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Interval-Arithmetic-Based Robust Control of

Fully-Actuated Mechanical Systems
Andrea Giusti, Stefan B. Liu, and Matthias Althoff

Abstract—We propose a control approach for fully-actuated
mechanical systems using interval arithmetic, which guarantees
global uniform ultimate boundedness of the tracking error
and robust performance despite model uncertainties and input
disturbances. Existing robust control methods often require
computationally expensive or empirical estimations of bounds
of state-dependent, nonlinear perturbations, arising from model
mismatches. Our robust feedback control approach is different
and removes these difficulties by using interval arithmetic to
determine online the worst-case perturbation acting on the
error dynamics. We present two interval-arithmetic-based robust
controllers by robustifying inverse-dynamics and passivity-based
nominal control schemes. The effectiveness of our approach
is demonstrated on a real robot manipulator with uncertain
dynamics.

Index Terms—Robust control, interval arithmetic, inverse-
dynamics control, passivity-based control, mechanical systems,
uncertain systems.

I. INTRODUCTION

ROBUST control methods enhance the control perfor-

mance of dynamical systems despite uncertainties and

disturbances [1]. The mathematical models typically used

for control design can only approximate the real system

dynamics up to a certain degree. This can result in limited

effectiveness or even in incorrect behavior when closed-loop

control performance shall be guaranteed, e.g., in safety-critical

[2], [3] or high performance scenarios [4], [5]. Violations of

performance specifications often requires one to deploy new

control laws or meticulously tune the current controller.

In this paper we consider the class of dynamical systems that

can be described by the Euler-Lagrange formulation [6], are

fully actuated, and have uncertain parameters. Widely adopted

representatives of this system class are robot manipulators.

The robust control problem of these systems has attracted

numerous researchers. Effective classical and more recent

approaches are well documented in textbooks, such as [7]–

[10]. A survey that describes works until the early ’90s can

be found in [11] and more recent contributions are, e.g.,

[12]–[18]. Methods that are based on the optimal control

framework for robust control have been presented, e.g., in [15],

[16]. Sliding-mode controllers have been proposed for robust

control of mechanical systems e.g., in [19], [20], with second-

order variants to alleviate the chattering phenomenon [21],
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[22]. Robust control methods based on the online estimation

of plant uncertainties and external disturbances by means of

disturbance observers have been proposed in [23], [24], and a

recent comprehensive survey of these approaches can be found

in [25]. Recent methods combining principles of both adaptive

and robust control techniques have been proposed in [26]–[28].

Previous robust control methods that guarantee asymptotic

convergence of the tracking error result in discontinuous con-

trol laws [29]. However, control schemes with discontinuous

control laws are difficult to implement in practice due to the

induced chattering [30]. Chattering is highly undesired for

mechanical systems since it often excites unmodeled high-

frequency dynamics. The discontinuous robust control action

can often be smoothed as presented in [31], where the authors

introduce a practical stability notion for uncertain systems

using the concept of uniform ultimate boundedness of the

tracking error. The work in [12] adopts the smoothing concept

for robot manipulators and exploits the property that their

dynamics can be made linear in the dynamic coefficients

composed of inertial parameters (see e.g., [9, Section 7.2.2]).

There, the perturbations due to model uncertainty is directly

determined by the dynamic coefficients, instead of consider-

ing bounds on highly nonlinear state-dependent perturbation

functions with respect to other control approaches. The effec-

tiveness of that approach has been experimentally evaluated

in [32] on a directly-actuated planar robot with two degrees

of freedom. Also the scheme in [33, Section 2.4.2], exploits

the property of linearity in the dynamic coefficients for robot

manipulators with an intrinsically continuous control law.

The a-priori estimation of bounds of perturbations that act

on the closed-loop error dynamics, which many proposed

robust control techniques require, is not simple to perform in

practice since these bounds are composed of highly nonlinear

state-dependent functions. They either require computation-

ally expensive sampling approaches to sufficiently cover the

reachable state space, or empirical estimations through testing;

however, both approaches are not formally correct. In sum-

mary, most existing robust control schemes for mechanical

systems either result in discontinuous control laws, e.g., [28],

[29], require a priori estimation of bounds of nonlinear,

state-dependant perturbation functions [14], [18], or require

a particular linear factorization of the system dynamics [12],

[13].

We propose an approach to resolve the above-mentioned

difficulties for robust control of fully-actuated mechanical

systems. Our proposed schemes result in continuous control

laws that do not require any a-priori estimation of bounds

of nonlinear state-dependent perturbation terms, nor any par-

ticular factorization of the system dynamics. In particular,
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we propose using interval arithmetic for the automatic online

computation of worst-case perturbations, and use this measure

for computing a robustifying feedback control action. This has

the additional benefit of providing formally-guaranteed over-

approximative results. Previous work that considered design-

ing robust control schemes for linear systems using interval

arithmetic can be found in [34]–[37]. Our proposed robust

control approach, however, does not require linearity. This

paper is an extension of our previous work in [38] and presents

additional theoretical results and experiments on a six degrees-

of-freedom robot arm. We have also applied our approach to

a simulated continuum robot in [39].

The remainder of the paper is structured as follows. In

Section II we provide preliminaries on interval arithmetic and

we detail the control problem. Our proposed control approach

is presented in Section III. Experimental results are presented

in Section IV, and the conclusions in Section V.

II. PROBLEM STATEMENT

In this section, we first introduce preliminaries on interval

arithmetic followed by describing the addressed control prob-

lem.

A. Preliminaries on Interval Arithmetic

Interval arithmetic [40] allows one to bound solutions of

mathematical problems involving uncertain parameters with

certainty. For subsequent derivations, the following definitions

are introduced.

Definition 1 (Multidimensional interval): A multidimen-

sional interval is defined as a set of real numbers:

[x] := [x,x], x ∈ R
n, x ∈R

n, xi ≤ xi, ∀ i ∈ {1, . . . , n}.

The scalar case is simply denoted by [x] instead of [x], with x

for denoting its infimum and x its supremum.

Definition 2 (Interval-valued function): An interval-valued

function can be seen as an extension of a real-valued function

evaluated for one or more interval arguments. More precisely,

given a generic real-valued function w : Rn →R
m, its interval

evaluation over a set [x] is defined as

w([x]) := {w(x) | x ∈ [x]}.

Operations among interval variables, vectors and matrices, also

known as set-based operations, can be implemented, e.g., as

in [41], [42].

B. Control Problem

We consider uncertain, fully-actuated mechanical systems

whose dynamics can be modeled by the Lagrangian formula-

tion (see e.g., [10, Section 6.1]). Subsequently, we omit time

dependence for brevity when this does not affect the clarity of

the description. After introducing a vector ∆∆∆∈R
M of M model

parameters and a vector q ∈R
N of N generalized coordinates,

we can compactly write the model of the system dynamics as:

M(q,∆∆∆)q̈+

:=n(q,q̇,∆∆∆)
︷ ︸︸ ︷

C(q, q̇,∆∆∆)q̇+ f(q̇,∆∆∆)+ g(q,∆∆∆) = u+d, (1)

where M(q,∆∆∆) ∈ R
N×N is the symmetric positive definite

inertia matrix, C(q, q̇,∆∆∆)q̇ is the vector containing the Coriolis

and centrifugal model terms, and f(q̇,∆∆∆) and g(q,∆∆∆) are the

vectors of friction and gravity terms, respectively. Further,

d ∈ R
N is a disturbance input and u ∈ R

N is an actuation

input which allows us to independently set commands for each

generalized coordinate resulting in a fully-actuated system.

Additionally, C(q, q̇,∆∆∆) ∈ R
N×N is a matrix such that the

following property holds [6, Chapter 2]:

xT
(
Ṁ(q,∆∆∆)− 2C(q, q̇,∆∆∆)

)
x = 0, ∀x ∈R

N . (2)

We also consider that the following property holds [6, Chap-

ter 2]:

λm ‖x‖2 ≤ xT M(q,∆∆∆)x ≤ λM ‖x‖2, ∀x ∈ R
N , (3)

where λm = λmin(M(q,∆∆∆))> 0 and λM = λmax(M(q,∆∆∆))< ∞
are the minimum and maximum eigenvalues of the matrix

M(q,∆∆∆), respectively. We assume that:

1) the uncertainty of the model parameters is known and

bounded by the multidimensional interval [∆∆∆]: ∆∆∆ ∈ [∆∆∆];
2) a vector of nominal model parameters ∆∆∆0 ∈ [∆∆∆] is avail-

able;

3) the norm of the disturbance input vector d is bounded1

by βd (we consider both cases for this scalar to be known

or not);

4) the terms in (1) are continuous ∀q, q̇ ∈R
N , and Lipschitz

continuous for ∆∆∆ ∈ [∆∆∆] with given values of q, q̇.

For the considered systems and assumptions we face the

problem of designing controllers that guarantee both global

uniform ultimate boundedness [43, Section 4.8] of the tracking

error and robust performance, despite parametric model uncer-

tainties and input disturbances. In particular, by considering

the control error e(t) = qd(t)−q(t), we address the problem

of formally ensuring that

‖e(t)‖< ε, ∀ t ≥ t1,

for a finite time t1 ≥ 0, a finite ε > 0 and reference trajectories

qd(t) that are sufficiently smooth (at least twice differentiable).

We denote this result as robust performance if ε is defined by

the user a priori. If ε is not defined by the user a priori, we

use the term Global Uniform Ultimate Boundedness of the

tracking error (GUUB).

III. INTERVAL-ARITHMETIC-BASED ROBUST CONTROL

We introduce two variants of interval-arithmetic-based ro-

bust controllers differing in the nominal tracking control law.

First, the case of using inverse-dynamics nominal control is

described in Subsection III-A, followed by the case of using

passivity-based nominal control in Subsection III-B. These

two schemes will be denoted by Interval-Arithmetic Inverse-

Dynamics (IA-ID) control and Interval-Arithmetic Passivity-

Based (IA-PB) control. For compactness of the following

description, the model terms computed with nominal model

parameters ∆∆∆0 are denoted with 0 as a subscript. For example,

the nominal inertia matrix M(q,∆∆∆0) will be simply denoted

1All norms in this work are 2-norms.
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by M0 (q). Furthermore, we use a tilde to denote the mismatch

between nominal and the real model terms. For example, we

denote the model mismatch of the inertia matrix as

M̃(q,∆∆∆) = M(q,∆∆∆)−M0 (q) .

A. Interval-Arithmetic Inverse-Dynamics Control

In this subsection, we derive the IA-ID controller for

ensuring GUUB, assuming βd to be known. Let us consider

the standard inverse-dynamics control law [9, Section 8.5.2],

with an auxiliary input vector ννν ID ∈ R
N as

u = M0 (q)y+

:=n0(q,q̇)
︷ ︸︸ ︷

C0 (q, q̇) q̇+ f0 (q̇)+ g0 (q)−ννν ID, (4)

where

y = q̈d +KDė+KPe,

with KP and KD being positive definite matrices of proper

dimensions and where n0 contains the nominal contributions

due to centrifugal, Coriolis, friction, and gravity terms. By

applying (4) in (1), we obtain

M(q,∆∆∆)q̈ = M0(q)y+n0(q, q̇)−n(q, q̇,∆∆∆)−ννν ID +d. (5)

Subtracting the term M(q,∆∆∆)(q̈d + KDė + KPe) from both

sides of (5) yields

M(q,∆∆∆)(ë+KDė+KPe) = wID(q, q̇,y,∆∆∆0,∆∆∆,d)+ννν ID, (6)

where

wID(q, q̇,y,∆∆∆0,∆∆∆,d) = M̃(q,∆∆∆)y+ ñ(q, q̇,∆∆∆)−d (7)

is the perturbation arising from model mismatches and external

disturbances.

The interval-arithmetic robust control action can now be

introduced through ννν ID. We first define a measure of the worst-

case perturbation as

ρρρ([ΦΦΦID]) = max
(
|ΦΦΦID|, |ΦΦΦID|

)
, (8)

in which the max operator is applied element-wise and where2

[ΦΦΦID] = wID(q, q̇,y,∆∆∆0, [∆∆∆], [d]).

From Definition 2 it follows that

wID(q, q̇,y,∆∆∆0,∆∆∆,d) ∈ [ΦΦΦID] = wID(q, q̇,y,∆∆∆0, [∆∆∆], [d]),

and consequently

ρi([ΦΦΦID])≥ |wID,i(q, q̇,y,∆∆∆0,∆∆∆,d)|, (9)

∀q, q̇, y ∈ R
N , ∆∆∆0 ∈ [∆∆∆] and ∆∆∆ ∈ [∆∆∆], d ∈ [d].

Next, we use ρρρ([ΦΦΦID]) for feedback control. From (6), the

closed-loop error-dynamics

ξ̇ξξ = Aξξξ +BM−1ννν ID +BM−1wID, (10)

can be obtained, where

ξξξ = (eT , ėT )T , (11)

A =

(
0 I

−KP −KD

)

, B =

(
0

I

)

. (12)

The following derivation relies on similar arguments as in [33,

Section 2.4.2] extended by methods from interval arithmetic.

By considering a symmetric positive definite matrix P such

that

AT P+PA =−Q (13)

with Q being positive definite, we use the Lyapunov function

candidate

V = ξξξ
T

Pξξξ . (14)

The derivative with respect to time of (14) along the solution

of (10) yields

V̇ = − ξξξ
T

Qξξξ + 2ξξξ
T

PBM−1
(
ννν ID +wID

)

(9)

≤ − ξξξ
T

Qξξξ + 2ξξξ
T

PBM−1ννν ID+

2‖ξξξ
T

PB‖‖M−1‖‖ρρρ
(
[ΦΦΦID]

)
‖. (15)

By considering that λmin(M
−1) = 1

λmax(M) , λmax(M
−1) =

1
λmin(M) , and using (3), we have that

1

λM

‖x‖2 ≤ xT M−1(q,∆∆∆)x ≤
1

λm

‖x‖2 ∀ x ∈ R
N , (16)

and by selecting the robustifying term of the controller as

ννν ID =−κP ‖ρρρ
(
[ΦΦΦID]

)
‖2 BT Pξξξ , (17)

where κP > 0 is a tuning parameter, (15) becomes

V̇ ≤ − ξξξ
T

Qξξξ − 2κP ‖ρρρ
(
[ΦΦΦID]

)
‖2 ξξξ

T
PBM−1BT Pξξξ+

2‖ξξξ
T

PB‖‖M−1‖‖ρρρ
(
[ΦΦΦID]

)
‖

(16)

≤ − ξξξ
T

Qξξξ −
2κP

λM

‖ξξξ
T

PB‖2‖ρρρ
(
[ΦΦΦID]

)
‖2+

2

λm

‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖

≤ − ξξξ
T

Qξξξ+

2κP

λM

‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖
( λM

κPλm

−‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖
)

.

(18)

It is now possible to observe from (18) that when

‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖ ≥ λM

κPλm
, then V̇ ≤ −ξξξ

T
Qξξξ , while for

‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖< λM

κPλm
we can write that

V̇ ≤ − ξξξ
T

Qξξξ +
2

λm

‖ξξξ
T

PB‖‖ρρρ
(
[ΦΦΦID]

)
‖

≤ −λmin(Q)‖ξξξ‖2 +
2λM

κPλ 2
m

.

In light of this result, GUUB follows from [43, Theorem

4.18]. From this, it also follows that the designer can increase

tracking performance by increasing κP. The block diagram of

the IA-ID controller is presented in Figure 1.

Remark 1: An important aspect of (17) is that it is continu-

ous. Continuity follows from the fact that (8) is continuous. In

particular, given that [ΦΦΦID] =wID(q, q̇,y,∆∆∆0, [∆∆∆], [d]), for given

q, q̇, y, ∆∆∆0, one can choose d∗ ∈ [d] and ∆∆∆∗ ∈ [∆∆∆] such that ΦΦΦID

is maximal (or ΦΦΦID is minimal). Since wID(q, q̇,y,∆∆∆0,∆∆∆
∗,d∗)

is continuous, it guarantees in turn continuity of |ΦΦΦID| (or

|ΦΦΦID|). Then, since the max operator between two continuous

functions preserves continuity, ρρρ([ΦΦΦID]) is continuous.

2The dependencies of [ΦΦΦID] from q, q̇, y, and ∆∆∆0 are omitted for brevity.
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Plant q̇

q
d

u

M0(q)

n0(q, q̇)

y

q̈d

q̇d

qd

ννν ID

ξξξ

KP

KD

Interval-Arithmetic Inverse-Dynamics (IA-ID) Control

z
BT Pξξξ κP ‖ρρρ

(
[ΦΦΦID]

)
‖2

Fig. 1. Block diagram of Interval-Arithmetic Inverse-Dynamics (IA-ID) control.

Plant q̇

q
d

u

g0(q)+ f0(q̇)

M0(q)

C0(q, q̇)
q̇a

q̈a

q̈d

q̇d

qd

νννPB

Kr

Kr

Interval-Arithmetic Passivity-Based (IA-PB) Control

κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖+ϕ(t)

Fig. 2. Block diagram of Interval-Arithmetic Passivity-Based (IA-PB) control.

B. Interval-Arithmetic Passivity-Based Control

In this subsection, we first derive the IA-PB controller for

ensuring GUUB, considering known bounds βd of the external

disturbance vector d. Subsequently, we enhance this scheme

to achieve robust performance. In this second description we

also relax the assumption that βd is known.

1) GUUB with IA-PB control: Let us consider the fol-

lowing nominal passivity-based control scheme [33] with the

auxiliary input vector νννPB as:

u = M0(q)q̈a +C0(q, q̇)q̇a + f0(q̇)+ g0(q)−νννPB, (19)

with

q̇a = q̇d +Kre (20)

and Kr being a diagonal positive definite matrix of proper

dimensions. By inserting the control law (19) in (1) we obtain

M(q,∆)ṙ+C(q, q̇,∆)r = νννPB +wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d),
(21)

where

r = ė+Kre, (22)

and

wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d) = M̃(q,∆)q̈a + C̃(q, q̇,∆)q̇a+

f̃(q̇,∆)+ g̃(q,∆)−d. (23)

As previously done for IA-ID, the following relation can be

written3:

[ΦΦΦPB] = wPB(q, q̇, q̇a, q̈a,∆∆∆0, [∆∆∆], [d]),

wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d) ∈ [ΦΦΦPB], (24)

where the set-membership relation of (24) follows from Def-

inition 2. The worst-case perturbation is

ρρρ([ΦΦΦPB]) = max
(
|ΦΦΦPB|, |ΦΦΦPB|

)
. (25)

From the same arguments as for the inverse-dynamics variant,

it holds that

ρi([ΦΦΦPB])≥ |wPB,i(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d)|, (26)

∀q, q̇, q̇a, q̈a, ∈R
N ∆∆∆0 ∈ [∆∆∆] and ∆∆∆ ∈ [∆∆∆], d ∈ [d].

3The dependencies of [ΦΦΦPB] from q, q̇, q̇a, q̈a, and ∆∆∆0 are omitted
for brevity.
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To derive the control law, it is convenient to start from the

storage function

V (r) =
1

2
rT M(q,∆)r, (27)

whose derivative along the solution of (21) is

V̇ (r) = rT M(q,∆)ṙ+
1

2
rT Ṁ(q,∆)r

(21), (2)
= rT νννPB + rT wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d). (28)

Using this result, the term νννPB is selected as

νννPB =−
(

κP ‖ρρρ
(
[ΦΦΦPB]

)
‖+ϕP

)

r, (29)

with κP ≥ 1 and ϕP ≥ 1. Inserting this choice in (28) yields

V̇ (r) =−ϕP ‖r‖2 −κP‖ρρρ
(
[ΦΦΦPB]

)
‖‖r‖2+

rT wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d)

≤−ϕP ‖r‖2 −κP‖ρρρ
(
[ΦΦΦPB]

)
‖‖r‖2+

‖r‖‖wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d)‖

(26)

≤ −ϕP ‖r‖2−κP‖ρρρ
(
[ΦΦΦPB]

)
‖‖r‖2 + ‖r‖‖ρρρ

(
[ΦΦΦPB]

)
‖

︸ ︷︷ ︸

=:h1(r)

.

By factoring out ‖r‖ in h1(r), it follows that for ‖r‖ ≥ 1
κP

,

V̇ (r)< 0 since h1(r)≤ 0. From this result, GUUB is achieved

as shown in [38, Theorem 1], which allows us to conclude

that the trajectories r are ultimately bounded by

‖r‖ ≤
1

κP

√

λM

λm

.

The boundedness of the trajectories r implies boundedness of

the tracking tracking error e as well, when Kr is properly

chosen. This can be seen by considering the system in (22),

with r as its bounded input. In fact, with Kr being diagonal

and positive definite, this system is a set of first-order linear

systems that asymptotically reach |ei| ≤
|ri|
Kr,i

for each coor-

dinate i. From this, it follows that the overall controller can

ultimately reach any desired tracking performance with the

selection of large enough gains of the matrix Kr and κP.

2) Robust performance with IA-PB control: By modifying

νννPB, a controller that can guarantee robust performance can

also be obtained. In particular, this is possible without the need

for finding large enough gains of Kr and the knowledge of λM,

λm. Further, we now remove the assumption of knowing the

bound βd . The robust control action is now

νννPB =−
(

κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖+ϕ(t)

)

r, (30)

where κ(t) and ϕ(t) are two positive increasing functions with

κP and ϕP as their respective minimum.

Given that the bound of the external disturbance vector

norm is not known, it cannot be included in ρρρ([ΦΦΦPB]).
Considering (28) and noticing that wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d) =

wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,0)− d, the derivative of (27) can now

be written as:

V̇ (r) =−ϕ(t)‖r‖2 −κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖‖r‖2+

rT wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,0)− rT d

≤−ϕ(t)‖r‖2 −κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖‖r‖2+

‖r‖‖wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,0)‖+ ‖r‖βd

(26)

≤ −ϕ(t)(1− δ )‖r‖2+ h2(r), (31)

where

h2(r) =−
(

ϕ(t)δ +κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖
)

‖r‖2+
(

‖ρρρ
(
[ΦΦΦPB]

)
‖+βd

)

‖r‖,

and δ being a scalar such that 0 < δ < 1. By factoring out

‖r‖ in h2(r), it is not difficult to see that h2(r)≤ 0 for

‖r‖ ≥
‖ρρρ

(
[ΦΦΦPB]

)
‖+βd

ϕ(t)δ +κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖
. (32)

From the right-hand side of (32), the following inequalities

can be written:

∀t :
‖ρρρ

(
[ΦΦΦPB]

)
‖+βd

ϕ(t)δ +κ(t)‖ρρρ
(
[ΦΦΦPB]

)
‖
≤ max

( βd

ϕ(t)δ
,

1

κ(t)

)

≤ max
( βd

ϕP δ
,

1

κP

)

.

Assuming that βd is finite, ultimate uniform boundedness

of r follows from the same arguments used previously. In

particular, the trajectories are ultimately bounded by

‖r‖ ≤ max
( βd

ϕP δ
,

1

κP

)
√

λM

λm

. (33)

By properly choosing the functions ϕ(t) and κ(t), this control

scheme can also guarantee that a user-defined tracking per-

formance is ultimately met, thus guaranteeing robust perfor-

mance. In fact, with the use of the complete feedback control

law composed of (19), (30), and

ϕ(t) =
(

ϕP +ϕI

∫ t

0
f (‖e‖)dτ

)

,

κ(t) =
(

κP +κI

∫ t

0
f (‖e‖)dτ

)

,

where κI , ϕI > 0, Kr diagonal and positive definite, and

f (‖e‖) =

{

0 if ‖e‖< ε,

‖e‖ otherwise,

any user-defined tracking precision ε > 0 can ultimately be

met4. This can be seen by noticing that κ(t) and ϕ(t) grow

for all t due to the integral when ‖e‖ ≥ ε . As a consequence,

the maximum value of ‖r‖ such that V̇ (r) is surely negative

decreases. It does so because h2(r) in (31) is non-positive for

4Please note that the use of f (‖e‖) = α when ‖e‖ ≥ ε with a positive
constant α can also be considered.
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‖r‖ ≥ max
(

βd

ϕ(t)δ ,
1

κ(t)

)

. Then, there will be a large enough

t2 > t1 such that max
(

βd

ϕ(t2)δ
, 1

κ(t2)

)

is small enough, since

‖r‖ ≤ max
( βd

ϕ(t2)δ
,

1

κ(t2)

)
√

λM

λm

< max
( βd

ϕ(t1)δ
,

1

κ(t1)

)
√

λM

λm

.

This allows that, for t ≥ t2, the trajectories r ultimately stay

within a ball small enough such that ‖e‖< ε , for any selection

of the gains Kr. The block diagram of the IA-PB controller is

presented in Figure 2.

Remark 2: By considering Remark 1, this time for

wPB(q, q̇, q̇a, q̈a,∆∆∆0,∆∆∆,d) and ρρρ
(
[ΦΦΦPB]

)
, continuity of (29) and

(30) also follows.

Remark 3: The perturbation functions in (7) and (23) are

Lipschitz continuous with respect to the uncertain parameters

as follows from assumption 4 in Subsection II-B. Furthermore,

from assumption 1 in Subsection II-B, we have that all uncer-

tain parameters are bounded. As a consequence, evaluating the

effect of uncertain parameters in (7) and (23) using interval

arithmetic results in bounded ranges [40, Chapter 6].

Remark 4: The use of interval arithmetic in our schemes

does not introduce a wrapping effect (see e.g., [44]) since each

evaluation of (8) and (25) does not rely on results from pre-

vious evaluations. Furthermore, over-approximations resulting

from interval arithmetic do not destabilize the system since

our schemes ensure specified error bounds for any bounded

uncertainty. The limited impact of over-approximations is fur-

ther discussed in Subsection III-D and shown by experiments

in Subsection IV-D.

C. Identification of bounds for inertial parameters

In this subsection we propose an approach for tight iden-

tification of the bounds of the inertial parameters. Manually

determined bounds of the uncertain parameters [∆∆∆], [d] may

lead to an overly conservative estimation of the intervals [ΦΦΦID]
or [ΦΦΦPB] due to the dependency problem of interval arithmetic,

which then leads to unnecessarily conservative robustifying

control actions. For finding tight [∆∆∆], [d], we consider model

conformance [45], which establishes a formal link between an

abstraction and the real behaviour of a system. We introduce

the inverse dynamics model

w∗(q, q̇, q̇∗, q̈∗,∆∆∆,d) := τττ∗ = M(q,∆)q̈∗+

C(q, q̇,∆)q̇∗+ f(q̇,∆)+ g(q,∆)−d,

where τττ∗ is the output and q, q̇, q̇∗, q̈∗ are the inputs. The above

model is an abstraction of the real mechanical system and is

subsequently used to compute the bounds [ΦΦΦID] and [ΦΦΦPB],
which can then be rewritten as

[ΦΦΦID] = w∗(q, q̇, q̇,y, [∆∆∆], [d])−w∗(q, q̇, q̇,y,∆∆∆0,0) (34)

[ΦΦΦPB] = w∗(q, q̇, q̇a, q̈a, [∆∆∆], [d])−w∗(q, q̇, q̇a, q̈a,∆∆∆0,0).
(35)

To ensure robustness of the real mechanical system, the

reachable sets in (34) and (35) computed using the abstract

Fig. 3. The above picture shows that the computed reachable set overap-
proximates the real one, as well as included measurment errors. Thus, the
underlying model is reachset conformant.

model must at least overapproximate the reachable set of the

real system that is affected by uncertainties. To establish this

formal link, reachset conformance testing [46] is suitable:

since the real reachable set is not directly measurable, we

instead measure the outputs generated by the real system and

check whether the bounds of our abstract model include all

test results (see Figure 3).

We define a model as reachset conformant, if for each test

case i= 1..L the measured output τττ∗m,i is included in the reach-

able set [τττ∗] =w∗(.) determined by the inputs qi, q̇i, q̇
∗
i , q̈

∗
i and

the parameters [∆∆∆], [d]:

∀i ∈ [1,L] : τττ∗m,i ∈ w∗(qi, q̇i, q̇
∗
i , q̈

∗
i , [∆∆∆], [d]). (36)

The input-output pairs can be obtained by measuring the actua-

tion commands τττJ , the position q, velocity q̇, and acceleration

q̈. Thus, we set τττ∗m := τττJ , q̇∗ := q̇, and q̈∗ := q̈. Since (36) is

expressed as a constraint, we determine the best [∆∆∆], [d] by

formulating a constrained optimization problem minimizing

the size of the set [τττ∗]:

min
[∆∆∆],[d]

L

∑
i=1

(τττ∗i − τττ∗i )
2

s.t. ∀i : τττJ,i ∈ [τττ∗i ],

where [τττ∗i ] = [τττ∗i ,τττ
∗
i ] = w∗(qi, q̇i, q̇i, q̈i, [∆∆∆], [d]). This proce-

dure requires a sufficient number L of test cases, to sufficiently

cover the measurement error of the inputs and outputs, as

shown in Figure 3 for a simple example. A sufficient number

of tests L has been conducted if the identification results are the

same for all the additional tests that can be afforded. If desired,

an additional safety factor can be considered, which does not

significantly affect the performance as shown in Subsection

IV-D. Note that the above optimization problem is an inverse

dynamics version of the one proposed in [47] for the forward

dynamics.

Remark 5: This technique is suitable for mechanical systems

which have a nonlinear model structure. However, if the model

structure is linear, then the constraint in (36) is also linear. If

we then consider the cost as the 1-norm instead of the 2-norm,

the optimization problem can be globally solved through linear

programming [48].

D. Discussion

It is important to consider that other existing controllers

with discontinuous or adaptive control laws can guarantee

asymptotic tracking in principle (see e.g., [18], [49]). However,
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this often comes at the price of introducing chattering and loss

of robustness. On the one hand, when considering classical dis-

continuous robust control schemes, chattering can be avoided

by including a smoothing modification at the cost of a reduced

tracking performance (see e.g., [9, Section 8.5.3]). On the

other hand, adaptive control schemes typically require linearly

parametrized perturbation functions, as well as changes to the

control laws to avoid loss of robustness when fast adaptation is

desired [50]. In the above mentioned cases, one faces the loss

of asymptotic tracking capabilities and non-trivial tuning of the

parameters involved in the modifications. Moreover, existing

classical robust controllers can be very conservative due to

the need for obtaining bounds of nonlinear state-dependent

perturbations for the entire state space as we further describe

in Section IV.

In contrast to previous approaches, our method does not

require time-consuming procedures for estimating bounds of

perturbations from model uncertainties, which are even non-

formal in previous approaches. As opposed to adaptive control,

where the control law is adapted with respect to online-

extracted knowledge of plant parameters, the integral action

of κ(t) and ϕ(t) results in an automatic robust control gain

increase. Our proposed schemes are often simpler to imple-

ment in practice with respect to adaptive counterparts as they

do not require one to linearly parametrize the perturbation with

regressors.

Particularly promising applications of this approach are

those requiring deployment of guaranteed robust controllers

automatically, with little to no intervention of control-

designers. This is the case, e.g., of modular reconfigurable

robot manipulators whose deployment is desired to be ef-

fortless [51] after arbitrary assembly, to preserve the benefits

from swift reconfigurability. To this end, our proposed control

approach can be combined with the framework in [52] for

achieving the automatic deployment of robust controllers after

arbitrary assembly of modular reconfigurable robot arms.

The benefits introduced by the interval-arithmetic-based

robust controllers come at the price of an increased computa-

tional complexity with respect to conventional schemes. For

both the inverse-dynamics and the passivity-based version, a

simple way to implement the controller is to use a software

with symbolic manipulation capabilities and obtain the per-

turbation functions wID or wPB analytically. Then, software

packages which support interval arithmetic computations can

be used for evaluating online these functions with the appro-

priate interval arguments, such as [41], [42].

When considering serial robot manipulators, an algorithm

for efficient computation of the perturbation functions can

be found in [53]. That work introduces the idea of using

set-based operations in recursive Newton-Euler algorithms

[54], [55]. The proposed approach allows the computation

of formally guaranteed over-approximative sets of perturbing

torques/forces, arising from imperfect knowledge of dynamic

model parameters. It allows one to perform the computations

required for obtaining ρρρ([ΦΦΦID]) or ρρρ([ΦΦΦPB]) efficiently, with a

computational complexity that grows linearly with the number

of degrees of freedom. This allows us to carry out these com-

putations numerically online for robots with many degrees of

Fig. 4. Testbed used for the experiments.

Fig. 5. Test trajectory used for the experiments.

freedom as well, without the need for software with symbolic

variable manipulation capabilities. In this work we employ the

approach in [53] for efficiently implementing all the interval-

arithmetic-based robust controllers of the experiments on a

six-degrees-of-freedom robot manipulator in Section IV.

The conservatism that is introduced in practice with our

approach has shown to be limited even when dealing with

systems with highly nonlinear coupled dynamics, such as

robot manipulators [38], [53]. Since we have no wrapping

effect as described in Remark 4, we do not require more

elaborated approaches for obtaining less conservative over-

approximations of the perturbations, such as zonotopes, which

are computationally more expensive and harder to implement.

IV. EXPERIMENTS

Our experiments are carried out on a Schunk LWA-4P robot,

controlled by a Speedgoat Performance Target Machine with

sampling time of 4ms (see Figure 4). We recall the essence of

other control schemes for benchmarking in Subsection IV-A,

and we experimentally evaluate the controllers in Subsections

IV-B, IV-C, and IV-D. The interval arithmetic has been imple-

mented as described in Subsection III-D and the test trajectory

used for these experiments can be seen in Figure 5.

The bounds for the inertial parameters we use in the

experiments have been identified with the approach described

in Subsection III-C. With this approach a sufficient amount

of testing data is needed until [∆∆∆], [d] stop increasing. In this

paper, we collect test data by means of multiple executions

of the relevant trajectory in Figure 5 with an arbitrary con-

troller and manually stop the testing with L = 22254. An

alternative way is to choose test cases that bring the most

probable improvements using Bayesian optimization. The re-

sulting Gaussian process model is then also used as a test
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end criterion by defining a lower threshold for the probability

of a failing test case [56]. For our robot system, we use the

Interval Arithmetic Based Newton-Euler Algorithm (IANEA)

[53] including the friction model of [57] to compute w∗(.).
The robot consists of motor current sensors for measuring

joint torques, and encoders for measuring the positions. The

velocity is obtained online through a moving-average filter

[32], and the acceleration (only needed for offline identifi-

cation) is obtained through zero-phase-shift digital filtering.

We use the local constraint solver fmincon in MATLAB

to find the optimal supremum and infimum of the intervals

[∆∆∆], [d]. We limit the search-space by providing manually-

determined bounds as upper and lower limits, and also use

these bounds as an initial guess for the local optimization.

In Figure 6 we show the effectiveness of this identification

technique by providing tight torque estimations and comparing

them to torques measurements.

A. Essentials of benchmark control schemes

In this subsection we briefly recall the essence of the

schemes used for benchmarking. Three approaches are con-

sidered, as they are representative of benefits and limitations

of existing schemes: i) a classical robust control approach

that can provide asymptotic tracking in principle, but whose

application in a real system requires estimation of bounds of

state-dependent uncertain model terms and smoothing; ii) a

robust control approach that can provide robust performance

with a continuous controller, but that requires estimation of

bounds similar to (i); iii) a recent adaptive-robust control

scheme that can provide GUUB and does not require bounds

or prior knowledge of uncertain parameters, but that has a

discontinuous control law.

1) Classical robust control: A classical approach that can

be used for robust control of fully-actuated mechanical sys-

tems is the enhancement of a nominal inverse-dynamics con-

trol scheme by means of a robust control term obtained from

Lyapunv’s second method [9] and the following assumptions5:

0 < Bm ≤ ‖M(q,∆∆∆)−1‖ ≤ BM < ∞ ∀q, ∆∆∆ ∈ [∆∆∆],

‖I−M(q,∆∆∆)−1M0(q)‖ ≤ αcr ≤ 1 ∀q, ∆∆∆ ∈ [∆∆∆],

‖n0(q, q̇)−n(q, q̇,∆∆∆)‖< ηcr ∀q, q̇, ∆∆∆ ∈ [∆∆∆],

max(‖q̈d‖)< QM < ∞ ∀q̈d ,

for some positive constants Bm, BM, αcr, ηcr, QM . With this

approach the robust control law can be implemented as

u = M0 (q)
(
q̈d +KDė+KPe+νννcr

)
+n0 (q, q̇) ,

νννcr =

{
ρcr(ξξξ )
‖z‖ z, ‖z‖ ≥ δ ,

ρcr(ξξξ )
δ z, ‖z‖< δ ,

with δ > 0, z = BT Pξξξ and

ρcr(ξξξ )≥
1

1−αcr

(αcrQM +αcr‖(KP, KD)‖‖ξξξ‖+BMηcr +βd) .

5In this case it is considered that M0 = 2/(BM +Bm)I to get αcr ≤ 1 as
suggested in [9].

The above terms ξξξ , P, and B are the same as those in (11),

(12) and (13).

With this scheme, GUUB is ensured and the error bounds

depend on δ , i.e., the larger δ is, the larger the resulting

bounds on the tracking error norm are [9]. When an increase

of the tracking performance is desired, one can reduce δ .

However, even though global asymptotic stability can the-

oretically be shown for δ = 0, the chattering phenomenon

may be problematic for real-world deployment, especially

since a discontinuous control law is approached by reducing

δ . Additionally, this robust control approach can be highly

conservative due to the need for obtaining the considered

bounds for the entire, practically-reachable state space.

2) r-α tracking control: The r-α tracker was introduced

in [14]. After a study of the uncertain model components

for obtaining specific uncertainty bounds, the control law can

be implemented without requiring model-based computations

online. Interestingly, such a control scheme guarantees in

principle the tracking of a desired trajectory with a prescribed

rate of convergence α within a user-defined bound r. Since the

bound r can be selected by the user a priori, the approach qual-

ifies for providing robust performance control. As described in

[14], the controller design process starts from the computation

of the uncertainty bounds βi for i ∈ {0, . . . ,3}, for all q, q̇,

d ∈ [d] and ∆∆∆ ∈ [∆∆∆] such that

λmin (M(q,∆∆∆))≥ β0 ≥ 0, λmax (M(q,∆∆∆))≤ β1,

‖C(q, q̇,∆∆∆)‖ ≤ β2‖q̇‖, ‖g(q,∆∆∆)−d‖ ≤ β3.

Once these bounds are computed, an additional tuning parame-

ter δzc and two symmetric positive definite matrices (ΛΛΛzc, Qzc)

are selected such that

λmin (ΛΛΛzc)≥ α, λmin (Qzc)≥ α β1,

δzc ≤ (α r)2λmin (Qzc) β0/β1.

The r-α tracking controller is implemented as follows [14]:

u = Qzcr+(‖ρzc r‖+ δzc)
−1 ρ2

zcr,

ρzc = β1‖q̈a‖+β2‖q̇a‖‖q̇‖+β3.

In the above equation, the term q̇a is the same as in (20)

and r = ė+ΛΛΛzce. Similar to the classical robust control case,

non-formal sampling procedures for estimating the required

bounds are typically necessary.

3) Adaptive sliding-mode control: Among the most recent

schemes for robust control, [28] proposes an adaptive sliding-

mode control scheme that, interestingly, does not need the

a priori knowledge of bounds of nonlinear state-dependent

model terms. This controller can provide GUUB and is im-

plemented as follows [28]:

uasm = ΛΛΛasmr+ρ(t)sgn(r) (37)

where r = ė + Qasme, with ΛΛΛasm and Qasm being positive

definite matrices of proper dimensions. The term ρ(t) includes

the adaptive contribution and is computed as

ρ(t) = K̂0(t)+ K̂1(t)‖ξξξ(t)‖+ K̂2(t)‖ξξξ (t)‖2,

where
˙̂Ki(t) = ‖r‖‖ξξξ(t)‖i −αi‖ξξξ (t)‖,
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Fig. 6. Identification results showing that the identified parameter sets [∆∆∆], [d] lead to a tight overapproximation [τττ∗] of the measured motor torque τττm.

and ˙̂Ki(0)> 0, αi > 0 and i ∈ {0, . . . ,2}.

B. Experimental performace evaluation with IA-ID

In this subsection we present the experimental results of our

proposed IA-ID controller by demonstrating ultimate bound-

edness of the tracking error and by comparing its performance

with respect to the classical robust control scheme. Please note

that for the comparisons in this and the following subsection,

we describe the considerations we made for maintaining a

fair selection of the tuning parameters. In particular, this

selection has been performed manually by exploiting control

law similarities form one scheme another when possible, and

by selecting gains leading to comparable measurement noise

amplification on the control commands while trying to obtain

the best possible performance.

To deploy the classical robust control scheme, we obtain

the needed state-dependent bounds using a sampling proce-

dure with 105 samples within the identified sets of inertial

parameters. Then we set the following tuning parameters:

KP = 225I, KD = 19.5I, Q =

[
10I 0

0 I

]

. (38)

To obtain the best performance, we determine the lowest δ
that does not introduce excessive chattering of the control

commands, resulting in δ = 0.4. This selection is non-trivial

since severe chattering can be faced while tuning δ because

ρcr results in a highly conservative term. For a fair selection of

the gains of our proposed IA-ID controller, we can exploit the

control scheme similarity. In fact, we select KP, KD, Q equally

as in (38). To obtain the best performance, we increase κP such

that the error norm is minimized while maintaining similar

measurement noise amplification compared to the classical

robust control scheme. Following this approach, we set κP = 3.

Tuning the parameter κP of the robustifying part is intuitive

since its increase directly makes the tracking error decrease.

On the other hand, the increase of this parameter increases

the effect of the amplification of the measurement noise on

Fig. 7. Performance comparison between the classical robust control scheme
and interval-arithmetic inverse-dynamics control.

the current commands. The tuning procedure aims at finding

a trade-off between tracking precision and noise amplification.

Since we fix KP, KD, Q to be the same for the two schemes,

we are able to assess the impact of the robustifying terms on

the performance, thus making a direct comparison between

classical robust control and IA-ID control.

The results of this experiment are shown in Figure 7: we can

observe that IA-ID reaches an overall lower error. Additionally,

the IA-ID approach remarkably removes the need for obtain-

ing bounds of highly nonlinear state-dependant model terms,

contrary to the classical robust controller. Furthermore, thanks

to the approach adopted here for online computing the worst-

case perturbation using IANEA, as we proposed in [53], IA-

ID was significantly less conservative and drastically reduced

chattering effects when tuning it.

C. Experimental performace evaluation with IA-PB

In this subsection we present the performance of our pro-

posed IA-PB control scheme with respect to the benchmark

schemes considered. To deploy the r-α tracker, we obtain the

needed bounds on state-dependent model terms by taking 105
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1st run, uasm,1, IA-PB Eq.  2nd run, uasm, IA-PB Eq.  3rd run, uasm, IA-PB Eq.  (29) (30) (30)

Fig. 8. Comparison of robust performance: ε = 0.015rad, and we run the trajectory three times. In the first run, the IA-PB controller uses (29), and the
adaptive sliding-mode controller uses uasm,1. In subsequent runs, the IA-PB controller uses (30) and the adaptive sliding-mode controller uses (37).

IA-PB Eq. (29) IA-PB Eq. (30)

Fig. 9. Experimental results showing the effect of interval arithmetic over-
approximations on the tracking performance.

samples from the identified sets of inertial parameters [∆∆∆].
This controller has shown to be highly conservative, making it

difficult to deploy in practice due to severe chattering. In this

experiment we use Qzc = αβ1 I and ΛΛΛzc = α I. Then, we set

the parameters r = 5, α = 10 that are large enough to avoid

chattering while trying to maintain the lowest possible tracking

error in this case.

We deploy the considered adaptive sliding-mode

controller with ΛΛΛasm = diag(25,40,25,25,25,25), Qasm =
diag(25,40,25,25,25,25), α1 = 0.07,and α2,3 = 0.3. For

comparison, we introduce a case in which uasm,1 = ΛΛΛasmr,

thus without using any adaptive-robust term, and the complete

scheme as in (37). The parameters ΛΛΛasm and Qasm have been

selected such that the tracking performance using uasm,1 is

similar to the tracking performance of the IA-PB control

variant that provides GUUB. The adaptive parameters α1,2,3

have been chosen such that a maximum error decrease is

achieved with a similar measurement noise amplification

compared to IA-PB. We experienced difficulties in the

implementation due to the high sensitivity to control input

chattering when selecting these parameters.

The control parameters of our proposed IA-PB scheme have

been selected as

Kr = 15, κP = 1, φP = 1, κI = 2, φI = 500.

These parameters have been chosen such that a maximum error

reduction is achieved to maintain a comparable measurement

noise amplification on the control commands, as provided by

the other considered benchmarks.

The results of this experiment are presented in Figure 8

showing the performance of the r-α tracker, the considered

adaptive sliding-mode scheme, and our proposed IA-PB con-

trol. For these tests, we assume a desired performance with

ε = 0.015rad and we let the desired test trajectory run for

three consecutive times. In the first run, the robust-adaptive

term is disabled to validate that we fairly tuned the controller,

that can be observed from the similar tracking performance

we allowed. At the start of the second run of the trajectory

(at t = 20s) we activate the complete adaptive sliding-mode

scheme resulting in a slight increase of performance over

time and we observe chattering effects. Chattering can be

observed more clearly in the third run with the considered

adaptive sliding-mode controller, for which it was not possible
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IA-IB Eq. (29) IA-IB Eq. (30) IA-IB Eq. (30) IA-IB Eq. (29) IA-IB Eq. (30) IA-IB Eq. (30)

Fig. 10. Further experimental results of the IA-PB controller with ε = 0.01rad. Left shows performance for ‖e(0)‖ = 0rad, right shows performance for
‖e(0)‖= 0.1225rad.

to further reduce the tracking error in this case. Such undesired

behaviour is also reflected by the norm of torque commands,

which shows an undesired slight increase over time with no

further noticeable improvement of the tracking error. On the

other hand, also at t = 20s, we activate the complete IA-PB

control scheme for achieving the desired robust performance,

causing a quick and smooth error decrease. With IA-PB, after

25 seconds, the error only occasionally increases over ε and

is gently driven down to the limit by the integral action to

provide robust performance. Figure 8 also displays the online-

computed continuous bounds using interval arithmetic for each

axis, adopted by the robustifying term of IA-PB control.

Overall, the IA-PB controller delivers the best performance

in practice with respect to the other controllers considered.

In particular, with the considered setting, the r-α tracker and

the chosen adaptive sliding-mode controller are incapable of

reaching ε = 0.015rad without excessive chattering, contrary

to IA-PB. The considered adaptive sliding-mode controller,

although having the remarkable merit of not requiring a priori

bounds of model terms, has a discontinuous control law and

finding suitable adaptive action parameters is challenging due

to high chattering sensitivity as we experienced in practice.

D. Practical considerations

Although over-approximations are reduced through using

our model identification approach, we demonstrate their po-

tential impact on stability by experimental results in Figure 9.

This experiment was performed with the same setting as in

Figure 8, with and without enlargement of the intervals by a

factor β . The results show that over-approximations do not

introduce a destabilizing effect.

Our proposed IA-PB controller provides robust performance

thanks to the integral actions in κ(t) and φ(t). However,

although arbitrary performance can be reached in principle,

physical limits of the actuators can be encountered in practice.

For illustrating and discussing this better, we present additional

experimental results of our proposed IA-PB controller in

Figure 10. Considering the same control parameters of the

experiment in Figure 8, we set the desired performance to a

more strict value by reducing ε to 0.01rad. The test trajec-

tory is run three times in this experiment. The first column

of Figure 10 shows the robust performance at zero initial

condition ‖e(0)‖ = 0rad. Measurement noise amplification

on the control commands can be seen when the trajectory is

run for the second time (for t > 20s). The second column

of Figure 10 shows that the robust controller is smoothly

converging also when facing mismatched initial conditions

(in this case with ‖e(0)‖ = 0.1225rad). In this second case

the integral actions are only activated at t = 1s, to avoid

excessive conservativity that can be otherwise reached. In fact,

the increase in performance also results in an amplification of

the measurement noise on the control command. As one can

reasonably expect, these effects are those that impose physical

limits on the achievable tracking performance in practice.

This problem becomes worse, as the integral actions surge

when setting large initial errors. For practical implementation,

we recommend to stop the integral action during the first

transient from large mismatches in the initial conditions and

when the amplification of the noise becomes unacceptable for

the actuators at hand. When postponing the start after the

first transient or stopping these integrals before the desired

performance is met, GUUB is still maintained as shown

in (33). The realized mismatch for the initial conditions is

representative for showing the typical transient performance

we experienced in practice.

V. CONCLUSION

A novel approach for robust control of fully-actuated me-

chanical systems is introduced, achieving both ultimate bound-

edness of the tracking error and robust performance, and avoid-

ing the need for manual estimation of bounds of nonlinear

state-dependent perturbation functions. Our proposed method

does not require the linearity property of the mechanical

system and can be applied even when the dynamics are highly

nonlinear and coupled. Further, it results in continuous control

laws, which is particularly interesting for mechanical systems

to avoid vibrations or damaging actuators.

Experimental results using a six degrees-of-freedom robot

manipulator show the real-world applicability and the effec-

tiveness of the proposed approach with respect to relevant

existing methods. A particularly interesting practical aspect

is that our approach can be quickly deployed since it is

fully automatic. This is especially useful for robust control

of modular and reconfigurable systems.
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