the developed constraints enforce an exact kinematic solution, converging in
a single iteration of the Newton optimization. Also, in contrast to previous work, our
constraints directly operate on pose differences instead of velocities. This ensures that
kinematic errors are minimized and cannot accumulate over time.

Based on the developed framework, we extended the multi-modality tracking ap-
proach from Chapter 4 to multi-body tracking. For a thorough, quantitative evaluation,
we introduced the RTB dataset. It features highly-realistic sequences and multiple
robots, both with open and closed kinematic chains. The dataset also provides numer-
ous sequences in various settings with distinct difficulty levels and depth qualities. In a
detailed comparison, we demonstrated that our M3T algorithm significantly outperforms
DART (Schmidt et al. 2015b), which is a state-of-the-art articulated object tracker. With
the obtained results and new possibilities for quantitative evaluation, we are confident
that our tracker and dataset have many applications in robotics and computer vision.
Also, given the versatility of our framework and its compatibility with a wide variety of
existing and potential future methods, we hope that more approaches will move from
rigid objects to kinematic structures.

98

6
Applications

6.1. Introduction

In real-world applications, a wide variety of robots and objects with various kinematic
structures and surface characteristics exist. Also, while in some cases, it is only possible
to obtain monocular RGB images, other scenarios feature extensive multi-camera setups
that provide color and depth information. The previously presented mathematics, tech-
niques, and strategies have been developed with that diversity in mind. Consequently,
they support a wide variety of scenarios. While this constitutes a good foundation, it is
essential that the flexibility of those theoretical capabilities is mirrored in the algorithm’s
implementation. In the following chapter, we present our multi-body, multi-modality,
and multi-camera tracking library M3T. It features a highly-modular architecture that
allows the configuration of different components, such as cameras, links, constraints,
modalities, viewers, detectors, refiners, publishers, and subscribers. Given this flexibility,
M3T supports all the theoretical capabilities of our approach.

While for datasets, tracking is typically started using the ground-truth pose of the
first frame, for real-world applications, such information is not available. For the
initialization, we therefore provide different solutions in the M3T library, including the
integration of a deep learning-based global detection and pose estimation algorithm.
Similar to experiments in Section 4.4.6, predictions can thereby be improved using
our algorithm for pose refinement. Finally, most robots are not only equipped with
cameras but also provide proprioceptive measurements from joint sensors. Given that
this information constrains the relative location of individual links, it is highly valuable
for the tracking of robots. We, therefore, discuss how to integrate such measurements
into the presented algorithm. Depending on the quality of measurements, our approach
can be used to improve both the robustness and accuracy of tracking results.

Finally, for the developed M3T library, we provide two example applications. In the
first, we consider the humanoid robot David. The robot features an Azure Kinect RGB-D
camera that is mounted inside the robot’s head on top of an elastic neck. For the neck,
only very rough forward kinematics are available. Also, the robot’s arm and body are
designed for efficiency and are not perfectly rigid. It is, therefore, impossible to compute
the exact location of the hand relative to the camera. Instead, to interact with objects,
one has to predict poses of both the hand and manipulated objects. Based on this visual
feedback, one can then use relative positioning. Once the object has contact with the

99

6. Applications

hand, constraints from fingers provide further information. In addition to hand tracking,
we, therefore, also discuss how visual information can be combined with an existing
grasp state estimation approach that considers contact information.

Finally, in the second application, we discuss the integration of the M3T tracker
with the MiroSurge system for minimal-invasive robotic surgery. The setup consists of
multiple MIRO robots that are equipped with versatile instruments for minimal-invasive
surgery called MICA. In general, the MICA instrument provides two tendon-driven joints
and pliers. They are connected to motors and sensors inside a drive unit at the end of a
long shaft. Usually, the robot and instrument are operated by a human who uses images
from an endoscope. To automate operations or place virtual fixtures that constrain the
instrument, the end effector’s location relative to the camera has to be known. However,
given the elasticity of the mechanical structure and tendons together with the long
kinematic chain, kinematic information is insufficient to predict the end effector’s pose
and configuration. To overcome this limitation, the M3T tracker is used. Similar to a
human operator, the tracker uses RGB images from the endoscope to estimate the pose
and configuration of the MICA instrument, as well as manipulated objects.

6.2. The M3T Library

In this section, we present the M3T library. It is implemented in C++ and is available as
open-source software1. First, the library’s architecture is discussed. We thereby provide
an overview of different components and explain how to combine them. Subsequently,
the tracking process, which is used to estimate the poses of all bodies, is described. This
is followed by a short explanation of different detection methods that can be used for
initialization. Finally, an approach that allows the incorporation of joint measurements
of varying accuracy and reliability is presented.

6.2.1. Architecture

For the library’s architecture, both theoretical capabilities of our approach and practical
requirements from applications have to be considered. For example, the 3D object
tracker presented in this thesis allows the incorporation of information from different
modalities and supports the use of multiple cameras for which the relative pose is
known. Geometric information for the region and depth modality are thereby stored
in sparse viewpoint models that are precomputed. Also, we presented an occlusion
handling strategy that uses information from depth renderings or depth camera images.
To facilitate the tracking of bodies that are close to each other, contour and surface
points are validated based on silhouette renderings that encode different values for
individual bodies and regions. In addition, region modalities are able to share color
histograms that model the foreground and background. Moreover, for multi-body
objects, individual links are connected by joints to form tree-like kinematic structures.

1❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴✸❉❖❜❥❡❝t❚r❛❝❦✐♥❣

100

https://github.com/DLR-RM/3DObjectTracking

6.2. The M3T Library

Those structures can be restricted using constraints between links. Finally, in addition to
those capabilities, for real-world applications, it is important to exchange data with other
processes. Also, to initialize poses and reset the tracker in cases of tracking loss, the
integration of global detection and pose estimation methods is required. Furthermore, in
many cases, visualizations of current predictions are needed. Based on those capabilities
and requirements, we identified the following components, which provide specific
functionality and data:

❈❛♠❡r❛ Specifies methods to fetch images and provides those images to other compo-
nents. In addition, it stores intrinsics and defines the camera’s pose relative to the
world coordinate frame. In general, one differentiates between Color Cameras and
Depth Cameras. Depending on the used physical camera or the integration with
existing image pipelines, different implementations have to be created.

❇♦❞② Holds the pose of a rigid body relative to the world coordinate frame and stores
the body’s mesh geometry. It also specifies values for region and body IDs that
are used in the rendering of silhouette images.

❘❡♥❞❡r❡r ●❡♦♠❡tr② Stores the geometry of referenced Bodies on the GPU and provides
everything required for rendering.

❘❡♥❞❡r❡r Creates a rendering based on the geometry in a referenced Renderer Geometry

object, the poses of corresponding Bodies, and the view of the renderer on the
scene defined by intrinsics and the renderer’s pose relative to the world coordinate
frame. For tracking, intrinsics and the pose are initialized from the values of
a Camera object. Currently, three implementations exist: a Depth Renderer that
outputs a depth image, a Silhouette Renderer that creates a silhouette image, which
features either region or body IDs, and a Normal Renderer that encodes surface
normal vectors. For improved efficiency, versions are provided that focus only on
referenced Bodies, instead of rendering the entire image.

▼♦❞❡❧ Precomputes a sparse viewpoint model from a referenced Body and stores
the created data. During the generation, geometries from other Bodies can be
considered. This can, for example, be used to consider occlusions before tracking.
Two versions exist: a Region Model that samples contour points and a Depth Model

that computes surface points. They are used for region and depth modalities,
respectively. Modalities that consider the same geometry can use the same model.

❈♦❧♦r ❍✐st♦❣r❛♠s This object computes and stores color histograms for the foreground
and background. Typically, the object is incorporated in the Region Modality.
However, if histograms should be shared, Color Histograms can also be defined
separately and referenced by multiple Region Modalities.

▼♦❞❛❧✐t② Considers information from a Camera and the pose of a Body to compute
correspondences and calculate the gradient vector and Hessian matrix used for

101

6. Applications

Newton optimization. As previously discussed, three modalities exist: a Region

Modality that sparsely considers region information and requires a Color Camera,
Body, and Region Model, a Depth Modality that implements an ICP-like depth
approach that considers data from a Depth Camera, Body, and Depth Model, and
a Texture Modality that uses keypoint features and requires information from a
Color Camera, Body, and Silhouette Renderer. All modalities allow referencing a
Depth Renderer to model occlusions. Also, while Depth Modalities use information
from the already required Depth Camera, both Region and Texture Modalities allow
referencing an additional Depth Camera to consider occlusions. The physical depth
camera, thereby, has to be close to the color camera. Finally, for the validation
of contour points and surface points, Region and Depth Modalities use a Silhouette

Renderer. Also, Region Modalities are able to reference external Color Histograms.

▲✐♥❦ Defines the location of a joint reference frame relative to the reference frame of the
link and its parent. For the joint, rotational and translational motion along defined
coordinate axes is allowed. To build a tree-like kinematic structure, a Link is able
to reference multiple Links as children. In general, Links contain all Modalities that
correspond to a single referenced Body. If a Body is configured, the reference frame
of the Link is equal to that of the Body. Also, it is possible to create virtual Links

without referenced Body or Modality objects to allow the definition of kinematics
that do not feature visual information.

❈♦♥str❛✐♥t Takes two Links and defines the location of constraint reference frames
relative to corresponding link frames. Rotational and translational motion between
the two constraint frames is restricted for user-defined coordinate axes. Currently,
two constraint implementations exist: the mathematically exact Constraint that was
discussed previously and a Soft Constraint that can be used to consider inaccurate
proprioceptive measurements. The latter will be introduced in Section 6.2.4.

❖♣t✐♠✐③❡r References a single Link at the root of a kinematic structure and multiple
corresponding Constraints and Soft Constraints. It computes Jacobian matrices
for all Links and uses them to project gradient vectors and Hessian matrices
from Modalities and Soft Constraints to the full gradient and Hessian required for
Newton optimization. In addition, an Optimizer projects Jacobians and residuals
from Constraints into the full system of linear equations. After a single Newton
step, it updates the pose of all Links and Bodies in the kinematic structure.

❉❡t❡❝t♦r Depending on the implementation, a Detector references multiple Optimizers.
Based on the detected pose of the root Link, it updates the pose of all corresponding
Link and Body objects in the kinematic structure. Three different detectors are
implemented: a Static Detector that assigns a predefined pose, a Manual Detector

that allows a user to define four points in a color image to infer the pose, and an
Automatic Detector that uses a deep learning-based detection and pose estimation
pipeline to infer the pose of multiple objects.

102

6.2. The M3T Library

❱✐❡✇❡r Is used to visualize results. Currently, a Normal Viewer and an Image Viewer are
implemented. While the first references a Camera and Renderer Geometry object
to overlay normal renderings on the camera image, the second simply shows an
image from a referenced Camera. For both viewers, variants are available that
consider color or depth images.

P✉❜❧✐s❤❡r Is used to communicate data to an external source. It features an abstract
method that is called at the end of the pose optimization. Its implementation is
highly dependent on the exchanged information and the receiving source. In most
applications, it is used to publish predicted poses.

❙✉❜s❝r✐❜❡r Is used to read data from an external source. It provides an abstract method
that is called before the optimization. As for Publishers, the implementation is
highly dependent on the source and exchanged information. When the main
method is executed, the tracker is in a defined state, without anything happening
in parallel. A subscriber can, therefore, not only modify pose predictions but is
able to change settings or the entire configuration of referenced objects.

❘❡✜♥❡r References Optimizers to refine pose predictions of corresponding kinematic
structures. It coordinates different methods provided by Optimizers, Constraints,
Soft Constraints, Links, Modalities, Color Histograms, and Renderers. The refinement
process is very similar to the Tracking Step of the Tracker, which will be described
in Algorithm 6.4. The only main difference is that methods featured in the Starting

Step in Algorithm 6.3 are executed each time before correspondences are calculated.

❚r❛❝❦❡r References Optimizers, Refiners, Publishers, Subscribers, Viewers, and Detectors. In
addition to an orderly setup, it facilitates the entire tracking process. The Tracker

thereby coordinates the execution of methods provided by different objects. To
control the process, it provides interfaces to start the tracking, stop the tracking,
and execute the detection of kinematic structures represented by an Optimizer. A
detailed description of the tracking process is provided in Section 6.2.2.

With the presented components and their flexible combination, a wide variety of
different applications can be supported. In our library, components are implemented
as classes in C++. To connect individual objects, one simply passes shared pointers. In
addition to programming, configurations can also be defined using files in the YAML

file format. Based on those files, the entire tracker is created automatically.
An example that demonstrates how components from the M3T library can be con-

figured for a simple application is shown in Fig. 6.1. It features a setup that considers
information from two color cameras and one depth camera to track a kinematic structure
that consists of two bodies. In the visualization, referenced objects are connected by
lines in the color of the referenced object. Note that while components have no access
upwards to objects from where they are referenced, connecting downwards through
other objects is not a problem. Consequently, the Tracker has access to all components in
the configuration. This capability is used to ensure that all objects are correctly set up

103

6. Applications

Body 1 Body 2
Renderer

Geometry 1

Region
Model 1

Region
Model 2

Depth
Model 1

Depth
Model 2

Color
Camera 1

Color
Camera 2

Depth
Camera 1

Silhouette
Renderer 1

Silhouette
Renderer 2

Silhouette
Renderer 3

Region
Modality 1

Region
Modality 2

Region
Modality 3

Region
Modality 4

Depth
Modality 1

Depth
Modality 2

Link 1 Link 2

Optimizer 1

Refiner 1
Manual

Detector 1
Normal
Viewer 1

Publisher 1Subscriber 1

Tracker

Figure 6.1.: Example configuration for the tracking of a kinematic structure with two
Bodies using images from two Color and one Depth Camera. For each Body and
Color Camera, a Region Modality is configured. Similarly, each Body connects
to a Depth Modality. To validate points, each Modality references a Silhouette

Renderer that corresponds to a Camera. In addition, Region Modalities 2 and
4 consider occlusions using the Depth Camera. For initialization, a Manual

Detector predicts the pose of Link 1 and Body 1 and uses the Optimizer to
update the kinematic structure. Afterwards, the estimate is improved using
a Refiner. Also, a Subscriber is configured that has access to all objects
connected to the Optimizer. Finally, results are visualized using a Normal

Viewer, and pose estimates of Body 2 are communicated using a Publisher.

104

6.2. The M3T Library

Algorithm 6.1 Tracking Process

1: while run tracking process do

2: Update all Cameras

3: Update all Subscribers

4: Calculate consistent Link and Body poses
5: Run Detecting Step ▷ For objects associated with the state detecting

6: Run Starting Step ▷ For objects associated with the state starting

7: Run Tracking Step ▷ For objects associated with the state tracking

8: Update all Publishers

9: Update all Viewers

10: end while

before the main process is executed. Also, during operation, the Tracker coordinates the
execution of methods from different components in the tracking process.

6.2.2. Tracking Process

During execution, the Tracker runs methods of different components in the correct
order. It thereby considers the state of individual kinematic structures represented by
Optimizers. In general, they can be in the states detecting, starting, and tracking. Also,
kinematic structures may be idle. States can be influenced by the user with interfaces to
start the tracking, stop the tracking, and execute the detection. Each method allows to
specify names of optimizers to affect the respective kinematic structures.

An overview of the tracking process is given in Algorithm 6.1. Each iteration starts
by first updating Cameras and Subscribers. Subsequently, given that Subscribers are able
to change the poses of individual objects, the poses of all Links and Bodies are updated
to be consistent. After that, Detecting, Starting, and Tracking Steps are executed. Each
step only considers objects associated with kinematic structures in the corresponding
state. For example, in the Starting Step, only Modalities are considered that belong to a
kinematic structure in the state starting. Finally, once individual steps have been finished,
Publishers and Viewers are updated. The process then starts from the beginning.

In the following, we explain the individual steps of the tracking process in detail.
For the Detecting Step, first, all Detectors associated with the state detecting are run. If
the detection is successful, the Detector updates the poses of all Links and Bodies in the
kinematic structure. Subsequently, for all kinematic structures that were successfully
detected, associated Refiners improve predictions. Finally, if desired, successfully de-
tected structures move to the state starting. An overview of the Detecting Step is shown
in Algorithm 6.2.

In the Starting Step, first, all Renderers that are required by Modalities are executed.
After that, each Modality is started. This operation, for example, initializes internal color
histograms of Region Modalities. Subsequently, the Starting Step also performs the initial-
ization of shared Color Histograms. Finally, each kinematic structure automatically moves

105

6. Applications

Algorithm 6.2 Detecting Step

1: Run Detectors

2: Run Refiners for successful detections
3: If desired, move to state starting for successful detections

Algorithm 6.3 Starting Step

1: Run Renderers required for the starting of Modalities

2: Start Modalities

3: Initialize Color Histograms

4: Move to state tracking

Algorithm 6.4 Tracking Step

1: for n correspondence iterations do

2: Run Renderers required for the calculation of correspondences
3: Calculate correspondences for Modalities

4: for m update iterations do

5: Calculate gradients and Hessians of Modalities

6: for all Optimizers do

7: Calculate gradients and Hessians of referenced Soft Constraints

8: Recursively calculate Jacobians of referenced Links

9: Calculate Jacobians and residuals of referenced Constraints

10: Assemble and solve linear system of equations
11: Recursively update poses of referenced Links and Bodies

12: end for

13: end for

14: end for

15: Run Renderers required for the update of Modalities

16: Update Modalities

17: Update Color Histograms

into the state tracking. An overview of the individual steps is shown in Algorithm 6.3.
Finally, the main step in the tracking process considers the estimation of poses. This

so-called Tracking Step is illustrated in Algorithm 6.4. It is a more general version
of Algorithm 3.1, which was provided for region-based tracking. The Tracking Step

performs an iterative computation of correspondences and pose updates. To calculate
correspondences for Modalities, it first runs required Renderers. Typical examples are
Depth Renderers employed for occlusion handling or Silhouette Renderers that are used
to validate individual contour or surface points. Afterwards, correspondences are
calculated. This is typically followed by two update iterations. In each iteration, gradient
vectors and Hessian matrices are calculated for all Modalities. Afterwards, kinematic
structures are updated. Optimizers thereby compute gradient vectors and Hessian

106

6.2. The M3T Library

matrices of Soft Constraints, recursively calculate Jacobians of Links, compute Jacobians
and residuals of Constraints, and, finally, assemble everything in a single linear system
of equations. Optimizers then solve the equations and recursively update the poses of all
Links and Bodies. Subsequently, the iterations are repeated. Finally, after the last iteration,
required Renderers are run, and Modalities and Color Histograms are updated.

In conclusion, the presented tracking process ensures that all individual components
work together in an organized way. Given that each method is only executed if it is
required, the process also facilitates high efficiency. Furthermore, it does not limit
the flexible combination of individual components. Like the architecture, the resulting
process, therefore, supports both the theoretical capabilities of our approach and practical
requirements for real-world applications.

6.2.3. Initialization

To start tracking, initial poses and configurations are required for all objects and kine-
matic structures. As described before, setting poses and updating kinematic structures
is the task of the Detector class. In the M3T library, three different implementations exist:
a Static Detector, Manual Detector, and Automatic Detector. The Static Detector simply
assigns a user-defined pose to the root link of a referenced Optimizer. It is employed for
the initialization of objects that are always at the same location relative to the camera
before tracking is started. A typical use case is the initialization of a robot end effector.
The robot thereby first moves to a defined pose and configuration relative to the camera.
Subsequently, given this defined setup, one executes the detection.

The second version is the Manual Detector. It was developed as part of the bachelor’s
thesis of Reichert (2021). The Manual Detector stores four characteristic 3D points that
are selected from the surface of the root link’s model. Typical examples of points are
object corners or characteristic locations of visual texture. During detection, an image
from a referenced color camera is shown to a human operator. The operator has to
identify the 2D image coordinates of corresponding characteristic points by clicking into
the image. The root link’s pose can then be inferred using a Perspective-n-Point (PnP)

algorithm on the obtained 3D-2D point correspondences. In our implementation, the
EPnP algorithm of Lepetit et al. (2009) is used. Manual Detectors are typically employed
in cases where initialization with a static pose is impossible and automatic detection is
unreliable or requires too much effort to train.

Finally, the third option is the Automatic Detector. A basic version of this class was
developed during the course of the master’s thesis of Rothe (2022). The Automatic Detector

is able to reference multiple Optimizers for which it infers the poses of corresponding
root links. It features a two-stage process that is based on deep learning. First, the
YOLOv7 detector (C.-Y. Wang et al. 2022) is used to estimate a bounding box for each
object. Based on this initial estimate, 6DoF poses are then predicted in a second step by
the AAEs approach of Sundermeyer et al. (2018). Both steps are implemented using code

107

6. Applications

Figure 6.2.: Initialization with the Automatic Detector and subsequent refinement. The
process is visualized by images from left to right. First, objects are detected
using the YOLOv7 detector (C.-Y. Wang et al. 2022). Afterwards, 6DoF poses
are estimated by the AAEs algorithm (Sundermeyer et al. 2018). Finally,
predictions are refined using our M3T approach.

that is publicly available.2,3 To train the respective networks, significant amounts of data
are required. For this, we generate highly-realistic synthetic images via BlenderProc4.
While the generation requires realistic 3D models, synthetic data allows us to avoid the
tedious labeling of real-world images, which, especially for 6DoF pose predictions, is
unfeasible. A visualization of the pipeline is shown in Fig. 6.2.

Once initial estimates for poses and configurations of objects and kinematic structures
were computed, predictions can be refined. In contrast to Detectors, which, for example,
only consider a single color image, Refiners are able to take into account all information
that can be used by the tracker. As explained previously, the process of refinement is
very similar to the Tracking Step in Algorithm 6.4. The main difference compared to
tracking is that the Starting Step from Algorithm 6.3 is executed in each iteration before
correspondences are computed. The reason for this is that no temporal information is
available for refinement. Consequently, it is better to reinitialize in each iteration and
overwrite information from the previous step, which presumably featured a worse pose
prediction. Finally, using the described detectors and our approach for refinement, we
are able to obtain accurate poses to initialize the tracking.

6.2.4. Proprioception

Robotic systems typically provide joint measurements that constrain the relative pose
between individual links. Examples range from highly accurate joint encoders to very
rough predictions from soft or tendon-driven joints. If the error is small, measurements
can improve the accuracy of pose estimation. To incorporate that information, it is
common to formulate a Gaussian error model with a user-defined standard deviation.

2❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴❆✉❣♠❡♥t❡❞❆✉t♦❡♥❝♦❞❡r
3❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❲♦♥❣❑✐♥❨✐✉✴②♦❧♦✈✼
4❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴❇❧❡♥❞❡rPr♦❝

108

https://github.com/DLR-RM/AugmentedAutoencoder
https://github.com/WongKinYiu/yolov7
https://github.com/DLR-RM/BlenderProc

6.2. The M3T Library

However, even for large errors, measurements can be highly valuable. In such cases,
they often constrain a rough area in which predictions are feasible. By constraining the
tracker to this space, one is able to significantly improve robustness. For example, if the
area is smaller than typical pose differences from which the tracker can recover, it is
possible to completely occlude bodies without losing tracking.

In the following, we create a soft constraint formulation that takes into account both
cases. The constraint is typically applied between the tracked body and a parent for
which the pose is updated using joint measurements. A detailed description of this
is provided later. Like in the exact constraint formulation introduced in Section 5.3.3,
soft constraints consider differences between two reference frames A and B, which
are defined for the bodies a and b, respectively. Also, as before, pose differences for
constraint directions are considered by the vector bbbab. It features individual components
of either the rotation vector ArrrB or the translation vector AtttB. It is, therefore, a reduced
version of the extended constraint equation vector Åbbbab that was specified in Eq. (5.19).
Based on the difference vector bbbab, we define the following energy function

Ec(θθθa, θθθb) =





1
2σc

2

(
∥bbbab∥2 − dc

)2 if ∥bbbab∥2 > dc

0 else
, (6.1)

where σc is a standard deviation and dc is a distance threshold. In the energy function,
the distance threshold dc defines a spherical area in which pose differences are not
penalized. Outside this sphere, a quadratic error for the distance to the sphere’s surface
is applied. The magnitude of this error is scaled by the standard deviation σc. For the
special case of dc = 0, the expression corresponds to the log-probability of a normal
distribution. Thanks to this, the function is able to model both accurate measurements
using a Gaussian error model and rough estimates by constraining an approximate area.

The energy of each soft constraint is considered in the combined energy function
Ek(θθθk) in Eq. (5.2). Standard deviations thereby specify the weighting of individual soft
constraints compared to other soft constraints and modalities. For the optimization, we,
again, require first- and second-order derivatives with respect to the combined variation
vector θθθk. They can be computed as follows

∂Ec

∂θθθk

∣∣∣∣
θθθk=000

=
∂Ec

∂θθθa

∂θθθa

∂θθθk
+

∂Ec

∂θθθb

∂θθθb

∂θθθk

∣∣∣∣
θθθk=000

(6.2)

= ggg⊤ca JJJa + ggg⊤cb JJJb, (6.3)

∂2Ec

∂θθθk
2

∣∣∣∣
θθθk=000

≈ ∂θθθa

∂θθθk

⊤ ∂2Ec

∂θθθa
2

∂θθθa

∂θθθk
+

∂θθθb

∂θθθk

⊤ ∂2Ec

∂θθθb
2

∂θθθb

∂θθθk

∣∣∣∣
θθθk=000

(6.4)

≈ JJJ⊤a HHHca JJJa + JJJ⊤b HHHcb JJJb, (6.5)

where second-order derivatives of the pose variations θθθa and θθθb with respect to the
combined variation vector θθθk are neglected. In the derivation, the constraint gradients
gggca and gggcb and the constraint Hessians HHHca and HHHcb are projected using the Jacobian

109

6. Applications

matrices JJJa and JJJb. This is very similar to the expression in Section 5.2.2, where
gradient vectors and Hessian matrices from modalities are projected in the same way.
Consequently, to consider soft constraints, one can simply add the constraint gradients
and Hessians of individual bodies to those of corresponding modalities and consider
them in the summations in Eqs. (4.5) and (4.6).

The required constraint gradient vectors and Hessian matrices of individual bodies
are thereby defined as

ggg⊤ci =
∂Ec

∂θθθi

∣∣∣∣
θθθk=000

=
∂Ec

∂bbbab

∂bbbab

∂θθθi

∣∣∣∣
θθθk=000

, (6.6)

HHHci =
∂2Ec

∂θθθi
2

∣∣∣∣
θθθk=000

≈ ∂bbbab

∂θθθi

⊤ ∂2Ec

∂bbbab
2

∂bbbab

∂θθθi

∣∣∣∣
θθθk=000

, (6.7)

where i ∈ {a, b}. Second-order derivatives of the difference vector bbbab are neglected.
Note that first-order derivatives of bbbab with respect ot the pose variation vectors θθθa and
θθθb were already derived in Section 5.3.3. As before, they can be assembled from rows of
the matrices in Eqs. (5.22) and (5.23). In addition, first- and second-order derivatives of
the energy function can be computed as follows

∂Ec

∂bbbab

∣∣∣∣
θθθk=000

=





1
σc

2

(
1 − dc

∥bbbab∥2

)
bbb⊤ab if ∥bbbab∥2 > dc

000 else
, (6.8)

∂2Ec

∂bbbab
2

∣∣∣∣
θθθk=000

=





1
σc

2

((
1 − dc

∥bbbab∥2

)
III +

dc

∥bbbab∥3
2
bbbabbbb⊤ab

)
if ∥bbbab∥2 > dc

000 else
. (6.9)

Finally, to consider joint measurements, we typically use a two-stage configuration.
First, we define a fixed virtual link at the joint’s location that is updated using a sub-
scriber and joint measurements. It represents the mean estimate from the proprioception.
Starting from this virtual link, we then define the physical link that models the free joint
directions. The two links are then restricted relative to each other using the developed
soft constraint. An illustration of this configuration is shown in Fig. 6.3.

In theory, it would also be possible to directly update one of the soft constraint’s
constraint coordinate frames A or B from joint measurements. However, in that case,
the tracker’s optimization has to continuously adapt to a changing constraint, always
starting from the last configuration. In contrast, using the described method with a
virtual link, joint subscribers update the entire kinematic structure before the tracker
starts its optimization. Consequently, the tracker only has to adjust to small measurement
inaccuracies. Offsets that were previously predicted are thereby preserved. Thanks to
this, tracking becomes more robust. In summary, with the developed soft constraints
and the described configuration, it is possible to incorporate joint measurements of
varying accuracy and reliability. In addition, soft constraints can also be used in other
applications where the motion between links should be restricted.

110

6.3. The Humanoid Robot David

M2
M1 MvTTTJ1

Mv

J1 J2

J2
TTTMv

bbbv2

Link 1 Link 2
Virtual Link

Figure 6.3.: Link configuration to consider joint measurements. The two links are con-
figured with a virtual link in between. While the first transformation MvTTTJ1

is fixed and is updated by a subscriber based on joint measurements, the
second transformation J2

TTTMv allows motion along the joint’s direction and
is updated by the tracker. The tracker is thereby restricted using a soft
constraint on the joint’s difference vector bbbv2.

6.3. The Humanoid Robot David

In this section, we present information about the tracker’s integration into the humanoid
robot David. For this, we first provide a basic description of the robot system. This is
followed by an explanation of the tracker’s configuration. Subsequently, the integration
with an existing grasp state estimation approach that considers contact information is
discussed. Finally, the section is concluded with the presentation of example applications
where the tracker is successfully used.

6.3.1. Robot System

The humanoid robot David (Grebenstein et al. 2011) is a fully compliant system that
features elastic elements such as springs in each joint. Compared to mechanically
stiff robots, this makes the system more robust to impact and safe for human-robot
collaboration. The robot consists of two arms with 7 degrees of freedom mounted on
top of a torso with 3 degrees of freedom (Reinecke et al. 2020). While the left arm
integrates a two-finger gripper, the right arm features a fully actuated five-finger hand
that matches that of a human in size. Thanks to this hand, David is able to use a wide
variety of tools that are made for humans. Also, it can perform dexterous manipulation,
where it controls the pose of an object inside the hand. Together with the two-arm
setup, the robot is highly versatile and is able to perform a wide variety of tasks. Finally,
to perceive its environment, David uses an Azure Kinect RGB-D camera that provides
images at 30 Hz. It is mounted inside the head on top of an elastic neck (Deutschmann
et al. 2022). The neck allows for a highly coupled motion in 6DoF space that facilitates
the reorientation of the camera. An image of the robot is shown in Fig. 6.4.

For joints, different mechanisms are used with large differences in the quality of
sensor measurements. The robot’s fingers are driven by tendons for which motors and

111

6. Applications

Figure 6.4.: The humanoid robot David pictured for the task of unloading a dishwasher.

sensors are placed inside the forearm. Similarly, for the wrist, motors are also in the
forearm, but the kinematic is actuated by a mechanism that uses rods instead of tendons.
Both the wrist and fingers do not provide absolute measurements. Instead, they have
to be initialized in a defined configuration. This, together with inaccuracies, elastic
deformation, and high coupling between sensors leads to relatively rough estimates for
joint angles. For the arms and the torso, the integration of sensors is quite different.
There, absolute joint encoders are directly accommodated in each joint. Consequently,
they provide highly-accurate measurements. Finally, the elastic neck consists of a silicon
structure that is actuated by four motors via tendons. The motion of the neck is thereby
highly coupled. In addition, given the elasticity of the neck together with the weight of
the head, the pose transformation depends not only on tendon measurements but also
on the current configuration of the torso. Currently, machine learning is used to obtain
a rough pose estimate from sensor readings.

Given this setup, it is impossible to compute the exact location of the hand relative
to the camera using only forward kinematics. Instead, to facilitate the grasping and
manipulation of objects, one has to use visual information and continuously predict the
poses of both the hand and manipulated objects. Based on this feedback, one can then
use visual servoing techniques.

112

6.3. The Humanoid Robot David

6.3.2. Tracker Configuration

To use the developed tracking approach on the David robot, individual components from
the M3T library had to be integrated. In general, David uses the Links and Nodes (LN)

middleware to allow independent processes to communicate via topics and services. By
default, LN is not supported by the M3T library. We, therefore, implemented classes
that facilitate this communication. To obtain images from the robot, separate Depth and
Color Cameras were implemented that read images from LN topics and use services to
get intrinsics. Also, a Subscriber was created that reads a user-defined joint measurement
from a topic and updates a referenced Link. Similarly, to communicate results, a Publisher

was created that writes a Link’s pose, as well as other information, to a user-defined
topic. Finally, for the overall tracking process, services were implemented that are used
to start the tracking, stop the tracking, and execute the detection of objects. Also, the
process provides a service that configures the tracker from a YAML file.

To predict the hand’s pose, the created configuration takes into account the entire
kinematic chain from the camera to the palm. Starting with a rigid transformation from
the camera, first, measurements from the neck are included. The high uncertainty of neck
predictions is thereby modeled using a soft constraint with a defined threshold parameter
for the rotation. Subsequently, the relative transformation from the neck to the forearm
is considered using individual joint measurements. The accumulated uncertainty from
joint measurements and the entire mechanical structure is then represented using a
soft constraint with defined rotational and translational thresholds. The so-modeled
kinematic structure constrains the space of possible poses for the forearm. It helps to
significantly reduce the risk of tracking loss. In addition, given that joint measurements
are updated before the optimization, the tracker only has to adjust to small inaccuracies
instead of full frame-to-frame pose differences.

Finally, based on the constrained space and mean configuration, visual information
from individual bodies is included. For the forearm, different region modalities that
model the blue patches and the gray background are used. The two region modalities
of the blue patches share a single color histogram. For the closed kinematic structure
of the wrist, we consider the region information of the three main lever bodies. They
are modeled by a single color histogram. In addition, for both the forearm and levers,
depth modalities are configured. To constrain the relative motion of the wrist, we, again,
consider joint measurements using two soft constraints with defined thresholds. Finally,
for the red palm, a single region and depth modality is used. At last, the pose estimate
of the palm is communicated to external processes using a publisher.

In addition to pose predictions for the palm, our tracker can also be configured to
provide the pose of manipulated objects. Depending on the application and object
characteristics, different detectors and modalities can be configured. For example,
in the dishwasher demonstration that is pictured in Fig. 6.4, mug, plate, and bowl
objects are included. In our configuration, they are considered by region and depth
modalities, as well as a single automatic detector that manages initialization. However,
given the modularity of the algorithm and the tracker’s easy setup via YAML files,

113

6. Applications

it is straightforward to modify configurations in order to support other objects and
applications.

6.3.3. Grasp State Estimation

Once David’s hand touches an object, constraints from contacts provide additional
information. To consider such cues, a grasp state estimation approach was developed by
Pfanne (2022a). Additional information about the method can also be found in preceding
publications (Pfanne and Chalon 2017; Pfanne et al. 2018). To estimate the state, the
approach requires contact points. For the detection, different methods exist. One way
is to use current estimates of joint positions and the object’s pose to compute contact
points on the surface of intersecting geometry. In addition to inferring contacts from the
current state estimate, the method also allows to sense contacts. For this, information
from joint torque measurements and tactile sensors is considered. Because tactile sensors
are not available for David, in our case, only joint torques are used.

The grasp state estimation predicts both joint position errors and the object pose. The
approach thereby ensures that the entire grasp state is consistent. For the estimation, an
EKF is used. It provides a probabilistic formulation that models the current belief of the
grasp state by its mean and covariance. In addition to a motion model, which propagates
the belief over time, the EKF includes a measurement step. It incorporates measurements
in a probabilistic formulation that maximizes the probability of the estimated state. In
case of the discussed grasp state estimation, the main measurements that are considered
are distances between contact points. For valid contacts, the distance should be zero.
Given the general formulation of the EKF, the measurement model can, however, also
incorporate additional information.

To make the grasp state estimation more accurate and robust, we decided to include
predictions from our tracker. In general, the measurement model requires a mean
estimate, as well as a covariance matrix that models uncertainty. For our approach, both
are available. We thereby use the knowledge that the negative inverse variance of a
Gaussian distribution directly corresponds to the Hessian matrix. Given that in our
tracker, most errors are assumed to be normally distributed, the negative inverse Hessian
of the tracked object is provided as an estimate for the covariance matrix. This allows us
to transfer the full probabilistic information from the tracker to the EKF. Finally, we also
implemented a subscriber that updates the tracker’s object pose from the prediction
of the state estimation. Especially for cases with large occlusions, this ensures that the
tracker cannot lose an object as long as the state estimation provides reasonable results.
Consequently, both the tracker and state estimation benefit from the collaboration with
improved accuracy and robustness.

6.3.4. Example Applications

During its development, the M3T library was used in various applications on the robot
David. In the following, we present examples of the two most important scenarios:

114

6.3. The Humanoid Robot David

Figure 6.5.: Example images that show the grasping of objects in the David dishwasher
demonstration. Predictions from the tracker are rendered as an overlay on
top of color images. In the first row, a bowl object is shown, while the second
and third row feature plate and mug objects, respectively. At the beginning
of each sequence, David only has a rough expectation of where dishes are
placed. First, it, therefore, has to detect objects that should be manipulated.
Based on pose estimates for the palm and dish, the robot then approaches
the object. Finally, David grasps the dish and moves it out of the dishwasher.

W/o Tracking W/ Tracking W/o Tracking W/ Tracking

Figure 6.6.: Example images that show pose predictions from the tracker in comparison
to forward kinematics without tracking as rendered overlays.

115

6. Applications

Figure 6.7.: Examples for in-hand manipulation. Pose estimates for the hand and object
are rendered as an overlay on top of color images.

grasping and in-hand manipulation. In the first application, David is used to unload
a dishwasher. For this, it has to detect individual dishes, grasp them, and place them
outside the dishwasher. Example sequences that demonstrate the detection and grasping
of a bowl, plate, and mug object are shown in Fig. 6.5. While for an industrial robot with
perfect forward kinematics and hand-eye calibration, it might be sufficient to use global
6DoF pose estimation and perform the task blindly, for David, this is not an option. As
explained before, the main reason is that because of various design considerations, the
pose of the hand relative to the camera is not perfectly known from joint measurements
alone. To illustrate this, we show examples of pose predictions for the hand with and
without tracking in Fig. 6.6. The images clearly demonstrate that, without tracking,
David would not be able to grasp detected objects.

Finally, for the task of in-hand manipulation, continuous information about the object’s
pose is equally important. The goal of in-hand manipulation is to move an object into
a target pose within the hand using only the robot’s fingers. To achieve this goal, an
impedance-based object controller was implemented on David (Pfanne et al. 2020; Pfanne
2022b). It computes joint forces for the fingers based on the difference between the
current and the desired object pose. The controller thereby uses the previously discussed
approach for grasp state estimation, which utilizes our tracker’s predictions for the
hand and object pose. Examples of objects that were used in in-hand manipulation
experiments are shown in Fig. 6.7. As for grasping, accurate in-hand manipulation is
only possible by closing the perception-action loop, using pose estimates for both the
object and hand.

116

6.4. The MiroSurge System

Figure 6.8.: Typical setup of the MiroSurge system for minimal-invasive robotic surgery
with three MIRO robots, two MICA instruments, and one stereo endoscope.

6.4. The MiroSurge System

The following section discusses the integration of the tracker into the MiroSurge system
for minimal-invasive robotic surgery. For this, first, a basic description of the system
and the used robots is provided. This is followed by an explanation of the tracker’s
configuration. Finally, we present experimental results for the tracking of the MICA

instrument and discuss future use cases.

6.4.1. Robot System

The MiroSurge system features multiple MIRO robots, which are highly-versatile robot
arms with 7 degrees of freedom (Hagn et al. 2008; Hagn et al. 2010). In general, such
robots can be used in various surgical applications, with the most prominent being
minimal-invasive robotic surgery. In a typical setup, two MICA instruments are mounted
on two robot arms, while the third MIRO robot features a stereo endoscope. It provides
images at a framerate of 50 Hz. An example of the setup is shown in Fig. 6.8. In general,
MICA instruments consist of a drive unit and a task-specific tool (Thielmann et al. 2010).
While various tools can be used that provide different functionality, in the following, we
focus on the most prominent version. It includes pliers and a 2 degrees of freedom wrist,
which is mounted at the end of a long and thin shaft. Thanks to the general setup and
its flexible configuration with different tools, the MiroSurge system is highly versatile
and can be used in various scenarios.

Currently, the system is operated by a surgeon who views images from the endoscope
via a 3D display. MIRO robots and MICA instruments are thereby operated using two
haptic input devices. In the future, surgeons should be assisted with virtual fixtures or
automatic functionality. For this, end effector poses relative to the endoscope have to

117

6. Applications

be known. However, mechanical structures along the kinematic chain, which includes
instruments, robots, mounts, and the table, are not perfectly stiff. Also, while the MIRO

robot provides accurate measurements from joint encoders, for the MICA system, the
situation is quite different. Joints for the instrument’s wrist and pliers are connected to
sensors and motors in the drive unit via long tendons and a mechanical tool interface.
Both elastic elongation in tendons and inaccuracies in guides are difficult to model. As
a consequence, estimates for the instrument’s joint angles are imprecise.

Given the described design, it is impossible to compute the exact location of the end
effector using forward kinematics alone. To overcome this problem, like the surgeon, we
want to use visual information to estimate the MICA instrument’s pose and configuration.
Based on those predictions, one can then place virtual fixtures for the surgeon or even
completely automate individual tasks using visual servoing techniques.

6.4.2. Tracker Configuration

In the following, we describe how individual components from the M3T library were
integrated. Like the robot David, the MiroSurge system uses the LN middleware for pro-
cesses to communicate via topics and services. To facilitate this type of communication,
specific implementations were created for required classes. First, a Subscriber was devel-
oped that incorporates user-defined joint measurements and updates a referenced Link

based on this information. Also, for the communication of results, the same Publisher

class was used as for David, which writes the pose and other information of a referenced
Link to a user-defined topic. Finally, a Color Camera was created that allows to obtain
color images from a single camera of the stereo endoscope.

To predict the pose and configuration of the MICA end effector, the entire kinematic
chain from the camera to the pliers is considered. First, the relative transformation
from the endoscope, which is mounted on one of the MIRO robots, to the shaft of
the MICA instrument, which is attached to another MIRO robot, is computed. The
relative pose between the robots on the operating table is assumed to be known. Starting
from the computed transformation, the accumulated uncertainty of the shaft’s pose is
considered using a soft constraint with a defined rotational and translational threshold.
The constraint limits the space of possible poses for the end effector and significantly
helps to reduce the risk of tracking loss.

Starting from the shaft, visual information is considered using region modalities for
each body. Metallic components from the wrist and the shaft thereby share a single
color histogram. Similarly, a single color histogram is also used for the pliers. Also,
the final wrist link, which features a plastic cylinder in addition to metallic parts, is
modeled by two regions. To constrain the motion of the wrist and the pliers relative to
predictions from joint measurements, soft constraints with defined rotational thresholds
are configured. In addition, another soft constraint prohibits the intersection of the
pliers. Finally, a publisher communicates the pose estimate of the MICA end effector’s
final wrist link to external processes. Note that while it is not yet required, publishing
other information, such as the configuration of the pliers, would also be possible.

118

6.4. The MiroSurge System

Figure 6.9.: Example images showing the manipulation of a cylinder in a Lübecker Toolbox

module using the MICA instrument. Both the cylinder and robot end effector
are tracked. Estimates from the tracker are rendered as an overlay on top of
color images.

In addition to predicting the pose of the MICA end effector, the tracker can also be
configured to estimate the poses of external objects. For example, in the training of
surgeons for minimal-invasive surgery, the Lübecker Toolbox is used. It includes exercises
that consider the manipulation of cylinders within different toolbox modules. To provide
automatic capabilities for such scenarios, it is required to track the robot end effector, a
toolbox module, and cylinders. As before, given the modularity of the tracker, this can
be achieved by simply adjusting the configuration in the YAML file.

6.4.3. Example Experiments

While pose estimates from our tracker were not yet integrated into any final application
on the MiroSurge system, it is envisioned to use predictions for the placement of virtual
fixtures and to facilitate automatic capabilities. Virtual fixtures can, for example, limit
the space in which the end effector can be operated, prohibiting unintended movement
and increasing safety. Also, given a target, it could be possible to anticipate desired end
effector poses and support the surgeon in reaching an appropriate robot configuration.
Finally, it might even be possible to automate individual tasks completely.

Based on those goals, experiments were conducted where the integrated tracker
was used to predict the pose and configuration of the MICA end effector, as well as
a cylinder that should be manipulated. The detection of objects was realized using a
manual detector. Example sequences of the experiment are shown in Fig. 6.9. For better
visualization, we do not track the Lübecker Toolbox module. Note, however, that tracking
the object would not be a problem. Given the depicted sequence, it is easy to imagine an
application where manipulation tasks that are typically executed by a surgeon during
training are fully automated. As in the example, our tracker would thereby estimate the

119

6. Applications

pose and configuration of all relevant objects. Predictions could then be used by control
algorithms to facilitate the desired manipulation and close the perception-action loop.

120

7
Conclusion

7.1. Summary

For robotic manipulation, it is often assumed that the world is static and forward
kinematics are perfectly known. This expectation significantly limits both the complexity
of manipulation tasks and the design of robotic hardware. For example, the static world
assumption expects an environment without unpredictable changes, where the motion
of all objects is fully deterministic. For many applications and tasks, this is impossible
to fulfill. Moreover, the requirement of perfect forward kinematics prohibits many
robotic designs, including lightweight structures, elastic elements, or tendon-driven
joints. To overcome such limitations, we believe that it is essential to close the perception-
action loop and adopt more human-like strategies, such as visual servoing. Techniques
thereby typically require continuous visual feedback for relevant objects as well as the
robot’s end effector. To provide such information in the form of estimated poses and
configurations, the presented work developed and studied 3D object tracking techniques
that comply with requirements for advanced robotic manipulation.

After a detailed survey of existing methods, we found that region-based tracking
techniques are particularly well-suited for robotic manipulation. The main reason is
that most robots, as well as many man-made objects, do not provide rich texture, which
is not a problem for region-based methods. Also, they are robust to motion blur and
background clutter. However, most methods feature computationally expensive dense
formulations that contradict our requirements for efficiency and speed. To overcome
such limitations, we developed a sparse region-based approach that is highly efficient.
It uses correspondence lines to predict discrete probability distributions for the object’s
contour location. In addition to efficiency, one of the main advantages compared to dense
methods is that, because of the one-dimensionality of correspondence lines, it is possible
to sample values over probability distributions in reasonable time. This allows us to
better consider uncertainty and estimate accurate first- and second-order derivatives
for fast-converging Newton optimization. Also, to take into account the segmentation’s
local and global uncertainty, we proposed novel smoothed step functions and provided a
detailed theoretical analysis. Finally, based on individual correspondence lines, the joint
probability is maximized using Newton optimization with Tikhonov regularization and
a sparse representation of the object geometry. In multiple experiments, we found that
the resulting approach is not only significantly more efficient than previous methods
but also that it achieves superior tracking results.

121

7. Conclusion

In addition to region, one other source of information that can be used for the tracking
of textureless objects is depth. Also, if it is available, texture provides highly-valuable
data that constrains an object’s pose. Furthermore, many objects do not have a uniform
surface. Instead, they feature multiple distinct materials and colors, which results
in additional region information. Based on the observation that those sources are
highly complementary, we developed a multi-modality tracking approach. It features a
probabilistic formulation that integrates an ICP-based depth modality, a keypoint-based
texture modality, and an extension of our region approach to multi-region tracking. For
the method, only a textureless mesh of the object is required. This is highly advantageous
for its usability. Also, the approach is able to consider multiple cameras. In an extensive
evaluation, we found that the resulting algorithm outperforms all existing methods with
respect to efficiency and speed. Furthermore, even for purely geometry-based tracking,
which only uses region and depth, our approach achieves state-of-the-art results. The
conducted experiments also provide new insights into deep learning-based methods.
They show that such approaches do not yet surpass classical techniques, even with a
textured 3D model, significant computational resources, and vast training data. Finally,
we also demonstrated that our algorithm is able to provide better results than global
6DoF pose estimation methods at a fraction of the computational cost. This highlights
the general value of 3D object tracking. Also, to improve results for global 6DoF pose
estimation, our approach can be used for highly-efficient pose refinement.

In general, robots consist of multiple links that are connected by joints. Also, many
real-world objects, such as furniture and appliances, combine individual bodies. In
order to successfully track such objects, it is highly important to consider kinematic
information. We, therefore, developed a novel framework that allows the extension of
existing 6DoF tracking algorithms to multi-body objects. The approach provides a single
formulation that projects the six degrees of freedom of individual bodies to a minimal
parameterization. In addition, it facilitates the integration of pose constraints. Given the
efficiency of projection and the flexibility of constraints, the framework combines the best
of two worlds. For the developed constraints, we were able to prove that they enforce
an exact kinematic solution for which pose differences converge in a single iteration. To
the best of our knowledge, it is the first formulation that allows to accurately model
closed kinematic structures. Finally, with the proposed framework, we extended the
previously developed multi-modality tracking approach to multi-body tracking. Also,
for the evaluation of the algorithm, we created the RTB dataset. It is a highly-realistic
synthetic dataset that features various robots and a large number of sequences. Given
the dataset, we were able to conduct multiple experiments that demonstrate the excellent
performance of our framework and multi-body tracker.

To mirror the flexibility of our approach in the algorithm’s implementation, we
developed the multi-body, multi-modality, and multi-camera tracking library M3T, which
we made available as open-source software1. It features a highly-modular architecture
that allows the flexible combination of various components, such as cameras, links,

1❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❉▲❘✲❘▼✴✸❉❖❜❥❡❝t❚r❛❝❦✐♥❣

122

https://github.com/DLR-RM/3DObjectTracking

7.2. Future Work

constraints, modalities, viewers, detectors, refiners, publishers, and subscribers. For
automatic initialization, the library integrates a deep learning-based global detection
and pose estimation algorithm. Also, we developed an approach that allows the
incorporation of joint measurements with varying accuracy and reliability. It combines
a Gaussian error model and inequality conditions that ensure that the error is only
considered outside a user-defined interval.

Finally, for the real-world validation of our approach, we provided two example
applications. In the first, M3T was integrated into the humanoid robot David, where it
is used to predict the poses of manipulated objects and the robot’s palm. To improve
robustness, the algorithm tracks the closed kinematic structure of the palm, forearm, and
wrist. Also, it integrates joint measurements of varying quality. Moreover, the tracker
provides pose and uncertainty predictions to a grasp state estimation approach that
takes into account finger contacts. The resulting system was successfully employed in
multiple demonstrations, facilitating grasping and in-hand manipulation. In the second
application, M3T was integrated into the MiroSurge system. It is used to predict the
poses of manipulated objects and the pose and configuration of the MICA instrument.
Like for David, joint measurements are employed to constrain the pose and configuration
of the end effector. The resulting system showed great promise for the placement of
virtual fixtures and the facilitation of automatic capabilities.

In summary, in this thesis, we developed a highly-modular 3D object tracking ap-
proach that complies with requirements for robotic manipulation. It outperforms existing
methods on multiple datasets, both with respect to quality and efficiency. The overall
approach was implemented in the open-source library M3T, which can be configured
for numerous applications. The library not only supports a wide range of kinematic
structures, object characteristics, and camera setups but also allows for an easy extension
with new capabilities. Given those properties and the response to already published
code1, we are confident that our approach will find many applications in the real world.
In many cases, it will thereby help to close the perception-action loop and allow robots
to adopt more human-like strategies for object manipulation.

7.2. Future Work

While we developed a reliable and versatile 3D object tracking approach for robotic
manipulation, multiple directions for improvements and extensions remain. For the
developed approach, it could, for example, be useful to consider information from
non-static cameras that are connected to links. Also, for some objects and scenarios,
it might be advantageous to incorporate additional information. For example, it is
possible to develop new modalities based on techniques such as direct optimization
or edge features. Similarly, it might also be possible to improve existing modalities.
For the region modality, one could, for example, replace global color histograms with
more descriptive region statistics. Furthermore, to improve the tracking in cases of large
frame-to-frame pose differences, a motion model could be integrated. However, while

123

7. Conclusion

we believe that those smaller improvements are worth pursuing, in our opinion, the
following main research directions are most promising for the future:

▲♦♥❣✲t❡r♠ ❈♦♥s✐st❡♥❝② Because of the simpler task, 3D object tracking is more efficient
and provides more consistent results than global 6DoF pose estimation. However,
given that only local information is considered, even the best 3D object tracker
will lose an object if it moves outside the image or is fully occluded. To recover
from such cases, global 6DoF pose estimation is required. In a typical scenario,
the human operator thereby detects tracking loss, triggers a new global estimation,
assesses if the pose is valid, and reinitializes the tracker. Given the level of manual
intervention, this process is far from optimal. Nevertheless, even if it is replicated in
software, we believe that it is not perfect. The main reason is that one always needs
to decide on a single prediction, even in cases of very little information. To mitigate
this problem, a possible solution is the integration of global pose estimation with
multi-hypothesis tracking that continuously spawns new estimates, evaluates
existing ones, and destroys unlikely or converging hypotheses. As a result, in
case of uncertainty, the algorithm would be able to consider multiple options until
more information is available. In addition to automatic reinitialization, this has
the potential to further improve long-term consistency.

❈♦♥t❛❝t ■♥❢♦r♠❛t✐♦♥ In the real world, objects cannot intersect. In addition to visual
information, this basic principle further constrains an object’s pose. For example,
when grasping an object, the space of possible locations is significantly reduced
by the robot’s hand or gripper. In this thesis, we already showed the potential of
contact information on the robot David, where we integrated tracking results into
an existing grasp state estimation approach that is based on geometry. However,
while both algorithms exchange final predictions, the optimization is conducted
independently. To further improve results, the tracker needs to consider contact
information in the same way as visual measurements. We, therefore, believe that a
general approach is needed that prevents object interpenetration and that is deeply
integrated into the tracker. In addition, like the grasp state estimation of Pfanne
(2022a), the approach should also enforce known object contacts, which can be
estimated using force feedback sensors or tactile skin. In summary, this could
create a single approach that allows robots, like humans, to consider both visual
and tactile feedback.

❉❛t❛✲❞r✐✈❡♥ ❚❡❝❤♥✐q✉❡s In most applications, real-world data with accurate pose anno-
tations is not available. Nevertheless, with procedural rendering pipelines, it is
possible to create highly-realistic synthetic datasets in reasonable time. While it
can still be tedious to obtain accurate object models, create sensible trajectories,
have realistic camera data, and define reasonable object interactions, for some
applications, it might be worth the effort. In the simplest scenario, such data could
be used for the automatic tuning of existing methods. However, in most cases, it
would probably be utilized for the training of deep neural networks. Given the

124

7.2. Future Work

expressive power of such methods, we believe that, in the long term, they will
outperform conventional algorithms with respect to tracking quality. However,
with high computational cost, it is not clear if they can also compete regarding
efficiency. In this respect, it might be important to consider where the deployment
of neural networks is most beneficial. For example, current render-and-compare
approaches predict pose updates directly from image differences. Given that
changes between images are mapped by the object’s geometry and pose, the net-
work has to implicitly encode the entire geometry, which is probably inefficient.
Finally, we want to highlight the big advantage of Newton optimization. It not
only provides fast convergence but is also highly modular. Instead of creating a
fully deep learning-based algorithm that only uses neural networks, we believe
that it might be advantageous to combine predictions from deep neural networks
with existing formulations to predict gradient vectors and Hessian matrices. The
pose could then be optimized using conventional Newton optimization. As a
consequence, the advantage of modularity would be preserved, and principles
presented in this work could still be used.

125

Appendices

A. Extended Probabilistic Model

In the following, we establish the relation between the smoothed step functions proposed
in Section 3.2.4 and an extended probabilistic model with m ∈ {mf, mb, mn}. For the
derivation, we start from an extended definition of the pixel-wise posterior probability

p(mi | yyy) =
p(yyy | mi)p(mi)

∑j∈{f,b,n} p(yyy | mj)p(mj)
, i ∈ {f, b, n}, (A.1)

where, in contrast to Eq. (3.4), a noise model mn is considered in addition to the
foreground and background models mf and mb. Using the parameter αh ∈ [0, 0.5], the
model probabilities are defined as

p(mf) = p(mb) = αh, (A.2)

p(mn) = 1 − 2αh. (A.3)

For the conditional color probability of the noise model, the conditional probabilities
with respect to the foreground and background are simply combined as follows

p(yyy | mn) =
1
2

(
p(yyy | mf) + p(yyy | mb)

)
. (A.4)

Introducing the definitions from Eqs. (A.2) to (A.4) into Eq. (A.1) and performing
some simplifications results in the following pixel-wise posterior probabilities for the
foreground and background model

p(mi | yyy) =
2αh p(yyy | mi)

p(yyy | mf) + p(yyy | mb)
, i ∈ {f, b}, (A.5)

and the following constant pixel-wise posterior probability for the noise model

p(mn | yyy) = p(mn) = 1 − 2αh. (A.6)

Similar to Eq. (3.6), the extended posterior probability can be calculated as follows

p(d | r, yyy) ∝ ∑
i∈{f,b,n}

p(r | d, mi)p(mi | yyy). (A.7)

To abbreviate some of the terms in Eq. (A.5), the following definition for pixel-wise
posterior probabilities from Eq. (3.5) is introduced

pi(r) =
p(yyy | mi)

p(yyy | mf) + p(yyy | mb)
, i ∈ {f, b}. (A.8)

127

Appendices

Together with this abbreviation, we use the derived pixel-wise posterior probabilities
from Eqs. (A.5) and (A.6) to write the posterior probability in Eq. (A.7) as follows

p(d | r, yyy) ∝ 2αhhf(r − d)pf(r) + 2αhhb(r − d)pb(r) +
1
2
(1 − 2αh), (A.9)

where a constant probability p(r | d, mn) =
1
2 was adopted to model the indifference of

the line coordinate r given the noise model mn, and where the smoothed step functions
hf and hb model the line coordinate probabilities p(r | d, mf) and p(r | d, mb). Using a
general definition of symmetric smoothed step functions

hf(x) =
1
2
− f (x), (A.10)

hb(x) =
1
2
+ f (x), (A.11)

and the identity
pf(r) + pb(r) = 1, (A.12)

we extend Eq. (A.9) as follows

p(d | r, yyy) ∝ αh pf(r)− 2αh f (r − d)pf(r) + αh pb(r) + 2αh f (r − d)pb(r)

+
1
2

(
pf(r) + pb(r)

)
− αh

(
pf(r) + pb(r)

)
.

(A.13)

This can then be simplified to

p(d | r, yyy) ∝

(
1
2
− 2αh f (r − d)

)
pf(r) +

(
1
2
+ 2αh f (r − d)

)
pb(r). (A.14)

Finally, after introducing the slope function f (x) = 1
2 tanh

(
x

2sh

)
, we obtain

p(d | r, yyy) ∝

(
1
2
− αh tanh

(
r − d

2sh

))
pf(r) +

(
1
2
+ αh tanh

(
r − d

2sh

))
pb(r), (A.15)

which is the same probability function as the one derived in Section 3.2.4. Note, however,
that instead of a noise model mn, in Section 3.2.4 the smoothed step functions hf and hb

from Eqs. (3.14) and (3.15) were used to take into account a defined constant uncertainty.
In conclusion, this shows that introducing a noise model mn and using the foreground
and background probabilities p(mf) = p(mb) = αh is equivalent to the incorporation of
a simple amplitude parameter αh in the smoothed step functions.

B. Derivative of Log-Posterior

To analyze the posterior probability distribution, it is desirable to have a closed-form
solution that allows an easy interpretation. In the following, we will thus derive a
general formulation for the first-order derivative of the log-posterior, which will then

128

B. Derivative of Log-Posterior

be used in Appendix C to calculate the posterior probability distribution for specific
parameter configurations. For the derivation, we assume a contour at the line center
and perfect step functions for the pixel-wise posterior probabilities defined by

pf(r) =
1
2
− 1

2
sgn(r), (B.1)

pb(r) =
1
2
+

1
2

sgn(r). (B.2)

Also, we consider infinitesimally small pixels and write the posterior probability distri-
bution from Eq. (3.16) in continuous form for an infinite correspondence line

p(d | ω, lll) ∝
∞

∏
r=−∞

(
hf(r − d)pf(r) + hb(r − d)pb(r)

)dr. (B.3)

Starting from those assumptions, we first convert the product integral to the classical
Riemann integral

p(d | ω, lll) ∝ exp
(∫ ∞

r=−∞
ln

(
hf(r − d)pf(r) + hb(r − d)pb(r)

)
dr

)
. (B.4)

The integral is then split at r = 0, and the pixel-wise posterior probabilities from
Eqs. (B.1) and (B.2) are introduced

p(d | ω, lll) ∝ exp
(∫ 0

r=−∞
ln

(
hf(r − d)

)
dr +

∫ ∞

r=0
ln

(
hb(r − d)

)
dr

)
. (B.5)

Finally, we substitute x = r − d to write

p(d | ω, lll) ∝ exp
(∫ −d

x=−∞
ln

(
hf(x)

)
dx +

∫ ∞

x=−d
ln

(
hb(x)

)
dx

)
. (B.6)

The first-order derivative with respect to d of the log-posterior can now be calculated
using Leibniz’s rule for differentiation under the integral

∂ ln
(

p(d | ω, lll)
)

∂d
= − ln

(
hf(−d)

)
+ ln

(
hb(−d)

)
. (B.7)

We then adopt the definitions of the smoothed step functions from Eqs. (3.14) and (3.15)
to write

∂ ln
(

p(d | ω, lll)
)

∂d
= − ln

(
1
2
− αh tanh

(−d

2sh

))
+ ln

(
1
2
+ αh tanh

(−d

2sh

))
. (B.8)

Finally, using the inverse hyperbolic tangent

2 tanh−1(x) = − ln
(

1
2
− x

2

)
+ ln

(
1
2
+

x

2

)
, (B.9)

one is able to write the following closed-form expression for the first-order derivative of
the log-posterior

∂ ln
(

p(d | ω, lll)
)

∂d
= −2 tanh−1

(
2αh tanh

(
d

2sh

))
. (B.10)

129

Appendices

C. Closed-form Posteriors

Building on Appendix B, we derive closed-form posterior probability distributions for
the two edge cases with either the amplitude parameter αh = 1

2 or the slope parameter
sh → 0. We thereby start from the closed-form first-order derivative of the log-posterior
that is given in Eq. (B.10). The full distribution can then be calculated using the following
integration with a subsequent normalization

p(d | ω, lll) ∝ exp
(∫ ∂ ln

(
p(d | ω, lll)

)

∂d
dd

)
. (C.1)

For the case with an amplitude parameter αh = 1
2 , the first-order derivative in Eq. (B.10)

simplifies to
∂ ln

(
p(d | ω, lll)

)

∂d
= − d

sh
. (C.2)

Introducing this term in Eq. (C.1) and calculating the integral leads to the following
expression for the posterior probability distribution

p(d | ω, lll) ∝ exp
(
− d2

2sh

)
. (C.3)

Because the posterior probability distribution has to be a valid PDF that integrates to
one, there is only one possible solution. Knowing that, except for a constant scaling
factor, the function looks like a Gaussian, the final solution can only be the Gaussian
distribution itself

p(d | ω, lll) =
1√

2πsh
exp

(
− d2

2sh

)
. (C.4)

For configurations with a slope parameter sh → 0, the first-order derivative in
Eq. (B.10) simplifies to

∂ ln
(

p(d | ω, lll)
)

∂d
= −2 tanh−1(2αh) sgn(d). (C.5)

Introducing this term in Eq. (C.1) and calculating the integral leads to the following
closed-form posterior probability distribution

p(d | ω, lll) ∝ exp
(
− 2 tanh−1(2αh)|d|

)
. (C.6)

Similar to the previous derivation, we know that, with the exception of a constant
scaling factor, the function is equal to a Laplace distribution, which again is a valid PDF.
Introducing the scale parameter b, the final solution can therefore only be the following
Laplace distribution

p(d | ω, lll) =
1
2b

exp
(
− |d|

b

)
, b =

1

2 tanh−1(2αh)
. (C.7)

130

D. Inverse-Variance Weighting

D. Inverse-Variance Weighting

In the following, we demonstrate that the derivatives for the local optimization that were
defined in Section 3.3.5 can be derived using inverse-variance weighting and a constant
curvature of 1/αs for the second-order derivative. Instead of the joint posterior probability
defined in Eq. (3.32), we start with an energy function that combines probabilities from
individual correspondence lines using inverse-variance weighting

E(θθθ) =
nc

∑
i=1

1
σi

2 ln
(

p(dsi(θθθ) | ωsi, lllsi)
)
. (D.1)

Based on this function, the gradient vector and the Hessian matrix are calculated as the
first- and second-order derivatives with respect to θθθ

ggg⊤ =
nc

∑
i=1

1
σi

2

∂ ln
(

p(dsi | ωsi, lllsi)
)

∂dsi

∂dsi

∂θθθ

∣∣∣∣
θθθ=000

, (D.2)

HHH ≈
nc

∑
i=1

1
σi

2

∂2 ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
2

(
∂dsi

∂θθθ

)⊤(∂dsi

∂θθθ

) ∣∣∣∣
θθθ=000

. (D.3)

For the first-order derivative of the scaled contour distance dsi, the derivations from
Eqs. (3.39) and (3.40) can be used. In contrast to Eq. (3.43), we use the definition of
finite differences without a weighting term to calculate the first-order derivative of the
log-posterior

∂ ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
≈ ln

(
p(d+si | ωsi, lllsi)

p(d−si | ωsi, lllsi)

)
, (D.4)

where d−si and d+si are again the two discrete contour distances that are closest to dsi(θθθ).
Because the variance is already considered in the energy function, we simply define a
constant curvature for the second-order derivative of the log-posterior

∂2 ln
(

p(dsi | ωsi, lllsi)
)

∂dsi
2 ≈ 1

αs
. (D.5)

Knowing that constant scaling terms do not affect the Newton optimization, both the
gradient vector and the Hessian matrix can be multiplied with the step size αs. Together
with the inverse variance 1/σi

2 that is already present in Eqs. (D.2) and (D.3), this results
in exactly the same expressions for the gradient vector and the Hessian matrix as defined
in Section 3.3.5. In conclusion, the derivation therefore shows that weighting the first-
order derivative in Eq. (3.43) with a factor αs/σi

2 is the same as using inverse-variance
weighting and a constant curvature of 1/αs for the second-order derivative.

E. Derivatives of Constraint Equations

In the following, we derive the first-order derivatives of the extended constraint equa-
tion ÅbÅbÅb(θθθa, θθθb) with respect to θθθa and θθθb. We thereby consider the rotational constraint

131

Appendices

ArrrB(θθθa, θθθb) and the translational constraint AtttB(θθθa, θθθb) separately. Constraint equations
are introduced in Section 5.3.3.

E.1. Rotational Constraint

Starting from Eq. (5.18), the variated rotation between the coordinate frames A and B
can be expressed using the exponential map as follows

exp
(
[ArrrB(θθθra, θθθrb)]×

)
= exp

(
[−ARRRMa θθθra]×

)
exp

(
[ARRRMb

θθθrb]×
)

exp
(
[ArrrB]×

)
, (E.1)

The vectors θθθra and θθθrb are the rotational components of the pose variation vectors θθθa

and θθθb. The constant rotation vector ArrrB is evaluated at θθθra = θθθrb = 000. Note that for the
calculation of Eq. (E.1), the following relation was used

RRR exp
(
[xxx]×

)
RRR−1 = exp

(
[RRRxxx]×

)
. (E.2)

Knowing that we only need to calculate the derivative with respect to either θθθra or θθθrb

while the other is zero, we reduce Eq. (E.1) to take a single variation vector θθθ and write

exp
(
[ArrrB(θθθ)]×

)
= exp

(
[θθθ]×

)
exp

(
[ArrrB]×

)
. (E.3)

For the vector θθθ, one can then simply substitute one of the two rotated variation vectors
θθθ = −ARRRMa θθθra or θθθ = ARRRMb

θθθrb.
While the relation in Eq. (E.3) looks relatively simple, it is not trivial to calculate

the rotation vector ArrrB(θθθ) from θθθ and ArrrB. Fortunately, a closed-form solution exists
that dates back to Olinde Rodrigues. For this, each rotation vector has to be split
into an axis and an angle. Using the angles γ, θ, α ∈ R and the axes nnn, vvv, eee ∈ R3 with
∥nnn∥2 = ∥vvv∥2 = ∥eee∥2 = 1, we define ArrrB(θθθ) = γnnn, θθθ = θvvv, and ArrrB = αeee. Based on those
values, one can then define the following equations

cos
(

γ

2

)
= cos

(
θ

2

)
cos

(
α

2

)
− sin

(
θ

2

)
sin

(
α

2

)
vvv⊤eee, (E.4)

sin
(

γ

2

)
nnn = sin

(
θ

2

)
cos

(
α

2

)
vvv + cos

(
θ

2

)
sin

(
α

2

)
eee + sin

(
θ

2

)
sin

(
α

2

)
vvv × eee. (E.5)

For a detailed derivation and geometrical explanation of this relation, we point interested
readers to Altmann (2005). To express the required vector ArrrB(θθθ), we define two variables
x = cos(γ

2) and yyy = sin(γ
2)nnn. They are the right-hand sides of Eqs. (E.4) and (E.5). Based

on their reformulation γ = 2 cos−1(x) and nnn = sin(γ
2)

−1yyy, one can write

ArrrB(θθθ) = γnnn =
2 cos−1(x)

sin(cos−1(x))
yyy =

2 cos−1(x)√
1 − x2

yyy. (E.6)

Finally, starting from this definition, we calculate the first-order derivative with respect
to the scalar parameter θ, which is the magnitude of the variation vector θθθ

∂ArrrB

∂θ
=

−2√
1−x2

√
1 − x2 − 2 cos−1(x) −x√

1−x2

1 − x2
∂x

∂θ
yyy +

2 cos−1(x)√
1 − x2

∂yyy

∂θ
. (E.7)

132

E. Derivatives of Constraint Equations

Also, based on the right-hand sides of Eqs. (E.4) and (E.5), we calculate

∂x

∂θ
= −sin

(
θ
2

)
cos

(
α
2

)

2
− cos

(
θ
2

)
sin

(
α
2

)

2
vvv⊤eee, (E.8)

∂yyy

∂θ
=

cos
(

θ
2

)
cos

(
α
2

)

2
vvv − sin

(
θ
2

)
sin

(
α
2

)

2
eee +

cos
(

θ
2

)
sin

(
α
2

)

2
vvv × eee. (E.9)

By evaluating the derivatives at θ = 0, for which, according to Eqs. (E.4) and (E.5),
x = cos(α

2) and yyy = sin(α
2)eee, the following equations are obtained

∂ArrrB

∂θ

∣∣∣∣
θ=0

=
−2 + α

cos(α
2)

sin(α
2)

sin
(

α
2

)2 sin
(

α

2

)
eee

∂x

∂θ

∣∣∣∣
θ=0

+
α

sin
(

α
2

) ∂yyy

∂θ

∣∣∣∣
θ=0

(E.10)

=
−2 + α cot

(
α
2

)

sin
(

α
2

) eee
∂x

∂θ

∣∣∣∣
θ=0

+
α

sin
(

α
2

) ∂yyy

∂θ

∣∣∣∣
θ=0

, (E.11)

∂x

∂θ

∣∣∣∣
θ=0

= −1
2

sin
(

α

2

)
vvv⊤eee, (E.12)

∂yyy

∂θ

∣∣∣∣
θ=0

=
1
2

cos
(

α

2

)
vvv +

1
2

sin
(

α

2

)
vvv × eee. (E.13)

Introducing Eqs. (E.12) and (E.13) in Eq. (E.11) and extracting the pose variation’s
rotation axis vvv results in the final expression for the first-order derivative

∂ArrrB

∂θ

∣∣∣∣
θ=0

=

(
1 − α

2
cot

(
α

2

))
eeevvv⊤eee +

α

2
cot

(
α

2

)
vvv +

α

2
vvv × eee, (E.14)

=

(
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤

)
vvv. (E.15)

Equation (E.15) shows that the derivative with respect to the rotation angle θ consists
of a linear combination of column vectors with the rotation axis vvv. For the rotation vector
θθθ = θvvv, the rotation axis vvv projects the scalar angle θ in a similar fashion. Knowing that

∂ArrrB

∂θ
=

∂ArrrB

∂θθθ

∂θθθ

∂θ
=

∂ArrrB

∂θθθ
vvv, (E.16)

we are finally able to extract the first-order derivative with respect to the rotation vector
θθθ from Eq. (E.15) and write

∂ArrrB

∂θθθ

∣∣∣∣
θθθ=000

=
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤. (E.17)

For the originally required derivatives of the rotational constraint ArrrB(θθθa, θθθb) with
respect to the rotational pose variation vectors θθθra and θθθrb, one simply substitutes
θθθ = −ARRRMa θθθra and θθθ = ARRRMb

θθθrb. Considering the partial derivatives ∂θθθ
∂θθθra

= −ARRRMa and

133

Appendices

∂θθθ
∂θθθrb

= ARRRMb
, we then obtain the following final results for the first-order derivatives of

the rotational constraint

∂ArrrB

∂θθθa

∣∣∣∣
θθθk=000

=
[
−CCC ARRRMa 000

]
, (E.18)

∂ArrrB

∂θθθb

∣∣∣∣
θθθk=000

=
[
CCC ARRRMb

000
]

. (E.19)

The matrix CCC, which we call variation matrix, is thereby defined as

CCC =
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤. (E.20)

It is the partial derivative of ∂ArrrB
∂θθθ

∣∣
θθθ=000 and is computed using the angle and axis of the

current rotation vector ArrrB = αeee. The variation matrix CCC describes how the rotation
vector ArrrB changes for the variation with a subsequent infinitesimal rotation. Properties
of the matrix are derived in Appendix F.

E.2. Translational Constraint

For the translational constraint, we again start from Eq. (5.18) to formulate the variated
translation between the coordinate frames A and B. Using the knowledge that derivatives
are either calculated with respect to θθθa or θθθb, one can write

AtttB(θθθa) = ARRRMa

(
RRR(−θθθra)(MatttB − θθθta)

)
+ AtttMa , (E.21)

AtttB(θθθb) = ARRRMb

(
RRR(θθθrb) Mb

tttB + θθθtb
)
+ AtttMb

, (E.22)

where the vectors θθθta and θθθtb are the translational components of the variation vectors θθθa

and θθθb.
Using the Taylor series expansion of the exponential map and the knowledge that

[xxx]×yyy = −[yyy]×xxx, we define the following general relation

RRR(θθθ)ttt = exp(θθθ)ttt (E.23)

=
(
III + [θθθ]× +O(θθθ2)

)
ttt (E.24)

= ttt − [ttt]×θθθ +O(θθθ2)ttt, (E.25)

where the expression O(θθθ2) models higher-order terms. Using this relation in Eqs. (E.21)
and (E.22) and neglecting higher-order terms, it is straightforward to calculate the final
results for the first-order derivatives of the translational constraint

∂AtttB

∂θθθa

∣∣∣∣
θθθk=000

=
[

ARRRMa [MatttB]× −ARRRMa

]
, (E.26)

∂AtttB

∂θθθb

∣∣∣∣
θθθk=000

=
[
−ARRRMb

[Mb
tttB]× ARRRMb

]
. (E.27)

134

F. Properties of the Variation Matrix

F. Properties of the Variation Matrix

The variation matrix CCC, which was derived in Appendix E.1, describes how the rotation
vector ArrrB changes with the variation of a subsequent infinitesimal rotation. It is computed
according to Eq. (E.20) and depends on the rotational difference between the coordinate
frames A and B. In the following, we investigate its relation to the rotation matrix ARRRB

and the rotation vector ArrrB. For brevity, we thereby drop the subscripts A and B in the
notation and simply write RRR and rrr.

Given the rotation vector rrr = αeee with the angle α and the normalized axis eee, the
rotation matrix can be computed using the Rodrigues formula

RRR = III + sin(α)[eee]× + 2 sin
(

α

2

)2

[eee]2×. (F.1)

With the knowledge that [eee]×eee = 000, we are able to calculate the following product for
the rotation and variation matrix

RRRCCC =
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤ +

α

2
sin(α) cot

(
α

2

)
[eee]×

− α

2
sin(α)[eee]2× + α sin

(
α

2

)2

cot
(

α

2

)
[eee]2× − α sin

(
α

2

)2

[eee]3×.

(F.2)

Using the relations

α

2
sin(α) cot

(
α

2

)
= α − α sin

(
α

2

)2

, (F.3)

α sin
(

α

2

)2

cot
(

α

2

)
=

α

2
sin(α), (F.4)

[eee]3× = −[eee]×, (F.5)

one can simplify Eq. (F.2) and write

RRRCCC =
α

2
cot

(
α

2

)
III +

α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤ (F.6)

= CCC⊤, (F.7)

which shows that the product of the rotation and variation matrix is simply the trans-
posed variation matrix. Looking at Eqs. (E.4) and (E.5), one notices that changing
the order of the rotations rrr and θθθ only changes the sign in the cross product term in
Eq. (E.5). Deriving the corresponding variation matrix then leads to the same expression
as in Eq. (F.6), which is simply the transposed of the original variation matrix CCC. The
transposed variation matrix CCC⊤ therefore describes how the rotation vector rrr changes
with the variation of a preceding infinitesimal rotation. Based on this interpretation,

135

Appendices

Eq. (F.7) shows that rotating the variation matrix CCC with the rotation matrix RRR changes
the order in which the infinitesimal rotation θθθ is applied to the rotation rrr.

Similarly, transposing the relation in Eq. (F.7) and using the knowledge that for valid
rotation matrices RRR⊤ = RRR−1, one is able to write

RRRCCC = CCC⊤ ⇔ CCC⊤RRR⊤ = CCC ⇔ CCC⊤ = CCCRRR. (F.8)

This shows that RRR and CCC are commutative. Hence, applying the rotation matrix RRR on
either side of the variation matrix CCC changes the location of the infinitesimal rotation
from a subsequent to a preceding rotation. Finally, based on the relations in Eq. (F.8), we
are able to express the rotation matrix with respect to the variation matrix as follows

RRR = CCC⊤CCC−1 = CCC−1CCC⊤. (F.9)

The equation shows that because CCC and CCC⊤ consider the variation with respect to the
frames before and after the rotation, the matrix RRR is implicitly encoded in the variation
matrix CCC. Also, Eq. (F.9) shows that the variation matrix is normal, with CCCCCC⊤ = CCC⊤CCC.
However, at the same time, experiments show that, with CCC⊤ ̸= CCC and CCC⊤ ̸= CCC−1, it is
neither symmetric nor orthogonal.

Finally, we also want to analyze how the rotation vector rrr is connected to the variation
matrix CCC. For this, the product CCCrrr is computed. With the relations [eee]×eee = 000 and eee⊤eee = 1,
we calculate

CCCrrr =

(
α

2
cot

(
α

2

)
III − α

2
[eee]× +

(
1 − α

2
cot

(
α

2

))
eeeeee⊤

)
αeee (F.10)

=

(
α

2
cot

(
α

2

)
+ 1 − α

2
cot

(
α

2

))
αeee, (F.11)

= rrr. (F.12)

Given the knowledge that the rotation vector rrr is the eigenvector of the rotation matrix
RRR for the eigenvalue λ = 1, one is able to define the relation rrr = RRRrrr. Together with the
results from Eq. (F.7), we can therefore show that

CCCrrr = rrr ⇔ CCCRRRrrr = rrr ⇔ CCC⊤rrr = rrr. (F.13)

This demonstrates that the rotation vector rrr is an eigenvector of both the original and
transposed variation matrix CCC. Hence, it is an eigenvector of both the variation matrix
for a subsequent and preceding infinitesimal rotation.

G. Constraint Convergence

Given the developed constraint equations and first-order derivatives, in the following,
we analyze how fast the Newton method converges to a compliant kinematic result. For
this, two bodies with an initial rotational or translational difference of ARRRB or AtttB are
considered. Based on this initial error, the relative pose update for a full rotational or
translational constraint is analyzed. Experiments, which demonstrate that the obtained
mathematical results also hold for more general cases, are provided in Section 5.5.4.

136

G. Constraint Convergence

G.1. Rotational Constraint

Without loss of generality, we assume that constraint coordinate frames are equal to
model frames with A = Ma and B = Mb. Also, the translation of both bodies is fixed
and the combined variation θθθ⊤k =

[
θθθ⊤ra θθθ⊤rb

]
only considers rotation. Based on those

assumptions, the constraint equation and constraint Jacobian can be written as

bbbk = ArrrB, (G.1)

BBBk =
[
−CCC CCC ARRRB

]
. (G.2)

Introducing both statements in Eq. (5.8) and given some arbitrary Hessian matrices and
gradient vectors for body a and b, we obtain the following linear equation for a single
Newton step 


−HHHa 000 CCC⊤

000 −HHHb −ARRR⊤
B CCC⊤

CCC −CCC ARRRB 000






θθθra

θθθrb

λλλ


 =




ggga

gggb

ArrrB


 . (G.3)

Based on the first two lines of the equation, one can directly write

θθθra = HHH−1
a (CCC⊤λλλ − ggga), (G.4)

θθθrb = HHH−1
b (−ARRR⊤

B CCC⊤λλλ − gggb), (G.5)

where the only unknown is λλλ. Subsequently, introducing Eqs. (G.4) and (G.5) in the last
line of Eq. (G.3) leads to the following expression

CCC(XXX +YYY)CCC⊤λλλ +CCC(−xxx + yyy) = ArrrB, (G.6)

where the matrices XXX = HHH−1
a and YYY = ARRRB HHH−1

b ARRR⊤
B , as well as the vectors xxx = HHH−1

a ggga

and yyy = ARRRB HHH−1
b gggb are used for conciseness. Rewriting this equation leads to an

expression for λλλ that only depends on gradient vectors, Hessian matrices, and the
current rotational difference

λλλ = CCC−⊤(XXX +YYY)−1(xxx − yyy +CCC−1
ArrrB). (G.7)

Finally, using the proof from Appendix F, which shows that ArrrB is an eigenvector of the
variation matrix CCC and that CCC−1

ArrrB = ArrrB, we can further simplify and write

λλλ = CCC−⊤(XXX +YYY)−1(xxx − yyy + ArrrB). (G.8)

To assess the convergence of our method, we compute how the rotational difference
changes for a single Newton step. Using the axis-angle representation, the change in
rotation is thereby calculated as

∆RRR = exp
(
[−θθθra]×

)
exp

(
[ARRRB θθθrb]×

)
. (G.9)

By introducing Eqs. (G.4) and (G.5), one can then write

∆RRR = exp
(
[−XXXCCC⊤λλλ + xxx]×

)
exp

(
[−YYYCCC⊤λλλ − yyy]×

)
. (G.10)

137

Appendices

Extending this equation with YYY −YYY and XXX −XXX leads to

∆RRR = exp
(

1
2

[(
YYY −XXX −XXX −YYY

)
CCC⊤λλλ + 2xxx

]

×

)

exp
(

1
2

[(
XXX −YYY −XXX −YYY

)
CCC⊤λλλ − 2yyy

]

×

)
.

(G.11)

Subsequently, we introduce λλλ from Eq. (G.8) and multiply it with the expression
(−XXX −YYY)CCC⊤ in Eq. (G.11) to obtain

∆RRR = exp
(

1
2

[
(YYY −XXX)CCC⊤λλλ + xxx + yyy − ArrrB

]

×

)

exp
(

1
2

[
(XXX −YYY)CCC⊤λλλ − xxx − yyy − ArrrB

]

×

)
,

(G.12)

which has the following highly symmetric structure

∆RRR = exp
(

1
2

[
zzz − ArrrB

]
×

)
exp

(
1
2

[
− zzz − ArrrB

]
×

)
. (G.13)

Finally, observing that the two exponents are commutative and knowing that com-
mutative exponents can be summed, we get the following result for the rotational
difference

∆RRR = exp
(
[−ArrrB]×

)
= ARRR−1

B (G.14)

This shows that a single iteration of the Newton method is enough to minimize an initial
rotational error of ARRRB to zero and obtain an exact kinematic solution.

G.2. Translational Constraint

Without loss of generality, we again assume that constraint coordinate frames are equal
to model frames with A = Ma and B = Mb. Furthermore, the rotation of both bodies is
fixed and the combined variation vector θθθ⊤k =

[
θθθ⊤ta θθθ⊤tb

]
only considers translation. The

constraint equation and constraint Jacobian can then be written as

bbbk = AtttB, (G.15)

BBBk =
[
−III ARRRB

]
. (G.16)

Introducing both statements in Eq. (5.8), we obtain the following linear equation for a
single Newton step



−HHHa 000 III⊤

000 −HHHb −ARRR⊤
B

III −ARRRB 000






θθθta

θθθtb

λλλ


 =




ggga

gggb

AtttB


 . (G.17)

138

H. Adjoint Equivalence

Based on the first two rows of this relation, variation vectors are computed as

θθθta = HHH−1
a (λλλ − ggga), (G.18)

θθθtb = HHH−1
b (−ARRR⊤

B λλλ − gggb). (G.19)

For conciseness, we again define the matrices XXX = HHH−1
a and YYY = ARRRB HHH−1

b ARRR⊤
B , as well

as the vectors xxx = HHH−1
a ggga and yyy = ARRRB HHH−1

b gggb. We then introduce Eqs. (G.18) and (G.19)
into the last row of Eq. (G.17) to compute the following relation for λλλ that includes only
known variables

λλλ = (XXX +YYY)−1(xxx − yyy + AtttB). (G.20)

To assess the convergence, we consider the change of the translational difference
between frame A and B and write

∆ttt = −θθθta + ARRRB θθθtb. (G.21)

Introducing the variation vectors from Eqs. (G.18) and (G.19) then leads to the relation

∆ttt = −(XXX +YYY)λλλ + xxx − yyy. (G.22)

Finally, with the definition of λλλ from Eq. (G.20), we are able to write the following result

∆ttt = −AtttB. (G.23)

Similar to the rotational case, this demonstrates that a single iteration of the Newton
method is enough to overcome the translational error AtttB and obtain an exact kinematic
solution.

H. Adjoint Equivalence

In the following, we demonstrate that if the constraint coordinate frames A and B are
equal, the first-order derivatives of the constraint equation in Eqs. (5.22) and (5.23).
reduce to an adjoint representation. Given that in such a case the variation matrix CCC is
equal to the identity matrix, only the partial derivatives of the translational difference
AtttB with respect to the rotational variation vectors θθθra and θθθrb differ from the adjoint
representation defined in Eq. (5.11). However, we can show that

ARRRMa [MatttB]× = ARRRMa [MatttA]× (H.1)

= ARRRMa [MatttA]× ARRR−1
Ma ARRRMa (H.2)

= [ARRRMa MatttA]× ARRRMa (H.3)

= −[AtttMa]× ARRRMa , (H.4)

and similarly that
−ARRRMb

[Mb
tttB]× = [AtttMb

]× ARRRMb
. (H.5)

This demonstrates that if A and B are equal, the derivatives in Eqs. (5.22) and (5.23) turn
into −Ad(ATTTMa) and Ad(ATTTMb

).

139

Appendices

I. Derivatives of Orthogonality Constraints

In the following, we calculate the first-order derivatives of the rotational orthogonality
constraint equation. They are required for the calculation of the constraint Jacobian in
Eq. (5.21). Starting from Eq. (5.32) the constraint equation is defined as

brijab(θθθa, θθθb) = Aeee⊤i exp
(
[−ARRRMa θθθra]×

)
exp

(
[ARRRMb

θθθrb]×
)

ARRRB Beeej, (I.1)

with the tuple (i, j) ∈ {(x, y), (y, z), (z, x)}. Similar to Eqs. (E.24) and (E.25), we first
linearize using the Taylor series expansion exp([θθθ]×) ≈ III + [θθθ]× and then use [xxx]×yyy =

−[yyy]×xxx. With this, the following first-order derivatives can be calculated

∂brijab

∂θθθra

∣∣∣∣
θθθk=000

= Aeee⊤i [ARRRB Beeej]× ARRRMa , (I.2)

∂brijab

∂θθθrb

∣∣∣∣
θθθk=000

= Aeee⊤i [ARRRB Beeej]× ARRRMb
. (I.3)

Knowing that first-order derivatives with respect to the translational variations θθθta and
θθθtb are zero, we are able to compute the constraint Jacobians BBBab required in the Newton
optimization.

140

Bibliography

Alahi, A., R. Ortiz, and P. Vandergheynst (2012). ªFREAK: Fast Retina Keypoint.º In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 510±517.

Alcantarilla, P. F., A. Bartoli, and A. J. Davison (2012). ªKAZE Features.º In: European

Conference on Computer Vision, pp. 214±227.
Altmann, S. L. (2005). Rotations, Quaternions, and Double Groups. Courier Corporation.
Armstrong, M. and A. Zisserman (1995). ªRobust Object Tracking.º In: Asian Conference

on Computer Vision, pp. 58±61.
Baker, S. and I. Matthews (2004). ªLucas-Kanade 20 Years On: A Unifying Framework.º

In: International Journal of Computer Vision 56.3, pp. 221±255.
Bay, H., T. Tuytelaars, and L. Van Gool (2006). ªSURF: Speeded Up Robust Features.º In:

European Conference on Computer Vision, pp. 404±417.
Besl, P. J. and N. D. McKay (1992). ªA Method for Registration of 3-D Shapes.º In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 14.2, pp. 239±256.
Bibby, C. and I. D. Reid (2008). ªRobust Real-Time Visual Tracking Using Pixel-Wise

Posteriors.º In: European Conference on Computer Vision, pp. 831±844.
Blais, G. and M. D. Levine (1995). ªRegistering Multiview Range Data to Create 3D

Computer Objects.º In: IEEE Transactions on Pattern Analysis and Machine Intelligence

17.8, pp. 820±824.
Bohg, J., J. Romero, A. Herzog, and S. Schaal (2014). ªRobot Arm Pose Estimation

through Pixel-Wise Part Classification.º In: IEEE International Conference on Robotics

and Automation, pp. 3143±3150.
Brachmann, E., A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and C. Rother

(2017). ªDSAC - Differentiable RANSAC for Camera Localization.º In: IEEE Conference

on Computer Vision and Pattern Recognition.
Brachmann, E., F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother (2016).

ªUncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB
Image.º In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364±3372.

Bregler, C. and J. Malik (1998). ªTracking People with Twists and Exponential Maps.º In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 8±15.

Brown, J. A. and D. W. Capson (2012). ªA Framework for 3D Model-Based Visual
Tracking Using a GPU-Accelerated Particle Filter.º In: IEEE Transactions on Visualization

and Computer Graphics 18.1, pp. 68±80.
Brox, T., B. Rosenhahn, J. Gall, and D. Cremers (2010). ªCombined Region and Motion-

Based 3D Tracking of Rigid and Articulated Objects.º In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 32.3, pp. 402±415.
Bugaev, B., A. Kryshchenko, and R. Belov (2018). ªCombining 3D Model Contour Energy

and Keypoints for Object Tracking.º In: European Conference on Computer Vision, pp. 55±
70.

141

Bibliography

Calli, B., A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar (2015). ªThe YCB
Object and Model Set: Towards Common Benchmarks for Manipulation Research.º
In: International Conference on Advanced Robotics, pp. 510±517.

Calonder, M., V. Lepetit, C. Strecha, and P. Fua (2010). ªBRIEF: Binary Robust Inde-
pendent Elementary Features.º In: European Conference on Computer Vision, pp. 778±
792.

Campos, C., R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós (2021). ªORB-
SLAM3: An Accurate Open-Source Library for Visual, Visual±Inertial, and Multimap
SLAM.º In: IEEE Transactions on Robotics 37.6, pp. 1874±1890.

Campos, T. E. de, B. J. Tordoff, and D. W. Murray (2006). ªRecovering Articulated Pose: A
Comparison of Two Pre and Postimposed Constraint Methods.º In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 28.1, pp. 163±168.
Caron, G., A. Dame, and E. Marchand (2014). ªDirect Model Based Visual Tracking

and Pose Estimation Using Mutual Information.º In: Image and Vision Computing 32.1,
pp. 54±63.

Chen, Y. and G. Medioni (1992). ªObject Modelling by Registration of Multiple Range
Images.º In: Image and Vision Computing 10.3, pp. 145±155.

Choi, C. and H. I. Christensen (2012a). ªRobust 3D Visual Tracking Using Particle
Filtering on the Special Euclidean Group: A Combined Approach of Keypoint and
Edge Features.º In: The International Journal of Robotics Research 31.4, pp. 498±519.

Choi, C. and H. I. Christensen (2012b). ª3D Textureless Object Detection and Tracking:
An Edge-based Approach.º In: IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 3877±3884.
Choi, C. and H. I. Christensen (2013). ªRGB-D Object Tracking: A Particle Filter Ap-

proach on GPU.º In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1084±1091.

Cifuentes, C. G., J. Issac, M. Wüthrich, S. Schaal, and J. Bohg (2017). ªProbabilistic Artic-
ulated Real-Time Tracking for Robot Manipulation.º In: IEEE Robotics and Automation

Letters 2.2, pp. 577±584.
Comport, A. I., E. Marchand, M. Pressigout, and F. Chaumette (2006). ªReal-Time

Markerless Tracking for Augmented Reality: The Virtual Visual Servoing Framework.º
In: IEEE Transactions on Visualization and Computer Graphics 12.4, pp. 615±628.

Comport, A. I., É. Marchand, and F. Chaumette (2007). ªKinematic Sets for Real-time
Robust Articulated Object Tracking.º In: Image and Vision Computing 25.3, pp. 374±391.

Crivellaro, A. and V. Lepetit (2014). ªRobust 3D Tracking with Descriptor Fields.º In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3414±3421.

Dambreville, S., R. Sandhu, A. Yezzi, and A. Tannenbaum (2008). ªRobust 3D Pose
Estimation and Efficient 2D Region-Based Segmentation from a 3D Shape Prior.º In:
European Conference on Computer Vision, pp. 169±182.

Davison, A. J. (2003). ªReal-Time Simultaneous Localisation and Mapping with a Single
Camera.º In: Proceedings Ninth IEEE International Conference on Computer Vision, 1403±
1410 vol.2.

142

Bibliography

Davison, A. J., I. D. Reid, N. D. Molton, and O. Stasse (2007). ªMonoSLAM: Real-Time
Single Camera SLAM.º In: IEEE Transactions on Pattern Analysis and Machine Intelligence

29.6, pp. 1052±1067.
Demirdjian, D., T. Ko, and T. Darrell (2003). ªConstraining Human Body Tracking.º In:

Ninth IEEE International Conference on Computer Vision, 1071±1078 vol.2.
Deng, X., J. Geng, T. Bretl, Y. Xiang, and D. Fox (2022). ªiCaps: Iterative Category-

Level Object Pose and Shape Estimation.º In: IEEE Robotics and Automation Letters 7.2,
pp. 1784±1791.

Deng, X., A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox (2021). ªPoseRBPF: A
Rao±Blackwellized Particle Filter for 6-D Object Pose Tracking.º In: IEEE Transactions

on Robotics 37.5, pp. 1328±1342.
DeTone, D., T. Malisiewicz, and A. Rabinovich (2018). ªSuperPoint: Self-Supervised

Interest Point Detection and Description.º In: IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops, pp. 337±349.
Deutschmann, B., J. Reinecke, and A. Dietrich (2022). ªOpen Source Tendon-driven

Continuum Mechanism: A Platform for Research in Soft Robotics.º In: IEEE 5th

International Conference on Soft Robotics, pp. 54±61.
Dewaele, G., F. Devernay, and R. Horaud (2004). ªHand Motion from 3D Point Trajecto-

ries and a Smooth Surface Model.º In: European Conference on Computer Vision. Ed. by
T. Pajdla and J. Matas, pp. 495±507.

Diebel, J., K. Reutersward, S. Thrun, J. Davis, and R. Gupta (2004). ªSimultaneous
Localization and Mapping with Active Stereo Vision.º In: IEEE/RSJ International

Conference on Intelligent Robots and Systems. Vol. 4, pp. 3436±3443.
Dorai, C., G. Wang, A. Jain, and C. Mercer (1998). ªRegistration and Integration of

Multiple Object Views for 3D Model Construction.º In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 20.1, pp. 83±89.
Drummond, T. and R. Cipolla (2002). ªReal-Time Visual Tracking of Complex Structures.º

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.7, pp. 932±946.
Dusmanu, M., I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler (2019).

ªD2-Net: A Trainable CNN for Joint Description and Detection of Local Features.º In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8092±8101.

Elsayed, M. (2021). ªReal-Time Texture-based 3D Object Tracking for Advanced Robotic
Manipulation.º MA thesis. Technical University of Munich.

Engel, J., V. Koltun, and D. Cremers (2018). ªDirect Sparse Odometry.º In: IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 40.3, pp. 611±625.
Fischler, M. A. and R. C. Bolles (1981). ªRandom Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.º In:
Communications of the ACM 24.6, pp. 381±395.

Fitzgibbon, A. W. (2003). ªRobust Registration of 2D and 3D Point Sets.º In: Image and

Vision Computing 21.13-14, pp. 1145±1153.

143

Bibliography

Forster, C., M. Pizzoli, and D. Scaramuzza (2014). ªSVO: Fast Semi-Direct Monocular
Visual Odometry.º In: IEEE International Conference on Robotics and Automation, pp. 15±
22.

Garon, M. and J.-F. Lalonde (2017). ªDeep 6-DOF Tracking.º In: IEEE Transactions on

Visualization and Computer Graphics 23.11, pp. 2410±2418.
Gavrila, D. and L. Davis (1996). ª3-D Model-based Tracking of Humans in Action: A

Multi-view Approach.º In: IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 73±80.
Ge, L., Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, and J. Yuan (2019). ª3D Hand Shape and

Pose Estimation From a Single RGB Image.º In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 10825±10834.
Ge, R. and G. Loianno (2021). ªVIPose: Real-time Visual-Inertial 6D Object Pose Track-

ing.º In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4597±
4603.

Gennery, D. B. (1992). ªVisual Tracking of Known Three-Dimensional Objects.º In:
International Journal of Computer Vision 7.3, pp. 243±270.

Godin, G., M. Rioux, and R. Baribeau (1994). ªThree-dimensional Registration Using
Range and Intensity Information.º In: Videometrics III. Vol. 2350, pp. 279±290.

Grebenstein, M., A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber,
S. Haddadin, U. Hagn, R. Haslinger, H. Höppner, S. Jörg, M. Nickl, A. Nothhelfer, F.
Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wüsthoff, and G. Hirzinger (2011). ªThe
DLR Hand Arm System.º In: IEEE International Conference on Robotics and Automation,
pp. 3175±3182.

Hagn, U., R. Konietschke, A. Tobergte, M. Nickl, S. Jörg, B. Kübler, G. Passig, M.
Gröger, F. Fröhlich, U. Seibold, L. Le-Tien, A. Albu-Schäffer, A. Nothhelfer, F. Hacker,
M. Grebenstein, and G. Hirzinger (2010). ªDLR MiroSurge: A Versatile System for
Research in Endoscopic Telesurgery.º In: International Journal of Computer Assisted

Radiology and Surgery 5.2, pp. 183±193.
Hagn, U., M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le-Tien, A.

Albu-Schäffer, R. Konietschke, et al. (2008). ªThe DLR MIRO: A Versatile Lightweight
Robot for Surgical Applications.º In: Industrial Robot: An International Journal 35.4,
pp. 324±336.

Han, S., B. Liu, R. Cabezas, C. D. Twigg, P. Zhang, J. Petkau, T.-H. Yu, C.-J. Tai, M. Akbay,
Z. Wang, A. Nitzan, G. Dong, Y. Ye, L. Tao, C. Wan, and R. Wang (2020). ªMEgATrack:
Monochrome Egocentric Articulated Hand-Tracking for Virtual Reality.º In: ACM

Transactions on Graphics 39.4.
Harris, C. and C. Stennett (1990). ªRAPID - A Video Rate Object Tracker.º In: British

Machine Vision Conference, pp. 15.1±15.6.
Harris, C. and M. Stephens (1988). ªA Combined Corner and Edge Detector.º In:

Proceedings of the Alvey Vision Conference, pp. 23.1±23.6.

144

Bibliography

Haugaard, R. L. and A. G. Buch (2022). ªSurfEmb: Dense and Continuous Correspon-
dence Distributions for Object Pose Estimation With Learnt Surface Embeddings.º In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6749±6758.

He, Y., H. Huang, H. Fan, Q. Chen, and J. Sun (2021). ªFFB6D: A Full Flow Bidirectional
Fusion Network for 6D Pose Estimation.º In: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 3003±3013.
He, Y., W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun (2020). ªPVN3D: A Deep Point-Wise

3D Keypoints Voting Network for 6DoF Pose Estimation.º In: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 11629±11638.
Hebert, P., N. Hudson, J. Ma, T. Howard, T. Fuchs, M. Bajracharya, and J. Burdick (2012).

ªCombined Shape, Appearance and Silhouette for Simultaneous Manipulator and
Object Tracking.º In: International Conference on Robotics and Automation, pp. 2405±2412.

Hexner, J. and R. R. Hagege (2016). ª2D-3D Pose Estimation of Heterogeneous Objects
Using a Region Based Approach.º In: International Journal of Computer Vision 118.1,
pp. 95±112.

Hinterstoisser, S., V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab
(2013). ªModel Based Training, Detection and Pose Estimation of Texture-Less 3D
Objects in Heavily Cluttered Scenes.º In: Asian Conference on Computer Vision, pp. 548±
562.

Hirschmüller, H. (2005). ªAccurate and Efficient Stereo Processing by Semi-Global
Matching and Mutual Information.º In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. Vol. 2, pp. 807±814.
Hodaň, T., M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother,

and J. Matas (2020). ªBOP Challenge 2020 on 6D Object Localization.º In: European

Conference on Computer Vision Workshops, pp. 577±594.
Hogg, D. (1983). ªModel-based Vision: A Program to See a Walking Person.º In: Image

and Vision Computing 1.1, pp. 5±20.
Huang, H., F. Zhong, and X. Qin (2022). ªPixel-Wise Weighted Region-Based 3D Ob-

ject Tracking using Contour Constraints.º In: IEEE Transactions on Visualization and

Computer Graphics 28.12, pp. 4319±4331.
Huang, H., F. Zhong, Y. Sun, and X. Qin (2020). ªAn Occlusion-aware Edge-Based

Method for Monocular 3D Object Tracking using Edge Confidence.º In: Computer

Graphics Forum 39.7, pp. 399±409.
Imperoli, M. and A. Pretto (2015). ªD2CO: Fast and Robust Registration of 3D Texture-

less Objects Using the Directional Chamfer Distance.º In: International Conference on

Computer Vision Systems, pp. 316±328.
Isard, M. and A. Blake (1998). ªCONDENSATION Ð Conditional Density Propagation

for Visual Tracking.º In: International Journal of Computer Vision 29.1, pp. 5±28.
Issac, J., M. Wüthrich, C. G. Cifuentes, J. Bohg, S. Trimpe, and S. Schaal (2016). ªDepth-

Based Object Tracking Using a Robust Gaussian Filter.º In: IEEE International Conference

on Robotics and Automation, pp. 608±615.

145

Bibliography

Izatt, G., G. Mirano, E. Adelson, and R. Tedrake (2017). ªTracking Objects with Point
Clouds from Vision and Touch.º In: International Conference on Robotics and Automation,
pp. 4000±4007.

Jurie, F. and M. Dhome (2002). ªHyperplane Approximation for Template Matching.º In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 24.7, pp. 996±1000.

Kanazawa, A., M. J. Black, D. W. Jacobs, and J. Malik (2018). ªEnd-to-End Recovery
of Human Shape and Pose.º In: IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 7122±7131.
Kehl, W., F. Tombari, S. Ilic, and N. Navab (2017). ªReal-Time 3D Model Tracking in

Color and Depth on a Single CPU Core.º In: IEEE Conference on Computer Vision and

Pattern Recognition, pp. 465±473.
Klein, G. and D. W. Murray (2006). ªFull-3D Edge Tracking with a Particle Filter.º In:

British Machine Vision Conference, pp. 1119±1128.
Klingensmith, M., T. Galluzzo, C. M. Dellin, M. Kazemi, J. A. Bagnell, and N. Pollard

(2013). ªClosed-loop Servoing using Real-time Markerless Arm Tracking.º
Krainin, M., P. Henry, X. Ren, and D. Fox (2011). ªManipulator and Object Tracking for

In-hand 3D Object Modeling.º In: The International Journal of Robotics Research 30.11,
pp. 1311±1327.

Krull, A., F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother (2015). ª6-DOF
Model Based Tracking via Object Coordinate Regression.º In: Asian Conference on

Computer Vision, pp. 384±399.
La Cascia, M., S. Sclaroff, and V. Athitsos (2000). ªFast, Reliable Head Tracking under

Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D
Models.º In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.4, pp. 322±
336.

Labbé, Y., J. Carpentier, M. Aubry, and J. Sivic (2020). ªCosyPose: Consistent Multi-view
Multi-object 6D Pose Estimation.º In: European Conference on Computer Vision, pp. 574±
591.

Labbé, Y., J. Carpentier, M. Aubry, and J. Sivic (2021). ªSingle-View Robot Pose and Joint
Angle Estimation via Render & Compare.º In: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 1654±1663.
Lankton, S. and A. Tannenbaum (2008). ªLocalizing Region-Based Active Contours.º In:

IEEE Transactions on Image Processing 17.11, pp. 2029±2039.
Lepetit, V. and P. Fua (2005). Monocular Model-Based 3D Tracking of Rigid Objects: A Survey.

Foundations, Trends in Computer Graphics, and Vision.
Lepetit, V., F. Moreno-Noguer, and P. Fua (2009). ªEPnP: An Accurate O(n) Solution to

the PnP Problem.º In: International Journal of Computer Vision 81.2, pp. 155±166.
Leutenegger, S., M. Chli, and R. Y. Siegwart (2011). ªBRISK: Binary Robust Invariant

Scalable Keypoints.º In: IEEE International Conference on Computer Vision, pp. 2548±
2555.

146

Bibliography

Li, J.-C., F. Zhong, S.-H. Xu, and X.-Y. Qin (2021). ª3D Object Tracking with Adaptively
Weighted Local Bundles.º In: Journal of Computer Science and Technology 36.3, pp. 555±
571.

Li, Y., G. Wang, X. Ji, Y. Xiang, and D. Fox (2018). ªDeepIM: Deep Iterative Matching for
6D Pose Estimation.º In: European Conference on Computer Vision, pp. 695±711.

Lipson, L., Z. Teed, A. Goyal, and J. Deng (2022). ªCoupled Iterative Refinement for 6D
Multi-Object Pose Estimation.º In: IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 6728±6737.
Liu, F., Z. Wei, and G. Zhang (2021). ªAn Off-Board Vision System for Relative Attitude

Measurement of Aircraft.º In: IEEE Transactions on Industrial Electronics 69.4, pp. 4225±
4233.

Liu, Y. and A. Namiki (2021). ªArticulated Object Tracking by High-Speed Monocular
RGB Camera.º In: IEEE Sensors Journal 21.10, pp. 11899±11915.

Liu, Y., P. Sun, and A. Namiki (2020). ªTarget Tracking of Moving and Rotating Object by
High-Speed Monocular Active Vision.º In: IEEE Sensors Journal 20.12, pp. 6727±6744.

Lourakis, M. and X. Zabulis (2013). ªModel-Based Pose Estimation for Rigid Objects.º
In: Computer Vision Systems, pp. 83±92.

Lowe, D. G. (1992). ªRobust Model-based Motion Tracking Through the Integration of
Search and Estimation.º In: International Journal of Computer Vision 8.2, pp. 113±122.

Lowe, D. G. (1991). ªFitting Parameterized Three-Dimensional Models to Images.º In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 13.5, pp. 441±450.

Lowe, D. G. (2004). ªDistinctive Image Features from Scale-Invariant Keypoints.º In:
International Journal of Computer Vision 60.2, pp. 91±110.

Lucas, B. D. and T. Kanade (1981). ªAn Iterative Image Registration Technique with an
Application to Stereo Vision.º In: Proceedings of the 7th International Joint Conference on

Artificial Intelligence. Vol. 2, pp. 674±679.
Luo, W., J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim (2021). ªMultiple Object

Tracking: A Literature Review.º In: Artificial Intelligence 293, p. 103448.
Ma, J., X. Jiang, A. Fan, J. Jiang, and J. Yan (2021). ªImage Matching from Handcrafted to

Deep Features: A Survey.º In: International Journal of Computer Vision 129.1, pp. 23±79.
Manhardt, F., W. Kehl, N. Navab, and F. Tombari (2018). ªDeep Model-Based 6D Pose

Refinement in RGB.º In: European Conference on Computer Vision, pp. 833±849.
Marchand, É., P. Bouthemy, and F. Chaumette (2001). ªA 2D±3D Model-based Approach

to Real-time Visual Tracking.º In: Image and Vision Computing 19.13, pp. 941±955.
Marougkas, I., P. Koutras, N. Kardaris, G. Retsinas, G. Chalvatzaki, and P. Maragos

(2020). ªHow to Track Your Dragon: A Multi-attentional Framework for Real-Time
RGB-D 6-DOF Object Pose Tracking.º In: European Conference on Computer Vision

Workshops. Ed. by A. Bartoli and A. Fusiello, pp. 682±699.
Masuda, T., K. Sakaue, and N. Yokoya (1996). ªRegistration and Integration of Multi-

ple Range Images for 3-D Model Construction.º In: Proceedings of 13th International

Conference on Pattern Recognition, 879±883 vol.1.

147

Bibliography

Meinhardt, T., A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer (2022). ªTrackformer:
Multi-object Tracking with Transformers.º In: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 8844±8854.
Michel, F., A. Krull, E. Brachmann, M. Yang, S. Gumhold, and C. Rother (2015). ªPose

Estimation of Kinematic Chain Instances via Object Coordinate Regression.º In: British

Machine Vision Conference, pp. 181.1±181.11.
Moravec, H. (1980). ªObstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover.º PhD thesis. Stanford University.
Mörwald, T., M. Zillich, and M. Vincze (2009). ªEdge Tracking of Textured Objects with

a Recursive Particle Filter.º In: Proceedings of the Graphicon, pp. 248±253.
Mündermann, L., S. Corazza, and T. P. Andriacchi (2007). ªAccurately Measuring Human

Movement Using Articulated ICP with Soft-Joint Constraints and a Repository of
Articulated Models.º In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1±6.

Mur-Artal, R. and J. D. Tardós (2017). ªORB-SLAM2: An Open-Source SLAM System
for Monocular, Stereo, and RGB-D Cameras.º In: IEEE Transactions on Robotics 33.5,
pp. 1255±1262.

Newcombe, R. A., A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon (2011). ªKinectFusion: Real-Time Dense Surface
Mapping and Tracking.º In: IEEE International Symposium on Mixed and Augmented

Reality, pp. 127±136.
Nickels, K. and S. Hutchinson (2001). ªModel-based Tracking of Complex Articulated

Objects.º In: IEEE Transactions on Robotics and Automation 17.1, pp. 28±36.
Pauwels, K., L. Rubio, J. Díaz, and E. Ros (2013). ªReal-Time Model-Based Rigid Object

Pose Estimation and Tracking Combining Dense and Sparse Visual Cues.º In: IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2347±2354.
Pauwels, K. and D. Kragic (2015). ªSimTrack: A Simulation-based Framework for Scalable

Real-time Object Pose Detection and Tracking.º In: IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 1300±1307.
Pauwels, K., L. Rubio, and E. Ros (2014). ªReal-Time Model-Based Articulated Object

Pose Detection and Tracking with Variable Rigidity Constraints.º In: IEEE Conference

on Computer Vision and Pattern Recognition, pp. 3994±4001.
Pellegrini, S., K. Schindler, and D. Nardi (2008). ªA Generalisation of the ICP Algorithm

for Articulated Bodies.º In: British Machine Vision Conference, pp. 87.1±87.10.
Pfanne, M. (2022a). ªGrasp State Estimation.º In: In-Hand Object Localization and Control:

Enabling Dexterous Manipulation with Robotic Hands, pp. 57±123.
Pfanne, M. (2022b). ªImpedance-Based Object Control.º In: In-Hand Object Localization

and Control: Enabling Dexterous Manipulation with Robotic Hands, pp. 125±171.
Pfanne, M. and M. Chalon (2017). ªEKF-based In-hand Object Localization from Joint

Position and Torque Measurements.º In: IEEE/RSJ International Conference on Intelligent

Robots and Systems. Piscataway, New Jersey: IEEE, pp. 2464±2470.

148

Bibliography

Pfanne, M., M. Chalon, F. Stulp, and A. Albu-Schäffer (2018). ªFusing Joint Measurements
and Visual Features for In-Hand Object Pose Estimation.º In: IEEE Robotics and

Automation Letters 3.4, pp. 3497±3504.
Pfanne, M., M. Chalon, F. Stulp, H. Ritter, and A. Albu-Schäffer (2020). ªObject-Level

Impedance Control for Dexterous In-Hand Manipulation.º In: IEEE Robotics and

Automation Letters 5.2, pp. 2987±2994.
Piga, N. A., F. Bottarel, C. Fantacci, G. Vezzani, U. Pattacini, and L. Natale (2021).

ªMaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object
Pose and Velocity Tracking.º In: Frontiers in Robotics and AI 8.

Piga, N. A., Y. Onyshchuk, G. Pasquale, U. Pattacini, and L. Natale (2022). ªROFT: Real-
Time Optical Flow-Aided 6D Object Pose and Velocity Tracking.º In: IEEE Robotics and

Automation Letters 7.1, pp. 159±166.
Pomerleau, F., F. Colas, and R. Siegwart (2015). ªA Review of Point Cloud Registration

Algorithms for Mobile Robotics.º In: Foundations and Trends in Robotics 4.1, pp. 1±104.
Prisacariu, V. A., O. Kähler, D. W. Murray, and I. D. Reid (2015). ªReal-Time 3D Tracking

and Reconstruction on Mobile Phones.º In: IEEE Transactions on Visualization and

Computer Graphics 21.5, pp. 557±570.
Prisacariu, V. A. and I. D. Reid (2012). ªPWP3D: Real-Time Segmentation and Tracking

of 3D Objects.º In: International Journal of Computer Vision 98.3, pp. 335±354.
Pulli, K. (1999). ªMultiview Registration for Large Data Sets.º In: Second International

Conference on 3-D Digital Imaging and Modeling, pp. 160±168.
Pupilli, M. and A. Calway (2006). ªReal-Time Camera Tracking Using Known 3D Models

and a Particle Filter.º In: 18th International Conference on Pattern Recognition, pp. 199±
203.

Rauch, C., T. Hospedales, J. Shotton, and M. Fallon (2018). ªVisual Articulated Tracking in
the Presence of Occlusions.º In: IEEE International Conference on Robotics and Automation,
pp. 643±650.

Rehg, J. M. and T. Kanade (1994). ªVisual Tracking of High DOF Articulated Structures:
An Application to Human Hand Tracking.º In: European Conference on Computer Vision.
Ed. by J.-O. Eklundh, pp. 35±46.

Reichert, A. E. (2021). ªTracking of Rigid Bodies in the Context of Minimally Invasive
Surgical Training.º BA thesis. Duale Hochschule Baden-Württemberg.

Reinecke, J., B. Deutschmann, A. Dietrich, and M. Hutter (2020). ªAn Anthropomorphic
Robust Robotic Torso for Ventral/Dorsal and Lateral Motion With Weight Compensa-
tion.º In: IEEE Robotics and Automation Letters 5.3, pp. 3876±3883.

Ren, C. Y., V. A. Prisacariu, O. Kähler, I. D. Reid, and D. W. Murray (2017). ªReal-Time
Tracking of Single and Multiple Objects from Depth-Colour Imagery Using 3D Signed
Distance Functions.º In: International Journal of Computer Vision 124.1, pp. 80±95.

Ren, C. Y. and I. D. Reid (2012). ªA Unified Energy Minimization Framework for
Model Fitting in Depth.º In: European Conference on Computer Vision Workshops and

Demonstrations. Ed. by A. Fusiello, V. Murino, and R. Cucchiara, pp. 72±82.

149

Bibliography

Rosenhahn, B., T. Brox, and J. Weickert (2007). ªThree-Dimensional Shape Knowledge
for Joint Image Segmentation and Pose Tracking.º In: International Journal of Computer

Vision 73.3, pp. 243±262.
Rosten, E. and T. Drummond (2005). ªFusing Points and Lines for High Performance

Tracking.º In: IEEE International Conference on Computer Vision. Vol. 2, pp. 1508±1515.
Rothe, J. (2022). ªCombining Global and Local 6DoF Pose Estimation for Real-World

Applications.º MA thesis. Technical University of Munich.
Rublee, E., V. Rabaud, K. Konolige, and G. Bradski (2011). ªORB: An efficient alternative

to SIFT or SURF.º In: IEEE International Conference on Computer Vision, pp. 2564±2571.
Rusinkiewicz, S. and M. Levoy (2001). ªEfficient Variants of the ICP Algorithm.º In:

Third International Conference on 3-D Digital Imaging and Modeling, pp. 145±152.
Salas-Moreno, R. F., R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison (2013).

ªSLAM++: Simultaneous Localisation and Mapping at the Level of Objects.º In: IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1352±1359.
Sarlin, P.-E., D. DeTone, T. Malisiewicz, and A. Rabinovich (2020). ªSuperGlue: Learning

Feature Matching With Graph Neural Networks.º In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 4937±4946.
Schmaltz, C., B. Rosenhahn, T. Brox, and J. Weickert (2012). ªRegion-Based Pose Tracking

with Occlusions Using 3D Models.º In: Machine Vision and Applications 23.3, pp. 557±
577.

Schmidt, T., K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and D. Fox (2015a).
ªDepth-Based Tracking with Physical Constraints for Robot Manipulation.º In: IEEE

International Conference on Robotics and Automation, pp. 119±126.
Schmidt, T., R. Newcombe, and D. Fox (2015b). ªDART: Dense Articulated Real-time

Tracking with Consumer Depth Cameras.º In: Autonomous Robots 39.3, pp. 239±258.
Seo, B.-K., H. Park, J.-I. Park, S. Hinterstoisser, and S. Ilic (2014). ªOptimal Local

Searching for Fast and Robust Textureless 3D Object Tracking in Highly Cluttered
Backgrounds.º In: IEEE Transactions on Visualization and Computer Graphics 20.1, pp. 99±
110.

Seo, B.-K. and H. Wuest (2016). ªA Direct Method for Robust Model-Based 3D Object
Tracking from a Monocular RGB Image.º In: European Conference on Computer Vision

Workshops, pp. 551±562.
Sepp, W. (2006). ªEfficient Tracking in 6-DoF based on the Image-Constancy Assumption

in 3-D.º In: 18th International Conference on Pattern Recognition. Vol. 3, pp. 59±62.
Shan, Y., Z. Liu, and Z. Zhang (2001). ªModel-Based Bundle Adjustment with Application

to Face Modeling.º In: Eighth IEEE International Conference on Computer Vision. Vol. 2,
pp. 644±651.

Simon, D. A. (1996). ªFast and Accurate Shape-Based Registration.º PhD thesis. Carnegie
Mellon University Pittsburgh.

Simon, G. and M.-O. Berger (1998). ªA Two-stage Robust Statistical Method for Temporal
Registration from Features of Various Type.º In: Sixth International Conference on

Computer Vision, pp. 261±266.

150

Bibliography

Stoiber, M. (2019). ªReal-Time In-Hand Object Tracking and Sensor Fusion for Advanced
Robotic Manipulation.º MA thesis. Technical University of Munich.

Stoiber, M., M. Elsayed, A. E. Rechert, F. Steidle, D. Lee, and R. Triebel (2023a). ªFusing
Visual Appearance and Geometry for Multi-Modality 6DoF Object Tracking.º In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1170±1177.

Stoiber, M., M. Pfanne, K. H. Strobl, R. Triebel, and A. Albu-Schäffer (2020). ªA Sparse
Gaussian Approach to Region-Based 6DoF Object Tracking.º In: Asian Conference on

Computer Vision, pp. 666±682.
Stoiber, M., M. Pfanne, K. H. Strobl, R. Triebel, and A. Albu-Schäffer (2022a). ªSRT3D: A

Sparse Region-Based 3D Object Tracking Approach for the Real World.º In: Interna-

tional Journal of Computer Vision 130.4, pp. 1008±1030.
Stoiber, M., M. Sundermeyer, W. Boerdijk, and R. Triebel (2023b). ªA Multi-body Tracking

Framework - From Rigid Objects to Kinematic Structures.º
Stoiber, M., M. Sundermeyer, and R. Triebel (2022b). ªIterative Corresponding Geometry:

Fusing Region and Depth for Highly Efficient 3D Tracking of Textureless Objects.º In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6855±6865.

Sun, J., Z. Shen, Y. Wang, H. Bao, and X. Zhou (2021). ªLoFTR: Detector-Free Local
Feature Matching With Transformers.º In: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 8922±8931.
Sun, X., J. Zhou, W. Zhang, Z. Wang, and Q. Yu (2021). ªRobust Monocular Pose

Tracking of Less-Distinct Objects Based on Contour-Part Model.º In: IEEE Transactions

on Circuits and Systems for Video Technology 31.11, pp. 4409±4421.
Sundermeyer, M., Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel (2018). ªImplicit

3D Orientation Learning for 6D Object Detection from RGB Images.º In: European

Conference on Computer Vision, pp. 712±729.
Tan, D. J., N. Navab, and F. Tombari (2017). ªLooking Beyond the Simple Scenarios:

Combining Learners and Optimizers in 3D Temporal Tracking.º In: IEEE Transactions

on Visualization and Computer Graphics 23.11, pp. 2399±2409.
Tan, D. J., T. Cashman, J. Taylor, A. Fitzgibbon, D. Tarlow, S. Khamis, S. Izadi, and

J. Shotton (2016). ªFits Like a Glove: Rapid and Reliable Hand Shape Personalization.º
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610±5619.

Tan, D. J. and S. Ilic (2014). ªMulti-forest Tracker: A Chameleon in Tracking.º In: IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1202±1209.
Taylor, J., L. Bordeaux, T. Cashman, B. Corish, C. Keskin, T. Sharp, E. Soto, D. Sweeney,

J. Valentin, B. Luff, A. Topalian, E. Wood, S. Khamis, P. Kohli, S. Izadi, R. Banks,
A. Fitzgibbon, and J. Shotton (2016). ªEfficient and Precise Interactive Hand Tracking
through Joint, Continuous Optimization of Pose and Correspondences.º In: ACM

Transactions on Graphics 35.4.
Teulière, C., E. Marchand, and L. Eck (2010). ªUsing Multiple Hypothesis in Model-based

Tracking.º In: IEEE International Conference on Robotics and Automation, pp. 4559±4565.
Thielmann, S., U. Seibold, R. Haslinger, G. Passig, T. Bahls, S. Jörg, M. Nickl, A. Noth-

helfer, U. Hagn, and G. Hirzinger (2010). ªMICA - A New Generation of Versatile

151

Bibliography

Instruments in Robotic Surgery.º In: IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 871±878.
Tjaden, H., U. Schwanecke, E. Schömer, and D. Cremers (2018). ªA Region-Based

Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking.º In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 41.8, pp. 1797±1812.
Tola, E., V. Lepetit, and P. Fua (2010). ªDAISY: An Efficient Dense Descriptor Applied to

Wide-Baseline Stereo.º In: IEEE Transactions on Pattern Analysis and Machine Intelligence

32.5, pp. 815±830.
Tölgyessy, M., M. Dekan, L. Chovanec, and P. Hubinskỳ (2021). ªEvaluation of the Azure

Kinect and Its Comparison to Kinect V1 and Kinect V2.º In: Sensors 21.2.
Turk, G. and M. Levoy (1994). ªZippered Polygon Meshes from Range Images.º In:

Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques,
pp. 311±318.

Vacchetti, L., V. Lepetit, and P. Fua (2004). ªStable Real-Time 3D Tracking Using On-
line and Offline Information.º In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 26.10, pp. 1385±1391.
Wang, B., F. Zhong, and X. Qin (2019). ªRobust Edge-based 3D Object Tracking with

Direction-based Pose Validation.º In: Multimedia Tools and Applications 78.9, pp. 12307±
12331.

Wang, C., R. Martín-Martín, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese, and Y. Zhu (2020).
ª6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints.º In: IEEE

International Conference on Robotics and Automation, pp. 10059±10066.
Wang, C., D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese (2019).

ªDenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion.º In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 3338±3347.
Wang, C.-Y., A. Bochkovskiy, and H.-Y. M. Liao (2022). ªYOLOv7: Trainable Bag-of-

Freebies Sets New State-of-the-Art for Real-time Object Detectors.º
Wang, G., F. Manhardt, F. Tombari, and X. Ji (2021). ªGDR-Net: Geometry-Guided

Direct Regression Network for Monocular 6D Object Pose Estimation.º In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 16611±16621.
Wang, G., B. Wang, F. Zhong, X. Qin, and B. Chen (2015). ªGlobal Optimal Searching for

Textureless 3D Object Tracking.º In: The Visual Computer 31.6, pp. 979±988.
Weik, S. (1997). ªRegistration of 3-D Partial Surface Models Using Luminance and Depth

Information.º In: International Conference on Recent Advances in 3-D Digital Imaging and

Modeling, pp. 93±100.
Wen, B., C. Mitash, B. Ren, and K. E. Bekris (2020). ªse(3)-TrackNet: Data-driven 6D

Pose Tracking by Calibrating Image Residuals in Synthetic Domains.º In: IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 10367±10373.
Weng, Y., H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen, H. Su, and L. J.

Guibas (2021). ªCAPTRA: CAtegory-Level Pose Tracking for Rigid and Articulated
Objects From Point Clouds.º In: IEEE/CVF International Conference on Computer Vision,
pp. 13209±13218.

152

Bibliography

Whelan, T., S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison (2015).
ªElasticFusion: Dense SLAM Without a Pose Graph.º In: Robotics: Science and Systems.

Widmaier, F., D. Kappler, S. Schaal, and J. Bohg (2016). ªRobot Arm Pose Estimation by
Pixel-wise Regression of Joint Angles.º In: IEEE International Conference on Robotics and

Automation, pp. 616±623.
Wu, P.-C., Y.-Y. Lee, H.-Y. Tseng, H.-I. Ho, M.-H. Yang, and S.-Y. Chien (2017). ªA

Benchmark Dataset for 6DoF Object Pose Tracking.º In: IEEE International Symposium

on Mixed and Augmented Reality, pp. 186±191.
Wuest, H., F. Vial, and D. Stricker (2005). ªAdaptive Line Tracking with Multiple

Hypotheses for Augmented Reality.º In: Fourth IEEE and ACM International Symposium

on Mixed and Augmented Reality, pp. 62±69.
Wüthrich, M., J. Bohg, D. Kappler, C. Pfreundt, and S. Schaal (2015). ªThe Coordinate

Particle Filter - A novel Particle Filter for High Dimensional Systems.º In: IEEE

International Conference on Robotics and Automation, pp. 2454±2461.
Wüthrich, M., C. G. Cifuentes, S. Trimpe, F. Meier, J. Bohg, J. Issac, and S. Schaal (2016).

ªRobust Gaussian Filtering Using a Pseudo Measurement.º In: American Control

Conference, pp. 3606±3613.
Wüthrich, M., P. Pastor, M. Kalakrishnan, J. Bohg, and S. Schaal (2013). ªProbabilistic

Object Tracking using a Range Camera.º In: IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 3195±3202.
Xiang, Y., T. Schmidt, V. Narayanan, and D. Fox (2018). ªPoseCNN: A Convolutional

Neural Network for 6D Object Pose Estimation in Cluttered Scenes.º In: Robotics:

Science and Systems.
Yi, K. M., E. Trulls, V. Lepetit, and P. Fua (2016). ªLIFT: Learned Invariant Feature

Transform.º In: European Conference on Computer Vision, pp. 467±483.
Yilmaz, A., O. Javed, and M. Shah (2006). ªObject Tracking: A Survey.º In: ACM Comput-

ing Surveys 38.4, p. 13.
Zeng, F., B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei (2022). ªMOTR: End-to-End

Multiple-Object Tracking with Transformer.º In: European Conference on Computer

Vision, pp. 659±675.
Zhang, Y., P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang (2022).

ªByteTrack: Multi-object Tracking by Associating Every Detection Box.º In: European

Conference on Computer Vision, pp. 1±21.
Zhao, S., L. Wang, W. Sui, H.-y. Wu, and C. Pan (2014). ª3D Object Tracking via Boundary

Constrained Region-Based Model.º In: IEEE International Conference on Image Processing,
pp. 486±490.

Zheng, L., A. Leonardis, T. H. E. Tse, N. Horanyi, H. Chen, W. Zhang, and H. J. Chang
(2022). ªTP-AE: Temporally Primed 6D Object Pose Tracking with Auto-Encoders.º In:
International Conference on Robotics and Automation, pp. 10616±10623.

Zhong, L., M. Lu, and L. Zhang (2018). ªA Direct 3D Object Tracking Method Based on
Dynamic Textured Model Rendering and Extended Dense Feature Fields.º In: IEEE

Transactions on Circuits and Systems for Video Technology 28.9, pp. 2302±2315.

153

Bibliography

Zhong, L. and L. Zhang (2019). ªA Robust Monocular 3D Object Tracking Method Com-
bining Statistical and Photometric Constraints.º In: International Journal of Computer

Vision 127.8, pp. 973±992.
Zhong, L., Y. Zhang, H. Zhao, A. Chang, W. Xiang, S. Zhang, and L. Zhang (2020a).

ªSeeing Through the Occluders: Robust Monocular 6-DOF Object Pose Tracking via
Model-guided Video Object Segmentation.º In: IEEE Robotics and Automation Letters

5.4, pp. 5159±5166.
Zhong, L., X. Zhao, Y. Zhang, S. Zhang, and L. Zhang (2020b). ªOcclusion-Aware Region-

Based 3D Pose Tracking of Objects With Temporally Consistent Polar-Based Local
Partitioning.º In: IEEE Transactions on Image Processing 29, pp. 5065±5078.

Zimmermann, C. and T. Brox (2017). ªLearning to Estimate 3D Hand Pose from Single
RGB Images.º In: IEEE International Conference on Computer Vision, pp. 4913±4921.

Zuo, Y., W. Qiu, L. Xie, F. Zhong, Y. Wang, and A. L. Yuille (2019). ªCRAVES: Controlling
Robotic Arm With a Vision-Based Economic System.º In: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 4209±4218.

154

	Acknowledgments
	Abstract
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Requirements
	Existing Techniques
	Contribution
	Outline

	Related Work
	Introduction
	Edge-based Tracking
	Keypoint-based Tracking
	Direct Optimization
	Region-based Tracking
	Depth-based Tracking
	Deep Learning-based Tracking
	Multi-body Tracking

	Region-based Tracking
	Introduction
	Correspondence Line Model
	Correspondence Lines
	Probabilistic Model
	Discrete Scale-space Formulation
	Smoothed Step Functions
	Posterior Probability Distribution

	3D Object Tracking
	Preliminaries
	Sparse Viewpoint Model
	Joint Posterior Probability
	Optimization
	Gradient and Hessian Approximation

	Implementation
	Sparse Viewpoint Model
	Color Histograms
	Tracking Process
	Occlusion Handling

	Evaluation
	RBOT Dataset
	OPT Dataset
	Parameter Analysis
	Discussion

	Conclusion

	Multi-modality Tracking
	Introduction
	Probabilistic Model
	Framework
	Depth Modality
	Texture Modality
	Multi-region Tracking

	Implementation
	Evaluation
	YCB-Video Dataset
	OPT Dataset
	Choi Dataset
	Ablation Studies
	Global Pose Estimation
	Pose Refinement

	Conclusion

	Multi-body Tracking
	Introduction
	Framework
	Rigid Objects
	Tree-like Structures
	Closed Kinematic Structures

	Parameterization
	Preliminaries
	Body Jacobians
	Constraint Equations
	Pose Update

	Implementation
	Evaluation
	Robot Tracking Benchmark
	Metrics
	Kinematic Configuration
	Constraint Convergence
	Comparison
	Limitations

	Conclusion

	Applications
	Introduction
	The M3T Library
	Architecture
	Tracking Process
	Initialization
	Proprioception

	The Humanoid Robot David
	Robot System
	Tracker Configuration
	Grasp State Estimation
	Example Applications

	The MiroSurge System
	Robot System
	Tracker Configuration
	Example Experiments

	Conclusion
	Summary
	Future Work

	Appendices
	Extended Probabilistic Model
	Derivative of Log-Posterior
	Closed-form Posteriors
	Inverse-Variance Weighting
	Derivatives of Constraint Equations
	Rotational Constraint
	Translational Constraint

	Properties of the Variation Matrix
	Constraint Convergence
	Rotational Constraint
	Translational Constraint

	Adjoint Equivalence
	Derivatives of Orthogonality Constraints

	Bibliography

