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Abstract—Microfluidic large-scale integration (mLSI) biochips
have developed rapidly in recent decades. The gap between
design efficiency and application complexity has led to a grow-
ing interest in mLSI design automation. The state-of-the-art
design automation tools for mLSI focus on the simultaneous co-
optimisation of the flow and control layers but neglect potential
contamination between different fluid reagents and products.
Microfluidic switches, as fluid routers at the intersection of flow
paths, are especially prone to contamination. State-of-the-art tools
design the switches as spines with junctions, which aggregate the
contamination problem. In this work, we present a contamination-
free microfluidic switch design and a synthesis method to generate
application-specific switches that can be employed by physical
design tools for mLSI. We also propose a scheduling and binding
method to transport the fluids with least time and fewest resources.
To reduce the number of pressure inlets, we consider pressure
sharing between valves within the switch. Experimental results
demonstrate that our methods show advantages in avoiding
contamination and improving transportation efficiency over con-
ventional methods.

Index Terms—microfluidic large-scale integration, design au-
tomation, quadratic linear programming, contamination

I. INTRODUCTION

Over the last few decades, microfluidic large-scale integra-
tion (mLSI) has gained increasing interest in the fields of
biology and chemistry. Manually designing mLSI chips is a
time-consuming and error-prone procedure. Design automa-
tion for mLSI thus arose to alleviate design difficulty and
to enhance design quality. In particular, the state-of-the-art
physical synthesis tool Columba has demonstrated the ability
to synthesise manufacturing-ready mLSI designs within a few
minutes or seconds [1]–[3]. Despite the advances, current
mLSI design automation tools generally focus on conventional
physical design features such as area reduction, valve and inlet
reduction, etc, but neglect practical bio-constraints such as the
inter-contamination among fluids.

Contamination is a critical issue for mLSI. When a fluid
flows through a channel, residues may be left over in the
channel. These residues may contaminate subsequent fluids that
pass through the same channel. Because bioassays are operated
with significantly reduced amounts of fluids, the concentration
of the contaminated fluids can be amplified, resulting in erro-
neous experimental results. For example, in a PCR reaction, if
different DNA samples flow through the same channel segment,
residues left by the former sample can contaminate the latter
sample, leading to failure of the experiments [4].
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Fig. 1. A switch design applied in Columba. The blue, green and orange lines
represent the flow channels, control channels and valves, respectively.

Current mLSI design methods tend to reduce the number
of fluid transportation channels to minimise the chip area.
The reduction of channels however requires more fluids to
share the same channel segments, which further aggravates
the contamination problem. In particular, contamination can be
severe at microfluidic switches. Switches are mLSI-components
to guide fluids at the intersections of flow channels. In mLSI
designs synthesised by state-of-the-art tools, switches are de-
signed as a spine with many junctions, as shown in Fig. 1. All
fluids entering the switches will pass the spine and thus may
contaminate the subsequent fluids.

To deal with the contamination problem, some works pro-
posed to incorporate rinsing operations into the assay to remove
the residues [4], [5]. These methods can safely avoid con-
tamination but will also prolong the assay execution process.
Other works proposed contamination-free microfluidic designs
for specific bioassays [6], but the designs cannot be generalised
to support an arbitrary bio-application.

In this paper, we propose a contamination-free microflu-
idic switch design which can be employed by automatic
physical synthesis tools for mLSI. The advantages of our
method over state-of-the-art methods are three-fold. First, our
method prevents fluid contamination without increasing the
assay execution time; second, our method supports concurrent
transportation of multiple fluids to improve the transportation
efficiency; third, our method reduces the number of valves and
pressure inlets required for the fluid transportation.

II. CONTAMINATION-FREE SWITCH DESIGN

Many bio-applications involve fluids that must not be mixed
with one another, such as the reagents used for different
experimental and control groups. These fluids need to be treated
in different devices [7] and should not be transported using
the same channels unless we rinse the channels after each
transportation [4]. In this paper, we refer to two fluids that
must not be mixed as a pair of conflicting fluids.
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Besides conflicting fluids, there are also fluids that are not
prone to contamination, e.g. dilution buffers that do not react
with other fluids. These fluids can safely be transported in a
flow channel that has been or will be used by other fluids.
Nevertheless, different fluids cannot be transported using the
same flow channel segment at the same time.

State-of-the-art switch designs have a spine-based structure,
i.e. fluids entering the switch need to travel along the “spine”
channel before arriving at their destined junctions. Such designs
have two problems: 1) when a pair of conflicting fluids need
to be transported using the same switch, the former fluid may
leave residues in the spine and thus contaminate the latter fluid;
and 2) multiple fluids cannot use the switch at the same time
since they all need to access the “spine” channel.

Targeting the present deficiencies, we propose a novel switch
design which arranges the flow channel segments in a dis-
tributive manner to avoid unnecessary overlapping of different
transportation paths. Fig. 2 depicts our design for an 8-pin
switch which consists of up to 8 flow pins and a 12-pin
switch that has up to 12 flow pins. All channels and valves
in the designs can be considered as placeholders that can
be synthesised on demand. Specifically, our design can be
modelled as:
• a set P of flow channel pins via which fluids can enter

and leave the switch, e.g. for the 8-pin switch, P :=
{T1, T2, R1, R2, B1, B2, L1, L2};

• a set N of intermediate nodes representing the intersec-
tions of flow channels inside the switch, e.g. for the 8-pin
switch, N := {TL, T, TR,L,C,R,BL,B,BR}; and

• a set S of flow channel segments between two nodes or
between a node and a flow pin, e.g. for the 8-pin switch,
(L1, L) ∈ S.

In this manner, we can model a fluid transportation path fp

inside the switch as a sequence of flow channel segments. E.g.
fp = [(L1, L), (L, TL), (TL, T1)] represents a path consisting
of three channel segments to transport the fluids from the left
to the top of the switch. In particular, we design the same
number of flow pins on every boundary of the switch, so that
fluids can access and leave the switch from all directions. Since
fluid transportation no longer relies on a single “spine” channel
in our switch design, we are able to support multiple fluid
transportation paths without overlapped flow channel segments.
Thus, conflicting fluids can safely pass the switch without
contamination, and multiple fluids can use the switch at the
same time without collision.

To note is that in most cases, we do not need to activate all
placeholders in the design. For example, if we want to support
two fluid transportation paths from the left to the top and from
the left to the bottom of the switch using the 8-pin design,
we just need to synthesise a subset of the switch components,
e.g. P ′ = {L1, T1, L2, B1}, N ′ = {TL,L,BL,B} and S ′ =
{(L1, L), (L, TL), (TL, T1), (L2, BL), (BL,B), (B,B1)}.
All other components are not necessary for the transportation
and thus do not need to be fabricated in the final design.

In order to transport all fluids with fewest possible resources
and least possible time, we propose an integer-quadratic pro-
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Fig. 2. Switch designs with 8 and 12 pins. The blue, green and orange lines
represent the flow channels, control channels and valves, respectively.

gramming (IQP) model to automatically synthesise necessary
switch components, schedule the fluid transportation opera-
tions, and bind the flow pins of the switch to other on-chip
devices involved in the transportation.

III. MATHEMATICAL MODEL

Based on the fluid transportation requirements, we can
choose either the 8-pin or the 12-pin switch design as the
starting point of the synthesis. Besides the notations P , N and
S introduced in section II, we introduce a set F containing all
the fluids that need to be transported, and a set FC ⊆ F × F
containing all pairs of conflicting fluids.

A. Preparation: Collecting Fluid Transportation Options

To avoid detours of the transportation paths, before building
the mathematical models, we first find out all shortest paths
between every two flow pins in the switch with Dijkstra’s
algorithm and collect these shortest paths in a set P as can-
didate paths for fluid transportation. E.g. for an 8-pin switch,
fp = [(L1, L), (L, TL), (TL, T1)] ∈ P since fp is the shortest
path between flow pins L1 and T1.

B. Contamination Avoidance

For each to-be-transported fluid, we arrange a transportation
path by introducing a binary variable xf,fp for each f ∈ F



and fp ∈ P to represent whether fluid f is transported via path
fp. This can be modelled with the following constraints:∑

fp∈P
xf,fp = 1,∀f ∈ F . (1)

To avoid contamination, the transportation paths of two
conflicting fluids should not contain the same intermediate
node. To this end, we introduce a binary constant bfp,n for
all candidate paths fp ∈ P and intermediate nodes n ∈ N
to represent whether path fp ∈ P contains node n. We then
introduce the following constraints:∑

fp∈P
xf1,fp · bfp,n +

∑
fp∈P

xf2,fp · bfp,n ≤ 1,

∀n ∈ N , (f1, f2) ∈ FC .

(2)

Thus, for a pair of conflicting fluids (f1, f2), if f1 is bound to
any path containing node n, i.e. there exists fp

′ ∈ P so that
xf1,fp′ = 1 and bfp′ ,n = 1,

∑
fp∈P xf1,fp · bfp,n will be equal

to 1. In this case, constraint (2) can only be fulfilled when∑
fp∈P xf2,fp · bfp,n = 0, i.e. for all candidate paths fp ∈ P,

either fp is not bound by f2, i.e. xf2,fp = 0, or fp does not
contain node n, i.e. bfp,n = 0.

C. Scheduling

Our switch design supports concurrent transportation of
multiple fluids under the prerequisite that the corresponding
transportation paths do not overlap. We model this as a schedul-
ing problem. Specifically, we assign each fluid to a time slot
for transportation. A time slot can accommodate multiple fluids,
but different fluids that are transported in the same time slot
should not pass the same intermediate nodes of the switch.
The target of the scheduling is to transport all fluids with the
minimum number of time slots.

To this end, we introduce a binary variable yf,t for all fluids
f ∈ F and time slots 1 ≤ t ≤ |F| to represent whether f is
transported in t. We set the upper bound of t as |F|, i.e. the
number of to-be-transported fluids, to cover the worst-case that
no concurrency exists. We introduce the following constraints
to model that each fluid is transported in exactly one time slot:∑

1≤t≤|F|

yf,t = 1,∀f ∈ F . (3)

Besides, we introduce a binary variable zt for each time slot
t to represent whether there is any fluid that will be transported
in time slot t. We then introduce the following constraints:

zt ≥ yf,t,∀f ∈ F ,∀1 ≤ t ≤ |F|. (4)

If there is a fluid f ∈ F transported in time slot t, i.e yf,t = 1,
zt will be forced to 1. Otherwise, zt can be either 1 or 0.
We then model the number of time slots needed for the fluid
transportation as

∑
1≤t≤|F| zt, and add it to the minimisation

objective so that the solver will set zt to 0 when no fluid is
transported in time slot t.

In order to avoid the collision of different fluids transported
in the same time slot, we introduce a binary variable uf,n for
each fluid f ∈ F and each intermediate node n ∈ N to
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Fig. 3. (a) Possible transportation paths of three fluids in the same time slot.
Fluids 2 and 3 branch from the same fluid that flows through pin L1 and are
thus allowed to pass the same intermediate nodes, e.g. L and C. On the other
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Fluids 2 or 3. (b) An 8-pin switch design to transport 4 fluids in two different
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represent whether the transportation path of f includes node
n. uf,n can thus be calculated with the following constraints:

uf,n =
∑
fp∈P

xf,fp · bfp,n,∀f ∈ F ,∀n ∈ N , (5)

where xf,fp and bfp,n are as introduced in Section III.B.
Next, we need to distinguish the multiplexing of fluids from

the collision of fluids. Multiplexing refers to the case that after
a fluid enters the switch, it branches at some intermediate nodes
inside the switch and becomes multiple fluid flows following
different paths. In this case, different branches are modelled
as different fluids, which are transported in the same time
slot but are allowed to pass the same intermediate nodes, as
shown in Fig. 3(a). To prevent fluid collision without stopping
fluid multiplexing, we divide the set F of fluids into disjoint
subsets F1

⋃
F2

⋃
· · ·

⋃
Fm = F so that fluids branching from

the same input pin are assigned to the same subset. We then
introduce an integer variable ki,n,t to count the number of
fluids in subset i that are transported in time slot t and pass
node n ∈ N . ki,n,t can thus be calculated with the following
constraints:

ki,n,t =
∑
f∈Fi

uf,n · yf,t,

∀1 ≤ i ≤ m,∀n ∈ N ,∀1 ≤ t ≤ |F|.
(6)

Thus, we can prevent fluids in different subsets from passing the
same intermediate node in the same time slot with the following
constraints:

ki,n,t ≤ qi,n,t ·m,∀1 ≤ i ≤ m,∀n ∈ N ,∀1 ≤ t ≤ |F|, (7)∑
1≤i≤m

qi,n,t ≤ 1,∀n ∈ N ,∀1 ≤ t ≤ |F|, (8)

where qi,n,t is an auxiliary binary variable representing whether
node n is passed by any fluid in subset i in time slot t, and m is
a constant equal to the largest index of the fluid subsets. Thus,
if ki,n,t has positive value, qi,n,t will be set to 1 by constraint
(7). Constraint (8) further rules that for any time slot t and



node n, at most one of the binary variables qi,n,t can be set to
1, which ensures that the node cannot be passed by fluids from
different subsets in the same time slot.

D. Binding

To integrate our switch design into the mLSI synthesis flow,
we need to specify the connection between the switch and other
on-chip devices. To this end, we bind the pins of the switch to
the pins of other on-chip devices. For convenience, we refer to
pins of the switch as switch pins and the pins of other on-chip
devices as device pins. We introduce a set D to contain all the
device pins that need to be connected to the switch.

For each switch pin p ∈ P and each device pin d ∈ D, we
introduce a binary variable vp,d to represent whether p is bound
to d. We then introduce the following constraints to model that
each device pin must be connected to exactly one switch pin
and each switch pin can be accessed by at most one device pin:∑

p∈P
vp,d = 1,∀d ∈ D,

∑
d∈D

vp,d ≤ 1,∀p ∈ P. (9)

If a fluid f ∈ F is transported along path fp ∈ P, the switch
pins ps and pe at the start and at the end of the path fp must be
bound to the source device pin ds and the destination device
pin de of the fluid, respectively. We model this requirement
with the following constraints:

vps,ds ≥ xf,fp , vpe,de ≥ xf,fp ,∀f ∈ F ,∀fp ∈ P. (10)

To make our switch design compatible with different mLSI
physical synthesis strategies, we provide three different binding
policies for the users to specify the connection between other
on-chip devices and the switch: fixed, clockwise and unfixed.

a) Fixed: Users directly define the value of the binding
variables vp,d to specify a fixed switch pin p ∈ P for each
device pin d ∈ D. This policy can be applied when the physical
synthesis tools integrate the switch after finishing the placement
of all other on-chip devices and are thus confident about their
binding decisions.

b) Clockwise: Users define an order of the device pins that
require to be connected to the switch. The device pins are then
bound clockwise to the switch pins. For example, if the user
defines an order of three device pins d1 < d2 < d3, a possible
binding option is to bind d1, d2 and d3 to switch pins on the
top, right, and bottom boundary of the switch, respectively. In
particular, the bounded switch pins do not need to be adjacent
to each other, but their positions must follow the same direction
as the hands on a clock. This policy can be applied when the
physical synthesis tools have decided the rough positions of the
on-chip devices before integrating the switch design. It gives
more flexibility to the binding process than the fixed policy and
is thus likely to achieve better fluid transportation performance.
To implement this policy in our mathematical model, we index
an arbitrary switch pin p1 ∈ P as 1. Then starting from p1, we
visit all other switch pins in clockwise order and index them
in ascending order. Thus, for device pins in the given order,
the indices of the switch pins that they are bound to must form
a sub-sequence of 1, 2, · · · , |P|, 1, 2, · · · , |P|. To this end, we

introduce an integer variable hd for each device pin d ∈ D to
represent the index of the switch pin p that d is bound to, i.e.:

hd =
∑
p∈P

vp,d · ip,∀d ∈ D, (11)

where ip is the index of the switch pin p. Then we can achieve
the clockwise binding solutions with the following constraints:

hd ≤ hd+1 − 1 + qd · |P|, ∀d ∈ D,
∑
d∈D

qd = 1, (12)

where qd is an auxiliary binary variable representing whether
hd is the largest index among all bound switch pins, and d+1
is the successive device pin of d in the given order. If d is the
last pin in the order, d + 1 will be the first pin in the order.
If qd = 0, hd must be smaller than hd+1; and if qd = 1, the
inequation becomes a tautology and thus does not confine the
relation between hd and hd+1, which implies the case that d is
bound to the switch pin with the largest index among all bound
switch pins, e.g. hd = |P| and hd+1 = 1.

c) Unfixed: Users do not define any binding specifica-
tions. This policy can be applied when the switch is the key
component of the mLSI design and thus other on-chip devices
should be synthesised based on the binding results, e.g. in mLSI
designs for sample preparation applications. The unfixed policy
has the most flexibility and can theoretically achieves the best
fluid transportation performance. For this policy, we do not
need additional binding constraints beyond constraints (9)-(10).

E. Objective

Our objective is to synthesise a switch that transports all flu-
ids with least time and fewest resources. We model the number
of time slots required for the transportation as

∑
1≤t≤F zt, as

introduced in Section III.C. Besides, we model the resources
required for the transportation as the total length of the flow
channel segments in the switch. To this end, we introduce
a binary variable ws for each segment s ∈ S to represent
whether s is required for the transportation. We then introduce
the following constraint to model that a segment s is required,
if a path fp containing s is used to transport any fluid:

ws · |F| ≥
∑
f∈F

xf,fp ,∀s ∈ S,∀fp ∈ P∧fp containing s (13)

Thus, the objective function of our model is:

Minimise : α
∑

1≤t≤|F|

zt + β
∑
s∈S

ws · ls. (14)

where α and β are adjustable weight coefficients, and ls is a
constant representing the length of the flow channel segment s.

F. Valve Reduction and Pressure Sharing

Valves are essential mLSI-components to guide fluid direc-
tions. To actuate a valve, we need to connect the valve via
control channels to a pressure inlet. Since an inlet usually
occupies much larger chip area than other on-chip components,
it is preferable to avoid redundant implementation of valves and
to make multiple valves share the pressure provided by the same
inlet. In this work, we propose a method to identify redundant



valves, and to allow other valves to share pressure so that the
number of required inlets is minimised.

Our switch design initially has a placeholder for valve on
every flow channel segment s ∈ S. However, we only need the
valve on s, when we need to temporarily block s to prevent
fluids in an adjacent segment of s from entering s. On the other
hand, if s is in the transportation path of all the fluids passing
through its adjacent segments, the valve on s can be removed.
Thus, given a switch design, for each segment s in the design,
we build a set Fs ⊆ F that contains all the fluids that need
to be transported by s, and a set As ⊆ S that contains all the
adjacent segments of s. We can derive that the valve on s is
redundant, if ∀a ∈ As, Fa ⊆ Fs.

For example, Fig. 3(b) shows an 8-pin switch design for the
transportation of four fluids. We denote the fluids as f1, f2,
f3 and f4, respectively. In particular, f2 and f3 branch from
the same origin by multiplexing and can thus be considered as
identical. For segment (C,R) in the design, F(C,R) = {f2, f4},
and A(C,R) = {(L,C), (C, T ), (C,B), (R,BR), (R,R2)}.
Further, F(L,C) = {f2} ⊆ F(C,R), F(C,T ) = {f4} ⊆ F(C,R),
F(C,B) = {f3} = {f2} ⊆ F(C,R), F(R,BR) = {f2} ⊆ F(C,R),
and F(R,R2) = {f4} ⊆ F(C,R). Thus, the valve on (C,R) is
redundant and can be deleted from the design.

After removing the redundant valves, we aim to control the
rest of the valves with the fewest inlets. To this end, we first
identify valves that can potentially share the same pressure.
This can be done by analysing the valve actuation status in
different time slots [2], [8]. Specifically, we can denote the
actuation status of a valve v in a time slot t as open, closed,
or irrelevant, among which open and closed conflict with each
other, and irrelevant is compatible with any status. If there is
no conflicting actuation status between two different valves in
all time slots, the two valves can potentially share the same
pressure.

We then build a graph model G = (V,E) to represent
the potential pressure sharing options, in which V is the set
of vertices representing valves, and E is the set of edges
representing a pair of valves that can share pressure. Thus, a
clique in G, i.e. a subset V ′ ⊆ V such that every two vertices
in V ′ are adjacent, represents a set of valves that can share
the same pressure. In this manner, we transform the pressure
sharing problem into a minimum clique cover problem, i.e. to
find the minimum number of inlets required to support the fluid
transportation, we just need to find the minimum number of
cliques to cover all the vertices in the graph. Since minimum
clique cover problems are in general NP-hard, we solve this
problem with integer linear programming (ILP). As minimum
clique cover is a well-researched graph problem, we omit the
the detailed variables and constraints for the ILP model.

IV. EXPERIMENTAL RESULTS

We implemented the proposed methods with C++ and solved
the mathematical models employing the Gurobi Optimizer [9]
on a computer with an Intel Core 2 Duo E8400 3.00 GHz CPU.
All test cases used for our experiments are from real-world bio-
applications [10]–[13]. In all the experiments, we fix the weight
coefficients α as 1 and β as 100.

TABLE I
SYNTHESIS RESULTS

Application # d type T(s) L(mm) #v #t #i

ChIP-1 [10] 9 12-pin 10865 13.6 6 2 2

nucleic acid p. [11] 7 8-pin 3 9.8 6 2 2

mRNA iso. [12] 10 12-pin 6665 17.8 8 2 2

#d: number of device pins; T : run time; L: flow channel length; #v:
number of valves; #t: number of time slots; #i: number of pressure inlets.
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Fig. 4. Comparison between the switch synthesised by our method and the
switch synthesised by Columba for three different applications: (a)(d) ChIP;
(b)(e) nucleic acid processor; (c)(f) mRNA isolation.

A. Comparison with conventional switch designs

We first synthesise three switch designs applying the unfixed
policy for different bio-applications with conflicting fluids. We
compare our switches with the switches synthesised by the
state-of-the-art physical design tool Columba for the same test
cases using the cloud platform of Columba [14]. Table I shows
the synthesis results of this work. Fig. 4 demonstrates the
fluid transportation paths in our switch design and shows the
comparison between the switches of this work and by Columba.

In general, for all three applications, our switches success-
fully support contamination-free transportation paths for all
the fluids, while the Columba switches fail to prevent fluid
contamination for the first two applications. Specifically, in the
ChIP application, there are two conflicting fluids from fluid



TABLE II
SYNTHESIS RESULTS APPLYING DIFFERENT BINDING POLICIES

Application #d type Policy T (s) L (mm)

ChIP-2 [10] 10 12-Pin
Fixed 0.2 180

Clockwise 30.4 154
Unfixed 3763.3 154

Kinase
Activity-1

[13]

4 8-Pin
Fixed 0.03 46

Clockwise 0.68 46
Unfixed 1.49 46

Kinase
Activity-2

[13]

5 8-Pin
Fixed 0.04 60

Clockwise 2.1 60
Unfixed 8.4 60

inlet i10 to mixer M2 and from fluid inlet i11 to mixer M3,
M4, and M5, respectively. In particular, the latter requires fluid
multiplexing. The transportation paths of the two fluids in our
switch design do not consist of overlapping nodes and thus
contamination is avoided, while the Columba switch routes all
fluids via the same spine and thus cannot avoid contamination,
as shown in Fig. 4(a) and (d), respectively. In the nucleic acid
processor application, the products of mixing operations are
conflicting fluids that need to be transported from each different
mixer to its corresponding chamber. Our switch avoids the
overlapping of all fluid transportation paths, while the Columba
switch suffers heavy contamination in the spine, as shown in
Fig. 4(b) and (e), respectively. We mark the segment that is
contaminated the most with red stripes, as every fluid needs to
pass through it. In the mRNA isolation application, conflicting
fluids need to be transported from RC1, RC2, RC3 and RC4
to fluid outlets p c1, p c2, p c3 and p c4, respectively. As
shown in Fig. 4(c) and (f), both our switch and the Columba
switch avoid the contamination, but the Columba switch cannot
support concurrent transportation of multiple fluids and thus
cannot transport the fluids as efficiently as our switch.

We can also notice that compared to the switches synthesised
by Columba, our switches have longer flow channels. However,
the additional channel segments not only allow us to avoid
fluid contamination, but also allow us to transport multiple
fluids concurrently: for all three applications, we were able to
transport all fluids in only two time slots. Besides, thanks to our
valve reduction and pressure sharing methods, we transport the
fluids with much fewer valves and pressure inlets. For example,
our switch for the ChIP application only require 6 valves and
2 pressure inlets, while the Columba switch requires 9 valves
and 9 pressure inlets.

B. Comparison of different Binding Policies

We further synthesise switch designs with different binding
policies, i.e. fixed, clockwise, and unfixed, for three applications
without conflicting fluids. For the fixed and the clockwise
policies, we define the binding variables and the binding orders
based on the position of the on-chip devices in the designs
synthesised by Columba. Table II shows the synthesis results.

In general, the fixed policy requires the least program run
time to synthesise the switch, but due to the confinement
of the solution space, it cannot always find the best fluid

transportation option. The clockwise policy also requires little
time for the synthesis. Besides, the synthesised switches support
comparable fluid transportation performance as the unfixed
policy. The unfixed policy has the largest solution space and
can thus always achieve the best performance among all three
policies. However, it may require more time for the synthesis.
To note is that most of the program run time is spent on proving
the optimality of the solutions but not on finding the solutions.

V. CONCLUSION

In this work, we propose a mathematical method to synthe-
sise contamination-free switch designs for mLSI applications.
Compared to the state-of-the-art methods, our method prevents
fluid contamination without prolonging the assay execution
time, enables concurrent transportation of multiple fluids to
improve the throughput, and reduces the number of valves and
pressure inlets required for the transportation.
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