
CoMUX: Combinatorial-Coding-Based High-Performance
Microfluidic Control Multiplexer Design

Siyuan Liang
The Chinese University of Hong Kong

Shatin, Hong Kong, China
siyuan.liang@link.cuhk.edu.hk

Mengchu Li
Technical University of Munich

Munich, Germany
mengchu.li@tum.de

Tsun-Ming Tseng
Technical University of Munich

Munich, Germany
tsun-ming.tseng@tum.de

Ulf Schlichtmann
Technical University of Munich

Munich, Germany
ulf.schlichtmann@tum.de

Tsung-Yi Ho
The Chinese University of Hong Kong

Shatin, Hong Kong, China
tyho@cse.cuhk.edu.hk

ABSTRACT
Flow-based microfluidic chips are one of the most promising plat-
forms for biochemical experiments. Transportation channels and
operation devices inside these chips are controlled by microvalves,
which are driven by external pressure sources. As the complexity of
experiments on these chips keeps increasing, control multiplexers
(MUXes) become necessary for the actuation of the enormous num-
ber of valves. However, current binary-coding-based MUXes do not
take full advantage of the coding capacity and suffer from the relia-
bility problem caused by the high control channel density. In this
work, we propose a novel MUX coding strategy, named Combina-
torial Coding, along with an algorithm to synthesize combinatorial-
coding-based MUXes (CoMUXes) of arbitrary sizes with the proven
maximum coding capacity. Moreover, we develop a simplification
method to reduce the number of valves and control channels in
CoMUXes and thus improve their reliability. We compare CoMUX
with the state-of-the-art MUXes under different control demands
with up to 10 × 213 independent control channels. Experiments
show that CoMUXes can reliably control more independent control
channels with fewer resources. For example, when the number of
the to-be-controlled control channels is up to 10× 213, compared to
a state-of-the-art MUX, the optimized CoMUX reduces the number
of required flow channels by 44% and the number of valves by 90%.

1 INTRODUCTION
Flow-based microfluidic biochips have become an increasingly
attractive platform for biochemical experiments during the past
decades [1, 2]. These coin-sized chips can incorporate many minia-
turized devices to carry out complex operations that are tradition-
ally performed in cumbersome laboratory instruments [3], and
therefore enjoy many advantages including small consumption of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549353

reagents, increased automation degree [4], and reduced manufac-
turing costs [5]. Such a chip consists of two layers: a flow layer
containing the flow channels and a control layer containing the
control channels. On-chip devices such as mixers and detectors
are connected by flow channels to transport the fluids. The fluid
transportation is controlled by microvalves [6, 7], which are tiny
switches built at the intersections of the flow channels and the
control channels. Figure 1(a) shows the 3D schematic of a valve
and the corresponding channel connections. In order to control the
fluid transportation, we can transport pressure from the control
port through the control channel to the valve. When the pressure
is low, fluids in the flow channel can safely pass the valve. In that
case, we say that the valve is open. By contrast, when the pressure
is high, the inflated control channel will squeeze the flow channel
and block the fluid movement. In that case, we say that the valve is
closed. Figure 1(b) shows the moment when a valve is closing and
separates the fluids into two parts.

A main challenge in the development of microfluidic biochips
is to reduce the dependency on external pneumatic controllers.
Specifically, fluids and pressure are transported between on-chip
and off-chip components via flow and control ports. A flow/control
port is a punch hole on the chip. Each port consumes remarkable
chip area and requires an external pneumatic controller. As the com-
plexity of experiments executed on microfluidic biochips increases,
the number of valves increases so significantly that it becomes
impractical to assign an independent control port to every valve.
Thus, using multiplexers (MUXes) to control the valves has become
a necessary choice [8, 9].

The structure of the MUX was first proposed by Thorsen et al.
[10] to address 2N flow channels individually with 2N control ports
based on binary coding. L. Fidalgo and S. Maerkl further proposed to
use flow channels to address control channels and thereby enabled
individual control of 2N valves with 2N flow ports [11]. Q. Wang
et al. proposed a method to optimize the switching order of valves
to enhance the reliability of MUXes [12]. Y. Zhu et al. proposed
a method named multi-control to synthesize application-specific
MUXes that address some control channels simultaneously. The
spared coding capacity is then used to introduce backup control
channels to improve the tolerance of control channel defects [13].

Despite the advances, current binary-coding based MUXes have
not taken full advantage of the coding capacity. As a result, they
require more channels and ports than necessary, which leads to area

https://doi.org/10.1145/3508352.3549353

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Liang, et al.

(a) (b)

Figure 1: (a) Three-dimensional schematic diagram of a
valve. (b) A closing valve separating the fluid in the flow
channel.

overhead and an excessive chip-to-world interface. For example, in
middle-scale designs, a MUX can easily consume about half of the
chip area [11, 14].

Moreover, control channels onmicrofluidic chipsmay have block-
age and leakage defects [15, 16]. The valve-switching method [12]
only improves the reliability of valves but cannot improve the relia-
bility of control channels; the multi-control method [13] introduces
backup channels which decrease the risk of blockage, but the in-
creased number of channels results in a higher risk of leakage.

In this paper, we propose the combinatorial coding strategy and
a new MUX design named combinatorial-coding-based multiplexer
(CoMUX). The CoMUX achieves the provably maximum coding
capacity and is more robust against valve and channel defects com-
pared to classic MUXes.

The rest of the paper is organized as follows: In section 2, we
introduce the working mechanism of a classic MUX and common
defects on microfluidic chips. In section 3, we formulate the MUX
design problem as a set problem, solve the problem with Sperner’s
theorem, and introduce the combinatorial coding strategy. In sec-
tion 4, we propose a method to design reliability-aware CoMUXes.
In section 5, we compare CoMUXes with classic MUXes and demon-
strate the advantages of our method.

2 BACKGROUND
2.1 Classic Microfluidic Control Multiplexer
Different from the flow circuits for bio-experiments, a MUX uses
the flow channels to address the control channels. Specifically, by
pressurizing flow channels, we can provide individual access from
the general control port to any control channel in the MUX.

A classic MUX uses 2N independent flow channels to address
up to 2N control channels. Figure 2 shows the structure of a small
classic MUX. The flow channels and control channels inside the
MUX are drawn with blue and green lines, respectively; valves are
drawn as green rectangles. In this structure, channels of the same
type are parallel to each other, and control channels are placed
perpendicular to flow channels. By default, an intersection between
control and flow channels cannot form a valve. Whether or not
a valve should be constructed at an intersection depends on the
coding strategy of the MUX.

The multiplexing mechanism in a classic MUX can be summa-
rized as follows:

Figure 2: Example of a classicMUX that uses 6flow channels
to individually address 8 control channels.

• Every control channel in the MUX is assigned with an index
from 0 to 2N − 1, denoted as its binary representation. For
example, in Figure 2, the index of control channel 3 is denoted
as 011.

• Every two flow channels in the MUX are combined as a pair.
A valve is implemented at the intersection between each
control channel and each pair of flow channels. Specifically,
the ith bit of the control channel index decides the position
of the valve between the control channel and the ith pair of
flow channels. If the bit is 0, the valve is at the intersection
with the first flow channel; otherwise, the valve is at the
intersection with the second flow channel.

• There are two potential pressure levels of each flow channel,
i.e., depressurized, denoted as O , or pressurized, denoted as
X . When a flow channel is depressurized, all valves along the
flow channel will be open; on the other hand, when a flow
channel is pressurized, all valves along the flow channel will
be closed. For example, in Figure 2, open valves are marked
with light green rectangles and closed valves are marked
with crossings and gray rectangles.

• Each pair of flow channels must have opposite pressure lev-
els. In particular, the pressure levels of the two flow channels
form a control bit: (OX) represents 0 and (XO) represents 1.
For example, in Figure 2, (OX)(XO)(XO) form a control se-
quence 011, which will close at least one valve in all control
channels except for control channel 3. In this manner, one
can address control channel 3 via the general control port
without affecting other control channels.

In general, a classic MUX uses a pair of flow channels to encode
one bit of the index information, i.e., (OX) and (XO), so that 2N
flow channels can encode 2N indices of control channels. However,
two flow channels can actually provide four combinations of the
pressure levels, i.e., (OO), (OX), (XO) and (XX). If we can develop
a coding strategy that takes advantage of the two wasted combi-
nations, we will be able to address more control channels with the
same resources.

2.2 Defects on Microfluidic Chips
Valves are fundamental components on microfluidic chips, and their
functional correctness is essential for the chip. A valve consists of a
flow channel segment, a control channel segment and a membrane

CoMUX ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

(a) (b)
Figure 3: Common channel defects [16]. (a) Leakage. (b)
Blockage.

in between. The flow channel segment of a valve has a round profile
so that when the control channel segment of the valve is pressurized,
it will push the membrane to fully block the flow channel. A valve
malfunctions when there is a flaw in the valve itself, or when the
control channel connected to the valve is defective.

On microfluidic chips, control channels usually have a smaller
feature size than flow channels and are thus more prone to defects.
In particular, there are two common types of control channel defects:
leakage and blockage [15, 16].

• Leakage means that two control channels are accidentally
connected, as shown in Figure 3(a). In this case, pressure
may leak from one channel to the other, causing unexpected
closure of valves.

• Blockagemeans that a control channel is accidentally broken,
as shown in Figure 3(b). In this case, pressure can no longer
pass the channel, causing valves along the channel not able
to be closed.

In general, the longer a channel is, the more likely that a channel
defect may happen. Besides, the probability of leakage between two
neighboring channels increases, as the distance between the two
channels decreases [15].

Since a MUX consists of many valves and control channels, relia-
bility is an important metric to evaluate a MUX design. To improve
the reliability, it is preferable to reduce the number of valves in the
MUX, to shorten the control channels, and to enlarge the spacing
distance between the control channels.

2.3 Problem Formulation
The problem can be formulated as follows:

Input : The number of to-be-addressed control channels

Output : The design of a MUX

Objective : 1. Fully exploit the coding capacity

2. Reduce the number of valves

3. Reduce the lengths and density of control channels

3 COMBINATORIAL CODING STRATEGY
3.1 Design Rules of the Coding Strategy
We define a code as a sequence of binary values {O,X } assigned
to a control channel in a MUX. The coding strategy of a MUX
indicates the way that the MUX is constructed. Specifically, for a
given control channel in a MUX:

• if the ith bit of its code isO , there is a valve at the intersection
between the control channel and the ith flow channel;

• if the ith bit of its code is X , there is no valve at the intersec-
tion between the control channel and the ith flow channel.

For example, a classic MUX usesOX (0) andXO (1) to encode one
bit of the control channel index, as introduced in Section 2.1. Thus,
the code of control channel 3 is OXXOXO (011), which indicates
that this control channel has three valves at its intersections with
the 1st, the 4th and the 6th flow channel, respectively, as shown in
Figure 2.

When designing the coding strategy, there are two rules that we
need to follow:

(1) Every control channel needs to have a unique code;
(2) When we trigger the code of a control channel, all valves

along that control channel must be open, while at least one
valve along every other control channel must be closed.

Here by triggering a code, we refer to the operation that we
pressurize/depressurize the flow channels in the MUX according
to the code, i.e., flow channels marked by O are depressurized, and
flow channels marked by X are pressurized. For example, to trigger
the codeOXXOXO , we pressurize the 2nd, the 3rd and the 5th flow
channels and depressurize the others. When we trigger a code, it
naturally opens all valves along the control channel addressed by
the code. Thus, in order to satisfy the coding rule (2), we just need
to make sure that the code also closes at least one valve along every
other control channel that is not addressed by that code.

To figure out the maximum number of control channels that
NF flows channels can address, we need to find out the maximum
number of feasible codes of length NF . To this end, for each code c ,
we construct:

• a set Tc ⊆ [1,NF] containing the indices of the flow channels
that are marked by X ;

• a set Tc = [1,NF]\Tc containing the indices of flow channels
that are marked by O .

For example, TOXXOXO = {2, 3, 5}; and TOXXOXO = {1, 4, 6}. We
can use c or Tc to represent a code interchangeably. In other words,
when we pressurize all channels in Tc , code c will be triggered. On
the other hand, if any channel in Tc is pressurized, at least one valve
in the control channel addressed by c will be closed. In this manner,
given Tc , Tc ′ , we can formulate the coding rule (2) as follows:

∀Tc ⊆ [1,NF] : ∀Tc ′ ⊆ [1,NF] ∃x ∈ Tc
⋂

Tc ′ . (1)

Specifically, Tc can feasibly address a control channel, if for every
other control channel (c ′) in the MUX, triggering c will pressurize
a flow channel x . This leads to at least one valve in that control
channel (c ′) being closed. Looking from the perspective of the sets,
this constraint can be further formulated as:

∀Tc ,Tc ′ ⊆ [1,NF] : Tc ⊈ Tc ′ . (2)

In other words, for any two control channels in the MUX, their
codes Tc and Tc ′ must not be subsets of each other.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Liang, et al.

Figure 4: A MUX applying the combinatorial coding strat-
egy can individually address 10 control channels with only
5 flow channels.

3.2 Sperner’s Theorem and Combinatorial
Coding Strategy

With the set model, we can see that themaximum coding capacity of
NF flow channels corresponds to the maximum number of subsets
of [1,NF] that do not include one another. More precisely, given
NF flow channels, our target is to construct the largest possible set
S, with

S := {Tc ⊆ [1,NF] | ∀Tc ′ ∈ S : Tc ⊈ Tc ′}.

This problem is a famous set problem that can be solved with
Sperner’s Theorem [17]. In Sperner’s Theorem, a family of subsets
that do not belong to each other is called a Sperner Family. In other
words, our target is to find the largest possible Sperner Family.
According to Sperner’s Theorem, given NF elements in the set:

• For every Sperner family S , |S | ≤ C NF⌈
NF
2

⌉ = C NF⌊
NF
2

⌋ .
• Equality in the above formula holds if and only if S consists
of all subsets whose size is

⌈
NF
2

⌉
, or all subsets whose size is⌊

NF
2

⌋
.

Thus, for a MUX with NF flow channels, the maximum coding
capacity is C NF

⌈
NF
2 ⌉

, equivalent to C NF

⌊
NF
2 ⌋

. This can be achieved by

enumerating all Tc with |Tc | =
⌈
NF
2

⌉
or all Tc with |Tc | =

⌊
NF
2

⌋
. It

is noteworthy that the larger |Tc | is, the fewer valves will be needed
on the channel. So we decide to enumerate all Tc with |Tc | =

⌈
NF
2

⌉
,

which is more valve-saving. Since this coding strategy enumerates⌈
NF
2

⌉
-combinations out of NF elements, we call it combinatorial

coding strategy.
For example, the maximum coding capacity of NF = 5 isC5

3 = 10,
i.e., 5 flow channels will be already enough to individually address
10 control channels in a MUX. To achieve the codes for each of
the 10 control channels, we just need to enumerate all subsets of
{1, 2, · · · , 5} with size 3, i.e., {1, 2, 3}, {1, 2, 4}, · · · , {3, 4, 5}. Based
on the codes, we can construct a MUX, as shown in Figure 4. Specifi-
cally, {1, 2, 3} corresponds to codeXXXOO and implies the leftmost
control channel, which can be individually addressed by pressuriz-
ing the 1st , the 2nd and the 3rd flow channels.

As we can see from the above example, different from the classic
coding strategy which pairs every two flow channels together and
sets them to either OX or XO , the combinatorial coding strategy

Figure 5: Comparison between different coding strategies.
The x-axis represents the number of flow channels. The y-
axis represents the maximum number of control channels
that can be individually addressed by the MUX.

allows neighboring flow channels to be set to both OO or XX
to fully exploit the coding capacity. Besides, while a classic MUX
requires an even number of flow channels, the combinatorial coding
strategy also supports MUXes with an odd number of flow channels.
This can be especially beneficial, when we need to increase Nf to
address a little more control channels. For example, to address
23 + 1 control channels, a classic MUX shown in Figure 2 has to
increase the number of flow channels from 6 to 8; but to address
C5
3 + 1 control channels, the design shown in Figure 4 only needs

to increase the number of flow channels from 5 to 6.
We compare the combinatorial coding strategy with the classic

coding strategy for MUX designs at different scales, as shown in
Figure 5. As we can see, the advantage of the combinatorial coding
strategy becomes very impressive, as the design scale increases. For
example, a classic MUX consisting of 20 flow channels can only
address 1024 control channels, while a MUX applying the combina-
torial coding strategy consisting of 20 flow channels can address
184, 756 control channels, which improves the coding capability by
180 times.

3.3 Improved Combinatorial Coding Strategy
Considering Valve Reduction

With the combinatorial coding strategy, we require NF flow chan-
nels to construct a MUX, when the number of the to-be-addressed
control channels NC falls in the range:

CNF−1
⌈
NF −1

2 ⌉
< NC ≤ CNF

⌈
NF
2 ⌉
.

When NF is relatively large, the gap between CNF−1
⌈
NF −1

2 ⌉
and CNF

⌈
NF
2 ⌉

can be quite significant. For example, C9
5 = 126 and C10

5 = 252,
which means that when the number of the to-be-addressed control
channels is in the range from 127 to 252, 10 flow channels are
needed to construct the MUX.

We notice that for NC in a given range, although the number
of flow channels is fixed, we may not need to implement the same
number of valves to address the control channels. For example,
suppose that NF = 10. If C10

6 < NC ≤ C10
5 , i.e., 210 < NC ≤ 252,

we need 5 valves along each control channel in the MUX. But when
C9
5 < NC ≤ C10

6 , i.e., 126 < NC ≤ 210, we can construct up to 210
different sets of Tc of size 6 to address NC control channels. As the
size of Tc represents the number of flow channels marked by X , i.e.,

CoMUX ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

flow channels that do not have valves at their intersections with
the corresponding control channel, the larger the size of Tc is, the
fewer valves we need to implement along each control channel in
the MUX. In other words, for 126 < NC ≤ 210, we actually only
need to implement 4 valves instead of 5 along each control channel,
and thereby can reduce the total valve usage by 20%.

In general, givenCNF−1
⌈
NF −1

2 ⌉
< NC ≤ CNF

⌈
NF
2 ⌉

, to addressNC control

channels, we do not always need ⌈
NF
2 ⌉ valves along each control

channel. Instead, we only need k valves as long as CNF
NF−k

≥ NC .
Note that CNF

NF−k
= CNF

k .

4 RELIABILITY-AWARE COMUX DESIGN
To be distinguished from the classic MUX, we refer to a MUX
applying the combinatorial coding strategy as a CoMUX. The com-
binatorial coding strategy allows one to enumerate a set of codes to
individually address every control channel in a CoMUX. However,
the strategy does not specify the order of the control channels. Thus,
based on the combinatorial coding strategy, we can design different
CoMUXes by exchanging the order of the control channels. In this
section, we propose a method to design the CoMUX. so that the
usage of valves and control channels in the CoMUX is minimized,
and thus the reliability of the CoMUX can be improved.

4.1 Selection of NF and k
Given a number of to-be-addressed control channels, denoted as
NC , we first need to determine the number of flow channels in
the CoMUX, denoted as NF , and the number of valves along each
control channel of the CoMUX, denoted ask . Specifically, we choose
the smallest possible NF with CNF

⌈
NF
2 ⌉

≥ NC , and then the smallest

possible k with CNF
k ≥ NC .

4.2 Potential of channel merging
Next, we construct an initial CoMUX design. The initial CoMUX
has a crossbar structure, which is similar to a classic MUX. Figure
4 shows an example CoMUX with NF = 5 and k = 2. We notice
that, some part of adjacent control channels can partially merge to
save valves and control channel lengths. Specifically, considering
1 ≤ i ≤ NF , two control channels can partially merge from the
intersections with the ith flow channel to the bottom of the MUX,
as long as the code bits from the ith bit to the N th

F bit are pairwise
identical. Take the 7th and the 8th control channels in Figure 4
as an example. The code of the 7th control channel is XOOXX ,
and the code of the 8th control channel isOXOXX . Since their last
three code bits (OXX) are identical, we can combine the channel
segments corresponding to these three bits to save one valve and
to save the channel length.

4.3 Algorithm for code generation
We develop a greedy algorithm to determine the codes of the control
channels from left to right in the initial CoMUX. The key idea of
the algorithm is to make the identical bottom parts of two control
channels as large as possible.

Instead of directly working on the codes of the control channels,
our algorithm works on the inverse of the codes. We define the
inverse code of code c as:

Ic := {NF − a + 1 |∀a ∈ Tc }.

which indicates the location of the valves along the channel, but
with a reverse index order.

In our algorithm, we first build up a listMEM of size k to enu-
merate the inverse codes. Suppose val(i) indicates the value stored
in the ith element.MEM is initialized with [1,2,...,k], i.e., val(i) = i ,
as our first inverse code. Then, we produce the next inverse code
based on the current inverse code stored inMEM , iteratively.

There are two functions in our algorithm: INCREASE andRESET .
For INCREASE, our algorithm always attempts to increase val(k)
by one. For RESET , our algorithm examines val(i) sequentially in a
reverse order from i = k to i = 1. If there is any specific jth element
such that val(j) + 1 < val(j + 1), we set all the val(i) from i = j to
i = k to val(j) + 1, val(j) + 2, ..., val(j) + k − j + 1.

Our algorithm performs INCREASE and RESET iteratively. For
each iteration, We repeatedly perform INCREASE until val(k) is
equal to NF , and then RESET follows. The entire algorithm ter-
minates when that last RESET is unable to find any specific jth

element such that val(j)+ 1 , val(j + 1). For each time INCREASE
or RESET is successfully executed, we obtain a valid inverse code,
which can be transformed back into a standard code.

4.4 Recursion relation of combination function
We propose to employ the recursion relation of the combination
function to efficiently generate the codes of the initial CoMUX. The
recursion relation of CNF

k is:

CNF
k = CNF−1

k +CNF−1
k−1

= CNF−2
k + 2CNF−2

k−1 +C
NF−2
k−2

= CNF−3
k + 4CNF−3

k−1 + 4C
NF−3
k−2 +C

NF−3
k−3

=

k−1∑
i=0

Ck−1i ·C
NF−(k−1)
k−i (3)

where Ck−1i is the binomial coefficient. It is worth mentioning that
NF − (k − 1) ≥ k is tautology, considering that the largest possible
value of k is

⌈
NF
2

⌉
.

With (3), we can break CNF
k into the summation of a series of

terms, and each term is a multiplication of two combination func-
tions. To generate the codes, we just need to apply the algorithm
that we propose in Section 4.3 to derive the inverse code for each
combination function.

Consider an example with NC = 20, NF = 6 and k = 3. CNF
k =

C6
3 = C

2
0 ·C

4
3 +C

2
1 ·C

4
2 +C

2
2 ·C

4
1 . With the introduced algorithm, we

can build an initial MUX design as shown in Figure 6(a).
For each multiplication of two combination functions, i.e.,Ck−1i ·

C
NF−(k−1)
k−i , the first function (binomial coefficient) determines the

first k − 1 bits of the inverse code, and the second function deter-
mines the last NF − (k − 1) bits of the inverse code. When the code

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Liang, et al.

(a)

(b)

Figure 6: CoMUX design of NC = 20. (a) The Initial CoMUX.
(c) Optimized CoMUX.

numbers of the two functions are both greater than one, we enu-
merate the second term first, such as C4

2 in C
2
1 ·C

4
2 in the example

shown in Figure 6(a), for the ease of channel merging.

4.5 Channel merging
Though our algorithm for code generation is inherently friendly for
channel merging, we still need to explicitly determine which group
of channels and how long the channel segments should merge.

We construct a list of size NC to record the group information
of each control channel. Initially, all control channels are set to
belonging to the same channel group.

We start the merging from the bottom and move row by row, i.e.,
per flow channel, to the top. Two valves can merge together if (1)
they are along the same flow channel, (2) they are on the adjacent
control channels, and (3) they still belong to the same channel group.
For a specific flow channel, if a control channel forms a valve with
it, while another control channel forms no valve with it, these two
channels will be assigned to different channel groups. It is worth
mentioning that two adjacent valves cannot merge if they already
belong to different groups.

Figure 6(b) shows the optimized CoMUX after channel merging.
Comparing with the initial CoMUX shown in Figure 6(a), we save
26 valves, i.e., 43.3% of the original valve usage, and 31.7% total
length of control channels.

Figure 7: Variation of performance metrics with NC for the
classic MUX and CoMUX. (a) NF . (b) The number of valves.

5 EXPERIMENTAL RESULTS
To demonstrate the performance of our method, we compare Co-
MUX to the classic MUX with two groups of experiments.

5.1 Experiments on resource usage
Given a number of to-be-addressed control channels, denoted as
NC , we evaluate the resource usage of CoMUX and the classic MUX
based on two metrics: the number of flow channels, denoted as
NF , and the number of valves, denoted as NV . In particular, the
number of flow channels is equal to the number of flow ports, which
also represents the number of the required external pneumatic
controllers. Thus, more flow channels not only indicates more area
consumption, but also a larger chip-to-world interface.

Our experiment starts from NC = 10 × 20, and we double NC
for every comparison until NC reaches 10 × 213, which is enough
to satisfy the control demand of current microfluidic applications.
The results of the comparisons are shown in Table 1 and Figure 7.

In general, CoMUX enables 37.5%–44.1% reduction in the num-
ber of flow channels. That is because a CoMUX can address CN

⌈ N2 ⌉

control channels with N flow channels, while with the same num-
ber of flow channels, a classic MUX addresses at most 2N control
channels. SinceCN

⌈ N2 ⌉
grows much faster than 2N , as shown in Fig-

ure 5, the reduction in flow channel usage becomes more significant,
as the number of to-be-addressed control channels increases.

As for valve usage, since the combinatorial coding strategy con-
tributes to a remarkable reduction in the number of flow channels,
and each flow channel incorporates many valves, an initial Co-
MUX design without structural optimization can already achieve
around 40%–60% reduction in the number of valves.With our design
method proposed in section 4, the optimized CoMUX can further
reduce the valve usage by up to 80% compared to the initial CoMUX
design. The reduction becomes more significant, as the number
of to-be-addressed control channels increases. In particular, for
the largest case, the optimized CoMUX only requires 10.8% of the
valves compared to a classic MUX.

5.2 Experiments on reliability against
manufacturing defects

We evaluate the reliability of CoMUX and the classic MUX based
on three metrics: the probability of valve defects, the probability
of control channel blockage defects, and the probability of control
channel leakage defects. Same as the settings in section 5.1, we

CoMUX ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Table 1: Resource Usage in different MUXes under different control demands.

Mux Type Performance Metrics Number of Control Channels (NC)
10 20 40 80 160 320 640 1280 2560 5120 10240 20480 40960 81920

Classic MUX
Number of Flow Channels (NF) 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Number ofMicrovalves (NV) 40 100 240 560 1280 2880 6400 14080 30720 66560 143360 307200 655360 1392640

CoMUX
Number of Flow Channels (NF) 5 6 8 9 10 11 12 13 14 15 16 17 18 19

Number ofMicrovalves (NV) initial 20 60 120 240 640 1280 3200 6400 15360 35840 71680 163840 321680 737280
optimized 14 34 55 110 234 459 982 1986 4142 8806 17132 36392 71011 150489

Figure 8: The (relative) probability of differentMUXes to suf-
fer from valve defects.

start from NC = 10× 20, and double NC for every comparison until
NC reaches 10 × 213. Since the risk of the blockage and leakage
defects is related to the lengths and the spacing distance of the
channels, we assume some physical parameters for the designs
of the MUXes. Specifically, we set the widths of the flow and the
control channels to 100µm and 30µm, respectively. Besides, we set
the distance between two flow channels as 1300µm, considering the
area consumed by the flow ports; and we set the distance between
two control channels as 400µm.

5.2.1 Performance against valve defects
We assume that valve defects are independent of channel defects,

and denote the probability that a defect happens to a random valve
as pvalve . Then, we calculate the probability Pv that a MUX suffers
at least one defective valve as follows:

Pv = 1 − (1 − pvalve)
NV . (4)

In our experiments, pvalve is set to 1 × 10−5.
We consider the classic MUX as the baseline design and denote

the probability that a classic MUX suffers at least one defective
valve as 1, Thus, the relative probability of a CoMUX that suffers at
least one defective valve can be calculated as the ratio of Pv of the
CoMUX to Pv of the classic MUX.

The results of the experiments are shown in Figure 8. When
NC < 4000, the probability of an initial CoMUX to suffer from
valve defects is always less than 60% of the baseline, and the proba-
bility of an optimized CoMUX to suffer from valve defects is even
much lower than the intitial CoMUX, thanks to the further reduced
number of valves. As NC becomes larger, the number of valves
increases quickly and thus all MUXes are more prone to defects.
Nevertheless, the optimized CoMUX is still more reliable than the
other MUXes.

5.2.2 Performance against blockage defects
As introduced in Section 2.2, the risk of blockage defects is pos-

itively correlated to the channel length. To test the performance
of different MUXes against blockage defects, we divide the con-
trol channel segments of the MUXes into small grid cells of size

Figure 9: The (relative) probability of differentMUXes to suf-
fer from blockage defects.

30µm × 30µm. For each grid cell, we model its probability of suffer-
ing a blockage defect. Specifically, we consider a grid cell to suffer a
blockage defect, if any cell along the control channel between this
cell and the control port suffers a blockage defect. In other words,
the farther away a grid cell is from the control port, the more likely
the grid cell is to suffer a blockage defect.

We denote the probability of a blockage randomly happening to
a cell as pblockaдe . In our experiment, pblockaдe is set to 1 × 10−7.
With this setting, the probabilities for classic MUXes with 10, 20
and 30 flow channels to have blockage defects are 0.088%, 5.5% and
93.3%, respectively. We consider the classic MUX as the baseline
design and denote the probability that a classic MUX suffers at least
one blockage defect as 1, and we calculate the relative probability
of the initial as well as the optimized CoMUXes to suffer blockage
defects corresponding to the baseline.

Figure 9 shows the results of the comparison. When NC < 4000,
thanks to the reduced channel lengths, the initial CoMUX reduces
the risk of blockage by around 40% compared to a classic MUX.
Moreover, the optimized CoMUX reduces the risk by up to 56% com-
pared to a classic MUX, thanks to the merging of control channels
in the bottom part of the CoMUX. As NC becomes very large, i.e.,
more than 20000, although the optimized CoMUX still has a better
performance, all MUXes become quite prone to defects. The high
defective rate results from the large number of control channels,
which cannot be simply addressed by optimizing the structure of
the MUXes. This also indicates that reliability may be a critical issue
for the scale up of microfluidic chips.

To demonstrate the distribution of the risk of blockage defects
in different MUXes, we synthesize three MUXes of different types
with NC = 20, and show the risk distribution as a heapmap in
Figure 10(a). Specifically, the control port is at the bottom of the
MUXes but not displayed in Figure 10(a). We can see that the risk
of blockage increases, as the distance between the channel segment
and the control port increases.

5.2.3 Performance against leakage defects

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Liang, et al.

Figure 10: Heatmap of probabilities of defects in different types of MUX when NC = 20.

Figure 11: The (relative) probability of different MUXes to
suffer from leakage defects.

As introduced in section 2.2, the probability of leakage between
two control channels increases, as the distance between the two
control channels decreases. Besides, as the channel length increases,
the risk of leakage increases. Nevertheless, the distance between
the two channels dominates the risk of leakage.

To test the performance of different MUXes against leakage, we
take each straight control channel segment in the MUX as the unit
of calculation. We assume that a control channel will only have
leakage with its neighboring control channel, and we model the
probability of leakage between two channels as:

Pl = pleakaдe × channel lenдth/distance2 (5)
pleakaдe is the unit probability, which is set to 1 × 10−6 in our
experiment. With this setting, the probabilities for classic MUXes
with 10, 20 and 30 flow channels to have leakage defects are 0.097%,
6.1% and 95.0% respectively. Still, we consider the classic MUX
as the baseline design and denote the probability that a classic
MUX suffers at least one leakage defect as 1, and we calculate the
probability of the initial as well as the optimized CoMUXes to suffer
leakage defects corresponding to the baseline.

Figure 11 shows the results of the comparison. In general, similar
to the experiments regarding blockage, both CoMUXes perform bet-
ter than the classic MUX, and the optimized CoMUX is more reliable
than the initial MUX. Still, as NC becomes very large, all MUXes
will be prone to defects. Considering that current microfluidic ap-
plications can be satisfied with a few hundreds of control channels,
CoMUXes show significant advantages in reliability compared to
classic MUXes.

Figure 10(b) demonstrates the distribution of the risk of leakage
defects in different MUXes with NC = 20. As we can see, the risk of
leakage defects distribute averagely in the classic MUX and in the
initial CoMUX. Since the optimized CoMUX significantly reduces
the density of the control channels close to the bottom control port,
the risk of leakage in the bottom part of CoMUX is quite small.

6 CONCLUSION
In this paper, we have proposed a new multiplexer, named CoMUX,
to address the valve control problem in flow-based microfluidic
chips. CoMUX employs combinatorial coding strategy based on
Sperner’s theorem to achieve the maximum coding capacity. With
NF flow channels, CoMUX can achieve the provenmaximum coding
capacity, i.e., CNF

⌈
NF
2 ⌉

, which is much larger than 2
NF
2 supported by

a classic MUX. We have also proposed a method for automatic Co-
MUX synthesis. To improve the efficiency of the synthesis, we apply
the recursion relation of combination functions. Our method en-
ables the merging of control channels and valves and thus improves
the reliability of the design. Experimental results have confirmed
that CoMUX significantly reduces the chip-to-world interface and
outperforms the classic MUX in terms of resource usage and relia-
bility.

CoMUX ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

REFERENCES
[1] K. Hu, K. Chakrabarty, and T.-Y. Ho, “Computer-Aided Design of Microfluidic
Very Large Scale Integration (mVLSI) Biochips.”, Springer, 2017.

[2] J. M. Perkel, “Life Science Technologies: Microfluidics-Bringing New Things to
Life Science.”, Science, 322.5903, (2008): 975–977.

[3] D. Erickson, D. Li, and U. J. Krull, “Modeling of DNA Hybridization Kinetics for
Spatially Resolved Biochips.”, Analytical biochemistry, 317.2, (2003): 186–200.

[4] H. Yao, Q. Wang, Y. Ru, T.-Y. Ho, and Y. Cai, "Integrated Flow-Control Co-Design
Methodology for Flow-Based Microfluidic Biochips," IEEE Design and Test of Com-
puters (IEEE DT), vol. 32, no. 6, pp. 60-68, December 2015.

[5] M. Kock, A. Evans, A. Brunnschweiler, “Microfluidic Technology andApplications.”,
Research Studies Press, Hertfordshire, UK, 2000.

[6] X. Huang, T.-Y. Ho, W. Guo, B. Li, U. Schlichtmann, “MiniControl: Synthesis of
Continuous-Flow Microfluidics with Strictly Constrained Control Ports.”, The 56th
Annual Design Automation Conference (DAC), 2019.

[7] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, "Storage and Caching: Synthesis
of Flow-based Microfluidic Biochips," IEEE Design and Test of Computers (IEEE DT),
vol. 32, no. 6, pp. 69-75, December 2015.

[8] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, U. Schlichtmann, “Reliability-Aware Synthe-
sis with Dynamic Device Mapping and Fluid Routing for Flow-Based Microfluidic
Biochips.”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35.12: 1981–1994.

[9] M. Shayan, S. Bhattacharjee, Y.-A. Song, K. Chakrabarty, R. Karri, “Toward Se-
cure Microfluidic Fully Programmable Valve Array Biochips.”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27.12: 2755–2766.

[10] T. Thorsen, S. J. Sebastian, and S. R. Quake, “Microfluidic large-Scale Integration.”,
Science, 298.5593, (2002): 580–584.

[11] L. M. Fidalgo and S. J. Maerkl, “A Software-Programmable Microfluidic Device
for Automated Biology.”, Lab on a chip, 2011, 11.

[12] Q. Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, Y. Cai, “Hamming-
Distance-Based Valve-Switching Optimization for Control-Layer Multiplexing in
Flow-Based Microfluidic Biochips.”, 2017 22nd Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), 524–529.

[13] Y. Zhu, X. Huang, B. Li, T.-Y. Ho, Q.Wang, H. Yao, R. Wille, U. Schlichtmann, “Mul-
ticontrol: Advanced Control-Logic Synthesis for Flow-Based Microfluidic Biochips.”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39.10:
2489–2502.

[14] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho, U. Schlicht-
mann, “Columba S: A Scalable Co-Layout Design Automation Tool for Microfluidic
Large-Scale Integration.”, The 55th Annual Design Automation Conference (DAC), 2018.

[15] K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, “Testing of Flow-Based Microfluidic
Biochips: Fault Modeling, Test Generation, and Experimental Demonstration.”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33.10:
1463–1475.

[16] K. Hu, T.-Y. Ho, K. Chakrabarty, “Test Generation and Design-for-Testability for
Flow-Based mVLSI Microfluidic Biochips.” 2014 IEEE 32nd VLSI Test Symposium (VTS)
IEEE, 2014.

[17] E. Sperner, “Ein Satz über Untermengen einer endlichen Menge.”, Mathematische
Zeitschrift, 27 (1928): 544–548.

	Abstract
	1 Introduction
	2 Background
	2.1 Classic Microfluidic Control Multiplexer
	2.2 Defects on Microfluidic Chips
	2.3 Problem Formulation

	3 Combinatorial Coding Strategy
	3.1 Design Rules of the Coding Strategy
	3.2 Sperner's Theorem and Combinatorial Coding Strategy
	3.3 Improved Combinatorial Coding Strategy Considering Valve Reduction

	4 Reliability-Aware CoMuX Design
	4.1 Selection of NF and k
	4.2 Potential of channel merging
	4.3 Algorithm for code generation
	4.4 Recursion relation of combination function
	4.5 Channel merging

	5 Experimental Results
	5.1 Experiments on resource usage
	5.2 Experiments on reliability against manufacturing defects

	6 Conclusion
	References

