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Abstract—With dynamic imbalances caused by both software
and ever more complex hardware, applications and runtime
systems must adapt to dynamic load imbalances. We present a
diffusion-based, reactive, fully asynchronous, and decentralized
dynamic load balancer for a distributed actor library. With the
asynchronous execution model, features such as remote procedure
calls, and support for serialization of arbitrary types, UPC++ is
especially feasible for the implementation of the actor model.
While providing a substantial speedup for small- to medium-
sized jobs with both predictable and unpredictable workload
imbalances, the scalability of the diffusion-based approaches
remains below expectations in most presented test cases.

Index Terms—Asynchronous, Actors, Work-stealing, Dis-
tributed, Persistent, Offloading, UPC++, Library

I. INTRODUCTION

Numerics of modern scientific applications introduce dy-

namic workload imbalances. Static mapping of the workload

to compute nodes will fall short due to runtime deviations,

and dynamic balancing of the workload is fundamental to

minimize the time-to-solution and to not waste available re-

sources [1]. For example, in adaptive mesh refinement (AMR,

e.g., [2]–[4]), the accuracy of the solution will be adapted

for certain regions, dynamically changing the workload in

each refinement. In particle simulations, spatial domain de-

composition will lead to imbalances when the domain is not

homogeneous [5]. Vacuum regions will result in imbalances

in workload, and the decomposition of the particles has to

be dynamically changed to adapt for best performance. State-

space search problems including unbalanced tree search, SAT,

and N-Queens are often irregular and show unpredictable

workloads [6], and therefore dynamic and predictive workload

balancing is mandatory to maintain high performance.

In this work, we consider a solver for the shallow water

equations (SWE) that avoids unnecessary computation by

lazily activating patches of the computational grid only when a

propagating wave enters the patch, thus dynamically changing

the workload with each increment of the simulation time [7].

Workload imbalance can also be caused by the hardware,

for example with features like dynamic voltage and frequency

scaling (DVFS), where the frequency of the CPU is adapted

dynamically the processing capabilities of each compute node

may dynamically differ. Performance variability due to hard-

ware, as reported in [8], can severely impede scalability.

Even without faulty hardware run-to-run variability caused

by the hardware [9] provides another reason why applications

and runtimes need to dynamically migrate workload between

compute nodes.

We implement a fully decentralized asynchronous reactive

dynamic workload balancing feature for the distributed ac-

tor model library Actor-UPCXX1, implemented with Unified

Parallel C++ (UPC++) [10]. UPC++ is a C++ library that

implements the asynchronous partitioned global address space

model (APGAS). It provides one-sided remote put and remote
get operations, and functions that can be executed on remote

UPC++ ranks2 called remote procedure calls (RPCs). The

actor model [11] is an asynchronous message-driven model

of concurrent computation, where the actor is the universal

primitive model. Actors do not share their state (i.e., any

simulation data), but communicate only through asynchronous

one-sided messages. The messages sent are limited in size

and the received messages are stored in buffers until their

recipient consumes them. Discrete states of actors prevent data

races and side effects, enabling the actor model for distributed

computing. Various industry-oriented implementations of the

actor model are already in use, such as Erlang [12] and the

C++ Actor Framework [13]. The actor model is also a popular

choice in network frameworks such as the Akka framework

for Scala and Orleans [14], the framework for .Net. Charm++

[15] implements a computational model similar to the actor

model and is being used in high-performance systems.

We present a simple diffusion-based approach [16, e.g.] for

dynamic workload balancing in Actor-UPCXX and support

both stealing and offloading of the workload, by persistently

transferring actors between compute nodes. Actor stealing is

based on work stealing [17, e.g.], where underloaded ranks

steal actors from their overloaded neighbors; actor offload-

1Available under GPL at https://github.com/TUM-I5/Actor-UPCXX
2From hereon, we just refer to UPC++ ranks as ranks
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ing is based on task sharing, where overloaded ranks share

their actors with underloaded neighbors. Our implementa-

tion requires no synchronization and is decentralized and

fully asynchronous. The results are analyzed for whether a

simple, fully asynchronous implementation of diffusion-based

load balancing can mitigate dynamic load imbalances caused

throughout a time-dependent simulation.

In Sec. II we discuss dynamic workload balancing ap-

proaches that are comparable to actor stealing and offloading

and classify them depending on their fundamental properties.

Section III describes the implementation of Actor-UPCXX and

our dynamic workload balancing schemes, followed by the

evaluation of the strategies in Sec. IV. Finally, we discuss our

results in Sec. V, followed by a conclusion and presentation

of possible future work for the actor-based load balancer in

Sec. VI.

II. RELATED WORK

To aid the following discussion and overview of related

work on dynamic load balancing strategies, in runtimes as

well as in applications, we first outline a classification of

such strategies. Regarding centrality, dynamic load balancing

strategies can be grouped as

(1) centralized,

(2) decentralized,

(3) hierarchical.

In a centralized strategy, a central node takes all deci-

sions regarding workload redistribution based on workload

metrics gathered during the runtime. The serial nature of

centralized load balancing introduces a bottleneck that will

create scalability issues, especially if the amount of mem-

ory is limited. Mapping of computational meshes or over-

decomposed systems to computational nodes via a serial graph

or hypergraph partitioner falls into the centralized category

[18]. Actor-UPCXX adopts a similar approach for the initial

workload distribution, where the METIS [19] graph partitioner

is used to assign the actors to nodes under a cost model.

The bottleneck of the centralized approaches can be mitigated

by decentralized approaches, where the decisions regarding

workload redistribution will be taken locally without the need

for synchronization, then based on partial knowledge of the

system. Therefore, decentralized approaches yield less effec-

tive workload redistribution compared to centralized strategies

while offering better scalability. Hierarchical approaches try

to overcome scalability problems by exploiting a tree-based

hierarchical approach. Each node of the tree balances the load

across the processors of its subtrees, and the root node acts

as the leader of the group, similar to the central node in

centralized approaches [20].

The dynamic workload balancing methods implemented for

Actor-UPCXX are decentralized methods and do not require

any synchronization. Therefore, we focus on other decen-

tralized methods in the following. Decentralized workload

balancers can be further classified as:

(a) push-based or

(b) pull-based.

In push-based variants, overloaded ranks offload workload to

underloaded ranks; in pull-based variants, underloaded ranks

steal workload from overloaded ranks. A common step for

both push-based and pull-based variants is the exchange of

workload information, which often occurs periodically. How

often and when the load balancing methods are invoked is

crucial for the performance of the system, as migration of

workload incurs additional communication. The invocation of

the load balancer can be grouped into two categories:

(i) periodical or

(ii) reactive.

If the load balancer is invoked periodically, migration phases

are introduced between any two computation phases. Migra-

tion phases are easy to achieve with applications that have

implicit synchronization points, such as simulations that syn-

chronize after each discrete time step. Periodic load balancers

can be integrated into such applications without requiring

additional explicit synchronization. In a reactive load balancer,

the load balancer will be invoked when a node identifies an

imbalance that requires workload rebalancing.

Charm++ [15] implements an asynchronous message pass-

ing parallel programming paradigm similar to the actor model

and offers many of the discussed workload balancing strate-

gies. Charm++ defines multiple types of objects called ‘chares’
that share data through messages. Charm++ allows asyn-

chronous invocation of chares. Over-decomposition due to the

chare objects allows the Charm++ runtime system to utilize

dynamic load balancers [21]. Charm++ supports a plethora of

load balancers for dynamic workload balancing and provides

a load balancing framework for easy implementation of load

balancing strategies that can be integrated into the framework.

A simple diffusion-based load balancer for Charm++ that

implements a local neighborhood workload averaging scheme

is NeighborLB [18]. A push-based load balancing scheme of

Charm++ comparable to actor offloading is the Grapevine

load balancer [22], which is a periodic load balancer that

creates a partial representation of the global load of the

system through epidemic communication (gossip protocol)

during the information propagation phase. Grapevine then uses

the information collected for the probabilistic transfer of the

workload between ranks. It shows performance improvements

even up to 131k core counts (maximum number of cores

tested in the paper) in imbalances induced by adaptive mesh

refinement.

Another push-based load balancer implemented in Charm++

is the PackDrop load balancer [23]. PackDrop utilizes grouped

tasks and migrates tasks in batches while preserving the

locality of the tasks. The average load is computed with a

global reduction of the per-rank load. Where underloaded

ranks inform overloaded ranks via gossip protocol to further

decide on the migration of tasks. The algorithm requires

synchronization between the information propagation and task

migration phases. Grapevine in general outperforms PackDrop
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Table I: Overview of load balancers similar to actor stealing and actor offloading following the classification of Sec. II.

Strategy Centrality Periodicity Synchronization Initiator Persistence
GrapevineLB [22] decentralized periodical barrier push persistent
PackDropLB [23] decentralized periodical quiescence detection and reduction push persistent
PackStealLB [24] decentralized periodical quiescence detection and reduction pull persistent
Chameleon [25] decentralized reactive none push single-shot

GLB [26] decentralized reactive none pull single-shot

Synchronization describes whether the strategy needs any type of synchronization, e.g., in the form of barriers, reductions of variables or quiescence
detection through message counting. Initiator describes whether the scheme is a push- or pull-based strategy. Persistence describes whether the stolen tasks
live in the migrated rank: single-shot means that the migrate task’s lifetime spans only a single execution, regardless of whether the results are sent back
after the computation, whereas in the persistent case the task’s lifetime spans over multiple execution and continues to live on the node it is migrated to.

when the communication latency is less and underperforms in

systems with slower interconnect.

Work-stealing is a prevalent choice for pull-based work mi-

gration. Work-stealing has a wide use in shared memory sys-

tems. The Cilk [17] runtime system and OpenMP schedulers

[27] employ work-stealing schedulers. A distributed pull-based

load balancing scheme that implements work stealing for dis-

tributed memory systems is the PackStealLB [24] of Charm++.

In PackStealLB, the underloaded thieves steal a packed group

of tasks from the victim ranks. Unlike PackDrop, it does not

require global synchronization, but the load balancer has to be

invoked, thus having a migration phase between computation

phases. In the evaluation, PackSteal shows better performance

compared to the PackDrop and Grapevine load balancers at

960 cores spanning over 20 compute nodes.

Samfass et al. [28] implement a distributed task stealing load

balancer for fine-grained load imbalances on top of existing

load balancers of the sam(oa)2 PDE framework. The work

stealing scheme is more reactive compared to the previously

mentioned Charm++ load balancers, as the stealing can be

initiated by any process that has detected an imbalance through

continuous polling of the workload. The scheme utilizes

communication threads to quickly process steal requests. The

work stealing approach is superseded by Chameleon [25]

which adopts a push-based approach. Charm++ is reported to

outperform Chameleon in cases of higher imbalances, whereas

temporary stealing of tasks in Chameleon is more suitable for

more unpredictable and short-lived imbalances [29].

Saraswat et al. [30] implement work-stealing for distributed

memory systems in X10 [31] with lifeline graphs. Lifeline

graphs are chosen to be cyclic hypercubes and stealing ranks

choose their victims from the lifeline graphs. GLB [26],

[32] implements a work-stealing algorithm also based on

lifeline graphs for the map-reduce model in X10. In the

map-reduce model, every worker applies the map function

on the local data, and in the reduction phase, the mapped

results are reduced depending on the user-defined rules of the

reduce method. In GLB ranks first attempt to steal from w
random victims; if all attempts fail, then the rank tries to steal

from its lifeline. Every rank polls periodically for workload

information to detect imbalances. The computed results persist

on the stealing rank and are used during the reduction phase.

Fully decentralized load balancing schemes can achieve

good scaling (e.g., [22], [33]), however, it requires careful

engineering and aggressive optimizations. Scalable load bal-

ancers indicate a pattern of common properties: minimiza-

tion of communication between ranks during information

exchange, for example, through remote direct memory access

(RDMA) [33], [34], or with epidemic-like gossip protocols

[22], [23]. For stealing-based load balancers, mitigating the

additional cost of failed attempts through preemptive aborting

[33] or eliminating failures completely [34] is required for

high scalability. Load balancers also utilize asynchronous

communication to overlap communication with computation

to further hide the cost of migrating work from the application

[35], [23], [24], [23], [28], [29]. A summary of the properties

of the mentioned load balancers can be seen in Table I.

III. IMPLEMENTATION

We extend Actor-UPCXX [36], a C++ library that imple-

ments the actor model using UPC++. Each actor is an object

that is identified by its unique name and assigned to a part of

the parallel simulation. An actor and its data can be serialized

for sending it to another rank using UPC++. The user can

specify certain operations the actor executes when a predefined

state, which typically depends on the messages received from

other actors, is reached. Actors are not allocated in the shared

memory but every address is assigned to a global pointer in the

global address space. Information regarding the global address

of the actor and its name are saved in a global hash map that is

replicated on every rank. The connections of actors are saved

in a global graph structure that is also replicated on every rank.

In our implementation, actors communicate through one-

sided asynchronous messages. The communication is deter-

mined by one-sided channels that connect two actors (which

we call neighbors). Actor-UPCXX does not employ a central

message queue, and the messages are buffered by the actors

in a statically sized array. A write call to another actor can

be issued through an RPC when there is space available in

the remote buffer. The write call then creates local procedure

call (LPC) callbacks to update the available size as depicted

in Fig. 1a. Similar to write, a read calls transfers the message

for consumption and produces callbacks to update the available

sizes as depicted in Fig. 1b. An actor may execute its user-

defined task, e.g., when every port of the actor has at least

one message. Termination is detected when every actor in the

system has terminated.
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A1 A2ChannelA1:Out A2:In

3:LPC

1:RPC

2:LPC

Rank n Rank m

(a) A write call from actor A1 residing on rank n to actor A2 on
rank m.

A1 A2ChannelA1:Out A2:In

2:RPC
4:LPC

3:LPC 1:Read

Rank n Rank m

(b) A read call from actor A1 residing on rank n to actor A2 on rank
m.

Fig. 1: Structure of read and write calls. RPC is a remote procedure call, a function that is executed on a remote rank; LPC

is a local procedure call, which is a callback attached to a completion (e.g., completion of an RPC).

A. Enabling Migration of Actors

In this paper we present actor stealing and actor offloading

to dynamically migrate actors between UPC++ ranks. Actor

stealing and actor offloading are both diffusion-based load

balancers and share common features. The main difference

between the two strategies lies in their communication pattern.

Actor stealing is a pull-based strategy, whereas actor offload-

ing is push-based.

In actor stealing an underloaded rank chooses a victim

rank to steal an actor. The stealing rank tries to reserve (cf.

Alg. 1) the victim actor. The reserve procedure works as

follows: marking the actor for migration (cf. Alg. 2), pinning

its neighboring actors, and stopping the victim actor. Then

the actor is transferred by sending the serialized actor with its

data and buffered messages via remote procedure calls (RPCs).

After the serialization is completed, pinned actors are unpinned

and the migrated actor is restarted (cf. Alg. 3).

In actor offloading, a rank that detects an imbalance may

decide to offload an actor to a rank that is underloaded. Similar

to the actor stealing approach, the actor has to be reserved

(cf. Alg. 1), marked (cf. Alg. 2), and the neighboring actors

have to be pinned. After the transfer is completed, the pinned

neighbors are unpinned and the offloaded actor is restarted.

The offloading is performed by the actor’s local rank, therefore

it uses fewer RPCs during the reservation and pinning of the

actors (cf. Alg. 4).

Both migration strategies perform every action through

asynchronous calls (RPCs). All procedures create RPCs if the

input actors reside on remote ranks. In the provided algorithms

(i.e., 1–4) this is depicted as a right arrow (→) pointing to its

recipient rank.

The workload imbalance within a set of ranks R is defined

as the factor of maximum workload to minimum workload.

The imbalance is considered large enough for migration, if

the imbalance factor σ is higher than a pre-defined constant

which is typically given as σ = 1.05 (cf. [24], [23]).
To model the workload, our implementation currently offers

• task counting and

• time counting.

Task counting is inspired by the asynchronous many task

(AMT) paradigm [35], [18], where work is encapsulated into

tasks. Actor-UPCXX considers every execute operation of an

actor as a task. The amount of available tasks can be saved in a

rank-local variable that is in the global address space allowing

effective transfer through RDMA. Task counting assumes that

every task has identical cost. Time counting gathers the cost

of every actor that depends on the time spent executing the

actor.

Before the migration of an actor v from rank a to rank b
can commence, the actor v needs to be reserved for migra-

tion. Reservation includes marking the actor v for a possible

migration, pinning the neighboring actors that directly com-

municate with the actor so that they are not migrated during

the migration of v, and stopping the actor v. Marking and

pinning are two different locking operations used to facilitate

asynchronous migration. In the marking procedure, an actor is

marked for migration. In pull-based methods, the stealing rank

marks the actor. In push-based methods, the offloading rank

marks its own actors. Being marked for migration prevents

the actor from participating in any other migration attempt

until it is unmarked. The mark informs the runtime of a

possible migration of the victim actor. The pinning procedure

is required as the actors that communicate with the migrating

actor (i.e., their neighbors) are not allowed to migrate during

the migration of the victim actor. After a successful reservation

(i.e., marking the victim and pinning its neighbors) the actor is

serialized and transferred over the interconnect. Serialization

requires move constructors and an implementation of the

serialization interface provided by UPC++.

Due to the implementation of the used actor library and

the design choices of the stealing procedure, reserving actors

and using locks on actors is unavoidable. Both start and

the destination ranks will continue with the execution of

other actors during the migration procedure, as it is fully

asynchronous. Due to the implementation of the channels

between actors (see Figs. 1a and 1b), the implementation

requires the neighbors of the victim actor v to flush their

messages to actor v and notifies the neighboring actors that

they are not allowed to write messages to channels of v until

the migration is completed.

There are three constraints for the pinning and marking of

actors:
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Algorithm 1: Reserve(v):
Marks the victim actor, pins the neighborhood of the

victim actor and stops the victim. The pinning and

marking of an actor may fail – therefore it has to be

checked whether the calls succeed. The neighborhood

is denoted with Γ.

1 Procedure reserve(v):
2 marked ← mark(v);
3 if marked then
4 pinned ← pin(Γ(v));
5 if pinned then
6 stopped ← stop(v);
7 if stopped then
8 return true;

9 else
10 unmark(v);
11 unpin(Γ(v));
12 return false;

13 end
14 else
15 unmark(Γ(v));
16 return false;

17 end
18 else
19 return false;

20 end

Algorithm 2: Mark(v):
Attempts to mark an actor v for migration; may issue

an RPC to a remote rank, if the recipient actor resides

on a remote rank.

1 Procedure mark(v):
2 if v.at() == rank me() then
3 return v.mark(rank me());

4 else
5 return v.mark(rank me()) → v.at();
6 end

1) A marked actor can’t be pinned,

2) a pinned actor can’t be marked,

3) a terminated actor can’t be pinned or marked.

Actor-UPCXX supports an additional constraint to limit the

count of concurrently marked actors on a given rank by n.
Every new mark attempt for a steal will fail as long as there

are n marked actors. If the pinning of any actor within the

neighborhood fails, then the pinning of the neighborhood fails.

To prevent side effects, any previously pinned or marked actors

have to be respectively unpinned or unmarked.

B. Actor Stealing

Actor stealing is the adaptation of the task stealing approach

for the actor model. Underloaded ranks that are idle or

have detected a significant load imbalance may initiate the

procedure to steal an actor from a remote rank.

Our implementation does not require entering a migration

phase and is fully reactive, similar to [25]. A steal is initiated

when a rank detects an imbalance above a certain imbalance

factor. We do not wait until the rank is idle, as it would prevent

overlapping communication with computation. Reserving and

locking the victim actor is necessary due to the absence of a

migration phase but the steal procedure does not require any

synchronization. Stolen actors persist on the rank to which

they have been migrated.

The actor stealing approach implemented is (2) decentral-

ized, (b) pull-based, and (ii) reactive. There is no migration

phase and the migration procedure can be invoked by any

rank that has detected a workload imbalance above a certain

imbalance factor. The stealing procedure requires no synchro-

nization.

The stealing procedure begins with the choice of the victim

rank. When to initiate the stealing procedure is an integral

part of the implementation. Initiating a steal when the rank

has run out of work (meaning no actor can execute) is against

the principle of overlapping communication with computation

as the stealing rank will have to wait idle until new messages

or the stolen actor arrives. Therefore, every rank actively

polls for the workload information of remote ranks to detect

imbalances.

The set of remote ranks that can be chosen as victims can

be set as:

• global or

• local.

If set to local then the rank r may choose neighboring actors
as victims. Neighboring actors of rank r either send messages
to r or receive messages from r. If set to global then any actor
residing on any rank can be chosen as the victim.

Further, the type of polling can be set to:

• random or

• busy.

If set to random, a random rank from the available set of

victim ranks is selected as the victim rank. A steal request is

issued with the workload of the stealing rank provided. Even

though the victim rank always acknowledges the steal request,

it only serves the request, if its workload is higher than that

of the stealing rank and above a pre-defined imbalance factor.

If the polling type is set to busy, the remote rank that has

the highest workload from the set of allowed victim ranks is

chosen as the victim. The victim may again refuse to let its

actors to be stolen, if the workload difference falls under the

imbalance factor before the steal request is processed.

Before stealing an actor v, it has to be successfully reserved.
After the reservation, the victim actor is disconnected from its

neighbors such that no neighbor can send messages to the

victim actor. After the migration of the actor from victim

to stealing rank, the closed connections are reconnected, the

pinned actors are unpinned and the actor is then restarted

completing the steal procedure.
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Algorithm 3: Steal(v):
Disconnects the victim actor from its neighbors, seri-

alizes and sends the actor to its new rank. After the

transfer is completed, reconnects the stolen actor and

unpins the neighbors of the actor. The neighborhood is

denoted with Γ.

1 Procedure steal(v):
2 workloads ← gather workload();

3 v ← find victim(workloads);

4 reserved ← reserve(v, Γ(v)) → v.at();
5 if reserved then
6 disconnect(v, Γ(v)) → v.at();
7 migrate(v, rank me()) → v.at();
8 reconnect(v, Γ(v));
9 restart(v);

10 unmark(v);
11 unpin(Γ(v));
12 end

C. Actor Offloading

Actor offloading is the adaptation of the task offloading

approach for the actor model. The implementation is similar

to actor stealing, the main difference lies in the change of

communication between start and endpoints and the workload

exchange. Every rank checks regularly for the load imbalance

within the neighboring ranks. The choice of the interval is

important as we do not support batch migration of actors.

If an overworking rank detects a significant load imbalance

above the imbalance factor, it initiates the offloading proce-

dure to a neighboring rank that has the least workload. Our

implementation of offloading also does not require entering

a migration phase and is fully reactive. The actors offloaded

again persist on the rank they are migrated to. Actor offloading

is (2) decentralized, (a) push-based and (ii) reactive.

In contrast to actor stealing, an offload request can’t be

rejected. Before offloading an actor v, it has to be successfully
reserved. After the reservation, the victim actor is disconnected

from its neighbors such that no neighbor can send messages

to the victim actor. After the migration of the actor from

victim to stealing rank, the closed connections are reconnected,

the pinned actors are unpinned and the actor is restarted

completing the offloading procedure. The integral part of

offloading is the same as it was in the steal procedure, but

the communication start and endpoints are reversed.

IV. EVALUATION

All following results have been obtained from the

CoolMUC-2 Cluster hosted by the Leibniz Supercomputing

Center (LRZ)3, which is equipped with 28-way Intel Xeon E5-

2690 v3 compute nodes and FDR14 Infiniband interconnect.

The UPC++ version used is 2022.03.0. UPC++, and Actor-

UPCXX were compiled with the Intel oneAPI compilers

3https://doku.lrz.de/display/PUBLIC/Linux+Cluster

Algorithm 4: Offload():
Disconnects the actor to be offloaded from its neigh-

bors, serializes and sends the actor to its new rank.

After the transfer is completed, reconnects the actor

and unpins the neighbors of the actor. The neighbor-

hood is denoted with Γ.

1 Procedure offload():

2 workloads ← gather workload();

3 (v, to) ← find recipient(workloads);

4 reserved ← reserve(v, Γ(v));
5 if reserved then
6 disconnect(v, Γ(v));
7 migrate(v, to) ;
8 reconnect(v, Γ(v)) → v.at();
9 restart(v) → v.at();

10 unmark(v)→ v.at();
11 unpin(Γ(v));
12 end

version 2021.4.0. OpenMPI v4.1.2 and HWLoc 2.6.0 are used

by the communication backend of UPC++, GASNet-EX [37]

for the job launch. Parallelization is achieved using the UPC++

sequential backend by creating one rank for each physical core.

In the following, three scenarios are presented to test the

implemented dynamic workload balancing strategies: static

workload (IV-C), node slowdown (IV-D) and lazy activa-

tion (IV-E). The static workload scenario has a predictable

and static workload. The node slowdown scenario creates

an unpredictable dynamic workload by creating an artificial

slowdown on a subset of nodes. The lazy activation scenario

creates a coarse, dynamic, and relatively predictable dynamic

workload imbalance. The presented scenarios are used to test

the implemented strategies under various use cases. Every

strategy and scenario is tested using Pond (IV-A), a proxy

application for shallow water equations.

A. Pond – a Proxy Application for Shallow Water Simulations

The dynamic load balancing strategies implemented in

Actor-UPCXX are evaluated on Pond [36], [38], a proxy appli-

cation that implements a finite volume solver – following the

modeling approach and discretization presented by LeVeque

et al. [39] – for the shallow water equations (SWE):⎡
⎣
h
hu
hv

⎤
⎦
t

+

⎡
⎣

hu
hu2 + 1

2gh
2

huv

⎤
⎦
x

+

⎡
⎣

hv
huv

hv2 + 1
2gh

2

⎤
⎦
y

= 0, (1)

with water height h, and momentum hu and hv in the two

spatial directions x and y.
Following the actor model and using the Actor-UPCXX

library, Pond organizes the 2D Cartesian discretization grid

as patches (see Fig. 2): every patch is assigned to an actor

permanently. Pond uses over decomposition of actors to com-

pute cores, by assigning multiple actors (i.e., n by n patches)

to each compute core. Ghost layers (see Fig. 2 and below) are

used to synchronize data between patches.
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Name Centrality Periodicity Synchronization Initiator Persistence
ActorSteal decentralized reactive none pull persistent
ActorOffload decentralized reactive none push persistent

Table II: Properties of the implemented actor stealing and offloading approaches, to be compared with Table I.

(a) 2D grid
(b) 2D grid decomposed
into 4 sub-grids

Fig. 2: An example grid decomposed into four patches, which

Pond will assign to four actors. Cells of the patches are marked

in blue. Ghost layers are marked in red. Arrow directions show

the communication of the one-sided messages (communication

of Pond actors is bidirectional).

In each time step of the simulation, each patch performs

three operations: (1) Update the cells in the ghost layer ac-

cording to boundary conditions or with values communicated

by neighbor patches. (2) For each edge compute approximate

fluxes between the adjacent cells (via computing an approx-

imate Riemann problem) and accumulate the fluxes as net

updates. (3) Update the cell quantities using the net updates

and the time step size Δt.

After each time step, ghost cell values are updated, by send-

ing one-sided messages between Pond’s actors. The simulation

starts with such a ghost-layer exchange. In Fig. 2 the domain

in the left subfigure (cf. Fig. 2a) is decomposed into four

patches on the right. Ghost layers that hold the information

of the neighboring cells are marked red.

B. Load Balancing Scenarios - Experiment Description

We have tested the dynamic load balancing strategies on

the following scenarios: static workload, node slowdown and

lazy activation. All presented scenarios are strong scaling tests.
Static workload is a scenario where the computational costs

of executing actors do not change over time. It acts as a

baseline. Node slowdown mimics faulty hardware by slowing

down the execution of actors on certain ranks for a specified

time interval. This aims to create an unpredictable hardware-

induced load imbalance. Lazy activation keeps patches idle at

the start, and only activates them (“lazily”) as soon as the wave

propagates into the respective patch [7]. Idle actors do not have

to update the (initial) solution but check for incoming waves

at the boundaries. Hence, idle actors have much smaller costs

compared to active actors. This creates a coarse imbalance at

the start of the simulation where then actors are activated as

the simulation progress. For an example of decomposition and

(a) Initial decomposition: the
center patch and those with dis-
placements on the four corners
are active, also the patches that
share their patch boundary with
the central displacement are ac-
tive.

(b) As the waves propagate
inwards from the corners and
outwards from the central dis-
placement, new patches are ac-
tivated – only patches on the
edges that have not met a prop-
agating wave remain idle.

Fig. 3: Illustration of lazy activation for a 2D grid with 5× 5
patches. Active patches are marked with a lighter shade of

blue. Colors blue→white→ red indicate water height (from

low to high).

the resulting active patches depending on the used scenario,

see Fig. 3.

Our experimental setup is configured as follows: for the

static workload and node slowdown scenarios, Pond runs on

an 18000 × 18000 grid. The grid is divided into 250 × 250
patches with 1 patch per actor and with a simulation time of

1.0 seconds. For the victim choice strategy, in static workload,

time counting is used and in node slowdown, task counting is

used. For the node slowdown scenario, the ranks with ids from

0 up to 4 times the number of compute nodes are chosen for

the artificial slowdown. These ranks are slowed down during

the time interval [60.0; 360.0] by a factor of 3. Task counting
is used for the victim choice. For the lazy activation scenario,

the grid size is increased to 36000× 36000. Time counting is
used as the strategy for victim selection.

C. Static Workload

The initial workload distribution of the actors can be mod-

eled as a graph partitioning problem and the static mapping

of actors to compute nodes is calculated with METIS. Any

workload imbalance throughout the execution, if present at all,

may only be caused by the hardware or due to imbalances in

the partitioned graph. The scenario aims to analyze the impact

of dynamic workload balancing strategies with static and well-

balanced workloads. The static workload scenario acts as a

base case where the system has a predictable workload, it aims

to test the impact of the dynamic load balancing strategies.

The migration strategies manage to improve the perfor-

mance of up to 24 nodes (cf. Fig. 4a). Global-busy, local-
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(a) Speedup relative to the “Static” basic case on one node without
migration. Boxes annotate best and worst results for each node count
(runtime improvement compared to “Static”, box color indicates the
respective strategy).

(b) Top: Number of actors per rank, with variance plotted on top
of the bar; bottom: percentage of successful steal attempts.

Fig. 4: Speedup (a) and actor statistics (b) for the “Static

Workload” scenario for 1 to 32 nodes.

busy, and local-random improve the performance roughly by

7% up to 16 nodes while the performance of global-random

and offloading drops to 0% at 16 nodes. For 24 and 32

nodes no migration strategy attempts to migrate actors. Due

to the additional cost of workload exchange, the time-to-

solution increases roughly by 5% on average. Global strategies

collect the runtime information of every rank compared to

local strategies only collecting the workload information of

their neighbors. For this predictable, well-balanced workload,

global strategies have a natural disadvantage due to the bigger

overhead of global workload exchange compared to the local

strategies that collect the workload of their neighbors only.

The graph partitioning shows less variance as the number of

partitions increases (cf. Fig. 4b). In small node counts, there

is a high variance enabling room for improvement through

migrations. For any job that is partitioned between more than

four compute nodes, every rank has either c or c + 1 actors.

Therefore, at higher node counts fewer migration attempts will

be performed, and the attempts are less successful.

D. Node Slowdown

The node slowdown scenario is an artificial scenario to

test the performance under unpredictable workload imbalance,

for example, which might occur due to variable hardware

performance. This scenario aims to create such a dynamic and

unpredictable workload imbalance by artificially slowing down

a subset of ranks to test the reaction speed and quality of the

implemented migration strategies.

A subset of ranks [a; b) is slowed down artificially dur-

ing the time interval [t1; t2]. Any actor residing on a rank

r ∈ [a; b) that is affected by the slowdown is forced to require
triple the time to complete the execution of a task. This is

achieved by measuring the execution time and waiting idly for

twice the execution time. The node slowdown scenario has a

heavy impact on the throughput as it causes a bottleneck in

the system. An actor requires the messages from its neighbors

from time step tn to compute the time step tn+1. The

bottleneck’s effect propagates to neighboring ranks, causing

them to wait additionally due to the slowed-down processing

of other actors.

In addition to the stealing modes local-busy, global-random,

etc., we define an additional mode “Ideal LB” that shall reflect

the theoretical upper bound for the speedup achievable in

a system without communication latency or synchronization

cost. We assume that Ideal LB immediately balances the

workload at the start t1 of a slowdown by instantly transferring
2
3 of the actors of the affected ranks r ∈ [a, b) evenly to the

remaining ranks (and transfers them back immediately at the

end of the interval t2).

In the results we see that all pull-based approaches react bet-

ter than “Offloading” (which is push-based) in unpredictable

imbalances (cf. Fig. 5a). Global strategies now achieve better

performance than local strategies, as the overhead is overcom-

pensated by better migration decisions. On 32 compute nodes,

it can be observed that the amount of successful steals drops

close to 0 resulting in less improvement of the performance

(cf. Fig. 5b).

E. Lazy Activation

In the lazy activation scenario, the workload is determined

by the evolving solution. Actors are activated as waves enter

the respective patch, such that workload changes dynamically

until every patch is activated. More migrations are therefore

carried out in the beginning to even out the initial imbalance,

whereas fewer and fewer migrations are needed the more

patches are dynamically activated in the simulation.

We again define a stealing mode “Ideal LB” that shall reflect

the theoretically achievable upper bound for the speedup in a

system that can perform an instantaneous transfer of actors
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(a) Speedup relative to the “Static” basic case on one node without
migration. Boxes annotate best and worst results for each node count
(runtime improvement compared to “Static”, box color indicates the
respective strategy).

(b) Top: Number of actors per rank, with variance plotted on top
of the bar; bottom: percentage of successful steal attempts.

Fig. 5: Speedup (a) and actor statistics (b) for the “Node

Slowdown” scenario for 1 to 32 nodes.

without migration cost or communication latency. The time-

to-solution of the Ideal LB is determined as the average time

spent in executing actors.

Global-busy now achieves the highest improvement in per-

formance (cf. Fig. 6a). The performance of the global-random

and the offloading strategies degrades swiftly, even for small

node counts. The global-random strategy can only migrate

actors in a tiny fraction of attempts and the offloading strategy

can’t control the interval to offload actors. As the average

number of actors per rank decreases with the increasing node

counts, fewer steal attempts succeed. Local strategies require

more migrations than global strategies to achieve a similar

quality in load balancing as actors need to hop through

multiple ranks to travel between two non-neighboring ranks.

(a) Speedup relative to the “Static” basic case on one node without
migration. Boxes annotate best and worst results for each node count
(runtime improvement compared to “Static”, box color indicates the
respective strategy).

(b) Top: Number of actors per rank, with variance plotted on top
of the bar; bottom: percentage of successful steal attempts.

Fig. 6: Speedup (a) and actor statistics (b) for the “Lazy

Activation” scenario for 1 to 32 nodes.

Local strategies show good scalability as their performance

does not degrade and even perform better on higher node

counts, but still require more migrations than global strategies

to achieve a similar load balancing quality (cf. Fig. 6b).

V. DISCUSSION

Our implemented strategies for dynamic load balancing

improve the runtime in predictable and unpredictable load

imbalances. The pull-based global-busy strategy was able

to improve runtime in node slowdown and lazy activation

scenarios on every node count tested, while it caused a slight

decrease in performance in the static workload scenario on

high node counts due to the additional cost of workload

exchange. The cost of workload exchange is much less in the

local-busy strategy, as the local strategy only exchanges the
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local workload information, therefore it performs better in the

static workload scenario. The global-busy strategy outperforms

the local-busy strategy in the node slowdown as well as in the

lazy activation scenarios, as the coarse imbalance compensates

for the additional overhead of workload exchange.

Random strategies are not able to compete with busy

strategies, as they result in a high percentage of failed attempts,

which puts a strain on victim ranks that need to handle steal

requests. The global-random strategy underperforms the local-

random strategy, as the global-random strategy rarely succeeds

in finding a rank that is able to serve the steal request.

The push-based offloading strategy fell short in predictable

as well as in unpredictable workload imbalances due to its

periodic workload exchange, thus not being able to migrate

enough actors to achieve reasonable speedup.

The type of workload imbalance strongly impacts the perfor-

mance of the used strategy. For example, in the lazy activation

scenario, new patches that are activated are in the proximity of

the actors that were previously activated. Thus local strategies

have an advantage as they will be able to distribute the

imbalance easily. In the case of node slowdown, the imbalance

is condensed to a set of ranks and the local strategies are at a

disadvantage as actors need to hop between multiple ranks to

reach ranks that are not neighbors of the slowed-down ranks.

Global strategies can migrate actors from the affected ranks

with a single transfer.

Dynamic workload balancers can be useful even without

load imbalances, as seen in the static workload scenario. As

long as the imbalance is large enough to compensate for the

additional workload exchange which can be seen up to 24

nodes.

VI. CONCLUSION & FUTURE WORK

We have provided a fully asynchronous and decentralized

diffusion-based dynamic workload balancing scheme for the

actor model that requires no synchronization and no migration

phase. UPC++ and the higher level APGAS model accelerate

the implementation of the phase-less migration strategies.

UPC++ provides templates to serialize arbitrary types, allow-

ing easy implementation of serialization to migrate actors and

their data between remote ranks. The asynchronous nature of

UPC++ enables the implementation of actor migration as a

chain of RPCs, thus preventing the need for any synchro-

nization between ranks. Features like remote memory access

enable easy access to remote workload information.

Failed steal attempts become a hurdle in strong scaling due

to the small number of actors per rank. Allowing steal attempts

to fail and thus implementing a phase-less migration strategy

has the advantage that it can instantly adapt to unpredictable

imbalances providing swift reaction times in low- to medium-

sized node counts.

We find that to provide scalable stealing and offloading

approaches, it will be necessary to decrease the percentage

of failed steal attempts and to decrease the number of total

migrations required to balance the freshly induced imbalances.

Changing the over-decomposition of the system by dividing

the problem into fewer actors will result in fewer migrations

required, but will result in more failed steal attempts. Viable

approaches to decrease the required number of migrations

and failed steal attempts could follow the approaches of the

Charm++ load balancers:

• abolishing pinning through appropriate data structures,

• allowing migration of actors in packs.

The requirement to pin the neighbors of migrating actors

can be avoided by decoupling the communication from the

actor executions. Decoupling can be achieved through a central

messaging queue similar to Charm++ or the data warehouse

used in Uintah [35]. In the case where a message is sent to

a migrating actor that may not accept messages, the central

message queue will ensure that the message is buffered until

the actor is migrated and reroute the message after the migra-

tion is completed. With central message queues, the pinning

will be no longer necessary as steps such as disconnect
and reconnect in the migration procedures can be skipped.

Without the requirement for pinning, the actors can be packed

and migrated in bulk in case of coarse load imbalances similar

to PackStealLB [24] and PackDropLB [23] to decrease the

number of migrations (and attempts) necessary to balance

coarse imbalances. A central messaging queue can still be

implemented with UPC++ while preserving the asynchronous

nature of the actor model.
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foundations with Actor-UPCXX and Pond.

REFERENCES

[1] B. Hendrickson and K. Devine, “Dynamic load balancing in com-
putational mechanics,” Computer Methods in Applied Mechanics and
Engineering, vol. 184, no. 2, pp. 485–500, 2000.

[2] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of octrees,” SIAM
Journal on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[3] D. E. Charrier, B. Hazelwood, and T. Weinzierl, “Enclave tasking for dg
methods on dynamically adaptive meshes.,” SIAM Journal on Scientific
Computing (SISC)., vol. 42, no. 3, pp. C69–C96, 2020.

[4] P. Samfass, J. Klinkenberg, M. T. Chung, and M. Bader, “Predictive,
reactive and replication-based load balancing of tasks in chameleon
and sam(oa)2,” in Proceedings of the Platform for Advanced Scientific
Computing Conference, ACM, 2021.

[5] J.-L. Fattebert, D. Richards, and J. Glosli, “Dynamic load balancing
algorithm for molecular dynamics based on Voronoi cells domain
decompositions,” Computer Physics Communications, vol. 183, no. 12,
pp. 2608–2615, 2012.

[6] A. Narang, A. Srivastava, R. Jain, and R. K. Shyamasundar, “Dynamic
distributed scheduling algorithm for state space search,” in Euro-Par
2012 Parallel Processing (C. Kaklamanis, T. Papatheodorou, and P. G.
Spirakis, eds.), (Berlin, Heidelberg), pp. 141–154, Springer Berlin
Heidelberg, 2012.
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ARTIFACT DESCRIPTION

The operating system installed on the CoolMUC-2 cluster

is SUSE Linux Enterprise Server 15 SP1.

Used modules to compile both UPC++ and Actor-UPCXX

were:

1 ) admin / 1 . 0

2 ) t empd i r / 1 . 0

3 ) l r z / 1 . 0

4 ) spack / 2 2 . 2 . 1

5) i n t e l −oneap i − c omp i l e r s / 2 0 2 1 . 4 . 0

7 ) hwloc / 2 . 6 . 0 − gcc11

8) openmpi / 4 . 1 . 2 − i n t e l 2 1

9 ) me t i s / 5 . 1 . 0 − i n t e l 2 1 − i64 − r64

10) cmake / 3 . 2 1 . 4

UPC++ was configured with:

. / c o n f i g u r e \
−−with −cc=mpicc \
−−with −cxx=mpicxx \
−−with −mpi−cc=mpicc \
−−with −mpi−cxx=mpicxx \
−−with − d e f a u l t −ne twork= ibv \
−−enable − ibv \
Parallelization in Pond was achieved by employing one

UPC++ rank per physical core, therefore the sequential back-

end of UPC++ was used. Environment variables used to

configure UPC++ during the compilation and running Pond

were as follows:

export UPCXX CODEMODE=” op t ”

export UPCXX THREADMODE=” seq ”

Pond was configured with the following CMake options.

Any variable that is marked (a—b—...) that was changed

depending on the desired configuration is described later. The

CMake command template looks as follows:

cmake \
−DCMAKE C COMPILER=mpicc \
−DCMAKE CXX COMPILER=mpicxx \
−DCMAKE EXPORT COMPILE COMMANDS=ON \
−DENABLE FILE OUTPUT=OFF \
−DBUILD RELEASE=ON \
−DENABLE O3 UPCXX BACKEND=ON \
−DENABLE MEMORY SANITATION=OFF \
−DIS CROSS COMPILING=OFF \
−DINVASION=OFF \
−DTIME=OFF \
−DTRACE=OFF \
−DMIGRATION= ( 0 | 2 | 3 ) \
−DREPORT MAIN ACTIONS=OFF \
−DTHREAD SANITIZER=OFF \
−DLAZY ACTIVATION=(ON|OFF) \
−DANALYZE=OFF \
−DINTERRUPT=OFF \
−DSTEAL ONLY ACTABLE ACTOR=OFF \

−DSTEAL FROM BUSY RANK=(ON|OFF) \
−DGLOBAL MIGRATION=(ON|OFF) \
−DCMAKE BUILD TYPE=RelWithDebInfo \
−DMORE LOCAL VICTIM CHOICE=ON \
. .

Pond supports the following migration types:

• 0 = No Migration

• 1 = Global Migration (deprecated, not used in this paper)

• 2 = Asynchronous Stealing (Actor Stealing)

• 3 = Asynchronous Offloading (Actor Offloading)

The options for the stealing strategy can be set with

GLOBAL MIGRATION and STEAL FROM BUSY RANK.

The option GLOBAL MIGRATION (shortened as GLOBAL)

and STEAL FROM BUSY RANK (shortened as BUSY) can

be combined together to create the stealing strategies used

throughout the paper.

Configuration options:

GLOBAL ON OFF

BUSY

ON global-busy local-busy

OFF global-random local-random

LAZY ACTIVATION was enabled (=ON) for the lazy

activation scenario and disabled (=OFF) for the static workload

and node slowdown scenarios.

The skeleton of the Slurm script used to submit and run

Pond looks as follows:

# ! / b i n / bash
. . .

module l o ad s l u rm s e t u p

module un load i n t e l −mpi

module l o ad hwloc

module l o ad me t i s

module l o ad openmpi / 4 . 1 . 2 − i n t e l 2 1

export GASNET PHYSMEM MAX= ’ 40 GB’

export GASNET BACKTRACE=1

export GOING AWAY LIMIT=1

export STEAL COOLDOWN= ( 0 | 1 )
export RMA TASKCOUNT=1

export USE TIME SPENT=1

export SAMPLE OUTPUT=1

export SLOWDOWN= ( 0 | 1 )
export SLOWDOWN RANK BEGIN=0

export SLOWDOWN RANK END=$ ( ( 4 * nodecoun t ) )

export SLOWDOWN TIME BEGIN=1

export SLOWDOWN TIME END=6

${UPCXX DIR} / b i n / upcxx − run −N ${ nodecoun t }\
−n $ ( ( c o r e c oun t p e r n od e * nodecoun t ) ) \
−sha red −heap 128MB \
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${HOME} / Actor −UPCXX / . / pond−${ j ob } \
−x ${ s i z e } −y ${ s i z e } \
−p ${ p a t c h s i z e } \
−c 10 −− s c e n a r i o 3 \
−o ${SCRATCH} / ${workd i r } / ${ s t r } / ou t / ou t \
−e ${ end t ime }
In the following section, the used environment variables that

influence the execution of Pond are explained.

GASNet is the communication backend of UPC++. GAS-

NET PHYSMEM MAX has to be specified to avert the

costly test of finding the PHYSMEM MAX in each run.

GASNET BACKTRACE, when set to 1, prints the stack trace

in case the program unexpectedly terminates.

GOING AWAY LIMIT and STEAL COOLDOWN in-

fluence the behavior of the stealing strategies. GO-

ING AWAY LIMIT=g can be any positive integer. It provides

an upper limit for the number of actors that can be marked

on a single rank to g. If g is positive and any request that

would increase g to g+1 is rejected. If GOING AWAY LIMIT

is unset or set negative, then there is no limit to concurrent

marked actor count. STEAL COOLDOWN adds a short time-

out between steal attempts so that the runtime is not over-

flooded with steal requests. SAMPLE OUTPUT enables the

printing of some statistics in regular intervals. In every run

that had stealing enabled (MIGRATION=2), the following

environment variables were set: GOING AWAY LIMIT=1,

RMA TASKCOUNT=1. Every run (regardless of the mi-

gration type used) had the following environment vari-

able set: SAMPLE OUTPUT=1. USE TIME SPENT=1 was

employed to enable time counting in the static work-

load and lazy activation scenarios, whereas it was set to

USE TIME SPENT=0 to enable task counting in the node

slowdown scenario.

If RMA TASKCOUNT is enabled, then workload exchange

is performed through RMA operations, even though the name

is RMA TASKCOUNT, it supports RMA for both time count-

ing and task counting.

Environment variables that have the prefix SLOWDOWN *

are only related to the node slowdown scenario. If SLOW-

DOWN is set to 0 then the remaining SLOWDOWN *

environment variables are ignored. If set to 1 then SLOW-

DOWN RANK BEGIN=a describes the lowest rank id

that is affected by the node slowdown, and SLOW-

DOWN RANK END=b describes the lowest rank id that

is not affected by the node slowdown. Thus, ranks with

ids within [a;b) are affected by the slowdown. SLOW-

DOWN TIME BEGIN=t1 describes the start of the slowdown

interval in minutes. Slowdown starts after t1*60 seconds

after the computation begins, SLOWDOWN TIME END=t2

describes the end of the slowdown interval in minutes.

Slowdown ends at the (t2*60)th second after the compu-

tation has started. Every run of node slowdown had the

slowdown-related variables set to SLOWDOWN=1, SLOW-

DOWN RANK BEGIN=0, SLOWDOWN RANK END=$((

4 * nodecount )), SLOWDOWN TIME BEGIN=1, SLOW-

DOWN TIME END=6. The node slowdown scenario in-

creases the execution time of actors by a factor of 3, this

is a hardcoded constexpr value.
UPCXX DIR is a location set by the user for the UPC++

library and the upcxx-run job launching script. nodecount de-
scribes the number of nodes UPC++ will run on, which is used

by the -N argument of upcxx-run. Corecountpernode describes
the amount of available physical cores per compute node. For

the CoolMUC-2 cluster this number is 28. The amount of

ranks is equal to the nodecount times corecountpernode, and
is evaluated with $(( corecountpernode * nodecount )), which
is then used by the -n argument that describes the total number
of processes. The job environment variable is the suffix of

the Pond executable. This is used to run the desired Pond

configuration. These names are user-defined. Size=N describes

one dimension of the N ×N grid. In our runs, Pond was run

on a square grid, therefore the same environment variable size
was used for both x and y dimensions. Patchsize=P describes

the size of one dimension of the actor P × P patch, which

is used by the -p option for Pond. Even though no output

of the simulated domain was generated, the argument -o for

the output name has to be provided. The endtime environment
variable describes the simulation time, which is used by the

option -e. The simulation terminates as soon as every actor

reaches the endtime. The used pond-scenario was the ”scalable
multi-drop”, which has the scenario id 3 and is set with –

scenario=3.
For the complete data set (e.g., raw output

files, input reader scripts and build scripts), see

https://doi.org/10.5281/zenodo.7133771.
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