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Abstract— Real-world datasets facilitate the development
of autonomous vehicles, especially when they are accessible,
diverse, and provide a measure of accuracy. While existing
datasets have been accessible and diverse, they cannot provide
any measure of accuracy. To estimate the accuracy of the
detection of traffic participants in our setup, we repetitively
drove through our observation area with a measurement vehicle
with highly accurate localization and LiDAR sensors. Our
experiments showed an average overall position accuracy of
0.51 m. The combined data of the autonomous vehicle and the
elevated camera setup yield a unique dataset. The elevated view
acts as a super sensor of the autonomous vehicle with extended
range and reduced occlusions. We employ an auto-labeling
system on the stationary camera data to extract trajectories
with bounding boxes for each traffic participant. These ex-
tracted trajectories are smoothed for kinematic feasibility, and
corresponding maps for each location are provided. The Munich
Motion Dataset of Natural Driving (MONA) shall empower new
research in prediction and planning. Making raw data and code
available to the public without license restrictions allows the
dataset to be further improved using more advanced algorithms.

I. INTRODUCTION
A. Motivation

Research and development of autonomous driving systems
benefit from real-world datasets for various purposes, such
as perception, prediction, and planning [1]. While more and
more data from on-board vehicle sensors become available
due to the growing fleet sizes of prototype vehicles, this type
of sensor setup suffers from shortcomings, like occlusions,
short observation periods of other vehicles, or inaccurate
estimations of vehicle dimensions [2], [3]. Stationary sensor
setups at an elevated position are thus a popular way to
record traffic data for longer durations, reduce occlusions,
and improve accuracy [4]. For this reason, datasets from
stationary sensor setups are especially useful for motion
planning and prediction to evaluate the performance of
different sensor setups. For instance, one can easily remove
vehicles from the dataset outside the sensor range to test
limited sensing ranges, technical sensor limitations, or inject
sensor faults. They also facilitate studying driver variability
in the same situation and identify outliers outside usual
human behavior.

B. Related Work

A variety of datasets for autonomous driving have been
released. Since our dataset mainly addresses motion predic-

1 Department of Informatics, Technical University of Munich, Garching,
Germany. {luis.gressenbuch, althoff}@tum.de

2 fortiss GmbH, Research Institute of the Free State of Bavaria for
Software-intensive Systems, Munich, Germany. Klemens Esterle and Tobias
Kessler left fortiss GmbH prior to the publication of this work.

Fig. 1: Detection areas of extracted trajectories. Image source:
Bayerische Vermessungsverwaltung (CC BY 3.0 DE).

tion and planning, we do not review previous datasets for
training perception systems. Table I shows relevant datasets
for motion prediction and planning, which are discussed in
more detail. We decided to omit the well-known NGSIM [10]
dataset from Table I since its quality is no longer state of
the art [11].

1) On-board sensor data: Multiple datasets from vehicles
with on-board sensors have been published, like the Waymo
Open Motion Dataset [2], Argoverse [3], nuPlan [9], or
CADC [12]. The advantage of these datasets is their amount
of data and the accuracy of the employed sensor setup,
which typically consists of cameras, LIDAR, and sometimes
RADAR. Vehicles with onboard sensors usually visit many
locations, but each only a few times. The temporal horizon
length is insufficient to observe complex maneuvers that
usually take more than 1 or 2 seconds.

2) Stationary sensor data: In the past, stationary camera
systems have been set up on elevated spots to record vehicle
trajectories [5]. Their advantage is that the field of view
usually reduces occlusions compared to onboard vehicle
setups. Similarly, a drone camera also provides a clear top-
view recording, e.g., highD [6] of highways, inD [7] of urban
intersections, openDD [8] and roundD [13] of roundabouts,
or INTERACTION [5] of urban intersections and highways.
Due to the limited drone battery capacity it is required
to interrupt the recording after some time to recharge or
exchange the battery. Consequently, the datasets typically
only contain a few hours of data recordings.

3) Maps: The lack of standard map formats, or any map
at all, limits the usability and requires manual effort to use
the data format within open-source frameworks for motion
planning, such as CommonRoad [14] or BARK [15].



TABLE I: Comparison of recent trajectory datasets for road vehicles. For licensing, we distinguish between commercial use (CU) and
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non-commercial use (NCU).

indicates the data not being available or applicable. T processing pipeline for static video records published
in [4]. * data taken from [2]. ¥ cameras recorded at different frequencies. t

collected through personal communication.

INTERACTION [5] highD [6] inD [7] openDD [8] Waymo [2] Argoverse [3]  nuPlan [9] Ours
location urban intersections highway urban inter-  roundabouts urban urban urban urban
+ highway sections
sensors static drone or static drone static drone static drone on-board on-board on-board static
camera camera
processing offline offline offline offline offline online offline offline
No. of locations 11 6 4 7 100k 323k - 3
No. of tracks 110k 20k 12k 85k 7.6M 11.7M¥ 39Mmft 702k
avg. track length 19.8s 13.6s 59.55 17.6s 7.0s 2.5s 9.6sTf 16s
record time 10h 16.5h 10h 62h 574h 320h 1500 h 130h
record frequency 30 Hz 25 Hz 25 Hz 30 Hz - 30Hz/5Hz8 20Hz/10HzS  25Hz
track frequency 10Hz 25 Hz 25Hz 30Hz 10Hz 10Hz 20Hz 5Hz
map format Lanelet2 none none non- non- non- non- opendrive +
standard standard standard standard lanelet
raw data no no no no no no yes yes
pipeline partially ™ no no no no no no yes
license NCU NCU NCU NCU + CU NCU NCU NCU NCU + CU

4) Data extraction: Due to the amount of data to be
processed, all datasets rely on automatic labeling. The
recorded data is usually processed offline. However, the lack
of complete data, e.g., raw video footage, or reference data,
prevents enhancements to the pipeline from persons other
than the dataset publishers. NuPlan is the only other dataset
that provides processed trajectories together with the raw
sensor data (for a subset of their dataset). However, they
do not provide the tracking pipeline, prohibiting others from
improving the data. No dataset in the literature has provided
accuracy measures for the extracted traffic participants.

5) License: Apart from openDD [8], no dataset can be
used for commercial use free of charge. To facilitate the
transfer from research to industry, we argue that restricting
the dataset to non-commercial use limits its impact.

C. Contribution

We created a dataset addressing the above problems by
providing the following contributions:

o Dataset covering urban roads with multiple lanes, an
inner-city highway stretch, and their transitions cf.
Fig. 1;

o Simultaneous data from stationary sensors and onboard
vehicle sensors

o Advanced data extraction from video footage at scale

o Open-source tools and data with no license restrictions

o Longer recordings with fewer interruptions compared to
other stationary datasets

o Maps in standard formats for all our locations

o Comprehensive evaluation of extracted vehicles length,
width, and position accuracy.

We freely provide our data and software as open-source,
allowing non-commercial and commercial use. The source
code and data are available at commonroad.in.tunm.de.

The remainder of the paper is structured as follows.
Section II gives an overview of our dataset, and Section III
describes our trajectory extraction approach from videos.

The accuracy and features of the dataset are analyzed in
Section IV, and we conclude the paper in Section V.

II. DATASET OVERVIEW

In this section, we present the video recordings, trajectory
data, maps, and reference data of our dataset.

A. Video Recordings

The video footage was recorded in August 2021. Three
cameras were placed on the 28th floor of the Highlight Tower
1, located in north Munich, at the interchange of the Auto-
bahn A9 and the Schenkendorfstrale, a main bypass road in
Munich. In total, 130 h of video material from three different
perspectives in various weather conditions (e.g., sunshine,
overcast and rain) have been recorded. The recording setup
consisted of three Sony FDR-AX43 video camcorders with
a resolution of 3840x2160 pixels at a frame rate of 25 Hz.
The cameras were fitted with a circular polarizer to reduce
reflections in the window glass of the building. Moreover,
each recorded video was seamlessly divided into segments
of 30min and every video file is accompanied by a meta
file containing detailed information about the recording time,
resolution, and frame rate.

B. Trajectory Data

We extract trajectories from the video material in the areas
highlighted in Fig. 1 by applying the processing pipeline
described in Section III. Table II lists the statistics of the
extracted trajectory dataset with respect to the recording
location. In total, 702k trajectories have been extracted,
corresponding to driving a distance of 124 500 km in 3127 h.
Our results were saved in the columnar Apache Parquet
format' for efficient storage and fast reading speeds. Each
row provides information about the state and type of the
vehicle in every frame. The provided columns are fully
compatible with the INTERACTION dataset [5], thereby

Iparquet .apache.org
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TABLE II: Dataset statistics by location. T per driving direction

Location east

west merge
recorded time in h 459 43.1 46.2
driven time in h 1804 1051 272
driven distance in km 71k 41k 13k
No. of cars 276k 235k 113k
No. of trucks 38k 25k 8k
a-priori feasible 81.9% 82.6% 77.5%
feasible after optimization 96.6% 97.8% 97.0%
No. of reference drives® 13712 9/- 4/2

facilitating the usage of our dataset, as existing data loading
tools can be reused.

Our toolchain provides command-line interface tools to
extract video footage corresponding to individual trajecto-
ries, which can be optionally annotated with the pipeline
stage results. We also provide a tool to convert extracted
trajectories into CommonRoad scenarios [14].

C. Maps

The maps for all three locations were manually created
using MathWorks RoadRunner? R2021a based on calibrated
digital orthographic aerial imagery and information from the
Bavarian road information system (BAYSIS)®. We provide
maps in the standardized OpenDRIVE* and CommonRoad
format [14]. Additionally, the conversion to Lanelet/Lanelet2
is supported [16]. Fig. 2 displays the three recording loca-
tions and the corresponding maps.

D. Reference Data

To provide test data with known ground truth, we used
the fortuna autonomous driving vehicle demonstrator [17]
to measure position, velocity, heading, and yaw rate, while
driving through the observation area of all three locations
on three separate days. The measurements were conducted
using an iIMAR iNAT FSSG-1 inertial navigation system
that uses information from a fiber optic gyroscope and an
RTK GNNS receiver to achieve a position accuracy of up to
0.02m at a frequency of 100 Hz. The last row of Table II
displays the number of reference drives for the different
locations. The separator indicates the number of drives for
each of the two structurally separated main carriageways.
We also provide the recorded perception data of the Apollo
driving stack running on fortuna for all reference drives [18].
The perception uses a Velodyne VLP-32C LiDAR sensor to
detect surrounding vehicles.

III. PIPELINE FOR DATA PROCESSING

We base our trajectory extraction toolchain on the work of
Clausse et al. [4]. However, multiple modifications described
in this section have been made to improve the scalability,
accuracy, and occlusion robustness. We apply the following
sequential processing stages of the pipeline depicted in
Fig. 3, which are described in detail in the remaining section:

mathworks.com/products/roadrunner.html
3baysis.bayern.de
4opendrive.org

1) During the detection stage, the bounding box of ve-
hicles in pixel coordinates is obtained in video frame
(Section III-A).

2) The pose estimation provides the length, width, head-
ing, and position of detected vehicles in world coordi-
nates for each frame (Section III-B).

3) The association stage assigns detections of the same
vehicle in consecutive frames to the same vehicle ID
(Section III-C).

4) A smoothing stage reduces noise in the detected tra-
jectories (Section III-D).

5) As the smoothing cannot ensure the feasibility of a
trajectory with respect to a kinematic vehicle model,
feasible trajectories are obtained by solving an opti-
mization problem (Section III-E).

The toolchain is implemented in Python and allows re-
searchers to easily integrate their approaches for detection,
pose estimation, tracking, and smoothing. We apply par-
allelization, vectorization, and just-in-time compilation to
improve the processing speed of our pipeline and provide the
documentation of our API on the CommonRoad webpage.

A. Detection

For vehicle detection, we use the object detection neural
network architecture Detectron2® with pre-trained model
weights from the COCO dataset [19]. The neural network
processes each frame independently and outputs the bound-
ing box in image coordinates, an instance segmentation
mask, a class label, and a corresponding confidence score
for each object detected.

B. Pose Estimation

Vehicle pose estimation from monocular RBG video is
an active research topic [20]-[22]. However, its application
to our dataset is limited since the ego perspective from a
vehicle is often assumed. Likewise, neural networks trained
on datasets recorded from a vehicle, like in the KITTI
dataset [23], are highly dependent on the perspective. Fur-
thermore, the objects in the image only comprise small
patches, making it difficult to extract features. Therefore,
geometrical approaches as, e.g., proposed by Clausse et al.
[4], use the segmentation mask of a detected vehicle to
maximize the intersecting area with a projected 3D cuboid in
image space. However, this approach assumes a fixed size per
vehicle type (e.g., car, truck, and bus), introducing inaccura-
cies in the occupied area. Moreover, since the optimization
problem is highly nonlinear, it often only converges to a local
optimum and is computationally expensive.

Since the height of a vehicle is usually not of interest for
tasks like motion planning or prediction, we limit ourselves
to estimating the center position, heading, length, and width
of a vehicle. To obtain a partial vehicle contour in world
coordinates, we extract contour points from the silhouette
of the instance segmentation mask in a known plane, i.e.,
the underfloor of a vehicle [24], and project them to the

Sgithub.com/facebookresearch/detectron2
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Fig. 2: Recording and corresponding map in the CommonRoad format for all three locations.
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Fig. 3: Processing pipeline stages with corresponding visualized
results.

world frame using a calibrated camera model. However, due
to the differing perspectives compared to [24], extracting the
lower half of the contour does not necessarily correspond
to the contour of the underfloor. Therefore, we propose
the following approach independent of the perspective: The
contour points are projected to the ground plane in world

coordinates. The projected points form a polygon with the
boundary B C R? and vertices £ C B. We cast a ray
Ri = {c+ s(l — ¢)|s € R>p} from the camera position
c to each vertex 1 € £; 1 is considered part of the bottom
contour, if [[c — 1||z = miny¢gr,np)[lc — 1|2 (see 2b) of
Fig. 3). The required intrinsic and extrinsic parameters of the
camera model are obtained once during processing pipeline
setup by matching pairs of corresponding pixel and world
coordinates; see [25] for further details.

We use the approach from Jung et al. [26] to efficiently
fit an L-shape to the set of bottom contour points via least-
squares optimization (see 2c) of Fig. 3). To improve the
robustness towards outliers, the fitting is performed using
a RANSAC estimator [27]. As the spatial resolution of the
camera image decreases with increasing distance and the
vehicle dimensions are known to be constant, we average the
length and width over the closest 100 poses to the camera
position after association, as described in Section III-C.
Then, the center point of each pose can be trivially obtained
from the corner of the L-shape and the length and width of
the vehicle.

C. Association

Clausse et al. [4] use a simple multi-object tracking
approach derived from Bochinski et al. [28]. An optical
tracking algorithm bridges gaps in visibility for partial oc-
clusions. However, the approach relies on the assumption
that vehicles are not fully occluded. As in our application,



vehicles might be fully occluded by bridges, traffic signs,
and bushes for several frames, we apply a tracking approach
based on the work of Wojke er al. [29] to alleviate this
limitation. It uses the uncertainty estimate of a Kalman filter
to establish a probability measure that a detection belongs
to a certain object in addition to the Intersection-over-Union
(IoU) metric. We adapt the method by applying the Kalman
filter in the world frame since the perspective, and significant
distance to the camera makes tracking in the image frame
inapplicable. While the original approach also uses a Re-ID
network to reduce the number of identity switches, we leave
the implementation of this component to future work.

D. Smoothing

As in previous works [4], [30], we process the noisy
tracks using the Rauch-Tung-Striebel (RTS) smoother [31].
Schubert et al. [32] investigated the performance of different
vehicle models for vehicle tracking applications. They found
that the model with the lowest position error for an urban
scenario is a model assuming constant yaw rate and constant
acceleration. In contrast to our application, their experimental
setup used vehicle velocity and yaw rate as measurement
inputs in addition to position. Since increasing the model
order while only measuring the position of the vehicle,
increases the sensitivity of the signal-to-noise ratio, we
choose the best performing constant velocity model for the
underlying filter. The state of our vehicle model is defined
as x = (s, Sy, v,¢¥,w) T, where s, s, denote the x- and y-
position of the vehicle, 1) the heading, v the velocity, and w
the yaw rate. The discrete-time dynamic model of our vehicle
is [30]

(ernar v(t) C?S(a(t)) 0
v(t)sin(6(t)) 0

x[k + 1] = x[k] + / 0 + | wy | dt,
kAt W(()t) 0

()
where At denotes the time step size, and w, ~ N(0,02)
and w,, ~ N(0,02) characterize zero-mean Gaussian white
noises to account for model errors as well as unknown
longitudinal and angular accelerations.

Due to the model’s nonlinearity, an extended Kalman
filter (EKF) is employed as the underlying filter of the RTS
smoother. The filter is updated by position measurements of
the vehicle h = (z,y)T + (0, 7,)T, obtained by the pose
estimation described in Section III-B. Furthermore, noise
in the measurement is captured by the additive zero-mean
Gaussian white noises v, ~ N'(0,02) and @, ~ N(0,07).

E. Optimization for Drivability

The output trajectories from the track smoothing stage are
not necessarily drivable by a standard vehicle model due
to measurement noise. Therefore, we implement a nonlin-
ear optimal control approach to post-process the smoothed
trajectories and ensure their feasibility.

The CommonRoad drivability checker [33] is used to
check the a-priori trajectory feasibility with the kinematic

single-track model and corresponding parameters as defined
in [14]. We chose the longitudinal acceleration and the
steering velocity as input u. Furthermore, x are the states
resulting from smoothing and X[1],...,%[N] from the op-
timized input trajectory u and initial state x[0]. The state
space is chosen as described in the smoothing stage, where
the yaw rate is replaced by the steering angle. Finally, the
optimization problem is formulated as

N N-1
min elk]"Qqelk] + » a[k]"Q.ulk
S SLCCRUED SECERT
subject to g(x[k],ulk]) < g,
where e[k] = x[k] — X[k] is the difference between the

smoothed and optimized state, ), and @), are weight matri-
ces, and g is the vehicle constraint function with upper limit
g

Since the main objective is to repair the position and
heading from the smoothing stage, we only set weights
Q. = diag(0.1,0.1,0,1,0) on position and heading devia-
tions. In order to preserve the characteristics of the original
trajectories under the assumption that human drivers primar-
ily maintain an energy-efficient driving style, we use small
weights of Q, = diag(1073,10%) for the control input.

The nonlinear optimization problem is solved by direct
multiple shooting [34, Sec. 4.3] using CasADi [35] with
its BlockSQP [36] implementation®. Before the optimization,
trajectories are downsampled to a frequency of 5 Hz to fit the
needs of most application scenarios and reduce unnecessary
complexity. Since not all trajectories could be made feasible
due to model mismatch or optimizer time out, we remove all
trajectories where the optimizer has not converged or where
the feasible trajectory is on average more than 0.1 m away
from the original trajectory.

F. Trajectory Filtering

Due to inaccurate or false positive detections, the extrac-
tion results are filtered by various plausibility criteria, such
as vehicle size, trajectory length, or mean velocity. As the
filter parameters are an application-specific trade-off between
removing false positives and discarding genuine trajectories,
we provide a modular and parameterized filter architecture
to comply with the diverse needs of future users.

IV. DATASET ANALYSIS
A. Statistical evaluation

We present a statistical analysis since the number of
trajectories in the dataset does not allow one to inspect
specific features manually. Fig. 4a shows the mean velocity
histograms for each location. Two distinct peaks for the most
frequent velocities can be observed. The lower velocity peak
is around 2.5 m/s, whereas the higher peak is approximately
16 m/s. The latter is not surprising, as it corresponds to the
allowed speed of 16.67 m/s. The former corresponds to low
velocities during congestion in the morning and afternoon

6The implementation uses HSL, a collection of Fortran codes for large-
scale scientific computation. See http://www.hsl.rl.ac.uk.
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Fig. 4: Statistical evaluation of extracted trajectories.

rush hour. Fig. 4b reveals a peak of up to 18300 detected
vehicles per hour, accumulated over all three locations.

In Table II, we state the percentage of feasible trajectories
after smoothing and that could be made feasible with the
accepted deviation from the measured trajectory. Of all
trajectories, 81.4 % and 97.1 % were feasible after smoothing
and optimization, respectively. Fig. 5 shows the cumulative
histogram of the mean position and heading deviations
introduced in the feasibility processing stage. For most cases,
only slight deviations from the smoothed trajectories were
necessary to obtain a feasible solution.

B. Accuracy Evaluation

1) Time Synchronization: The cameras recording the
video footage did not provide an option for accurate time
synchronization with the GNSS time. Therefore, we manu-
ally determined the frame in the video where the rear axle
of the fortuna vehicle passes a landmark with a known
geographical position, e.g., a lane marking, and found the
closest position measurement from the fortuna vehicle to
the landmark. This time stamp marks the synchronization
point between camera and vehicle. Since the duration of
each reference drive does not exceed 15s, the clock drifts
during this time are neglected. The error bound of this
procedure is given by the sampling frequency of the camera
fvideo = 25 Hz and the frequency of the inertial navigation
system fing = 100 Hz: %(f_1 + fing) = 25ms, yielding

video
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Fig. 5: Cumulative histogram of deviations introduced in feasibility
optimization of trajectories.

a longitudinal position error bound of 0.417m at the road
speed limit of 16.67 m/s.

2) Trajectory accuracy: Fig. 6 depicts the error evaluation
between the extracted trajectory from our pipeline and the
measured trajectory from the fortuna vehicle. We present the
measurements for each driving direction, as shown in Fig. 2.
Here, incoming and outgoing mean driving towards and away
from the camera, while merge signifies moving from left-to-
right and right-to-left through the camera image. Note, that
we could not provide reference drives for “west (incoming)”
since the road goes through a tunnel (see Fig. 1), degrading
the position accuracy due to losing the GNSS signal. We
evaluate the mean absolute error (MAE) of the estimated
vehicle extents as well as the lateral and longitudinal posi-
tions using curvilinear coordinates [37] with the ground-truth
trajectory as the reference path. As expected, the longitudinal
error is the lowest for the merge location since the recording
perspective is the only one from the side, facilitating the
estimation of the longitudinal component. Conversely, the
lateral and vehicle width error is larger. Notably, due to
the time synchronization procedure described in the previous
paragraph, the longitudinal error may also contain an error
originating from a time shift. However, the lateral component
is less affected, so the average lateral error only ranges
from 0.14m to 0.28 m. Providing precise lateral position is
crucial for several dataset applications, such as traffic rule
evaluation, where a misdetected crossing of a lane marking
might result in a false positive of a traffic rule violation.

Comparing our results with the ones obtained by Clausse
et al. [4], our heading root mean squared error (RMSE)
is 82.7% lower, and the velocity RMSE is 89.8 % lower,
but the position RMSE is 12.5% higher. Note that the
evaluation data in [4] was synthesized and only covered a
small intersection area. An experimental setup similar to
ours, where trajectories were recorded from a gantry bridge,



Longitudinal Lateral
= east (incoming ‘
T o neomn —R
g east (outgoing) _—
i merge (left-to-right) E ‘
a
o
45 merge (right-to-left) E ‘
LE—— _—
0.0 0.5 0.0 0.2 0.4
Vehicle length Vehicle width
= east (incoming) ‘
9]
g cast (outgoing) .—
Z merge (left-to-right) .
a
o
45 merge (right-to-left) l
s) .
= west (outgoing)
0.0 0.2 04 0.00 0.25 0.50
MAE in m MAE in m

Fig. 6: Analysis of errors between extracted trajectory and reference
measurement of the fortuna vehicle.

is described by Krdmmer et al. [38]. Compared to their
work, the RMSE values are lower by 63.5 % for the overall
position, 66.5 % for the longitudinal position, and 35.4 %
for the lateral position. However, their system is intended
to operate in real-time, trading off accuracy for processing
speed.

C. Limitations

We found that black vehicles and motorcycles have a lower
detection rate than other vehicles. A possible explanation
is that black vehicles have minor contrast to the road, and
motorcycles only cover a few pixels. Future work could
improve the detection by fine-tuning the model weights on
a small, manually labeled subset of our dataset.

During congestions, vehicles may be occluded by static
objects for extended periods, e.g., bushes, bridges, gantry
bridges, and trucks, which cannot be handled by the as-
sociation approach described in Section III-C. While for
static objects, it could be exploited that vehicles driving into
occlusions at one point eventually reappear on the other side.
This may lead to a highly location-specific toolchain. More
generally, approaches for re-identification and prediction
could be used in future work to associate partial trajectories
of the same object [39], [40].

Multiple instances of vehicles transporting other vehicles
on trailers have been found, e.g., a truck with a semi-trailer
transporting multiple cars. As the neural network correctly
detects the vehicles, they are mistakenly considered driving
vehicles. This issue is difficult to resolve since either the
detection has to be improved or heuristics, such as distance or
relative velocity to the front vehicle, must be used to identify
such situations. On the other hand, the heuristics may lead
to false positives, e.g., during congestions.

V. CONCLUSIONS

We presented the MONA dataset, a large dataset of
naturalistic driving data in Munich, Germany, including
videos, maps, ground-truth data from a measurement vehicle,
recordings from the perception pipeline of the measurement
vehicle, and an improved toolchain to extract trajectories
from video. The trajectory data has been statistically ana-
lyzed, and its accuracy validated. We provide all data, maps,
and software used to create the dataset for full reproducibility
and verifiability. All this distinguishes our work from other
datasets. Our package is deliberately released under a liberal
license making non-commercial and commercial use possible
to foster academic and industrial research. Due to the large
dataset size, it is particularly suitable for machine learn-
ing. Another potential use case is validating planning and
prediction methods using only the perception data from the
measurement vehicle and simulating the extracted trajectories
as ground truth to analyze the impact of partial or erroneous
information about the environment. Furthermore, research
topics, such as improving computer vision algorithms, can
be addressed. Our dataset is the first freely available dataset
to combine a stationary sensor setup with onboard sensing
in an instrumented vehicle. As our toolchain was developed
for general usage and no specific adaptions to the recording
locations have been made, more locations can be easily added
to obtain a more diverse set of traffic situations.
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