SaRA: A Tool for Safe Human-Robot Coexistence and Collaboration
through Reachability Analysis

Sven R. Schepp, Jakob Thumm, Stefan B. Liu, and Matthias Althoff

Abstract— Current safety mechanisms implementing indus-
try standards for human-robot coexistence separate humans
and robots through caging. Other approaches allowing hu-
mans to enter the workspace of manipulators do not provide
formal safety guarantees. Thus, this study aims to facilitate
the widespread adoption of collaborative robots by presenting
SaRA, an extensible tool that performs set-based reachability
analysis and formally guarantees safety. Our experimental
results show that the set-based prediction of a human can be
computed in a few microseconds, using SaRA, allowing for
real-time consideration of many surrounding humans in an
environment.

I. INTRODUCTION

The coexistence and collaboration of humans and robots
has become increasingly important with the adoption of
robots for surgical procedures [1], [2], manufacturing [3],
[4], agriculture [5], or construction work [6]. Human safety
must be fully guaranteed during any interaction to allow
humans to enter robotic domains and for the widespread
integration of robots in human environments [7]. In current
industrial plants, human safety is guaranteed by rigid cages,
or light curtains enclosing a robot’s task space. Hereby,
the robot motion is immediately stopped when a human
enters the enclosure. Although this approach is safe in
principle, no shared object manipulation or even the mere
presence of humans in the vicinity of moving manipulators
is allowed. Consequently, these approaches do not enable any
human-robot collaboration and only very restricted coexis-
tence [3] [8]. To facilitate closer human-robot collaboration,
recent works have proposed control algorithms that limit the
force or velocity of robots in the vicinity of humans [3].
Other approaches have adapted robot movements based on
the distance between robots and operators [9] or use hand-
guiding [10]. However, they do not utilize formal methods,
so they cannot provide formal safety guarantees for humans
in the workspace.

We therefore present our |C+~-based tool SaRA for
Safe Human-Robot Coexistence and Collaboration through
Reachability Analysis that formally determines the entire
possible space that the human can occupy in a given time
horizon in form of a reachable set as described in [7], [11].
A visualization of reachable sets is shown in These
sets can be used to formally guarantee safe human-robot
interaction, e.g., as specified in ISO 15066 [12], as we have
demonstrated in our previous work:

The authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany. schepp@in.tum.de,
jakob.thumm@tum.de, stefan.liu@tum.de,
althoff@tum.de

(a) (b)

Fig. 1: (a) Human with motion tracking gear is performing a task next to
the controlled robot. (b) Snapshot of the corresponding reachable sets of the
human (blue) and the robot (pink); the reachable set of the human grows
within one verification cycle as shown later.

e In [7], the human reachable sets are used to guarantee
that a robot must be at rest before it is touched by hu-
mans. This is achieved through fail-safe planning, where
a fail-safe maneuver is constantly updated, such that
predicted robot occupancies do not intersect with the
predicted human reachable sets, before the robot reaches
a resting position. This approach conforms to speed and
separation monitoring as defined in ISO 15066 [12].

e In [13], the human reachable sets are further used
in a fail-safe planning approach, to reduce the robot
speed such that collision force limits can be guaranteed.
That approach conforms to power and force limiting as
defined in ISO 15066 [12].

A. Contribution

Our open-source tool SaRA performs reachability analysis
to provide formally guaranteed safety in human-robot coex-
istence and collaboration. Our stand-alone tool consists of
a header-only C+ library (ReachLib) and a ROS-packageﬂ
(reachable_occupancy). ReachLib represents human
reachable sets as a set of capsules (as described in
[A). The library provides methods that perform set-based
reachability analysis of humans over a given time horizon
in only a few microseconds and can be used to determine
intersections between reachable sets of humans and robots.
ReachLib can be integrated within any C+ compatible
environment. The ROS-package reachable_occupancy
provides visualizations of the reachable sets calculated by
ReachLib in RVizl

'Our package is available at:
https://github.com/Sven-Schepp/SaRA.


https://github.com/Sven-Schepp/SaRA
https://github.com/Sven-Schepp/SaRA
https://github.com/Sven-Schepp/SaRA
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/rviz
https://github.com/Sven-Schepp/SaRA

B. Related work

We first review approaches to safe human-robot coexis-
tence and collaboration that do not provide formal safety
guarantees, subsequently, relevant formally safe approaches
are discussed.

a) Non-formal methods: A general overview of non-
formal safety mechanisms for human-robot collaboration,
including predictive and reactive control methods, is pro-
vided in [3]. The works in [9] and [14] use minimum
distance metrics. However, the authors did not explain how
to formally derive the necessary clearance given the uncer-
tainty of human and robot movements. Reaction-based safety
strategies to reduce collision impacts have been presented
in [15]. Predictive approaches aim to improve safety by
anticipating human motion during deployment in highly dy-
namic environments using vision based systems, as described
in [16]. The work in [17] presented an in-depth review
of color and depth-based methods, including various active
vision systems, for collision avoidance, the determination
of distance between obstacles, or human intent recognition.
An approach combining intent-driven and robust models has
been presented in [18]. Furthermore, safety can also be
provided intrinsically using soft robots [19], [20].

b) Formal methods: In our previous work in [7], [11],
and [21] we have presented an approach that guarantees
human safety using reachability analysis of robots and the
upper body of humans. This approach constantly updates a
fail-safe maneuver which formally guarantees the absence
of collisions (see [Sec. TI-C). Similar methods for providing
safe motions of mobile robots and autonomous vehicles
have been presented in [22], [23], and [24]. The latter two
approaches also considered occluded regions in their path
planning by assuming them as initial positions of obstacles
(unseen or phantom objects) approaching at maximum ve-
locity. The work in [25] used a capsule representation for
robot reachability analysis to achieve a real-time capable
receding horizon trajectory planner that considers only static
obstacles. With our software framework, their approach
could be extended to also enable safe trajectory planning
in human environments. To this point, there is no tool for
computing over-approximative reachable sets of the entire
human body considering individual joints.

C. Article structure

We present three models for reachability analysis and
a description of our self-verification procedure in
describes the structure and interfaces of our library,
which is then evaluated in Finally, we provide
conclusions, including future work, in

II. MODELS
A. Reachability analysis

The reachability analysis is based on our previous work
in [7], [11]. We calculate sets that enclose all possible future
occupancies of a human over a time interval [t,ts]. To
formally introduce human reachable sets, let us first define
xo as the initial human state, u(-) as a possible input

(a) (b)
Fig. 2: Visualizations of a capsule (a) and a ball (b).

trajectory, and x(¢; xo; u(-)) as a human trajectory at time
t given xy and u(-). The reachable set R(¢) of a human
at time ¢ for a set of initial states & and a set of possible
inputs U/ is computed as in [7, p. 5] by

R(t) = {x (t; o, u(")) | o € X, Vt : u(t) e U}.

Reachable sets enclosing all possible trajectories over the
interval [tg,tf] are given by R([to,ts]) = U R().
te(to,ty]
R([to,ts]) is calculated in Cartesian task space, where we
choose w.l.o.g. tg = 0 and £y = fprake + Taelay, Where fprake
represents the time a robot needs to come to a full stop after
a system-intrinsic delay tgelay. Since we only verify collision
avoidance, our reachable sets are only computed for the
position domain. In this work, we represent reachable sets by
a union of capsules to realize efficient intersection checking
during verification, as described in Capsules can
be defined as the Minkowski sunﬂ of a convex hull (conv)
of two points P = {P;, P>} and a ball (B(r)) of radius r:

C = conv(Py, Py) @ B(r); see

B. Model description

We present models of first-order and second-order consid-
ering position, velocity, and acceleration constraints. Unify-
ing these models would be unnecessarily complex for reach-
ability analysis. In contrast, we compute over-approximative
reachable sets for each model: Rpps for position constraints,
RveL for velocity constraints, and Racc for acceleration
constraints. If for each time interval, any one of these sets
does not intersect the occupancy of the robot, the robot
movement is verified as safe. Ryg. and Racc consist of
14 body parts as shown in where the ends of the
kinematic chain (hands, feet, and the head) are not enclosed
by a capsule, but by the special case of a ball. The reachable
set of a body part given the first-order model that considers
the velocity constraints of each joint is computed as in [7,
p. 6] by

RveL(t) = y(0) © B(6y) © B(vmax - 1),

where vpax represents the maximum velocity of a body part,
y(0) the initial position, and Jy the measurement uncertain-
ties of the position. The second-order model requires the

UV ={u+vlucl,vecV}



(a) (b)

Fig. 3: (a) Depiction of the full-body human reachable set with capsules in
blue and joint positions in red as calculated for Rygr, and Racc. (b) Balls
as calculated for Rpog; for improved visibility the balls are moved slightly
off center.

current velocity ¢ and is computed as in [7, p. 6], using

Racc(t) =y(0) @ B(dy) @y -t B(dy-t) & B (“2“ : t2>

where any.x represents the maximum acceleration of a body
part and dy describes the measurement uncertainties of the
velocity. RygL(t) and Racc(t), as previously presented,
must be computed for all body parts as shown in |[Fig. 3a

As an example for the reachable set of a leg, we introduce
Rr(t), Ri(t), and Rp(t) as the reachable sets of the thigh,
knee, and foot joint. The radii of the enclosing capsules of
the thigh, shin, and foot are respectively given by Tigh, T'shins
and 7,0, resulting in the capsules

7zthigh(t) = COHU(RT(t), RK(t)) D B(T’[h@h(f)),
Rehin(t) = conv(Rk(t), Re(t)) @ B(rsin(t)),
Rfool(t) = RT(t) D B(rfom(t))'

Finally, the reachable set of the leg is computed as Riey(t) =
Rinigh(t) U Rhin (t) U Rfooc(t). Then, the full-body reachable
sets RvgL(t) and Racc(t) are accordingly given by the union
of the reachable sets of all body parts.

Rpos(t) consist of four capsules, which are defined by the
two shoulder and both thigh positions, as shown in
These describe the reachable sets of the right arm R, ym (1),
left arm Rjam(t), right leg Ryee(t), and left leg Ryjeq(t).
The model for computing Rpos(t) considers positional limits
Pmax Of @ human for the length of fully stretched arms and
legs. The centers of the balls in expand with the
maximum velocity of the shoulder joint vs max and thigh
joints vt max, respectively. The reachable set of one leg is
then computed as in [7, p. 6] by

Reos, teg(t) = yr(0) © B(vrmax - t + Y7 (0) — yx (0)]
+ ||yK(O) - yF(O)H + 6y + Tfoot);

where yr, Yy, and yp represent the current positions of the
joints of the thigh, knee, and foot. The position-constrained
reachable sets are then computed as in [7, p. 6] by

RPOS (t) = Rr,arm(t) U Rl,arm(t) U Rr,leg (t) U Rl,leg(t)-

C. Self-verification

For self-verification, reachable sets of humans are subse-
quently checked for intersections with the robot’s reachable

Intended trajectory /

Fail-safe trajectory

Fig. 4: Planning of intended trajectories (black) and fail-safe trajectories
(blue, red). The robot starts at to with the trajectory from to to t1 verified
as safe and a fail-safe trajectory starting at time ¢1. The intended trajectory
from t; to t2 (dashed black) is not verified as safe, thus the fail-safe
trajectory (blue) is executed. Within [¢1, 2], another intended (solid black)
and fail-safe (dashed red) trajectory are calculated for the combined time
interval [tg, t3 +t f]. The trajectory from t2 to t3 (solid black) including
its fail-safe trajectory (dashed blue) is verified as safe and executed. The
robot finally returns back to its originally intended trajectory.

set Rros. Over-approximative capsules enclosing the robot’s
motion can be calculated with the approach presented in [26,
Sec. IV A]. The robot’s current maneuver is proven safe
should one of the reachable sets Rpos, RvgL, Or Racc not
intersect with Rrog for all ¢ € [t, t;]. The self-verification
procedure implemented in our robot’s controller is described
in detail in [11] and [21, Sec. 2] and will be integrated into
SaRA in the future.

By induction, we can formally guarantee safety for an
infinite time horizon. Starting from a safe state at time
t; (see [Fig. 4), the intended trajectory is calculated for
t € [tit1,tit2), as well as a fail-safe trajectory for ¢ €
[tit2,tit2 + tf 42, where t;; is the value of ¢; starting
at time ¢;. If the intended trajectory and its subsequent fail-
safe trajectory for the combined interval [t; 41, ti42 +tf 2]
cannot be verified as safe, the previous fail-safe trajectory
calculated for [t;41,t;4+1+t7,:4+1] is executed instead. There-
fore, the robot will stay on the fail-safe trajectory until an
intended trajectory is verified as safe to return to its originally
intended trajectory. Our approach thereby requires current
measurements of the Cartesian positiorﬂ of human joints
at every time step ¢. SaRA is agnostic with respect to the
method of obtaining joint positions; in our previous work
we have tested our self-verification approach using a motion
capture system [7], light curtains [21, Sec. 4.1], a Kinect
camera, and depth sensors [21, Sec. 4.2].

III. IMPLEMENTATION

SaRA consists of a hierarchical structure with three ab-
straction layers designed to facilitate the extension and
addition of further set calculation methods. By introducing
an intermediate layer, we can model a reachable set as a
union of multiple smaller reachable sets, e.g., humans can
be defined as a union of body parts. This approach facilitates
the implementation of models with variable granularity since
a reachable set can be defined by any number of partial

3The second-order model additionally requires Cartesian velocities.



SaRA
<Linterface>
Obstacle
1..%
<interface> 1
1 Occupancy
BodyPart
Q
1 <Kinterface> 1
OccupancyContainer
1
W \m

Fig. 5: UML representation of the ReachLib library. The blue classes
are specifically designed for human reachable sets and can be changed or
expanded upon. The interfaces describe the general structure of our library
such that new models can be added.

reachable sets. A UML description of the general library
structure is shown in

At the highest level, we have the generic interface
Obstacle, describing properties that any model must con-
tain. Every Obstacle must include at least one reachable
set. Additionally, parameters for measurement uncertainties
and delay have to be provided as described in
Furthermore, a method for determining intersections with
obstacle occupancies must be defined. The human reachable
sets detailed in represent a type of Obstacle.
Rros, RveL, and Racc are reachable sets of Articulated
models representing body parts. Further, additional models
of type Articulated can be defined by the user, such as
intent-driven approaches as described in [18].

The second abstraction layer, defined by the Occupancy
interface, describes the general properties of reachable sets.
Every reachable set, must therefore, be named and include a
form of OccupancyContainer by which a reachable set
is geometrically described. All types of Occupancy and
OccupancyContainer must further provide an update
method that updates the geometry of the reachable set given
current measurements. Implementations of the Occupancy
class are also required to provide a method for intersection
checking. In the case of representing a human, BodyPart
and Extremity are considered implementations of the
generic Occupancy class. They represent the reachable
sets of the Articulated models and contain capsules
individually updated at every step.

The last layer, OccupancyContainer, defines the
geometric representations of a reachable set in Cartesian
space. The Capsule and Ball classes define geometric
representations of the reachable sets of BodyPart and
Extremity, respectively. These could be exchanged for
other set representations, such as cylinders, polyhedra, or

TABLE I:
Human parameters for reachable set calculation from [7].

Body Part amax [ms™2]  Umasz [ms™] 7y [m]
Head 25.0 2.0 0.3
Torso 20.0 2.0 0.3
Upper/Lower Arm 50.0 2.0 0.1
Hand 50.0 2.0 0.205

zonotopes in the future. Thus, existing models can be reused
and equipped with different geometric representations of
reachable sets.

The models Rpos, RveL, and Racc are provided with
the data described in during the initial setup, where
r, represents the measured radius of the corresponding
body part. These data are taken from our previous work
in [7]. The added measurement uncertainties and delay of all
components in our setup are defined in the System class.
The reachable sets can then be acquired in the form of a
list of type OccupancyContainer contained within each
Articulated model’s instanceﬂ following an update step.

IV. EXPERIMENTS

A. Setting

Real-world experiments were conducted to explore the
capabilities of SaRA. The setup includes a Schunk LWA
4P manipulator with six degrees of freedom continuously
moving along a pre-planned trajectory. Human movements
are tracked using a motion capture systenﬂ The Cartesian
positions of joints are calculated from marker positions.
The parameters used for reachable set calculation are listed
in[Tab. 1] We use a time-varying braking time tyrke, based on
the current velocity and acceleration of the robot. The brak-
ing time can alternatively be set as the constant maximum
braking time of the manipulator, which, however, will lead
to more conservative behavior. The maximum #¢pqq. during
our experiments was thrake.max = 0.528 s and the average was
torake_avg = 0.187s.

Our experiments only include upper-body reachable sets
of humans, since our setup, shown in cannot cause
collisions between the robot and the human’s lower body.
The captured points are therefore: H, N, LS, LE, LW, RS,
RE, and RW, as given in [Fig. 3a

We executed the following motions:

e A slow approach towards the robot to test common
upper-body motions.

o Punches towards the end effector to test hand safety
during fast motions.

o A headbutt towards the manipulator to test head safety.

o A box is picked up and placed next to the robot by the
human as an example for common industrial use cases.

4A more detailed explanation and integration description is given in our
manual at: https://github.com/Sven-Schepp/SaRA.

>The motion capture hardware and software is described at:
https://www.vicon.com/hardware/cameras/vero/.


https://github.com/Sven-Schepp/SaRA
https://github.com/Sven-Schepp/SaRA
https://www.vicon.com/hardware/cameras/vero/

i

Fig. 6: Example frames from the approaching experiment on the left (from
top to bottom) with respective Rygr, on the right. Here, the necessary time
horizons are dynamically computed and depend on the duration of the fail-
safe maneuver. In the above frames, they are ¢ r=0.244,ty = 0.416 ,and
ty = 0.010, respectively.

(

We provide a vide(ﬁ as supplementary material to this paper
in which all experiments are demonstrated. Snapshots of the
human approaching the robot are shown in where the
reachable sets of the human change from blue to red once
an intersection with the reachable sets of the robot (pink)
is detected. The size of the human reachable sets are large
in the beginning since both human and robot are in motion.
They grow continuously while both human and robot are
accelerating. Finally, intersections between the reachable sets
of the head and the robot Rgop, as well as between the
reachable sets of the torso and Rgrop are detected, resulting
in a full stop of the manipulator. The main factor determining
the size of reachable sets is tprke, in addition to the velocity
of the human for Racc.

We investigate the effects of ¢, On the size of reachable
sets by calculating them for the recording 02_01 of the
Carnegie Mellon University MoCa;ﬂ library. Thereby, larger
values for tf = tprqke + tdelay resulted in larger reachable
sets as shown in

The values for vp.,x and ap.x are taken from [7]. The
measurement uncertainties of the position and velocity are

5The video is available at:
https://www.youtube.com/watch?v=0DYq_ FQLI1Ds.

/The human motion capture data used in this experiment was obtained
from http://mocap.cs.cmu.edu/. The database was created with
funding from NSF EIA-0196217.

© ()
Fig. 7: Full-body reachable sets are calculated for t; = 0.16s in (d), with

figures (a)—(c) displaying sets calculated for intermediate times. The joint
positions are indicated by red squares.

assumed as dy = 0.004m and dy = 0.04", respectively,
and the delay is assumed as ?gejqy = 0.010s [11].

B. Results

In all experiments, SaRA successfully detects all poten-
tial collisions and stops the robot beforehand. All marker
positions are contained within the reachable sets of Rpos,
RveL, and Racc. We analyze the computation timeﬂ of all
sets individually and combined within all four experiments.
We only show the results for the headbutt experiment here,
since it had the highest average calculation timesﬂ
shows the time SaRA requires to compute Rpos, Rvgr, and
Racc- The results in[Tab. I describe the time SaRA requires
to both calculate the reachable sets and perform intersection
checking with the robot’s reachable sets.

All models are calculated in a few microseconds, even
when intersection operations are considered. The individual
models are computed in less than 62ps. If intersections
are included, all individual models and intersections are
calculated in less than 67 ps. Further, when combined, all
models are calculated in less than 90us on average. This
increases to a maximum of 98 us, if intersections of all sets
with the robot’s reachable sets are additionally considered.
However, these values depend on how often the reachable
sets intersect, since as soon as one model is found to have
no intersections with the robot’s reachable sets, none of the
remaining models need to be checked.

C. Discussion

Since the sampling time of standard robot controllers
ranges from 500 to 4000 ps, the computation times of the
reachable sets are not time critical and we can even consider

8 All calculations were performed on an 17-9750H (16 GB RAM), where
only those operations required for reachable set computation and intersection
checking were included during timing.

9 All other results can be found here:
https://github.com/Sven-Schepp/SaRA,


https://www.youtube.com/watch?v=QDYq_FQL1Ds
https://www.youtube.com/watch?v=QDYq_FQL1Ds
http://mocap.cs.cmu.edu/
https://github.com/Sven-Schepp/SaRA

TABLE II:
Headbutt experiment: calculation time no intersections.

Model avg. [us]  std. [us] max [us] min [us]

Rros 2.1 2.0 46 1

RvEL 4.7 2.7 62 3

Racc 6.3 3.1 48 4

All Models 17.6 7.3 82 2
TABLE III:

Headbutt experiment: calculation time with intersections.

Model avg. [us]  std. [us] max [us] min [us]
Rpos 3.2 2.8 29 2
RvEL 10.8 5.5 66 7
Racce 15.5 5.7 67 11
All Models 22.2 8.7 98 16

multiple humans. The question, which model should be
computed, however, depends on the inputs, which can be
provided to SaRA:

« If only the position of the human joints are given, then
only Rpos and Rygr can be computed.

o If also the velocity of the human joints are given, then
Racc can be additionally computed, making our self-
verification less conservative.

V. CONCLUSION

Our real-world experiments show that SaRA effectively
performs reachability analysis for guaranteed safety in
human-robot coexistence and collaboration. SaRA produces
human reachable sets and performs intersection checking in
only a few microseconds. We believe that integrating SaRA
in manufacturing environments can significantly improve
production efficiency by removing caging. We regard SaRA
as a fundamental step toward allowing humans and robots
to coexist and collaborate in any environment. Our next
goals entail real-world use of SaRA in a manufacturing
plant for collaborative studies with trained workers and the
consideration of occlusions.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the Central Innovation Programme of the German Fed-
eral Government under grant ZF4086004LP7 and the Hori-
zon 2020 EU Framework Project CONCERT under grant
101016007.

REFERENCES

[1] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots
for medical applications: A survey,” IEEE Trans. on Robotics, vol. 31,
no. 6, pp. 1261-1280, 2015.

[2] A. Bertelsen, J. Melo, E. Sanchez, and D. Borro, “A review of
surgical robots for spinal interventions,” Int. J. of Medical Robotics
and Computer Assisted Surgery, vol. 9, no. 4, pp. 407-422, 2013.

[3] E. Matheson, R. Minto, E. Zampieri, M. Faccio, and G. Rosati,
“Human-robot collaboration in manufacturing applications: A review,”
Robotics, vol. 8, no. 4, 2019.

[4]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Dijuric, R. Urbanic, and J. Rickli, “A framework for collaborative
robot (CoBot) integration in advanced manufacturing systems,” SAE
Int. J. of Materials and Manufacturing, vol. 9, no. 2, pp. 457464,
2016.

S. Pedersen, S. Fountas, and H. Have, “Agricultural robots—system
analysis and economic feasibility,” Precision Agriculture, vol. 7, pp.
295-308, 2006.

L. Cousineau and N. Miura, Construction Robots: the Search for New
Building Technology in Japan. Reston, Virginia: ASCE Press, 1994.
M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless creation
of safe robots from modules through self-programming and self-
verification,” Science Robotics, vol. 4, no. 31, 2019.

1. Aaltonen, T. Salmi, and I. Marstio, “Refining levels of collaboration
to support the design and evaluation of human-robot interaction in the
manufacturing industry,” Procedia CIRP, vol. 72, pp. 93-98, 2018.
A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Trans. on Automation Science and En-
gineering, vol. 13, no. 2, pp. 882-893, 2016.

S. Zhang, S. Wang, F. Jing, and M. Tan, “A sensorless hand guiding
scheme based on model identification and control for industrial robot,”
IEEE Trans. on Industrial Informatics, vol. 15, no. 9, pp. 5204-5213,
2019.

A. Pereira and M. Althoff, “Overapproximative human arm occupancy
prediction for collision avoidance,” IEEE Trans. on Automation Sci-
ence and Engineering, vol. 15, no. 2, pp. 818-831, 2017.

ISO/TS 15066:2016, “Robots and robotic devices - collaborative
robots,” Int. Org. for Standardization, Geneva, Switzerland, 2016.

S. B. Liu and M. Althoff, “Online Verification of Impact-Force-
Limiting Control for Physical Human-Robot Interaction,” in /IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2021, pp. 777-783.

B. Lacevic, P. Rocco, and A. Zanchettin, “Safety assessment and
control of robotic manipulators using danger field,” IEEE Trans. on
Robotics, vol. 29, no. 5, pp. 1257-1270, 2013.

S. Haddadin, A. Albu-Schaffer, A. D. Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2008, pp. 3356-3363.

P. A. Lasota, T. Fong, and J. A. Shah, “Safety through prediction,” in A
Survey of Methods for Safe Human-robot Interaction. Boston-Delft:
Now Foundations and Trends, 2017, vol. 5, no. 4, pp. 293-313.

R. Halme, M. Lanz, J. Kdmiriinen, R. Pieters, J. Latokartano, and
A. Hietanen, “Review of vision-based safety systems for human-robot
collaboration,” Procedia CIRP, vol. 72, pp. 111-116, 2018.

A. Bajcsy, S. Bansal, E. Ratner, C. J. Tomlin, and A. D. Dragan,
“A robust control framework for human motion prediction,” IEEE
Robotics and Automation Letters, vol. 6, no. 1, pp. 24-31, 2020.

S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired
evolution in robotics,” Trends in Biotechnology, vol. 31, no. 5, pp.
287-294, 2013.

R. Qi, T. L. Lam, and Y. Xu, “Mechanical design and implementation
of a soft inflatable robot arm for safe human-robot interaction,” in
IEEE Int. Conf. on Robotics and Automation, 2014, pp. 3490-3495.
P. Aaron, “Guaranteeing safe robot motion,” Ph.D dissertation, Tech-
nical University Munich, Munich, 2018, Accessed on: Feb. 28,
2022. [Online]. Available: https://mediatum.ub.tum.de/doc/1443612/
1443612.pdf.

S. B. Liu, H. Réhm, C. Heinzmann, I. Liitkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human
environments,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2017, pp. 1351-1357.

S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments,”
Autonomous Robots, vol. 32, no. 3, pp. 267-283, 2012.

M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Trans. on Intelligent
Vehicles, vol. 6, no. 2, pp. 249-265, 2021.

P. Holmes, S. Kousik, B. Zhang, D. Raz, C. Barbalata, M. Johnson-
Robertson, and R. Vasudevan, ‘“Reachable sets for safe, real-time
manipulator trajectory design,” in Robotics: Science and Systems,
2020.

D. Beckert, A. Pereira, and M. Althoff, “Online verification of multiple
safety criteria for a robot trajectory,” in IEEE 56th Annual Conf. on
Decision and Control (CDC), 2017, pp. 6454-6461.


https://mediatum.ub.tum.de/doc/1443612/1443612.pdf
https://mediatum.ub.tum.de/doc/1443612/1443612.pdf

	Introduction
	Contribution
	Related work
	Article structure

	Models
	Reachability analysis
	Model description
	Self-verification

	Implementation
	Experiments
	Setting
	Results
	Discussion

	Conclusion
	References

