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1  |  INTRODUC TION

Forest disturbances are increasing around the globe (McDowell 
et al.,  2020; Seidl et al.,  2011, 2017) and forest fires play an im-
portant role in this increase (Abatzoglou & Williams,  2016; Curtis 
et al.,  2018; Liu et al.,  2019; Westerling et al.,  2006). While dis-
turbances are important drivers of natural ecosystem dynamics 
(Bowman et al., 2009; Viljur et al., 2022), global warming may dis-
rupt natural disturbance regimes and alter post-disturbance forest 
development trajectories (Bebi et al., 2017; Johnstone et al., 2016; 
Seidl & Turner, 2022). Increasing summer aridity has been suggested 
as a main driver of changing forest fire regimes (Huang et al., 2020; 
Jolly et al., 2015; Williams et al., 2019). For instance, increasing arid-
ity and the resultant dryer fuels led to a fivefold increase in area 
burned in California over the past 50 years (Williams et al.,  2019). 

Extreme events like the Black Summer of 2019/2020 in Australia are 
expected to become more frequent (Abram et al., 2021) as increas-
ing temperatures and changing precipitation patterns promote more 
extreme fire weather (Chiang et al., 2021; Jain et al., 2022; Vicente-
Serrano et al.,  2020). Increasing forest fire activity could have a 
number of negative effects on forest ecosystem functions, includ-
ing a reduction in ecosystem carbon storage (Bowman et al., 2021;  
Case et al., 2021), a loss of ecosystem service provisioning (Lecina-
Diaz et al.,  2021), and risks to human health and infrastructure 
(Bowman et al., 2017; Ganteaume et al., 2021; Keeley et al., 2011; 
Rosenthal et al., 2021; Wang et al., 2021).

Despite increasing evidence that climate change increases 
fire activity across the globe (Ellis et al.,  2022; Jain et al.,  2022; 
Richardson et al., 2022), area burned has stagnated over the past 
three decades in Europe, and even decreased in the Mediterranean 
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Abstract
Area burned has decreased across Europe in recent decades. This trend may, however, 
reverse under ongoing climate change, particularly in areas not limited by fuel avail-
ability (i.e. temperate and boreal forests). Investigating a novel remote sensing dataset 
of 64,448 fire events that occurred across Europe between 1986 and 2020, we find 
a power-law relationship between maximum fire size and area burned, indicating that 
large fires contribute disproportionally to fire activity in Europe. We further show a 
robust positive correlation between summer vapor pressure deficit and both maxi-
mum fire size (R2 = .19) and maximum burn severity (R2 = .12). Europe's fire regimes 
are thus highly sensitive to changes in future climate, with the probability for extreme 
fires more than doubling by the end of the century. Our results suggest that climate 
change will challenge current fire management approaches and could undermine the 
ability of Europe's forests to provide ecosystem services to society.
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2  |    GRÜNIG et al.

(Andela et al., 2017; de Rigo et al., 2017; Jones et al., 2022; Silva 
et al., 2019; Urbieta et al., 2019). Likely reasons for this trend are 
successful fire suppression, improved early fire detection and bet-
ter firefighting capacities (Dupuy et al.,  2020; Turco et al.,  2016; 
Urbieta et al., 2019). Nonetheless, extreme fire seasons have been 
reported for many countries in Europe in recent years. For instance, 
following a severe drought in 2018, area burned exceeded past long-
term averages (reference period 2008–2017) in Sweden (835%), 
Latvia (827%), Germany (706%) and Norway (372%) (San-Miguel-
Ayanz et al., 2019). Also in the Mediterranean basin, extreme fire 
seasons occurred in the recent past (e.g., 2017 in Portugal or 2021 
in Greece; Giannaros et al., 2022; Turco et al., 2019), triggered by 
longer and hotter drought periods, particularly in more produc-
tive regions (Ruffault et al.,  2020; Turco et al.,  2018). However, 
continental-scale analyses on the changes in forest fire regimes 
and their drivers are still missing for Europe. This gap is particularly 
problematic as most forest fire science in Europe concentrates on 
the Mediterranean, while the potential effects of climate change 
on forests that are less fire adapted (e.g. in the temperate biome) 
and not fuel limited (e.g. in the temperate and boreal biome) remain 
largely unknown.

Climate change can alter important fire regime characteristics, 
such as individual fire size (referred to as fire size in the follow-
ing) and burn severity. Evidence from the western United States 
shows that area burned increases exponentially with summer arid-
ity (Holden et al., 2018; Westerling, 2016; Williams et al., 2019). 
A reason for the exponential relationship is the disproportional 
increase of fire lines with increasing fire size, leading to a faster 
increment of area burned for large compared to small fires (Juang 
et al., 2022). Increasing aridity might thus expand area burned be-
cause of an increase in large fires. Further, aridity has been shown 
to correlate closely with fuel moisture and has therefore been 
linked to higher burn severity (Abatzoglou et al.,  2017; Huang 
et al., 2020; Parks & Abatzoglou, 2020). Burn severity is an import-
ant indicator for characterizing the impact of fires on ecosystems 
(Liang et al., 2018; Singleton et al., 2019; Walker et al., 2018) and 
is linked to the controllability of forest fires (Heward et al., 2013; 
Lindenmayer et al.,  2022). While controllability is influenced by 
a range of factors (e.g., flame length, spread rate), high burn se-
verity is often associated with crown fires that are difficult to 
control (Lindenmayer et al., 2022). While low severity fires may 
have beneficial effects on ecosystems (Hessburg et al.,  2015), 
high severity fires can have numerous negative impacts (Liang 
et al., 2018). The relationship between aridity and burn severity 
via effects on fuel moisture might be especially prominent in fire 
regimes generally not limited by fuel, such as temperate forests 
(Young et al., 2017). Changing fire size and burn severity might be 
of particular concern in those regions of Europe where fire man-
agement and firefighting capacities are not well prepared to deal 
with large, catastrophic fires—especially when they occur in par-
allel in several regions across Europe. A better understanding of 
the response of fire size and severity to increasing aridity is thus 
critically needed to make robust projections about future forest 

fire regimes in Europe and to develop adequate long-term man-
agement strategies.

Here, we use a multi-decadal, spatially explicit dataset of 64,448 
fire events mapped from satellite data to characterize the fire re-
gimes of Europe, and quantify their sensitivity to past and future 
summer aridity. First, we investigate trends in area burned, maxi-
mum fire size and burn severity between 1986 and 2020, and test 
the hypothesis that extremely large forest fires contribute dispro-
portionally to total area burned in Europe. Second, we test the hy-
pothesis that summer (June–August) vapor pressure deficit (VPDs) 
is positively correlated to maximum fire size and maximum burn 
severity. We compare competing models to further elucidate the 
nature of the aridity effect (linear, exponential and power-law) and 
test whether relationships vary within and among biomes. Third, 
we investigate how maximum fire size and maximum burn severity 
could change under future climate conditions, and how this affects 
the probability of extremely large fires.

2  |  MATERIAL S AND METHODS

2.1  |  Forest fire data

Fire patches were obtained from a remote sensing-based dataset 
on forest disturbances described in detail in (Senf & Seidl, 2021a, 
2021b). The dataset is openly available for download (Senf, 2021). 
In essence, the dataset depicts where and when forest distur-
bances caused by fire occurred across Europe at a spatial grain of 
30 m and with annual resolution for the period 1986–2020. In order 
to identify fire patches among pixels flagged as disturbed by fire, 
we spatially clustered pixels using the DBSCAN algorithm (Ester 
et al., 1996) via the dbscan R-package (Hahsler et al., 2019). We set a 
maximum clustering distance of 150 m (5 pixels), grouping all pixels 
that either shared an edge or node in the same year or were in close 
proximity in the same year (<150 m). This avoided fire patches to 
be split by roads or small unburnt patches. In a preliminary analysis, 
we investigated whether using other distances in the spatial cluster-
ing (i.e. 3 or 10 pixels) affects the obtained patch size distribution, 
but found no large differences (see Figure S9). Based on the thus 
obtained fire patches, we defined a fire complex as the convex hull 
around all fire patches in one cluster. Our dataset contained 65,283 
fire complexes. From these fire complexes we calculated fire size 
as the total area of the complex polygon (i.e. including burned as 
well as residual unburned area). We further derived burn severity 
by calculating the average change in normalized burned ratio (NBR) 
from pre to post fire of all fire pixels in a fire complex. The NBR is 
an index combining two spectral infrared bands (4 and 7) to obtain a 
metric that is sensitive to changes in biomass caused by fire (García 
& Caselles, 1991; Key & Benson, 2006; Miller & Thode, 2007). Delta 
NBR (dNBR) is a widely used measure for burn severity and has 
been shown to capture the severity of fires well across different 
global ecosystems (e.g. Eidenshink et al., 2007; Mueller et al., 2020; 
Singleton et al., 2019).
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    |  3GRÜNIG et al.

2.2  |  Climate data

To characterize historical climate, we used ERA5-Land monthly 
averaged data (Muñoz-Sabater,  2021), downloaded from the 
Copernicus Climate Change Service (C3S) Climate Data Store. We 
obtained monthly temperature and dewpoint temperature for all 
years between 1986 and 2020 at a spatial resolution of 0.1° (~11 km). 
We calculated vapor pressure deficit (VPD) with temperature and 
dewpoint temperature using the August-Roche-Magnus formula 
(Alduchov & Eskridge, 1996). VPD is a widely used measure of arid-
ity, and it has been shown to be a better predictor of fire size and 
severity than temperature or precipitation alone (Jain et al., 2022; 
Mueller et al., 2020). VPDs was calculated as the mean VPD of the 
months June, July and August. Because of the annual resolution of 
the fire data, fires occurring late in the season (i.e. end of August 
or September) are recorded only in the following year (see also dis-
cussion in Senf & Seidl,  2021a). To prevent a temporal mismatch 
between climate and fire data, we calculated maximum VPDs for a 
running 3-year moving window over the climate conditions of the 
previous and subsequent year. This approach also accounts for po-
tential errors in the attribution of fires to a given year, which were 
assessed by Senf and Seidl (2021a) to be ±1 year. To test the sensitiv-
ity of our results to this moving window approach, we also calibrated 
models with VPDs from the focal year only (see Table S2). Finally, we 
extracted VPDs values from the 3-year moving window for all fires 
occurring in our dataset, using the polygons of the fire complexes to 
obtain the mean VPDs across the polygon. For polygons that did not 
align with climate data grid cells, we added a 5 km buffer for VPDs 
extraction, followed by a 10 and 20 km buffer (corresponding to two 
grid cells) if no VPDs values could be obtained with smaller buffer 
sizes (e.g. in coastal areas). We further extracted the biome in which 
fires occurred using the same method. Biomes were obtained from 
Olson et al. (2001). For the analysis 64,448 fire complexes remained.

To characterize future climate, we used CMIP6 data (O'Neill 
et al., 2016). We downloaded all monthly near-surface temperatures 
and near-surface relative humidity variables from the Copernicus 
Climate Change Service (C3S) Climate Data Store for five differ-
ent global circulation models (GCMs). We selected CNRM-CM6-1 
(Voldoire, 2019a, 2019b, 2019c), EC-Earth3-Veg-LR (Consortium (EC-
Earth), 2020a, 2020b, 2020c), FIO-ESM2.0 (Song et al., 2019a, 2019b, 
2019c), CMCC-ESM2 (Lovato et al.,  2021) and MPI-ESM1-2-LR 
(Brovkin et al., 2019a, 2019b) from the CMIP6 family, informed by the 
GCMeval tool (Parding et al., 2020). This tool illustrates the variation of 
temperature and precipitation projections for different focal regions 
(see Figures S10–S12). We selected four GCMs that project moderate 
temperature and precipitation changes across Europe (but note that 
there is variation between the Mediterranean, central Europe and 
northern Europe). Further, we added a fifth GCM (CMCC-ESM2) for 
which all needed outputs were available in the Copernicus Climate 
Change Service (C3S) Climate Data Store, but could not be assessed 
in the GCMeval tool. This fifth GCM projects VPDs similarly to the 
other four GCMs across the different biomes. Although five GCMs 
are not sufficient to capture the full uncertainty in future climate 

projection, our selected GCMs are well able to represent the variation 
around an intermediate future climate trajectory for the focal region. 
We obtained model outputs for the historical period (1986–2014) 
and future projections (2015–2099) at 100 × 100 km resolution. As 
dewpoint temperature was not available from CMIP6 data, we cal-
culated it from relative humidity and mean temperature (Anderson 
et al., 2013), and then derived VPD from the resulting dewpoint tem-
perature and mean air temperature using the August-Roche-Magnus 
formula as described above. We performed a statistical bias correc-
tion for all GCMs by calculating the average VPDs between 1986 and 
2014 for the ERA5-Land dataset and for the historical period of each 
CMIP6 GCM (i.e. 1986–2014). The difference between the averages 
over these 28 years was added to VPDs of each year for future simula-
tions (2015–2099), to account for the bias of CMIP6 GCMs. We then 
averaged yearly VPDs over all GCMs for each Shared Socioeconomic 
Pathways (SSPs). We studied two SSPs to consider uncertainty from 
different emissions pathways, focusing on the “middle of the road” 
(SSP245) and “fossil-fueled development” (SSP585) scenarios (Riahi 
et al., 2017). For the years 2015–2020, we averaged the two SSPs to 
obtain a time series over the full study period (1986–2020).

2.3  |  Analyses

We investigated the effect of VPDs on maximum fire size and maxi-
mum burn severity using Bayesian hierarchical modeling. First, we 
calculated maximum fire sizes and maximum burn severities, as well 
as average VPDs values, per country and biome. That is, we derived 
maximum fire sizes and maximum burn severities at the country 
level, but if a country included several biomes, we calculated maxima 
for each biome-country combination. This allowed us to simultane-
ously model variations among biomes and countries nested within 
biomes. We specifically included countries as random mixed effect 
in our model, because countries are an important proxy for differ-
ences in forest management regimes throughout Europe (Schelhaas 
et al., 2018). Maximum fire size and maximum burn severity were 
modelled using VPDs as an independent variable, with random in-
tercepts and slopes among countries nested within biomes. We 
used a Gaussian error distribution and tested three competing pat-
terns of VPDs influence: linear, log-linear and log–log (i.e. power-law 
model). All competing models were compared sequentially (i.e. linear 
vs. log-linear and log-linear vs. log–log) using Bayes factors (Kass 
& Raftery, 1995). If the logarithm of the Bayes factor was >2, we 
considered this to indicate strong support for the competing model 
(Beard et al., 2016). All models were fitted using the brms package 
in R (version 2.16.3; Bürkner,  2017). We used standard priors im-
plemented in brms. Joint posterior distributions were sampled with 
four chains à 2000 draws, of which half were dropped as warm-up. 
Model performance was estimated by conditional and marginal R2. 
Posteriors of all effects were summarized by means of their median 
and 95% credible interval. Using the fitted model, we simulated 
4000 random posterior draws of maximum fire size and maxi-
mum burn severity under historical and projected future climate 
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4  |    GRÜNIG et al.

conditions in order to investigate the climate sensitivity of the fire 
regime. Specifically, we calculated the annual maximum fire size for 
each draw per biome, and subsequently derived the median and 95% 
credible interval across all draws. Finally, we calculated the probabil-
ity of maximum fire sizes exceeding 2500 ha per year, representing 
extremely large fires in the context of European forest fire regimes 
(Fernandes et al., 2016).

3  |  RESULTS

3.1  |  The forest fire regimes of Europe

Area burned, maximum fire size and maximum burn severity varied 
strongly from year to year since 1986, with no evidence for an increas-
ing trend over time (Figure 1 and Figure S1). Our data thus confirm 

the overall stagnating trend of area burned previously reported for 
Europe. The largest area burned was found in the Mediterranean 
biome, which accounted for 79% of the total area burned in Europe. 
This pattern changed, however, in recent years, with increasing area 
burned in temperate and boreal forests (Figure 2). In 2018 and 2020, 
for instance, less than 60% of the total area burned occurred in the 
Mediterranean biome, and fires in temperate broadleaved forests 
dominated total area burned in Europe in 2020 (51%).

Total area burned was strongly driven by maximum fire size. 
Maximum fire size is here defined as the largest forest fire occur-
ring annually per country × biome. Average maximum fire size was 
11,676 ha (1986–2020) in the Mediterranean, 3120 ha in temperate 
broadleaf forests, 1006 ha in boreal forests, 839 ha in temperate 
grasslands, 318 ha in temperate coniferous forests and 129 ha in 
the Tundra. Average maximum burn severity was highest in the 
Mediterranean with 2.4 delta normalized burn ratio (dNBR). We 

F I G U R E  1  Average maximum fire size (a) and average maximum burn severity (b) per country over the period 1986–2020. Values for 
maximum fire size are presented in hectares on a log10 scale. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries. Panel (c) shows total area burned, number of fires and absolute maxima for fire size and burn severity across Europe. 
Total area burned, maximum fire size and number of fires are shown on log10-scale. Values at the level of biomes are given in Figure S1.
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    |  5GRÜNIG et al.

also found considerable variation between countries (Figure 1a,b), 
with largest average maximum fire size recorded for Portugal 
(6072 ha) and highest average maximum burn severity for Spain 
(2.2 dNBR). Comparing maximum fire size to annual area burned, 
we found a robust power-law relationship between maximum fire 
size and total area burned across all biomes (Figure 3; mixed effects 
model; R2 =  .95). The global exponent of the power law was 1.05 
[0.99–1.10; 95% credible interval], with little variation among bi-
omes (see Figure S2). In other words, with a doubling of maximum 
fire size area burned increased by 207 [199–214]% on average. The 
power-law relationship further indicated that large fires contribute 

disproportionally to total area burned. In fact, the largest 10% of 
all fires make up 71% of the total area burned in Europe, and the 
largest 1% of all fires still contribute 36% to the total area burned. 
There was, however, substantial variation among biomes, with the 
largest 1% of all fires resulting in 27% of the total area burned in 
forests of the Tundra and 48% in the boreal forest (Table S1).

3.2  |  Aridity effect on maximum fire size and 
burn severity

We found strong support for a positive relationship between 
VPDs and maximum fire size as well as maximum burn severity 
(Figure 4; mixed effect models; conditional R2 =  .19 [0.03–0.38] 
for size and R2 = .12 [0.01–0.24] for severity). In addition to VPDs 
explaining temporal variability in fire size and burn severity, we 
found strong evidence for high spatial variability in average fires 
size and burn severity among countries and biomes. In fact, the 
marginal R2 including both the temporal VPDs effect and spa-
tial variation among countries and biomes increased to 0.52 for 
[0.50–0.55] for size and 0.55 [0.52–0.58] for burn severity. We 
modelled the relationship of VPDs and both fire regime metrics 
considering linear, exponential and power-law relationships, and 
compared the three competing models using Bayes factors. For 
both metrics, we found that the power-law model was more likely 
than the linear and exponential models (logarithm of Bayes factor 
≫2). For maximum fire size, the exponent of the power-law was 
1.77 [0.76–3.07], indicating that size increases by 341 [169–840]% 
with each doubling of VPDs. For maximum burn severity (i.e. yearly 
maximum burn severity per country nested within biome), the ex-
ponent of the power-law was 0.39 [0.17–0.64], indicating that 
with each doubling of VPDs maximum burn severity increases by 
131 [113–156]%. For both models, there was considerable varia-
tion among biomes. The effect of VPDs and maximum fire size was 
strongest in boreal forests and weakest in temperate coniferous 
forests (Table 1). The effect of VPDs and maximum burn severity 
was strongest in the Mediterranean and weakest in the temperate 
broadleaf biome (Table  1). We also found considerable variation 
among countries within biomes (Figures S3 and S4).

F I G U R E  2  Proportion of total area 
burned in Europe by biome between 1986 
and 2020.

F I G U R E  3  Power-law relationship between maximum fire size 
and total area burned. We find a strong relationship (R2 = .95) 
between the two metrics (black line shows correlation at 
continental scale) which is consistent across all biomes (colored 
lines, colors according the map insert). The grey dashed line 
marks the 1:1 line. Both axes are on log10 scale. The insert on the 
bottom right shows the contribution of different fire size quantiles 
to total area burned, indicating that the largest fires contribute 
disproportionally to total area burned.
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6  |    GRÜNIG et al.

3.3  |  Sensitivity to future climate conditions

Under future climate conditions, potential maximum fire size and 
maximum burn severity increased across all biomes of Europe 
(Figure 5). Based on the above-described models, we projected 
average maximum fire size and maximum burn severity for the 
climate of the years 1986–2099 under two different climate 
scenarios (SSP585 and SSP245) and an ensemble of five global 
circulation models (GCMs). Average maximum fire size was most 
sensitive to climate change in the Mediterranean, increasing 
from 14,537 ha in 2020 to 57,019 ha under the climate expected 
for 2099. Forests in the tundra biome were least sensitive, yet 

maximum fire sizes still more than doubled under the scenarios 
considered here (127 ha in 2020 to 314 ha in 2099). With regard 
to average maximum burn severity, the Mediterranean biome 
(+1.12 dNBR between 2020 and 2099) and temperate broadleaf 
forests (+0.56 dNBR) were most sensitive to future changes in 
aridity. In boreal forests and the tundra biome, however, due to 
stationary VPDs projections until the end of the century, maxi-
mum burn severity remained stable under both scenarios (+0.12 
dNBR and +0.24 dNBR). While those values are based on the 
SSP585 emission pathway, we observed clear differences be-
tween the two SSPs considered here, which were particularly 
pronounced towards the end of the 21st century, and which 

F I G U R E  4  Correlation of summer vapor pressure deficit (VPDs) with maximum fire size (a) and maximum burn severity (b). For both 
metrics, power-law models were more likely than linear and exponential models. For maximum fire size, the exponent of the power-law was 
1.77 (95% CI 0.76–3.07). We assessed model performance with marginal R2 and conditional R2. VPDs alone explained 19% of the variance in 
maximum fire size, while the entire model explaining 52%. For maximum burn severity, the exponent of the power-law was 0.39 (0.17–0.64) 
and VPDs alone explained 12% of the variance, with the overall model explaining 55%.

Maximum fire size Maximum burn severity

Mean Lower CI Upper CI Mean Lower CI Upper CI

Europe 1.77 0.76 3.07 0.39 0.17 0.64

Boreal forests 2.79 1.24 5.22 0.38 0.09 0.71

Mediterranean 1.74 0.92 2.54 0.54 0.28 0.85

Temperate broadleaf 1.62 1.07 2.15 0.32 0.18 0.46

Temperate coniferous 1.19 −0.02 2.15 0.31 0.08 0.52

Temperate grasslands 1.28 −0.09 2.46 0.38 0.07 0.68

Tundra 2.03 0.58 4.13 0.39 0.10 0.68

TA B L E  1  The effect of summer vapor 
pressure deficit on maximum fire size and 
maximum burn severity in Europe and for 
different biomes, expressed as the power 
law exponent. Mean and 95% confidence 
intervals (2.5% and 97.5% quantiles) were 
derived from the joint posterior of each 
effect
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showed a considerably stronger changes under SSP585 com-
pared to SSP245.

We found an increasing probability of extremely large fires 
under future climate conditions. Extremely large fires were defined 
as fires exceeding 2500 ha, a commonly used threshold that marks 
the 99.9th percentile of fires in Portugal between 2003 and 2013 

(Fernandes et al., 2016; Resco de Dios et al., 2022). Based on the 
climate scenarios investigated here, the annual probability for ex-
tremely large fires across Europe increased from 0.06 under histor-
ical climate conditions to 0.24 for conditions expected at the end of 
the 21st century (SSP585) (Figure 6). We found that Mediterranean 
forests were most sensitive to a climate-induced increase in large 
fires, with probabilities for extremely large fires reaching 0.45 by 
the end of the century (compared to 0.19 in the historical period). 
Temperate grasslands, temperate broadleaf forests and boreal for-
ests also were highly sensitive to projected future increases in arid-
ity, with probabilities of extremely large fires reaching 0.12–0.18 
at the end of the century. While extremely large fires were largely 
absent in the past in these biomes, they could become considerably 
more likely (~15% of the largest fires) in the future. In contrast, the 
likelihood of extremely large fires increased only moderately in tem-
perate coniferous forests (up to 0.05 at the end of the century) and 
remained close to zero for forests of the tundra.

4  |  DISCUSSION AND CONCLUSIONS

We here present evidence for a strong positive relationship between 
summer aridity and forest fire activity across Europe's forests. While 
such a relationship has been reported previously at the regional scale 
(Ruffault et al., 2020; Turco et al., 2018), we here show that it is gener-
alizable across all forest biomes of Europe. Going beyond area burned 
we show that maximum fire size and maximum burn severity—two 
important indicators in the context of social-ecological fire impact—
are also strongly driven by aridity. The fact that we found consist-
ent climate sensitivity of forest fire regimes across biomes (cf. also 
Seidl et al., 2020) is noteworthy because it indicates that fire could 

F I G U R E  5  Climate sensitivity of maximum fire size (upper panels) and maximum burn severity (lower panels) across biomes based on 
climate projections under the SSP585 (red) and SSP245 (blue) scenarios. Maximum fire size and burn severity models were used to project 
climate sensitivity under the conditions expected for the 21st century based on CMIP6 GCMs. Black lines show the modeled values under 
historical conditions (1986–2020). Shaded areas indicate the 95% confidence interval derived from posterior prediction of the model, 
and solid lines show the median model predictions for the SSP585 (red) and SSP245 (blue). Projections were made for an average climate 
trajectory based on five GCMs. Projections for the conditions simulated by individual GCMs are shown in the supplementary material 
(Figure S5).

F I G U R E  6  Probability of maximum fire sizes exceeding 2500 ha 
for future climate conditions. Solid colors indicate probabilities for 
historical conditions (1986–2020), shaded colors indicate future 
scenario analyses under SSP585. The probabilities of extremely 
large fires under SSP245 are shown in Figure S6.
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become a major driver of the European disturbance regime also 
outside the Mediterranean basin. We in fact found that temperate 
and boreal forests increasingly contributed to the total area burned 
in Europe already in recent years. Temperate and boreal forests of 
Europe are less fuel-limited than most Mediterranean ecosystems 
(Verkerk et al.,  2019), and experienced strong increases in summer 
VPD in recent years (Jain et al., 2022). This, in turn, increases fuel arid-
ity (Gudmundsson et al., 2014; Pausas & Paula, 2012), making large 
fires increasingly likely also in temperate and boreal forests of Europe. 
Furthermore, both lightning ignitions (Chen et al., 2021) and forest 
productivity (Piao et al., 2020; Zhu et al., 2016) are expected to in-
crease in mid to high latitudes of Europe, which—in combination with 
increasing fuel aridity—could lead to considerable increases in fire ac-
tivity. This is particularly noteworthy as many ecosystems in Europe 
(e.g., in the temperate biome) are not well adapted to high fire activity 
(i.e. lacking important fire resistance and response traits, such as thick 
bark, serotiny and the ability to resprout after fire; Keeley et al., 2011; 
Pausas, 2022). Likewise, societies are not yet well-prepared to live 
with fire in many temperate and boreal regions of Europe, suggesting 
that social-ecological adaptation measures are needed.

We here show that climate change could substantially alter for-
est fire regimes in Europe in the 21st century. The decade between 
2011 and 2020 included the nine most extreme years for global 
VPD maxima on record (Jain et al.,  2022), and aridity is expected 
to further increase in the future. However, despite the strong link 
between summer aridity and fire activity reported here, there is cur-
rently no significant positive trend of area burned across Europe, 
and even a declining trend in the Mediterranean basin (Dupuy 
et al., 2020; Jones et al., 2022; Turco et al., 2016). This pattern is in 
stark contrast to studies from similarly fire-driven ecosystems, such 
as the western United States (Abatzoglou & Williams,  2016) and 
southeastern Australia (Canadell et al.,  2021), where area burned 
has sharply increased in recent decades. The particular pattern of 
area burned in Mediterranean Europe can be explained by improved 
fire management (Turco et al., 2016) and underlines that human ac-
tivities are a particularly important element in the forest disturbance 
regimes of Europe. Yet, our findings of high climate sensitivity of 
forest fire regimes suggest that changes in aridity could increas-
ingly challenge the relative success of recent fire management in 
Europe. Specifically, our analyses indicate that increasing aridity 
could lead to increased maximum fire size and maximum burn sever-
ity, and elevate the probability of extremely large fires by at least a 
factor of two for most parts of Europe. This will render future fires 
less controllable (Fernandes et al., 2016), because larger fires have 
more extensive fire lines that are more difficult to control (Juang 
et al., 2022). Similarly, an increase in burn severity could consider-
ably challenge the ability to control fires (Jolly et al.,  2019; Parks 
et al., 2018; Podur & Wotton, 2010). Current fire management and 
firefighting strategies might thus become increasingly ineffective 
for controlling area burned in the future. This will require new par-
adigms of disturbance management in which not all fires are man-
aged equally: Limited resources should be used to fight dangerous 
fires while accepting fires as a part of natural ecosystem dynamics 

in areas with limited impacts on humans (e.g., Resist—Adapt—Direct; 
Schuurman et al., 2022). Furthermore, firefighting capacities need to 
be increased particularly in areas of Europe that have experienced 
limited forest fires in the past. Pan-European coordination and shar-
ing of available resources (such as planes for aerial firefighting) can 
further help to efficiently address the growing risk from wildfires, 
but needs to consider that it is increasingly likely to have multiple 
active large fires in parallel under climate change.

We here present the first European-scale analysis of fire ac-
tivity in response to increasing summer aridity, yet some caveats 
need to be considered when interpreting our results. First, we 
based our analyses on gridded climate reanalysis and simulation 
data that might underestimate both past and future VPD ex-
tremes. Additionally, we here focus on the effect of summer VPD, 
disregarding the potential contribution of lengthening fire seasons 
on forest fire regimes (Jain et al.,  2022; Jolly et al.,  2015; Jones 
et al., 2022; Westerling et al., 2006). While historically most fires 
in Europe occurred during the summer months (June, July, August), 
longer fire seasons may cause more spring and autumn fires (EFFIS; 
see https://effis.jrc.ec.europa.eu/apps/effis.stati​stics/​seaso​nal-
trend). The climate sensitivity reported here is thus a conservative 
estimate, as the effects of increasing VPD in spring and fall were 
not considered. Furthermore, climate change will also alter the for-
est vegetation of Europe, and could lead to a reassembly towards 
broadleaved communities in some areas (e.g. Thom et al.,  2022), 
which could alter flammability. Such dynamic feedbacks between 
climate, vegetation, and fire were not considered here and should 
be the focus of future research. Finally, we did not explicitly in-
clude human-fire interactions in our analyses. The role of humans 
is the greatest source of complexity in predicting fire patterns 
(Ford et al., 2021; Jones et al., 2022), particularly in densely pop-
ulated and intensively managed areas that are characteristic for 
many parts of Europe. We addressed social factors by means of 
country-level random effects in our modelling, finding that random 
variation among countries was large and contributed substantially 
to the overall variance explained (Figures S7 and S8). Hence, it is 
important to note that the relationship between summer aridity 
and fire activity reported here is only one of many drivers that will 
shape the future fire activity in Europe. Nonetheless, our study 
provides robust evidence for a strong link between summer aridity 
and maximum fire size as well as maximum burn severity across 
Europe. As continued increases in summer aridity are projected for 
Europe (Balting et al., 2022), we conclude that the stable develop-
ment of area burned observed for Europe over the past decades 
will likely change to increased fire activity in the near future. Forest 
management and policy in Europe thus need to prepare for a future 
with larger and more severe fires, and develop strategies to miti-
gate fire-related impacts on forest carbon (Carnicer et al., 2022), 
resilience (Turner et al., 2022) and biodiversity (Palm et al., 2022).
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