
Adaptive Reachability Algorithms for Nonlinear
Systems Using Abstraction Error Analysis

Mark Wetzlinger∗, Adrian Kulmburg, Alexis Le Penven, Matthias Althoff

Department of Informatics
Technical University of Munich, Boltzmannstr. 3, 85748 Garching b. München, Germany.

Abstract

In many reachability algorithms for nonlinear ordinary differential equations

(ODEs), the tightness of the computed reachable sets mainly depends on ab-

straction errors and the choice of the set representation. One has to mitigate

the resulting wrapping effects by suitable tuning of internally-used algorithm

parameters since there exists no wrapping-free algorithm to date. In this work,

we investigate the fundamentals governing the abstraction error in reachability

algorithms—which we also refer to as set-based solvers—and its dependence

on the time step size, leading to the introduction of a gain order. This or-

der is related to measures for local and global abstraction errors and thus re-

lates the well-known concept of convergence order from classical ODE solvers

to set-based solvers. Furthermore, the simplification of the set representation

is tackled by limiting the Hausdorff distance between the original and reduced

sets; we demonstrate this for zonotopes. Both these theoretical advancements

are incorporated in a modular adaptive parameter tuning algorithm suited for

multiple classes of nonlinear ODEs whose efficiency is demonstrated on a wide

range of benchmarks.

Keywords: convergence order, gain order, parameter tuning, zonotope order

reduction, Hausdorff distance, reachability analysis, nonlinear systems,

∗Corresponding author
Email addresses: m.wetzlinger@tum.de (Mark Wetzlinger), adrian.kulmburg@tum.de

(Adrian Kulmburg), alexis.le-penven@polytechnique.edu (Alexis Le Penven),
althoff@tum.de (Matthias Althoff)

Preprint submitted to Nonlinear Analysis: Hybrid Systems August 9, 2022

differential-algebraic equations.

1. Introduction

Reachability analysis is a formal verification method for mixed discrete/con-

tinuous systems under the influence of uncertainty in the initial states, inputs,

and parameters, offering provable guarantees with respect to unsafe states. The

computation of exact reachable sets is only possible for a limited number of

system classes [1], thus most algorithms compute over-approximative reachable

sets in order to retain formal correctness. Despite the design of algorithms for a

multitude of system classes and the exploitation of block structures or subspace

behavior—all of which enhance the applicability of reachability analysis—the

performance of these algorithms still depends heavily on the correct tuning of

algorithm parameters. Poor tuning may result in large over-approximations and

can ultimately lead to spurious counterexamples, where a given safety property

cannot be verified even though a tighter over-approximation would be able to

do so. Therefore, the automated tuning of algorithm parameters constitutes a

crucial next step in the advancement of reachability algorithms, enabling non-

experts and practitioners to apply reachability analysis in their respective fields.

In this article, we address this demand by proposing an automated parameter

tuning approach for state-space-abstracted reachability analysis of nonlinear

ordinary differential equations and nonlinear differential-algebraic equations.

An integral part is the tuning of the time step size for which we thoroughly

investigate its effect on the error caused by abstracting the system dynamics

within the reachability analysis—an error that is well-studied for classical ODE

solvers but has not yet been examined in detail for reachability analysis.

Related work. There exist several approaches to compute reachable sets of non-

linear systems: By definition, any invariant set containing the initial set is also

a reachable set, thus approaches for invariant generation [2, 3, 4] can be used

for reachability analysis although the result may be unnecessarily conservative.

One can also obtain reachable sets by solving a reformulation of the original

2

problem to a Hamilton-Jacobi equation [5, 6], whose solution scales exponen-

tially with the system dimension. Another option is to obtain reachable sets

from validated simulations with the help of annotations, i.e., additional informa-

tion about the analyzed system [7], which also scales exponentially as one has to

cover the initial set by enough initial states. Current state-of-the-art approaches

for reachability analysis either abstract the solution space or the state space:

For solution space abstraction, the Picard iteration is lifted to set-based analy-

sis by representing reachable sets using Taylor models [8, 9, 10]. In state space

abstraction, the system dynamics are abstracted by a Taylor series and its cor-

responding Lagrange remainder to obtain a differential inclusion, ranging from

hybridization approaches [11, 12, 13, 14] to on-the-fly linearizations [15, 16, 17]

or polynomial abstractions [18]. The algorithmic differences between this group

and approaches based on solution space abstraction are extensive and impede a

joint parameter tuning framework for both groups. Hence, we will restrict our-

selves to approaches based on state space abstraction in this work. Nonetheless,

some of the presented ideas may be beneficial in the pursuit of similar auto-

mated tuning methods for any of the abovementioned methods. Many of the

presented approaches are implemented in specialized reachability tools, namely

Ariadne [19], C2E2 [20], CORA [21], DynIBEX [22], Flow* [23], Isabelle/HOL

[24], and JuliaReach [25].

Reachability algorithms require a suitable set representation balancing an ac-

curate representation of the reachable sets with computational efficiency of the

set operations. The main trade-off occurs between the closedness of operations

and the growth of the set representation size: As an example, the set representa-

tion size of ellipsoids is fixed, but they are not closed under the Minkowski sum,

whereas for zonotopes an exact result can be obtained at the cost of increas-

ing the representation size. This creates the need for so-called order reduction

methods [26, Sec. 3.4], [27, Sec. 3.2]; comparisons of these methods are presented

in [28, 29]. Essentially, two types of approaches exist: The majority of methods

computes an over-approximation that is as tight as possible for a desired (lower)

user-specified order. The alternative approach in [30, Thm. 3.2] reduces the or-

3

der as much as possible for a given bound of the induced over-approximation.

Many reachability algorithms depend on algorithm parameters that can be

tuned to achieve tighter approximations, at the cost of a longer runtime. Some

algorithms return tighter results than others for the same runtime, which offers

one way of comparison and allows for a categorization of classical ODE solvers

using the concept of consistency order [31, 32]. For set-based reachability anal-

ysis, an estimation for the accuracy and convergence of certain algorithms has

been performed in [33].

An open research question is how to automatically tune algorithm param-

eters for reachability analysis. This problem has been extensively studied for

classical ODE solvers, which led to a wide variety of different methods and

thorough investigations of stability and convergence [34]. Great effort has also

been devoted to the automated tuning of the time step size [35, 36], resulting in

powerful solvers, which are ubiquitously applied in research and industry alike.

As these solvers only compute approximations to the exact solution, a next step

was to enclose a single trajectory, for which guaranteed integration methods

provide several automated time step size control strategies [37, 38, 39].

In reachability analysis, automated techniques are scarce due to the pres-

ence of uncertainty in the initial state, input, and model parameters. This

severely complicates matters as the tuning of algorithm parameters does not

only comprise the time step size, but also effects related to a number of other

algorithm parameters, such as the set representation as well as any emerging

interdependency. For linear systems, there are approaches approximating the

actual flow within a user-defined error bound [40], or adapting the time step size

in each step in order to satisfy a linearly increasing, user-defined error bound

[41]. More comprehensive approaches [42, 43] adapt all algorithm parameters

using over-approximation measures related to the Hausdorff distance to enable

users to tune the desired accuracy. For nonlinear systems, adaptive methods

have been explored in [44], where the time step size is tuned within a user-

defined range. Another method [45] proposes iterative recomputations of the

reachable set from scratch, while refining the parameter values in discrete steps

4

in between runs. The work in [30] presents the first fully automatic reachability

algorithm for nonlinear systems, which not only optimizes the time step size,

but also other algorithm parameters such as the representation size.

Contributions. Our work is based on the adaptive parameter tuning approach

in [30], which is significantly enhanced in the following three ways:

1. We extend the zonotope order reduction method introduced in [30] by two

additional bounds for the Hausdorff distance between a zonotope and its

box over-approximation. .

2. While the analysis of the abstraction error in [30] was restricted to pa-

rameter tuning, we now dive a lot deeper into this topic: In order to lift

for the first time convergence orders of classical solvers to reachability al-

gorithms, we rigorously introduce a novel concept called gain order which

offers a similar yet more accurate description of the influence of the time

step size on local and global abstraction errors.

3. Our tuning methods are no longer restricted to only nonlinear continuous-

time systems as in [30], but can now also be applied to systems with

algebraic constraints, parametric uncertainties, and in discrete time.

This article is structured as follows: A summary of reachability analysis

for multiple nonlinear system classes is presented in Sec. 2. In Sec. 3, several

bounds on the Hausdorff distance between a zonotope and its reduced counter-

part are proven. Next in Sec. 4, we thoroughly analyze the abstraction error of

the reachability algorithm leading to the introduction of the gain order which

translates the concept of convergence order known from numerical ODE theory

to set-based solvers. Based on these theoretic novelties, the tuning modules

that constitute our adaptive parameter tuning approach are described in Sec. 5.

Finally, the evaluation of numerical examples in Sec. 6 demonstrates the prac-

tical usability of our tuning methods for a variety of nonlinear system classes,

followed by concluding remarks in Sec. 7.

5

2. Preliminaries

In this section, we recall reachability analysis for nonlinear systems based

on abstractions in the state space. This outline is particularly important for

the investigation of the abstraction error in Sec. 4 as well as for the adaptive

parameter tuning in Sec. 5.

2.1. Notation

We denote vectors by lower-case letters and matrices by upper-case letters.

An all-zero vector or matrix of proper dimension is represented by 0. For a

vector v ∈ Rn, |v| ∈ Rn is the element-wise computed absolute value and vi

returns the i-th entry of v. Analogously, mij refers to the entry in the i-th row

and j-th column of a matrix M ∈ Rn×p. We denote the concatenation of two

matrices M1 and M2 by [M1 M2]. The operation diag(v) returns a matrix with

v on its diagonal and otherwise zeros. The identity matrix of proper dimension

is denoted by I. Moreover, ∥M∥∞ refers to the matrix norm of M induced by

the infinity norm. All sets are represented by calligraphic upper-case letters:

We write B = [a, b] ⊂ Rn, where ∀i ∈ {1, ..., n} : ai ≤ bi, to denote an n-

dimensional axis-aligned box. Its diameter is defined by d
(
B
)
:= b − a ∈ Rn

and the absolute value by abs
(
B
)
:= [−c, c] ⊂ Rn, where c = max{|a|, |b|} is

evaluated element-wise [46, eq. (10)]. Furthermore, we abbreviate the Cartesian

product of identical lower and upper limits for n consecutive dimensions by

[a, b]n. We use upper-case boldface letters to represent interval matrices I =

[P,Q] ∈ Rm×n, where ∀i ∈ {1, ...,m},∀j ∈ {1, ..., n} : pij ≤ qij . For operations

on sets, we use ⊕ for the Minkowski sum, ⊖ for the Minkowski difference with

S1⊖S2 = {s|s+S2 ⊆ S1}, and introduce the operator ⊞ representing either the

Minkowski sum or the exact addition as defined in [47, Prop. 10]; additionally,

we define the operators center(S), box
(
S
)
, and vol

(
S
)
, which respectively

return the geometric center, the tightest axis-aligned box over-approximation,

and the volume of a set S ⊂ Rn. The radius of a set is defined as rad
(
S
)
:=

0.5
∥∥d(box(S))∥∥

2
. Additionally, Si = e⊤i S, with ei being the i-th basis vector,

6

denotes the projection of S onto the i-th axis. We also write conv
(
S1,S2

)
for

the convex hull of two sets S1,S2 ⊂ Rn. The floor operator ⌊k⌋ returns the

next smaller integer number k, the sign function is denoted by sgn(·), and the

Frobenius norm by ∥·∥F . The set N0 denotes the natural numbers including 0.

2.2. Reachability analysis of nonlinear systems using abstractions in the state

space

The presented techniques for automated parameter tuning are applied to

several classes of nonlinear systems, the most general of which are semi-explicit

index-1 differential-algebraic (DA) equations [48], which can be formulated as

ẋ(t) = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),
(1)

where f : Rn → Rn is a sufficiently smooth nonlinear function, x(t) ∈ Rn is

the state vector, y(t) ∈ Rna is the vector of algebraic variables, and u(t) ∈ Rm

is the input vector. Omitting the algebraic equation and algebraic variables

yields a standard nonlinear ordinary differential equation. Note that these also

encompass parametric systems: Each constant parameter can be defined as an

additional state with the dynamics ẋi(t) = 0 and each time-varying parameter as

an additional uncertain input. Moreover, we will consider discrete-time systems

xk+1 = f(xk, uk).

Let us introduce ξex(t;x(0), y(0), u(·)) as the solution of (1) at time t for the

initial values x(0) and y(0). Then, the exact reachable set Rex

(
[0, tend]

)
of (1)

over the time horizon t ∈ [0, tend] is given by

Rex

(
[0, tend]

)
=

{
ξex(t;x(0), y(0), u(·))

∣∣∣x(0) ∈ X 0, y(0) ∈ Y0 ,

t ∈ [0, tend],∀τ ∈ [0, t] : u(τ) ∈ U
}
,

(2)

with the initial sets X 0 ⊂ Rn,Y0 ⊂ Rna and the input set U ⊂ Rm. In this work

we use abstractions in the state space, where both f(·) and g(·) are abstracted

by a Taylor series of order κ at an expansion point z∗ [18, eq. (2)] [48, eq. (8)],

7

so that

ẋi(t) ∈
κ∑

ν=0

(
(z(t)− z∗)⊤∇

)ν
fi(ẑ)

ν!

∣∣∣∣
ẑ=z∗

⊕ L(x)
i (t) ,

0 ∈
κ∑

ν=0

(
(z(t)− z∗)⊤∇

)ν
gi(ẑ)

ν!

∣∣∣∣
ẑ=z∗

⊕ L(y)
i (t) ,

(3)

using the extended vector z = [x⊤y⊤u⊤]⊤ ∈ Rn+na+m and the Nabla operator

∇ =
∑n+na+m

i=1 ei
∂
∂zi

. The Lagrange remainders L(x)
i and L(y)

i are defined by

[18, eq. (2)] [48, eq. (8)]

L(x)
i (t) :=

{(
(z(t)− z∗)⊤∇

)κ+1
fi(ẑ)

(κ+ 1)!

∣∣∣∣ ẑ = z∗ + α(z(t)− z∗), α ∈ [0, 1]

}
,

L(y)
i (t) :=

{(
(z(t)− z∗)⊤∇

)κ+1
gi(ẑ)

(κ+ 1)!

∣∣∣∣ ẑ = z∗ + α(z(t)− z∗), α ∈ [0, 1]

}
,

(4)

and evaluated using range-bounding techniques such as interval arithmetic [49].

The time horizon [0, tend] is divided into time intervals τk = [tk, tk+1] with

the individual time step sizes ∆tk = tk+1 − tk > 0 summing up to tend. The

reachable set for the entire time horizon is obtained by unifying the sequence of

time-interval reachable sets R(τk). For notational simplicity, we introduce an

equivalent notation for the first terms in (3),

w
(x)
i = fi(z

∗), C
(x)
ij =

∂fi(ẑ)

∂ẑj

∣∣∣∣
ẑ=z∗

, D
(x)
ijk =

∂2fi(ẑ)

∂ẑj∂ẑk

∣∣∣∣
ẑ=z∗

, ...

w
(y)
i = gi(z

∗), C
(y)
ij =

∂gi(ẑ)

∂ẑj

∣∣∣∣
ẑ=z∗

, D
(y)
ijk =

∂2gi(ẑ)

∂ẑj∂ẑk

∣∣∣∣
ẑ=z∗

,

(5)

Alg. 1 summarizes the reachability algorithm for nonlinear DA systems featured

on-the-fly methods, such as the ones in [17, 18], which extends to hybridization

approaches [12, 16, 14] with minor adaptations. After its presentation, we will

discuss the simplifications that can be made for the other system classes men-

tioned at the beginning of this overview.

At the start of each step k (Line 4), the operation taylor evaluates both

Taylor series at the linearization point z∗ returned by the operation linPoint

(Line 3):

x∗ = center(R(tk)) +
1

2
∆tk f

(
center(R(tk))

)
,

u∗ = center(U), and y∗ ← 0 = g(x∗, y∗, u∗),

(6)

8

Algorithm 1 Reachability analysis of continuous-time nonlinear systems using

abstractions in the state space.

Input: nonlinear function f(z), time horizon tend, initial set R(t0) = X 0,

input set U ; only DA: algebraic equation g(z), initial algebraic set Ry(t0) = Y0

Output: reachable set R([0, tend])

1: k = 0, tk = 0

2: while tk < tend do

3: z∗(tk)← linPoint(R(tk), f,Ry(tk), g)

4: w(x), w(y), C(x), C(y), ...← taylor
(
f(z), z∗(tk)

)
5: w,A,B ← linSys(w(x), w(y), C(x), C(y))

6: Rlin(tk+1),Rlin(τk+1)← linReach(R(tk), w,A,B)

7: Ψ = 0

8: do

9: Ψ← enlarge(Ψ)

10: Ψ,Ry(tk+1)← abstrErr(Rlin(τk+1),Ψ, κ)

11: while Ψ ̸⊆ Ψ

12: Rabs ← abstrSol(Ψ)

13: R(tk+1) = Rlin(tk+1)⊞Rabs

14: R(τk+1) = Rlin(τk+1)⊞Rabs

15: R(tk+1)← red
(
R(tk+1)

)
,R(τk+1)← red

(
R(τk+1)

)
16: tk+1 ← tk +∆tk, k ← k + 1

17: end while

18: R([0, tend]) =
⋃k−1

j=0 R(τj)

where y∗ ∈ Ry(tk) is obtained by solving the algebraic equation using a Newton-

Raphson algorithm [48, Sec. IV-A]. Next, we abstract the nonlinear system by

a differential inclusion

ẋ(t) ∈ Ax(t) +Bu(t) + w︸ ︷︷ ︸
flin(t)

⊞Ψ, (7)

9

using the linearized vector field flin and an uncertainty set Ψ enclosing all higher-

order terms including the Lagrange remainder. The constant offset w, the state

matrix A ∈ Rn×n, and the input matrix B ∈ Rn×m are returned by the opera-

tion linSys [48, Sec. IV]:

w = w(x) − Ỹ Z̃−1w(y), A = Ã− Ỹ Z̃−1Ṽ, B = B̃ − Ỹ Z̃−1W̃,

using C(x) = [Ã Ỹ B̃], C(y) = [Ṽ Z̃ W̃],

where Ã ∈ Rn×n, Ỹ ∈ Rn×na , B̃ ∈ Rn×m, Ṽ ∈ Rna×n, Z̃ ∈ Rna×na , W̃ ∈

Rna×m. The reformulation in (7) allows us to apply the superposition prin-

ciple for linear systems and separate the computation of the next reachable set

R(tk+1) into two parts: First, the reachable set Rlin of the linearized dynamics

(Lines 4-6); second, the set of abstraction errors Rabs based on the abstraction

error Ψ [48, eq. (15)] (Lines 7-12). Let us briefly highlight an important dif-

ference between two groups of algorithms: Linearization algorithms [17] may

also use polynomial abstractions (κ ≥ 2) in (3), but the evaluation of all higher-

order terms until the Lagrange remainder loses the state correlation with respect

to the linear dynamics which results in an essentially linear approximation of

f(x) despite the polynomial abstraction. In contrast, polynomialization algo-

rithms [18] retain the state correlation in the evaluation of all time-constant,

higher-order (κ ≥ 2) terms in (3) allowing for a truly polynomial abstraction.

For simplicity, we will restrict the remainder of this overview to linearization

algorithms; the extension to polynomialization algorithms can be found in [18].

The operation linReach (Line 6) returns the reachable set Rlin using a

reachability algorithm for the linearized dynamics Ax(t) +Bu(t) +w, e.g., [50,

Sec. 3.2]. The computation of the abstraction error Ψ requires to resolve the

mutual dependency between Ψ and Rlin. To this end, we initially estimate Ψ to

be Ψ (Line 7) and use the operation enlarge to enlarge this set by a constant

factor greater than 1 (Line 9) until the containment Ψ ⊆ Ψ (Line 8) is ensured.

Within this loop, the set Ψ is iteratively computed using the operation abstrErr

(Line 10), which depends on the correlation of the state x with the abstraction

error [17, Prop. 1] [18, Sec. 4.1]. The algebraic reachable setRy(tk+1) is obtained

10

as a byproduct [48, Prop. 2]. Next, the operation abstrSol (Line 12) computes

the set of abstraction errors based on Ψ by [17, Sec. VI.]

Rabs =

ηabs⊕
p=0

∆tp+1

(p+ 1)!
ApΨ⊕E(∆t, ηabs)∆tΨ, (8)

with the remainder of the exponential matrix [51, Prop. 2]

E(∆t, η) = [−E(∆t, η), E(∆t, η)],

E(∆t, η) = e|A|∆t −
η∑

i=0

(
|A|∆t

)i
i!

,
(9)

where E = O(∆tη+1) for ∆t→ 0.

By exploiting the superposition principle in (7), the next reachable set

R(tk+1) is obtained by the addition of Rlin and Rabs (Lines 13-14). For reasons

of computational efficiency, we require to reduce the set representation size us-

ing the operation red(·) at the end of each step (Line 15). Then, we obtain the

next time-point solution as

R(tk+1) = red
(
eA∆tkR(tk)⊕ P(τk)︸ ︷︷ ︸

=:Rlin(tk+1)

⊞Rabs

)
. (10)

For later use, we expand the set Rlin obtained from the operation linReach into

its homogeneous and particular solutions, eA∆tkR(tk) and P(τk), respectively.

For the time-interval solution, we compute the reachable set of the linearized

dynamics Rlin(τk) using the convex hull of sets at the beginning and end of the

time interval and enlarge the result by an error set FxR(tk) with [50, Prop. 3.1]

Fx =

ηlin⊕
p=2

[
(p

−p
p−1 − p

−1
p−1)∆tp, 0

]Ap

p!︸ ︷︷ ︸
:=T(p)

⊕E(∆t, ηlin), (11)

which ultimately yields [17, Sec. IV.-A]

R(τk+1) = conv
(
R(tk), eA∆tkR(tk)⊕ P(τk)

)
⊕ FxR(tk)︸ ︷︷ ︸

=:Rlin(τk)

⊞Rabs(τk), (12)

assuming 0 ∈ U , with an extension to arbitrary inputs in [50, Sec. 3.2.2].

11

Finally, let us briefly highlight the algorithmic simplifications for the other

aforementioned system classes: The changes required to accommodate standard

ordinary differential equations follow directly by omitting each occurrence of the

algebraic equation. For discrete-time systems, we replace (7) by the following

difference inclusion

xk+1 ∈ Axk +Buk + w︸ ︷︷ ︸
flin(xk,uk)

⊞Ψ. (13)

The operation linReach (Line 6) therefore becomes the straightforward eval-

uation of flin(xk, uk). Next, the process of estimation and containment check

(Lines 7-11) is shortened to a single evaluation of the operation abstrErr on

the start set R(tk). The next time-point solution (Line 13) is computed by the

addition of Rlin and Ψ following directly from (13). Naturally, there is neither

a computation of Rabs (Line 12) nor of a time-interval solution (Line 14).

3. Hausdorff Reduction

Reachable sets are often represented by zonotopes because they are closed

under linear maps and Minkowski sums, and these operations can be computed

efficiently. Over subsequent steps of Alg. 1, the representation size of zonotopes

grows, necessitating order reduction. In this section, we will provide several

bounds so that the representation size of a zonotope can be reduced while sat-

isfying any desired over-approximation error. In comparison with our previous

work [30], we derive two more error bounds and also a novel generator selec-

tion criterion for the order reduction. Additionally, we provide insights into the

performance of each bound for different classes of zonotopes.

Let us first define zonotopes and the order reduction operation:

Definition 1. (Zonotopes) [26, Def. 1] Given a center c ∈ Rn and γ ∈ N

generator vectors G = [g(1) ... g(γ)], a zonotope is defined as

Z :=
{
x ∈ Rn

∣∣∣ x = c+

γ∑
i=1

αi g
(i) ,−1 ≤ αi ≤ 1

}
.

We also define its order by ρ := γ
n and the shorthand ⟨c,G⟩Z . □

12

For later use, let us also introduce the operations center(Z) = c and box
(
Z
)
=

⟨c,diag(
∑γ

i=1 |g(i)|)⟩Z returning a box over-approximation of Z. For order re-

duction, we select the method introduced in [26, Sec. 3.4], which is comprised

of the following steps:

1. Split the given zonotope Zfull into two parts Zfull = Z ′ ⊕Z.

2. Enclose Z by a tight box Zbox = box
(
Z
)
⊇ Z.

3. Compose the reduced zonotope as Zred = Z ′ ⊕Zbox ⊇ Zfull.

To quantitatively measure the error induced by the order reduction, we use the

Hausdorff distance:

Definition 2. (Hausdorff distance) For two compact sets V,W ⊂ Rn, the Haus-

dorff distance is defined as

dH(V,W) := max
{
d
(1)
H (V,W), d

(2)
H (V,W)

}
,

where

d
(1)
H (V,W) := max

v∈V
min
w∈W

∥v − w∥2

d
(2)
H (V,W) := max

w∈W
min
v∈V
∥w − v∥2. □

For subsequent deriviations, let us introduce a short lemma:

Lemma 1. For the compact sets S,V,W ⊂ Rn, the following inequality holds:

dH(S ⊕ V,S ⊕W) ≤ dH(V,W).

Proof. We only prove the inequality for d
(1)
H

d
(1)
H (S ⊕ V,S ⊕W) = max

v∈V
s(1)∈S

min
w∈W
s(2)

′∈S

∥v + s(1) − w − s(2)
′
∥2

≤ max
v∈V

s(1)∈S

min
w∈W

∥v + s(1) − w − s(1)∥2

= max
v∈V

min
w∈W

∥v − w∥2

= dH(V,W).

The reasoning is analogous for d
(2)
H . □

13

In the context of zonotope order reduction, Lemma 1 implies

dH(Zfull,Zred) = dH(Z ′ ⊕Z,Z ′ ⊕Zbox) ≤ dH(Z,Zbox),

which lets us restrict our attention to the computation of the Hausdorff distance

between the partial zonotope Z and its box over-approximation Zbox without

loss of generality. Computing the exact Hausdorff distance between two zono-

topes is NP-hard in general, since the Hausdorff distance between a point (rep-

resented by a zonotope without generators) and an arbitrary zonotope can be

reformulated as a longest vector sum problem [52]1; in fact, the work in [52]

even shows that this problem is APX-hard. Hence, in practice, we are limited

to finding bounds on the Hausdorff distance:

Theorem 1. Let Z = ⟨c,G⟩Z ⊂ Rn be a zonotope and Zbox := box
(
Z
)
=

⟨c,Gbox⟩Z ⊇ Z its box over-approximation. Due to the containment Z ⊆ Zbox,

the Hausdorff distance dH is given by

dH(Z,Zbox) = max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 . (14)

This distance is over-approximated by the following three bounds:

ωmax(Z) := 2
∥∥∥ γ∑
p=1

ĝ(p)
∥∥∥
2
, (15)

ωrad(Z) :=
γ∑

p=1

∥∥∥g(p)∥∥∥
2
, (16)

ωcut(Z) :=
√
2

γ∑
p=1

∥∥g(p)∥∥
2

√√√√√1−

∑n
i=1

(
g
(p)
i

)4

∥∥g(p)∥∥4
2

, (17)

with

ĝ
(p)
i =


∣∣g(p)i

∣∣, if i ̸= i∗,

0, otherwise,

(18)

where i∗ is the (first) index for which g
(p)
i∗ =

∥∥g(p)∥∥∞.

1This equivalence is easier to see using the arguments from [53, p. 268].

14

Proof. The proof can be found in Appendix A. □

The accuracy of the bounds ωmax, ωrad, and ωcut depends on the reduced

zonotopes: While ωrad performs better on average for random zonotopes, in

practice ωmax performs better for reachability analysis. This originates from

a bias of zonotopes in the reachability algorithm towards axis-aligned genera-

tors g(p) resulting in orthogonal ĝ(p). This bias can be explained by the fact

that on several occasions in the reachability algorithm, interval boxes are added

to the current solution. Reducing the order of zonotopes by using box over-

approximations further adds to this bias. The bound ωcut performs slightly

worse than ωmax in those biased cases. This can be seen by analyzing the ef-

fect of adding another generator g∗ to the zonotope. Two effects can influence

the performance of either bound: On the one hand, if g∗ is diagonal (i.e., if

the components of g∗ have the same length, as opposed to g∗ having only one

non-zero component), ωmax will grow larger than ωcut, meaning that ωmax will

perform worse. On the other hand, if ĝ∗ is orthogonal to the other vectors ĝ(p)

then ωmax performs better than ωcut.

In other words, ωmax performs better if generators are added that are axis-

aligned and orthogonal up to one component, which is the case for the generators

of an interval box. Nevertheless, the overall performance of ωcut is similar to

ωmax in low dimensions and significantly better in higher dimensions.

Since the computation (17) of ωcut contains the formula (16) for ωrad, we

combine both bounds to

ωrad,cut(Z) :=
γ∑

p=1

∥∥∥g(p)∥∥∥
2
min

1,
√
2

√√√√√1−

∑n
i=1

(
g
(p)
i

)4

∥∥g(p)∥∥4
2

 . (19)

In Fig. 1, we see that this new bound generally yields better results than ωmax as

it combines the advantages of ωcut and ωrad. Note that the joint bound ωrad,cut

performs better than either of the bounds ωrad and ωcut as the minimum in

(19) is taken generator-wise. A potential combination of all three bounds is

dismissed due to the resulting computational overhead.

15

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Order ρ

ω
−
ω
m
a
x

Dimension n = 3

ωrad,cut
ωcut
ωrad

0 10 20 30 40 50 60 70 80 90 100
−400

−300

−200

−100

0

Order ρ

ω
−
ω
m
a
x

Dimension n = 7

ωrad,cut
ωcut
ωrad

Figure 1: Comparison of ωrad, ωcut, and ωrad,cut to ωmax (i.e., ωmax coincides with the x-

axis), by computing each bound for 1000 zonotopes centered at the origin with generator

matrices that have random entries between −1 and +1, and taking the mean. Negative

values of ω−ωmax mean that the bound performs better than ωmax. One can see that for low

dimensions, the combination of ωrad and ωcut can lead to better results, which are comparable

to those of ωmax. For high dimensions, ωrad is typically much more precise than ωcut or ωmax.

Let us now provide a heuristic for generator selection, where we aim to

reduce as many generators as possible while respecting a given threshold for

the Hausdorff distance between the original and reduced set: Given a zonotope

Z = ⟨c,G⟩Z , we sort the generators in G ∈ Rn×γ using a cost function ϱ(g).

For ωmax, this cost function is

ϱmax(g) := ∥g∥1 − ∥g∥∞, (20)

originally proposed in [26]. For ωrad,cut, we exploit that the contribution of each

16

generator to ωrad,cut can be separated, yielding the cost function

ϱrad,cut(g) := ∥g∥2 min

1,
√
2

√√√√1−
∑n

i=1 (gi)
4∥∥g∥∥4

2

 . (21)

Note that the cost function ϱrad = ∥ · ∥2 is exactly the cost function described

in [27] and [54] to sort generators. However, since this is already computed

when evaluating (21), the analysis of the computational complexity and the

accuracy of ϱrad is similar to that of ϱrad,cut. We will utilize the presented novel

bounds for zonotope order reduction in our adaptive parameter tuning approach

in Sec. 5.3.

4. Gain Order of Set-Based ODE Solvers

We first recall some basics about the numerical approximation of ODE so-

lutions using classical solvers and discuss why an immediate transferability of

these concepts to reachability algorithms is inadequate. Afterwards, we will

outline our solution, which will be presented in the remainder of this section.

In classical ODE theory [34, 31], the quality of a numerical approximation

of an ODE

ẋ = f(x, t) (22)

is typically measured by the concept of convergence order :

Definition 3. (Convergence order of classical ODE solvers) Let ξex(∆t; t0, x0)

be the exact solution of (22) at time t0+∆t , with initial condition x(t0) = x0,

and let ξ̂(∆t; t0, x0) be an approximation of the exact solution at time t0 +∆t.

The convergence order (in short: order) of the solver is the number q ∈ N0, for

which the following inequality holds:

ε∆t,loc := |ξex(∆t; t0, x0)− ξ̂(∆t; t0, x0)| ≤ c∆tq+1, ∀t0, x0, (23)

where c is a constant that neither depends on t0, x0, nor ∆t, and ε∆t,loc is called

the local truncation error. □

17

The error (23) is a local measure as it only measures the error committed in a

single time step. To estimate the accumulated error over the entire time interval

[0, tend], let us denote by ξ̂N the approximation after N steps using the time

step size ∆t = tend/N . Then, the global error εN between the exact point

ξex(tend; 0, x0) and the approximation ξ̂N is bounded by [32, p. 318, Theorem

12.2]

εN = |ξex(tend; t0, x0)− ξ̂N | ≤ ĉ∆tq, (24)

where ĉ is a constant that depends on tend, but not on ∆t. Thus, the order

q provides an estimate on how small the time step size has to be in order to

achieve good approximations—low-order methods, such as the explicit Euler

method [31, Chapter 2] with order q = 1, will typically need much smaller time

step sizes than high-order methods like the third-order variant of Heun’s method

[31, Chapter 9.5] with order q = 3.

For set-based methods used in reachability analysis, this error estimation

cannot be generalized directly for several reasons:

� Difference between sets: Expressions such as |ξex(∆t; t0, x0)−ξ̂(∆t; t0, x0)|

in (23) are difficult to evaluate if ξex(∆t; t0, x0) and ξ̂(∆t; t0, x0) are re-

placed by their set-based analogues, i.e., the reachable set and some ap-

proximation that outputs a set.

� Wrapping effects: The magnitude of some approximation errors, pri-

marily due to wrapping effects, such as the iterative order reduction op-

erations discussed in Section 3, is independent of the time step size and

thus cannot be reduced by choosing a smaller time step size. Even worse,

reducing the time step size leads to a higher number of iterations and

might result in an overall larger error, which does not happen for classical

ODEs.

To address these problems, we propose a novel concept for the convergence order

of set-based solvers. Instead of focusing on a local truncation error ε∆t,loc, we

will define a gain function φ(t; δ) that measures the overall error for varying

18

time step sizes, and for which holds that

εN ≤ c∆t−1φ(tend;
1

N
), (25)

where εN is an appropriate measure for the global error of a set-based solver

and c is a constant that neither depends on ∆t nor N .

For conciseness, our subsequent analysis will only be applied to systems of

ordinary differential equations (22), where we will assume a smooth right-hand

side. Under certain simple assumptions, we will show that φ(tend;
1
N) ≤ 1/Nq+1

for some q ∈ N0 that may depend on the right hand side f of (22), leading to

the result

εN ≤ ĉ∆tq, (26)

where ĉ is a constant that depends on tend, but not on ∆t nor N . As a conse-

quence, the gain function φ(t; δ) allows us to mimic the result from (24) that

one can get via classical ODE theory, without having to analyze the precise

behavior of the local truncation error for each point in the initial set.

The next subsection Sec. 4.1 defines local and global abstraction errors of

set-based solvers, followed by an investigation of the local error over varying

time step sizes ∆t using a formal definition of the aforementioned gain function

in Sec. 4.2. Finally, we extend the obtained results from local to global errors

in Sec. 4.3. Most of the proofs are to be found in Appendix B to enhance the

fluidity of our presentation.

4.1. Errors of set-based ODE solvers

In order to define the notion of order for a given set-based solver, we need an

estimation of the local error that such a solver produces (similarly to Def. 3). We

focus our attention on the set of abstraction errors Rabs (8), which by definition

collects the approximation errors induced by Rlin in (10). This is comparable

to the work in [33]. More generally, we propose the following measure for the

local and global error:

Definition 4. (Errors of set-based solvers) Let R(∆t; t0,X 0) be a set-based

approximation for (22), with initial value x(t0) ∈ X 0 and time step size ∆t.

19

Using the abstraction error as defined in (8), we have that

R(∆t; t0,X 0) = R̂(∆t; t0,X 0)⊕Rabs(∆t; t0,X 0), (27)

where R̂(∆t; t0,X 0) is the approximation of the solution to the ODE (22). Let

R(tk) be the output after k ∈ {0, 1, ..., N} iterations of R and let R̂(tk) be the

output after iteratively using R̂ instead of R. Then, the local abstraction error

at time tk is defined as

εk,loc :=
∥∥∥d(box(R(∆t; tk,R(tk))⊖ R̂(∆t; tk,R(tk))

))∥∥∥
∞

=
∥∥∥d(box(Rabs(∆t; tk,R(tk))

))∥∥∥
∞
,

(28)

whereas

εN :=
∥∥∥d(box(R(tend)⊖ R̂(tend)))∥∥∥

∞
. (29)

is the global accumulated abstraction error over N steps. □

Similarly to classical ODE theory, the global error can be linked to the local

error in the following manner:

Lemma 2. (Local and global abstraction error) For solvers of the form de-

scribed in (10), the global abstraction error after N steps can be bounded by

the maximal local abstraction error as

εN ≤
c

∆t
max

1≤ℓ≤N
εℓ,loc (30)

for some constant c that may depend on tend, but not on ∆t nor N .

Proof. The proof can be found in Appendix B. □

4.2. The gain function

Now that we know how to quantify the error of a set-based solver, we inves-

tigate the behavior of the error for varying time step sizes ∆t. For simplicity,

we will drop the the arguments k, tk, t0, and X 0 for the rest of this section to

focus on the effect of ∆t on the local abstraction error. Moreover, for the sake

20

of simplicity, instead of working with the local abstraction error as defined in

(28), we will use the more accurate formulation

εloc =
∥∥∥d(box(R∞

abs(∆t)
))∥∥∥

∞
, (31)

where R∞
abs(∆t) is the non-truncated set of abstraction errors replacing (8), i.e.,

R∞
abs(∆t) =

∞⊕
p=0

∆tp+1

(p+ 1)!
ApΨ(∆t). (32)

While the local error (31) explicitly depends on the time step size ∆t, Ψ also

depends on the initial set X 0. The Taylor expansion of (31) entails that there

exist some non-negative integers qs and qt such that

εloc = ∆t

[
O(∆tqt) +O(d(X 0)qs)

]
(33)

for small enough ∆t and d(X 0), which is similar to classical ODE theory [31,

Chapter 9]. The error εloc can thus be decreased either by reducing the time

step size, or by splitting the initial set as in [33]. As Lemma 2 shows, the global

error εN is bounded by a term proportional to εloc. Its dependency on the set

size and the time step size is illustrated in Fig. 2: For classical solvers, we have

d(X 0) = 0 yielding the black curve which converges to εN = 0 for ∆t → 0.

In constrast, for set-based solvers we obtain a behavior like the red curve as

we evaluate εN (d(X 0),∆t) on a projection (indicated by the gray plane) at

d(X 0) = d∗ > 0. Crucially, this results in a value εN > 0 for ∆t→ 0.

The estimate (33) can be made independent of the right hand side f of the

ODE, up to a multiplicative constant depending on the smoothness of f (see for

example [31, Chapter 9.4]). Thus, it would allow one to separately define a time

order qt and a space order qs. However, these concepts of order are difficult to

measure locally as one would need to measure the combined error as a function

of several variables. In contrast, classical ODE theory only considers the local

error with respect to time.

Therefore, a different approach is more enticing: Instead of analyzing the

precise behavior of εloc as a function of time and space (as in [33]), we consider

its overall expansion over time by defining the following gain function:

21

Time step size ∆tSet size d(X 0)

G
lo
b
al

er
ro
r
ε N

(0,0,0)

εN (d(X 0),∆t) Cut at d∗ = d(X 0)

εN (d∗,∆t) εN (0,∆t)

Figure 2: Schematic evaluation of the local abstraction error εloc as a function of space (set

size d(X 0)) and time (time step size ∆t); two projections for d(X 0) = 0 (classical solvers) and

d(X 0) = d∗ > 0 (set-based solvers), resulting in the black and red curve, respectively, show a

different limit value in the limit ∆t → 0.

Definition 5. (Gain function) The gain φ(h; δ) over the time span h with rel-

ative increments δ ∈ [0, 1] is the function

φ(h; δ) = max
i∈{1,...,n}

φi(h; δ) with φi(h; δ) =
di
(
box

(
R∞

abs(δh)
))

di
(
box

(
R∞

abs(h)
)) , (34)

where R∞
abs(h) is computed by (32). □

If Ψ(h) in (32) is represented by a zonotope, the gain φ can be simplified using

the following Proposition:

Proposition 1. (Diameter of set of abstraction errors) Suppose Ψ(h) is given

as the zonotope ⟨c(h), G(h)⟩Z . Then we obtain

di
(
box

(
R∞

abs(h)
))

= 2

∞∑
p=0

hp+1

(p+ 1)!
∥ApG(h)∥1,i , (35)

where for a matrix M , ∥M∥1,i denotes the 1-norm of the i-th row of M .

22

Proof. The proof can be found in Appendix B. □

Following the result of Prop. 1, we can analyze the behavior of φ by examining

the behavior of the coefficients ∥ApG(h)∥1,i, for which we now present a more

concrete characterization:

Lemma 3. (Expansion of coefficients) Assume that the right-hand side f of

(22) is smooth. Then, G(h) is smooth, and for all p ∈ N0 and i = {1, ..., n}, the

coefficient ∥ApG(h)∥1,i may either be written as

∥ApG(h)∥1,i = hq
(p)
i ∥a(p)i + b

(p)
i (h)∥1, (36)

for some q
(p)
i ∈ N0, a

(p)
i ∈ R\{0}, b(p)i (h) = O(h), or as

∥ApG(h)∥1,i ≡ 0, (37)

in which case we use the convention that q
(p)
i = ∞, as well as a

(p)
i = 0 and

b
(p)
i (h) = 0. Furthermore, for all p ∈ N0 and i = {1, ..., n}, the function

Q
(p)
i (h) = |a(p)i + b

(p)
i (h)| (38)

is non-negative and piecewise smooth.

Proof. The proof can be found in Appendix B. □

We can now use this knowledge about the numerator and denominator defining

φ(h; δ) in order to investigate its behavior for h → 0, through which a certain

notion of order will arise naturally:

Theorem 2. (Limit gain) Suppose the right hand side f of (22) is smooth, and

for each p ∈ N0 and i = {1, ..., n} let a
(p)
i and q

(p)
i be defined as in Lemma 3.

Then for the gain in the i-th dimension φi(h; δ) there holds

lim
h→0

φi(h; δ) = δqi+1, (39)

where

qi = max

{
j ∈ N0

∣∣∣∣ ∑
p+q

(p)
i =j

|a(p)i | ≠ 0

}
. (40)

23

Note that the condition on j in (40) is met for a given j if and only if either

there does not exist a tuple (p, q
(p)
i) such that p + q

(p)
i = j, or if for any such

tuple there holds a
(p)
i = 0, i.e., [Ap(h)G(h)]i ≡ 0.

Proof. Using (35), we deduce by (36) that

di
(
box

(
R∞

abs(h)
))

= 2

∞∑
p=0

hp+1

(p+ 1)!
hq

(p)
i ∥a(p)i + b

(p)
i (h)∥1

= 2

∞∑
j=0

hj+1
∑

p+q
(p)
i =j

∥a(p)i + b
(p)
i (h)∥1

(p+ 1)!

Inserting this into (34) yields

φi(h; δ) =

∑∞
j=0 h

j+1δj+1
∑

p+q
(p)
i =j

∥a(p)
i +b

(p)
i (hδ)∥1

(p+1)!∑∞
j=0 h

j+1
∑

p+q
(p)
i =j

∥a(p)
i +b

(p)
i (h)∥1

(p+1)!

−→
h→0

δqi+1, (41)

where while passing to the limit we used the fact that b
(p)
i = O(h) together with

the assumption that ∑
p+q

(p)
i =qi

|a(p)i |
(p+ 1)!

̸= 0,

which is equivalent to (40). □

The quantities qi have the unique property that they can describe the overall

behavior of the error for different time step sizes. Consequently, they constitute

the basis of our concept of order:

Definition 6. (Gain order of set-based solvers) Let R be an approximation of

(22), and let qi be defined as above. Then q := mini qi is called the gain order

of the method, and qi is called the gain order of the i-th dimension. Note that

R yields zero abstraction error if and only if q =∞. This is because from (35)

it follows that the abstraction error is zero if and only if ∥ApG(h)∥1,i = 0 for

all p and i, which is equivalent to q =∞. □

We aim to show that, under certain simple assumptions, φ is monotonically

decreasing in h. This will be crucial in practice because it shows that even if

24

the global abstraction error does not decrease by O(∆tp) for some p ≥ 1 (where

∆t is the time step size), it does indeed decrease notably for smaller time step

sizes.

Proposition 2. (Derivative of gain) Let q
(p)
i and Q

(p)
i be defined as in Lemma 3,

and let qi be defined as in (40). Assume that all Q
(p)
i are differentiable at t = 0.

Then, for δ ∈ [0, 1], there holds

lim
h→0

dφi(h; δ)

dh
≤ 0. (42)

Furthermore, for fixed h, if ∀i ∈ {1, ..., n} and p ∈ N0 the value of Q
(p)
i (t) is

constant over t ∈ [0, h], then

φi(t; δ) ≤ δqi+1, ∀t ∈ [0, h], i ∈ {1, ..., n}. (43)

Proof. The proof can be found in Appendix B. □

As we have seen, the gain function provides an alternative way of estimating

the dependency of the local abstraction error with respect to the time step size,

and this estimation can describe non-integer orders by means of the function φ.

4.3. Global abstraction error via gain order

After estimating the local error using the gain function, we now want to

extend these results to an estimation of the global abstraction error. To do

so, we select h to be a fixed finite time horizon that we will use as a unit of

measurement, and through which we will comparatively observe the effect of

reducing the time step size ∆t < h. For some fixed δ ∈ [0, 1], by (42) we can

choose h to be small enough such that φ(t; δ) is decreasing on t ∈ [0, 2h]. By

(39), the limit of φ(t; δ) for t → 0 is δq+1, therefore on [0, 2h] there must hold

that φ(t; δ) ≤ δq+1. For t = h, this yields the relation

φ(h; δ) ≤ δq+1. (44)

The latter inequality holds even for relatively large h in practice, as we shall

discuss later on.

25

Since the gain φ provides an estimate for the variation of the local abstraction

error, φ depends on the step k just like εk,loc (28) does. Let φk denote the gain

function corresponding to step k.

From (30) it follows that the global error εN after N steps can be estimated

by

εN
(30)

≤ c∆t−1 max
1≤k≤N

max
i

di
(
box

(
R∞

abs(∆t; tk,R(tk))
))

Def. 5
≤ c∆t−1 max

1≤k≤N
φk(h;

1

N
)max

i
di
(
box

(
R∞

abs(h; tk,R(tk))
))

≤ c∆t−1 max
1≤k≤N

φk(h;
1

N
) max
1≤k≤N

max
i

di
(
box

(
R∞

abs(h; tk,R(tk))
))

(44)

≤ c∆t−1 1

Nq+1
max

1≤k≤N
max

i
di
(
box

(
R∞

abs(h; tk,R(tk))
))
.

From [18, (11)] it obviously follows that R∞
abs(h + tk; 0,X 0) ⊆ R∞

abs(2h; 0,X 0),

since tk ≤ h. Therefore, we can write

εN ≤ c∆t−1 1

Nq+1
R∞

abs(2h; 0,X 0)

which eventually yields a bound

εN ≤ c′∆t−1 1

Nq+1
.

Since N = h/∆t, we conclude that

εN ≤ ĉ(h)∆tq,

where ĉ(h) is a constant that depends on h, but not on ∆t norN . Consequently,

our definition of the order of a solver yields similar results to classical ODE

theory, except that φ(h; 1
N) can give even more precise information, e.g., non-

integer orders, about the local improvement one would get by decreasing the

time step size.

In practice, we will primarily use φ(h; δ) to determine an approximation of

εk,loc for small variations of ∆t. As we saw earlier, (42) implies that φ(h; δ) ≤

δq+1 if h is small enough, a restriction that can be loosened for larger h using

Prop. 2 under the assumption that AkG(h) in Prop. 1 does not vary much with

26

respect to h, as this would imply that the Q
(p)
i are constant. This assumption

holds as long as Ψ(h) does not vary much, which is true in practice as long as

the computation of Ψ(h) converges.

In the next section, we will make use of the gain function φ (see Def. 5), its

limit value (see Theorem 2), and its derivative (see Prop. 2 and the discussion

above) in order to construct an optimization function for the crucial tuning of

the time step size.

5. Adaptive Parameter Tuning Methods

In this section, we propose individual tuning methods to adaptively tune

each algorithm parameter used in Alg. 1. Fig. 3 provides an overview of the

reachable set computation within one time step, where arrows indicate the effect

of algorithm parameters on sets. All described tuning methods are modular,

that is, the algorithm parameters are adapted independently of one another.

The final composition of all tuning modules in an adaptive tuning algorithm

yields a general framework for state-space abstracted reachability algorithms

such as Alg. 1. Each tuning module can simply be exchanged for a different one,

e.g., if different reachable set computations or set representations are chosen.

We will generally omit the index k for the current step as all algorithm

parameters are adapted in each step. The remainder of this section describes

the individual tuning methods for the propagation parameters η (Sec. 5.1), the

abstraction order κ (Sec. 5.2), the set representation size ρ (Sec. 5.3)—all of

which are tuned by threshold conditions determining sufficient accuracy— and

the time step size ∆t (Sec. 5.4) obtained by solving an optimization problem

that minimizes the unavoidable over-approximation over a finite time horizon.

Finally, we introduce the automated tuning algorithm as an enhancement to

Alg. 1 in Sec. 5.5.

5.1. Propagation parameters

As schematically indicated in Fig. 3, the computation of the sets Rabs in (8)

and Rlin in (10)-(12) requires us to tune the order η of the finite Taylor series

27

(Linearized dynamics) (Higher-order terms)

R(tk)

Rlin(tk+1)

Rlin(τk) Ψ

Rabs

∆t

ηlin
κ

ρΨ

ρabs

ηabs

ρ(Next step)

Figure 3: Main workflow for one time step in Alg. 1 and the influence of algorithm parameters

on different sets (an arrow A → B means that A is used to compute B): The time step size

∆t affects both the linearized dynamics and the higher-order terms, while the abstraction

order κ only influences the latter. The propagation parameters η affect the precision of the

exponential matrix and the set representation parameters ρ represent the reduction operation,

which is applied to various sets within one step.

of the exponential matrix. The main idea is to exploit that the contribution

of higher-order terms eventually vanishes. As a consequence, we truncate the

respective Minkowski sums once the contribution of the additional term has

become small enough to determine the orders ηlin and ηabs.

The over-approximation error in Rlin(τk) is dominated by the error term

FxR(tk) [43, eq. (21)]. Thus, we tune ηlin using a fixed threshold 0 < ζT,lin ≪ 1

related to the influence of additional terms T(p)in (11):

ηlin = min
p∈N
p≥2

p such that 1− ∥T
(p−1)∥F
∥T(p)∥F

≤ ζT,lin. (45)

Using the same idea of comparing successive orders, we determine the order ηabs

by truncating the sum in (8) according to the criterion

ηabs = min
p∈N0

p such that max
i∈{1,...,n}

di
(
box

(
R(p+1)

abs

))
di
(
box

(
R(p)

abs

)) ≤ ζT,abs, (46)

with R(p)
abs denoting the sum in (8) truncated at order p and 0 < ζT,abs ≪ 1.

As both criteria (45) and (46) can be evaluated during the iterative com-

putation of the respective sets, the tuning itself yields negligible computational

28

overhead. Note that there are no propagation parameters in the reachable set

computation of discrete-time systems.

5.2. Abstraction order

According to Fig. 3, the abstraction order κ in (3) directly influences the

abstraction error Ψ and subsequently the set of abstraction errors Rabs. In

general, larger values of κ are computationally more demanding due to the eval-

uation of higher-order maps, but also decrease the size of the set of abstraction

errors Rabs.

For a linearization approach, we restrict the admissible values of the ab-

straction order to κ = {1, 2}, as the evaluation of cubic or higher-order maps

is highly over-approximative using zonotopes. In constrast, non-convex set rep-

resentations are closed under higher-order maps but significantly increase the

set representation size which cannot be handled by current reduction meth-

ods. Hence, the abstraction order for the polynomialization approach is fixed

to κ = 2.

We propose a two-step selection criterion to limit the computational over-

head:

1. The set of abstraction errors Rabs of the current step k is compared to

the one of the last comparison, denoted by k′. To establish a level playing

field, we estimate the size of Rabs(∆tk) for the time step size ∆tk′ using

the gain φ∗ based on (34). The condition∣∣∣∣φ∗ rad
(
Rabs(∆tk)

)
rad

(
Rabs(∆tk′)

) ∣∣∣∣ > 1− ζK , ζK ∈ (0, 1), (47)

decides whether we progress to the second step below. Informally, we

compare the sizes of the set of abstraction errors and only if the size

difference is large enough, the value for κ is re-tuned.

2. If the condition (47) is fulfilled, we also compute Rabs(∆tk) for the other

29

value of κ and decide the next value according to the following condition:

κ←

1, if ∀i ∈ {1, ..., n}with di(Rabs) > 0 : di(box(Rabs(κ=2)))
di(box(Rabs(κ=1))) ≥ ζK

2, otherwise.

(48)

The closer ζK is to 1, the more conservative the selection becomes, i.e., the

more often κ = 2 will be chosen resulting in both a tighter result as well as

longer computation times. For the first step, we use the initial set R(t0) = X 0

to compute Ψ and immediately evaluate (48) to compute the first abstraction

order κ. For discrete-time systems, we exploit two properties to greatly simplify

the computation: First, the abstraction error Ψ is used directly in the reachable

set computation replacing Rabs as seen in (13). Second, we do not need to

compensate for different time step sizes in subsequent steps so that we always

have φ∗ = 1 in (47).

5.3. Set representation

A reduction of the representation size can only avoid large over-approximations

if the reduction error is restricted by an upper bound. We utilize the two bounds

ωmax (15) and ωrad,cut (19) for the Hausdorff distance between the original zono-

tope and its reduced counterpart from Sec. 3. For either bound, we sort the

generators of Z in ascending order with respect to its respective cost function

ϱmax (20) or ϱrad,cut (21). Then, we select the first γ∗ ≤ γ generators, until we

reach the upper bound

γ∗∑
p=1

ϱ
(
g(p)

)
≤ ζZ

∥∥d(box(Z))∥∥
2
, (49)

where we use a fixed fraction 0 < ζZ ≪ 1 of the diagonal of the box over-

approximation of the original zonotope Z. The exact Hausdorff distance be-

tween the original and the reduced set is smaller than the left-hand side in (49)

by Theorem 1.

Our polynomialization approach is best used with a non-convex set repre-

sentation, where we choose polynomial zonotopes allowing us to exploit their

30

similarities to zonotopes which we extensively covered in Sec. 3. The reduc-

tion method for polynomial zonotopes described in [47, Prop. 10] is based on

zonotope order reduction, so that we can reuse the bound (49) to decrease the

representation size.

5.4. Time step size

Alg. 1 contains two main sources for over-approximation, both of which are

related to the time step size ∆t: First, we have the set of abstraction errors

Rabs whose behavior over ∆t has been thoroughly investigated in Sec. 4. By

decreasing the time step size, we reduce the size of Rabs and thus alleviate the

wrapping effect originating from the iterative addition of Rabs. Second, the

reduction operation induces another wrapping effect whose effect is diminished

by increasing time step sizes. Sec. 5.3 describes the error induced by a single

reduction operation, which we now have to consider over multiple steps.

In order to obtain a tight reachable set, we require to tune ∆t so that the

trade-off between both wrapping effects is optimized as shown in Fig. 4: The

start set is propagated over a finite time horizon h using different candidate

time step sizes ∆t(ι) = h
ι , ι ≥ 1. The optimal time step size ∆t∗ (gray sets)

balances both wrapping effects so that neither the set of abstraction errors Rabs

is too large (red sets) nor is the reduction operation applied too often (blue

sets)—both of which yield a larger set at time t+ h.

In order to efficiently solve the optimization problem in each step, we make

some design choices without which the comparison of different time step sizes

∆t(ι) would become infeasible in practice:

(a) We assume the system matrix A, i.e., the Jacobian matrix of f(x), to be

constant over [t, t+ h] and use A = A(t).

(b) We will neglect the particular solution P(τk) in the propagation formula

for the reachable set (10).

(c) For each ∆t(ι), we assume the set of abstraction errors Rabs(∆t(ι)) to be

constant over [t, t+ h] and use Rabs = Rabs(∆t(ι)) obtained at time t.

31

Start set at time t ∆t too small ∆t too large

Optimal ∆t

Sets at time t+ h

Figure 4: The optimal value ∆t∗ (gray sets) for the set propagation over a time horizon

[t, t + h] is obtained by balancing the wrapping effects: If ∆t is too large (red sets), the set

of abstraction errors Rabs is too large; if ∆t is too small (blue sets), the reduction operation

excessively increases the set size.

(d) We linearly interpolate the gain φ (34) between φ(∆t = h) = φ(1) and the

limit gain computed in Theorem 2 lim∆t→0 φ(∆t) = δq+1 to obtain

φ(∆t) ≈ ζδ +
φ(1) − ζδ

h
∆t, (50)

where we replace δ by the fixed value ζδ ∈ (0, 1) and choose the lowest or-

der q = 0, potentially underestimating the actual gain in order to prevent

the time step size from decreasing too much. We will use this interpolation

for all ∆t(ι).

Note that we will explicitly consider ι ∈ R to facilitate any candidate time

step size ∆t(ι) ∈ (0, h], which requires to take a last incomplete step of length

b∆t(ι) = (ι−⌊ι⌋)∆t(ι) into account in order to compare the resulting sets at the

same point in time as shown in Fig. 4. In addition to the given design choices,

we simplify the set-based evaluation to scalar values in three ways:

� The sizes of the start set R(t) and the set of abstraction errors Rabs(∆t(ι))

are approximated by their respective radii r0 = rad
(
R(t)

)
and r

(ι)
abs =

rad
(
Rabs(∆t(ι))

)
.

� The effect of the exponential matrix is captured by its determinant, which

32

over the entire finite horizon can be estimated by det(eAh) = etr(Ah),

leading to a scaling factor of

ζ
1
ι

A =
(
etr(Ah)

) 1
ι

(51)

for each partial step of length ∆t(ι). For the scaling of the last incomplete

step, we have ζ
b
ι

A.

� The enlargement caused by the zonotope order reduction is measured by

multiplying the radius with (1 + 2ζZ) following (49). The factor for the

last incompete step is (1 + 2ζZ)
b.

As only time-point solutions are reused in subsequent steps, we repeatedly

apply (10) to compute the reachable set after time h, omitting the particular

solution as stated in design choice (b):

R̃(t+h) = red
(
eAb∆t(ι)red

(
eA∆t(ι) ...red

(
eA∆t(ι)R(t)⊕Rabs

)
...⊕Rabs

)
⊕bRabs

)
,

(52)

where eA∆t(ι) and Rabs are scaled to eAb∆t(ι) and bRabs in the last incomplete

step. Based on the aforementioned simplifications, we now rewrite the set-based

formula (52) to a scalar estimate for the set size of the reachable set using the

recursive formula

rR(t+ j∆t(ι)) = (1 + 2ζZ)
(
ζ

1
ι

ArR(t+ (j − 1)∆t(ι)) + r
(ι)
abs

)
, (53)

which starts with the set size estimate at time t given by rR(t) := r0. To obtain

an estimate after time h, we apply the recursion ⌊ι⌋ times and then include the

last incomplete step:

rR(t+ h) = (1 + 2ζZ)
b ·(

ζ
b
ι

A (1 + 2ζZ)
[
ζ

1
ι

A ...(1 + 2ζZ)(ζ
1
ι

Ar0 + r
(ι)
abs)...+ r

(ι)
abs

]︸ ︷︷ ︸
(53)
= rR(t+⌊ι⌋∆t(ι))

+ b r
(ι)
abs

)
.

Summarizing the first ⌊ι⌋ steps yields

rR(t+h) = (1+2ζZ)
b
(
ζ

b
ι

A

[
r0(1+2ζZ)

⌊ι⌋ζ
⌊ι⌋
ι

A +r
(ι)
abs

⌊ι⌋∑
j=1

(1+2ζZ)
jζ

j−1
ι

A

]
+ b r

(ι)
abs

)
,

33

after which we include the last incomplete step and rearrange to

rR(t+ h) = r0(1 + 2ζZ)
ιζA + r

(ι)
abs ζA,Z(ι), (54)

where ζA,Z(ι) =

⌊ι⌋∑
j=1

(1 + 2ζZ)
b+j ζ

b+j−1
ι

A + b(1 + 2ζZ)
b

contains all factors of the term r
(ι)
abs.

Since the evaluation of (54) would require us to compute r
(ι)
abs for each ι

(which is obviously undesirable in practice due to the large computational over-

head), we approximate r
(ι)
abs utilizing design choice (d). Let us first define ι′ ∈ N

as the number of times h has been scaled by a fixed ζδ. Hence, ι = ζ−ι′

δ ∈ R is

the number of times ∆t(ι) divides into h and using

φ(j) = φ(ζj−1
δ h) = ζδ + (φ(1) − ζδ)ζ

j−1
δ , (55)

we obtain an estimate for r
(ι)
abs based only on r

(1)
abs and φ(1):

ι r
(ι)
abs = φ(1) · ... · φ(ι′) r

(1)
abs ⇒ r

(ι)
abs =

r
(1)
abs

ι

ι′∏
j=1

φ(j). (56)

One can also compute φ(1) given r
(1)
abs and r

(ι)
abs by solving the following implicit

equation for φ(1) based on combining (55)-(56), which will be used later on in

the tuning algorithm for ∆t:

φ(1) ·
(
ζδ + (φ(1) − ζδ)ζδ

)
· ... ·

(
ζδ + (φ(1) − ζδ)ζ

ι′−1
δ

)
= ι

r
(ι)
abs

r
(1)
abs

. (57)

Inserting (56) in (54) yields the cost function

rR(t+ h) = r0(1 + 2ζZ)
ιζA +

r
(1)
abs

ι
ζA,Z(ι)

ι′∏
j=1

φ(j), (58)

which we minimize to obtain the optimal time step size

∆t∗ = h ζ
ι′∗
δ where ι′∗ = argmin

ι′∈N
rR(t+ h). (59)

For the evaluation, we simply increase ι′ until the objective value rR(t+ h) in-

creases again as such a simple scalar formula does not require more sophisticated

algorithms.

34

As a final step, we have to determine the finite horizon h for the evaluation

of the cost function (58). The key element in the derivation of the optimiza-

tion problem is the approximative evaluation (56) of r
(ι)
abs based on the gain φ

(34). The proposed linear interpolation (50) reflects the actual progression of

φ over ∆t more accurately the closer the used gain φ(1) is to the limit gain

lim∆t→0 φ(∆t) = ζq+1
δ , see Cor. 2, which depends on the order q. Using a

threshold value ζh(q), we determine h by

h = min τ such that φ(1)(τ) ≥ ζh(q). (60)

Additionally, we restrict ζh(q) to be smaller than ζq+1
δ since this value is reached

from below for small values of ∆t as discussed in Sec. 4.3.

5.5. Automated parameter tuning algorithm

Let us now present Alg. 2, which enhances the reachable set computation

shown in Alg. 1 by the adaptive parameter tuning methods introduced in this

section. In order to reduce the computational effort, we utilize available infor-

mation from previous steps for the adaptation of the time step size ∆t and the

abstraction order κ.

First, we update the finite horizon h (Line 1) by the value in (60). Using

the finite horizon as the time step size ∆tk, we follow the procedure for the

computation of the sets Rlin and Rabs known from Alg. 1, where the operations

linReachAdaptive and abstrSolAdaptive contain the automated tuning of the

propagation parameters ηlin and ηabs as described in Sec. 5.1. For conciseness,

we comprise lines 7-11 from Alg. 1 by the operation abstrErrLoop. At the end

of this computation, the operation optDeltat computes the optimal time step

size ∆t∗, using the just computed value r
(1)
abs = rad

(
Rabs(h)

)
and the gain φ1

from the last step (Line 10). In the second iteration, we compute the sets Rlin

and Rabs using ∆tk = ∆t∗ and tune the abstraction order κ (Line 13) by the

operation tuneAbstrOrder, comprising the method from Sec. 5.2. Additionally,

we approximate the gain φ1 (Line 16) by implicitly solving (57), denoted by

the operator estimateGain, taking the estimates r
(1)
abs and r

(ι∗)
abs for the finite

35

Algorithm 2 Adaptively-tuned reachable set computation for one step k > 1

Input: nonlinear function f(z), algebraic equation g(z), start set R(tk),

algebraic start set Ry(tk), input set U , abstraction order κk, gain of last step

φ
(1)
k−1, finite horizon of last step hk−1, r

(ι∗)
abs,k′ of step k′ (last evaluation of

(48)), set of global parameters ζ

Output: R(tk+1),R(τk+1),Ry(tk+1), κk+1, hk, φ
(1)
k

1: hk ← hk−1
ζδ−ζh

ζδ−φ
(1)
k−1

, ∆tk ← hk

2: for a = 1 : 2 do

3: z∗(tk)← linPoint(R(tk), f,Ry(tk), g)

4: w(x), w(y), C(x), C(y), D(x), D(y) ← taylor
(
f(z), z∗(tk), κk

)
5: w,A,B ← linSys(w(x), w(y), C(x), C(y))

6: Rlin(tk+1),Rlin(τk+1)← linReachAdaptive(R(tk), w,A,B)

7: Ψ,Ry(tk+1)← abstrErrLoop(Rlin(τk+1),Ψ, κk)

8: if a = 1 then

9: Rabs(h), r
(1)
abs,k ← abstrSolAdaptive(Ψ)

10: ∆t∗ ← optDeltat(hk, φ
(1)
k , r

(1)
abs,k), ∆tk ← ∆t∗

11: else

12: Rabs(∆t∗), r
(ι∗)
abs,k ← abstrSolAdaptive(Ψ)

13: κk+1 ← tuneAbstrOrder(r
(ι∗)
abs,k, r

(ι∗)
abs,k′)

14: end if

15: end for

16: φ
(1)
k ← estimateGain(r

(1)
abs,k, r

(ι∗)
abs,k)

17: R(tk+1) = Rlin(tk+1)⊞Rabs(∆t∗), R(τk+1) = Rlin(τk+1)⊞Rabs(∆t∗)

18: R(tk+1)← redAdaptive
(
R(tk+1)

)
,R(τk+1)← redAdaptive

(
R(τk+1)

)
horizon and the optimal time step size, respectively, as input arguments. At

the end of the step, the reachable sets R(tk+1) and R(τk+1) are computed and

subsequently reduced by the operation redAdaptive, according to the method

described in Sec. 5.3.

For the time step size, we first decrease an arbitrarily initialized ∆t until the

36

condition in (60) is met, yielding h with the associated error Rabs(h) and its

scalar correspondence r
(1)
abs as well as φ(1) in the process. Then, the operation

optDeltat returns the optimal time step size ∆t∗, after which the remainder of

the step is executed as shown in Alg. 2.

Table 1: Setting of the global parameters ζ.

Approach ζT,lin ζT,abs ζZ ζK ζh(q = 0) ζh(q = 1) ζδ

Linearization 0.0005 0.005 0.0005 0.90 0.85 0.76 0.90

Polynomialization 0.0005 0.005 0.0001 — 0.80 0.80 0.90

Finally, let us briefly discuss the set of global parameters ζ introduced in

the respective tuning methods of the algorithm parameters in this section: Ta-

ble 1 shows the values to which all global parameters ζ have been fixed. The

first three ζT,lin, ζT,abs, and ζZ constitute threshold values representing sufficient

accuracy of the tuned set operation. The value of ζK is a similarity measure

for the comparison of two different abstraction orders. The final two values ζh

(depending on the order q) and ζδ allow us to determine the finite horizon and

candidate time step sizes for the optimization function tuning the time step size.

Further development of the proposed tuning methods may change the value of

a specific ζ, however, the current setting is justified by the tight reachable sets

obtained for a wide variety of different nonlinear systems as shown in the next

section.

6. Numerical Examples

In this section, we evaluate the adaptive parameter tuning approach pre-

sented in the previous section on all system classes introduced in Sec. 2. We first

analyze two selected benchmark systems from the ARCH competition [55, 56]

allowing us to compare our approach to expert-tuned state-of-the-art reacha-

bility tools. Then, a wide variety of different benchmark systems taken from

various sources [17, 44, 57, 58] is used to provide a general overview of the per-

37

formance. The adaptive parameter tuning approach was implemented in MAT-

LAB R2022a and evaluated on an Intel® Core� i7-9850 CPU @2.59GHz with

32GB memory. The following evaluation is based on [30], but considers more

configurations of the ARCH benchmarks and extends the additional benchmark

systems by including differential-algebraic and discrete-time systems.

6.1. ARCH benchmarks

In the ARCH competition, reachability tools compete with one another in

solving benchmark systems, where the computation time and an accuracy mea-

sure are used for evaluation. Due to the lack of automated parameter tuning,

each tool has to be tuned manually for each system. We select two benchmarks,

namely the production-destruction benchmark (PRDE20) and the Laub-Loomis

benchmark (LALO20), to assess the quality of our results in comparison with

state-of-the-art tools. Let us first introduce the PRDE20 benchmark.

Example 1. (PRDE20) This benchmark models a bio-geochemical reaction, de-

scribing an algal bloom transforming nutrients (x1) into detritus (x3) using phy-

toplankton (x2) [59, Sec. 3]. The dynamics presented in [55, Sec. 3.1.1] also con-

tain parametric uncertainty. Based on the initial state x(0) = (9.98, 0.01, 0.01)⊤

and the parameter a = 0.3, there are three configurations of this benchmark:

1. (Case I) Only uncertainty in the first initial state: x1(0) ∈ [9.50, 10.00].

2. (Case P) Only the parameter is uncertain: a ∈ [0.296, 0.304].

3. (Case I&P) Uncertainty in the first initial state and the parameter:

x1(0) ∈ [9.80, 10.00], a ∈ [0.298, 0.302].

The time horizon is tend = 100s. □

Due to the small size of the initial set X 0, a linearization approach already

yields tight reachable sets in all three cases. Fig. 5 shows the reachable sets

for case I, which serves as an illustrative example for the tuning of the algo-

rithm parameters. The projections show a sharp turn (in the time interval

38

t ∈ [10.6, 11.6]) imposing strongly nonlinear behavior which is both preceded

and succeeded by rather calm dynamics.

0 5 10

0

3

6

x1

x
2

0 3 6
0

5

10

x2

x
3

X 0 X 0

Figure 5: Projections of the reachable set R([0, tend]) of Example 1, case I. Initial set in red,

reachable sets in blue, single simulation runs in yellow.

Fig. 6 shows how the adaptive parameter tuning reacts to the change in

the degree of nonlinearity: The left graph plots the time step size ∆t over

time, which reaches its minimum value ∆t ≈ 0.012 during the sharp turn.

There, the optimization function reduces ∆t, thus decreases the abstraction

error in order to optimize the estimated over-approximation error at that time.

Afterwards, the value gradually increases towards its maximum value ∆t ≈

0.4, which exploits that the dynamics are better approximated in rather linear

regions, yielding small abstraction errors even for relatively large time step sizes.

The right graph plots the zonotope order ρ over time whose behavior can be

explained in a similar way: At the sharp turn, more generators have to be

kept in order to avoid inducing large over-approximations, yielding a maximum

zonotope order of ρ = 20. As a consequence of the calmer dynamics after the

sharp turn, the complexity of the shape decreases as we observe in Fig. 5: The

sets after the turn are much more straightened compared to the “bent” sets at

the time of the turn. This reduces the number of generators required for an

accurate representation of the set and thus lowers the zonotope order.

The propagation parameters ηlin and ηabs do not change much over time

as we have ηlin ∈ {4, 5, 6} and ηabs ∈ {2, 3}, where the respective maxima are

reached at the sharp turn. The tuning of the abstraction order κ results in

39

κ = 2 at the beginning until t ≈ 17.3 and κ = 1 for the remainder of the time

horizon, thereby confirming the rather linear dynamics after the sharp turn.

0 20 40 60 80 100
0

0.2

0.4

t

∆
t

0 20 40 60 80 100
0

5

10

15

20

t

ρ
Figure 6: Time step size ∆t and zonotope order ρ of Example 1, case I, over time.

Table 2 allows us to compare the results obtained by our adaptive parameter

tuning approach with state-of-the-art reachability tools for all three cases spec-

ified in Example 1. The obtained accuracy ranks among the best, even topping

the chart in cases P and I&P. The computation time is average in all cases,

partly caused by the speed discrepancy in programming languages as C++ and

Julia are known to operate faster than MATLAB. The comparison with CORA

in particular shows competitiveness since our computation is faster due to the

large ratio of the largest to the smallest time step size saving many time steps.

Next, we consider the Laub-Loomis benchmark.

Example 2. (LALO20) The dynamics of this benchmark [56, Sec. 3.3.1] repre-

sent changes in enzymatic activities introduced in [60, (1-7)]. The initial set is

given by X 0 = [x(0)−W,x(0)+W], where x(0) = (1.2, 1.05, 1.5, 2.4, 1, 0.1, 0.45)⊤

is enlarged by either of the uncertainties W ∈ {0.01, 0.05, 0.1}, representing con-

figurations of increasing difficulty. The time horizon is tend = 20s. □

While a linearization approach still suffices for small (W = 0.01) and mod-

erate (W = 0.05) sizes of the initial set X 0, the largest size (W = 0.1) can

only be solved using a polynomialization approach. For conciseness, we only

plot the time step size ∆t and the zonotope order ρ over time for all three cases

(W ∈ {0.01, 0.05, 0.1} in blue, black, and yellow, respectively) in Fig. 7: All

40

Table 2: ARCH benchmark PRDE20: Comparison of our approach with state-of-the-

art reachability tools in terms of computation time and the tightness measurement

µ = vol
(
box

(
R(tend)

))
as in [55].

Benchmark PRDE20

Tool (Language)
Case I Case P Case I&P

Time µ Time µ Time µ

Alg. 2 (Matlab) 10.8s 7.8e−21 12.4s 3.5e−24 18.6s 8.6e−24

Ariadne (C++) 8.6s 1.7e−13 79s 2.3e−17 39s 1.0e−13

CORA (Matlab) 16s 1.2e−21 28s 2.2e−23 28s 2.0e−23

DynIbex (C++) 12s 3.9e−17 13s 4.8e−17 26s 1.2e−17

Flow* (C++) 4.1s 8.0e−21 9s 1.4e−22 5.2s 4.8e−21

Isabelle/HOL (SML) 11s 3.3e−20 12s 7.3e−21 26s 2.6e−20

JuliaReach (Julia) 1.5s 3.3e−20 3.9s 6.5e−21 3.0s 1.0e−20

curves for ∆t increase similarly over time in multiple waves. We also note an

offset between the different configurations, showing that a smaller set size allows

larger time step sizes and vice versa. The curve of the zonotope order ρ for the

case W = 0.1 (yellow) differs from the one for W ∈ {0.05, 0.1} because the

polynomialization approach uses non-convex sets. The vertical drops of ρ are

caused by the restructuring operation [47, Prop. 17], where all independent gen-

erators are first reduced and then converted to dependent generators for reasons

of computational accuracy in subsequent steps. Using a linearization approach,

the curves for ρ reach their maximum at the end of the time horizon at values

of 10 and 20 for W = 0.01 and W = 0.05, respectively, which keeps the set

operations efficient without compromising the tightness of the reachable sets.

The evaluation of the LALO20 benchmark in both computation time and

accuracy is shown in Table 3, offering a similar picture as for the PRDE20

benchmark: Again, our computation times are only average across all tools,

mainly due to the costly evaluation of the abstraction error Ψ as well as the

computationally demanding reduction of the set representation size for the sys-

41

0 5 10 15 20
0

0.02

0.04

0.06

0.08

t

∆
t

0 5 10 15 20
0

50

100

150

200

t

ρ

Figure 7: Time step size ∆t and zonotope order ρ of Example 2 over time: Different cases

W = {0.01, 0.05, 0.1} in blue, black, and yellow, respectively.

tem dimension n = 7. In contrast, the accuracy is better than most others,

being co-leader for the smallest size W = 0.01 and second for the largest size

W = 0.1. This demonstrates the competitiveness of our adaptive parameter

tuning for both linearization and polynomialization approaches.

Table 3: ARCH benchmark LALO20: Comparison of our approach with state-of-the-art reach-

ability tools in terms of computation time and the tightness measurement µ = l4, where

l = d
(
box

(
R(tend)

))
as in [56].

Benchmark LALO20

Tool (Language)
W = 0.01 W = 0.05 W = 0.1

Time µ Time µ Time µ

Alg. 2 (Matlab) 3.9s 0.004 7.8s 0.049 91s 0.068

Ariadne (C++) 5.7s 0.01 11s 0.031 31s 0.071

CORA (Matlab) 1.9s 0.005 8.4s 0.035 38s 0.116

DynIbex (C++) 10s 0.01 27s 0.40 1851s 2.07

JuliaReach (Julia) 1.1s 0.004 1.5s 0.017 1.4s 0.033

Kaa (Python) 238s 22 253s 23 257s 49

42

6.2. Further benchmarks

After the detailed discussion of the ARCH benchmarks, we now analyze

the performance on a broader range of benchmarks, also including differential-

algebraic (DA) and discrete-time systems. Table 4 provides some information

about the benchmarks, such as the system dimension n and algebraic dimension

na as well as the time horizon tend and the initial set X 0. The benchmarks range

from standard models like the van-der-Pol oscillator over chaotic systems, such

as the Roessler attractor and Lorenz attractor, to higher-dimensional biologi-

cally and mechanically inspired models. Both differential-algebraic models are

power systems, namely a 3-bus system and a single machine infinite bus (SMIB)

system, where the algebraic equations originate from the network constraints.

The SMIB system has different dynamics for standard operation and fault sce-

nario caused by a loss in the network connection occurring at t ∈ [0.01, 0.02].

Finally, we discretized a six-dimensional water tank benchmark whose dynamics

are based on Toricelli’s Law using a time step size of ∆t = 0.05s.

The tightness of the reachable sets is quantified using two different metrics:

First, we provide the longest edge of the box over-approximation of the final set

R(tend), namely,

dmax = max
i∈{1,...,n}

di
(
box

(
R(tend)

))
. (61)

Second, we use the ratio of under-approximation to over-approximation pro-

posed in [68, Sec. VI.]

γmin = min
i∈{1,...,n}

di
(
box

(
Rsim(tend)

))
di
(
box

(
R(tend)

)) , (62)

where Rsim(tend) denotes the set of states at tend of 1000 simulation runs. The

tightness increases for γmin → 1 as the under-/over-approximation approach one

another. Space constraints prevent a detailed discussion of every result, which

is why we will discuss general tendencies as well as unexpected results.

Table 5 shows the results for all systems from Table 4 using a linearization

and a polynomialization approach with adaptively tuned algorithm parameters.

The linearization approach is by construction limited to systems with only mild

43

Table 4: List of considered benchmarks: n: system dimension, na: algebraic dimension,

tend: time horizon, X 0: initial set.

Benchmark n na tend X 0

Jet Engine [61, (19)] 2 − 8 [0.9, 1.1]n

van der Pol [17, Sec. VII] 2 − 6.74
(
[1.30, 1.50] [2.35, 2.45]

)⊤
Brusselator [44, Ex. 3.4.1] 2 − 5

(
[0.9, 1.0] [0.0, 0.1]

)⊤
Roessler [62, (2)] 3 − 6

(
[−0.2, 0.2] [−8.6,−8.2] [−0.2, 0.2]

)⊤
Lorenz [63, (25-27)] 3 − 2

(
[14.9, 15.1] [14.9, 15.1] [34.9, 35.1]

)⊤
Spring-Pendulum

4 − 1
(
[1.1, 1.3] [0.4, 0.6] [0.0, 0.1] [0.0, 0.1]

)⊤
[44, Ex. 3.3.12]

Lotka-Volterra [64, (1)] 5 − 5 [0.90, 1.00]n

Biological Model [65] 7 − 2 [0.99, 1.01]n

Genetic Model [66, (1)] 9 − 0.1 see [57, Sec. V.]

3-Bus [67, Sec. 4] 2 6 5
(
[379.90, 380.10] [0.69, 0.71]

)⊤
SMIB [58, Sec. 2.5.1.2] 2 4 0.23

(
[0.65075, 0.66675] [0.008, 0.008]

)⊤
Tank-DT [17, Sec. VII] 6 − 80

(
[1.8, 2.2] [3.8, 4.2] [3.8, 4.2]

[1.8, 2.2] [9.8, 10.2] [3.8, 4.2]
)⊤

nonlinearities, leading to low values of γmin for the Roessler attractor and the

van-der-Pol oscillator (similar results for the latter have already been discussed

in [47, Sec. 4]). The tightness is still satisfactory in most cases, especially

where γmin > 0.7. Moreover, the computation times and tightness measures are

similar over increasing system dimension, showing the scalability of our proposed

tuning methods. In contrast, the polynomialization approach yields both higher

computation times and improved accuracy according to the tightness measures

dmax and γmin. Both approaches exploit the range of different time step sizes of

1-2 orders of magnitude on average. The total number of steps in the analysis

is drastically reduced, thus significantly speeding up the computation compared

to fixed time step sizes.

For the linearization approach, the maximum zonotope order ρmax is often

rather low (between 10 and 20); for other cases, it should be noted that the

44

T
a
b
le

5
:
E
v
a
lu
a
ti
o
n
o
f
n
o
n
li
n
ea

r
b
en

ch
m
a
rk

sy
st
em

s
u
si
n
g
a
n
a
d
a
p
ti
v
el
y
tu

n
ed

li
n
ea

ri
za

ti
o
n
a
n
d
p
o
ly
n
o
m
ia
li
za

ti
o
n
a
p
p
ro
a
ch

es
:
[∆

t m
in
,∆

t m
a
x
]:
ra
n
g
e

o
f
ti
m
e
st
ep

si
ze
s,

ρ
m
a
x
:
m
a
x
.
zo

n
o
to
p
e
o
rd

er
,
d
m
a
x
a
n
d
γ
m
in
:
m
ea

su
re
m
en

ts
b
y
(6
1
)
a
n
d
(6
2
).

B
e
n
ch

m
a
rk

L
in
e
a
ri
z
a
ti
o
n

A
p
p
ro

a
ch

P
o
ly
n
o
m
ia
li
z
a
ti
o
n

A
p
p
ro

a
ch

T
im

e
[∆

t m
in
,∆

t m
a
x
]

ρ
m
a
x

d
m
a
x

γ
m
in

T
im

e
[∆

t m
in
,∆

t m
a
x
]

ρ
m
a
x

d
m
a
x

γ
m
in

J
et

E
n
g
in
e

2
.5
s

[0
.0
0
7
,0
.1
1
7
]

1
3
.5

0
.0
5
6
2

0
.5
5
9
4

1
1
.8
s

[0
.0
0
2
,0
.0
4
9
]

2
6

0
.0
3
9
5

0
.7
9
5
5

va
n
d
er

P
o
l

5
.5
s

[0
.0
0
2
,0
.0
5
1
]

1
6
.5

1
.7
9

0
.2
0
0
4

2
6
s

[0
.0
0
0
5
,0
.0
1
2
7
]

4
7
.5

0
.5
2
3
4

0
.6
6
2
1

B
ru
ss
el
a
to
r

2
.0
s

[0
.0
1
1
,0
.0
6
2
]

8
0
.5

0
.0
7
5

0
.7
9
0
1

9
.5
s

[0
.0
0
4
,0
.0
2
1
]

2
1
9
.5

0
.0
6
5

0
.9
4
6
9

R
o
es
sl
er

2
.7
s

[0
.0
0
6
,0
.0
4
7
]

1
0
.3
3

4
.3
4

0
.1
7
2
5

1
3
.7
s

[0
.0
0
2
2
,0
.0
3
2
8
]

2
0
.3
3

2
.4
7

0
.6
6
2
3

L
o
re
n
z

4
.1
s

[0
.0
0
0
4
,0
.0
0
9
8
]

1
0

0
.2
6
8

0
.8
3
3
7

1
0
.8
s

[0
.0
0
0
4
,0
.0
0
6
7
]

4
6

0
.2
3
7

0
.9
5
6
2

S
p
ri
n
g
-P

en
d
u
lu
m

4
.5
s

[0
.0
0
6
,0
.0
2
2
]

1
2
.7
5

0
.5
2
2

0
.6
4
8
4

1
0
.7
s

[0
.0
0
2
,0
.0
0
9
]

4
2
.7
5

0
.4
2
4

0
.7
8
8
4

L
o
tk
a
-V

o
lt
er
ra

1
.0
s

[0
.0
1
0
,0
.1
0
7
]

1
2
.2

0
.0
8
3

0
.8
7
2
2

4
.1
s

[0
.0
0
3
,0
.0
7
8
]

1
9
5
.2

0
.0
7
4

0
.9
7
9
4

B
io
lo
g
ic
a
l
M
o
d
el

1
.8
s

[0
.0
0
4
,0
.0
1
9
]

4
4
.7
1

0
.1
1
7

0
.7
1
1
5

1
0
.7
s

[0
.0
0
1
,0
.0
0
8
]

1
8
2
.1
4

0
.0
9
4

0
.9
1
6
3

G
en

et
ic

M
o
d
el

0
.7
s

[0
.0
0
0
5
,0
.0
0
2
3
]

6
5
.5
5

0
.7
9
3
9

2
.7
s

[0
.0
0
0
2
,0
.0
0
1
0
]

3
7
.1
1

5
.3
0

0
.9
5
0
9

3
-B

u
s

4
.3
s

[0
.0
1
5
,0
.0
5
4
]

1
3

2
.2
8

0
.6
7
9
1

−
−

−
−

−

S
M
IB

3
6
s

[0
.0
0
0
0
5
,0
.0
0
2
0
0
]

6
.5

0
.0
0
0
4

0
.3
0
5
9

−
−

−
−

−

T
a
n
k
-D

T
1
3
s

fi
x
ed

to
0
.0
5

2
8
.6
7

0
.6
2
4
6

0
.7
5
1
7

4
7
s

fi
x
ed

to
0
.0
5

3
5
.5

0
.6
0
4
4

0
.7
6
8
9

45

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−0.05

0

0.05

x1

x
2

0.656 0.659 0.662

0

0.002

0.004

x1

x
2

0.663 0.6655 0.668

−0.0069

−0.0065

−0.0061

x1

x
2

Figure 8: Reachable sets of the SMIB system, see Table 4, over the full time horizon (top),

at the start (bottom left), and at the end (bottom right). The divergence from the initial

set (red) is caused by the fault scenario, after the return to the normal operation mode the

system behavior stabilizes. The reachable sets (blue) are largely covered by single simulation

runs (yellow).

highest order may only last for a few steps as shown in Fig. 6 and therefore

does not pose major problems to the efficiency of the computations. For the

polynomialization approach, higher zonotope orders are reached because the

reduction of polynomial zonotopes is too over-approximative to allow for sub-

stantial reductions. This also entails an increase in computation time since

the set operations then become more costly for larger set representation sizes,

as well as an increase in accuracy, where we note that five systems reach a

value of γmin > 0.9. This leads to the conclusion that the reduction of the

set representation within the polynomialization approach is its limiting factor.

46

Our adaptive parameter tuning would greatly benefit, especially for polynomial

zonotopes, from improvements in order reduction techniques similar to our con-

siderations presented in Sec. 3 for (linear) zonotopes, as updated methods can

simply replace existing ones due to the modularity of our tuning framework.

Finally, we discuss the results for the DA systems, for which there does not

yet exist a polynomialization approach. The evaluation of both DA systems

does not show major differences to standard nonlinear systems, except for the

high computation time and low tightness measure γmin for the SMIB system.

Fig. 8 shows the reachable sets, putting the low value for γmin in perspective,

as the enclosure of the simulated trajectories is still tight. In the discrete-time

example, the time step size is fixed by definition, yielding a total number of

2000 steps. The suitability of the remaining tuning methods is shown by the

fairly low value for ρmax and high value for γmin.

In summary, our evaluation shows that the presented methods for adaptive

parameter tuning allow us to obtain tight reachable sets in a broad variety of

different systems. Due to the fully automatic tuning, the computation of the

reachable sets is executed in a single run as opposed to the many trial-and-error

runs in manual tuning.

7. Conclusion

We presented the first fully-automatic reachability algorithm for nonlinear

systems. To this end, the fundamentals of the two main wrapping effects in

reachability analysis of nonlinear systems have been thoroughly investigated:

First, we presented an exhaustive derivation of various bounds for the Hausdorff

distance between a zonotope and its box over-approximation, with associated

generator selection strategies for the order reduction of zonotopes. Second, a

rigorous examination of the set of abstraction errors accounting for higher-order

nonlinearities led to the introduction of a gain order which describes the effect

of the time step size on the local and global abstraction error in the analysis.

These theoretical insights were then utilized in our adaptive parameter tuning

47

algorithm, most notably for the derivation of an optimization function to tune

the time step size. The evaluation on multiple nonlinear system classes showed

competitiveness with state-of-the-art reachability tools, as well as an efficient

computation of tight reachable sets in a variety of further benchmark problems.

Our approach requires no longer expert knowledge about the reachability al-

gorithm, which greatly simplifies the usage of reachability analysis in a broad

variety of possible applications.

Appendix A. Proof of Theorem 1

Let us express each point xbox ∈ Zbox as

xbox = M (1)|g(1)|+ ...+M (γ)|g(γ)| ,

where each M (p) is a diagonal matrix with diagonal entries µ
(p)
i ∈ [−1, 1] where

i ∈ {1, ..., n}. The function ∥xbox − x∥2 is convex w.r.t. µ
(p)
i allowing us to

restrict our attention to the cases where µ
(p)
i ∈ {−1, 1}, since by the Bauer

maximum principle (see [69]), the maximum of a convex function over the poly-

tope [−1, 1]γn is always reached at one of its vertices, i.e., some element of

{−1, 1}γn. Let us write the difference between any xbox ∈ Zbox and x ∈ Z as

xbox − x =
(
M (1)|g(1)| − α1g

(1)
)
+ ...+

(
M (γ)|g(γ)| − αγg

(γ)
)

(A.1)

where ∀p ∈ {1, ..., γ} : αp ∈ [−1, 1]. Note that the minimum of ∥xbox − x∥2
w.r.t. αp does not have a closed-form formula in general [70, Sec. 9]. However,

one can obtain a bound on xbox−x by choosing a specific αp for each g(p). The

bounds ωmax (15), ωrad (16), and ωcut (17) are obtained by different choices for

αp and subsequently derived in detail:

Bound ωmax: Let us start with the following choice for αp:

αp = µ
(p)
i∗ sgn

(
g
(p)
i∗

)
, (A.2)

with an individual i∗ for each p as in Theorem 1. Consequently, we can eliminate

the largest possible entry in

v(p) = M (p)|g(p)| − αpg
(p), (A.3)

48

for which we obtain the bound

v
(p)
i ∈


[
− 2|g(p)i |, 2|g

(p)
i |

]
, if i ̸= i∗

0, otherwise,

which we can rewrite to v
(p)
i ∈ [−2ĝ(p)i , 2ĝ

(p)
i] using (18). Applying (A.2) to each

generator, we obtain the bounds

xbox − x = v(1) + ...+ v(γ) ∈ [−2ẑ, 2ẑ] ,

where ẑ = ĝ(1) + ...+ ĝ(γ) and ultimately,

∥xbox − x∥2 ≤ ∥2ẑ∥2 = 2∥ẑ∥2 .

The above bound holds for any xbox ∈ Zbox, which fulfills the assumption of

[30, Lemma 3.1] and thus proves that dH(Z,Zbox) ≤ ωmax.

Bound ωrad: Another way to choose αp is to find an optimal minimum of

∥v(p)∥2 defined in (A.3) w.r.t. αp and then use the inequality

∥xbox − x∥2 ≤
γ∑

p=0

∥∥v(p)∥∥
2
.

Since the exact minimum of ∥v(p)∥2 equal to the minimum of ∥v(p)∥22, we in-

sert (A.3) into the squared expression, differentiate w.r.t αp, and solve for αp,

yielding the minimizer

α∗
p =

∑n
i=1 µ

(p)
i sgn(g

(p)
i)

(
g
(p)
i

)2

∥∥g(p)∥∥2
2

.

By inserting the expression for α∗
p back into (A.3), one obtains

min
x∈Z

∥∥v(p)∥∥
2
=

∥∥g(p)∥∥
2

√√√√√√1−


∑n

i=1 µ
(p)
i sgn(g

(p)
i)

(
g
(p)
i

)2

∥∥g(p)∥∥2
2


2

.

Since we maximize this expression w.r.t. µ
(p)
i ∈ {−1, 1} and v(l) does not

depend on any µ
(p)
i if p ̸= l, we can replace expressions such as µ

(p)
i sgn(g

(p)
i) by

49

µ̂
(p)
i ∈ {−1, 1}, which yields

max
xbox∈Zbox

min
x∈Z
∥xbox−x∥2 ≤ max

µ̂
(l)
i ∈{−1,1}γ

γ∑
p=0

∥∥g(p)∥∥
2

√√√√√√1−


∑n

i=1 µ̂
(p)
i

(
g
(p)
i

)2

∥∥g(p)∥∥2
2


2

.

Each summand depends on exactly one µ
(p)
i , thus the sum and the maximum

commute, yielding

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=0

∥∥g(p)∥∥
2

√√√√√√1− min
µ∈{−1,1}n


∑n

i=1 µi

(
g
(p)
i

)2

∥∥g(p)∥∥2
2


2

.

(A.4)

To get a new bound on the Hausdorff distance, we can therefore restrict ourselves

to finding a lower-approximation of

Cp := min
µ∈{−1,1}n

[
n∑

i=1

µi

(
g
(p)
i

)2
]2

= min
µ∈{−1,1}n

n∑
i=1

n∑
j=1

µiµj

(
g
(p)
i

)2 (
g
(p)
j

)2

.

(A.5)

Using the trivial estimate Cp ≥ 0, we can simplify (A.4) to

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=1

∥∥∥g(p)∥∥∥
2
,

which proves that ωrad is a valid over-approximation of the Hausdorff distance.

Bound ωcut: For our final bound, we reformulate (A.5) to

Cp = min
µ∈{−1,1}n

n∑
i=1

(
g
(p)
i

)4

+

n∑
i=1

n∑
j=1
i̸=j

µiµj

(
g
(p)
i

)2 (
g
(p)
j

)2

.

Since µi ∈ {−1, 1}, and thus ∀i, j = {1, ..., n} : µiµj ≥ −1, we deduce that

Cp ≥ 2

n∑
i=1

(
g
(p)
i

)4

−
∥∥g(p)∥∥4

2
,

which yields

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=1

∥∥∥g(p)∥∥∥
2

√√√√√2− 2

∑n
i=1

(
g
(p)
i

)4

∥∥g(p)∥∥4
2

,

proving that ωcut is also an over-approximation of the Hausdorff distance. □

50

Appendix B. Proofs for Sec. 4

Proof of Lemma 2. (inspired by [32, p. 318, Theorem 12.2], with a few

adaptations due to the set-based nature of the computations)

For simplicity, we will ignore all order reduction operations. In that case,

adding an arbitrary zonotope Z centered at 0 to the initial set X 0 does not

influence the expansion point z∗ (see (6)), thus the set of particular solutions

P([t0, t0+∆t]) is unaffected (see also [50, Eq. (3.5)]). Since Rabs(∆t; tk,R(tk))

is either a zonotope centered at the origin, or can w.l.o.g. be over-approximated

by one, by Def. 4 we can write

∀k ∈ {0, 1, ..., N} : R(tk+1) = eA∆tR(tk)⊕ P(τk)⊞Rabs(∆t; tk,R(tk)),

(B.1)

R̂(tk+1) = eA∆tR̂(tk)⊕ P(τk). (B.2)

Crucially, both (B.1) and (B.2) share the same term P(τk). Therefore, the

global abstraction error εk+1 after k+ 1 steps defined in Def. 4 may be written

as

εk+1 =
∥∥∥d(box(R(tk+1)⊖ R̂(tk+1)

))∥∥∥
∞

(B.1)
and (B.2)

=
∥∥∥d(box(eA∆tR(tk)⊕ P(τk)⊞ Rabs(∆t; tk,R(tk))⊖ eA∆tR̂(tk)⊖ P(τk)

))∥∥∥
∞

P(τk)⊖P(τk)={0}
=

∥∥∥d(box(eA∆t(R(tk)⊖ R̂(tk))⊞ Rabs(∆t; tk,R(tk),∆t)
))∥∥∥

∞
Triangle ineq.

≤
∥∥∥d(box(eA∆t(R(tk)⊖ R̂(tk))

))∥∥∥
∞

+
∥∥∥d(box(Rabs(∆t; tk,R(tk))

))∥∥∥
∞
.

With a few simple calculations one can show that In order to make this

bound independent of ∆t, we can use the fact that
∥∥∑∞

i=0
Ai+1∆ti

(i+1)!

∥∥
∞ is con-

tinuous w.r.t. ∆t, and is thus Lipschitz continuous over the bounded domain

∆t ∈ [0, tend] with a Lipschitz constant L̂ ≥ 0 that may depend on tend but not

∆t. Combining this again with ∆t ≤ tend, we obtain a bound∥∥∥ ∞∑
i=0

Ai+1∆ti

(i+ 1)!

∥∥∥
∞
≤ L̂∆t ≤ L̂tend =: L,

51

where L is now a constant that is independent of ∆t. This implies the following

iterative bound on εk+1:

εk+1 ≤ (1 + L∆t)εk + εk,loc.

From this point onwards, we can use the same argument as in [32, p. 318,

Theorem 12.2] to show that

εk ≤
max1≤ℓ≤N εℓ,loc

∆t

1

L
(eLtend − 1).

The coefficient 1
L (e

Ltend − 1) may depend on tend, but not N nor ∆t, which

yields (30). □

Proof of Prop. 1. Let h be arbitrary, but fixed. Let S ⊂ Rn be some

bounded, centrally symmetric set with center c. Then we have

di
(
box

(
S
))

= max
s∈S

si −min
s∈S

si = 2max
s∈S
|si − ci|. (B.3)

After inserting the definition Ψ(h) = ⟨c(h), G(h)⟩Z in (32) and extracting the

center ĉ :=
∑∞

p=0
hp+1

(p+1)!A
p(h)c(h), we can apply (B.3) to (32) to obtain

di
(
box

(
R∞

abs(h)
))

= 2 max
β(p)∈[−1,1]m

p∈N0

∣∣∣∣∣
∞∑
p=0

hp+1

(p+ 1)!
ApG(h)β(p)

∣∣∣∣∣
i

.

Since the maximization term is convex w.r.t. the β(p), we can change the domain

of β(p) from [−1, 1]m to {−1, 1}m by the Bauer maximum principle (see [69]).

Each summand depends on exactly one β(p), thus we obtain

di
(
box

(
R∞

abs(h)
))

= 2

∞∑
p=0

max
β∈{−1,1}m

∣∣∣∣ hp+1

(p+ 1)!
ApG(h)β

∣∣∣∣
i

= 2

∞∑
p=0

hp+1

(p+ 1)!
∥ApG(h)∥1,i,

using the fact that the maximum of |Mβ|i for a matrix M and β ∈ {−1, 1}m

can easily be seen to be ∥M∥1,i. □

Proof of Lemma 3. The fact that G(h) is smooth follows for example from

[18, p. 4] since f is smooth. From this, it follows from the Taylor expansion

52

of [ApG(h)]i that for any arbitrarily large N , there exists an expansion of the

form

[ApG(h)]i =

N∑
j=0

cjh
j + ϵ(h), (B.4)

where cj ∈ R for all j ∈ {1, ..., N} and ϵ(h) = O(hN+1). Let j be the smallest

index such that cj ̸= 0, and define q
(p)
i to be this index. If for all N ∈ N0 such

an index does not exist, it trivially follows that [ApG(h)]i ≡ 0, and in that case

we can set q
(p)
i =∞. If q

(p)
i <∞, we may rewrite (B.4) for all N > q

(p)
i as

[ApG(h)]i = c
q
(p)
i

hq
(p)
i +

N∑
j=q

(p)
i +1

cjh
j + ϵ(h).

Clearly, since ϵ(h) = O(hN+1) this function may be written as ϵ(h) = hq
(p)
i ϵ̂(h)

where ϵ̂(h) = O(hN+1−q
(p)
i), and more specifically ϵ̂(h) = O(h). Therefore, by

defining a
(p)
i = c

q
(p)
i

and b
(p)
i (h) =

∑N

j=q
(p)
i +1

cjh
j−q

(p)
i + ϵ̂(h), we obtain the

form (36).

Finally, the function Q
(p)
i (h) is easily seen to be non-negative since ∥ · ∥1 is

non-negative, and piecewise smooth since ∥ · ∥1 is smooth almost everywhere,

and b
(p)
i (h) is smooth since G(h) is smooth. □

Proof of Prop. 2. We begin by proving (42). Differentiating φi (34) using

Lemma 3 yields

dφi(h; δ)

dh
=

d

dh

di
(
box

(
R∞

abs(δh)
))

di
(
box

(
R∞

abs(h)
))

=
δ d

dh′

[
di
(
box

(
R∞

abs(h
′)
))]∣∣

h′=δh
− φi(h; δ)

d
dh′

[
di
(
box

(
R∞

abs(h
′)
))]∣∣

h′=h

di
(
box

(
R∞

abs(h)
)) .

By using the expansion of di
(
box

(
R∞

abs(h)
))

as in the proof of Theorem 2 to-

gether with the fact that, by definition of qi, the coefficients

∑
p+q

(p)
i =j

∥a(p)i + b
(p)
i (h)∥1

(p+ 1)!

53

are zero for all j < qi, we conclude that

dφi(h; δ)

dh
=

∑∞
j=qi

hj
∑

p+q
(p)
i =j

1
(p+1)!

[
δj+1 − φi(h; δ)

] [
(j + 1)Q

(p)
i (δh) + hQ̇

(p)
i (δh)

]
∑∞

j=qi
hj+1

∑
p+q

(p)
i =j

1
(p+1)!Q

(p)
i (h)

.

(B.5)

We then expand the numerator for j = qi, j = qi + 1, and j > qi + 1, and the

denominator for j = qi and j > qi:

dφi(h; δ)

dh
=

hqi
(
δqi+1 − φi(h; δ)

)∑
p+q

(p)
i =qi

(qi+1)Q
(p)
i (δh)+hQ̇

(p)
i (δh)

(p+1)!

hqi+1
∑

p+q
(p)
i =qi

Q
(p)
i (h)

(p+1)! +O(hqi+2)

+
hqi+1

(
δqi+2 − φi(h; δ)

)∑
p+q

(p)
i =qi+1

(qi+2)Q
(p)
i (δh)+hQ̇

(p)
i (δh)

(p+1)!

hqi+1
∑

p+q
(p)
i =qi

Q
(p)
i (h)

(p+1)! +O(hqi+2)

+
O(hqi+3)

hqi+1
∑

p+q
(p)
i =qi

Q
(p)
i (h)

(p+1)! +O(hqi+2)
.

Taking advantage of the fact that ∀i, p : Q
(p)
i (0) > 0, passing to the limit h→ 0

yields

lim
h→0

dφi(h; δ)

dh
= (qi + 1) lim

h→0

δqi+1 − φi(h; δ)

h

+ δqi+1(δ − 1)(qi + 2)

∑
p+q

(p)
i =qi+1

Q
(p)
i (0)

(p+1)!∑
p+q

(p)
i =qi

Q
(p)
i (0)

(p+1)!

,

where we used the fact that φi(h; δ)→ δqi+1 for h→ 0, as shown in Theorem 2.

Using the same tools as in the proof of Theorem 2, one can easily show that

lim
h→0

δqi+1 − φi(h; δ)

h
= δqi+1(1− δ)

∑
p+q

(p)
i =qi+1

Q
(p)
i (0)

(p+1)!∑
p+q

(p)
i =qi

Q
(p)
i (0)

(p+1)!

,

which implies that

lim
h→0

dφi(h; δ)

dh
= −(1− δ)δqi+1

∑
p+q

(p)
i =qi+1

Q
(p)
i (0)

(p+1)!∑
p+q

(p)
i =qi

Q
(p)
i (0)

(p+1)!

≤ 0.

This shows (42).

54

Now, we prove the second statement of Prop. 2, i.e., the inequality (43).

This requires an intermediate step: if the Q
(p)
i are constant (i.e., Q̇

(p)
i = 0), the

following implication holds

φi(h; δ) ≥ δqi+1 ⇒ dφi(h; δ)

dh
≤ 0. (B.6)

Indeed, if δqi+1 ≤ φi(h; δ), it follows that δqi+1+ℓ ≤ φi(h; δ) for any ℓ ≥ 0,

since δ ≤ 1. Additionally, Q
(p)
i ≥ 0 by definition. Using these facts together

with (B.5) and Q̇
(p)
i = 0 yields the implication (B.6). We can now show the

inequality (43), by using a proof by contradiction:

Assume, for the sake of contradiction, that there exists a time t ∈ [0, h] such

that φ(t; δ) > δq+1, and let T be the set of all those elements. Let t− := inft∈T t

be the highest lower bound of T . Since φ is continuous in t, the set T is open, and

we can find some t+ ∈ T such that (t−, t+) ⊆ T . Since φ is strictly decreasing

for any element of T , it is also strictly decreasing over the interval (t−, t+). If

φ(t−, δ) ≤ δq+1, since φ is decreasing we conclude that δq+1 ≤ φ(t+; δ), which

contradicts our assumption on t+ ∈ T . Therefore, there must hold φ(t−, δ) >

δq+1. We can thus find an intermediary value δq+1 < φ∗ < φ(t−, δ).

On the other hand, as we have seen in Theorem 2, φ(t; δ) → δq+1 and

d
dtφ(t; δ) ≤ 0 for t → 0, so that there always exists a small enough t′ ≥ 0 such

that φ(t′; δ) ≤ δq+1 and t′ ≤ t−. By the intermediary value theorem, there exists

t∗ such that t′ ≤ t∗ ≤ t− and φ∗ = φ(t∗, δ). By assumption, φ∗ < φ(t−, δ),

hence t∗ ̸= t−, and since φ(t∗, δ) > δq+1 we also have t∗ ∈ T . However, this

contradicts the definition of t−, as it should be a lower bound of T . We thus

get a contradiction, proving that φ(t; δ) ≤ δq+1 must hold for all t ∈ [0, h]. □

Acknowledgements

The authors gratefully acknowledge partial financial supports from the re-

search training group ConVeY funded by the German Research Foundation

under grant GRK 2428 and the project justITSELF funded by the European

Research Council (ERC) under grant agreement No 817629.

55

References

[1] T. Gan, et al., Reachability analysis for solvable dynamical systems, IEEE

Transactions on Automatic Control 63 (7) (2018) 2003–2018. doi:10.

1109/TAC.2017.2763785.

[2] J. Liu, et al., Computing semi-algebraic invariants for polynomial dynam-

ical systems, in: Proc. of the 9th ACM International Conference on Em-

bedded Software, 2011, pp. 97–106. doi:10.1145/2038642.2038659.

[3] K. Ghorbal, A. Platzer, Characterizing algebraic invariants by differential

radical invariants, in: Proc. of the 20th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, Springer,

2014, pp. 279–294. doi:10.1007/978-3-642-54862-8_19.

[4] M. Boreale, Complete algorithms for algebraic strongest postconditions and

weakest preconditions in polynomial ODEs, Science of Computer Program-

ming 193. doi:10.1016/j.scico.2020.102441.

[5] I. Mitchell, et al., A time-dependent Hamilton-Jacobi formulation of reach-

able sets for continuous dynamic games, IEEE Transactions on Automatic

Control 50 (7) (2005) 947–957. doi:10.1109/TAC.2005.851439.

[6] S. Bansal, M. Chen, S. Herbert, C. Tomlin, Hamilton-Jacobi reachabil-

ity: A brief overview and recent advances, in: Proc. of the 56th An-

nual Conference on Decision and Control, IEEE, 2017, pp. 2242–2253.

doi:10.1109/CDC.2017.8263977.

[7] P. Duggirala, S. Mitra, M. Viswanathan, Verification of annotated models

from executions, in: Proc. of the International Conference on Embedded

Software, IEEE, 2013. doi:10.1109/EMSOFT.2013.6658604.

[8] J. Hoefkens, et al., Scientific computing, validated numerics, interval meth-

ods, Springer, 2001, Ch. Verified high-order integration of DAEs and

higher-order ODEs, pp. 281–292. doi:10.1007/978-1-4757-6484-0_23.

56

http://dx.doi.org/10.1109/TAC.2017.2763785
http://dx.doi.org/10.1109/TAC.2017.2763785
http://dx.doi.org/10.1145/2038642.2038659
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1016/j.scico.2020.102441
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/CDC.2017.8263977
http://dx.doi.org/10.1109/EMSOFT.2013.6658604
http://dx.doi.org/10.1007/978-1-4757-6484-0_23

[9] K. Makino, M. Berz, Rigorous integration of flows and ODEs using Taylor

models, in: Proc. of Symbolic-Numeric Computation, ACM, 2009, pp. 79–

84. doi:10.1145/1577190.1577206.

[10] X. Chen, et al., Taylor model flowpipe construction for non-linear hybrid

systems, in: Proc. of the 33rd Real-Time Systems Symposium, IEEE, 2012,

pp. 183–192. doi:10.1109/RTSS.2012.70.

[11] E. Asarin, T. Dang, A. Girard, Reachability analysis of nonlinear sys-

tems using conservative approximation, in: 6th International Workshop

on Hybrid Systems: Computation and Control, Springer, 2003, pp. 20–35.

doi:10.1007/3-540-36580-X_5.

[12] E. Asarin, et al., Hybridization methods for the analysis of non-

linear systems, Acta Informatica 43 (2007) 451–476. doi:10.1007/

s00236-006-0035-7.

[13] Z. Han, B. Krogh, Reachability analysis of nonlinear systems using trajec-

tory piecewise linearized models, in: Proc. of the American Control Con-

ference, IEEE, 2006, pp. 1505–1510. doi:10.1109/ACC.2006.1656431.

[14] D. Li, S. Bak, S. Bogomolov, Reachability analysis of nonlinear systems

using hybridization and dynamics scaling, in: International Conference on

Formal Modeling and Analysis of Timed Systems, LNCS 12288, Springer,

2020, pp. 265–282. doi:10.1007/978-3-030-57628-8_16.

[15] T. Dang, C. Le Guernic, O. Maler, Computing reachable states for non-

linear biological models, in: International Conference on Computational

Methods in Systems Biology, Springer, 2009, pp. 126–141. doi:10.1007/

978-3-642-03845-7_9.

[16] T. Dang, et al., Accurate hybridization of nonlinear systems, in: Proc. of

the 13th ACM International Conference on Hybrid Systems: Computation

and Control, 2010, pp. 11–19. doi:10.1145/1755952.1755956.

57

http://dx.doi.org/10.1145/1577190.1577206
http://dx.doi.org/10.1109/RTSS.2012.70
http://dx.doi.org/10.1007/3-540-36580-X_5
http://dx.doi.org/10.1007/s00236-006-0035-7
http://dx.doi.org/10.1007/s00236-006-0035-7
http://dx.doi.org/10.1109/ACC.2006.1656431
http://dx.doi.org/10.1007/978-3-030-57628-8_16
http://dx.doi.org/10.1007/978-3-642-03845-7_9
http://dx.doi.org/10.1007/978-3-642-03845-7_9
http://dx.doi.org/10.1145/1755952.1755956

[17] M. Althoff, O. Stursberg, M. Buss, Reachability analysis of nonlinear sys-

tems with uncertain parameters using conservative linearization, in: Proc.

of the 47th IEEE Conference on Decision and Control, 2008, pp. 4042–4048.

doi:10.1109/CDC.2008.4738704.

[18] M. Althoff, Reachability analysis of nonlinear systems using conservative

polynomialization and non-convex sets, in: Proc. of the 16th ACM Inter-

national Conference on Hybrid Systems: Computation and Control, 2013,

pp. 173–182. doi:10.1145/2461328.2461358.

[19] L. Benvenuti, et al., Assume-guarantee verification of nonlinear hybrid sys-

tems with ARIADNE, International Journal of Robust and Nonlinear Con-

trol 24 (4) (2014) 699–724. doi:10.1002/rnc.2914.

[20] P. Duggirala, et al., C2E2: A verification tool for stateflow models, in:

Proc. of the 21st International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Springer, 2015, pp. 68–82. doi:

10.1007/978-3-662-46681-0_5.

[21] M. Althoff, An introduction to CORA 2015, in: Proc. of the Workshop on

Applied Verification for Continuous and Hybrid Systems, 2015, pp. 120–

151. doi:10.29007/zbkv.

[22] J. Alexandre dit Sandretto, A. Chapoutot, DynIBEX: a differential con-

straint library for studying dynamical systems, 2016.

[23] X. Chen, et al., Flow*: An analyzer for non-linear hybrid systems, in: Proc.

of the 25th International Conference Computer-Aided Verification, LNCS

8044, Springer, 2013, pp. 258–263. doi:10.1007/978-3-642-39799-8_18.

[24] F. Immler, Tool presentation: Isabelle/HOL for reachability analysis of

continuous systems, in: Proc. of the 2nd Workshop on Applied Verification

for Continuous and Hybrid Systems., 2015, pp. 180–187. doi:10.29007/

b3wr.

58

http://dx.doi.org/10.1109/CDC.2008.4738704
http://dx.doi.org/10.1145/2461328.2461358
http://dx.doi.org/10.1002/rnc.2914
http://dx.doi.org/10.1007/978-3-662-46681-0_5
http://dx.doi.org/10.1007/978-3-662-46681-0_5
http://dx.doi.org/10.29007/zbkv
http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.29007/b3wr
http://dx.doi.org/10.29007/b3wr

[25] S. Bogomolov, et al., JuliaReach: a toolbox for set-based reachability, in:

Proc. of the 22nd ACM International Conference on Hybrid Systems: Com-

putation and Control, 2019, pp. 39–44. doi:10.1145/3302504.3311804.

[26] A. Girard, Reachability of uncertain linear systems using zonotopes, in:

8th International Workshop on Hybrid Systems: Computation and Control,

Springer, 2005, pp. 291–305. doi:10.1007/978-3-540-31954-2_19.

[27] C. Combastel, A state bounding observer based on zonotopes, in: European

Control Conference (ECC), IEEE, 2003, pp. 2589–2594. doi:10.23919/

ECC.2003.7085991.

[28] A.-K. Kopetzki, B. Schürmann, M. Althoff, Methods for order reduction of

zonotopes, in: Proc. of the 56th IEEE Conference on Decision and Control,

2017, pp. 5626–5633. doi:10.1109/CDC.2017.8264508.

[29] X. Yang, J. K. Scott, A comparison of zonotope order reduction techniques,

Automatica 95 (2016) 378–384. doi:10.1016/j.automatica.2018.06.

006.

[30] M. Wetzlinger, A. Kulmburg, M. Althoff, Adaptive parameter tuning for

reachability analysis of nonlinear systems, in: Proc. of the 24th ACM Inter-

national Conference on Hybrid Systems: Computation and Control, 2021.

doi:10.1145/3447928.3456643.

[31] D. Griffiths, D. Higham, Numerical methods for ordinary differential equa-

tions: initial value problems, Springer, 2010.

[32] E. Süli, D. F. Mayers, An introduction to numerical analysis, Cambridge

University Press, 2003. doi:10.1017/CBO9780511801181.

[33] M. Rungger, M. Zamani, Accurate reachability analysis of uncertain non-

linear systems, in: Proceedings of the 21st International Conference on Hy-

brid Systems: Computation and Control, 2018, p. 61–70. doi:10.1145/

3178126.3178127.

59

http://dx.doi.org/10.1145/3302504.3311804
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.23919/ECC.2003.7085991
http://dx.doi.org/10.23919/ECC.2003.7085991
http://dx.doi.org/10.1109/CDC.2017.8264508
http://dx.doi.org/10.1016/j.automatica.2018.06.006
http://dx.doi.org/10.1016/j.automatica.2018.06.006
http://dx.doi.org/10.1145/3447928.3456643
http://dx.doi.org/10.1017/CBO9780511801181
http://dx.doi.org/10.1145/3178126.3178127
http://dx.doi.org/10.1145/3178126.3178127

[34] J. C. Butcher, Numerical methods for ordinary differential equations, John

Wiley & Sons, 2016. doi:10.1002/9781119121534.

[35] L. Lapidus, J. H. Seinfeld, Numerical solution of ordinary differential equa-

tions, Academic press, 1971.

[36] U. M. Ascher, et al., Numerical solution of boundary value prob-

lems for ordinary differential equations, SIAM, 1994. doi:10.1137/1.

9781611971231.

[37] M. Kerbl, Stepsize strategies for inclusion algorithms for ODE’s, Computer

Arithmetic, Scientific Computation, and Mathematical Modelling, IMACS

Annals on Computing and Applied Mathematics 12 (1991) 437–452.

[38] W. Rufeger, E. Adams, A step size control for Lohner’s enclosure algorithm

for ordinary differential equations with initial conditions, in: Mathematics

in Science and Engineering, Vol. 189, Elsevier, 1993, pp. 283–299. doi:

10.1016/S0076-5392(08)62849-0.

[39] N. Nedialkov, Computing rigorous bounds on the solution of an initial value

problem for an ordinary differential equation., Dissertation, University of

Toronto (2000).

[40] P. Prabhakar, M. Viswanathan, A dynamic algorithm for approximate flow

computations, in: Proc. of the 14th ACM International Conference on

Hybrid Systems: Computation and Control, 2011, pp. 133–142. doi:10.

1145/1967701.1967722.

[41] G. Frehse, et al., SpaceEx: Scalable verification of hybrid systems,

in: Proc. of the 23rd International Conference on Computer Aided

Verification, LNCS 6806, Springer, 2011, pp. 379–395. doi:10.1007/

978-3-642-22110-1_30.

[42] G. Frehse, R. Kateja, C. Le Guernic, Flowpipe approximation and clus-

tering in space-time, in: Proc. of the 16th ACM International Confer-

60

http://dx.doi.org/10.1002/9781119121534
http://dx.doi.org/10.1137/1.9781611971231
http://dx.doi.org/10.1137/1.9781611971231
http://dx.doi.org/10.1016/S0076-5392(08)62849-0
http://dx.doi.org/10.1016/S0076-5392(08)62849-0
http://dx.doi.org/10.1145/1967701.1967722
http://dx.doi.org/10.1145/1967701.1967722
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30

ence on Hybrid Systems: Computation and Control, 2013, pp. 203–212.

doi:10.1145/2461328.2461361.

[43] M. Wetzlinger, N. Kochdumper, M. Althoff, Adaptive parameter tun-

ing for reachability analysis of linear systems, in: Proc. of the 59th

IEEE Conference on Decision and Control, 2020, pp. 5145–5152. doi:

10.1109/CDC42340.2020.9304431.

[44] X. Chen, Reachability analysis of non-linear hybrid systems using Taylor

models, Dissertation, RWTH Aachen University (2015).

[45] S. Bak, et al., High-level hybrid systems analysis with hypy, in: Proc. of

the Workshop on Applied Verification of Continuous and Hybrid Systems,

2016, pp. 80–90. doi:10.29007/4f3d.

[46] G. Alefeld, G. Mayer, Interval analysis: Theory and applications, Com-

putational and Applied Mathematics 121 (1-2) (2000) 421–464. doi:

10.1016/S0377-0427(00)00342-3.

[47] N. Kochdumper, M. Althoff, Sparse polynomial zonotopes: A novel set

representation for reachability analysis, IEEE Transactions on Automatic

Control 66 (2) (2021) 4043–4058. doi:10.1109/TAC.2020.3024348.

[48] M. Althoff, B. H. Krogh, Reachability analysis of nonlinear differential-

algebraic systems, IEEE Transactions on Automatic Control 59 (2) (2014)

371–383. doi:10.1109/TAC.2013.2285751.

[49] M. Berz, G. Hoffstätter, Computation and application of Taylor polynomi-

als with interval remainder bounds, Reliable Computing 4 (1998) 83–97.

doi:10.1023/A:1009958918582.

[50] M. Althoff, Reachability analysis and its application to the safety assess-

ment of autonomous cars, Dissertation, Technische Universität München

(2010).

61

http://dx.doi.org/10.1145/2461328.2461361
http://dx.doi.org/10.1109/CDC42340.2020.9304431
http://dx.doi.org/10.1109/CDC42340.2020.9304431
http://dx.doi.org/10.29007/4f3d
http://dx.doi.org/10.1016/S0377-0427(00)00342-3
http://dx.doi.org/10.1016/S0377-0427(00)00342-3
http://dx.doi.org/10.1109/TAC.2020.3024348
http://dx.doi.org/10.1109/TAC.2013.2285751
http://dx.doi.org/10.1023/A:1009958918582

[51] M. Althoff, C. Le Guernic, B. H. Krogh, Reachable set computation for

uncertain time-varying linear systems, in: Proc. of the 14th ACM Inter-

national Conference on Hybrid Systems: Computation and Control, 2011,

pp. 93–102. doi:10.1145/1967701.1967717.

[52] V. V. Shenmaier, Complexity and approximation of finding the longest

vector sum, Computational Mathematics and Mathematical Physics 58 (6)

(2018) 850–857. doi:10.1134/S0965542518060131.

[53] A. Baburin, A. Pyatkin, Polynomial algorithms for solving the vector sum

problem, Journal of Applied and Industrial Mathematics 1 (3) (2007) 268–

272. doi:10.1134/S1990478907030027.

[54] T. Alamo, J. Bravo, E. Camacho, Guaranteed state estimation by zono-

topes, Automatica 41 (2005) 1035–1043. doi:10.1016/j.automatica.

2004.12.008.

[55] L. Geretti, et al., ARCH-COMP20 category report: Continuous and hybrid

systems with nonlinear dynamics, in: ARCH20. 7th International Work-

shop on Applied Verification of Continuous and Hybrid Systems, Easy-

Chair, 2020, pp. 49–75. doi:10.29007/zkf6.

[56] L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot,

P. Collins, P. Duggirala, M. Forets, E. Kim, U. Linares, D. Sanders,

C. Schilling, M. Wetzlinger, ARCH-COMP21 category report: Continu-

ous and hybrid systems with nonlinear dynamics, in: G. Frehse, M. Althoff

(Eds.), Proc. of the 8th International Workshop on Applied Verification of

Continuous and Hybrid Systems, 2021, pp. 32–54. doi:10.29007/2jw8.

[57] X. Chen, S. Sankaranarayanan, Decomposed reachability analysis for non-

linear systems, in: Proc. of the 37th Real-Time Systems Symposium, IEEE,

2016, pp. 13–24. doi:10.1109/RTSS.2016.011.

[58] A. El-Guindy, Control and stability of power systems using reachability

analysis, Dissertation, Technische Universität München (2017).

62

http://dx.doi.org/10.1145/1967701.1967717
http://dx.doi.org/10.1134/S0965542518060131
http://dx.doi.org/10.1134/S1990478907030027
http://dx.doi.org/10.1016/j.automatica.2004.12.008
http://dx.doi.org/10.1016/j.automatica.2004.12.008
http://dx.doi.org/10.29007/zkf6
http://dx.doi.org/10.29007/2jw8
http://dx.doi.org/10.1109/RTSS.2016.011

[59] S. Kopecz, A. Meister, On order conditions for modified Patankar–Runge–

Kutta schemes, Applied Numerical Mathematics 123 (2018) 159–179. doi:

10.1016/j.apnum.2017.09.004.

[60] M. Laub, W. Loomis, A molecular network that produces spontaneous

oscillations in excitable cells of dictyostelium, Molecular biology of the cell

9 (12) (1998) 3521–3532. doi:10.1091/mbc.9.12.3521.

[61] E. Aylward, P. Parrilo, J.-J. Slotine, Stability and robustness analysis of

nonlinear systems via contraction metrics and SOS programming, Auto-

matica 44 (8) (2008) 2163–2170. doi:10.1016/j.automatica.2007.12.

012.

[62] O. Rössler, An equation for continuous chaos, Physics Letters A 57 (5)

(1976) 397–398. doi:10.1016/0375-9601(76)90101-8.

[63] E. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sci-

ences 20 (2) (1963) 130–141. doi:10.1175/1520-0469(1963)020<0130:

DNF>2.0.CO;2.

[64] J. Vano, et al., Chaos in low-dimensional Lotka–Volterra models of com-

petition, Nonlinearity 19 (10) (2006) 2391. doi:10.1088/0951-7715/19/

10/006.

[65] E. Klipp, et al., Systems biology in practice: concepts, implementation and

application, John Wiley & Sons, 2005. doi:10.1002/3527603603.

[66] J. Vilar, et al., Mechanisms of noise-resistance in genetic oscillators, Proc.

of the National Academy of Sciences 99 (9) (2002) 5988–5992. doi:10.

1073/pnas.092133899.

[67] Y. Chen, A. Domı́nguez-Garćıa, Assessing the impact of wind variability

on power system small-signal reachability, in: Proc. of the 44th Hawaii

International Conference on System Sciences, IEEE, 2011, pp. 1–8. doi:

10.1109/HICSS.2011.77.

63

http://dx.doi.org/10.1016/j.apnum.2017.09.004
http://dx.doi.org/10.1016/j.apnum.2017.09.004
http://dx.doi.org/10.1091/mbc.9.12.3521
http://dx.doi.org/10.1016/j.automatica.2007.12.012
http://dx.doi.org/10.1016/j.automatica.2007.12.012
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1088/0951-7715/19/10/006
http://dx.doi.org/10.1088/0951-7715/19/10/006
http://dx.doi.org/10.1002/3527603603
http://dx.doi.org/10.1073/pnas.092133899
http://dx.doi.org/10.1073/pnas.092133899
http://dx.doi.org/10.1109/HICSS.2011.77
http://dx.doi.org/10.1109/HICSS.2011.77

[68] X. Chen, S. Sankaranarayanan, E. Ábrahám, Under-approximate flowpipes

for non-linear continuous systems, in: Formal Methods in Computer-Aided

Design (FMCAD), IEEE, 2014, pp. 59–66. doi:10.1109/FMCAD.2014.

6987596.

[69] H. Bauer, Minimalstellen von funktionen und extremalpunkte, Archiv Der

Mathematik - ARCH MATH 9 (1958) 389–393. doi:10.1007/BF01898615.

[70] G. Golub, M. Saunders, Linear least squares and quadratic programming,

Integer and Nonlinear Programming (1969) 41.

[71] F. Barahona, et al., An application of combinatorial optimization to sta-

tistical physics and circuit layout design, Operations Research 36 (1988)

493–513. doi:10.1287/opre.36.3.493.

64

http://dx.doi.org/10.1109/FMCAD.2014.6987596
http://dx.doi.org/10.1109/FMCAD.2014.6987596
http://dx.doi.org/10.1007/BF01898615
http://dx.doi.org/10.1287/opre.36.3.493

	Introduction
	Preliminaries
	Notation
	Reachability analysis of nonlinear systems using abstractions in the state space

	Hausdorff Reduction
	Gain Order of Set-Based ODE Solvers
	Errors of set-based ODE solvers
	The gain function
	Global abstraction error via gain order

	Adaptive Parameter Tuning Methods
	Propagation parameters
	Abstraction order
	Set representation
	Time step size
	Automated parameter tuning algorithm

	Numerical Examples
	ARCH benchmarks
	Further benchmarks

	Conclusion
	Proof of Theorem 1
	Proofs for Sec. 4

