

Lebenszyklusbasierte ökologische Kennwertentwicklung von Gebäudekonstruktionen im Alt- und Neubau zur Anwendung in 3D-Stadtmodellen

Christina Maria Meier-Dotzler

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität München zur Erlangung einer

Doktorin der Ingenieurwissenschaften (Dr. Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. rer. nat. Thomas H. Kolbe

Prüfer*innen der Dissertation:

- 1. Prof. Dr.-Ing. Werner Lang
- 2. Prof. Dr.-Ing. Frank Petzold
- 3. Assistant Prof. Dr.-Ing. Alexander Hollberg

Die Dissertation wurde am 30 . 01 . 2023 bei der Technischen Universität München eingereicht und durch die TUM School of Engineering and Design am 22 . 06 . 2023 angenommen.

Zusammenfassung

Im Kampf gegen den Klimawandel stehen besonders wachsende Städte vor der Herausforderung die anvisierten Klimaschutzziele im Rahmen ihrer vorhandenen und zukünftigen Siedlungsstrukturen umzusetzen. Denn Städte verursachen weltweit 71 % der globalen CO₂-Emissionen und 80 % der weltweit produzierten Energie (Climate Service Center Germany GERICS und KfW Development Bank, 2015; UN Environment Programme, 2017). Vor diesem Hintergrund wird zur Erreichung der Klimaziele die ökologische Qualität der Wohngebäude und der Einfluss der Baumaterialien über ihren Lebenszyklus hinweg direkt benannt (UN Environment Programme, 2020). Deshalb werden fundierte Daten und digitale Planungswerkzeuge benötigt, mit denen Planende und Entscheidungsträger:innen die ökologische Qualität verschiedener baulicher Entwicklungsszenarien von Wohngebäuden vergleichen können. Dabei muss die Analyse in frühen Planungsphasen durchführbar und auf urbaner Maßstabsebene anwendbar sein, um die positiven Hebelwirkungen hin zu mehr Klimaschutz und weniger Ressourcenverbrauch im Bauwesen möglichst frühzeitig aktivieren zu können.

Zur Analyse potentieller Umweltwirkungen von Gebäuden hat sich national und international auf der Basis von Standardisierungen und Normen die ökologische Lebenszyklusanalyse (LCA) etabliert. Bisherige Studien belegen, dass mit Hilfe von ökologischen Kennwerten die ökologische Qualität von Bestands-, Neubau- und Sanierungsprojekten auf urbaner Ebene bewertet werden kann und Handlungsempfehlungen erarbeitet werden können. Ferner zeigt die Literaturrecherche, dass es dazu einer transparenten und detaillierten Datengrundlage bedarf, die eine LCA von der Bauteilschichtenebene bis hin zur Stadtebene oder nationalen Ebene ermöglicht. Hierzu sind räumliche Betrachtungen unter Verwendung von Daten aus GIS-Modellen zielführend. Kommerzielle oder wissenschaftliche Softwaretools, die mit Hilfe von räumlichen Gebäude- oder Stadtmodellen energetische oder ökologische Analysen von großen Wohngebäudebeständen ermöglichen, verfügen jedoch noch nicht über die Möglichkeit zur vergleichenden LCA verschiedener Alt-, Sanierungs- oder Neubauszenarien mit Fokus auf die Baukonstruktion. Entweder wurde die Methode noch nicht implementiert oder es fehlt an einer fundierten und transparenten Datenbasis.

Vor diesem Hintergrund werden in der vorliegenden Arbeit auf Basis der Datenbank ÖKO-BAUDAT, Version 2020-II ökologische Kennwerte für Baukonstruktionen des deutschen Wohngebäudebestandes entwickelt. Diese Kennwerte bieten eine transparente und baualtersklassenspezifische Datenbasis für die lebenszyklusbasierte Analyse minimaler und maximaler Umweltwirkungen von Baukonstruktionen in frühen Planungsphasen. Als maßgebende Indikatoren für die Quantifizierung des Einflusses auf den Klimawandel und den Ressourcenverbrauch werden das GWP, die PENRT und PET identifiziert. Auf dieser Grundlage ist eine vergleichende ökologische Lebenszyklusanalyse von Altbau-, Neubau- und Sanierungsmaßnahmen von nationalen Wohngebäuden möglich.

Um die ökologische Qualität des nationalen Wohngebäudebestandes und seine potentielle Entwicklung möglichst großflächig erfassen zu können, werden zudem Berechnungslogiken erarbeitet. In Kombination mit den Kennwerten und den aus 3D-Stadtmodellen (CityGML-Format, Version 2.0, LoD2) stammenden Gebäudeinformationen können mit Hilfe der Berechnungslogiken automatisierte und schnelle LCA verschiedener Bebauungsszenarien durchgeführt werden. Die Berechnungslogiken umfassen insgesamt fünf Quartiersentwicklungsszenarien (Status Quo, energetische Sanierung mit gleichbleibender Gebäudekubatur, energetische Sanierung mit Nachverdichtung durch Aufstockung, Abriss und Ersatzneubau in Holz- oder Massivbauweise). Sie sind so beschrieben, dass sie in verschiedene Softwarelösungen implementiert werden können. Auf Grund der transparenten Beschreibung aller Grundlagen ist eine Aktualisierung der Datenbasis oder die Erweiterung um andere bauliche Entwicklungsszenarien jederzeit realisierbar.

Die Kopplung eines 3D-Stadtmodells mit der hier entwickelten LCA-Methode bewerkstelligt, dass sie leicht mit weiteren Analysemethoden und Anwendungsfeldern (wie z. B. der Freiflächen- und Mobilitätsplanung) verknüpft werden kann. Somit kann die interdisziplinäre und digitale Planung vorangetrieben werden. Die Anwendbarkeit der entwickelten Methode zur Durchführung einer LCA auf Quartiersebene mit Hilfe von 3D-Stadtmodellen im CityGML-Format 2.0 wird anhand eines Fallbeispiels aufgezeigt. Die Unsicherheiten der Methodik werden u. a. mit Hilfe einer Sensitivitätsanalyse benannt und diskutiert.

Die umfangreiche Fallstudie behandelt die bauliche Entwicklung eines Münchener Bestandsquartiers mit 181 Wohngebäuden. Sie zeigt, dass eine LCA verschiedener baulicher Entwicklungsszenarien von größeren Wohngebäudebeständen, wie Stadtquartieren, schnell durchführbar ist, und dass die Ergebnisse mit Hilfe verschiedener Visualisierungsmöglichkeiten zielgruppenorientiert und transparent diskutiert werden können. Aus den vorliegenden Ergebnissen werden Handlungsempfehlungen für Politik, Praxis und Forschung abgeleitet, die einen klimaneutralen nationalen Wohngebäudebestand zum Ziel haben. Aus ökologischer Sicht ist im Fallbeispiel eine Sanierung mit Nachverdichtung im Niedrigstenergiestandard einem Gebäudeabriss mit Ersatzneubau vorzuziehen. Die Fallstudie zeigt auch, dass eine klimaneutrale Bauausführung nur umgesetzt werden kann, wenn gleichzeitig Wiederverwendungs- und Recyclingpotentiale sowie Kompensationsmöglichkeiten aktiviert werden.

Die erarbeiteten Daten lassen neben der ökologischen Bewertung auch andere umfangreiche Analysen zu. Beispielhaft kann hier die Ermittlung des anthropogenen Lagers und die Massenermittlung, strukturiert nach einzelnen Baustoffgruppen, für Quartiere und Städte genannt werden. Ferner können auf Basis der detailliert beschriebenen Baukonstruktionen auch Kostenkennwerte entwickelt werden, die für eine Lebenszykluskostenanalyse (LCC) benötigt werden. Ein wichtiges Forschungsziel sollte die Weiterentwicklung und Optimierung digitaler Planungswerkzeuge auf Basis von 3D-Stadtmodellen sein. Denn so können zukünftig die Wechselwirkungen heterogener Stadtstrukturen im Kontext des Klimawandels und des Ressourcenverbrauchs besser erfasst und optimiert werden.

Abstract

At fighting against climate change, especially growing cities are faced with the challenge of implementing the targeted climate protection goals within the framework of their existing and future settlement structures. After all, cities are responsible for 71 % of the global CO₂ emissions and 80 % of the global energy production (Climate Service Center Germany GERICS und KfW Development Bank, 2015; UN Environment Programme, 2017). Against this background, the ecological quality of the residential buildings and the influence of the building materials over their life cycle are clearly stated in order to achieve the climate goals. Therefore, well-founded data and digital planning tools are needed with which planners and decision-makers can compare the ecological quality of different structural development scenarios of residential buildings. Here, the analysis must be feasible in early planning phases and applicable on a urban scale. This is needed to activate the positive effects towards a higher climate protection and less resource consumption in the construction industry as early as possible.

Life cycle assessment (LCA) has been established nationally and internationally on the basis of standards to analyse the potential environmental impacts of buildings. Previous studies show that the ecological quality of existing building, new construction and refurbishment projects can be evaluated at the city level with the help of ecological characteristic values. Also, recommendations for action can be developed. The literature research also shows that this requires a transparent and detailed database that enables an LCA from the component layer level to the city or national level. For this purpose, spatial considerations using data from GIS-models are expedient. However, commercial or scientific software tools, which enable energetic or ecological analyses of large residential building stocks with the help of spatial building or city models, do not yet have the option of comparative LCA of different existing, refurbished or new building scenarios focusing on the building construction. Either the method has not yet been implemented or there is no well-founded and transparent database.

Against this background, ecological characteristic values for building constructions of the German residential building stock are developed in the present work on the basis of the database ÖKOBAUDAT, Version 2020-II. These values offer a transparent and building-age-specific database for the life cycle-based analysis of minimum and maximum environmental values of building constructions in early planning phases. The GWP, PENRT and PET are identified as key indicators for quantifying the impact on climate change and resource consumption. On this basis, a comparative ecological life cycle assessment of various measures for existing, new and refurbished national residential buildings can be carried out.

To be able to determine the ecological quality of the national residential building stock and its development potentials as extensively as possible, calculation logics are developed.

The calculation logics allow, together with the characteristic values and the building information coming from 3D city models (CityGML format, version 2.0, LoD2), automated and fast LCA of various development scenarios. The calculation logics consider five district development scenarios (status quo, energy-efficient refurbishment with the same building volume, energy-efficient refurbishment with densification by adding one storey, demolition and replacement construction in wood or solid construction). They are described in such a way that they can be easily implemented in different software solutions. Due to the transparent description of all basics, the database can be updated and the structural development scenarios can be expanded at any time.

Linking the 3D city model with the developed LCA method means that it can be easily linked to other analysis methods and fields of application (e.g. open space and mobility planning). Thus, interdisciplinary and digital planning can be advanced. A case study is used to show the applicability of the developed method for carrying out an LCA at district level using 3D city models in CityGML format (version 2.0). The uncertainties of the method are e.g. named and discussed with the help of a sensitivity analysis.

The extensive case study covers the structural development of an existing Munich district with 181 residential buildings. It shows that a LCA of various structural development scenarios of larger residential building stocks, such as urban districts, can be carried out fast. The results can be discussed in a target group-oriented and transparent way with the help of various visualisation options. Recommendations for action for politics, practice and research towards a national climate-neutral residential building stock can be derived from the available results. According to the case study, from an ecological point of view, refurbishment with densification into a nearly zero energy standard is preferable to demolition and replacement. The case study also shows that climate-neutral construction can only be implemented if reuse and recycling potentials as well as compensation options are activated at the same time.

In addition to the ecological assessment, the developed data can also be used for other comprehensive analyses. For example, the data can help to describe the anthropogenic stock at district or city level. Also, the quantities of different building materials can be determined (mineral building materials, organic building materials, metal, glass, etc.) at district or city level. Based on the building constructions described in detail, cost values can also be developed, which are required for life cycle costing (LCC). An essential research goal should be the further development and optimisation of digital planning tools based on 3D city models. Thus, the interactions of heterogeneous urban structures in the context of climate change and resource consumption can be better captured and optimised in the future.

Dank

Die vorliegende Arbeit ist das Ergebnis meiner mehrjährigen interdisziplinären Tätigkeit als wissenschaftliche Mitarbeiterin am Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen der Technischen Universität München.

Ohne die Unterstützung meines beruflichen und privaten Umfeldes wäre diese Arbeit nicht möglich gewesen. Ganz besonders herzlicher Dank geht an Prof. Dr.-Ing. Werner Lang. Als mein Doktorvater hat er mir stets das notwendige Vertrauen zur Erarbeitung dieser Dissertation entgegengebracht. Ich danke ihm für seine Offenheit bei der Themenfindung und die inspirierenden und wertvollen Gespräche. Herrn Prof. Dr.-Ing. Frank Petzold danke ich für die Bereitschaft, als Zweitbetreuer zur Verfügung zu stehen und für seine inhaltlichen und methodischen Anregungen. Ferner ergeht Dank an Herrn Asst. Prof. Dr.-Ing. Alexander Hollberg für seine Funktion als Drittgutachter sowie an Herrn Prof. Dr. rer. nat. Thomas H. Kolbe für die Übernahme des Prüfungsvorsitzes.

Besonderer Dank geht auch an alle Kolleg:innen des Lehrstuhls für energieeffizientes und nachhaltiges Planen und Bauen für die wertvollen Gespräche und das einzigartige Miteinander in den vergangenen Jahren. Vor allem danke ich Daniel Kierdorf, Hannes Harter, Simone Matschi, Patricia Schneider-Marin und Sebastian Botzler, die mir nicht nur fachlich eine Stütze waren, sondern mich auch motiviert und privat bereichert haben. Auch meinem Mentor Michael Keltsch möchte ich herzlich für seine motivierenden Worte und den fachlichen Austausch danken.

Dank ergeht auch an die Landeshauptstadt München (Planungsreferat) und das Bayerische Landesamt für Digitalisierung, Breitband und Vermessung. Sie haben mir die für die Fallstudie notwendigen Gebäudedaten unkompliziert zur Verfügung gestellt.

Zu guter Letzt, ein herzliches Dankeschön an meine Familie und Freunde für den notwendigen Ausgleich und die Bestärkungen, die Dissertation zu Ende zu führen. Meinen Eltern danke ich für ihre nie nachlassende Unterstützung und die Erziehung zu einem wissbegierigen Menschen. Ganz besonsers danke ich aber meinem geliebten Ehemann Christian. Ohne seine jahrelange Unterstützung und große Geduld hätte ich es nicht geschafft, die Dissertation trotz der Geburt unserer wundervollen Kinder zu einem guten Ende zu bringen. Fritz, Paula und Martha, euch widme ich diese Arbeit. Ihr seid für mich die größte Motivation und mein ganzer Stolz.

Abkürzungsverzeichnis

a Jahr (lat. anno)

ADE Application Domain Extension

BGF Bruttogrundfläche

BIM Building Information Modeling; deutsch: Bauwerksdatenmodellierung; Me-

thode zum digitalen und vernetzten Planen, Bauen und Bewirtschaften von Gebäuden und anderer Bauwerke mit Hilfe eines virtuellen Bauwerksmo-

dells

BK Baualtersklasse(n) (siehe Glossar) (engl.: BAC – Building Age Class)

BNB Bewertungssystem Nachhaltiges Bauen; Zertifizierungssystem des Bun-

des für die Bewertung der Nachhaltigkeit von Gebäuden (BMUB, o. J.)

BREEAM Building Research Establishment Environmental Assessment Methodo-

logy; international verbreitetes Bewertungssystem für die Nachhaltigkeit von Infrastrukturen und Gebäuden; folgende Kriterien fließen in die Bewertung ein: Energie, Gesundheit, Innovation, Land- und Materialverbrauch, Management, Verschmutzung, Transport, Abfall und Wasser. (BRE, 2022)

BSH Brettschichtholz

CityGML City Geography Markup Language (siehe Glossar)

DGNB Deutsche Gesellschaft für Nachhaltiges Bauen; sie stellt ein gleichnami-

ges Zertifizierungssystem zur Nachhaltigkeitsbewertung von Gebäuden,

Innenräumen und Quartieren zur Verfügung. (DGNB, 2021)

EFH Einfamilienhaus

EnEV Energieeinsparverordnung

EoL End-of-Life

EPD Environmental Product Declaration; deutsch: Umweltproduktdeklaration;

Eine EPD enthält auf Basis der DIN EN 15804:2020-03 quantifizierte Umweltinformationen für ein Bauprodukt oder eine -leistung. Diese bauproduktspezifischen Umweltinformationen können im Rahmen einer Ökobilanz zur Beurteilung von Gebäuden und anderer Bauwerke hinsichtlich

ihrer Umweltwirkungen herangezogen werden.

EU Europäische Union

FFA Fensterflächenanteil(e)

GEG Gebäudeenergiegesetz, seit 1.11.2020 gültig; ersetzt die bisher gültige

EnEV, das Energieeinsparungsgesetz (EnEG) und das Erneuerbare-Ener-

gien-Wärmegesetz (EEWärmeG). (Deutscher Bundestag, 2020)

Geoinformationssystem; englisch: Geo Information System; System zur

Erfassung, Bearbeitung, Organisation, Analyse und Präsentation räumli-

cher Daten

GKF-Platte Gipskartonfeuerschutz-Platte

GOK Geländeoberkante – Schnittlinie zwischen Erdoberfläche und Außenfläche

eines Gebäudes

GWP Global Warming Potential; deutsch: Treibhausgaspotential;

Einheit: kg CO₂-Äquivalent (siehe Glossar)

i. M. im Mittel (arithmetischer Mittelwert)

KEA Kumulierter Energieaufwand (siehe Glossar)

KfW Kreditanstalt für Wiederaufbau

KVH Konstruktionsvollholz

LCA Life Cycle Assessment(s); Synonym für ökologische Lebenszyklusana-

lyse(n) oder Ökobilanzierung(en) (siehe Glossar)

LCC Life Cycle Costing; Synonym für Lebenszykluskostenanalyse(n)

LEED Leadership in Energy and Environmental Design des U.S. Green Building

Council ist ein international verbreitetes Gebäudezertifizierungssystem; bewertet werden Gesundheitsaspekte, die Energieeffizienz, Ökologie und

Ökonomie eines Gebäudes. (U.S. Green Building Council, 2022)

LfDBV Landesamt für Digitalisierung, Breitband und Vermessung

LHM Landeshauptstadt München

LoD Level of Detail

LOD Level of Development

LZPH Lebenszyklusphase(n)

MFH Mehrfamilienhaus

NGF Nettogrundfläche (gleichbedeutend mit NRF; wird ebenfalls in der Literatur

verwendet)

NRF Nettoraumfläche nach DIN 276:2018-12

OSB Oriented Strand Board

PET Primary Energy Total; deutsch: gesamte Primärenergie; Einheit MJ, kWh

oder MWh (siehe Glossar)

PENRT Primary Energy Non-Renewable Total; deutsch: gesamte nicht erneuer-

bare Primärenergie; Einheit MJ, kWh oder MWh (siehe Glossar)

PERT Primary Energy Renewable Total; deutsch: gesamte erneuerbare Primär-

energie; Einheit MJ, kWh oder MWh (siehe Glossar)

SQL Structured Query Language

WDVS Wärmedämmverbundsystem

WFL Wohnfläche

ZFH Zweifamilienhaus

Glossar

3D-Stadtmodell Virtuelles, dreidimensionales (räumliches) Stadtmodell; detail-

lierte Beschreibung siehe Kapitel 2.5, Seite 33.

Altbaukonstruktion Siehe "Bestandskonstruktion"

Baualtersklasse Typisch vorherrschende Bauweisen einer Epoche können einer

gemeinsamen Baualtersklasse zugeordnet werden. Hierbei wird das Jahr der Errichtung des Gebäudes berücksichtigt. In dieser Arbeit werden insgesamt elf Baualtersklassen definiert, die durch geschichtliche, wirtschaftliche oder energetische Eigenschaften

geprägt wurden (siehe Kapitel 2.3, Seite 21).

Bauteil Ein Bauteil ist die Zusammensetzung von Bauteilschichten/-kom-

ponenten; entspricht der zweiten Ebene der DIN 276:2018-12 (z. B. KG 330 "Außenwände/Vertikale Baukonstruktionen außen"). In dieser Arbeit werden Dächer, Außenwände, Innenwände, Kellerwände, Gebäudetrennwände, Geschossdecken, Bodenplatten, Fundamente und Fenster in ihrer Gesamtheit als

Bauteile bezeichnet.

Bauteilkomponente Eine Bauteilkomponente besteht aus einer oder mehreren

Schicht/en eines Bauteils und entspricht der dritten Ebene der DIN 276:2018-12 (z. B. KG 335 "Außenwandbekleidungen au-

ßen").

Bestands- Als Bestandskonstruktion werden Baukonstruktionen bezeichnet, konstruktion die von vor 1918 bis einschließlich 2020 errichtet bzw. umgesetzt

die von vor 1918 bis einschließlich 2020 errichtet bzw. umgesetzt wurden. Die Bestandskonstruktionen werden in dieser Disserta-

tion verschiedenen Baualtersklassen (s. o.) zugeteilt.

BIM-Modell Ein digitales Abbild eines Bauwerks wird als BIM-Modell bezeich-

net. Es umfasst die dreidimensionale Geometrie der Bauwerkselemente in einem definierten Detaillierungsgrad (LoD) oder Ausarbeitungsgrad (LOD). Auch nicht-physische Objekte und eine hierarchische Projektstruktur sind Teil des Modells. (Borrmann et al., 2021) Um mit Hilfe eines BIM-Modells und der in dieser Arbeit entwickelten ökologischen Kennwerte eine LCA in frühen Planungsphasen durchführen zu können, müssen die Flächen der Bauteile (s. o.) zumindest als Schätzung vorliegen. Eine Schätzung der Breite, Höhe und Tiefe von Bauteilen liegt i. d. R.

im LOD 200 vor.

CityGML ist ein XML-Format mit einer einheitlichen Datenstruktur

zur Speicherung und zum Austausch virtueller semantischer 3D-Stadtmodelle und wurde vom Open Geospatial Consortium ent-

wickelt (OGC, 2022) (siehe auch Kapitel 2.5, Seite 33).

CO₂-Äquivalent Maßeinheit zur Vereinheitlichung der Klimawirkung der unter-

schiedlichen Treibhausgase

CO₂-Emissionen Der Begriff beschreibt in dieser Arbeit neben dem CO₂ auch an-

dere Treibhausgase, die zum sogenannten Treibhauseffekt beitragen und kann mit dem Begriff THG-Emissionen gleichgesetzt

werden.

Digitaler Zwilling Ein digitaler Zwilling ist eine digitale Repräsentanz von Gegen-

ständen der realen Welt. Er können physische und nicht-physische Objekte beschreiben. Dazu stellt er alle relevanten Informationen und Dienste mittels einer einheitlichen Schnittstelle zur Verfügung. Ein digitaler Zwilling muss in der Realität noch nicht zwangsweise vorhanden sein, sollte aber alle Eigenschaften besitzen, die der Gegenstand in der späteren Realität haben wird.

(Kuhn, 2017)

Ersatzneubau Von einem Ersatzneubau wird hier gesprochen, wenn ein Be-

standsgebäude abgerissen und anschließend an gleicher Stelle

ein Neubau errichtet wird.

Frühe Die frühe Planungsphase bei Bauprojekten bezieht sich hier auf

die Leistungsphasen 1 bis 3 der HOAI (Honorarordnung für Architekten und Ingenieure) – Grundlagenermittlung, Vorplanung und

Entwurfsplanung.

GIS-Modell In dieser Arbeit wird der Begriff als Synonym für ein 3D-Stadtmo-

dell verwendet, das georeferenzierte Daten enthält (siehe Be-

schreibung "3D-Stadtmodell").

Graue Energie Als Graue Energie wird in dieser Arbeit die gesamte Primärener-

gie (PET) bezeichnet, die während den Lebenszyklusphasen Herstellung, Nutzung und Entsorgung von Baukonstruktionen und ih-

rer Materialien in Anspruch genommen wird.

Graue Emissionen Als Graue Emissionen wird in dieser Arbeit das Treibhausgaspo-

tential (GWP) bezeichnet, das bei den Lebenszyklusphasen Herstellung, Nutzung und Entsorgung der Baukonstruktionen und ih-

rer Materialien freigesetzt wird.

Planungsphase(n)

GWP

(Global Warming

Potential)

Das globale Treibhaus- oder Erwärmungspotential – engl. Global Warming Potential – ist der mögliche Beitrag eines Stoffes zur Erwärmung der bodennahen Luftschichten, d. h. zum so genannten Treibhauseffekt in einem Zeitraum von 100 Jahren und wird relativ zum Treibhauspotential von CO₂ (kg CO₂-Äquivalent) angegeben (BMUB, 2015; DIN EN 15804:2020-03, Tabelle C.8).

Indikatoren

Synonym für "Umweltindikatoren"; siehe Beschreibung

Neubau

Bei Neubauten handelt es sich um Gebäude, die nach 2021 auf einer Freifläche errichtet werden.

Neubaukonstruktion

Als Neubaukonstruktion werden hier Baukonstruktionen bezeichnet, die auf Basis der gängigen Praxis ab 2021 baulich umgesetzt werden.

KfW-55-Standard

Der Begriff wird in der vorliegenden Arbeit stellvertretend für den Effizienzhausstandard 55 der Kreditanstalt für Wiederaufbau (KfW) verwendet. Die Effizienzhaus-Stufe 55 bedeutet dabei, dass der Jahresprimärenergiebedarf des Gebäudes nur 55 % des im GEG geforderten Referenzgebäudes beträgt. Der Transmissionswärmeverlust darf dabei maximal 70 % des Referenzgebäudes betragen. (Deutscher Bundestag, 2020; KfW, 2021)

Kumulierter Energieaufwand (KEA) Der Kumulierte Energieaufwand (kurz: KEA) gibt die Gesamtheit des primärenergetisch bewerteten Aufwandes an, der im Zusammenhang mit der Herstellung, Nutzung und Beseitigung eines Produktes oder einer Dienstleistung entsteht bzw. dieser ursächlich zugewiesen werden kann. Er setzt sich dementsprechend aus den kumulierten Energieaufwendungen für die Herstellung (KEAH), für die Nutzung (KEAN) und für die Entsorgung (KEAE) zusammen. (Gruhler et al., 2002, S. 12)

ÖKOBAUDAT

Die ÖKOBAUDAT ist eine Online-Datenbank mit vereinheitlichten Datensätzen zu Baumaterialien, Bau-, Transport-, Energie- und Entsorgungsprozessen für die Ökobilanzierung von Bauwerken (BBSR, o. J.).

Ökobilanzierung

Synonym für LCA (engl. Life Cycle Assessment) oder ökologische Lebenszyklusanalyse; eine Ökobilanz ist eine Methode zur Zusammenstellung und Beurteilung der stofflichen und energetischen Input-, Betriebs- und Outputflüsse sowie der potentiellen Umweltwirkungen eines Produktsystems im Verlauf seines Lebenswegs (DIN EN ISO 14044:2021-02, Abschnitt 3.2).

Ökologische Kennwerte Als ökologische Kennwerte werden in dieser Arbeit die ermittelten bauteiltypischen Umweltwirkungen bezeichnet. Bei den Umweltwirkungen unterscheidet man zwischen drei wesentlichen Indikatoren, dem GWP, PENRT und PET (siehe Begriffsbeschreibungen bzw. "Umweltindikatoren").

PET (Primary Energy

Total)

Die gesamte Primärenergie – engl. Primary Energy Total – ist die Summe aus gesamter erneuerbarer und gesamter nicht erneuerbarer Primärenergie. Sie wird in MJ (Megajoule), kWh (Kilowattstunden) oder MWh (Megawattstunden) ausgewiesen.

PERT

(Primary Energy Renewable Total)

Die gesamte erneuerbare Primärenergie – engl. Primary Energy Renewable Total – ist die Summe der Primärenergie und der als Rohstoff verwendeten erneuerbaren Primärenergieträger (energetische und stoffliche Nutzung) (DIN EN 15804:2020-03, Tabelle 4). Sie wird in MJ (Megajoule), kWh (Kilowattstunden) oder MWh (Megawattstunden) ausgewiesen.

PENRT (Primary Energy Non-Renewable Total) Die gesamte nicht erneuerbare Primärenergie – engl. Primary Energy Non-Renewable Total – ist die Summe der Primärenergie und der als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger (energetische und stoffliche Nutzung) (DIN EN 15804:2020-03, Tabelle 4). Die Energie stammt aus einer Quelle, die durch die Nutzung erschöpft wird (DIN EN 15643:2921-12). Sie wird in MJ (Megajoule), kWh (Kilowattstunden) oder MWh (Megawattstunden) ausgewiesen.

Sanierung

Eine Sanierung ist die Veränderung und Verbesserung eines bestehenden Gebäudes mit dem Ziel, dieses in einen annehmbaren Zustand zu versetzen. In der vorliegenden Arbeit zielt eine Sanierung auf die Erreichung eines aktuellen Niedrigstenergiestandards ab. D. h., dass die Bauteile nach der Sanierung eine definierte Dämmqualität besitzen, die durch die Begrenzung des U-Wertes erreicht wird.

Satz von Bayes

Der Satz von Bayes beschreibt den Fall einer bedingten Wahrscheinlichkeit. Darunter versteht man die Wahrscheinlichkeit, dass ein Ereignis A unter der Bedingung eintritt, ein Ereignis B sei eingetreten oder trete ein. Dabei ist das Ereignis A unabhängig von Ereignis B. Das Eintreten von A ändert also die Wahrscheinlichkeit für das Eintreten von B nicht und umgekehrt. (Tschirk, 2014, S. 12-13)

Umwelt(aus)wirkung

Eine Umwelt(aus)wirkung ist das Ergebnis einer Veränderung der Umwelt, unabhängig davon, ob sie sich günstig, neutral oder schädlich auswirkt, die ganz oder teilweise von Umweltaspekten, wie von Bauwerken, zusammengesetzten Bauteilen oder Prozessen, verursacht wird (DIN EN 15643:2921-12).

Umweltindikatoren

In der ÖKOBAUDAT werden verschiedene Indikatoren zur Beschreibung des Ressourceneinsatzes bzw. der Umweltwirkungen von einzelnen Baumaterialen verwendet. Diese Arbeit nimmt dabei speziell Bezug auf das GWP, PENRT und PET. Die sonstigen Indikatoren bleiben unberücksichtigt.

U-Wert

Der Wärmedurchgangskoeffizient (U-Wert; Einheit W/m²K) ist ein Maß für die Dämmqualität eines Bauteils; der U-Wert gibt die Wärmemenge an, die pro Zeiteinheit durch 1 m² Bauteil bei einem Temperaturunterschied von 1 K hindurchgeht.

Wärmeleitfähigkeit

Die Wärmeleitfähigkeit λ (Einheit: W/mK) gibt den Wärmestrom an, der bei einem Temperaturunterschied von 1 Kelvin (K) durch eine 1 m² große und 1 m dicke Schicht eines Stoffes geht. Je kleiner λ ist, umso besser ist das Dämmvermögen des Stoffes.

Visualisierung/ Ergebnisvisualisierung In dieser Arbeit versteht man unter den Begriffen Visualisierung bzw. Ergebnisvisualisierung die Sichtbarmachung der LCA-Ergebnisse in textlicher oder grafischer Form. Neben konventionellen grafischen Darstellungen via Balkendiagrammen, Violin Plots oder Spinnennetzdiagrammen, gehören zu den Visualisierungsmöglichkeiten auch Infografiken, in denen textliche und grafische Darstellungen kombiniert werden. Die Ergebnisse können auch abstrahiert (vereinfacht) visualisiert werden, indem die verschiedenen Umweltwirkungen einheitlich über Umweltkosten dargestellt werden. Zielgruppen der hier genannten Visualisierungen sind Planende mit und ohne Expertenwissen, Entscheidungsträger:innen aus Politik und Wirtschaft oder die Bevölkerung.

Inhaltsverzeichnis

Zus	amm	nenfassung	III		
Abs	tract	t	V		
Dan	k		VII		
Abk	ürzu	ıngsverzeichnis	IX		
Glo	ssar		XIII		
Inha	altsv	erzeichnis	XIX		
1	Ei	nleitung	1		
	1.1	Hintergrund	1		
	1.2	Problemstellung und Motivation	3		
	1.3	Zielsetzung und Aufbau der Arbeit	5		
		1.3.1 Zielsetzung und Forschungshypothese	5		
		1.3.2 Abgrenzung der Arbeit	6		
		1.3.3 Vorgehensweise	7		
	1.4	Zusammenfassung Kapitel 1	9		
2	Grundlagen, Stand der Technik und Forschung				
	2.1	Ökobilanzierung von Gebäuden	11		
		2.1.1 Normative Grundlagen und Entwicklung	11		
		2.1.2 Datenbanken	14		
		2.1.3 Verbreitung der Methode	16		
		2.1.4 Indikatoren	17		
	2.2	Gebäudetypologien des Wohnbestandes	18		
		2.2.1 Deutsche Gebäudestatistiken	18		
		2.2.2 Deutscher Wohngebäudebestand	19		
		2.2.3 Staatliche Vorgaben zur Erhebung von Wohngebäuden	19		
	2.3	Baualtersklassen	21		
		2.3.1 Baualtersklasse 1 – bis 1918	21		
		2.3.2 Baualtersklasse 2 – 1919 bis 1948	22		
		2.3.3 Baualtersklasse 3 – 1949 bis 1957	22		
		2.3.4 Baualtersklasse 4 – 1958 bis 1968	22		
		2.3.5 Baualtersklasse 5 – 1969 bis 1978	23		
		2.3.6 Baualtersklasse 6 – 1979 bis 1983	23		
		2.3.7 Baualtersklasse 7 – 1984 bis 1994	23		
		2.3.8 Baualtersklasse 8 – 1995 bis 2001	23		

	2.3.9 Baualtersklasse 9 – 2002 bis 2009	. 24
	2.3.10Baualtersklasse 10 – 2010 bis 2015	. 26
	2.3.11Baualtersklasse 11 – 2016 bis 2020	. 26
2.4	Typische Bauteilaufbauten	. 28
	2.4.1 Atlas Sanierung	. 28
	2.4.2 Deutschlandkarte für Altbaukonstruktionen	. 29
	2.4.3 Stofflich-energetische Gebäudesteckbriefe und Bauwerksdatenbank	. 30
	2.4.4 Fensterstudie	. 31
	2.4.5 Ergänzende Recherchen und Annahmen	. 31
2.5	Definition, Aufbau und Verwendung von 3D-Stadtmodellen	. 33
2.6	Sensitivitätsanalyse	. 36
	2.6.1 Sensitivitätsanalysen bei der LCA	. 36
	2.6.2 Monte Carlo als Methode bei Unsicherheits- und Sensitivitätsanalysen	. 37
2.7	Ökologische Kennwerte für Baukonstruktionen	. 39
	2.7.1 Internationale Studien zu Wohngebäuden	. 39
	2.7.2 Nationale Studien zu Wohngebäuden	. 40
	2.7.3 Deutsche Benchmarks für Bestands- und Neubauten	. 42
2.8	LCA-Studien zum Gebäudebestand	. 44
2.9	Tools zur Bewertung des Gebäudebestandes mit Hilfe räumlicher Gebäudemodelle	. 45
	2.9.1 Tools zur Bewertung des Nutzenergiebedarfs auf Quartiersebene	. 47
	2.9.2 Tools zur LCA auf Quartiersebene	. 47
	2.9.3 LCA-Tool zur Bewertung der TGA, Energiebedarfe und Heizlast auf Quartiersebene	. 48
	2.9.4 Tool zur Bewertung von Nachverdichtungsmaßnahmen	
	2.9.5 Weitere räumliche Planungstools	
2 10	Zusammenfassung Kapitel 2	
	ntwicklung ökologischer Kennwerte	
	Methodik	
	Bewertungsgrundlagen	
5.2	3.2.1 Bewertungsziel	
	3.2.2 Systemgrenzen	
2 2	Ermittlung Altbaukonstruktionen	
J.J	3.3.1 Datenerhebung opaker Bauteile bis BK 8	
	3.3.2 Datenerhebung opaker Bauteile von BK 9 bis BK 11	
	3.3.3 Bezugsgrößen	. 00

3

		3.3.4 Datenerhebung Fenster	67
		3.3.5 Zusammenstellung der erhobenen Altbaukonstruktionen	69
	3.4	Ermittlung Neubaukonstruktionen	72
		3.4.1 Datenerhebung opake Bauteile und Fenster	72
		3.4.2 Zusammenstellung der erhobenen Neubaukonstruktionen	74
	3.5	Ermittlung Sanierungskonstruktionen	76
		3.5.1 Ermittlung der maßgebenden Altbaukonstruktionen	76
		3.5.2 Datenerhebung opake Bauteile	78
		3.5.3 Datenerhebung Fenster	81
		3.5.4 Zusammenstellung der erhobenen Sanierungskonstruktionen	81
	3.6	Auswahl und Erstellung ökologischer Datensätze	84
	3.7	Bilanzierung der Konstruktionen und Datenaufbereitung	87
		3.7.1 Allgemeine Vorgehensweise bei der Datenaufbereitung	87
		3.7.2 Bilanzierung und Darstellung der Altbaukonstruktionen	89
		3.7.3 Bilanzierung und Darstellung der Neubaukonstruktionen	93
		3.7.4 Bilanzierung und Darstellung der Sanierungskonstruktionen	94
	3.8	Diskussion der Methodik und Ergebnisse	96
		3.8.1 Kritische Auseinandersetzung mit der Erhebungsmethodik	96
		3.8.2 Aus der Entsorgung von Altbaukonstruktionen resultierende Umweltwirkungen	07
		3.8.3 Aus dem Neubau resultierende Umweltwirkungen	
		3.8.4 Maßgebende Bauteile im Neubau – minimale und maximale Umweltwirkungen	
			100
		3.8.5 Aus der Sanierung resultierende Umweltwirkungen	101
	3.9	Empfehlungen zur Verwendung der Ergebnisse	104
	3.10	Zusammenfassung Kapitel 3	105
ļ	LC	A mit Hilfe von 3D-Stadtmodellen	107
	4.1	Methodik der LCA auf Quartiersebene	107
	4.2	3D-Stadtmodell – Datenstruktur und Gebäudeinformationen	109
	4.3	Nutzerspezifische Annahmen zur Bauteilflächengenerierung	113
		4.3.1 Fensterflächen	113
		4.3.2 Innenwandflächen	114
		4.3.3 Fundamentflächen	114
		4.3.4 Geschossdeckenflächen	115
		4.3.5 Gebäudetrennwandflächen über GOK	115
		4.3.6 Anzahl der Geschosse unter GOK	116

		4.3.7 Kelleraußenwände und Gebäudetrennwände unter GOK	116
	4.4	Wahl relevanter Quartiersentwicklungsszenarien	117
		4.4.1 Definition Szenario 1 – Status Quo	118
		4.4.2 Definition Szenario 2.1 – Sanierung mit gleichbleibender Gebäudekubatur	118
		4.4.3 Definition Szenario 2.2 – Sanierung mit Aufstockung in Holzrahmenbauweise	119
		4.4.4 Definition Szenario 3.1 – Abriss und Ersatzneubau in Holzbauweise	120
		4.4.5 Definition Szenario 3.2 – Abriss und Ersatzneubau in Massivbauweise	120
	4.5	Berechnung der Bauteilflächen je Szenario	122
		4.5.1 Allgemeine Vorgehensweise und Erläuterungen	122
		4.5.2 Berechnung und Definition der Basisdaten	123
		4.5.3 Bauteilflächenberechnung der Szenarien	123
	4.6	LCA je Szenario – Verknüpfung Bauteilflächen und Kennwerte	124
	4.7	Diskussion der Ergebnisse auf Quartiersebene	125
		4.7.1 Unsicherheiten	125
		4.7.2 Ergebnisverarbeitung und Visualisierungsmöglichkeiten	126
	4.8	Zusammenfassung Kapitel 4	135
5	Fa	llstudie und Validierung	137
	5.1	Die Fallstudie	137
		5.1.1 Beschreibung	137
		5.1.2 Repräsentativität	140
		5.1.3 Methodik	141
	5.2	Berechnung und Ergebnisse der Szenarien	142
		5.2.1 Randbedingungen Moosach	142
		5.2.2 Ergebnisse Szenario 1 – Status Quo	143
		5.2.3 Ergebnisse Szenario 2.1 – Sanierung mit gleichbleibender Gebäudekubatur	147
		5.2.4 Ergebnisse Szenario 2.2 – Sanierung mit Aufstockung in Holzrahmenbauweise	
		5.2.5 Ergebnisse Szenario 3.1 – Abriss und Ersatzneubau in Holzbauweise	
		5.2.6 Ergebnisse Szenario 3.2 – Abriss und Ersatzneubau in Massivbauweise	
		Vergleichende Flächenberechnung	
	5.4	Sensitivitätsanalyse	
		5.4.1 Methodische Grundlagen	
		5.4.2 Variierende Eingangsparameter	
		5.4.3 Ergebnis, Auswertung und Diskussion	
	5.5	Vergleich der Szenarienergebnisse	171

		5.5.1	Spinnennetzdiagramme	. 171
		5.5.2	Umweltkosten	. 174
		5.5.3	Baumwachstum	. 175
	5.6	Disku	ssion der Fallstudie	. 177
		5.6.1	Ergebnisvergleich mit anderen Publikationen	. 177
		5.6.2	Kritische Würdigung der Fallstudienergebnisse	. 179
		5.6.3	Umgang mit Gutschriften und dem zukünftigen Einfluss der Baukonstruktion im Lebenszyklus	. 180
		5.6.4	Fallstudienspezifische Handlungsempfehlungen	. 181
	5.7	Zusar	nmenfassung Kapitel V	. 183
6	Zι	ısamm	nenfassung, Fazit und Ausblick	. 185
	6.1	Zusar	mmenfassung und Fazit	. 185
		6.1.1	Verifizierung der Forschungshypothese	. 185
		6.1.2	Wesentliche Erkenntnisse und Potentiale der Arbeit	. 186
		6.1.3	Kritische Würdigung der Gesamtergebnisse	. 189
	6.2	Ausbl	ick und Empfehlungen	. 192
		6.2.1	Relevanz und Empfehlungen für die Politik	. 192
		6.2.2	Relevanz und Empfehlungen für die Praxis	. 193
		6.2.3	Relevanz und Empfehlungen für die Wissenschaft	. 196
		6.2.4	Schlussbemerkung	. 198
Abk	oildu	ngsve	rzeichnis	. 199
Tab	eller	verzei	ichnis	. 203
Lite	ratui	verzei	ichnis	. 209
Α	Ar	hang		. 229
A. 1	U-	Werte	für Alt-, Neubau- und Sanierungskonstruktionen	. 229
A.2	Bi	lanzie	rte Altbaukonstruktionen	. 232
A.3	Bi	lanzie	rte Neubaukonstruktionen	. 296
A.4	Bi	lanzie	rte Sanierungskonstruktionen	. 311
A.5	Ük	ersic	nt zu den verwendeten Datensätzen je Material	. 376
A.6			ntstabellen über die baualterspezifischen Umweltwirkungen je onstruktion	. 399
A. 7	Ük	ersic	ntstabellen über die Umweltwirkungen je Neubaukonstruktion	. 439
A.8			ntstabellen über die baualterspezifischen Umweltwirkungen je ngskonstruktion	. 450
Δα	R	rachn	ungslogiken der Bauteilflächen für die LCA auf Quartiersehene	460

A.10	Berechnungslogiken der ökologischen Kennwerte für die LCA auf Quartiersebene	
		488

1 Einleitung

1.1 Hintergrund

"Der Klimawandel ist die größte globale Gesundheitsbedrohung des 21. Jahrhunderts" (Horton, 2009). Dieses Zitat verdeutlicht die Notwendigkeit, den fortschreitenden Klimawandel aufzuhalten. Dabei muss schnell und effizient vorgegangen werden, denn die bisher ergriffenen Maßnahmen reichen noch nicht aus, um das Pariser Klimaabkommen zu erreichen: Im Jahr 2019 ist der Treibhausgasausstoß für die Gebäudenutzung erneut angestiegen anstatt nach den definierten Zielen zu sinken (UN Environment Programme, 2020, S. 3-4).

Städte verursachen mindestens 71 % der globalen CO₂-Emissionen und verbrauchen bis zu 80 % der weltweit produzierten Energie, wobei Gebäude und Transportsysteme die maßgeblichen Faktoren sind (Climate Service Center Germany GERICS und KfW Development Bank, 2015; UN Environment Programme, 2017).

Der Bausektor allein ist für 35 % des weltweiten Endenergieverbrauchs und für 38 % des weltweiten CO₂-Emissionsausstoßes verantwortlich. Allein 10 % der globalen CO₂-Emissionen gehen auf die Herstellung von Baumaterialien wie Stahl, Zement oder Glas zurück. Deshalb weist das Environment Programme der Vereinten Nationen im jährlichen Status Report auf die Schlüsselrolle des Bausektors im Kampf gegen den Klimawandel hin. Neben dem Einfluss des betrieblichen Energieverbrauchs benennt der Bericht sowohl den lebenszyklusbasierten Materialeinsatz als auch die Kreislaufwirtschaft als Stellschrauben für die Erreichung der Klimaziele. (UN Environment Programme, 2020, S. 3-4)

Der Einfluss der lebenszyklusbasierten Energieverbräuche und CO₂-Emissionen von Gebäuden und ihrer Baukonstruktionen wird auch an anderer Stelle erkannt. Insbesondere, wenn der betriebliche Energieverbrauch bei Niedrigstenergiegebäuden deutlich reduziert wird. Mahler, Idler und Gantner (2019, S. 18) zeigen in einer Studie zu typischen, hochgedämmten deutschen Wohngebäudeneubauten im EnEV-2016- bzw. Passivhausstandard, dass der Anteil der Baukonstruktion an den gesamten lebenszyklusbasierten Treibhausgasemissionen durchschnittlich bis zu 30 % beträgt.

Somit besteht Handlungsbedarf, der seitens der deutschen Bundesregierung erkannt und mit der aktuellen Novelle des Klimaschutzgesetzes (KSG) verbindlich festgelegt wurde (Deutscher Bundestag, 2019). Bis 2040 muss der Treibhausgasausstoß im Vergleich zu 1990 um 88 % reduziert werden. Bis 2045 soll in Deutschland die Klimaneutralität erreicht werden. So ist es auch im aktuellen Koalitionsvertrag der Bundesregierung festgeschrieben (SPD et al., 2021). Abbildung 1-1 zeigt, dass diese Herausforderung durch die sukzessive Reduktion der Jahresemissionsmengen bewältigt werden soll. Von 2020 bis 2030 müssen

die Jahresemissionen von Gebäuden jährlich um ca. 4,3 % auf 67 Mio. Tonnen CO₂-Äquivalente reduziert werden. (BMUV, 2021)

Mit der Berücksichtigung der Rolle der Städte ergibt sich die Frage, mit welchen Methoden und Werkzeugen die Politik, Planende und andere Entscheidungsträger:innen die Emissionen und Energieverbräuche der Städte und ihrer Gebäude großflächig berechnen und bewerten können. Sie müssen befähigt werden, wirksame Maßnahmen zur Erreichung der Klimaneutralität ergreifen zu können.

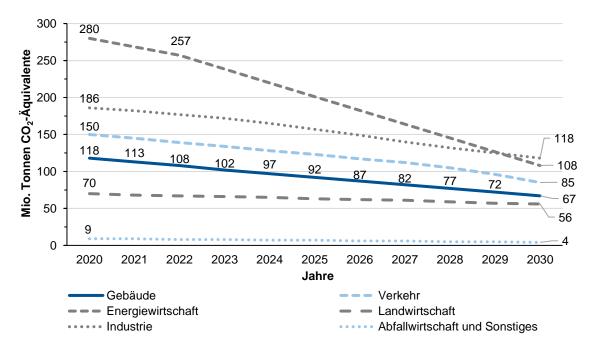


Abbildung 1-1: Das neue Klimaschutzgesetz: Jahresemissionsmengen nach Bereichen bis 2030; eigene Darstellung nach BMUV (2021)

Parallel benötigen Planende Methoden und Handlungsempfehlungen, um Neubauten so gestalten zu können, dass sie als Bestandsgebäude auch im Jahr 2045 klimaneutral sind. Bei Gebäudesanierungen muss die Klimaneutralität bereits jetzt berücksichtig werden, denn bei Sanierungszyklen von 20 bis 30 Jahren nehmen die aktuell ergriffenen Maßnahmen noch im Jahr 2045 Einfluss auf die Klimaneutralität der Gebäude.

1.2 Problemstellung und Motivation

Besonders wachsende Städte und Metropolregionen, wie Berlin, Frankfurt am Main oder München stehen vor der Herausforderung, die anvisierten Klimaschutzziele im Rahmen ihrer vorhandenen und zukünftigen Siedlungsstrukturen umzusetzen (Statista, 2021). Beispielsweise hat die Landeshauptstadt München diese Aufgabe erkannt und einen Maßnahmenplan zur Erreichung ihrer Klimaneutralität bis 2035 erstellt (Timpe et al., 2021).

Für die Umsetzung eines deutschlandweit klimaneutralen Gebäudebestandes 2045 müssen die kommunalen Entscheidungsträger:innen und Planenden maßgebende Stellschrauben identifizieren. Wohngebäude nehmen hierbei eine wichtige Rolle ein: Mit einer Anzahl von 19.376.000 (Stand 2021) charakterisieren sie rund 48 % des deutschen Gebäudebestandes (im Vergleich Anzahl der Nichtwohngebäude: 21.124.000 ± 445.000). Berücksichtigt man nur die GEG-relevanten, beheizten oder gekühlten Nichtwohngebäude mit einer Anzahl von 1.981.000 ± 152.000 Gebäuden, wird die Rolle der Wohngebäude besonders deutlich. Demnach dominieren die Wohngebäude mit ca. 91 % den energierelevanten deutschen Gebäudebestand. (Hörner et al., 2021; Statista, 2022b)

40 % der Wohngebäudebestände sind älter als 40 Jahre und weisen somit einen hohen Sanierungsbedarf, der vor allem den betrieblichen Energieverbrauch und einhergehende CO₂-Emissionen der Gebäude sinken lässt, auf (Statista, 2020). Global betrachtet verursachen Wohngebäude 22 % des Endenergieverbrauchs und 17 % der globalen CO₂-Emissionen im Bausektor (UN Environment Programme, 2020, S. 4).

All dies macht deutlich, wie wichtig die Analyse und Optimierung des Wohngebäudebestands ist. Vor allem, wenn gleichzeitig die Datengrundlagen für Wohngebäude ausreichend sind, um darauf aufbauend nähere ökologische Untersuchungen durchführen zu können (Cischinsky und Diefenbach, 2018; Diefenbach et al., 2010).

Um die vereinbarten Energie- und Klimaschutzziele im Wohnungsbau erreichen zu können, wurde von der Bundesregierung das Gebäudeenergiegesetz (GEG) verabschiedet und die Bundesförderung für effiziente Gebäude – Wohngebäude (BEG WG) – etabliert (BMWI, 2021; Deutscher Bundestag, 2020). In der BEG WG wird auf die Förderung der Nachhaltigkeitsaspekte und Digitalisierungsmaßnahmen hingewiesen. Neben der Betriebsphase von Gebäuden sollen künftig die Treibhausgasemissionen aus der Herstellungsphase und der Lebenszyklusansatz noch stärker berücksichtigt werden. Ermöglicht werden soll dies durch die Einführung von Effizienzhaus-Nachhaltigkeits-Klassen. (BMWI, 2021, S. 1)

Die BEG-Richtlinie benennt klar den Bedarf an lebenszyklusbasierten Nachhaltigkeitsbewertungen von Gebäuden, wie sie zuvor schon seitens anderer Institutionen gefordert wurde (Mahler, Idler und Gantner, 2019; Mahler, Idler, Nusser und Gantner, 2019, S. 124; WWF Deutschland, 2019, S. 5). Das erhöht den Druck auf die Kommunen, geeignete Methoden für eine großflächige ökologische Bewertung ihrer derzeitigen und künftigen heterogenen Siedlungsstrukturen zu finden.

Auf dem Weg zur Klimaneutralität benötigen die Kommunen demnach zwei wesentliche Werkzeuge: zum einen eine umfassende Datenbank mit Kennwerten über die Umweltwirkungen und Energieverbräuche während des Lebenszykluses eines Gebäudes und zum anderen digitale Werkzeuge, die eine schnelle ökologische Analyse großflächiger und heterogener Bebauungsstrukturen ermöglicht. Nur so können geeignete Konzepte für Gebäudekomponenten, wie der Baukonstruktion, zur Erreichung der Klimaneutralität erarbeitet werden.

Die Umweltwirkungen sowie Energie- und Ressourcenverbräuche von Gebäuden, die während ihrer Herstellung, Nutzung und Entsorgung verursacht werden, können mit Hilfe einer Ökobilanzierung erfasst werden (engl. Life Cycle Assessment, kurz: LCA). Die Methode ist nach DIN EN ISO 14040:2021-02, DIN EN ISO 14044:2021-02 und DIN EN 15978:2012-10 international standardisiert. Zwar ermöglichen Zertifizierungssysteme wie die des DGNB eine Betrachtung auf Quartiersebene, dennoch gestaltet sich die Anwendung ohne digitale Werkzeuge zeitintensiv (DGNB, 2021). Zudem existiert bisher in Deutschland keine aktuelle und einheitliche Datenbasis, welche die ökologische Qualität des Wohngebäudebestandes und seiner Baukonstruktionen ausreichend erfasst. Die unterschiedlichen baukonstruktiven Eigenschaften von Altbau-, Neubau- und Sanierungskonstruktionen und ihrer Umweltwirkungen müssen mit Hilfe vorhandener Gebäudetypologien strukturiert werden, damit vergleichende Ökobilanzierungen durchgeführt werden können.

Digitale, georeferenzierte, semantische 3D-Stadtmodelle bieten mehrere Vorteile bei der Analyse von vorhandenen Bebauungsstrukturen und ihren Entwicklungsmöglichkeiten. Sie liefern z. B. großflächige Informationen über bestehende Gebäudegeometrien und Infrastrukturen. Dadurch ermöglichen sie interdisziplinäre Betrachtungen, die gerade bei der Beantwortung einer klimaneutralen Zukunft erforderlich sind. Ferner können verschiedene Entwicklungsszenarien untersucht und die Ergebnisse grafisch visualisiert werden. Die Potentiale der 3D-Stadtmodelle sind in der Planungspraxis jedoch noch nicht ausreichend bekannt. Die aktuellen Datenstrukturen müssen kommuniziert und mit weiteren Daten angereichert werden, damit sie zukünftig mehr Anwendung finden können. Auch die LCA auf Quartiersebene kann durch die Verwendung von semantischen 3D-Stadtmodellen unterstützt werden. Baualterstypische Eigenschaften der Baukonstruktion können erarbeitet und mittels digitaler Planungstools mit diversen geometrischen Eigenschaften (wie z. B. Bauteilflächen) der 3D-Stadtmodelle verknüpft werden. So können verschiedene Entwicklungsszenarien einzelner Siedlungsstrukturen in frühen Planungsphasen schnell miteinander verglichen und optimierte Bauausführungen für eine Steigerung des Klimaschutzes im Gebäudebestand ermittelt werden.

Die Motivation für die Auseinandersetzung mit dem vorliegenden Forschungsgegenstand besteht in der Unterstützung politischer und gesellschaftlicher Entscheidungsträger:innen bei der Umsetzung der Klimaschutzziele durch die Schaffung einer fundierten Datenbasis und einer praxisrelevanten Planungsmethode.

1.3 Zielsetzung und Aufbau der Arbeit

1.3.1 Zielsetzung und Forschungshypothese

Aufbauend auf den genannten Problemstellungen und der Motivation, die Politik und Praxis auf ihrem Weg zur Erreichung der Klimaschutzziele zu unterstützen, umfasst die vorliegende Dissertation zwei wesentliche Arbeitsschwerpunkte. Zum einen wird eine fundierte Datenbasis zu den Umweltwirkungen und Ressourcenverbräuchen von Altbau-, Neubau- und Sanierungskonstruktionen von deutschen Wohngebäuden erarbeitet. Zum anderen zielt die Arbeit darauf ab, eine Methode zu entwickeln, mit der Informationen aus semantischen 3D-Stadtmodellen genutzt werden, um Lebenszyklusanalysen für Baukonstruktionen auf Quartiersebene durchführen zu können. Damit sollen Kommunen und anderen Entscheidungsträger:innen Wege zu einem klimaneutralen Wohngebäudebestand aufgezeigt werden.

Mit Hilfe der entwickelten Methoden werden die Treibhausgasemissionen und der Aufwand an Primärenergie von Baukonstruktionen im Wohnungsbau über ihren Lebenszyklus hinweg und bezogen auf ihre Baualtersklasse großflächig berechnet. Dazu werden eingangs ökologische Kennwerte für Altbau-, Neubau- und Sanierungskonstruktionen generiert, die bauteilspezifisch drei wesentliche Umweltindikatoren berücksichtigen:

- das Treibhausgaspotential (GWP) als Emissionsparameter (ausgedrückt in kg oder t CO₂-Äquivalente) sowie
- der Aufwand der gesamten nicht erneuerbaren Primärenergie (PENRT) und
- der Aufwand der gesamten Primärenergie (PET) als Parameter für den Ressourceneinsatz (ausgedrückt in Megajoule [MJ], Kilo- [kWh] oder Megawattstunden [MWh]).

Diese ökologischen Kennwerte bilden die Datengrundlage für die Betrachtung verschiedener Bebauungsszenarien des nationalen Wohngebäudebestandes und ermöglichen eine ökologische Bewertung in frühen Planungsphasen, wenn die Weichen für den zukünftigen Klimaschutz und die zukünftige Klimaresilienz der Städte und anderer Siedlungsstrukturen gestellt werden.

Es werden Berechnungslogiken entwickelt und beschrieben, mit denen die bauteilspezifischen Kennwerte mit Informationen aus 3D-Stadtmodellen verknüpft werden können. So wird die Berechnung der Umweltwirkungen und der Ressourcenverbräuche von verschiedenen Bebauungsszenarien – Sanierung mit und ohne Nachverdichtung sowie Abriss und Ersatzneubau – auf Quartiers- oder Stadtebene ermöglicht.

Standardmäßig wird aktuell eine Lebenszyklusanalyse auf Gebäudeebene durchgeführt. Die Erweiterung auf Quartiers- bzw. Stadtebene ermöglicht eine differenziertere Auseinandersetzung mit den Wechselwirkungen verschiedener Bebauungsstrukturen und interdisziplinärer Schnittstellen, wie der Freiflächen- oder Mobilitätsplanung. Dafür müssen alle relevanten Systemgrenzen, Input-Parameter und möglichen Einflussparameter

definiert und benannt werden. Gleichzeitig wird aufgezeigt, welche Daten zukünftig flächendeckend und projektspezifisch erfasst werden müssen, um Unsicherheiten zu reduzieren. Letztlich sollen die entwickelten Kennwerte und die erarbeitete Methode von Fachplanenden mit LCA-Kenntnissen herangezogen werden, um in frühen Planungsphasen verschiedene Quartiers- und Stadtentwürfe hinsichtlich ihrer Klimawirkung und ihres Ressourceneinsatzes bewerten zu können. Die Ergebnisse dienen Politik und Kommunen als Grundlage zur Entwicklung von Strategien für mehr Klimaschutz und Ressourcenschonung im Gebäudesektor.

Aus der Zielsetzung resultiert die folgende Forschungshypothese:

Mit Hilfe der Entwicklung von Kennwerten und Methoden lässt sich die ökologische Qualität von Bestands- und Neubauten sowie von Sanierungsprojekten auf städtischer Ebene bewerten. Zudem lassen sich Handlungsempfehlungen in Bezug auf die Klimaneutralität und den Energiebedarf ableiten.

Die Forschungshypothese wird im Verlauf der Arbeit verifiziert oder gegebenenfalls falsifiziert und final in Kapitel 6.1.1 (Seite 185) nochmals aufgegriffen.

1.3.2 Abgrenzung der Arbeit

In dieser Arbeit stehen die Umweltindikatoren GWP, PENRT und PET im Fokus der Betrachtung. Sie werden gemäß einer Ökobilanzierung nach den Grundlagen der DIN EN ISO 14040:2021-02, DIN EN ISO 14044:2021-02, DIN EN 15804:2020-03 und DIN EN 15978:2012-10 ermittelt, wobei die gewählten Systemgrenzen Kapitel 3.2.2 ab Seite 54, entnommen werden können. Weitere Umweltindikatoren, die in den ökologischen Datenbanken beschrieben und hinterlegt sind, werden nicht betrachtet; ebenfalls auch keine potentiell verbauten Schadstoffe, wie Asbest und Lindan, die toxische Auswirkungen auf Mensch und Natur aufweisen. Die Auseinandersetzung mit diesen Themen erfordert weiteren Forschungsbedarf. Rohstoffkritikalitäten, wie Untersuchungen zum globalen Sandvorkommen, werden ebenfalls nicht analysiert. Hier wird auf andere Studien verwiesen (Erdmann und Behrendt, 2011; Heinrich, 2019; UN Environment Programme, 2019).

Bei der Bestimmung typischer Baukonstruktionen im Wohnungsbau wird eine möglichst breite Datengrundlage angestrebt. Informationslücken in Bezug auf den genauen Schichtenaufbau, die verwendeten Materialien sowie deren Eigenschaften werden durch fundierte Annahmen geschlossen. Daneben können die herangezogenen Daten gewissen Gültigkeitsdauern unterliegen, die im Zuge der Weiterverwendung überprüft werden müssen. Die entwickelte Methode verfügt über die notwendige Transparenz, damit Anpassungen vorgenommen werden können. Bei der Ermittlung baualterstypischer Konstruktionsaufbauten werden keine Sanierungsstände berücksichtigt. Das heißt, die Veränderung der ursprünglichen Baukonstruktion durch zwischenzeitliche Sanierungen ist nicht Gegenstand der Betrachtung. Die in der Literatur vorhandenen Angaben zu Sanierungsraten und

-ausführungen im deutschen Wohngebäudebestand reichen bisher nicht aus, um hier allgemeingültige Aussagen treffen zu können (siehe z. B. Cischinsky und Diefenbach (2018)).

Die Dissertation beschreibt die Arbeitsschritte, die die Berechnungen der Umweltwirkungen verschiedener Bebauungsszenarien mit Hilfe von 3D-Stadtmodellen ermöglichen. Anhand eines Fallbeispiels wird die Methode überprüft. Eine softwarebasierte Automatisierung der Methode ist möglich.

1.3.3 Vorgehensweise

Die vorliegende Arbeit besteht aus sechs Kapiteln (siehe Abbildung 1-2). Nach der Einleitung beschreibt Kapitel 2 die Arbeitsgrundlagen, zu denen Normen und Datenbanken zur Erstellung von Ökobilanzierungen für Baukonstruktionen und Gebäude zählen. Dies schließt eine Analyse zur Methodenverbreitung und der Verwendung maßgebender Indikatoren ein. Weiter sind die Untersuchung der deutschen Gebäudetypologien und die Einteilung der typischen Bauteilaufbauten in Baualtersklassen wesentliche Grundlagen. Abgeschlossen wird die Grundlagenermittlung mit der Beschreibung von 3D-Stadtmodellen und den Erläuterungen zur Methode der Sensitivitätsanalyse.

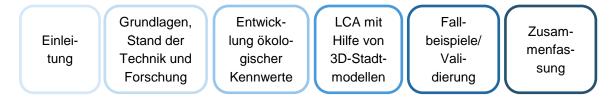


Abbildung 1-2: Darstellung der Vorgehensweise; eigene Darstellung

Ab Kapitel 2.7 erfolgt die Einordnung in den Stand der Technik und Forschung. Die Auseinandersetzung mit dem bisherigen Forschungsstand zu ökologischen Kennwerten und Lebenszyklusanalysen auf Stadtebene bildet die Grundlage für die weitere Arbeit.

Kapitel 3 legt die Entwicklung der ökologischen Kennwerte von baualtersklassenspezifischen Baukonstruktionen im Wohnungsbau dar. Die räumlichen und zeitlichen Systemgrenzen der durchgeführten Ökobilanzierung werden definiert und die relevanten ökologischen Datensätze zur Berechnung der maßgebenden Bauteile und Bauteilkonstruktionen ausgewählt. Nach der Beschreibung der Schritte zur Generierung der ökologischen Kennwerte erfolgt die Ergebnisdarstellung, gegliedert nach Altbau-, Sanierungs- und Neubaukonstruktionen. Eine Ergebnisdiskussion und die Ableitung von Handlungsempfehlungen erleichtert späteren Fachplanenden mit LCA-Kenntnissen die Verwendung der Kennwerte.

Kapitel 4 stellt die Methodik zur Berechnung einer LCA auf Quartiersebene vor. Die Methodik wurde in Abstimmung mit dem Forschungsprojekt "Grüne Stadt der Zukunft – klimaresiliente Quartiere in einer wachsenden Stadt" entwickelt (TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.). Der enge projektinterne

Austausch von Wissenschaft und Praxis erlaubt die Identifizierung praxisrelevanter Entwicklungsszenarien von Bestandsquartieren, für die in diesem Kapitel die notwendigen Datenstrukturen aufgezeigt werden. Es wird zwischen Informationen (Input-Parameter) unterschieden, die durch das 3D-Stadtmodell vorgegeben sind und denen, die von den späteren Nutzenden definiert werden müssen. Je Szenario werden die einzelnen Berechnungsschritte beschrieben, die im Rahmen des Projektes teilweise softwarebasiert automatisiert wurden. Hier besteht eine Schnittstelle zur Dissertation von Harter (2021), die sich mit der Lebenszyklusanalyse der Technischen Gebäudeausrüstung großer Wohngebäudebestände auf Basis von 3D-Stadtmodellen beschäftigt. In der Diskussion erfolgt eine Auseinandersetzung mit den Datenunsicherheiten und verschiedenen Ergebnisvisualisierungen.

Die Anwendbarkeit der entwickelten Methode zur Durchführung einer LCA auf Quartiersebene via 3D-Stadtmodelle wird anhand eines Fallbeispiels und den in Kapitel 4 definierten Szenarien aufgezeigt (siehe Kapitel 5). Beim Fallbeispiel handelt es sich um ein bestehendes Wohnquartier in München-Moosach, das hohen Sanierungsbedarf aufweist. Die kritische Auseinandersetzung mit den statischen Berechnungsergebnissen erfolgt durch zwei begleitende Untersuchungen. Zum einen wird für ein Gebäude im gewählten Quartier eine vergleichende manuelle Bauteilflächenberechnung erarbeitet, zum anderen wird für ein ausgewähltes Szenario eine Sensitivitätsanalyse durchgeführt. Am Ende eines jeden Hauptkapitels (1 bis 5) werden ihre wesentlichen Inhalte kurz zusammengefasst.

In Kapitel 6 erfolgt die Zusammenfassung der Arbeit, inklusive der Verifizierung der Forschungshypothese, der Darstellung der Kernaussagen und der kritischen Auseinandersetzung mit den Ergebnissen. Danach schließen Fazit und Ausblick die Arbeit ab. Mit dem Ausblick wird die Relevanz der Arbeit für Politik und Praxis nochmals aufgegriffen und der weitere Forschungsbedarf abgeleitet.

1.4 Zusammenfassung Kapitel 1

- Im Kampf gegen den Klimawandel nehmen Städte und insbesondere der Bausektor Schlüsselrollen ein (UN Environment Programme, 2017, 2020). Zur Erreichung der Klimaziele benennt diese Publikation auch die Rolle der Wohngebäude. Daneben ist es wichtig, den Einfluss der Materialien über ihren Lebenszyklus hinweg zu untersuchen sowie eine funktionierende Kreislaufwirtschaft anzustreben. Bei Niedrigstenergiehäusern kann der Anteil der Baukonstruktion an den lebenszyklusbasierten Treibhausgasemissionen durchschnittlich bis zu 30 % betragen (Mahler, Idler und Gantner, 2019, S. 18).
- Es besteht Handlungsbedarf, der seitens der deutschen Bundesregierung erkannt wurde. Mittels Gesetzen und Förderrichtlinien soll bis 2045 ein klimaneutraler Gebäudebestand erreicht werden, der eine lebenszyklusbasierte Betrachtung einschließt (BMUV, 2021; BMWI, o. J.a, 2021; Deutscher Bundestag, 2020).
- Zur Umsetzung benötigen die Politik, Planende und kommunale Entscheidungsträger:innen Handlungsempfehlungen und Werkzeuge, die eine möglichst großflächige ökologische Bewertung ihrer derzeitigen und zukünftigen Siedlungsstrukturen erlauben.
- Bisher existiert in Deutschland keine aktuelle und einheitliche Datenbasis, die baualtersklassenspezifische Unterschiede bei der ökologischen Qualität von Baukonstruktionen und von verschiedenen Bebauungsszenarien darstellen kann.
- Es ist eine frühe Betrachtung auf Quartiersebene erforderlich, um eine großflächige und effektive Umsetzung der geforderten Klimaziele erreichen zu können.
- Die Ökobilanzierung ist eine geeignete Methode zur Bewertung der ökologischen Optimierungspotentiale von Wohngebäuden. Jedoch bedarf es vermehrt digitaler Planungswerkzeuge, die eine schnelle Bilanzierung in frühen Planungsphasen ermöglichen.
- Die vorliegende Arbeit zielt darauf ab, eine Methode zu entwickeln, die die Treibhausgasemissionen und Energieverbräuche von Baukonstruktionen im Wohnungsbau über ihren Lebenszyklus hinweg und bezogen auf ihre Baualtersklasse identifizieren kann. Es entstehen ökologische Kennwerte für Altbau-, Neubau- und Sanierungskonstruktionen, die bauteilspezifisch drei wesentliche Umweltindikatoren berücksichtigen: Treibhausgaspotential (GWP), Aufwand an gesamter nicht erneuerbarer Primärenergie (PENRT) und Aufwand an gesamter erneuerbarer Primärenergie (PET).
- Es wird aufgezeigt, wie bauteilspezifische Kennwerte mit Informationen aus 3D-Stadtmodellen verknüpft werden, sodass eine schnelle Berechnung der Umweltwirkungen und des Ressourcenverbrauchs von verschiedenen Bebauungsszenarien ermöglicht wird.
- Die Anwendbarkeit der entwickelten Methode zur Durchführung einer LCA auf Quartiersebene via 3D-Stadtmodelle wird anhand eines Fallbeispiels bewiesen.

2 Grundlagen, Stand der Technik und Forschung

2.1 Ökobilanzierung von Gebäuden

Eine Ökobilanzierung ist eine Methode zur Zusammenstellung und Beurteilung der stofflichen und energetischen Input-, Betriebs- und Outputflüsse sowie der potentiellen Umweltwirkungen eines Produktsystems im Verlauf seines Lebenswegs (DIN EN ISO 14044:2021-02, Abschnitt 3.2). Mit Hilfe einer Ökobilanzierung (engl. Life Cycle Assessment, kurz: LCA) ist es möglich, die Umweltein- und -auswirkungen sowie den energetischen und stofflichen Ressourcenverbrauch einzelner Produkte bzw. Verfahren zu ermitteln. Die ökologische Qualität eines Produkts steigt, wenn seine Umweltwirkungen und Verbräuche verringert werden. Dabei werden diese systematisch von der Herstellung über die Nutzung bis zur Entsorgung untersucht. Mit dem Ziel unseren Ressourcenverbrauch nachhaltig zu gestalten, stellt die Ökobilanzierung neben der soziokulturellen und ökonomischen Bewertung den dritten Teilaspekt der ganzheitlichen Bilanzierung der Nachhaltigkeit dar. Dabei weist die Normung darauf hin, dass die Tiefe und Breite einer Ökobilanzierung je nach Zielsetzung stark schwanken können und die Auswertung in enger Relation zu den gewählten Systemgrenzen steht (DIN EN ISO 14044:2021-02).

2.1.1 Normative Grundlagen und Entwicklung

Die LCA ist seit 2006 international standardisiert. Die vorliegende Arbeit baut auf den Grundlagen der genannten DIN EN ISO 14044:2021-02 sowie auf der DIN EN ISO 14040:2021-02 und der DIN EN 15978:2012-10 auf. Letztere regelt die Berechnungsmethode zur Bewertung der umweltbezogenen Qualität von Gebäuden. Der methodische Rahmen folgt der nach Abbildung 2-1 festgelegten Reihenfolge.

Abbildung 2-1: Methodischer Rahmen einer Ökobilanzierung; eigene Darstellung nach DIN EN ISO 14044:2021-02

Die LCA betrachtet die Stoff- und Energieströme der Herstellung, Errichtung, Nutzung und Entsorgung der Gebäude. Zusätzlich können separat Informationen außerhalb des Lebenszykluses zu Vorteilen und Belastungen sowie zu Wiederverwendungs- und

Recyclingpotentialen ausgewiesen werden. Abbildung 2-2 zeigt alle Lebenszyklusphasen (LZPH) eines Gebäudes nach DIN EN 15978:2012-10 auf, wobei derzeit für die Baukonstruktion nur ein Teil flächendeckend erfasst wird (orange markiert).

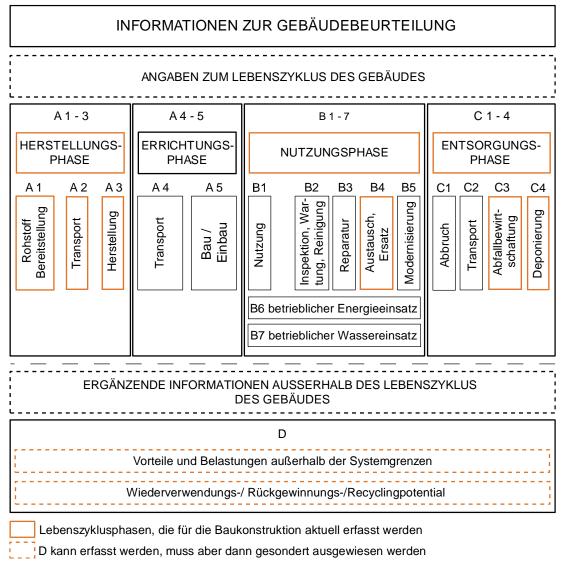


Abbildung 2-2: Lebenszyklusphasen eines Gebäudes; eigene Darstellung nach DIN EN 15978:2012-10, Bild 6

Die LZPH A1 bis A3 decken die Herstellungsprozesse von der Rohstoffbereitstellung bis zum hergestellten Produkt ab und werden in der Regel kumuliert ausgegeben. A4 und A5 umfassen die Bauprozessphasen, die z. B. Stromverbräuche auf der Baustelle oder den Einsatz von Lastwägen bilanzieren. Die Errichtungsphase ist projektspezifisch zu erfassen und von vielen Einzelfaktoren, wie Lage der Baustelle und Transportwege abhängig. Die Nutzungsphase wird durch sieben Einzelaspekte definiert und deckt den Zeitraum von der tatsächlichen Fertigstellung des Gebäudes bis zum Rückbau und Abriss ab. Berücksichtigt werden die Nutzung (B1), die Wartung/Reinigung (B2), Reparaturen (B3), der Austausch/Ersatz von Gebäudekomponenten (B4), Modernisierungen (B5) sowie betrieblich bedingte Energie- und Wasserverbräuche (B6 und B7). Mit Stilllegung des Gebäudes beginnt die Lebensend- bzw. Entsorgungsphase. Die LZPH C1 berücksichtigt am Standort

stattfindende Arbeitsgänge zum Rückbau, C2 den Transport zur Beseitigung und/oder zu möglichen Zwischenlagern oder Verarbeitungsstätten. Die LZPH C3 schließt die Abfallbewirtschaftung der Bauelemente und Materialien ein. Abfallbewirtschaftung bedeutet, dass die Bauabfälle rückgewonnen, recycelt oder energetisch verwertet werden können. In der Phase D werden daraus resultierende Recyclingpotentiale oder energetische Verwertungen erfasst und als Nettovorteile oder -belastungen für zukünftige Nutzungen berücksichtigt. Beispielsweise können Teile zurückgebauten Betons Primärrohstoffe wie Sand, Kies, Splitt oder Schotter ersetzen und somit den Primärenergiebedarf neuer Betonbauten reduzieren. Die energetische Verwertung von Holz kann den Einsatz fossiler Energieträger für die Wärmeerzeugung senken. Die LZPH C4 stellt die endgültige Beseitigung der Materialien dar. (DIN EN 15978:2012-10, S. 19-29)

Bisher sind verwendete Datenbanken (vgl. Kapitel 2.1.2 ab Seite 14) lückenhaft und viele Bauproduktdatensätze weisen lediglich einzelne LZPH aus. Für A4 und A5 liegen keine ausreichenden Statistiken vor, die projektspezifische Transportwege oder Baustelleneinrichtungen allgemeingültig erfassen. Auch die Umweltwirkungen der einzelnen Baustoffe in den Nutzungsphasen B1 bis B5 sind gebäudespezifisch und von den gewählten Einsatzbereichen abhängig.

Die ÖKOBAUDAT stellt jedoch für einen Großteil ihrer Datensätze Umweltwirkungen der LZPH A1-A3, C3 und C4 zur Verfügung. Bei Ausweisung der Entsorgungsphasen verfügen die Datensätze meist über Angaben zur Phase D. (BBSR, o. J.)

In Abbildung 2-2 sind die Lebenszyklusphasen orange markiert, die aktuell für Baukonstruktionen flächendeckend erfasst werden. Die Phase B4 ist dabei ein Produkt aus den Austauschzyklen während der Nutzungsdauer des Gebäudes und den Umweltwirkungen der zu entsorgenden und wiederherzustellenden Bauteilkomponenten (vgl. Kapitel 3.2.2.2, Seite 56). Für frühe Planungsphasen, bei denen Entwurfsvergleiche im Vordergrund stehen und projektspezifische Details ausgeklammert werden können, lässt sich somit eine ausreichende Bilanzierung der Herstellung, Nutzung und Entsorgung der Gebäude durchführen.

So hat sich die LCA in den vergangenen Jahren bei der ökologischen Gebäudebewertung bewährt und sie wurde in nationale Zertifizierungssysteme aufgenommen (BBSR, 2020; DGNB, 2021). Schwachstellen resultieren aktuell aus uneinheitlichen Datengrundlagen oder intransparenten Darstellungen. Deshalb muss die LCA von Gebäuden stets normgerecht, transparent und nachvollziehbar beschrieben und durchgeführt werden.

Besonders in frühen Planungsphasen ist die Anwendung einer LCA wichtig, denn hier werden die grundsätzlichen Weichen für die ökologische Qualität der Bauausführung gestellt. Dazu werden der Energiestandard, die Gebäudegeometrie und die dominierenden Baumaterialien festgelegt. Die manuelle Durchführung einer LCA, inklusive der Massenermittlung auf Gebäudeebene ist zeitintensiv. Mit Hilfe digitaler Planungswerkzeuge kann der Zeitaufwand deutlich verkürzt und die Anwendung einer LCA in frühen Planungsphasen gefördert werden. Insbesondere wenn sie automatisierte und großflächige Berechnungen auf Quartiers- statt auf Gebäudeebene ermöglichen.

2.1.2 Datenbanken

Zur Bestimmung der Umweltwirkungen von Bauprodukten und -materialien existieren parallel verschiedene regionale, nationale und internationale Datenbanken mit unterschiedlichen Umfängen und Zugangsmöglichkeiten. Nachfolgend werden drei für Deutschland geeignete Datenquellen für die Ermittlung der Umweltwirkungen im Bauwesen vorgestellt und nach den drei folgenden Verwendungskriterien bewertet:

- Kriterium 1: ausreichend große Datenbasis
- Kriterium 2: geprüfte Datensätze
- Kriterium 3: frei zugänglich

2.1.2.1 Ecoinvent

Die Ecoinvent wird von den für die Datenbank Verantwortlichen als die weltweit konsistenteste und transparenteste Datenbank präsentiert. Initiiert wurde die Datenbank unter anderem von der ETH Zürich, der EPF Lausanne, dem Paul-Scherrer-Institute (PSI), der EMPA sowie Agroscope. Sie liegt in der aktuellen Fassung 3.9.1 vor. (Ecoinvent, o. J.)

Die Datenbank enthält über 18.000, sowohl schweizerische als auch internationale Datensätze mit Sachbilanzdaten verschiedener Themenbereiche, wie Landwirtschaft und Fischerei, Bauwesen, elektronische Produktkomponenten oder Abfallbehandlung. Jeder einzelne Datensatz wird von einer unabhängigen Stelle überprüft und freigegeben. Alle Annahmen und Grundlagen werden transparent beschrieben. Vorteil der Ecoinvent ist, dass sie in nahezu alle Ökobilanzierungssoftwaretools integriert werden kann. Nachteilig ist, dass sie nicht frei zugänglich und daher weniger geeignet für transparente und wissenschaftliche Arbeiten ist. (BMUB und UBA, 2015)

Die Datenbank erfüllt somit Kriterium 1 und 2. Kriterium 3 wird jedoch nicht erfüllt. Deshalb ist sie nicht für die Verwendung in dieser Arbeit geeignet.

2.1.2.2 Gabi-Datenbank

Diese Datenbank wird von der Sphera Solutions GmbH verwaltet. Das Privatunternehmen arbeitet mit der Universität Stuttgart gemeinsam an der Pflege und Erweiterung der Datenbank und erstellt viele generische Datensätze und EPDs. Jeder Datensatz wird dabei durch unabhängige Dritte geprüft. Allerdings sind die Annahmen, die die Datensätze definieren, nicht lückenlos beschrieben. Deshalb wird empfohlen, die Datensätze aus der Gabi-Datenbank nicht mit externen Datensätzen zu vermischen. (BMUB und UBA, 2015)

Mit ca. 15.000 Datensätzen aus 16 verschiedenen Bereichen, wie Landwirtschaft, Bauwesen und Konstruktion, Konsumgüter, Nahrungsmittel, usw. ist sie ähnlich umfangreich wie die Ecoinvent (Sphera Solutions GmbH, o. J.).

Wie die Ecoinvent erfüllt sie zwar Kriterium 1 und 2, jedoch nicht Kriterium 3. Eine Verwendung in dieser Arbeit ist somit ausgeschlossen.

2.1.2.3 ÖKOBAUDAT

Die ÖKOBAUDAT ist eine vereinheitlichte Datenbasis für die Ökobilanzierung von Bauwerken in Deutschland. Seit 2009 wird sie im Rahmen verschiedener Forschungsprojekte stetig weiterentwickelt und von der Deutschen Baustoffindustrie unterstützt. Herausgeber ist das Bundesministerium des Innern, für Bau und Heimat. Sie enthält nach DIN EN 15804:2020-03 normkonforme Datensätze für Bauprodukte, Transport-, Energie- und Entsorgungsprozesse. In die Datenbank werden sowohl generische als auch firmen- oder verbandsspezifische Datensätze aufgenommen, insofern sie die Konformitätsprüfung erfüllen (Verwendungskriterium 2). Die Daten beruhen größtenteils auf der Gabi-Datenbank, teilweise aber auch auf der Ecoinvent. (BBSR, o. J.)

Die ÖKOBAUDAT bietet eine ausreichend große Datenbasis (Verwendungskriterium 1). Der Großteil der in Version 2020-II vorhandenen 4.658 Datensätze sind generische Datensätze (43,1 %). Spezifische Datensätze (Produkt-EPDs) sind mit einem Anteil von 30,1 %, durchschnittliche mit 16,0 % und repräsentative Datensätze mit 10,7 % vertreten. Der Typ "unspezifischer Datensatz" wird nur dreimal verwendet, und zwar für Luftschichten, die keine Umweltwirkungen aufweisen. Dieser Typ kann demnach vernachlässigt werden (siehe Abbildung 2-3).

Datensatz Datensatz für ein spezifisches, konkretes Produkt

(z. B. eines

Herstellers)

Spezifischer

licher Datensatz durchschn. Datensatz eines Industrieverbandes oder mehrerer Firmen bzw. mehrerer Werke

Durchschnitt-

Repräsentativer Datensatz

Datensatz, der repräsentativ für ein/e Land/Region ist (z. B. Durchschnitt Deutschland)

Unspezifischer Datensatz Datensatz für

spezifische
Produkte, der auf
Basis einer
Muster-EPD
erstellt wurde

Generischer Datensatz

enthält Daten gemäß EN 15804 oder Daten, die auf Literatur oder Expertenwissen beruhen

Abbildung 2-3: In der ÖKOBAUDAT, Version 2020-II vorhandene Datensatztypen; eigene Darstellung nach BBSR (2019, S. 31)

Manche Bauprodukte werden in der ÖKOBAUDAT nicht geführt, sodass deren Umweltwirkungen nicht bewertet werden können (z. B. deutscher Durchschnitt einer Standardinnentür). Darüber hinaus werden in der Praxis für einzelne Schichtenaufbauten Mischdatensätze erzeugt. Als Beispiel kann hier Stahlbeton genannt werden, für den in Abhängigkeit der Betonfestigkeitsklasse und des Armierungsgehaltes ein Mischdatensatz aus dem Betonund Baustahldatensatz gebildet wird.

Die ÖKOBAUDAT wurde speziell für den deutschen Bausektor entwickelt und wird von der öffentlichen Hand betrieben und laufend aktualisiert. Sie ist frei zugänglich und erfüllt somit auch Verwendungskriterium 3. Deshalb wird sie im Rahmen dieser Arbeit als zentrale Datenbank in der Version 2020-II verwendet (BBSR, o. J.). Innerhalb verschiedener Versionen können sich Berechnungsvorschriften infolge von Normenaktualisierungen (z. B. DIN EN

15804:2020-03) oder energetische Bezugswerte (z. B. deutscher Strom-Mix) ändern. Deshalb dürfen verschiedene ÖKOBAUDAT-Versionen nicht vermischt verwendet werden.

2.1.3 Verbreitung der Methode

Die LCA und Ermittlung der Umweltwirkungen von Baukonstruktionen gewinnt im Kontext der Klimaziele, der ökologischen Bewusstseinssteigerung und mit Einführung der internationalen Normen sukzessiv an Bedeutung (vgl. Kapitel 2.1.1, ab 11). Es existieren sowohl wissenschaftliche als auch praxisorientierte Studien, die sich mit unterschiedlichen Teilaspekten der LCA von Baukonstruktionen auseinandersetzen. Hierzu zählen Untersuchungen im Bestand und im Neubau von Wohn- und Nichtwohngebäuden, wie sie am Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen der Technischen Universität München durchgeführt werden (Botzler et al., 2017; Harter, Meier-Dotzler et al., 2020; P. Schneider und Lang, 2017; Schneider-Marin et al., 2019; Vollmer et al., 2019).

Durch die Etablierung von Zertifizierungs- und Benchmarksystemen, wie dem Bewertungssystem Nachhaltiges Bauen (BNB), dem Zertifizierungssystem der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB), LEED, BREEAM usw. wird die zunehmende Anwendung der Ökobilanzierung national und international unterstützt (BBSR, 2020; BRE, 2022; DGNB, 2021; U.S. Green Building Council, 2022).

Seit 2009 vergibt die DGNB-Zertifizierung Punkte für die ökologische, ökonomische und soziokulturelle Qualität eines Gebäudes, eines Innenraums oder eines ganzen Quartiers verschiedener Nutzungstypen über den Lebenszyklus hinweg und vergleicht sie mit Zielwerten (DGNB, 2021). Die LCA stellt hierbei eines der zentralen Berechnungselemente im System dar (DGNB, 2014).

Im Fokus des BNB steht die Nachhaltigskeitszertifizierung von Bundesbauten (Büround Verwaltungsgebäude, Unterrichtsgebäude, Außenanlagen oder Laborgebäude) mit Hilfe von Kriteriensteckbriefen (BBSR, 2020). Beim BNB können maximal 100 Punkte bei der Kriterienerfüllung erreicht werden, indem die Bilanzierungsergebnisse mit Bezugswerten verglichen werden (BMUB, 2017).

Dennoch ist die Entwicklung der LCA im Gebäudesektor noch nicht einheitlich. Die normativen Grundlagen ermöglichen zwar einen gemeinsamen methodischen Rahmen, aber dieser lässt noch zu viele Freiheiten zu, wie bei der Datenbankwahl und bei der Umsetzung (Dossche et al., 2017). Ein direkter Vergleich von Einzelstudien, mit denen die Bandbreite der Umweltwirkungen und Ressourcenverbräuche von Baukonstruktionen verschiedenster Baualtersklassen ermittelt werden können, ist nur bedingt möglich.

Die Europäische Kommission hat nun als Teil der Zielsetzungen des Green Deal mit "Level(s)" ein neues einheitliches Rahmenwerk für die Evaluierung nachhaltiger Gebäude geschaffen (Europäische Komission, o. J.b, 2019). Auch dieses Rahmenwerk stellt – neben dem Wasserverbrauch, der Gesundheit, dem Wert/Risiko und dem Klimawandel – als

Indikatoren für nachhaltige Gebäude den Treibhausgasausstoß und den Materialverbrauch in den Mittelpunkt der Bewertung. Inwiefern dieses Rahmenwerk die einzeln existierenden Zertifizierungssysteme zusammenführen kann, sodass eine europaweit einheitliche Bewertung des Gebäudesektors und somit der Baukonstruktionen ermöglicht wird, kann aktuell noch nicht beurteilt werden.

2.1.4 Indikatoren

Die ökologische Qualität von Baustoffen und -konstruktionen kann mit Hilfe der ÖKOBAU-DAT durch insgesamt 24 Indikatoren bewertet werden. Die Indikatoren beschreiben die Umweltwirkungen, den Ressourceneinsatz, die anfallenden Abfälle oder den Output der Stoff- und Energieflüsse und finden sich in allen EPDs für Bauprodukte nach DIN EN 15804:2020-03. (BBSR, 2019, S. 12)

Zur Beschreibung der Umweltwirkung und des Ressourceneinsatzes von Bauprodukten werden in der vorliegenden Arbeit von diesen 24 Indikatoren drei wesentliche Indikatoren herangezogen, die bei der Formulierung der nationalen und internationalen Klimaschutzziele bzw. der Klimapolitik berücksichtigt werden: das GWP (engl. Global Warming Potential – globales Treibhauspotential), die PENRT (engl. Primary Energy Non-Renewable Total – Gesamte nicht erneuerbare Primärenergie) und die PERT (engl. Primary Energy Renewable Total – Gesamte erneuerbare Primärenergie) (BMWI, o. J.a, o. J.b; Europäische Komission, o. J.a). Das GWP wird als maßgebender Indikator zur Bewertung des menschengemachten Klimawandels angesehen und in kg oder t CO₂-Äquivalenten ausgedrückt. Zusätzlich wird die Energieeffizienzsteigerung an der Reduzierung des Primärenergiebedarfs gemessen, vor allem an der Reduzierung des nicht erneuerbaren Anteils. Der Primärenergiebedarf wird in MJ, kWh oder MWh bilanziert.

Auch das BNB gewichtet diese Indikatoren stärker als andere. Beim Ersatzverfahren zur ökobilanziellen Untersuchung von repräsentativen Bauteilen der KG 300 wird bei der Ressourceninanspruchnahme die PERT und PENRT ermittelt. Zur Bewertung der Umweltwirkungen ist das GWP einer von fünf wesentlichen Indikatoren. (BMUB, o. J.)

Hier wird die PERT nicht separat betrachtet, sondern sie fließt zusammen mit der PENRT in die ausgewiesene PET (Gesamte Primärenergie mit erneuerbarem und nicht erneuerbarem Anteil) ein.

2.2 Gebäudetypologien des Wohnbestandes

In der Literatur gibt es mehrere Ansätze den deutschen Wohngebäudebestand und seine Eigenschaften, z. B. strukturiert nach energetischen oder konstruktiven Eigenschaften, darzustellen. Je nach Zielanforderung werden beispielsweise Altersstrukturen oder der energetische und konstruktive Gebäudezustand beschrieben. Im Anschluss erfolgt die Vorstellung relevanter Gebäudetypologien und -erhebungen sowie die Diskussion über ihre Verwendbarkeit in dieser Arbeit.

2.2.1 Deutsche Gebäudestatistiken

Die letzte deutsche Wohngebäudeerhebung der statistischen Ämter des Bundes und der Länder fand im Jahr 2011 (Zensus 2011) statt. Abbildung 2-4 zeigt die Verteilung der Gebäude mit Wohnraum sowie die Verteilung der Wohnungen nach Baujahr bzw. nach vorgegebenen Baualtersklassen. Der aktuelle Sanierungsstand in den verschiedenen Baualtersklassen wird hier nicht erfasst. Im Durchschnitt besitzt ein Gebäude rund 1,9 Wohnungen. Demnach übersteigt in Deutschland die Anzahl der Ein- und Zweifamilienhäuser die der Mehrfamilienhäuser. Dies verhält sich über alle Baualtersklassen hinweg ähnlich.

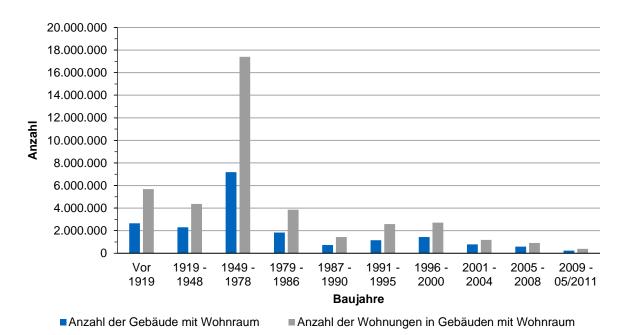


Abbildung 2-4: Anzahl der Gebäude mit Wohnraum sowie die Wohnungsanzahl nach Baujahr; eigene Darstellung nach Statistische Ämter des Bundes und der Länder (2011a, 2011b)

Durch die Fortschreibung der Bautätigkeitstatistik kann die Wohngebäudeerhebung im Rahmen ihrer Erfassungsgrenzen nahezu als vollständig bezeichnet werden. Baugenehmigungen, Baufertigstellungen und Gebäudeabgänge werden jährlich statistisch festgehalten. Zum Stichtag 31.12.2019 existierten in Deutschland insgesamt 19.160.977 Wohngebäude (Statistisches Bundesamt, 2020a, 2020b). Die jährlichen Abgänge ganzer Wohngebäude von 5.752 bis 10.663 in den vergangenen 26 Jahren verdeutlichen die Notwendigkeit, die

Veränderung des Gebäudebestandes und somit die Veränderungen der Bauteilmassen und -konstruktionen zu dokumentieren. Jedoch erfassen die Bautätigkeitsstatistiken lediglich den bei den Gebäuden überwiegend verwendeten Baustoff und keine genauen Bauteilaufbauten, die zur Entwicklung ökologischer Kennwerte erforderlich wären. Dennoch unterstützt die Angabe zu den überwiegend verwendeten Baustoffen die Auswahl beispielhafter Bauteilaufbauten folgender Literaturquellen.

2.2.2 Deutscher Wohngebäudebestand

Die Entwicklung von deutschen Wohngebäudetypologien dauert seit 1990 an. Mit dem Projekt Tabula wurde 2011 eine deutsche Gebäudetypologie nach energetischer Klassifizierung anhand von Beispiel- und Durchschnittsgebäuden geschaffen. Mit der zweiten Auflage im Jahr 2015 wurde die Gebäudetypologie mit Hilfe des Nachfolgeprojekts EPISCOPE um Beispielgebäude für Neubauten erweitert. Es werden Häuser von den Baujahren 1859 bis 2009 erfasst. Die Haustypen der Einfamilien-, Mehrfamilien-, Reihen- und Hochhäuser wurden auf Basis von statistischen Häufigkeiten generiert und dienen primär als Grundlage für Energieverbrauchsmodelle des nationalen Gebäudebestandes. (Loga et al., 2015, S. 5-9)

Neben den energetischen Eigenschaften nennt die Typologie Beispiele für nationale und regionale Bauweisen sowie deren Erscheinungsbilder. Die dargestellten Bauteilaufbauten sind jedoch nur beispielhaft aufgeführt und nicht repräsentativ sowie spezifisch genug beschrieben. Aus diesem Grund werden zwar die Definitionen der Gebäudetypologien jedoch nicht die Konstruktionsangaben zur Bilanzierung der ökologischen Kennwerte herangezogen.

2.2.3 Staatliche Vorgaben zur Erhebung von Wohngebäuden

Das Bundesministerium für Wirtschaft und Energie sowie das Bundesministerium des Innern, für Bau und Heimat veröffentlichten in der aktualisierten Fassung der "Bekanntmachung der Regeln zur Datenaufnahme und Datenverwendung im Wohngebäudebestand" eine offizielle Einteilung des Gebäudebestands in insgesamt neun Baualtersklassen (siehe Tabelle 2-1) (BMWI und BMI, 2020). Diese Einteilung basiert in erster Linie auf der Beschreibung von energetischen Kennwerten und weniger auf materiellen Eigenschaften dieser Baualtersklassen. Dennoch ist sie für die Erhebung materieller Charakteristika sinnvoll. Der energetische Standard definiert gleichzeitig die Bauteildicken oder die Verwendung von bestimmten Dämmmaterialien. Auch Sanierungsmaßnahmen orientieren sich primär an dem Ziel, den energetischen Standard zu verbessern, was einen direkten Vergleich der Grauen Energie mit dem betrieblichen Energieaufwand erlaubt. Diese Einteilung dieser Baualtersklassen ist geeigneter als die in Abbildung 2-4 dargestellte. Die Wahl dieser Baualtersklassen wird übernommen und bis 2021 ergänzt (siehe Kapitel 2.3 ab Seite 21).

Tabelle 2-1: Einteilung des Wohngebäudebestandes nach Baualtersklassen; eigene Darstellung nach BMWI und BMI (2020)

Baualtersklasse	Baujahre
BK 1	bis 1918
BK 2	1919 bis 1948
BK 3	1949 bis 1957
BK 4	1958 bis 1968
BK 5	1969 bis 1978
BK 6	1979 bis 1983
BK 7	1984 bis 1994
BK 8	1995 bis 2001
BK 9	ab 2002

2.3 Baualtersklassen

Die Literatur der Architekturgeschichte beschreibt eine Vielzahl an Baukonstruktionen (BMWI und BMI, 2020; Böhmer et al., 2010; Giebeler et al., 2008; Loga et al., 2015; Zentrum für Umweltbewusstes Bauen e.V., 2009a, 2009b). Die Architektur wurde durch die Zerstörung aufgrund von Kriegen, z. B. im ersten und zweiten Weltkrieg, und dem nachfolgenden Baustoffmangel oder durch den wirtschaftlichen Aufschwung, wie in den 60er Jahren, geprägt. Die Ölkrise 1973 führte zur ersten Wärmeschutzverordnung (WSchV), die 1977 in Kraft trat und eine kontinuierliche Steigerung der Energieeffizienz von Gebäuden auf den Weg brachte. Ab dieser Zeit definieren die Einführungen neuer WSchV, der Energieeinsparverordnungen (EnEV) oder des Gebäudeenergiegesetzes (GEG) nachfolgende Baualtersklassen (Deutscher Bundestag, 2002, 2004, 2020).

Wie im vorherigen Kapitel beschrieben, wird die Einteilung in energetische Baualtersklassen in dieser Arbeit übernommen, um Vergleiche mit betriebsbedingten Energieeinsätzen und den sich daraus ergebenden Umweltwirkungen gewährleisten zu können (Lebenszyklusphase B6, Abbildung 2-2, Seite 12). So können jeder Baualtersklasse typische Baukonstruktionen zugeordnet werden. Einzelne Baukonstruktionen können über mehrere Baualtersklassen hinweg vertreten sein. Die festgelegten Baualtersklassen werden nachfolgend vorgestellt, die Bilanzierung baualterstypischer Konstruktionsaufbauten für Wohngebäude erfolgt in Kapitel 3 ab Seite 53.

2.3.1 Baualtersklasse 1 – bis 1918

Das BMWI und BMI (2020) teilen Wohngebäude, die bis 1918 errichtet wurden, in die Baualtersklasse (BK) 1 ein. Loga et al. (2015) definieren bis zum Jahr 1918 zwei Baualtersklassen. Bis 1859, der vorindustriellen Phase, waren die Bautechniken handwerklich und vor allem von verschiedenen lokal verfügbaren Materialien geprägt. Fachwerke mit Strohlehmausfachungen, monolithische Wände aus Natursteinen oder Vollziegeln und Holzbalkendecken waren in dieser Zeit dominante Bauweisen. In der Gründerzeit – Zeit der Industrialisierung – von 1860 bis 1918 dehnten sich in den Städten die Mauerwerksbauten aus. Die Wanddicken nahmen von oben nach unten zu und eine Kelleraußenwand konnte bis zu 99 cm dick sein. Straßenfassaden bestanden aus Stuck, Sandstein oder Klinker. Neben Holzbalkendecken wurden Kellerdecken massiv ausgeführt. Die Gebäude wurden auf Streifenfundamenten gegründet und besaßen Holz(kasten)fenster. Da in dieser Zeit jedoch noch keine nationalen Standards vorherrschten, werden die vielfältigen Bauweisen innerhalb dieser ersten BK zusammengefasst. (Loga et al., 2015, S. 10)

2.3.2 Baualtersklasse 2 – 1919 bis 1948

Mit zunehmender Industrialisierung und nationalen Standardisierungen setzten sich in der Zwischenkriegszeit ein- und zweischalige Mauerwerkswände durch. Verstärkt kamen wärmeschützende Hohlkörperdecken oder Bauelemente mit anderen Luftkammern, wie Hochlochziegel oder Bimshohlblocksteine, zum Einsatz. Die Kellerdecken waren häufig massiv. Kostengünstige, einfache und materialsparende Konstruktionen dominierten diese Baualtersklasse, denn Eisen und Stahl mussten z. B. für den Krieg eingespart werden. Im Kellergeschoss wurde Mauerwerk von Beton abgelöst. (Giebeler et al., 2008, S. 154-171; Loga et al., 2015, S. 10)

2.3.3 Baualtersklasse 3 - 1949 bis 1957

BK 3 stellt die Baualtersklasse der Nachkriegszeit dar, in der einfache Bauweisen mit teilweise wiederverwendeten Trümmer-Materialien dominieren. Urban Mining – Nutzung der gebauten Umwelt für Sekundärrohstoffe – ist also keine neue Erfindung, sondern stellte damals eine Notwendigkeit dar. Insgesamt ähneln die Konstruktionen denen der vorherigen Baualtersklasse in der Ausführung, denn auch in BK 3 war ein sparsamer Materialverbrauch erforderlich. Die Mauerwerksbauweise wurde flächendeckend angewendet, wobei statt Vollziegel gegen Ende der BK Lochziegel auf dem Markt erschienen. Holzbalkendecken wurden vor allem bei Einfamilienhäusern ausgeführt, aber auch massive Flachdecken in Stahlbeton mit und ohne Füllkörper sind in dieser BK ab dem Kellergeschoss vorzufinden. In der DDR wurden in den 50er Jahren mit der Block- bzw. Streifenbauweise Wände und Decken vorgefertigt. (Giebeler et al., 2008, S. 172-189; Loga et al., 2015, S. 10)

Seit 1952 ist expandiertes Polystyrol (EPS) als Dämmstoff erhältlich (Ceresana, 2021).

2.3.4 Baualtersklasse 4 – 1958 bis 1968

Ende der 50er Jahre startete der industrielle, mehrgeschossige Wohnungsbau in der DDR mit Leichtbeton- und Stahlbetonkonstruktionen (z. B. "Plattenbauweise P1" und "Blockbauweise 8 kN Q3A") (Dr. Klein Wowi Finanz AG, o. J.).

Im Geschosswohnungsbau wurde vermehrt Stahlbeton eingesetzt, auch weil der Baustoff Holz knapp war. Leichtbetonsteine (Markenname: Ytong) wurden gegen Ende der 50er Jahre neu eingesetzt. Bis in die 60er Jahre hinein wurden für Dämmarbeiten hauptsächlich Holzwolleleichtbauplatten, Kork- und Torfdämmungen verwendet. Mineralwolle kam ab Mitte der 50er Jahre allmählich auf den deutschen Markt, wobei sie flächendeckend erst ab 1959 als Trittschalldämmung verbaut wurde. Schaumglas ersetzte Korkdämmung bei Flachdächern und ab 1960 etablierten sich die Polystyroldämmungen. Ab 1965 wurden wieder Holzhäuser gebaut, wobei sich in der Literatur dazu keine detaillierteren Angaben finden lassen. (Eicke-Henning, 2017, S. 9; Giebeler et al., 2008, S. 172-189; Loga et al., 2015, S. 11)

2.3.5 Baualtersklasse 5 - 1969 bis 1978

Die Bauweise in der BK 5 wurde von Fertighauskonzepten beeinflusst und es erscheinen Sandwichkonstruktionen. Mit Ende der Baualtersklasse trat am 1. November 1977 die erste Wärmeschutzverordnung (WSchV 1977) in Kraft, die erstmals die Reduzierung des Energieverbrauchs durch bauliche Maßnahmen thematisierte. Keller wurden zunehmend als Wohnraum genutzt und deshalb hochwertig abgedichtet. Bei Einfamilienhäusern wurden Kelleraußenwände nach wie vor in Mauerwerk oder Stampfbeton ausgeführt, im Geschosswohnungsbau kamen vermehrt Stahlbetonwände zum Einsatz. Insgesamt wurden höhere Wohngebäude errichtet. Gebäude erhielten bewehrte Stahlbetonfundamente und Plattengründungen. (Bundesamt für Wirtschaft und Ausfuhrkontrolle, 2020; Giebeler et al., 2008, S. 190-205; Loga et al., 2015, S. 11)

2.3.6 Baualtersklasse 6 – 1979 bis 1983

In dieser BK tritt in Westdeutschland die WSchV 1977 in Kraft. Es wurden maximale Wärmedurchgangskoeffizienten (damals: k-Wert, heute U-Wert) für Außenwände einschließlich Fenster und Fenstertüren, oberste Geschossdecken, Kellerdecken und -wände sowie Bodenplatten definiert (Deutscher Bundestag, 1977). Parallel verbesserte sich auch in der DDR mit der Rationalisierungsstufe II der Wärmeschutz.

Monolithische Außenwände bestanden aus porosierten Materialien, wie Leichtbeton oder Gasbeton, oder wurden mit immer kleineren Luftkammern versehen. Auch Wärmedämmverbundsysteme erschienen auf dem Markt. (Dr. Klein Wowi Finanz AG, o. J.; Loga et al., 2015, S. 11)

2.3.7 Baualtersklasse 7 - 1984 bis 1994

Mit der zweiten WSchV 1984 und der Rationalisierungsstufe III begann die BK 7, in der erstmals auch Niedrigenergiehäuser gebaut wurden (Deutscher Bundestag, 1984).

Putzfassaden oder hinterlüftete Fassaden aus Stein, Ziegel und Blech sind typisch für die 80er Jahre. Steildächer wurden meist mit Ton- und Betondachsteinen eingedeckt. (Bau-Netz, o. J.)

2.3.8 Baualtersklasse 8 - 1995 bis 2001

Die dritte WSchV tritt am 1. Januar 1995 in Kraft (Deutscher Bundestag, 1995). Hierbei wurde neben der Begrenzung von Wärmedurchgangskoeffizienten die Begrenzung des Jahres-Heizwärmebedarfs definiert. Ansonsten unterscheiden sich die Bauweisen nicht signifikant von denen der vorherigen und nachfolgenden Baualtersklassen.

2.3.9 Baualtersklasse 9 - 2002 bis 2009

Von nun an werden die Baualtersklassen nach den Novellierungen der Energieeinsparverordnungen definiert. Ab 1. Februar 2002 wurden die Wärmeschutz- (WärmeschutzV 95)
und Heizungsanlagenverordnung (HeizAnlV 1998) in der ersten Energieeinsparverordnung
(EnEV) zusammengeführt, die bis einschließlich 7. Dezember 2004 gültig war. Parallel zur
Betrachtung von Wärmeverlusten und -gewinnen der Gebäudehülle und Anlagentechnik
wurde der U-Wert als Kennwert für die Wärmedämmqualität von Bauteilen definiert und
eine Tabelle mit Höchstwerten der Wärmedurchgangskoeffizienten von Bauteilen etabliert.
Weitere Novellierungen der EnEV folgten 2004 und 2007, wobei das Anforderungsniveau
an die energetische Qualität der Gebäudehülle nicht verändert wurde. Die ab 2002 gültigen
maximalen U-Werte definieren demnach die Baualtersklasse 9. (Bundesamt für Wirtschaft
und Ausfuhrkontrolle, 2020; Dena, 2007; Deutscher Bundestag, 2002, 2004)

Ab 2002 liegen die deutschen Bautätigkeitsberichte in digitaler Form vor. Sie zeigen von 2003 bis 2020 in Abbildung 2-5 und Abbildung 2-6 die im Wohnungsbau überwiegend verwendeten Baustoffe für Ein- und Zweifamilienhäuser bzw. Mehrfamilienhäuser auf. In BK 9 dominerte in beiden Kategorien die Mauerwerksbauweise (38 % bzw. 41 % Ziegel; 41 % bzw. 46 % sonstiger Mauerstein).

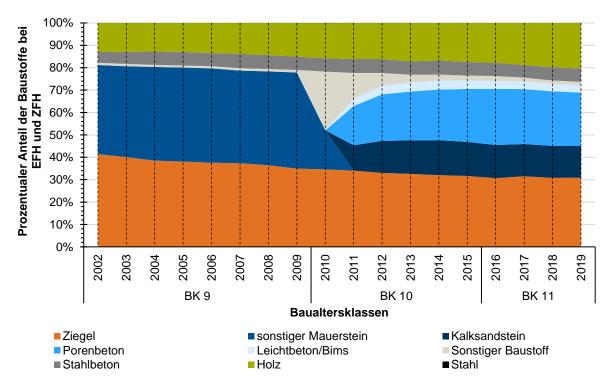


Abbildung 2-5: Prozentuale Anteile der bei Ein- und Zweifamilienhäusern überwiegend verwendeten Baustoffe; eigene Darstellung nach Auswertung von Statistisches Bundesamt (2003, 2004, 2005, 2006, 2007, 2009, 2010a, 2010b, 2011, 2014a, 2014b, 2014c, 2015, 2016, 2017, 2018, 2019, 2020a)

Bei den Ein- und Zweifamilienhäusern besaßen Holzhäuser einen Anteil von 13 %, bei den Mehrfamilienhäusern nur 2 %. Dafür kam Stahlbeton bei den Mehrfamilienhäusern mit einem Anteil von 11 % vermehrt zum Einsatz, der bei Ein- und Zweifamilienhäusern nur einen

Anteil von rund 6 % besaß. Der unregelmäßige Verlauf der Grafiken im Jahr 2010 lässt sich durch die Umstellung der Datenaufnahme und die beginnende separate Aufnahme des Porenbetons, des Leichtbetons/Bims und des Kalksandsteins erklären.

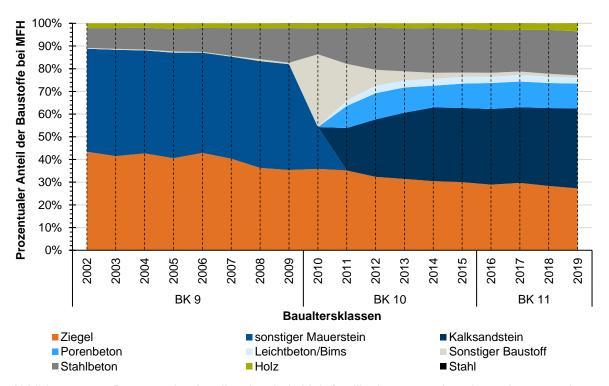


Abbildung 2-6: Prozentuale Anteile der bei Mehrfamilienhäusern überwiegend verwendeten Baustoffe; eigene Darstellung nach Auswertung von Statistisches Bundesamt (2003, 2004, 2005, 2006, 2007, 2009, 2010a, 2010b, 2011, 2014a, 2014b, 2014c, 2015, 2016, 2017, 2018, 2019, 2020a)

Eine Übersicht über die Entwicklung des Dämmstoffmarktes von 1989 bis 2011 liefert Sprengard et al. (2013) in nachfolgender Abbildung 2-7. Mineralwolle dominierte den Markt, gefolgt von expandiertem Polystyrol (EPS). Dies deckt sich mit den Erkenntnissen der Marktanalyse nachwachsender Rohstoffe (meó Consulting Team, 2014).

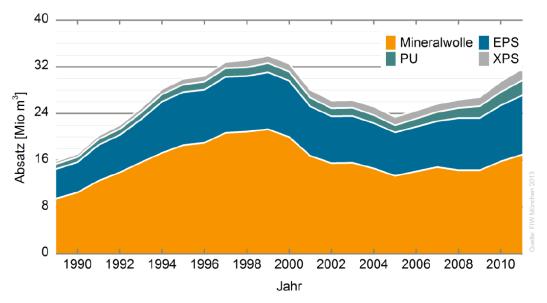


Abbildung 2-7: Absatz der wichtigsten Dämmstoffe in Deutschland in Mio. m³ pro Jahr (1989 - 2011) nach Sprengard et al. (2013)

Polyurethan und extrudiertes Polystyrol (XPS) spielten im Verhältnis eine untergeordnete Rolle, wobei letzteres wegen seiner hohen Druckbelastbarkeit vor allem als Perimeter- oder Flachdachdämmung eingesetzt wurde. Dominierende Einsatzgebiete sind Außenwanddämmungen (53 %) und Dachdämmungen (23 %). Aber auch Innenwände (v.a. Trockenbaukonstruktionen) wurden gedämmt und besaßen in diesen Jahren ein durchschnittliches Marktvolumen von 11 %. Böden und oberste Geschossdecken hatten einen Marktanteil von 8 %. (Sprengard et al., 2013, S. 75)

2.3.10 Baualtersklasse 10 - 2010 bis 2015

Mit der EnEV 2009 verschärften sich ab 1. Oktober 2009 die primärenergetischen Anforderungen für Neubaugebäude und Sanierungen um 30 % gegenüber 2007. Ferner wurde ein Referenzgebäudeverfahren für Wohngebäude eingeführt. Die energetische Qualität der Gebäudehülle inklusive ihrer durchschnittlichen U-Werte wird seitdem über den Vergleich mit dem Referenzgebäude bilanziert, wobei nicht mehr der Höchstwert über das A/V_e-Verhältnis ermittelt wird, sondern über den Gebäudetyp (Dena, 2009, S. 1-4). Die bauliche Umsetzung der EnEV 2009 definiert die BK 10.

Nach Abbildung 2-5, Seite 24 stieg bei Ein- und Zweifamilienhäusern in der BK 10 der Anteil der Holzhäuser leicht auf 17 % (i. M.). Bei Mehrfamilienhäusern nahm die Stahlbetonbauweise auf 18 % zu. Seit 2011 wird beim sonstigen Mauerwerk weiter in Porenbeton, Leichtbeton/Bims und Kalksandstein unterschieden. Porenbeton spielt bei Ein- und Zweifamilienhäusern mit 18 % eine sichtbare Rolle. Bei Mehrfamilienhäusern ist neben dem Ziegel der Kalksandstein relevant (Abbildung 2-6: Anteil von 25 %).

2011 lag der Marktanteil von nachwachsenden Rohstoffen bei 7,2 %, der hauptsächlich durch Holzfaserdämmstoffe und Zellulose-Einblasdämmung gedeckt wurde (meó Consulting Team, 2014, S. 707). Auch bei Wärmedämmverbundsystemen dominieren in dieser BK die in Abbildung 2-7 dargestellten Dämmstoffe Mineralwolle, EPS und XPS (Statista, 2013).

2.3.11 Baualtersklasse 11 - 2016 bis 2020

Mit der EnEV 2013 wurde eine Verschärfung der Gesamtenergieeffizienz für Neubaugebäude ab dem 1. Januar 2016 festgelegt (Deutscher Bundestag, 2014). Da sie zum 1. Mai 2014 in Kraft trat, wird sie teilweise auch "EnEV 2014" genannt. Diese Verschärfung, die mit einer Verbesserung der Wärmedämmwirkung der Gebäudehülle um ca. 20 % gegenüber der EnEV 2009 einhergeht, definiert die Baualtersklasse 11. (Bundesamt für Wirtschaft und Ausfuhrkontrolle, o. J.)

Auch die überwiegende Verwendung der Baustoffe änderte sich gegenüber der BK 10 leicht (siehe Abbildung 2-5 und Abbildung 2-6, Seiten 24 und 25). Ein- und Zweifamilienhäuser in Holzbauweise waren nun zu rund 20 % vertreten. Auch verlagerte sich die Bauweise leicht von der Ziegelbauweise hin zur Porenbetonbauweise. Bei den Mehrfamilienhäusern stieg der Anteil der Kalksandsteingebäude.

Der Marktanteil von Dämmungen aus nachwachsenden Rohstoffen stieg von 2011 bis 2019 um 2 % auf insgesamt 9 %, wobei davon 58 % auf Holzfasern und 32 % auf Zellulose zurückzuführen sind. Fossile Dämmstoffe dominierten den Markt mit einem Anteil von 48 % knapp vor den mineralischen Dämmstoffen mit einem Anteil von 43 %. (Fachagentur Nachwachsende Rohstoffe e.V., 2021; meó Consulting Team, 2014)

2.4 Typische Bauteilaufbauten

Es existieren für Deutschland keine Publikationen mit einer umfangreichen Betrachtung typischer Bauteilaufbauten für Wohngebäude, die ausreichende Angaben zu statistischen Verteilungen aufweisen und hier als Grundlage für die Entwicklung von ökologischen Kennwerten verwendet werden könnten. Dies ist mitunter in der Vielfältigkeit der Bauweisen und in den historischen, regionalen Rohstoffverfügbarkeiten begründet. Jedoch sind bis zur BK 8 Studien zu Beispielkonstruktionen bzw. Bauteilaufbauten mit repräsentativem Charakter bekannt, die nachfolgend beschrieben werden.

2.4.1 Atlas Sanierung

Wie dem Kapitel 2.3 ab Seite 21 zu entnehmen ist, liefert der Atlas Sanierung im Kontext von vier wesentlichen Bauzeitphasen Angaben und detaillierte Beschreibungen zu zeittypischen Materialverwendungen und Bauausführungen (Giebeler et al., 2008, S. 117-205). Ab 1920 war die Ausführung von Ortbetondecken typisch. Sie lösten sukzessive die bis dahin weit verbreiteten Holzbalkendecken ab (Giebeler et al., 2008, S. 119). Da Holz nach dem Krieg Mangelware war, wurden die Decken massiv ausgeführt (Giebeler et al., 2008, S. 182). Bewehrt wurden die Betonbauteile erst ab 1950, vermehrt ab 1965, vor allem im Geschosswohnungsbau und Hochhausbau (Giebeler et al., 2008, S. 192). Vorher dominierten bei Kellerbauteilen Stampfbeton, unbewehrter Beton, Bruchstein oder Ziegel (Giebeler et al., 2008, S. 120). Bei Einfamilienhäusern fanden Stampfbetonkellerwände noch länger Anwendung. Ab 1965 wurden wieder vermehrt Holzhäuser gebaut, wobei sich hierzu in der Literatur keine Bauteilkataloge finden lassen. Der Großteil der Außenwände wird über alle Bauzeiten hinweg einschalig ausgeführt. Beispielsweise bestehen über 95 % der oberirdischen Außenwände bei Gründerzeitbauten (1870 bis 1920) aus Ziegeln (Giebeler et al., 2008. S. 138). Hierzu finden sich fundierte Literaturangaben Umweltbewusstes Bauen e.V., 2009b). Mit Beginn der Gründerzeit kamen Naturstoffe (Torf, Kork) als Dämmung zum Einsatz, welche ab 1920 teilweise von Holzwolleleichtbauplatten abgelöst wurden. Künstliche Mineralfasern wurden ab ca. 1950 eingesetzt und ab 1965 kamen vermehrt geschäumte Kunststoffe hinzu (Giebeler et al., 2008, S. 121).

Diese Einzelinformationen ergänzen die in Kapitel 2.3 typisierten Materialangaben zu den jeweiligen Baualtersklassen. Sie werden für die Entwicklung der ökologischen Kennwerte verwendet, um Literaturlücken durch spezifische Annahmen zu schließen. Darüber hinaus werden die in Giebeler et al. (2008) beschriebenen Bauteilaufbauten nicht in den Bauteilkatalog (vgl. Kapitel A.2 ab Seite 232) übernommen, weil die Materialbeschreibungen lückenhaft und relativ unspezifisch sind.

2.4.2 Deutschlandkarte für Altbaukonstruktionen

BMWI und BMI (2020) weisen in ihren "Bekanntmachungen zu den Regeln der Datenaufnahme und Datenverwendung im Wohngebäudebestand" unter Abschnitt 3.1 auf die Verwendbarkeit von Zentrum für Umweltbewusstes Bauen e.V. (2009a, 2009b) hin. Diese Studie erstellt eine Deutschlandkarte zu Altbaukonstruktionen und erfasst insgesamt 181 regionaltypische Konstruktionen der wärmeübertragenden Umfassungsfläche von Wohngebäuden. Ziel der Studie ist die Identifizierung der jeweiligen U-Werte als Grundlage für die energetische Gebäudesanierung. Zwar wird kein Anspruch auf Vollständigkeit erhoben (siehe Abbildung 2-8), aber die Publikation gilt als Zusammenführung gesicherter Erfahrungswerte. Dabei wurden die einzelnen Regionen unterschiedlich detailliert erhoben. Die orangen Bereiche in Abbildung 2-8 zeigen umfassend erfasste, die transparent-orangen teilweise erfasste und die grauen nicht erfasste Regionen. Die Baualtersklassen werden wie bei Giebeler et al. (2008) nach geschichtlichen Hintergründen sowie politischen und wirtschaftlichen Einflüssen definiert, wobei auf diese nicht näher eingegangen wird.

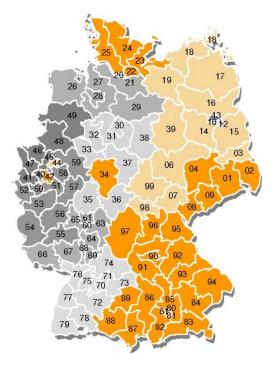


Abbildung 2-8: Erfassung der Altbaukonstruktionen nach Postleitzahlgebieten nach Zentrum für Umweltbewusstes Bauen e.V. (2009a, S. 21)

Ein wesentlicher Vorteil der Publikation sind detaillierte Beschreibungen der Konstruktionsaufbauten, welche die Materialeigenschaften (Rohdichte und Wärmeleitfähigkeit), Schichtdicken und bildhafte Darstellungen umfassen. Somit wird eine Ökobilanzierung des jeweiligen Materialeinsatzes mit Hilfe der ÖKOBAUDAT (BBSR, o. J.) ermöglicht. Deshalb dient
diese Publikation als eine der zwei wesentlichen Literaturquellen für die Berechnung der
ökologischen Kennwerte, sowohl für den Altbestand als auch für Sanierungsmaßnahmen.
Nachteilig ist jedoch, dass die Beschreibung regionaltypischer Bauteilaufbauten mit dem
Jahr 1994 (BK 7) endet und hierfür aus anderer Quelle typische Konstruktionen identifiziert
werden müssen.

2.4.3 Stofflich-energetische Gebäudesteckbriefe und Bauwerksdatenbank

Zur Identifizierung der stofflichen Zusammensetzung und des energetischen Zustands des deutschen Wohngebäudebestandes haben Gruhler et al. (2002) Gebäudesteckbriefe für Ein-/Zweifamilienhäuser und Mehrfamilienhäuser erstellt. Neben der stofflichen Massenermittlung erfolgt eine ökologische Bilanzierung mit den Umweltindikatoren Kumulierter Energieaufwand (KEA), Versauerungspotential und Treibhauspotential.

Da der deutsche Wohngebäudebestand durch eine Vielzahl unterschiedlicher Gebäude charakterisiert wird, werden im Rahmen dieser Arbeit repräsentative Gebäudetypenvertreter gebildet, wobei der Fokus auf den neuen Bundesländern liegt.

- Typologie der Mehrfamilienhäuser: Die Typologie der Mehrfamilienhäuser wird anhand von zehn repräsentativen Wohngebäuden von 1870 bis nach 1990 beschrieben. Dabei bedient sich die Studie u. a. eines Gebäudeatlas, der auf Basis einer Analyse von 910 Wohngebäuden Typenvertreter definiert. (Gruhler et al., 2002, S. 18-22)
- Typologie der Einfamilienhäuser: Zur stofflich-energetischen Beschreibung der Einfamilienhäuser werden ebenfalls acht Typenvertreter vorgestellt. Als Quelle wird zum einen eine Projektauswahl aus Angebotsprojekten genannt, welche ungefähr die Wohngebäude der 60er bis 80er Jahre abbildet. Berücksichtigt werden dabei Einzelhäuser, Reihenhäuser und Doppelhäuser. Zum anderen wird die Typologie der Einfamilienhäuser noch durch zwei nach 1990 errichteten Häusern ergänzt. (Gruhler et al., 2002, S. 18-24)

Die Datenlage dieser Studie ist für die Entwicklung ökologischer Kennwerte gut geeignet, da durch die Auswahl von Typenvertretern ein breites Spektrum an typischen Konstruktionen von Wohngebäuden abgebildet wird. Zudem finden sich in der Studie Gebäudesteckbriefe, die detaillierte Informationen zu jedem Bauteil aufweisen. Neben genauer Art und Dicke der einzelnen Bauteilschichten werden auch Angaben zu den Flächenverteilungen der Bauteile gemacht. Dies ist besonders hilfreich und fehlt in anderen Studien, die primär den energetischen Zustand des Gebäudebestandes durch Angabe der U-Werte und einzelner materialspezifischer Wärmeleitfähigkeiten beschreiben (vgl. Loga et al., 2015).

Ähnlich wie beim Zentrum für Umweltbewusstes Bauen e.V. (2009a, 2009b) endet die Beschreibung der Konstruktionen zunächst mit der BK 7.

Die in dieser Studie beschriebenen Gebäudesteckbriefe finden sich jedoch teilweise auch in der Bauwerksdatenbank für Wohngebäude des IÖR wieder. Hier werden die Gebäudesteckbriefe nicht nur zur Beschreibung der Wohngebäude der neuen Bundesländer, sondern auch der alten Bundesländer verwendet. Zudem werden die Gebäudesteckbriefe von vier der acht Einfamilienhäuser, die sich bei Gruhler et al. (2002) wiederfinden, für die Beschreibung der Wohngebäude bis einschließlich der Baualtersklasse 10 herangezogen. (IÖR, o. J.)

2.4.4 Fensterstudie

Mit der VFF-BF-Studie "Mehr Energie sparen mit neuen Fenstern" wurde ein umfassender Überblick über die produzierten Fenster von 1971 bis 2016 veröffentlicht. Die Daten umfassen die jährlichen Produktionszahlen verschiedener Glas- und Rahmentypen. Dokumentiert sind die jährlichen Marktanteile von Ein-, Zwei- und Dreifachverglasungen sowie von Holz-, Kunststoff-, Aluminium- und Holz-Aluminiumrahmen, inklusive ihrer typischen U-Werte. Wie aus Abbildung 2-9 hervorgeht, wurden mit Beginn der 80er Jahre Kunststoff- und Holzrahmen etwa in gleicher Anzahl produziert. Ab 1990 verdrängten Kunststoffrahmen die Holzrahmen. Der Marktanteil der Aluminiumrahmen sank ab 1980. Ab 1986 kamen die Holz-Aluminiumrahmen auf den Markt, wobei sie im weiteren Verlauf eher einen geringen Marktanteil einnehmen (1 bis 9 %). (Verband Fenster und Fassade und Bundesverband Flachglas e.V., 2017)

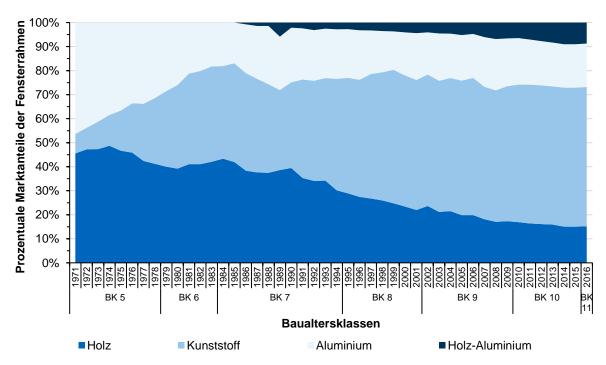


Abbildung 2-9: Deutsche Marktanteile der Fensterrahmen von 1971 bis 2016; eigene Darstellung nach Verband Fenster und Fassade und Bundesverband Flachglas e.V. (2017)

Mit Hilfe der angegebenen U-Werte sowie der Veröffentlichung des BMWI und BMI (2020) können somit auch für die älteren Baualter mögliche Fensterkonstruktionen abgeleitet werden (siehe Kapitel 3 ab Seite 53).

2.4.5 Ergänzende Recherchen und Annahmen

Wie in den vorherigen Kapiteln erwähnt, gibt es ab 1996 keine Literaturquellen, die über umfangreiche Dokumentationen zu typischen oder repräsentativen deutschen Baukonstruktionen verfügen. So müssen für Konstruktionen ab 1996 Annahmen getroffen werden, die auf aktuellen Herstellerangaben, spezifischen Materialrecherchen oder eigenen

Praxiserfahrungen beruhen. Hierzu zählt die Abschätzung realistischer Bauteildicken und Materialzusammensetzungen (z. B. Bewehrungsgehalt von Stahlbeton), die nach statischen und bauphysikalischen Gesichtspunkten erarbeitet und geprüft werden.

Holzbaukonstruktionen neueren Baualters (ab BK 9) können auf Basis des Bauteilkataloges von dataholz.eu (2021) gebildet werden. Auf der Webseite wird ein Bauteilkatalog zur Verfügung gestellt, der bauphysikalisch und ökologisch geprüfte Bauteilaufbauten und -fügungen enthält, die auch als Grundlage für die Nachweisführung gegenüber Baubehörden herangezogen werden können.

2.5 Definition, Aufbau und Verwendung von 3D-Stadtmodellen

Die automatisierte Verknüpfung ökologischer Kennwerte von Baukonstruktionen mit Gebäudekubaturen bzw. Bauteilflächen aus 3D-Stadtmodellen ermöglicht eine schnelle Berechnung von Umweltwirkungen sowie von energetischen und stofflichen Ressourcenverbräuchen auf Quartiers- oder Stadtebene und von ganzen Regionen. Im Rahmen dieser Dissertation wird eine Methode entwickelt, die diese Verknüpfung erlaubt. Nachfolgend wird der Begriff "3D-Stadtmodel" und die Verwendungsmöglichkeiten, insbesondere in der vorliegenden Arbeit, erläutert.

Unter einem 3D-Stadtmodell versteht man in dieser Arbeit ein virtuelles, dreidimensionales (räumliches) Modell städtischer Strukturen. Grundlage hierfür ist GIS (engl. "Geographic Information System"), ein Informationssystem, mit dem raumbezogene Informationen digital erfasst, verwaltet, analysiert und präsentiert werden können. Es kombiniert georeferenzierte digitale Karten mit verschiedenen Sachdaten bzw. Datenbanken unterschiedlicher Informationen. Somit können räumliche Spezifika identifiziert und verarbeitet werden. Ein weiterer Vorteil ist die grafische Darstellung und somit gute Visualisierbarkeit von Daten. Das Open Geospatial Consortium (OGC) entwickelte hierfür das offene Format CityGML, um eine einheitliche Datenstruktur zur Speicherung und zum Austausch virtueller semantischer 3D-Stadtmodelle aufzubauen (Bill, 2003; OGC, 2022). Alternativ erarbeiteten sie auch das Open-Source-Format CityJSON, deren Dateien wesentlich kleiner sind als die des CityGML-Formats (Ledoux und Dukai, 2021).

CityGML ist mittlerweile in der Version 3.0 verfügbar (OGC, 2022). CityJSON liegt in der Version 1.1 vor, wobei die Formate zueinander konform sind. Nutzenden ist es freigestellt, welches Format verwendet werden soll. Eine spätere Umstellung ist möglich.

Mit semantischen 3D-Stadtmodellen können Straßen, Brücken, Vegetation, Flüsse, Seen oder andere Infrastrukturen abgebildet werden, die jeweils als sogenannte "CityGML modules" definiert sind. Die Gebäude können in unterschiedlichen Detaillierungsgraden (engl. "Level of Detail", kurz: LoD) dargestellt werden. Dabei unterscheiden sich die LoD-Konzepte der CityGML-Versionen 2.0 und 3.0. In der Version 2.0 werden Gebäudemodelle im LoD1 (siehe Abbildung 2-10, links) als dreidimensionale Gebäudeblöcke wiedergegeben. Das heißt, dass auf Basis ihrer Grundfläche und ihrer Höhe ein Quader erstellt wird. Die Genauigkeit in Position und Höhe beträgt 5 m. Gebäudemodelle im LoD2 verfügen im Gegensatz zu Gebäudemodellen im LoD1 über Informationen zu verschiedenen Dachformen (siehe Abbildung 2-10, rechts). So können Flach- oder Steildächer identifiziert werden, wobei auch Gauben sichtbar gemacht werden können. Die Genauigkeit in Position und Höhe beträgt 2 m. Zu beachten ist, dass in der CityGML-Version 2.0 nur die Gebäudehüllflächen visualisiert werden und die Innenflächen (z. B. Innenwände und Geschossdecken) sowie Fensterflächen verborgen bleiben. (Gröger et al., o. J., S. 12; LfDBV Bayern, o. J.b)

Mit Einführung der Version 3.0 wurde das LoD-Konzept überarbeitet. Theoretisch ist es nun möglich den Innenraum von Objekten auch im LoD1 bis LoD3 zu beschreiben. Somit liegt eine Datenstruktur vor, in der im LoD2 neben den Gebäudehüllflächen auch die Flächen von Geschossdecken oder Innenwänden zu finden sind. (TU München - Lehrstuhl für Geoinformatik, o. J.d)

Diese Arbeit fokussiert sich jedoch auf die Verwendung der Gebäudeinformationen im CityGML-Format 2.0. Denn hier ist entgegen des neuen 3.0-Formats ein wesentlicher Vorteil, dass deutschlandweit bereits flächendeckende 3D-Gebäudemodelle im LoD2 vorhanden sind (Bundesamt für Kartographie und Geodäsie, 2022). Sie werden von den Landesvermessungsämtern zur Verfügung gestellt und können somit für großflächige Betrachtungen verwendet werden (LfDBV Bayern, o. J.b). Bayern oder Städte, wie Berlin stellen ihre Modelle kostenfrei zur Verfügung, was ihre Verwendung zusätzlich fördert (LfDBV Bayern, o. J.c).

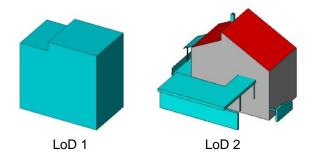


Abbildung 2-10: 3D-Gebäudemodelle; links im LoD1 und rechts im LoD2 nach Gröger et al. (O. J., S. 67)

Die Datenstruktur von CityGML definiert Objekttypen/Klassen und Attribute. Das Modul "Building" kann dabei in weitere Klassen strukturiert und durch verschiedene Attribute spezifiziert werden. Die Objektstruktur in CityGML und deren Schnittstellen können mit UML-Diagrammen beschrieben werden. Abbildung 2-11 zeigt beispielsweise die Zuordnung des Moduls "Building" innerhalb des "_CityObject".

Die Struktur folgt dabei immer einer eindeutigen Richtung (siehe Pfeilspitzen). Die blaue Einfärbung der Klassen zeigt an, dass diese Objekte/Klassen Bestandteile des übergeordneten "CityGML-Core-Moduls" sind. Sie erhalten das Präfix "core". Das Core-Modul definiert alle Basiskomponenten des CityGML-Datenmodells. Gelb werden die Klassen eingefärbt, die gerade im Mittelpunkt der Betrachtung stehen (also hier "Building"). Mit Hilfe des Moduls "Building" können die Gebäude thematisch und räumlich beschrieben werden. Dazu gehören einzelne Gebäudeteile, Installationen und Angaben zu innenliegenden Gebäudestrukturen. "Feature" steht dabei für ein identifizierbares und unterscheidbares Objekt, das vom GML-Typ "AbstractFeatureType" abgeleitet ist. Im Objekt "Geometry" wird die Geometrie des Objektes nach unterschiedlichen Detaillierungsgraden (hier: LoD1 bis LoD4) definiert. Mit Hilfe von CityGML ist es ebenfalls möglich, einzelne 3D-Objekte, wie Gebäude zu Gebäudekomplexen zusammenzufassen und so ganze Quartiere gleichzeitig zu betrachten. (Gröger et al., o. J., S. 4-20)

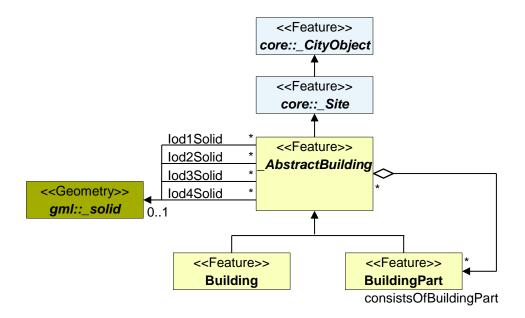


Abbildung 2-11: Beispiel für die Darstellung und Farbcodierung eines UML-Diagramms, wie es zur Definition von CityGML verwendet wird, nach Gröger et al. (O. J.)

Die Grundlagen, um eine LCA auf Quartiersebene unter Verwendung einer Verknüpfung von ökologischen Kennwerten von Baukonstruktionen zu berechnen, bringt die Struktur von 3D-Stadtmodellen im CityGML-Format bereits mit sich. Möglichkeiten zur Verknüpfung der ökologischen Kennwerte mit den relevanten Informationen aus 3D-Stadtmodellen werden in Kapitel 4 ab Seite 107 beschrieben. Dabei wird spezifisch auf die bereits vorhandenen Datenstrukturen des CityGML-Formats eingegangen.

2.6 Sensitivitätsanalyse

Unsicherheits- bzw. Sensitivitätsanalysen sind bei der Ermittlung des betrieblichen Energiebedarfs mittlerweile weit verbreitet (Tian et al., 2018). In ihrer Regelanwendung umfasst eine LCA keine quantitative Unsicherheits- bzw. Sensitivitätsanalyse, sondern es erfolgt höchstens die qualitative Benennung der Unsicherheiten. Eine Unsicherheitsanalyse erfasst die Auswirkungen von schwankenden Eingangswerten auf die Varianz des Endergebnisses. Mit Hilfe einer Sensitivitätsanalyse lässt sich bewerten, wie stark variierende Eingangswerte die Varianz des Gesamtergebnisses beeinflussen. Durch diese Analysen kann die Belastbarkeit der Ergebnisse oder der Einfluss verschiedener Parameter bewertet werden.

Besonders bei einer Betrachtung auf Quartiersebene ist es wichtig, die Unsicherheiten bei den Eingangsparametern und deren Auswirkungen auf das Ergebnis zu kennen, denn hier müssen zu Gunsten einer effizienten Bilanzierung gewisse Annahmen getroffen werden. Bei einer LCA auf Gebäudeebene erlaubt es der zeitliche Spielraum mehr ins Detail zu gehen. Die LCA von Baukonstruktionen wird beispielsweise durch die Bestimmung typischer Materialien und Schichtenaufbauten sowie durch die Auswahl geeigneter LCA-Datensätze beeinflusst. Hier sind Neubaukonstruktionen und Konstruktionen jüngerer Bauzeit zu erwähnen, für die noch keine allgemeingültigen Bauteilkataloge existieren (vgl. Kapitel 2.4, Seite 28).

Unter Berücksichtigung verschiedener Konstruktionsaufbauten entstehen je Baualtersklasse minimale und maximale Werte für Umweltwirkungen, deren Einfluss auf das Quartiersergebnis diskutiert werden muss. Weiter sind Unsicherheiten bei der Annahme von geometrischen Eigenschaften zu nennen, die nicht direkt aus dem 3D-Stadtmodell hervorgehen, aber größere Auswirkungen auf das Endergebnis haben können (Schneider-Marin et al., 2020). Diese Auswirkungen müssen projektspezifisch genauer betrachtet werden. Auch ihr Wertebereich muss konkretisiert werden.

2.6.1 Sensitivitätsanalysen bei der LCA

Sensitivitätsanalysen helfen die Qualität von Berechnungsmodellen zu prüfen, das Vertrauen in die Ergebnisse zu stärken oder maßgebende Einflussparameter zu identifizieren. Die Literatur verweist auf verschiedene Sensitivitätsanalysemethoden, die bei Lebenszyklusanalysen in verschiedenen Fachbereichen wie der Landwirtschaft oder dem Energieoder Gebäudesektor durchgeführt werden (Lloyd und Ries, 2007).

Um die ökologische Qualität von Gebäuden oder größeren Gebäudekomplexen signifikant verbessern zu können, muss die LCA in frühen Planungsphasen ausgeführt werden. Denn nur so erkennen Entscheidungsträger:innen rechtzeitig die Auswirkungen gewisser Planungsunsicherheiten – z. B. Wahl der Wertebereiche der Eingangsparameter – auf das

Ergebnis der LCA. Fehlentscheidungen oder Falscheinschätzungen können somit vermieden werden. (Schneider-Marin et al., 2020)

Lo et al. (2005) führen eine Fallstudie zur Beurteilung alternativer EoL-Szenarien in Abhängigkeit des GWP durch. Hierbei kombinieren sie die Bayesische Wahrscheinlichkeitsmethode (Methode nach dem Satz von Bayes; siehe Glossar ab XIII) mit der Monte Carlo Methode (Methode zur Generierung von definierten Zufallsexperimenten; siehe Kapitel 2.6.2). Die Ergebnisse zeigen, dass die Durchführung einer quantitativen Unsicherheitsanalyse mehr Informationen generiert als eine deterministisch angelegte LCA, und dass die daraus entstehenden Diskussionen zu unterschiedlichen Ergebnissen führen kann. Die Ermittlung der Korrelationskoeffizienten (spezifisches Maß, um die Stärke der linearen Beziehung zwischen Variablen zu quantifizieren) der Inputparameter helfen zudem die Parameter zu identifizieren, die durch ihr Variieren die größte Varianz im Endergebnis hervorrufen.

Ewertowska et al. (2017) beschäftigten sich mit einer Unsicherheitsanalyse der LCA in Kombination von Datenentwicklungsanalysen. Auch sie ziehen das Fazit, dass die Ergebnisse deterministischer Berechnungen signifikant von den Ergebnissen abweichen können, die unter Berücksichtigung von Unsicherheiten berechnet werden. Unsicherheitsanalysen sollten zwingend eingeführt werden, um die Validität der deterministischen Berechnung besser bewerten zu können.

2.6.2 Monte Carlo als Methode bei Unsicherheits- und Sensitivitätsanalysen

Eine Monte Carlo Simulation generiert Zufallsexperimente mit Hilfe eines Computers. Dabei werden durch Vorgabe bestimmter Wertebereiche in Kombination mit gewissen Wahrscheinlichkeitsverteilungen Zufallsexperimente bzw. Stichproben erzeugt. Dieser Vorgang der Stichprobenerhebung wird als "Sampling" bezeichnet. (Kroese, 2014; Kroese et al., 2014)

Die Monte Carlo Simulation hat sich im Bereich der Unsicherheitsanalysen von Gebäudesimulationen durchgesetzt. Als Beispiel kann hier die Wahrscheinlichkeitsverteilung und Sensitivitätsanalyse von Energiebedarfsberechnungen genannt werden (Maderspacher, 2017; Regel, 2016).

Die Anwendung der Monte Carlo Simulation ist auch bei Unsicherheitsanalysen im Bereich der LCA weit verbreitet und wird dafür empfohlen (Heijungs, 2020). Hierbei sind einige grundsätzliche Regeln und Anwendungsbedingungen einzuhalten. Die Untersuchungen von Heijungs et al. (2020) sowie von Regel (2016) zeigen, dass z. B. die Anzahl der Monte Carlo Durchläufe nicht größer als die Stichprobennahme der Inputparameter sein sollte. Je nach Umfang der Eingabeunsicherheiten können verschiedene Unterarten der Stichprobenerhebung (Sampling) gewählt werden.

Groen et al. (2014) beschäftigen sich mit fünf Methoden, um im Rahmen einer LCA eine Stichprobenerhebung (Sampling) zu generieren. Dabei vergleichen sie das gängige Monte Carlo Sampling mit vier weiteren Samplingmethoden und legen fest, dass die Monte Carlo Simulation angewendet werden soll, wenn die Eingabeunsicherheiten groß sind.

Darüber hinaus zeigt sich, dass das sogenannte Quasi Monte Carlo Sampling das Monte Carlo Sampling bezüglich seiner Genauigkeit der Standardabweichung zum Stichprobenmittel übertrifft, und zwar unabhängig von der Verteilungsart oder des Variationskoeffizienten (Maß für die relative Streuung) der Inputparameter.

Eine weitere sogenannte zufällige Stichprobenerhebung stellt das Sobol Sampling dar, das auf Basis der Monte Carlo Simulation gebildet werden kann. Es eignet sich vor allem bei steigender Zahl der Eingangsparameter, da das Modellergebnis schneller zum geschätzten Mittelwert hin konvergiert. Grund dafür ist, dass bei der Generierung einer Stichprobe fortwährend bereits gezogene Stichprobenwerte berücksichtigt werden. Dies führt final auch zu einer gleichmäßigeren Verteilung der Zufallsexperimente. Im weiteren Schritt kann durch Sensitivitätsindizes die Abhängigkeit einer Variable (Ergebnis) von den unabhängigen Variablen (Eingangsparameter) dargestellt werden (Regel, 2016, S. 45-46).

Das Sobol Sampling wird deshalb bei der hier durchgeführten Sensitivitätsanalyse verfolgt und umgesetzt, um die Ergebnisse des Fallbeispiels und die vorhandenen Unsicherheiten besser bewerten zu können (siehe Kapitel 5.4 ab Seite 166).

2.7 Ökologische Kennwerte für Baukonstruktionen

2.7.1 Internationale Studien zu Wohngebäuden

Die nachfolgenden Ausführungen sind das Ergebnis einer Literaturrecherche zur internationalen Verbreitung von Studien, die sich mit der ökologischen Qualität verschiedener Bauweisen im Wohnungsbau beschäftigen. Es gilt zu klären, ob und in welchem Umfang bereits Referenzwerte vorhanden sind, welche Bezugseinheiten gewählt werden, zu welchem Zweck die Studien erstellt sind und welche Ausgangssituation sich daraus für die vorliegende Arbeit ergibt.

Entwickelte Kennwerte werden meist auf Gebäudeebene dargestellt und auf die Bruttogrundfläche (BGF), die Nettoraum- (NRF) bzw. Nettogrundfläche (NGF) der Gebäude oder die Wohn(nutz)fläche (WFL oder WNF) bezogen. Lavagna et al. (2018) erarbeiten z. B. Kennwerte für 24 repräsentative europäische Wohngebäude. Ziel ist es, Referenzwerte für durchschnittliche Umweltwirkungen von europäischen Wohngebäuden für die Entwicklung von politischen Strategien – wie Energieeffizienz- oder Klimaziele – zu generieren.

Eine umfassende Analyse von 238 weltweiten Fallbeispielen (Wohn- und Bürogebäude) befasst sich mit dem Einfluss der Effizienzsteigerung im Betrieb auf die lebenszyklusbasierten Treibhausgasemissionen. Sie arbeitet deutlich heraus, dass die Grauen Emissionen der Baukonstruktion zukünftig in den Vordergrund rücken, vor allem, wenn hoch effiziente Gebäude umgesetzt werden. Anteile der Grauen Emissionen von 45 bis 50 % sind global betrachtet die Regel, wobei sie im Extremfall bis zu 90 % der lebenszylusbasierten Treibhausgasemissionen einnehmen können. Das durchschnittlich ermittelte GWP für bestehende Wohngebäude beträgt hierbei 6,7 bis 11,2, für Neubauten 3,3 bis 13,3 kg CO₂-Äq. pro m²_{BGF} und Jahr. (Röck et al., 2020)

Diese Werte werden auf den Zielwert der Swiss SIA 2040 bezogen. Der Wert beruht auf dem Ansatz der "2000 Watt Gesellschaft" und hat die Klimaneutralität bis 2050 zum Ziel. (Swiss Society of Engineers and Architects, 2017)

Vor diesem Hintergrund sollten lebenszyklusbasiert auf die Konstruktion nicht mehr als 9,0 kg CO₂-Äg. pro m²_{BGF} und Jahr entfallen (Röck et al., 2020).

Die Studie von Röck et al. (2020) berücksichtigt allerdings nur die aktuellen Bau- und Neubaustandards. Auswirkungen von Renovierungsmaßnahmen werden nicht untersucht. Außerdem wird bemängelt, dass die Plausibilität und Repräsentativität der Fallstudien und ihrer Ergebnisse nicht gänzlich kontrolliert werden können, da kein Zugriff auf die zugrunde liegenden Daten besteht.

Bei der Darstellung ökologischer Kennwerte kann ferner ein Review von Soust-Verdaguer et al. (2016) genannt werden, welches auf 20 Studien zu Einfamilienhäusern verweist, die innerhalb von fünf Jahren veröffentlicht wurden. Ökobilanzierungen finden sich daneben

beispielhaft auch in anderen internationalen Publikationen (Bastos et al., 2014; Marceau und VanGeem, 2006; Monteiro und Freire, 2012; Petrovic et al., 2019; Peuportier, 2001; Takano et al., 2015; Tonooka et al., 2014).

Die betrachteten Studien spiegeln die internationale Situation gut wider. Sie belegen die Notwendigkeit einheitlicher Benchmarks zur Durchführung von ökologischen Lebenszyklusanalysen in frühen Planungsphasen. So fordern auch Frischknecht et al. (2019), dass europaweit verbindlich lebenszyklusbasierte Benchmarks für Wohngebäude eingeführt werden sollten. Die bisherigen Benchmarks müssen dabei überarbeitet werden, da zwischen existierenden Benchmarks und der Erreichung der Klimaneutralität sowie des 1,5°C-Ziels zur Begrenzung der Erderwärmung eine signifikante Abweichung besteht (Frischknecht et al., 2019).

Hier setzt die vorliegende Arbeit an, indem für Deutschland eine repräsentative und breite Datenbasis zu den Umweltwirkungen von Alt-, Sanierungs- und Neubaukonstruktionen geschaffen wird. Häfliger et al. (2017) zeigen mit ihrer Unsicherheitsanalyse, wie wichtig die Verwendung einheitlicher und transparenter Systemgrenzen und Datengrundlagen ist, um die Ergebnisvariationen gering zu halten. Je nach Wahl der funktionalen Einheiten, des Datensatzes und der einzelnen Nutzungsdauern können einzelne Bauteile oder Materialien signifikanten Einfluss auf das GWP eines Gebäudes nehmen. So beeinflussen in dieser Studie die Fenster und Dämmmaterialien das lebenszyklusbasierte GWP mit einem Anteil von mindestens 10 %. Jedoch kann sich das Ergebnis um bis zu 20 % verändern, wenn andere Datensätze gewählt werden.

2.7.2 Nationale Studien zu Wohngebäuden

Im Anschluss an die Diskussion zur internationalen Verbreitung von LCA-Studien stellt sich die Frage, inwiefern die Ergebnisse bisheriger LCA-Studien zum deutschen Wohngebäudebestand für die nachfolgende Arbeit herangezogen werden können. Der Fokus liegt auf Studien, die ökologische Kennwerte für verschiedene Baukonstruktionen und Bauweisen ausweisen.

Wie in Kapitel 2.4.3 (Seite 30) erläutert wird, beinhaltet die Studie von Gruhler et al. (2002) nicht nur Angaben zu repräsentativen Baukonstruktionen aus verschiedenen Baualtersklassen, sondern mit der Studie werden auch ökologische Kennwerte zum KEA und Treibhausgaspotential ausgegeben. Eine direkte Verwendung dieser Kennwerte ist jedoch im weiteren Verlauf nicht möglich, da sie auf einer veralteten Datenbasis beruhen und die Indikatoren PENRT und PET flächendeckender verwendet werden als der KEA.

König (2017) untersucht in einer normkonformen Variantenstudie 72 verschiedene Ausführungen eines zweigeschossigen Einfamilienhauses ohne Keller, wobei verschiedene Bauweisen, Energiestandards und Beheizungsarten modelliert werden. Die Baustoffwahl

erfolgt beispielhaft für die gängigsten Bauweisen auf Basis der Baustatistiken von 2015 (siehe hierzu auch Statistisches Bundesamt (2016)).

Die Studie liefert Ergebnisse für GWP, PET und PENRT sowie weitere Umweltwirkungen je m² NRF und Jahr, aufsummiert für Baukonstruktion und Heiztechnik. Tabelle 2-2 zeigt die Werte, die für die Grauen Energien und Emissionen der Neubauvarianten ermittelt werden. Sie verweist auf eine möglichst frühzeitige Variantenuntersuchung und die Notwendigkeit einer normkonformen Berücksichtigung der aktuellen Datensätze der ÖKOBAU-DAT, um verschiedene Studien miteinander vergleichen zu können.

Diese Methode dient der hier vorliegenden Arbeit als Vorbild. Die errechneten Umweltwirkungen und Energieverbräuche können jedoch nicht direkt verwendet werden, da sie auf ein m² NRF bezogen werden und nur eine einzige Gebäudegeometrie berücksichtigen. Die Bauteilaufbauten sind beispielhaft gewählt und die Rahmenbedingungen sowie die Bilanzierungsgrenzen werden unterschiedlich gesetzt. Auch müssten die Werte und Details für die Baukonstruktionen separat ausgewiesen werden, um hier verwendet werden zu können. Ein Vergleich mit der Konstruktionsweise eines Bestandsgebäudes wird lediglich für die Baualtersklasse 8 durchgeführt.

Tabelle 2-2: Wohngebäudeneubauten – GWP, PENRT und PET für Baukonstruktionen und Heiztechnik (Lebensdauer: 50 Jahre); eigene Darstellung nach König (2017, S. 119-123, 127, 128)

Indikator	Minimalwert	Maximalwert
GWP [kg CO ₂ -Äq./(m ² NRF×a)]	8,4	16,7
PENRT [MJ/(m ² NRF×a)]	105	214
PET [MJ/(m² _{NRF} xa)]	153	250

Werte unter Berücksichtigung der Lebenszyklusphasen A1-A3, B2, B4, C3 und C4

Hafner et al. (2017) analysieren die mögliche Substitution von mineralischen Gebäuden durch Holzgebäude im Rahmen des Klimaschutzes. Untersucht werden Neubauten von repräsentativen Ein-, Zwei- und Mehrfamilienhäusern. Analog zu König (2017) werden die gängigen Bauweisen nach den Bautätigkeitsberichten berücksichtigt und eine LCA für einen Betrachtungszeitraum von 50 Jahren mit Bezug auf die BGF der Gebäude durchgeführt. Bilanziert werden sowohl Beispielgebäude als auch ein repräsentatives Durchschnittshaus, das 37 % der gesamtdeutschen Produktion von Fertighäusern in Holzbauweise abdeckt.

Da die bilanzierten Bauteilaufbauten und ihre Massen bei Hafner et al. (2017) jedoch nicht näher dargestellt sind, ist es nicht möglich, die genannten Kennwerte der Treibhausgasemissionen baualtersbezogen für diese Arbeit zu verwenden.

Die genannten Studien verdeutlichen die Relevanz einer früh in die Planung integrierten Lebenszyklusanalyse verschiedener Ausführungsvarianten mit Hilfe von Benchmarks. Jedoch können die vorhandenen Kennwerte nicht direkt für die weitere Arbeit verwendet werden, da sie entweder keine einheitlichen Datengrundlagen und Systemgrenzen besitzen oder die Datengrundlagen nicht transparent genug dargestellt sind. Hier knüpft die vorliegende Arbeit an. Es wird eine transparente LCA-Methode entwickelt und eine breite

Datengrundlage zu den Umweltwirkungen von Altbau-, Sanierungs- und Neubaukonstruktionen deutscher Wohngebäude geschaffen. Die Benchmarks vorangegangener Studien können zur Diskussion der eigenen Ergebnisse herangezogen werden.

2.7.3 Deutsche Benchmarks für Bestands- und Neubauten

Neben den in Kapitel 2.7.2 genannten Studien weisen auch die Zertifizierungssysteme der DGNB und des BNB nationale Benchmarks zur ökologischen Qualität von Baukonstruktionen aus (vgl. Kapitel 2.1.3 auf Seite 16). Nachfolgend werden die bestehenden Benchmarks analysiert und es wird geklärt, inwiefern sie in der vorliegenden Arbeit verwendet werden können.

Die Zertifizierungsstrukturen der DGNB und des BNB weisen eine große Ähnlichkeit auf und berücksichtigen dieselben Kategorien (ökologische Qualität, ökonomische Qualität, soziokulturelle und funktionale Qualität, technische Qualität, Prozessqualität und Standortmerkmale) (BBSR, 2020; DGNB, 2022). Allerdings bezieht sich das BNB auf öffentliche Nichtwohngebäude, weshalb für diese Arbeit die Benchmarks der DGNB interessanter sind.

Braune et al. (2021) haben mit einer Studie zu 50 Büro- und Wohngebäuden (Neubau) im Rahmen der DGNB Benchmarks für die Treibhausgasemissionen der Gebäudekonstruktion, bezogen auf Nettogrundfläche und Jahr, erarbeitet. Die in der Studie betrachteten zeitlichen Systemgrenzen entsprechen denen dieser Arbeit (vgl. Kapitel 3.2.2 ab Seite 54 und Abbildung 2-2, Seite 12). Tabelle 2-3 zeigt die Spannweite an Treibhausgasemissionen für die betrachteten Massivbauweisen. Da insgesamt nur drei Holz- bzw. Holz-Hybridgebäude untersucht wurden, konnten hierzu keine statistischen Werte ermittelt werden. Der Benchmark der DGNB für das GWP von Baukonstruktionen im Neubau lag bisher bei 9,4 kg CO_2 -Äq./(m^2_{NRF} ×a) und nähert sich nun mit 8,7 kg CO_2 -Äq./(m^2_{NRF} ×a) dem Benchmark von König (2017) an (siehe Tabelle 2-2). Das Verhältnis zwischen dem GWP der Konstruktion und dem betrieblichen Energieeinsatz beträgt i. M. 35 % zu 65 %. Leider besteht hier kein freier Zugriff auf die bilanzierten Bauteilkonstruktionen, um sie zur Entwicklung typischer Neubaukonstruktionen heranzuziehen.

Mahler, Idler, Nusser und Gantner (2019) liefern weitere Benchmarks für Wohngebäude im Bestand und Neubau. Die LCA wird nach den Definitionen des DGNB und des BNB erarbeitet. Als Indikatoren werden das GWP und der Kumulierte Energieaufwand nicht erneuerbar gewählt (KEAne). Wie bei Hafner et al. (2017) stützt sich diese LCA auf die ÖKO-BAUDAT, Version 2015. Als Typgebäude werden ein mittelgroßes Mehrfamilienhaus (MFH) und ein Reihenendhaus (EFH) jeweils in Massiv- und Holzbauweise untersucht. Auf Basis verschiedener Niedrigstenergiestandards werden die Variantenstudien durchgeführt. Für typische Neubauten weisen sie für Herstellung, Instandhaltung und Lebensende der Gebäudekonstruktion ein GWP von 10 bis 16 kg CO₂-Äq./(m²_{WFL}×a) aus. Bei Sanierung sinkt

dieser Wert auf 3 bis 8 kg CO₂-Äq./(m²_{WFL}×a). Die Studie weist deutlich darauf hin, dass aufgrund der geringen Datenbasis keine allgemeinen Vorgaben abgeleitet werden können.

Da das GWP je m² Wohnfläche und Jahr und nicht je m² Nettoraum- bzw. Nettogrundfläche ausgegeben wird, ist ein direkter Vergleich mit König (2017) und Braune et al. (2021) nicht möglich. Zudem fließt bei den Kennwerten für die Konstruktion nicht nur der Anteil der Baukonstruktion, sondern auch der Anteil der TGA mit ein. Die Werte für den KEAne sind nur bedingt verwendbar, da er nicht direkt mit der PENRT anderer Publikationen verglichen werden kann.

Tabelle 2-3: Benchmark Büro- und Wohngebäude im Neubau: GWP der Baukonstruktionen; eigene Darstellung nach Braune et al. (2021)

	GWP [kg CO₂-Äq./(m² _{NRF} ×a)]		
Statistischer Wert	Massivbauweise (n= 25 Gebäude)	Skelettbauweise (n= 22 Gebäude	Holz-/Hybridbauweise (n= 3 Gebäude)
Minimum	5,5	6,1	-
Mittelwert	8,6	9,7	-
Median	8,2	9,4	-
Maximum	14,1	15,5	-
Minimum gesamt	-0,4		
Mittelwert gesamt	8,7		
Median gesamt	8,8		
Maximum gesamt	15,5		

Schlegl et al. (2019) entwickelten ebenfalls Benchmarks mit Hilfe der Auswertung von über 200 DGNB-Zertifizierungen. Der Fokus liegt jedoch erneut auf Büro- und nicht wie in der vorliegenden Arbeit auf Wohngebäuden. Ferner werden nur Neubau- und keine Sanierungskonstruktionen berücksichtigt.

Vorhandene deutsche Benchmarks, die durch DGNB-Zertifizierungen entstanden sind, können nur als Vergleichswerte herangezogen werden. Die Auseinandersetzung mit dem Stand der Forschung hat gezeigt, dass nicht nur Benchmarks für den Neubau, sondern auch für die Sanierung erforderlich sind. Nur so kann in frühen Planungsphasen verglichen und entschieden werden, ob Sanierungen dem Ersatzneubau hinsichtlich der ökologischen Qualität vorgezogen werden sollten. Die in der Literatur ausgewiesenen Bauteilaufbauten werden bei der Entwicklung der ökologischen Kennwerte (siehe Kapitel 3 ab Seite 53) berücksichtigt. Darüber hinaus eignen sich die bisherigen Benchmarks in Tabelle 2-2 (siehe Seite 41) und Tabelle 2-3 für die Diskussion der Szenarienergebnisse in Kapitel 5.6 (ab Seite 177).

2.8 LCA-Studien zum Gebäudebestand

Nachfolgend wird der Stand der Forschung zu LCA-Studien von Gebäudebeständen vorgestellt. Diskutiert werden die Art und der Umfang der Betrachtungen sowie die Datengrundlagen bisheriger Studien.

Röck et al. (2021) liefern eine systematische Analyse zu LCA von größeren Gebäudebeständen im Bestand, in der Sanierung und im Neubau. Die Studie unterstreicht die politische Relevanz, Gebäudebestände auf größerer Maßstabsebene zu untersuchen. Insgesamt werden 22 internationale LCA-Studien mit der Schlussfolgerung analysiert, dass sie entweder eine große Betrachtungsebene aufweisen oder fundierte Detailstudien darstellen. Die gleichzeitige Erfüllung beider Kriterien wäre wünschenswert, ist in den bisherigen Studien jedoch nicht vorhanden. Ferner wird darauf hingewiesen, dass nur wenige Studien Szenarienvergleiche einschließen und Sensitivitätsanalysen durchführen. Als Optimierung wird eine LCA des Gebäudebestands auf Basis von BIM oder GIS ausgewiesen. Denn so erhält man relevante geometrische Eigenschaften des Gebäudeportfolios und der Detaillierungsgrad der LCA wird erhöht.

In Summe verweist Röck et al. (2021) auf fünf Studien, die Daten aus GIS-Modellen heranziehen. Davon konzentrieren sich Mastrucci, Marvuglia, Popovici et al. (2017), Mastrucci et al. (2020) und Österbring et al. (2019) auf die städtische Betrachtungsebene unter Berücksichtigung der Grauen Emissionen von Wohngebäuden. Die Sanierungsmaßnahmen und der Materialeinsatz stehen dabei im Fokus.

Anders als beispielsweise Stephan und Athanassiadis (2017) verwenden sie die durch die GIS-Modelle vorgegebenen Gebäudegeometrien zur Berechnung, statt definierte Typgebäude (Röck et al., 2021, Appendix B).

Mastrucci, Marvuglia, Leopold und Benetto (2017) begrenzen ihre Betrachtung jedoch auf die Entsorgungsphasen, wohingegen Mastrucci et al. (2020) und Österbring et al. (2019) diese wiederum ausklammern. Österbring et al. (2019) berücksichtigen bei ihrer Betrachtung dreizehn verschiedene Umweltindikatoren, jedoch fehlt die Ermittlung der Primärenergiebedarfe. Auch Mastrucci et al. (2020) bilanzieren keine Primärenergiebedarfe und weisen lediglich das GWP aus.

Die Studie von Röck et al. (2021) illustriert die Vorteile einer LCA auf Basis von BIM oder GIS, um eine Skalierung der Umweltwirkungen von der Bauteilebene auf größere Betrachtungsebenen zu ermöglichen. Jedoch gibt es keine Studie, die gleichzeitig die Herstellungs-, Nutzungs- und Entsorgungsphase von Baumaterialien auf größerer Maßstabsebene berücksichtigt. Röck et al. (2020) zeigen, dass es einer transparenten und detaillierten Datengrundlage bedarf, um mit Daten aus GIS-Modellen eine LCA von der Bauteilschichtenebene bis hin zur Stadtebene oder nationalen Ebene durchzuführen. Nur so können verschiedene Sanierungsszenarien und ihre ökologischen Auswirkungen ausreichend bewertet werden (vgl. auch Kapitel 5 ab Seite 137) (Mastrucci et al., 2020).

Die in der Literatur genannten Optimierungspotentiale greift die vorliegende Arbeit auf.

2.9 Tools zur Bewertung des Gebäudebestandes mit Hilfe räumlicher Gebäudemodelle

Kapitel 2.8 und die in Tabelle 2-4 genannten internationalen Literaturquellen zeigen, dass Lebenszyklusanalysen auf Quartiersebene wichtig sind, um politische Entscheidungen hin zu einem klimaneutralen Gebäudebestand zu unterstützen oder die ökologische Qualität von Baumaßnahmen in frühen Planungsphasen zu verbessern. Die in Tabelle 2-4 aufgelisteten Publikationen, die zwischen 2015 und 2021 veröffentlicht wurden, zeigen die internationale Verbreitung von Lebenszyklusanalysen auf Quartiersebene und deren Untersuchungsrahmen.

Tabelle 2-4: Verbreitung internationaler Publikationen zur LCA auf Quartiersebene zwischen 2015 und 2021 und deren Untersuchungsrahmen; eigene Darstellung

Publika- tion	Titel	Land/ Region	Untersuchungsrahmen	Indikato- ren
Lotteau et al. (2015)	Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale	Australien, USA, Kanada, Schweiz, Frankreich, Deutschland, China, Belgien, Schweden	Review zu bisherigen Studien über LCA im Gebäudesektor auf Quartierslevel; Analyse von insgesamt 21 Fallstudien aus verschiedenen Ländern; Wohn- und Mischgebiete	PET, GWP
Lausselet et al. (2019)	LCA modelling for Zero Emission Neigh- bourhoods in early stage planning	Norwegen	LCA-Studie zu einem Quartier unter Berücksichtigung von Gebäuden, Mobilität, Freiraum, Arbeitsplätzen und Energieinfrastruktur	GWP
Slavkovic et al. (2019)	Life-Cycle Assessment as a decision- support tool for early phases of urban plan- ning: evaluating ap- plicability through a comparative approach	Schweiz	Fallstudie zu Wohn- und Bürogebäuden; LCA zu Neubaumaßnahmen; Ver- gleich der Performance von drei Software-Tools auf Quartierslevel	GWP, KEA
Sözer und Sözen (2019)	Energy saving, global warming and waste re- covery potential of ret- rofitting process for a district	Türkei	Fallstudie mit 82 Wohn- und Touristik-Gebäuden; LCA zu Sanierungsmaßnahmen; Geometrische Informatio- nen aus 3D-BIM-Modell	GWP, KEA, UBP (Um- weltbelas- tungs- punkte)
Feng et al. (2020)	BIM-based life cycle environmental performance assessment of single-family houses: renovation and reconstruction strategies for aging building stock in British Columbia	Kanada	Fallstudie zu einem Einfamilienhaus; Vergleich von sechs Szenarien (Renovierung und Ersatzneubau); geometrische Informationen aus BIM-Modell	GWP
Lausselet et al. (2021)	Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock	Norwegen	Studie zu verschiedenen Einfamilienhäusern, einer Schule und eines Kinder- gartens (Neubau und zwei- malige Renovierung); Ver- wendung von Archetypen	Graue Treibhaus- gasemissi- onen, Ma- terialflüsse

Tabelle 2-4 zeigt, dass in den letzten Jahren die Grauen Energien und Grauen Emissionen für Neubau- und Sanierungsmaßnahmen in den Fokus der Betrachtung gerückt sind. Wichtige geometrische oder baualtersbezogene Gebäudeinformationen liefern hier BIM-Modelle oder definierte Typgebäude (Archetypen).

Aber auch Daten aus GIS-Modellen werden bereits benutzt, um energetische oder ökologische Analysen auf größerer Maßstabsebene durchzuführen (siehe Tabelle 2-5). Die geometrischen Eigenschaften der Gebäude stammen immer aus dem Modell. Die Publikationen werden analysiert, weil sie ähnliche methodische Ansätze wie die vorliegende Dissertation enthalten. Es stellt sich heraus, dass die Studien noch nicht alle Anforderungen an eine fundierte Datengrundlage erfüllen.

So verweisen sowohl Mastrucci, Marvuglia und Popovici et al. (2017) als auch Weiler et al. (2017) auf die Datenbasis von Loga et al. (2015) zur Identifizierung typischer baukonstruktiver Eigenschaften von Wohngebäuden. Wie in Kapitel 2.2.2 (Seite 19) verdeutlicht wird, sind die Bauteilaufbauten jedoch nicht ausreichend repräsentativ und spezifisch beschrieben.

Tabelle 2-5: Publikationen zur GIS-basierten LCA auf Stadt- und/oder Quartiersebene; eigene Darstellung

Publikation	Titel	Land/Region	Untersuchungsrahmen
Mastrucci et al. (2015)	GIS-based Life Cycle Assessment of urban building stocks retrofitting- a bottom-up framework applied to Luxembourg	Luxemburg	Entwicklung eines georeferenzierten Datenmodells zur LCA des Gebäudebestandes auf Stadtebene; Fallstudie zu Wohngebäuden mit Ergebnissen zur Sanierung; Ermittlung baualterstypischer Gebäudekonstruktionen aus der Literatur
Mastrucci, Marvuglia und Popo- vici et al. (2017)	Geospatial characterization of building material stocks for the life cycle assessment of end-of-life scenarios at the ur- ban scale	Luxemburg	Entwicklung einer Struktur zur Charakterisierung des Baumaterialbestandes und LCA auf städtischem Maßstab basierend auf GIS; Fallstudie zu Wohngebäuden; Baualter wird berücksichtigt; Studie verweist auf Loga et al. (2015)
Weiler et al. (2017) und Harter et al. (2017)	Life cycle assessment of buildings and city quarters comparing demolition and reconstruction with refurbishment Developing a roadmap for the modernisation of city quarters – Comparing the primary	Deutschland	Ermittlung baualterstypischer Baukonstruktionen und Umweltwirkungen auf Basis von Loga et al. (2015) (siehe Kapitel 2.2.2, Seite 19); Berücksichtigung von Neubau- und Ersatzneubaumaßnahmen von Wohngebäuden; Durchführung einer LCA mit Hilfe der Software SimStadt (vgl. Kapitel 2.9.2, ab Seite 47); Betrach-
	energy demand and green- house gas emissions		tung vier verschiedener Szenarien auf Quartiersebene und Entwick- lung eines Fahrplans zur Sanie- rung von Stadtquartieren

In Ergänzung zu den genannten Publikationen wird in den nachfolgenden Kapiteln auf vorhandene wissenschaftliche und kommerzielle Tools eingegangen, die Schnittstellen zu bisherigen Publikationen und zur vorliegenden Dissertation aufweisen. Die Tools werden dabei gegliedert nach den Bewertungskriterien (siehe Überschriften) beschrieben. Es wird jeweils analysiert, welche aus den Tools gewonnenen Erkenntnisse in diese Arbeit einfließen können und welchen Mehrwert diese Arbeit für die weitere Entwicklung der Tools hat.

2.9.1 Tools zur Bewertung des Nutzenergiebedarfs auf Quartiersebene

Tools, wie die Berechnungs- und Analyseplattform City Building Energy Saver (CityBES), das Tool des Projektes Data-driven Urban Energy Simulation oder TEASER der RWTH Aachen erlauben die Modellierung des Energiebedarfs in der Nutzungsphase des Gebäudebestands oder von Neubauten anhand weniger Eingangsparameter. Allerdings besitzen sie keine Möglichkeit, ökologische Kennwerte von Baukonstruktionen zu implementieren und für LCA-Berechnungen zu verwenden (Chen et al., 2017; Nutkiewicz et al., 2018; RWTH Aachen, Institute for Energy Efficient Buildings and Indoor Climate, o. J.).

Kaden (2014) fokussiert sich ebenfalls auf die Modellierung des Energiebedarfs in der Nutzungsphase des Gebäudebestands. Sein Tool beinhaltet den "SharedWallSurface-Calculator", mit dessen Hilfe Trennwandflächen in GIS-Modellen automatisiert berechnet werden können. Diese Trennwandflächen werden mit den in dieser Arbeit entwickelten ökologischen Kennwerten verknüpft, um die Umweltwirkungen in den verschiedenen Falluntersuchungen zu berechnen (siehe Kapitel 4.6 ab Seite 124 sowie Anhang A.10 ab Seite 488).

2.9.2 Tools zur LCA auf Quartiersebene

Mit City Energy Analyst (CEA) können Energiebedarfe und Umweltwirkungen von Stadtquartieren auf Basis von 3D-Stadtmodellen im CityGML-Format berechnet werden (ETH Zürich - The A/S group, 2021; Fonseca et al., 2016). Auch kann eine LCA der Baukonstruktion nach Baualter und Renovierungsstand mit dem Benchmark der 2000 Watt-Gesellschaft durchgeführt werden (EnergieSchweiz für Gemeinden und Bundesamt für Energie, 2020). Die LCA-Datenbank umfasst jedoch lediglich typische Gebäudekonstruktionen für Fallstudien in der Schweiz und Singapur (ETH Zürich - The A/S group, o. J., S. 7-14). Es fehlen ökologische Kennwerte zu deutschen Baukonstruktionen. Die in dieser Arbeit entwickelten ökologischen Kennwerte können hier einfließen.

Umi 2.0 (Urban Modeling Interface) ist eine Software zur Berechnung von Tageslichtpotentialen, der Qualität von Fußläufigkeiten oder der ökologischen Qualität von Quartieren und Städten. Der Fokus liegt auf dem betrieblichen Energieeinsatz und der Grauen Energie. Ab Version 2.0 wurde ein LCA-Modul eingeführt, mit dessen Hilfe auch die CO₂-Emissionen und der Energieaufwand von Baustoffen berechnet werden können. Derzeit berücksichtigt

das Programm nur den Energieaufwand durch fossile Energieträger (PENRT). Soll der gesamte Primärenergieaufwand betrachtet werden, sind eingangs eigene Werte und Baustoffe zu definieren, sodass das Programm eine vereinfachte jährliche LCA durchführen kann. Einbezogen werden dabei Umweltwirkungen für die Herstellung (Phasen A1-A3), den Transport (Phase A4), die Errichtung (Phase A5), den Austausch (Phase B4), den betrieblichen Energieeinsatz (Phase B6) sowie den Rückbau und den Abtransport der Baumaterialien (Phasen C1 und C2), insofern sie in der Datenbank hinterlegt sind. Zur Berechnung bedient sich das Programm der vorhandenen Gebäudehüllflächen und schätzt Anteile für Innenwände oder Decken. (MIT Sustainable Design Lab, 2017)

2020 wurde ein UMI GIS Importer veröffentlicht, mit dem 3D-Stadtmodelle im CityGML-Format 2.0 (LoD1 und LoD2) integriert und verwendet werden können (Berzola, 2020). Dem Programm fehlt bisher allerdings eine Datenbank mit validen ökologischen Kennwerten für Baukonstruktionen. Die Entwickler weisen darauf hin, dass die bestehende Onlinedatenbank lediglich als Infrastruktur dient, die dezentral verwendet, bearbeitet und weiterentwickelt werden kann (Cerezo Davila und Reinhart, 26.-28.08.13).

Im Rahmen des gleichnamigen Forschungsprojektes wurde die Simulationssoftware "SimStadt" entwickelt. Mit Hilfe der Software können energetische Analysen – z. B. Ermittlung des Heizwärmebedarfs, der PV-Potentiale oder ganzer Gebäudesanierungs- und Energieversorgungsszenarien – von Gebäuden hin zu Regionen durchgeführt werden. (Hochschule für Technik Stuttgart, 2022)

Wie Weiler et al. (2017) zeigen, ist es mit der Software möglich, LCA der Baukonstruktion für verschiedene Sanierungs- und Ersatzneubauszenarien unter Verwendung einer Konstruktionsdatenbank nach Loga et al. (2015) durchzuführen. Nach mündlicher Nachfrage wird seitens der Projektbeteiligten bestätigt, dass die ökologischen Kennwerte nur beispielhaft generiert wurden und es noch keine Weiterentwicklung zu einer fundierten Datenbank gibt.

An dieser Stelle knüpft die Dissertation an. Denn es werden transparent beschriebene und spezifische ökologische Kennwerte für repräsentative deutsche Altbau-, Sanierungs- und Neubaukonstruktionen auf Basis der ÖKOBAUDAT, Version 2020-II entwickelt. Diese Kennwerte können von UMI 2.0 oder SimStadt für LCA-Berechnungen verwendet werden.

2.9.3 LCA-Tool zur Bewertung der TGA, Energiebedarfe und Heizlast auf Quartiersebene

Das Tool urbi+ stellt die programmierseitige Umsetzung einer Methode zur lebenszyklusbasierten energetischen, emissions- und kostenbezogenen Analyse großer Wohngebäudebestände und ausgewählter TGA-Komponenten dar (Harter, 2021). Es ist möglich, den Nutz-, End- und Primärenergiebedarf im Betrieb zu ermitteln. Auch die Heizlast der Gebäude kann berechnet werden. Als Datengrundlage werden semantische 3D-Stadtmodelle im CityGML-Format 2.0 herangezogen (Harter, Willenborg et al., 2020). Es besteht eine enge Schnittstelle zu dieser Arbeit. Denn urbi+ fehlt bisher die Möglichkeit zur LCA von Altbau-, Sanierungs- und Neubaukonstruktionen. Im Rahmen des Forschungsprojektes "Grüne Stadt der Zukunft" ist es gelungen, einen Teilbereich der in Kapitel 4.5 und 4.6 (ab Seite 122) beschriebenen Berechnungsschritte in urbi+ zu integrieren und so automatisiert ganzheitliche Bilanzierungen von großen Wohngebäudebeständen durchzuführen. Das Fallbeispiel, das auch im Forschungsprojekt verwendet wurde, wird in Kapitel 5 ab Seite 137 vorgestellt.

2.9.4 Tool zur Bewertung von Nachverdichtungsmaßnahmen

Das Tool Urban Strategy Playground (USP) fokussiert sich auf die Planung, Analyse und Visualisierung von Nachverdichtungsmöglichkeiten via 3D-Stadtmodellen (Seifert und Mühlhaus, o. J.). Für wachsende Städte wie München ist dieses Tool besonders hilfreich. Im Zuge der ökologischen Bewertung von Quartieren müssen Nachverdichtungsmaßnahmen zukünftig besser berücksichtigt werden, um die Einsparpotentiale von Flächen- und Ressourcenverbräuchen optimaler identifizieren zu können.

USP verfügt über verschiedene Werkzeuge (Plug-Ins) und Methoden. Im Kontext der vorliegenden Arbeit ist die Modellierung flächiger Aufstockungen von Gebäuden interessant. Ein Plug-In zum Import einer LCA-Datenbank, mit deren Hilfe eine ökologische Bewertung der Nachverdichtungsszenarien möglich wäre, gibt es allerdings noch nicht. (Seifert, o. J.)

Die vorliegende Arbeit kann hier die Datengrundlage und die Beschreibung der notwendigen Berechnungsschritte für eine Implementierung liefern.

2.9.5 Weitere räumliche Planungstools

"Spacemaker" ist ein Produkt von Autodesk, das mit Hilfe von räumlichen Stadtmodellen und künstlicher Intelligenz (KI) geometrische Gebäudeanalysen (z. B. Veränderung der Bruttogeschossflächen oder Fassadenflächen), Tageslicht-, Lärm- oder Windanalysen auf Quartierebene in Echtzeit ermöglicht. Auch die Überprüfung der Sonneneinstrahlung, des Microklimas oder der Außenraumqualität ist mit dem Tool möglich. (Spacemaker, 2020)

Auch mit "Modelur" können 3D-Stadtmodelle in Echtzeit modelliert und in frühen Planungsphasen verschiedene Szenarien verglichen werden (AgiliCity d.o.o, o. J.).

Eine LCA der Baukonstruktion oder anderer Gebäudekomponenten kann mit den Tools "Spacemaker" und "Modelur" bisher noch nicht durchgeführt werden. Eine Erweiterung der Tools um die LCA der Baukonstruktion ist jedoch möglich, indem die vorhandenen Gebäudegeometrien mit den hier entwickelten ökologischen Kennwerten für Baukonstruktionen verknüpft werden. Die notwendigen Berechnungslogiken werden in Kapitel 4 ab Seite 107 dargestellt.

"Metabuild" ist ebenfalls ein KI-basiertes, räumliches Planungstool, das die Analyse von komplexen Neubau- und Sanierungsprojekten ermöglicht. Neben Kosten-, Tageslicht-, Luft-qualität- und Energieverbrauchsanalysen ist auch eine Untersuchung der Grauen Energie und der CO₂-Emissionen möglich. (Metabuild GmbH, 2022)

Das städtische Planungstool "Giraffe" gleicht in seiner Ausrichtung und Funktion "Metabuild" und umfasst ebenfalls eine Möglichkeit zur Analyse der CO₂-Emissionen von Stadtquartieren (Giraffe Technology Pty Ltd, o. J.).

Ob bei "Metabuild" und "Giraffe" auch die baualterstypischen CO₂-Emissionen und Grauen Energien von Gebäudeabrissen berücksichtigt werden können, ist zu überprüfen. Für frühe Planungsphasen, in denen die bestehenden Gebäudekonstruktionen noch nicht vollständig bekannt sind, kann die vorliegende Arbeit diesen Tools notwendige ökologische Kennwerte zu Altbaukonstruktionen und deren Sanierungsmöglichkeiten oder Ersatzneubaumaßnahmen liefern.

2.10 Zusammenfassung Kapitel 2

- Zur Bewertung potentieller Umweltwirkungen von Gebäuden auf Basis von Standardisierungen und Normen hat sich national und international die LCA etabliert.
- International existieren viele Fallstudien zur ökologischen Qualität von Baukonstruktionen im Alt- und Neubau. Sie belegen die Notwendigkeit von einheitlichen Benchmarks
 und der Durchführung von ökologischen Lebenszyklusanalysen in frühen Planungsphasen, um politische und kommunale Entscheidungen für mehr Klimaschutz zu unterstützen.
- Jedoch fehlt bisher eine breite Datenbasis, die durch einheitliche Systemgrenzen und Grundlagen eine Gegenüberstellung der ökologischen Qualität von Altbau-, Sanierungs- und Neubaukonstruktionen unter gleichzeitiger Betrachtung der Herstellungs-, Nutzungs- und Entsorgungsphasen zulässt.
- Es existieren geeignete Literaturquellen, um für die lebenszyklusbasierten Umweltwirkungen von Baukonstruktionen von Wohngebäuden eine repräsentative und baualtersbezogene Datenbasis zu erarbeiten, diese muss jedoch um aktuelle Entwicklungen in der Baupraxis ergänzt werden.
- Als maßgebende Indikatoren für die Quantifizierung des Einflusses auf den Klimawandel und den Ressourcenverbrauch werden das GWP, die PENRT und PET identifiziert.
- Trotz der Berücksichtigung normativer Grundlagen, sind bei einer LCA gewisse Unsicherheiten hinsichtlich der In- und Outputparameter vorhanden. Es ist sinnvoll, deren Einfluss mit Hilfe einer Sensitivitätsanalyse zu beurteilen.
- Die Literaturrecherche zeigt, dass es einer transparenten und detaillierten Datengrundlage bedarf, die eine LCA von der Bauteilschichtenebene bis hin zur Stadtebene oder nationalen Ebene ermöglicht. Hierzu sind räumliche Betrachtungen unter Verwendung von Daten aus GIS-Modellen zielführend.
- Für eine LCA großer Wohngebäudebestände liefern semantische 3D-Stadtmodelle im CityGML-Format (Version 2.0) wichtige geometrische Gebäudeinformationen und reduzieren so mögliche Unsicherheiten bei den Inputparametern und im Endergebnis.
- Bisherige Studien belegen, dass mit Hilfe von ökologischen Kennwerten die ökologische Qualität von Bestands-, Neubau- und Sanierungsprojekten auf städtischer Ebene bewertet werden kann und Handlungsempfehlungen erarbeitet werden können.
- Bisherige Softwaretools, die mit Hilfe von räumlichen Gebäude- oder Stadtmodellen, energetische oder ökologische Analysen von großen Wohngebäudebeständen ermöglichen, verfügen noch nicht über die Möglichkeit zur vergleichenden LCA verschiedener Alt-, Sanierungs- oder Neubauszenarien mit Fokus auf die Baukonstruktion. Entweder wurde die Methode noch nicht implementiert oder es fehlt eine fundierte und transparente Datenbasis. Diese wird von der vorliegenden Dissertation geliefert. Zudem verfügt sie über transparente Berechnungslogiken, die in vorhandene Tools (z. B. UMI 2.0, SimStadt, urbi+) implementiert werden können.

3 Entwicklung ökologischer Kennwerte

3.1 Methodik

Abbildung 3-1 zeigt die Arbeitsschritte, die zur Entwicklung ökologischer Kennwerte von Alt-, Neubau- und Sanierungskonstruktionen nach normativen Vorgaben erforderlich sind. In diesem Kapitel wird detailliert auf jeden genannten Arbeitsschritt eingegangen, sodass die Methode und die erarbeiteten Ergebnisse transparent nachvollzogen werden können.

Bewertungsgrundlagen

Bewertungszweck/-ziel und Definition der Systemgrenzen:

- Indikatoren: GWP, PENRT, PET
- Betrachtung der Bauteile nach Kostengruppen KG 320-360 gemäß DIN 276:2018-12
- Bezugsgröße: m² Bauteil und NRF
- Betrachtungszeitraum: 50 Jahre
- Lebenszyklusphasen A1, A2, A3, B4, C3, C4 und D nach DIN 15978:2012-10
- Wahl der Datenbank: Ökobaudat Version 2020-II

Ermittlung der Altbau-, Neubau- und Sanierungskonstruktionen:

- Flachdach/ Steildach
- Außenwand über GOK
- Gebäudetrennwand über GOK
- Innenwand
- Bodenplatte
- Fenster
- Geschossdecken
- Oberste Geschossdecke
- Kellerdecke
- Kelleraußenwand
- Gebäudetrennwand im Keller

inkl. Konkretisierung von Materialeigenschaften und deren baualterstypischen Verwendung; Berücksichtigung von bauphysikalischen und statischen Erfordernissen

Zusammenstellung der Erhebung nach:

- Altbau, Neubau oder Sanierung
- · Baualtersklassen
- Bauweise (Untergliederung in Unterkategorien wie Beheizungsfall)

Wahl ökologischer Datensätze je ermittelter Materialbezeichnung:

- Lebenszyklusphase und Indikator
- Zuordnung der durchschnittl. Nutzungsdauern und erforderlicher Austauschzyklen in 50 Jahren Nutzung

Ermittlung der Umweltwirkungen und Ressourcenverbräuche je Lebenszyklusphase für:

- Altbaukonstruktionen
- Sanierungskonstruktionen nach KfW-55-Standard* (nur Bauteile der wärmeübertragenden Umfassungsfläche des Gebäudes)
- Neubaukonstruktionen nach Passivhausstandard**
- * Mindestanforderungen an den U-Wert bei Sanierungen nach KfW (2020)
- ** Energetische Mindestanforderungen an den U-Wert bei Neubauten nach Passivhaus Institut (2015)

nzierung

Baukonstruktionen

Ermittlung

Kennwertgenerierung:

gebnis

Baukonstruktionen

- Einzelergebnisse der bilanzierten Baukonstruktionen: GWP, PENRT und PET je m² Bauteil mit und ohne Phase D
- Darstellung der baualtersspezifischen Umweltwirkungen je m² Bauteil, LZPH und Bauweise (unter Angabe der Minimal- und Maximalwerte)

Abbildung 3-1: Methodische Vorgehensweise bei der Entwicklung ökologischer Kennwerte von Altund Neubaukonstruktionen; eigene Darstellung

3.2 Bewertungsgrundlagen

3.2.1 Bewertungsziel

Gemäß den normativen Vorgaben wird der Bewertungszweck bzw. das Untersuchungsziel definiert. Ziel der baualtersklassenspezifischen Ökobilanzierung ist die Ermittlung der ökologischen Qualität einzelner Sanierungs-, Nachverdichtungs- und Ersatzneubaustrategien von Bestandsquartieren über ihren Lebenszyklus (50 Jahre) hinweg. Die Untersuchung fokussiert sich auf deutsche Wohngebäude. Als Indikatoren zur Bewertung des Emissionsausstoßes sowie der Energie- und Ressourcenverbräuche werden das GWP, die PENRT und PET gewählt und einzeln ausgewiesen, sodass spätere Nutzer:innen je nach eigenen Präferenzen die Umweltwirkungen einzeln oder gemeinsam betrachten können.

Die Ergebnisspannweiten werden auf Bauteilebene je Baualter und Baumaßnahme dargestellt. Die Einzelergebnisse auf Bauteilebene sind Grundlage für die LCA unter Verwendung von 3D-Stadtmodellen in Kapitel 4 (ab Seite 107). In Kapitel 5 (ab Seite 137) werden die bauteilspezifischen Umweltwirkungen von Alt- und Neubaukonstruktionen mit Hilfe einer Fallstudie ausgehend von der Gebäudeebene bis zur Quartiersebene berechnet. Finales Ziel der Methode ist es, die maßgebenden Treiber der gewählten Umweltwirkungen und die ökologischen Optimierungspotentiale auf Quartiersebene (großflächig) zu erfassen und darzustellen. Die ökologisch gesehen günstigste Baumaßnahme wird identifiziert, um Handlungsempfehlungen für Planende und Entscheidungsträger:innen ableiten zu können.

3.2.2 Systemgrenzen

Eine Ökobilanzierung kann nur im Kontext ihrer Systemgrenzen durchgeführt und bewertet werden. Dabei wird zwischen räumlichen und zeitlichen Systemgrenzen unterschieden, die nachfolgend vorgestellt werden.

3.2.2.1 Räumliche Systemgrenzen

Die DIN 276:2018-12 definiert die Kostengruppen im Bauwesen. Die folgende Ökobilanzierung umfasst die Regelaufbauten der Kostengruppen KG 320 (Gründung, Unterbau), KG 330 (Außenwände/ vertikale Baukonstruktionen, außen), KG 340 (Innenwände/ vertikale Baukonstruktionen, innen), KG 350 (Decken/ horizontale Baukonstruktionen) und KG 360 (Dächer) von Wohngebäuden. Die Bezugseinheit stellt die Bauteilfläche in m² dar. Jedoch werden nicht alle Kostengruppen der dritten Ebene berücksichtigt. So fließen in die Betrachtung keine Oberflächenabschlüsse, wie Wand- und Deckenanstriche oder Fußbodenbeläge, ein. Diese können projektspezifisch stark variieren und deren Eigenschaften können auf Quartiersebene nicht allgemeingültig definiert werden. Haustüren besitzen einen sehr geringen Flächenanteil und werden deshalb zugunsten der Fensterflächen

übermessen. Nach Auswertung der Angaben von Gruhler et al. (2002, S. 307) nehmen die Innentüren bei den Innenwänden einen Flächenanteil von 11 bis 28 % ein. Dies stellt zwar einen nicht unerheblichen Anteil dar, allerdings können die Innentüren aufgrund fehlender ÖKOBAUDAT-Datensätze nicht bilanziert werden. Auch Näherungen mit Hilfe von alternativen Datensätzen sind nicht möglich oder wären zu ungenau. Aus diesem Grund werden die Innentüren zugunsten der Innenwandflächen übermessen. Tabelle 3-1 fasst die Beschreibung und die Bezeichnungen der berücksichtigten Bauteile zusammen. Für die einzelnen Bauteile werden eindeutige Abkürzungen in englischer Sprache vergeben. Diese werden bei der LCA-Berechnung (vgl. Kapitel 4 ab Seite 107) verwendet.

Tabelle 3-1: Beschreibung und Bezeichnungen der berücksichtigen Bauteile je Kostengruppe nach DIN 276:2018-12; eigene Darstellung

Kosten- gruppe	Beschreibung der berücksichtigten Bauteilkomponenten	Bauteilbezeich- nung (engl. Abk.)
KG 320	Berücksichtigt werden die Bauteilflächen von Einzel- und Streifenfundamenten sowie von tragenden und nichttragenden Bodenplatten (KG 322). Auch die Abdichtungen (KG 325) sowie die Gründungsbeläge (KG 324) fließen mit in die Bilanzierung ein. Ausgenommen sind jedoch Fußbodenbeläge wie Parkett, Fliesen, Teppiche o. ä Werden bei den Altbaukonstruktionen Kiesschichten ausgewiesen, werden sie bilanziert (KG 321 bzw. 326). Je nachdem, ob ein Kellergeschoss vorhanden ist und ob dieses beheizt ist oder nicht, wird zwischen beheizter und unbeheizter Bodenplatte unterschieden.	Fundament (F) Bodenplatte beheizt/unbeheizt (BP_h / BP_uh)
KG 330	In die Bilanzierung fließen tragende und nichttragende Außenwandkonstruktionen mit ein (KG 331, 332). Die Kostengruppen der Bekleidungen (KG 335 und 336) werden bilanziert, jedoch ohne Farb- oder Lackanstriche. Außenstützen (KG 333) werden als tragende Konstruktion wie KG 331 behandelt. Elementierte Außenwände (KG 337) spielen im Wohnungsbau eine unterge-	Außenwand über GOK beheizt (EW), Gebäudetrenn- wand über GOK
	ordnete Rolle, weshalb sie vernachlässigt werden. Auch KG 338 und 339 werden nicht bilanziert. Final wird bei den Außenwänden zwischen Außenwänden über GOK und unter GOK (Kelleraußen-	beheizt (SW),
	 wände) unterschieden. Zudem erfolgt eine weitere Differenzierung der Bauweisen: Wände in Holzbauweise Wände in monolithischer Massivbauweise Zweischalige Wände in Massivbauweise 	Kelleraußenwand beheizt/unbeheizt (CW_h / CW_uh),
	Wände mit Vorhangfassade bzw. belüfteter Fassade Aufgrund der Zeilen- und Blockbebauung in städtischen Gebieten wird zudem zwischen freistehenden Außenwänden und Gebäudetrennwänden differenziert. Je nach beheiztem Gebäudevolumen wird im Kellergeschoss in beheizt oder unbeheizt untergliedert.	Gebäudetrenn- wand im Keller be- heizt/unbeheizt (SCW_h / SCW_uh)
KG 334	Die Fenster werden als Außenwandöffnung (KG 334) separat erfasst. Bilanziert werden alle Fensterkomponenten wie Glas, Rahmen, Beschläge, Griffe und Abdichtungsmaterialien. Dabei wird zwischen drei Haupttypen unterschieden: • Holzfenster • Aluminiumfenster • Kunststofffenster	Fenster (W)

KG 340	Analog zur KG 330 erfolgt die Berücksichtigung tragender und nichttragender Innenwandkonstruktionen (KG 341, 342, 343) in • Holzbauweise und • Massivbauweise. Innenwandöffnungen (KG 344) werden nicht berücksichtigt bzw. deren Fläche übermessen. Abschließende Schichten der Bekleidung (Anstriche) sowie die KG 346 bis 349 werden nicht mit in die Bilanzierung einbezogen.	Innenwand (IW)
KG 350	Aus energetischen Gründen werden drei verschiedene Deckenarten, • die oberste Geschossdecke, • die Kellerdecke und • die Geschossdecke sowie zwei verschiedene Bauweisen, • die Holzbauweise und • die Massivbauweise definiert. Diese Unterscheidung ist erforderlich, da je nach Bauweise und Beheizung des Gebäudes verschiedene Schichtaufbauten und -dicken entstehen. Bilanziert werden KG 351, 353 und 354, wobei die abschließenden Schichten der Deckenbeläge (z. B. Parkett, Fliesen) und Deckenbekleidungen (Anstrich) nicht einfließen. Deckenöffnungen (KG 352) werden übermessen. Die KG 355 sowie 359 werden nicht berücksichtigt.	Oberste Ge- schossdecke be- heizt/unbeheizt (TFL_h / TFL_uh), Kellerdecke be- heizt/unbeheizt (CFL_h / CFL_uh), Geschossdecke (FL)
KG 360	Die Bilanzierung schließt die KG 361 ein, aber ohne Berücksichtigung der Dachüberstände und Vordächer. Hier gilt wie bei allen Bauteilen der Regelaufbau. Beim Flachdach erfolgt eine Untergliederung nach • Holzbauweise und • Massivbauweise. Dachöffnungen (KG 362) werden übermessen. KG 365, 366 und 369 sind ebenfalls nicht Bestandteil der Bilanzierung.	Flachdach beheizt (FRO), Steildach beheizt heizt/unbeheizt (PRO_h / PRO_uh)

3.2.2.2 Zeitliche Systemgrenzen

Bei der Bilanzierung nachfolgender Baukonstruktionen wird gemäß verschiedener Zertifizierungssysteme eine Gebäudenutzungsdauer (Lebensdauer) von 50 Jahren zugrunde gelegt (BBSR, 2020; DGNB, 2021). Für jede Baukonstruktion im Alt- und Neubau oder im Sanierungsfall werden das GWP, die PENRT und PET der Herstellungsphasen (LZPH A1, A2 und A3), der Nutzungsphase (LZPH B4) und der Entsorgungsphasen (LZPH C3 und C4) gemäß DIN EN 15978:2012-10, Bild 6 (vgl. Kapitel 2.1.1 und Abbildung 2-2, Seiten 11 bis 14) berücksichtigt. Auch das DGNB-Zertifizierungssystem, das in Deutschland sehr verbreitet ist, wählt diese Lebenszyklusphasen (DGNB, 2018, S. 59).

Abbildung 3-2 verdeutlicht, dass der Betrachtungszeitraum in der Gegenwart beginnt und Umweltwirkungen, die in der Vergangenheit verursacht oder emittiert wurden, nicht ermittelt werden, da sie nicht mehr beeinflussbar sind. Das bezieht sich auch auf die bisherige Nutzung etwaiger Bestandskonstruktionen, die während des Betrachtungszeitraums weiterverwendet werden. Nur die Entsorgung der Bestandskonstruktionen ab der Gegenwart ist relevant. Zusätzlich können generierte Vorteile oder Belastungen, die durch die Entsorgung der Bauteile während des Betrachtungszeitraums entstehen, separat in der Phase D

ausgewiesen werden. Im Fokus der Betrachtung über die zukünftigen 50 Jahre stehen demnach lediglich die in dieser Zeit anfallenden Emissionen und Energien.

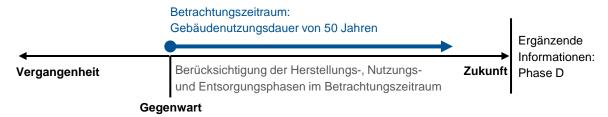


Abbildung 3-2: der Betrachtungszeitraum einer LCA; eigene Darstellung

Die Herstellungsphasen (LZPH A1-A3) und Entsorgungsphasen (LZPH C3 und C4) werden immer ermittelt. Sie fließen in Abhängigkeit der Szenarien (vgl. Kapitel 4.4 ab Seite 117) in die Bilanzierung mit ein. Der Betrachtungszeitraum von 50 Jahren ist länger als die Nutzungsdauer einzelner Bauteilkomponenten. Das BNB-Zertifizierungssystem gibt durchschnittliche Nutzungsdauern einzelner Bauteile bzw. Bauteilkomponenten für Büro- und Verwaltungsgebäude vor, die auf Erfahrungswerten beruhen (BBSR, 2017). Eine ähnliche Auflistung für Wohngebäude existiert nicht in der Literatur. Da sich die Bauweise und Nutzung von Wohn- und Bürogebäuden ähneln und die Angaben des BNB-Zertifizierungssystems detailliert beschrieben sowie frei zugänglich sind, werden sie hier verwendet. Je nach Material und seiner Verortung im Bauteil werden spezifische durchschnittliche Nutzungsdauern hinterlegt (vgl. Anhang A.5 ab Seite 376). Mit Hilfe dieser Vorgaben können die Austauschzyklen und Umweltwirkungen der LZPH B4 innerhalb des Betrachtungszeitraums für jedes vorhandene Material berechnet werden. Die Berechnung der Umweltwirkungen einzelner Bauteilschichten in LZPH B4 erfolgt durch die Multiplikation der ermittelten Austauschzyklen mit der Summe der Werte aus den Herstellungs- und Entsorgungsphasen (siehe Gleichung 3-1). Hat eine Bauteilschicht eine durchschnittliche Nutzungsdauer von 15 Jahren, so wird sie innerhalb einer Lebensdauer von 50 Jahren insgesamt dreimal ausgetauscht (nach ca. 15, 30 und 45 Jahren). Bei einer durchschnittlichen Nutzungsdauer von 25 Jahren wird sie nur einmal ausgetauscht, da der zweite Austausch mit dem Ende der Lebensdauer einhergeht. In der Praxis wird ein Bauteil sicherlich großflächig ersetzt, auch wenn Einzelkomponenten noch längere mögliche Nutzungsdauern besitzen. Deshalb sind die Jahresangaben lediglich als Anhaltswerte zu sehen. Beim Austausch und Ersatz wird davon ausgegangen, dass exakt das gleiche Material in der gleichen Materialstärke ausgebaut und neu eingebaut wird:

 $(GI. 3-1) \\ B4_{Bauteilschicht} = n \times (C3_{Ausbauschicht} + C4_{Ausbauschicht} + A1_{Ersatzschicht} + A2_{Ersatzschicht} + A3_{Ersatzschicht})$

mit n:= Anzahl der Austauschzyklen in 50 Jahren Nutzungsdauer von:

10 Jahren: n= 4; 15 Jahren: n= 3; 20 Jahren: n= 2; 25 Jahren: n=1;

30 Jahren: n= 1; 40 Jahren: n=1

Tabelle 3-2 fasst je Konstruktionstyp die während des Betrachtungszeitraums berücksichtigten Lebenszyklusphasen übersichtlich zusammen.

Tabelle 3-2: Berücksichtigte Lebenszyklusphasen nach DIN EN 15978:2012-10, Bild 6 in Abhängigkeit des Konstruktionstyps; eigene Darstellung

Konstruktionstyp	Berücksichtigte Lebenszyklusphasen
Bestandskonstruktion, die unverändert weiter- genutzt wird (innenlie- gende Baukonstruk- tion)	 Nutzung der Konstruktion ab der Gegenwart: Austausch und Ersatz einzelner Bauteilschichten in den kommenden 50 Jahren (LZPH B4) nach Standardaustauschzyklen¹ Komplette Entsorgung der Konstruktion nach 50 Jahren (LZPH C3/C4) Separate Ausweisung der Wiederverwendungs- und Recyclingpotentiale (Phase D) der Materialien, die in den LZPH B4, C3 und C4 entsorgt werden
Bestandskonstruktion, die gänzlich abgerissen wird	 Sofortige, komplette Entsorgung der Konstruktion (LZPH C3/C4) Separate Ausweisung der Wiederverwendungs- und Recyclingpotentiale (Phase D) der Materialien, die entsorgt werden
Sanierungskonstruktion (Veränderung/ energetische Verbes- serung einer Bestandskonstruktion der wärmeübertragen- den Umfassungsfläche des Gebäudes)	 Entsorgung (LZPH C3/C4) einzelner Bauteilschichten, die im Zuge der Sanierung entfernt oder ersetzt werden Herstellung (LZPH A1-A3) der Bauteilschichten, die während der Sanierung eingebaut werden Nutzung der Konstruktion ab der Gegenwart: Austausch und Ersatz einzelner Bauteilschichten in den kommenden 50 Jahren (LZPH B4) nach Standardaustauschzyklen¹ Komplette Entsorgung der Konstruktion nach 50 Jahren (LZPH C3/C4) Separate Ausweisung der Wiederverwendungs- und Recyclingpotentiale (Phase D) der Materialien, die in den LZPH B4, C3 und C4 entsorgt werden
Neubaukonstruktion	 Herstellung (LZPH A1-A3) der Bauteilschichten Nutzung der Konstruktion ab der Gegenwart: Austausch und Ersatz einzelner Bauteilschichten in den kommenden 50 Jahren (LZPH B4) nach Standardaustauschzyklen¹ Komplette Entsorgung der Konstruktion nach 50 Jahren (LZPH C3/C4) Separate Ausweisung der Wiederverwendungs- und Recyclingpotentiale (Phase D) der Materialien, die in den LZPH B4, C3 und C4 entsorgt werden

¹ gemäß den durchschnittlichen Nutzungsdauern nach BBSR (2017)

3.3 Ermittlung Altbaukonstruktionen

Die baualterstypische Verwendung verschiedener Materialien definiert die Umweltwirkungen repräsentativer Altbaukonstruktionen. Um die ökologische Qualität des Bestandes bzw. der Szenarien – z. B. Sanierung der Gebäude mit gleichbleibender Gebäudekubatur – in Kapitel 4.4 (ab Seite 117) berechnen zu können, müssen die Materialeigenschaften der Altbaukonstruktionen ermittelt und deren Umweltwirkungen in den einzelnen Lebenszyklusphasen bilanziert werden.

Die Datenerhebung erfolgt je nach Baualtersklasse unterschiedlich. Für BK 1 bis 8 können die Literaturquellen Gruhler et al. (2002), Zentrum für Umweltbewusstes Bauen e.V. (2009b) und Verband Fenster und Fassade und Bundesverband Flachglas e.V. (2017) herangezogen werden. Dabei wird zwischen opaken Bauteilen und Fenstern differenziert. Ab dem Jahr 2002 (ab BK 9) enden die Literaturangaben für opake Bauteile, weshalb ab BK 9 die typischen Baukonstruktionen auf Grundlage von statistischen Bautätigkeitsauswertungen und Angaben von Fachverbänden erstellt werden. Detaillierte Angaben zur Datenerhebung finden sich in den nachfolgenden Kapiteln.

3.3.1 Datenerhebung opaker Bauteile bis BK 8

Die opaken Altbaukonstruktionen der Baujahre von vor 1918 bis einschließlich 2001 werden primär aus den Literaturquellen Zentrum für Umweltbewusstes Bauen e.V. (2009b) und Gruhler et al. (2002) generiert. Tabellarisch sortiert werden sie nach den in Kapitel 3.2.2.1 (Seite 54) genannten Bauteilen und den in Kapitel 2.3 (ab Seite 21) definierten Baualtersklassen BK 1 bis BK 8.

Die zwischenzeitliche Veränderung der Altbaukonstruktionen wird zunächst nicht berücksichtigt. Mit Hilfe von Cischinsky und Diefenbach (2018) könnten zwar Annahmen zu nachträglich durchgeführten Dämmmaßnahmen im Wohngebäudebestand getroffen werden, jedoch ist die Aufgliederung nicht baualtersklassenspezifisch und zu ungenau. Zudem können nachträgliche Baumaßnahmen je Gebäude stark voneinander abweichen und sind deshalb im Einzelfall zu überprüfen und anzupassen. Für eine erste Quartiersbetrachtung der ökologischen Auswirkungen verschiedener Baumaßnahmen in frühen Planungsphasen ist dies noch nicht zwingend erforderlich.

Es ist möglich, dass einzelne Bauteile mehreren Baualtersklassen gleichzeitig zugeteilt werden können. Jedes Bauteil erhält eine Kurzbezeichnung, sodass die Ergebnisse später eindeutig zugeordnet werden können. Etwaige Angaben zur regionalen Verbreitung der Bauweisen werden nicht erfasst und somit im Sinne einer deutschlandweit einheitlichen Betrachtung zusammengeführt.

Für jede Schicht eines Bauteils werden die Materialart, die Schichtstärke d [cm], die Rohdichte ρ [kg/m³] sowie die Wärmeleitfähigkeit λ [W/mK] erhoben. Letztere ist für die spätere Entwicklung von energetischen Sanierungsmaßnahmen notwendig. Jeder Materialbezeichnung werden Datensätze der ÖKOBAUDAT für die Herstellungsphasen (A1-A3), Entsorgungsphasen (C3 und/oder C4) und Gutschriften (Phase D) zugeteilt (vgl. Kapitel 2.1.1, ab Seite 11 bzw. Abbildung 2-2, Seite 12). Die Materialbezeichnungen werden im Zuge der Datenkonsolidierung vereinheitlicht, um die Datensatzwahl und spätere Bilanzierung zu erleichtern. Vereinzelt fehlen spezifische Angaben bei den beschriebenen Bauteilen und ihren Schichtenaufbauten (z. B. Rohdichte, Bauteilstärken und Wärmeleitfähigkeiten). Deshalb werden die fehlenden Materialeigenschaften manuell mit Hilfe der Angaben vergleichbarer Konstruktionen aus anderen Literaturquellen vervollständigt (siehe nachfolgende Kapitel). Bauteilaufbauten, die mehrere Datenlücken aufweisen oder zu ungenau beschrieben sind, werden von der weiteren Betrachtung ausgeschlossen. Eine detaillierte Darstellung aller bauteilspezifischen Angaben je m² Bauteil und die Zuordnung der gewählten ÖKOBAU-DAT-Datensätze finden sich in den Anhängen A.2 und A.5 ab Seite 232.

3.3.1.1 Generierung von Gebäudetrennwänden

Zu Gebäudetrennwänden über und unter Geländeoberkante finden sich in Gruhler et al. (2002) nur vereinzelte Angaben, weshalb vorhandene Außenwandkonstruktionen zur Generierung von Gebäudetrennwandkonstruktionen herangezogen werden. Um daraus die Gebäudetrennwände zu bilden, werden die äußeren Schichten (Vorhangfassade oder Außenputz) vernachlässigt. Bei zweischaligen Außenwänden wird angenommen, dass die äußere Schale bei der entsprechenden Gebäudetrennwand nicht ausgeführt wurde. Bei einschaligen Außenwänden werden die Schichtdicken der tragenden Konstruktion (Ziegel, Kalksandstein, Stahlbeton, usw.) halbiert. Wenn z. B. eine Außenwand eine Vollziegeldicke von 51 cm besitzt, so erhält die Gebäudetrennwand eine Schichtdicke von 25,5 cm. Dies ist erforderlich, um eine Flächendopplung bei der LCA zu vermeiden. Denn im 3D-Stadtmodell ist die Gebäudetrennwandfläche bei jedem Einzelgebäude hinterlegt.

3.3.1.2 Konkretisierung von Dämmmaterialien

Besonders beim Zentrum für Umweltbewusstes Bauen e.V. (2009b) fehlen häufig konkrete Materialangaben zu den typisch verwendeten Dämmstoffen je Bauteil, da die energetische Qualität der Bauteile und weniger deren Materialität im Fokus steht. Durch den Vergleich mit Gruhler et al. (2002), Giebeler et al. (2008), Eicke-Henning (2017) und Sprengard et al. (2013) können diese fehlenden Eigenschaften ergänzt werden. Bei nicht weiter spezifizierten Bodenplatten- und Deckendämmungen werden bei den älteren Baualtern Holzwolle-Leichtbauplatten und bei den jüngeren ein Mischdatensatz aus 64 % Mineralwolldämmung, 31 % EPS-Hartschaum und 5 % Holzfaserdämmplatten zugrunde gelegt.

3.3.1.3 Ermittlung fehlender Rohdichten und Wärmeleitfähigkeiten

Gruhler et al. (2002) nennen weder Rohdichten, noch Wärmeleitfähigkeiten der beschriebenen Materialeinsätze. Auch beim Zentrum für Umweltbewusstes Bauen e.V. (2009b) fehlen diese Angaben teilweise. Für die Bestimmung eingesetzter Materialmassen ist die Ermittlung der Rohdichte jedoch erforderlich. Zudem beziehen sich manche der verwendeten Datensätze der ÖKOBAUDAT auf das Materialgewicht, wie z. B. "100.1.01 Bauschuttaufbereitung". Die Materialmasse je m² Bauteil und Schicht wird durch die Multiplikation der in der Literatur angegebenen Schichtdicke mit der ermittelten Rohdichte erreicht. Fehlende Rohdichten werden durch Vergleiche mit anderen Bauteilen der zuvor genannten Literatur ergänzt. Dabei werden baualterstypische Rohdichteangaben bevorzugt verwendet.

Bei fehlenden Angaben zu den einzelnen Wärmeleitfähigkeiten wird analog vorgegangen, denn diese sind zur Identifizierung der dämmenden Eigenschaften der verbauten Materialien und somit zur Entwicklung der nachfolgenden energetischen Sanierungsmaßnahmen notwendig.

Können die historischen Rohdichten und Wärmeleitfähigkeiten nicht ermittelt werden, erfolgt ihre Ergänzung mit Hilfe der Baustoffkennwerte nach DIN 4108-4:2020-11 und DIN EN ISO 10456:2010-05. Alle Ergänzungen zu den einzelnen Materialeigenschaften sind zur Gewährleistung der Transparenz in Anhang A.2 ab Seite 232 farblich (blau) markiert.

3.3.2 Datenerhebung opaker Bauteile von BK 9 bis BK 11

Ziel der Datenerhebung opaker Bauteile in den BK 9 bis 11 ist es, die gängigen Bauweisen sowie deren minimal und maximal auftretenden Umweltwirkungen abzubilden. Analog zu den opaken Bauteilen der BK 1 bis 8 werden die Materialbezeichnungen, Schichtdicken, Wärmeleitfähigkeiten und Rohdichten bestimmt und tabellarisch aufgegliedert (vgl. 3.3.1 ab Seite 59). Mit Hilfe der Bautätigkeitsberichtanalyse von 2003 bis 2020 (siehe Kapitel 2.3.9, ab Seite 24) können die für die BK 9 bis 11 typischen Bauweisen im Wohnungsbau identifiziert werden:

- Stahlbeton-,
- Ziegel-,
- Porenbeton-,
- Kalksandstein- und
- Holzbauweise.

Bei Ziegel, Porenbeton und Kalksandstein wird angenommen, dass sie lediglich bei Wand-konstruktionen der KG 330 und 340 zur Anwendung kommen (vgl. Tabelle 3-1, Seite 55). Die Holzbauweise wird bei Konstruktionen der KG 330, 340, 350 und 360 berücksichtigt, die nicht gegen Erdreich angrenzen. Demnach finden sich keine Kelleraußenwände und Bodenplatten in Holzbauweise. Stahlbetonkonstruktionen kommen in allen Kostengruppen vor.

Neben der Bauweise bedingen die statisch erforderlichen Bauteildicken der tragenden Konstruktionen sowie die bauphysikalischen Anforderungen (Wärme-, Schall- und

Feuchteschutz) den Materialeinsatz und somit die ökologische Qualität der Baukonstruktionen. So erfolgt eine detaillierte Auseinandersetzung mit möglichen Bauteilaufbauten und Materialkombinationen, die nachfolgend vorgestellt werden. Die konkrete Auflistung aller Bauteilvarianten inklusive der gewählten Schichtenaufbauten und zugrunde liegenden Quellen kann Anhang A.2 ab Seite 232 entnommen werden.

3.3.2.1 Berücksichtigung des Wärmeschutzes bei der Gebäudehüllfläche

Tabelle A. 1 (Anhang A.1, Seite 229) fasst die Annahmen der typischen U-Werte je Bauteil und BK sowie zugehörige Literaturquellen zusammen, die als Grundlage für die Erarbeitung der Bauteilvarianten der Gebäudehüllflächen herangezogen werden. Ferner erhalten auch innenliegende Bauteile ohne Wärmeschutzanforderungen Dämmschichten, da diese zur Gewährleistung des Schallschutzes (Trittschall und Körperschall) erforderlich sind. Ohne Wärmeschutzanforderung fallen diese Dämmschichtdicken geringer aus.

Erforderliche Dämmdicken werden unter Berücksichtigung gängiger Dämmstoffe ermittelt. Wie in Kapitel 2.3.9 bis 2.3.11 (ab Seite 24) erwähnt, dominierte Mineralwolle den Dämmstoffmarkt von 2002 bis 2011, gefolgt von EPS (expandiertem Polystyrol), PU (Polyurethan) und XPS (extrudiertem Polystyrol). Mit Zunahme der Holzbauweise steigt in diesen BK auch der Absatz der nachwachsenden Dämmstoffe Holzfaser und Zellulose, weshalb sie ebenfalls bei der Generierung der Bauteilvarianten berücksichtigt werden. Nach einer Recherche zu den Einsatzgebieten der jeweiligen Dämmstoffe werden ihre minimalen und maximalen Umweltwirkungen (GWP, PENRT und PET) in den einzelnen Lebenszyklusphasen (A1-A3, B4, C3/C4 und D) analysiert.

Für jedes Bauteil der einzelnen Bauweisen entstehen somit mindestens zwei Bauteilvarianten. Die erste Variante besitzt den Dämmstoff mit den geringsten Umweltwirkungen und der besten Dämmqualität (kleinste Wärmeleitfähigkeit). Die zweite Variante besitzt den Dämmstoff mit den höchsten Umweltwirkungen und der größten Wärmeleitfähigkeit. Bei Massivbauweisen erfolgt so ein Vergleich von Mineralfaser- oder EPS- (minimale Umweltwirkungen) mit Holzfaserdämmungen (maximale Umweltwirkungen). Die Umweltwirkungen von PU-Dämmungen liegen innerhalb dieser Spannweite. XPS-Dämmungen kommen im Perimeterbereich und bei Flachdächern zum Einsatz. Zellulose-Einblasdämmung wird standardmäßig bei Gefachdämmungen verwendet, weshalb sie sich bei den Bauteilvarianten der Holzbauweisen wiederfindet.

Dach- und Kellergeschosse können beheizt, teilbeheizt oder unbeheizt sein. Nach Cischinsky und Diefenbach (2018, S. 56) sind ca. 38 % aller Dachgeschosse von Wohngebäuden unbeheizt, 45,5 % vollbeheizt und nur 16,5 % teilbeheizt. Unbeheizte Keller sind bei Bestandsgebäuden mit einem Anteil von 38,9 % eher die Regel. Daneben sind 33,3 % teilbeheizt und 9,3 % vollbeheizt (Cischinsky und Diefenbach, 2018, S. 58). Deshalb werden für die beheizten und unbeheizten Fälle Bauteilvarianten entwickelt. Für die Untersuchung von Teilbeheizungen könnten die Bauteilausführungen theoretisch prozentual

miteinander kombiniert werden. Bei Bedarf können spätere Nutzer:innen der Kennwerte somit vergleichen, ob es ökologischer ist, den Keller und das Dachgeschoss als Wohnraum voll oder anteilig auszubauen oder nicht.

3.3.2.2 Berücksichtigung statischer Erfordernisse

Die ökologische Qualität von Baukonstruktionen steht im direkten Zusammenhang mit ihrer Bauteilmasse. Je größer die verbauten Stoffmengen sind, umso höher sind in der Regel die Grauen Energien und Emissionen. Gerade die Tragkonstruktionen nehmen einen großen Anteil an der Bauteilmasse ein. Deshalb ist es nötig, die gängigen Bereiche der statisch erforderlichen Schichtdicken zu erfassen. Für die überschlägige Abschätzung von Bauteilabmessungen stellen Bergner und Volz (2012, S. 4.90-4.104) notwendige Angaben für die Tragwerksbemessung zur Verfügung, die hierzu herangezogen werden.

Bei den Dachkonstruktionen wird zwischen Steil- und Flachdächern differenziert. **Steildächer** werden hauptsächlich als Sparren-, Pfetten- oder Kehlbalkendächer in Holzbauweise ausgeführt. Im Bestandsbau finden sich zwar auch massive Steildächer, sie stellen jedoch eine Seltenheit dar und werden hier nicht betrachtet. Die Sparrenhöhen werden meist durch die erforderlichen Dämmdicken und weniger durch die statisch erforderliche Bauteilhöhe definiert. Gemäß der Vorgaben von Bergner und Volz (2012, S. 4.91, 4.92) resultieren daraus Sparrendimensionierungen von b \times h = 80 \times 260 mm (KVH) bis 120 \times 280 mm (BSH). Der Sparrenabstand wird konstant auf 83,3 cm festgelegt, ein gängiges Achsmaß bei Dachsparren (Überwachungsgemeinschaft Konstruktionsvollholz e.V., o. J., S. 42, 43).

Für **Flachdächer** in Holzbauweise werden parallel die Umweltwirkungen von Brettsperrholzelementen und Holzbalken untersucht. Bei leichten Dachlasten und einer Spannweite kleiner als 5 m schlagen Bergner und Volz (2012, S. 4.93) eine Holzbalkenhöhe h von I/24 vor, was bei einer Balkenlänge I=5 m zu einer Balkenhöhe h=210 mm führt. Bei schweren Dachlasten, wie sie z. B. bei intensiver Dachbegrünung auftreten, ergeben sich größere Bauteilhöhen. Unter Annahme einer maximalen Spannweite von bis zu 6,5 m berechnet sich die Balkenhöhe mit I/16=375 mm. Nach einem Vergleich von Colling (2012, S. 9.66) und der Überwachungsgemeinschaft Konstruktionsvollholz e.V. (2020, S. 42, 43) werden für Flachdächer in Holzrahmenbauweise Balkenabmessungen von $b \times h = 60 \times 210$ mm bis 160×400 mm und ein Balkenabstand von 83,3 cm gewählt.

Erfolgt bei Brettsperrholzdächern ein leichter Aufbau, so reicht beim Einfamilienhaus bis zu einer Spannweite von 4,5 m (Zweifeldträger) eine Konstruktionshöhe von 120 mm. Im mehrgeschossigen Wohnungsbau mit größeren Gesamtlasten und Spannweiten beträgt die maximale Deckenstärke 240 mm. (Binderholz Bausysteme GmbH, o. J., S. 11)

Massive Flachdächer können als Stein- oder Stahlbetondecken ausgeführt werden. Für die jüngeren Baualtersklassen BK 9 bis BK 11 wird jedoch von Stahlbetonkonstruktionen ausgegangen, da sie die gängigere Konstruktionsart darstellen. Zudem bietet die ÖKO-BAUDAT keine Datensätze für Steindecken (BBSR, o. J.).

Bergner und Volz (2012) gehen zwar nicht explizit auf die Dimensionierung der Stahlbetonflachdächer ein, dafür aber auf die der Stahlbetonplattendecken. Die Dicken tragender Deckenkonstruktionen ergeben sich aus den wirtschaftlichen Spannweiten. Bei einachsig gespannten Platten endet die wirtschaftliche Spannweite bei 6 m, woraus bei einer Betonfestigkeit von C30/37 eine Deckenstärke von ca. 240 mm resultiert. Bei zweiachsig gespannten Platten und einer Spannweite von 4 m ist die minimale Deckenstärke ca. 160 mm. (Bergner und Volz, 2012, S. 4.97, 4.98)

Die minimale Deckenstärke wird mit der Betonfestigkeit C20/25 und einem Bewehrungsgehalt von 1 %, die maximale wird mit C30/37 und 2 % Bewehrungsgehalt kombiniert, um die gängigen Bauausführungen abzudecken.

Bei Wohngebäuden sind **Außenwände und Gebäudetrennwände** in der Regel tragend. Im Altbaubestand dominieren ein- und zweischalige Mauerwerkswände. Dagegen sind Pfosten-Riegel-Konstruktionen mit nichttragenden Außenwänden zu vernachlässigen. Der Anteil an Holzbauten nimmt erst seit 2005 wieder deutlich zu. (Diefenbach et al., 2010, S. 52)

Die Tragfähigkeit der Mauerwerkswände beginnt bei einer Schichtdicke von 175 mm. Von den Mauerwerksherstellern können in monolithischer Ausführung maximale Steindicken von bis zu 500 mm bezogen werden. Diese Dicken werden jedoch nicht wegen der Statik, sondern vielmehr aufgrund der Dämmanforderung gewählt.

Die maximalen Umweltwirkungen werden für Außenwände ermittelt, die eine Vorhangfassade aus Faserzementplatten und eine Außendämmung besitzen. Daraus ergibt sich bei den Hochlochziegeln und Porenbetonsteinen eine maximale Schichtdicke von 365 mm und bei Kalksandsteinen von 240 mm.

Die Steindicken von Gebäudetrennwänden über und unter GOK beginnen bei Hochlochziegeln mit 175 mm und enden mit 300 mm. Bei Kalksandsteinen erstreckt sich die Spannweite von 115 mm bis 240 mm, bei Porenbeton von 175 mm bis 480 mm. (KS-Original GmbH, 2021; Wienerberger, 2021; Xella Deutschland GmbH, 2018).

Im Stahlbetonbau wird die Wanddicke durch die Wahl der Betonfestigkeit, den Bewehrungsgehalt und durch die konstruktiven Möglichkeiten bestimmt. In der Regel werden tragende Wände in Stahlbeton und nichttragende Konstruktionen in Leichtbauweise ausgeführt. Die Mindestwandstärke für tragende Stahlbetonwände in Ortbeton beträgt 100 mm (Goris und Schmitz, 2012, S. 5.120). Unter Berücksichtigung der Betonierbarkeit finden sich in der Praxis jedoch selten Wanddicken unter 150 mm, weshalb diese Stärke als Mindestmaß gewählt wird. Als Mindestfestigkeitsklasse wird C20/25 mit einem Bewehrungsgehalt von 1 % definiert. Für geringere Festigkeitsklassen existiert in der ÖKOBAUDAT Version 2020-II kein Datensatz (BBSR, o. J.). Bei höher geschossigen Mehrfamilienhäusern mit Vorhangfassade werden als maximale Gebäudetrenn- und Außenwandstärke 300 mm, kombiniert mit einer Betonfestigkeit von C30/37 und einem Bewehrungsgehalt von 2 % zugrunde gelegt.

Die Tragfähigkeit der Außenwände in Holzrahmenbauweise ist von der Dimensionierung des Gefachs abhängig, das aus Schwellen, Rähmen und Ständern sowie der

aussteifenden Scheibe besteht. Theoretisch sind für tragende Ständer, Rähme und Schwellen minimale Abmessungen ab b x h = 60×120 mm (in KVH oder BSH) möglich (Colling, 2012, S. 9.66). Die Gefachstärke wird jedoch ebenfalls durch die erforderliche Dämmdicke definiert. Sie übersteigt in der Regel die Bauteilabmessungen, die zur Erreichung der Tragfähigkeit nötig wären. Unter Berücksichtigung möglicher Bauteilaufbauten nach dataholz.eu (2021) werden deshalb minimale Ständerstärken von b x h = 80×120 mm und maximale von b x h = 80×240 mm bei einem Achsabstand von 62,5 cm gewählt.

Tragende Außenwände aus Brettsperrholz beginnen bei einer Mindestdicke von 78 mm (dataholz.eu, 2021, Variante "awmopo01a"). Die Mindestdicke wird jedoch mit 90 mm angesetzt, da die maximale Tragfähigkeit von 78 mm dicken Wänden bei mehrgeschossigen Wohngebäuden bald erreicht wird. Die maximale Brettsperrholzdicke wird auf 240 mm begrenzt (max. erhältliche Standarddicke für Brettsperrholzscheiben nach Binderholz Bausysteme GmbH (o. J.)).

Erddruckbelastete Kellerwände sind sowohl in Mauerwerks- als auch Stahlbetonbauweise möglich. Unter Berücksichtigung der baualtersklassenspezifisch erforderlichen Dämmwirkung wird bei Hochlochziegeln und Porenbetonsteinen für die Anwendung als erddruckbelastete Kellerwand eine Wandstärke von 300 mm identifiziert. Bei Kalksandsteinen werden Dicken von 240 mm bis 365 mm untersucht.

Bei erddruckbelasteten Stahlbetonaußenwänden wird eine Mindestwandstärke von 200 mm und eine Maximalwandstärke von 350 mm bilanziert. Die Wahl der Festigkeitsklassen und Bewehrungsgehalte erfolgt analog zu den Außenwänden.

Innenwände in Mauerwerksbauweise können sowohl nichttragend als auch tragend ausgeführt werden. Die Steindicken sind ab 75 mm erhältlich. Es ist unwahrscheinlich, dass in der Praxis Innenwände ausschließlich nichttragend und mit einer Wanddicke von nur 75 mm ausgeführt wurden und werden. Deshalb wird zur Berechnung der ökologischen Qualität eine Mindeststeindicke von 115 mm angesetzt. Die maximale Steindicke für Mauerwerksinnenwände endet in der Regel bei 240 mm. (KS-Original GmbH, 2021; Wienerberger, 2021; Xella Deutschland GmbH, 2018, S. 126-129)

Bei den Stahlbetoninnenwänden wird analog zu den Außenwänden eine minimale Wanddicke von 150 mm und eine maximale Wanddicke von 250 mm (zzgl. Putzschichten) angenommen und mit den zwei Festigkeitsklassen sowie den beiden Bewehrungsgehalten (1 und 2 %) kombiniert.

Um die Umweltwirkungen von Massiv- und Holzinnenwänden vergleichen zu können, erfolgt die Dimensionierung des Holzrahmen- und Holzmassivbaus in Relation zum Mauerwerks- und Stahlbetonbau. Im Holzrahmenbau beginnen die Ständerstärken bei b \times h = 60 x 100 mm für nichttragende und enden bei b \times h = 120 x 240 mm für tragende Innenwände. Als Mindestdicke einer Brettsperrholzinnenwand werden analog zur Außenwand 90 mm, und als maximale Dicke 240 mm angesetzt. Die Wahl der weiteren Bauteilaufbauten erfolgt ebenfalls unter Berücksichtigung der allgemein geprüften und zugelassenen Bauteildetails von dataholz.eu (2021).

Die Dimensionierung der massiven **Geschossdecken** erfolgt analog zu den massiven Flachdächern. Bei der Holzbauweise werden Holzbalken- und Brettsperrholzdecken (Kellerdecken, Geschossdecken und oberste Geschossdecke) betrachtet. Für Holzbalkendecken ergeben sich nach Bergner und Volz (2012, S. 4.101) unter Annahme einer Stützweite von 4 bzw. 6,5 m und einem Balkenabstand von 100 cm minimale Abmessungen von b \times h = 100 \times 200 mm in Vollholz/Konstruktionsvollholz und maximale Abmessungen von b \times h = 200 \times 320 mm in Brettschichtholz. Für die Dimensionierung von Brettsperrholzdecken wird auf Herstellerangaben zurückgegriffen. Binderholz Bausysteme GmbH (o. J.) nennt hier Plattenstärken von mindestens 140 mm und maximal 240 mm.

Für die jüngeren BK werden vereinfacht **Plattengründungen** festgelegt, woraus sich je nach Tragfähigkeit des Untergrundes die erforderliche Bodenplattenstärke ergibt. Die Mindestplattenstärke wird mit 200 mm, die maximale Plattenstärke mit 500 mm definiert. Letztere stellt den Maximalwert für die Ausführung als WU-Beton bei drückendem Wasser und einem gering tragfähigen Untergrund dar. Eine flächige Plattenstärke von 500 mm sollte somit auch annähernd die Materialmassen einer Gründung auf Einzelfundamenten abdecken, weshalb hier eine gesonderte Betrachtung der Fundamente entfällt. Die Wahl der Betonfestigkeiten und Bewehrungsgehalte erfolgt analog zu den Wänden und Decken.

3.3.2.3 Berücksichtigung des Feuchteschutzes

Im Anschluss an die statischen Dimensionierungen werden verschiedene Bauteilkombinationen gebildet. Ziel ist die Darstellung der minimal und maximal auftretenden Umweltwirkungen von Baukonstruktionen im Gesamtlebenszyklus, gegliedert nach Bauteil und Bauweise. Dazu erfolgt eine Vorstudie zu den Umweltwirkungen gängiger Innen- und Außenbekleidungen – wie Putzsysteme, Vorhangfassaden, Installationsebenen, Dämm- und Trennlagen – sowie unterschiedlicher Dach- und Deckenbeläge.

Diese werden mit den gewählten Baukonstruktionen unter Berücksichtigung des Wärme- (vgl. Kapitel 3.3.2.1, Seite 62) und Feuchteschutzes kombiniert. Dabei wird auf Quellen zurückgegriffen, die die anerkannten Regeln der Technik darstellen (dataholz.eu, 2021; wion media services GmbH & Co. KG, o. J.). Die Schichtenaufbauten, die zur Abdichtung von erdberührten Bauteilen nach DIN 18533-1:2017-07 bis DIN 18533-3:2017-07 erforderlich sind, werden ebenso berücksichtigt, wie die Angaben zu Flachdachausführungen nach DIN 18195:2017-07 und DIN 18531-1:2017-07 bis DIN 18531-3:2017-07. Die detaillierte Darstellung aller untersuchten Kombinationen kann Anhang A.2 ab Seite 232 entnommen werden.

3.3.3 Bezugsgrößen

Die erste Bezugsgröße ist die Bauteilfläche [$m^2_{Bauteil}$]. Die zweite Bezugsgröße stellt die durchschnittliche jährliche Umweltwirkung je m^2 Nettoraumfläche [$m^2_{NRF} \times a$] nach

DIN 277:2021-08 dar. Diesen Bezug wählen auch BMUB (2015), DGNB (2018), König (2017) und Level(s) (Europäische Komission, o. J.b), da sie eine gängige Vergleichsgröße bei Planenden darstellt (z. B. bei Nutzungskonzepten oder Energiebedarfsberechnungen).

Kapitel 4 (ab Seite 107) beschreibt, wie die Umweltwirkungen je m²_{Bauteil} auf Quartiersebene berechnet und anschließend auf die m²_{NRF} oder auf die m²_{NRF}×a bezogen werden. Die sich ergebenden funktionellen Einheiten sind in Tabelle 3-3 aufgelistet.

Tabelle 3-3: Wahl der funktionellen Einheiten der Umweltwirkungen; eigene Darstellung

Umweltwirkung	Funktionelle Einheit
Treibhausgaspotential GWP	kg CO ₂ -Äq./m ² _{Bauteil} , kg CO ₂ -Äq./(m ² _{NRF}), kg CO ₂ -Äq./(m ² _{NRF} ×a), t CO ₂ -Äq./(m ² _{NRF}) oder t CO ₂ -Äq./(m ² _{NRF} ×a)
Aufwand an gesamter, nicht erneuerbarer Primärenergie PENRT	MJ/m ² Bauteil, MJ/(m ² NRF), MJ/(m ² NRF×a), kWh/m ² Bauteil,
Aufwand an gesamter Primärenergie PET	kWh/(m² _{NRF} ×a) oder kWh/(m² _{NRF} ×a) (1 Kilowattstunde [kWh] = 3,6 Megajoule [MJ])

3.3.4 Datenerhebung Fenster

Gruhler et al. (2002) nennen die Baustoffzusammensetzungen ehemals verbauter Fenster und Türen, jedoch sind die Angaben unzureichend, um entsprechende ÖKOBAUDAT-Datensätze zuordnen zu können. Demgegenüber stellt die VFF-Studie detaillierte Angaben zu den Fensterproduktionen von 1971 bis 2016 zur Verfügung (vgl. Kapitel 2.4.4, Seite 31). Als Rahmenkonstruktionen dominieren Aluminium-, Holz- und Kunststoffrahmen. Holz-Aluminiumrahmen spielen mit einem Marktanteil von max. 9 % bis 2016 eine untergeordnete Rolle. Die historische Entwicklung der Verglasung erstreckt sich von der Einfachverglasung über die Zweifachverglasung hin zum Dreifach-Wärmedämmglas in der Gegenwart. (Verband Fenster und Fassade und Bundesverband Flachglas e.V., 2017)

Mit Hilfe der in der VFF-Studie angegebenen U-Werte einzelner Glas- und Rahmentypen in Kombination mit BMWI und BMI (2020) können auch für die Baujahre vor 1971 typische Fensterkonstruktionen identifiziert werden.

Um die Umweltwirkungen von Fenstern in den einzelnen Lebenszyklusphasen miteinander vergleichen zu können, ist eine einheitliche Bezugsgröße erforderlich, die bei allen Bauteilen, wie auch bei den Fenstern, auf 1 m^2 festgesetzt wird. Die Ermittlung einzelner Materialmassen und Umweltwirkungen ist jedoch von typischen Fenstergrößen und -geometrien abhängig. Der VFF benutzt für den Vergleich eine Fenstereinheit mit Abmessungen von $1,3 \times 1,3$ m. Alternativ verwendet die DIN EN ISO 10077-1:2020-10 für die Ermittlung von typischen U-Werten eine Standardgröße von $1,23 \times 1,48$ m².

Da Fenstergrößen und -geometrien bereits innerhalb eines einzigen Gebäudes stark voneinander abweichen können und die funktionale Einheit für alle Bauteile ein Quadratmeter ist, wird für die Ökobilanzierung ein fiktives Fenstermaß von 1,0 x 1,0 m festgelegt.

Die prozentualen Rahmen- und Glasanteile beeinflussen die Umweltwirkungen maßgebend. Einflügelige Fenster ohne Sprossen haben einen maximalen Glasanteil von 90 %, bei zweiflügeligen Fenstern inklusive Sprossen kann sich der Glasanteil auf 40 % reduzieren. Diese Grenzwerte fließen daher ebenfalls mit in die Bilanzierung ein. Der prozentuale Bezug gewährleistet dabei, dass die Anteile der Fenstermaterialien unabhängig von den vorhandenen Fenstergrößen sind.

Nach der Studie des Verband Fenster und Fassade (o. J.) besitzen einfachverglaste Holzfenster meist Rahmen mit Bautiefen, die kleiner als 60 mm sind. Die Rahmen einfachverglaster Kunststoff- und Metallfenster sind oft kleiner als 50 mm. Verbundfenster hingegen weisen dickere Rahmen mit mindestens 60 mm auf. Zu typischen Blend- und Flügelrahmenbreiten werden weder in der Literatur noch bei den Datensätzen der ÖKOBAUDAT Angaben gemacht, weshalb hier als typischer Mittelwert 60 mm für die weiteren Berechnungen festgelegt wird. Eine differenziertere Betrachtung baualterstypischer Rahmenkonstruktionen entfällt, da für Aluminiumrahmen jeweils nur zwei Blend- und Flügelrahmendatensätze vorhanden sind und sowohl für Holz- als auch Kunststoffrahmen jeweils nur ein Blend- und Flügelrahmendatensatz hinterlegt ist.

- Für BK 1 bis 4 werden bei den Aluminiumrahmen die Datensätze "7.1.05 Aluminium-Rahmenprofil, pulverbeschichtet" und "7.1.05 Aluminium-Flügelrahmenprofil, pulverbeschichtet" verwendet,
- ab BK 5 die Datensätze "7.1.06 Aluminium-Rahmenprofil, thermisch getrennt, pulverbeschichtet" und "7.1.06 Aluminium-Flügelrahmenprofil, thermisch getrennt, pulverbeschichtet".

Neben den Datensätzen für Blend- und Flügelrahmen fließen auch die Datensätze für die Fugendichtung, den Fenstergriff und die -beschläge in die Bilanzierung ein. Da in der Literatur keine näheren Angaben zu Fensterbeschlägen gemacht werden, werden folgende Annahmen getroffen:

- Einfach verglaste Fenster der BK 1 bis 5 besitzen vermutlich noch keine Drehkippfunktion; deshalb wird der Datensatz "7.4.02 Fenster-Beschlag für Doppelflügelfenster" herangezogen.
- Ansonsten wird für die Fensterbeschläge der Datensatz "7.4.02 Fenster-Beschlag für Drehkippfenster (Aluminium)" gewählt, da er die höchsten Umweltwirkungen beinhaltet.
- Bei Kastenfenstern wird auf der sicheren Seite liegend ein Beschlag mit Drehkippfunktion und ein Beschlag für Doppelflügelfenster angenommen.

Die Fensterbeschläge nehmen ebenfalls merklichen Einfluss auf die Umweltwirkungen des Fensters. Ihr Einfluss auf die Umweltwirkungen wäre jedoch unverhältnismäßig hoch, wenn durchschnittlich von einem Stück Fensterbeschlag pro m² Fensterfläche ausgegangen werden würde. Denn die Einzelfensterflächen von Wohngebäuden übertreffen meist die Fläche 1 m². Deshalb wird die Stückzahl der Beschläge je m² Fensterfläche reduziert, und zwar

bezogen auf das Standardfenstermaß von $1,23 \times 1,48 \text{ m}^2$ nach DIN EN ISO 10077-1:2020-10. Hierdurch ergeben sich für Fensterbeschlag und Fenstergriff eine Stückzahl von je 0,55 pro m^2 Fensterfläche.

Analog zu den opaken Bauteilen erhält jeder generierte Fenstertyp eine Kurzbezeichnung und wird den Baualtersklassen BK 1 bis 11 zugeordnet. Mit Hilfe der Vergabe von eindeutigen Materialbezeichnungen, Flächenanteilen und Massenangaben können entsprechende Datensätze der Herstellungsphasen (A1-A3), Entsorgungsphasen (C3 und/oder C4) und Gutschriften (Phase D) aus der ÖKOBAUDAT zugewiesen werden. Die Datenzuweisung erfolgt nach den spezifischen Materialbezeichnungen, die Anhang A.5 ab Seite 376 entnommen werden können. Die detaillierte Auflistung der Fensterkonstruktionen im Altbau ist im Anhang A.2 ab Seite 232 zu finden.

3.3.5 Zusammenstellung der erhobenen Altbaukonstruktionen

Das Zentrum für Umweltbewusstes Bauen e.V. (2009b) erfasst in ihrem Altbaukonstruktionskatalog 181 Bauteile der Gebäudehüllfläche für BK 1 bis 7: Steildach, Flachdach, Außenwand, oberste Geschossdecke, Kellerdecke und Bodenplatte. Nicht alle Bauteile sind in jeder BK vertreten. Zudem fehlen Angaben zu Bauteilen, die innerhalb der wärmeübertragenden Umfassungsfläche liegen. Die Datenlücken des Altbaukonstruktionskatalogs werden durch Gruhler et al. (2002) und dataholz.eu (2021) geschlossen. Gruhler et al. (2002) beschreiben zusätzlich zum Altbaukonstruktionskatalog Fundamente, Gebäudetrennwände, Kellerwände, Geschossdecken und Innenwände. Informationen zu Holzkonstruktionen jüngerer Baualtersklassen liefert dataholz.eu (2021).

Wie bereits erwähnt, wird für die Ermittlung der Fensterkonstruktionen die Studie des Verband Fenster und Fassade und Bundesverband Flachglas e.V. (2017) herangezogen. Mit Hilfe der im vorherigen Kapitel beschriebenen Annahmen können 32 verschiedene Konstruktionen identifiziert werden, die die Eigenschaften der Bestandsfenster beschreiben.

Abbildung 3-3 stellt einen Überblick über die mittels der Literatur erhobenen opaken Bauteile und Fenster dar. Die zugehörigen Beschreibungen der Bauteilnamen sind in Tabelle 3-4 zu finden.

Zentrum

Umweltbewusstes Bauen e.V., 2009b:

- 5 Bodenplatten (BP)
- 72 Außenwände (EW)
- 37 Kellerdecken (CFL)
- 35 oberste Geschossdecken (TFL)
- 8 Flachdächer (FRO)
- 24 Steildächer (PRO)
- Insgesamt: 181 opake
 Bauteile

Gruhler et al., 2002:

- 25 Bodenplatten (BP)
- 26 Fundamente (F)
- 46 Außenwände (EW), inkl. Gebäudetrennwände (SW)
- 30 Kellerwände (CW), inkl.
 Gebäudetrennwände im Keller (SCW)
- 54 Innenwände (IW)
- 32 Geschossdecken (FL) inkl. Keller-(CFL) und oberste Geschossdecken (TFL)
- 4 Flachdächer (FRO)
- 16 Steildächer (PRO)
- · Insgesamt: 233 opake Bauteile

Dataholz.eu, 2021:

- 2 Steildächer (PRO)
- 1 Flachdach (FROwood)
- 4 Außenwände (EWwood)
- 4 Gebäudetrennwände (SWwood)
- 4 Innenwände (IWwood)
- 6 Geschoss- (FLwood) und Kellerdecken (CFLwood)
- Insgesamt: 21 opake
 Bauteile

Verband Fenster + Fassade & Bundesverband Flachglas e.V., 2017:

4 Hauptrahmentypen

7 Glastypen

Insgesamt: 32 Fenstertypen

	Anzahl baualterspezifisch bilanzierter Bauteilaufbauten im Altbau								
	PRO	FROwood	FROmas	EW mas	EW2shelled	EWcwf	EWwood	SW mas	SW2shelled
BK 1	7	0	0	19	3	1	16	17	2
BK 2	6	1	0	13	6	0	0	13	5
BK 3	11	0	3	33	5	0	0	32	5
BK 4	18	1	4	36	5	0	0	37	5
BK 5	22	3	6	33	10	7	0	32	10
BK 6	6	0	5	12	7	0	1	13	7
BK 7	8	0	5	15	7	0	1	17	7
BK 8	5	0	2	5	0	0	0	6	0
BK 9	4	4	2	4	0	4	4	8	0
BK 10	4	4	2	4	0	4	4	8	0
BK 11	4	4	2	4	0	4	4	8	0
	SWcwf	SWwood	IWmas	lWwood	CW	SCW	FLmas	FLwood	TFLmas
BK1	1	15	4	1	4	4	0	2	0
BK2	0	0	2	0	2	2	2	0	0
BK3	0	0	6	0	4	4	4	0	9
BK4	0	0	20	0	10	10	6	0	12
BK5	5	0	20	0	10	10	6	0	15
BK6	0	0	16	0	7	7	6	0	9
BK7	0	0	20	0	9	10	9	0	10
BK8	0	0	11	0	3	4	4	0	1
BK 9	0	4	8	4	15	16	2	4	2
BK 10	0	4	8	4	15	16	2	4	2
BK 11	0	4	8	4	16	16	2	4	2
	TFLwo	od CFLma	s CFLwoo	od BP	F	Walu	Wplas	Wwood	Gesamt
BK 1	6	6	2	3	3	0	0	4	120
BK 2	5	8	4	3	3	4	0	4	83
BK 3	5	17	3	3	5	4	4	4	157
BK 4	11	19	0	4	8	4	4	4	214
BK 5	10	20	0	4	8	6	6	6	243
BK 6	5	5	0	4	4	4	4	4	122
BK 7	5	6	0	8	7	4	4	4	152
BK 8	2	2	0	4	5	4	4	4	62
BK 9	4	2	4	4	0	6	6	6	117
BK 10	4	2	4	4	0	4	4	6	113
BK 11	4	2	4	4	0	4	4	6	114

Abbildung 3-3: Überblick über die Altbauteile und die Anzahl der bilanzierten Bauteilaufbauten je Baualtersklasse; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4)

Tabelle 3-4: Erklärung der gewählten Bauteilabkürzungen; eigene Darstellung

Abkürzung	Englisch	Deutsch
PRO	Pitched Roof	Steildach
FROwood	Flat Roof wooden	Flachdach, Holzkonstruktion
FROmas	Flat Roof massive	Flachdach, Massivkonstruktion
EWmas	Exterior Wall massive	Außenwand, Massivkonstruktion (monolithisch)
EW2shelled	Exterior Wall 2-shelled	Außenwand, zweischalige Konstruktion
EWcwf	Exterior Wall curtain-wall facing	Außenwand mit Vorhangfassade oder be- bzw. hinterlüfteter Fassade
EWwood	Exterior Wall wooden	Außenwand, Holzkonstruktion
SWmas	Shared Wall massive	(Gebäude-)Trennwand, massive Konstruktion
SW2shelled	Shared Wall 2-shelled	(Gebäude-)Trennwand bei zweischaliger Außenwand
SWcwf	Shared Wall curtain-wall facing	(Gebäude-)Trennwand bei Außenwand mit Vorhangfassade
SWwood	Shared Wall wooden	(Gebäude-)Trennwand, Holzkonstruktion
IWmas	Interior Wall massive	Innenwand, Massivkonstruktion
IWwood	Interior Wall wooden	Innenwand, Holzkonstruktion
CW	Cellar Exterior Wall	Kelleraußenwand
SCW	Shared Cellar Wall	(Gebäude-)Trennwand im Keller
FLmas	Floor massive	Geschossdecke, Massivkonstruktion
FLwood	Floor wooden	Geschossdecke, Holzkonstruktion
TFLmas	Top Floor massive	Oberste Geschossdecke, Massivkonstruktion
TFLwood	Top Floor wooden	Oberste Geschossdecke, Holzkonstruktion
CFLmas	Cellar Floor massive	Kellerdecke, Massivkonstruktion
CFLwood	Cellar Floor wooden	Kellerdecke, Holzkonstruktion
BP	Base Plate	Bodenplatte
F	Foundation	Fundament
Walu	Window aluminium	Fenster, Aluminiumrahmen
Wplas	Window plastic	Fenster, Kunststoffrahmen
Wwood	Window wooden	Fenster, Holzrahmen

Mindestens 62 (BK 8) und maximal 243 (BK 5) verschiedene Bauteile beschreiben so in Abbildung 3-3 die Bauteileigenschaften der Wohngebäude je Baualtersklasse. Außenwände verfügen über die meisten Informationen. Allerdings sind nicht alle Bauteile in jeder Baualtersklasse vertreten. Zum Beispiel wurden erst in der BK 3 massive Flachdächer (FROmas) oder Kunststofffenster (Wplas) produziert und eingebaut. In den früheren BK finden sich häufiger Holzkonstruktionen, die im weiteren zeitlichen Verlauf durch Massivbauweisen abgelöst wurden (vgl. Kapitel 2.4 ab Seite 28).

3.4 Ermittlung Neubaukonstruktionen

Die Ermittlung und Bilanzierung der Neubaukonstruktionen basieren auf der Analyse von Bautätigkeiten der vergangenen Jahre. Wie Abbildung 2-5 auf Seite 24 zeigt, nimmt die Bedeutung des Holzbaus bei Ein- und Zweifamilienhäusern seit 2002 stetig zu. In den letzten 10 Jahren stieg sein Anteil um 5 % auf insgesamt 20 %. Gleichzeitig sank der Marktanteil der Ziegelbauweise um 4 % auf 31 %. Bei den Mehrfamilienhäusern dominieren aktuell noch die Massivbauweisen (siehe Abbildung 2-6, Seite 25). Die Stahlbetonbauweise pendelte sich in den vergangenen Jahren bei einem Anteil von knapp 20 % ein. Daneben nimmt Kalksandstein mit zuletzt 35 % einen maßgebenden Stellenwert am Markt ein. Ein Grund für die Beliebtheit von Stahlbeton und Kalksandstein im mehrgeschossigen Wohnungsbau sind die hohen Tragfähigkeiten, die diese Bauweisen auch zukünftig notwendig machen. Möglich ist die Zunahme von Holz-Stahlbeton-Hybridkonstruktionen, bei der die Bauweisen entsprechend ihrer jeweiligen Vorteile gezielt eingesetzt werden können: die Tragkonstruktion wird z. B. in Stahlbetonbauweise ausgeführt, die Außenwände bestehen aus hochwärmedämmenden Holzrahmenelementen (Dotzler et al., 2019). Mit den nachfolgend entwickelten Bauteilaufbauten kann theoretisch auch diese Bauweise ökologisch bewertet werden.

3.4.1 Datenerhebung opaker Bauteile und Fenster

Die Datenerhebung neuer opaker Bauteile und Fenster erfolgt analog zur Datenerhebung der Altbaukonstruktionen von BK 9 bis 11 (siehe Kapitel 3.3.2 und 3.3.3 ab Seite 61). Gemäß der Entwicklungen der vergangenen Bautätigkeitsberichte und Marktstudien zu Fenstern und Dämmstoffen (siehe Kapitel 2.3.9, Seite 24 und Kapitel 3.3.2, Seite 61) wird davon ausgegangen, dass sich die Bauweisen und -konstruktionen bei zukünftigen Neubauten ähnlich zu denen der letzten Jahre verhalten.

Die Auswahl der relevanten **Fassadenarten** geschieht unter Abgleich des deutschen Fassadenbestandes. Asam (2017) weist mit Stand 2001 die Putzfassade (ohne WDVS) als die im Bestand am häufigsten vertretene Fassadenart mit einem flächenmäßigen Anteil von 62,6 % aus. Fassaden mit WDVS haben einen Anteil von 9,5 %, wobei sich der Anteil dieser Fassadenart zwischen 2002 bis 2012 nahezu verdoppelt hat. Klinkerfassaden nehmen einen Anteil von 14,3 % ein. Andere Fassadenarten spielen eine eher untergeordnete Rolle. (Asam, 2017, S. 5-6)

Deshalb werden bei der LCA Außenwände mit Putzfassaden, WDVS und vorgehängten, hinterlüfteten Fassaden untersucht, die die minimalen bzw. maximalen Umweltwirkungen bei der Massiv- und Holzbauweise hervorrufen.

Als Dämmstandard wird für die **Konstruktionen der Gebäudehüllfläche** der Passivhausstandard gewählt. Er stellt einen Niedrigstenergiestandard dar, so wie er im GEG gefordert wird. Neben der zwingenden Einhaltung des Mindestwärmeschutzes gibt das GEG zwar

keine verbindlichen U-Werte für die betreffenden Neubauteile vor, jedoch müssen neue Wohngebäude so errichtet werden, dass der Jahresprimärenergiebedarf eines Referenzgebäudes mit gleicher Geometrie, Gebäudenutzfläche und Ausrichtung um 25 % unterschritten wird. (Deutscher Bundestag, 2020, §10)

Die in Anlage 1 des GEG aufgeführten Referenz-U-Werte sind somit als Richtwerte zu verstehen, die im besten Fall unterschritten werden, um den Energiestandard zu erreichen. Deshalb wird der Passivhausstandard als anzustrebender Energiestandard festgelegt, um mit dieser LCA-Studie zum einen die aktuellen und zum anderen die zukünftigen sowie ambitionierten Anforderungen an Niedrigstenergiegebäude erfüllen zu können. Die berücksichtigten U-Werte je Bauteil sind in Tabelle A. 2, Seite 230 dargestellt.

Baukonstruktionen, die sich nicht innerhalb bzw. außerhalb der beheizten Gebäudehülle befinden, obliegen nicht der Einhaltung des GEG und die Dämmschichten entfallen. Deshalb wird beim Steildach, bei den Keller(trenn)wänden und bei der Bodenplatte zwischen beheizt und unbeheizt unterschieden. Bauteile, die an den beheizten Raum angrenzen, erhalten den Index "_h" (für beheizt, engl. "heated"), jene die an den unbeheizten Raum angrenzen, erhalten den Index "_uh" (für unbeheizt, engl. "unheated") (siehe hierzu auch Tabelle 3-1, Seite 55). Oberste Geschossdecken und Kellerdecken fließen in die Bilanzierung mit ein, wenn das Dachgeschoss bzw. das Kellergeschoss unbeheizt sind. Bei Gebäudetrennwänden über GOK wird angenommen, dass sie immer an benachbarte Wohnräume angrenzen, die mit mindestens 19 °C beheizt werden. Somit werden sie nach GEG nicht zur wärmeübertragenden Umfassungsfläche herangezogen und die Dämmanforderungen entfallen (Deutscher Bundestag, 2020, § 30).

Im Zuge der Klimaanpassung ist anzunehmen, dass zukünftig vermehrt begrünte **Flachdächer** in Erscheinung treten. Somit werden sie bei den Neubaukonstruktionen ebenfalls berücksichtigt. Mit zunehmender Substratschichtdicke steigen die Eigenlasten des Flachdachs und somit die statisch erforderlichen Bauteildimensionierungen. Gleichzeitig wirkt sich das Vegetationssubstrat für Dächer nach der ÖKOBAUDAT günstig auf die Umweltwirkungen aus, da es bilanziell in der Herstellungsphase GWP einspeichert (-0,047 kg CO₂-Äq./ kg Substrat) und im Laufe des Lebenszykluses nur noch anteilig freisetzt (Summe Phasen C3/C4: 0,010 kg CO₂-Äq./ kg Substrat) (BBSR, o. J., Version 2020-II, Datensatz 1.3.19). Unter Berücksichtigung dieser Wechselwirkung wird das Spardach (Substratdicke von 26 mm) als Gründachkonstruktion mit den maximalen Umweltwirkungen identifiziert. Eine eindeutige Zuordnung von ÖKOBAUDAT-Datensätzen zu vorhandenen Bauteilschichten, wie Bautenschutzmatten, ist wegen fehlender Datensätze nicht immer möglich. Deshalb werden hier Datensatzwerte ähnlicher Materialien verwendet. Berücksichtigt wird das Rohdichteverhältnis des jeweiligen Datensatzes und des zu bilanzierenden Materials nach Herstellerangaben (BBSR, o. J., Version 2020-II; Optigrün international AG, 2021).

Im Jahr 2016 gab es bei den Fenstern vier Hauptrahmentypen am Markt, wobei die Holz-Metallrahmen einen Produktionsanteil von nur 9 % innehielten. Aufgrund des geringen Marktanteils und weil sie eine Mischkonstruktion von Aluminium- und Holzrahmen darstellen, werden sie bei der Bilanzierung der **Fensterkonstruktionen** vernachlässigt. Zudem existiert in der ÖKOBAUDAT, Version 2020-II kein spezifischer Datensatz zu dieser Rahmenart (BBSR, o. J.). Die Umweltwirkungen können daher nur sehr überschlägig erfasst werden. Da der Passivhausstandard einen Fenster-U-Wert von 0,80 W/m²K fordert (siehe Tabelle A. 2, Seite 230), wird bei der Verglasungsart die Dreifachverglasung untersucht. Bei Holzkastenfenstern, die seit 2014 erneut am Markt in Erscheinung treten, wird die Dreifachverglasung aus einer zweifachen Wärmeschutzverglasung in Kombination mit einer Einfachverglasung gebildet. Analog zu den Altbaukonstruktionen werden die Umweltwirkungen zweier Glasflächenanteile (40 und 90 %) bilanziert. (Verband Fenster und Fassade und Bundesverband Flachglas e.V., 2017)

3.4.2 Zusammenstellung der erhobenen Neubaukonstruktionen

Die Anzahl der erhobenen Neubaukonstruktionen je Bauteil kann Abbildung 3-4 entnommen werden. Zur Generierung der Holzbaukonstruktionen (Holzrahmen- und Holzmassivbau) stehen insgesamt 24 geprüfte Bauteilaufbauen zur Verfügung (dataholz.eu, 2021). Für die Entwicklung der Massivbaukonstruktionen werden verschiedene Herstellerangaben zugrunde gelegt. Spezifische Angaben zu den jeweiligen Literaturquellen finden sich in Anhang A.3 ab Seite 296.

Anzahl bilanzierter Bauteilaufbauten im Neubau										
	PRO_h	PRO_uh	FROmas	FROwood	EWmas	EWwood	SW mas	SWwood		
nb	2	2	2	4	8	4	8	4		
	IWmas	IWwood	CW_h	CW_uh	SCW_h	SCW_uh	FLmas	FLwood		
nb	8	4	8	8	8	8	2	4		
	TFLmas	TFLwood	CFLmas	CFLwood	BP_h	BP_uh				
nb	2	4	2	4	2	2				
	Walu	Wplas	Wwood	Gesamt						
nb	2	2	4	108						

Abbildung 3-4: Überblick über die Neubauteile und die sich daraus ergebenden Bauteilaufbauten; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Bei den Fenstern kommen nur noch Dreifachverglasungen – entweder dreifache Wärmeschutzverglasung oder zweifache Wärmeschutzverglasung plus Einfachverglasung – in

Kombination mit Kunststoff, Holz- und Aluminiumrahmen – zum Einsatz (Verband Fenster und Fassade und Bundesverband Flachglas e.V., 2017). Aus den Literaturangaben und getroffenen Annahmen werden insgesamt 108 Baukonstruktionen für den Neubau von Wohngebäuden im Passivhausstandard abgeleitet.

3.5 Ermittlung Sanierungskonstruktionen

Bei den Sanierungsvarianten wird die energetische Sanierung, also die Dämmung der Gebäudehüllkonstruktionen nach Niedrigstenergiestandard betrachtet. Innenliegende Bauteile, wie Innenwände und Geschossdecken werden nicht untersucht, da ihre Sanierung keinen Beitrag zur Senkung des Heizwärmebedarfs und somit zur Senkung des Energieverbrauchs und Emissionsausstoßes im Gebäudebetrieb leistet.

Als Sanierungsstandard wird der Effizienzhausstandard 55 der Kreditanstalt für Wiederaufbau (KfW) angestrebt. Die Effizienzhaus-Stufe 55 bedeutet dabei, dass der Jahresprimärenergiebedarf des Gebäudes nur 55 % des im GEG geforderten Referenzgebäudes beträgt. Der Transmissionswärmeverlust darf dabei maximal 70 % des Referenzgebäudes betragen – in der vorliegenden Arbeit wird dieser Standard abgekürzt als "KfW-55-Standard" bezeichnet. (Deutscher Bundestag, 2020; KfW, 2021)

Die Wahl fällt bei der Sanierung auf den KfW-55-Standard, da er die technische Mindestanforderung der KfW für energieeffiziente Sanierungen darstellt. Zudem können die dadurch erforderlichen Dämmdicken im Gegensatz zu denen des Passivhausstandards konstruktiv leichter umgesetzt werden. Das Merkblatt der KfW über die technischen Mindestanforderungen für die Sanierung von Bestandsgebäuden regelt die Anforderungen an die Wärmedurchgangskoeffizienten der Gebäudehülle. Tabelle A. 3, Seite 231 fasst die herangezogenen U-Werte zusammen. Auflagen des Denkmalschutzes werden vernachlässigt. Hier muss eine Prüfung im Einzelfall erfolgen. (KfW, 2020)

Ob der KfW-55-Standard als Sanierungsstandard für einen klimaneutralen Wohngebäudebestand ausreicht, hängt insbesondere von der Art und Verfügbarkeit der Wärmeenergiequellen im Betrieb ab. Es muss im Einzelfall abgewägt werden, ob der Einsatz an Grauen Energien und Grauen Emissionen zur Herstellung ambitionierter Dämmdicken den betrieblichen Energiebedarf und seine Umweltwirkungen wesentlich reduziert. Werden die Gebäude mit fossilen Energieträgern beheizt, ist es sinnvoll die konstruktiven Dämmmöglichkeiten maximal auszuschöpfen. Erfolgt die Beheizung der Gebäude nahezu klimaneutral, kann der bauliche Aufwand für einen ambitionierten Niedrigstenergiestandard ökologisch unverhältnismäßig sein.

3.5.1 Ermittlung der maßgebenden Altbaukonstruktionen

Für die Bilanzierung der Sanierungsvarianten werden je Baualtersklasse und Bauteil zunächst diejenigen Altbaukonstruktionen identifiziert, die zu den geringsten und höchsten lebenszyklusbasierten Umweltwirkungen führen. Dabei werden die Einflüsse der drei Indikatorwerte (GWP, PENRT und PET) mit Hilfe einer einfachen Normierung gegenübergestellt. Durch eine Normierung liegen die Bezugswerte im Wertebereich zwischen 0 und 1 und können dimensionslos miteinander verglichen werden.

Im ersten Schritt werden für eine Anzahl n an Baukonstruktionen je Bauteil und Baualtersklasse die Summen der Werte für GWP, PENRT und PET über die LZPH A1-C4 gebildet, wobei eine Standard-Gebäudelebensdauer von 50 Jahren angenommen wird (siehe Gl. 3-2 bis Gl. 3-4). Die Phase D bleibt unberücksichtigt, da sie immer separat zu den Umweltwirkungen der LZPH ausgewiesen werden muss und außerhalb der LZPH mögliche Potentiale aufzeigt, die in der Praxis nicht zwingend in Erscheinung treten. Liegen die lebenszyklusbasierten Umweltwirkungen eines Indikators im negativen Bereich, weil über den Lebenszyklus hinweg beispielsweise mehr GWP gebunden als freigesetzt wird, wird die Summe und somit der Einfluss des Indikatorwertes auf Null gesetzt. Im zweiten Schritt (Gl. 3-5 bis Gl. 3-7) wird je Indikator der Maximalwert identifiziert.

$GWP_{i=1n} = GWP_{i,A1\text{-}A3} + GWP_{i,B4} + GWP_{i,C3} + GWP_{i,C4} \ge 0$	[kg CO ₂ - Äq./m²]	Gl. 3-2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[MJ/m²]	Gl. 3-3
$PET_{i=1n} = PET_{i,A1-A3} + PET_{i,B4} + PET_{i,C3} + PET_{i,C4} \ge 0$	[MJ/m²]	Gl. 3-4
$GWP_{max} = max \{GWP_1,, GWP_n\}$	[kg CO ₂ - Äq./m²]	Gl. 3-5
$PENRT_{max} = max \{PENRT_1,, PENRT_n\}$	[MJ/m²]	Gl. 3-6
$PET_{max} = max \{PET_1,, PET_n\}$	[MJ/m²]	Gl. 3-7

Anschließend werden die Werte in Gl. 3-8 normiert und addiert. Der Summenwert der normierten Umweltwirkungen liegt dabei zwischen 0 und 3. Final werden so je Bauteil und Baualtersklasse zwei Altbaukonstruktionen – einmal diejenige mit den normiert minimalen und einmal diejenige mit den normiert maximalen Umweltwirkungen – ermittelt (Gl. 3-9 und Gl. 3-10). Für diese zwei Baukonstruktionen werden mögliche energetische Sanierungsvarianten untersucht, die wiederum jeweils die geringsten und größten Umweltwirkungen verursachen. So ergeben sich je Bauteil und Baualtersklasse insgesamt mindestens vier Sanierungsvarianten. Wird bei den Bauteilen zwischen mehreren Bauweisen oder Baumaterialien unterschieden (z. B. Außenwand massiv: Ziegel, Porenbeton, Kalksandstein und Stahlbeton), erhöht sich die Anzahl der Sanierungsvarianten für das Bauteil (hier insgesamt 16).

$$X_{i=1..n} = \frac{\text{GWP}_{1..n}}{\text{GWP}_{\text{max}}} + \frac{\text{PENRT}_{1..n}}{\text{PENRT}_{\text{max}}} + \frac{\text{PET}_{1..n}}{\text{PET}_{\text{max}}} \le 3$$
 [MJ/m²] GI. 3-8
$$\min \{x_1, ..., x_n\}$$
 [-] GI. 3-9
$$\max \{x_1, ..., x_n\}$$
 [-] GI. 3-10

Dieses Vorgehen führt nicht zwangsläufig dazu, dass die Altbaukonstruktion mit den lebenszyklusbasiert geringsten Umweltwirkungen bei ihrer Sanierung ebenfalls die geringsten Umweltwirkungen hervorruft. Vor allem beim Einsatz von Holzbaustoffen sind die Zusammenhänge komplexer. Lebenszyklusbasiert sind ihre Umweltwirkungen gering. Zwar wird bei Holzkonstruktionen in der Phase C3 durch das Szenario der thermischen

Verwertung ein hoher Anteil an CO₂ freigesetzt, jedoch wird zuvor bei ihrer Herstellung ein signifikanter Anteil an CO₂ in Form von Kohlenstoff eingelagert. Die CO₂-Bilanz gleicht sich somit aus. Da bei den Sanierungsvarianten die Herstellungsphasen der Altbaukonstruktion allerdings nicht berücksichtigt werden, erscheint das lebenszyklusbasierte GWP der sanierten Holzkonstruktion zunächst sehr hoch. Durch die Berücksichtigung der Phase D reduziert sich dieses Ungleichgewicht jedoch wieder, weshalb an der beschriebenen Methode festgehalten werden kann. Nur ist darauf zu achten, dass bei der Bewertung von Holzkonstruktionen immer die Phase D mitbetrachtet werden muss.

3.5.2 Datenerhebung opaker Bauteile

Wie auf Seite 76 erläutert, werden die Sanierungsvarianten nur für Bauteile der wärmeübertragenden Umfassungsfläche entwickelt. Diese ist abhängig von der Wahl der beheizten Geschosse des Gebäudes. Wird das Dachgeschoss als Wohnraum genutzt, gehört das Steildach zur wärmeübertragenden Umfassungsfläche und es muss gemäß des erforderlichen Dämmstandards saniert werden. Ansonsten wird die oberste Geschossdecke saniert. Bei Flachdachkonstruktionen ist davon auszugehen, dass das oberste (Voll-)Geschoss immer als Wohnraum genutzt wird. Bleibt das Kellergeschoss nach der Sanierung unbeheizt, wird die Kellerdecke energetisch ertüchtigt. Ansonsten werden die Kelleraußenwände, Gebäudetrennwände unter GOK und die Bodenplatte saniert. Bei Außenwänden und Fenstern wird nie zwischen dem beheizten und unbeheizten Fall unterschieden, da sie immer zur wärmeübertragenden Umfassungsfläche gehören.

Die Generierung der Sanierungsvarianten verläuft unter Berücksichtigung folgender Fragestellungen:

- Welchen U-Wert besitzen die Bestandskonstruktionen und welche D\u00e4mmdicke ergibt sich daraus bei der Sanierung?
- Welche Sanierungsarten (Außen-, Zwischen- oder Innendämmung) werden auf Basis der erforderlichen Dämmdicke oder konstruktiver Möglichkeiten in der Praxis favorisiert ausgeführt?
- Welche Bauteilschichten und Konstruktionen müssen ausgebaut werden, um die Bauteile energetisch ertüchtigen zu können (z. B. Dacheindeckungen, Beläge oder Bekleidungen)?
- Können vorhandene Dämmschichten theoretisch weiterverwendet werden, insbesondere, wenn sie gute Wärmeleitfähigkeiten aufweisen und ihre Standardnutzungsdauer noch nicht überschritten haben?
- Welche Bauteilschichten müssen während der Sanierung erstellt werden, um den Wärme- und Feuchteschutz zu gewährleisten?
- Welche in der Praxis vertretenen Sanierungsvarianten führen zu den geringsten und welchen zu den höchsten Umweltwirkungen unter gleichzeitiger Berücksichtigung der Indikatoren GWP, PENRT und PET?

Diese Fragen werden bei jeder maßgebenden Altbaukonstruktion (siehe Kapitel 3.5.1, Seite 76) zugrunde gelegt und in Einzelstudien beantwortet. Die so ermittelten und bilanzierten Sanierungskonstruktionen sind im Anhang A.4 ab Seite 311 dargestellt.

Bei **Steildächern** werden bei erforderlichen Dämmdicken von bis zu 300 mm bevorzugt Zwischen- und Aufsparrendämmungen ausgeführt. Somit können die für die Wohnnutzung notwendigen lichten Raumhöhen besser gewährleistet werden. Auch vorhandene, intakte Innenbekleidungen bleiben erhalten. Ferner kann das Dachgeschoss während der Bauphase weiter bewohnt werden. Sind im Bestand keine Innenbekleidungen vorhanden, was auf bisher unbewohnte/unbeheizte Dachgeschosse zutrifft, werden je nach erforderlicher Dämmdicke und resultierender Umweltwirkungen Innen-, Zwischen- und Außendämmungen kombiniert. Bei den Dachdeckungen verursacht eine Biberschwanzziegeldeckung aufgrund ihrer Materialmasse die größten Umweltwirkungen, die geringsten gehen mit der Blecheindeckung einher. Aus der Mineralwolle (Innenausbau) resultieren die geringsten, aus der Holzfaserdämmung die größten Umweltwirkungen.

Da Dachabdichtungen von massiven **Flachdächern** spätestens nach 30 Jahren erneuert werden müssen, werden sie mit einer Außendämmung saniert (BBSR, 2017). Trotz eines zweimaligen Austausches während einer Gebäudelebensdauer von 50 Jahren besitzt die PVC-Dachbahn als Abdichtung die geringsten Umweltwirkungen. Der für eine Dachbegrünung erforderliche Dachaufbau generiert die größten Umweltwirkungen, wobei mit zunehmender Substratdicke ein gewisser Anteil des anfallenden GWP kompensiert werden kann (Optigrün international AG, 2021). Die Dämmstoffe müssen druckbelastbar sein. Daher werden für die Flachdachdämmung Polystyroldämmungen (EPS und XPS) eingesetzt. Zur Ermittlung der minimal und maximal auftretenden Umweltwirkungen bei Flachdachkonstruktionen in Holzbauweise ab BK 9 werden Innendämmungen mit Außendämmungen verglichen.

Zur Festlegung der Dämmart bei **Außenwänden** wird eine Studie zum deutschen Wohngebäudebestand herangezogen. Demnach erhalten einschalige Mauerwerkswände von Altbauten bis Baujahr 1978 zu $85.9 \% \pm 1.7 \%$ Außendämmungen. Zweischalige Außenwände werden mit einem Anteil von $57.1 \% \pm 4.4 \%$ außen und mit einem Anteil von $31.0 \% \pm 4.2 \%$ im Zwischenraum gedämmt. Bestehende Betonfertigteile erhalten immer Außendämmungen. Bei Fachwerkswänden dominieren die Innendämmungen mit $54.5 \% \pm 9.0 \%$. Dies ist auf den Denkmalschutz der Fachwerksgebäude zurückzuführen, der die Veränderung der Außenfassade oft unterbindet. Da in dieser Arbeit die spezifischen Auswirkungen des Denkmalschutzes nicht betrachtet werden, wird für die in der Literatur aufgeführten zehn Fachwerkswände eine Außendämmung zugrunde gelegt, die mit einem Anteil von $39.8 \% \pm 8.5 \%$ ebenfalls üblich ist. Nachträgliche Dämmungen werden im Holzbau zu $91.2 \% \pm 7.6 \%$ als Außendämmung ausgeführt. (Diefenbach et al., 2010, S. 54)

Kombiniert werden die Dämmmaßnahmen mit zwei Fassadentypen: dem WDVS (geringste Umweltwirkungen) und der hinter-/belüfteten (Vorhang)fassade aus Faserzementplatten (höchste Umweltwirkungen). Als Dämmmaterialen kommen erneut Mineral-, Holz- und Zellulosefaser zum Einsatz.

Die **Gebäudetrennwände über GOK** werden nicht energetisch saniert, da davon auszugehen ist, dass sie immer an benachbarte Wohnräume angrenzen, die mit mindestens 19 °C beheizt werden. Nach GEG gehören sie demnach nicht zur wärmeübertragenden Umfassungsfläche.

Zählt der Keller nach der Sanierung zum beheizten Wohnraum (siehe Abbildung 3-5, links), werden sowohl die **Kelleraußenwände** als auch die **Gebäudetrennwände im Kellergeschoss** gedämmt. Neben der Wahl einer druckfesten Dämmung (XPS) wird bei der Sanierung der Kelleraußenwand gegen Erdreich auch der Feuchteschutz nach DIN 18533-3:2017-07 berücksichtigt. Dies geschieht unter Verwendung von Bitumen- oder PE-HD-Flächenabdichtungen in Kombination mit Noppenbahnen. Gebäudetrennwände im Kellergeschoss müssen mit einer Innendämmung (Mineral- oder Holzfaserdämmung) versehen werden, da eine Außensanierung nur durch Abriss der Nachbarräume möglich wäre. Der Feuchteschutz kann dabei mittels einer PE-Folie in Kombination mit einer Gipsfaserplatte oder mittels einer OSB-Platte in Kombination mit einer GKF-Platte gewährleistet werden.

Wird der Keller nach der Sanierung nicht beheizt (siehe Abbildung 3-5, rechts), muss die **Kellerdecke** die KfW-55-Anforderungen erfüllen. Kellerdecken werden standardmäßig von unten gedämmt, insbesondere wenn es sich um Massivdecken handelt. Auch hier werden die Umweltwirkungen einer Mineralwoll- und einer Holzfaserdämmung verglichen. Bei Holzbalkendecken ist daneben die Dämmung des Balkenzwischenraums sinnvoll. So werden hier die ökologischen Auswirkungen einer Zwischendämmung mit denen einer Dämmung von unten verglichen.

Kellergeschoss nach Sanierung unbeheizt

Abbildung 3-5: Skizzenhafte Darstellung der Gebäudesanierung mit und ohne beheiztem Kellergeschoss; eigene Darstellung

Bei unbewohntem Dachgeschoss ist die energetische Sanierung der **obersten Geschossdecke** sehr leicht umsetzbar. Die Verlegung von Mineralwolldämmung auf massiven Decken ist die Variante mit den geringsten Umweltwirkungen. Soll die oberste Geschossdecke begehbar bleiben, wird die Bauteildämmung (Holzfaser) mit einer Balkenlage und

Trockenestrichplatten kombiniert. Bei Holzbalkendecken bietet sich die Kombination aus Zwischendämmung und Dämmung von oben an.

Die Beheizung des Kellergeschosses im KfW-55-Standard erfordert eine hochdämmende **Bodenplatte**, wobei hier nur eine nachträgliche Innendämmung möglich ist. Bei Gebäuden der BK 1 und 2 kann es vorkommen, dass der untere Abschluss gegen Erdreich nur aus einem Bretterboden besteht, der auf Holzbalken gelagert ist. Dann geht eine Sanierung neben der Einbringung der erforderlichen Dämmschichten mit einer Entsorgung der Altbaukonstruktion und der Ergänzung einer Stahlbetonplatte einher. Als Minimalausführung wird für die Bilanzierung eine nichttragende 150 mm dicke Stahlbetonplatte mit einer Festigkeitsklasse von C20/25 und einem Armierungsgehalt von 1 % gewählt. Als Maximalausführung wird eine nichttragende Stahlbetonplatte mit C25/30 und einem Armierungsgrad von 2 % untersucht. Letztere stellt die Mindestanforderung an die Ausführung als wasserundurchlässige Bodenplatte dar (InformationsZentrum Beton GmbH, 2019). Lediglich die geforderte Mindestdicke von 250 mm wird für die LCA-Betrachtung auf 300 mm erhöht. XPS wird als Perimeterdämmung eingesetzt. Bleibt die alte Bodenplatte erhalten, wird die oberseitige Dämmung erneut mit Mineralwolle- oder Holzfaserdämmplatten ausgeführt. Beim Bodenbelag wird lediglich ein 50 bis 75 mm starker Zementestrich berücksichtigt.

3.5.3 Datenerhebung Fenster

Fenster können durch Glas- oder Komplettaustausch saniert werden. Da der Glasaustausch hauptsächlich bei denkmalgeschützten Fenstern zum Einsatz kommt und der Denkmalschutz hier nicht berücksichtigt wird, wird bei Fenstern im Bestand der Komplettausbau und Ersatz durch Neubaufenster im KfW-55-Standard angenommen. Der KfW-55-Standard macht mit einem U-Wert von 0,95 W/m²K (siehe Tabelle A. 3, Seite 231) analog zum Passivhausstandard eine Dreifachverglasung notwendig. Weitere Angaben zu den neuen Fensterkonstruktionen können Kapitel 3.4.1 ab Seite 72 entnommen werden.

3.5.4 Zusammenstellung der erhobenen Sanierungskonstruktionen

Mit Hilfe der in Kapitel 3.5.1, Seite 76 beschriebenen Methode werden insgesamt 171 maßgebende opake Altbaukonstruktionen identifiziert. Da manche Altbaukonstruktionen in mehreren Baualtersklassen gleichzeitig vertreten sind, können bis zu 100 Sanierungsvarianten die Umweltwirkungen einer Gebäudesanierung beschreiben (hier: Gebäude der BK 5 in Abbildung 3-6). Ziel der Methode ist es, dass je Bauteil und Baualtersklasse mindestens vier Sanierungsmaßnahmen vorhanden sind, die die Bandbreite der möglichen Umweltwirkungen (minimal und maximal) beschreiben. Wie Abbildung 3-6 darstellt, existieren nicht für alle Bauteile je Baualtersklasse Sanierungskonstruktionen. Dies beruht zum einen darauf, dass manche Bauteile in der jeweiligen Baualtersklasse noch nicht vertreten waren (z. B. massive Flachdächer (FROmas) in BK 1 und 2). Zum anderen konnten teilweise keine

ausreichenden Literaturangaben zu Altbaukonstruktionen gefunden werden. Entweder wird für die betreffende BK keine einzige Konstruktion ausgewiesen (z. B. Holzaußenwand (EWwood) in BK 2 bis 5) oder es existiert nur eine einzige Konstruktion (z. B. Flachdach in Holzbauweise (FROwood) in BK 2).

Identifizierung der für die Bilanzierung der Sanierungsvarianten maßgebenden Altbaukonstruktionen zu Generierung der minimal und maximal auftretenden Umweltwirkungen je Bauteil (vgl. Abbildung 3-3, Seite 70)

- 14 Steildächer (PRO)
- 6 Flachdächer in Holzbauweise (FROwood)
- 11 Flachdächer in Massivbauweise (FROmas)
- 13 Massive Außenwände (EWmas)
- 10 Zweischalige Außenwände (EW2shelled)
- 7 Außenwände mit Vorhangfassade (EWcwf)
- 7 Außenwände in Holzbauweise (EWwood)
- 15 Kelleraußenwände (CW)
- Insgesamt: 171 opake Bauteile

- 15 Gebäudetrennwände im Keller (SCW)
- 12 Oberste Geschossdecken in Massivbauweise (TFLmas)
- 15 Oberste Geschossdecken in Holzbauweise (TFLwood)
- 18 Kellerdecken in Massivbauweise (CFLmas)
- 12 Kellerdecken in Holzbauweise (CFLwood)
- 16 Bodenplatten (BP)

					<u> </u>				
	Anzahl bilanzierter Bauteilaufbauten in der Sanierung								
	PRO_h	FROwood	FROmas	EWmas	EW2shelled	EWcwf	EWwood	CW_h	SCW_h
BK 1	8	0	0	8	4	2	4	6	6
BK 2	4	2	0	4	4	0	0	4	4
BK 3	8	0	6	6	4	0	0	6	4
BK 4	12	2	8	10	4	0	0	10	8
BK 5	12	4	8	8	8	4	0	10	8
BK 6	6	0	6	8	8	0	2	6	6
BK 7	6	0	6	8	8	0	2	8	10
BK 8	4	0	4	4	0	0	0	4	4
BK 9	4	4	4	4	0	4	4	4	4
BK 10	4	4	4	4	0	4	2	4	4
BK 11	4	4	4	4	0	4	2	4	4
	TFLmas	_uh TFLw	ood_uh	CFLmas_เ	ıh CFLwood	_uh BP_	_h Gesar	nt	
BK1	0		6	8	4	6	62		
BK2	0		4	6	6	6	44		
BK3	4		6	8	4	6	62		
BK4	4		8	12	0	8	86		
BK5	12		8	10	0	8	100		
BK6	14		4	6	0	6	72		
BK7	16		4	8	0	10	86		
BK8	2		4	4	0	4	34		
BK 9	4		4	4	8	4	56		
BK 10	4		4	4	8	4	54		
BK 11	4		4	4	8	4	54		

Abbildung 3-6: Überblick über die Altbaukonstruktionen und deren bilanzierte Sanierungsvarianten je Baualtersklasse; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Diese Lücken können durch die gleichzeitige Berücksichtigung verwandter Bauteilkonstruktionen geschlossen werden. Bei der Betrachtung auf Quartiersebene können bei den Außenwänden gleichzeitig die minimalen und maximalen Umweltwirkungen von EWmas, EW2shelled und EWcwf herangezogen werden (EWmas_total), um die ökologischen Auswirkungen einer Außenwandsanierung darzustellen. Die gemeinsame Berücksichtigung ist auf Quartiersebene in frühen Planungsphasen sinnvoll, da in der Regel nicht von jedem Einzelgebäude die genaue Außenwandausführung bekannt ist. Es obliegt den späteren

Nutzer:innen, die beschriebenen Datenlücken zu schließen, um genauere Fallunterscheidungen durchführen zu können. Wie in Kapitel 3.5.3 dargestellt, werden für die Fenster keine Sanierungskonstruktionen ermittelt. Denn im Fall einer Sanierung wird angenommen, dass die Bestandsfenster vollständig rückgebaut und durch neue Fenster ersetzt werden.

3.6 Auswahl und Erstellung ökologischer Datensätze

Die Bilanzierung typischer Baukonstruktionen erfolgt mit Hilfe der national vereinheitlichten Datenbank der ÖKOBAUDAT in der Version 2020-II (siehe Kapitel 2.1.2.3, Seite 15). Für einige Bauprodukte stehen in der ÖKOBAUDAT verschiedene Datensatztypen zur Verfügung. Für die Ökobilanzierung eines Einzelgebäudes, bei der die Umweltwirkungen der ausgeführten Bauweise im Vordergrund stehen, sollten die Datensätze der tatsächlich verbauten Baustoffe verwendet werden (spezifische Datensätze). Sie haben den Vorteil, dass Prozessabläufe und die einhergehenden Umweltwirkungen genau abgebildet werden. Bei einem Variantenvergleich in frühen Planungsphasen steht die tatsächliche Ausführung jedoch noch nicht fest. Spezifische Datensätze würden den Umfang der Umweltwirkungen nur teilweise widerspiegeln. Die Verwendung repräsentativer Datensätze ist bei Betrachtungen auf Quartiers- oder Stadtebene besser, da sie die durchschnittlichen Umweltwirkungen eines Landes oder einer Region erfassen. Deshalb fließen primär repräsentative Datensätze ein. Liegen für die Bauprodukte keine repräsentativen Datensätze vor, erfolgt die Verwendung der Datensätze gemäß der Abbildung 3-7 dargestellten Reihenfolge.

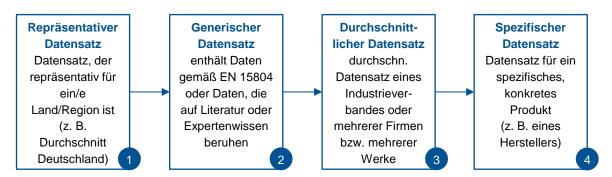


Abbildung 3-7: Reihenfolge der für die Erstellung der ökologischen Kennwerte verwendeten Datensätze in der ÖKOBAUDAT, Version 2020-II; eigene Darstellung

Vor der spezifischen Zuordnung der Datensätze, werden die in der Literatur aufgeführten Materialbezeichnungen homogenisiert oder gemäß ihrer Verwendung spezifiziert. Bei Holz muss z. B. zwischen (Konstruktions-)Vollholz und (Nadel-)Schnittholz unterschieden werden, wofür in der ÖKOBAUDAT verschiedene Datensätze existieren (BBSR, o. J.). Für den Fall, dass für einen Baustoff keine passenden Daten zur Verfügung stehen, empfiehlt die DGNB einen technisch naheliegenden Ökobilanz-Datensatz zu verwenden (DGNB, 2018). Dieser Fall tritt insbesondere bei Baustoffen von Altbaukonstruktionen ein, die nicht mehr verbaut werden oder deren Materialeigenschaften und Produktionsprozesse sich geändert haben. Hierzu gehören z. B. alte Betonfestigkeitsklassen. Deshalb werden sie unter einer Materialbezeichnung zusammengefasst und dem Datensatz mit der kleinsten Druckfestigkeitsklasse zugeordnet (siehe Abbildung 3-8). Als weiteres Beispiel kann die Schilfrohrmatte genannt werden, die ehemals als Putzträger verwendet wurde. Hierfür muss ein Baustoffdatensatz gewählt werden, der die Schilfrohrmatte am besten beschreibt. In diesem Fall fällt die Wahl auf Baustroh.

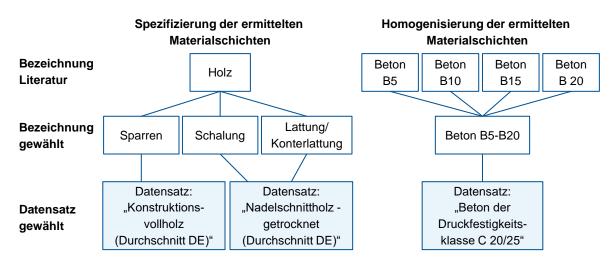


Abbildung 3-8: Beispielhafte Vorgehensweise bei der Auswahl eines geeigneten ÖKOBAUDAT-Datensatzes; eigene Darstellung

Ferner ist die Generierung von Mischdatensätzen sinnvoll, wenn es sich wie beim Stahlbeton um hybride Baustoffe handelt. Der Bewehrungsgehalt des Stahlbetons bestimmt die Zusammensetzung der Mischdatensätze für die jeweiligen Lebenszyklusphasen. Abbildung 3-9 zeigt den Ablauf am Beispiel des GWP einer Stahlbetonhohlkörperdecke für jede einzelne Lebenszyklusphase (vgl. hierzu auch Anhang A.5 ab Seite 376). Eine Besonderheit ist, dass im Datensatz des Bewehrungsstahls nur die Umweltwirkungen und Ressourcenaufwendungen für die Herstellungsphasen ausgewiesen sind. Da Bewehrungsstahl aus Recyclingstahl gewonnen bzw. am EoL wieder in den Recyclingkreislauf zurückgeführt wird, entfällt die Ausweisung der Umweltwirkungen in den LZPH C3 und C4. Die Werte für die Phase D werden separat für den Fall der Entsorgung und den Fall des Austausches und Ersatzes (Phase B4) ermittelt. Somit können die Quartiersentwicklungsszenarien des Kapitels 4.4 ab Seite 117 flexibel berechnet werden. Es ist zu beachten, dass nicht alle Datensätze der ÖKOBAUDAT Angaben zur Phase D enthalten, obwohl das jeweilige Material in der Praxis gewisse Wiederverwertungs- oder Recyclingpotentiale besitzen würde. Dies stellt einen weiteren Grund dar, weshalb die Phase D immer separat ausgewiesen werden muss und die Werte im Einzelfall detailliert betrachtet werden müssen (siehe auch Kapitel 3.2.2.2, Seite 56). Auch für Mauerwerkskonstruktionen werden Mischdatensätze aus Ziegel und Mörtel gebildet. Die Mörtelschichten nehmen dabei je nach zugrunde gelegtem Ziegelformat Volumenanteile von 5 bis 25 % ein. Bei den gewählten Volumenanteilen handelt es sich entweder um Vorgaben von Gruhler et al. (2002) oder praxisbezogene Annahmen.

Gruhler et. al (2002), S.82

Bauteilschicht der Decke: "0,19 m Stahlbeton B20 (Beton 66 %, Bewehrung 4 %, Hohlraum 30 %)"

Zusammenstellung Mischdatensatz

"Stahlbeton B20 (66/4)" (Bezugseinheit: m³): 66 % 1.4.01 Beton der Druckfestigkeit C20/25 (Einheit: m³) + 4 % 4.1.02 Bewehrungsstahl (Einheit: kg)

Mischdatensatz für Herstellungsphasen A1-A3:

 $0,66 \times A1-A3_{Beton\ C20/25}[1/m^3] + 0,04 \times 7850\ [kg/m^3] \times A1-A3_{Bewehrungsstahl}\ [1/kg]$

 \rightarrow GWP [kg CO₂-Äq./m³]:

 $0.66 \times 178 + 0.04 \times 7850 \times 0.683355 = 332.1 \text{ [kg CO}_2-\text{Äq./m}^3\text{]}$

Mischdatensatz für Entsorgungssphasen C3:

 $0.66 \times C3_{Beton C20/25} [1/m^3]$ (Bewehrungstahl wird nicht entsorgt, sondern recycelt \rightarrow Entsorgung entfällt)

 \rightarrow GWP [kg CO₂-Äq./m³]:

 $0.66 \times 6.01 = 4.0 \text{ [kg CO}_2\text{-}\ddot{A}\text{q./m}^3\text{]}$

Mischdatensatz für Wiederverwertungs- und Recyclingpotential D:

 $0,66 \times D_{Beton C20/25} [1/m^3]$ (für Bewehrungstahl kein Datensatz für Phase D vorhanden)

 \rightarrow GWP [kg CO₂-Äq./m³]:

 $0.66 \times (-21.4) = -14.1 \text{ [kg CO}_2 - \text{Äq./m}^3\text{]}$

Mischdatensatz für Nutzungsphase B4 (ohne Phase D):

 $n \times [(0,66 \times A1 - A3_{Beton~C20/25} [1/m^3] + 0,04 \times 7850 [kg/m^3] \times A1 - A3_{Bewehrungsstahl} [1/kg]) +$

 $+ 0,66 \times C3_{Beton C20/25} [1/m^3]$

mit n:= Anzahl der Austauschzyklen in 50 Jahren

 \rightarrow GWP [kg CO₂-Äq./m³]:

 $n \times [(0.66 \times 178 + 0.04 \times 7850 \times 0.683355) + 0.66 \times 6.01] = n \times 336.1 \text{ [kg CO}_2-\text{Äq./m}^3]$

Mischdatensatz für D in der Nutzungsphase:

 $n \times (0.66 \times D_{Beton C20/25} [1/m^3])$

mit n:= Anzahl der Austauschzyklen in 50 Jahren

 \rightarrow GWP [kg CO₂-Äq./m³]:

 $n \times [0,66 \times (-21,4)] = n \times (-14,1) [kg CO_2-Äq./m^3]$

Abbildung 3-9: Ablauf Datensatzwahl am Beispiel der Stahlbetonhohlkörperdecke nach Gruhler et al. (2002); die Ermittlung von PENRT und PET erfolgt analog; eigene Darstellung

Für die Bilanzierung aller Baukonstruktionen werden insgesamt 226 Materialbezeichnungen identifiziert. Die Bezeichnungen sowie die zugehörigen Datensätze, Einheiten und die einzelnen Umweltwirkungen je Lebenszyklusphase können Anhang A.5 ab Seite 376 entnommen werden. Parallel sind dort je Materialbezeichnung die durchschnittlichen Nutzungsdauern und die Anzahl der Austauschzyklen in 50 Jahren vorzufinden.

3.7 Bilanzierung der Konstruktionen und Datenaufbereitung

3.7.1 Allgemeine Vorgehensweise bei der Datenaufbereitung

Auf Basis einer eindeutigen Materialbezeichnung werden mittels Microsoft Excel die einzelnen Bauteilschichten der Baukonstruktionen mit den ÖKOBAUDAT-Datensätzen verknüpft. Für jede Baukonstruktion erfolgt eine Ökobilanzierung mit Berücksichtigung des GWP, der PENRT und PET einer jeden Schicht bzw. Komponente, indem die Schichtdicken oder -massen mit den zugehörigen Datensatzwerten multipliziert und für das Gesamtbauteil – opakes Bauteil oder Fenster – aufsummiert und tabellarisch ausgegeben werden. Bei der Berechnung wird jede Lebenszyklusphase einzeln betrachtet, um die später gewählten LCA-Szenarien flexibel berechnen zu können (vgl. Kapitel 4.5 und 4.6 ab Seite 122).

Die bilanzierten Baukonstruktionen sind so aufbereitet, dass sie auch als Grundlage für weiterführende Analysen des Gebäudebestandes herangezogen werden können. Hier sind nicht nur bauteilspezifische Analysen möglich, sondern auch die Erstellung von lebenszyklusbasierten Kostenkennwerten. Die beschriebenen Materialeigenschaften sind vollständig und transparent dargestellt. Mit Hilfe der angegeben Rohdichten und Schichtdicken können Massenberechnungen durchgeführt werden, die über die Umweltwirkungen hinaus auch Aussagen zum aktuellen oder zukünftigen anthropogenen Lager zulassen und beispielsweise die Dissertation von Heinrich (2019) ergänzen.

Neben der detaillierten Ausweisung der bilanzierten Konstruktionsaufbauten (siehe Anhang A.2 bis A.4 ab Seite 232) wird eine tabellarische Darstellung der minimal und maximal auftretenden Umweltwirkungen je Bauteil und Baualtersklasse gewählt. Denn innerhalb einer BK definieren unterschiedliche Bauteilkonstruktionen die Grauen Energien und Emissionen der Gebäudesubstanz. Dies beruht auf den variierenden Bauteildicken und verwendeten Baustoffen. Für eine bestehende massive Außenwand können beispielsweise in BK 4 36 verschiedene Bauteilvarianten herangezogen werden (vgl. Abbildung 3-3, Seite 70).

Auf die Bildung von Durchschnittswerten wird verzichtet, denn wegen fehlender Angaben zur quantitativen Verbreitung der einzelnen Baukonstruktionen im deutschen Wohngebäudebestand sind die Daten nicht ausreichend statistisch belastbar. Die Berechnung von statistisch fundierten Durchschnittswerten setzt zudem eine ausreichende Datenanzahl voraus, die nicht für jede Konstruktion gewährleistet werden kann.

Abbildung 3-10 stellt exemplarisch den Wertebereich des GWP monolithischer, massiver Außenwände (EWmas) je Baualtersklasse und gewählter Lebenszyklusphasen (A-C oder A-D) dar. Die grünen Punkte zeigen die minimalen und die orangen die maximalen GWP-Werte je m² Bauteil. Sie variieren je nachdem, ob die Phase D mitberücksichtigt wird oder nicht. Die Werte in BK 6 und BK 7 verdeutlichen, dass die Generierung von Durchschnittswerten irreführend sein könnte, da die Minima innerhalb der Baualtersklasse Ausreißer darstellen, die bei einer rein statistischen Auswertung nicht betrachtet werden würden. Es

handelt sich hierbei um eine 7,5 cm dicke Stahlbetonwand nach den Angaben von Gruhler et al. (2002, S. 91), so wie sie im Plattenbau der 50er bis 70er Jahre als Außenwand erstellt wurde. Da sie typisch für diesen Baustil ist, findet sie in den Baualtersklassen 3 bis 7 Berücksichtigung, stellt aber gleichzeitig nicht die maßgebende Konstruktion dieser Bauepochen dar. In BK 8 ist diese Konstruktion nicht mehr vertreten. Hier verursacht nach der Literatur zufolge eine 24 cm dicke, verputzte Gasbetonwand die geringsten Umweltwirkungen.

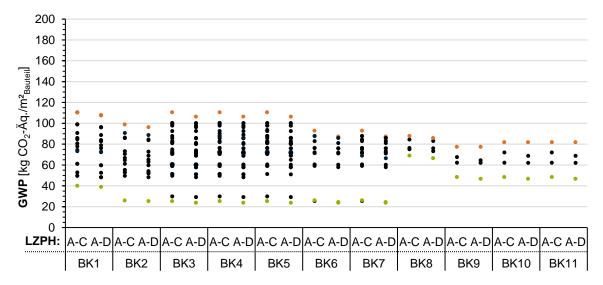


Abbildung 3-10: Verteilung des GWP je m² monolithischer, massiver Außenwände (Ewmas) je Baualtersklasse (BK 1 bis BK 11) und berücksichtigter Lebenszyklusphasen; eigene Darstellung

In BK 9 bis 11 sind jeweils nur vier verschiedene monolithische Außenwandkonstruktionen vorhanden. Dies beruht darauf, dass die zugrunde liegenden Konstruktionsaufbauten nicht aus der Literatur entnommen, sondern manuell auf Basis der Bautätigkeitsberichte erstellt werden (vgl. Kapitel 3.3.2 ab Seite 61). Da hier bereits die möglichen Spannweiten der Konstruktionsausführungen berücksichtigt sind, existieren insgesamt nicht so viele Baukonstruktionen wie in den Baualtersklassen davor. Zudem ist darauf zu achten, dass in BK 9 bis 11 die maximalen Umweltwirkungen nicht von monolithischen Außenwänden, sondern von Außenwänden mit Vorhangfassaden bzw. hinter- oder belüfteten Fassaden ausgehen (EWcwf). Sollen also die Wertebereiche der Umweltwirkungen von massiven Außenwänden gänzlich dargestellt werden, müssen gleichzeitig die Aufbauten von monolithischen (EWmas) und zweischaligen Außenwänden (EW2shelled) sowie von Außenwänden mit Vorhangfassade berücksichtigt werden. Letztlich reichen auch hier die vier Baukonstruktionen nicht aus, um aus deren GWP einen Durchschnittswert für massive, monolithische Außenwände zu generieren.

Um eine Aussage über die ökologische Qualität einer Baukonstruktion treffen zu können, sind die drei Umweltindikatoren gleichzeitig zu bewerten. Denn eine Konstruktion kann theoretisch zwar das niedrigste GWP, jedoch die größte PET besitzen. Ziel ist es aber, die Baukonstruktionen zu bestimmen, die in allen drei Kategorien gleichzeitig geringe oder hohe Umweltwirkungen hervorrufen. Je Bauzustand – Altbau, Neubau oder Sanierung –

und Baualter werden so mit Hilfe einer Normierung der Einzelwerte für GWP, PENRT und PET die zwei maßgebenden Baukonstruktionen identifiziert. Die Vorgehensweise der Wertnormierung ist in Kapitel 3.5.1 ab Seite 76 am Beispiel der maßgebenden Altbaukonstruktionen beschrieben. Abschließend wird eine zusammenfassende Bauteiltabelle generiert, die als csv-Datei ausgegeben werden kann. Dabei handelt es sich um einen Dateityp, bei dem die hinterlegten Informationen nicht in Spalten, sondern durch Kommas getrennt gespeichert werden (Microsoft, 2021). So können sie von verschiedenen existierenden digitalen LCA-Tools eingelesen werden. Beispielsweise können die csv-Dateien in SQL-Datenbanken importiert und als Datenbasis für die LCA von Baukonstruktionen auf Stadtquartiersebene herangezogen werden (vgl. hierzu auch Kapitel 4 ab Seite 107).

In den folgenden Kapiteln werden die genannten Datenaufbereitungen für die Altbau-, Neubau- und Sanierungskonstruktionen genauer erläutert. Ansonsten finden sich alle genannten Daten in den Anhängen A.2 (ab Seite 232), A.3 (ab Seite 296) A.4 (ab Seite 311), A.6 (ab Seite 399), A.7 (ab Seite 439) und A.8 (ab Seite 450).

3.7.2 Bilanzierung und Darstellung der Altbaukonstruktionen

Alle ermittelten und bilanzierten Altbaukonstruktionen sowie die Summen ihrer lebenszyklusbasierten Grauen Energien und Emissionen sind im Anhang A.2 ab Seite 232 dargestellt. Tabelle 3-5 kann die Datenstruktur der opaken Baukonstruktionen am Beispiel der Steildächer (PRO) entnommen werden. In der ersten Spalte findet sich ein eindeutiger Bauteilname, in der zweiten Spalte ist der Zeitraum angegeben, für die die jeweilige Konstruktion typisch ist. Danach folgt die Zuordnung zu den entsprechenden Baualtersklassen. Die Konstruktion "PRO 2" war beispielsweise bis 1948 üblich, weshalb sie BK 1 und 2 zugeordnet wird. Die aus der Literatur direkt entnommenen Materialbezeichnungen erhalten die Schriftfarbe Schwarz. Werden die Bezeichnungen homogenisiert oder leicht verändert, sind sie blau eingefärbt. Ebenso wird mit den Schichtstärken, Rohdichten und Wärmeleitfähigkeiten (λ-Wert) verfahren, die nicht direkt aus der Literatur entnommen werden können und auf Basis weiterer Recherchen ergänzt werden. Ferner finden sich zu jeder Baukonstruktion die Literaturquellen. Auf der rechten Seite der Tabelle sind die Gesamtergebnisse der Grauen Emissionen und Energien für jede Baukonstruktion zu sehen: einmal die Summe der LZPH A bis C und einmal inklusive der Wiederverwendungs- und Recyclingpotentiale (LZPH A bis D).

Bei den Fenstern gestaltet sich die tabellarische Struktur etwas anders. Hier werden die einzelnen Materialien über ihre Fläche, die Laufmeter und/oder ihr Gewicht beschrieben (siehe Tabelle 3-6). Da die Fensteraufbauten inkl. ihrer Materialbezeichnungen nicht direkt aus der Literatur entnommen werden, sondern auf deren Basis erstellt werden, werden alle Materialeigenschaften in blauer Schrift dargestellt.

Tabelle 3-5: Tabellenauszug aus den bilanzierten opaken Altbaukonstruktionen, Gesamtübersicht siehe Anhang A.2 ab Seite 232; eigene Darstellung

			Z	uge	höriç	ge B	aual	ters	skla	ssen		Aufbau				GWP	PENRT	PET	GWP	PENRT	PET
Bauteil- name	Zei		1 2	2 3	4	5 6	7	8	9	10 1	Material- bezeichnung	Stärke [cm]	Roh- dichte [kg/m³]	λ-Wert [W/mK]	Quelle	(A-C) [kg CO ₂ - Äq,]	(A-C)	(A-C)	(A-D) [kg CO ₂ - Äq,]	(A-D)	(A-D)
											Reetdach	35,00	100,00	-		-74,6	114,7	1273,8	-93,0	-132,1	1345,5
											Luftschicht, stark belüft	et -	-	-	Zentrum für						
PRO	bis		,								Sparren	2,50	492,92	-	Umweltbe- wusstes Bauen						
_1	191	18 ′	•								Schalung	2,40	484,51	0,14	e.V. (ZUB), 2009b,						
											Schilfrohrmatte	1,00	100,00	0,08	S. 31						
											Kalkgipsputz	1,00	900,00	0,70							
		_									Dachziegel	2,75	2180,00	-		27,1	416,6	582,9	4,9	119,3	666,9
											Lattung	0,50	484,51	-							
									Konterlattung	0,48	484,51	-									
PRO	bis	ie									Luftschicht, stark belüft	et -	-	-	ZUB. 2009b.						
_2	194		()	(Sparren	2,50	492,92	-	S. 32						
											Schalung	2,40	484,51	0,14							
											Schilfrohrmatte	1,00	100,00	0,08							
											Kalkgipsputz	1,00	900,00	0,70							
		_									Dachziegel	2,75	2180,00	-		42,6	521,5	830,8	14,7	163,4	836,6
											Lattung	0,50	484,51	-							
											Konterlattung	0,48	484,51	-							
											Sparren	2,50	492,92	-							
PRO 3	194 195			х							Luftschicht, stark belüft	et -	-	-	ZUB, 2009b, S. 34						
_3	190	Ji									Schalung	2,40	484,51	0,14							
											Holzwolle-Leichtbaupla	tte 5,00	360,00	0,09							
											Kalkgipsputz	1,00	900,00	0,70							

Tabelle 3-6: Tabellenauszug aus den bilanzierten Fensterkonstruktionen im Altbau, Gesamtübersicht siehe Anhang A.2 ab Seite 232; eigene Darstellung

		Zugehörige Baualtersklassen	Aufbau					GWP			GWP		
Bauteil- name		1 2 3 4 5 6 7 8 9 10 11	Material- bezeichnung	Fläche [m²]	Lauf- meter [lfm]	Ge- wicht [kg]	Quelle	(A-C) [kg CO ₂ - Äq,]	(A-C)	PET (A-C) [MJ]	(A-D) [kg CO ₂ - Äq,]	(A-D)	PET (A-D)
			Einfachverglasung	0,90	-	-		53,9	720,1	861,4	38,7	517,2	592,8
			Aluminium-Blendrahmen	0,10	0,80	-	Eigene Annahme in Anlehnung an						
Walu	bis 1978	x x x x	Aluminium-Flügelrahmen	0,10	0,80		Verband Fenster + Fassade & Bundesverband						
_1	1976		Fugendichtungsband	0,40	4,00	0,11	Flacholas e V						
			Fenstergriff	-	-	0,06	2017 und BMWI & BMI, 2020						
			Fensterbeschlag, Doppelflügelfenster	-	-	0,56	i						
			Einfachverglasung	0,40	-			142,8	1960,1	2505,3	64,4	918,3	1122,2
		Aluminium-Blendrahmen	0,30	4,80		Eigene Annahme in Anlehnung an							
Walu	bis	x x x x	Aluminium-Flügelrahmen	0,30	4,80		Verband Fenster + Fassade &						
_2	1978	^ ^ ^ ^	Fugendichtungsband	0,40	4,00	0,11	Bundesverband Flachglas e.V.,						
			Fenstergriff	-	-	0,06	2017 und BMWI & BMI, 2020						
			Fensterbeschlag, Doppelflügelfenster	-	-	0,56	i						
			Einfachverglasung	1,80	-			116,5	1560,6	1888,4	79,6	1069,9	1245,7
			Aluminium-Blendrahmen	0,10	1,60								
			Aluminium-Flügelrahmen	0,10	1,60		Eigene Annahme in Anlehnung an Verband Fenster +						
Walu 3	bis 1979	x x x x x	Fugendichtungsband	0,80	8,00	0,22	Fassade & Bundesverband						
			Fenstergriff	-	-	0,11							
			Fensterbeschlag, Doppelflügelfenster	-	-	0,56	D111 0000						
			Fensterbeschlag, Drehkippfenster	-	-	0,56	i						

Anschließend werden, wie in Kapitel 3.7.1 beschrieben, je Baualtersklasse und Bauteil die maßgebenden Konstruktionen für die minimalen und maximalen Umweltwirkungen ermittelt. Tabelle 3-7 zeigt dies am Beispiel des Steildaches in BK 1. Diese Baualtersklasse wird

durch sieben Konstruktionen definiert. Je m² Steildach weist die Baualtersklasse ein GWP von -74,6 bis 40,9 kg CO₂-Äq., eine PENRT von 114,7 bis 971,3 MJ und eine PET von 347,7 bis 1273,8 MJ auf. Durch Anwendung der Normierung wird die Konstruktion "PRO_25" als Konstruktion mit den minimalen Umweltwirkungen und "PRO_26" als Konstruktion mit den maximal auftretenden Umweltwirkungen identifiziert. Hierbei ist darauf hinzuweisen, dass negative Werte (vgl. GWP/GWP_max bei "PRO_1") nicht berücksichtigt werden und in diesem Fall der Wert auf Null gesetzt wird. Ansonsten würde die Normierung verfälscht werden.

Tabelle 3-7: Ermittlung der maßgebenden Baukonstruktionen für minimal und maximale Umweltwirkungen am Beispiel des Steildaches (PRO) in BK 1; eigene Darstellung

Bauteil- name	GWP (A1-A3)	PENRT (A1-A3)	PET (A1-A3)	GWP (B4, 50a)	PENRT (B4, 50a)	PET (B4, 50a)	GWP (C3)	PENRT (C3)	PET (C3)	GWP (C4)	PENRT (C4)	PET (C4)	GWP (A-C)	PENRT (A-C)	PET (A-C)
PRO_1	-79,2	87,9	1197,5	-39,8	22,0	542,4	39,4	2,8	-409,6	5,0	2,0	-56,5	-74,6	114,7	1273,8
PRO_2	-20,8	404,6	1065,8	0,0	0,0	0,0	47,6	10,0	-483,4	0,3	2,0	0,6	27,1	416,6	582,9
PRO_16	-3,8	387,6	810,5	0,0	0,0	0,0	28,5	8,6	-284,6	0,3	2,0	-0,2	25,0	398,1	525,7
PRO_17	-15,6	409,9	1015,0	0,0	0,0	0,0	44,4	9,8	-450,3	0,2	3,0	3,3	29,1	422,7	568,1
PRO_23	-1,2	488,0	1011,9	0,0	0,0	0,0	41,9	8,9	-258,6	0,1	2,0	2,2	40,9	498,9	755,5
PRO_25	-32,7	201,7	835,5	0,0	0,0	0,0	47,4	6,1	-487,8	0,0	0,0	0,0	14,6	207,9	347,7
PRO_26	-30,5	493,2	1015,8	5,8	460,5	471,7	39,4	2,8	-409,6	1,0	14,9	16,0	15,6	971,3	1093,9

Bauteil- name	GWP/ GWP _max	PENRT/ PENRT _max	PET/ PET_ max	Summe Nor- mie- rung	
PRO_1	0,0	0,1	1,0	1,1	•
PRO_2	0,7	0,4	0,5	1,5	
PRO_16	0,6	0,4	0,4	1,4	
PRO_17	0,7	0,4	0,4	1,6	
PRO_23	1,0	0,5	0,6	2,1	
PRO_25	0,4	0,2	0,3	0,8	maßgebendes
PRO_26	0,4	1,0	0,9	2,2	maßgebendes

maßgebendes Bauteil für minimale Umweltwirkungen maßgebendes Bauteil für maximale Umweltwirkungen

Durch die baualtersklassenspezifische Normierung entsteht je Bauteil eine zusammenfassende Tabelle, mit Angabe der minimal und maximal auftretenden Umweltwirkungen je Lebenszyklusphase (A1-A3, B4, C3, C4, D und DofB4; siehe Tabelle 3-8). Sie kann, wie im vorherigen Kapitel beschrieben, als csv-Datei exportiert und in verschiedene LCA-Tools zur Bilanzierung von LCA-Szenarien eingelesen werden. Die Umweltwirkungen sind eindeutig benannten Variablennamen zugeordnet. Somit können die ab Kapitel 4.6, Seite 124 beschriebenen Berechnungsmethoden direkt auf die ökologischen Kennwerte zurückgreifen. Grundsätzlich können die Nutzer:innen der Daten entscheiden, welche Lebenszyklusphasen und einhergehenden Umweltwirkungen sie je nach Bauszenario berücksichtigen möchten und welche nicht. Die erste Position definiert die Baualtersklasse. "1_" steht für BK 1, "11 " für BK 11. Position zwei ("z. B. "A1A3 ") gibt die Lebenszyklusphase an, die die Umweltwirkungen in den Spalten zwei bis vier zugeordnet werden können. Bei "DofB4" handelt es sich um die Wiederverwendungs- und Recyclingpotentiale, die durch den Austausch und Ersatz der Bauteile in LZPH B4 entstehen. Sie können optional zusammen mit der LZPH D (Potentiale am EoL des Bauteils) bei den Szenarienberechnungen berücksichtigt werden. Die letzte Position ("min" oder "max") macht kenntlich, ob es sich in Spalte zwei bis vier um die minimalen oder maximalen Umweltwirkungen des Bauteils handelt. Die vollständige Darstellung aller Bauteile im Altbau ist im Anhang A.6 ab Seite 399 zu finden.

Tabelle 3-8: Min. und max. Umweltwirkungen eines Steildaches (PRO_old) im Bestand unter Berücksichtigung der Baualtersklasse bezogen auf 1 m² Bauteilfläche; eigene Darstellung

	3 - 3		, . 3
Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min	-32,7	201,7	835,5
1_A1A3_max	-30,5	493,2	1015,8
2_A1A3_min	-3,8	387,6	810,5
2_A1A3_max	-1,2	488,0	1011,9
3_A1A3_min	8,8	230,2	362,5
3_A1A3_max	-21,0	509,1	1311,4
4_A1A3_min	-18,3	70,9	423,1
4_A1A3_max	-16,8	547,5	1320,1
5_A1A3_min	-18,3	70,9	423,1
5_A1A3_max	13,0	488,3	932,0
6_A1A3_min	-18,3	70,9	423,1
6_A1A3_max	4,8	503,8	882,6
7_A1A3_min	-18,3	70,9	423,1
7_A1A3_max	15,3	848,7	1419,6
8_A1A3_min	-14,7	76,9	399,0
8_A1A3_max	15,3	848,7	1419,6
9_A1A3_min	-41,8	277,3	1094,8
9_A1A3_max	-67,2	1110,0	2961,8
10_A1A3_min	-41,8	277,3	1094,8
10_A1A3_max	-67,2	1110,0	2961,8
11_A1A3_min	-41,8	277,3	1094,8
11_A1A3_max	-67,2	1110,0	2961,8
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	5,8	460,5	471,7
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	53,8	760,7	806,5
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	53,8	760,7	806,5
9_B4_50a_min	1,0	14,7	15,9
9_B4_50a_max	1,0	14,7	15,9
10_B4_50a_min	1,0	14,7	15,9
10_B4_50a_max	1,0	14,7	15,9
11_B4_50a_min	1,0	14,7	15,9
11_B4_50a_max	1,0	14,7	15,9
1_C3_min	47,4	6,1	-487,8
1_C3_max	39,4	2,8	-409,6
2_C3_min	28,5	8,6	-284,6
2_C3_max	41,9	8,9	-258,6
3_C3_min	8,3	5,3	-77,5
3_C3_max 4_C3_min	63,5 26,7	10,4 3,1	-482,8 -275,6
4_C3_max	61,1	3, i 11,4	-275,6 -456,3
4_C3_max 5_C3_min	26,7	3,1	-456,3 -275,6
5_C3_max	32,8	15,6	
6 C3 min	32,8 26,7		-251,3 -275,6
6_C3_max	26,7 26,1	3,1 11,3	-275,6 -256,3
7_C3_min	26,7		-256,5 -275,6
	26,7 44,6	3,1 4,1	
7_C3_max			-408,1 -250.3
8_C3_min	24,3 44,6	3,3	-250,3
8_C3_max	,	4,1	-408,1
9_C3_min	63,3 145.0	4,8	-627,6 -840.3
9_C3_max	145,0	4,4	-840,3
10_C3_min	63,3	4,8	-627,6
10_C3_max	145,0	4,4	-840,3
11_C3_min	63,3	4,8	-627,6
11_C3_max	145,0	4,4	-840,3
1_C4_min	0,0	0,0	0,0
1_C4_max	1,0	14,9	16,0
2_C4_min	0,3	2,0	-0,2
2_C4_max	0,1	2,0	2,2
3_C4_min	0,0	0,0	0,0
3_C4_max	0,1	2,0	2,2

4_C4_min	0,0	0,0	0,0
4_C4_max	1,3	2,3	2,5
5_C4_min	0,0	0,0	0,0
5_C4_max	0,8	12,0	13,6
6_C4_min	0,0	0,0	0,0
6_C4_max	3,1	2,9	3,3
7_C4_min	0,0	0,0	0,0
7_C4_max	0,7	10,4	11,3
8_C4_min	0,0	0,0	0,0
8_C4_max	0,7	10,4	11,3
9_C4_min	0,0	0,0	0,0
9_C4_max	0,4	5,5	6,2
10_C4_min	0,0	0,0	0,0
10_C4_max	0,4	5,5	6,2
11 C4 min	0,0	0,0	0,0
11 C4 max	0,4	5,5	6,2
1_D_min	-22,2	-296,3	85,2
1_D_max	-18,4	-246,8	71,7
2_D_min	-13,2	-177,6	48,7
2_D_max	-17,8	-223,1	-33,8
3_D_min	-4,1	-54,3	8,8
3_D_max	-27,9	-358,1	5,8
4_D_min	-12,4	-167,0	48,2
4_D_max	-27,4	-352,4	-9,1
5_D_min	-12,4	-167,0	48,2
5_D_max	-14,5	-188,2	11,1
6_D_min	-12,4	-167,0	48,2
6_D_max	-13,7	-186,2	18,2
7_D_min	-12,4	-167,0	48,2
7_D_max	-45,7	-471,3	-142,1
8_D_min	-11,3	-151,9	43,8
8_D_max	-45,7	-471,3	-142,1
9_D_min	-31,7	-423,0	55,2
9_D_max	-53,0	-846,9	-279,2
10_D_min	-31,7	-423,0	55,2
10_D_max	-53,0	-846,9	-279,2
11_D_min	-31,7	-423,0	55,2
11_D_max	-53,0	-846,9	-279,2
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6 DofB4 max	0,0	0,0	0,0
7 DofB4 min	0,0	0,0	0,0
7_DofB4_max	-27,3	-224,5	-213,8
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	-27,3	-224,5	-213,8
9_DofB4_min	-0,2	-2,8	-3,6
9_DofB4_max	-0,2	-2,8	-3,6
10_DofB4_min	-0,2	-2,8	-3,6
10_DofB4_max	-0,2	-2,8	-3,6
11_DofB4_min	-0,2	-2,8	-3,6
11_DofB4_max	-0,2	-2,8	-3,6

3.7.3 Bilanzierung und Darstellung der Neubaukonstruktionen

Die auf Basis von Literatur- und Herstellerangaben generierten Neubaukonstruktionen und die Summen ihrer lebenszyklusbasierten Grauen Energien und Emissionen sind im Anhang A.4 ab Seite 296 dargestellt. Die Tabellen für die opaken Bauteile und Fenster sind analog zu den Tabellen der Altbaukonstruktionen aufgegliedert, jedoch existiert nur eine Baualtersklasse, und zwar die des Neubaus ab dem Jahr 2021. Die Materialeigenschaften der Neubaukonstruktionen werden öfter als bei den Altbaukonstruktionen in blauer Schrift dargestellt, da sie teilweise auf mehreren Datenquellen beruhen und für die Bilanzierung verschiedene Informationen manuell zusammengetragen werden. Die Identifizierung der

maßgebenden Baukonstruktionen für die minimal und maximal auftretenden Umweltwirkungen je Neubauteil erfolgt ebenfalls mit Hilfe einer Normierung.

Die daraus resultierende Zusammenfassung für den csv-Export ist in Tabelle 3-9 beispielhaft für ein dreifach verglastes Holzrahmenfenster ("Wwood") dargestellt.

Tabelle 3-9: Min. und max. Umweltwirkungen (GWP, PENRT und PET) eines 3-fach verglasten Holzrahmenfensters im Neubau (Wwood_nb) bezogen auf 1 m² Bauteilfläche; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	59,6	848,8	1090,6
nb_A1A3_max	29,3	1513,8	3354,8
nb_B4_50a_min	70,7	870,7	1119,8
nb_B4_50a_max	105,6	1476,7	3312,3
nb_C3_min	9,6	1,5	1,9
nb_C3_max	78,9	1,3	1,9
nb_C4_min	0,4	6,5	7,3
nb_C4_max	0,2	2,9	3,2
nb_D_min	-8,4	-117,6	-149,9
nb_D_max	-38,2	-570,9	-737,4
nb_DofB4_min	-8,5	-118,8	-151,5
nb_DofB4_max	-36,1	-543,5	-701,6

Die Variablennamen sind wieder eindeutig vergeben. "nb_" weist die nachfolgenden Umweltwirkungen der Baualtersklasse "Neubau" zu. Je LZPH können der Tabelle sowohl die minimalen als auch maximalen Werte für GWP, PENRT und PET entnommen werden. Anhang A.7 ab Seite 439 stellt für den Neubau alle bauteilspezifischen Ergebnistabellen dar.

3.7.4 Bilanzierung und Darstellung der Sanierungskonstruktionen

Die Zusammenfassung aller bilanzierten Sanierungskonstruktionen ist Anhang A.4 ab Seite 311 zu entnehmen. Tabelle 3-10 zeigt die Struktur anhand des Steildaches im beheizten Dachraum (PRO_h). In der Spalte der Literaturquellen ist der Name der Altbaukonstruktion genannt, die der jeweiligen Sanierungskonstruktion zugrunde liegt. Es handelt sich hierbei um den Steildachaufbau "PRO_1" aus Tabelle 3-5 auf Seite 90.

Die Bilanzierung der Sanierungskonstruktionen erfolgt analog zu den Altbaukonstruktionen. Auch die farbliche Codierung folgt einem bestimmten Muster:

- Bestehende Bauteilschichten, die bei der Sanierung erhalten und für 50 Jahre weitergenutzt werden, sind schwarz dargestellt.
- Bestehende Bauteilschichten, die bei der Sanierung ausgebaut und entsorgt werden, bekommen eine rote Schriftfarbe.
- Bauteilschichten, die bei der Sanierung neu eingebaut und für 50 Jahre genutzt werden, sind grün eingefärbt.

Tabelle 3-10: Tabellenauszug aus den bilanzierten Sanierungskonstruktionen, Gesamtübersicht siehe Anhang A.4 ab Seite 311; eigene Darstellung

Bau-	Zeit-	Zugehörige Baualtersklassen	Aufba	u			Literatur-	(A-C)	PENRT (A-C)	PET (A-C)	(A-D)	PENRT	PET (A-D)
teil- name	raum	1 2 3 4 5 6 7 8 9 10 11			tärke Roh- dichte [W/mK]		quelle	[kg CO ₂ - Äq.]	[MJ]	[MJ]	[kg CO₂- Äq.]	[MJ]	[MJ]
			Blecheindeckung (Edelstahl)	0,04	7900,00	-	Grundlage	82,5	506,5	233,8	32,9	-157,7	317,6
			Strukturierte Trennlage (Kunststofffaservlies)	0,16	81,25	-	Altbaukon- struktion						
			Schalung	2,40	484,51	-	PRO_1;						
			Konterlattung	0,44	484,51	-	minimale						
			Unterdeckbahn	0,02	262,00		Umweltwir-						
PRO	bis		Schalung	2,40	484,51	0,13	kungen Sanierung;						
_h _1	1918	X	Mineralwolle (Innenausbau)		26,25		Ausführung						
_1	1010		Konstruktionsvollholz	1,67	529,00		unter						
			Mineralwolle (Innenausbau)		26,25		Verwendung						
			PE-Folie Dach	0,02			von						
			Reetdach	35,00	100,00	-	Herstelleran-						
			Luftschicht, stark belüftet			-	gaben (z.B.						
			Sparren	,	529,00		Bauder TOP						
			Schalung	,	484,51	,	VENT NSK)						
	-		Schilfrohrmatte		100,00			100.0	10000				11000
			Dachziegel		2180,00	-		128,0	1202,6	1972,9	73,6	359,3	1490,8
			Lattung		484,51	-							
			Konterlattung		484,51	- 0.05							
			Holzfaserdämmplatte (DA) Holzfaserdämmung	2,20 11.19	160,00 160.00		Grundlage						
			(Innenausbau)	, -	,	-,-	Altbaukon-					(kg (A-D) (A-D) CO ₂ - Äq.] [MJ] [MJ]	
PRO			Brettschichtholz	1,81	507,11	0,13	struktion						
_h _2	bis 1918	x	Holzfaserdämmung (Innenausbau)	15,50	160,00	0,04	PRO_1; maximale					D) (A-D) (A-D) D2- [MJ] [MJ] 2,9 -157,7 317,6	
			PE-Folie Dach	0,02	930,00	-	Umweltwir-						
			Reetdach	35,00	100,00	-	kungen						
			Luftschicht, stark belüftet	-	-	-	Sanierung						
			Sparren	2,50	492,92	-							
			Schalung	2,40	484,51	0,14							
			Schilfrohrmatte	1,00		,							
			Kalkgipsputz	1,00	900,00	0,70							

Ansonsten sind die Sanierungskonstruktionen der Baualtersklasse zugeordnet, aus der die zugrunde liegende Altbaukonstruktion stammt. Fenster werden nicht saniert, sondern immer komplett ausgetauscht. Das heißt, dass bei der direkt anstehenden Entsorgung die baualtersklassenspezifischen Umweltwirkungen der alten Fenster herangezogen werden. Für die anschließende Herstellung, Nutzung und Entsorgung der Fenster nach 50 Jahren Nutzungsdauer sind die Umweltwirkungen der Neubaufenster relevant.

Wie in Kapitel 3.7.1 und 3.7.2 ab Seite 87 beschrieben, werden die für die baualtersklassenund bauteilspezifischen Umweltwirkungen maßgebenden Sanierungskonstruktionen bestimmt. Auch die Darstellung der zusammenfassenden Tabelle für den csv-Export ist identisch (siehe hierzu Tabelle 3-8 auf Seite 92). Alle der Sanierung zugehörigen Bauteiltabellen sind Anhang A.8 ab Seite 450 zu entnehmen.

3.8 Diskussion der Methodik und Ergebnisse

3.8.1 Kritische Auseinandersetzung mit der Erhebungsmethodik

Die Bilanzierung der Altbau-, Neubau- und Sanierungskonstruktionen erfolgt auf Basis einer detaillierten Literatur- und Herstellerrecherche. Alle Konstruktionen, inklusive ihrer Gesamtergebnisse, sind im Anhang transparent und vollständig dargestellt. Die zugrunde liegenden Datenquellen und Annahmen können leicht nachvollzogen werden. Die Darstellung der minimalen und maximalen Umweltwirkungen (GWP, PENRT und PET) je Baualter, Bauteil und Lebenszyklusphase erlaubt es, die entwickelten ökologischen Kennwerte für verschiedene Betrachtungsszenarien, beginnend auf der Bauteilebene bis hin zur Stadtquartiersebene, heranzuziehen und die möglichen Spannweiten der Umweltwirkungen zu identifizieren. Durch die Wahl gemeinsamer Systemgrenzen und Datensätze können die Ergebnisse direkt miteinander verglichen werden.

Die verwendeten Literaturquellen sind jedoch nicht ausreichend, um für jede Baualtersklasse typische Durchschnittswerte bilden zu können. Je nach Region und baugeschichtlicher Entwicklung können die bilanzierten Baukonstruktionen von denen, die in der Realität vorliegen, abweichen. Bei Anwendung der Daten ist zu prüfen, ob die hier ermittelten Konstruktionen das entsprechende Fallbeispiel repräsentieren können oder ob diese gegebenenfalls um weitere Konstruktionsaufbauten ergänzt werden müssen.

Ferner ist zu beachten, dass die bilanzierten Umweltwirkungen der Herstellungsphasen der Altbaukonstruktionen nicht die historischen Produktionsprozesse berücksichtigen können, da die ÖKOBAUDAT-Datensätze nur die aktuellen Produktionsprozesse einschließen. Daraus entwickelte Szenarien lassen demnach nur einen neubau-äquivalenten Vergleich zu. Das bedeutet, dass sie nur aussagen, wie hoch die Umweltwirkungen in der Gegenwart wären, wenn die Altbaukonstruktionen aktuell genauso errichtet werden würden.

Die vorliegende Arbeit präsentiert Standardaufbauten im Neubau auf Basis der statistischen Erhebung jährlicher Bautätigkeiten und aktueller Herstellerangaben (vgl. Kapitel 3.4 ab Seite 72). Seltene Bauweisen, wie z. B. der 3D-Druck mit Kompositbaustoffen oder begrünte Außenbauteile sind nicht Teil der Arbeit. Sie können derzeit wegen fehlender Datensätze in der ÖKOBAUDAT noch nicht ausreichend bilanziert und deshalb aktuell nicht dargestellt werden.

In den nachfolgenden Kapiteln werden anhand ausgewählter Kriterien die Grauen Energien und Emissionen der bilanzierten Altbau-, Neubau- und Sanierungskonstruktionen diskutiert, bevor sie in Kapitel 5 (vgl. ab Seite 137) für die Szenarienberechnung des Fallbeispiels herangezogen werden.

3.8.2 Aus der Entsorgung von Altbaukonstruktionen resultierende Umweltwirkungen

Aus den bilanzierten Baukonstruktionen lässt sich erarbeiten, wie viel kg CO₂-Äq./m²_{Bauteil} durchschnittlich beim Abriss und der Entsorgung von Gebäuden in den LZPH C3 und C4 entstehen. Die Definition des Begriffs "Bauteil" kann dem Glossar (ab Seite XIII) entnommen werden. In Abbildung 3-11 ist die Ergebnisverteilung des GWP je Baualtersklasse dargestellt, wobei die Entsorgung aller Bauteile berücksichtigt wird.

Das GWP der Entsorgungsphasen kann je nach Baualtersklasse stark variieren und wird von verschiedenen Faktoren beeinflusst. Zum einen spielen die verbauten Materialmassen eine Rolle, zum anderen die Art der Baumaterialien. Durch die Darstellung als Violin-Plot ist es möglich, neben der Spannweite der potentiellen Ergebnisse auch ihre Streuungsdichte aufzuzeigen.

Abbildung 3-11: Verteilung des GWP je m² Bauteil und Baualtersklasse in den Entsorgungsphasen C3 und C4 (Summe); eigene Darstellung

Die Bauteile in BK 7 weisen die geringsten GWP-Werte für die LZPH C3 und C4 auf. Die Spannweite liegt hier zwischen -2,2 und 59,6 kg CO₂-Äq./m²_{Bauteil}, wobei sich die Mehrheit der Werte im Bereich zwischen 0 und 13 kg CO₂-Äq./m²_{Bauteil} anordnet. Ein Einflussfaktor ist die ab BK 5 zunehmende massive Bauweise, die viel GWP in der Herstellung aber wenig GWP bei der Entsorgung verursacht. Gegenüber den nachfolgenden Baualtersklassen beschreibt die Literatur in BK 7 z. B. keine Holzbalkendecken oder Holzaußenwände. In BK 9 kann die Entsorgung einer Holzbalkendecke 235 kg CO₂-Äq./m²_{Bauteil} bedingen. Die maßgebenden Treiber beim GWP in den LZPH C3 und C4 sind in BK 10 und 11 die massiven Außenwände in Holzbauweise, die 272,8 kg CO₂-Äq./m²_{Bauteil} emittieren. Dabei sei jedoch

nochmals das Kohlenstoffspeicherungspotential der Holzkonstruktionen in der Herstellung erwähnt. Im genannten Fall werden zunächst 61 % (167,0 kg CO₂-Äq./m²_{Bauteil}) des bei der Entsorgung freiwerdenden GWP bei der Herstellung eingelagert.

Aus der Grafik wird ersichtlich, dass das GWP in den Entsorgungsphasen nicht zu vernachlässigen ist und dass deutliche Unterschiede zwischen den einzelnen Baualtersklassen vorhanden sind, sowohl bei den Extrema als auch bei der Streuungsdichte.

Wie erwähnt, entfällt auf Baustoffe aus Holz ein nicht unwesentlicher Anteil, da durch ihre thermische Verwertung am EoL große Mengen an CO₂ freigesetzt werden. Jedoch können diese Emissionen teilweise durch eine nachhaltige Waldwirtschaft kompensiert werden. Es sollte auch überlegt werden, ob die thermische Verwertung von Holzbaustoffen am EoL auch zukünftig den Standardfall darstellt oder ob mit Hilfe einer Kaskadennutzung die Baustoffe auch nach dem Abriss der Baukonstruktionen in den Stoffkreislauf zurückgeführt werden können. Vor diesem Hintergrund muss die Phase D mitbetrachtet werden. Die PENRT und PET sollte ebenfalls parallel analysiert werden, da dadurch Wechselwirkungen besser erkennbar sind.

3.8.3 Aus dem Neubau resultierende Umweltwirkungen

Die Umweltwirkungen von insgesamt 108 Neubaukonstruktionen je m² Bauteilfläche und Jahr bei einer Gebäudelebensdauer von insgesamt 50 Jahren sind in den beiden nachfolgenden Abbildungen dargestellt. Der jährliche Bezug wird deshalb gewählt, damit sich die Werte direkt mit denen anderer Gebäudelebensdauern vergleichen lassen. Zusätzlich erfolgt eine Gegenüberstellung der Umweltwirkungen mit und ohne Phase D. Je m² Bauteil fallen im Neubau jährlich zwischen 0,1 bis 6,4 kg CO₂-Äquivalent an (siehe Abbildung 3-12). Werden die Wiederverwertungs- und Recyclingpotentiale berücksichtigt, sinkt der Wertebereich auf -0,7 bis 4,9 kg CO₂-Äquivalent. Werte unter Null bedeuten, dass durch die Wahl der Baustoffe und geeigneter Recyclingpotentiale über den Lebenszyklus hinweg bilanziell GWP eingespeichert werden kann.

Der Verteilung des GWP wird in Abbildung 3-13 die Verteilung der jährlichen Primärenergiebedarfe je m² für eine Gebäudelebensdauer von 50 Jahren gegenübergestellt. Die Angabe in Kilowattstunden (kWh) ist sinnvoll, wenn die Graue Energie der Gebäude später mit ihrem Betriebsenergiebedarf verglichen wird. Für die bilanzierten Neubaukonstruktionen ergeben sich ohne Phase D eine PENRT von 0,5 bis 21,3 kWh/m²_{Bauteil}×a und eine PET von 1,2 bis 37,1 kWh/m²_{Bauteil}×a. Unter Berücksichtigung der Phase D kann die Spannweite der Primärenergiebedarfe auf -3,5 bis 17,2 bei der PENRT und auf 1,0 bis 29,1 kWh/m²_{Bauteil}×a reduziert werden. Aus beiden Abbildungen wird ersichtlich, dass der Großteil der Baukonstruktionen Umweltwirkungen im unteren Drittel der jeweiligen Wertebereiche verursacht. Daraus resultiert die Frage, welche Neubaukonstruktionen und Bauweisen als Treiber der Umweltwirkungen identifiziert werden können. Diese Frage wird im nachfolgenden Kapitel beantwortet.

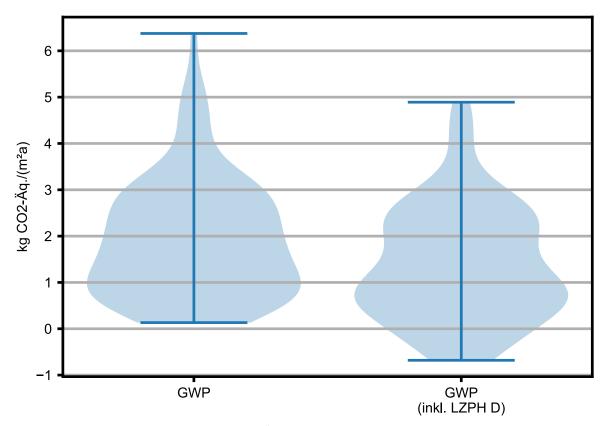


Abbildung 3-12: Jährliches GWP [kg CO₂-Äq.] mit und ohne Phase D für Neubaukonstruktionen je m² Bauteil und einer Gebäudelebensdauer von 50 Jahren; eigene Darstellung

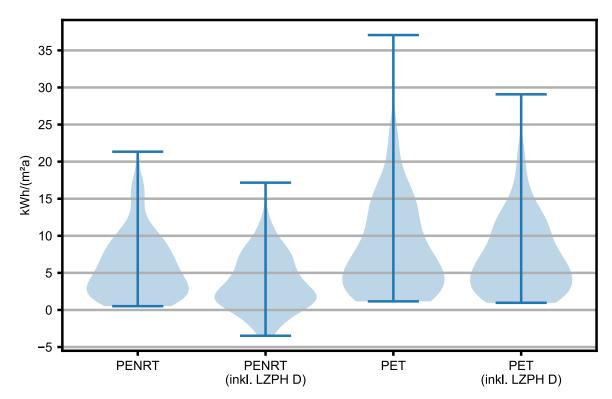


Abbildung 3-13: Jährliche PENRT und PET [kWh] mit und ohne Phase D für Neubaukonstruktionen je m² Bauteil und einer Gebäudelebensdauer von 50 Jahren; eigene Darstellung

3.8.4 Maßgebende Bauteile im Neubau – minimale und maximale Umweltwirkungen

Aus den vier berücksichtigten Bauweisen (Holzrahmen-, Holzmassiv-, Stahlbeton- und Mauerwerksbauweise) und den drei verschiedenen Fensterarten resultieren insgesamt 38 verschiedene Bauteile zu denen die Wertebereiche der drei Umweltwirkungen (GWP, PENRT und PET) ermittelt werden. Mit Hilfe einer Normierung – dabei werden die Ergebnisse für GWP, PENRT und PET mit und ohne Phase D berücksichtigt – können die Bauteile mit den geringsten und höchsten Umweltwirkungen identifiziert werden.

Die Fensterkonstruktionen treten deutlich hervor. Sowohl Holz- (Wwood), Aluminium- (Walu), als auch Kunststofffenster (Wplas) gehören zu den Bauteilen, die auf 1 m² Bauteilfläche gleichzeitig hohe Werte für GWP, PENRT und PET generieren. Letztere besitzen insgesamt die größten Umweltwirkungen je m² Bauteilfläche. Abbildung 3-14 zeigt dies am Beispiel des GWP, Abbildung 3-15 am Beispiel der PENRT.

Wenn das Kellergeschoss beheizt ist, besitzen Kellerwände (CW_h_mas und CW_h_rc) und Bodenplatte (BP_h) hohe Graue Emissionen und Energien. Auch ein massiv ausgeführtes Flachdach verfügt über hohe Graue Energien und Emissionen.

Demgegenüber besitzen Innenwände insgesamt geringe Umweltwirkungen, sowohl in der Holz- (IWwood) als auch Massivbauweise (IWmas). Grund dafür ist der einhergehend geringe Materialeinsatz von nichttragenden Innenwandkonstruktionen, die den unteren Wertebereich definieren. Auch Gebäudetrennwände weisen insgesamt geringe Umweltwirkungen auf. Dies lässt sich dadurch begründen, dass nur die halbe Bauteildicke in die Bilanzierung einfließt. Denn in diesem Fall teilen sich benachbarte Gebäude die Gebäudetrennwände.

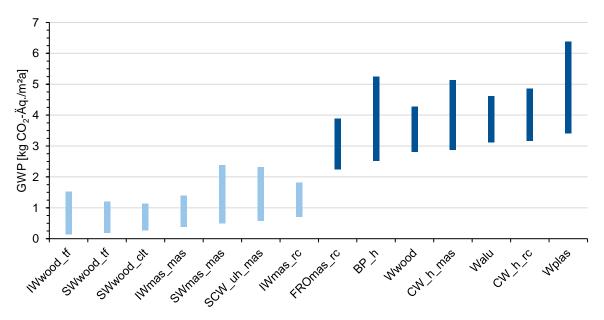


Abbildung 3-14: GWP der Neubaukonstruktionen [kg CO₂-Äq./m²a] – Darstellung der Wertebereiche maßgebender Bauteile (LZPH A1-C4, ohne D); eigene Darstellung

Aus diesen Beobachtungen resultiert die Notwendigkeit, die Umweltwirkungen von Perimeterbauteilen (Kelleraußenwände und Bodenplatte) und Fenstern in der Praxis zu optimieren.

Ob sie auch auf Gebäudeebene maßgebend für die Umweltwirkungen der Baukonstruktion verantwortlich sind, zeigt sich in Kapitel 5.2 ab Seite 142.

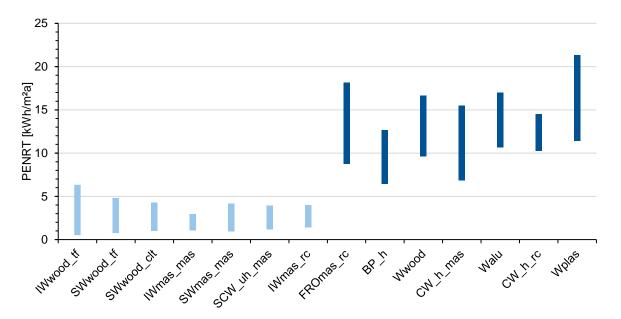


Abbildung 3-15: PENRT der Neubaukonstruktionen [kWh/m²a] – Darstellung der Wertebereiche maßgebender Bauteile (LZPH A1-C4, ohne D); eigene Darstellung

3.8.5 Aus der Sanierung resultierende Umweltwirkungen

Besonders beim Bauen im Bestand ist es wichtig zu wissen, welche Grauen Energien und Emissionen mit der Sanierung der Baukonstruktion einhergehen. Es gilt zu klären, ob sich gegenüber einem Ersatzneubau (Abriss und Neubau) ökologische Vorteile ergeben, die den ökonomischen Beweggründen entgegengesetzt werden können.

Nachfolgende Abbildungen stellen das baualtersklassenspezifische GWP und die PENRT von Sanierungskonstruktionen dar. Der Bezug auf die jährlichen Emissionen und Energien erlaubt den direkten Ergebnisvergleich mit Kapitel 3.8.3 (siehe Seite 98).

Abbildung 3-16 zeigt, dass in den Baualtersklassen BK 1 bis 5 die Sanierung auf den KfW-55-Standard und die Weiternutzung der Altbaukonstruktionen über 50 Jahre in der Regel zwischen 0,2 und ca. 3,0 kg CO₂-Äq./(m²_{Bauteil}×a) verursachen. Die Renovierung der Bodenplatte (Ausbau Holzbalkenlage und Ersatz durch Stahlbetonplatte mit Dämmung) kann jedoch bis zu 6,4 kg CO₂-Äq./(m²_{Bauteil}×a) emittieren (siehe BK 1 und BK 2). Die Sanierung und Weiternutzung der Baukonstruktionen aus der BK 6 verursachen tendenziell ein etwas geringeres GWP. Bei den Konstruktionen der nachfolgenden Baualtersklassen steigt das GWP jedoch wieder an.

Die Sanierung der Baualtersklassen BK 9 bis 11 ist erst in 20 bis 30 Jahren sinnvoll, da deren Baukonstruktionen bereits über einen guten bis sehr guten Dämmstandard verfügen und auch vergleichsweise hohe Umweltwirkungen mit der Sanierung einhergehen. Deutlich wird dies auch an der Ausdehnung der Streudichte gegenüber den anderen BK.

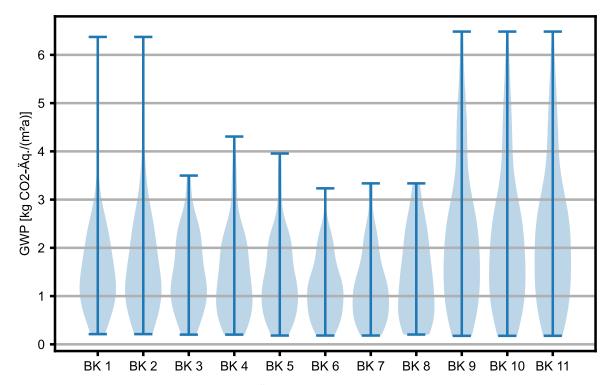


Abbildung 3-16: Jährliches GWP [kg CO₂-Äq.] für Sanierungskonstruktionen je m² Bauteil (LZPH A1-C4, ohne D) und einer Gebäudelebensdauer von 50 Jahren; eigene Darstellung

Die baualtersklassenspezifische Verteilung der PENRT-Wertebereiche ist homogener als die des GWP (siehe Abbildung 3-17). Die Sanierung und Weiternutzung der Bestandskonstruktionen bewirken eine PENRT zwischen 0,2 und 15,5 kWh/(m²_{Bauteil}×a).

Bei der PET kommt der Einfluss der Primärenergie aus erneuerbaren Rohstoffen zum Tragen, da hier der Wertebereich im Negativen beginnt, d. h. bilanziell PET gutgeschrieben werden kann. Je nach sanierter Baualtersklasse und Einsatz an erneuerbaren Ressourcen reicht der Wertebereich beim PET von -10,4 bis 21,2 kWh/(m²_{Bauteil}×a).

Bei einem Vergleich der Abbildung 3-16 und Abbildung 3-17 mit Abbildung 3-12 bzw. Abbildung 3-13 auf Seite 99, wird ersichtlich, dass sich die Wertebereiche der Neubau- und Sanierungskonstruktionen beim GWP annähern. Unter Berücksichtigung der Streuungsdichte wird jedoch klar, dass das GWP der Neubaukonstruktionen durchschnittlich leicht höher liegt (Mittelwert Neubau: 1,9 kg CO₂-Äq./(m²_{Bauteil}×a); Mittelwert Sanierung: 1,6 kg CO₂-Äq./(m²_{Bauteil}×a). Auch die mit den Neubaukonstruktionen einhergehende PENRT liegt höher als bei den Sanierungskonstruktionen: der Mittelwert bei den Sanierungskonstruktionen ist 4,1 kWh/(m²_{Bauteil}×a), der Mittelwert bei den Neubaukonstruktionen ist 5,9 kWh/m²a. Zudem muss beim Ersatzneubau die Entsorgung der Altbaukonstruktionen berücksichtigt werden, die zusätzliche Graue Energien und Emissionen bedingt (vgl. Abbildung 3-11, Seite 97).

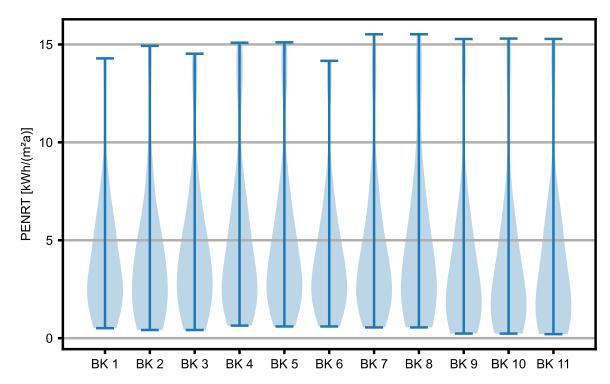


Abbildung 3-17: Jährliche PENRT [kWh] für Sanierungskonstruktionen je m² Bauteil und einer Gebäudelebensdauer von 50 Jahren (LZPH A1-C4, ohne D); eigene Darstellung

3.9 Empfehlungen zur Verwendung der Ergebnisse

Mit Hilfe der in diesem Kapitel beschriebenen Methodik wird auf Grundlage der Literatur und ergänzender Materialrecherchen eine deutschlandweit repräsentative und breite Datenbasis für die ökologische Bewertung von Alt-, Sanierungs- und Neubaukonstruktionen geschaffen. Diese kann von Planenden in frühen Planungsphasen herangezogen werden, um eine erste Einschätzung über die ökologische Qualität des Bauprojektes zu erhalten, wenn die genauen Bauausführungen noch nicht bekannt sind. Die Gebäudelebensdauer entspricht dem Standardfall von 50 Jahren. Sollen andere Gebäudelebensdauern betrachtet werden, müssen die Werte in der LZPH B4 entsprechend angepasst werden.

Mit Hilfe der im Anhang dargestellten Datengrundlagen und Einzelergebnisse kann die Ökobilanzierung transparent nachvollzogen und im Einzelfall angepasst werden. Dabei ist es möglich, die baualtersklassen- und bauweisenspezifischen Wertebereiche zu verwenden oder auf die Ergebnisse der Einzelkonstruktionen zurückzugreifen (vgl. Anhänge A.2 bis A.4 und A.6 bis A.8 ab Seite 232). Bei der Verwendung der einzelnen Werte wird empfohlen eingangs kurz ihre Repräsentativität zu überprüfen, da die Literatur nicht alle regionaltypischen Bauteilkonstruktionen erfasst hat und es im Einzelfall zu Abweichungen kommen kann (Gruhler et al., 2002; Zentrum für Umweltbewusstes Bauen e.V., 2009b).

Die hier aufgezeigten Baukonstruktionen berücksichtigen zudem keine Ausbauschichten, wie den Fußbodenbelag oder Wand- und Deckenanstriche. Diese müssen im Einzelfall gesondert ermittelt werden. Ferner ist es möglich, die Umweltwirkungen der vorgestellten Baukonstruktionen auf Basis der neuesten ÖKOBAUDAT (aktuell Version 2023-I) oder anderer Datenbanken, wie der Ecoinvent, zu aktualisieren und weitere Umweltindikatoren zu berücksichtigen (BBSR, o. J.; Ecoinvent, o. J.).

Die Kennwerte können sowohl für manuelle Berechnungen als auch für automatisierte Kalkulationen bis zur Quartiers- und Stadtebene verwendet werden (siehe Kapitel 4 ab Seite 107 bzw. Kapitel 5 ab Seite 137).

Für die Durchführung automatisierter Lebenszyklusanalysen können die Ergebnistabellen in den Anhängen A.6 bis A.8 ab Seite 399 in SQL-Datenbanken übertragen werden. Dafür müssen die notwendigen Berechnungsschritte programmiert werden. Theoretisch können diese in jede geeignete Software übertragen werden (z. B. UMI 2.0, urbi+, SimStadt, usw.). In Kapitel 4, ab Seite 107, werden auf Grundlage der Daten und Strukturen von 3D-Stadtmodellen im CityGML-Format 2.0 Berechnungsschritte entwickelt, die mit Hilfe der erarbeiteten Kennwerte eine Ökobilanzierung auf Quartiersebene für verschiedene Entwicklungsszenarien – Sanierung mit und ohne Nachverdichtung oder Ersatzneubau – ermöglichen.

3.10 Zusammenfassung Kapitel 3

- Ziele des Kapitels sind die Entwicklung einer Methodik zur LCA von Alt-, Neubau- und Sanierungskonstruktionen sowie die Erarbeitung baualtersklassentypischer ökologischer Kennwerte für Baukonstruktionen von Wohngebäuden (Gebäudelebensdauer von 50 Jahren) mit einheitlichen Systemgrenzen.
- Als maßgebende Umweltindikatoren werden das GWP, PENRT und PET gewählt und einzeln ausgewiesen, sodass spätere Nutzer:innen je nach eigenen Präferenzen die Umweltwirkungen einzeln oder gemeinsam betrachten können.
- Unter Verwendung dieser deutschlandweit möglichst repräsentativen Kennwerte kann die ökologische Qualität einzelner Sanierungs- und Nachverdichtungsszenarien von Bestandsquartieren oder Freiflächen in frühen Planungsphasen bewertet werden, wenn die genauen Bauausführungen noch nicht bekannt sind.
- Im Rahmen des Kapitels wird die einheitliche Vorgehensweise bei der Bilanzierung von Alt-, Neubau- und Sanierungskonstruktionen sowie die Definition relevanter Systemgrenzen (räumlich und zeitlich) beschrieben. Die Wahl gemeinsamer Systemgrenzen und Datensätze erlauben, dass die Ergebnisse direkt miteinander verglichen werden können.
- Der Schichtenaufbau und die Umweltwirkungen der einzelnen Baukonstruktionen sind transparent nachzuvollziehen und können dem Anhang entnommen werden.
- Die Darstellung der minimalen und maximalen Umweltwirkungen je Baualter, Bauteil und Lebenszyklusphase erlaubt es, die entwickelten ökologischen Kennwerte für verschiedenste Betrachtungsszenarien, beginnend auf der Bauteilebene bis hin zur Stadtquartiersebene, heranzuziehen und die mögliche Spannweite der Umweltwirkungen zu identifizieren.
- Es können baualtersklassenspezifische Unterschiede bei der ökologischen Qualität der Baukonstruktionen herausgearbeitet werden. Beispielsweise verursacht die Entsorgung der Konstruktionen der BK 7 das geringste GWP. Ab BK 8 steigt das GWP in den LZPH C3 und C4 gegenüber den älteren Baualtersklassen deutlich an.
- Die Analyse der Neubaukonstruktionen zeigt, dass sie bei einer Gebäudelebensdauer von 50 Jahren je nach Bauteil ein jährliches GWP von 0,1 bis 6,4 kg CO₂-Äq., eine jährliche PENRT von 0,5 bis 21,3 und eine jährliche PET von 1,2 bis 37,1 kWh pro m² Bauteil verursachen können.
- Um vergleichen zu können, ob ein Ersatzneubau oder eine Sanierung des Bestandes ökologisch sinnvoller ist, müssen zukünftig auch die Umweltwirkungen der Entsorgung der Altbaukonstruktionen berücksichtigt werden. Danach verursacht die Sanierung der einzelnen Bauteile in der Gesamtheit deutlich weniger Umweltwirkungen (GWP: 0,2 bis 6,4 kg CO₂-Äq./m²_{Bauteil}a; PENRT: 0,2 bis 15,5 kWh/m²_{Bauteil}a; PET: -10,4 bis 21,2 kWh/m²_{Bauteil}a).
- Die Anwendbarkeit und regionale Repräsentativität der Kennwerte ist im Einzelfall zu prüfen und ggf. durch weitere Baukonstruktionsbetrachtungen zu ergänzen, da in Bezug auf die Literaturgrundlagen regionaltypische Datenlücken bestehen können.

4 LCA mit Hilfe von 3D-Stadtmodellen

4.1 Methodik der LCA auf Quartiersebene

Die Vorgehensweise bei der LCA auf Quartiersebene erfolgt in einzelnen Arbeitsschritten, die in Abbildung 4-1 zunächst skizzenhaft aufgezeigt werden. Die detaillierten Beschreibungen sowie die Datengrundlagen der einzelnen Arbeitsschritte finden sich in den nachfolgenden Kapiteln.

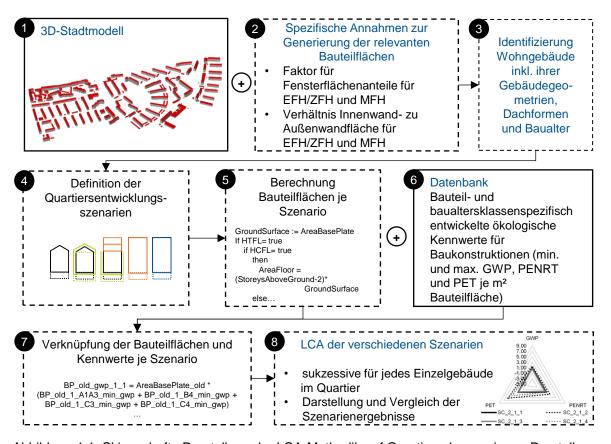


Abbildung 4-1: Skizzenhafte Darstellung der LCA-Methodik auf Quartiersebene; eigene Darstellung

Für die LCA auf großer Maßstabsebene wird eine Datenquelle benötigt, die gebäudespezifische Informationen zu Bauteilflächen oder Baualtern liefert. Dies gewährleisten 3D-Stadtmodelle im CityGML-Format, Version 2.0 (Schritt 1). Doch nicht alle, für die LCA notwendigen Gebäudedaten sind standardmäßig im 3D-Stadtmodell hinterlegt. Meistens enthalten sie im LoD2 nur die Gebäudegeometrie und die Gebäudehüllflächen. Daher ist es im Schritt 2 erforderlich, die vorhandenen Informationen manuell mit weiteren nutzerspezifischen Annahmen, wie der Definition des Fensterflächenanteils oder des Flächenverhältnisses der Innenwand zur Außenwand, zu ergänzen. Somit werden im Schritt 3 die Wohngebäude und ihre Gebäudegeometrien sowie Baualter identifiziert und die erforderlichen

innen- und außenliegenden Bauteilflächen berechnet. Nach der Definition der Quartiersent-wicklungsszenarien (Schritt 4) enthält Schritt 5 je Szenario die erforderlichen und eigens entwickelten Berechnungslogiken. Die ebenfalls entwickelte Datenbank der bauteil- und baualtersklassenspezifischen ökologischen Kennwerte für Baukonstruktionen wird im Schritt 6 implementiert (vgl. hierzu auch Kapitel 3 ab Seite 53 sowie die Anhänge A.2 bis A.8 ab Seite 232). Im Schritt 7 erfolgt je Szenario und Einzelgebäude im Quartier die Verknüpfung der Bauteilflächen und der Kennwerte. Die LCA der vorhandenen Quartiersentwicklungsszenarien wird im Schritt 8 gebäudespezifisch durchgeführt. Dies erlaubt eine iterative Berechnung und Ergebnisauswertung hin zur Quartiersebene entsprechend der von den Nutzenden definierten Forschungsfragen. Für die Gesamtquartiersbetrachtung werden die Gebäudeergebnisse final aufsummiert.

Die entwickelten Berechnungslogiken sind den Anhängen A.9 ab Seite 469 und A.10 ab Seite 488 zu entnehmen. Letztere stellen die Grundlage für eine softwarebasierte Umsetzung einer automatisierten LCA-Berechnung von Quartiersentwicklungsszenarien für ausgewählte digitale Stadtmodelle dar (siehe Kapitel 5 ab Seite 137). Am Ende des Kapitels erfolgt eine Diskussion über die Unsicherheiten der Gebäudeinformationen und die Visualisierungsmöglichkeiten der Ergebnisse.

4.2 3D-Stadtmodell – Datenstruktur und Gebäudeinformationen

Dreidimensionale Stadtmodelle ermöglichen die standortspezifische Analyse von verschiedenen Umweltaspekten. Verbreitet sind dabei beispielsweise Analysen zu Hochwasserproblematiken, Lärmausbreitungen oder Stadtklimaveränderungen. Aber auch zur Beantwortung der Fragen, welche ökologische Qualität Gebäude aufweisen oder wie sich ein neuer bzw. sanierter Gebäudekomplex ökologisch auswirken kann, sind georeferenzierte dreidimensionale Gebäudemodelle hilfreich. Denn Daten zu Umweltwirkungen sowie daraus resultierende Informationen und Handlungsempfehlungen sind besonders aussagekräftig, wenn auch ihr räumlicher Bezug und regionale Spezifika berücksichtigt werden können. Die Verwendung von 3D-Stadtmodellen ist nützlich, wenn mit Hilfe der Gebäudemodelle der aktuelle energetische und konstruktive Zustand des Gebäudebestandes oder verschiedene Entwicklungsszenarien abgebildet werden. (Kaltschmitt und Schebek, 2015, S. 63)

Um die LCA der definierten Quartiersentwicklungsszenarien durchführen zu können, benötigt man neben den baualtersklassen- und bauteilspezifischen ökologischen Kennwerten auch die entsprechenden Bauteilflächen. Diese werden auf Basis der in 3D-Stadtmodellen hinterlegten Gebäudeinformationen generiert.

Hierfür gilt es im ersten Schritt zu klären, welche Datenstrukturen zugrunde liegen. Die Strukturanalyse erfolgt auf Basis eines 3D-Stadtmodells aus dem Bundesland Bayern, das von Harter und Willenborg et al. (2020) entwickelt und im Forschungsprojekt "Grüne Stadt der Zukunft" verwendet wurde (TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.). Dabei handelt es sich um eine digitale, dreidimensionale Darstellung eines Münchner Bestandsquartiers. Das Gebäudemodell umfasst 181 Wohngebäude und wird in Kapitel 5 ab Seite 137 als Fallbeispiel herangezogen. Das 3D-Stadtmodell wurde vom Bayerischen Landesamt für Digitalisierung, Breitband und Vermessung (LfDBV) zur Verfügung gestellt (LfDBV Bayern, o. J.b). Die Modelle mit ihren Standarddachformen im LoD2 sind mit dem amtlichen Liegenschaftskatastersystem (ALKIS®) konform (LfDBV Bayern, o. J.a).

Nachfolgend wird jedoch zuerst die grundlegende Datenstruktur der Gebäudemodelle im CityGML-Standard analysiert und geklärt, welche Attribute und gebäudespezifischen Daten aktuell flächendeckend vorliegen und für die Berechnungsmethode verwendet werden können und welche Attribute zukünftig ergänzt werden müssen.

Tabelle 4-1 zeigt die Attribute, die die Gebäudemodelle im CityGML-Format (Version 2.0, LoD2) standardmäßig enthalten. Im CityGML-Format werden die Gebäude zusätzlich in Teilflächen untergliedert (siehe Nr. 19 bis 21 in Tabelle 4-1), die für die Bauteilflächenermittlung essenziell sind. Informationen in oranger Schrift können direkt für die LCA verwendet werden. Wird im Attribut die Bezeichnung "core" angeführt, bedeutet dies, dass es zu den Basiskomponenten des Gebäudemodells gehört. Die Nennung von "bldg" am Anfang des Attributes weist es der Klasse "Building" zu (vgl. hierzu auch Abbildung 2-11, Seite 35).

Wird dem Attribut "bldg:function" der Wert 31001_100 zugeordnet, ist es per Definition eindeutig als Wohngebäude typisiert und kann in die LCA einbezogen werden.

Tabelle 4-1: Attributtabelle von LoD2 Gebäudemodellen im CityGML-Format (Version 2.0); eigene Darstellung nach Bayerische Vermessungsverwaltung (2018)

Nr.	Bezeichnung	CityGML Attribut
Für da	s gesamte Gebäude gültige Attribute	
1	Bundesweit gültiger CityGML-Objektindikator	bldg:Building gml:id
2	Objektidentifikator in der Gebäudedatenbank	core:externalReference
3	Objektidentifikator der ALKIS-Objektart (AX-Gebäude)	core:externalReference
4	Gebäudefunktion	bldg:function
5	Lagebezeichnung oder Straßenname mit Haus- nummer	bldg:adress
6	Anzahl der oberirdischen Geschosse	bldg:storeysAboveGround
7	Dachform	bldg:roofType
8	Ableitungsdatum	core:creationDate
9	Datum der letzten Überprüfung der Gebäude mit dem Liegenschaftskataster	StandLK
10	Gemeindeschlüssel	Gemeindeschlüssel
11	Datenquelle Dachhöhe	DatenquelleDachhöhe
12	Datenquelle Lage	DatenquelleLage
13	Datenquelle Bodenhöhe	DatenquelleBodenhoehe
14	Höhe des tiefsten Gebäudepunktes über NN, abgeleitet aus dem verwendeten DGM	HoeheGrund
15	Höhe des Daches über NN	HoeheDach
16	Höhe der niedrigsten Dachtraufe über NN	Niedrigste TraufeDesGebäudes
17	Höhe des Gebäudes	Bldg:measuredHeight uom="urn:adv:uom:m"
18	Erzeugungsart der Dachformerkennung	Methode
Fläche	nbezogene Attribute der CityGML Surface-Objekte	
19	Flächentyp (Ground-, Wall- oder RoofSurface)	bldg:GroundSurface, bldg:WallSurface, bldg:RoofSurface
20	Objektidentifikator (UUID) der Fläche	<pre> <bld> <bld> </bld></bld></pre>
21	Inhalt der Fläche	Flaeche
22	Dachorientierung (Richtungswinkel vom geringeren zum größeren Hochwert)	Dachorientierung
23	Dachneigung als Winkel von 0 - 90°	Dachneigung
24	Höchster Punkt der Fläche (relativ)	Z_MAX
25	Höchster Punkt der Fläche (über NN)	Z_MAX_ASL
26	Niedrigster Punkt der Fläche (relativ)	Z_MIN

Ebenfalls wichtig für die LCA mit Hilfe von 3D-Stadtmodellen ist die Kenntnis über die Dachform. Sie wird über das Attribut "bldg:roofType" definiert. Der Wert 1000 ist für Flachdächer hinterlegt. Ist der Wert größer als 1000, ist die Dachform ein Steildach (z. B. Pultdach: 2100 oder Satteldach: 3100). Mit Hilfe von "bldg:storeysAboveGround" kann die Anzahl der Geschossdecken identifiziert werden (vgl. Kapitel 4.3.4, Seite 115). Tabelle A. 88 auf Seite 469

(Anhang A.9) enthält alle Variablen und Attribute zu den geometrischen und energetischen Gebäudeeigenschaften, die für die entwickelten LCA-Berechnungslogiken erforderlich sind. Die Beschreibung erfolgt auf Englisch, damit sie international verständlich ist. Zur besseren Übersicht sind alle Attribute, die direkt aus dem Gebäudemodell stammen, farblich einheitlich markiert.

Die Hinterlegung der Attribute mit gebäudespezifischen Daten übernehmen die Landesvermessungsämter (z. B. Gebäudegeometrien) oder Katasterämter (z. B. Gebäudenutzungsarten). Die Synchronisierung der 3D-Stadtmodelle mit den Informationen der Katasterämter erlaubt die Identifizierung von Eigentumsgrenzen, was wiederum hilfreich ist, um Reihenhäuser und somit gemeinsame Gebäudetrennwände zu erkennen. (Harter, 2021, S. 32-34)

Um die Baualtersklassen für die im Gebäudemodell vorhandenen Wohngebäude ermitteln und so den energetischen und konstruktiven Ausgangszustand identifizieren zu können, müssen den Gebäuden im 3D-Modell ihre Baujahre zugeordnet werden. Diese Information ist nicht standardmäßig in den Stadtmodellen des LfDBV hinterlegt, kann aber ergänzt werden. So konnte das Stadtmodell von Harter und Willenborg et al. (2020) mit Hilfe des Referats für Stadtplanung und Bauordnung der Landeshauptstadt München (LHM) durch die Baujahre vervollständigt werden (Landeshauptstadt München, o. J.). Die Zuordnung der Baujahre zu den vorliegenden Gebäuden erfolgte durch die geometrische Verschneidung der Gebäudegrundflächen ("bldg:GroundSurface") und den Koordinaten der Gebäude mit statistischen Werten, die als Attribute angefügt sind. Die flächendeckende Erweiterung der CityGML-Gebäudemodelle um die Baujahre ist anzustreben. Nur so sind die Modelle konsistent und können für die hier vorgestellte Methode automatisiert benutzt werden.

Für das betrachtete Quartier wurde das korrekte Matching manuell überprüft. Für größere Stadtmodelle benötigt man eine automatisierte Validierungsmethodik. Wünschenswert wäre auch die zeitliche Erfassung von vorangegangenen Sanierungsmaßnahmen, die Einfluss auf die konstruktive und energetische Qualität des Bestands genommen haben. Wegen unzureichender Daten kann dies hier nicht durchgeführt werden.

Zusätzlich existieren sogenannte "Application Domain Extensions" (ADE), um CityGML mit Datenstrukturen für weitere Anwendungsfelder zu erweitern (Gröger et al., o. J., S. 9). So baut die Energy Application Domain Extenstion (Energy ADE) den CityGML-Standard um Datenstrukturen aus, mit deren Hilfe energierelevante Werte und Eigenschaften für Energiebedarfsberechnungen oder Solarpotentialanalysen auf Gebäude- und Quartiersebene durchgeführt werden können. Energy ADE ist demnach so ausgelegt, dass sie die Stadtmodelle, unabhängig vom LoD, um die Domäne "Energie" ergänzt. Zentrales Ziel ist ein einheitliches und standardisiertes Datenmodell, das aber auch Erweiterungen zulässt. Derzeit benutzt und erweitert Energy ADE zwei Module der CityGML Basisstruktur: "CityGML_Core" und "Building". (Benner, 2018, S. 3)

Mailhac et al. (2018) verfolgen den Ansatz die Datenstrukturen so zu erweitern, dass LCA für Baukonstruktionen und deren Sanierungsstände auf Stadtebene durchgeführt werden können. Das "Material and Construction Module" bietet verschiedene Klassen, welche Wände, Dächer, Decken und Fenster in ihren physikalischen Eigenschaften genauer beschreiben (Benner, 2018, S. 14). Im Zuge der weiteren Forschung ist zu prüfen, wie die in Kapitel 3.3 bis 3.5 (ab Seite 59) ermittelten repräsentativen Baukonstruktionseigenschaften in die Energy ADE implementiert werden können und ob die vorhandene Datenstruktur so erweitert werden kann, dass auch die ökologischen Eigenschaften der Bauteile (wie z. B. GWP je m² Bauteil) hinterlegt werden können. Bis dies möglich ist, können die generierten ökologischen Kennwerte als SQL-Datenbanken integriert werden, um für LCA auf Quartiersebene zur Verfügung zu stehen.

4.3 Nutzerspezifische Annahmen zur Bauteilflächengenerierung

Der CityGML 2.0-Standard beinhaltet im LoD2 primär Informationen über die Gebäudehüllfläche, inklusive der Dachformen. Mit der Version 3.0 wird das LoD-Konzept überarbeitet. Danach können im LoD2 auch innenliegende Bauteile abgebildet werden. (Kutzner et al., 2020)

Da sich die 3D-Stadtmodelle des LfDBV noch auf den LoD2 des CityGML 2.0-Standards beziehen, müssen die Flächen der Innenwände, Geschossdecken, Fenster und Fundamente bis zu einer flächendeckenden Ergänzung der Gebäudemodelle um diese Informationen durch nutzerspezifische Annahmen generiert werden. Eine Möglichkeit ist die Ermittlung der fehlenden Bauteilflächen über Flächenverhältnisse. Mit Hilfe dieser zusätzlichen Informationen stehen anschließend alle Grundlagen zur Verfügung, um die Quartiersentwicklungsszenarien (siehe Kapitel 4.4 ab Seite 117) berechnen zu können.

4.3.1 Fensterflächen

Das 3D-Stadtmodell im LoD2 weist keine Fensterflächen aus. Diese sind ein Teil des Attributs "bldg:WallSurface". Deshalb muss ein Fensterflächenanteil (FFA) bestimmt werden, der von der vorhandenen Außenwandfläche abzuziehen ist. Hier ist es sinnvoll den FFA projektspezifisch zu ermitteln, um die Realität genauer abbilden zu können. Denn die Fensterflächen können sich je Szenario und definiertem Wohngebäudetyp – Ein-/Zweifamilienhäuser (EFH/ZFH) oder Mehrfamilienhäuser (MFH) – unterscheiden. Für die nachfolgenden Szenarien ergeben sie nach einer Flächenanalyse von Gruhler et al. (2002) die in Tabelle 4-2 dargestellten repräsentativen FFA für Bestandsgebäude. Bei den entwickelten Berechnungslogiken werden die identifizierten durchschnittlichen FFA hinterlegt. Bei EFH/ZFH liegt der FFA bei 12 %, bei MFH beträgt er 15 %. Diese Werte können aber jederzeit angepasst werden, um auf die individuellen Bedingungen im Quartier reagieren zu können (siehe hierzu auch Tabelle A. 88, Seite 469).

Tabelle 4-2: Durchschnittlicher Fensterflächenanteil bei Bestandsgebäuden; eigene Darstellung nach Gruhler et al. (2002)

	Gesamt Faktor FFA [-]	Ein-/Zweifamilienhäuser Faktor FFA [-]	Mehrfamilienhäuser Faktor FFA [-]
Minimalwert	0,08	0,08	0,12
Maximalwert	0,20	0,17	0,20
Mittelwert	0,14	0,12	0.15

Durchschnittlicher Fensterflächenanteil: m²Fenster zu m²Außenwand über GOK

4.3.2 Innenwandflächen

Neben detaillierten Angaben zu den Fensterflächen nennt die Studie von Gruhler et al. (2002) auch die Außen- und Innenwandflächen der definierten Bestandsgebäude. Dies ermöglicht die Bildung eines Faktors, der das Verhältnis der Innenwand- zur Außenwandfläche wiedergibt (engl. interior wall to exterior wall, kurz: IWTEW). Auch hier ist eine Unterscheidung zwischen EFH/ZFH und MFH notwendig (siehe Tabelle 4-3 und Tabelle A. 88 ab Seite 469).

Tabelle 4-3: Durchschnittliches Flächenverhältnis von Innen- und Außenwänden; eigene Darstellung nach Gruhler et al. (2002)

Durchschnittliches Bauteilflächenverhältnis:

 $m^2 {\sf Innenwand_\"uber_und_unter_GOK} \ \ {\sf ZU} \ \ m^2 {\sf Außenwand_\"uber_und_unter_GOK}$

	Ein-/Zweifamilienhäuser Faktor IWTEW [-]	Mehrfamilienhäuser Faktor IWTEW [-]
Minimalwert	0,39	0,85
Maximalwert	0,71	2,63
Mittelwert	0,54	1,34

4.3.3 Fundamentflächen

Gebäude älteren Baualters wurden in der Regel über Streifen- und Einzelfundamente gegründet. Die Plattengründung hat sich erst in jüngeren Baualtern etabliert. Da die 3D-Stadtmodelle flächendeckend die Grundflächen der Gebäude (Attribut: "bldg:GroundSurface") ausweisen, können die Flächen der Streifen- und Einzelfundamente über einen Flächenfaktor generiert werden. Nach Auswertung der Gebäudesteckbriefe von Gruhler et al. (2002) ergibt sich baualtersklassenübergreifend ein durchschnittlicher Fundamentflächenanteil von 27 % bezogen auf die Gründungs- bzw. Bodenplattenfläche (engl. foundation to base plate, kurz: FTBP). Der maximale Wert liegt bei 59 % (MFH in BK 1) und der minimale bei 0 % (MFH in BK 6-7). Da die Anzahl der auswertbaren Gebäude auf 18 beschränkt ist und nicht in allen Baualtersklassen sowohl Einfamilien- bzw. Zweifamilienhäuser und Mehrfamilienhäuser vertreten sind, wird auf eine weitere Differenzierung verzichtet. Im Kontext der Quartiersbetrachtung wird somit die Annahme eines Durchschnittswertes von 27 % als sinnvoll erachtet.

Der Flächenfaktor FTBP von 0,27 wird für die Ermittlung der Fundamentflächen für alle Gebäude bis einschließlich der BK 8 verwendet. Danach (BK 9 bis BK 11 und Neubau) wird als standardmäßige Gründungsform die Plattengründung angenommen. Somit wird der Faktor FTBP auf Null gesetzt. Auch diese Annahme kann szenarien- und projektspezifisch von den Nutzenden angepasst werden.

4.3.4 Geschossdeckenflächen

Bei den Geschossdecken muss zwischen drei Typen unterschieden werden: oberste Geschossdecke, Geschossdecke und Kellerdecke. Die Nutzenden müssen eingangs entscheiden, ob bei der Durchführung der LCA für alle Gebäude ein beheiztes Dachgeschoss und/oder ein beheizter Keller angenommen wird oder nicht. Wenn der Keller oder das oberste Geschoss unbeheizt sind, weisen die angrenzenden Decken andere Merkmale als die übrigen Geschossdecken auf und benötigen eine eigene Definition. Ist das Dachgeschoss vor einer Sanierung unbeheizt, ist die Fläche der obersten Geschossdecke zur ermitteln. Ist es beheizt, so entfällt die Erfassung der obersten Geschossdecke (bzw. beträgt ihre Fläche 0 m²) und deren Fläche wird zu den restlichen Geschossdecken addiert. Ebenso gilt dies für die Kellerdecke. Ist der Keller beheizt, kann die Kellerdeckenfläche auf Null gesetzt werden. Ist der Keller unbeheizt, entspricht die Kellerdeckenfläche der Bodenplattenfläche ("bldg:GroundSurface"). Die Anzahl der Geschossdecken innerhalb der wärmeübertragenden Umfassungsfläche ergibt sich durch Multiplikation der Anzahl der Geschosse mit der Grundfläche des Gebäudes. Je nach Szenario ist hier die Fläche der Kellerdecke bzw. der obersten Geschossdecke abzuziehen. Mit Hilfe der Berechnungslogiken können die jeweiligen Deckenflächen szenarienspezifisch automatisiert berechnet werden, sobald die Nutzenden die maßgebenden Beheizungssituationen für den Bestand, die Sanierung oder den Neubau festgelegt haben. Die genauen Berechnungsschritte sind dem Anhang A.9 ab Seite 469 zu entnehmen.

4.3.5 Gebäudetrennwandflächen über GOK

Grenzen Gebäude unmittelbar aneinander an, besitzen sie gemeinsame Gebäudetrennwände. Diese können ein- oder zweischalig ausgeführt sein. Kaden (2014) hat dafür den "SharedWallSurface-Calculator" entwickelt, mit dessen Hilfe die "bldg:WallSurface" weiter in Außen- und Gebäudetrennwandflächen unterteilt werden kann.

Dieser Calculator wird verwendet, um die Gebäudetrennwände im Quartier der Fallstudie zu ermitteln. Es handelt sich um eine Java-Library, die auf das 3D-Stadtmodell angewendet wird. Dabei wird gewährleistet, dass die Ergebnisse ins Stadtmodell zurückgeschrieben werden und so die ermittelten Gebäudetrennwandflächen für weitere Berechnungen zur Verfügung stehen. (Harter, 2021; Kaden, 2014; TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.)

Somit wird bei den nachfolgenden Berechnungslogiken davon ausgegangen, dass aus den 3D-Stadtmodellen die Fläche der Gebäudetrennwände hervorgeht und dass das 3D-Stadtmodell vor Verwendung entsprechend bearbeitet werden muss. Nähere Informationen finden sich im Anhang A.9 ab Seite 469.

4.3.6 Anzahl der Geschosse unter GOK

Die flächendeckend vorhandenen 3D-Stadtmodelle des LfDBV Bayern enthalten lediglich die Gebäudegeometrien oberhalb der Schnittline der Erdoberfläche und der Außenfläche der Gebäude. Etwaige Unterkellerungen existieren im Modell zunächst nicht. 81,4 % aller bestehenden Wohngebäude sind jedoch unterkellert. Bei Altbauten liegt der Wert mit durchschnittlich 88,6 % sogar noch etwas höher. Besonders bei Mehrfamilienhäusern, die zu 93,1 % unterkellert sind, müssen die Kellerflächen berücksichtigt werden. (Cischinsky und Diefenbach, 2018)

Daraus ergibt sich die Notwendigkeit, dass vorhandene Unterkellerungen ergänzt werden können. Nutzende der Methode können entscheiden, ob und wie viele Geschosse unterhalb der GOK ("StoreysBelowGround") vorhanden sind. Im Fallbeispiel (siehe Kapitel 5 ab Seite 137) wird ein Kellergeschoss angenommen (siehe auch Tabelle A. 88 ab Seite 469). Die Berechnungslogiken der Szenarien lassen jedoch die Wahl beliebig vieler Kellergeschosse zu. Je nach Szenario werden daraus die zusätzlichen Flächen für die Geschossdecken, Kelleraußenwände, Kellerinnenwände und Gebäudetrennwände im Kellergeschoss errechnet.

4.3.7 Kelleraußenwände und Gebäudetrennwände unter GOK

Die Flächen der Kellerwände ("AreaCellarWall") und der Gebäudetrennwände unter GOK ("AreaSharedCellarWall") definieren sich grundsätzlich durch die mittlere Kellergeschosshöhe. Diefenbach et al. (2010) weisen darauf hin, dass die Kellergeschosse unterschiedlich hoch sein können und in der Regel niedriger als Normalgeschosse sind. Im Altbau bis 1978 sind ca. 75,9 % der Kellergeschosse so hoch, dass eine Person mit 1,80 m Körpergröße gut aufrecht gehen kann. Da jedoch nähere Angaben zu den mittleren Kellergeschosshöhen in der Literatur fehlen, werden die Flächen der Kellerwände vereinfacht im Verhältnis zu den Geschosshöhen über GOK bestimmt. Für die Bestimmung der Kelleraußenwandflächen wird die Fläche der Außenwände über GOK ("AreaExteriorWall") durch die Anzahl der Geschosse über GOK geteilt ("bldg:StoreysAboveGround") und mit der Anzahl der Geschosse unter GOK ("StoreysBelowGround") multipliziert. Die Ermittlung der Gebäudetrennwandflächen unter GOK erfolgt analog in Abhängigkeit der Gebäudetrennwandflächen über GOK ("AreaSharedWall").

4.4 Wahl relevanter Quartiersentwicklungsszenarien

Im Rahmen des Forschungsprojektes "Grüne Stadt der Zukunft" wurden gemeinsam mit Planenden der Landeshauptstadt München relevante bauliche Entwicklungsszenarien für ein Münchner Bestandsquartier definiert, auf Basis derer im Rahmen der Dissertation eine Berechnungsmethodik entwickelt wird (TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.). Genauere Informationen zu diesem Quartier finden sich in Kapitel 5.1 ab Seite 137.

Abbildung 4-2 veranschaulicht die einzelnen Szenarien skizzenhaft. Bei jedem Szenario kann im Vorfeld gewählt werden, ob ein Kellergeschoss vorhanden ist und wenn ja, ob es beheizt wird. Auch beim Dachgeschoss (mit Steildach) kann entschieden werden, ob es temperiert ist oder nicht. Je nach Auswahl werden anschließend die wärmeübertragende Umfassungsfläche bzw. die energetisch zu sanierenden oder relevanten Gebäudekonstruktionen definiert. Die Auswahl gilt für jedes Gebäude im Quartier.

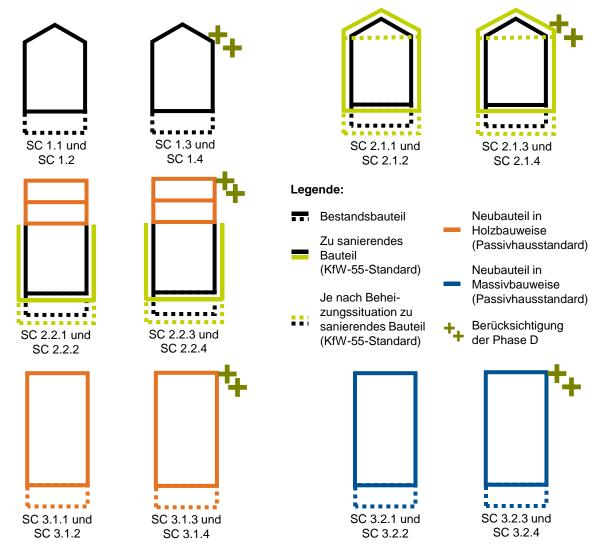


Abbildung 4-2: Skizzenhafte Darstellung der relevanten Quartiersentwicklungsszenarien; eigene Darstellung

4.4.1 Definition Szenario 1 – Status Quo

Szenario 1 beschreibt das **Bestandsquartier im aktuellen konstruktiven und energetischen Zustand**. Die Bestandsbauten in den Baualtersklassen 1 bis 11 werden unter Berücksichtigung der Herstellungsphasen A1 bis A3 (aufsummierter Wert), der Nutzungsphase B4 und den Entsorgungsphasen C3 und C4 bilanziert. Optional wird auch die Phase D mitbetrachtet. Die Umweltwirkungen und Ressourcenaufwendungen zurückliegender Nutzungsphasen sind ausgenommen. Bilanziert wird lediglich die Nutzung in den kommenden 50 Jahren, also bis ins Jahr 2070, mit den Standardaustauschzyklen nach BBSR (2017). Die für die jeweiligen Baumaterialien gewählten Austauschzyklen sind im Anhang A.5 ab Seite 376 hinterlegt. Es werden außen- und innenliegende Bauteilkonstruktionen des Gebäudes miteinbezogen. Das Szenario besteht aus insgesamt vier Unterszenarien:

- SC 1.1: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 1.2: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 1.3: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D
- SC 1.4: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D

4.4.2 Definition Szenario 2.1 – Sanierung mit gleichbleibender Gebäudekubatur

Im Szenario 2.1 werden die **Bestandsbauten nach energetischer Sanierung im KfW-55-Standard** bilanziert (vgl. Tabelle A. 3, Seite 231). Das bedeutet, es werden alle Bauteile der wärmeübertragenden Gebäudehülle saniert. Dazu gehören die Außenwand (EW), die Fenster (W) und die Bodenplatte (BP). Auch ein vorhandenes Flachdach (FRO) wird immer energetisch saniert, da das oberste Geschoss stets als beheizt angenommen wird. Ansonsten werden je nach Wahl der Beheizungssituation (Dachgeschoss beheizt ja/nein; Kellergeschoss vorhanden und wenn ja, beheizt ja/nein) ebenfalls das Steildach (PRO) oder die oberste Geschossdecke (TFL) bzw. die Kellerdecke (CFL) oder die Kelleraußenwände (CW) sowie die Kellertrennwände (SCW) energetisch ertüchtigt. Die restlichen Bauteile – Geschossdecken (FL), Innenwände (IW), Fundamente (F) und Gebäudetrennwände über GOK (SW) – werden in ihrer Konstruktion nicht verändert. Für das Gebäude ist eine weitere Nutzungsdauer von 50 Jahren vorgesehen. Für die auszubauenden Bauteilschichten der Bestandskonstruktionen werden die Entsorgungsphasen C3 und C4 berücksichtigt. Dazu gehören Schichten, die zur Verbesserung der Dämmeigenschaft erneuert werden müssen und die, die dafür ausgebaut werden müssen (vgl. Beschreibung der

Einzelmaßnahmen in Kapitel 3.5.2 bis 3.5.4 ab Seite 78). Für die neu eingebauten Schichten werden die Herstellungs-, Nutzungs- und Entsorgungsphasen innerhalb von 50 Jahren berücksichtigt. Für die Bauteilschichten und Bauteile, die im Bestand noch weitere 50 Jahre erhalten bleiben, werden die Nutzungsphase und die Entsorgungsphasen bilanziert. Die Tragkonstruktion des Bestandes bleibt zu 100 % erhalten. Bauteilschichten, die energetisch nicht ertüchtigt oder dafür ausgebaut werden müssen, bleiben ebenfalls zu 100 % bestehen. Alternativ werden auch die Wiederverwendungs- und Recyclingpotentiale der Phase D ausgewiesen, sodass insgesamt vier Unterszenarien vorhanden sind:

- SC 2.1.1: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 2.1.2: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 2.1.3: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D
- SC 2.1.4: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D

4.4.3 Definition Szenario 2.2 – Sanierung mit Aufstockung in Holzrahmenbauweise

Beim Szenario 2.2 erfolgt ebenfalls die Bilanzierung der Bestandsbauten nach energetischer Sanierung im KfW-55-Standard (vgl. Tabelle A. 3, Seite 231). Zusätzlich wird das Gebäude um zwei Stockwerke in Holzrahmenbauweise im Passivhausstandard (siehe Tabelle A. 2, Seite 230) erhöht. Das vorhandene Dach (PRO oder FRO) bzw. die oberste Geschossdecke (TFL, falls es sich um ein PRO handelt, oder FL, falls es sich um ein FRO handelt) werden dazu komplett zurückgebaut. Das neue Dach wird immer als Flachdach ausgeführt und das neue oberste Geschoss wird beheizt. Ansonsten werden alle Bauteile der wärmeübertragenden Umfassungsfläche energetisch saniert (EW, W, BP und CFL oder CW und SCW). Die restlichen Bauteile (FL, IW, F und SW) werden in ihrer Konstruktion nicht verändert. Für das Gebäude ist eine weitere Nutzungsdauer von 50 Jahren vorgesehen. Für die auszubauenden Bauteilschichten der Bestandskonstruktionen werden die Entsorgungsphasen berücksichtigt. Hierzu zählen die Schichten, die zur Verbesserung der Dämmeigenschaft erneuert werden müssen und die, die dafür ausgebaut werden müssen (vgl. Beschreibung der Einzelmaßnahmen in Kapitel 3.5.2 bis 3.5.4 ab Seite 78). Für die neu eingebauten Schichten werden die Herstellungs-, Nutzungs- und Entsorgungsphasen innerhalb von 50 Jahren berücksichtigt. Für die Bauteilschichten und Bauteile, die im Bestand noch weitere 50 Jahre erhalten bleiben, werden die Nutzungsphase und die Entsorgungsphasen bilanziert. Die Tragkonstruktion des Bestandes bleibt zu 100 % erhalten. Bauteilschichten, die energetisch nicht ertüchtigt oder dafür ausgebaut werden müssen, bleiben ebenfalls zu 100 % bestehen. Unter optionaler Berücksichtigung der Phase D ergeben sich folgende vier Szenarien:

- SC 2.2.1: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 2.2.2: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 2.2.3: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D
- SC 2.2.4: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D

4.4.4 Definition Szenario 3.1 – Abriss und Ersatzneubau in Holzbauweise

Das Szenario 3.1 behandelt den Fall, dass die Bestandsgebäude komplett abgerissen und durch einen Neubau in Holzbauweise im Passivhausstandard (siehe Tabelle A. 2, Seite 230) ersetzt werden. Die neuen Gebäude verfügen über die gleiche Grundfläche, werden jedoch um zwei Vollgeschosse erhöht und mit einem Flachdach versehen. Das oberste Geschoss wird beheizt. Es kann gewählt werden, ob ein Kellergeschoss vorhanden ist und wenn ja, ob dieses beheizt ist. Für das Bestandsgebäude werden die Entsorgungsphasen C3 und C4 berechnet. Für den Neubau werden die Umweltwirkungen der Herstellungs-, Nutzungs- und Entsorgungsphasen ermittelt. Als Gebäudelebensdauer des Neubaus werden 50 Jahre angesetzt. Insgesamt existieren vier Unterszenarien, die optional die Wiederverwendungs- und Recyclingpotentiale aus Phase D einbeziehen:

- SC 3.1.1: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 3.1.2: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 3.1.3: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D
- SC 3.1.4: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D

4.4.5 Definition Szenario 3.2 – Abriss und Ersatzneubau in Massivbauweise

Das Szenario 3.2 legt den Komplettabriss der Bestandsgebäude zugrunde und ersetzt diese durch Neubauten in Massivbauweise im Passivhausstandard (siehe Tabelle A. 2, Seite 230). Die neuen Gebäude verfügen über die gleiche Grundfläche,

werden jedoch um zwei Vollgeschosse erhöht und mit einem Flachdach versehen. Das oberste Geschoss wird beheizt. Es kann gewählt werden, ob ein Kellergeschoss vorhanden ist und wenn ja, ob dieses beheizt ist. Für das Bestandsgebäude werden die Entsorgungsphasen C3 und C4 berechnet. Für den Neubau werden die Umweltwirkungen der Herstellungs-, Nutzungs- und Entsorgungsphasen ermittelt. Als Gebäudelebensdauer des Neubaus werden 50 Jahre angesetzt. Optional werden die Wiederverwendungs- und Recyclingpotentiale der Phase D ausgewiesen, sodass insgesamt vier Unterszenarien vorhanden sind:

- SC 3.2.1: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 3.2.2: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4
- SC 3.2.3: LCA mit den minimalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D
- SC 3.2.4: LCA mit den maximalen Umweltwirkungen der berücksichtigten Bauteile in den LZPH A1 bis A3, B4, C3 und C4; zusätzliche Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale aus Phase D

4.5 Berechnung der Bauteilflächen je Szenario

4.5.1 Allgemeine Vorgehensweise und Erläuterungen

Die Methode ist so konzipiert, dass szenarienspezifisch im ersten Schritt alle Bauteilflächen eines jeden Einzelgebäudes anhand der Informationen aus dem 3D-Stadtmodell (LoD2) berechnet werden. Danach erfolgt die Multiplikation der errechneten Bauteilflächen mit den bauteil- und baualtersklassenspezifischen Umweltwirkungen (Bauteilfläche A x Umweltwirkung B).

Für die Bauteilflächenberechnungen in den einzelnen Szenarien werden die Gebäudedaten aus dem 3D-Stadtmodell und weiterführende Annahmen benötigt (siehe Kapitel 4.2 und 4.3 ab Seite 109). Standardmäßig enthält das 3D-Stadtmodell bereits Angaben zu den Gebäudehüllflächen (siehe Tabelle 4-1 auf Seite 110). Diese Flächen können direkt für die Definition der Bodenplatten- oder Dachflächen herangezogen werden. Für die Ermittlung der weiteren Bauteilflächen sind die in Kapitel 4.3 ab Seite 113 beschriebenen Arbeitsschritte erforderlich.

Die definierten Quartiersentwicklungsszenarien benötigen eine zeitabhängige Differenzierung der Bauteilflächen. Die zeitlich differenzierten Bauteilflächen unterscheiden sich in ihrer Größe und werden unterschiedlichen Konstruktionsaufbauten zugeordnet. Beim Szenario 2.2 bedeutet dies, dass es bei der Sanierung mit Aufstockung eine Außenwandfläche vor der Sanierung (Zeitpunkt t=0) und eine Außenwandfläche nach der Sanierung (Zeitpunkt t=1) gibt. Die Außenwandfläche nach der Sanierung (AreaExteriorWall_V1) erweitert sich um zwei zusätzliche Stockwerke. Die Außenwandfläche vor der Sanierung (AreaExteriorWall_V0) kann mit der Sanierungsfläche (AreaExteriorWall_ren) gleichgesetzt werden. Die Differenz der Außenwandfläche nach der Sanierung minus der Außenwandfläche vor der Sanierung stellt dabei die neue Außenwandfläche der Aufstockung (AreaExteriorWall_nb) dar. Durch die Differenzierung zwischen diesen beiden Flächen können im nächsten Schritt die Kennwerte der Wandsanierung und die Kennwerte des Neubaus in Holzrahmenbauweise eindeutig zugeordnet werden. Daraus resultieren die Umweltwirkungen der Maßnahme, getrennt nach den Neubau- und Sanierungsflächen.

Die Wahl der beheizten Gebäudehülle (Dach beheizt? Ja/ Nein; Keller beheizt? Ja/Nein) beeinflusst ebenfalls die Bauteilflächen (siehe hierzu Kapitel 4.3.4 ab Seite 115) und die Umweltwirkungen der Baumaßnahmen (vgl. Kapitel 3.4.1 ab Seite 72 und Kapitel 3.5.2 ab Seite 78).

4.5.2 Berechnung und Definition der Basisdaten

Für die Berechnungslogiken der einzelnen Szenarien werden gemeinsame Basisdaten benötigt. Tabelle A. 88 (Anhang A.9 ab Seite 469) stellt die Variablen bzw. Attribute vor, die die geometrischen und energetischen Grundeigenschaften der Gebäude definieren.

Die Beschreibung der Variablen, Attribute und Berechnungsschritte erfolgt auf Englisch, da das CityGML-Format international standardisiert ist und die Schritte somit auch international nachvollzogen werden können. Jedoch wird bewusst auf die Verwendung einer Programmiersprache verzichtet, da die spätere Programmierung nicht Teil dieser Arbeit ist. Basisinformationen, die im 3D-Stadtmodell von Harter (2021) sowie Harter und Willenborg et al. (2020) als Attribute hinterlegt sind, sind in oranger Schrift markiert. Neu definierte Variablennamen werden in blauer Schrift dargestellt. Erläuterungen, die die Berechnungslogiken ergänzen sollen, sind kursiv und in Grün geschrieben. Nach der Definition der notwendigen Basisvariablen und -attribute folgen in Tabelle A. 89 ab Seite 473 die Berechnungslogiken der Basisdaten.

4.5.3 Bauteilflächenberechnung der Szenarien

Anhang A.9 beschreibt detailliert die Vorgehensweise bei der szenarienspezifischen Bauteilflächenberechnung:

- Szenario 1: siehe Tabelle A. 90 ab Seite 475
- Szenario 2.1: siehe Tabelle A. 91 ab Seite 477
- Szenario 2.2: siehe Tabelle A. 92 ab Seite 481
- Szenarien 3.1 und 3.2: siehe Tabelle A. 93 ab Seite 485

Die Berechnungslogiken sind analog zu den Beschreibungen in Kapitel 4.5.2 strukturiert.

4.6 LCA je Szenario – Verknüpfung der Bauteilflächen mit den Kennwerten

Nachdem im Anhang A.9 ab Seite 469 die Bauteilflächenberechnungen aller Szenarien definiert sind, kann die LCA durch die Multiplikation der Bauteilflächen mit den Umweltwirkungen der bilanzierten Altbau-, Neubau- und Sanierungskonstruktionen erfolgen. Dazu werden die csv-Tabellen aller bilanzierten Bauteilkonstruktionen benötigt (vgl. Kapitel 3.7 ab Seite 87). Der Export der ökologischen Kennwerte als csv-Dateien ermöglicht z. B. die Aufnahme der Bauteil-Tabellen in eine SQL-Datenbank (Structured Query Language), die mit Hilfe geeigneter Software (z.B. 3D City Database – kurz: 3DcityDB – oder 3DcityDB-Importer/Exporter) mit den Informationen des CityGML-Stadtmodells verknüpft und für weiterführende Berechnungen benutzt werden können. (Harter, 2021; TU München - Lehrstuhl für Geoinformatik, o. J.a, o. J.b)

Um die bauteilspezifischen ökologischen Kennwerte den entsprechenden Bauteilflächen zuordnen zu können, wird, wie in Kapitel 3.7.2 bzw. Tabelle 3-8 (Seite 92) aufgezeigt, ein eindeutiger Name verwendet. Für die Altbaukonstruktionen finden sich die Tabellen der baualtersspezifischen Umweltwirkungen in Anhang A.6 ab Seite 399, für die Neubaukonstruktionen in Anhang A.7 ab Seite 439 und für die Sanierungskonstruktionen in Anhang A.8 ab Seite 450 wieder.

Gemäß der Generierung der Bauteilflächen wird die LCA zunächst gebäudespezifisch durchgeführt, bevor das Quartiersergebnis final, getrennt nach GWP, PENRT und PET, aufsummiert wird. Die Berechnungslogiken werden am Beispiel der Baualtersklasse 1 und dem GWP aufgezeigt. Um den ganzen Gebäudebestand und die definierten Umweltwirkungen automatisiert berechnen zu können, ist sie für BK 2 bis 11 sowie für die PET und PENRT analog zu berechnen (vgl. Kommentare im Anhang).

Die ökologische Bilanzierung der Quartiersentwicklungsszenarien erfolgt durch die Multiplikation der Bauteilflächen mit den zugehörigen Umweltwirkungen. Die einzelnen Berechnungslogiken sind in Anhang A.10 zu finden:

- Szenario 1: siehe Tabelle A. 94 ab Seite 488
- Szenario 2.1: siehe Tabelle A. 95 ab Seite 492
- Szenario 2.2: siehe Tabelle A. 96 ab Seite 498
- Szenario 3.1: siehe Tabelle A. 97 ab Seite 505
- Szenario 3.2: siehe Tabelle A. 98 ab Seite 512

Die Struktur der Berechnungslogiken folgt erneut den Beschreibungen in Kapitel 4.5.2 (Seite 123).

4.7 Diskussion der Ergebnisse auf Quartiersebene

4.7.1 Unsicherheiten

Ein Ziel dieser Arbeit ist es, für den deutschen Wohngebäudebestand repräsentative ökologische Kennwerte zu entwickeln. Durch die Nutzung der Werte kann der minimale und maximale Grad der ökologischen Qualität von Baumaßnahmen abgebildet werden. Diese Herangehensweise ist in frühen Planungsphasen hilfreich, wenn noch wenig über die Baumaßnahme bekannt ist. Mit fortschreitender Planung können anfängliche Informationslücken im Einzelfall geschlossen werden. Wird die Methode in der Genehmigungs- oder Ausführungsplanung angewendet, müssen projektspezifische Daten einfließen, um die Unsicherheiten der Methode zu reduzieren.

So erlauben die bilanzierten Konstruktionen eine weitere Konkretisierung der Bauweise im Neubau. Hier kann zwischen der Stahlbeton-, Ziegel-, Kalksandstein- und Gasbetonbauweise gewählt werden. Im Holzbau kann entweder die Holzrahmen- oder Holzmassivbauweise näher betrachtet werden. Ist die Wahl auf konkrete Bauprodukte gefallen, bietet sich die Verwendung von bauproduktspezifischen Datensätzen, sogenannter EPDs an. Die Umweltwirkungen einzelner Bauprodukte sind in der Regel geringer als die der durchschnittlichen und generischen Datensätze, die hier primär verwendet werden. Zu berücksichtigen ist auch, dass sich die Umweltwirkungen einzelner Baumaterialien mit der ÖKOBAUDAT-Version stark verändern können. Für die hier vorliegende Ökobilanzierung werden die Datensätze der ÖKOBAUDAT, Version 2020-II verwendet. Sollen neue Produktions- oder Entsorgungsprozesse und deren Umweltwirkungen eingeschlossen werden, ist eine Aktualisierung der Datensätze mit Hilfe der neuen ÖKOBAUDAT-Version erforderlich. Die Methode ermöglicht diese Aktualisierung, indem für die Bilanzierung die Datensatzbezüge und Werte in der Material-Exceltabelle (siehe Anhang A.5 ab 376) manuell geändert werden.

Bei der Verwendung der Kennwerte der Altbaukonstruktionen ist darauf zu achten, dass vorangegangene Sanierungsmaßnahmen nicht berücksichtigt sind. Zwar finden sich z. B. bei Cischinsky und Diefenbach (2018) Sanierungsraten und -ausführungen zum deutschen Wohngebäudebestand, eine generelle Übertragung der Angaben auf die baualtersklassenspezifischen Ausführungen ist jedoch nicht möglich. Denn hier fehlt die Unterscheidung der Sanierungsmaßnahmen nach den gewählten Baualtersklassen. Es werden genauere Angaben benötigt, die zudem je nach Fallbeispiel stark voneinander abweichen können. Hier empfiehlt es sich, die fachlichen Kompetenzen der Planenden einfließen zu lassen. So kann z. B. im Einzelfall die Wahl des vorhandenen Baualters nicht vom Baujahr, sondern vom Sanierungsjahr abhängig gemacht werden.

Darüber hinaus beinhalten die bilanzierten Konstruktionsaufbauten keine Bodenbeläge, Wand- und Deckenbeschichtungen, die bei hohen Austauschzyklen einen signifikanten Einfluss auf das Gesamtergebnis nehmen können. Schneider-Marin et al. (2019) bestätigen dies in einer Studie zu Bürogebäuden. Auch Balkone, Treppen und Türen werden nicht bilanziell erfasst.

Weitere Unsicherheiten entstehen durch die vereinfachte Ermittlung der Bauteilflächen. Durch das 3D-Stadtmodell selbst ergeben sich Maßungenauigkeiten (vgl. Kapitel 2.5 ab Seite 33). Auch die Fensterflächenanteile oder das Flächenverhältnis von Außen- zu Innenwänden kann projektspezifisch stark variieren und die Endergebnisse entsprechend beeinflussen. Deshalb sieht die Methode die manuelle Anpassung dieser Flächenanteile durch die Nutzenden vor. Welche Differenzen zwischen der manuellen und automatisierten Flächenerhebung entstehen können, wird mit Hilfe des Fallbeispiels in Kapitel 5.3 ab Seite 163 aufgezeigt. Die Sensitivitätsanalyse in Kapitel 5.4 ab Seite 166 verdeutlicht den Streuungseinfluss der Eingangsparameter auf die Varianz des Gesamtergebnisses und gewisse Interaktionen. Diesen Unsicherheiten muss man sich bei der Anwendung der Methode bewusst werden.

Aus den beschriebenen Unsicherheiten resultiert die Empfehlung, die Methode nicht als Ersatz für eine detaillierte und gebäudespezifische LCA anzusehen, die standardmäßig bei fortgeschrittener Planung oder nach Beendigung der Bautätigkeiten unter Aufnahme der tatsächlichen Bauausführung durchgeführt wird. Vielmehr entfaltet sie ihre Potentiale im Szenarienvergleich in frühen Planungsphasen, wo richtungsweisende Entscheidungen mit Hilfe von fundierten und quantitativen Analysen getroffen werden müssen, die in zeitlich begrenztem Umfang durchgeführt werden können.

4.7.2 Ergebnisverarbeitung und Visualisierungsmöglichkeiten

Unter einer Visualisierung versteht man in der vorliegenden Arbeit die Sichtbarmachung der LCA-Ergebnisse in grafischer oder textlicher Form. Auch eine Kombination der beiden Formen ist möglich (siehe Glossar ab Seite XIII).

Hollberg et al. (2021) verdeutlichen, dass mit steigender Anwendung von LCA im Planungsprozess die Ergebnisvisualisierung immer wichtiger wird. Dabei müssen die LCA-Ergebnisse so aufbereitet werden, dass sie nicht nur LCA-Expert:innen – bzw. Planende mit LCA-Kenntnissen – sondern auch Entscheidungsträger:innen ohne detaillierte LCA-Kenntnisse verstehen (z. B. Bauherr:innen oder Bewohner:innen). Nur so können im integrativen Planungsprozess Entscheidungsträger:innen besser eingebunden werden und die ökologischen Vorteile von Bauausführungen kommuniziert werden. Gleichzeitig gibt es bisher keine einheitlichen Vorgaben, wie Ergebnisse darzustellen sind. Die Studie zeigt jedoch 27 verschiedene Möglichkeiten auf, die aktuell in der Forschung und Praxis Anwendung finden. Auch Visualisierungen von vorhandenen Softwaretools werden diskutiert.

In Ergänzung dazu zeigt Harter (2021), dass die Ergebnisse von LCA auf Quartiersebene durch den Export aus einer Softwarelösung verarbeitet werden können. Je nach Zielgruppe und dem Grad ihres Fachwissens, können die Umweltindikatoren einzeln oder kombiniert

in Tabellen, Grafiken oder indirekt über Kosten sowie Kompensationsmaßnahmen dargestellt werden. Zum anderen können die Ergebnisse auch direkt grafisch im 3D-Stadtmodell visualisiert werden.

In den nachfolgenden Kapiteln werden insgesamt vier der bei Hollberg et al. (2021) und Harter (2021) aufgeführten Visualisierungsmöglichkeiten vorgestellt. Hierbei wird deutlich, dass nicht alle Visualisierungen die drei gewählten Umweltkategorien gleichzeitig oder gleich gut darstellen können. Die vorgestellten Visualisierungsmöglichkeiten sind als Diskussionsgrundlage zu sehen, wie die LCA-Ergebnisse in einer späteren Softwarelösung visualisiert und optimal bei der jeweiligen Zielgruppe (Planende, Kommunen, Bevölkerung oder Politik) kommuniziert werden können.

4.7.2.1 Konventionelle Visualisierung der Umweltwirkungen

Neben der Ergebnisvisualisierung als Violin-Plots (siehe Abbildung 3-11 bis Abbildung 3-13 ab Seite 97) bieten Balkendiagramme die Möglichkeit, näher auf einzelne Umweltwirkungen einzugehen. Die konventionelle Visualisierung über Diagramme ist besonders für fachlich versierte Nutzer:innen geeignet, die daraus schnell Lösungsansätze ableiten können.

Das Gesamtergebnis kann bauteil- oder LZPH-bezogen dargestellt werden, wodurch eine schnelle Identifikation der maßgebenden Bauteile und Lebenszyklusphasen ermöglicht wird. Abbildung 4-3 zeigt ein beispielhaftes Balkendiagramm, mit dem die jährliche PET eines Szenarios ausgewiesen werden kann. Bauteile, deren Einfluss kleiner 1 % ist, werden hier zusammengefasst. Das Balkendiagramm kann je Szenario und Umweltwirkung erstellt werden. Bei der Programmierung ist darauf zu achten, dass die Einzelergebnisse je nach Zieldarstellung für den Export vorbereitet werden.

Für einen übersichtlichen Vergleich einzelner Szenarien und der gewählten Umweltindikatoren sind Netz- bzw. Spinnennetzdiagramme gut geeignet. Dabei werden die Einzelergebnisse der betrachteten Szenarien in das Verhältnis zu einer Basisvariante gesetzt. Das bedeutet, dass die Ergebnisse (GWP, PENRT und PET) der Basisvariante normiert werden (d. h. den Faktor 1 erhalten). So können verschiedene Szenarienergebnisse einfach gegenübergestellt und die ökologischen Vor- und Nachteile einer bestimmten Variante schnell identifiziert werden. Basierend auf der genannten Methode und den gewählten Umweltindikatoren illustriert Abbildung 4-4 eine geeignete Spinnennetzdarstellung für das Szenario 2.2 inklusive der gewählten Unterszenarien. Diese Darstellungsweise wird auch für die Auswertung des Fallbeispiels gewählt. Weitere Details dazu finden sich in Kapitel 5.5.1 ab Seite 171.

Jährliche PET der Baukonstruktion Quartiersentwicklungsszenario 2.1 -Betrachtungszeitraum 50 Jahre

Abbildung 4-3: Beispielhafte Darstellung Balkendiagramm – jährliche PET der Baukonstruktion im untersuchten Quartier (links je Bauteil, rechts je LZPH); eigene Darstellung

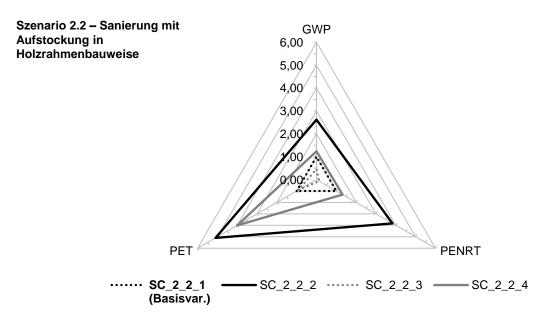


Abbildung 4-4: Beispielhafte Darstellung Spinnennetzdiagramm – Normierte Gegenüberstellung des GWP, der PET und PENRT verschiedener Szenarien; eigene Darstellung

4.7.2.2 Visualisierung der Umweltwirkungen über Umweltkosten

Die Diskussionen auf der UN-Klimakonferenz 2022 über internationale Ausgleichszahlungen aufgrund von Klimaschäden zeigen die hohe energie- und umweltpolitische Relevanz von Umweltkosten auf (tagesschau, 2022). Die Umrechnung der Umweltwirkungen in Umweltkosten ist eine transparente Methode, um gesellschaftliche und politische Entscheidungsträger:innen für mehr Klimaschutz zu sensibilisieren. Dabei existieren in der Literatur unterschiedliche Definitionen für Umweltkosten.

Es gibt Schadenskosten- oder Vermeidungskostenansätze. Nach Matthey und Bünger (2020) beziffert der Schadenskostenansatz im Klimabereich die Höhe der Schäden, die der Gesellschaft durch Treibhausgasemissionen und dem dadurch hervorgehenden Klimawandel entstehen. Möchte die Gesellschaft den Klimawandel auf ein bestimmtes Ziel begrenzen, werden die dafür aufzubringenden Kosten als Vermeidungskosten bezeichnet.

Die Begriffe Umweltkosten oder Umweltschadenskosten werden synonym verwendet, jedoch werden je nach Quelle beispielsweise verschiedene Schadensarten oder zeitliche Systemgrenzen betrachtet. Schäden an Gesundheit und Eigentum und/oder erweiterte Umweltschäden, wie ökologische Schäden und Schäden an der Artenvielfalt, werden monetär bewertet. Darüber hinaus berücksichtigen manche Methoden lediglich reine Schadenskosten und andere zusätzlich Emissionsvermeidungskosten. Insgesamt geben die vorliegenden Schätzungen meist nur einen Teil der tatsächlichen Schäden wieder und stellen so Untergrenzen der tatsächlichen Auswirkungen dar. Dies muss bei der umweltpolitischen Bewertung beachtet werden. (Matthey und Bünger, 2019)

Ein wesentlicher Vorteil des monetären Vergleichs ist die Verwendung einer bekannten funktionalen Einheit. Er erlaubt auch eine einheitliche Darstellungsweise unterschiedlicher Umweltwirkungen. Ferner können die Umweltkosten den Investitions-, Nutzungs- und Entsorgungskosten (Lebenszykluskosten), beispielsweise mit Hilfe von Balkendiagrammen, gegenübergestellt werden.

Eine Studie von Schneider-Marin und Lang (2020) zeigt am Beispiel von sechs Bürogebäuden, dass die Ausweisung von Umweltkosten eine nützliche Methode ist, um die ökologische Qualität verschiedener Gebäude und deren Ausführungsoptionen zu vergleichen und die Ergebnisse transparent gegenüber den Entscheidungsträger:innen zu kommunizieren. Die Studie berücksichtigt die Umweltkosten fünf verschiedener Umweltindikatoren (GWP, AP, EP, ODP und POCP). Die monetäre Bewertung des GWP ist jedoch maßgebend, da es 80 bis 95 % der Umweltkosten verursacht.

Bei Fertigstellung der Studie wies das Umweltbundesamt die maximalen Umweltkosten für das GWP in Deutschland aus (Matthey und Bünger, 2019). Daneben verweisen Schneider-Marin und Lang (2020) auf verschiedene Modelle und Quellen, mit denen die Auswirkungen von Umweltemissionen und -immissionen monetär bewertet werden können.

In Anlehnung an die Studie von Schneider-Marin und Lang (2020) wird zur monetären Visualisierung des GWP von Baukonstruktionen in dieser Arbeit die "Methodenkonvention 3.1 zur Ermittlung von Umweltkosten" des Umweltbundesamtes herangezogen (Matthey und Bünger, 2019, 2020). Denn sie entwickelt und verwendet einheitliche Maßstäbe für die fachliche Bewertung von Umweltkosten in Deutschland. Ferner werden die Schätzungen, die dem Schadenskostenansatz zugrunde liegen, transparent dargestellt.

Matthey und Bünger (2020) bieten zwei Kostensätze an. So müssen 199 €₂₀₂₂/t CO₂-Äq. für das Basisjahr 2022 angesetzt werden, wenn die Wohlfahrt heutiger Generationen höher gewichtet werden soll als die der zukünftigen Generationen. 684 €₂₀₂₂/t CO₂-Äq. sind

für das Jahr 2022 anzusetzen, wenn beide gleich gewichtet werden sollen. Die Beträge wurden ausgehend vom Jahr 2020 (195 €2020/t CO2-Äq.) interpoliert und enthalten keine Preisbereinigung. Der Schadenskostenansatz von 195 €2020/t CO2-Äq. deckt sich mit den Empfehlungen des fünften Sachstandberichts des IPCC (182 €2020/t CO2) (Matthey und Bünger, 2020). Ebenfalls berücksichtigt dieser Ansatz u. a. das "Equity Weighting". Dabei werden die nominalen Geldwerte der Schäden nach dem nationalen Durchschnittseinkommen des Landes gewichtet, in dem sie auftreten. So können die Klimafolgen der regional – z. B. in Deutschland – emittierten Treibhausgase global bewertet werden.

Allgemeingültige Schadenskosten für den Verbrauch von erneuerbarer und nicht erneuerbarer Primärenergie werden in der Literatur nicht aufgeführt. Matthey und Bünger (2020) zeigen lediglich Kosten pro kWh erzeugter Wärme oder erzeugten Stroms je Energiequelle auf, die für die Ermittlung der Umweltkosten in der Nutzungsphase verwendet werden können. Das Fehlen von allgemeingültigen Umweltkostensätzen für die in Baustoffen verwendete Primärenergie ist nachvollziehbar. Denn durch die Verwendung unterschiedlichster Energiequellen und wegen variierender Produktionsabläufe ist eine genaue Kostenermittlung komplex. Daher können die Umweltkosten für die hier entwickelten Quartiersentwicklungsszenarien unter Berücksichtigung der drei gewählten Indikatoren (GWP, PENRT und PET) nicht vollständig ausgewiesen werden. Hierzu stellt sich die Frage, inwiefern die Umweltkosten des GWP bereits die der Primärenergiebedarfe abdecken. Diese Frage benötigt jedoch weiteren Forschungsbedarf.

Alternativ zu den Umweltkosten des GWP weisen Matthey und Bünger (2020) Umweltkosten für einige Baustoffprodukte zum Stand 2016 aus, die herangezogen werden können. Tabelle 4-4 vergleicht für fünf gängige Baustoffe (Beton C30/37, Kalksandsteinziegel, gesägtes europäisches Weichholz, Armierungsstahl und Mineralwolldämmung) beispielhaft die minimal und maximal anzusetzenden Kosten für CO₂- und andere Treibhausgasemissionen (Basisjahr 2022) mit den gesamten Umweltkosten (Basisjahr 2016) je m³ Baustoff aus der Publikation. Wie zu erkennen ist, entstehen je nach Ansatz und Basisjahr verschieden große Wertebereiche. Mit Abstand besitzt der Armierungsstahl die höchsten Kosten pro m³ mit 4.317,5 €. Auffällig sind jedoch die Umweltkosten von Weichholz, die 4,3-fach höher liegen als die durch die Treibhausgase maximal ausgelösten Schadenskosten. Begründet wird dies durch den Einfluss der berücksichtigten Landnutzung bei Holzbaustoffen. Sie verursacht zwischen 40 und 75 % der Umweltkosten (Matthey und Bünger, 2020, S. 46).

Aus diesem Exkurs wird ersichtlich, wie groß derzeit die Spannweiten bei den Umweltkosten sind und wie wichtig eine transparente Darstellung der Hintergrundinformationen bei der Ergebniskommunikation ist. Je nach Literaturquelle, Basisjahr und Kostenansatz können die Werte stark voneinander abweichen. Auch Preisbereinigungen beeinflussen das Ergebnis. Die Ermittlung der Umweltschadenskosten sollte immer auf Basis mehrerer Indikatoren erfolgen, auch wenn das GWP die monetären Folgen maßgebend definiert. Die

Weiterentwicklung und Anwendung der Methode müssen gefördert werden. Wie Schneider-Marin (2022) zeigt, ist die monetäre Bewertung der Umweltwirkungen eine vielversprechende Methode, um im Planungsprozess die ökologischen und ökonomischen Vor- und Nachteile von Hochbauprojekten direkt gegenüberstellen zu können. Ferner vereinfacht sie den Vergleich unterschiedlicher Umweltwirkungen durch die einheitliche Ergebnisdarstellung mit Währungseinheiten.

Tabelle 4-4: Klima- und Umweltkosten ausgewählter Baustoffe für deren Herstellung (LZPH A1-A3) und Entsorgung (LZPH C3/C4); eigene Darstellung nach Matthey und Bünger (2020, S. 8, 47, 48)

Baustoff***	Minimale Klimakosten (verursacht durch Treibhausgase) [€2022/m³ _{Baustoff}]	Maximale Klimakosten (verursacht durch Treibhausgase) [€2022/m³ _{Baustoff}]	Minimale Umweltkos- ten gesamt [€2016/m³Baustoff]
Beton C30/37 (An- nahme: 2400 kg/m³)	44,8	153,9	55,2
Kalksandsteinziegel (Annahme: 1800 kg/m³)*	49,7	170,7	81,0
Gesägtes Weichholz EU (540 kg/m² bei 20 % Feuchtigkeit)	21,5	73,7	320,0**
Armierungsstahl, Cradle to Gate (An- nahme: 7850 kg/m³)	1.067,5	3.669,2	4.317,5
Mineralwolle (46 kg/m³)	14,4	49,5	20,7

^{*} für die Entsorgung wird das GWP einer Bauschuttaufbereitung angenommen

4.7.2.3 Visualisierung des GWP über notwendiges Baumwachstum

Eine andere Möglichkeit, Umweltwirkungen leicht verständlich an die Zielgruppe heranzuführen ist die Visualisierung von Kompensationsmaßnahmen, wie dem Baumwachstum. Hierbei wird die Anzahl der Baumpflanzungen ermittelt, die das durch das Projekt emittierte CO₂ in Form von Kohlenstoff binden können.

Das amerikanische Landwirtschaftsministerium (United States Department of Agriculture) stellt hierzu das Excel-Tool "CUFR Tree Carbon Calculator (CTCC)" zur Verfügung. Es wurde in Zusammenarbeit des USDA Forest Service mit der Pacific Southwest Research Station, dem Urban Ecosystems and Processes Team und dem California Department of Forestry and Fire Protection entwickelt. Mit dem Tool kann abhängig von der Klimazone, der Baumart, der Baumgröße oder des Baumalters das in Form von Kohlenstoff gespeicherte CO₂ berechnet werden. Auch die dadurch entstehende oberflächliche und nutzbare Biomasse kann ermittelt werden. Als Grundlage dient die Untersuchung verschiedener gewachsener Stadtbaumarten. (Climate Change Resource Center, o. J.)

^{**} die Umweltkosten bei Holzbaustoffen stammen größtenteils aus der berücksichtigten Landnutzung

^{***}GWP der LZPH A1-A3 und C3/C4 nach den Datensätzen der ÖKOBAUDAT, Version 2020-II

Im Rahmen einer Bachelorarbeit am Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen wurde die Anwendbarkeit dieses Tools für den Standort München untersucht. Ziel war es, die Biomasse und das CO₂-Bindungspotential für die heimische Stadtlinde (auch Winterlinde genannt), den Spitzahorn, die Hainbuche und den Weißdorn zu ermitteln. Dabei muss die Baumhöhe und der Durchmesser auf Brusthöhe bestimmt werden. Zur Validierung der durchschnittlichen Biomasse wurden weitere Studien herangezogen. Tabelle 4-5 beinhaltet das Resultat der Recherchen zur Biomasse und dem CO₂-Bindungspotential von Stadtlinde, Spitzahorn und Weißdorn nach Berechnungen mit dem CTCC. Es wird deutlich, dass je nach Baumart und -größe durch Photosynthese unterschiedlich viel CO₂ in Form von Kohlenstoff gebunden werden kann und dass die Möglichkeiten der CO₂-Kompensation durch Stadtbäume begrenzt ist. (Kalisch, 2021)

Tabelle 4-5: Biomasse und CO₂-Bindungspotential von Stadtbäumen unter Verwendung des CTCC (Climate Change Resource Center, o. J.); eigene Darstellung nach Kalisch (2021, S. 52)

Baumart	Durchmesser auf Brusthöhe [cm]	Baumhöhe [m]	Biomasse [kg]	CO ₂ -Bindung [kg CO ₂]
Stadtlinde	37,10	14,30	642,41	1.178,82
Spitzahorn	39,70	15,30	1.054,84	1.935,63
Weißdorn	40,60	9,15	1.186,79	2.177,77

Tabelle 4-6 legt die CO₂-Kompensation am Beispiel der bereits in Tabelle 4-4 (siehe Seite 131) ausgewählten Baustoffe dar. Sie klärt die Frage, wie viele von den in Tabelle 4-5 definierten Stadtbäumen für die Kompensation von jeweils einem Kubikmeter Baustoff benötigt werden. Berücksichtigt wird dabei das GWP der Herstellungs- (A1-A3) und Entsorgungsphasen (C3/C4).

Tabelle 4-6: Kompensation des GWP durch Baumwachstum - Anzahl der benötigten Stadtbäume je m³ Baustoff; eigene Darstellung unter Verwendung der Daten von BBSR (o. J.) und Kalisch (2021)

Baustoff	GWP für Herstellung (A1-A3) und Entsorgung (C3/C4) je m³ Baustoff [kg CO ₂ -Äq.]	Anzahl der benötigten Stadt- bäume je m³ Baustoff [-]
Beton C30/37 (Annahme: 2400 kg/m³)	225,0	Stadtlinde: 0,19 Spitzahorn: 0,12 Weißdorn: 0,10
Kalksandsteinziegel (Annahme: 1800 kg/m³)	249,6	Stadtlinde: 0,21 Spitzahorn: 0,13 Weißdorn: 0,11
Gesägtes Weichholz EU (540 kg/m² bei 20 % Feuchtigkeit)	107,8	Stadtlinde: 0,09 Spitzahorn: 0,06 Weißdorn: 0,05
Armierungsstahl, Cradle to Gate (Annahme: 7850 kg/m³)	5.364,3	Stadtlinde: 4,55 Spitzahorn: 2,77 Weißdorn: 2,46
Mineralwolle (46 kg/m³)	72,4	Stadtlinde: 0,06 Spitzahorn: 0,04 Weißdorn: 0,03

Bei einer Wanddicke von 24 cm, ist z. B. eine Stadtlinde mit einer Biomasse von rund 642 kg erforderlich, um das lebenszyklusbasierte GWP von 15,0 m² Stahlbeton (Armierungsgehalt 2 %) oder 19,8 m² Kalksandstein kompensieren zu können. Möchte man 280 m² einer Bestandswand energetisch sanieren und bringt dafür z. B. 12 cm Mineralwolle auf, ist die Biomasse eines Weißdorns von ca. 1.187 kg zur Kompensation des GWP erforderlich.

Kalisch (2021) weist jedoch darauf hin, dass laut Studien die Werte nicht allgemeingültig verwendet werden können. Zum Beispiel sind Stadtbäume entgegen den Waldbäumen vermehrt Hitzestress, begrenztem Wurzelraum und anderen wachstumshemmenden Faktoren ausgeliefert (Moser et al., 2015; Quigley, 2004). Je nach Umgebungsbedingungen und Baumart können die Kohlenstoffbindungspotentiale sehr unterschiedlich sein. Das muss bei der Wahl dieser Visualisierungsmöglichkeit zwingend kommuniziert werden. Auch, dass diese Kompensationsmöglichkeit nicht uneingeschränkt angewendet werden kann und dadurch keine Möglichkeit entsteht, beliebig große Mengen an GWP zu emittieren. Hierzu stellt sich die Frage, ob die Kompensation zentral am Standort der Emissionsfreisetzung (z. B. im Stadtquartier selbst) oder dezentral auf Ausgleichsflächen erfolgen kann. Da die Platzverhältnisse in Bestandsquartieren meist sehr beengt sind, ist eine zentrale Bindung der emittierten Treibhausgase nicht gänzlich möglich.

Vielmehr soll diese Methode vor Augen führen, welche Anstrengungen unternommen werden müssen, um bauliche Umweltauswirkungen zu kompensieren. Trotzdem weist sie Vorteile auf, denn sie ist in der Bevölkerung bereits durch verschiedene Angebote bekannt und kann über eine Infobox, die nach Durchführung der Berechnungen in der Software erscheint, visualisiert werden (siehe Abbildung 4-5) (Grow my Tree GmbH, 2022; Naturefund e.V., 2022; Stiftung Wilderness International, 2022).

Abbildung 4-5: Beispiel Visualisierung – Kompensation des GWP durch Baumpflanzungen; eigene Darstellung

4.7.2.4 Farbliche Visualisierung im 3D-Stadtmodell

Die Ergebnisse der gewählten Umweltindikatoren können der Zielgruppe auch gebäudespezifisch mit Hilfe einer 3D-Visualisierung erläutert werden. Harter (2021, S. 91-94) zeigt dies anhand der Ergebnisse des betrieblichen Energiebedarfs vor und nach der Sanierung des gewählten Fallbeispiels auf. Die Darstellung erfolgt durch das browserbasierte Tool "3DcityDB Web-Map-Viewer", womit die Ergebnisse nicht nur numerisch, sondern auch

farblich – z. B. anhand der Farbskala des deutschen Energieausweises (grün, gelb, orange und rot) – im 3D-Stadtmodell illustriert werden können (TU München - Lehrstuhl für Geoinformatik, o. J.c). Zudem besteht die Möglichkeit, die Ergebnisse szenarienspezifisch anzeigen zu lassen. Nähere Erläuterungen zur Methodik können den entsprechenden Seiten der Dissertation entnommen werden (Harter, 2021, S. 91-94). Abbildung 4-6 zeigt eine beispielhafte Einfärbung der Quartiersgebäude nach dem betrieblichen Primärenergiebedarf.

Bezogen auf die Umweltwirkungen der Baukonstruktion wäre es denkbar, dass man die Farbskala entweder auf Basis vorhandener Benchmarks – z. B. des DGNB- oder BNB- Systems – oder individuell mit Hilfe des Wertebereichs eines Basisszenarios erstellt und die Ergebnisse ins Verhältnis setzt (BMUB, 2017; Braune et al., 2021).

Abbildung 4-6: Visualisierungsbeispiel Gebäudebestand im 3D-Stadtmodell – Einfärbung nach spezifischem Primärenergiebedarf nach Harter (2021, S. 93) unter Verwendung von (FOSSGIS e.V., o. J.; TU München - Lehrstuhl für Geoinformatik, o. J.c)

4.8 Zusammenfassung Kapitel 4

- Das Kapitel beschreibt die Vorgehensweise bei der LCA auf Quartiersebene mit Hilfe von 3D-Stadtmodellen (LoD2) im CityGML 2.0-Standard in den einzelnen Arbeitsschritten.
- Die vorliegenden Datenstrukturen werden analysiert und durch notwendige nutzerspezifische Angaben ergänzt.
- Der Fokus liegt auf der Bilanzierung von Bestandsquartieren, die durch Sanierung, Nachverdichtung oder Ersatzneubau energetisch verbessert werden. Insgesamt werden fünf maßgebende Szenarien identifiziert: Status Quo, Sanierung mit gleichbleibender Gebäudekubatur, Sanierung mit Aufstockung in Holzrahmenbauweise, Abriss und Ersatzneubau in Holzbauweise sowie Abriss- und Ersatzneubau in Massivbauweise.
- Auf Basis der Quartiersentwicklungsszenarien findet man detaillierte Berechnungslogiken für die einzelnen Bauteilflächen- und Kennwertermittlungen. Diese sind allgemeingültig formuliert und können in verschiedene Softwarelösungen integriert werden.
- Die Methode erlaubt eine weitere Spezifizierung der Bauweisen.
- Vorhandene Unsicherheiten, wie die Übertragbarkeit der ökologischen Kennwerte auf das spezifische Fallbeispiel oder die vereinfachte Bauteilflächenermittlung, sind zu prüfen und transparent darzustellen.
- Die Methode ersetzt keine detaillierte und gebäudespezifische LCA, die standardmäßig bei fortgeschrittener Planung oder nach Beendigung der Bautätigkeiten unter Aufnahme der tatsächlichen Bauausführung durchgeführt wird. Vielmehr entfaltet sie ihre Potentiale im Szenarienvergleich großer Liegenschaften in frühen Planungsphasen, wo richtungsweisende Entscheidungen mit Hilfe von fundierten und quantitativen Analysen getroffen werden müssen, die in zeitlich begrenztem Umfang durchgeführt werden können.
- Es werden verschiedene Visualisierungsmöglichkeiten vorgestellt, mit deren Hilfe je nach Zielgruppe (z. B. Planung, Politik, Kommunen, Bevölkerung) die Ergebnisse anschaulich präsentiert und kommuniziert werden können. Eine Möglichkeit stellt die gebäudespezifische und farbliche Visualisierung im 3D-Stadtmodell mit Hilfe des "3DcityDB Web-Map-Viewers" dar (TU München Lehrstuhl für Geoinformatik, o. J.c).

5 Fallstudie und Validierung

5.1 Die Fallstudie

Um die Anwendbarkeit der entwickelten Berechnungslogiken und ökologischen Kennwerte für Baukonstruktionen zu untersuchen, wird eine Fallstudie herangezogen. Es handelt sich hierbei um das reale Bestandsquartier München-Moosach, das bereits Untersuchungsgegenstand im Forschungsprojekt "Grüne Stadt der Zukunft" war (TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.). Abbildung 5-1 zeigt ein 3D-Rendering des Quartiers, das auf Basis des vorhandenen 3D-Stadtmodells (LoD2) im CityGML-Format 2.0 erstellt wurde.

Abbildung 5-1: 3D-Rendering Fallstudie Moosach nach Banihashemi et al. (2021, S. 14)

5.1.1 Beschreibung

Das Bestandsquartier wird primär als Wohngebiet genutzt. Der dargestellte Umriss des CityGML-Modells umfasst in Summe ca. 380 Gebäude. Die Gebäude setzen sich aus einzelnen, sich tangierenden Gebäudehüllflächen zusammen. Jedes Gebäude erhält einen charakteristischen, unverwechselbaren Namen mit fortlaufender Nummerierung (hier: "DEBY_LOD2_XXXXXXXXX"). Gebäuderiegel oder -blöcke können dabei in Reihenmitteloder Reihenendhäuser unterteilt werden. Sie besitzen dann gemeinsame Gebäudetrennwände. Nähere Informationen zum Aufbau des Stadtmodells und den Datenstrukturen können Kapitel 2.5, ab Seite 33 bzw. Kapitel 4.2 ab Seite 109 entnommen werden.

Von den 380 Gebäuden werden 181 Wohngebäude für die Methodenanwendung herangezogen. Es handelt sich um drei- bis siebengeschossige Mehrfamilienhäuser, die zwischen den Jahren 1940 und 1970 errichtet wurden. Ein- oder Zweifamilienhäuser sind in diesem Quartiersumriss nicht vorhanden. Die Bebauung ist durch eine aufgelockerte Zeilenbebauung strukturiert (siehe Abbildung 5-2). Das Quartier bedarf in den nächsten Jahren einer Sanierung bzw. Aufwertung und wird im Rahmen des Städtebauförderprogramms "Sozialer Zusammenhalt" gefördert. Als eine der zentralen Fragen galt im Forschungsprojekt zu klären, wie sich die bestehende Wohnbebauung unter Berücksichtigung des Klimaschutzes und der Klimaanpassung nachverdichten lässt (Banihashemi et al., 2021, S. 14).

Deshalb wurden im Rahmen des Forschungsprojektes gemeinsam mit der LHM fünf wesentliche Quartiersentwicklungsszenarien erarbeitet, für die in dieser Dissertation die Berechnungslogiken entwickelt werden. Die einzelnen Szenarien werden in Kapitel 4.4 ab Seite 117 vorgestellt. Für das Projekt wurde das 3D-Stadtmodell des bayerischen LfDBV mit Informationen der Gebäudedatei der LHM angereichert, um daraus die notwendigen Informationen für eine LCA auf Quartiersebene zu erhalten. Nähere Informationen dazu finden sich in Kapitel 4.2 auf Seite 109.

Abbildung 5-2: Bestandsgebäude im Bestandsquartier Moosach; eigene Bilder

In Abbildung 5-3 ist die prozentuale Verteilung der Baualtersklassen und der Geschossanzahlen über GOK dargestellt. 34,8 % der Mehrfamilienhäuser können der BK 2, 27,6 % der BK 3 und 37,6 % der BK 4 zugeordnet werden. Die anderen Baualtersklassen sind im Untersuchungsgebiet nicht vertreten. Bei einer mittleren Gebäudehöhe von 14,2 m verfügen mehr als die Hälfte der Gebäude über vier Geschosse über GOK, gefolgt von Gebäuden mit fünf Geschossen. Daneben besitzen einige Gebäude drei, sechs oder sieben Vollgeschosse über GOK. 180 von 181 Gebäuden weisen Steildächer auf. Im gesamten Quartier ist nur ein Flachdach vorhanden. Abbildung 5-2 zeigt die typische Fassadenart im Quartier: eine verputzte Lochfassade. Die Gebäude sind primär in Massivbauweise ausgeführt.

Das semantische 3D-Stadtmodell des Quartiers, das mit Hilfe der Daten des bayerischen LfDBV, der LHM und Harter und Willenborg et al. (2020) erzeugt wurde, ist in Abbildung 5-4

zu sehen. Neben der grafischen Visualisierung der Gebäude können mit Hilfe des frei zugänglichen FZK-Viewers auch die einzelnen Gebäudedaten abgerufen werden. Dazu wird in der linken Spalte das jeweilige Einzelgebäude mit der Namensdefinition "DEBY_LOD2_XXXXXXXX" ausgewählt. In der rechten Spalte erscheinen im Anschluss die hinterlegten Gebäudedaten (siehe Tabelle rechts im Bild) (Karlsruher Institut für Technologie [KIT], 2022). Die hinterlegten Gebäudedaten können bei Bedarf auch als Excel-Tabelle ausgegeben werden.

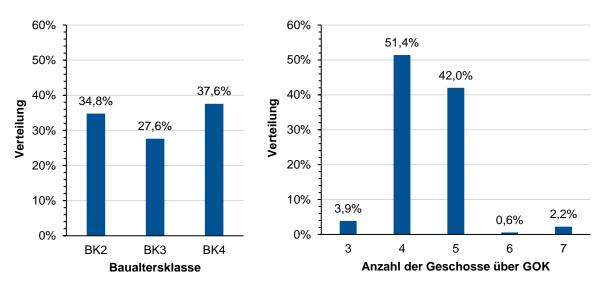


Abbildung 5-3: Fallstudie Moosach, Prozentuale Verteilung der Baualtersklassen (links) und Geschossanzahlen über GOK (rechts); eigene Darstellung nach Auswertung des 3D-Stadtmodells

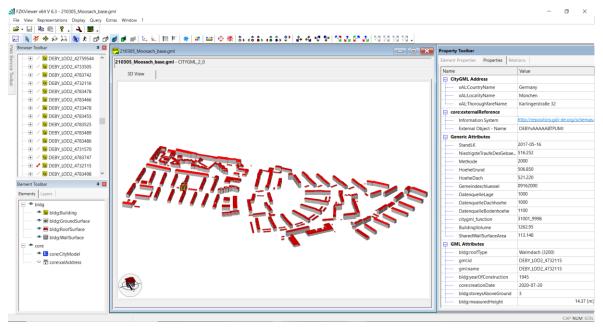


Abbildung 5-4: Fallstudie Moosach, Darstellung des 3D-Stadtmodells mit dem FZK-Viewer (KIT, 2022)

Das Modell liefert alle erforderlichen Daten, um die entwickelten LCA-Berechnungslogiken – siehe Kapitel 4.5 und 4.6 ab Seite 122 bzw. Anhänge A.9 und A.10 ab Seite 469 – der Szenarien Status Quo und Sanierung mit gleichbleibender Gebäudekubatur validieren zu können (vgl. Kapitel 4.4.1 und 4.4.2 ab Seite 118). Um die Szenarien Sanierung mit Aufstockung in Holzrahmenbauweise sowie den Abriss und Ersatzneubau in Holz- bzw. Massivbauweise (vgl. Kapitel 4.4.3 bis 4.4.5 ab Seite 119) berechnen zu können, war im Forschungsprojekt "Grüne Stadt der Zukunft" eine manuelle Anpassung der Gebäude, und zwar um eine zweigeschossige Aufstockung, erforderlich (TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.). Dieses Modell wird ebenfalls für die Durchführung der hier vorliegenden Fallstudie genutzt.

5.1.2 Repräsentativität

Die untersuchten Wohngebäude stammen aus drei Baualtersklassen: BK 2 (34,8 %), BK 3 (27,6 %) und BK 4 (37,6 %). Nach der letzten Bevölkerungs- und Wohnungszählung (Zensus 2011) gehören 50,4 % der deutschen, 50,5 % der bayerischen und 58,7 % der Münchner Wohngebäude zu den Baualtersklassen 2, 3 und 4 (siehe Abbildung 5-5).

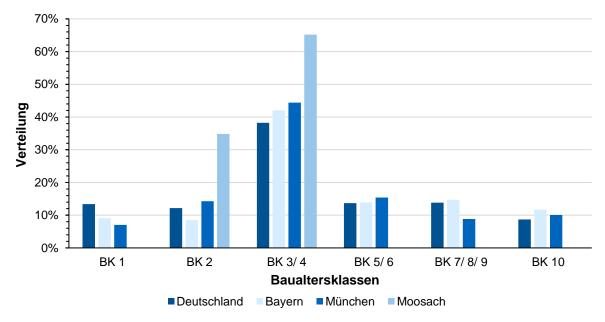


Abbildung 5-5: Prozentuale Verteilung bestehender Wohngebäude nach Baualtersklassen; eigene Darstellung nach Statistische Ämter des Bundes und der Länder (2018) und Landeshauptstadt München (o. J.)

Das Bestandsquartier Moosach bildet zwar nicht den nationalen bzw. regionalen Durchschnitt ab, trotzdem sind diese drei Baualtersklassen national sowie regional mit einem Anteil von über 50 % dominierend.

Vor dem Hintergrund der Steigerung der Sanierungsraten hin zur Klimaneutralität und Energieeffizienz ist die Betrachtung dieser Baualtersklassen besonders relevant. Die Gebäude besitzen ein durchschnittliches Alter von 54 bis 103 Jahren und müssen, falls noch nicht geschehen, sukzessive energetisch saniert werden. Somit ist die Fallstudie im Kontext des Sanierungsbedarfs repräsentativ und zur Anwendung der Methode geeignet.

5.1.3 Methodik

Im ersten Schritt erfolgt die statische Berechnung und Ergebnisdarstellung der in Kapitel 4.4 ab Seite 117 beschriebenen Quartiersentwicklungsszenarien. Die Ergebnisunterschiede und Unsicherheiten bei automatisiert und manuell durchgeführten Bauteilflächenberechnungen werden überprüft. Dazu wird die Bauteilfläche eines ausgewählten Wohngebäudes im Quartier manuell berechnet. Anschließend werden die Ergebnisse denen der automatisiert durchgeführten Flächenberechnung gegenübergestellt. Die Unsicherheitsanalyse wird durch eine Sensitivitätsanalyse der Inputparameter ergänzt, bevor die Szenarienergebnisse miteinander verglichen und final diskutiert werden.

5.2 Berechnung und Ergebnisse der Szenarien

Die LCA-Studie von Feng et al. (2020) über den baulichen Umgang mit alten Einfamilienhäusern im städtebaulichen Kontext zeigt, dass vor Festlegung der Baumaßnahmen ein Szenarienvergleich zwischen Renovierungs- und Neubauoptionen durchgeführt werden sollte. In dieser Studie werden sechs Entwicklungsszenarien detailliert abgewägt und diskutiert. Ein Ersatzneubau im Passivhausstandard verursacht hier lebenszyklusbasiert das geringste GWP. Dieses Ergebnis trifft jedoch nicht zwangsläufig auf jede Fallstudie zu, da unterschiedliche Randbedingungen Einfluss nehmen.

5.2.1 Randbedingungen Moosach

Nachfolgend werden auf Basis der definierten Methoden und vorhandenen Gebäudedaten die Szenarienergebnisse des Fallbeispiels Moosach vorgestellt. Für die Durchführung automatisierter Berechnungen wurden die in Kapitel 4.5 und 4.6 (siehe ab Seite 122) beschriebenen Berechnungslogiken im Rahmen des Forschungsprojektes Grüne Stadt der Zukunft teilweise in die Software urbi+ implementiert (Banihashemi et al., 2021; Harter, 2021).

Dabei werden weitere Randbedingungen festgelegt (siehe hierzu auch Tabelle A. 88, Seite 469):

- Das Bestandsquartier verfügt über einschalige Massivwände. Deshalb fließen die Umweltwirkungen der zweischaligen Massivbauwände (EW2shelled und SW2shelled), der Wände mit Vorsatzschalen (EWcwf und SWcwf) und der Holzwände (EWwood, SWwood und IWwood) nicht mit in die Berechnung ein.
 - Alle Bestandsgebäude verfügen über ein Kellergeschoss (StoreysBelowGround_V0 = 1).
 - Der Fensterflächenanteil beträgt bei allen MFH 15 % (WTWR_MFH_V0 = 0.15).
 - Das Flächenverhältnis Innenwand MFH zu Außenwand MFH verhält sich zu 1,34 (ITWTEW_MFH = 1.34).
 - Das Verhältnis der Fundament- zur Bodenplatte wird mit dem Faktor 0,27 (FTBP = 0.27) definiert.
 - Es wird angenommen, dass Dach- und Kellergeschoss der Gebäude im Bestand nicht beheizt werden (HTFL_V0 = false; HCFL_V0 = false; vgl. Abbildung 5-6).
 - Nach der Sanierung bleibt das Kellergeschoss unbeheizt (HCFL_V1 = false), das Dachgeschoss wird beheizt (HTFL_V1 = true; vgl. Abbildung 5-6).
 - Der Ersatzneubau erhält ebenfalls ein unbeheiztes Kellergeschoss (HCFL V1 = false; vgl. Abbildung 5-6).

Die Ergebnisse werden in Microsoft Excel-Tabellen exportiert und manuell ausgewertet.

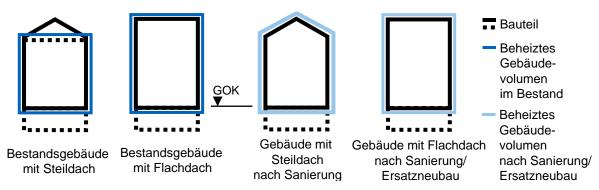


Abbildung 5-6: Fallstudie Moosach, Beheizungssituation im Bestand und nach der Sanierung bzw. dem Ersatzneubau; eigene Darstellung

5.2.2 Ergebnisse Szenario 1 – Status Quo

Szenario 1 (SC 1.1 bis 1.4; vgl. Abbildung 5-7) dient primär zur Erfassung des Ausgangszustandes und nicht für den späteren Szenarienvergleich. Denn Ziel des Szenarienvergleichs ist die Identifizierung einer ökologisch optimierten Quartiersentwicklung zur Reduktion des betrieblichen Energiebedarfs und nicht das Belassen des Quartiers im energetischen Ausgangszustand. Stattdessen steht bei Szenario 1 die Kenntnis über die aktuell im Bestand verbauten Grauen Energien und Emissionen im Vordergrund. Interessant ist dabei, ob baualtersbedingte Unterschiede bei der ökologischen Qualität vorhanden sind, wenn die Gebäude weitere 50 Jahre so genutzt werden würden.

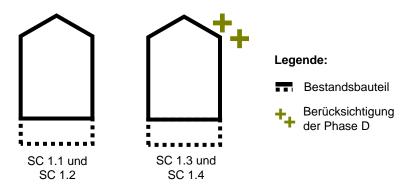


Abbildung 5-7: Skizzenhafte Darstellung Szenario 1; eigene Darstellung

Das Szenario 1 berücksichtigt mit seinen vier Unterszenarien (siehe Tabelle 5-1) die minimalen und maximalen Umweltwirkungen der Herstellung, der 50-jährigen Nutzung und der Entsorgung der bestehenden Baukonstruktionen (mit und ohne Phase D) – genaue Definition der Szenarien siehe Kapitel 4.4.1, Seite 118. Würde das Bestandsquartier heute wieder so gebaut und 50 Jahre genutzt werden, würde ein GWP zwischen 10.941,3 und 52.295,7 t CO₂-Äq. emittiert werden. Zusätzlich wäre ein nicht erneuerbarer Primärenergiebedarf zwischen 22.117,5 und 144.244,2 MWh und ein totaler Primärenergiebedarf zwischen 44.667,1 und 186.615,8 MWh für die 181 Gebäude erforderlich.

Bezieht man die Umweltwirkungen auf die Nettoraumfläche (NRF; hier insgesamt 130.611,1 m²), können die Werte besser eingeordnet und mit anderen Fallstudien verglichen werden. Über 50 Jahre werden 0,084 bis 0,107 t CO₂-Äq./m²_{NRF} emittiert und 0,342

bis 1,429 MWh/m²NRF totale Primärenergie benötigt. Um die Reduktionspotentiale zu bestimmen, werden zunächst die am Gesamtergebnis maßgeblich beteiligten Bauteile identifiziert. Abbildung 5-8 und Abbildung 5-9 machen deutlich, dass im Wesentlichen drei Bauteile – Außenwand (EWmas_old), Innenwand (IWmas_old) und Geschossdecken (FL_old) – für die gesamten Umweltwirkungen verantwortlich sind. Je nach Umweltwirkung haben sie einen Anteil von mindestens 59 % (PET, SC 1.3) und 77 % (PENRT, SC 1.3) am Gesamtergebnis. Dies steht im direkten Zusammenhang mit der Bauteilflächenverteilung: an den gesamten Bauteilflächen nehmen die Innenwände 36 %, die Geschossdecken 13,1 % und die Außenwände 13,0 % Anteil (vgl. Abbildung 5-10).

Tabelle 5-1: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 1; eigene Darstellung

Umweltwirkung	SC 1.1	SC 1.2	SC 1.3	SC 1.4
GWP gesamt [t CO ₂ -Äq.]	14.017,8 (100 %)	52.295,7 (373 %)	10.941,3 (78 %)	47.606,8 (340 %)
GWP je NRF [t CO ₂ -Äq./m ² NRF]	0,107	0,400	0,084	0,364
PENRT gesamt [MWh]	33.147,4 (100 %)	144.244,2 (435 %)	22.117,5 (67 %)	128.705,7 (388 %)
PENRT je NRF [MWh/m² _{NRF}]	0,254	1,104	0,169	0,985
PET gesamt [MWh]	45.046,2 (100 %)	186.615,8 (414 %)	44.667,1 (99 %)	172.477,1 (383 %)
PET je NRF [MWh/m² _{NRF}]	0,345	1,429	0,342	1,321

SC 1.1: LZPH A1-C4, minimale Umweltwirkungen; SC 1.2: LZPH A1-C4, maximale Umweltwirkungen; SC 1.3: LZPH A1-D, minimale Umweltwirkungen; SC 1.4: LZPH A1-D, maximale Umweltwirkungen

Die Fenster beeinflussen das Gesamtergebnis ebenfalls. Obwohl sie lediglich einen Bauteilflächenanteil von 2,3 % besitzen, tragen sie bis zu 11 % am GWP, 13 % an der PENRT und 12 % an der PET bei.

Werden die minimalen Umweltwirkungen betrachtet und die Wiederverwendungs- und Recyclingpotentiale am EoL der Bauteile aktiviert (Szenario 1.3), fällt die lebenszyklusbasierte Treibhausgasbilanz bei der obersten Geschossdecke und der Kellerdecke sogar positiv aus. Über das Quartier hinweg werden 9,8 t CO₂-Äq. bei der Kellerdecke bzw. 626,0 t CO₂-Äq. bei der obersten Geschossdecke eingespeichert. Dies verhält sich bei der PENRT äquivalent. Die zwei Bauteile verdrängen durch die energetische Verwertung der Holzbaustoffe am EoL über das gesamte Quartier hinweg insgesamt 2.767,5 MWh nicht erneuerbare Primärenergie.

Die erste Handlungsempfehlung bezieht sich demnach auf die ökologische Detailanalyse und Optimierung der Bauteile mit den größten Flächenanteilen und der Fenster. In diesem Beispiel beeinflussen auch die Innenwände mit ihrer Materialwahl und den vorhandenen Konstruktionsstärken das Gesamtergebnis.

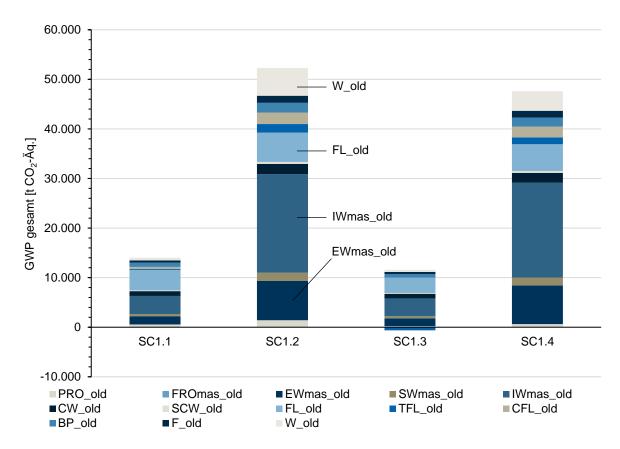


Abbildung 5-8: Fallstudie Moosach, Szenario 1.1 bis 1.4, GWP je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

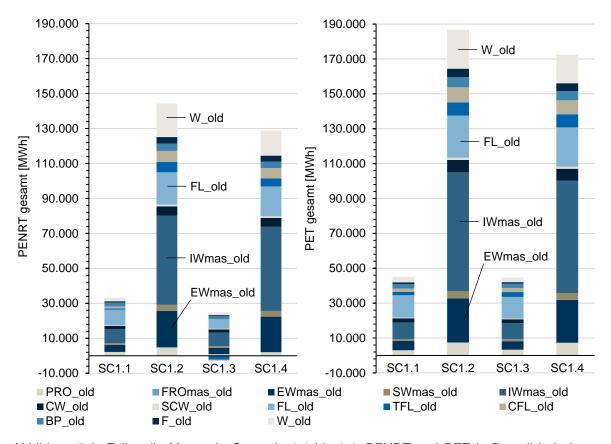


Abbildung 5-9: Fallstudie Moosach, Szenario 1.1 bis 1.4, PENRT und PET je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

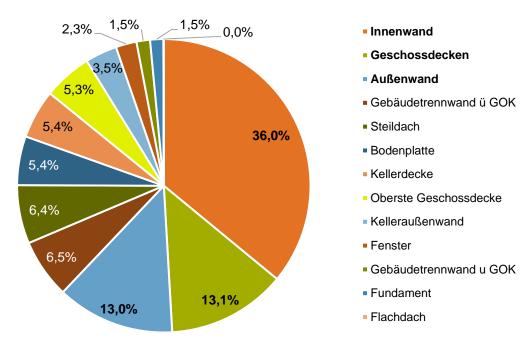


Abbildung 5-10: Fallstudie Moosach, Szenario 1, Prozentuale Bauteilflächenverteilung; eigene Darstellung

Die Frage, ob sich bei den Umweltwirkungen im Quartier auch baualtersklassenspezifische Unterschiede ergeben, wird am Beispiel des GWP in der Abbildung 5-11 diskutiert. Die Auswertung zeigt eine unterschiedliche Verteilung des lebenszyklusbasierten GWP je BK und Unterszenario. Die Gebäudeausführungen der BK 2 emittieren stets das geringste GWP (0,067 bis 0,285 t CO₂-Äq./m²_{NRF}), jene der BK 4 das größte (0,097 bis 0,475 t CO₂-Äq./m²_{NRF}). Das GWP der BK 3 positioniert sich in der Mitte (0,087 bis 0,439 t CO₂-Äq./m²_{NRF}), liegt aber insgesamt gleich oder höher als das durchschnittliche GWP des Quartiers (0,084 bis 0,400 t CO₂-Äq./m²_{NRF}). Im Szenario 1.1 und 1.3 sind die baualtersklassenspezifischen Unterschiede noch relativ gering, im Szenario 1.2 und 1.4 verändert sich dies. Die Haupttreiber bleiben in jeder BK die Innenwände, Außenwände und Geschossdecken. Sie haben prozentual den größten Anteil am gesamten GWP. Jedoch ist das maximale GWP je m²_{NRF} der Außenwand in BK 3 55 % und in BK 4 105 % größer als in BK 2 (0,039 t CO₂-Äq./m²_{NRF}). Auch bei der Innenwand steigt das GWP in BK 3 (+ 44 %) und BK 4 (+ 55 %) gegenüber BK 2 (0,114 t CO₂-Äq./m²_{NRF}) stark an.

Wie am Beispiel der Fenster klar zu erkennen ist, beruhen die Unterschiede beim GWP nicht allein auf dem baualtersklassenspezifischen Bauteilaufbau und Materialeinsatz, sondern auch auf der baualterstypischen Gebäudegeometrie. Das maximale lebenszyklusbasierte GWP je m² Fenster ist in allen BK mit 552,2 kg CO₂-Äq./m²_{Bauteil} gleich. Allerdings handelt es sich in BK 2 um Reihenhäuser mit einem höheren Anteil an Gebäudetrennwänden und somit einem geringeren Anteil an Fensterflächen. Somit steigt bezogen auf das GWP je m²_{NRF} der prozentuale Einfluss der Fenster im Szenario 1.2 von 6,2 % in BK 2 auf 12,1 % in BK 3 und BK 4.

Die Analyse der baualtersbedingten Unterschiede unterstreicht die Handlungsempfehlung, sich im ersten Schritt mit der ökologischen Qualität der Bauteile zu beschäftigen, die

SC 1.4

0,500 0,450 0,400 0,350 0,250 0,250 0,150 0,150 0,050

die größten Flächenanteile im Quartier besitzen und die höchsten ökologischen Einzelwerte aufweisen.

Abbildung 5-11: Fallstudie Moosach, Szenario 1, Lebenszyklusbasiertes GWP je BK und NRF; eigene Darstellung

■BK 2 ■BK 3 ■BK 4 ■ Durchschnitt

5.2.3 Ergebnisse Szenario 2.1 – Sanierung mit gleichbleibender Gebäudekubatur

SC 1.2

0.000

SC 1.1

Das Szenario 2.1 (SC 2.1.1 bis 2.1.4; vgl. Abbildung 5-12) widmet sich der konventionellen Sanierung des Bestandsquartiers. Die Gebäudehülle wird nach dem KfW-55-Niedrigstenergiestandard energetisch ertüchtigt und erfüllt somit die technische Mindestanforderung der KfW (KfW, 2020).

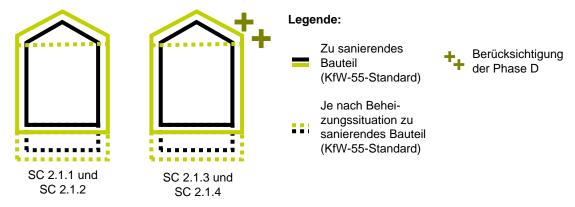


Abbildung 5-12: Skizzenhafte Darstellung Szenario 2.1; eigene Darstellung

Ob mit diesem energetischen Sanierungsstandard ein klimaneutraler Wohngebäudebestand erreicht werden kann, muss im Einzelfall diskutiert werden (vgl. Kapitel 3.5, Seite 76). Wie in Kapitel 4.4.2 auf Seite 118 beschrieben, werden die LZPH A1-A3, B4, C3, C4 und optional die Phase D berücksichtigt. Die Ergebnisse des Szenarios und seiner vier

Unterszenarien werden in Kapitel 5.5 ab Seite 171 mit den Ergebnissen der anderen Quartiersentwicklungsszenarien verglichen, um daraus Handlungsempfehlungen für eine ökologisch optimierte Quartiersplanung ableiten zu können.

Tabelle 5-2 stellt die Gesamtergebnisse je Umweltwirkung und Unterszenario dar. Die Werte schließen die Ökobilanzierung der 181 Wohngebäude über eine Lebensdauer von 50 Jahren ein. Je nach Szenario bzw. Sanierungsausführung (siehe Kapitel 3.5 ab Seite 76) ergeben sich in allen drei Umweltkategorien verschiedene Wertebereiche. Das GWP erstreckt sich von 6.296,7 bis 17.306,7 t CO₂-Äq. bzw. 0,048 bis 0,133 t CO₂-Äq./m²NRF. Bezogen auf das Szenario 2.1.1 entsteht somit eine prozentuale Ergebnisspannweite von 58 bis 160 %, wobei die emittierten Treibhausgasemissionen maßgeblich auf die energetische Sanierung der Gebäudehülle zurückzuführen sind. Sie beeinflusst das GWP zu mindestens 64 %, also rund zwei Drittel (Szenario 2.1.1; 6.896,2 von 10.830,5 t CO₂-Äq.). Vergleicht man das minimale und maximale GWP der Szenarien, wird das ökologische Optimierungspotential bei der Planung der Sanierungsmaßnahmen erkennbar. Durch einen geeigneten Materialeinsatz und die Aktivierung von Wiederverwendungs- und Recyclingpotentialen kann das GWP von 0,133 auf 0,048 t CO₂-Äq./m²NRF reduziert werden (vgl. Szenario 2.1.2 und 2.1.3). Möchte man z. B. das GWP bei der Sanierung der massiven Außenwand (EWmas_ren) reduzieren, sollte man anstatt einer Holzfaserdämmplatte und einer Vorhangfassade aus Faserzementplatten eine WDVS mit Mineralwolldämmung aufbringen. In jedem Fall sollten projektspezifisch die ökologischen Qualitäten verschiedener Dämmmaterialien geprüft werden. Vor allem durch die Berücksichtigung verschiedener Hersteller und deren EPDs können hohe Einsparungen erzielt werden.

Die zugrunde liegenden Bauteilaufbauten und deren Materialspezifika führen innerhalb der Szenarienergebnisse bei der PENRT und PET zu größeren Schwankungen als beim GWP. In Abhängigkeit der Bestandskonstruktionen und Sanierungsausführungen bedarf es für die Sanierung, Nutzung und Entsorgung der Gebäude mindestens 5.005,3 und maximal 51.871,6 MWh nicht erneuerbarer Primärenergie und mindestens 11.913,2 bis maximal 81.221,1 MWh an totaler Primärenergie. Somit ergibt sich bezogen auf das Szenario 2.1.1 bei der PENRT eine prozentuale Ergebnisspannweite von 23 bis 243 % und bei der PET von 78 bis 535 %. Erneut muss auf die Wiederverwendungs- und Recyclingpotentiale hingewiesen werden. Da in den Baualtersklassen 2 bis 4 sowie bei den Sanierungsmaßnahmen unter anderem ein beachtlicher Anteil an Holzbaustoffen vorhanden ist, kann durch ihre thermische Verwertung am EoL erneut PENRT kompensiert werden (vgl. Tabelle 5-2, SC 2.1.3; PENRT gesamt bzw. Bestand und Sanierung im Vergleich). Aber auch Flachstahl (z. B. zu finden in Stahlträgerdecken) und mineralische Baustoffe, wie der Stahlbeton besitzen ein gewisses Potential in der Phase D GWP und PENRT zu kompensieren.

Abbildung 5-13 (Seite 150) und Abbildung 5-14 (Seite 151) illustrieren die lebenszyklusbasierten Umweltwirkungen je Bauteil. Maßgebende Treiber in allen drei Umweltkategorien sind die Sanierungen der Steildächer (PRO_ren) und Außenwände (EWmas_ren) sowie der Austausch und Ersatz der Fenster (W_ren). Zusammen verursachen sie je Szenario 59

bis 79 % des GWP, 79 bis 205 % der PENRT und 86 bis 154 % der PET. Daneben resultieren im Szenario 2.1.2 aus der Sanierung der Kellerdecken (CFL_ren) 2.661,6 t CO₂-Äq., also 15 % des gesamten GWP. Bei den Baukonstruktionen, die im Bestand verbleiben, beeinflussen die oberste Geschossdecke (TFL_old) und die Geschossdecken (FL_old) die Szenarienergebnisse sichtbar. Im Szenario 2.1.1 bestimmen TFL_old und FL_old mit 32 % das lebenszyklusbasierte GWP (vgl. Abbildung 5-13). Gleichzeitig kompensieren sie 34 % (-8.167,2 MWh) der in diesem Szenario benötigten gesamten Primärenergie (vgl. Abbildung 5-14). Diese bilanzielle Gutschrift bei der PET resultiert aus der Verbrennung der Holzanteile in der Phase C3. Dadurch wird hier erneuerbare Primärenergie freigesetzt und gutgeschrieben.

Tabelle 5-2: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 2.1; eigene Darstellung

Umweltwirkung	SC 2.1.1	SC 2.1.2	SC 2.1.3	SC 2.1.4
GWP gesamt [t CO ₂ -Äq.]	10.830,5 (100 %)	17.306,7 (160 %)	6.296,7 (58 %)	8.808,1 (81 %)
GWP gesamt, Bestand [t CO₂-Äq.]	3.934,3	1.939,5	1.808,9	-41,0
GWP gesamt, Sanierung [t CO ₂ -Äq.]	6.896,2	15.367,2	4.487,8	8.849,0
GWP je NRF [t CO ₂ -Äq./m ² NRF]	0,083	0,133	0,048	0,067
GWP je NRF, Bestand [t CO ₂ -Äq./m² _{NRF}]	0,030	0,015	0,014	0,000
GWP je NRF, Sanierung [t CO ₂ -Äq./m ² NRF]	0,053	0,118	0,034	0,068
PENRT gesamt [MWh]	21.346,4 (100 %)	51.871,6 (243 %)	5.005,3 (23 %)	19.251,4 (90 %)
PENRT gesamt, Bestand [MWh]	2.248,5	5.731,5	-5.219,0	-1.099,3
PENRT gesamt, Sanierung [MWh]	19.097,9	46.140,1	10.224,3	20.350,7
PENRT je NRF [MWh/m ² NRF]	0,163	0,397	0,038	0,147
PENRT je NRF, Bestand [MWh/m² _{NRF}]	0,017	0,044	-0,040	-0,008
PENRT je NRF, Sanierung [MWh/m² _{NRF}]	0,146	0,353	0,078	0,156
PET gesamt [MWh]	15.193,8 (100 %)	81.221,1 (535 %)	11.913,2 (78 %)	54.703,0 (360 %)
PET gesamt, Bestand [MWh]	-7.086,4	4.696,5	-7.357,8	-2.236,2
PET gesamt, Sanierung [MWh]	22.280,2	76.524,6	19.271,0	56.939,2
PET je NRF [MWh/m² _{NRF}]	0,116	0,622	0,091	0,419
PET je NRF, Bestand [MWh/m²NRF]	-0,054	0,036	-0,056	-0,017
PET je NRF, Sanierung [MWh/m² _{NRF}]	0,171	0,586	0,148	0,436

SC 2.1.1: LZPH A1-C4, minimale Umweltwirkungen; SC 2.1.2: LZPH A1-C4, maximale Umweltwirkungen; SC 2.1.3: LZPH A1-D, minimale Umweltwirkungen; SC 2.1.4: LZPH A1-D, maximale Umweltwirkungen

Der Fensterersatz sowie die Außenwand- und Steildachsanierung besitzen in allen vier Unterszenarien die größten Einflüsse auf die ökologische Qualität. Deshalb wird hier eine detaillierte Bauteilbetrachtung empfohlen.

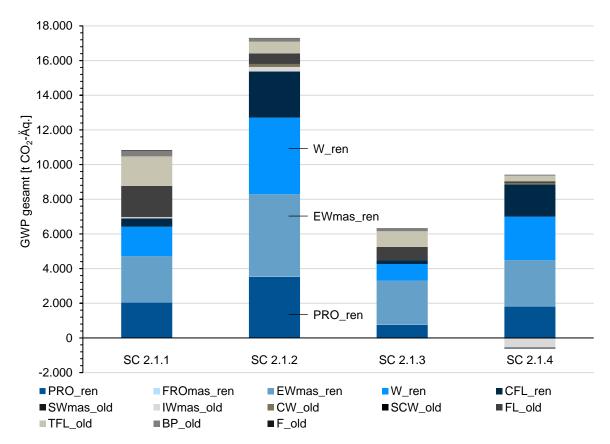


Abbildung 5-13: Fallstudie Moosach, Szenario 2.1.1 bis 2.1.4, GWP je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

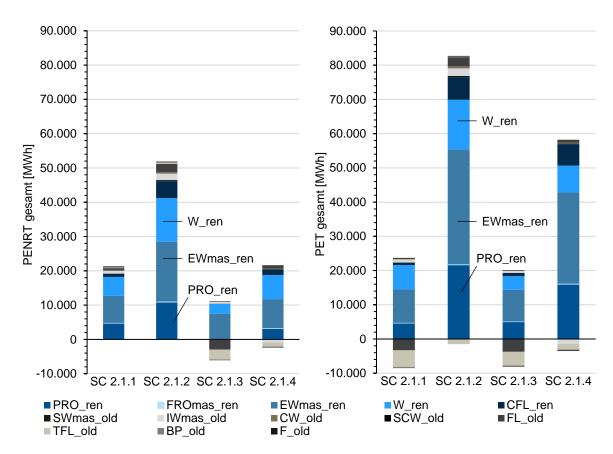


Abbildung 5-14: Fallstudie Moosach, Szenario 2.1.1 bis 2.1.4, PENRT und PET je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

5.2.4 Ergebnisse Szenario 2.2 – Sanierung mit Aufstockung in Holzrahmenbauweise

Das Szenario 2.2 (SC 2.2.1 bis 2.2.4, vgl. Abbildung 5-15) beinhaltet die ökologischen Potentiale einer Quartierssanierung in Kombination mit einer Nachverdichtung durch Aufstockung. In diesem Beispiel werden die Bestandsgebäude um zwei Geschosse in Holzleichtbauweise (Holzrahmenbauweise) erweitert und die NRF somit um 19 % erhöht.

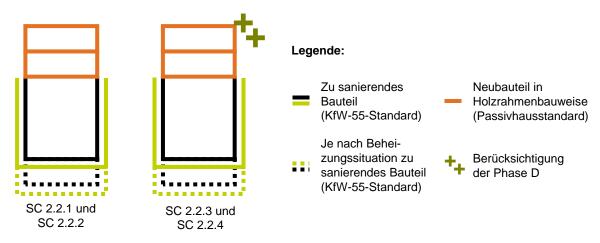


Abbildung 5-15: Skizzenhafte Darstellung Szenario 2.2; eigene Darstellung

Mit diesem Szenario wird analysiert, ob parallel zur Erhöhung der Wohnraumfläche je Grundfläche auch die NRF-bezogenen Umweltwirkungen gegenüber einer konventionellen Sanierung reduziert werden können (vgl. Kapitel 5.5 ab Seite 171).

Das GWP der vier Unterszenarien (siehe Tabelle 5-3) bewegt sich in einer Spannweite von 6.344,0 bis 36.037,2 t CO₂-Äq. bzw. 0,041 bis 0,233 t CO₂-Äq./m²_{NRF}. Allein der Abriss der bestehenden Konstruktionen (v. a. TFL_old) verursacht über 1.300 t CO₂-Äq. im Quartier. Im Szenario 2.2.3 nimmt der Abriss dadurch einen Anteil von 21 % an den Grauen Emissionen ein. Parallel kompensieren die beiden neuen Geschosse in Holzrahmenbauweise 68,7 t CO₂-Äq. durch die Berücksichtigung der Phase D. Werden weder die Wiederverwendungs- und Recyclingpotentiale der Holzwerkstoffe miteinbezogen noch die Konstruktionsdicken auf ein Mindestmaß begrenzt, so sind die Neubaukonstruktionen für 57 % des lebenszyklusbasierten GWP verantwortlich (SC 2.2.2). Daneben ist die Art und Weise der Sanierung maßgebend. Je Szenario resultieren daraus 33 bis 66 % der Grauen Emissionen. Im Szenario 2.2.4 kann durch die Weiternutzung der Bestandskonstruktionen GWP kompensiert werden. Hierzu trägt im Wesentlichen die massive Innenwand (IWmas_old) mit -515,3 t CO₂-Äq. bei.

Tabelle 5-3: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 2.2; eigene Darstellung

Umweltwirkung	SC 2.2.1	SC 2.2.2	SC 2.2.3	SC 2.2.4
GWP gesamt [t CO ₂ -Äq.]	13.816,6 (100 %)	36.037,2 (261 %)	6.344,0 (46 %)	16.967,0 (123 %)
GWP gesamt, Abriss Bestand [t CO ₂ -Äq.]	2.451,0	2.463,7	1.308,8	1.325,6
GWP gesamt, Bestand [t CO ₂ -Äq.]	2.228,0	1.258,7	899,0	-359,5
GWP gesamt, Sanierung [t CO ₂ -Äq.]	4.823,3	11.807,9	4.204,9	7.005,0
GWP gesamt, Neubau [t CO ₂ -Äq.]	4.314,3	20.506,9	-68,7	8.996,0
GWP je NRF [t CO ₂ -Äq./m ² NRF]	0,089	0,233	0,041	0,110
GWP je NRF, Abriss Bestand [t CO ₂ -Äq./m² _{NRF}]	0,016	0,016	0,008	0,009
GWP je NRF, Bestand [t CO ₂ -Äq./m² _{NRF}]	0,014	0,008	0,006	-0,002
GWP je NRF, Sanierung [t CO ₂ -Äq./m² _{NRF}]	0,031	0,076	0,027	0,045
GWP je NRF, Neubau [t CO ₂ -Äq./m² _{NRF}]	0,028	0,132	0,000	0,058

PENRT gesamt [MWh]	32.383,9 (100 %)	124.092,7 (383 %)	4.300,8 (13 %)	42.658,6 (132 %)
PENRT gesamt, Abriss Bestand [MWh]	134,4	381,6	-4.104,5	-3.710,2
PENRT gesamt, Bestand [MWh]	2.174,3	5.465,7	-2.345,1	-23,6
PENRT gesamt, Sanierung [MWh]	14.267,9	35.095,2	11.899,5	17.017,9
PENRT gesamt, Neubau [MWh]	15.807,3	83.150,2	-1.149,1	29.374,5
PENRT je NRF [MWh/m² _{NRF}]	0,209	0,801	0,028	0,275
PENRT je NRF, Abriss Bestand [MWh/m² _{NRF}]	0,001	0,002	-0,027	-0,024
PENRT je NRF, Bestand [MWh/m² _{NRF}]	0,014	0,035	-0,015	0,000
PENRT je NRF, Sanierung [MWh/m² _{NRF}]	0,092	0,227	0,077	0,110
PENRT je NRF, Neubau [MWh/m² _{NRF}]	0,102	0,537	-0,007	0,190
PET gesamt [MWh]	40.113,5 (100 %)	204.422,5 (510 %)	37.243,0 (93 %)	160.646,3 (400 %)
PET gesamt, Abriss Bestand [MWh]	-6.932,4	-4.968,2	-5.723,5	-5.141,6
PET gesamt, Bestand [MWh]	-2.225,2	6.194,1	-3.358,6	-702,5
PET gesamt, Sanierung [MWh]	17.552,1	54.688,0	16.004,2	40.770,0
PET gesamt, Neubau [MWh]	31.718,9	148.508,6	30.320,9	125.720,4
PET je NRF [MWh/m² _{NRF}]	0,259	1,320	0,240	1,037
PET je NRF, Abriss Bestand [MWh/m² _{NRF}]	-0,045	-0,032	-0,037	-0,033
PET je NRF, Bestand [MWh/m² _{NRF}]	-0,014	0,040	-0,022	-0,005
PET je NRF, Sanierung [MWh/m² _{NRF}]	0,113	0,353	0,103	0,263
PET je NRF, Neubau [MWh/m² _{NRF}]	0,205	0,959	0,196	0,812

SC 2.2.1: LZPH A1-C4, minimale Umweltwirkungen; SC 2.2.2: LZPH A1-C4, maximale Umweltwirkungen; SC 2.2.3: LZPH A1-D, minimale Umweltwirkungen; SC 2.2.4: LZPH A1-D, maximale Umweltwirkungen

Der Bedarf an PENRT schwankt deutlich je nach Unterszenario. Die Bilanzierung ergibt hier einen Wertebereich zwischen 4.300,8 (SC 2.2.3) und 124.092,7 MWh (SC 2.2.2) für das gesamte Quartier. Bei der PET liegt der Wertebereich zwischen 37.243,0 und 204.422,5 MWh für die Sanierung, eine 50-jährige Nutzung und eine anschließende Entsorgung der Quartiersgebäude.

Abbildung 5-16 und Abbildung 5-17 illustrieren die prozentualen Anteile der einzelnen Bauteile an den gesamten Umweltwirkungen. Für einen besseren Überblick sind die Bauteile zudem farblich nach ihrer Zugehörigkeit sortiert: Abriss, Bestand, Neubau und Sanierung. Im Bereich der Sanierung verursachen die Maßnahmen an der Außenwand (EWmas_ren) und die Erneuerung der Fenster (W_ren) die größten Grauen Energien und Emissionen. Die Umweltwirkungen des Neubaus hängen stark von der Ausführung der Innenwände (IWwood_nb), des Flachdaches (FROwood_nb) und der Außenwand (EWwood_nb) in Holzrahmenbauweise sowie der Aktivierung der Wiederverwendungs- und Recyclingpotentiale ab. Die Bauteile, die im Zuge der Sanierung sofort abgerissen werden, können beim

GWP, wie bereits erwähnt, signifikanten Einfluss nehmen (21 % im SC 2.2.3). Wenn man die Balkendiagramme der PET betrachtet (Abbildung 5-17, rechts), reduzieren sie das Gesamtergebnis durch Kompensation.

Bei der Betrachtung des PET fällt der hohe Einfluss der Neubauteile auf (73 % bis 81 %). Bei der PENRT erstreckt sich ihr prozentualer Anteil zwischen -27 bis 69 %. Hier greift der Einsatz erneuerbarer Energien bei der Holzwerkstoffproduktion der Holzrahmenbauweise, die weniger kritisch anzusehen ist als der Einsatz nicht erneuerbarer Primärenergien bei anderen Bauweisen.

Wie bei Szenario 2.1 zeigt sich der Einfluss des Fensterersatzes (W_ren) und der Außenwandsanierung (EWmas_ren). Für die ökologische Optimierung der Neubaugeschosse muss besonderes Augenmerk auf die Bauausführungen der Innenwände, der Außenwände und der Flachdächer gelegt werden.

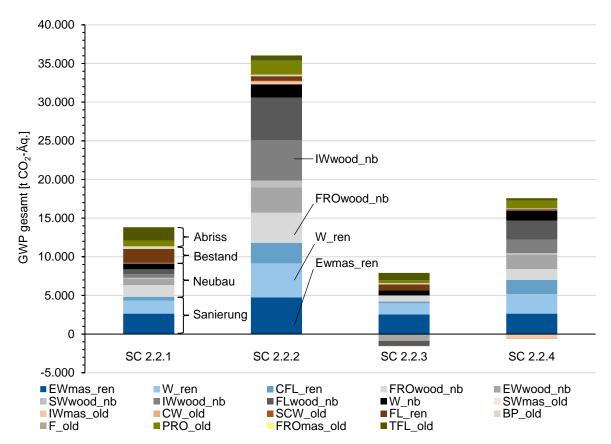


Abbildung 5-16: Fallstudie Moosach, Szenario 2.2.1 bis 2.2.4, GWP je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

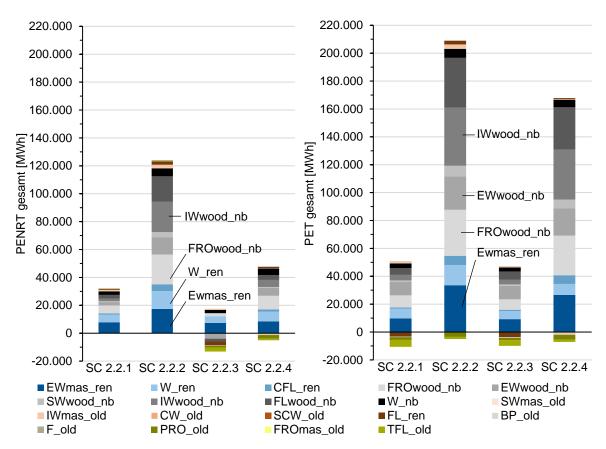


Abbildung 5-17: Fallstudie Moosach, Szenario 2.2.1 bis 2.2.4, PENRT und PET je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

5.2.5 Ergebnisse Szenario 3.1 – Abriss und Ersatzneubau in Holzbauweise

Szenario 3.1 (SC 3.1.1 bis 3.1.4; vgl. Abbildung 5-18) beschäftigt sich mit den Umweltwirkungen, die bei einem gänzlichen Abriss des Bestandsquartiers und einem Ersatzneubau in Holzbauweise entstehen. Der Ersatzneubau wird 50 Jahre genutzt und anschließend ebenfalls rückgebaut und entsorgt. Die Gesamtergebnisse in den drei betrachteten Umweltwirkungskategorien werden in Tabelle 5-4 aufgelistet.

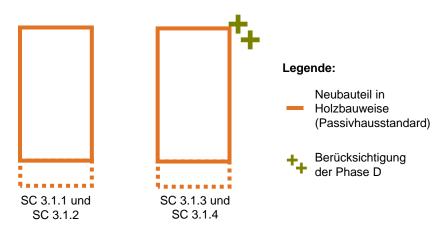


Abbildung 5-18: Skizzenhafte Darstellung Szenario 3.1; eigene Darstellung

Werden die 181 Bestandsgebäude abgerissen und durch Holzgebäude ersetzt, welche die gleiche Grundfläche aber zwei Geschosse mehr als vorher besitzen, so entstehen innerhalb des Betrachtungszeitraums zwischen 5.363,8 (SC 3.1.3) und 79.621,0 t CO₂-Äq. (SC 3.1.2). Bezogen auf eine NRF von 159.540 m² resultieren daraus 0,034 bis 0,499 t CO₂-Äq./m²_{NRF}. Je nach Unterszenario beeinflusst der Bestandsgebäudeabriss das lebenszyklusbasierte GWP prozentual zwischen 2 (SC 3.1.4) und 50 % (SC 3.1.3).

In Tabelle 5-4 werden die großen Streuungsbreiten des Bedarfs an PENRT und PET deutlich. In Abhängigkeit der Szenarienwahl schwanken die Ergebnisse bei der PENRT zwischen -0,034 (SC 3.1.3) und 1,736 MWh/m²_{NRF} (SC 3.1.2) und bei der PET zwischen 0,512 (SC 3.1.3) und 2,919 MWh/m²_{NRF} (SC 3.1.2). Die positive PENRT-Bilanz im SC 3.1.3 wird durch die Verdrängung fossiler Energieträger bei der thermischen Verwertung der masseintensiven Holzbauteile an ihrem EoL ermöglicht. Bleiben die bilanziellen Vorteile der Phase D unberücksichtigt, führt dies zu einem signifikanten Bedarf an nicht erneuerbarer Primärenergie für das Gesamtquartier von 465.628,9 MWh.

Die hierfür maßgebenden Bauteile werden in Abbildung 5-19 und Abbildung 5-20 sichtbar: die Innenwände (IWwood_nb) und Geschossdecken (FLwood_nb). Zusammen bewirken sie im SC 3.1.2 bereits 47 % des GWP, 51 % der PENRT und 54 % der PET. An dritter Stelle kann noch die Außenwand (EWwood_nb) genannt werden, die im SC 3.1.2 14 % der Grauen Emissionen verursacht. Im Szenario 3.1.3 verändert sich der Einfluss der Außenwand und der Geschossdecken jedoch ins Positive. Somit sind die Ergebnistreiber nicht über alle Szenarien hinweg eindeutig identifizierbar und müssen im Einzelfall näher untersucht werden.

Tabelle 5-4: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 3.1; eigene Darstellung

Umweltwirkung	SC 3.1.1	SC 3.1.2	SC 3.1.3	SC 3.1.4
GWP gesamt [t CO₂-Äq.]	20.918,2 (100 %)	79.621,0 (381 %)	5.363,8 (26 %)	30.735,1 (147 %)
GWP gesamt, Abriss Bestand [t CO ₂ -Äq.]	5.716,0	4.754,3	2.671,8	664,8
GWP gesamt, Neubau [t CO ₂ -Äq.]	15.202,2	74.866,7	2.692,1	30.070,3
GWP je NRF [t CO ₂ -Äq./m ² NRF]	0,131	0,499	0,034	0,193
GWP je NRF, Abriss Bestand [t CO ₂ -Äq./m² _{NRF}]	0,036	0,030	0,017	0,004
GWP je NRF, Neubau [t CO ₂ -Äq./m² _{NRF}]	0,095	0,469	0,017	0,188
PENRT gesamt [MWh]	53.557,3 (100 %)	276.920,8 (517 %)	-5.468,0 (-10 %)	65.572,7 (122 %)
PENRT gesamt, Abriss Bestand [MWh]	2.625,7	5.795,9	-8.266,7	-8.094,7
PENRT gesamt, Neubau [MWh]	50.931,6	271.124,9	2.798,7	73.667,4

PENRT je NRF [MWh/m² _{NRF}]	0,336	1,736	-0,034	0,411
PENRT je NRF, Abriss Bestand [MWh/m² _{NRF}]	0,016	0,036	-0,052	-0,051
PENRT je NRF, Neubau [MWh/m² _{NRF}]	0,319	1,699	0,018	0,462
PET gesamt [MWh]	87.307,0 (100 %)	465.628,9 (533 %)	81.690,5 (94 %)	414.986,5 (475 %)
PET gesamt, Abriss Bestand [MWh]	-11.417,1	1.340,6	-11.618,9	-11.017,3
PET gesamt, Neubau [MWh]	98.724,2	464.288,3	93.309,5	426.003,8
PET je NRF [MWh/m² _{NRF}]	0,547	2,919	0,512	2,601
PET je NRF, Abriss Bestand [MWh/m² _{NRF}]	-0,072	0,008	-0,073	-0,069
PET je NRF, Neubau [MWh/m² _{NRF}]	0,619	2,910	0,585	2,670

SC 3.1.1: LZPH A1-C4, minimale Umweltwirkungen; SC 3.1.2: LZPH A1-C4, maximale Umweltwirkungen; SC 3.1.3: LZPH A1-D, minimale Umweltwirkungen; SC 3.1.4: LZPH A1-D, maximale Umweltwirkungen

Abbildung 5-19: Fallstudie Moosach, Szenario 3.1.1 bis 3.1.4, GWP je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Als Handlungsempfehlung kann für dieses Szenario festgehalten werden, dass bei der Realisierung von Holzgebäuden zwingend die Wiederverwendungs- und Recyclingpotentiale der Phase D in die Diskussion einbezogen werden müssen. Ansonsten sind die Vorteile dieser Bauweise nicht zu erkennen.

Daneben ist Holzbauweise nicht gleich Holzbauweise. Durch den höheren Holzanteil benötigt die Holzmassivbauweise beispielsweise in den Phasen A1 bis A3 deutlich mehr an erneuerbarer Primärenergie als die Holzrahmenbauweise (Stichwort: Baumwachstum und

eingespeicherte Sonnenenergie). Hierbei muss diskutiert werden, ob der erneuerbare Anteil ebenso gewichtet wird, wie der nicht erneuerbare Anteil an Primärenergie. Die Holzmassivbauweise bewirkt aber nicht zwingend höhere Umweltwirkungen als die Holzrahmenbauweise. Je Bauteil werden andere bauphysikalische und konstruktive Anforderungen an den Schichtenaufbau gestellt, die einmal mit dem Holzrahmen- und einmal mit dem Holzmassivbau einfacher gelöst werden können. Bei der Außenwand verursacht eine Außenwand in Holzmassivbauweise die höchsten Umweltwirkungen, bei der obersten Geschossdecke eine Holzrahmenbaukonstruktion (vgl. Anhang A.3 ab Seite 296, Bauteile "EWwood_4" und "TFLwood_2"). Deshalb muss die ökologische Optimierung spezifisch auf der Bauteilebene erfolgen.



Abbildung 5-20: Fallstudie Moosach, Szenario 3.1.1 bis 3.1.4, PENRT und PET je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

5.2.6 Ergebnisse Szenario 3.2 – Abriss und Ersatzneubau in Massivbauweise

Der Abriss des Bestandsquartiers und dessen Ersatz durch Massivbaugebäude wird im Szenario 3.2 (SC 3.2.1 bis 3.2.4; vgl. Abbildung 5-21) diskutiert. Wie im Szenario 3.1 besitzen die neuen Gebäude dieselben Grundflächen wie die Bestandsgebäude, aber sie sind höher. Tabelle 5-5 listet die Gesamtergebnisse des GWP, der PENRT und PET auf. Je nach Unterszenario ergibt sich ein GWP zwischen 30.722,4 und 91.371,9 t CO₂-Äq. für das Quartier innerhalb des Betrachtungszeitraums. Bezogen auf das Szenario SC 3.2.1 schwanken die Ergebnisse zwischen 86 und 255 %. Bei gleicher NRF wie im Szenario 3.1 resultieren daraus 0,193 bis 0,573 t CO₂-Äq./m²_{NRF}. Je nach Unterszenario bedingt der Bestandsabriss (gleiches GWP wie im SC 3.1) einen Anteil von 1 bis 16 % am gesamten GWP.

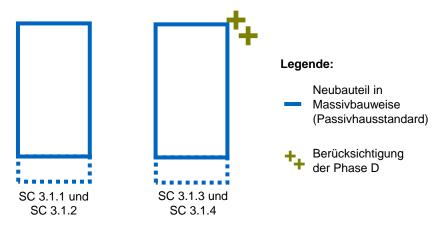


Abbildung 5-21: Skizzenhafte Darstellung Szenario 3.2; eigene Darstellung

Tabelle 5-5: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 3.2; eigene Darstellung

Umweltwirkung	SC 3.2.1	SC 3.2.2	SC 3.2.3	SC 3.2.4
GWP gesamt [t CO ₂ -Äq.]	35.870,7 (100 %)	91.371,9 (255 %)	30.722,4 (86 %)	76.863,3 (214 %)
GWP gesamt, Abriss Bestand [t CO ₂ -Äq.]	5.716,0	4.754,3	2.671,8	664,8
GWP gesamt, Neubau [t CO ₂ -Äq.]	30.716,0	86.617,6	28.050,6	76.198,5
GWP je NRF [t CO ₂ -Äq./m ² NRF]	0,225	0,573	0,193	0,482
GWP je NRF, Abriss Bestand [t CO ₂ -Äq./m² _{NRF}]	0,036	0,030	0,017	0,004
GWP je NRF, Neubau [t CO ₂ -Äq./m² _{NRF}]	0,189	0,543	0,176	0,478
PENRT gesamt [MWh]	87.001,7 (100 %)	229.541,8 (264 %)	67.855,7 (78 %)	174.144,2 (200 %)
PENRT gesamt, Abriss Bestand [MWh]	2.625,7	5.795,9	-8.266,7	-8.094,7
PENRT gesamt, Neubau [MWh]	84.376,0	223.745,9	76.122,4	182.238,9

PENRT je NRF [MWh/m ² NRF]	0,545	1,439	0,425	1,092
PENRT je NRF, Abriss Bestand [MWh/m² _{NRF}]	0,016	0,036	-0,052	-0,051
PENRT je NRF, Neubau [MWh/m² _{NRF}]	0,529	1,402	0,477	1,142
PET gesamt [MWh]	90.259,4 (100 %)	317.571,5 (352 %)	79.939,9 (89 %)	258.736,4 (287 %)
PET gesamt, Abriss Bestand [MWh]	-11.417,1	1.340,6	-11.618,9	-11.017,3
PET gesamt, Neubau [MWh]	101.676,5	316.230,9	91.558,8	269.753,7
PET je NRF [MWh/m² _{NRF}]	0,566	1,991	0,501	1,622
PET je NRF, Abriss Bestand [MWh/m² _{NRF}]	-0,072	0,008	-0,073	-0,069
PET je NRF, Neubau [MWh/m² _{NRF}]	0,637	1,982	0,574	1,691

SC 3.2.1: LZPH A1-C4, minimale Umweltwirkungen; SC 3.2.2: LZPH A1-C4, maximale Umweltwirkungen; SC 3.2.3: LZPH A1-D, minimale Umweltwirkungen; SC 3.2.4: LZPH A1-D, maximale Umweltwirkungen

Auch bezogen auf die Ergebnisse der PENRT und PET bleiben die massiven Neubauteile die maßgebenden Treiber der Umweltwirkungen. Zwar kann zunächst mit dem Gebäudeabriss – vornehmlich durch die Berücksichtigung der Phase D – PENRT und PET kompensiert werden, jedoch steigt deren Bedarf mit den neuen Massivbaukonstruktionen wieder. 97 (SC 3.2.1) bis 112 % (SC 3.2.2) der PENRT und 100 (SC 3.2.2) bis 115 % (SC 3.2.3) der PET ergeben sich durch den Neubau. Insgesamt erstrecken sich die Grauen Energien zwischen 67.855,7 und 229.541,8 MWh bei der PENRT und zwischen 79.939,9 (SC 3.2.3) und 317.571,5 MWh (SC 3.2.2) bei der PET.

Unter Berücksichtigung der Abbildung 5-22 und Abbildung 5-23 zeigen sich die neuen und massiven Außenwände (EWmas_nb), Innenwände (IWmas_nb) und Geschossdecken (FLmas_nb) als maßgebende Bauteile. Sie bedingen je nach Unterszenario 48 bis 65 % des GWP, 53 bis 63 % der PENRT und 63 bis 68 % der PET. Dieser Einfluss ist im Wesentlichen auf ihre großen Flächenanteile (Innenwand: 39 %; Außenwand 15 %; Geschossdecken 19 %) und nicht auf die Umweltwirkungen je m²_{Bauteil} zurückzuführen.

Mit Blick auf die spezifischen Umweltwirkungen je m²_{Bauteil} treten die Bodenplatten (BP_uh_nb; Flächenanteil: 4 %), die Kellerdecken (CFLmas_nb; Flächenanteil: 4 %), die Flachdächer (FROmas_nb; Flächenanteil: 4 %) oder die Fenster (W_nb; Flächenanteil: 3 %) in den Vordergrund. Trotz ihres geringen Flächenanteils bei den Neubaugebäuden beeinflussen sie die Grauen Emissionen und Energien signifikant (siehe Tabelle 5-6, Seite 162). Vor allem die lebenszyklusbasierten Umweltwirkungen des Flachdaches sind je m²_{Bauteil} hoch (siehe Tabelle A. 53 auf Seite 444; z.B. GWP gesamt ohne Phase D von 120,0 bis 193,8 kg CO₂-Äq./m²_{Bauteil}; PENRT gesamt ohne Phase D von 1.578,4 bis 3.270,3 MJ/m²_{Bauteil}).

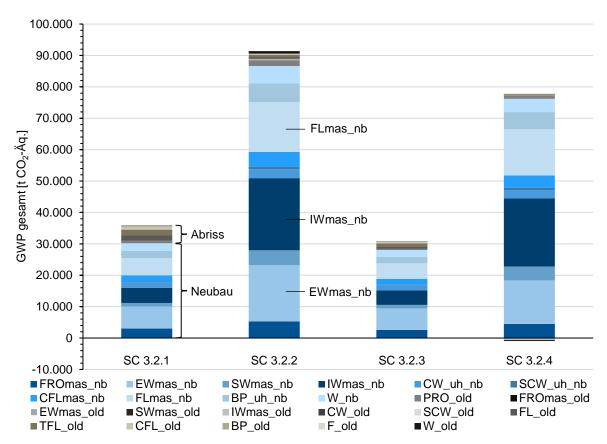


Abbildung 5-22: Fallstudie Moosach, Szenario 3.2.1 bis 3.2.4, GWP je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Zusammenfassend kann für das Szenario der Massivbauweise festgehalten werden, dass die Ergebnisse der Grauen Energien und Emissionen zwischen den Unterszenarien weniger schwanken als bei Szenario 3.1. Die Umweltwirkungen, die durch den Abriss der Bestandsgebäude entstehen, nehmen gegenüber den Umweltwirkungen der Neubauteile einen geringen Einfluss. Um die ökologische Qualität der Neubaugebäude zu verbessern, muss die Baustoffwahl und die Dimensionierung der Bauteile betrachtet werden, welche die größten Flächenanteile besitzen (hier: Außenwände, Innenwände und Geschossdecken). Ferner können auch Einzelbauteile mit geringen Flächenanteilen, insbesondere die Flachdächer, die Gesamtergebnisse signifikant beeinflussen. Hier gilt es ebenfalls den Bauteilschichtenaufbau nach ökologischen Kriterien zu optimieren.

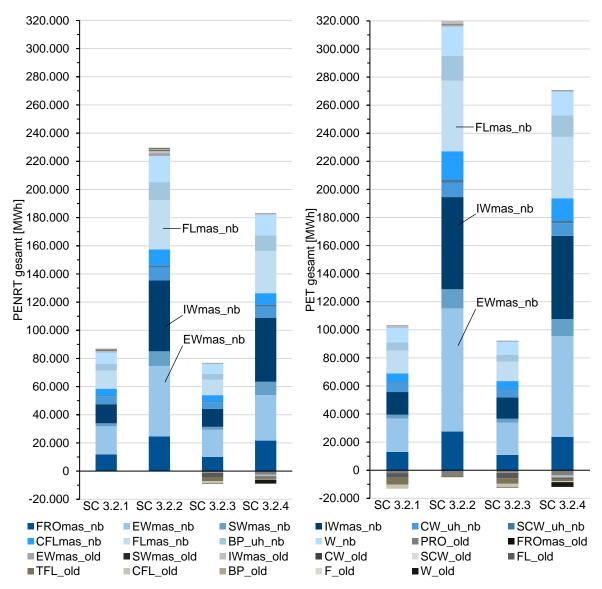


Abbildung 5-23: Fallstudie Moosach, Szenario 3.2.1 bis 3.2.4, PENRT und PET je Bauteil bei einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Tabelle 5-6: Fallstudie Moosach, Szenario 3.2, prozentuale Anteile einzelner Bauteile an den Grauen Energien und Emissionen des Gesamtquartiers; eigene Darstellung

Bauteil	%-Anteil am gesamten GWP je Szenario	%-Anteil am gesamten PENRT je Szenario	%-Anteil am gesamten PET je Szenario
BP_uh_nb	6,3 – 7,1	5,2 – 6,3	5,9 - 6,3
FROmas_nb	5,7 - 8,4	10,7 - 14,8	8,7 - 14,4
CFLmas_nb	5,1 – 6,1	4,6-6,7	6,1-7,1
W_nb	5,5 – 7,0	8,1 – 10,6	6,6 – 11,9

5.3 Vergleichende Flächenberechnung

Durch die Verwendung der automatisiert ermittelten Gebäudehüllflächen des 3D-Stadtmodells (Szenario 1 – Status Quo) und die ergänzenden Annahmen zu den innenliegenden Bauteilflächen entstehen gegenüber einer manuellen Flächenermittlung weitere Unsicherheiten beim Gesamtergebnis. Deshalb wird im Rahmen dieses Kapitels ein Vergleich der automatisierten und manuellen Bauteilflächenermittlung am Beispiel eines Einzelgebäudes geführt. Es wird diskutiert, ob sich die daraus ergebenden Unsicherheiten im Rahmen der Standardabweichungen bewegen und tolerierbar sind oder nicht.

Bei dem Einzelgebäude aus dem Moosacher Quartier handelt es sich um ein Reihenmittelhaus (MFH) aus der Baualtersklasse 2 (Baujahr ca. 1945) in Massivbauweise. Das Gebäude verfügt über ein Kellergeschoss, drei Vollgeschosse und zwei Dachgeschosse (siehe Abbildung 5-24). Zur manuellen Flächenerhebung werden die originalen Archivpläne des Gebäudes verwendet, die von der LHM zur Verfügung gestellt wurden (Bauplanakte, Abg. 78/1, Bd. 18). Das Gebäude besitzt keine Balkone, die berücksichtigt werden müssten. Die Treppen werden zugunsten der Geschossdecken übermessen. Ansonsten werden alle Fenster vom KG bis DG (auch Dachgaubenfenster) in die Flächenermittlung einbezogen.

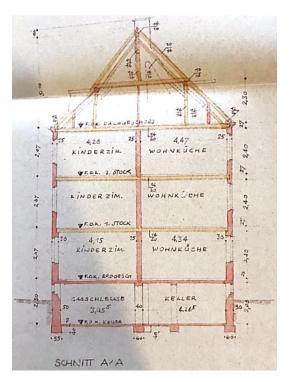


Abbildung 5-24: Schnitt eines Reihenmittelhauses im Stadtquartier Moosach, Baujahr ca. 1945; Kopie aus Bauplanakte, Abg. 78/1, Bd. 18

Tabelle 5-7 zeigt die finale Gegenüberstellung der automatisiert und manuell erhobenen Bauteilflächen. Mit der automatisierten Flächenberechnung werden gegenüber der manuellen insgesamt 391,7 m² mehr an Bauteilflächen ermittelt.

Beim Steildach, der Bodenplatte und den Fundamenten ist die Abweichung zwischen manueller und automatisierter Flächenberechnung mit maximal 4,9 % gering.

Die größte prozentuale Abweichung besteht bei den Fenstern mit 43,4 %. Dies resultiert aus der Berücksichtigung der Keller- und Dachfensterflächen bei der manuellen Berechnung, die bei der automatisierten Berechnung übermessen werden. Würde man diese Fensterflächen abziehen, läge die Abweichung nur noch bei 25,1 %. Um die Fensterflächen anzugleichen, müsste man bei der automatisierten Berechnung den Fensterflächenanteil (WTWR_MFH) von 15 auf 22 % erhöhen.

Entgegen der Fensterfläche ist die Fläche der Geschossdecken bei der automatisierten Berechnung größer als bei der manuellen. Durch die vereinfachte Ermittlung der Geschossdeckenflächen wird eine Geschossdecke mehr erhoben als in der Realität vorhanden ist. Dies hebt sich teilweise wieder auf, da bei der automatisierten Berechnung die Dachgeschossdecke in der Dachspitze unberücksichtigt bleibt.

Ein Grund für die abweichenden Außenwand- und Kellerwandflächen ist die Lage des Kellergeschosses. Dieses ragt beim Beispielgebäude zu ca. einem Drittel über die GOK hinaus, sodass sie bei der automatisierten Berechnung zu den Außenwänden, bei der manuellen aber zu den Kellerwänden gezählt wird.

Auch das Verhältnis von Innenwand- zu Außenwandflächen ist mit 1,14 in der Realität geringer als das Verhältnis, das in die Berechnungslogiken einfließt (1,34). In Kapitel 4.7.1 (siehe ab Seite 125) wird bereits darauf hingewiesen, dass diese Unsicherheit besteht und dass dieser Faktor projektspezifisch überprüft und angepasst werden sollte.

Tabelle 5-7: Vergleichende Bauteilflächenberechnung, Gegenüberstellung der manuellen und automatisierten Berechnung; eigene Darstellung

Bauteil	Manuell ermittelte Gesamtfläche [m²]	Automatisiert errechnete Gesamtfläche [m²]	Abweichung manuell zu automatisiert [%]
Steildach (PRO)	193,6	186,9	3,6
Außenwand (Ewmas)	187,7	214,2	-12,4
Gebäudetrennwand über GOK (Swmas)	176,1	225,3	-21,8
Innenwand (Iwmas)	569,1	767,5	-25,9
Kelleraußenwand (CW)	59,8	50,4	18,7
Gebäudetrennwand unter GOK (SCW)	39,7	45,1	-12,0
Geschossdecken (FL)	276,1	386,5	-28,6
Oberste Geschossdecke (TFL)	107,1	128,8	-16,8
Kellerdecke (CFL)	112,2	128,8	-12,9
Bodenplatte (BP)	131,1	128,8	1,8
Fundament (F)	36,5	34,8	4,9
Fenster (W)	54,2	37,8	43,4
Gesamtfläche	1.943,2	2.334,9	-16,8

Insgesamt lässt sich festhalten, dass die automatisierte Flächenberechnung nicht die Genauigkeit einer manuellen Flächenberechnung erreicht. Inwiefern dies zu tolerieren ist, wird

mit Hilfe der Tabelle 5-8 diskutiert. Sie stellt die Wertebereiche des Szenarios 1 unter Berücksichtigung der beiden Flächenberechnungen gegenüber.

Tabelle 5-8: Gegenüberstellung der Gesamtergebnisse, Szenario 1 des Einzelgebäudes, GWP, PENRT und PET nach manueller und automatisierter Flächenberechnung; eigene Darstellung

Gesamtergebnis Szenario 1	GWP [t CO ₂ -Äq.]	PENRT [MWh]	PET [MWh]
SC1.1_man	54,1	146,5	198,6
SC1.1_auto	65,5	175,0	235,5
%-Abweichung SC 1.1	-17,4%	-16,3%	-15,7%
SC1.2_man	163,6	404,3	502,7
SC1.2_auto	193,7	466,2	576,7
%-Abweichung SC 1.2	-15,6%	-13,3%	-12,8%
SC1.3_man	37,2	87,1	201,2
SC1.3_auto	45,4	105,5	237,9
%-Abweichung SC 1.3	-18,2%	-17,5%	-15,4%
SC 1.4_man	141,9	328,1	442,6
SC1.4_auto	172,2	391,5	524,3
%-Abweichung SC 1.4	-17,6%	-16,2%	-15,6%
Mittelwert SC1_man	99,2 ± 54,4	241,5 ± 129,3	336,3 ± 138,0
Mittelwert SC1_auto	119,2	284,6	393,6

Würde man bei der Szenarienberechnung die manuelle Flächenberechnung zugrunde legen, würden die lebenszyklusbasierten Grauen Emissionen und Energien des Gebäudes zwischen 12,8 und 18,2 % geringer ausfallen. Die Umweltwirkungen der Einzelbauteile variieren jedoch stärker als die Flächenberechnungen. Die Ergebnisdifferenz zwischen manueller und automatisierter Flächenberechnung ist geringer als die Standardabweichungen beim GWP (55 % vom Mittelwert), bei der PENRT (54 % vom Mittelwert) und bei der PET (41 % vom Mittelwert). D. h. dass die Streuungsbreiten der minimalen und maximalen Umweltwirkungen je Bauteilfläche mehr Einfluss auf die Ergebnisvarianz nehmen, als die Unsicherheiten bei der automatisierten Flächenberechnung.

Die Unsicherheiten der automatisierten Flächenberechnung können daher toleriert werden. Jedoch sollten sie projektspezifisch reduziert werden, indem beispielsweise die Fensterflächenanteile sowie das Verhältnis von Innenwand- zu Außenwandflächen genauer bestimmt werden.

5.4 Sensitivitätsanalyse

5.4.1 Methodische Grundlagen

Wie in Kapitel 2.6.1 auf Seite 36 erörtert, dient eine Sensitivitätsanalyse zur Identifizierung stark variierender Eingangsparameter und deren Einfluss auf das Gesamtergebnis. Die Sensitivitätsanalyse des Fallbeispiels konzentriert sich auf die Szenarien 2.2.1 und 2.2.2 – Sanierung mit Aufstockung in Holzrahmenbauweise ohne Phase D – und das GWP als Umweltwirkung. Ergänzend zur Unsicherheitsbetrachtung der Flächenberechnung (siehe Kapitel 5.3 ab Seite 163) wird mit dieser Sensitivitätsanalyse der Einfluss des variierenden GWP einzelner Bauteile untersucht. Zudem wird diskutiert, wie sich die Annahmen zu den Flächenverhältnissen – Fensterflächenanteil, Verhältnis Fundament- zu Bodenplattenfläche und Verhältnis Innenwand- zu Außenwandfläche – auf das Gesamtergebnis auswirken und ob es Interaktionen zwischen den einzelnen Parametern gibt.

Als Methode wird die Sobol Sensitivitätsanalyse (engl. "Sobol Sensitivity Analysis") nach Saltelli et al. (2010) gewählt. Hierbei handelt es sich um eine varianzbasierte Methode, die sich bei der Untersuchung von Gebäudeenergiemodellen etabliert hat und auch für die Untersuchung der Unsicherheiten bei Energiebedarfsberechnungen und Lebenszyklusanalysen geeignet ist. (Dotzler et al., 2018; Harter, Singh et al., 2020; Menberg et al., 2016; Schneider-Marin et al., 2020)

Die Eignung der Methode als Sensitivitätsanalyse für LCA auf Quartiersebene bestätigt die Dissertation von Harter (2021).

Ein wesentlicher Vorteil dieser varianzbasierten Methode ist die Analysemöglichkeit, inwiefern ein einzelner Input-Parameter die Varianz des Gesamtergebnisses beeinflusst. Gleichzeitig erlaubt es die Methode die Interaktionen einzelner Parameter zu erkennen. (Zhang et al., 2015)

Diese Eigenschaft wird benötigt, um die Sensitivitäten bei der Berechnungslogik der Szenarien 2.2.1 und 2.2.2 identifizieren zu können. Die Sensitivitätsanalyse erfolgt mit Hilfe der Sensitivitätsindizes S₁ (Effekt erster Ordnung) und S^T (Gesamteffekt).

Zunächst werden die variierenden Input-Parameter sowie ihre Wertebereiche bestimmt (siehe nachfolgendes Kapitel). Darauf aufbauend werden gleichmäßig verteilte Zufallsexperimente mit Hilfe eines "Sobol Sampling" (siehe Kapitel 2.6.2 auf Seite 37) erzeugt, das in der Programmiersprache Python unter Verwendung der "Sensitivity Analysis Library (SA-Lib)" programmiert wird (Herman und Usher, 2021). Durch das gleichmäßige Variieren eines jeden Input-Parameters innerhalb der definierten Wertebereiche entstehen insgesamt 26.500 Zufallsexperimente bzw. Methodendurchläufe. Diese werden in einer csv-Datei gebündelt. Anschließend wird unter Berücksichtigung eines jeden Zufallsexperiments die LCA des Szenarios 2.2 für jedes einzelne der 181 Gebäude im Quartier berechnet. Das GWP des Quartiers – also der Summenwert aus den 181 Einzelgebäuden – ist als

Gesamtergebnis definiert. Aus 26.500 Zufallsexperimenten resultieren demnach 26.500 Gesamtergebnisse.

Der Index S₁ beschreibt den direkten Einfluss eines variierenden Inputparameters auf die Varianz des Gesamtergebnisses (hier: GWP des Quartiers). Dabei wird er durch den Wertebereich der Gesamtvarianz normiert und besitzt einen Wertebereich zwischen Null und Eins. Reduziert wird der Effekt erster Ordnung, wenn der Variationsbereich des Input-Parameters verringert wird, der den größten Einfluss auf die Varianz des Gesamtergebnisses nimmt. Umgekehrt ist der Wert von S₁ eines Input-Parameters umso höher, je größer dessen Einfluss auf die Varianz des Gesamtergebnisses ist. (Harter, 2021; Menberg et al., 2016; Saltelli et al., 2010)

Die Analyse von S₁ hilft demnach, die Input-Parameter zu erkennen, die durch ihr Variieren die Varianz des Gesamtergebnisses bzw. des Modell-Outputs signifikant beeinflussen. (Harter, 2021; Saltelli und Tarantola, 2002; Saltelli et al., 2008)

Der Index S^T beschreibt den Gesamteffekt eines Input-Parameters, inklusive seiner Wechselwirkungen mit anderen Input-Parametern. Somit handelt es sich um einen Effekt höherer Ordnung. Der Wertebereich bewegt sich ebenfalls zwischen Null und Eins. Mit zunehmender Interaktion des einzelnen Input-Parameters mit anderen Input-Parametern nähert sich S^T dem Wert eins an. (Harter, 2021)

Bei welchem Wert von S₁ oder S^T ein Input-Parameter keinen signifikanten Einfluss mehr auf das Gesamtergebnis nimmt, ist nicht offiziell definiert. Jedoch wird in der Fachwelt häufig 0,05 als Grenzwert akzeptiert. Das bedeutet, dass der Einfluss von Input-Parametern mit Werten von S₁ oder S^T kleiner als 0,05 vernachlässigt werden kann. Diese Annahme trifft allerdings nur zu, wenn es sich um komplexe Modelle mit einer großen Anzahl an Input-Parametern handelt. (Zhang et al., 2015)

Um die Sensitivitätsanalyse durchführen zu können, werden die 26.500 Berechnungsergebnisse für das GWP des Quartiers über eine csv-Datei aus urbi+ exportiert und mit Hilfe der SALib ausgewertet. Daraus resultieren für jeden variierenden Input-Parameter die Indizes S_1 und S^T .

5.4.2 Variierende Eingangsparameter

Für die Sensitivitätsanalyse wird das baualtersklassen- und bauteilspezifische GWP variert. Der Fensterflächenanteil ("WTWR_MFH") streut in einem vordefinierten Wertebereich. Auch die Verhältnisse zwischen Fundament- und Bodenplattenflächen (FTBP) bzw. zwischen Innenwand- und Außenwandflächen (IWTEW_MFH) variieren bei den MFH im Quartier. Tabelle 5-9 zeigt die gewählten 52 Input-Parameter mit ihren Wertebereichen, die sich aus den Berechnungslogiken der Szenarien 2.2.1 und 2.2.2 für das Fallbeispiel "Moosach" ergeben (vgl. Anhänge A.9 ab Seite 469 und A.10 ab Seite 488).

Tabelle 5-9: Sensitivitätsanalyse, Minimal- und Maximalwerte der Input-Parameter (GWP in kg CO₂-Äq./m²_{Bauteil}; Flächenverhältnisse dimensionslos); eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Parameter	min	max	Parameter	min	max
PRO_old_2_GWP	28,800	42,000	FL_old_ren_3_GWP*	14,100	31,200
PRO_old_3_GWP	8,300	63,600	FL_old_ren_4_GWP*	14,100	31,200
PRO_old_4_GWP	26,700	62,400	FL_old_2_GWP**	1,100	20,700
FROmas_old_2_GWP	-0,005	0,005	FL_old_3_GWP**	12,200	31,200
FROmas_old_3_GWP	1,900	2,600	FL_old_4_GWP**	12,200	31,200
FROmas_old_4_GWP	1,900	103,300	FLwood_tf_nb_GWP	11,800	101,700
FROwood_tf_nb_GWP	56,300	143,500	TFL_old_2_GWP	63,000	74,900
EWmas_ren_2_GWP	40,800	71,400	TFL_old_3_GWP	3,100	54,500
EWmas_ren_3_GWP	40,800	74,100	TFL_old_4_GWP	3,100	71,000
EWmas_ren_4_GWP	40,300	72,300	CFL_uh_ren_2_GWP	35,400	128,300
EWwood_tf_nb_GWP	25,700	106,300	CFL_uh_ren_3_GWP	10,000	128,300
SWmas_old_2_GWP	0,100	0,200	CFL_uh_ren_4_GWP	10,000	51,400
SWmas_old_3_GWP	0,100	0,200	BP_old_2_GWP	3,200	29,000
SWmas_old_4_GWP	0,100	0,200	BP_old_3_GWP	3,900	5,800
SWwood_tf_nb_GWP	9,800	60,300	BP_old_4_GWP	3,900	11,800
IWmas_old_2_GWP	0,400	0,500	F_old_2_GWP	0,000	8,000
IWmas_old_3_GWP	0,400	1,800	F_old_3_GWP	3,500	8,000
IWmas_old_4_GWP	0,400	1,800	F_old_4_GWP	2,000	3,500
IWwood_tf_nb_GWP	6,600	75,900	W_ren_2_GWP	147,300	403,600
CW_old_2_GWP	0,200	8,500	W_ren_3_GWP	147,300	403,600
CW_old_3_GWP	0,200	9,700	W_ren_4_GWP	147,300	403,600
CW_old_4_GWP	0,200	9,700	W_nb_GWP	140,300	318,800
SCW_old_2_GWP	0,195	0,205	WTWR_MFH_V0_V1	0,100	0,300
SCW_old_3_GWP	0,200	0,800	FTBP	0,135	0,405
SCW_old_4_GWP	0,200	0,800	IWTEW_MFH	0,670	2,010
FL_old_ren_2_GWP*	1,100	20,700	IWTEW_MFH	0,670	2,010

^{*} Geschossdecke, die nicht energetisch saniert wird, aber im Bestand für die nächsten 50 Jahre verbleibt

Die minimalen und maximalen GWP-Werte resultieren aus der Summe der jeweils zu berücksichtigenden LZPH der Szenarien. Die Definition der Bauteilbezeichnungen (Abkürzungen) findet sich in Tabelle 3-4 auf Seite 71. Das Suffix "old" weist darauf hin, dass es sich um eine Bestandskonstruktion handelt, die abgerissen wird oder unverändert bestehen bleibt. Der Index "2" beschreibt die baualtersklassenspezifischen GWP-Werte der BK 2, "3" die der BK 3 und "4" die der BK 4. Bezieht sich der GWP-Wert auf eine Sanierungskonstruktion, erhält er den Index "ren". Verfügt der Input-Parameter in seiner Bezeichnung über ein "nb", deutet dies auf das GWP einer Neubaukonstruktion hin – in diesem Fall auf ein Bauteil in Holzrahmenbauweise (timber frame; "_tf"). Da z. B. die Steildächer (PRO_old) im Szenario 2.2 abgerissen werden, wird das minimale und maximale GWP aus den LZPH C3 und C4 je Baualtersklasse ermittelt und hinterlegt. Der Wertebereich der neuen Außenwand in Holzrahmenbauweise (EWwood_tf_nb) umfasst die Summe des GWP der LZPH A1, A2, A3, B4, C3 und C4. Die für die Summenbildung verwendeten Einzelwerte je Bauteil

^{**} Geschossdecke, die im Zuge der Sanierung abgerissen wird

und Baualtersklasse sind in den Bauteiltabellen in den Anhängen A.6 bis A.8 ab Seite 399 zu finden. Bei den Flächenverhältnissen werden die Wertebereiche in Abhängigkeit der identifizierten Durchschnittswerte gewählt (vgl. Kapitel 4.3.1 bis 4.3.3 ab Seite 113).

5.4.3 Ergebnis, Auswertung und Diskussion

Für die Diskussion werden die Ergebnisse der Sensitivitätsanalyse grafisch ausgewertet. Abbildung 5-25 zeigt S₁ bzw. S^T der Input-Parameter in Abhängigkeit des lebenszyklusbasierten GWP des Quartiers für die Szenarien 2.2.1 und 2.2.2.

Die Indizes des GWP der Altbaukonstruktionen werden in der Abbildung summiert dargestellt. Beispielsweise beinhaltet "FL_old_ren_2_3_4_GWP" die aufsummierten Indizes S_1 und S^T , die ursprünglich baualtersklassenspezifisch, also getrennt nach BK 2, 3 und 4, als Input-Parameter für die sanierten Geschossdecken einfließen. Grund dafür ist, dass die Indizes trotz der Summenbildung einen Wert unter 0,05 einnehmen, also keinen signifikanten Einfluss auf die Varianz des Gesamtergebnisses haben. Eine Ausnahme bildet hier die Sanierung der Fenster. Die Indizes werden hier baualtersklassenbezogen ausgewiesen, da die Summe von $S_1 = 0,047$ und von $S^T = 0,053$ den Grenzwert erreichen würde.

Abbildung 5-25 zeigt, dass im Wesentlichen das Variieren von sechs Input-Parametern (siehe Markierung) einen signifikanten Einfluss auf die Varianz des Gesamtergebnisses hat (siehe Markierung und Ergebnisse Index S₁). Wird der Einfluss des GWP der Fenstersanierung ("W_ren_2_GWP", "W_ren_3_GWP", "W_ren_4_GWP") aufsummiert betrachtet, sind es sieben. Gleichzeitig bestehen bei denselben Input-Parametern die größten Interaktionen untereinander (siehe Ergebnisse S^T).

Sowohl die Fenstersanierung ("W_ren_GWP") als auch die neue Außenwand ("EWwood_tf_nb_GWP") unterschreiten den Grenzwert von 0,05 bei S₁ zwar leicht mit 0,047, aber da sie zudem ein S^T größer 0,05 aufweisen, können sie als einflussnehmende Input-Parameter betrachtet werden.

Den größten Gesamteffekt und die meisten Wechselwirkungen besitzt das GWP der neuen Innenwand in Holzrahmenbauweise ("IWwood_tf_nb_GWP") mit einem S^T von 0,237. Den größten direkten Einfluss auf die Varianz des Gesamtergebnisses hat das GWP der neuen Geschossdecke in Holzrahmenbauweise ("FLwood_tf_nb_GWP") mit einem S₁ von 0,239.

Insgesamt lässt sich jedoch erkennen, dass die Einflüsse der sechs Input-Parameter relativ homogen und gering sind, da sich ihre Wertebereiche untereinander annähern und unter 0,239 bleiben. Demnach sind die Berechnungslogiken bezogen auf die untersuchten Input-Parameter hinreichend robust. Es existiert kein Input-Parameter, der durch sein Variieren die Varianz des Gesamtergebnisses im Verhältnis zu den anderen Input-Parametern maßgebend beeinflussen würde, da die Werte von S₁ und S^T näher an 0 als an 1 liegen. Um die Varianz des Gesamtergebnisses dennoch zu reduzieren, müssten auf Basis der Sensitivitätsanalyse insbesondere die Wertebereiche von "IWwood_tf_nb_GWP",

"FLwood_tf_nb_GWP", "WTWR_MFH" und "IWTEW_MFH" näher bestimmt und eingegrenzt werden.

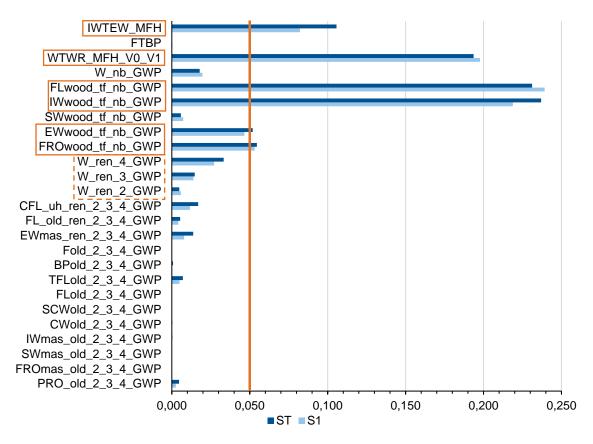


Abbildung 5-25: Sensitivitätsanalyse, GWP des Quartiers für die Szenarien 2.2.1 und 2.2.2, Auswertung S₁ und S^T; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)

Diese Erkenntnis deckt sich mit den Auswertungen der statischen Berechnung (siehe Kapitel 5.2.4 ab Seite 151) und der vergleichenden Flächenberechnung (siehe Kapitel 5.3 ab Seite 163). Das bedeutet, dass die Analyse der statischen Berechnungen ausreichend ist, um die maßgebenden Parameter und deren Unsicherheiten zu identifizieren und projektspezifisch einzugrenzen. Eine parallele Sensitivitätsanalyse ist bei der Durchführung der entwickelten Methode zur LCA mit Hilfe von 3D-Stadtmodellen nicht zwingend erforderlich, da die Handlungsempfehlungen auch aus den statischen Berechnungen allein treffend abgeleitet werden können. Ist eine Sensitivitätsanalyse dennoch erwünscht, sollte Wert auf die Programmierperformance gelegt werden, damit die Berechnungsdauer auf ein Mindestmaß reduziert wird. Denn die hier verwendete Programmierung benötigt über drei Monate für die insgesamt 4.796.500 Einzelberechnungen. Eine solche Zeitdauer ist in der Praxis inakzeptabel und muss durch eine Parallelisierung der Rechenvorgänge bzw. durch die Verwendung leistungsstärkerer Computer kompensiert werden.

5.5 Vergleich der Szenarienergebnisse

Um dem Ziel einer ökologisch optimierten Quartiersentwicklung näher zu kommen, müssen die verschiedenen Szenarienergebnisse vergleichend diskutiert werden. Möglichkeiten der Ergebnisverarbeitung und Visualisierung werden in Kapitel 4.7.2 ab Seite 126 vorgestellt und nachfolgend auf das Fallbeispiel angewendet. Darüber hinaus ist es erforderlich, die Ergebnisse in den wissenschaftlichen Kontext einzuordnen und darauf aufbauend Handlungsempfehlungen für Bauherr:innen, Planende, kommunale Entscheidungsträger:innen oder betroffene Bewohner:innen abzuleiten.

5.5.1 Spinnennetzdiagramme

Für das Fachpublikum bieten Spinnennetzdiagramme eine geeignete Visualisierungsmöglichkeit zum Vergleich der verschiedenen Szenarienergebnisse des Fallbeispiels. Dabei werden die einzelnen Umweltwirkungen der verschiedenen Szenarien auf eine Basis-Variante normiert.

Da die Quartiersgebäude in den Szenarien unterschiedliche NRF aufweisen, ist es wichtig, dies bei der Normierung zu berücksichtigen. Ansonsten würden die Szenarien mit den größeren Nettoraumflächen grundsätzlich höhere Umweltwirkungen verursachen, obwohl sie zeitgleich mehr Nutzfläche bieten. Demnach werden für die Visualisierung die Umweltwirkungen je m²_{NRF} herangezogen:

Einheit GWP: t CO₂-Äq./m²NRF
 Einheit PENRT: MWh/m²NRF
 Einheit PET: MWh/m²NRF

Vor dem Hintergrund der Schaffung zusätzlichen Wohnraums, dient das Szenario 2.2.1 – Sanierung mit Aufstockung in Holzrahmenbauweise, minimale Umweltwirkungen ohne Berücksichtigung der Phase D – als Basisvariante. Je Szenario (2.1, 2.2, 3.1 und 3.2) entsteht ein Spinnennetzdiagramm, das in Abhängigkeit der Basisvariante die Höhe seiner Umweltwirkungen (GWP, PENRT und PET) für das Fallbeispiel ausweist.

Da das Szenario 2.2.1 die Basisvariante ist, erhält dessen GWP-, PENRT- und PET-Wert jeweils den Wert 1. Entsprechend dieser Normierung stellen die Umweltwirkungen der anderen Szenarien somit ein Vielfaches der Umweltwirkungen des Szenarios 2.2.1 dar.

Abbildung 5-26 zeigt, dass Szenario 2.1 – Sanierung mit gleichbleibender Gebäudekubatur auf KfW-55-Standard – mit seinen Unterszenarien unter Berücksichtigung der minimalen und maximalen Werte insgesamt die geringsten Umweltwirkungen aufweist. Von allen Szenarien besitzt Szenario 2.1.3 das geringste GWP (0,54-fache der Basisvariante), die geringste PENRT (0,18-fache) und die geringste PET (0,36-fache).

Die größten Umweltwirkungen der Baukonstruktion bewirkt Szenario 3.1.2 – Abriss und Neubau in Holzbauweise (Passivhausstandard), maximale Umweltwirkungen ohne

Berücksichtigung der Phase D. Das GWP übersteigt das der Basisvariante um das 5,61-fache, die PENRT um das 8,31-fache und die PET um das 11,27-fache. Das Szenario 3.2.2 – Abriss und Neubau in Massivbauweise (Passivhausstandard), maximale Umweltwirkungen ohne Berücksichtigung der Phase D – besitzt insgesamt das größte GWP (6,44-fache der Basisvariante). Dies bedeutet, dass nicht pauschal eine Bauweise ökologisch besser bewertet werden kann als die andere. Zur Bewertung der ökologischen Qualität einzelner Bauteile muss immer eine Analyse auf Bauteilebene erfolgen. Hierbei muss auch untersucht werden, ob etwaige Recycling- oder Wiederverwendungspotentiale am EoL aktiviert werden können.

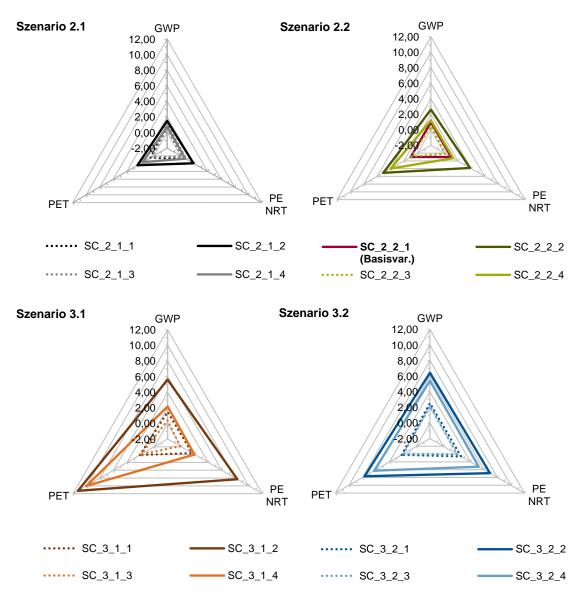


Abbildung 5-26: Fallstudie Moosach, normierter Ergebnisvergleich der Szenarien 2.1 (oben links), 2.2 (oben rechts), 3.1 (unten links) und 3.2 (unten rechts); eigene Darstellung

Die Spinnennetzdiagramme illustrieren die deutlichen Einsparpotentiale, die mit der Aktivierung der Wiederverwendungs- und Recyclingpotentiale (Phase D) einhergehen. Das GWP kann um bis zu 74 % verringert werden (vgl. SC 3.1.1 und 3.1.3), die PENRT um 110 % (vgl. SC 3.1.1 und 3.1.3) und die PET um bis zu 33 % (vgl. SC 2.1.2 und 2.1.4).

Dabei verhalten sich die Änderungen der Umweltwirkungen nicht immer proportional zueinander. Die asymmetrische Ausbildung der Dreiecke im SC 3.1.2 und 3.1.4 weist z. B. auf einen hohen Anteil an erneuerbarer Primärenergie in den Holzbaustoffen hin, der weniger kritisch einzustufen ist, als ein hoher Anteil an nicht erneuerbarer Primärenergie.

Bei Abriss und Neubau in Massivbauweise (SC 3.2) ist die Ausbildung der drei Umweltwirkungen homogener. Der Wertebereich zwischen den minimalen und maximalen Grauen Energien und Emissionen schwankt geringer als bei Szenario 3.1. Gleichzeitig ist jedoch zu erkennen, dass das Szenario 3.2.1, also das Szenario mit den geringsten Umweltwirkungen der Massivbauweise (ohne Phase D) das Pendant der Holzbauweise (SC 3.1.1) leicht übertrifft.

Insgesamt lassen sich folgende Erkenntnisse aus Abbildung 5-26 mit dem Fokus auf eine ökologisch optimierte Ausführung der Baukonstruktion ableiten:

- Besteht im Quartier kein Nachverdichtungsbedarf, so ist die Sanierung mit gleichbleibender Gebäudekubatur in jedem Fall den anderen Szenarien vorzuziehen, da sie die geringsten Grauen Energien und Emissionen bewirkt.
- Muss nachverdichtet werden, so sollte geprüft werden, ob die Bestandsgebäude aufgestockt werden können, da hierdurch im Vergleich zum Abriss und Neubau insgesamt ebenfalls geringere Umweltwirkungen entstehen.
- Ist ein Abriss des Quartiers unvermeidbar, so muss die Neubauausführung ökologisch durchdacht geplant werden. Die Holzbauweise führt nicht grundsätzlich zu den geringsten Umweltwirkungen. Denn die energetische Verwertung von Holz am EoL setzt das in Form von Kohlenstoff gebundene CO₂ wieder frei. Unter Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale (hier: Verdrängung fossiler Primärenergie durch die energetische Verwertung des Holzes) besitzt sie jedoch deutliche Vorteile gegenüber der Massivbauweise. Bei den Holzbauteilen ist die Gewichtung des Einsatzes an erneuerbarer Energie ebenfalls zu diskutieren. Denn der Verbrauch fossiler und mineralischer Ressourcen ist kritischer als der von nachwachsenden Rohstoffen.

Forschungsprojekte haben jedoch gezeigt, dass die Entscheidung über die Bauausführung nicht allein auf Basis der Baukonstruktion getroffen werden sollte. Maßgebender Faktor im Wohnungs- und Nichtwohnungsbau ist nach wie vor der betriebliche Energiebedarf, wobei die Bedeutung der Baukonstruktion bei Niedrigstenergiegebäuden zunimmt. Auch die Komponenten der TGA und deren lebenszyklusbasierte Umweltwirkungen dürfen nicht außer Acht gelassen werden. (Banihashemi et al., 2021; Harter, Meier-Dotzler et al., 2020; Röck et al., 2020; Schneider-Marin et al., 2019)

Daher ist es wichtig, dass die hier entwickelte Methode mit der LCA des betrieblichen Energiebedarfs und der TGA zusammengeführt wird (siehe Kapitel 5.6.1 ab Seite 177). Nur so ist eine ganzheitliche Analyse möglich. Im Forschungsprojekt "Grüne Stadt der Zukunft" konnte gezeigt werden, dass dies bereits möglich ist (Banihashemi et al., 2021; TU München - Lehrstuhl für Strategie und Management der Landschaftsplanung, o. J.).

5.5.2 Umweltkosten

Eine weitere Möglichkeit die Umweltwirkungen zu visualisieren, ist die Darstellung über Umweltkosten. Die genaue Methode wird in Kapitel 4.7.2.2 ab Seite 128 beschrieben. Die Verwendung der Methode bietet sich vor allem bei gleichzeitiger Ermittlung der Lebenszykluskosten an. Investitions-, Nutzungs- und Entsorgungskosten können so durch zusätzlich entstehende Umweltkosten ergänzt werden.

Für die Fallbeispielszenarien werden beispielhaft die Umweltschadenskosten nach Matthey und Bünger (2020) ermittelt. Wie in Kapitel 4.7.2.2 (ab Seite 128) erläutert, bewegen sich die Umweltschadenskosten je nach Anwendung der Generationengerechtigkeit bezogen auf das Basisjahr 2022 zwischen 199 und 684 €₂₀₂₂ je Tonne CO₂-Äquivalent. Für einen besseren Ergebnisvergleich werden diese Kosten in €₂₀₂₂ je m²_{NRF} und Jahr [€₂₀₂₂/(m²_{NRF}×a)] (bei 50 Jahren Lebensdauer) ausgewiesen (vgl. Kapitel 3.3.3 ab Seite 66). Tabelle 5-10 illustriert die so entstehende Spannweite der Umweltschadenskosten von 0,14 bis 7,84 €₂₀₂₂/(m²_{NRF}×a).

Tabelle 5-10: Fallstudie Moosach, minimale und maximale Umweltschadenskosten je m²NRF und Jahr bei 50 Jahren Lebensdauer; eigene Darstellung nach Matthey und Bünger (2020, S. 8)

Szenario	Umweltschadenskosten [€ ₂₀₂₂ /(m² _{NRF} ×a)]
SC 2.1.1	0,33 - 1,14
SC 2.1.2	0,53 - 1,82
SC 2.1.3	0,19 - 0,66
SC 2.1.4	0,27 - 0,92
SC 2.2.1	0,35 - 1,22
SC 2.2.2	0,93 - 3,19
SC 2.2.3	0,16 - 0,56
SC 2.2.4	0,44 - 1,50
SC 3.1.1	0,52 - 1,79
SC 3.1.2	1,99 - 6,83
SC 3.1.3	0,14 - 0,47
SC 3.1.4	0,77 - 2,64
SC 3.2.1	0,90 - 3,08
SC 3.2.2	2,28 - 7,84
SC 3.2.3	0,77 - 2,64
SC 3.2.4	1,92 - 6,59

Berechnung der min. und max. Umweltschadenskosten (199 bzw. 684 €2022/t CO₂-Äq.) durch Interpolation auf das Basisjahr 2022

Auf den ersten Blick erscheinen die jährlichen Umweltschadenskosten je m²_{NRF} infolge des CO₂-Ausstoßes gering. Ein Vergleich mit den durchschnittlichen jährlichen Heizkosten (LZPH B6) lässt jedoch deren Relevanz erkennen. Im Jahr 2021 beliefen sich die Heizkosten je m² Gebäudefläche für ein mittelgroßes MFH (501 bis 1.000 m²) durchschnittlich zwischen 8,30 € (Holzpellets) und 13,80 € (Fernwärme) (co2online, 2022). Eine Teuerung der Lebenskosten um die maximalen Umweltschadenskosten von 7,84 €₂₀₂₂/(m²_{NRF}×a) für die

Baukonstruktion (siehe SC 3.2.2) würde demnach eine deutliche Mehrbelastung um bis zu 94 % darstellen. Derzeitige Energiepreisteuerungen um beispielsweise 395 % beim Erdgas (Anstieg der monatlichen Heizkosten im September 2022 eines EFH mit Gasheizung gegenüber Vorjahresmonat) schwächen zwar den Einfluss der Umweltschadenskosten deutlich ab, sie würden jedoch trotzdem sichtbar bleiben (co2online, 2022).

Auch der Kaufpreis einer Eigentumswohnung könnte sich signifikant durch die Berücksichtigung der Umweltschadenskosten erhöhen. Im ersten Quartal 2022 lag der durchschnittliche Angebotspreis einer Eigentumswohnung in Deutschland bei 3.353 € je m² Wohnfläche (Statista, 2022a). Setzt man die NRF der Wohnfläche gleich und würden die maximalen Umweltschadenskosten des Szenarios 3.2.2 von 392 €₂₀₂₂/m²_{NRF} (7,84 €/m²_{NRF} × 50 a) im Kaufpreis berücksichtigt, würde dies den Angebotspreis um 11,7 % erhöhen.

Dabei resultieren jedoch nicht nur Umweltschadenskosten aus den CO₂-Emissionen der Baukonstruktion. Auch andere Umweltwirkungen, wie das Ozonabbaupotential (ODP), die photochemische Ozonbildung (POCP), das Versauerungspotential (AP) oder das Eutrophierungspotential (EP) lassen weitere Umweltschadenskosten entstehen (Schneider-Marin und Lang, 2020). Zusätzlich wären auch die Umweltschadenskosten zu ermitteln, die aus den TGA-Komponenten oder aus der Nutzung der Wohngebäude hervorgehen.

Wie Schneider-Marin und Lang (2020) erörtern, stellt die Ermittlung der Umwelt- bzw. Umweltschadenskosten eine geeignete Methode dar, um Umweltauswirkungen transparent und verständlich zu illustrieren. Sie machen nicht nur die ökologische, sondern auch die sozioökonomische Brisanz des Klimaschutzes im Bauwesen deutlich. Um dafür eine breite Akzeptanz in der Bevölkerung zu schaffen, müssen jedoch einheitlich geltende Kostensätze geschaffen werden. Bisher sind die Kostenspannweiten in der Fachliteratur noch sehr unterschiedlich. Gründe hierzu werden in Kapitel 4.7.2.2 ab Seite 128 genannt.

5.5.3 Baumwachstum

Neben den Umweltschadenskosten ist die Darstellung des notwendigen Baumwachstums zur Bindung der entstehenden CO₂-Emission ein probates Mittel, Umweltauswirkungen verständlich darzustellen (vgl. Kapitel 4.7.2.3 ab Seite 131).

Auch auf die Szenarienergebnisse des Fallbeispiels wird diese Methode angewendet. Als Grundlage wird das CO₂-Bindungspotential einer Stadtlinde nach dem CTCC des Climate Change Resource Center (o. J.) und Kalisch (2021) herangezogen (siehe auch Tabelle 4-5, Seite 132). Dabei wird zunächst das Kohlenstoffbindungspotential ermittelt und anschließend auf das CO₂ übertragen, denn Bäume binden bei der Photosynthese CO₂ nur indirekt in Form von Kohlenstoff. Vor diesem Hintergrund besitzt eine 40- bis 60-jährige Stadtlinde (bzw. Winterlinde) in mit München vergleichbaren Klimazonen ein durchschnittliches CO₂-Bindungspotential von 1.178,82 kg. Die Stadtlinde wird deshalb gewählt, da sie im Stadtgebiet München heimisch ist und somit das anfallende CO₂ da gebunden werden

kann, wo es entsteht. Können alle Wiederverwendungs- und Recyclingpotentiale aktiviert werden, so verursacht Szenario 3.1.3 mit 5.363,8 t CO₂-Äq. das geringste GWP. Ohne Berücksichtigung der Phase D müssen maximal 91.371,9 t CO₂-Äq. (Szenario 3.2.2) durch das Pflanzen von Stadtlinden gebunden werden.

Abbildung 5-27 zeigt auf Basis der Szenarienergebnisse die minimal und maximal erforderliche Anzahl an Stadtlinden. Die Anzahl der bildhaft dargestellten Bäume steht dabei im Mengenverhältnis. Sie illustriert den Bedarf an zusätzlichem Stadtgrün, das allein durch die Sanierung des kleinen Stadtgebietes erforderlich wäre. Bei einer geschätzten Gesamtanzahl von ca. 600.000 Stadtbäumen im Stadtgebiet München ergeben 4.551 Stadtlinden eine Zuwachsrate von 0,8 % (Rötzer et al., 2021; Wilhelm, 2019). Eine zusätzliche Pflanzung von 77.512 Bäumen erscheint jedoch in der Praxis aus Platzgründen nicht umsetzbar. Eine 40-jährige Linde besitzt eine Kronenfläche von ca. 45 m² (Rötzer et al., 2021). 77.512 Bäume ergeben so einen Platzbedarf von 3,5 km², was 1,1 % der gesamten Münchner Stadtfläche (310,7 km²) oder 8,4 % der städtischen Grünflächen (41,64 km²; Stand 2020) beträgt (München Betriebs GmbH & Co. KG, 2022). Zusätzlich müssen alle Bäume ein Alter von 40 bis 60 Jahren erreichen, um die genannte Menge an CO₂ in Form von Kohlenstoff binden zu können.

Kompensationsmöglichkeit - Baumpflanzung

Zur Kompensation des im Szenario 3.1.3 anfallenden GWP von 5.363,8 Tonnen CO₂-Äq. müssen sie 4.551 Stadtlinden pflanzen und nachhaltig bewirtschaften.

Zur Bindung des im Szenario 3.2.2 anfallenden GWP von 91.371,9 Tonnen CO_2 -Äq. sind 17 Mal so viele, und zwar 77.512 Stadtlinden erforderlich.

Abbildung 5-27: Fallstudie Moosach, Visualisierung der erforderlichen Stadtlinden zur Bindung des minimal und maximal anfallenden lebenszyklusbasierten GWP; eigene Darstellung

Die Methode stellt eine Visualisierungsmöglichkeit des lebenszyklusbasierten GWP dar, die in der Theorie verständlich kommuniziert werden kann. Die praktische Umsetzung gestaltet sich aufgrund der Flächenkonkurrenzen in der Stadt jedoch schwierig. Vor allem, wenn man die Umweltwirkungen des Bausektors dort kompensieren will, wo sie entstehen. Eine dem Emissionsausstoß entsprechende Baumpflanzung kann deshalb nicht die alleinige Antwort auf das Klimaproblem sein. Vielmehr müssen bereits in der Planungsphase die Klimaauswirkungen einer Baumaßnahme weitestgehend reduziert werden.

5.6 Diskussion der Fallstudie

5.6.1 Ergebnisvergleich mit anderen Publikationen

Abschließend werden die Szenarienergebnisse mit den Ergebnissen anderer LCA-Studien verglichen. Zunächst wird der Einfluss der Baukonstruktion im Gebäudelebenszyklus eingeordnet. Im Rahmen des Forschungsprojektes "Grüne Stadt der Zukunft" wurde nicht nur eine LCA der Baukonstruktion, sondern auch eine LCA der TGA und des betrieblichen Energieeinsatzes durchgeführt.

Die Studie hat gezeigt, dass bei einer Quartierssanierung mit gleichbleibender Gebäudekubatur (SC 2.1) 27 % des lebenszyklusbasierten GWP auf die Baukonstruktion und 3 % auf die TGA zurückzuführen sind. 70 % resultieren aus dem Gebäudebetrieb (Heizen- und Trinkwarmwasseraufbereitung). (Banihashemi et al., 2021)

Bei einer Sanierung mit Aufstockung um zwei Geschosse in Holzrahmenbauweise (SC 2.2) nimmt der Anteil der Baukonstruktion am gesamten GWP zwischen 10 und 39 % und an der gesamten PET zwischen 19 und 56 % ein. Diese hohen Anteile der Baukonstruktion an den lebenszyklusbasierten Grauen Energien und Emissionen beruhen auf der Annahme, dass die Quartiersgebäude nach der Sanierung mit Hilfe von Fernwärme oder Wärmepumpen beheizt werden. Diese Beheizungsvarianten basieren auf einem höheren Anteil an erneuerbaren Energien. Gleichzeitig sinkt der totale Primärenergiebedarf im Betrieb. Relativ gesehen steigen somit die Anteile der Grauen Energien und Emissionen im Lebenszyklus. Vor dem Hintergrund eines klimaneutralen Gebäudebetriebs, entwickelt sich hierdurch die Baukonstruktion zum maßgebenden Treiber der lebenszyklusbasierten Umweltwirkungen, insbesondere bei Gebäuden im Niedrigstenergiestandard. (Banihashemi et al., 2021)

Diese Erkenntnis deckt sich auch mit denen anderer Studien. Mahler, Idler und Gantner (2019) bestätigen, dass die Baukonstruktion von neuen Wohngebäuden im Niedrigstenergiestandard 30 % des lebenszyklusbasierten GWP verursachen kann. Auch Braune et al. (2021) vermerken, dass bei Neubauten das Treibhausgasemissionen-Verhältnis zwischen Bauwerk und Gebäudebetrieb durchschnittlich 35 zu 65 % beträgt.

Ein detaillierter Vergleich der Berechnungsergebnisse ist mit zwei Publikationen möglich, die sich mit den Umweltwirkungen von Neubauten beschäftigen (siehe Kapitel 2.7.2 und 2.7.3 ab Seite 40). Benchmarks für die Sanierung finden sich zwar auch bei Mahler, Idler, Nusser und Gantner (2019), allerdings wird das GWP für die Baukonstruktion und TGA zusammen ausgewiesen sowie auf die Wohnfläche und nicht auf die NRF bezogen. Ein direkter Vergleich zur Validierung der Ergebnisse ist aufgrund der unterschiedlichen funktionalen Einheiten und Systemgrenzen somit nicht möglich.

Zur Validierung der Szenarienergebnisse des Neubaus dienen deshalb die Benchmarks von König (2017) und Braune et al. (2021) in Tabelle 5-11. Dafür wird für die Szenarien 3.1 und 3.2 der Anteil des Gebäudeabrisses subtrahiert.

Tabelle 5-11 zeigt, dass die Szenarienergebnisse mit den Benchmarks der Literatur vergleichbar sind. Die Wertebereiche des GWP, der PENRT und PET überschneiden sich mit König (2017). Die minimalen Umweltwirkungen der Szenarien liegen zwar deutlich unterhalb der Wertebereiche der Literatur, aber die maximalen Umweltwirkungen der Szenarios 3.1 liegen innerhalb.

Beim Szenario 3.2 trifft dies ebenfalls auf das GWP zu (8,4 < 10,9 < 16,7 kg CO₂-Äq./(m²_{NRF}×a)). Die maximalen Werte der PENRT und PET sind hier zwar um 4 bzw. 10 MJ/(m²_{NRF}×a) kleiner als bei König (2017), aber dort umfassen die Werte nicht nur die Umweltwirkungen der Baukonstruktion sondern auch die der TGA. Zudem berücksichtigt (König, 2017) bei der Baukonstruktion auch Bodenbeläge sowie Decken- oder Wandbeschichtungen, die zusätzliche Umweltwirkungen verursachen. Diese Bauteilschichten fließen bei der Fallstudie nicht ein (siehe Kapitel 3.2.2.1 ab Seite 54). Ferner werden bei der Fallstudie auch die Wiederverwendungs- und Recyclingpotentiale betrachtet, wodurch sich die Wertebereiche deutlich erweitern.

Tabelle 5-11: Fallstudie Moosach, Vergleich der Szenarienergebnisse (Neubauten) mit Benchmarks aus der Literatur; eigene Darstellung

Umwelt- wirkung	Szenario 3.1 (für Baukonstruktion, exkl. Gebäudeabriss und TGA)	Szenario 3.2 (für Baukonstruktion, exkl. Gebäudeabriss und TGA)	König (2017) (für Baukonstruktion und TGA)	Braune et al. (2021) (für Baukonstruktion)
GWP	0,3 - 9,4 kg	3,5 - 10,9 kg	8,4 - 16,7 kg	8,7 kg
GWF	CO ₂ -Äq./(m ² NRF x a)	CO ₂ -Äq./(m ² NRF x a)	CO ₂ -Äq./(m ² NRF x a)	CO ₂ -Äq./(m ² NRF x a)
PENRT	1 - 122	34 - 101	105 - 214	Keine Angaben
FLINIXI	MJ/(m² _{NRF} ×a)	MJ/(m² _{NRF} ×a)	MJ/(m² _{NRF} ×a)	Neine Angaben
PET	42 - 210	41 - 143	153 - 250	Keine Angaben
FEI	$MJ/(m^2NRFxa)$	MJ/(m² _{NRF} ×a)	MJ/(m² _{NRF} ×a)	Reine Angaben

Die von Braune et al. (2021) ermittelten durchschnittlichen Treibhausgasemissionen der Baukonstruktion von 8,7 kg CO₂-Äq./(m²_{NRF}×a) liegen ebenfalls in den Wertebereichen der Fallstudie. Sie weisen in ihrer Studie darauf hin, dass ein Grenzwert von 4,3 kg CO₂-Äq./(m²_{NRF}×a) für Neubaugebäude erforderlich ist, um die Klimaziele zu erreichen. Dies wäre für das Quartier in Moosach erreichbar, insofern nicht nur materialeffizient gebaut wird, sondern auch das Recycling und die Wiederverwendungsmöglichkeiten von Baustoffen berücksichtigt werden.

Graubner und Knauff (2008) vergleichen die Ökobilanz der Holzelement- und der Massivbauweise eines KfW-40-Energiesparhauses. Sie vermerken, dass sich die Umweltwirkungen der Holzelement- und Massivbauweise je nach zugrunde liegender Gebäudelebensdauer und Austauschzyklen angleichen. Die Holzbauweise entfaltet bei Lebensdauern, die kürzer als 80 Jahre sind, ihre Vorteile. Danach heben sich die Vorteile auf. Zudem weisen sie in ihrer Studie darauf hin, dass der Innenausbau und dessen Austauschzyklen einen wesentlichen Einfluss auf das Ergebnis nehmen. Somit sind die LCA-Ergebnisse verschiedener Studien nur vergleichbar, wenn auch dieselben räumlichen und zeitlichen Systemgrenzen angewendet werden (siehe 3.2.2 ab Seite 54). Bei sich verändernden Nutzungsund Gebäudelebensdauern müssen die Szenarienergebnisse neu berechnet und bewertet werden.

5.6.2 Kritische Würdigung der Fallstudienergebnisse

Neben gleicher räumlicher und zeitlicher Systemgrenzen muss auch die Datenbank identisch sein, um einzelne Fallstudienergebnisse miteinander vergleichen zu können. Ebenfalls beeinflusst die Wahl der einzelnen Datensätze, wie z. B. die der ÖKOBAUDAT (Version 2020-II), die Ergebnisse maßgebend. Eine Aktualisierung der Datensatzversion bleibt bei der hier entwickelten Methodik stets möglich, muss jedoch manuell vorgenommen werden. Bei Bedarf können auch generische oder durchschnittliche Datensätze durch produktspezifische Datensätze ersetzt werden, welche die Umweltwirkungen verschiedener Baumaterialien signifikant anders bewerten können.

Darüber hinaus bestätigt die Fallstudie die Anwendbarkeit der entwickelten Methode und Berechnungslogiken für eine LCA der Baukonstruktion auf Quartiersebene in frühen Planungsphasen. Auch ist mit Hilfe der genannten Visualisierungen eine fundierte Ergebnisdiskussion möglich. Die Methode kann beliebig auf andere Quartiere übertragen werden, insofern 3D-Stadtmodelle mit gleichem Informationsgehalt und LoD vorhanden sind. Theoretisch können anstatt des CityGML-Formats auch andere Datenmodelle genutzt werden. Voraussetzung ist jedoch das Vorliegen der wesentlichen Gebäudekennwerte wie Nutzungsart, Baujahr und Angaben zu den Gebäudehüllflächen.

Bei der Übertragung der Methode auf andere Quartiersstudien müssen jedoch die existierenden Unsicherheiten berücksichtigt und projektspezifisch reduziert werden. Die Fallstudie bestätigt die Erkenntnis von Häfliger et al. (2017), dass es sowohl auf Material- als auch Gebäudeebene Unsicherheiten gibt. Die Wertebereiche der Umweltwirkungen des Massivbaus streuen dabei nicht so stark wie die der Holzbauweise.

Eine Sensitivitätsanalyse variierender Input-Parameter zur Identifizierung der maßgebenden Treiber der LCA ist sinnvoll, aber nicht zwingend erforderlich. In jedem Fall muss deren Programmierung so umgesetzt werden, dass sie zeitnah Ergebnisse liefern kann.

Durch die Fallstudie zeigt sich ferner, dass Bauteilflächenverhältnisse und die Wahl der Bauteilausführungen die Szenarienergebnisse gleichermaßen beeinflussen können. Um die Wertebereiche anderer Fallstudien eingrenzen zu können, müssen deshalb die Bauteilausführungen so früh wie möglich konkretisiert werden.

Andererseits ist es eine wesentliche Stärke der Methode, dass in frühen Planungsphasen die gesamte mögliche Bandbreite der Umweltwirkungen und die Einsparpotentiale ermittelt werden können, wenn die Bauweise noch nicht konkret feststeht. Sie ermöglicht so

eine fundierte Fachdiskussion über verschiedene Bauweisen und deren Ressourceneinsparpotentiale.

5.6.3 Umgang mit Gutschriften und dem zukünftigen Einfluss der Baukonstruktion im Lebenszyklus

Die Aktivierung der Wiederverwendungs- und Recyclingpotentiale muss kritisch diskutiert werden, da sie theoretisch zwar durch die Phase D erfasst werden, jedoch praktisch nicht immer umgesetzt werden können. Ferner können sich zukünftig die Umweltwirkungen einzelner Entsorgungsszenarien inklusive ihrer bilanziellen Gutschriften verändern. Als Beispiel kann die energetische Verwertung von Holzbaustoffen am EoL erwähnt werden. Durch eine sogenannte Kaskadennutzung (mehrmalige Nutzung des Baumaterials bevor es final thermisch verwertet wird) kann das GWP langfristig und über mehrere Bauprojekte hinweg gebunden werden und das gebundene CO₂ wird nicht jedes Mal beim Gebäudeabriss freigesetzt. Höglmeier et al. (2013) zeigen beispielsweise in ihrer Fallstudie von 2011, dass 26 % des durch Abriss wiedererlangten Holzes in Süd-Ost-Deutschland direkt weitergenutzt und weitere 27 % als Sekundärrohstoff verwendet werden könnten. Dies würde deutlich zur Klimaneutralität des zukünftigen Gebäudebestandes beitragen und beispielsweise eine Aufforstungsmaßnahme zur Bindung des erzeugten Treibhausgaspotentials (siehe Kapitel 5.5.3 ab Seite 175) unterstützen.

Bisher galt bei einem stetig hohen Betriebsenergiebedarf, der im Wesentlichen durch fossile Energieträger bereitgestellt wird, dass sich die energetische Sanierung von Bestandsgebäuden auch seitens der Ökologie in jedem Fall lohnt. Sinkt der betriebliche Energiebedarf bei gleichzeitiger Erhöhung des Deckungsanteils durch erneuerbare Energien, rücken die ökologische Qualität der Baukonstruktion und der Ressourcenverbrauch bei der Sanierung oder im Neubau in den Vordergrund. Hier muss diskutiert werden, ob sich der materielle Mehrverbrauch und die damit einhergehenden Grauen Emissionen und Energien auch ökologisch noch begründen lassen, nachdem die Maßnahmen aus wirtschaftlicher Sicht in der Praxis bereits heute umstritten sind. Hierzu bietet sich eine parallele LCA- und LCC-Studie an, wobei bei der LCC zukünftig auch die Umweltschadens- oder gesetzliche Emissionskosten berücksichtigt werden müssen.

Die Einbettung der Fallstudie in das Forschungsprojekt "Grüne Stadt der Zukunft" zeigt zudem, dass in die Quartiersplanung auch die Aspekte der Klimaanpassung einfließen müssen. Mildere Winter reduzieren den Heizenergiebedarf und heißere Sommer verursachen eine aktive oder passive Kühlung der Gebäude. (Banihashemi et al., 2021)

Die vorliegende Arbeit bietet sowohl die methodische Grundlage als auch baukonstruktive Beispiele für die ökologische Analyse einer klimaangepassten Bauweise. So wird bereits der Bauteilaufbau zur Umsetzung einer intensiven Dachbegrünung berücksichtigt. Die Umweltwirkungen einzelner Beispielaufbauten fließen demnach bereits in die Berechnung der Fallstudie ein. Darüber hinaus können innovative Konstruktionsaufbauten leicht nach

der vorgegebenen Struktur ergänzt und in die Tabellen der Anhänge A.3 (ab Seite 296), A.4 (ab Seite 311), A.7 (ab Seite 439) und A.8 (ab Seite 450) eingearbeitet werden.

5.6.4 Fallstudienspezifische Handlungsempfehlungen

Aus dem Vergleich der Szenarienergebnisse untereinander und mit der Literatur resultieren verschiedene spezifische Handlungsempfehlungen für die Quartiersentwicklung der Fallstudie:

- Szenario 1 zeigt, dass baualtersklassenspezifische Unterschiede bei den Umweltwirkungen der Bestandskonstruktionen vorhanden sind. BK 2 weist das geringste GWP je m² NRF auf, BK 4 das höchste.
- Die Quartierssanierung erzeugt grundsätzlich geringere Umweltwirkungen als der Gebäudeabriss mit Ersatzneubau und ist diesem aus ökologischer Sicht vorzuziehen. Die Vor- und Nachteile einer Sanierung sollten in frühen Planungsphasen fundiert gegeneinander abgewägt werden. Maßgebende Treiber im Szenario 2.1 sind wegen ihres hohen Flächenanteils die Steildächer und Außenwände. Durch die geringe durchschnittliche Geschosszahl des Quartiers kann je nach Bauausführung auch die Sanierung der Kellerdecke maßgeblichen Einfluss nehmen. Darüber hinaus bewirken der Austausch und Ersatz der Fenster einen deutlichen Anteil an den Umweltwirkungen. Zwar ist der Fensterflächenanteil gering, jedoch sind die Umweltwirkungen je m² Bauteilfläche hoch.
- Für eine ökologisch optimierte Bauausführung sollten die Bauteile untersucht werden, die die größten Flächenanteile im Quartier besitzen und die höchsten ökologischen Einzelwerte aufweisen. Für die Bauteile mit den höchsten Einzelwerten wird eine detaillierte Betrachtung der vorliegenden Bauteilschichten bzw. -komponenten empfohlen (v. a. für Fenster).
- Bei Nachverdichtungsmaßnahmen sollte die Umsetzbarkeit von Bestandsaufstockungen diskutiert werden, bevor die Gebäude durch Neubauten ersetzt werden. Maßgebende Treiber sind hier die Sanierung der Außenwände und Fenster sowie der Neubauder Innenwände, Außenwände und Flachdächer.
- Ist ein Abriss der Bestandsgebäude aus konstruktiver oder ökonomischer Sicht unvermeidbar, muss nicht nur die Neubauausführung ökologisch durchdacht werden, sondern es müssen zukünftig auch die Umweltwirkungen des Bestandsabrisses berücksichtigt werden. Sie besitzen einen signifikanten Einfluss auf die ökologische Qualität der Baumaßnahme (Szenario 3.1: 2 bis zu 50 % am GWP; Szenario 3.2: 1 bis zu 16 % am GWP).
- Wird das Quartier abgerissen und durch Neubaugebäude ersetzt, ist sowohl im Holzals auch im Massivbau aufgrund der hohen Flächenanteile die ökologische Qualität der Innenwände, Geschossdecken und Außenwände zu untersuchen. Im Holzbau beeinflussen die Bauteile entgegen dem Massivbau die lebenszyklusbasierten Umweltwirkungen nicht in allen Unterszenarien mit gleicher Tendenz. Je Bauteil führt entweder

- die Holzrahmen- oder die Holzmassivbauweise zu den höchsten Umweltwirkungen. Deshalb sollte die ökologische Optimierung auf der Bauteilebene erfolgen.
- Die Holzbauweise führt nicht grundsätzlich zu den geringsten Umweltwirkungen. Unter Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale besitzt sie jedoch deutliche Vorteile gegenüber der Massivbauweise. Die Gewichtung des Einsatzes an erneuerbarer Energie ist dabei zu diskutieren. Denn der Verbrauch fossiler und mineralischer Ressourcen ist kritischer als der von nachwachsenden Rohstoffen.
- Die Ergebnisvarianzen werden zum einen durch die Unsicherheiten bei der automatisierten Flächenberechnung beeinflusst. Zum anderen verursachen die Wertebereiche der minimalen und maximalen Umweltwirkungen je m²_{Bauteil} eine Streuung des Gesamtergebnisses. Dies bestätigt sowohl die vergleichende Flächenberechnung (Kapitel 5.3 ab Seite 163) als auch die Sensitivitätsanalyse (Kapitel 5.4 ab Seite 166). Die Unsicherheiten der automatisierten Flächenberechnung können toleriert werden, insofern die dafür maßgebenden Faktoren (z. B. Fensterflächenanteil und Verhältnis von Innenzu Außenwandfläche) projektspezifisch genauer bestimmt werden.
- Nicht nur die Sensitivitätsanalyse, sondern auch die statische Berechnung identifiziert die wesentlichen Input-Faktoren, die für die Varianzen der Szenarienergebnisse verantwortlich sind. Somit ist die Durchführung einer Sensitivitätsanalyse qualitativ sinnvoll, jedoch nicht zwingend erforderlich.
- Spinnennetzdiagramme sollten für die Ergebnisdiskussion in Fachgremien eingesetzt werden, da sie die Vor- und Nachteile der verschiedenen Varianten in Abhängigkeit einer Basisvariante übersichtlich darstellen können. Hieraus werden die Vorteile der Quartierssanierung in allen drei Umweltkategorien gleichzeitig erkennbar.
- Für die Fallstudie empfiehlt sich eine parallele Lebenszykluskostenanalyse (LCC). Unter Berücksichtigung der Umweltschadenskosten durch CO₂-Emissionen können so die ökologischen und ökonomischen Vor- und Nachteile einzelner Szenarien gleichzeitig bewertet werden. Um den Klimazielen und einer nachhaltigen Entwicklung des Bausektors gerecht zu werden, müssen neben Investitions-, Nutzungs- und Entsorgungskosten zukünftig auch die Umweltschadenskosten berücksichtigt werden.
- Die Bindung des durch die Baumaßnahme entstehenden GWP mit Hilfe von Aufforstungsmaßnahmen ist in der Praxis nur bedingt umsetzbar. Diese Visualisierungsart liefert jedoch eine verständliche Möglichkeit der Ergebniskommunikation.
- Die direkte Übertragung der Szenarienergebnisse auf andere Quartiere ist nur teilweise möglich. Dafür müssen die zeitlichen und räumlichen Systemgrenzen identisch definiert sein und die vorhandenen Unsicherheiten weitestgehend reduziert werden.
- Bei Niedrigstenergiegebäuden gewinnt die Ausführung der Baukonstruktion aus ökologischer Sicht zunehmend an Bedeutung. Der Vergleich der Wertebereiche der einzelnen Szenarien illustriert dabei die ökologischen Einsparpotentiale.
- Die Fallstudienergebnisse, insbesondere die Ausführungsvarianten der Baukonstruktion und deren Umweltwirkungen sollten nicht nur im Kontext des Klimaschutzes, sondern auch der Klimaanpassung diskutiert werden.

5.7 Zusammenfassung Kapitel 5

- In diesem Kapitel wird die erfolgreiche Anwendbarkeit der Methodik und der entwickelten Berechnungslogiken für die LCA der Baukonstruktion auf Quartiersebene via 3D-Stadtmodelle anhand der Fallstudie "Moosach" aufgezeigt.
- Für die 181 Wohngebäude im Quartier werden in insgesamt 20 Bauausführungsszenarien die lebenszyklusbasierten Umweltwirkungen verschiedener Baukonstruktionen automatisiert berechnet und deren Ergebnisse miteinander verglichen.
- Die Fallstudie zeigt, dass eine LCA verschiedener baulicher Entwicklungsszenarien von größeren Gebäudebeständen, wie Stadtquartieren, automatisiert und schnell durchführbar ist und dass die Ergebnisse mit Hilfe verschiedener Visualisierungsmöglichkeiten transparent und verständlich diskutiert werden können.
- Stärke der Methode ist die Möglichkeit zur Abschätzung der zu erwartenden Umweltwirkungen eines Sanierungs- oder Neubauprojektes in frühen Planungsphasen, wenn nur wenige Informationen über den Bestand vorliegen. Datengrundlage bieten dabei semantische 3D-Stadtmodelle (LoD2) im CityGML-Format 2.0 (siehe Kapitel 4) sowie die entwickelten ökologischen Kennwerte verschiedener Bauteilkonstruktionen (siehe Kapitel 3).
- Die mit Hilfe der Fallstudie durchgeführte Sensitivitätsanalyse identifiziert Unsicherheiten, die bei der Anwendung der Methode entstehen. Die Varianz der Gesamtergebnisse wird im Wesentlichen durch die Streuung von sechs der insgesamt 52 Input-Parameter beeinflusst. Diese Input-Parameter werden größtenteils auch in der statischen Berechnung als wesentliche Treiber der Umweltwirkungen und der Streuungsbreite der Szenarienergebnisse identifiziert.
- Als wesentliche Treiber der Umweltwirkungen GWP, PENRT und PET der Fallstudie gelten die Bauteile mit den größten Flächenanteilen (Innenwand, Außenwand und Geschossdecken) sowie die Fenster, die je m² Bauteil die höchsten Umweltwirkungen besitzen.
- Um die Unsicherheiten bzw. die Streuungsbreite bei den Berechnungsergebnissen zu reduzieren, erlaubt es die Methode die Werte der Input-Parameter zu konkretisieren. Dies ist insbesondere bei den Flächenverhältnissen relevant (z. B. Fensterflächenanteil oder Verhältnis der Innenwand- zur Außenwandfläche).
- Aus den Ergebnissen der Fallstudie werden folgende spezifische Handlungsempfehlungen für die Quartiersentwicklung abgeleitet:
 - Eine Sanierung des Quartiers und seiner Baukonstruktion auf den Niedrigstenergiestandard ist aus ökologischer Sicht einem Gebäudeabriss und Neubau in jedem Fall vorzuziehen.
 - Ist eine Sanierung wegen wirtschaftlichen oder konstruktiven Gründen nicht möglich, muss die ökologische Qualität der Neubaukonstruktionen unter Berücksichtigung vorhandener Wiederverwendungs- und Recyclingpotentiale überprüft werden. Zur Abwägung zwischen Ökonomie und Ökologie empfiehlt sich eine LCC unter Berücksichtigung der Umweltschadenskosten.

6 Zusammenfassung, Fazit und Ausblick

6.1 Zusammenfassung und Fazit

6.1.1 Verifizierung der Forschungshypothese

Abschließend ist zu diskutieren, ob die formulierte Forschungshypothese verifiziert werden kann (siehe auch Kapitel 1.3.1 ab Seite 5):

Mit Hilfe der Entwicklung von Kennwerten und Methoden lässt sich die ökologische Qualität von Bestands- und Neubauten sowie von Sanierungsprojekten auf städtischer Ebene bewerten. Zudem lassen sich Handlungsempfehlungen in Bezug auf die Klimaneutralität und den Energiebedarf ableiten.

Die Entwicklung ökologischer Kennwerte von Altbau-, Sanierungs- und Neubaukonstruktionen basiert auf Literaturquellen und Bautätigkeitsstatistiken, die den deutschen Wohngebäudebestand und auch den aktuellen Sanierungs- und Neubaustandard hinreichend repräsentieren. Sie bilden die Grundlage für eine LCA von Einzelbauteilen bis hin zur Stadtquartiersebene in frühen Planungsphasen, wenn die projektspezifischen Konstruktionsaufbauten noch nicht bekannt sind.

Die erarbeiteten Berechnungslogiken erlauben unter Verwendung der Gebäudeinformationen aus 3D-Stadtmodellen (im CityGML-Format, Version 2.0, LoD 2) und der entwickelten ökologischen Kennwerte eine ökologische Lebenszyklusanalyse verschiedener Szenarien auf Stadtquartiersebene.

Dies bestätigt die Anwendung der Methode auf das Fallbeispiel. Mit Hilfe der erarbeiteten Quartiersentwicklungsszenarien können die ökologischen Vor- und Nachteile verschiedener Bebauungskonzepte von Wohngebäuden diskutiert, verglichen und hinsichtlich ihrer ökologischen Qualität bewertet werden. Eine Erweiterung des Betrachtungsraums auf die städtische Ebene ist jederzeit möglich.

Verschiedene Ergebnisvisualisierungen und Kommunikationsstrategien erlauben die Ausarbeitung von Handlungsempfehlungen in Bezug auf die Klimaneutralität und den reduzierten Energieverbrauch von Wohngebäuden. Eine vergleichende Flächenberechnung und Sensitivitätsanalyse identifiziert die Ergebnisvarianzen und Unsicherheiten, die projektspezifisch durch die geeignete Wahl der Input-Parameter reduziert werden können. Folglich kann die aufgestellte Forschungshypothese verifiziert werden.

6.1.2 Wesentliche Erkenntnisse und Potentiale der Arbeit

Die Umsetzung der nationalen und internationalen Klimaschutzziele erfordert die Berücksichtigung aller einflussnehmenden Sektoren. Wie eingangs dargestellt, nimmt der Bausektor hier eine Schlüsselrolle ein. Neben dem betrieblichen Energieeinsatz dürfen auch die Grauen Energien nicht vernachlässigt werden: Allein 10 % der globalen CO₂-Emissionen resultieren aus der Herstellung von Baumaterialien wie Stahl, Zement oder Glas. Das Environment Programme der Vereinten Nationen benennt konkret die Einflüsse der Materialien über ihren Lebenszyklus hinweg als Stellschrauben für die Erreichung der Klimaziele. (UN Environment Programme, 2020, S. 3-4)

Um politische, öffentliche und private Entscheidungsträger:innen bei der Umsetzung der Klimaschutzziele mit dem Fokus auf die Baukonstruktionen unterstützen zu können, werden einheitliche ökologische Benchmarks sowie eine einheitliche Datenbank mit länderspezifischen Werten benötigt, die kostenfrei zur Verfügung stehen. Nur so können vermehrt LCA in frühen Planungsphasen durchgeführt und transparente Entscheidungen im Bauprozess getroffen werden. Jedoch sind nicht nur Benchmarks für den Neubau, sondern auch für die Sanierung erforderlich, um aufzeigen zu können, welche ökologischen Vorteile Sanierungen gegenüber Ersatzneubauten besitzen. Dies belegt die Analyse internationaler Fallstudien zur ökologischen Qualität von Baukonstruktionen im Altund Neubau (siehe Kapitel 2.7.1 ab Seite 39). Die Einführung des "Qualitätssiegel Nachhaltiges Gebäude (QNG)" (KfW, 2022) und die Anwendungsförderung vorhandener Zertifizierungssysteme (BMUB, 2015; DGNB, 2021) illustrieren, dass diese Aufgabe nicht nur seitens der Wissenschaft, sondern auch seitens der Politik und Gesellschaft erkannt wurde.

Aus diesem Grund sind ökologische Lebenszyklusbetrachtungen von Baukonstruktionen zwingend flächendeckend einzuführen. Die einzelgebäudebezogene Nachhaltigkeitszertifizierung nimmt nur geringen Einfluss. Vielmehr müssen verschiedene Baukonzepte möglichst großflächig und frühzeitig erarbeitet sowie ökologisch bewertet werden, um die positive Hebelwirkung der daraus resultierenden Maßnahmen (= Senkung der Umweltwirkungen) maximal zu steigern. Besonders im städtischen Umfeld muss die LCA auf größerer Maßstabsebene durchgeführt werden, um die inhomogenen Bestandsstrukturen besser erfassen und deren Entwicklungspotentiale hin zur Klimaneutralität besser bewerten zu können. Für einen ganzheitlichen Ansatz muss die LCA alle Gebäudekomponenten miteinschließen: die Baukonstruktion, die TGA und den betrieblichen Energieeinsatz. Nur so können deren Wechselwirkungen erkannt und darauf aufbauend die erforderlichen Maßnahmen zur Senkung der globalen und regionalen Treibhausgasemissionen und des Ressourcenbedarfs ergriffen werden. Dazu zählen beispielsweise Konzepte zur CO2-Kompensation (z. B. Baumpflanzungen) oder die Etablierung von Umweltschadenskosten als ökonomischer Anreiz (vgl. Matthey und Bünger (2020) oder Schneider-Marin und Lang (2020)).

Vor diesem Hintergrund bietet die vorliegende Arbeit auf nationaler Ebene eine umfangreiche, einheitliche und transparente Datenbasis. Diese umfasst repräsentative und baualtersspezifische minimale und maximale Umweltwirkungen (GWP, PENRT und PET) von Baukonstruktionen. Auf deren Grundlage ist eine vergleichende ökologische Lebenszyklusanalyse von Altbau-, Neubau- und Sanierungsmaßnahmen von Wohngebäuden möglich. Wie Kapitel 2.7 (ab Seite 39) und Kapitel 2.8 (ab Seite 44) zeigen, besitzen bisherige Publikationen und Fallstudien zwar ähnliche methodische Ansätze, jedoch fehlt bisher eine ausreichend repräsentative Datenbasis oder die Studien umfassen nur Teilbereiche der Baukonstruktion (Röck et al., 2020).

Auf Grund unterschiedlich gewählter Systemgrenzen, können die bisher in der Literatur existierenden ökologischen Kennwerte der Baukonstruktion nicht zusammengeführt und gemeinsam verwendet werden. Eine wesentliche Stärke der hier entwickelten ökologischen Kennwerte ist die zugrunde liegende breite Datenbasis. Diese Datenbasis umfasst sowohl Altbau- und daraus resultierende Sanierungskonstruktionen als auch Neubaukonstruktionen in verschiedenen Bauweisen (Massiv- und Holzbau). Als Grundlage für die Altbaukonstruktionen dienen die Ergebnisse von Gruhler et al. (2002) und Zentrum für Umweltbewusstes Bauen e.V. (2009b). Da die Systemgrenzen einheitlich gewählt sind, können die Daten für verschiedene vergleichende LCA in frühen Planungsphasen verwendet werden. Die projektspezifischen Konstruktionsaufbauten müssen dazu noch nicht bekannt sein, jedoch müssen gewisse Unsicherheiten akzeptiert werden.

Die Schwerpunkte weiterführender Studien, die auf Basis der ökologischen Kennwerte durchgeführt werden, können variabel gesetzt werden – z. B. Vergleich der Umweltwirkungen verschiedener Lebenszyklusphasen oder verschiedener Bauweisen. Ferner können sowohl die Ergebnisse der Einzelkonstruktionen (vgl. Anhang A.2 bis A.4, ab Seite 232) als auch die bauteilspezifischen Wertebereiche in weiterführende LCA-Studien einfließen (siehe Anhang A.6 bis A.8 ab Seite 399).

Besonders relevant ist hier die ökologische Analysemöglichkeit auf größerer Betrachtungsebene. Darauf verweisen auch Röck et al. (2021). Bisher existierende Tools, die eine LCA mit Hilfe von räumlichen Gebäudemodellen auf größerer Maßstabsebene ermöglichen, besitzen allerdings entweder keine repräsentative Datenbasis (z. B. Umi 2.0 oder CEA; vgl. Kapitel 2.9.2, ab Seite 47) oder es fehlt noch an einer Methode zur ökologischen Bewertung der Baukonstruktion (z. B. urbi+; vgl. Kapitel 2.9.3, ab Seite 48).

Mit Hilfe der ökologischen Kennwerte, der aus den semantischen 3D-Stadtmodellen stammenden Gebäudeinformationen und der entwickelten Berechnungslogiken können automatisierte und zeiteffektive LCA von Baukonstruktionen auf Quartiersebene durchgeführt werden. Dabei ist eine Maßstabserweiterung auf Stadt- oder Regionalebene methodisch jederzeit möglich. Die entwickelten Berechnungslogiken sind so beschrieben, dass sie einfach in existierende Softwarelösungen wie urbi+, UMI 2.0 oder SimStadt, implementiert werden können (Harter, 2021; Hochschule für Technik Stuttgart, 2022; MIT Sustainable Design Lab, 2017). Dies bestätigt die partielle Implementierung der ökologischen Kennwerte und Berechnungsschritte in das Tool urbi+ im Rahmen des

Forschungsprojektes "Grüne Stadt der Zukunft" (Banihashemi et al., 2021). Somit sind bereits jetzt ganzheitliche ökologische Lebenszyklusanalysen unter Berücksichtigung der Baukonstruktion, TGA und des betrieblichen Energieeinsatzes auf Quartiersebene möglich.

Kapitel 5.6 ab Seite 177 zeigt, dass die Methode und die dadurch berechneten Ergebnisse eine fundierte Fachdiskussion über verschiedene baukonstruktive Quartiersentwicklungsszenarien sowie deren Emissions- und Ressourceneinsparpotentiale in frühen Planungsphasen erlauben. Verschiedene Optimierungspotentiale zur Umsetzung kommunaler und regionaler Klimaziele können diskutiert werden, wenn die Bauweise noch nicht konkret feststeht. Besonders kommunale Entscheidungsträger:innen, Planende oder Bauherr:innen sind darauf angewiesen. Eine Aktualisierung der Datenbasis oder die Erweiterung um andere Szenarien ist jederzeit realisierbar. Es werden einheitliche Systemgrenzen und Daten verwendet. Berücksichtigt werden die Lebenszyklusphasen der Herstellung (A1 bis A3), der Nutzung (B4), der Entsorgung (C3 und C4) sowie separat die Wiederverwendungs- und Recyclingpotentiale (Phase D). Als durchschnittliche Gebäudelebensdauer werden 50 Jahre angenommen. Die Datenermittlung konzentriert sich auf eine repräsentative Darstellung des deutschen Wohngebäudebestands. Die Methode ist international übertragbar, wenn adäquate Daten- und Literaturquellen zur Verfügung stehen.

Die Verwendung von semantischen 3D-Stadtmodellen im CityGML-Format ist zukunftsorientiert. Neben dem Export von Gebäudeinformationen können die Ergebnisse in das 3D-Stadtmodell zurückgespielt und abgespeichert werden. Damit stehen sie für weitere Quartiersbetrachtungen zur Verfügung. Ferner entwickelt sich sukzessive ein digitaler Zwilling (siehe Glossar ab Seite XIII) eines Stadtgebietes oder ganzer Regionen, der mit hochrelevanten Informationen zu dessen/deren ökologischen Performance angereichert ist. Die Kopplung eines 3D-Stadtmodells mit der hier entwickelten LCA-Methode bewerkstelligt, dass sie leicht mit weiteren Analysemethoden und Anwendungsfeldern (wie z. B. der Freiflächen- oder Mobilitätsplanung) verknüpft werden kann. Damit kann die interdisziplinäre und digitale Planung vorangetrieben werden. Die interdisziplinäre und digitale Planung ist deshalb so wichtig, weil dadurch bereits in frühen Planungsphasen Wechselwirkungen und Synergieeffekte zwischen verschiedenen Disziplinen und Sektoren (z. B. zwischen grünen und grauen Infrastrukturen) identifiziert werden können. Das Potential des semantischen 3D-Stadtmodells als Planungswerkzeug sowie der interdisziplinäre Ansatz muss seitens der öffentlichen Hand und der Privatwirtschaft noch besser erkannt und unterstützt werden. Ansonsten bleiben die Hebelwirkungen von Klimaschutzstrategien auf städtischer oder nationaler Ebene gering und die Umsetzung eines klimaneutralen Gebäudesektors komplex.

Die Ergebnisse der Fallstudie verdeutlichen, dass aus ökologischer Sicht und in Bezug auf die Grauen Energien und Emissionen der Baukonstruktion eine Sanierung einem Ersatzneubau vorzuziehen ist. Der Abriss der Bestandsgebäude trägt im Fallbeispiel mit einem Anteil von bis zu 50 % deutlich zu den Grauen Emissionen bei und muss

zukünftig ebenfalls bei der LCA berücksichtigt werden (siehe Kapitel 5.2.5 ab Seite 155). Maßgebende Treiber der Umweltwirkungen sind hohe Bauteilflächenanteile (z. B. Außenwandflächen) oder Bauteile, die über hohe Umweltwirkungen je m² Bauteil verfügen (z. B. Fenster). Bei Niedrigstenergiegebäuden gewinnt die Ausführung der Baukonstruktion aus ökologischer Sicht zunehmend an Bedeutung, da sich durch den reduzierten Heizbedarf und den vermehrten Einsatz an erneuerbaren Energien die Umweltwirkungen des Betriebs reduzieren. Der Vergleich der Wertebereiche der einzelnen Szenarien illustriert die ökologischen Einsparpotentiale. Die ökologische Qualität einzelner Bauweisen lässt sich in frühen Planungsphasen allerdings nicht allgemeingültig und final bestimmen. Sie hängt stark von den Szenariendefinitionen und der weiteren Bauausführung ab. Die Fallstudie zeigt auch, dass eine klimaneutrale Bauausführung nur umgesetzt werden kann, wenn gleichzeitig Wiederverwendungs- und Recyclingpotentiale sowie Kompensationsmöglichkeiten aktiviert werden. Projektspezifisch kann dies unterstützt werden, indem in der Ausführungsplanung klimaneutrale, nachwachsende, kreislauffähige und schadstoffarme Bauprodukte gewählt werden. Zukünftig müssen Bauprojekte gezielt im Kontext des Klimaschutzes und der -anpassung betrachtet werden. Nur so ist eine nachhaltig klimafreundliche und umweltgerechte Entwicklung des Bausektors möglich.

Die erarbeiteten Daten lassen neben der ökologischen Bewertung auch andere umfangreiche Analysen zu. Beispielhaft kann hier die Ermittlung des anthropogenen Lagers und die Massenermittlung, strukturiert nach einzelnen Baustoffgruppen (mineralische Baustoffe, organische Baustoffe, Metall, Glas, usw.), für Quartiere und Städte genannt werden. Im Anhang finden sich alle bilanzierten Bauteilkonstruktionen sowie deren Schichtenaufbauten, inklusive ihrer Schichtdicken und Rohdichten. So können baualtersspezifische Abfallmengen oder Recyclingbaustoffe zeitabhängig und quantitativ erfasst werden. Dies unterstützt die Etablierung einer Kreislaufwirtschaft, damit die Baukonstruktionen des heutigen Neubaus nicht der Abfall von Morgen werden. Ferner können auf Basis der detailliert beschriebenen Baukonstruktionen auch Kostenkennwerte entwickelt werden, die für eine Lebenszykluskostenanalyse benötigt werden.

6.1.3 Kritische Würdigung der Gesamtergebnisse

Die entwickelten ökologischen Kennwerte und Methoden sind geeignet, um in frühen Planungsphasen eine LCA der Baukonstruktion durchzuführen und die ökologische Qualität verschiedener Quartiersszenarien sinnvoll zu analysieren. Dafür ist es erforderlich, dass die gewählten Systemgrenzen und Datengrundlagen bei der Bewertung der Ergebnisse berücksichtigt werden. Ein direkter Ergebnisvergleich mit anderen LCA-Studien ist nur möglich, wenn die gleiche Datengrundlage (ÖKOBAUDAT, Version 2020-II) und identische zeitliche und räumliche Systemgrenzen verwendet werden (siehe Kapitel 3.2.2 ab Seite 54). Vor dem Hintergrund des Klimawandels und des Ressourcenbedarfs im Bauwesen fokussiert sich diese Arbeit auf die Umweltwirkungen GWP, PENRT und PET. Darüber hinaus

existieren in den internationalen Datenbanken weitere Umweltindikatoren, die zur Bewertung des Ressourcenverbrauchs und der Emissionen relevant sein können (z. B. Versauerungspotential (AP) oder Potential für die Verknappung abiotischer Ressourcen (ADP)). Die entwickelte Methode berücksichtigt diese noch nicht, sie können jedoch leicht ergänzt werden.

Die Methode und die Berechnungslogiken sind so beschrieben, dass sie für Planende und Forschende im Bereich des Hochbaus logisch nachvollziehbar sind und von Programmierenden in eine logische Programmierung umgesetzt werden können. Bei der Erklärung der Berechnungslogiken wird keine spezifische Programmiersprache angewendet. Alle Variablen und Attribute der geometrischen und energetischen Gebäudeeigenschaften werden in englischer Sprache beschrieben, so dass sie international verständlich sind. Attribute, die bereits im CityGML-Standard (Version 2.0) definiert sind, sind farblich hervorgehoben, ebenso die neu definierten Variablen. Damit die Logiken von Programmierenden besser verstanden werden können, wird "Consolas" als Clear-Type-Schriftart verwendet. Außerdem werden die Berechnungslogiken durch weitere Kommentare ergänzt, so dass sie Planende, Forschende und Programmierende noch besser verstehen können. Eine softwarebasierte Automatisierung der Methode ist nicht Gegenstand der Arbeit und weist weiteres Forschungspotential auf. Ansätze dazu finden sich im Forschungsprojekt "Grüne Stadt der Zukunft" (Banihashemi et al., 2021).

Bei der Bestimmung typischer Baukonstruktionen des Wohnungsbaus wird eine möglichst breite Datengrundlage angestrebt. Die Baualtersklassen richten sich u.a. nach der zeitlichen Einführung verschiedener energetischer Standards. Um die Grauen Energien der Baukonstruktionen besser mit dem betrieblichen Energiebedarf vergleichen zu können, werden die minimalen und maximalen Umweltwirkungen baualtersklassenspezifisch ausgewiesen. Die Einteilung des Wohngebäudebestands in Baualtersklassen basiert auf BMWI und BMI (2020).

In der Fachliteratur gibt es jedoch gewisse Informationslücken in Bezug auf den genauen Schichtenaufbau, die verwendeten Materialien sowie deren Eigenschaften (Gruhler et al., 2002; Zentrum für Umweltbewusstes Bauen e.V., 2009b). Die vorliegende Arbeit schließt diese Lücken durch fundierte Annahmen. Vor allem zu Neubaukonstruktionen bzw. zu Konstruktionen jüngeren Baualters existieren bisher deutschlandweit keine repräsentativen Bauteilkataloge. Deshalb werden diese Baukonstruktionen gezielt auf Basis von Bautätigkeitsberichten und der Analyse von Herstellerangaben erarbeitet. Bei Weiterverwendung der bilanzierten Baukonstruktionen sollten die ausgewiesenen Annahmen und die Repräsentativität der in der Literatur bereitgestellten Konstruktionsaufbauten überprüft und gegebenenfalls projektspezifisch angepasst werden. Dies gilt auch für die im 3D-Stadtmodell hinterlegten und hier verwendeten Gebäudeinformationen. Beispielsweise können die von der LHM zur Verfügung gestellten gebäudespezifischen Baujahre in Einzelfällen von der Realität abweichen. Zudem besteht keine Gewähr für Vollständigkeit der Daten.

Die herangezogenen Daten der ÖKOBAUDAT, Version 2020-II unterliegen gewissen Gültigkeitsdauern. Vor Verwendung der ökologischen Kennwerte müssen diese überprüft und gegebenenfalls aktualisiert werden. Derzeit ist die ÖKOBAUDAT in der Version 2021-II vom 25.06.2021 verfügbar (BBSR, o. J.). Die entwickelte Methode besitzt die notwendige Transparenz, damit diese Aktualisierungen vorgenommen werden können. Denn die verwendeten Materialdaten und ökologischen Datensätze werden vollständig im Anhang aufgelistet.

Bei der Ermittlung baualterstypischer Konstruktionsaufbauten werden vorangegangene Sanierungen nicht berücksichtigt. Das heißt, die Veränderung der ursprünglichen Baukonstruktion durch zwischenzeitliche Sanierungen ist nicht Gegenstand der Betrachtung. Die in der Literatur vorhandenen Angaben zu Sanierungsraten und -ausführungen im deutschen Wohngebäudebestand reichen bisher nicht aus, um hier allgemeingültige Aussagen treffen zu können (siehe z. B. Cischinsky und Diefenbach (2018)).

Mit der vorliegenden Datenbasis und der entwickelten Methode lassen sich fallstudienspezifische Ergebnisspannweiten abbilden und bewerten. Die Ermittlung der Ergebnisspannweiten ist speziell für die Anwendung in frühen Planungsphasen gedacht, in denen die genauen Konstruktionsaufbauten nicht bekannt sind und gewisse Unsicherheiten akzeptiert werden können. Die Unsicherheiten der getroffenen Annahmen werden im Rahmen dieser Arbeit diskutiert und ausgewiesen. Wichtige geometrische Eigenschaften, wie der Fensterflächenanteil oder das Verhältnis der Innen- zur Außenwandfläche sind variabel wählbar, so dass die Nutzenden hier die Unsicherheiten projektspezifisch reduzieren können. Die aus der Fallstudie resultierenden Ergebnisse sind nicht allgemeingültig auf andere Quartiersentwicklungsszenarien übertragbar. Sie zeigen jedoch Tendenzen und Wege hin zur Steigerung der ökologischen Qualität von Quartiersentwicklungen auf.

Die Methode ersetzt keine detaillierte LCA auf Gebäudeebene, die im Rahmen von Zertifizierungssystemen, wie der DGNB, gefordert wird. Um die finalen Umweltwirkungen eines Gebäudes identifizieren zu können, bedarf es einer detaillierten LCA mit Berücksichtigung der tatsächlichen Ausführung. Die LCA auf Basis von 3D-Stadtmodellen ergänzt hier die LCA, die mit Hilfe von BIM-Modellen erarbeitet wird. Dort werden alle Bauzustände digital erfasst und berechnet. Dazu existieren bereits methodische Ansätze bei Röck et al. (2018), TU München - Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen (o. J.) oder One Click LCA Ltd. (2022).

6.2 Ausblick und Empfehlungen

6.2.1 Relevanz und Empfehlungen für die Politik

Der aktuelle Koalitionsvertrag legt fest, dass Deutschland bis 2045 klimaneutral sein soll (SPD et al., 2021). Von 2020 bis 2030 müssen die Jahresemissionen von Gebäuden jährlich um ca. 4,3 % auf 67 Mio. Tonnen CO₂-Äquivalente reduziert werden (BMUV, 2021). Auch Städte und Kommunen wie München verfassen Maßnahmenpläne zur Erreichung der Klimaneutralität (Timpe et al., 2021). Dabei dürfen diese Ziele nicht nur als Formulierung stehen bleiben, sondern es muss überprüft werden, ob diese Ziele auch in den maßgebenden Sektoren erreicht werden. Um für den Bausektor die Gesetzgebung gezielt entwickeln und die Fördermittel effektiv etablieren zu können, werden geeignete Analysemethoden und belastbare Daten benötigt.

Die vorliegende Arbeit und insbesondere die Fallstudie zeigt der Politik, welche baulichen Maßnahmen ergriffen werden müssen, um den Ressourceneinsatz und den Treibhausgasausstoß im Bauwesen zu reduzieren. Sie nennt die Wertebereiche verschiedener Umweltwirkungen in Abhängigkeit von verschiedenen Bauweisen und Quartiersentwicklungsszenarien. Sie bietet Handlungsempfehlungen, die bei der Erarbeitung neuer Ressourcen- und Klimaschutzstrategien berücksichtigt werden können. Die entwickelte LCA-Methodik und die definierten Quartiersentwicklungsszenarien sind auf weitere Fallstudien übertragbar. Dadurch kann überprüft werden, ob die benannten ökologischen Optimierungen großflächig (regional oder national) gültig sind und in neue Gesetzgebungen einfließen müssen.

Die Fallstudienergebnisse verdeutlichen die ökologischen Vorteile von Bestandssanierungen und Nachverdichtungen von Stadtquartieren. Die Bestandssanierung reduziert nicht nur den Anteil an Grauen Energien und Emissionen, sondern gleichzeitig den betrieblichen Energiebedarf. Deshalb sollten diese Baumaßnahmen durch ökonomische Anreize und Sanierungsfahrpläne gezielt gefördert werden.

Die Nachverdichtung durch Gebäudeaufstockung ist bevorzugt zu fördern, da dadurch im urbanen Raum zusätzlich klimatisch notwendige Frischluftschneisen gesichert werden können (Banihashemi et al., 2021). Außerdem bleiben mehr Freiräume für die Bewohner:innen erhalten, die im Zuge des Klimawandels als grüne Orte zur Erholung von Dichte- und Hitzestress genutzt werden können (Bauer et al., 2021).

Die Gegenüberstellung der Szenarienergebnisse mit und ohne Berücksichtigung der Wiederverwendungs- und Recyclingpotentiale weist deutlich darauf hin, dass der Ausbau der Kreislaufwirtschaft im Bausektor sowie innovative Entsorgungskonzepte zukünftig vermehrt unterstützt werden müssen. Dies verringert den primären Ressourcenabbau und die Deponieabfälle. Denkbar wäre hier die bundesweit verpflichtende Verwendung von Recyclingbeton bei öffentlichen Bauten, sowie sie 2013 von der Berliner Senatsverwaltung für Stadtentwicklung und Umwelt bei einem Pilotprojekt

erfolgreich untersucht wurde. Der Einsatz führte zu einer CO₂-Einsparung von 7 % für die Produktion von RC-Material gegenüber Kies (Umweltbundesamt, 2015). Dafür gilt es seitens der Politik und Praxis die erforderlichen Infrastrukturen zu etablieren. Auch die Kaskadennutzung von Holz würde die Kreislaufwirtschaft unterstützen.

Der Exkurs zur Berücksichtigung von Umweltschadenskosten (siehe Kapitel 4.7.2.2 ab Seite 128 und Kapitel 5.5.2 ab Seite 174) zeigt, dass die derzeitige CO₂-Bepreisung von 30 €/t CO₂-Äq. für Wärme und Verkehr nicht ausreicht (Wirth und Liedke, 2022). Auch die Mitglieder des Bundestages hegen Zweifel an der Sinnhaftigkeit und ökologischen Lenkungswirkung eines so geringen Betrages (Deutscher Bundestag, 2022). Das Umweltbundesamt schlägt als Spannweite für die durch CO₂ entstehenden Umweltschadenskosten 199 bis 684 €₂₀₂₂/t CO₂ vor (Matthey und Bünger, 2020). Dies führt bei der vorliegenden Fallstudie für die lebenszyklusbasierten Grauen Emissionen der Baukonstruktion zu zusätzlichen CO₂-Kosten von bis zu 7,84 €/(m²₀nfexa). In Zeiten der Energiekrise und der ohnehin schon hohen finanziellen Belastung der Bevölkerung muss die Politik gesetzlich nachsteuern und mehr Anreize für eine Vermeidung von CO₂-Emissionen und somit von Umweltschadenskosten in Planung und Betrieb schaffen.

Umgekehrt ist es wichtig, dass die politischen Entscheidungen und deren Auswirkungen mit Hilfe von großflächig angesiedelten LCA-Studien quantitativ und iterierend überprüft werden können und die Förderprogramme und Gesetze entsprechend angepasst werden.

6.2.2 Relevanz und Empfehlungen für die Praxis

Die Schlüsselrolle der Städte beim globalen Emissionsausstoß und Energieverbrauch ist bekannt (Climate Service Center Germany GERICS und KfW Development Bank, 2015; UN Environment Programme, 2017).

In der BEG WG (Bundesförderung für effiziente Gebäude – Wohngebäude) wird zudem deutlich auf die Förderung der Nachhaltigkeitsaspekte und Digitalisierungsmaßnahmen hingewiesen. Neben der Betriebsphase von Gebäuden sollen künftig die Treibhausgasemissionen aus der Herstellungsphase und der Lebenszyklusansatz noch stärker berücksichtigt werden (BMWI, 2021, S. 1). Somit erhöht sich der Druck auf die Kommunen und Planenden, geeignete Methoden für eine großflächige ökologische Bewertung ihrer derzeitigen und künftigen heterogenen Siedlungsstrukturen zu finden.

Die in dieser Arbeit entwickelte Methode zur LCA auf Quartiersebene ist so konzipiert, dass sie von Planenden mit LCA-Kenntnissen in integrativen Planungsprozessen angewendet werden kann. Die entwickelten ökologischen Kennwerte und Methoden befähigen Planende und kommunale Entscheidungsträger:innen bauliche Maßnahmen auf Quartiersebene hinsichtlich ihrer ökologischen Qualität quantitativ begründen zu können. Alle bilanzierten Bauteile inklusive der verwendeten Datensätze je

Baumaterial können dem Anhang entnommen werden (siehe Anhang A.2 bis A.5 ab Seite 232). Auch die Bestimmung der maßgebenden Altbau-, Sanierungs- und Neubaukonstruktion wird erklärt (siehe Kapitel 3.7 ab Seite 87). So können die Konstruktionskataloge beliebig erweitert werden und die Bauteiltabellen der Anhänge A.6 bis A.8 (ab Seite 399) entsprechend aktualisiert werden.

Die Berechnungslogiken der Entwicklungsszenarien folgen keiner spezifischen Programmiersprache (vgl. A.9 und A.10 ab Seite 469). Dies gewährleistet eine leichte Verständlichkeit der einzelnen Berechnungsschritte. Planende können die Berechnungslogiken gegebenenfalls mit Hilfe von Programmierenden in die Softwarelösungen übertragen, die ihnen am geläufigsten sind.

Um die Unsicherheiten und Variationsmöglichkeiten der LCA-Ergebnisse fundierter beurteilen zu können, wird im Rahmen dieser Arbeit eine Sensitivitätsanalyse durchgeführt. Das Sobol Sampling auf Basis einer Monte Carlo Simulation hat sich dabei sowohl in der Literatur als auch in der vorliegenden Arbeit als zweckmäßig erwiesen (vgl. Kapitel 2.6 ab Seite 36 und Kapitel 5.4 ab Seite 166). Um die Sensitivitätsanalyse in der Praxis etablieren zu können, muss bei der Programmierung auf eine Parallelisierung der Berechnungsschritte geachtet werden. Ansonsten ist die Berechnungsdauer nicht praktikabel.

Die Umsetzung der Berechnungslogiken in ein digitales Planungswerkzeug ermöglicht Planenden eine schnelle ökologische Analyse großflächiger und heterogener Wohnbebauungsstrukturen mit dem Fokus auf die Baukonstruktion. Dies zeigt die hier durchgeführte Fallstudie. Dadurch werden inhaltliche Argumentationsgrundlagen und Handlungsempfehlungen geschaffen, die in Mustersatzungen oder Bebauungspläne aufgenommen werden können. Es können auch erforderliche Sanierungsraten abgeleitet oder erforderliche Flächenbedarfe (wie Kompensationsflächen) identifiziert werden.

Mit Hilfe der Fallstudie zeigt die Arbeit, wie Planende bereits in frühen Planungsphasen die ökologischen Vorteile verschiedener baulicher Entwicklungsszenarien erkennen und bei Entscheidungsträger:innen kommunizieren können, ohne dass detaillierte LCA auf Gebäudeebene durchgeführt werden müssen. Ferner weist sie auf die Notwendigkeit der vermehrten Durchführung von ökologischen Lebenszyklusanalysen hin, da deutliche Einsparmöglichkeiten dargestellt werden können.

Das Fallbeispiel illustriert beispielsweise, inwiefern die Emissionskompensation durch Baumwachstum innerhalb und außerhalb des Quartiers eine praktikable Methode hin zur Klimaneutralität darstellt. Die "Low-Hanging-Fruits" stellen gemäß des Fallbeispiels folgende Maßnahmen dar:

- Sanierung und Nachverdichtung im Niedrigstenergiestandard vor Gebäudeabriss und Ersatzneubau
- Bauteile mit den größten Flächenanteilen zuerst optimieren
- Bauteile mit signifikant hohen Umweltwirkungen identifizieren und deren Materialwahl ökologischer gestalten

- Materialmassen nach konstruktiven und statischen Erfordernissen auf ein Minimum reduzieren
- Wiederverwendungs- und Recyclingpotentiale identifizieren und nutzen sowie Kreislauffähigkeit erhöhen (Stichwort: "Circular Economy", z. B. Etablierung der flächendeckenden Verwendung von RC-Beton)
- Langlebige, modulare und robuste Bauweisen in Kombination mit Low-Tec-Lösungen forcieren

Die Methode erlaubt die Ergebnisdarstellung mit variablen Bezügen. Es können sowohl die Gesamtumweltwirkungen auf Quartiersebene als auch die spezifischen Umweltwirkungen je m² Nettoraum- oder Wohnfläche ausgegeben werden. Insofern für ein Quartier der Wohnraumbedarf pro Kopf vorhanden ist, können somit die durch die Baukonstruktion entstehenden CO₂-Emissionen pro Kopf ermittelt werden. Dies erleichtert Kommunen und Staaten die Überprüfung der Erreichung ihrer Klimaziele, wie es beispielsweise mit der 2000-Watt-Gesellschaft oder mit dem EU-Forschungsprojekt CRREM angestoßen wird (EnergieSchweiz für Gemeinden und Bundesamt für Energie, 2020; Institut für Immobilienökonomie, o. J.).

Planende und Entscheidungsträger:innen sollten zukünftig vermehrt mit semantischen 3D-Stadtmodellen arbeiten. Denn wenn sie konsequent zur LCA und Speicherung der Ergebnisse verwendet werden, entsteht eine digitale und zentrale Datenbank, die sie nach der Konzeptentwicklung in frühen Planungsphasen für eine detaillierte, gebäudespezifische LCA, z. B. mit Hilfe von BIM, heranziehen können.

Die Arbeit nennt Visualisierungsmöglichkeiten, die zielgruppenorientiert verwendet werden können, um die ökologischen Auswirkungen verschiedener Baumaßnahmen mit dem Fokus auf die Baukonstruktion bewerten zu können. Die Planungspraxis sollte vermehrt ein Augenmerk auf verständliche und zielgruppenorientierte Visualisierungen legen, um Bauherr:innen und Bewohner:innen nicht durch vermeintlich komplexe Sachverhalte vom Ergreifen ökologisch sinnvoller Maßnahmen abzuhalten.

Die Wirtschaftlichkeit eines Bauprojektes darf nicht allein auf Basis der Investitions- und Betriebskosten beurteilt werden. **Projektentwickler:innen müssen eine Lebenszykluskostenanalyse durchführen** und hierbei sowohl die Entsorgungskosten der Baukonstruktionen als auch die lebenszyklusbasierten Umweltschadenskosten integrieren. **Die vorliegende Arbeit liefert hierzu detailliert beschriebene Bauteilaufbauten**, für die entsprechende Kostenkennwerte erarbeitet werden können.

Die Ergebnisse zeigen auch, dass es mit den derzeitigen Produktions- und Entsorgungsprozessen von Baumaterialien noch nicht möglich ist, Wohngebäude lebenszyklusbasiert gänzlich klimaneutral zu errichten. **Deshalb werden die Baupraxis und insbesondere die Baustoffhersteller dazu aufgefordert, ihre Produktionsprozesse zu optimieren und** den Einsatz nachwachsender, erneuerbarer und klimaneutraler Ressourcen zu steigern.

6.2.3 Relevanz und Empfehlungen für die Wissenschaft

Die vorliegende Arbeit fokussiert sich auf eine LCA-Methode, die es erlaubt, die ökologische Qualität von Wohngebäuden im Bestand und Neubau auf städtischer Ebene bewerten zu können. Die Methode berücksichtigt dabei unterschiedliche Entwicklungsszenarien, die im urbanen Raum relevant sind. Die wesentlichen Erkenntnisse, wissenschaftlichen Potentiale und Grenzen der Arbeit werden in Kapitel 6.1.2 bzw. 6.1.3 ab Seite 186 benannt. Nachfolgend wird die Arbeit nochmals in den wissenschaftlichen Kontext eingeordnet und es werden Empfehlungen für die weitere Forschung ausgesprochen.

Ein wesentlicher Vorteil der Arbeit ist die maximal mögliche Transparenz der Inhalte. Bekannte Studien zur Ökologie der Baukonstruktion von Wohngebäuden liefern diese bisher nicht (vgl. Kapitel 2.7 ab Seite 39).

Im Anhang finden sich nicht nur alle Informationen, die zur Nutzung der Daten erforderlich sind, sondern in der Arbeit sind auch alle Arbeitsschritte, Systemgrenzen, Unsicherheiten und Berechnungslogiken transparent beschrieben. Somit wird sichergestellt, dass die generierten Daten und Methoden für die weitere Forschung verwendbar sind. Die Daten können jederzeit entsprechend der Erhebungsmethodik ergänzt oder aktualisiert werden. Zwar beinhaltet der Konstruktionskatalog nur national repräsentative Konstruktionsaufbauten, jedoch ist die Methode auch international übertragbar und der Konstruktionskatalog somit beliebig erweiterbar.

Die in dieser Arbeit ermittelten repräsentativen minimalen und maximalen Umweltwirkungen von Baukonstruktionen können darüber hinaus in die Entwicklung von europaweiten Benchmarks einfließen, wie Frischknecht et al. (2019) sie fordern.

Zur besseren Erfassung der heterogenen Stadtstrukturen sollten im Zuge der weiteren Forschung auch Baukonstruktionen erhoben werden, die typischerweise in Nichtwohngebäuden vorzufinden sind.

Darüber hinaus können die Sanierungsmaßnahmen auch mit Neubaumaßnahmen verglichen werden, die grundsätzlich geringere Umweltwirkungen verursachen. Denkbar ist hier die Erweiterung der Neubaukonstruktionen um Lehmbaukonstruktionen.

Im Zuge der weiteren Forschung ist zu prüfen, inwiefern sich Handlungsempfehlungen verändern, wenn die Gebäudelebensdauern 30, 80 oder 100 Jahre betragen oder die Nutzungsdauern maßgebender Bauteile variieren.

Zur besseren Beurteilung der für den Klimaschutz erforderlichen Sanierungs- und Bauraten bis 2050 wäre eine dynamische Betrachtung der Lebenszyklen der Baukonstruktionen hilfreich. Der Konstruktionskatalog liefert hierzu ebenfalls eine ausreichende Datengrundlage.

Die Arbeit ergänzt bisherige LCA-Studien zu Wohngebäuden auf städtischer Betrachtungsebene, die dazu Daten aus GIS-Modellen verwenden (Mastrucci, Marvuglia, Popovici et al., 2017; Mastrucci et al., 2020; Österbring et al., 2019). Der Untersuchungsumfang der Arbeit übersteigt jedoch die der bisherigen Studien. Denn mit den Fallstudienszenarien wird gleichzeitig die ökologische Qualität des Ausgangszustandes, der energetischen Sanierung mit und ohne Nachverdichtung sowie des Ersatzneubaus in zwei verschiedenen Bauweisen analysiert. Zudem wird der gesamte Lebenszyklus der Baukonstruktionen im Quartier von der Herstellung bis zur Entsorgung betrachtet. Ein weiterer Mehrwert der Arbeit ist, dass das GWP gemeinsam mit den Primärenergiebedarfen ausgewiesen wird. Dies erlaubt sowohl eine Diskussion zu den Klimaauswirkungen als auch zum Ressourcenverbrauch.

Die Arbeit greift auch die Forderung von Röck et al. (2020) auf, dass eine transparente und detaillierte Datengrundlage vorhanden sein muss, um mit Hilfe einer räumlichen Betrachtung und unter Verwendung von Daten aus GIS-Modellen eine Berechnung der Umweltwirkungen von der Bauteilschichtenebene bis zur Stadtebene oder nationalen Ebene durchführen zu können. Dies ist die Voraussetzung dafür, dass die LCA-Ergebnisse der verschiedenen Entwicklungsszenarien fundiert bewertet werden können.

Auch andere Publikationen zeigen, dass GIS-Modelle bzw. 3D-Stadtmodelle bereits in verschiedenen Formaten genutzt werden, um energetische oder ökologische Analysen auf größerer Maßstabsebene durchzuführen (vgl. z. B. Tabelle 2-4, Seite 45). Die vorliegende Arbeit verdeutlicht, dass die Datenstruktur von CityGML 2.0 relevante Gebäudeparameter berücksichtigt, die für die LCA von Baukonstruktionen auf Quartiersebene benötigt werden. Um vorhandene Unsicherheiten bei der Bauteilflächenbestimmung weiter reduzieren zu können, müssen im Zuge der weiteren Forschung im 3D-Stadtmodell auch die geometrischen Eigenschaften der innenliegenden Gebäudeteile und Kellergeschosse ergänzt werden. Die hierfür erforderliche Datenstruktur liegt mit Einführung von CityGML 3.0 im LoD2 bereits vor (TU München - Lehrstuhl für Geoinformatik, o. J.d).

Auch wäre es wünschenswert, wenn die Fläche der Gebäudetrennwände zentral erfasst und diese als Attribut in der Datenstruktur ergänzt werden würde. Kaden (2014) liefert hierzu das notwendige Tool, den "SharedWallSurface-Calculator".

Für eine automatisierte Ergebnisvisualisierung ist zudem eine einheitliche Datenstruktur im CityGML-Format erforderlich, die das zentrale Abspeichern der szenarienspezifischen LCA-Ergebnisse ermöglicht. Diese existiert bisher noch nicht.

Mit Hilfe von georeferenzierten 3D-Stadtmodellen könnten zukünftig auch die Transportdistanzen von Baustoffen in der Errichtungs- (LZPH A4) oder Entsorgungsphase (LZPH C2) besser identifiziert und so deren Umweltwirkungen erfasst werden. Dazu wäre eine Erweiterung der Methode denkbar.

Zusammenfassend kann festgehalten werden, dass die Arbeit für die weitere Forschung eine wichtige Datenbasis liefert, um die Grauen Emissionen und Energien des nationalen Wohngebäudebestand sowie von Neubau- und Sanierungsszenarien ökologisch bewerten zu können. Zum anderen ermöglicht die entwickelte Methode unter Berücksichtigung der

getroffenen Annahmen und genannten Unsicherheiten sowie unter Verwendung von georeferenzierten Gebäudeinformationen in frühen Planungsphasen eine fundierte ökologische Lebenszyklusanalyse von verschiedenen Baukonstruktionen auf Quartiersebene. Dabei ist sie international übertragbar. Durch die Bereitstellung der Berechnungslogiken und die transparente Darstellung aller verwendeten Daten ist die Arbeit eine wichtige Grundlage für die Weiterentwicklung von digitalen Planungswerkzeugen, mit deren Hilfe eine ökologische Analyse großer Wohngebäudebestände möglich ist.

Ein wichtiges Forschungsziel sollte die Weiterentwicklung und Optimierung digitaler Planungswerkzeuge auf Basis von 3D-Stadtmodellen sein. Denn so können zukünftig die Wechselwirkungen heterogener Stadtstrukturen im Kontext des Klimawandels und des Ressourcenverbrauchs besser erfasst und optimiert werden.

6.2.4 Schlussbemerkung

Abschließend bleibt die Erkenntnis, dass die Auswirkungen des Bausektors auf den Klimawandel nur reduziert werden können, wenn alle einflussnehmenden Faktoren möglichst großflächig und gemeinsam betrachtet werden. Für eine erfolgreiche und nachhaltige Transformation der gebauten Umwelt hin zu ihrer Klimaneutralität müssen Forschung, Praxis, Politik und Gesellschaft wie Zahnräder ineinandergreifen und eng zusammenarbeiten. Nur so münden die komplexen Herausforderungen in effektive Lösungen. Die Potentiale dieser Arbeit zur Erreichung der Klimaziele werden benannt. Nun gilt es nach dem Leitspruch "Werte haben nur einen Wert, wenn sie auch unser Handeln bestimmen" die Ergebnisse in praktische und politische Entscheidungen zu überführen und für weitere Forschungen zu verwenden.

Abbildungsverzeichnis

Abbildung 1-1: Das neue Klimaschutzgesetz: Jahresemissionsmengen nach Bereichen bis	
2030; eigene Darstellung nach BMUV (2021)	
Abbildung 1-2: Darstellung der Vorgehensweise; eigene Darstellung	7
Abbildung 2-1: Methodischer Rahmen einer Ökobilanzierung; eigene Darstellung nach DIN	
EN ISO 14044:2021-02	11
Abbildung 2-2: Lebenszyklusphasen eines Gebäudes; eigene Darstellung nach DIN EN	
15978:2012-10, Bild 6	12
Abbildung 2-3: In der ÖKOBAUDAT, Version 2020-II vorhandene Datensatztypen; eigene	
Darstellung nach BBSR (2019, S. 31)	15
Abbildung 2-4: Anzahl der Gebäude mit Wohnraum sowie die Wohnungsanzahl nach	
Baujahr; eigene Darstellung nach Statistische Ämter des Bundes und der Länder	
(2011a, 2011b)	18
Abbildung 2-5: Prozentuale Anteile der bei Ein- und Zweifamilienhäusern überwiegend	
verwendeten Baustoffe; eigene Darstellung nach Auswertung von Statistisches	
Bundesamt (2003, 2004, 2005, 2006, 2007, 2009, 2010a, 2010b, 2011, 2014a, 2014b,	
2014c, 2015, 2016, 2017, 2018, 2019, 2020a)	24
Abbildung 2-6: Prozentuale Anteile der bei Mehrfamilienhäusern überwiegend verwendeten	
Baustoffe; eigene Darstellung nach Auswertung von Statistisches Bundesamt (2003,	
2004, 2005, 2006, 2007, 2009, 2010a, 2010b, 2011, 2014a, 2014b, 2014c, 2015, 2016,	
2017, 2018, 2019, 2020a)	25
Abbildung 2-7: Absatz der wichtigsten Dämmstoffe in Deutschland in Mio. m³ pro Jahr (1989	
- 2011) nach Sprengard et al. (2013)	25
Abbildung 2-8: Erfassung der Altbaukonstruktionen nach Postleitzahlgebieten nach Zentrum	
für Umweltbewusstes Bauen e.V. (2009a, S. 21)	29
Abbildung 2-9: Deutsche Marktanteile der Fensterrahmen von 1971 bis 2016; eigene	
Darstellung nach Verband Fenster und Fassade und Bundesverband Flachglas e.V.	
(2017)	31
Abbildung 2-10: 3D-Gebäudemodelle; links im LoD1 und rechts im LoD2 nach Gröger et al.	
(O. J., S. 67)	34
Abbildung 2-11: Beispiel für die Darstellung und Farbcodierung eines UML-Diagramms, wie	
es zur Definition von CityGML verwendet wird, nach Gröger et al. (O. J.)	35
Abbildung 3-1: Methodische Vorgehensweise bei der Entwicklung ökologischer Kennwerte	
von Alt- und Neubaukonstruktionen; eigene Darstellung	53
Abbildung 3-2: der Betrachtungszeitraum einer LCA; eigene Darstellung	
Abbildung 3-3: Überblick über die Altbauteile und die Anzahl der bilanzierten	
Bauteilaufbauten je Baualtersklasse; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4)	70
Abbildung 3-4: Überblick über die Neubauteile und die sich daraus ergebenden	
Bauteilaufbauten; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)	74
Abbildung 3-5: Skizzenhafte Darstellung der Gebäudesanierung mit und ohne beheiztem	
Kellergeschoss; eigene Darstellung	80
Abbildung 3-6: Überblick über die Altbaukonstruktionen und deren bilanzierte	00
Sanierungsvarianten je Baualtersklasse; eigene Darstellung (Bauteilabkürzungen siehe	
Tahelle 3-4 Seite 71)	82

Abbildung 3-7: Reihenfolge der für die Erstellung der ökologischen Kennwerte verwendeten	
Datensätze in der ÖKOBAUDAT, Version 2020-II; eigene Darstellung	84
Abbildung 3-8: Beispielhafte Vorgehensweise bei der Auswahl eines geeigneten	
ÖKOBAUDAT-Datensatzes; eigene Darstellung	85
Abbildung 3-9: Ablauf Datensatzwahl am Beispiel der Stahlbetonhohlkörperdecke nach	
Gruhler et al. (2002); die Ermittlung von PENRT und PET erfolgt analog; eigene	
Darstellung	86
Abbildung 3-10: Verteilung des GWP je m² monolithischer, massiver Außenwände (Ewmas)	
je Baualtersklasse (BK 1 bis BK 11) und berücksichtigter Lebenszyklusphasen; eigene	
Darstellung	88
Abbildung 3-11: Verteilung des GWP je m² Bauteil und Baualtersklasse in den	
Entsorgungsphasen C3 und C4 (Summe); eigene Darstellung	97
Abbildung 3-12: Jährliches GWP [kg CO ₂ -Äq.] mit und ohne Phase D für	
Neubaukonstruktionen je m² Bauteil und einer Gebäudelebensdauer von 50 Jahren;	
eigene Darstellung	aa
Abbildung 3-13: Jährliche PENRT und PET [kWh] mit und ohne Phase D für	33
Neubaukonstruktionen je m² Bauteil und einer Gebäudelebensdauer von 50 Jahren;	
	00
eigene Darstellung	99
Abbildung 3-14: GWP der Neubaukonstruktionen [kg CO ₂ -Äq./m²a] – Darstellung der	400
Wertebereiche maßgebender Bauteile (LZPH A1-C4, ohne D); eigene Darstellung	100
Abbildung 3-15: PENRT der Neubaukonstruktionen [kWh/m²a] – Darstellung der	
Wertebereiche maßgebender Bauteile (LZPH A1-C4, ohne D); eigene Darstellung	101
Abbildung 3-16: Jährliches GWP [kg CO ₂ -Äq.] für Sanierungskonstruktionen je m² Bauteil	
(LZPH A1-C4, ohne D) und einer Gebäudelebensdauer von 50 Jahren; eigene	
Darstellung	102
Abbildung 3-17: Jährliche PENRT [kWh] für Sanierungskonstruktionen je m² Bauteil und	
einer Gebäudelebensdauer von 50 Jahren (LZPH A1-C4, ohne D); eigene Darstellung	103
Abbildung 4-1: Skizzenhafte Darstellung der LCA-Methodik auf Quartiersebene; eigene	
Darstellung	107
Abbildung 4-2: Skizzenhafte Darstellung der relevanten Quartiersentwicklungsszenarien;	
eigene Darstellung	117
Abbildung 4-3: Beispielhafte Darstellung Balkendiagramm – jährliche PET der	
Baukonstruktion im untersuchten Quartier (links je Bauteil, rechts je LZPH); eigene	
Darstellung	. 128
Abbildung 4-4: Beispielhafte Darstellung Spinnennetzdiagramm – Normierte	
Gegenüberstellung des GWP, der PET und PENRT verschiedener Szenarien; eigene	
Darstellung	128
Abbildung 4-5: Beispiel Visualisierung – Kompensation des GWP durch Baumpflanzungen;	120
	122
eigene Darstellung	133
Abbildung 4-6: Visualisierungsbeispiel Gebäudebestand im 3D-Stadtmodell – Einfärbung	
nach spezifischem Primärenergiebedarf nach Harter (2021, S. 93) unter Verwendung	
von (FOSSGIS e.V., o. J.; TU München - Lehrstuhl für Geoinformatik, o. J.c)	
Abbildung 5-1: 3D-Rendering Fallstudie Moosach nach Banihashemi et al. (2021, S. 14)	
Abbildung 5-2: Bestandsgebäude im Bestandsquartier Moosach; eigene Bilder	138
Abbildung 5-3: Fallstudie Moosach, Prozentuale Verteilung der Baualtersklassen (links) und	
Geschossanzahlen über GOK (rechts); eigene Darstellung nach Auswertung des 3D-	
Stadtmodells	139
Abbildung 5-4: Fallstudie Moosach, Darstellung des 3D-Stadtmodells mit dem FZK-Viewer	
(KIT, 2022)	139

Abbildung 5-5: Prozentuale Verteilung bestehender Wohngebäude nach Baualtersklassen; eigene Darstellung nach Statistische Ämter des Bundes und der Länder (2018) und Landeshauptstadt München (o. J.)	140
Abbildung 5-6: Fallstudie Moosach, Beheizungssituation im Bestand und nach der Sanierung	170
bzw. dem Ersatzneubau; eigene Darstellung	143
Abbildung 5-7: Skizzenhafte Darstellung Szenario 1; eigene Darstellung	
Abbildung 5-8: Fallstudie Moosach, Szenario 1.1 bis 1.4, GWP je Bauteil bei einem	
Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle	
3-4, Seite 71)	145
Abbildung 5-9: Fallstudie Moosach, Szenario 1.1 bis 1.4, PENRT und PET je Bauteil bei	0
einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4, Seite 71)	145
Abbildung 5-10: Fallstudie Moosach, Szenario 1, Prozentuale Bauteilflächenverteilung;	1-10
eigene Darstellung	146
Abbildung 5-11: Fallstudie Moosach, Szenario 1, Lebenszyklusbasiertes GWP je BK und	140
NRF; eigene Darstellung	1/7
Abbildung 5-12: Skizzenhafte Darstellung Szenario 2.1; eigene Darstellung	147
Abbildung 5-13: Fallstudie Moosach, Szenario 2.1.1 bis 2.1.4, GWP je Bauteil bei einem	
Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle	450
3-4, Seite 71)	150
Abbildung 5-14: Fallstudie Moosach, Szenario 2.1.1 bis 2.1.4, PENRT und PET je Bauteil bei	
einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4, Seite 71)	
Abbildung 5-15: Skizzenhafte Darstellung Szenario 2.2; eigene Darstellung	151
Abbildung 5-16: Fallstudie Moosach, Szenario 2.2.1 bis 2.2.4, GWP je Bauteil bei einem	
Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle	
3-4, Seite 71)	154
Abbildung 5-17: Fallstudie Moosach, Szenario 2.2.1 bis 2.2.4, PENRT und PET je Bauteil bei	
einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4, Seite 71)	155
Abbildung 5-18: Skizzenhafte Darstellung Szenario 3.1; eigene Darstellung	155
Abbildung 5-19: Fallstudie Moosach, Szenario 3.1.1 bis 3.1.4, GWP je Bauteil bei einem	
Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle	
3-4, Seite 71)	157
Abbildung 5-20: Fallstudie Moosach, Szenario 3.1.1 bis 3.1.4, PENRT und PET je Bauteil bei	
einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4, Seite 71)	158
Abbildung 5-21: Skizzenhafte Darstellung Szenario 3.2; eigene Darstellung	159
Abbildung 5-22: Fallstudie Moosach, Szenario 3.2.1 bis 3.2.4, GWP je Bauteil bei einem	
Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe Tabelle	
3-4, Seite 71)	161
Abbildung 5-23: Fallstudie Moosach, Szenario 3.2.1 bis 3.2.4, PENRT und PET je Bauteil bei	
einem Lebenszyklus von 50 Jahren; eigene Darstellung (Bauteilabkürzungen siehe	
Tabelle 3-4, Seite 71)	162
Abbildung 5-24: Schnitt eines Reihenmittelhauses im Stadtquartier Moosach, Baujahr ca.	
1945; Kopie aus Bauplanakte, Abg. 78/1, Bd. 18	163
Abbildung 5-25: Sensitivitätsanalyse, GWP des Quartiers für die Szenarien 2.2.1 und 2.2.2,	. 55
Auswertung S ₁ und S ^T ; eigene Darstellung (Bauteilabkürzungen siehe Tabelle 3-4,	
Seite 71)	170
Abbildung 5-26: Fallstudie Moosach, normierter Ergebnisvergleich der Szenarien 2.1 (oben	
links) 2.2 (oben rechts) 3.1 (unten links) und 3.2 (unten rechts): eigene Darstellung	172

Abbildung 5-27: Fallstudie Moosach, Visualisierung der erforderlichen Stadtlinden zur	
Bindung des minimal und maximal anfallenden lebenszyklusbasierten GWP; eigene	
Darstellung	3

Tabellenverzeichnis

Tabelle 2-1: Einteilung des Wonngebaudebestandes nach Baualtersklassen; eigene	
Darstellung nach BMWI und BMI (2020)	20
Tabelle 2-2: Wohngebäudeneubauten – GWP, PENRT und PET für Baukonstruktionen und	
Heiztechnik (Lebensdauer: 50 Jahre); eigene Darstellung nach König (2017, S. 119-123, 127, 128)	41
Tabelle 2-3: Benchmark Büro- und Wohngebäude im Neubau: GWP der Baukonstruktionen; eigene Darstellung nach Braune et al. (2021)	
Tabelle 2-4: Verbreitung internationaler Publikationen zur LCA auf Quartiersebene zwischen 2015 und 2021 und deren Untersuchungsrahmen; eigene Darstellung	
Tabelle 2-5: Publikationen zur GIS-basierten LCA auf Stadt- und/oder Quartiersebene; eigene Darstellung	
Tabelle 3-1: Beschreibung und Bezeichnungen der berücksichtigen Bauteile je	
Kostengruppe nach DIN 276:2018-12; eigene Darstellung	55
Tabelle 3-2: Berücksichtigte Lebenszyklusphasen nach DIN EN 15978:2012-10, Bild 6 in Abhängigkeit des Konstruktionstyps; eigene Darstellung	58
Tabelle 3-3: Wahl der funktionellen Einheiten der Umweltwirkungen; eigene Darstellung	67
Tabelle 3-4: Erklärung der gewählten Bauteilabkürzungen; eigene Darstellung	71
Tabelle 3-5: Tabellenauszug aus den bilanzierten opaken Altbaukonstruktionen,	
Gesamtübersicht siehe Anhang A.2 ab Seite 232; eigene Darstellung	90
Tabelle 3-6: Tabellenauszug aus den bilanzierten Fensterkonstruktionen im Altbau,	
Gesamtübersicht siehe Anhang A.2 ab Seite 232; eigene Darstellung	90
Tabelle 3-7: Ermittlung der maßgebenden Baukonstruktionen für minimal und maximale	00
Umweltwirkungen am Beispiel des Steildaches (PRO) in BK 1; eigene Darstellung	91
Tabelle 3-8: Min. und max. Umweltwirkungen eines Steildaches (PRO_old) im Bestand unter	31
Berücksichtigung der Baualtersklasse bezogen auf 1 m² Bauteilfläche; eigene	
	02
Darstellung Tabelle 3-9: Min. und max. Umweltwirkungen (GWP, PENRT und PET) eines 3-fach	92
verglasten Holzrahmenfensters im Neubau (Wwood_nb) bezogen auf 1 m²	0.4
Bauteilfläche; eigene Darstellung	94
Tabelle 3-10: Tabellenauszug aus den bilanzierten Sanierungskonstruktionen,	
Gesamtübersicht siehe Anhang A.4 ab Seite 311; eigene Darstellung	95
Tabelle 4-1: Attributtabelle von LoD2 Gebäudemodellen im CityGML-Format (Version 2.0);	
eigene Darstellung nach Bayerische Vermessungsverwaltung (2018)	. 110
Tabelle 4-2: Durchschnittlicher Fensterflächenanteil bei Bestandsgebäuden; eigene	
Darstellung nach Gruhler et al. (2002)	. 113
Tabelle 4-3: Durchschnittliches Flächenverhältnis von Innen- und Außenwänden; eigene	
Darstellung nach Gruhler et al. (2002)	. 114
Tabelle 4-4: Klima- und Umweltkosten ausgewählter Baustoffe für deren Herstellung (LZPH	
A1-A3) und Entsorgung (LZPH C3/C4); eigene Darstellung nach Matthey und Bünger	
(2020, S. 8, 47, 48)	. 131
Tabelle 4-5: Biomasse und CO ₂ -Bindungspotential von Stadtbäumen unter Verwendung des	
CTCC (Climate Change Resource Center, o. J.); eigene Darstellung nach Kalisch (2021, S. 52)	132
Tabelle 4-6: Kompensation des GWP durch Baumwachstum - Anzahl der benötigten	. 102
Stadtbäume je m³ Baustoff; eigene Darstellung unter Verwendung der Daten von BBSR	
(o. J.) und Kalisch (2021)	122
(ö. J.) und Kallsch (2021) Tabelle 5-1: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 1; eigene	. 132
	4 4 4
Darstellung	. 144

Tabelle 5-2: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 2.1; eigene	
Darstellung	. 149
Tabelle 5-3: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 2.2; eigene	
Darstellung	. 152
Tabelle 5-4: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 3.1; eigene	
Darstellung	. 156
Tabelle 5-5: Fallstudie Moosach, Übersicht Umweltwirkungen gesamt Szenario 3.2; eigene	
Darstellung	. 159
Tabelle 5-6: Fallstudie Moosach, Szenario 3.2, prozentuale Anteile einzelner Bauteile an den	
Grauen Energien und Emissionen des Gesamtquartiers; eigene Darstellung	. 162
Tabelle 5-7: Vergleichende Bauteilflächenberechnung, Gegenüberstellung der manuellen	
und automatisierten Berechnung; eigene Darstellung	. 164
Tabelle 5-8: Gegenüberstellung der Gesamtergebnisse, Szenario 1 des Einzelgebäudes,	
GWP, PENRT und PET nach manueller und automatisierter Flächenberechnung;	
eigene Darstellung	. 165
Tabelle 5-9: Sensitivitätsanalyse, Minimal- und Maximalwerte der Input-Parameter (GWP in	
kg CO ₂ -Äq./m ² Bauteil; Flächenverhältnisse dimensionslos); eigene Darstellung	
(Bauteilabkürzungen siehe Tabelle 3-4, Seite 71)	. 168
Tabelle 5-10: Fallstudie Moosach, minimale und maximale Umweltschadenskosten je m²NRF	
und Jahr bei 50 Jahren Lebensdauer; eigene Darstellung nach Matthey und Bünger	
(2020, S. 8)	. 174
Tabelle 5-11: Fallstudie Moosach, Vergleich der Szenarienergebnisse (Neubauten) mit	
Benchmarks aus der Literatur; eigene Darstellung	. 178
Tabelle A. 1: Typische U-Werte opaker und transparenter Bauteile der beheizten	
Gebäudehülle je Baualtersklasse; eigene Darstellung nach BMWI und BMI (2020),	
Bundesamt für Wirtschaft und Ausfuhrkontrolle (o. J.) und Thiel und Riedel (2011)	. 229
Tabelle A. 2: U-Werte opaker und transparenter Bauteile der beheizten Gebäudehülle nach	
Passivhausstandard; eigene Darstellung nach Passivhaus Institut (2015)	. 230
Tabelle A. 3: U-Werte opaker und transparenter Bauteile der beheizten Gebäudehülle nach	
KfW-55-Standard (Sanierung); eigene Darstellung nach KfW (2020)	. 231
Tabelle A. 4: Übersicht über die bilanzierten opaken Altbaukonstruktionen inklusive der	
spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung	. 232
Tabelle A. 5: Übersicht über die bilanzierten Fensterkonstruktionen im Altbau inklusive der	
spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung	. 292
Tabelle A. 6: Übersicht über die bilanzierten opaken Neubaukonstruktionen inklusive der	
spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung	. 296
Tabelle A. 7: Übersicht über die bilanzierten Fensterkonstruktionen im Neubau inklusive der	
spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung	. 310
Tabelle A. 8: Übersicht über die bilanzierten opaken Sanierungskonstruktionen inklusive der	
spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung	. 311
Tabelle A. 9: Materialspezifisch verwendete ÖKOBAUDAT-Datensätze (Version 2020-II) und	
Umweltwirkungen der LZPH A1-A3, C3 und C4; eigene Darstellung	. 377
Tabelle A. 10: Materialspezifisch verwendete ÖKOBAUDAT-Datensätze (Version 2020-II)	
und Umweltwirkungen der Phase D, durchschnittliche Nutzungsdauer und	
Austauschzyklen in 50 Jahren; eigene Darstellung	. 391
Tabelle A. 11: Bodenplatte Altbau – BP_old: min. und max. Umweltwirkungen je LZPH, BK	
und Indikator; eigene Darstellung	. 400
Tabelle A. 12: Kellerdecke in Massivbauweise, Altbau – CFLmas_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 401

Tabelle A. 13: Kellerdecke- in Holzbauweise, Altbau – CFLwood_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	403
Tabelle A. 14: Kelleraußenwand Altbau – CW_old: min. und max. Umweltwirkungen je	
LZPH, BK und Indikator; eigene Darstellung	404
Tabelle A. 15: 2-schalige Außenwand, Altbau – EW2shelled_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	406
Tabelle A. 16: Außenwand mit Vorhang- oder hinter-/bzw. belüfteter Fassade, Altbau –	
EWcwf_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene	
Darstellung	407
Tabelle A. 17: Massive, monolithische Außenwand, Altbau – EWmas_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	409
Tabelle A. 18: Außenwand in Holzbauweise, Altbau – EWwood_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	410
Tabelle A. 19: Fundament Altbau – F_old: min. und max. Umweltwirkungen je LZPH, BK und	
Indikator; eigene Darstellung	412
Tabelle A. 20: Geschossdecke in Massivbauweise, Altbau – FLmas_old: min. und max.	712
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	113
Tabelle A. 21: Geschossdecke in Holzbauweise, Altbau – FLwood_old: min. und max.	413
	115
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	413
Tabelle A. 22: Flachdach in Massivbauweise, Altbau – FROmas_old: min. und max.	440
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	416
Tabelle A. 23: Flachdach in Holzbauweise, Altbau – FROwood_old: min. und max.	440
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	418
Tabelle A. 24: Gebäudetrennwand über GOK bei 2-schaliger Außenwand, Altbau –	
SW2shelled_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene	
Darstellung	419
Tabelle A. 25: Gebäudetrennwand über GOK bei Außenwand mit Vorhang- oder hinter-/bzw.	
belüfteter Fassade, Altbau – SWcwf_old: min. und max. Umweltwirkungen je LZPH, BK	
und Indikator; eigene Darstellung	421
Tabelle A. 26: Gebäudetrennwand über GOK bei massiver, monolithischer Außenwand,	
Altbau – SWmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator;	
eigene Darstellung	422
Tabelle A. 27: Gebäudetrennwand über GOK in Holzbauweise, Altbau – SWwood_old: min.	
und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	424
Tabelle A. 28: Innenwand in Massivbauweise, Altbau – IWmas_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	425
Tabelle A. 29: Innenwand in Holzbauweise, Altbau – IWwood_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	427
Tabelle A. 30: Steildach Altbau – PRO_old: min. und max. Umweltwirkungen je LZPH, BK	
und Indikator; eigene Darstellung	428
Tabelle A. 31: Gebäudetrennwand unter GOK, Altbau – SCW_old: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	430
Tabelle A. 32: Oberste Geschossdecke in Massivbauweise, Altbau – TFLmas_old: min. und	
max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	431
Tabelle A. 33: Oberste Geschossdecke in Holzbauweise, Altbau – TFLwood_old: min. und	
max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	433
Tabelle A. 34: Alurahmen-Fenster, Altbau – Walu_old: min. und max. Umweltwirkungen je	
LZPH, BK und Indikator; eigene Darstellung	434
Tabelle A. 35: Kunststoffrahmen-Fenster, Altbau – Wplas_old: min. und max.	
	436

Tabelle A. 36: Holzrahmen-Fenster, Altbau – Wwood_old: min. und max. Umweltwirkungen	
je LZPH, BK und Indikator; eigene Darstellung	437
Tabelle A. 37: Bodenplatte, beheizt, Neubau – BP_h_nb: min. und max. Umweltwirkungen je	
LZPH und Indikator; eigene Darstellung	440
Tabelle A. 38: Bodenplatte, unbeheizt, Neubau – BP_uh_nb: min. und max.	
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	440
Tabelle A. 39: Kellerdecke in Massivbauweise, Neubau – CFLmas_nb: min. und max.	
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	440
Tabelle A. 40: Kellerdecke in massiver Holzbauweise, Neubau – CFLwood_clt_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	440
Tabelle A. 41: Kellerdecke in Holzrahmenbauweise, Neubau – CFLwood_tf_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	441
Tabelle A. 42: Kelleraußenwand in Mauerwerksbauweise, beheizt, Neubau –	
CW_mas_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 441
Tabelle A. 43: Kelleraußenwand in Mauerwerksbauweise, unbeheizt, Neubau –	
CW_mas_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	441
Tabelle A. 44: Kelleraußenwand in Stahlbetonbauweise, beheizt, Neubau – CW_rc_h_nb:	
min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	441
Tabelle A. 45: Kelleraußenwand in Stahlbetonbauweise, unbeheizt, Neubau –	
CW_rc_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	442
Tabelle A. 46: Außenwand in Mauerwerksbauweise, Neubau – EWmas_mas_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	442
Tabelle A. 47: Außenwand in Stahlbetonbauweise, Neubau – EWmas_rc_nb: min. und max.	
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	442
Tabelle A. 48: Außenwand in massiver Holzbauweise, Neubau – EWwood_clt_nb: min. und	–
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	442
Tabelle A. 49: Außenwand in Holzrahmenbauweise, Neubau – EWwood_tf_nb: min. und	–
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	443
Tabelle A. 50: Geschossdecke in Massivbauweise, Neubau – FLmas_nb: min. und max.	
	. 443
Tabelle A. 51: Geschossdecke in Holzmassivbauweise, Neubau – FLwood_clt_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	443
Tabelle A. 52: Geschossdecke in Holzrahmenbauweise, Neubau – FLwood_tf_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	443
Tabelle A. 53: Flachdach in Massivbauweise, Neubau – FROmas_nb: min. und max.	. 440
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	444
Tabelle A. 54: Flachdach in Holzmassivbauweise, Neubau – FROwood_clt_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	111
Tabelle A. 55: Flachdach in Holzrahmenbauweise, Neubau – FROwood_tf_nb: min. und	. 444
	111
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 444
Tabelle A. 56: Innenwand in Mauerwerksbauweise, Neubau – IWmas_mas_nb: min. und	111
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 444
Tabelle A. 57: Innenwand in Stahlbetonbauweise, Neubau – IWmas_rc_nb: min. und max.	1 1 E
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 445
Tabelle A. 58: Innenwand in Holzmassivbauweise, Neubau – IWwood_clt_nb: min. und max.	1 1 E
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 445
Tabelle A. 59: Innenwand in Holzrahmenbauweise, Neubau – IWwood_tf_nb: min. und max.	445
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 445

Tabelle A. 60: Steildach, beheizt, Neubau – PRO_h_nb: min. und max. Umweltwirkungen je	
LZPH und Indikator; eigene Darstellung	. 445
Tabelle A. 61: Steildach, unbeheizt, Neubau – PRO_uh_nb: min. und max.	
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 446
Tabelle A. 62: Gebäudetrennwand unter GOK in Mauerwerksbauweise, beheizt, Neubau –	
SCW_mas_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 446
Tabelle A. 63: Gebäudetrennwand unter GOK in Mauerwerksbauweise, unbeheizt, Neubau –	
SCW_mas_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 446
Tabelle A. 64: Gebäudetrennwand unter GOK in Stahlbetonbauweise, beheizt, Neubau –	
SCW_rc_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 446
Tabelle A. 65: Gebäudetrennwand unter GOK in Stahlbetonbauweise, unbeheizt, Neubau –	
SCW_rc_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 447
Tabelle A. 66: Gebäudetrennwand über GOK in Mauerwerksbauweise, Neubau –	
SWmas_mas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 447
Tabelle A. 67: Gebäudetrennwand über GOK in Stahlbetonbauweise, Neubau –	
SWmas_rc_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 447
Tabelle A. 68: Gebäudetrennwand über GOK in Holzmassivbauweise, Neubau –	
SWwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 447
Tabelle A. 69: Gebäudetrennwand über GOK in Holzrahmenbauweise, Neubau –	
SWwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene	
Darstellung	. 448
Tabelle A. 70: Oberste Geschossdecke in Massivbauweise, Neubau – TFLmas_nb: min. und	
max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 448
Tabelle A. 71: Oberste Geschossdecke in Holzmassivbauweise, Neubau – TFLwood_clt_nb:	
min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 448
Tabelle A. 72: Oberste Geschossdecke in Holzrahmenbauweise, Neubau – TFLwood_tf_nb:	
min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 448
Tabelle A. 73: Alurahmen-Fenster, Neubau – Walu_nb: min. und max. Umweltwirkungen je	4.40
LZPH und Indikator; eigene Darstellung	. 449
Tabelle A. 74: Kunststoffrahmen-Fenster, Neubau – Wplas_nb: min. und max.	440
Umweltwirkungen je LZPH und Indikator; eigene Darstellung	. 449
Tabelle A. 75: Holzrahmen-Fenster, Neubau – Wwood_nb: min. und max. Umweltwirkungen	440
je LZPH und Indikator; eigene Darstellung	. 449
Tabelle A. 76: Bodenplatte, beheizt, Sanierung – BP_h_ren: min. und max.	151
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 451
Tabelle A. 77: Kellerdecke zu unbeheiztem Keller, Sanierung – CFL_uh_ren: min. und max.	450
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 452
Tabelle A. 78: Kelleraußenwand im beheizten Keller, Sanierung – CW_h_ren: min. und max.	151
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 404
Tabelle A. 79: 2-schalige Außenwand, Sanierung – EW2shelled_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	1EE
Tabelle A. 80: Außenwand mit Vorhang- oder hinter-/bzw. belüfteter Fassade, Sanierung –	. 400
EWcwf_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene	
Darstellung	457
- ×- ×-×-/VIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Tabelle A. 81: Außenwand in Massivbauweise, Sanierung – EWmas_ren: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 458
Tabelle A. 82: Außenwand in Holzbauweise, Sanierung – EWwood_ren: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 460
Tabelle A. 83: Flachdach in Massivbauweise, Sanierung – FROmas_ren: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 461
Tabelle A. 84: Flachdach in Holzbauweise, Sanierung – FROwood_ren: min. und max.	
Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 463
Tabelle A. 85: Steildach im beheizten Dachgeschoss, Sanierung – PRO_h_ren: min. und	
max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 464
Tabelle A. 86: Gebäudetrennwand unter GOK im beheizten Keller, Sanierung – SCW_h_ren:	
min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung	. 466
Tabelle A. 87: Oberste Geschossdecke zu unbeheiztem Dachgeschoss, Sanierung –	
TFL_uh_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene	
Darstellung	. 467
Tabelle A. 88: Definierte Variablen und Attribute zu den geometrischen und energetischen	
Gebäudeeigenschaften; eigene Darstellung in englischer Sprache	. 469
Tabelle A. 89: Berechnungslogik der Basisdaten; eigene Darstellung in englischer Sprache	. 473
Tabelle A. 90: Berechnungslogik Bauteilflächen Szenario 1, Status Quo; eigene Darstellung	
in englischer Sprache	. 475
Tabelle A. 91: Berechnungslogik Bauteilflächen Szenario 2.1, Sanierung mit	
gleichbleibender Gebäudekubatur; eigene Darstellung in englischer Sprache	. 477
Tabelle A. 92: Berechnungslogik Bauteilflächen Szenario 2.2, Sanierung mit Aufstockung in	
Holzrahmenbauweise; eigene Darstellung in englischer Sprache	. 481
Tabelle A. 93: Berechnungslogik Bauteilflächen Szenario 3.1 und 3.2, Abriss und	
Ersatzneubau in Holz- oder Massivbauweise; eigene Darstellung in englischer Sprache	. 485
Tabelle A. 94: Logik der Kennwertberechnung Szenario 1, Status Quo; eigene Darstellung in	
englischer Sprache	. 488
Tabelle A. 95: Logik der Kennwertberechnung Szenario 2.1, Sanierung mit gleichbleibender	
Gebäudekubatur; eigene Darstellung in englischer Sprache	. 492
Tabelle A. 96: Logik der Kennwertberechnung Szenario 2.2, Sanierung mit Aufstockung in	
Holzrahmenbauweise; eigene Darstellung in englischer Sprache	. 498
Tabelle A. 97: Logik der Kennwertberechnung Szenario 3.1, Abriss und Ersatzneubau in	
Holzbauweise; eigene Darstellung in englischer Sprache	. 505
Tabelle A. 98: Logik der Kennwertberechnung Szenario 3.2, Abriss und Ersatzneubau in	
Massivbauweise; eigene Darstellung in englischer Sprache	. 512

Literaturverzeichnis

- AgiliCity d.o.o (Hrsg.). (o. J.). *Parametric Urban Design Software Key Features Modelur*. Zugriff am 17.01.2023. Verfügbar unter: https://modelur.com/features/
- Asam, C. (2017, August). Dämmmaßnahmen an Gebäudefassaden. Eine Zusammenfassung derzeit aktueller Diskussionspunkte (BBSR, Hrsg.) (BBS-Analysen Kompakt 11/2017). Bonn. Zugriff am 11.10.2021. Verfügbar unter: https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/analysen-kompakt/2017/ak-11-2017-dl.pdf?__blob=publicationFile&v=1
- Banihashemi, F., Erlwein, S., Harter, H., Meier-Dotzler, C., Zölch, T., Bauer, A. et al. (2021, September). *Grüne und Graue Maßnahmen für die Siedlungsentwicklung. Klimaschutz und Klimaanpassung in wachsenden Städten*. Broschüre über Forschungsergebnisse (Technische Universität München, Hrsg.). München. Zugriff am 11.10.2021. Verfügbar unter: https://www3.ls.tum.de/fileadmin/w00bds/lapl/Bilder/Projekte/GrueneStadt/Broschure_2.pdf
- Bastos, J., Batterman, S. & Freire, F. (2014). Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon. *Energy and Buildings*, *69*, 344-353. https://doi.org/10.1016/j.enbuild.2013.11.010
- Bauer, A., Mittermüller, J., Rupp, J., Wutz, S., Dehnhardt, A., Heyer, H. et al. (2021, September). Grün in der wachsenden Stadt. Perspektiven und Aktivierung der Stadtgesellschaft. Broschüre über Forschungsergebnisse (Technische Universität München, Hrsg.). München. Zugriff am 08.12.2022. Verfügbar unter: https://www3.ls.tum.de/fileadmin/w00bds/lapl/Bilder/Pro-jekte/GrueneStadt/Broschure_3.pdf
- BauNetz. (o. J.). Baualterstufe der 80er Jahre, Altbau, Baualtersstufen, Baunetz_Wissen, BauNetz. Zugriff am 25.05.2020. Verfügbar unter: https://www.baunetzwissen.de/altbau/fachwissen/baualtersstufen/baualterstufe-der-80er-jahre-649849
- Bayerische Vermessungsverwaltung. (2018, März). *Kundeninformation LoD2 Gebäudemodelle*. Zugriff am 22.03.2022. Verfügbar unter: https://www.ldbv.bayern.de/file/pdf/6723/Kundeninformation_LoD2.pdf
- BBSR (Bundesministerium des Innern, für Bau und Heimat, Hrsg.). (o. J.). ÖKOBAUDAT. Zugriff am 06.04.2021. Verfügbar unter: https://oekobaudat.de/
- BBSR. (2017, Februar). Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (BNB). Zugriff am 04.05.2021. Verfügbar unter: https://www.nachhaltigesbauen.de/fileadmin/pdf/Nutzungsdauer_Bauteile/BNB_Nutzungsdauern_von_Bauteilen_2017-02-24.pdf
- BBSR (Hrsg.). (2019). Ökobaudat. Grundlage für die Gebäudeökobilanzierung (Forschung für die Praxis Band 9). Bonn. Zugriff am 25.05.2021. Verfügbar unter: https://www.oekobaudat.de/filead-min/downloads/0068G_BF_200106ms.pdf
- BBSR. (2020). *Methodik und Anwendung Bewertungssystem Nachhaltiges Bauen (BNB)*. Zugriff am 04.05.2021. Verfügbar unter: https://www.bnb-nachhaltigesbauen.de/bewertungssystem/methodik-und-anwendung/
- Benner, J. (2018, März). *CityGML Energy ADE V. 1.0 Specification*. Karlsruhe. Zugriff am 21.07.2020. Verfügbar unter: http://www.citygmlwiki.org/images/3/38/Energy_ADE_specification_2018_03_25.pdf

- Bergner, H. & Volz, H. (2012). 4 C Tragwerksentwurf und Vorbemessung. In K.-J. Schneider, A. Goris & A. Albert (Hrsg.), *Bautabellen für Ingenieure. Mit Berechnungshinweisen und Beispielen* (20. Aufl., [aktualisierte Neuaufl.], 4.84–4.119). Köln: Werner.
- Berzola, Z. (2020, September). *UMI GIS Importer*, MIT Sustainable Design Lab. Zugriff am 16.12.2020. Verfügbar unter: https://umidocs.readthedocs.io/en/develop/docs/plugins/gis-importer.html
- Bill, R. (2003). *Grundlagen der Geo-Informationssysteme. GI-Vorlesungen 2003.* Rostock: Universität Rostock. Zugriff am 22.04.2020. Verfügbar unter: http://iggilab.auf.uni-rostock.de/vorlesung-doc/GIS-Grundlagen2003.pdf
- Binderholz Bausysteme GmbH (Hrsg.). (o. J.). *Binderholz Brettsperrholz BBS*. Zugriff am 01.10.2021. Verfügbar unter: https://www.binderholz.com/fileadmin/user_up-load/books/de/bbs/10/index.html
- BMUB. (o. J.). Bewertungssystem Nachhaltiges Bauen (BNB) Ersatzverfahren. Vereinfachter Nachweis Ökobilanz 1.1.1-1.1.5 und 1.2.1, 1.2.2. Zugriff am 25.05.2021. Verfügbar unter: https://www.bnb-nachhaltigesbauen.de/fileadmin/publikationen/BNB_SGA_01_0.pdf
- BMUB. (2015). Bewertungssystem Nachhaltiges Bauen (BNB) Neubau Büro- und Verwaltungsgebäude. Bilanzierungsregeln für die Erstellung von Ökobilanzen. Zugriff am 25.08.2021. Verfügbar unter: https://www.bnb-nachhaltigesbauen.de/fileadmin/steckbriefe/verwaltungsgebaeude/neubau/v_2015/LCA-Bilanzierungsregeln_BNB_BN_2015.pdf
- BMUB. (2017). Bewertungssystem Nachhaltiges Bauen (BNB). Kriteriensteckbrief 1.1.1 Ökologische Qualität, Treibhausgaspotential. Version V 2017. Zugriff am 31.12.2021. Verfügbar unter: https://www.bnb-nachhaltigesbauen.de/fileadmin/steckbriefe/verwaltungsgebaeude/bestand__komplettmassnahme/v_2017/BNB_BK2017_111.pdf
- BMUB & UBA (Hrsg.). (2015). *Eco Design Kit B2 Analyse und Bewertungsmethoden. B2.4 Datenbanken.* Zugriff am 25.05.2021. Verfügbar unter: https://www.ecodesignkit.de/methoden/b2-analyse-und-bewertungsmethoden/
- BMUV. (2021). Novelle des Klimaschutzgesetzes beschreibt verbindlichen Pfad zur Klimaneutralität 2045. BMUV-Pressemitteilung Nr. 098/21. Zugriff am 03.01.2022. Verfügbar unter: https://www.bmu.de/pressemitteilung/novelle-des-klimaschutzgesetzes-beschreibt-verbindlichen-pfad-zur-klimaneutralitaet-2045
- BMWI. (o. J.a). *Deutsche Klimaschutzpolitik*, BMWI. Zugriff am 25.05.2021. Verfügbar unter: https://www.bmwi.de/Redaktion/DE/Artikel/Industrie/klimaschutz-deutsche-klimaschutzpolitik.html
- BMWI. (o. J.b). *Europäische Energiepolitik*, BMWI. Zugriff am 25.05.2021. Verfügbar unter: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/europaeische-energiepolitik.html
- BMWI. (2021, 18. Oktober). Richtlinie für die Bundesförderung für effiziente Gebäude Wohngebäude (BEG WG) vom 16.09.2021. Zugriff am 03.01.2022. Verfügbar unter: https://www.deutschland-machts-effizient.de/KAENEF/Redaktion/DE/PDF-Anlagen/BEG/bundesfoerderungf%C3%BCr-effiziente-gebaeude-wohngebaeude-20210916.pdf?__blob=publicationFile&v=3
- BMWI & BMI. (2020, 8. Oktober). *Bekanntmachung der Regeln zur Datenaufnahme und Datenverwendung im Wohngebäudebestand.* Berlin: Bundesministerium für Wirtschaft und Energie; Bundesministerium des Innern, für Bau und Heimat. Zugriff am 28.06.2021. Verfügbar unter: https://www.bundesanzeiger.de/pub/publication/gzQUGd8A3unSCCbVMcf?1
- Böhmer, H., Fanslau-Görlitz, D. & Zedler, J. (2010). *U-Werte alter Bauteile. Arbeitsunterlagen zur Rationalisierung wärmeschutztechnischer Berechnungen bei der Modernisierung* [Vollst. überarb. und erw. Aufl.]. Stuttgart: Fraunhofer IRB-Verl.

- Borrmann, A., König, M., Koch, C. & Beetz, J. (2021). Die BIM-Methode im Überblick. In A. Borrmann, M. König, C. Koch & J. Beetz (Hrsg.), *Building Information Modeling. Technologische Grundlagen und Industrielle Praxis* (VDI-Buch, 2. Auflage, S. 1-31). Wiesbaden: Springer Vieweg.
- Botzler, S., Dotzler, C., Eichel, P., Hofbauer, J., Januzaj, E., Kierdorf, D. et al. (2017). *HoEff-CIM, Energieeffiziente Hochschule, Campus Information Modelling. Erstellung eines Stufenplans zur Umsetzung von Energieeffizienzmaßnahmen auf einem Hochschulcampus im Rahmen des 6. Energieforschungsprogramms der Bundesregierung im Förderschwerpunkt EnBop.* Schlussbericht. München. Zugriff am 30.07.2021. Verfügbar unter: http://www.hoeff.info/media/schlussbericht/Schlussbericht HoEff-CIM.pdf
- Braune, A., Ekhvaia, L. & Quante, K. (2021, August). Benchmarks für die Treibhausgasemissionen der Gebäudekonstruktion. Ergebnisse einer Studie mit 50 Gebäuden (DGNB e.V., Hrsg.). Zugriff am 08.01.2022. Verfügbar unter: https://static.dgnb.de/fileadmin/dgnb-ev/de/themen/Klima-schutz/Toolbox/102021_Studie-Benchmarks-fuer-die-Treibhausgasemissionen-der-Gebaeude-konstruktion.pdf
- BRE (Hrsg.). (2022). BREEAM: the world's leading sustainability assessment method for master-planning projects, infrastructure and buildings. Zugriff am 30.07.2021. Verfügbar unter: https://www.breeam.com/
- Bundesamt für Kartographie und Geodäsie. (2022, Januar). *Dokumentation, 3D Gebäudemodell Deutschland LoD2. Produkstand 2021.* Leipzig. Zugriff am 22.03.2022. Verfügbar unter: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/LoD2-DE.pdf
- Bundesamt für Wirtschaft und Ausfuhrkontrolle (Hrsg.). (o. J.). *EnEV 2014. Wichtigste Änderungen gegenüber der EnEV 2009: Neubau/Bestand.* Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/gesetze-normen/energieeinsparverordnung/enev-2014
- Bundesamt für Wirtschaft und Ausfuhrkontrolle (Hrsg.). (2020). *EnEV-Historie*. Zugriff am 20.05.2020. Verfügbar unter: https://www.febs.de/gesetze-normen/energieeinsparverord-nung/enev-historie
- Ceresana (Hrsg.). (2021). *Marktstudie Dämmstoffe. Europa*. Zugriff am 26.08.2021. Verfügbar unter: https://www.ceresana.com/de/marktstudien/industrie/daemmstoffe-europa
- Cerezo Davila, C. & Reinhart, C. (26.-28.08.13). *Urban Energy Lifecycle: an analytical framework to evaluate the embodied energy use of urban developments*. 13th Conference of International Building Performance Simulation Association. Proceedings of BS2013, Chambéry, Frankreich. Zugriff am 29.04.2020. Verfügbar unter: http://www.ibpsa.org/proceedings/BS2013/p_1351.pdf
- Chen, Y., Hong, T. & Piette, M. (2017). Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. *Applied Energy*, 205, 323-335. https://doi.org/10.1016/j.apenergy.2017.07.128
- Cischinsky, H. & Diefenbach, N. (2018, 17. April). *Datenerhebung Wohngebäudebestand 2016. Datenerhebung zu den energetischen Merkmalen und Modernisierungsraten im deutschen und hessischen Wohngebäudebestand.* Darmstadt: IWU. Zugriff am 12.09.2019. Verfügbar unter: http://wohngebaeudedaten2016.iwu.de/dl/Endbericht%20Datenerhebung%20Wohngeb%C3%A4udebestand%202016.pdf
- Climate Change Resource Center (Hrsg.). (o. J.). *CUFR Tree Carbon Calculator (CTCC)*. Zugriff am 02.05.2022. Verfügbar unter: https://www.fs.usda.gov/ccrc/tool/cufr-tree-carbon-calculator-ctcc
- Climate Service Center Germany GERICS & KfW Development Bank (Hrsg.). (2015, November). Climate-Focus-Paper. Cities and Climate Change. Hamburg. Zugriff am 03.01.2022. Verfügbar unter: https://www.gerics.de/imperia/md/content/csc/cities_focus_paper_tou.pdf

- Co2online (Hrsg.). (2022, 28. November). Heizkosten für verschiedene Energieträger und Heizsysteme in Deutschland. Durchschnittliche Heizkosten pro Quadratmeter Gebäudefläche im Abrechnungsjahr 2021. Beispiel für ein mittelgroßes Mehrfamilienhaus mit 501 bis 1.000 m² Gebäudefläche. Zugriff am 28.11.2022. Verfügbar unter: https://www.heizspiegel.de/heizkosten-pruefen/heizkosten-pro-m²-vergleich/#c86583
- Colling, F. (2012). Holzbau nach Eurocode 5. In K.-J. Schneider, A. Goris & A. Albert (Hrsg.), *Bautabellen für Ingenieure. Mit Berechnungshinweisen und Beispielen* (20. Aufl., [aktualisierte Neuaufl.]. Köln: Werner.
- Dataholz.eu (Hrsg.). (2021). *Katalog bauphysikalisch und ökologisch geprüfter Holzbauteile*. Zugriff am 13.07.2021. Verfügbar unter: https://www.dataholz.eu/
- Dena. (2007, 10. September). *Die neue Energieeinsparverordnung (EnEV 2007)*. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/dena-zusammenfassung-enev-2007.pdf
- Dena (Hrsg.). (2009, 29. April). Zusammenfassung. Entwurf zur Novellierung der Energieeinsparverordnung (Entwurf zur EnEV 2009). Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/dena-zusammenfassung-enev-2009.pdf
- Deutscher Bundestag. Verordnung Über einen energiesparenden Wärmeschutz bei Gebäuden (Wärmeschutzverordnung WäremeschutzV). WärmeschutzV 1977. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/waermeschutzverordnung-1977.pdf
- Deutscher Bundestag. Verordnung Über einen energiesparenden Wärmeschutz bei Gebäuden (Wärmeschutzverordnung WäremeschutzV). WärmeschutzV 1984. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/waermeschutzverordnung-1977.pdf
- Deutscher Bundestag. Wärmeschutzverordnung (WärmeschutzVO) Verordnung über einen Energiesparenden Wärmeschutz bei Gebäuden. WSVO 1995. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/waermeschutzverordnung-1995.pdf
- Deutscher Bundestag. Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung EnEV). EnEV 2002. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/langfassung-enev-2002.pdf
- Deutscher Bundestag. Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung EnEV) vom 16.11.2001 (BGBI. 1 S. 3085), geändert durch Artikel 296 der Verordnung vom 25.11.2003 (BGBI. 1, S. 2304, 2341). EnEV 2004. Zugriff am 25.05.2020. Verfügbar unter: https://www.febs.de/fileadmin/Gesetze_und_Normen/bekanntmachung-bundesgesetzblatt-enev-2004.pdf
- Deutscher Bundestag. (2013, Teil I). Zweite Verordnung zur Änderung der Energieeinsparverordnung. EnEV 2013. *Bundesgesetzblatt, 2013, Teil I* (67), 3951-3990. Zugriff am 04.01.2021. Verfügbar unter: https://www.bgbl.de/xaver/bgbl/start.xav?start=//*%5B@attr_id=%27bgbl113067.pdf%27%5D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl113067.pdf%27%5D__1641286264044
- Deutscher Bundestag. Bundes-Klimaschutzgesetz vom 12. Dezember 2019 (BGBI. I S. 2513), das durch Artikel 1 des Gesetzes vom 18. August 2021 (BGBI. I S. 3905) geändert worden ist. KSG. Zugriff am 28.12.2021. Verfügbar unter: https://www.gesetze-im-internet.de/ksg/BJNR251310019.html

- Deutscher Bundestag. (2020, Teil I). Gesetz zur Vereinheitlichung des Energieeinsparrechts für Gebäude und zur Änderung weiterer Gesetze. GEG. Bundesgesetzblatt, 2020, Teil I (37), 1728-1794. Zugriff am 04.01.2021. Verfügbar unter: https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&bk=Bundesanzeiger_BGBl&start=//*[@attr_id=%27bgbl107s1519.pdf%27]#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl120s1728.pdf%27%5D__1612887110102
- Deutscher Bundestag. (2022, 28. April). *Deutscher Bundestag Regelung zur Übernahme des CO2-Preises überwiesen*. Zugriff am 04.08.2022. Verfügbar unter: https://www.bundestag.de/dokumente/textarchiv/2022/kw17-de-co2-preis-889624
- DGNB (Hrsg.). (2014). *DBGN Navigator. Allgemeine FAQ*. Zugriff am 31.12.2021. Verfügbar unter: https://www.dgnb-navigator.de/Navigation/navGlossary#L
- DGNB (Hrsg.). (2018). Ökobilanz des Gebäudes. ENV1.1. Zugriff am 26.08.2021. Verfügbar unter: https://static.dgnb.de/fileadmin/dgnb-system/de/gebaeude/neubau/kriterien/02_ENV1.1_Oekobilanz-des-Gebaeudes.pdf
- DGNB (Hrsg.). (2021). *Das Zertifizierungssystem, DGNB System*. Zugriff am 04.05.2021. Verfügbar unter: https://www.dgnb-system.de/de/system/index.php
- DGNB (Hrsg.). (2022). *DGNB System. Übersicht aller Kriterien für Gebäude Neubau.* Zugriff am 17.05.2022. Verfügbar unter: https://www.dgnb-system.de/de/gebaeude/neubau/kriterien/index.php
- Diefenbach, N., Cischinsky, H., Rodenfels, M. & Clausnitzer, K.-D. (2010, 9. Dezember). *Datenbasis Gebäudebestand. Datenerhebung zur energetischen Qualität und zu den Modernisierungstrends im deutschen Wohngebäudebestand* (1. Auflage) (IWU, Hrsg.). Darmstadt. Zugriff am 30.07.2020. Verfügbar unter: http://datenbasis.iwu.de/dl/Endbericht Datenbasis.pdf
- DIN 18195:2017-07. DIN 18195:2017-07, Abdichtung von Bauwerken Begriffe. Berlin: Beuth Verlag GmbH.
- DIN 18531-1:2017-07. DIN 18531-1:2017-07, Abdichtung von Dächern sowie von Balkonen, Loggien und Laubengängen Teil 1: Nicht genutzte und genutzte Dächer Anforderungen, Planungs- und Ausführungsgrundsätze. Berlin: Beuth Verlag GmbH.
- DIN 18531-3:2017-07. DIN 18531-3:2017-07, Abdichtung von Dächern sowie von Balkonen, Loggien und Laubengängen Teil 3: Nicht genutzte und genutzte Dächer Auswahl, Ausführung und Details. Berlin: Beuth Verlag GmbH.
- DIN 18533-1:2017-07. DIN 18533-1:2017-07, Abdichtung von erdberührten Bauteilen Teil 1: Anforderungen, Planungs- und Ausführungsgrundsätze. Berlin: Beuth Verlag GmbH.
- DIN 18533-3:2017-07. DIN 18533-3:2017-07, Abdichtung von erdberührten Bauteilen Teil 3: Abdichtung mit flüssig zu verarbeitenden Abdichtungsstoffen. Berlin: Beuth Verlag GmbH.
- DIN 276:2018-12. DIN 276:2018-12, Kosten im Bauwesen. Berlin: Beuth Verlag GmbH.
- DIN 277:2021-08. *DIN 277:2021-08, Grundflächen und Rauminhalte im Hochbau*. Berlin: Beuth Verlag GmbH.
- DIN 4108-4:2020-11. DIN 4108-4:2020-11, Wärmeschutz und Energie-Einsparung in Gebäuden Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte. Berlin: Beuth Verlag GmbH.
- DIN EN 15643:2921-12. DIN EN 15643:2021-12, Nachhaltigkeit von Bauwerken Allgemeine Rahmenbedingungen zur Bewertung von Gebäuden und Ingenieurbauwerken. Berlin: Beuth Verlag GmbH.
- DIN EN 15804:2020-03. *DIN EN 15804:2020-03, Nachhaltigkeit von Bauwerken Umweltprodukt-deklarationen.* Berlin: Beuth Verlag GmbH.

- DIN EN 15978:2012-10. DIN EN 15978:2012-10, Nachhaltigkeit von Bauwerken Bewertung der umweltbezogenen Qualität von Gebäuden. Berlin: Beuth Verlag GmbH.
- DIN EN ISO 10077-1:2020-10. DIN EN ISO 10077-1:2020-10, Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen Berechnung des Wärmedurchgangskoeffizienten Teil 1: Allgemeines (ISO 10077-1:2017, korrigierte Fassung 2020-02); Deutsche Fassung EN ISO 10077-1:2017. Berlin: Beuth Verlag GmbH.
- DIN EN ISO 10456:2010-05. DIN EN ISO 10456:2010-05, Baustoffe und Bauprodukte Wärme- und feuchtetechnische Eigenschaften Tabellierte Bemessungswerte und Verfahren zur Bestimmung der wärmeschutztechnischen Nenn- und Bemessungswerte (ISO_10456:2007_+ Cor._1:2009); Deutsche Fassung EN_ISO_10456:2007_+ AC:2009. Berlin: Beuth Verlag GmbH.
- DIN EN ISO 14040:2021-02. *DIN EN ISO 14040:2021-02, Umweltmanagement Ökobilanz*. Berlin: Beuth Verlag GmbH.
- DIN EN ISO 14044:2021-02. *DIN EN ISO 14044:2021-02, Umweltmanagement Ökobilanz*. Berlin: Beuth Verlag GmbH.
- Dossche, C., Boel, V. & Corte, W. de. (2017). Use of Life Cycle Assessments in the Construction Sector: Critical Review. *Procedia Engineering*, *171*, 302-311. https://doi.org/10.1016/j.pro-eng.2017.01.338
- Dotzler, C., Botzler, S., Kierdorf, D. & Lang, W. (2018). Methods for optimising energy efficiency and renovation processes of complex public properties. *Energy and Buildings*, *164*, 254-265. https://doi.org/10.1016/j.enbuild.2017.12.060
- Dotzler, C., Hessinger, J., Kurzer, C., Schneider-Marin, P. & Volz, C. (2019). *Hybridbau Holzau-Benwände* (DETAIL Praxis, Erste Auflage). München: DETAIL.
- Dr. Klein Wowi Finanz AG (Hrsg.). (o. J.). *Plattenbauarten*. Zugriff am 25.05.2020. Verfügbar unter: https://www.wowi.de/plattenbauarten.html
- Ecoinvent. (o. J.). ecoinvent. Zugriff am 22.01.2023. Verfügbar unter: https://ecoinvent.org/
- Eicke-Henning, W. (2017). Vom Flechtwerk zum Dämmpaket (Historischer Wärmeschutz: Geschichte der Dämmstoffe). Frankfurt am Main: Energienstitut-Hessen. Zugriff am 07.04.2020. Verfügbar unter: https://www.nei-dt.de/Downloads/Geschichte%20der%20Daemmstoffe-Eicke-Hennig-2017.pdf
- EnergieSchweiz für Gemeinden & Bundesamt für Energie (Hrsg.). (2020, Oktober). *Kurzfassung Leitkonzept 2000-Watt-Gesellschaft. Beitrag zu einer klimaneutralen Schweiz*. Zugriff am 16.12.2020. Verfügbar unter: https://www.local-energy.swiss/dam/jcr:5126840c-c16d-4019-aea0-c2e0f055329b/Leitkonzept-2000WG_vOkt2020_kurz_de.pdf
- UN Environment Programme. (2017). *Cities and climate change*, UN Environment. Zugriff am 03.01.2022. Verfügbar unter: https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/cities-and-climate-change
- UN Environment Programme (Hrsg.). (2019, Februar). Sand and Sustainability. Finding new solutions for environmental governance of global sand resources. Genf, Schweiz. Zugriff am 02.07.2021. Verfügbar unter: https://unepgrid.ch/storage/app/media/documents/Sand_and_sustainability_UNEP_2019.pdf
- UN Environment Programme (Hrsg.). (2020). 2020 Global Status Report for Buildings and Construction. Towards a zero-emission, efficient and resilient buildings and construction sector, Executive Summary. Zugriff am 29.06.2021. Verfügbar unter: https://globalabc.org/sites/default/files/inline-files/Buildings%20GSR_Executive_Summary%20FINAL_0.pdf
- Erdmann, L. & Behrendt, S. (2011, September). Kritische Rohstoffe für Deutschland. Identifikation aus Sicht deutscher Unternehmen wirtschaftlich bedeutsamer mineralischer Rohstoffe, deren

- Versorgungslage sich mittel- bis langfristig als kritisch erweisen könnte. Berlin: Institut für Zukunftsstudien und Technologiebewertung (IZT). Zugriff am 02.07.2021. Verfügbar unter: https://www.izt.de/fileadmin/downloads/pdf/54416.pdf
- ETH Zürich The A/S group. (o. J.). *default databases*, ETH Zürich The A/S group. Zugriff am 16.12.2020. Verfügbar unter: https://docs.google.com/presentation/d/1xMG-Vhmqh0jwdLih6WgwFzJrzhlPGdocQKdzZvYnvil/edit#slide=id.g32ec60861d_0_37
- ETH Zürich The A/S group (ETH Zürich The A/S group, Hrsg.). (2021). Overview, City Energy Analyst (CEA), ETH Zürich The A/S group. Zugriff am 16.12.2020. Verfügbar unter: https://city-energyanalyst.com/overview
- Europäische Komission. (o. J.a). *Climate Action Climate strategies and targets*. Zugriff am 25.05.2021. Verfügbar unter: https://ec.europa.eu/clima/policies/strategies_en
- Europäische Komission (Hrsg.). (o. J.b). *Level(s). European framework for sustainable buildings*. Zugriff am 30.07.2021. Verfügbar unter: https://ec.europa.eu/environment/levels_de
- Europäische Komission (Hrsg.). (2019). *Europäischer Grüner Deal*. Zugriff am 30.07.2021. Verfügbar unter: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_de
- Ewertowska, A., Pozo, C., Gavaldà, J., Jiménez, L. & Guillén-Gosálbez, G. (2017). Combined use of life cycle assessment, data envelopment analysis and Monte Carlo simulation for quantifying environmental efficiencies under uncertainty. *Journal of Cleaner Production*, *166*, 771-783. https://doi.org/10.1016/j.jclepro.2017.07.215
- Fachagentur Nachwachsende Rohstoffe e.V. (Hrsg.). (2021, 24. Februar). *Marktanteil von Nawaro-Dämmstoffen wächst*. Zugriff am 17.09.2021. Verfügbar unter: https://www.fnr.de/presse/presse-mitteilungen/aktuelle-mitteilungen/aktuelle-nachricht/marktanteil-von-nawaro-daemmstoffenwaechst
- Feng, H., Liyanage, D., Karunathilake, H., Sadiq, R. & Hewage, K. (2020). BIM-based life cycle environmental performance assessment of single-family houses: Renovation and reconstruction strategies for aging building stock in British Columbia. *Journal of Cleaner Production*, *250*, 119543. https://doi.org/10.1016/j.jclepro.2019.119543
- Fonseca, J., Nguyen, T.-A., Schlueter, A. & Marechal, F. (2016). City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. *Energy and Buildings*, *113*, 202-226. https://doi.org/10.1016/j.enbuild.2015.11.055
- FOSSGIS e.V. (o. J.). *OpenStreetMap Deutschland. Die freie Wiki-Weltkarte*. Zugriff am 05.05.2022. Verfügbar unter: https://openstreetmap.de/
- Frischknecht, R., Balouktsi, M., Lützkendorf, T., Aumann, A., Birgisdottir, H., Ruse, E. et al. (2019). Environmental benchmarks for buildings: needs, challenges and solutions 71st LCA forum, Swiss Federal Institute of Technology, Zürich, 18 June 2019. *The International Journal of Life Cycle Assessment*, 24(12), 2272-2280. https://doi.org/10.1007/s11367-019-01690-y
- Giebeler, G., Fisch, R., Krause, H., Musso, F., Petzinka, K.-H. & Rudolphi, A. (2008). *Atlas Sanierung. Instandhaltung, Umbau, Ergänzung.* Basel: Birkhäuser.
- Giraffe Technology Pty Ltd (Hrsg.). (o. J.). *The Why, What, and How of Lifecycle Carbon Analysis on the Giraffe Blog.* Zugriff am 17.01.2023. Verfügbar unter: https://www.giraffe.build/post/the-why-what-and-how-of-lifecycle-carbon-analysis
- Goris, A. & Schmitz, U. (2012). Stahlbeton- und Spannbetonbau nach Eurocode 2. In K.-J. Schneider, A. Goris & A. Albert (Hrsg.), *Bautabellen für Ingenieure. Mit Berechnungshinweisen und Beispielen* (20. Aufl., [aktualisierte Neuaufl.], 5.25-5.173). Köln: Werner.

- Graubner, C. & Knauff, A. (2008). Ökobilanzstudie. Gegenüberstellung Massivhaus / Holzelement-bauweise an einem KfW Energiesparhaus 40. Forschungsbericht F04-8-2008. Technische Universität Darmstadt.
- Groen, E., Heijungs, R., Bokkers, E. & Boer, I. de. (2014). Methods for uncertainty propagation in life cycle assessment. *Environmental Modelling & Software*, *62*, 316-325. https://doi.org/10.1016/j.envsoft.2014.10.006
- Gröger, G., Kolbe, T., Nagel, C. & Häfele, K.-H. (OGS, Hrsg.). (o. J.). *OGC City Geography Markup Language (CityGML) Encoding Standard. Version 2.0.0.* Verfügbar unter: http://www.opengis.net/spec/citygml/2.0
- Grow my Tree GmbH. (2022, 5. Mai). *Deine Bäume pflanzen. Deine GROW MY TREE Baum-Pa- kete*. Zugriff am 05.05.2022. Verfügbar unter: https://growmytree.com/collections/baeume-pflanzen
- Gruhler, K., Böhm, R., Deilmann, C. & Schiller, G. (2002). Stofflich-energetische Gebäudesteck-briefe. Gebäudevergleiche und Hochrechnungen für Bebauungsstrukturen (IÖR Schriften 38). Dresden: Leibnitz-Institut für ökologische Raumentwicklung e.V. Zugriff am 12.03.2020. Verfügbar unter: https://www.ssoar.info/ssoar/handle/document/39685
- Häfliger, I.-F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. et al. (2017). Buildings environmental impacts' sensitivity related to LCA modelling choices of construction materials. *Journal of Cleaner Production*, *156*, 805-816. https://doi.org/10.1016/j.jclepro.2017.04.052
- Hafner, A., Rüter, S., Ebert, S., Schäfer, S., König, H., Cristofaro, L. et al. (2017, April). *Treibhaus-gasbilanzierung von Holzgebäuden. Umsetzung neuer Anforderungen an Ökobilanzen und Ermittlung empirischer Substitutionsfaktoren (THG-Holzbau)*. Forschungsbericht. Zugriff am 30.07.2021. Verfügbar unter: https://mediatum.ub.tum.de/doc/1522711/1522711.pdf
- Harter, H. (2021, 30. September). Lebenszyklusanalyse der Technischen Gebäudeausrüstung großer Wohngebäudebestände auf der Basis semantischer 3D-Stadtmodelle. Dissertation. Technische Universität München, München. Zugriff am 30.12.2021. Verfügbar unter: https://mediatum.ub.tum.de/doc/1610979/document.pdf
- Harter, H., Meier-Dotzler, C., Vollmer, M. & Lang, W. (2020, Februar). *AS-Bau Hof GmbH. Eco+Office Plusenergie und CO₂-Neutralität.* Forschungsbericht (Bayerischer Bauindustrieverband e.V., Hrsg.). Zugriff am 30.07.2021. Verfügbar unter: https://www.ppe.tum.de/filead-min/w00bqx/www/content_uploads/2020129_Endbericht_AS_Bau.pdf
- Harter, H., Singh, M., Schneider-Marin, P., Lang, W. & Geyer, P. (2020). Uncertainty Analysis of Life Cycle Energy Assessment in Early Stages of Design. *Energy and Buildings*, *208*, 109635. https://doi.org/10.1016/j.enbuild.2019.109635
- Harter, H., Weiler, V. & Eicker, U. (2017). Developing a roadmap for the modernisation of city quarters Comparing the primary energy demand and greenhouse gas emissions. *Building and Environment*, 112, 166-176. https://doi.org/10.1016/j.buildenv.2016.11.031
- Harter, H., Willenborg, B., Lang, W. & Kolbe, T. (2020). Life Cycle Assessment of technical building services of large residential stocks using semantic 3D city models. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, *VI-4/W1-2020*, 85-92. https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-85-2020
- Heijungs, R. (2020). On the number of Monte Carlo runs in comparative probabilistic LCA. *The International Journal of Life Cycle Assessment*, *25*(2), 394-402. https://doi.org/10.1007/s11367-019-01698-4
- Heinrich, M. (2019, 11. März). Erfassung und Steuerung von Stoffströmen im urbanen Wohnungsbau Am Beispiel der Wohnungswirtschaft in München-Freiham. Dissertation. Technische

- Universität München, München. Zugriff am 12.09.2019. Verfügbar unter: https://mediatum.ub.tum.de/doc/1453693/1453693.pdf
- Herman, J. & Usher, W. (2021). *SALib. Sensitivity Analysis Library in Python*. Zugriff am 28.06.2022. Verfügbar unter: https://salib.readthedocs.io/en/latest/
- Hochschule für Technik Stuttgart (Hrsg.). (2022). SimStadt 2.0. 3D-Simulation urbaner Energiesysteme. Zugriff am 19.05.2022. Verfügbar unter: https://www.hft-stuttgart.de/forschung/projekte/abgeschlossen/simstadt-20
- Höglmeier, K., Weber-Blaschke, G. & Richter, K. (2013). Potentials for cascading of recovered wood from building deconstruction - A case study for south-east Germany. *Resources, Conservation and Recycling*, 78, 81-91. https://doi.org/10.1016/j.resconrec.2013.07.004
- Hollberg, A., Kiss, B., Röck, M., Soust-Verdaguer, B., Wiberg, A., Lasvaux, S. et al. (2021). Review of visualising LCA results in the design process of buildings. *Building and Environment*, 190, 107530. https://doi.org/10.1016/j.buildenv.2020.107530
- Hörner, M., Rodenfels, M., Cischinsky, H., Behnisch, M., Busch, R. & Spars, G. (2021, April). For-schungsdatenbank Nichtwohngebäude. Der Bestand der Nichtwohngebäude in Deutschland ist vermessen (3. und finale Hochrechnung). Projektinformation. Darmstadt: Institut Wohnen und Umwelt GmbH (IWU). Zugriff am 24.06.2021. Verfügbar unter: https://www.datanwg.de/filead-min/user/iwu/210412_IWU_Projektinfo-8.3_BE_Strukturdaten_final.pdf
- Horton, R. (2009). The climate dividend. *The Lancet*, *374*(9705), 1869-1870. https://doi.org/10.1016/S0140-6736(09)61994-2
- InformationsZentrum Beton GmbH (Hrsg.). (2019). Wasserundurchlässige Bauwerke aus Beton (Zement Merkblatt Hochbau H 10 5.2019). Düsseldorf. Zugriff am 28.10.2021. Verfügbar unter: https://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/Zement-merkbl%C3%A4tter/H10.pdf
- Institut für Immobilienökonomie (Hrsg.). (o. J.). *CRREM. Make decarbonisation measurable & Manage Carbon Risk.* Zugriff am 13.08.2022. Verfügbar unter: https://www.crrem.eu/
- IÖR (Hrsg.). (o. J.). *Bauwerksdaten. Wohngebäude*. Zugriff am 03.09.2021. Verfügbar unter: http://ioer-bdat.de/bauwerksdaten/wohngebaeude/
- Kaden, R. (2014). Berechnung der Energiebedarfe von Wohngebäuden und Modellierung energiebezogener Kennwerte auf der Basis semantischer 3D-Stadtmodelle. Dissertation. Technische Universität München, München. Zugriff am 24.01.2022. Verfügbar unter: https://mediatum.ub.tum.de/doc/1210304/1210304.pdf
- Kalisch, C. (2021, März). *Untersuchung von Stadtgrün. Eine ökologische Lebenszyklusanalyse von Dach- und Außenraumbegrünungen.* Bachelorarbeit (unveröffentlicht). TU München, München.
- Kaltschmitt, M. & Schebek, L. (Hrsg.). (2015). *Umweltbewertung für Ingenieure. Methoden und Verfahren.* Berlin, Heidelberg: Springer Vieweg.
- Karlsruher Institut für Technologie (Hrsg.). (2022). *FZKViewer*. Zugriff am 25.05.2022. Verfügbar unter: https://www.iai.kit.edu/1648.php
- KfW (Hrsg.). (2020, Januar). Anlage zu den Merkblättern Energieeffizient Sanieren Kredit und Investitionszuschuss. Technische Mindestanforderungen. Zugriff am 12.08.2021. Verfügbar unter: https://www.kfw.de/PDF/Download-Center/F%c3%b6rderprogramme-(Inlandsf%c3%b6rderung)/PDF-Dokumente/6000003612_M_151_152_430_Anlage_TMA_2018_04.PDF
- KfW (Hrsg.). (2021). Die Effizienzhaus-Stufen für bestehende Immobilien und Baudenkmale. Effizienzhaus-Stufen und Förderung im Überblick. Zugriff am 12.10.2021. Verfügbar unter: https://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestehende-Immobilie/Energieeffizientsanieren/Das-Effizienzhaus/

- KfW (Hrsg.). (2022). *Die Effizienzhaus-Stufe für einen Neubau. Die Effizienzhaus-Stufe 40 mit Nach-haltigkeits-Klasse*. Zugriff am 04.08.2022. Verfügbar unter: https://www.kfw.de/inlandsfoerderung/Privatpersonen/Neubau/Das-Effizienzhaus/
- König, H. (2017, Dezember). *Projekt: Lebenszyklusanalyse von Wohngebäuden. Lebenszyklusanalyse mit Berechnung der Ökobilanz und Lebenszykluskosten*. Endbericht. Gröbenzell. Zugriff am 30.07.2021. Verfügbar unter: https://www.lbb-bayern.de/fileadmin/quicklinks/Quick-Link-Nr-98300000-LfU-Gesamtstudie_Lebenszyklusanalyse.pdf
- Kroese, D. (2014). *Statistical Modeling and Computation* (Springer eBook Collection Mathematics and Statistics). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-8775-3
- Kroese, D., Brereton, Tim, Taimre, T. & Botev, Z. (2014). Why the Monte Carlo method is so important today. *WIREs Comput Stat.*, (6), 386-392. https://doi.org/10.1002/wics.1314
- KS-Original GmbH (Hrsg.). (2021). *Produkte*. Zugriff am 01.10.2021. Verfügbar unter: https://www.ks-original.de/produkte
- Kuhn, T. (2017). *Digitaler Zwilling*. Zugriff am 06.04.2022. Verfügbar unter: https://gi.de/informatikle-xikon/digitaler-zwilling
- Kutzner, T., Chaturvedi, K. & Kolbe, T. (2020). CityGML 3.0: New Functions Open Up New Applications. *PFG Journal of Photogrammetry, Remote Sensing and Geoinformation Science*, *88*(1), 43-61. https://doi.org/10.1007/s41064-020-00095-z
- Landeshauptstadt München. (o. J.). *Referat für Stadtplanung und Bauordnung*. Zugriff am 21.03.2022. Verfügbar unter: https://stadt.muenchen.de/rathaus/verwaltung/referat-stadtplanung-bauordnung.html
- Landeshauptstadt München (1940). Bauplanakte, Abg. 78/1, Bd. 18.
- Lausselet, C., Borgnes, V. & Brattebø, H. (2019). LCA modelling for Zero Emission Neighbourhoods in early stage planning. *Building and Environment*, *149*, 379-389. https://doi.org/10.1016/j.buildenv.2018.12.034
- Lausselet, C., Urrego, J., Resch, E. & Brattebø, H. (2021). Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock. *Journal of Industrial Ecology*, *25*(2), 419-434. https://doi.org/10.1111/jiec.13049
- Lavagna, M., Baldassarri, C., Campioli, A., Giorgi, S., Dalla Valle, A., Castellani, V. et al. (2018). Benchmarks for environmental impact of housing in Europe: Definition of archetypes and LCA of the residential building stock. *Building and Environment*, 145, 260-275. https://doi.org/10.1016/j.buildenv.2018.09.008
- Ledoux, H. & Dukai, B. (2021). *CityJSON Specifications 1.1.0. Living Standard, 1 December 2021,* TU Delft. Zugriff am 14.01.2022. Verfügbar unter: https://www.cityjson.org/specs/1.1.0/
- LfDBV Bayern. (o. J.a). Alkis. Bundesweit einheitlicher Standard für die Daten des Liegenschaftkatasters. Zugriff am 21.03.2022.
- LfDBV Bayern. (o. J.b). *Bayerische Vermessungsverwaltung Produkte 3D-Produkte 3D-Gebäudemodell*. Zugriff am 22.04.2020. Verfügbar unter: https://www.ldbv.bayern.de/produkte/3dprodukte/3d.html
- Bayerische Vermessungsverwaltung (LfDBV Bayern, Hrsg.). (o. J.c). *OpenData. Kostenfreie Geodaten der Bayerischen Vermessungsverwaltung*, Bayerische Vermessungsverwaltung. Zugriff am 12.01.2023. Verfügbar unter: https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=lod2
- Lloyd, S. & Ries, R. (2007). Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches. *Journal of Industrial Ecology*, *11*(1), 161-179. https://doi.org/10.1162/jiec.2007.1136

- Lo, S.-C., Ma, H. & Lo, S.-L. (2005). Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. *Science of the Total Environment*, *340*(1-3), 23-33. https://doi.org/10.1016/j.scitotenv.2004.08.020
- Loga, T., Stein, B., Diefenbach, N. & Born, R. (2015). Deutsche Wohngebäudetypologie. Beispiel-hafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden (2. erweiterte Auflage). Darmstadt: Institut Wohnen und Umwelt. Zugriff am 10.09.2019. Verfügbar unter: http://www.building-typology.eu/downloads/public/docs/brochure/DE_TABULA_TypologyBrochure_IWU.pdf
- Lotteau, M., Loubet, P., Pousse, M., Dufrasnes, E. & Sonnemann, G. (2015). Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. *Building and Environment*, 93, 165-178. https://doi.org/10.1016/j.buildenv.2015.06.029
- Maderspacher, J. (2017). Robuste Optimierung in der Gebäudesimulation. Entwicklung einer Methode zur robusten Optimierung für die energetische Sanierung von Gebäuden unter unsicheren Randbedingungen. Dissertation. TU München, München. Zugriff am 17.05.2022. Verfügbar unter: https://mediatum.ub.tum.de/1356587
- Mahler, B., Idler, S. & Gantner, J. (2019). Mögliche Optionen für eine Berücksichtigung von grauer Energie im Ordnungsrecht oder im Bereich der Förderung. Kurztitel: Graue Energie im Ordnungsrecht/Förderung. Endbericht (Aktenzeichen 10.08.17.7-17.07b). Zugriff am 29.06.2021. Verfügbar unter: https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2017/graue-energie/Endbericht.html?__blob=publicationFile&v=3
- Mahler, B., Idler, S., Nusser, T. & Gantner, J. (2019, Februar). Energieaufwand für Gebäudekonzepte im gesamten Lebenszyklus. Abschlussbericht (Umweltbundesamt, Hrsg.). Stuttgart. Zugriff am 29.06.2021. Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-10-29_texte_132-2019_energieaufwand-gebaeudekonzepte.pdf
- Mailhac, A., Cor, E., Vesson, M., Rolland, E., Schetelat, P., Schiopu, N. et al. (2018). A Proposition to Extend CityGML and ADE Energy Standards for Exchanging Information for LCA Simulation at Urban Scale. In E. Benetto (Hrsg.), *Designing Sustainable Technologies, Products and Policies* (1st ed., S. 281-291) [Place of publication not identified]: Springer International Publishing. https://doi.org/10.1007/978-3-319-66981-6_31
- Marceau, M. & VanGeem, M. (2006). Comparison of the Life Cycle Assessments of an Insulating Concrete Form House and a Wood Frame House. *Journal of ASTM International*, *3*(9), 13637. https://doi.org/10.1520/JAI13637
- Mastrucci, A., Marvuglia, A., Benetto, E. & Leopold, U. (2020). A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale. *Renewable and Sustainable Energy Reviews*, *126*, 109834. https://doi.org/10.1016/j.rser.2020.109834
- Mastrucci, A., Marvuglia, A., Leopold, U. & Benetto, E. (2017). Life Cycle Assessment of building stocks from urban to transnational scales: A review. *Renewable and Sustainable Energy Reviews*, 74, 316-332. https://doi.org/10.1016/j.rser.2017.02.060
- Mastrucci, A., Marvuglia, A., Popovici, E., Leopold, U. & Benetto, E. (2017). Geospatial characterization of building material stocks for the life cycle assessment of end-of-life scenarios at the urban scale. Resources, Conservation and Recycling, 123, 54-66. https://doi.org/10.1016/j.resconrec.2016.07.003
- Mastrucci, A., Popovici, E., Marvuglia, A., Sousa, L. de, Benetto, E. & Leopold, U. (2015). GIS-based Life Cycle Assessment of urban building stocks retrofitting a bottom-up framework applied to Luxembourg. *Envirolnfo and ICT for Sustainability 2015*, 47-56. https://doi.org/10.2991/ict4s-env-15.2015.6

- Matthey, A. & Bünger, B. (2019). *Methodenkonvention 3.0 zur Ermittlung von Umweltkosten. Kostensätze (Stand 2/2019)* (Umweltbundesamt, Hrsg.). Dessau-Roßlau.
- Matthey, A. & Bünger, B. (2020, Dezember). *Methodenkonvention 3.1 zur Ermittlung von Umwelt-kosten. Kostensätze (Stand 12/2020)* (Umweltbundesamt, Hrsg.). Dessau-Roßlau. Zugriff am 30.04.2022. Verfügbar unter: https://www.umweltbundesamt.de/publikationen/methodenkonvention-umweltkosten
- Menberg, K., Heo, Y. & Choudhary, R. (2016). Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information. *Energy and Buildings*, *133*, 433-445. https://doi.org/10.1016/j.enbuild.2016.10.005
- Meó Consulting Team. (2014). *Marktanalyse nachwachsende Rohstoffe* (FNR, Hrsg.). Zugriff am 26.08.2021. Verfügbar unter: https://fnr.de/marktanalyse/marktanalyse.pdf
- Metabuild GmbH (Hrsg.). (2022). *Metabuild. Optimierte Gebäudeplanung für Bauherren und Projekt-entwickler*. Zugriff am 21.05.2022. Verfügbar unter: https://www.metabuild.io/neubau/optimierte-planung/
- Microsoft (Hrsg.). (2021). Erstellen oder Bearbeiten von CSV-Dateien zum Importieren in Outlook. Zugriff am 05.11.2021. Verfügbar unter: https://support.microsoft.com/de-de/office/erstellen-oder-bearbeiten-von-csv-dateien-zum-importieren-in-outlook-4518d70d-8fe9-46ad-94fa-1494247193c7
- MIT Sustainable Design Lab. (2017). Welcome to umi Online Documentation umidocs 2.3a4 documentation. Zugriff am 13.04.2021. Verfügbar unter: https://umidocs.readthedocs.io/en/develop/index.html
- Monteiro, H. & Freire, F. (2012). Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. *Energy and Buildings*, 47, 572-583. https://doi.org/10.1016/j.enbuild.2011.12.032
- Moser, A., Rötzer, T., Pauleit, S. [S.] & Pretzsch, H. (2015). Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. *Urban Forestry & Urban Greening*, 14(4), 1110-1121. https://doi.org/10.1016/j.ufug.2015.10.005
- München Betriebs GmbH & Co. KG (Hrsg.). (2022). München in Zahlen. Daten und Statistiken der Stadt München. Zugriff am 22.07.2022. Verfügbar unter: https://www.muenchen.de/sehenswuerdigkeiten/muenchen-in-zahlen.html
- Naturefund e.V. (2022, 5. Mai). *CO2-Rechner*. Zugriff am 05.05.2022. Verfügbar unter: https://www.naturefund.de/wissen/co2_rechner#calc-home
- Nutkiewicz, A., Yang, Z. & Jain, R. (2018). Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow. *Applied Energy*, 225, 1176-1189. https://doi.org/10.1016/j.apenergy.2018.05.023
- OGC (Hrsg.). (2022). CityGML. Zugriff am 14.01.2022. Verfügbar unter: https://www.ogc.org/stan-dards/citygml
- One Click LCA Ltd. (Hrsg.). (2022). How to make your BIM model work for Life-Cycle Assessment. Zugriff am 08.08.2022. Verfügbar unter: https://www.oneclicklca.com/bim-based-life-cycle-assessment-guidelines/
- Optigrün international AG. (2021). *Dachbegrünung Spardach. der beliebte Optigrün-Standardaufbau für extensive Dachbegrünungen.* Zugriff am 11.10.2021. Verfügbar unter: https://www.optigruen.de/systemloesungen/spardach/spardach/

- Österbring, M., Mata, É., Thuvander, L. & Wallbaum, H. (2019). Explorative life-cycle assessment of renovating existing urban housing-stocks. *Building and Environment*, *165*, 106391. https://doi.org/10.1016/j.buildenv.2019.106391
- Passivhaus Institut (Hrsg.). (2015). *Qualitätsanforderungen an Passivhäuser*. Zugriff am 12.08.2021. Verfügbar unter: https://passiv.de/de/02_informationen/02_qualitaetsanforderungen/02_qualitaetsanforderungen.htm
- Petrovic, B., Myhren, J., Zhang, X., Wallhagen, M. & Eriksson, O. (2019). Life cycle assessment of a wooden single-family house in Sweden. *Applied Energy*, 251, 113253. https://doi.org/10.1016/j.apenergy.2019.05.056
- Peuportier, B. [B.L.P]. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. *Energy and Buildings*, 33(5), 443-450. https://doi.org/10.1016/S0378-7788(00)00101-8
- Quigley, M. (2004). Street trees and rural conspecifics: Will long-lived trees reach full size in urban conditions? *Urban Ecosystems*, 7(1), 29-39. https://doi.org/10.1023/B:UECO.0000020170.58404.e9
- Regel, R. (2016, 31. Mai). Die Referenzraummethode als eine vereinfachte Bewertung komplexer Liegenschaften im Quartier am Beispiel von Hochschulen. Dissertation. Technische Universität München, München. Zugriff am 07.04.2021. Verfügbar unter: http://mediatum.ub.tum.de/?id=1293442
- Röck, M., Baldereschi, E., Verellen, E., Passer, A., Sala, S. & Allacker, K. (2021). Environmental modelling of building stocks An integrated review of life cycle-based assessment models to support EU policy making. *Renewable and Sustainable Energy Reviews*, *151*, 111550. https://doi.org/10.1016/j.rser.2021.111550
- Röck, M., Hollberg, A., Habert, G. & Passer, A. (2018). LCA and BIM: Integrated Assessment and Visualization of Building Elements' Embodied Impacts for Design Guidance in Early Stages. *Procedia CIRP*, 69, 218-223. https://doi.org/10.1016/j.procir.2017.11.087
- Röck, M., Saade, M., Balouktsi, M., Rasmussen, F., Birgisdottir, H., Frischknecht, R. et al. (2020). Embodied GHG emissions of buildings The hidden challenge for effective climate change mitigation. *Applied Energy*, 258, 1-12. https://doi.org/10.1016/j.apenergy.2019.114107
- Rötzer, T., Reischl, A., Rahman, M., Pretzsch, H. & Pauleit, S. [S.]. (2021). Leitfaden zu Stadtbäumen in Bayern. Handlungsempfehlungen aus dem Projekt Stadtbäume Wachstum, Umweltleistungen und Klimawandel. Freising: Zentrum Stadtnatur und Klimaanpassung. Zugriff am 07.07.2022. Verfügbar unter: https://www.zsk.tum.de/zsk/die-teilprojekte-des-zsk/abgeschlossene-projekte/city-trees-ii-stadtbaeume-im-klimawandel/
- RWTH Aachen, Institute for Energy Efficient Buildings and Indoor Climate. (o. J.). *Teaser.* Zugriff am 16.12.2020. Verfügbar unter: https://www.ebc.eonerc.rwth-aachen.de/cms/E-ON-ERC-EBC/Forschung/OPEN-SOURCE/~modj/Teaser25/
- Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M. & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. *Computer Physics Communications*, 181(2), 259-270. https://doi.org/10.1016/j.cpc.2009.09.018
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. et al. (2008). Global Sensitivity Analysis. The Primer. Chichester, England, Hoboken, NJ: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470725184
- Saltelli, A. & Tarantola, S. (2002). On the Relative Importance of Input Factors in Mathematical Models. *Journal of the American Statistical Association*, 97(459), 702-709. https://doi.org/10.1198/016214502388618447

- Schlegl, F., Gantner, J., Traunspurger, R., Albrecht, S. & Leistner, P. (2019). LCA of buildings in Germany: Proposal for a future benchmark based on existing databases. *Energy and Buildings*, 194, 342-350. https://doi.org/10.1016/j.enbuild.2019.04.038
- Schneider, P. & Lang, W. (2017, Januar). *Gemeinschaftlich nachhaltig Bauen. Forschungsbericht der ökologischen Untersuchung des genossenschaftlichen Wohnungsbauprojektes wagnisART* (Oberste Baubehörde im Bayerischen Staatsministerium des Innern, für Bau und Verkehr, Hrsg.). München. Zugriff am 30.07.2021. Verfügbar unter: https://www.bestellen.bayern.de/application/e-shop_app000006?SID=1196200778&ACTIONxSESSx-SHOWPIC(BILDxKEY:%2703500205%27,BILDxCLASS:%27Artikel%27,BILDxTYPE:%27PDF%27)
- Schneider-Marin, P., Dotzler, C., Röger, C., Lang, W., Glöggler, J. & Meier, K. (2019). *Design2Eco. Lebenszyklusbetrachtung im Planungsprozess von Büro- und Verwaltungsgebäuden : Entscheidungsgrundlagen und Optimierungsmöglichkeiten für frühe Planungsphasen* (Forschungsinitiative ZukunftBau). Stuttgart: Fraunhofer IRB Verlag. Zugriff am 30.07.2021. Verfügbar unter: https://www.irbnet.de/daten/rswb/19039016001.pdf
- Schneider-Marin, P., Harter, H., Tkachuk, K. & Lang, W. (2020). Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages. *Sustainability*, *12*(7), 2633. https://doi.org/10.3390/su12072633
- Schneider-Marin, P. & Lang, W. (2020). Environmental costs of buildings. monetary valuation of ecological indicators for the building industry. *The International Journal of Life Cycle Assessment*, 25(9), 1637-1659. https://doi.org/10.1007/s11367-020-01784-y
- Seifert, N. (o. J.). Digital Computational Tools for Urban Planning: A Case Study. Supporting political decision-making processes, city planning and public participation with new implements. In TU München Fakultät für Architektur (Hrsg.), Review 2018-2019 (S. 72-73). München. Zugriff am 16.12.2020. Verfügbar unter: https://mediatum.ub.tum.de/doc/1485283/1485283.pdf#page=72
- Seifert, N. & Mühlhaus, M. (o. J.). *USP Urban Strategy Playground,* TU München, Lehrstuhl für Architekturinformatik. Zugriff am 16.12.2020. Verfügbar unter: http://wp.usp.ai.ar.tum.de/
- Slavkovic, K., Nault, E., Jusselme, T. & Andersen, M. (2019). Life-Cycle Assessment as a decision-support tool for early phases of urban planning: evaluating applicability through a comparative approach. *IOP Conference Series: Earth and Environmental Science*, 323(1), 12030. https://doi.org/10.1088/1755-1315/323/1/012030
- Soust-Verdaguer, B., Llatas, C. & García-Martínez, A. (2016). Simplification in life cycle assessment of single-family houses: A review of recent developments. *Building and Environment*, 103, 215-227. https://doi.org/10.1016/j.buildenv.2016.04.014
- Sözer, H. & Sözen, H. (2019). Energy saving, global warming and waste recovery potential of retrofitting process for a district. *Journal of Cleaner Production*, 238, 117915. https://doi.org/10.1016/j.jclepro.2019.117915
- Spacemaker (Hrsg.). (2020). *Spacemaker. Analysis Hub.* Zugriff am 21.05.2022. Verfügbar unter: https://www.spacemakerai.com/resources/analysis-hub
- SPD, Bündnis 90/Die Grünen & FDP (Hrsg.). (2021). Mehr Fortschritt wagen Bündnis für Freiheit, Gerechtigkeit und Nachhaltigkeit. Koalitionsvertrag 2021 2025 zwischen der Sozialdemokratischen Partei Deutschlands (SPD), BÜNDNIS 90 / DIE GRÜNEN und den Freien Demokraten (FDP). Zugriff am 11.01.2022. Verfügbar unter: https://www.spd.de/fileadmin/Dokumente/Koalitionsvertrag/Koalitionsvertrag_2021-2025.pdf
- Sphera Solutions GmbH. (o. J.). *GaBi LCA Datenbanken*. Zugriff am 25.05.2021. Verfügbar unter: https://gabi.sphera.com/deutsch/datenbanken/gabi-datenbanken/

- Sprengard, C., Treml, S. & Holm, A. (2013, November). *Technologien und Techniken zur Verbesserung der Energieeffizienz von Gebäuden durch Wärmedämmstoffe. Metastudie Wärmedämmstoffe Produkte, Anwendungen, Innovationen.* Forschungsbericht (Aktenzeichen: II 3-F20-12-1-074 / SWD-10.08.18.7-12.39) (FO-12/12). Gräfelfing: FIW München. Zugriff am 07.04.2020. Verfügbar unter: https://www.fiw-muenchen.de/media/pdf/metastudie_waermedaemmstoffe.pdf
- Statista (Hrsg.). (2013). Struktur der Wärmedämmverbundsysteme in Deutschland nach Dämmstoffart 2013. Zugriff am 26.08.2021. Verfügbar unter: https://de-statista-com.eaccess.ub.tum.de/statistik/daten/studie/310349/umfrage/anteil-der-verbauten-daemmstoffarten-in-deutschland/
- Statista. (2020). Verteilung der Wohnungen in Deutschland im Jahr 2018 nach dem Baujahr. Zugriff am 29.06.2021. Verfügbar unter: https://de.statista.com/statistik/daten/studie/1065559/umfrage/wohnungen-in-deutschland-nach-baujahr/
- Statista. (2021). Bevölkerungsentwicklung. Landkreise und kreisfreie Städte mit dem größten prognostizierten Wachstum in Deutschland bis 2040 (in Prozent). Graph. Zugriff am 03.01.2022. Verfügbar unter: https://de.statista.com/statistik/daten/studie/1220715/umfrage/prognose-bevoelkerungswachstum-kreise/
- Statista. (2022, Aprila). *Kaufpreis für Eigentumswohnungen (alle Baujahre) bis 2022. in Euro pro Quadratmeter.* Zugriff am 06.07.2022. Verfügbar unter: https://de.statista.com/statistik/daten/studie/554954/umfrage/kaufpreise-fuer-eigentumswohnungen-aller-baujahre-in-deutschland/
- Statista. (2022, Julib). *Anzahl der Wohngebäude in Deutschland in den Jahren 2000 bis 2021*. Zugriff am 21.11.2022. Verfügbar unter: https://de.statista.com/statistik/daten/studie/70094/umfrage/wohngebaeude-bestand-in-deutschland-seit-1994/
- Statistische Ämter des Bundes und der Länder (Hrsg.). (2011, 9. Maia). Zensusdatenbank. Ergebnis 3000G-1002 Gebäude mit Wohnraum nach Baujahr (Mikrozensus-Klassen). Zugriff am 24.06.2021. Verfügbar unter: https://ergebnisse2011.zensus2022.de/datenbank/online?operation=abruftabelleBearbeiten&levelindex=0&levelid=1624533978222&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=werteabruf&code=3000G-1002&auswahltext=&nummer=4&variable=4&name=GEODL1&nummer=5&variable=5&name=GEBBJ3&werteabruf=Werteabruf#abreadcrumb
- Statistische Ämter des Bundes und der Länder (Hrsg.). (2011, 9. Maib). Zensusdatenbank. Ergebnis 4000W-1002 Wohnungen in Gebäuden mit Wohnraum nach Baujahr (Mikrozensus-Klassen). Zugriff am 24.06.2021. Verfügbar unter: https://ergebnisse2011.zensus2022.de/datenbank/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=1624534499113&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=werteabruf&code=4000W-1002&auswahltext=&nummer=4&variable=4&name=GEODL1&nummer=5&variable=5&name=GEBBJ3&werteabruf=Werteabruf#abreadcrumb
- Statistische Ämter des Bundes und der Länder (Hrsg.). (2018). Wohngebäude nach Baujahr. Ergebnisse der Gebäude- und Wohnungszählung 2011. Zugriff am 29.05.2022. Verfügbar unter: https://www.statistikportal.de/de/wohngebaeude-nach-baujahr
- Statistisches Bundesamt (Hrsg.). (2003, Dezember). Bautätigkeiten und Wohnungen. Bautätigkeit 2002 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00005230
- Statistisches Bundesamt (Hrsg.). (2004, November). Bautätigkeiten und Wohnungen. Bautätigkeit 2003 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00005233

- Statistisches Bundesamt (Hrsg.). (2005, 26. September). *Bautätigkeiten und Wohnungen. Bautätigkeit 2004* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00005236
- Statistisches Bundesamt (Hrsg.). (2006, 31. Oktober). *Bautätigkeiten und Wohnungen. Bautätigkeit 2005* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft mods 00005238
- Statistisches Bundesamt (Hrsg.). (2007, 3. August). *Bautätigkeiten und Wohnungen. Bautätigkeit 2006* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft mods 00005240
- Statistisches Bundesamt (Hrsg.). (2009, 31. Juli). *Bautätigkeiten und Wohnungen. Bautätigkeit 2008* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00005245
- Statistisches Bundesamt (Hrsg.). (2010, 4. Maia). Bautätigkeiten und Wohnungen. Bautätigkeit 2007. Korrektur der Ausgabe vom 11.08.2008 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft mods 00005242
- Statistisches Bundesamt (Hrsg.). (2010, 12. Augustb). *Bautätigkeiten und Wohnungen. Bautätigkeit 2009* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00005248
- Statistisches Bundesamt (Hrsg.). (2011, 13. September). *Bautätigkeiten und Wohnungen. Bautätigkeit 2010*. Korrektur der Ausgabe vom 21.07.2011 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft_mods_00005251
- Statistisches Bundesamt (Hrsg.). (2014, 24. Märza). Bautätigkeiten und Wohnungen. Bautätigkeit 2011. Korrektur der Ausgabe vom 27.07.2012 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft_mods_00018279
- Statistisches Bundesamt (Hrsg.). (2014, 24. Märzb). *Bautätigkeiten und Wohnungen. Bautätigkeit 2012*. Korrektur der Ausgabe vom 30.08.2013 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft_mods_00023909
- Statistisches Bundesamt (Hrsg.). (2014, 29. Augustc). *Bautätigkeiten und Wohnungen. Bautätigkeit 2013* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00024832
- Statistisches Bundesamt (Hrsg.). (2015, 26. August). *Bautätigkeiten und Wohnungen. Bautätigkeit 2014* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00031005
- Statistisches Bundesamt (Hrsg.). (2016, 28. September). *Bautätigkeiten und Wohnungen. Bautätigkeit 2015*. Korrektur der Ausgabe vom 12.08.2016 (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft mods 00054143
- Statistisches Bundesamt (Hrsg.). (2017, 19. Juli). *Bautätigkeiten und Wohnungen. Bautätigkeit 2016* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft mods 00071395

- Statistisches Bundesamt (Hrsg.). (2018, 11. Juni). *Bautätigkeiten und Wohnungen. Bautätigkeit 2017* (Fachserie 5 1). Wiesbaden. Zugriff am 14.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00076761
- Statistisches Bundesamt (Hrsg.). (2019, 3. Dezember). Bautätigkeiten und Wohnungen. Bautätigkeit 2018. Korrektur der Ausgabe vom 16.07.2019 (Fachserie 5 1). Wiesbaden. Zugriff am 08.05.2020. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DE-Heft_mods_00104643
- Statistisches Bundesamt (Hrsg.). (2020, 10. Julia). *Bautätigkeiten und Wohnungen. Bautätigkeit 2019* (Fachserie 5 1). Wiesbaden. Zugriff am 24.06.2021. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00132461
- Statistisches Bundesamt (Hrsg.). (2020, 29. Julib). Gebäude und Wohnungen. Bestand an Wohnungen und Wohngebäuden, Bauabgang von Wohnungen und Wohngebäuden, Lange Reihen ab 1969-2019. Wiesbaden. Zugriff am 24.06.2021. Verfügbar unter: https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00104643
- Stephan, A. & Athanassiadis, A. (2017). Quantifying and mapping embodied environmental requirements of urban building stocks. *Building and Environment*, 114, 187-202. https://doi.org/10.1016/j.buildenv.2016.11.043
- Stiftung Wilderness International. (2022, 5. Mai). Wilderness International CO₂-Rechner Sag Danke an die Natur. CO₂-Fußabdruck berechnen & mit Urwaldschutz kompensieren. Zugriff am 05.05.2022. Verfügbar unter: https://www.thankyounature.org/?gclid=EAlalQob-ChMI48y_2ZjB9wIVA5zVCh2TRQe_EAAYAiAAEgIDSPD_BwE
- Swiss Society of Engineers and Architects (Hrsg.). (2017). SIA 2040. SIA-Effizienzpfad Energie.
- Tagesschau (2022, 21. November). COP27: Das hat die Klimakonferenz (nicht) beschlossen. *tagesschau.de*. Zugriff am 30.11.2022. Verfügbar unter: https://www.tagesschau.de/wissen/klima/beschluesse-cop27-klimakonferenz-101.html
- Takano, A., Pal, S., Kuittinen, M., Alanne, K., Hughes, M. & Winter, S. (2015). The effect of material selection on life cycle energy balance: A case study on a hypothetical building model in Finland. *Building and Environment*, 89, 192-202. https://doi.org/10.1016/j.buildenv.2015.03.001
- Thiel, D. & Riedel, D. (2011). Typisierte Bauteilaufbauten. Präzisierung der Pauschalwerte für Wärmedurchgangskoeffizienten aus der Bekanntmachung der Regeln der Datenaufnahme im Nichtwohngebäudebestand (Forschungsinitiative Zukunft Bau, Bd. 2793). Endbericht. Stuttgart: Fraunhofer IRB Verlag. Zugriff am 27.09.2021. Verfügbar unter: https://www.irbnet.de/daten/rswb/11109001108.pdf
- Tian, W., Heo, Y., Wilde, P. de, Li, Z., Yan, D., Park, C. et al. (2018). A review of uncertainty analysis in building energy assessment. *Renewable and Sustainable Energy Reviews*, 93, 285-301. https://doi.org/10.1016/j.rser.2018.05.029
- Timpe, C., Kenkmann, T., Hesse, T., Mundt, J., Maaß, C., Kapfer, J. et al. (2021, 4. November). *Maßnahmenplan Klimaneutralität München* (Öko-Institut e.V., Hrsg.). Freiburg, Hamburg, München. Zugriff am 03.01.2022. Verfügbar unter: https://stadt.muenchen.de/dam/jcr:dc76020e-b14b-42ca-9eea-4c3ce538b951/Massnahmenplan-Klimaneutralitaet-Muenchen.pdf
- Tonooka, Y., Takaguchi, H., Yasui, K. & Maeda, T. (2014). Life Cycle Assessment of a Domestic Natural Materials Wood House. *Energy Procedia*, *61*, 1634-1637. https://doi.org/10.1016/j.egypro.2014.12.313
- Tschirk, W. (2014). *Statistik: Klassisch oder Bayes. Zwei Wege im Vergleich* (Springer-Lehrbuch, Aufl. 2014). Berlin, Heidelberg: Springer Berlin Heidelberg.

- TU München Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen (Hrsg.). (o. J.). EarlyBIM 2. Teilprojekt 4: Wissensbank und Machine-Learning-Assistenz für performanceorientiertes Bauen. Zugriff am 08.08.2022. Verfügbar unter: https://www.cee.ed.tum.de/enpb/forschung/laufende-forschungsprojekte/earlybim-2/
- TU München Lehrstuhl für Geoinformatik. (o. J.a). 3D City Database Importer/Exporter. Zugriff am 28.04.2022. Verfügbar unter: https://www.3dcitydb.org/3dcitydb/3dimpexp/
- TU München Lehrstuhl für Geoinformatik. (o. J.b). *3DCityDB Database*. Zugriff am 28.04.2022. Verfügbar unter: https://www.3dcitydb.org/3dcitydb/
- TU München Lehrstuhl für Geoinformatik. (o. J.c). 3DCityDB-Web-Map-Client. Zugriff am 05.05.2022. Verfügbar unter: https://www.3dcitydb.org/3dcitydb/3dwebclient/
- TU München Lehrstuhl für Geoinformatik. (o. J.d). *CityGML 3.0*. Zugriff am 25.04.2022. Verfügbar unter: https://www.asg.ed.tum.de/gis/projekte/citygml-30/
- TU München Lehrstuhl für Strategie und Management der Landschaftsplanung. (o. J.). *Grüne Stadt der Zukunft. Klimaresiliente Quartiere in einer wachsenden Stadt.* Zugriff am 30.12.2021. Verfügbar unter: https://www3.ls.tum.de/lapl/gruene-stadt-der-zukunft/publikationen/
- U.S. Green Building Council (Hrsg.). (2022). *LEED rating system*. Zugriff am 30.07.2021. Verfügbar unter: https://www.usgbc.org/leed
- Überwachungsgemeinschaft Konstruktionsvollholz e.V. (Hrsg.). (o. J.). Konstruktionsvollholz KVH® und Balkenschichtholz (Duobalken®, Triobalken®) (Holzbau Handbuch Reihe 4, Teil 2, Folge 1). Wuppertal. Zugriff am 04.10.2021. Verfügbar unter: https://www.kvh.eu/fileadmin/user_upload/KVH_IDH_KVH-Duo-Triobalken_2020-03_print_200320.pdf
- Überwachungsgemeinschaft Konstruktionsvollholz e.V. (Hrsg.). (2020, März). *Konstruktionsvollholz KVH und Balkenschichtholz (Duobalken, Triobalken)* (5. Auflage) (Holzbau Handbuch Reihe 4, Teil 2, Folge 1). Wuppertal. Verfügbar unter: https://www.kvh.eu/fileadmin/user_upload/KVH_IDH_KVH-Duo-Triobalken_2020-03_print_200320.pdf
- Umweltbundesamt. (2015). *Berlin: Einsatz von Recycling-Beton im Hochbau*. Zugriff am 04.08.2022. Verfügbar unter: https://www.umweltbundesamt.de/themen/wirtschaft-konsum/umweltfreundliche-beschaffung/gute-praxisbeispiele/gebaeudeneubau/berlin-einsatz-von-recycling-beton-imhochbau
- Verband Fenster und Fassade (Hrsg.). (o. J.). *Produktentwicklung und Produktdatenblätter. Fenster und Glas im Bestand.* Zugriff am 16.04.2020. Verfügbar unter: https://www.window.de/filead-min/redaktion_window/vff/Normung_und_Technik_pdfs/Fenster_im_Bestand_Grafik.pdf
- Verband Fenster und Fassade & Bundesverband Flachglas e.V. (Hrsg.). (2017, September). *Mehr Energie sparen mit neuen Fenstern*. Aktualisierung September 2017 der Studie "Im neuen Licht: Energetische Modernisierung von alten Fenstern". Frankfurt/Main. Zugriff am 16.04.2020. Verfügbar unter: https://www.window.de/fileadmin/redaktion_window/vff/docs_und_pdf/VFF-BF_Studie_Mehr_Energie_sparen_mit_neuen_Fenstern_2017-09.pdf
- Vollmer, M., Schneider-Marin, P., Harter, H. & Lang, W. (2019, Dezember). Ferd. Tausendpfund. Lebenszyklusanalyse und Gebäudemonitoring (Bayerischer Bauindustrieverband e.V., Hrsg.). München. Zugriff am 30.07.2021. Verfügbar unter: https://www.ppe.tum.de/fileadmin/w00bqx/www/content_uploads/20191206_Endbericht_Tausendpfund.pdf
- Weiler, V., Harter, H. & Eicker, U. (2017). Life cycle assessment of buildings and city quarters comparing demolition and reconstruction with refurbishment. *Energy and Buildings*, *134*, 319-328. https://doi.org/10.1016/j.enbuild.2016.11.004
- Wienerberger. (2021). *Produktkatalog Porotonziegel*. Zugriff am 01.10.2021. Verfügbar unter: https://www.wienerberger.de/produkte/wand/ziegel.html?loadmore=2

- Wilhelm, L. (2019, 14. März). *Perspektiven mit neuen Baumarten im städtischen Bereich*. Präsentation beim Kellerseminar, München.
- Wion media services GmbH & Co. KG (Hrsg.). (o. J.). *Bauwion. Wissen zum Thema: Rohbau.* Zugriff am 08.10.2021. Verfügbar unter: https://www.bauwion.de/wissen/rohbau
- Wirth, S. von & Liedke, J. (2022, 1. Juni). CO2-Steuer 2022: Abgaben für Benzin, Diesel, Heizöl & Erdgas. *Handelsblatt*. Zugriff am 04.08.2022. Verfügbar unter: https://www.handelsblatt.com/finanzen/steuern-recht/steuern/co2-preis-was-die-co2-steuer-fuer-verbraucher-bedeutet/26228322.html
- WWF Deutschland (Hrsg.). (2019, Februar). *Klimaschutz in der Beton- und Zementindustrie. Hinter- grund und Handlungsoptionen*. Berlin. Zugriff am 29.06.2021. Verfügbar unter: https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF_Klimaschutz_in_der_Beton_und_Zementindustrie_WEB.pdf
- Xella Deutschland GmbH (Hrsg.). (2018, Dezember). *Das Baubuch. Sicher planen und bauen* (5. Auflage). Zugriff am 01.10.2021. Verfügbar unter: https://baubuch.ytong-silka.de/content/uplo-ads/2019/01/03-bb-ka-wandbaustoffe-web-1.pdf
- Zentrum für Umweltbewusstes Bauen e.V. (Hrsg.). (2009, Oktobera). Erfassung regionaltypischer Materialien im Gebäudebestand mit Bezug auf die Baualtersklasse und Ableitung typischer Bauteilaufbauten. Endbericht. Aktenzeichen Z6 10.07.03-06.13/II2-800106-13 (2., berichtigte Version). Kassel.
- Zentrum für Umweltbewusstes Bauen e.V. (Hrsg.). (2009, Oktoberb). Katalog regionaltypischer Materialien im Gebäudebestand mit Bezug auf die Baualtersklasse und Ableitung typischer Bauteilaufbauten. Katalog (2., berichtigte Auflage). Kassel.
- Zhang, X.-Y., Trame, M., Lesko, L. & Schmidt, S. (2015). Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models. *CPT: Pharmacometrics & Systems Pharmacology*, *4*(2), 69-79. https://doi.org/10.1002/psp4.6

A Anhang

A.1 U-Werte für Alt-, Neubau- und Sanierungskonstruktionen

Tabelle A. 1: Typische U-Werte opaker und transparenter Bauteile der beheizten Gebäudehülle je Baualtersklasse; eigene Darstellung nach BMWI und BMI (2020), Bundesamt für Wirtschaft und Ausfuhrkontrolle (o. J.) und Thiel und Riedel (2011)

<u>=</u>					U-\	Nert na	ch Baualt	ersklass	sen			
Bauteil	Konstruk- tionsart	BK 1 ¹	BK 2 ¹	BK 3 ¹	BK 4 ¹	BK 5 ¹	BK 6 ¹	BK 7 ¹	BK 8 ¹	BK 9 ²	BK 10 ²	BK 11 ³
and	EWmon	1,80	1,80	1,80	1,40	1,00	0,80	0,60	0,50	0,40	0,30	0,28
Außenwand	EW2shelled	1,30	1,30	1,30	1,40	1,00	0,80	0,60	0,50	0,30	0,20	0,20
- Auf	EWwood	2,00	2,00	1,50	1,40	0,60	0,50	0,40	0,40	0,30	0,20	0,20
Oberste Geschossdecke	TFLmas	2,10	2,10	2,10	2,10	0,60	0,60	0,30	0,30	0,20	0,20	0,20
O Gesch	TFLwood	1,00	1,00	0,80	0,70	0,60	0,40	0,30	0,30	0,30	0,20	0,20
Keller- decke	CFLmas	1,40	1,40	1,90	1,00	1,00	0,80	0,60	0,60	0,50	0,40	0,35
A A B	CFLwood	1,00	1,00	1,00	0,80	0,60	0,60	0,40	0,40	0,40	0,40	0,35
Boden- Kelleraus- platte senwand	CW	2,20	2,20	2,20	1,40	1,00	0,80	0,60	0,50	0,50	0,40	0,35
	BP	1,60	1,60	2,30	1,20	1,20	0,80	0,60	0,60	0,50	0,40	0,35
Flach- dach	FROmas/ FROwood	2,10	2,10	2,10	1,30	1,30	0,60	0,40	0,30	0,20	0,20	0,20
Steil- dach	PRO	2,60	1,40	1,40	1,40	0,80	0,70	0,50	0,30	0,20	0,20	0,20
_	Wwood (Einfach- verglasung)	5,00	-	-	-	-	-	-	-	-	-	-
Fenster	Wwood (Zweifach- verglasung)	2,70	2,70	2,70	2,70	2,70	2,70	2,70	1,60	1,50	1,40	1,30
	Wplas	3,00	3,00	3,00	3,00	3,00	3,00	3,00	1,90	1,50	1,30	1,30
	Walu	4,30	4,30	4,30	4,30	4,30	4,30	3,20	1,90	1,53	1,44	1,30

Quellen:

- 1: BMWI und BMI (2020)
- 2: Thiel und Riedel (2011)
- 3: Auf Basis von Bundesamt für Wirtschaft und Ausfuhrkontrolle, Tabelle 1 (o. J.), wenn Wert kleiner als in BK 10

Weiterführende Informationen/Annahmen:

Massivwand (Vollziegel) mit 20 bis 30 cm Wandstärke

Wand ohne Dämmschicht sonstige Holzkonstruktionen

Durchschnittlicher U-Wert aus Kellerdecke Stahlbeton massiv

und Ziegel- oder Hohlsteinkonstruktion

Außenwand: sonstige Wandaufbauten über 20 cm

Tabelle A. 2: U-Werte opaker und transparenter Bauteile der beheizten Gebäudehülle nach Passivhausstandard; eigene Darstellung nach Passivhaus Institut (2015)

Bauteil	Konstruktionsart	U-Wert (Mindestanforderung)
Außenwand	EWmas/ EWwood	0,15
Oberste Geschossdecke	TFLmas/ TFLwood	0,15
Kellerdecke	CFLmas/ CFLwood	0,15
Kelleraußenwand	CW	0,15
Gebäudetrenn- wand im Keller	scw	0,15
Bodenplatte	BP	0,15
Flachdach	FROmas/ FROwood	0,15
Steildach	PRO	0,15
Fenster	Walu/ Wplas/ Wwood	0,80

Tabelle A. 3: U-Werte opaker und transparenter Bauteile der beheizten Gebäudehülle nach KfW-55-Standard (Sanierung); eigene Darstellung nach KfW (2020)

Doutoil	Kanatuultianaart (Canianum maart)	U-Wert nach Ba	aualtersklassen
Bauteil	Konstruktionsart (Sanierungsart)	BK 1 - BK 9	BK 10, 11
	EWmas (Außendämmung)	0,20	0,20
Außenwand	EW2shelled (Zwischen-und Außendämmung)	0,20	*
nßei	EWcwf (Außendämmung)	0,20	0,20
<	EWwood (Außendämmung)		*
Oberste Geschoss- decke	TFLmas (Dämmung von oben)	0,14	0,14
Obe Gesc	TFLwood (Zwischendämmung und/oder Dämmung von oben)	0,14	0,14
Keller- decke	CFLmas (Dämmung von unten)	0,25	0,25
	CFLwood (Zwischendämmung und/oder Dämmung von unten)	0,25	0,25
Keller- außen -wand	CW (Außendämmung)	0,25	0,25
Gebäude- trennwand im Keller	SCW (Innendämmung)	0,25	0,25
Boden- platte	BP (Innendämmung)	0,25	0,25
ક ક	FROmas (Außendämmung)	0,14	0,14
Flach- dach	FROwood (Zwischen- und/oder Außendämmung)	0,14	0,14
Steil- dach	PRO (Zwischendämmung und/oder Dämmung von oben)	0,14	0,14
Fenster	Walu/ Wplas/ Wwood (Komplettaustausch)	0,95	0,95

^{*} Eine Sanierung der zweischaligen Außenwände und der Außenwände in Holzbauweise ist nicht erforderlich, da die U-Werte der Bestandskonstruktionen in BK 10 und 11 bereits die Mindestanforderungen des KfW-55-Standards erfüllen

A.2 Bilanzierte Altbaukonstruktionen

Nachfolgend werden alle bilanzierten Altbaukonstruktionen beschrieben. Die Gliederung erfolgt nach Bauteil und typischer Baualtersklasse. Unter Angabe der schichtspezifischen Materialien, ihrer Rohdichten und Wärmeleitfähigkeiten sowie der verwendeten Literaturquellen sind die lebenszyklusbasierten Umweltwirkungen jeder Baukonstruktion dargestellt.

Tabelle A. 4: Übersicht über die bilanzierten opaken Altbaukonstruktionen inklusive der spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung

Bau-		Zugehörige Baualtersklassen		Aufbau				GWP (A-C)	PENRT	PET	GWP (A-D)	PENRT	PET
teil-	Zeit-		Material-	Stärke	Roh-	λ-Wert	Literaturquelle	[kg	(A-C)	(A-C)	[kg	(A-D)	(A-D)
name	raum	1 2 3 4 5 6 7 8 9 10 11	bezeichnung	[cm]	dichte [kg/m³]	[W/mK]		CO ₂ -	[MJ]	[MJ]	CO ₂ -	[MJ]	[MJ]
			Daatdaah	25.00				Äq.]	444.7	4070.0	Äq.]	100.1	4045.5
			Reetdach Luftschicht, stark	35,00	100,00	-	Zentrum für	-74,6	114,7	1273,8	-93,0	-132,1	1345,5
			belüftet	-	-	-	Umweltbe-						
PRO	bis	X	Sparren	2,50	492,92	-	wusstes Bauen						
_1	1918		Schalung	2,40	484,51	0,14	e.V. (ZUB), 2009b,						
			Schilfrohrmatte	1,00	100,00	0,08	S.31						
			Kalkgipsputz	1,00									
			Dachziegel	2,75		-		27,1	416,6	582,9	4,9	119,3	666,9
			Lattung	0,50	484,51	-							
			Konterlattung Luftschicht, stark	0,48	484,51	_							
PRO	bis	хх	belüftet	-	-	-	ZUB, 2009b,						
_2	1948	^ ^	Sparren	2,50	492,92	-	S. 32						
			Schalung	2,40	484,51	0,14							
			Schilfrohrmatte	1,00	100,00	0,08							
			Kalkgipsputz	1,00	900,00	0,70							
			Dachziegel	2,75				42,6	521,5	830,8	14,7	163,4	836,6
			Lattung	0,50									
			Konterlattung	0,48	484,51								
PRO	1949-		Sparren	2,50	492,92	-	ZUB, 2009b,						
_3	1957	x	Luftschicht, stark belüftet	-	-	-	S. 34						
			Schalung	2,40	484,51	0,14							
			Holzwolle-	5,00	360,00	0,09							
			Leichtbauplatte										
			Kalkgipsputz	1,00				45.0	FC4.4	000.4	40.4	200.7	057.0
			Dachziegel Lattung	2,75 0,50	2180,00 484,51	-		45,6	5 561,1	866,4	18,1	208,7	857,3
			Konterlattung	0,30	484,51								
			Luftschicht, stark		404,51								
			belüftet	10,00	-	-							
PRO	1958-		Schrägdach-	4.00	30,00 -	0.04	ZUB, 2009b,						
_4	1968	x	dämmung (unspezifisch)	4,00	200,00		S. 35						
			Sparren	2,20	492,92	0,14							
			Schalung	2,40									
			Holzwolle-	5,00	360,00	0,09							
			Leichtbauplatte										
			Kalkgipsputz	1,00									
			Dachziegel	2,75	2180			33,9	515,1	671,7	11,6	214,0	730,4
			Lattung	0,50	484,51	-							
			Konterlattung Schrägdach-	0,48	484,51								
DDO	1000		dämmung	8,00	30,00 -		711D 00001						
PRO _5	1969- 1978	X	(unspezifisch)		200,00	'	ZUB, 2009b, S. 36						
_5	1373		Luftschicht, stark belüftet	4,00	-	-	5.50						
			Sparren	2,20	492,92	0,14							
			Schalung	2,40									
			Gipskartonplatte	1,25	800								
			Dachziegel	2,75	2180,00			33,0	489,2	659,7	6,0	125,7	736,7
			Lattung	0,50									
			Konterlattung	0,48	484,51	-							
			Schrägdach-	0.00	30,00 -								
			dämmung (unspezifisch)	8,00	200,00								
PRO	1969-		Luftschicht, stark	4.00			ZUB, 2009b,						
_6	1978	**	belüftet	4,00			S. 36						
			Sparren	2,20									
			Schalung	2,40									
			Profilbretter	1,25	484,51	0,21							
			Luftschicht, stark	2,00	-	-							
			belüftet										

			Dachziegel	2,75	2180,00	-		40,9	498,9	755,5	23,1	275,8	721,7
			Lattung	0,50	484,51	_							
			Konterlattung	0,48	484,51								
			Sparren	2,20	492,92								
PRO	1949-	x x x	·	2,20	492,92	-	ZUB, 2009b,						
_7	1978		Luftschicht, stark	-	-	-	S. 77						
			belüftet Holzwolle-	E 00	260.00	0,09							
			Leichtbauplatte	5,00	360,00	0,09							
			Kalkgipsputz	1,00	900,00	0,70							
	-							20.0	474.0	500.0	47.0	000.0	040.4
			Dachziegel	2,75	2180,00	-		30,8	474,6	583,8	17,8	298,0	612,4
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
			Luftschicht, stark	_	_	_							
PRO	1949-	x x x	belüftet				ZUB, 2009b,						
_8	1978		Schrägdach-		30,00 -		S. 78						
			dämmung	6,00	200,00	0,04							
			(unspezifisch)	2.20	400.00	0.14							
			Sparren	2,20	492,92	0,14							
	_		Gipskartonplatte	1,25	800,00	0,21							
			Dachziegel	2,75	2180,00	-		28,3	427,0	548,9	10,9	192,8	601,1
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	_							
			Luftschicht, stark										
PRO	1949-		belüftet	-	-	-	ZUB, 2009b,						
_9	1978	x x x	Schrägdach-				S. 78						
			dämmung	4,00	30,00 -	0,04							
			(unspezifisch)		200,00								
			Sparren	2,20	492,92	0,14							
			Profilbretter	1,25	484,51	0,21							
	_		Dachziegel	2,75	2180,00	-		25,8	392,6	534,2	4,7	110.5	613,8
			Lattung	0,50	484,51	_				·			
			Konterlattung	0,48	484,51	_							
PRO	1949-	хх	Luftschicht, stark	-,	,		ZUB, 2009b,						
_10	1968		belüftet	-	-	-	S. 79						
			Sparren	2,20	492,92	_							
			Schalung	2,40	484,51	0,14							
	_					-		24.0	440.0	6244	47.0	242.0	642.7
			Dachziegel	2,75	2180,00	-		34,0	449,9	634,1	17,9	242,0	643,7
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
PRO	1919-		Luftschicht, stark	_	_	_	ZUB, 2009b,						
_11	1957	хх	belüftet				S. 110						
			Sparren	2,50	492,92	-							
			Holzwolle-	2,50	360,00	0,09							
			Leichtbauplatte										
	_		Innenputz	1,00	900,00	0,70							
			Dachziegel	2,75	2180,00	-		35,6	470,4	651,9	20,6	277,7	657,1
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
			Luftschicht, stark	11,00/									
PRO	1958-		belüftet	10,00	-	-	ZUB, 2009b,						
_12	1968	x	Mineralwolle	4,00	30,00 -	0,04	S. 111						
			(Schrägdach)		200,00								
			Sparren	2,20	492,92	0,14		1					
			Holzwolle-	2,50	360,00	0,09		I					
			Leichtbauplatte										
	_		Innenputz	1,00	900,00	0,70							
	_		Dachziegel	2,75	2180,00	-	· 	40,9	498,9	755,5	23,1	275,8	721,7
			Lattung	0,50	484,51	-		I					
			Konterlattung	0,48	484,51	-							
DDG	1050		Luftschicht, stark		•		71 ID 2000						
PRO	1958- 1968	x	belüftet	-	-	-	ZUB, 2009b, S. 112	I					
_13	1900		Sparren	2,20	492,92	-	5. 112						
			Holzwolle-										
			Leichtbauplatte	5,00	360,00	0,09							
			Innenputz	1,00	900,00	0,70		I					
	_		Dachziegel	2,75	2180,00	-		31,0	465.5	580,1	18,9	303 1	624,4
			Lattung	0,50	484,51	_		5.,5	.50,0	550,1	. 0,0	220,1	V-7,7
			Konterlattung	0,48	484,51	_		1					
				0,48	+04,5 I	-		I					
PRO	1060		Luftschicht, stark	8,00	-	-	ZUB, 2009b,	I					
_14	1969- 1978	x	belüftet Mineralwolle	6,00	30,00 -	0,04	S. 113						
_14	19/0		Mineralwolle (Schrägdach)	0,00	200,00	0,04	5. 113						
			(Schragdach) Sparren	2,20	492,92	0,14		I					
								I					
			Gipskartonplatte	1,25	800,00	0,21							
	_		Innenputz	1,00	900,00	0,70							

			Dachziegel	2,75	2180,00	-		30,1	439,6	568,1	13,3	214,9	630,8
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
			Luftschicht, stark										
PRO	1969-		belüftet	8,00	-	-	ZUB, 2009b,						
_15	1978	Х	Mineralwolle	6,00	30,00 -	0,04	S. 113						
			(Schrägdach)		200,00								
			Sparren	2,20	492,92	0,14							
			Profilbretter	1,25	484,51	0,21							
			Innenputz	1,00	900,00	0,70							
			Dachziegel	2,75		0,. 0		25.0	200.4	E0E 7	44.0	220.6	E74.4
						_		25,0	398,1	525,7	11,8	220,6	574,4
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
PRO	bis	хх	Luftschicht, stark	_	_	_	ZUB, 2009b,						
_16	1948	<i>n n</i>	belüftet				S. 127						
			Sparren	2,50	492,92	-							
			Schilfrohrmatte	1,50	100,00	0,08							
			Innenputz	1,00	900,00	1,00							
			Dachziegel	2,75	2180,00	-		29,1	422,7	568,1	8,3	145,3	646,2
			Lattung	0,50	484,51				,.	000,.	0,0	0,0	0.0,=
			•										
550			Konterlattung	0,48	484,51	-	7115 00001						
PRO	bis	x x	Luftschicht, stark	_	_	-	ZUB, 2009b,						
_17	1948		belüftet	0.50	400.00		S. 128						
			Sparren	2,50	492,92	-							
			Spalierlatten	2,00	484,51	0,13							
			Innenputz	1,50	900,00	1,00		L					
			Dachziegel	2,75	2180,00	-		39,1	495,9	753,0	14,0	171,3	777,9
			Lattung	0,50	484,51	_		l '	.,.	,	,-	,	,-
			Konterlattung	0,48	484,51								
				0,40	404,51	-							
PRO	1919-		Luftschicht, stark belüftet	-	-	-	ZUB, 2009b,						
_18	1978	x x x x		2.20	400.00	_	S. 129						
_10	1970		Sparren	2,20	492,92		3. 129						
			Schalung	2,40	484,51	0,14							
			Holzwolle-	3,50	360,00	0,08							
			Leichtbauplatte										
			Innenputz	1,50	900,00	1,00							
			Dachziegel	2,75	2180,00	-		34,9	476,0	676,7	11,3	164,3	719,7
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
			Luftschicht, stark										
PRO	1958-		belüftet	-	-	-	711D 2000h						
_19	1958-	хх	Sparren	2,20	492,92	-	ZUB, 2009b, S. 130						
_19	1970		Schalung	2,40	484,51	_	3. 130						
			Holzwolle-	_,									
			Leichtbauplatte mit	3,50	360,00/	0,04							
			Polystyrolkern	-,	18,00	-,							
			Kalkgipsputz	1,00	900,00	0,70							
			Dachziegel	2,75	2180,00	-		34,0	518,0	629,6	20,4	331,9	647,8
			•					34,0	310,0	023,0	20,4	331,3	047,0
			Lattung	0,50	484,51	_							
			Konterlattung	0,48	484,51	-							
DDO	1000		Luftschicht, stark	4,00-	-	-	711D 2000b	ı					
PRO	1969-	x x	belüftet	10,00			ZUB, 2009b, S. 131, 132	l					
_20	1983		Schrägdach-	10.00	30,00-	0.04	S. 131, 132	l					
			dämmung	10,00	200,00	0,04		l					
			(unspezifisch)	0.00	400.00	0.11		l					
			Sparren	2,20	492,92	0,14		l					
			Gipskartonplatte	1,25	800,00	0,25		<u> </u>					
			Dachziegel	2,75	2180,00	-		46,6	516,0	694,4	32,1	327,8	705,4
			Lattung	0,50	484,51	-		l					
			Konterlattung	0,48	484,51	_							
			Luftschicht, stark		,								
DDO	1949-		belüftet	4,00	-	-	711B 2000h	l					
	1949-	x x x	Bimshohlblock-	0.50	000.00	0.00	ZUB, 2009b, S. 133	l					
_21	19/6		stein	8,50	900,00	0,28	S. 133	l					
			Sparren	2,20	492,92	0,14		l					
			Holzwolle-										
			Leichtbauplatte	2,00	360,00	0,09							
			Innenputz	1,50	900,00	0,70							
			Dachziegel	2,75	2180,00	-		38,6	475,1	620,0	26,4	311,1	662,3
			Lattung	0,50	484,51] 30,3	5, 1	020,0	20,7	0.1,1	002,0
			•					ı					
			Konterlattung	0,48	484,51	-		ı					
DDO	1040		Luftschicht, stark	4,00	-	-	71 ID 2000	ı					
	1949-	x x x	belüftet				ZUB, 2009b,	ı					
_22	1978		Bimshohlblock-	8,50	900,00	0,28	S. 133	ı					
			stein					ı					
			Sparren	2,20	492,92	0,14		ı					
			Schilfrohrmatte	2,00	100,00	0,09		ı					
			Innenputz	1,50	900,00	0,70		L					

			Dachziegel	2,75	2180,00	-		40,9	498,9	755,5	23,1	275,8	721,7
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
PRO	bis	x x x x x	Luftschicht, stark belüftet	-	-	-	ZUB, 2009b,						
_23	1978		Sparren	2,20	492,92	_	S. 186, 187						
			Holzwolle-										
			Leichtbauplatte	5,00	360,00	0,09							
			Kalkgipsputz	1,00	900,00	0,70							
			Dachziegel	2,75	2180,00	-		35,6	470,4	651,9	20,6	277,7	657,1
			Lattung	0,50	484,51	-							
			Konterlattung	0,48	484,51	-							
			Luftschicht, stark	-		_							
PRO	1969-	x x x	belüftet Mineralwolle				ZUB, 2009b,						
_24	1994	~ ~ ~	(Schrägdach)	4,00	30,00	0,04	S. 188						
			Sparren	2,20	492,92	0,14							
			Holzwolle-	2,50	260.00	0.00							
			Leichtbauplatte	2,50	360,00	0,09							
			Kalkgipsputz	1,00	900,00	0,70							
			0-1:-117:1/		0707.00/								
			Schiefer/Ziegel/ Biber	1,40	2727,00/ 2180,00	-	0 11 11	14,6	207,9	347,7	-7,5	-88,5	432,9
PRO	1870-	v	Diboi		2100,00		Gruhler et al., 2002, S. 32, 42,						
_25	1918	X	Schalung	2,40	484,51	0,13	52						
			Lattung	0,98	484,51	-							
			Sparren	2,50	492,92	-							
			Bitumendachbahn,	0,40	1000,00	-		15,6	071.2	1093,9	-2,8	7246	1165,6
PRO	hia		besandet				Gruhler et al.,	15,6	911,3	1093,9	-2,0	724,0	1105,0
_26	bis 1918	X	Bitumendachbahn	0,80	1000,00	-	2002, S. 32						
			Schalung	2,40	484,51	0,13	2002, 0. 02						
			Sparren	2,50	492,92	-							
			Dachziegel	1,53	2180,00	-		17,0	235,5	285,1	12,9	181,1	293,9
PRO	1949-	x x x	Lattung	1,00	484,51	-	Gruhler et al.,						
_27	1978		Stahlbeton B15-B25	1,30	2400,00		2002, S. 72						
			(97/3) Zinkblech	0,20	7850,00			4444	1623,8	4020.2	41,4	020.4	1473,3
			Bitumendachbahn	0,60	1000,00			114,4	1023,6	1629,2	41,4	926,1	1473,3
			Schalung	2,40	484,51	0,13							
			PE-Folie Dach	0,10	930,00	0,13							
PRO	1991-	хх	Sparren	2,50	492,92	0,13	Gruhler et al.,						
_28	2000		Mineralwolle	2,00	402,02	0,10	2002, S. 120						
			(Innenausbau)	1,80	26,25	0,04							
			PE-Folie Dach	0,10	930,00	-							
			Gipskartonplatte	1,50	800,00	0,25							
DD.0			Betondachstein	1,50	2150,00	-	0 11 11	9,6	80,2	148,7	-1,8	-71,6	192,5
PRO _29	1961- 2000	$x \times x \times x$	Lattung	0,60	484,51	-	Gruhler et al., 2002, S. 120, 177						
_29	2000		Sparren	2,40	492,92	-	2002, 3. 120, 177						
			Doppelrömer	1,20	2150,00	-		8,4	74,0	147,5	-4,0	-92,9	195,7
PRO	1961-	V V V V	Lattung	0,60	484,51	-	Gruhler et al.,						
_30	1990	x x x x	Konterlattung	0,20	484,51	-	2002, S. 139						
			Holznagelbinder	2,50	492,92	-							
		-	Dachziegel	1,50	2180,00	-		23,4	346,5	434,4	9,4	156,3	429,0
PRO													
FIXO	1961-	~ ~	Lattung	0,60	484,51	_	Gruhler et al.,						
_31	1961- 2000	x x	Lattung Sparren	0,60 2,40	484,51 492,92	-	2002, S. 148						
		x x	•	2,40		-				_			
_31	2000	x x	Sparren	2,40	492,92	-	2002, S. 148	9,6	80,2	148,7	-1,8	-71,6	192,5
_31 PRO	2000	x x x	Sparren Kunststoffbahn	2,40 0,10	492,92 1250,00	- - -	2002, S. 148 Gruhler et al.,	9,6	80,2	148,7	-1,8	-71,6	192,5
_31	2000		Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren	2,40 0,10 1,50	492,92 1250,00 2150,00	-	2002, S. 148	9,6	80,2	148,7	-1,8	-71,6	192,5
_31 PRO _32	2000 1961- 1990		Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein	2,40 0,10 1,50 0,60 2,40 2,50	492,92 1250,00 2150,00 484,51 492,92 2150,00	- - - - - -	2002, S. 148 Gruhler et al., 2002, S. 158	9,6		148,7	-1,8 2,8		192,5
_31 PRO _32 PRO	2000 1961- 1990 1961-		Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung	2,40 0,10 1,50 0,60 2,40 2,50 0,60	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51	- - - - - -	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al.,			·	-		
_31 PRO _32	2000 1961- 1990	x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92		2002, S. 148 Gruhler et al., 2002, S. 158		110,4	182,4	-	-41,5	226,2
_31 PRO _32 PRO	2000 1961- 1990 1961-	x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00		2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al.,		110,4	·	-	-41,5	
_31 PRO _32 PRO _33	2000 1961- 1961- 2000 	x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80 2,40	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51	- - - - - - - - 0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al.,	14,1	110,4	182,4	2,8	-41,5	226,2
_31 PRO _32 PRO _33	2000 1961- 1990 1961- 2000	x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00		2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168	14,1	110,4	182,4	2,8	-41,5	226,2
_31 PRO _32 PRO _33 PRO	2000 1961- 1961- 2000 	x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80 2,40	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51	0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al.,	14,1	110,4	182,4	2,8	-41,5	226,2
_31 PRO _32 PRO _33	2000 1961- 1961- 2000 	x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung Holznagelbinder	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80 2,40 0,90	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51 492,92 484,51	0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al.,	14,1	110,4	182,4 730,1	2,8	-41,5	226,2 781,4
_31 PRO _32 PRO _33 PRO _34	2000 	x x x x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung Holznagelbinder Konterlattung Betondachstein Lattung	2,40 0,10 1,50 0,60 2,40 2,50 0,60 2,40 0,80 2,40 0,90 0,20 2,00 0,60	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51 2150,00 484,51	0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al., 2002, S. 188	14,1	110,4 645,7	182,4 730,1	-2,9	-41,5 470,3	226,2 781,4
_31 PRO _32 PRO _33 PRO _34	2000 	x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung Holznagelbinder Konterlattung Betondachstein Lattung Sparren	2,40 0,10 1,50 0,60 2,40 2,50 0,80 2,40 0,90 0,20 2,00 0,60 2,50	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51 492,92 2150,00 484,51 492,92	0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al., 2002, S. 188	14,1	110,4 645,7	182,4 730,1	-2,9	-41,5 470,3	226,2 781,4
_31 PRO _32 PRO _33 PRO _34	2000 	x x x x x x x x	Sparren Kunststoffbahn Doppelrömer Sparschalung Sparren Betondachstein Lattung Sparren Bitumendachbahn Schalung Holznagelbinder Konterlattung Betondachstein Lattung	2,40 0,10 1,50 0,60 2,40 2,50 0,80 2,40 0,90 0,20 2,00 0,60 2,50	492,92 1250,00 2150,00 484,51 492,92 2150,00 484,51 492,92 1000,00 484,51 2150,00 484,51	0,13	2002, S. 148 Gruhler et al., 2002, S. 158 Gruhler et al., 2002, S. 168 Gruhler et al., 2002, S. 188	14,1	110,4 645,7	182,4 730,1	-2,9	-41,5 470,3	226,: 781,

					Blecheindeckung	0,04	7900,00	-		22,5	296,8	483,1	-9,4	-129,0	534,7
					(Edelstahl) Strukturierte					,-	, .	,	,	.,.	,
					Trennlage (Kunststofffaser-	0,16	81,25	-	dataholz.eu, 2021, Bauteil						
PRO	2002-		хх	х	vlies) Schalung	2,40	484,51		sdrhbi01a						
_36	2020				Konterlattung	0,24	484,51	_	(ohne Dämmung und						
					Unterdeckbahn	0,02	262,00	_	Innenverkleidung)						
					Schalung	2,40	484,51	_							
					Konstruktionsvoll-	2,50	492,92								
					holz										
			х х	Х	Dachziegel	3,21 0,80	2180,00 484,51	-	dataholz.eu,	50,3	788,8	1106,5	13,6	226,1	1200,5
					Lattung Konterlattung	0,64	484,51		2021, Bauteil						
					Unterdeckbahn	0,02	262,00		sdrhzi06b-03 (mit BSH statt KVH in						
PRO	2002-				Schalung	2,40	484,51	_	der						
_37	2020				Brettschichtholz	4,03	507,11	_	Standardabmes-						
					OSB-Platte	1,50	600,00	-	sung 12/28 cm						
					Lattung	0,38	484,51	-	und ohne Dämmung)						
	_				Gipsfaserplatte	2,50	1000,00	-	- animaliy)						
	•				Blecheindeckung (Edelstahl) Strukturierte	0,04	7900,00	-		29,7	360,2	716,4	-8,2	-148,3	661,6
					Trennlage (Kunststofffaser-	0,16	81,25	-							
					vlies) Schalung	2,40	484,51	_	dataholz.eu,						
					Konterlattung	0,24	484,51	_	2021, Bauteil						
PRO	2002-		хх	x	Unterdeckbahn	0,02	262,00	_	sdrhbi01a-04;						
_38	2020				Schalung	2,40	484,51	0,13	Trennlage nach BauderTOP						
					Konstruktionsvoll-	2,50	492,92	0,13	VENT NSK						
					holz Luftschicht										
					Zellulosefaser-	4,52	-	0,31							
					Einblasdämmung	18,98	45,00	0,04							
					PE-Folie Decke	0,02	930,00	-							
	_				GKF-Platte	1,25	800,00	0,25							
					Dachziegel	3,21	2180,00	-		79,2	1134,5	2143,6	26,0	284,8	1860,8
					Lattung	0,80	484,51	-							
					Konterlattung Unterdeckbahn	0,64	484,51 262,00	-	dataholz.eu,						
					Schalung	2,40	484,51	0,13	2021, Bauteil sdrhzi06b-03 (mit						
					Brettschichtholz	4,03	507,11	0,13	Holzfaser- statt						
PRO	2002-		хх	x	Luftschicht	7,70	-	0,551	Mineralwoll-						
_39	2020		Α Α	^	Holzfaserdämmung	16,26	160,00	0,04	dämmung und						
					(Innenausbau)				BSH statt KVH in der Standardab-						
					OSB-Platte	1,50	600,00	0,13	messung 12/28						
					Lattung Holzfaserdämmung	0,29	484,51	0,13	cm)						
					(Innenausbau)	2,71	160,00	0,04							
					Gipsfaserplatte	2,50	1000,00	0,35							
	_				Kies	5,00	1850,00	-		51,2	1363,5	1646,8	20,6	961,5	1708,1
					Bitumendachbahn, besandet Bitumendachbahn	0,40 0,80	1000,00	-	711D 0000						
					Schalung	2,40	484,51	-	ZUB, 2009b, S. 37;						
					Flachdach-	2,40			Mindestdicke						
FRO	1958-				dämmung	8,00	30,00- 200,00	0,04	Kiesschicht nach						
wood_ 1	1968	X			(unspezifisch)		_55,55		www.baunetzwiss en.de "Flach-						
'					Luftschicht, stark belüftet	-	-	-	dach - Wind-						
					Holzbalken	2,50	492,92	0,14	sogrichtung durch						
					Schalung	2,40	484,51	0,14	Auflast"						
					Holzwolle-	2,50	360,00	0,09							
					Leichtbauplatte Kalkgipsputz	1,00	900,00	0,70							
	-				naikyipspulz	1,00	900,00	0,70							

							1					
		Kies	5,00	1850,00	-		47,9	1371,3	1589,3	20,1	999,7	1689,7
		Bitumendachbahn,	0,40	1000,00	_							
		besandet				ZUB, 2009b,						
		Bitumendachbahn	0,80	1000,00		S. 40;						
		Schalung	2,40	484,51	-	Mindestdicke						
FRO . 1969-		Flachdach-		30,00-		Kiesschicht nach						
wood_ 1978	X	dämmung	10,00	200,00	0,04	www.baunetzwiss						
2 1370		(unspezifisch)		,		en.de "Flach-						
		Luftschicht, stark belüftet	-	-	-	dach - Wind- sogrichtung durch						
		Holzbalken	2,50	492,92	0,14	Auflast"						
						Auliast						
		Schalung	2,40	484,51	0,14							
-		Gipskartonplatte	1,25	680,00	0,21							
		Kies	5,00	1850,00	-		39,9	1283,1	1444,7	21,1	1031,3	1509,8
		Bitumendachbahn,	0,40	1000,00		ZUB, 2009b,						
		besandet	0.00	4000.00		S. 115;						
		Bitumendachbahn	0,80	1000,00		Mindestdicke						
FRO 1000		Schalung	2,40	484,51	-	Kiesschicht nach						
wood_ 1969-	X	Luftschicht, stark	-	-	-	www.baunetzwiss						
3		belüftet Mineralwolle		30,00-		en.de "Flach-						
		(Flachdach)	6,00	200,00	0,04	dach - Wind-						
		Holzbalken	2,50	492,92	0,14	sogrichtung durch						
		Gipskartonplatte	1,25	800,00	0,21	Auflast"						
		Innenputz	1,00	900,00	0,70							
		Kies	5,00	1850	-		39.0	1257,2	1432 7	15,5	943.0	1516,2
		Bitumendachbahn,					00,0	1201,2	1402,7	10,0	540,0	1010,2
		besandet	0,40	1000		ZUB, 2009b,						
		Bitumendachbahn	0,80	1000		S. 115;						
		Schalung	2,40	484,51	_	Mindestdicke						
FRO 1969-		Luftschicht, stark				Kiesschicht nach						
wood_ 1978	х	belüftet	-	-	-	www.baunetzwiss						
4		Mineralwolle	6,00	30,00-	0,04	en.de "Flach- dach - Wind-						
		(Flachdach)	0,00	200,00	0,04	sogrichtung durch						
		Holzbalken	2,50	492,92	0,14	Auflast"						
		Profilbretter	1,25	484,51	0,21							
-		Innenputz	1,00	900	0,70							
		Bitumendachbahn,	0,40	1000	_		16,1	976,8	1112.9	-5,0	695.1	1194,8
		besandet						0.0,0	,0	0,0	000,.	, .
FRO 1919-		Bitumendachbahn	0,80	1000	-	Gruhler et al.,						
wood_ 1945	х	Schalung	2,40	484,51	-	2002, S. 61						
5		Konterlattung	0,20	484,51	-	2002, 0. 01						
		Kantholz	0,50	484,51	-							
=		Sparren	2,50	492,92	-							
-		PVC-Dachbahn	0,12	1250,00	-	Flachdachaus-	53,4	731,6	1065,5	29,3	329,8	923,1
		Glasvlies Dach	0,05	229,40	-	führungen nach						
		OSB-Platte	2,50	600,00	0,13	DIN 18531, Teil 1-						
		Konstruktionsvoll-				4 und DIN 18195:						
		holz	1,51	492,92	0,13	ranototoriadori						
		Zellulosefaser-	19,49	45,00	0,04	bahn; in						
		Einblasdämmung			0,04	Anlehnung an: dataholz.eu,						
FRO		PE-Folie Decke	0,02	930,00	-	2021, Bauteil						
wood 2002-		GKF-Platte x x x	1,50	800,00	0,25	fdroba01a (ohne						
6 2020						Installations-						
						ebene); Wahl der						
						Abmessungen						
						des KVH nach						
						Informations-						
						dienst Holz, 2020,						
						Konstruktionsvoll- holz KVH und						
						Balkenschichtholz						
-												

	_					Vegetationssubstrat,				Flachdachaus-			1			
						750 kg/m ³	2,60	750,00	-	führungen nach	130,1	2685,6 391	7,9 46	,8	1285,4	3473,6
						Filtervlies, PP	0,03	95,50	-	DIN 18531, Teil 1-						
						Drainmatte,	0,29			4 und DIN 18195;						
						2.8 kg/m²	0,29	46,70	_	Ausführung in						
						Schutzvlies, 300 g/m ²	0,08	83,30	_	Anlehnung an Optigrün						
						Dachabdichtung,				Spardach und						
						wurzelfest	0,40	1550,00	-	Retensions-						
						Bitumendachbahn	0,50	1000,00	-	dach Mäander 60						
FRO						OSB-Platte	2,50	600,00	-	sowie						
wood_	2002-		x	х	x	Konterlattung	0,60	484,51	-	dataholz.eu, 2021, Bauteil						
7	2020			•		Unterdeckbahn	0,02	262,00	-	fdrhbi06a; Für						
						OSB-Platte	1,20	600,00	0,13	statische Ver-						
						Holzfaserdämmung	13,37	160,00	0,04	gleichbarkeit mit						
						(Innenausbau)				den Brettsperr- holz- und						
						Luftschicht	18,09	- E07.11	1,411	Stahlbeton-						
						Brettschichtholz OSB-Platte	8,53 1,50	507,11 600,00	0,13 0,13	decken wurde						
										beim Holz-						
						Lattung Holzfaserdämmung	1,00	484,51	0,13	balkendach eine						
						(Innenausbau)	4,00	160,00	0,04	Bauteil-höhe von 40 cm gewählt						
						Gipsfaserplatte	2,50	1000,00	0,35	(nach SBT 4.93:						
	_					PVC-Dachbahn	0,12	1250,00	-	Flachdachaus-	80,0	1380,4 173	8,7 28	,5	600,9	1707,3
						Glasvlies Dach	0,05	229,40	-	führungen nach						
FRO						Polystyroldäm-				DIN 18531,						
wood	2002-		×	х	×	mung Flachdach,	14,00	26,90	0,035	Teil 1-4 und DIN 18195;						
8	2020		^	^	^	EPS 035	0.50	1000.00		Mindestdicke						
						Bitumendachbahn	0,50	1000,00	0.42	Brettsperrholz						
						Brettsperrholz	12,00	489,41	0,13	nach Binderholz						
	_					V				(Hersteller)						
						Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	Flachdachaus- führungen nach	135,0	2962,2 375	3,3 33	,8	1435,3	3694,8
						Filtervlies, PP	0,03	95,50	_	DIN 18531,						
						Drainmatte,				Teil 1-4 und DIN						
						2.8 kg/m ²	0,29	46,70	_	18195;						
						Schutzvlies,	0,08	83,30	_	Ausführung in						
						300 g/m ² Dachabdichtung,				Anlehnung an Optigrün						
FRO						wurzelfest	0,40	1550,00	-	Spardach und						
wood_	2002- 2020		х	Х	Х	Bitumendachbahn	0,50	1000,00	-	Retensions-dach						
9	2020					Polystyrol-				Mäander 60						
						dämmung,	12,00	32,00	0,04	sowie dataholz.eu,						
						XPS (DA) Bitumendachbahn	0,50	1000,00		2021, Bauteil						
						Brettsperrholz	24,00	489,41	0,13	fdrhbi06a;						
						Gipsfaserplatte	2,50	1000,00	0,15	Maximaldicke						
						O.poiaco.piano	2,00	.000,00	0,00	Brettsperrholz						
										nach Binderholz (Hersteller)						
	-					Kies	5.00	1850,00		(1.010(0)(6))	108.6	1943,9 247	0.9 58	.3	1270,7	2591.7
						Bitumendachbahn,					. 50,5	.0.0,0 247	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-	,,	
						besandet	0,40	1000,00	-	7110 00001						
						Bitumendachbahn	0,80	1000,00	-	ZUB, 2009b, S. 38;						
						Schalung	2,40	484,51	-	Mindestdicke						
FRO	1958-					Flachdach-		30,00-		Kiesschicht nach						
mas	1958-	x				dämmung (unspezifisch)	8,00	200,00	0,04	www.baunetzwiss						
_1						Luftschicht, stark				en.de "Flach-						
						belüftet	2,00	-	-	dach - Wind- sogrichtung durch						
						Holzbalken	10,00	492,92	0,14	Auflast"						
						Stahlbeton	15,00	2400,00	1,51							
						B15-B25 (96/4)										
	_					Kalkgipsputz	1,00	900,00	0,70		00 -	40000 011	0.0		4650.0	2425.2
						Kies Bitumendachbahn,	5,00	1850,00	-	711D 00001	99,7	1830,2 214	9,6 86	,8	1658,0	2125,8
						besandet	0,40	1000,00	-	ZUB, 2009b, S. 39;						
						Bitumendachbahn	0,80	1000,00	_	Mindestdicke						
FRO	1969-					Flachdach-	.,			Kiesschicht nach						
mas	1969-	x				dämmung	8,00	30,00- 200,00	0,04	www.baunetzwiss						
_2	,. .					(unspezifisch)	0 ==			en.de "Flach-						
						Holzbalken	2,50	492,92	0,14	dach - Wind- sogrichtung durch						
						Stahlbeton B15-B25 (96/4)	15,00	2400,00	1,51	Auflast"						
						Kalkgipsputz	1,00	900,00	0,70	•						
	-					3, , .	,	-,	, -							

	_												
			Kies	5,00	1850,00	-	ZUB, 2009b,	85,5	1720,8	2007,8	82,0	1674,3	1946,2
			Bitumendachbahn,	0,40	1000,00	-	S. 80;						
FDO			besandet		4000.00		Mindestdicke						
FRO	1969-		Bitumendachbahn		1000,00	-	Kiesschicht nach						
mas	1978	Х	Schaumglas	6,00	115,00	k.A.	www.baunetzwiss						
_3			Stahlbeton	15,00	2400,00	1,51	en.de "Flachdach - Windsog-						
			B15-B25 (96/4)				richtung durch						
							Auflast"						
	-		Kies	F 00	1050.00			00.0	101E 1	4007.0	70.7	4600.0	4000.0
				5,00	1850,00	-	ZUB, 2009b,	62,2	1645,4	1007,2	10,1	1600,2	1020,9
			Bitumendachbahn,	0,40	1000,00	-	S. 81;						
			besandet Bitumendachbahn	0.00	4000.00		Mindestdicke						
FRO	1949-			0,80	1000,00	-	Kiesschicht nach						
mas	1978	x x x	Flachdach-	2,00	30,00-	0.04	www.baunetzwiss						
_4			dämmung (unspezifisch)	2,00	200,00	0,04	en.de "Flachdach - Windsog-						
			Stahlbeton				richtung durch						
			B15-B25 (96/4)	15,00	2400,00	1,51	Auflast"						
	_		· · ·				, tundot						
			Kies	5,00	1850,00	-	ZUB, 2009b,	90,8	1734,5	1989,8	87,4	1689,2	1929,5
			Bitumendachbahn,	0,40	1000,00	_	S. 114;						
			besandet	0,.0			Mindestdicke						
FRO	1969-		Bitumendachbahn	0,80	1000,00	-	Kiesschicht nach						
mas	1978	X	Mineralwolle	6,00	30,00-	0,04	www.baunetzwiss						
_5			(Flachdach)	0,00	200,00	5,04	en.de "Flachdach						
			Stahlbeton				- Windsog-						
			B15-B25 (96/4)	15,00	2400,00	1,51	richtung durch						
	_						Auflast"						
			Bitumendachbahn,	0.40	1000,00	_		33.0	1100,9	1179.2	32.3	1092,8	1168.4
FRO			besandet					,-	,.	, _	,-	,.	,.
mas	1949-	ххх	Bitumendachbahn	0,80	1000,00	-	Gruhler et al.,						
_6	1978	<i>n n n</i>	Zementestrich	2,00	2400,00	1,40	2002, S. 81						
			Stahlbeton	3 00	2400,00	1,51							
	_		B15-B25 (96/4)	0,00	2400,00	1,01							
			Bitumendachbahn,	0,40	1000,00	-		44,7	1212,3	1332,0	43,5	1196,2	1310,5
FRO	1010		besandet	0.00	1000.00					-			
mas	1949-	x x x x x	Bitumendachbahn		1000,00	-	Gruhler et al.,						
_7	1994		Zementestrich	2,00	2400,00	1,40	2002, S. 91						
			Stahlbeton	6.00	2400,00	1,51							
	_		B15-B25 (96/4)	-,	,								
			Bitumendachbahn, besandet	0,40	1000,00	-		44,7	1212,3	1332,0	43,5	1196,2	1310,5
FRO	1979-		Bitumendachbahn	0.80	1000,00	_	Crubler et el						
mas	1979-	x x					Gruhler et al.,						
_8	1994		Ausgleichsestrich	2,00	2400,00	1,40	2002, S. 91						
			Stahlbeton B15-B25 (96/4)	6,00	2400,00	1,51							
	_		Bitumendachbahn,										
			besandet	0,40	1000,00	-		52,5	1286,6	1434,0	50,9	1265,2	1405,3
FRO	1979-		Bitumendachbahn	0,80	1000,00	-	Gruhler et al.,						
mas	1990	x x	Ausgleichsestrich		2400,00	1,40	2002, S. 100						
_9			Stahlbeton										
			B15-B25 (96/4)	8,00	2400,00	1,51							
	_		Schiefersplitt in	4.00	1015.00			1015			405.4		
			Bitumenemulsion	1,00	1045,00	-		131,5	3676,9	3977,2	125,1	3588,7	3861,8
FRO	1979-		Bitumendachbahn	1,20	1000,00	-	Gruhler et al.,						
mas	1990	x x	Schaumpolystyrol-	0.00	250.00	1,51	2002, S. 110						
_10	.000		Gefällebeton	8,00	350,00	1,51	2002, 0 0						
			Stahlbeton	14 00	2400,00	1,51							
			B15-B25 (96/4)			-,							
	_								4234,9	4546,2	127,1	4150,7	4440,7
	-		Schiefersplitt in	1,00	1045,00	-		133,1	0 .,0				
	-		Schiefersplitt in Bitumenemulsion			-		133,1	0 .,0				
	_		Schiefersplitt in Bitumenemulsion Bitumendachbahn	1,20	1000,00	-		133,1	0 .,0				
EDO	-		Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol-			- 1,51		133,1	.20 .,0				
FRO	- 1979-		Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton	1,20 3,50	1000,00	1,51	Gruhler et al.,	133,1	,,				
mas	1979- 1990	x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn	1,20 3,50 0,40	1000,00 350,00 1000,00	-	Gruhler et al., 2002, S. 110	133,1	,,				
		x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach	1,20 3,50	1000,00	1,51 0,04		133,1	.20 ,,c				
mas		x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS)	1,20 3,50 0,40 5,00	1000,00 350,00 1000,00 18,00	-		133,1	0 ,,0				
mas		хх	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn	1,20 3,50 0,40 5,00 0,40	1000,00 350,00 1000,00 18,00 1000,00	0,04		133,1	,,,				
mas		хх	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton	1,20 3,50 0,40 5,00 0,40	1000,00 350,00 1000,00 18,00	-		133,1	,,,				
mas		хх	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn	1,20 3,50 0,40 5,00 0,40 14,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00	0,04	2002, S. 110			1485.6	82.9	1167.7	1287.0
mas		x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn	1,20 3,50 0,40 5,00 0,40 14,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00	0,04	2002, S. 110 Flachdachaus-		1331,9	1485,6	82,9	1167,7	1287,0
mas		x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach	1,20 3,50 0,40 5,00 0,40 14,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00	0,04	2002, S. 110 Flachdachaus- führungen nach			1485,6	82,9	1167,7	1287,0
mas _11		x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldäm-	1,20 3,50 0,40 5,00 0,40 14,00 0,12 0,05	1000,00 350,00 1000,00 18,00 1000,00 2400,00 1250,00 229,40	- 0,04 - 1,51	2002, S. 110 Flachdachaus- führungen nach DIN 18531, Teil 1-			1485,6	82,9	1167,7	1287,0
mas _11			Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach	1,20 3,50 0,40 5,00 0,40 14,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00	- 0,04 - 1,51	2002, S. 110 Flachdachaus- führungen nach			1485,6	82,9	1167,7	1287,0
mas _11	1990	x x	Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach,	1,20 3,50 0,40 5,00 0,40 14,00 0,12 0,05	1000,00 350,00 1000,00 18,00 1000,00 2400,00 1250,00 229,40	- 0,04 - 1,51	Plachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195;			1485,6	82,9	1167,7	1287,0
mas _11	1990 		Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035	1,20 3,50 0,40 5,00 0,40 14,00 0,12 0,05 11,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00 1250,00 229,40 26,90	- 0,04 - 1,51	Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Mindestdicke			1485,6	82,9	1167,7	1287,0
mas _11	1990 		Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton	1,20 3,50 0,40 5,00 0,40 14,00 0,12 0,05 11,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00 1250,00 229,40 26,90 1000,00	0,04 - 1,51 - - 0,035	Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Mindestdicke Stahlbeton nach			1485,6	82,9	1167,7	1287,0
mas _11	1990 		Schiefersplitt in Bitumenemulsion Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn	1,20 3,50 0,40 5,00 0,40 14,00 0,12 0,05 11,00	1000,00 350,00 1000,00 18,00 1000,00 2400,00 1250,00 229,40 26,90 1000,00	0,04 - 1,51 - - 0,035	Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 1810- Mindestdicke Stahlbeton nach Bautabellen für			1485,6	82,9	1167,7	1287,0

						Vegetationssubstrat,	2,60	750,00	_	Flachdachaus-	174 5	3013,2	3393 7	152 0	2691,4	2976 5
						750 kg/m³				führungen nach	114,0	0010,2	0000,1	102,0	2001,4	2010,0
						Filtervlies, PP	0,03	95,50	-	DIN 18531, Teil 1-4 und DIN						
						Drainmatte, 2,8 kg/m²	0,29	46,70	-	18195;						
						Schutzvlies,		00.00		Ausführung in						
500						300 g/m ²	0,08	83,30		Anlehnung an						
FRO mas	1995-			x		Dachabdichtung,	0,40	1550,00		Optigrün Spardach und						
_13	2001			^		wurzelfest Bitumendachbahn	0,50	1000,00		Retensionsdach						
						Polystyroldäm-			0.04	Mäander 60;						
						mung, XPS (DA)	13,00	32,00	0,04	Maximaldicke Stahlbeton nach						
						Bitumendachbahn	0,50	1000,00	-	Bautabellen für						
						Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	Ingenieure, 2012,						
						Innenputz	2,00	900,00	0.70	S. 4.96 (l= 6 m;						
						•			0,70	Einfeldträger)						
						PVC-Dachbahn	0,12	1250,00	_	Flachdachaus- führungen nach	103,9	1466,3	1621,8	89,8	1260,8	1377,8
						Glasvlies Dach Polystyroldäm-	0,05	229,40	-	DIN 18531, Teil						
						mung Flachdach,	17,00	26,90	0,035	1-4 und DIN						
FRO	2002-					EPS 035				18195;						
mas _14	2020			Х	х х	Bitumendachbahn	0,50	1000,00	-	Mindestdicke Stahlbeton nach						
						Stahlbeton C20/25 (99/1)	16,00	2400,00	2,40	Bautabellen für						
						(50,1)				Ingenieure, 2012,						
										S. 4.97 (l= 4 m; Zweifeldträger)						
						Vegetationssubstrat,										
						750 kg/m ³	2,60	750,00	-	Flachdachaus- führungen nach	187,4	3184,6	3576,1	161,9	2819,3	3102,9
						Filtervlies, PP	0,03	95,50	-	DIN 18531, Teil 1-						
						Drainmatte,	0,29	46,70		4 und DIN 18195;						
						2,8 kg/m²	0,20	40,70		Ausführung in						
						Schutzvlies, 300 g/m ²	0,08	83,30	-	Anlehnung an Optigrün						
FRO	2002-					Dachabdichtung.	0,40	1550,00		Spardach und						
mas _15	2020			Х	х х	wurzeitest			_	Retensionsdach						
_						Bitumendachbahn	0,50	1000,00	-	Mäander 60; Maximaldicke						
						Polystyroldämmung, XPS (DA)	19,00	32,00	0,04	Stahlbeton nach						
						Bitumendachbahn	0,50	1000,00	_	Bautabellen für						
						Stahlbeton C30/37	24 00	2400,00	2,50	Ingenieure, 2012, S. 4.96 (I= 6 m;						
						(98/2) Innenputz	2,00	900,00	0,70	Einfeldträger)						
						Kalkgipsputz	1,00	900,00	0,70		61,1	444,4	551,7	59,8	425,1	530,7
EW	bis					rangipoputz	1,00	1800,00/	0,70	ZUB, 2009b,	01,1	,-	001,1	00,0	420,1	000,1
mas	1918	х				Vollziegel	25,00	2000,00	0,79	S. 8;						
_1						Außenputz	1,50	1800,00	0,87	Minimaldicke						
- \/						Kalkgipsputz	1,00	900,00	0,70	711D 2000h	110,5	806,4	985,7	107,9	767,2	942,8
EW mas	bis	х				Vollziegel	51,00	1800,00/	0,79	ZUB, 2009b, S. 8;						
_2	1918							2000,00		Maximaldicke						
						Außenputz	1,50	1800,00	0,87		40.4	200.0	250.0	20.4	202.0	040.0
EW	bis					Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	40,1	298,2	356,8	39,1	282,8	340,0
mas _3	1918	Х				Vollziegel	20,00	1800,00/ 2000.00	0,79	S. 11;						
						Kallesia anuta	1.00	900,00	0.70	Minimaldicke	74.2	548,8	657,2	70.0	519,6	625,3
EW mas	bis	х				Kalkgipsputz	1,00		0,70	ZUB, 2009b, S. 11;	74,3	340,0	037,2	72,3	319,6	023,3
_4	1918	^				Vollziegel	38,00	1800,00/ 2000,00	0,79	Maximaldicke						
						Kalkgipsputz	1,00	900,00	0,70		59,2	430,4	535,0	58,0	412,0	514,8
EW	1949-					•		1800,00/		ZUB, 2009b,	·	,	,	,	,	
mas	1949-		x			Vollziegel	24,00	2000,00	0,79	S. 14						
_5						Glattputz	1,50	1800,00	0,87							
						(Kalkzement) Kalkgipsputz	1,00	900.00	0,70		59,2	430,4	535,0	58,0	412,0	514,8
EW	4040					Hochlochziegel		1400,00/		7115 00001	33,2	430,4	333,0	30,0	412,0	314,0
mas	1949- 1957		x			(75/25)	24,00	2000,00	0,60	ZUB, 2009b, S. 14						
	1007					Glattputz	1,50	1800,00	0,87	0. 14						
_6						(Kalkzement)					75.0	422.2	EEO C	74.0	420.4	ESE C
_6						Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	75,0	433,3	552,6	74,0	420,1	535,6
EW	1949-					Ziegelsplittbeton	24,00	1400,00	0,58	S. 15						
EW mas	1949- 1957		x			Glattputz		1800,00	0,87							
EW		_	х			Glattputz (Kalkzement)	1,50	1000,00								
EW mas _7			X			(Kalkzement) Kalkgipsputz	1,50	900,00	0,70		81,0	531,2	646,6	81,0	531,2	646,6
EW mas _7	1957 1949-					(Kalkzement) Kalkgipsputz Kalksandstein		900,00	0,70	ZUB, 2009b, S. 16:	81,0	531,2	646,6	81,0	531,2	646,6
EW mas _7	1957		x			(Kalkzement) Kalkgipsputz Kalksandstein (75/25)	1,00	900,00 1400,00/ 2000,00	0,70	ZUB, 2009b, S. 16; Minimaldicke	81,0	531,2	646,6	81,0	531,2	646,6
EW mas _7	1957 1949-					(Kalkzement) Kalkgipsputz Kalksandstein	1,00	900,00		S. 16;	81,0	531,2	646,6	81,0	531,2	646,6
EW mas _7 EW mas _8	1957 1949-					(Kalkzement) Kalkgipsputz Kalksandstein (75/25) Glattputz	1,00	900,00 1400,00/ 2000,00	0,70	S. 16; Minimaldicke	81,0 97,9		774,6	81,0 97,9	·	646,6 774,6
EW mas _7 EW mas _8	1957 1949-		x			(Kalkzement) Kalkgipsputz Kalksandstein (75/25) Glattputz (Kalkzement) Kalkgipsputz Kalksandstein	1,00 24,00 1,50 1,00	900,00 1400,00/ 2000,00 1800,00 900,00 1400,00/	0,70 0,87 0,70	S. 16; Minimaldicke			·	-	·	
EW mas _7 EW mas _8	1957 1949- 1957					(Kalkzement) Kalkgipsputz Kalksandstein (75/25) Glattputz (Kalkzement) Kalkgipsputz Kalksandstein (75/25)	1,00 24,00 1,50	900,00 1400,00/ 2000,00 1800,00	0,70 0,87	S. 16; Minimaldicke ZUB, 2009b, S. 16;			·	-	·	
EW mas _7 EW mas _8	1957 1949- 1957		x			(Kalkzement) Kalkgipsputz Kalksandstein (75/25) Glattputz (Kalkzement) Kalkgipsputz Kalksandstein	1,00 24,00 1,50 1,00 30,00	900,00 1400,00/ 2000,00 1800,00 900,00 1400,00/	0,70 0,87 0,70	S. 16; Minimaldicke			·	-	·	

	_		Kalkgipsputz	1,00	900,00	0,70		97,9	639,9	774,6	97,9	639,9	774,6
EW	1958-	V	Kalksandstein	30,00	1400,00/	0,70	ZUB, 2009b,						
mas _10	1968	X	(75/25)		2000,00	-, -	S. 23						
			Glattputz (Kalkzement)	1,50	1800,00	0,87							
E147	-		Kalkgipsputz	1,00	900,00	0,70		90,4	517,6	657,1	89,1	501,1	635,9
EW mas	1958-	x	Ziegelsplittbeton	30,00	1400,00	0,58	ZUB, 2009b,						
_11	1968	*	Glattputz	1,50	1800,00	0,87	S. 24						
	-		(Kalkzement)										
EW	4040		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	51,3	295,5	375,5	51,0	291,0	369,8
mas	1949- 1978	x x x	Bimshohlblockstein	24,00	1400,00/ 2000,00	0,56	S. 58;						
_12			Außenputz	1,50	1800,00	0,87	Minimaldicke						
	-		Kalkgipsputz	1,00	900,00	0,70		73,3	411,7	516,1	72,8	404,7	507,0
EW	1949-		J		1400,00/		ZUB, 2009b,	,.	,.	,.	,-	,.	,-
mas _13	1978	x x x	Bimshohlblockstein	38,00	2000,00	0,56	S. 58; Maximaldicke						
_10	_		Außenputz	1,50	1800,00	0,87	Waximardicke						
EW	· <u>-</u>		Kalkgipsputz	1,00	900,00	0,70	7UD 2000h	59,2	430,4	535,0	58,0	412,0	514,8
mas	1949-	хх	Vollziegel	24,00	1800,00/	0,79	ZUB, 2009b, S. 59;						
_14	1968	A A	Voliziegei	24,00	2000,00		Minimaldicke						
	-		Außenputz	1,50	1800,00	0,87							
EW			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	70,6	514,0	635,2	69,1	490,9	609,9
mas	1949-	хх	Vollziegel	30,00	1800,00/	0,79	S. 59;						
_15	1968			4.50	2000,00		Maximaldicke						
	-		Außenputz	1,50	1800,00	0,87		50.0	400.4	505.0	50.0	440.0	5440
EW	1010		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	59,2	430,4	535,0	58,0	412,0	514,8
mas	1949- 1978	x x x	Hochlochziegel (75/25)	24,00	1400,00/ 2000.00	0,60	S. 60;						
_16			Außenputz	1,50	1800,00	0,87	Minimaldicke						
	-		Kalkgipsputz	1,00	900,00	0,70		82,0	597,5	735,3	80,1	569,8	705,0
EW	1949-		Hochlochziegel		1400,00/		ZUB, 2009b,	. ,	,	, .	,	, .	,-
mas _17	1978	x x x	(75/25)	36,00	2000,00	0,60	S. 60; Maximaldicke						
	_		Außenputz	1,50	1800,00	0,87	Maximararono						
			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	70,8	514,8	745,7	64,9	447,7	663,0
			Hochlochziegel	24,00	1400,00/	0,60	S. 61; Minimaldicke						
EW			(75/25)	•	2000,00		Ziegel und						
mas	1969- 1978	x	Dämmung AW (Holzwolle-WDVS)	2,00	30,00- 200,00	0,04	Dämmung;						
_18	1070		Außenputz	1,50	1800,00	0,87	Annahme						
							Holzwolle, da größten						
							Umweltwirkungen						
	-		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	82,2	598,4	845,9	76,0	526,7	758,1
			Hochlochziegel	20.00	1400,00/	0.00	S. 61;						
			(75/25)	30,00	2000,00	0,60	Maximaldicke Ziegel und						
EW	1969-		Dämmung AW	2,00	30,00-	0,04	Minimaldicke						
mas _19	1978	X	(Holzwolle-WDVS) Außenputz	1,50	200,00 1800,00	0,87	Dämmung;						
_19			7 taloon pare	.,00	1000,00	0,01	Annahme						
							Holzwolle, da größten						
							Umweltwirkungen						
	-		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	82,3	599,2	956,4	71,9	483,5	811,1
			Hochlochziegel	04.00	1400,00/	0.0	S. 61;						
			(75/25)	24,00	2000,00	0,6	Minimaldicke						
EW	1969-		Dämmung AW	4,00	30,00-	0,04	Ziegel und Maximaldicke						
mas	1978	X	(Holzwolle-WDVS) Außenputz	1,50	200,00 1800,00	0,87	Dämmung;						
_20			raisonpatz	.,00	.000,00	0,01	Annahme						
							Holzwolle, da						
							größten Umweltwirkungen						
	-		Kalkgipsputz	1,00	900,00	0,7	ZUB, 2009b,	93,7	682.8	1056,6	83,0	562,4	906,2
			Hochlochziegel		1400,00/		S. 61;		,-	,.	,-	,	,-
			(75/25)	30,00	2000,00	0,6	Maximaldicke						
EW mas	1969-	x	Dämmung AW	4,00	30,00 -	0,04	Ziegel und Dämmung;						
_21	1978	A	(Holzwolle-WDVS) Außenputz	1,50	200,00 1800,00	0,87	Annahme						
			Ausenputz	1,50	1000,00	0,07	Holzwolle, da						
							größten						
	-		IZ-II1		000.00	0.70	Umweltwirkungen	F1.5	007.7	075.5	F	0015	000 -
EW	1040		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	51,3	295,5	375,5	51,0	291,0	369,8
mas	1949- 1968	x x	Bimsvollsteine	24,00	1200,00/ 2000,00	0,47	S. 62;						
_22	.000		Außenputz	1,50	1800,00	0,87	Minimaldicke						
	-		Kalkgipsputz	1,00	900,00	0,70		60,8	345,3	435,7	60,3	339,7	428,6
EW	1949-				1200,00/		ZUB, 2009b,	33,0	٥.5,5	.00,1	55,0	,,	5,5
mas _23	1968	хх	Bimsvollsteine	30,00	2000,00	0,47	S. 62; Maximaldicke						
			Außenputz	1,50	1800,00	0,87	a.amaraione	<u> </u>					
	-												

Part														
March Marc	ΕW	•		Kalkgipsputz	1,00	900,00	0,70	7UB 2009h	70,6	514,0	635,2	69,1	490,9	609,9
Mathematic 1,50 100,00 0.57 100,00 0.57 100,00 0.50 100,00 0.50 100,00			x x x	_	30,00		0,52							
Part	_24	1976			1.50		0.07	Minimaldicke						
Part									82.0	597 5	735 3	80 1	569.8	705,0
Mariengrout 1.50		1949-		•					02,0	001,0	100,0	00,1	000,0	700,0
Marchanger Mar			x x x	•	36,00		0,52							
Part	_23			Außenputz	1,50	1800,00	0,87	waximaidicke						
March Marc	EW	•			1,00	900,00	0,70	ZUB. 2009b.	85,8	519,2	651,8	85,6	515,7	647,3
Marchenolate Marc			x x x		30,00	624,80	-							
Part	_26	1970			1.50	1800.00	0.87	Minimaldicke						
1949	-14/	•		•				7115 00001	100,3	603,8	755,3	100,0	599,6	749,9
1948			Y Y Y	Gasbeton(block/	36.00	624.80					-			
		1978	X	*										
Part		•							02.5	607.7	750.0	00 F	607.7	758,0
1949	EW				1,00		0,70		92,5	607,7	756,0	92,5	607,7	756,0
Dammputz 1,00 200,000 0,04 2,000 1,000 2			x x x		24,00		0,70							
	_28	1976			3 00	30,00 -	0.04							
Part				·					400.0	252.2		400.0		
March Marc	ΕW				1,00		0,70	ZUB, 2009b,	100,2	658,8	832,3	100,2	658,8	832,3
Dammputz			x x x		24,00		0,70							
EW 1916	_29	1976			4.00	30,00 -	0.04							
Management Man				•										
Voltziegel 25,00 2000,00 0,79		bis	v	Kalkgipsputz	1,00		0,70		49,6	367,8	440,3	48,3	348,6	419,2
EW mas		1918	^	Vollziegel	25,00		0,79							
Mail				Kalkgipsputz	1.00		0.70	7LIB 2009h	99.0	729.9	874.2	96.3	690.6	831,3
Section Sect			x							-,-	,	, .	,	,
EW mas 1919- x x	_31	1916		Vollziegel	51,00		0,79	Maximaldicke						
Manual	E\A/			Kalkgipsputz	1,00	900,00	0,70	7UD 2000h	85,8	625,4	768,7	83,8	596,2	736,7
Außenputz 1,50 190,000 0,87 110,5 180,000 0,87 110,5			x	Vollziegel	38 00		0.79							
EW mas		1918		_										
EW														
March Marc	EW	hia		Kalkgipsputz	1,00		0,70	ZUB, 2009b,	110,5	806,4	985,7	107,9	767,2	942,8
Außenputz 1,50 1800,00 0,87 Maximalicke Maxima			X	Vollziegel	51,00		0,79							
EW mas	_33			Außenputz	1.50		0.87	Maximaldicke						
1949 1948 1949 1949 1949 1949		•		· · · · · · · · · · · · · · · · · · ·					61,1	444,4	551,7	59,8	425,1	530,7
Minimaldicke Mini			Y Y	Vollziegel	25.00		0.70							
EW mas		1948	A A	•		,								
EW 1919-									25.0	225.4			500.0	
1948 X X X X X X X X X	EW	1010		Kaikgipsputz	1,00		0,70	ZUB, 2009b,	85,8	625,4	768,7	83,8	596,2	736,7
Außenputz 1,50 1800,00 0,87			х х	Vollziegel	38,00		0,79							
Second Color 1919-	_35			Außenputz	1.50		0.87	Maximaldicke						
EW 1919-				<u> </u>					52,9	303,8	385,5	52,6	299,1	379,6
1948 X X Birnsholilockstein 25,00 2000,00 0,50 Minimaldicke		1919-			05.00						-			
EW mas		1948	хх	Bimshohlblockstein	25,00		0,56							
EW mas	_00			Außenputz	1,50	1800,00	0,87	· · · · · · · · · · · · · · · · · · ·						
Maximal 1949	E\//			Kalkgipsputz	1,00	900,00	0,70	7LIB 2009b	73,3	411,7	516,1	72,8	404,7	507,0
Außenputz 1,50 1800,00 0,87			x x	Bimshohlblockstein	38,00		0,56							
Part	_37	1948						Maximaldicke						
EW mas 1968									51.3	295 5	375.5	51.0	291 በ	369,8
1968		1949-		• • •					3.,5	_50,5	0.0,0	21,0	_5.,5	230,0
EW mas			хх	Bimshohlblockstein	24,00		0,56							
EW mas40	_30			Außenputz	1,50	1800,00	0,87	Millimaldicke						
Maximaldicke Maxi	E\A/			Kalkgipsputz	1,00	900,00	0,70	7UP 2000b	71,0	399,2	501,0	70,5	392,5	492,3
			x x	Bimshohlblockstein	36 50		0.56							
EW mas 1958-		1968												
EW as 1968		,							E0.0	420.4	E25.0	E0 ^	4400	E4 1 ^
Maximal 1968 X (75/25) 24,00 2000,00 0,52 S. 92; Minimaldicke	EW	1050		- · ·			0,70	ZUB, 2009b,	59,2	430,4	ეკე ,0	58,0	412,0	514,8
Außenputz 1,50 1800,00 0,87			x	_	24,00		0,52							
EW mas 1958-	_40				1,50		0,87	Mınımaldicke						
EW mas 1969		•		· ·					70,6	514,0	635,2	69,1	490,9	609,9
Task 1968		1958-	v	- · ·									•	
Außenputz 1,50 1800,00 0,87 Kalkgipsputz 1,00 900,00 0,70 ZUB, 2009b, as yellow 1969- as yellow 1978		1968	X	The second secon	30,00		0,52							
EW 1969-			,	Außenputz	1,50	1800,00	0,87							
mas 1969- x Hochlochziegel 24,00 1200,00/ 0,52 S. 93; 42 (75/25) 24,00 2000,00 Minimaldicke	EW				1,00		0,70	ZUB. 2009h	59,2	430,4	535,0	58,0	412,0	514,8
_42			x	The second secon	24,00		0,52							
Automiture 1,50 1000,00 0,07	_42	13/0						Minimaldicke						
				Ausenputz	1,50	1000,00	0,07							

EW	į		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	70,6	514,0	635,2	69,1	490,9	609,9
mas	1969-	х	Hochlochziegel	30,00	1400,00/	0,52	S. 93;						
_43	1978		(75/25) Außenputz	1,50	2000,00 1800,00	0,87	Maximaldicke						
	į		Innenputz	1,00	900,00	1,00		55,4	404,9	497,9	54,1	386,4	477,7
EW	1919-			•	1800,00/		ZUB, 2009b,	,	,-	,-	,		,
mas _44	1948	Х	Vollziegel	24,00	2000,00	0,81	S. 119; Minimaldicke						
_			Außenputz	1,00	1800,00	1,00							
EW	1919-		Innenputz	1,00	900,00	1,00	ZUB, 2009b,	66,8	488,5	598,0	65,2	465,4	572,8
mas	1948	х	Vollziegel	30,00	1800,00/ 2000,00	0,81	S. 119;						
_45			Außenputz	1,00		1,00	Maximaldicke						
EW	1919-		Vollziegel	24,00	1800,00/	0,81	ZUB, 2009b,	53,3	385,3	474,9	52,0	366,8	454,7
mas	1948	Х	· ·		2000,00		S. 119;	33,3	303,3	414,3	32,0	300,0	454,1
_46			Außenputz	1,00		1,00	Minimaldicke	ļ					
EW mas	1919-	x	Vollziegel	30,00	1800,00/ 2000,00	0,81	ZUB, 2009b, S. 119;	64,7	468,8	575,0	63,1	445,7	549,8
_47	1948	^	Außenputz	1,00	1800,00	1,00	Maximaldicke						
	•		Innenputz	1,00	900,00	1,00		59,2	430,4	535,0	58,0	412,0	514,8
EW mas	1949-	x x	Hochlochziegel	24,00	1400,00/	0,58	ZUB, 2009b, S. 122;						
_48	1968	* *	(75/25)	24,00	2000,00	0,56	Minimaldicke						
			Außenputz	1,50	1800,00	1,00							
EW			Innenputz	1,00	900,00	1,00	ZUB, 2009b,	83,0	604,5	743,7	81,1	576,4	713,0
mas	1949- 1968	хх	Hochlochziegel (75/25)	36,50	1400,00/ 2000.00	0,58	S. 122;						
_49			Außenputz	1,50	1800,00	1,00	Maximaldicke						
	į		Innenputz	1,00	900,00	1,00		59,2	430,4	535,0	58,0	412.0	514,8
EW	1969-		Hochlochziegel		800,00 /		ZUB, 2009b,		,.	,.	,-	,.	,-
mas _50	1994	x x x	(75/25)	24,00	2000,00	0,39	S. 123; Minimaldicke						
			Außenputz	1,50	1800,00	1,00							
EW			Innenputz	1,00	900,00	1,00	ZUB, 2009b,	83,0	604,5	743,7	81,1	576,4	713,0
mas	1969-	x x x	Hochlochziegel	36,50	800,00 /	0,39	S. 123;						
_51	1994		(75/25)	4.50	2000,00		Maximaldicke						
			Außenputz	1,50	1800,00	1,00		91.0	E21 2	646.6	01.0	E21 2	646,6
EW	1969-		Kalkgipsputz Kalksandstein	1,00	900,00	1,00	ZUB, 2009b,	81,0	531,2	646,6	81,0	531,2	040,0
mas _52	1978	Х	(75/25)	24,00	2000,00	0,70	S. 124; Minimaldicke						
_52			Außenputz	1,50	1800,00	1,00	Willimaldicke						
EW			Kalkgipsputz	1,00	900,00	1,00	ZUB, 2009b,	97,9	639,9	774,6	97,9	639,9	774,6
mas	1969-	х	Kalksandstein	30,00	1400,00/	0,70	S. 124;						
_53	1978		(75/25)		2000,00		Maximaldicke						
	,		Außenputz Kalkgipsputz	1,50	1800,00	1,00		81,0	531,2	646,6	81,0	531,2	646,6
EW	1969-		Kalksandstein		1800,00/		ZUB, 2009b,	81,0	331,2	040,0	01,0	331,2	040,0
mas _54	1978	Х	(75/25)	24,00	2000,00	0,99	S. 125; Minimaldicke						
_54			Außenputz	1,50	1800,00	1,00	Willimaldicke						
EW			Kalkgipsputz	1,00	900,00	1,00	ZUB, 2009b,	97,9	639,9	774,6	97,9	639,9	774,6
mas	1969-	x	Kalksandstein	30,00	1800,00/	0,99	S. 125;						
_55	1978		(75/25)		2000,00		Maximaldicke						
			Außenputz Kalkgipsputz	1,50 1,00	1800,00	1,00		60,5	498,3	625,8	60,3	495,4	622,0
EW	1949-		Hohlblockstein		1000,00/	1,00	ZUB, 2009b,	00,5	430,3	023,0	00,3	433,4	022,0
mas _56	1968	хх	(90/10)	24,00	2000,00	0,64	S. 126; Minimaldicke						
_00			Außenputz	1,50	1800,00	1,00							
EW			Kalkgipsputz	1,00	900,00	1,00	ZUB, 2009b,	72,2	598,9	748,6	71,9	595,2	743,9
mas	1949- 1968	x x	Hohlblockstein	30,00	1000,00/ 2000,00	0,64	S. 126;						
_57	1300		(90/10) Außenputz	1,50	1800	1,00	Maximaldicke						
	•		Kalkgipsputz	1,00	900,00	0,70		77,8	640,6	735,8	76,2	619,3	708,4
EW mas	bis	x	Naturstein-	40,00	1,30	2,33	ZUB, 2009b,		-,-	-,-	-,.	-,-	, .
_58	1918		mauerwerk				S. 148						
E**			Außenputz Kalkgipsputz	1,50 1,00	1800,00	0,87	711D 00001	49,6	367,8	440,3	48,3	348,6	419,2
EW mas	bis	x x x x	•				ZUB, 2009b, S. 153;	43,0	507,0	-40,3	40,3	J40,0	713,2
_59	1968		Vollziegel	25,00	1800,00/ 2000,00	0,79	Minimaldicke						
EW			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	99,0	729,9	874,2	96,3	690,6	831,3
mas	bis 1968	x x x x	•		1800,00/		S. 153;	l .		·			
_60	1900		Vollziegel	51,00	2000,00	0,79	Maximaldicke		_			_	
EW	bis		Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	99,0	729,9	874,2	96,3	690,6	831,3
mas _61	1968	X	Vollziegel	51,00	1800,00/ 2000,00	0,79	S. 154						
_01	,		Kalkgipsputz	1,00	900,00	0,70		70,6	514,0	635,2	69,1	490,9	609,9
EW	1919-		Hochlochziegel		1400,00/		ZUB, 2009b,	'',0	J 1→,U	555,2	03,1	-30,3	555,3
mas _62	1948	Х	(75/25)	30,00	2000,00	k.A.	S. 156						
_02			Außenputz	1,50	1,00	k.A.							
													

EW			Innenputz	1,00	900,00	0,70	ZUB, 2009b,	60,5	498,3	625,8	60,3	495,4	622,0
mas	1949- 1994	x x x x x	Hohlblockstein (90/10)	24,00	1400,00/ 2000,00	0,56	S. 157;						
_63	1334		Außenputz	1,50	1800,00	0,87	Minimaldicke						
			Innenputz	1,00	900,00	0,70		72,2	598,9	748,6	71,9	595,2	743,9
EW mas	1949-	~ ~ ~ ~ ~	Hohlblockstein	30,00	1400,00/	0.56	ZUB, 2009b, S. 157;						
_64	1994	x x x x x	(90/10)	30,00	2000,00	0,56	Maximaldicke						
			Außenputz	1,50	1800,00	0,87							
EW	1969-		Innenputz	1,00	900,00	k.A.	711P 2000h	71,4	434,6	548,3	71,2	431,8	544,7
mas	1994	x x x	Gasbeton(block/ -steine)	24,00	472,00/ 2000,00	k.A.	ZUB, 2009b, S. 158						
_65			Außenputz	1,50	1800,00	0,87							
EW			Innenputz	1,50	900,00	0,70		90,7	660,7	817,3	88,7	631,5	785,4
mas	bis 1918	x	Vollziegel/Mörtel	38,00	1800,00/ 2000,00	0,79	Gruhler et al., 2002, S. 31						
_66	1910		Außenputz	2,00	1800,00	1,00	2002, 3. 31						
			Innenputz	1,50	900,00	0,70	Gruhler et al.,	80,7	586,9	728,9	78,9	561,8	701,4
EW mas	1870-	v	Vollziegel/Mörtel	32,70	1800,00/	0,79	2002, S. 41;						
_67	1918	^	•		2000,00		Durchschnitts- dicke						
			Außenputz	2,00	1800,00	1,00		04.6	CAFE	762.4	00.7	E00 7	722.0
EW	1870-		Innenputz	1,50	1800,00/	0,70	Gruhler et al., 2002, S. 51;	84,6	615,5	763,1	82,7	588,7	733,9
mas _68	1918	X	Vollziegel/Mörtel	34,75	2000,00	0,79	Durchschnitts-						
_00			Außenputz	2,00	1800,00	1,00	dicke						
EW			Innenputz	1,50	900,00	0,70	Gruhler et al.,	86,4	628,7	779,0	84,5	601,2	748,9
mas	1919- 1945	х	Vollziegel/Mörtel	35,70	1800,00/ 2000,00	0,79	2002, S. 61; Durchschnitts-						
_69	1040		Außenputz	2,00	1800,00	1,00	dicke						
EW	1010	-	Innenputz	1,50	900,00	0,70	0	26,0	196,6	234,8	25,4	187,4	224,7
mas	1919- 1945	x	Vollziegel/Mörtel	12,00	1800,00/	0,79	Gruhler et al., 2002, S. 61						
_70					2000,00		•						=
EW	1949-		Innenputz	1,50	900,00	0,70	Gruhler et al.,	87,9	639,9	792,3	86,0	611,8	761,6
mas	1978	x x x	Vollziegel/Mörtel	36,50	1800,00/ 2000,00	0,79	2002, S. 71						
_71			Außenputz	2,00	1800,00	1,00							
EW			Innenputz	1,50	900,00	0,70	Gruhler et al.,	30,0	225,8	269,8	29,2	215,0	258,0
mas	1949- 1978	x x x	Vollziegel/Mörtel	14,10	1800,00/ 2000,00	0,79	2002, S. 71; Durchschnitts-						
_72	1370				2000,00		dicke						
EW			Innenputz	1,50	900,00	0,70	Gruhler et al.,	110,7	1045,7	1446,2	106,5	990,6	1372,4
mas	1949- 1978	x x x	Stahlbeton B15-B25	20,80	2400,00	2,5	2002, S. 81; Durchschnitts-						
_73	1970		(95/5) Außenputz	2,00	1800,00	1,00	dicke						
EW	1949-		Stahlbeton B15-B25	,		,	Gruhler et al.,						
mas _74	1994	x x x x x	(97/3)	7,50	2400,00	2,5	2002, S. 91	25,5	227,5	309,0	23,9	207,2	281,9
EW							Gruhler et al.,						
mas	1979-	хх	Stahlbeton B15-B25	7,70	2400,00	2,5	2002, S. 100;	26,1	233,6	317,2	24,5	212,7	289,4
_75	1990		(97/3)				Durchschnitts- dicke						
EW							Gruhler et al.,						
mas	1979- 1990	x x	Stahlbeton B15-B25 (97/3)	27,40	2400,00	2,5	2002, S. 109; Durchschnitts-	93,0	831,1	1128,9	87,3	756,9	1029,7
_76			(-1,-)				dicke						
			Innenputz	1,50	900,00	0,70		84,4	642,4	772,4	83,2	623,4	751,5
EW	1001		Kalksandstein (95/5)	24,00	1800,00/ 2000,00	0,99	Gruhler et al.,						
mas	1991- 2000	хх	Polystyroldämmung				2002, S. 119; durchschnittliche						
_77			Wand und Dach, EPS	4,00	18,00	0,04	Dämmdicke						
			Außenputz	2,00	1800,00	1,00							
EW			Innenputz	1,50	900,00	0,70		76,3	470,0	597,0	76,1	467,2	593,4
mas	1961-	x x x x	Gasbeton(block/	24,00	472,00 /	k.A.	Gruhler et al.,						
_78	1990		-steine) Außenputz	2,00	2000,00 1800,00	1,00	2002, S. 129						
			Innenputz	1,50	900,00	0,70		87,9	639,9	792,3	86,0	611.8	761,6
EW	1961-	V V V V	Hochlochziegel	20.50	800,00 /	0.25	Gruhler et al.,		·	ŕ	,	·	ŕ
mas _79	1990	x x x x	(75/25)	36,50	2000,00	0,35	2002, S. 138						
			Außenputz	2,00	1800,00	1,00		60.5	000 -	700	00.0	F0 1 5	700 1
EW	1991-		Innenputz	1,50	900,00 /	0,70 0,88-	Gruhler et al.,	69,0	620,0	768,4	66,6	584,0	729,1
mas 80	2000	хх	Leichthochlochziegel	36,50	2000,007	1,23	2002, S. 148						
_80			Außenputz	2,00		1,00							
EW	40		Innenputz	1,50	900,00	0,70		76,3	470,0	597,0	76,1	467,2	593,4
mas	1961- 2000	x x x x x	Gasbeton(block/ -steine)	24,00	472,00 / 2000,00	k.A.	Gruhler et al., 2002, S. 157, 177						
_81	_000		Außenputz	2,00	1800,00	1,00	, 0. 107, 177						
			*										

EW						Innenputz	1,50	900,00	0,70		87,9	639,9	792,3	86,0	611,8	761,6
mas	1961- 2000	x x x	хх			Hochlochziegel (75/25)	36,50	800,00 / 2000,00	0,35	Gruhler et al., 2002, S. 167, 187						
_82	2000					Außenputz	2,00	1800,00	1,00	2002, 3. 107, 107						
	•					Innenputz	1,50	900,00	0,70		75,1	596,6	692,2	73,3	568,0	660,8
						,		1800,00/			,.	000,0	002,2	. 0,0	000,0	000,0
EW	1991-					Kalksandstein (95/5)	24,00	2000,00	0,99	Gruhler et al.,						
mas _83	2000		хх			Polystyroldämmung	c 00	40.00	0.04	2002, S. 197						
_03						Wand und Dach, EPS	6,00	18,00	0,04							
						Außenputz	0,50	1800,00	1,00							
EW						Innenputz	1,00	900,00	0,70	Eigene Annahme	48,6	440,6	553,7	46,9	416,1	526,9
mas	2002-		х	х	х	Hochlochziegel	24,00	575,00	0,08/	auf Basis von						
_84	2009					(99,6/0,4) Außenputz	2,00	1800,00	0,09 1,00	Herstellerre- cherchen						
	1					Innenputz	1,00	900,00	0,70		77,6	659,4	784,0	77,6	659,4	784,0
						Kalksandstein				in Anlehnung an	,•	000, .	,.	,0	000,1	,.
EW	2002-					(99,2/0,8)	17,50	1800,00	0,99	www.ks-						
mas _85	2009		х			Mineralwolle (Außenwand)	7,50	46,25	0,04	original.de, KS-						
						WDVS Verklebung		4750.00	4.00	Ratio-Blocksteine						
	•					und Beschichtung	2,00	1759,00	1,00							
						Innenputz	1,00	900,00	0,70		81,9	711,9	844,7	81,9	711,9	844,7
EW	0040					Kalksandstein (99,2/0,8)	17,50	1800,00	0,99	in Anlehnung an						
mas	2010- 2020			х	Х	Mineralwolle	10,50	46,25	0,04	www.ks- original.de, KS-						
_86	2020					(Außenwand)	10,50	40,23	0,04	Ratio-Blocksteine						
						WDVS Verklebung und Beschichtung	2,00	1759,00	1,00							
=144						Innenputz	1,00	900,00	0,70	Eigene Annahme	62,2	407,4	526,5	62,0	404,9	523,3
EW mas	2002-		Y	х	Y	Porenbeton P2 04	24,00	380,00	0,07/	auf Basis von						
_87	2020		^	^		(99,2/0,8)			0,11	Hersteller- recherchen						
						Außenputz Stahlbeton C20/25	2,00	1759,00	1,00	recherchen						
EW						(99/1)	15,00	2400,00	2,30	Minimale Stb	67,7	569,3	709,8	64,5	527,9	654,4
mas	2002-		х			Mineralwolle	8,00	46,25	0,04	Wanddicke auf Grund der						
_88	2009					(Außenwand) WDVS Verklebung				Betonierbarkeit						
						und Beschichtung	2,00	1759,00	1,00	(stehend) gewählt						
	•					Stahlbeton C20/25	15,00	2400,00	2,30	Minimale Stb	72,0	621.8	770,5	68,9	580 4	715,1
EW	0040					(99/1)	15,00	2400,00	2,50	Wanddicke auf	12,0	021,0	770,5	00,3	300,4	7 13,1
mas	2010- 2020			х	Х	Mineralwolle (Außenwand)	11,00	46,25	0,04	Grund der						
_89						WDVS Verklebung	2,00	1759,00	1.00	Betonierbarkeit (stehend) gewählt						
						und Beschichtung				(sterieriu) gewariit						
						Kalkgipsputz	1,00	900,00	0,70		98,7	1088,1	1227,6	97,6	1072,6	1209,8
						Vollziegel	12,00	1800,00/ 2000,00	0,79							
EW						Luftschicht, ruhend		,		7110 00001						
2shel-	bis	x				(30% einbindende	6,00	_	_	ZUB, 2009b, S. 10;						
led	1918	^				Mauerziegel	0,00			Minimaldicke						
_1						angenommen)		1800,00/								
						Vormauerziegel	12,00	2000,00	0,79							
						Außenputz	1,50	1800,00	0,87							
						Kalkgipsputz	1,00	900,00	0,70		100,3	1104,1	1246,7	99,1	1087,3	1227,6
						Vollziegel	12,00	1800,00/ 2000,00	0,79							
EW						Luftschicht, ruhend		2000,00								
2shel-	bis					(30% einbindende	40.00			ZUB, 2009b,						
led	1918	х				Mauerziegel	10,00	-	-	S. 10; Maximaldicke						
_2						angenommen)										
						Vormauerziegel	12,00	1800,00/ 2000,00	0,79							
						Außenputz	1,50	1800,00	0,87							
						Kalkgipsputz	1,00	900,00	0,70		98.7	1088,1	1227.6	97.6	1072,6	1209.8
						•		1800,00/			1-	,-	,5	- ,-	-,-	,=
						Vollziegel	12,00	2000,00	0,79							
EW	4040					Luftschicht, ruhend				ZUB, 2009b,						
2shel- led	1919- 1948	x				(30% einbindende Mauerziegel	6,00	-	-	S. 13;						
_3	.545					angenommen)				Minimaldicke						
						Vormauerziegel	12,00	1800,00/	0,79							
						•		2000,00								
	١.,					Außenputz	1,50	1800,00	0,87							

Maily College 1,00 100,00 1,00 100,00 1,00 100,00 1,00														
Series 1915				Kalkgipsputz	1,00		0,70		99,1	1092,1	1232,4	98,0	1076,3	1214,3
2-part 1-part 2-part 2				Vollziegel	12,00		0,79							
Authorization 1,000 2000,000 0,78	2shel- led		x	(30% einbindende Mauerziegel	7,00	-	-	S. 13;						
EV 2-beil 1940				Vormauerziegel	12,00		0,79							
Part														
2				•					77,1	444,5	566,5	76,1	430,9	549,0
Computer Computer	2shel- led		x	(30% einbindende Ziegelsplittbeton-	6,00	-	-							
EW State				Glattputz										
EV Cycle 1949 September 1940 September					1,00	900,00	0,70		106,3	697,0	820,3	106,3	697,0	820,3
EW Chebra Lutschicht, ruhend (30% einbindende 6,00						1800.00/			·	,	,		,	ŕ
Idea				(75/25)	24,00									
Kalkginputz 1,00 00,00 0,70 134,7 882,3 1059,8 134,8 134,7 882,3 1059,8 134,8 134,7 882,3 1059,8 134,8 134,7 882,3 1059,8 134,8 134,7 882,3 1059,8 134,8 134,7 882,3 1059,8 134,8 134,7 1	led		x	(30% einbindende Kalksandsteine	6,00	-	-	als						
Kalkgipsputz 1,00 200,000 0,70 134,7 882,3 1059,8 134,7					11,50		0,99							
EW 2shel 1949				, ,	1,00		0,70		134,7	882,3	1059,8	134,7	882,3	1059,8
EW 2shel 1949-				Kalksandstein		1800,00/			·		,			
Substitute 1949-					00,00	2000,00	0,00							
Vormauerschale (Kalksand-Volistein) 11.50 1800,000 0.99	2shel- led		x	(30% einbindende Kalksandsteine	6,00	-	-	S. 18; Konstruktion mit						
Clatiputz (Kalkzement) 1,50 1800,00 0,87	_'				11,50		0,99	Adisonputz						
EW 2shel- 1958				· · · · · · · · · · · · · · · · · · ·	1.50		0.87							
EW 2shel- 1958-									95.2	1054.8	1172 0	03.8	1035.2	11/0 8
EW 2shel- 1958- 1958-				Hochlochziegel		1200,00/			30,2	1004,0	,0	50,0	1000,2	1140,0
Second Process Seco	2shel- led		x	Luftschicht, ruhend (30% einbindende Mauerziegel	6,00	-	-							
EW 25hel- 1958-				,	44.50	1400,00/	0.00							
EW 2shel- 1958-														
EW 2shel- 1958- 1958- 24,00 2000,00 0,70 2000,00 0,70 2000,00 0,70 2000,00 0,70 2000,00 0,60 2000,00 0,60 2000,00 0,60 2000,00 2,70									115,6	756,6	911,8	115,6	756,6	911,8
Sahel-led 1968					24,00		0,70							
Vormauerschale (Kalksand-Vollstein)	2shel- led		x	(30% einbindende Kalksandsteine	3,00	-	-							
Computer September 1,50 1800,00 0,67 134,8 1213,5 1396,5 133,5 1195,6 1373,5	_,				11,50		0,60							
EW 2shel- 1968					1,50	1800,00	0,87							
EW 2shel- 1968					1,00	900,00			134,8	1213,5	1396,5	133,5	1195,6	1373,5
EW 2shel-				Ziegelsplittbeton	24,00	1200,00	0,58							
Vormauerziegel	2shel- led		x	(30% einbindende Ziegelsplittbeton-	3,00	-	-							
Clattputz (Kalkzement) 1,50 1800,00 0,87	_10			Vormauerziegel	11,50		0,60							
Kalkzement)					1,50		0,87							
EW 2shel- 1969-									95,2	1054,8	1172,0	93,8	1035,2	1149,8
Substract 1969				Hochlochziegel	17,50									
led 1978 x (30% einbindende 6,00 - 5.26; Mauerziegel 6,00 - Minimaldicke angenommen)		1969-		Luftschicht, ruhend		,								
Vormaugrziegel 11.50 1400,00/	led		х	Mauerziegel	6,00	-	-							
					11,50		0,60							

			Kalkgipsputz	1,00	900,00	0,70		107,5	1145,3 1280,	105,8	1120,7	1252,8
			Hochlochziegel (75/25)	24,00	1200,00/ 2000,00	0,52						
EW 2shel-	1969-		Luftschicht, ruhend		,		ZUB, 2009b,					
led	1978	X	(30% einbindende	6,00	-	-	S. 26; Maximaldicke					
_12			Mauerziegel angenommen)				Maximaldicke					
			Vormauerziegel	11,50	1400,00/	0,60						
	-				2000,00							
			Kalkgipsputz Porenbeton	1,00 17,50	900,00	0,70 0,23		103,2	1055,5 1180,	102,7	1048,8	1171,6
EW			Luftschicht, ruhend	17,50	000,00	0,23	7115 00001					
2shel-		x	(30% einbindende	6,00	_	_	ZUB, 2009b, S. 27;					
led _13	1978		Porenbetonsteine angenommen)	-,			Minimaldicke					
_				44.50	1400,00/	0.00						
	_		Vormauerziegel	11,50	2000,00	0,60						
			Kalkgipsputz	1,00	900,00	0,70		117,9	1145,9 1291,	117,3	1138,3	1281,3
EW			Porenbeton Luftschicht, ruhend	24,00	600,00	0,23						
2shel-		x	(30% einbindende	6,00			ZUB, 2009b, S. 27;					
led _14	1978	^	Porenbetonsteine	0,00	_	_	Maximaldicke					
_'-			angenommen)		1400,00/							
			Vormauerziegel	11,50	2000,00	0,60						
			Kalkgipsputz	1,00	900,00	0,70		95,2	1054,8 1172,	93,8	1035,2	1149,8
			Hochlochziegel (75/25)	17,50	1200,00/ 2000,00	0,52						
EW 2shel-	1969-		Luftschicht, ruhend		2000,00		ZUB, 2009b,					
led	1978	x	(30% einbindende	6,00	_	_	S. 28;					
_15			Mauerziegel angenommen)	-,			Minimaldicke					
			Vormauerziegel	11,50	1400,00/	0,60						
	-				2000,00							
			Kalkgipsputz Hochlochziegel	1,00	900,00/	0,70		107,5	1145,3 1280,	105,8	1120,7	1252,8
EW			(75/25)	24,00	2000,00	0,52						
2shel-	1969-		Luftschicht, ruhend				ZUB, 2009b,					
led	1978	X	(30% einbindende Mauerziegel	6,00	-	-	S. 28; Maximaldicke					
_16			angenommen)									
			Vormauerziegel	11,50	1400,00/ 2000,00	0,60						
	-		Innenputz	1,00	900,00	1,00		98.7	1088,1 1227,	97.6	1072,6	1209.8
			Vollziegel	12,00	1800,00/	0,81		·	, ,		,	·
E14/			•	12,00	2000,00	0,01						
EW 2shel-	1919-		Luftschicht, ruhend (30% einbindende				ZUB, 2009b,					
led	1948	х	Mauerziegel	6,00	-	0,18	S. 120					
_17			angenommen)		1900.00/							
			Vormauerziegel	12,00	1800,00/ 2000,00	0,81						
	_		Außenputz	1,50	1800,00	1,00						
			Innenputz	1,00		0,70		98,7	1088,1 1227,	97,6	1072,6	1209,8
			Vollziegel	12,00	1800,00/ 2000,00	0,68						
EW			Luftschicht, ruhend				ZUB, 2009b,			1		
2shel- led	1919- 1948	x	(30% einbindende Mauerziegel	6,00	-	0,18	S. 121;			1		
_18	1340		angenommen)				Minimaldicke					
			Vormauerziegel	12,00	1800,00/	0,68						
			•		2000,00							
	-		Außenputz Innenputz	1,50	1800,00	0,87		109.2	1164,7 1319,	1 107.8	1145.0	1297,0
					1800.00/			,_	,,	, .	,.	,-
			Vollziegel	17,50	2000,00	0,68				1		
EW 2shel-	1919-		Luftschicht, ruhend (30% einbindende				ZUB, 2009b,					
led	1948	х	Mauerziegel	6,00	-	0,18	S. 121; Maximaldicke			1		
_19			angenommen)		1000 007							
			Vormauerziegel	12,00	1800,00/ 2000,00	0,68						
	_		Außenputz	1,50	1800,00	0,87						
	_	·	•									

					Kalkgipsputz	1,00	900,00	0,70		50,4	381,8	457,0	49,0	361,1	434,5
					Vollziegel	12,00	1800,00/ 2000,00	0,79							
EW 2shel- led _20	bis 1978	x x x x :	x		Luftschicht, ruhend (30% einbindende Mauerziegel angenommen)	7,00	-	0,18	ZUB, 2009b, S. 155						
					Vollziegel	12,00	1800,00/ 2000,00	0,79							
EW					Normalbeton	15,00	2350,00	2,10	ZUB, 2009b,	58,9	331,8	449,4	52,9	249,8	341,8
2shel- led	1971- 1990		х х	x	Polystyroldämmung, XPS (AW)	5,00	30,00		S. 160, 161, 163, 165						
_21					Schwerbeton	6,00		2,10							
EW 2shel-	1981-				Normalbeton Polystyroldämmung,	15,00	2350,00	2,10	ZUB, 2009b,	58,9	331,8	449,4	52,9	249,8	341,8
led	1990		Х	X	XPS (AW)	5,00	30,00	0,04	S. 162						
_22					Schwerbeton	6,00	2350,00	2,10							
EW	4070				Normalbeton	15,00	2350,00	2,1	71 ID 0000k	58,9	331,8	449,4	52,9	249,8	341,8
2shel- led	1976- 1990		х х	X	Polystyroldämmung, XPS (AW)	5,00	30,00	0,04	ZUB, 2009b, S. 164						
_23					Schwerbeton	6,00	2350,00	2,1							
EW	ľ				Stahlbeton B15-B25 (97/3)	15,00	2400,00	2,50		68,2	632,4	818,9	63,5	567,2	737,5
2shel- led	1949- 1994	x x	хх	x	Polystyroldämmung Wand und Dach, EPS	5,00	18,00	0,04	Gruhler et al., 2002, S. 91						
_24					Leichtbeton	6,00	501,00/ 2000,00	501,00							
					Stahlbeton B15-B25	15,00	2400,00	2,50		68,2	632,4	818,9	63,5	567,2	737,5
EW 2shel- led	1979- 1990		x	x	(97/3) Polystyroldämmung Wand und Dach, EPS	5,00	18,00	0,04	Gruhler et al., 2002,						
_25					Leichtbeton	6,00	501,00/ 2000,00	501,00	S. 100						
	,				Stahlbeton B15-B25 (97/3)	19,00		2,50		85,2	806,5	1041,2	79,6	730,2	945,0
EW 2shel-	1979-			x	Polystyroldämmung Wand und Dach, EPS	5,00	18,00	0,04	Gruhler et al., 2002,						
led _26	1990		^	^	Leichtbeton	6,00	501,00/ 2000,00	0,22	S. 109						
					Fliesen	0,50	2000,00/ 1500,00	1,30							
					Stahlbeton B15-B25 (97/3)	10,00	2400,00	2,50		54,7	522,3	662,2	50,9	469,1	597,0
EW					Polystyroldämmung Wand und Dach, EPS	5,00	18,00	0,04	Gruhler et al.,						
2shel- led	1979-		х	x	Leichtbeton	6.00	501,00/	0.22	2002,						
_27						6,00	2000,00	0,22	S. 109						
					Sichtbeton	0,50	2400,00	2,50							
					Fliesen	0,25	2000,00/ 1500,00	1,30							
					Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	63,8	452,4	705,5	41,3	161,7	732,2
					Kalksandstein	17,50	1400,00/	0,70	ZUB, 2009b, S. 29;						
					(75/25)	11,00	2000,00	0,10	Minimaldicke und						
EW	1969-				Dämmung AW (Holzwolle-VF)	3,00	30,00 - 200,00	0,04	Fassade mit Holzverschalung;						
cwf	1978		X		Lattung	0,30	484,51	-	Annahme: mit						
_1					Luftschicht, stark		_	_	Holzwoll-						
					belüftet Vorhangfassade				dämmung, da maximale						
					(Holzverschalung,	2,40	500,00	_	Umweltwirkungen						
					lackiert)	4.00	000.00			00.0	E70 0	044.5	F0 =	270 5	070.0
					Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	82,0	5/0,2	844,2	59,5	279,5	870,9
					Kalksandstein (75/25)	24,00	1400,00/ 2000,00	0,70							
					Dämmung AW	2.00	30,00 -	0,04	Maximaldicke und Fassade mit						
EW cwf	1969-		x		(Holzwolle-VF)	3,00	200,00	0,04	Holzverschalung;						
_2	1978				Lattung	0,30	484,51	-	Annahme: mit						
					Luftschicht, stark belüftet		-	-	Holzwoll- dämmung, da						
					Vorhangfassade				maximale						
					(Holzverschalung, lackiert)	2,40	500,00		Umweltwirkungen	L					

			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	114,5	1159,4 1477,3	110,0	1108,0 1434,8
			Kalksandstein	17.50	1400,00/	0.70	S. 29;				
			(75/25)	17,50	2000,00	0,70	Minimaldicke und				
			Dämmung AW		30,00 -		Fassade mit				
EW	1969-		(Holzwolle-VF)	3,00	200,00	0,04	Faserzement-				
cwf	1978	X	Lattung	0,30	484,51	-	platten;				
_3			Luftschicht, stark				Annahme: mit				
			belüftet		-	-	Holzwoll-				
			Vorhangfassade				dämmung, da				
			(Faserzement-	1,50	1300,00	-	maximale				
			platten)				Umweltwirkungen				
			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	132,8	1277,2 1616,0	128,2	1225,8 1573,5
			Kalksandstein	24,00	1400,00/	0,70	S. 29;				
			(75/25)	24,00	2000,00	0,70	Maximalldicke				
			Dämmung AW	0.00	30,00 -	0.04	und Fassade mit				
EW	1969-		(Holzwolle-VF)	3,00	200,00	0,04	Faserzement-				
cwf	1978	X	Lattung	0,30	484,51	-	platten;				
_4			Luftschicht, stark				Annahme: mit				
			belüftet		-	-	Holzwoll-				
			Vorhangfassade				dämmung, da maximale				
			(Faserzement-	1,50	1300,00	-	Umweltwirkungen				
			platten)				Onweitwintangen				
			Kalkgipsputz	1,00	900,00	0,70	ZUB, 2009b,	47,0	314,9 575,4	19,9	-32,6 526,7
			Ortbeton	16,00	2400,00	1,51	S. 30; Fassade				
			Dämmung AW	4,00	30,00 -	0,04	mit				
EW	1000		(Holzwolle-VF)		200,00	0,04	Holzverschalung;				
cwf	1969-	x	Lattung	0,30	484,51	-	Annahme: mit				
_5	1978		Luftschicht, stark			_	Holzwoll-				
			belüftet	-	-	-	dämmung, da				
			Vorhangfassade				maximale				
			(Holzverschalung,	2,40	500,00	-	Umweltwirkungen				
			lackiert)		000 ==	0 =-		4.0-	4450.0	405 -	4000 = 4:55
			Kalkgipsputz	1,00	900,00	0,70		113,2	1153,3 1497,9	107,5	1089,7 1439,8
			Kalksandstein	16,00	1400,00/	1,51	ZUB, 2009b,				
			(75/25)	,	2000,00	.,	S. 30; Fassade				
-14			Dämmung AW	4,00	30,00 -	0,04	mit Faserzement-				
EW	1969-		(Holzwolle-VF)		200,00	-,	platten;				
cwf	1978	X	Lattung	0,30	484,51	-	Annahme: mit				
_6			Luftschicht, stark		_	_	Holzwoll-				
			belüftet				dämmung, da maximale				
			Vorhangfassade				Umweltwirkungen				
			(Faserzement-	1,50	1300,00	-	Onweitwirkungen				
			platten)								
			Kalkgipsputz	1,00	900,00	0,70		71,3	554,6 1176,4	37,5	109,0 1237,4
			Hochlochziegel	30,00	1200,00/	0,52	ZUB, 2009b,				
			(75/25)	00,00	2000,00	0,02	S. 94; Fassade				
			Dämmung AW	2,00	30,00 -	0,04	mit Laubholz,				
EW	1969-		(Holzwolle-VF)	2,00	200,00	0,04	natur; Annahme:				
cwf	1978	X	Lattung	0,30	484,51	-	mit Holzwoll-				
_7			Luftschicht, stark				dämmung, da				
			belüftet		-	-	maximale				
			Vorhangfassade				Umweltwirkungen				
			(Annahme: Laubholz,	2,40	761,60	-					
			natur)								
			Kalkgipsputz	1,00	900,000	0,70	ZUB, 2009b,	72,8	639,0 1171,7	41,1	219,5 1261,8
			Naturstein-	40,00	2600,00/	2,33					
			mauerwerk	70,00	2000,00	۷,55	Abbildung				
EW	bis		Lattung	0,30	484,510	-	Fassade mit				
cwf	1918	X	Luftschicht, stark				Laubholz, jedoch				
8			belüftet	-	-	-	naturbelassen				
			Vorhangfassade				statt mit Anstrich				
			(Annahme: Laubholz,	2,40	761,600	-	wie dargestellt				
			natur)								
			Innenputz	2,00	900,00	0,70	Eigene Annahme	102,1	1209,3 1433,9	98,2	1153,6 1399,0
			Hochlochziegel,				auf Basis der				
EW.			Dämmstoff gefüllt	36,50	575,00	0,10	vorhandenen				
EW cwf	2002-		(99,6/0,4) x x x Konterlattung				Konstruktionen und Hersteller-				
_9	2020	,	Rontenattung	0,38	484,51	-	recherchen				
_3			Vorhangfassade				(Wienerberger,				
			(Faserzement-	1,00	1300,00	-	Schlagmann				
			platten)				POROTON S-8)				
			Innenputz	2,00	900,00	0,70		117.3	1182,3 1711,9	104,6	981,8 1555,6
			Kalksandstein (95/5)	24,00	1800,00	0,99	Eigene Annahme	,5	. ,,],5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Holzfaserdämm-				auf Basis der				
			platte (VF)	8,59	160,00	0,04	vorhandenen				
EW	2002-		Lattung	0,91	484,51	0,13	Konstruktionen				
cwf	2002-	;	x Winddichtheitsbahn	0,02	262,00	2,.0	und Herstellerre-				
_10	_000					_	cherchen (KS				
			Konterlattung	0,38	484,51	-	Original, max.				
			Vorhangfassade		4000 ==		Steindicke 240				
			(Faserzement-	1,00	1300,00	-	mm)				
			platten)								

			Innenputz	2,00	900,00	0,70		123,1	1251,3	1920,5	105,7	976,1	1698,2
			Kalksandstein (95/5)	24,00	1800,00	0,99	Eigene Annahme auf Basis der						
			Holzfaserdämm-	12,20	160,00	0,04	vorhandenen						
EW	0040		platte (VF)				Konstruktionen						
cwf	2010- 2015	x	Lattung	1,30	484,51	0,13	und Herstellerre-						
_11	2013		Winddichtheitsbahn	0,02	262,00	-	cherchen (KS						
			Konterlattung	0,38	484,51	-	Original, max.						
			Vorhangfassade (Faserzement-	1,00	1300,00		Steindicke 240 mm)						
			platten)	1,00	1300,00		,						
			Innenputz	2,00	900,00	0,70		124.5	1268,6	1972.6	106,0	974.7	1733,9
			Kalksandstein (95/5)	24,00	1800,00	0,99	Eigene Annahme	· ·	•	,		•	•
			Holzfaserdämm-			0.04	auf Basis der						
			platte (VF)	13,11	160,00	0,04	vorhandenen						
EWcwf			Lattung	1,39	484,51	0,13	Konstruktionen und Herstellerre-						
_12	2020	·	Winddichtheitsbahn	0,02	262,00	-	cherchen (KS						
			Konterlattung	0,38	484,51	-	Original, max.						
			Vorhangfassade				Steindicke 240						
			(Faserzement-	1,00	1300,00	-	mm)						
			platten)	2.00	000.00	0,70	Eigene Annahme	425.0	1050.0	4204.0	424.2	4024.0	1201 E
			Innenputz Porenbeton P4 05	2,00	900,00	0,70	auf Basis der	125,9	1058,0	1291,0	124,2	1034,8	1291,5
EW			(95/5)	36,50	380,00	0,077	vorhandenen						
cwf	2002-	x x >	Konterlattung	0,38	484,51	-	Konstruktionen						
_13	2020	^ ^ ^	Vorhangfassade				und Herstellerre-						
			(Faserzement-	1,00	1300,00	-	cherchen (YTONG						
			platten)				Porenbeton)						
		-	Innenputz	2,00	900,00	0,70	· oronbotony	155.0	1502,5	2216.6	135.4	1210,7	1942.3
			Stahlbeton C30/37				Eigene Annahme	,.	,.	,,	,		
			(98/2)	30,00	380,00	2,50	auf Basis der						
			Holzfaserdämm-	9,04	160,00	0,04	vorhandenen						
EW	2002-		platte (VF)				Konstruktionen;						
cwf	2009	x	Lattung	0,96	484,51	0,13	Annahme: 30 cm						
_14			Winddichtheitsbahn	0,02	262,00	-	Stb. als maximale Wandstärke bei						
			Konterlattung	0,38	484,51	-	mehrgeschos-						
			Vorhangfassade (Faserzement-	1,00	1300,00		sigen Gebäuden						
			platten)	1,00	1000,00								
			Innenputz	2,00	900,00	0,70		160,7	1571,5	2425,1	136,5	1205,0	2085,0
			Innenputz Stahlbeton C30/37				F: A .	160,7	1571,5	2425,1	136,5	1205,0	2085,0
			Stahlbeton C30/37 (98/2)	2,00 30,00	900,00	0,70 2,50	g	160,7	1571,5	2425,1	136,5	1205,0	2085,0
			Stahlbeton C30/37 (98/2) Holzfaserdämm-				auf Basis der	160,7	1571,5	2425,1	136,5	1205,0	2085,0
EW	2010		Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF)	30,00	380,00	2,50 0,04	g	160,7	1571,5	2425,1	136,5	1205,0	2085,0
cwf	2010-	x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung	30,00 12,66 1,34	380,00 160,00 484,51	2,50	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm	160,7	1571,5	2425,1	136,5	1205,0	2085,0
	2010- 2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF)	30,00	380,00	2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale	160,7	1571,5	2425,1	136,5	1205,0	2085,0
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung	30,00 12,66 1,34	380,00 160,00 484,51	2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei	160,7	1571,5	2425,1	136,5	1205,0	2085,0
cwf		x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn	30,00 12,66 1,34 0,02	380,00 160,00 484,51 262,00	2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-	160,7	1571,5	2425,1	136,5	1205,0	2085,0
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	30,00 12,66 1,34 0,02 0,38	380,00 160,00 484,51 262,00	2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei	160,7	1571,5	2425,1	136,5	1205,0	2085,0
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten)	30,00 12,66 1,34 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00	2,50 0,04 0,13 -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-						
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz	30,00 12,66 1,34 0,02 0,38	380,00 160,00 484,51 262,00 484,51	2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-		1571,5			1205,0	
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37	30,00 12,66 1,34 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00	2,50 0,04 0,13 -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden						
cwf		х	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00	2,50 0,04 0,13 - - 0,70 2,50	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden						
cwf _15		x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Stahlbeton C30/37 (98/2)	30,00 12,66 1,34 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00	2,50 0,04 0,13 - - - 0,70	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden						
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00	2,50 0,04 0,13 - - 0,70 2,50	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen;						
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden	162,2					
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos- sigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm	162,2					
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-	162,2					
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei	162,2					
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-	162,2					
cwf _15	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51	2,50 0,04 0,13 - - - 0,70 2,50 0,04	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-	162,2		2477,3	136,8		2120,6
EW cwf _16	2015	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51 1300,00 900,00	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschos-	162,2	1588,8	2477,3	136,8	1203,5	2120,6
EW cwf _16	2015 2016- 2020	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten)	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51 1300,00	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden	162,2	1588,8	2477,3	136,8	1203,5	2120,6
EW cwf _16	2015 2016- 2020 bis	x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Lehmputz innen Holzständer	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51 1300,00 900,00 492,92/	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden	162,2	1588,8	2477,3	136,8	1203,5	2120,6
EW cwf _16	2015 2016- 2020 bis	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen Holzständer (Eiche)/Gefach:	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51 1300,00 900,00 492,92/ 2000,00/	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden	162,2	1588,8	2477,3	136,8	-132,6	2120,6
EW cwf _16	2015 2016- 2020 bis	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 262,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - - - 0,93 0,21/ 0,47	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16	2015 2016- 2020 bis	x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmputz innen Holzständer (Eiche)/Gefach:	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 484,51 262,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 900,00 492,92/ 2000,00/	2,50 0,04 0,13 - - - 0,70 2,50 0,04 0,13 - - - - - - - - - - - - - - - - - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16	2015 2016- 2020 bis	x x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmputz innen Holzständer	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 900,00 492,92/	2,50 0,04 0,13 - - 0,70 2,50 0,04 0,13 - - - 0,93 0,21/ 0,47	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16 EW wood _1	2015 2016- 2020 bis 1918	x x	Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lattung	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 484,51 262,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 900,00 492,92/ 2000,00/	2,50 0,04 0,13 - - - 0,70 2,50 0,04 0,13 - - - - - - - - - - - - - - - - - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16	2015 2016- 2020 bis 1918	x x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lattung Luftschicht, stark	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50 14,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04 0,13 - - - - - - - - - - - - - - - - - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16 EW wood _1	2015 2016- 2020 bis 1918	x x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lattung Luftschicht, stark belüftet	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50 14,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04 0,13 - - - - - - - - - - - - - - - - - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6
EW cwf _16 EW wood _1	2015 2016- 2020 bis 1918	x x	Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Stahlbeton C30/37 (98/2) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lehmputz innen Holzständer (Eiche)/Gefach: Lehmstaken Lattung Luftschicht, stark	30,00 12,66 1,34 0,02 0,38 1,00 2,00 30,00 13,56 1,44 0,02 0,38 1,00 1,50 14,00	380,00 160,00 484,51 262,00 484,51 1300,00 900,00 380,00 160,00 484,51 1300,00 900,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00 492,92/ 2000,00/ 100,00	2,50 0,04 0,13 - - - 0,70 2,50 0,04 0,13 - - - - - - - - - - - - - - - - - - -	auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden Eigene Annahme auf Basis der vorhandenen Konstruktionen; Annahme: 30 cm Stb. als maximale Wandstärke bei mehrgeschossigen Gebäuden ZUB, 2009b, S. 12	0,8	1588,8	2477,3	-15,3	-132,6	2120,6

			Lehmputz innen	1,50	900,00	0,93		16,1	202.2	547,7	-3,4	39,3	617,6
			Holzständer	1,50	492,92/	0,93		10,1	302,2	341,1	-3,4	39,3	017,0
EW	b.:-		(Eiche)/Gefach: Lehmstaken	16,00	2000,00/	0,21/ 0,47	ZUB, 2009b,						
wood	bis 1918	x	Lattung	0,30	484,51	_	S. 82;						
_3			Luftschicht, stark	-,	-	_	Maximaldicke						
			belüftet Schieferverkleidung	1,10									
					000.00	0.00		2.2	00.0	247.4	-10,6	07.0	20E 4
EW			Lehmputz innen Holzständer	1,00	900,00	0,93	ZUB, 2009b,	3,3	98,9	247,4	-10,6	-87,9	295,4
wood	bis 1918	x	(Eiche)/Gefach:	12,00	2000,00/	0,21/	S. 83;						
_4	1910		Lehmstaken		100,00	0,47	Minimaldicke						
			Lehmputz außen	1,50	900,00	0,93							
			Lehmputz innen	1,00	900,00	0,93		3,1	118,5	313,9	-15,4	-129,9	378,8
EW wood	bis	x	Holzständer (Eiche)/Gefach:	16,00	492,92/ 2000,00/	0,21/	ZUB, 2009b, S. 83;						
_5	1918		Lehmstaken		100,00	0,47	Maximaldicke						
			Lehmputz außen	1,50	900,00	0,93							
			Lehmputz innen	1,00	900,00	0,93	ZUB, 2009b,	31,4	259,0	365,2	19,7	100,2	393,4
EW wood	bis	х	Holzständer (Eiche)/Gefach:	16.00	492,92/ 1800,00/	0,21/	S. 84; Gruhler et						
_6	1918	^	Ziegel	10,00	2000,00	0,79	al., 2002;						
			Lehmputz außen	1,50	900,00	0,93	Minimaldicke						
			Lehmputz innen	1,00	900,00	0,93	7115 00001	46,9	382,1	543,6	28,7	135,3	589,1
EW	bis		Holzständer		492,92/	0.21/	ZUB, 2009b, S. 84; Gruhler et						
wood _7	1918	Х	(Eiche)/Gefach: Ziegel	25,00	1800,00/ 2000,00	0,79	al., 2002;						
-'			Lehmputz außen	1,50	900,00	0,93	Maximaldicke						
			Lehmputz innen	3,00	900,00	0,73		5,1	128,8	304,7	-11,1	-90,0	359,8
EW	bis		Holzständer		492,92/		ZUB, 2009b,	,					
wood	1918	X	(Eiche)/Gefach:	14,00	1800,00/	0,18/ 0,70	S. 116;						
_8			Lehmstaken Lehmputz außen	1,50	2000,00	0,93	Minimaldicke						
	•		Lehmputz innen	3,00	900,00	0,93		5,0	138,6	337,9	-13.5	-111,0	401,5
EW	bis		Holzständer		492,92/	0,18/	ZUB, 2009b,	.,-	,.	,-	-,-	,-	,-
wood	1918	X	(Eiche)/Gefach:	16,00	1800,00/	0,16/	S. 116;						
_9			Lehmstaken Lehmputz außen	1,50	2000,00	0,93	Maximaldicke						
			Lehmputz innen	3,00	900,00	0,73		27,2	277,4	359,8	17,3	143,9	390,3
EW	bis		Holzständer		492,92/	0,18/	ZUB, 2009b,	,					
wood _10	1918	Х	(Eiche)/Gefach: Lehmstein	14,00	1800,00/	0,73	S. 117; Minimaldicke						
_10			Lehmputz außen	1,50	2000,00	0,93	Willimaldicke						
	•		Lehmputz innen	3,00	900,00	0,73		30,3	308,5	400,9	19,0	156,4	436,3
EW	bis	v	Holzständer	10.00	492,92/	0,18/	ZUB, 2009b,						
wood _11	1918	X	(Eiche)/Gefach: Lehmstein	16,00	1800,00/ 2000,00	0,73	S. 117; Maximaldicke						
			Lehmputz außen	1,50	900,00	0,93							
			Lehmputz innen	3,00	900,00	0,73	ZUB, 2009b,	29,9	251,7	349,6	19,5	111,4	372,5
EW wood	bis	x	Holzständer (Eiche)/Gefach:	14 00	492,92/ 1800,00/		S. 118; Gruhler et						
_12	1918		Ziegel	14,00	2000,00	0,91	al, 2002; Minimaldicke						
			Lehmputz außen	1,50	900,00	0,93	Millimaldicke						
			Lehmputz innen	3,00	900,00	0,73	ZUB, 2009b,	33,3	279,0	389,2	21,5	119,2	416,0
EW wood	bis	x	Holzständer (Eiche)/Gefach:	16.00	492,92/ 1800,00/		S. 118; Gruhler et						
_13	1918	^	Ziegel	10,00	2000,00	0,91	al, 2002; Maximaldicke						
			Lehmputz außen	1,50	900,00	0,93	Waximaldicke						
EW			Lehmputz innen	1,50	900,00	0,93	7110 00001	0,8	83,7	250,7	-15,3	-132,6	308,8
wood	bis 1918	x	Holzständer (Eiche)/Gefach:	14 00	492,92/ 1800,00/	0,21/	ZUB, 2009b, S. 151						
_14			Lehmstaken	17,00	2000,00	0,47	2						
	•		Lehmputz innen	1,50	900,00	0,93		7,2	158,6	798,0	-38,9	-455,8	973,7
			Holzständer	4.4 = -	492,92/	0,21/	ZUB, 2009b,						
			(Eiche)/Gefach: Lehmstaken	14,00	1800,00/ 2000,00	0,47	S. 152; Gemäß Abbildung						
EW wood	bis	Y	Lattung	0,30	484,51	_	Fassade mit						
_15	1918	Х	Luftschicht, stark	.,	,		Laubholz, jedoch						
			belüftet	-	-	-	naturbelassen statt mit Anstrich						
			Vorhangfassade	0.40	704.00		wie dargestellt						
			(Annahme: Laubholz,	2,40	761,60	-	9						

			Innenputz	1,50	900,00	0,70		63,9	476,8	638,0	54,5	349,4	650,2
514 /			Holzständer/ Vollziegel/	12.00	492,92/ 1800,00/	0,13/	0						
EW wood	bis	х	Mörtel	12,00	2000,00	0,79	Gruhler et al., 2002,						
_16	1918		7: 1/54"	40.00	1800,00/	0.70	S. 31						
			Ziegel/Mörtel	13,00	2000,00	0,79							
			Außenputz	2,00	1800,00	1,00							
	ľ		Asbestzementplatte	0,60	1300,00	k.A.		13,2	356,6	428,6	10,6	275,1	416,8
EW	1979-		Mineralwolle	5,20	85,00	0,04	Gruhler et al.,						
wood	1990	x x	(Innenausbau)				2002,						
_17			Bitumenbahn	0,30	1000,00	- I: A	S. 109						
			Hartfaserplatte GKF-Platte	1,00	849,90 800,00	k.A. 0,25		19,7	243,6	905,3	-22,3	-317,9	972,2
			PE-Folie Wand	0,02	930,00	0,23		19,7	243,0	905,5	-22,3	-317,9	912,2
			Zellulosefaser-										
			Einblasdämmung	13,08	45,00	0,04	dataholz.eu,						
EW	2002-		Konstruktions vollholz	1,92	492,92	0,13	2021, Bauteil awrhho04a-06,						
wood	2009	x	Gipsfaserplatte	1,25	1000,00	0,35	jedoch						
_18			Winddichtheitsbahn	0,02	262,00	-	U-Wert= 0,30						
			Konterlattung	0,38	484,51	-	statt 0,27						
			Vorhangfassade (Annahme: Laubholz,	2,40	761,60	_							
			natur)	2,40	701,00	-							
	,		GKF-Platte	1,25	800,00	0,25		22,9	265,6	1018,0	-25,9	-387,4	1059,1
			PE-Folie Wand	0,02	930,00	-							
			Zellulosefaser-	20,93	45,00	0,04	dataholz.eu.						
			Einblasdämmung				2021, Bauteil						
EW	2010-		Konstruktionsvollholz	3,07	492,92	0,13	awrhho04a-06,						
wood _19	2020	* *	Gipsfaserplatte Winddichtheitsbahn	1,25 0,02	1000,00	0,35	jedoch						
			Konterlattung	0,02	484,51	-	U-Wert =0,20 statt 0,27						
			Vorhangfassade	0,30	404,51	-	Statt 0,27						
			(Annahme: Laubholz,	2,40	761,60	-							
	١.,		natur)										
			Gipsfaserplatte	2,50	1000,00	0,35		78,8	1122,0	1818,3	54,1	707,2	1619,3
			Lattung	0,38	484,51	0,13							
			Holzfaserdämmung (Innenausbau)	0,90	160,00	0,04							
			Luftschicht	2,71	_	0,163	dataholz.eu,						
			PE-Folie Wand	0,02	930,00	-	2021, Bauteil						
EW			OSB-Platte	1,50	600,00	0,13	awrhhi08b-04, jedoch						
wood	2002-	х	Holzfaserdämmung	10,46	160,00	0,04	U-Wert= 0,30						
_20	2009		(Innenausbau)				statt 0,16 und						
			Konstruktionsvollholz Gipsfaserplatte	1,54 2,00	492,92 1000,00	0,13 0,35	Holzfaserdäm-						
			Winddichtheitsbahn	0,02	262,00	0,55	mung statt Mineralwolle						
			Konterlattung	0,38	484,51		WillieralWolle						
			Vorhangfassade	0,00	.0.,0.								
			(Faserzement-	1,00	1300,00	-							
	١.,		platten)										
			Gipsfaserplatte	2,50	1000,00	0,35		93,2	1294,4	2331,9	57,2	698,4	1971,7
			Lattung	0,38	484,51	0,13							
			Holzfaserdämmung (Innenausbau)	3,62	160,00	0,04							
			PE-Folie Wand	0,02	930,00	_	dataholz.eu, 2021, Bauteil						
			OSB-Platte	1,50	600,00	0,13	awrhhi08b-04,						
EW	2010-		Holzfaserdämmung	16,57	160,00	0,04	jedoch						
wood	2010-	x x	(Innenausbau)				U-Wert= 0,20						
_21			Konstruktionsvollholz	2,43	492,92	0,13	statt 0,16 und Holzfaserdäm-						
			Gipsfaserplatte Winddightheitshahn	2,00		0,35	mung statt						
			Winddichtheitsbahn	0,02	262,00	-	Mineralwolle						
			Konterlattung Vorhangfassade	0,38	484,51	-							
			(Faserzement-	1,00	1300,00	_							
			platten)										
	·		GKF-Platte	1,25	800,00	0,25	dataholz.eu,	48,7	549,6	839,5	17,1	70,4	937,7
			Brettsperrholz	9,00	489,41	0,13	2021, Bauteil awmopo01a-01,						
			Mineralwolle	8,50	46,25	0,04	jedoch						
EW	2002-		(Außenwand) WDVS Verklebung	2.00	1759,00	1,00	U-Wert= 0,30						
wood	2002-	X	und Beschichtung	_,00	55,55	.,50	statt 0,23 und						
_22	'		-				BSH-Dicke von 90 mm zur						
							90 mm zur Erfüllung						
							statischer						
	١,						Anforderungen						

	ľ			GKF-Platte	1,25	800,00	0,25	dataholz.eu,	56,7	645,9	950,8	25,1	166,7	1048,9
				Brettsperrholz	9,00	489,41	-	2021, Bauteil						
				Mineralwolle	14.00	40.05	0.04	awmopo01a-01,						
				(Außenwand)	14,00	46,25	0,04	jedoch						
EW	2010-		.,	WDVS Verklebung	2,00	1759,00	1,00	U-Wert= 0,30						
wood	2020		х	x und Beschichtung				statt 0,23 und						
_23								BSH-Dicke von						
								90 mm zur						
								Erfüllung statischer						
								Anforderungen						
				Gipsfaserplatte	2.50	1000,00	0.25		04.0	420E E	2222.4	2.2	00.7	2412,7
					2,50		0,35	dataholz.eu,	94,9	1305,5	2233,1	3,3	-00,1	2412,1
				Brettsperrholz	24,00	489,41	0,13	2021, Bauteil						
				Lattung	0,48	484,51	0,13	awmohi02a-06,						
				Holzfaserdämmung	4,52	160,00	0,04	jedoch mit						
				(Innenausbau)	4,52	100,00	0,04	doppelter						
				Gipsfaserplatte	1,25	1000,00	0,35	Gipsfaserbe-						
				Winddichtheitsbahn	0,02	262,00	_	plankung,						
E147				Konterlattung	0,38	484,51	_	Vorhangfassade						
EW.	2002-			Vorhangfassade		1300,00	_	aus						
wood	2009		X	(Faserzement-	1,00	1300,00		Faserzementplat-						
_24				platten)				ten und						
				plattorij				Holzfaserdäm-						
								mung auch in der						
								Installations-						
								ebene; zudem						
								wird die maximale						
								Standarddicke						
								von BSH						
								angenommen						
				Gipsfaserplatte	2,50	1000,00	0,35		106,5	1443,6	2650,2	5,5	-100,2	2698,0
				Lattung	0,38	484,51	0,13	dataholz.eu,		-		-		-
				Holzfaserdämmung	0,00	.0.,0.	0,.0	2021, Bauteil						
				(Innenausbau)	3,62	160,00	0,04	awmohi02a-06,						
				Brettsperrholz	24,00	489,41	0,13	jedoch mit						
				•				doppelter						
				Lattung	0,86	484,51	0,13	Gipsfaserbe-						
				Holzfaserdämmung	8,14	160,00	0,04	plankung,						
EW				(Innenausbau)				Vorhangfassade						
wood	2010-		х	Gipsfaserplatte	1,25	1000,00	0,35	aus Faser-						
_25	2020		^	Winddichtheitsbahn	0,02	262,00	-	zementplatten						
_25				Konterlattung	0,38	484,51	_	und Holzfaser-						
				Vorhangfassade		1300,00	_	dämmung auch in						
				(Faserzement-	.,			der Installations-						
				platten)				ebene; zudem						
				piattorij				wird die maximale						
								Standarddicke						
								von BSH						
								angenommen						
SW	bis			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	25,9	193,7	231,6	25,2	184,1	221,1
mas	1918	X		Vollziegel	12,50	1800,00/	-	S. 8;						
_1				voliziegei	12,30	2000,00		Minimaldicke						
SW				Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	50,6	374,8	448,6	49,2	355,1	427,2
mas	bis	X				1800,00/	_	S. 8;						
_2	1919			Vollziegel	25,50	2000,00		Maximaldicke						
SW	•			Kalkgipsputz	1,00	900,00	_		21,1	158,9	189,9	20,6	151 2	181,5
	bis	•		ιταιτιζιμομαίζ	1,00		-	ZUB, 2009b,	۱,۱	130,9	.09,9	20,0	131,2	101,3
mas _3	1920	Х		Vollziegel	10,00	1800,00/	_	S. 11;						
				K-II-da	4.0-	2000,00		Minimaldicke	90.5	0010	040.5	0= 0	000.5	2011
SW	bis			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	38,2	284,2	340,1	37,2	269,6	324,1
mas	1921	X		Vollziegel	19,00	1800,00/	-	S. 11;						
_4				- 011210901	10,00	2000,00		Maximaldicke						
SW	1040			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas	1949-	x				1800,00/	-	S. 14;			-			
_5	1957			Vollziegel	12,00	2000,00		Minimaldicke						
SW				Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas	1949-	x		Hochlochziegel		1400,00/	_	ZUB, 2009b, S. 14;	,•	,-	_ 5,5	,•	,•	,-
_6	1957			(75/25)	12,00	2000,00/		5. 14; Maximaldicke						
	•			,				Maximalulche	-	_	_			
SW mas	1010	v		Kalkgipsputz	1,00	900,00	_	ZUB, 2009b,	32,8	188,2	232,1	32,3	181,6	223,6
	1949-	X			12,00	1400,00	-	S. 15						
	1949-			Ziegelsplittheton	12,00	1-100,00								
_7				Ziegelsplittbeton		0						c = -		
_7 SW	1957			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	35,8	237,1	279,1	35,8	237,1	279,1
_7 SW mas	1957 1949-	x				1400,00/	-	S. 16;	35,8	237,1	279,1	35,8	237,1	279,1
_7 SW	1957	x		Kalkgipsputz	1,00 12,00				35,8	237,1	279,1	35,8	237,1	279,1
_7 SW mas	1957 1949- 1957	х		Kalkgipsputz Kalksandstein		1400,00/	-	S. 16;	35,8 44,2	237,1	·	35,8 44,2	237,1	279,1 343,1
_7 SW mas _8	1957 1949- 1957 1949-	x		Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz	12,00	1400,00/ 2000,00 900,00	-	S. 16; Minimaldicke			·			
_7 SW mas _8 SW mas	1957 1949- 1957			Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein	12,00	1400,00/ 2000,00 900,00 1400,00/	- - -	S. 16; Minimaldicke ZUB, 2009b,			·			
_7 SW mas _8 SW mas _9	1957 1949- 1957 1949- 1957			Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25)	12,00 1,00 15,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00	-	S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke	44,2	291,5	343,1	44,2	291,5	343,1
_7 SW mas _8 SW mas _9 SW	1957 1949- 1957 1949- 1957	х		Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz	12,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00 900,00	- - - -	S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke ZUB, 2009b,			·			
_7 SW mas _8 SW mas _9 SW mas	1957 1949- 1957 1949- 1957			Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz Kalksandstein	12,00 1,00 15,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00 900,00 1400,00/	- - - -	S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke	44,2	291,5	343,1	44,2	291,5	343,1
_7 SW mas _8 SW mas _9 SW mas _10	1957 1949- 1957 1949- 1957 1958- 1968	х		Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz Kalksandstein (75/25)	12,00 1,00 15,00 1,00 15,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00 900,00 1400,00/ 2000,00	-	S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke ZUB, 2009b, S. 23	44,2	291,5 291,5	343,1 343,1	44,2	291,5 291,5	343,1 343,1
_7 SW mas _8 SW mas _9 SW mas _10 SW	1957 1949- 1957 1949- 1957 1958- 1968	x		Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz	12,00 1,00 15,00 1,00 15,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00 1400,00/ 2000,00 900,00		S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke ZUB, 2009b, S. 23 ZUB, 2009b,	44,2	291,5	343,1 343,1	44,2	291,5	343,1 343,1
_7 SW mas _8 SW mas _9 SW mas _10	1957 1949- 1957 1949- 1957 1958- 1968	х		Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz Kalksandstein (75/25)	12,00 1,00 15,00 1,00 15,00	1400,00/ 2000,00 900,00 1400,00/ 2000,00 1400,00/ 2000,00 900,00		S. 16; Minimaldicke ZUB, 2009b, S. 16; Maximaldicke ZUB, 2009b, S. 23	44,2	291,5 291,5	343,1 343,1	44,2	291,5 291,5	343,1 343,1

SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	21,0	119,3	143,5	20,8	117,1	140,7
mas _12	1978	x x x	Bimshohlblockstein	12,00	1400,00/ 2000,00	-	S. 58; Minimaldicke						
SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	32,0	177,4	213,8	31,7	173,9	209,3
mas	1978	x x x	Bimshohlblockstein	19,00	1400,00/	_	S. 58;						
_13 SW			Kalkgipsputz	1,00	2000,00 900,00	_	Maximaldicke ZUB, 2009b.	24,9	186,8	223,3	24,3	177,5	213,2
mas	1949- 1968	x x	Vollziegel	12,00	1800,00/	-	S. 59;	,-	,.	,	,-	,-	,_
_14					2000,00		Minimaldicke	20.0	000 5	070.4	00.0	047.0	000.7
SW mas	1949-	x x	Kalkgipsputz	1,00	900,00 1800,00/		ZUB, 2009b, S. 59;	30,6	228,5	273,4	29,8	217,0	260,7
_15	1968		Vollziegel	15,00	2000,00		Maximaldicke						
SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas _16	1978	x x x	Hochlochziegel (75/25)	12,00	1400,00/ 2000,00	-	S. 60; Minimaldicke						
SW	4040		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	36,3	270,3	323,4	35,4	256,5	308,3
mas	1949- 1978	x x x	Hochlochziegel	18,00	1400,00/	_	S. 60;						
_17	•		(75/25)		2000,00		Maximaldicke	24.0	400.0	222.2	24.2	477 E	242.2
SW mas	1969-	x	Kalkgipsputz Hochlochziegel	1,00 12,00	900,00 1400,00/	_	ZUB, 2009b, S. 61;	24,9	186,8	223,3	24,3	177,5	213,2
_18	1978		(75/25)		2000,00		Minimaldicke						
SW	1969-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
mas _19	1978	X	Hochlochziegel (75/25)	15,00	1400,00/ 2000,00	-	S. 61; Maximaldicke						
SW	1010		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	21,0	119,3	143,5	20,8	117,1	140,7
mas	1949- 1968	x x	Bimsvollsteine	12,00	1200,00/	-	S. 62;						
_20 SW			Kalkgipsputz	1,00	2000,00		Minimaldicke ZUB, 2009b,	25,7	144,2	173,6	25,5	141,4	170,1
mas	1949- 1969	x x	Bimsvollsteine	15,00	1200,00/		S. 62;	20,7	1-1-,2	110,0	20,0	, -	,.
_21					2000,00		Maximaldicke			070.4		247.2	
SW	1949-	V V V	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 63;	30,6	228,5	273,4	29,8	217,0	260,7
mas _22	1978	ххх	Hochlochziegel (75/25)	15,00	1200,00/ 2000,00	-	Minimaldicke						
	•		Kalkgipsputz	1,00	900,00	-	Ziegel ZUB, 2009b,	36,3	270,3	323,4	35,4	256,5	308,3
SW mas	1949-	x x x	Hochlochziegel		1200,00/		S. 63;						
_23	1978		(75/25)	18,00	2000,00	-	Maximaldicke Ziegel						
SW	•		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	38,2	231,2	281,7	38,1	229,4	279,4
mas	1949- 1978	x x x	Gasbeton(block/			_	S. 63; Minimaldicke	,		·			
_24			-steine)	15,00	624,80		Gasbeton						
SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 63;	45,4	273,5	333,4	45,3	271,4	330,7
mas _25	1978	x x x	Gasbeton(block/	18,00	624,80	-	Maximaldicke						
SW			-steine) Innenputz	1,00	900,00	-	Gasbeton ZUB, 2009b,	35,8	237,1	279,1	35,8	237,1	279,1
mas	1949- 1978	x x x	Kalksandstein	12,00	1400,00/	-	S. 65;						
_26 SW			(75/25) Innenputz	1,00	2000,00 900,00		Minimaldicke ZUB, 2009b,	35.8	237.1	279.1	35.8	237.1	279.1
mas	1949- 1978	x x x	Kalksandstein		1400,00/		S. 65;	33,6	237,1	219,1	33,0	237,1	213,1
_27	1370		(75/25)	12,00	2000,00		Maximaldicke						
SW mas	bis	x	Kalkgipsputz	1,00	900,00 1800,00/	-	ZUB, 2009b, S. 85, 86;	25,9	193,7	231,6	25,2	184,1	221,1
_28	1918		Vollziegel	12,50	2000,00	-	Minimaldicke						
SW mas	bis	•	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 85, 86;	50,6	374,8	448,6	49,2	355,1	427,2
_29	1918	х	Vollziegel	25,50	1800,00/ 2000,00	-	Maximaldicke						
SW	1919-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	25,9	193,7	231,6	25,2	184,1	221,1
mas _30	1948	хх	Vollziegel	12,50	1800,00/ 2000,00	-	S. 87, 88; Minimaldicke						
SW			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	38,2	284,2	340,1	37,2	269,6	324,1
mas	1919- 1948	x x	Vollziegel	19,00	1800,00/	_	S. 87, 88;						
_31 SW			Kalkgipsputz	1,00	2000,00		Maximaldicke ZUB, 2009b,	21,8	123,4	148,5	21,6	121,1	145,6
mas	1919- 1948	x x	Bimshohlblockstein	12,50	1400,00/		S. 89, 90;	,0	0,.	,.	,0	,.	,.
_32	1040				2000,00		Minimaldicke	20.0	477.4	040.0	04.7	470.0	000.0
SW mas	1919-	x x	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 89, 90;	32,0	177,4	213,8	31,7	173,9	209,3
_33	1948		Bimshohlblockstein	19,00	2000,00	-	Maximaldicke						
SW mas	1949-	x x	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 91;	21,0	119,3	143,5	20,8	117,1	140,7
_34	1968	^ ^	Bimshohlblockstein	12,00	1400,00/ 2000,00	-	Minimaldicke						
SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	30,8	171,2	206,3	30,5	167,8	201,9
mas _35	1968	хх	Bimshohlblockstein	18,25	1400,00/ 2000,00	-	S. 91; Maximaldicke						
SW			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas	1958- 1968	x	Hochlochziegel	12,00	1200,00/	-	S. 92;	, i	•	Í	•	•	
_36			(75/25)	,	2000,00		Minimaldicke						

SW	1958-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
mas	1968	X	Hochlochziegel	15,00	1200,00/	-	S. 92;						
_37			(75/25)		2000,00		Maximaldicke		100.0	222.2		4====	242.2
SW mas	1969-	x	Kalkgipsputz Hochlochziegel	1,00	900,00	-	ZUB, 2009b, S. 93;	24,9	186,8	223,3	24,3	177,5	213,2
_38	1978	^	(75/25)	12,00	2000,00/	-	Minimaldicke						
SW			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
mas	1969- 1978	X	Hochlochziegel	15,00	1400,00/		S. 93;						
_39	1070		(75/25)	15,00	2000,00		Maximaldicke						
SW	1010		Innenputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas	1919- 1948	X	Vallziagal	12,00	1800,00/		S. 119; Minimaldicke mit						
_40	1040		Vollziegel	12,00	2000,00	-	Putz						
sw	•		Innenputz	1,00	900,00	-	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
mas	1919-	X			1800,00/		S. 119;						
_41	1948		Vollziegel	15,00	2000,00	-	Maximaldicke mit Putz						
sw	•						ZUB, 2009b,						
mas	1919-	X	Vollziegel	12,00	1800,00/	_	S. 119;	22,8	167,1	200,3	22,2	157,9	190,2
_42	1948		· ·		2000,00		Minimaldicke ohne Putz			·			
CVV							ZUB, 2009b,						
SW mas	1919-	x	Vollziegel	15,00	1800,00/	_	S. 119;	28,5	208,9	250,4	27,7	197,3	237,7
_43	1948		9	,	2000,00		Maximaldicke ohne Putz	,-		,	,-	,-	
SW			Innenputz	1,00	900,00	-	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
mas	1949-	хх	Hochlochziegel	,	1400,00/	-	S. 122;	,-	,-	-,-	,-	,-	-,
_44	1968		(75/25)		2000,00		Minimaldicke						
SW	1949-		Innenputz	1,00	900,00	-	ZUB, 2009b,	36,8	273,8	327,6	35,8	259,8	312,3
mas	1968	хх	Hochlochziegel	18,25	1400,00/	_	S. 122; Maximaldicke						
_45			(75/25)		2000,00			24,9	186,8	223,3	24,3	177,5	213,2
SW mas	1969-	x x x	Innenputz Hochlochziegel	1,00	800,00/	_	ZUB, 2009b, S. 123;	24,9	100,0	223,3	24,3	177,3	213,2
_46	1994	* * *	(75/25)	12,00	2000,00/	-	Minimaldicke						
SW			Innenputz	1,00	900,00	-	ZUB, 2009b,	36,8	273,8	327,6	35,8	259,8	312,3
mas	1969- 1994	x x x	Hochlochziegel	10.25	800,00/		S. 123;						
_47	1334		(75/25)	18,25	2000,00		Maximaldicke						
SW	1969-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	35,8	237,1	279,1	35,8	237,1	279,1
mas _48	1978	X	Kalksandstein	12,00	1400,00/ 2000,00	_	S. 124; Minimaldicke						
SW			(75/25) Kalkgipsputz	1,00	900,00	_	ZUB, 2009b,	44,2	291,5	343,1	44,2	291,5	343,1
mas	1969-	X	Kalksandstein		1400,00/		S. 124;	77,2	231,3	343,1	77,2	231,3	343,1
_49	1978		(75/25)	15,00	2000,00	-	Maximaldicke						
SW	1969-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	35,8	237,1	279,1	35,8	237,1	279,1
mas	1978	X	Kalksandstein	12,00	1800,00/	_	S. 125;						
_50			(75/25)	-	2000,00		Minimaldicke	44.0	004.5	040.4	44.0	004.5	040.4
SW mas	1969-	x	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b, S. 125;	44,2	291,5	343,1	44,2	291,5	343,1
_51	1978	^	Kalksandstein (75/25)	15,00	1800,00/ 2000,00	-	Maximaldicke						
SW			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	25,6	220,7	268,7	25,5	219,2	266,8
mas	1949- 1968	хх	Hohlblockstein	40.00	1000,00/		S. 126;						
_52	1300		(90/10)	12,00	2000,00		Minimaldicke						
SW	1949-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	31,4	271,0	330,1	31,3	269,1	327,7
mas _53	1968	хх	Hohlblockstein	15,00	1000,00/	_	S. 126; Maximaldicke						
			(90/10) Kalkgipsputz	1.00	2000,00		IVIAXIIIIAIGICKE	24.2	291,9	222.7	22.4	281,2	310.0
SW mas	bis	х	Naturstein-	1,00	900,00	-	ZUB, 2009b,	34,2	231,3	323,7	33,4	201,2	310,0
_54	1918		mauerwerk	20,00	2000,00/		S. 148						
sw			Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	25,9	193,7	231,6	25,2	184,1	221,1
mas	bis 1968	x x x x	Vollziegel	12,50	1800,00/	-	S. 153;						
_55					2000,00		Minimaldicke						
SW	bis	~ ~ ~ ~	Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	50,6	374,8	448,6	49,2	355,1	427,2
mas _56	1968	x x x x	Vollziegel	25,50	1800,00/ 2000,00	-	S. 153; Maximaldicke						
SW	٠		Kalkgipsputz	1,00	900,00	-		50,6	374,8	448,6	49,2	355,1	427,2
mas	bis 1918	x	Vollziegel	25,50	1800,00/		ZUB, 2009b, S. 154	,-	,-	,-	,	•	,
_57	.5.0				2000,00		J. 10-1						
SW	1919-		Kalkgipsputz	1,00	900,00	-	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
mas _58	1948	Х	Hochlochziegel (75/25)	15,00	1400,00/ 2000,00	-	S. 156						
SW	•		Innenputz	1,00	900,00	-	ZUB, 2009b,	25,6	220,7	268,7	25,5	219,2	266,8
mas	1949-	x x x x x	Hohlblockstein		1400,00/		S. 157;	_0,0	,	_55,1		, _	_ 50,0
_59	1994		(90/10)	12,00	2000,00		Minimaldicke						
SW	1949-		Innenputz	1,00	900,00	-	ZUB, 2009b,	31,4	271,0	330,1	31,3	269,1	327,7
mas	1949-	x x x x x	Hohlblockstein	15,00	1400,00/	_	S. 157;						
_60			(90/10)		2000,00		Maximaldicke	64.5	400 -	000 -		46= -	000 :
SW mas	1969-	x x x	Innenputz Gasheton/block/	1,00	900,00	-	ZUB, 2009b,	31,0	188,9	229,9	30,9	187,5	228,1
_61	1994	^ ^ ^	Gasbeton(block/ -steine)	12,00	472,00/ 2000,00	-	S. 158						
			-/		-,								

SW			Innenputz	1,50	900,00	- Gruhler et al.,	39,3	294,1	351,6	38,3	279,5	335,6
mas	bis 1918	x	Vollziegel/Mörtel	19,00	1800,00/	2002, S. 31; Durchschnitts-						
_62			voliziegei/iviortei	19,00	2000,00	dicke						
SW	4070		Innenputz	1,50	900,00	- Gruhler et al.,	34,3	257,2	307,4	33,4	244,6	293,6
mas	1870- 1918	X	Vollziegel/Mörtel	16,35	1800,00/	2002, S. 41; - Durchschnitts-						
_63			Voliziogol/Morter	10,00	2000,00	dicke						
SW			Innenputz	1,50	900,00	- Gruhler et al.,	36,2	271,5	324,6	35,3	258,1	310,0
mas	1870- 1918	х	\/all=iaaal/\/4###al	17.00	1800,00/	2002, S. 51; Durchschnitts-						
_64	1310		Vollziegel/Mörtel	17,38	2000,00	dicke						
SW			Innenputz	1,50	900,00	- Gruhler et al.,	37,1	278,1	332,4	36,2	264,3	317,4
mas	1919-	X			1800,00/	2002, S. 61;						
_65	1945		Vollziegel/Mörtel	17,85	2000,00	 Durchschnitts- dicke 						
SW			Innenputz	1,50	900,00	- Gruhler et al.,	14,6	113,0	134,6	14,3	108,4	129,6
mas	1919-	X			1800,00/	2002, S. 61;						
_66	1945		Vollziegel/Mörtel	6,00	2000,00	 Durchschnitts- dicke 						
OW			Innenputz	1,50	900,00	- Gruhler et al.,	37,9	283,6	339,1	36,9	269,6	323,8
SW mas	1949-	x x x			1800,00/	2002, S. 71;	,-	,.	,	, .	,	,
_67	1978	~ ~ ~	Vollziegel/Mörtel	18,25	2000,00	 Durchschnitts- dicke 						
			Innenputz	1,50	900,00	- Gruhler et al.,	16,6	127,7	152,2	16,2	122,2	146,2
SW mas	1949-	x x x	mionpatz	.,00		2002, S. 71;	. 0,0	,.	.02,2	. •,=	,_	, _
_68	1978	* * *	Vollziegel/Mörtel	7,05	1800,00/ 2000,00	- Durchschnitts-						
SW			Innenputz	1,50	900,00	dicke - Gruhler et al.,	29,8	293,2	398,9	28,5	277,3	377,6
mas	1958- 1978	x x x	Stahlbeton B15-B25		2400,00	2002,	_0,0	_00,_	000,0	20,0	,0	0,0
_69	1370		(95/5)	6,00	2400,00	S. 81						
SW	1949-	~ ~ ~ ~ ~	Stahlbeton B15-B25	7.50	2400,00	Gruhler et al., 2002,	25,5	227,5	309,0	23,9	207,2	281,9
mas _70	1994	x x x x x	(97/3)	7,50	2400,00	S. 91	23,3	221,3	309,0	23,3	201,2	201,9
SW						Gruhler et al.,						
mas	1979-	x x	Stahlbeton B15-B25	7,70	2400,00	2002, S. 100;	26,1	233,6	317,2	24,5	212,7	289,4
_71	1990		(97/3)	, -		Durchschnitts- dicke	-,	,.	,	,-	,	,
0147						Gruhler et al.,						
SW mas	1979-	x x	Stahlbeton B15-B25	13,70	2400,00	2002, S. 109;	46,5	415,5	564,4	43,7	378,5	514,9
_72	1990		(97/3)	,	,	Durchschnitts-	10,0	,-	,.	,-	,-	,-
SW			Innenputz	1,50	900,00	dicke - Gruhler et al.,	32,1	198,7	241,4	32,0	197,3	239,6
mas	1958- 1994	x x x x	Gasbeton(block/		472,00/	2002,	,		<i>'</i>	. ,-	,	, .
_73	1334		-steine)	12,00	2000,00	- S. 129						
SW	1958-		Innenputz	1,50	900,00	- Gruhler et al.,	37,9	283,6	339,1	36,9	269,6	323,8
mas _74	1994	x x x x	Hochlochziegel (75/25)	18,25	800,00/ 2000.00	2002, - S. 138						
SW			Innenputz	1,50	900,00	- Gruhler et al	28,4	273,7	327,1	27,2	255,7	307,5
mas	1984- 2001	хх	•		800,00/	2002,	_0,.	,.	0_1,1	,-	200,.	00.,0
_75	2001		Leichthochlochziegel	18,25	2000,00	- S. 148						
SW	1958-		Innenputz	1,50	900,00	- Gruhler et al.,	32,1	198,7	241,4	32,0	197,3	239,6
mas _76	1994	x x x x	Gasbeton(block/ -steine)	12,00	472,00/ 2000,00	2002, S. 157						
SW			Innenputz	1,50	900,00	- Gruhler et al.,	37,9	283,6	339,1	36,9	269,6	323,8
mas	1958- 2001	x x x x x	Hochlochziegel		800,00/	- 2002,	,-	,.	,	, .	,	, .
_77	2001		(75/25)	18,25	2000,00	S. 167						
SW	1991-		Innenputz	1,50	900,00	- Gruhler et al.,	33,9	254,2	297,9	33,9	254,2	297,9
mas _78	2000	хх	Kalksandstein (95/5)	12,00	1800,00/ 2000,00	- 2002, S. 119						
SW			Innenputz	1,50	900,00	Gruhler et al.,	33,9	254,2	297,9	33,9	254,2	297,9
mas	1991-	x x	,		1800,00/	- 2002,	55,5	_0-,_	_5.,5	30,3	,_	_01,3
_79	2000		Kalksandstein (95/5)	6,00	2000,00	S. 119						
SW	1991-		Innenputz	1,50	900,00	- Gruhler et al.,	32,1	198,7	241,4	32,0	197,3	239,6
mas	2000	x x	Gasbeton(block/	6,00	472,00/	- 2002,						
_80			-steine)		2000,00	S. 157, 177						
SW mas	1991-	x	Innenputz Hochlochziegel	1,50	900,00 800,00/	Gruhler et al., 2002,	26,0	196,6	234,8	25,4	187,4	224,7
_81	2000		(75/25)	6,00	2000,00/	S. 167, 187, 197						
			Innenputz	1,00	900,00	- Minimaldicke	30,9	241,4	288,3	28,5	208,7	246,8
0			Hochlochziegel			Trennwand nach		•		•	•	•
SW mas	2002-	x x :	(51,6/48/0,4),	17,50	2000,00	_ Hersteller- angaben						
_82	2020	* * ·	Tromiwand			(Schlagmann						
			Mineralwolle	1,00	46,25	POROTON S Pz						
			(Außenwand)			Planziegel 175)						
			Innenputz	2,00	900,00	 Maximaldicke Trennwand nach 	54,0	424,4	506,6	49,8	368,4	435,5
SW	2002		Hochlochziegel (51,6/48/0,4),	30,00	2000,00	- Hersteller-						
mas	2002- 2020	x x :	Trennwand	-,-3		angaben						
_83			Mineralwolle	2.00	16 2E	(Schlagmann - POROTON S Pz						
			(Außenwand)	2,00	46,25	Planziegel 300)						

						Innenputz	1,00	900,00	- Minimaldicke	32,4	253,9	297,2	32,4	253,9	297,2
						Kalksandstein	11,50	1800,00	Trennwand nach - Hersteller-						
SW	2002-					(99,2/0,8) Mineralwolle	1,00	160,00	angaben (KS						
mas	2020		Х	х	X	(Außenwand)	1,00	100,00	Original KS-Ratio-						
_84									Blocksteine, KS L-R, SFK 12,						
									RDK 1,4 - 4 DF						
									(t 115)						
						Innenputz	2,00	900,00	 Maximaldicke Trennwand nach 	68,5	523,7	613,3	68,5	523,7	613,3
						Kalksandstein (95/5) Mineralwolle	24,00	1800,00 160,00	Hersteller-						
SW	2002-					(Außenwand)	2,00	100,00	angaben (KS						
mas _85	2020		Х	Х	Х				Original KS-Ratio-						
_63									Blocksteine, KS L-R, SFK 12,						
									RDK 1,4 - 8 DF						
									(t 240)						
						Innenputz Porenbeton P2 04	1,00	900,00	 Minimaldicke nach Hersteller- 	25,0	174,0	213,3	24,9	172,8	211,8
						(99,2/0,8)	11,50	380,00	angaben						
						Mineralwolle	1,00	160,00	- (Bundesverband						
						(Außenwand)			Porenbeton e.V.,						
SW	2002-								2018, Poren- betonhandbuch,						
mas	2020		Х	Х	X				S.32: Haustrenn-						
_86									wände in allen						
									Steindicken						
									möglich); Annahme:						
									Haustrennwand						
	_								nichttragend						
						Innenputz	2,00	900,00	 Maximaldicke 	119,1	746,4	909,4	118,6	740,5	901,9
						Porenbeton P4 05	48,00	380,00	nach Herstel- lerangaben						
						(95/5) Mineralwolle	2,00	160,00	- (Bundesverband						
SW						(Außenwand)	2,00	100,00	Porenbeton e.V.,						
mas	2002-		х	х	х				2018, Poren-						
_87	2020								betonhandbuch, S.32:						
									Haustrennwände						
									in allen						
									Steindicken						
						Stahlheton C20/25			möglich)						
CW						Stahlbeton C20/25 (99/1)	15,00	2400,00	Annahme: minimale	36,8	268,2	345,4	33,6	226,8	290,0
SW	2002-		Y	Y	¥	(99/1) Mineralwolle	15,00 1,00	2400,00 160,00	Annahme: minimale konstruktiv aus-	36,8	268,2	345,4	33,6	226,8	290,0
SW mas _88	2002- 2020		x	x	х	(99/1)			Annahme: minimale konstruktiv aus- führbare Stahl-	36,8	268,2	345,4	33,6	226,8	290,0
mas			х	x	х	(99/1) Mineralwolle			Annahme: minimale konstruktiv ausführbare Stahlbetonwanddicke	36,8	268,2	345,4	33,6	226,8	290,0
mas			х	x	x	(99/1) Mineralwolle (Außenwand)	1,00	160,00	Annahme: minimale konstruktiv aus- führbare Stahl-			·			
mas _88			х	x	x	(99/1) Mineralwolle (Außenwand)	2,00	900,00	Annahme: minimale konstruktiv ausführbare Stahlbetonwanddicke (Betonierbarkeit)	36,8		345,4	33,6 99,2	226,8 753,3	290,0 982,2
mas _88 SW	2020					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37	2,00	160,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau			·			
mas _88	2020					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2)	2,00 30,00	900,00	Annahme: minimale konstruktiv ausführbare Stahlbetonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig			·			
mas _88	2020					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37	2,00	900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau			·			
sw mas _89	2002-2020					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle	2,00 30,00	900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke		835,3	·		753,3	
mas _88 SW mas _89 SW 2shel-	2020 2002- 2020 bis	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz	2,00 30,00 2,00 1,00	900,00 2400,00 160,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b,	105,5	835,3	1091,9	99,2	753,3	982,2
mas _88 SW mas _89 SW 2shel-led	2002-2020	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand)	2,00 30,00 2,00	900,00 2400,00 160,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke	105,5	835,3	1091,9	99,2	753,3	982,2
mas _88 SW mas _89 SW 2shel-	2020 2002- 2020 bis	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz	2,00 30,00 2,00 1,00	900,00 2400,00 160,00 900,00 1800,00/	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b,	105,5	835,3	1091,9	99,2	753,3 98,6	982,2
sw mas _89 SW 2shelled _1 SW 2shelled _21	2002- 2002- 2020 bis 1918					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel	1,00 2,00 30,00 2,00 1,00 6,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10	105,5	835,3	1091,9	99,2	753,3 98,6	982,2
sw mas _89 sw 2shel-led _1 sw 2shel-led	2020 2002- 2020 bis 1918	x x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel	2,00 30,00 2,00 1,00 6,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10	105,5	835,3	1091,9	99,2	753,3 98,6	982,2
sw mas _89 sw 2shel- led _1 sw 2shel- led _2	2002- 2002- 2020 bis 1918					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel	1,00 2,00 30,00 2,00 1,00 6,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13	13,5	835,3 103,2	1091,9	13,2	98,6 98,6	982,2
mas _88 SW mas _89 SW 2shelled _1 SW 2shelled _2 SW	2002- 2002- 2020 bis 1918	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13	105,5	835,3	1091,9	99,2	98,6 98,6	982,2
sw mas _89 sw 2shel- led _1 sw 2shel- led _2	2002- 2002- 2020 bis 1918					(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13	13,5	835,3 103,2	1091,9	13,2	98,6 98,6	982,2
sw sw shelled 1 sw shelled 2 sw shelled 2 sw shelled 2 sw	2002- 2002- 2020 bis 1918 1919- 1948	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13	105,5 13,5 13,5	835,3 103,2 103,2	1091,9 123,1 123,1	99,2 13,2 16,6	753,3 98,6 98,6	982,2 118,1 118,1
mas _88 SW mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13	13,5	835,3 103,2 103,2	1091,9	13,2	753,3 98,6 98,6	982,2
mas _88 SW mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _3 SW 2shel-	2002- 2002- 2020 bis 1918 1919- 1948 1949- 1957	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1400,00/	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17	105,5 13,5 13,5	835,3 103,2 103,2	1091,9 123,1 123,1	99,2 13,2 16,6	753,3 98,6 98,6	982,2 118,1 118,1
sw shelled 2 sw 2shelled 2 sw 2shelled 2 sw 2shelled 3 sw 2shelled 3 sw 2shelled led led led led led led led led le	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00 1400,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17	105,5 13,5 13,5	835,3 103,2 103,2	1091,9 123,1 123,1	99,2 13,2 16,6	753,3 98,6 98,6	982,2 118,1 118,1
mas _88 SW mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _3 SW 2shel-	2002- 2002- 2020 bis 1918 1919- 1948 1949- 1957	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalkgipsputz Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1400,00/	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17	105,5 13,5 13,5	835,3 103,2 103,2 100,4	1091,9 123,1 123,1	99,2 13,2 16,6	753,3 98,6 98,6	982,2 118,1 118,1 279,1
mas _88 SW mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _4 SW 2shel-led _4 SW 2shel-	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	x x x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke	105,5 13,5 13,5 16,8	835,3 103,2 103,2 100,4	123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6	98,6 98,6 97,3	982,2 118,1 118,1 279,1
sw mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _4 SW 2shel-led _4	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	х				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00 1400,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17	105,5 13,5 13,5 16,8	835,3 103,2 103,2 100,4	123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6	98,6 98,6 97,3	982,2 118,1 118,1 279,1
sw shelled 2 sw 2shelled 2 sw 2shelled 4 sw 2shelled 4 sw 2shelled 5 sw	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalksandstein (75/25)	1,00 2,00 30,00 1,00 6,00 1,00 5,75 1,00 12,00 15,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Minimaldicke	105,5 13,5 13,5 16,8 35,8	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1	982,2 118,1 118,1 279,1 343,1
sw mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _4 SW 2shel-led _4	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Minimaldicke	105,5 13,5 13,5 16,8	835,3 103,2 103,2 100,4 237,1	123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6	98,6 98,6 97,3	982,2 118,1 118,1 279,1 343,1
sw mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _4 SW 2shel-led _5 SW 2shel-led _5 SW 2shel-led _1	2020 2002- 2020 bis 1918 1919- 1949- 1957 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Hochlochziegel	1,00 2,00 30,00 1,00 6,00 1,00 5,75 1,00 12,00 15,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Maximaldicke	105,5 13,5 13,5 16,8 35,8	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1	982,2 118,1 118,1 279,1 343,1
sw mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _3 SW 2shel-led _5 SW 2shel-led _4 SW 2shel-led _6	2020 2002- 2020 bis 1918 1919- 1949- 1957 1949- 1957 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Hochlochziegel (75/25)	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00 15,00 1,00 8,75	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00 1200,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 18; Maximaldicke	105,5 13,5 13,5 16,8 35,8 44,2	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1 343,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1 291,5	982,2 118,1 118,1 279,1 343,1
sw 2shelled 2 Sw 2shelled 4 Sw 2shelled 5 Sw 2shelled 6 Sw 2shelled 6 Sw 2shelled 6 Sw 2shelled 6 Sw	2020 2002- 2020 bis 1918 1919- 1948 1949- 1957 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Hochlochziegel	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00 1,00 15,00 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 18; Maximaldicke	105,5 13,5 13,5 16,8 35,8	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1 291,5	982,2 118,1 118,1 279,1 343,1
mas _88 SW mas _89 SW 2shel-led _1 SW 2shel-led _2 SW 2shel-led _4 SW 2shel-led _5 SW 2shel-led _6 SW 2shel-led _6 SW 2shel-led _6 SW 2shel-led _6 SW 2shel-	2020 2002- 2020 bis 1918 1919- 1949- 1957 1949- 1957 1949- 1957	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Hochlochziegel (75/25) Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz Kalkgipsputz	1,00 2,00 30,00 1,00 6,00 1,00 5,75 1,00 15,00 1,00 8,75 1,00	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00 900,00 1800,00/ 2000,00 900,00 1800,00/ 2000,00 900,00 1200,00/ 2000,00 900,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 18; Maximaldicke	105,5 13,5 13,5 16,8 35,8 44,2	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1 343,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1 291,5	982,2 118,1 118,1 279,1 343,1
sw 2shelled 2 Sw 2shelled 4 Sw 2shelled 5 Sw 2shelled 6 Sw 2shelled 6 Sw 2shelled 6 Sw 2shelled 6 Sw	2020 2002- 2020 bis 1918 1919- 1949- 1957 1949- 1957 1958- 1958- 1958- 1958-	x				(99/1) Mineralwolle (Außenwand) Innenputz Stahlbeton C30/37 (98/2) Mineralwolle (Außenwand) Kalkgipsputz Vollziegel Kalkgipsputz Vollziegel Kalkgipsputz Ziegelsplittbeton Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz Kalksandstein (75/25) Kalkgipsputz	1,00 2,00 30,00 2,00 1,00 6,00 1,00 5,75 1,00 12,00 15,00 1,00 8,75	900,00 2400,00 160,00 900,00 1800,00/ 2000,00 900,00 1400,00/ 2000,00 900,00 1800,00/ 2000,00 900,00 1200,00/ 2000,00	Annahme: minimale konstruktiv aus- führbare Stahl- betonwanddicke (Betonierbarkeit) Annahme: maximal im Wohnungsbau gängig ausgeführte Stahl- betonwanddicke ZUB, 2009b, S. 10 ZUB, 2009b, S. 13 ZUB, 2009b, S. 17 ZUB, 2009b, S. 18; Minimaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 18; Maximaldicke ZUB, 2009b, S. 19 ZUB, 2009b, S. 19	105,5 13,5 13,5 16,8 35,8 44,2	835,3 103,2 103,2 100,4 237,1	1091,9 123,1 123,1 123,2 279,1 343,1	99,2 13,2 13,2 16,6 35,8	753,3 98,6 98,6 97,3 237,1 291,5	982,2 118,1 118,1 279,1 343,1

SW			Kalkainanutz	1,00	900,00		32,8	188,2	232,1	32,3	181,6	223,6
2shel-		x	Kalkgipsputz			ZUB, 2009b,	32,0	100,2	232,1	32,3	161,6	223,0
led _8	1968		Ziegelsplittbeton	12,00	1200,00	- S. 21						
SW	1060		Kalkgipsputz	1,00	900,00	- ZUB, 2009b,	18,8	141,5	169,0	18,3	134,8	161,7
2shel- led	1969- 1978	X	Hochlochziegel (75/25)	8,75	1200,00/ 2000,00	S. 26; Minimaldicke						
_9 SW			Kalkgipsputz	1,00	900,00		24,9	186,8	223,3	24,3	177 5	213,2
2shel-	1969-	X	Hochlochziegel		1200,00/	ZUB, 2009b, S. 26;	24,3	100,0	223,3	24,5	177,3	210,2
led _10	1978		(75/25)	12,00	2000,00	- Maximaldicke						
SW	4000		Kalkgipsputz	1,00	900,00	- ZUB, 2009b,	21,9	141,3	172,2	21,8	140,2	170,7
2shel- led	1969- 1978	x	Porenbeton	8,75	600,00	S. 27; Minimaldicke						
_11 SW			Kallesiaanuta	1.00	000.00	WIIIIIIIIIIIIIIIII	20.2	400 F	227.6	20.4	404.0	225.6
2shel-		x	Kalkgipsputz	1,00	900,00	ZUB, 2009b, S. 27;	29,2	186,5	227,6	29,1	184,9	225,6
led _12	1978		Porenbeton	12,00	600,00	- Maximaldicke						
SW			Kalkgipsputz	1,00	900,00	- ZUB, 2009b,	18,8	141,5	169,0	18,3	134,8	161,7
2shel- led	1969- 1978	x	Hochlochziegel	8,75	1200,00/	S. 28;						
_13			(75/25)		2000,00	Minimaldicke						
SW 2shel-	1969-		Kalkgipsputz	1,00	900,00	ZUB, 2009b,	24,9	186,8	223,3	24,3	177,5	213,2
led _14	1978	X	Hochlochziegel (75/25)	12,00	1200,00/ 2000,00	S. 28; Maximaldicke						
SW			Innenputz	1,00	900,00	-	13,5	103,2	123,1	13,2	98,6	118,1
	1919-	x			1800,00/	ZUB, 2009b,						
led _15	1948		Vollziegel	6,00	2000,00	- S. 120						
sw			Innenputz	1,00	900,00	ZUB, 2009b,	13,5	103,2	123,1	13,2	98,6	118,1
2shel- led	1919- 1948	x	Vollziegel	6,00	1800,00/	S. 121;						
_16			Voliziegei	0,00	2000,00	Minimaldicke						
sw	4040		Innenputz	1,00	900,00	ZUB, 2009b,	18,8	141,5	169,0	18,3	134,8	161,7
2shel- led	1919- 1948	x	Vollziegel	8,75	1800,00/	S. 121;						
_17	١.			•	2000,00	Maximaldicke						
SW 2shel-	bis		Kalkgipsputz	1,00	900,00	- ZUB, 2009b,	13,5	103,2	123,1	13,2	98,6	118,1
led	1978	x x x x x	Vollziegel	6,00	1800,00/ 2000,00	S. 155						
_18	١.,				2000,00							
SW 2shel-	1971-			7.50	0050.00	ZUB, 2009b,	40.0		22.4	40.0	1	
led	1990	ххх	Normalbeton	7,50	2350,00	- S. 160, 161, 163, 165	13,8	74,3	89,4	12,2	53,4	61,4
_19 SW												
2shel-		x x	Normalbeton	7.50	2350,00	ZUB, 2009b,	13,8	74,3	89,4	12,2	53,4	61,4
led _20	1990	~ ~	· · · · · · · · · · · · · · · · · · ·	7,00	2000,00	S. 162	.0,0	,•	30, .	,_	00,.	٠.,.
SW												
2shel- led	1976- 1990	x x x	Normalbeton	7,50	2350,00	ZUB, 2009b, S. 164	13,8	74,3	89,4	12,2	53,4	61,4
_21	1990					3. 104						
sw	4040		0.11.4 P45 P05			Gruhler et al.,						
2shel- led	1949- 1994	x x x x x	Stahlbeton B15-B25 (97/3)	7,50	2400,00	- 2002,	25,5	227,5	309,0	23,9	207,2	281,9
_22	١,					S. 91						
SW 2shel-	1979-		Stahlbeton B15-B25			Gruhler et al.,						
led	1990	хх	(97/3)	7,50	2400,00	- 2002, S. 100	25,5	227,5	309,0	23,9	207,2	281,9
_23												
SW 2shel-	1979-		Stahlbeton B15-B25	0.50	2400.00	Gruhler et al., 2002,	22.2	200.2	204.4	20.2	202.4	257.0
led	1990	хх	(97/3)	9,50	2400,00	S. 109; Maximaldicke	32,2	288,2	391,4	30,3	262,4	357,0
_24 SW						- Gruhler et al.,						
2shel-		x x	Stahlbeton B15-B25	5,00	2400,00	2002, S. 109;	17,0	151,7	206,0	15,9	138,1	187,9
led _25	1990		(97/3)			S. 109; Minimaldicke						
SW cwf	1969-	x	Kalkgipsputz	1,00	900,00	- ZUB, 2009b, S. 29;	26,7	178,2	209,7	26,7	178,2	209,7
_1	1978	^ 	Kalksandstein (75/25)	8,75	1400,00/ 2000,00	Minimaldicke						
SW	1969-		Kalkgipsputz	1,00	900,00	- ZUB, 2009b,	35,8	237,1	279,1	35,8	237,1	279,1
cwf	1978	x	Kalksandstein	12,00	1400,00/	S. 29;						
_2	1970		(75/25)	,00	2000,00	Maximaldicke						

SW				Kalkgipsputz	1,00	900,00	-	16,8	98,9	118,3	15,1	76,6	88,5
cwf	1969-		x	•			ZUB, 2009b,	-,-	,-	-,-	-,	-,-	
_3	1978			Ortbeton	8,00	2400,00	- S. 30						
				Kalkgipsputz	1,00	900,00		24,6	164,6	193,7	24,6	164,6	193,7
SW	1969-			•	1,00		ZUB, 2009b,	24,0	104,0	193,7	24,0	104,0	193,1
cwf	1978		X	Kalksandstein	8,00	1400,00/	- S. 30						
_4				(75/25)		2000,00							
SW	1969-			Kalkgipsputz	1,00	900,00	ZUB, 2009b,	30,6	228,5	273,4	29,8	217,0	260,7
cwf	1978		X	Hochlochziegel	45.00	1200,00/	- S. 94						
_5	1370			(75/25)	15,00	2000,00	- 0.34						
SW				Kalkgipsputz	1,00	900,00	-	34,2	291,9	323,7	33,4	281,2	310,0
cwf	bis	х		Naturstein-	,	2600,00/	ZUB, 2009b,	,	- /-	,	,	- ,	
_6	1918	^		mauerwerk	20,00	2000,00	- S. 149						
					4.50		_			04= 4	40.0		
SW	6.1-			Lehmputz innen	1,50	900,00		0,9	73,9	217,4	-12,9	-111,6	267,1
wood	bis	х		Holzständer		492,92/	ZUB, 2009b,						
_1	1918			(Eiche)/Gefach:	12,00	2000,00/	- S. 12						
				Lehmstaken		100,00							
SW				Lehmputz innen	1,50	900,00	ZUB, 2009b,	1,2	44,5	117,7	-5,8	-48,7	142,1
wood	bis	х		Holzständer		492,92/	S. 82;						
_2	1918	^		(Eiche)/Gefach:	6,00	2000,00/	- Minimaldicke						
				Lehmstaken		100,00	Willimadiono						
				Lehmputz innen	1,50	900,00	-	1,1	54,3	151,0	-8,1	-69,7	183,7
SW	bis			•		492.92/	ZUB, 2009b,	,	•		•	•	•
wood	1918	X		Holzständer	0.00		S. 82;						
_3	1010			(Eiche)/Gefach:	8,00	2000,00/	Maximaldicke						
				Lehmstaken		100,00							
SW				Lehmputz innen	1,00	900,00	- ZUB, 2009b,	0,7	39,4	111,7	-6,2	-53,4	136,4
	bis			Holzständer		492,92/							
wood	1918	Х		(Eiche)/Gefach:	6,00	2000,00/	S. 83; Minimaldicke						
_4				Lehmstaken		100,00	Willimaldicke						
				Lehmputz innen	1,00	900,00	_	0,6	49.2	145,0	-8,6	-74,4	178,1
SW	bis			•	1,00		ZUB, 2009b,	0,0	43,2	145,0	-0,0	-74,4	170,1
wood		Х		Holzständer		492,92/	S. 83;						
_5	1918			(Eiche)/Gefach:	8,00	2000,00/	 Maximaldicke 						
				Lehmstaken		100,00							
SW				Lehmputz innen	1,00	900,00	 ZUB, 2009b, 	14,7	119,5	170,6	8,9	40,7	185,4
wood	bis	v		Holzständer		492,92/	S. 84; Gruhler et						
	1918	Х		(Eiche)/Gefach:	8,00	1800,00/	al., 2002;						
_6				Ziegel		2000,00	Minimaldicke						
				Lehmputz innen	1,00	900,00	- ZUB, 2009b,	22,5	181,0	259,8	13,4	58,2	283,2
SW	bis			•	.,00	492,92/	S. 84; Gruhler et	,0	,0	200,0	,.	00,2	
wood	1918	X		Holzständer (Eiche)/Gefach:	12.50	1800,00/	al., 2002;						
_7				Ziegel	12,30	2000,00	Maximaldicke						
				_						450.0		45.0	4=0.0
SW	6.1-			Lehmputz innen	3,00	900,00	ZUB, 2009b,	2,6	64,4	152,3	-5,6	-45,0	179,9
wood	bis	х		Holzständer		492,92/	S. 116;						
_8	1918			(Eiche)/Gefach:	7,00	2000,00/	 Minimaldicke 						
				Lehmstaken		100,00							
SW				Lehmputz innen	3,00	900,00	ZUB, 2009b,	2,5	69,3	169,0	-6,8	-55,5	200,7
wood	bis	х		Holzständer		492,92/	S. 116;						
_9	1918			(Eiche)/Gefach:	8,00	2000,00/	Maximaldicke						
				Lehmstaken		100,00							
				Lehmputz innen	3,00	900,00		13,6	138,7	179,9	8,6	72,0	195,2
SW	bis			Holzständer		492,92/	ZUB, 2009b,						
wood	1918	Х		(Eiche)/Gefach:	7 00	1200,00/	S. 117;						
_10				Lehmstein	.,	2000,00	Minimaldicke						
					2.00			45.4	15/ 2	200 5	0.5	70.0	240.2
SW	bis			Lehmputz innen	3,00	900,00	ZUB, 2009b,	15,1	154,2	200,5	9,5	78,2	218,2
wood	1918	Х		Holzständer		492,92/	S. 117;						
_11	1910			(Eiche)/Gefach:	8,00	1200,00/	 Maximaldicke 						
				Lehmstein		2000,00							
SW				Lehmputz innen	3,00	900,00	- ZUB, 2009b,	14,9	125,8	174,8	9,8	55,7	186,3
wood	bis 1918	Х		Holzständer		492,92/	S. 118; Gruhler et						
_12	1918			(Eiche)/Gefach:	7,00	1800,00/	- al., 2002;						
				Ziegel		2000,00	Minimaldicke						
CIM				Lehmputz innen	3,00	900,00	 ZUB, 2009b, 	16,7	139,5	194,6	10,8	59,6	208,0
SW	bis	v		Holzständer		492,92/	S. 118; Gruhler et			l			
wood	1918	^		(Eiche)/Gefach:	8,00	1800,00/	_ al., 2002;						
_13				Ziegel	,	2000,00	Maximaldicke			l			
				Lehmputz innen	1,50	900,00	_	1,1	40 1	134,3	-6,9	-50 2	162,9
SW	bis				1,50		ZUB, 2009b,	1,1	73,4	154,5	-0,9	-33,2	102,3
wood	1918	х		Holzständer	7.00	492,92/	S. 151, 152;			l			
_14	1918			(Eiche)/Gefach:	7,00	2000,00/	 Maximaldicke 			l			
				Lehmstaken		100,00							
				Ziegel/Mörtel	13,00	1800,00/	_	38,2	292.6	370,4	33,2	223,9	371,1
SW				2.090,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0,00	2000,00	Gruhler et al.,	30,2	_0_,0	5. 5,∓	JU,_	0,5	J. 1,1
wood	bis	v		Holzständer/		492,92/	2002,						
_15	1918	^		Vollziegel/Mörtel	6,00	1800,00/	- S. 31			l			
_13				v unziegel/iviuriel		2000,00	0. 51			l			
				Innenputz	1,50	900,00	-			l			
				•	,			•					

	,			GKF-Platte	1,25	800,00	_ dataholz.eu,	9,8	145,4	275,0	3,4	58,5	240,1
				Zellulosefaser-	9,04	45,00	2021, Bauteil twrxxo03a-03;						
SW	2002-		, ,	Einblasdämmung Konstruktionsvollholz	0,96	492,92	2-schalige						
wood _16	2020	,	(x :	GKF-Platte	2,50	800,00	Gebäudetrenn-						
				Mineralwolle			wand, halber Konstruktions-						
				(Außenwand)	1,00	46,25	aufbau						
				Gipsfaserplatte	2,50	1000,00	_ dataholz.eu,	60,3	867,3	1833,9	16,3	121,6	1500,4
				Lattung	0,58	484,51	2021, Bauteil twrxxo07b-00; mit						
				Holzfaserdämmung	5,42	160,00	Holzfaser- statt						
				(Innenausbau) OSB-Platte	1,50	600,00	_ Mineral-						
				Holzfaserdämmung			wollgefach- dämmung,						
SW	2002-			(Innenausbau)	14,54	160,00	Ständerdicke von						
wood _17	2020	Х	(x :	1101101101101101010111012	3,46	492,92	je 18 cm und						
				OSB-Platte	1,50	600,00	 einer Installations- ebene; 						
				Gipsfaserplatte Mineralwolle	1,25 1,00	1000,00 46,25	2-schalige						
				(Außenwand)	.,	,	Gebäudetrenn-						
							wand, halber						
							Konstruktions- aufbau						
				Brettsperrholz	7,80	489,41	_ dataholz.eu,	13,5	179,2	365,9	-13,8	-236,1	451,0
				Mineralwolle	1,00	46,25	_ 2021, Bauteil						
				(Außenwand)			twmxxo03a-00; jedoch ohne						
OW							Verkleidung mit						
SW wood	2002-	Y	(x :	4			Trockenbau-						
_18	2020	,		`			platte;						
							2-schalige Gebäudetrenn-						
							wand, halber						
							Konstruktions-						
	,						aufbau			.=			
				Gipsfaserplatte	2,50	1000	dataholz.eu, 2021, Bauteil	57,1	764,2	1593,6	-34,0	-625,9	1756,5
				Holzfaserdämmung (Innenausbau)	5,42	160	twmxxo06a-01;						
				Lattung	0,58	484,51	_ mit Holzfaser-						
				Brettsperrholz	24,00	489,41	statt Mineralwoll-						
				Mineralwolle	2,00	46,25	dämmung, 2-fache						
SW	2002-			(Außenwand)			Beplankung mit						
wood _19	2020	,	(X)	(Gipsfaserplatte						
							und einer BSH-						
							Dicke von 240 mm; 2-schalige						
							Gebäudetrenn-						
							wand, halber						
							wand, halber Konstruktions-						
	,			Innenputz	1.50	900.00	wand, halber Konstruktions- aufbau	29.2	226.1	269.3	28.5	216.8	259.2
IWmas	bis			Innenputz	1,50	900,00 575,00/	wand, halber Konstruktions-	29,2	226,1	269,3	28,5	216,8	259,2
IWmas _1	bis 1918	x		Innenputz Vollziegel/Mörtel	1,50 12,00	900,00 575,00/ 2000,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51;	29,2	226,1	269,3	28,5	216,8	259,2
		х		•		575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002,	29,2	226,1	269,3	28,5	216,8	259,2
		x		Vollziegel/Mörtel	12,00	575,00/ 2000,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51;	29,2 78,6	226,1	269,3 703,3	28,5	216,8	259,2 671,3
_1 IWmas	1918 bis			Vollziegel/Mörtel Innenputz Innenputz	1,50 1,50	575,00/ 2000,00 900,00 900,00 575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002,	·		·			
_1	1918	x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel	12,00 1,50 1,50 38,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32;	·		·			
_1 IWmas	1918 bis			Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke	78,6	588,1	703,3	76,6	558,9	671,3
_1 IWmas _2	1918 bis 1918			Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al.,	·		·			
_1 IWmas	1918 bis 1918			Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke	78,6	588,1	703,3	76,6	558,9	671,3
_1 IWmas _2 IWmas	1918 bis 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 32; Maximaldicke	78,6	588,1	703,3	76,6	558,9	671,3
_1 IWmas _2 IWmas _3	1918 bis 1918 1870- 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel	12,00 1,50 1,50 38,00 1,50 1,50 51,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al.,	78,6	588,1	703,3 920,2	76,6	558,9 729,9	671,3
_1 IWmas _2 IWmas _3	1918 bis 1918 1870- 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 900,00 575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002,	78,6	588,1 769,2	703,3 920,2	76,6	558,9 729,9	671,3 877,3
_1 IWmas _2 IWmas _3	1918 bis 1918 1870- 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Vollziegel/Mörtel	12,00 1,50 1,50 38,00 1,50 51,00 1,50 1,50 64,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51;	78,6	588,1 769,2	703,3 920,2	76,6	558,9 729,9	671,3 877,3
_1 IWmas _2 IWmas _3	1918 bis 1918 1870- 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00 1,50 64,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 975,00/ 900,00 900,00 900,00 900,00 900,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke	78,6 103,3 128,0	588,1 769,2 950,2	920,2 1137,2	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
_1 IWmas _2 IWmas _3	1918 bis 1918 1870- 1918	x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00 1,50 64,00 1,50 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51;	78,6	588,1 769,2	703,3 920,2	76,6	558,9 729,9	671,3 877,3
_1 IWmas _2 IWmas _3 IWmas _4	1918 bis 1918 1870- 1918	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00 1,50 64,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 975,00/ 900,00 900,00 900,00 900,00 900,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke	78,6 103,3 128,0	588,1 769,2 950,2	920,2 1137,2	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4	1918 bis 1918 1870- 1918 1870- 1919-	x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00 1,50 64,00 1,50 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke	78,6 103,3 128,0	588,1 769,2 950,2	920,2 1137,2	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919-	x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel	12,00 1,50 1,50 38,00 1,50 1,50 1,50 1,50 64,00 1,50 8,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al.,	78,6 103,3 128,0	588,1 769,2 950,2	920,2 1137,2	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945	x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50 1,50 51,00 1,50 64,00 1,50 8,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 900,00 575,00/ 2000,00 900,00 975,00/ 2000,00 900,00 900,00 900,00 900,00 900,00 900,00 900,00 900,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2	703,3 920,2 1137,2 202,5	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919-	x x x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel	12,00 1,50 1,50 38,00 1,50 51,00 1,50 64,00 1,50 8,00 1,50 1,50 51,00	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 900,00 900,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2	703,3 920,2 1137,2 202,5	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945	x x x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 1,50 64,00 1,50 8,00 1,50 51,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 975,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2	671,3 877,3 1083,4 195,8
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 64,00 1,50 8,00 1,50 1,50 51,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 975,00/ 2000,00 900,00 900,00 975,00/ 2000,00 900,00 900,00 975,00/ 2000,00 900,00 975,00/ 2000,00 900,00 900,00 900,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2	703,3 920,2 1137,2 202,5	76,6 100,6 124,6	558,9 729,9 901,0	671,3 877,3 1083,4
IWmas _2 IWmas _3 IWmas _4 IWmas _5	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945	x x x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 1,50 64,00 1,50 8,00 1,50 51,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 575,00/ 2000,00 900,00 975,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2	671,3 877,3 1083,4 195,8
IWmas _2 IWmas _3 IWmas _4 IWmas _5 IWmas _6	bis 1918 1870- 1918 1870- 1918 1919- 1945	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 64,00 1,50 8,00 1,50 1,50 51,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 975,00/ 2000,00 900,00 975,00/ 2000,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 575,00/	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Maximaldicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2 729,9	671,3 877,3 1083,4 195,8 877,3
IWmas _2 IWmas _3 IWmas _4 IWmas _5 IWmas _6 IWmas _7	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945 1949- 1978	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel	12,00 1,50 1,50 38,00 1,50 51,00 1,50 64,00 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2	671,3 877,3 1083,4 195,8 877,3
IWmas _2 IWmas _3 IWmas _4 IWmas _5 IWmas _6 IWmas _7	bis 1918 1870-1918 1870-1918 1919-1945 1919-1978	x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 1,50 64,00 1,50 1,50 1,50 51,00 1,50 7,00 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00 900,00 975,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4 769,2	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2 729,9	671,3 877,3 1083,4 195,8 877,3
IWmas _2 IWmas _3 IWmas _4 IWmas _5 IWmas _6 IWmas _7	1918 bis 1918 1870- 1918 1870- 1918 1919- 1945 1949- 1978	x x x x x x x		Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Vollziegel/Mörtel Innenputz Innenputz Innenputz Innenputz Vollziegel/Mörtel Innenputz	12,00 1,50 1,50 38,00 1,50 51,00 1,50 1,50 64,00 1,50 1,50 1,50 51,00 1,50 1,50 1,50 1,50	575,00/ 2000,00 900,00 900,00 575,00/ 2000,00 900,00	wand, halber Konstruktions- aufbau Gruhler et al., 2002, S. 32, 42, 51; Mindestdicke Gruhler et al., 2002, S. 32; Maximaldicke Gruhler et al., 2002, S. 42; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 51; Maximaldicke Gruhler et al., 2002, S. 61; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke Gruhler et al., 2002, S. 71; Mindestdicke	78,6 103,3 128,0 21,6	588,1 769,2 950,2 170,4 769,2	703,3 920,2 1137,2 202,5	76,6 100,6 124,6 21,2	558,9 729,9 901,0 164,2 729,9	671,3 877,3 1083,4 195,8 877,3

	•		Innenputz	1,50	900,00	- Gruhler et al.,	28,5	278,7	372,6	27,5	265,5	354,9
IWmas		ххх	Stahlbeton B15-B25	5,00	2400,00	2002,						
_9	1978		(95/5) Innenputz	1,50	900,00	S. 81; - Mindestdicke						
	-		Innenputz	1,50	900,00	- Gruhler et al.,	112.7	1113,7	1526.4	107.8	1050.1	1441,3
IWmas	1949-	v v v	Stahlbeton B15-B25			2002,	,.	,.	,	,.	,.	, .
_10	1978	x x x	(95/5)	24,00		S. 81;						
	-		Innenputz	1,50	900,00	- Maximaldicke						
IWmas	1949-	x	Stahlbeton B15-B25	7.50	2400,00	Gruhler et al., - 2002, S. 91;	25,5	227,5	309,0	23,9	207,2	281,9
_11	1994	* * * * *	(97/3)	7,50	2400,00	Minimaldicke	25,5	221,5	309,0	23,5	201,2	201,9
						Gruhler et al.,						
IWmas _12	1949- 1994	x x x x x	Stahlbeton B15-B25 (97/3)	15,00	2400,00	- 2002, S. 91;	50,9	455,0	618,0	47,8	414,4	563,7
	-		(0170)			Maximaldicke						
IWmas	1070		Stahlbeton B15-B25			Gruhler et al.,						
_13	1990	x x	(97/3)	6,00	2400,00	- 2002, S. 100,	20,4	182,0	247,2	19,1	165,8	225,5
	_					109; Minimaldicke						
IWmas	1979-		Stahlbeton B15-B25	45.00	0.400.00	Gruhler et al.,	500	455.0	040.0	47.0		500 7
_14	1990	хх	(97/3)	15,00	2400,00	 2002, S. 100; Maximaldicke 	50,9	455,0	618,0	47,8	414,4	563,7
	-					Gruhler et al.,						
IWmas _15	1979- 1990	x x	Stahlbeton B15-B25 (97/3)	30,00	2400,00	- 2002, S. 109;	101,8	910,0	1236,0	95,6	828,8	1127,4
_13	1990		(97/3)			Maximaldicke						
			Innenputz	1,50	900,00	Gruhler et al.,	51,1	386,6	453,2	51,1	386,6	453,2
IWmas _19	1991- 2000	хх	Kalksandstein (95/5)	17,50	1800,00/ 2000,00	- 2002, S. 119;						
_19	2000		Innonnutz	1.50	900,00	Mindestdicke						
	-		Innenputz Innenputz	1,50 1,50	900,00	-	67,8	508,3	595,9	67,8	508,3	595,9
IWmas	1991-		•		1800,00/	Gruhler et al.,	0.,0	000,0	000,0	0.,0	000,0	000,0
_20	2000	хх	Kalksandstein (95/5)	24,00	2000,00	 2002, S. 119; Maximaldicke 						
			Innenputz	1,50	900,00	-						
	•		Innenputz	1,50	900,00	- Gruhler et al.,	19,9	157,8	187,5	19,5	152,4	181,5
IWmas		x x x x	Ziegel/Mörtel	7,10	575,00/	- 2002, S. 129;						
_21	1990		•		2000,00	Mindestdicke						
	-		Innenputz Innenputz	1,50 1,50	900,00		52,0	393,2	469,6	50,7	374,7	449,4
IWmas	1961-		·		575,00/	Gruhler et al.,	32,0	333,2	403,0	30,1	314,1	443,4
_22	1990	x x x x	Ziegel/Mörtel	24,00	2000,00	 2002, S. 129; Maximaldicke 						
	-		Innenputz	1,50	900,00	-						
			Innenputz	1,50	900,00	Gruhler et al.,	28,2	219,1	260,9	27,6	210,3	251,3
IWmas _23	1961- 2000	x x x x x	Hochlochziegel (75/25)	11,50	575,00/ 2000,00	- 2002, S. 148;						
_20	2000		Innenputz	1,50	900,00	Mindestdicke -						
	-		Innenputz	1,50	900,00		52,0	393,2	469,6	50,7	374,7	449,4
IWmas		x	Hochlochziegel	24,00	575,00/	Gruhler et al., - 2002, S. 148;						
_24	2000	~ ~ ~ ~ ~	(75/25)		2000,00	Maximaldicke						
	-		Innenputz	1,50	900,00	-	400	457.0	187.5	19.5	152 4	181.5
IWmas	1061-		Innenputz	1,50	900,00	Gruhler et al.,	19,9	157,8	187,5	19,5	152,4	181,5
_25	1990	x x x x	Ziegel/Mörtel	7,10	575,00/ 2000,00	- 2002, S. 157;						
			Innenputz	1,50	900,00	Mindestdicke -						
	•		Innenputz	1,50	900,00	- Gruhler et al.,	28,8	251,6	304,4	28,7	250,2	302,6
IWmas		x x x x	Hohlblockstein	11,50	501,00/	- 2002, S. 157;						
_26	1990		(90/10) Innenputz	1,50	2000,00 900,00	Maximaldicke						
	-		Innenputz	1,50	900,00	- Gruhler et al.,	19,9	157.8	187,5	19,5	152.4	181,5
IWmas	1961-	V V V V V	Hochlochziegel		575,00/	2002,	-,,	,=	,5	-,3	,•	, -
_27	2000	x x x x x	(75/25)	7,10	2000,00	S. 167;						
	-		Innenputz	1,50	900,00	_ Mindestdicke						
11/1/2000	1001		Innenputz	1,50	900,00	- Gruhler et al.,	28,2	219,1	260,9	27,6	210,3	251,3
IWmas _28	2000	x x x x x	Hochlochziegel (75/25)	11,50	575,00/ 2000,00	2002, S. 167;						
			Innenputz	1,50	900,00	_ Maximaldicke						
	•		Innenputz	1,50	900,00	Carleton - t - t	53,2	461,1	560,3	53,0	458,1	556,5
IWmas		x	Hohlblockstein	24,00	501,00/	Gruhler et al., - 2002,						
_29	2000		(90/10)		2000,00	S. 167						
	-		Innenputz Innenputz	1,50 1,50	900,00	- Grubler et al	28,2	210 1	260,9	27,6	210.3	251,3
			mionputz		575,00/	 Gruhler et al., 2002, 	23,2	-13,1	200,9	21,0	- 10,3	201,0
IWmas	1961-		771 178 ATT 1				I					
IWmas _30	1961- 2000	x x x x x	Ziegel/Mörtel	11,50	2000,00	S. 177;						
		x x x x x	Innenputz	1,50	900,00	S. 177; - Mindestdicke						
_30	2000	x x x x x	-		900,00	- Mindestdicke - Gruhler et al.,	52,0	393,2	469,6	50,7	374,7	449,4
_30	2000	x x x x x	Innenputz	1,50	900,00 900,00 575,00/	- Mindestdicke - Gruhler et al., 2002,	52,0	393,2	469,6	50,7	374,7	449,4
_30	2000		Innenputz Innenputz	1,50 1,50	900,00	- Mindestdicke - Gruhler et al.,	52,0	393,2	469,6	50,7	374,7	449,4

	_											
			Innenputz	1,50	900,00	- Gruhler et al.,	26,0	185,8	218,4	26,0	185,8	218,4
IWmas		хх	Kalksandstein	7,00	1800,00/	2002,						
_32	1978		(75/25)	4.50	2000,00	S. 187; Mindestdicke						
	_		Innenputz	1,50	900,00	-	70.0	400.0	504.4	70.0	400.0	504.4
1) 4/	4004		Innenputz	1,50	,	Gruhler et al.,	73,8	493,9	581,1	73,8	493,9	581,1
IWmas _33	1961-	x x	Kalksandstein (75/25)	24,00	1800,00/ 2000,00	2002, S. 187;						
_00	1070		Innenputz	1,50	900,00	Maximaldicke						
	-		Innenputz	1,50	900,00	_	43,1	383,8	458,3	41,6	361,7	434,1
IWmas	1961-		Hochlochziegel		575,00/	Gruhler et al.,	43,1	303,0	430,3	41,0	301,7	454,1
	1978	x x	(90/10)	24,00	2000,00	- 2002,						
			Innenputz	1,50	900,00	S. 187						
	_		Innenputz	1,50	900,00	- Gruhler et al.,	19,7	156,4	185,8	19,3	151,1	180,0
IWmas	1991-	x x	Hochlochziegel	7.00	575,00/	2002,						
_35	2000	* *	(75/25)	7,00	2000,00	S. 197;						
			Innenputz	1,50	900,00	Mindestdicke						
			Innenputz	1,50	900,00	 Gruhler et al., 	75,7	567,3	678,2	73,8	539,2	647,5
	1991-	хх	Hochlochziegel	36,50	575,00/	2002,						
_36	2000		(75/25)		2000,00	S. 197; Maximaldicke						
	_		Innenputz	1,50	900,00	- Annahme	40.4	100.1	220.4	40.2	100.4	246.2
			Innenputz Hochlochziegel	1,00	900,00	Verhältnis	19,1	192,1	229,1	18,3	180,4	216,3
			(99,6/0,4)	11,50	575,00	 Planziegel und 						
			Innenputz	1,00	900,00	_ Dünnbettmörtel in						
						Annäherung an Hersteller-						
						angaben						
IWmas :	2002- 2020	x x	X			(Wienerberger,						
_37	2020					Poroton-						
						Hochlochziegel- Plan-T-11,5:						
						Steinhöhe 498						
						mm, Mörtel-						
						schicht 2 mm);						
	_			0.00	200.00	Minimaldicke - Annahme	40.5		4== 4			
			Innenputz	2,00	900,00	Verhältnis	40,5	398,5	475,4	38,9	374,4	449,0
			Hochlochziegel (98/2) Innenputz	24,00	575,00 900,00	Ziegel/Mörtel für						
			IIIIIeiiputz	2,00	900,00	den ungüns-						
114/2000	2002					tigsten Fall						
IWmas : _38	2002-	x x	X			gewählt; Maximaldicke für						
_00	2020					Standardinnen-						
						wände nach						
						Hersteller-						
						angaben (Wienerberger)						
	-		Innenputz	1,00	900,00	- Annahme	33,1	256,1	299,9	33,1	256,1	299,9
			Kalksandstein			Verhältnis	00,.	_00,.	200,0	00,1	_00,.	_00,0
			(99,2/0,8)	11,50	1800,00	Planziegel und						
			Innenputz	1,00	900,00	 Dünnbettmörtel in Annäherung an 						
						Herstelleran-						
IWmas : _39	2002-	x x	X			gaben (KS						
_55	2020					Original, KS Ratio						
						Plansteine: Steinhöhe 248						
						mm, Mörtel-						
						schicht 2 mm);						
	_					Minimaldicke						
			Innenputz	2,00	900,00	 Annahme Verhältnis 	69,9	528,0	618,9	69,9	528,0	618,9
			Kalksandstein (95/5) Innenputz	24,00	1800,00 900,00	Ziegel/Mörtel in						
			mineriputz	2,00	300,00	Annäherung an						
						Herstelleran-						
						gaben (KS Original, KS Ratio						
						Block-						
IWmas :		v v	Y			steine: Steinhöhe						
_40	2020	x x	. ^			238 mm,						
						Mörtelschicht 12 mm); Maximal-						
						dicke für						
						Standard-						
						innenwände nach						
						Herstelleran-						
						gaben (KS Original)						
	_		Innenputz	1,00	900,00	Original) - Annahme	25,7	176.2	216.1	25,6	175.0	214.5
	_		Innenputz Porenbeton P2 04			Original) - Annahme Verhältnis	25,7	176,2	216,1	25,6	175,0	214,5
IWmas :		x x	Porenbeton P2 04	1,00 11,50	900,00	Original) - Annahme Verhältnis - Planziegel und	25,7	176,2	216,1	25,6	175,0	214,5
	 2002- 2020	x x	Porenbeton P2 04			Original) - Annahme Verhältnis	25,7	176,2	216,1	25,6	175,0	214,5

	į						Innenputz	2,00	900,00	-	Annahme	64,5	414,7	503,5	64,2	411,7	499,7
I\A/maa	2002						Porenbeton P4 05	24,00	380,00	_	Verhältnis						
IWmas _42	2002-)	х х	×	(95/5)	24,00	300,00		Planziegel und Normalmörtel in						
_							Innenputz	2,00	900,00	-	Annäherung;						
											Maximaldicke						
											Minimal konstruktiv						
IWmas	2002-						Stahlbeton C20/25	15.00	2400,00		ausführbare	25.4	250.7	225 1	22.2	200.2	260.7
_43	2020			,	K X	X	(99/1)	15,00	2400,00	_	Wandicke bei	35,4	250,7	325,1	32,2	209,3	269,7
											Ortbetonwänden (Betonierbarkeit)						
							Innenputz	2,00	900,00		Maximaldicke in	90,4	712,8	929,9	85,2	644,4	838,5
							Stahlbeton C30/37				Annäherung an	30,4	, 0	020,0	00,2	011,1	000,0
IWmas	2002-						(98/2)	25,00	2400,00	-	Mauerwerksdicke						
_44	2020			,	х х	. х	Innenputz	2,00	900,00	-	n gewählt, wobei 250 mm						
											gängigeres						
								4.50	222.22		Betoniermaß ist		202.4		40.4	105.5	222.2
IW							Innenputz	1,50	900,00 492,92/	_	Gruhler et al.,	27,0	223,1	306,9	18,4	105,7	330,0
wood	bis 1918	x					Holzständer/	12,00	575,00/	_	2002,						
_1	1916						Vollziegel/Mörtel		2000,00		S. 32						
							Innenputz	1,50	900,00	-							
							GKF-Platte	1,25	800,00	-	dataholz.eu,	6,7	92,2	208,9	0,3	5,3	174,0
IW wood	2002-			,	, ,		Zellulosefaser- Einblasdämmung	9,04	45,00	-	2021, Bauteil iwrxxo01a-04;						
_2	2020			,	` ^	. ^	Konstruktionsvollholz	0,96	492,92	_	Ständerabstand						
							GKF-Platte	1,25	800,00	-	gewählt: 62,5 cm						
							Gipsfaserplatte	3,60	1000,00	-	dataholz.eu,	75,9	1140,3	2199,5	25,0	264,3	1886,9
							OSB-Platte	2,20	600,00	-	2021, Bauteil						
IW	2002-						Holzfaserdämmung	19,39	160,00	_	iwrxxo10b-00; jedoch mit						
wood _3	2020)	x x	X	(Innenausbau) Konstruktionsvollholz	4,61	492,92		Holzfaserdämm-						
_5							OSB-Platte	2,20	600,00		stoff und auf 24						
							Gipsfaserplatte	3,60	1000,00	_	cm Ständerdicke erhöht						
	,								•		dataholz.eu,						
IW											2021, Bauteil						
wood	2002- 2020)	x x	x	Brettsperrholz	9,00	489,41	-	iwmxxo01a-00; jedoch ohne	14,0	186,6	398,8	-17,6	-292,6	497,0
_4	2020										Verkleidung mit						
											Trockenbauplatte						
							Gipsfaserplatte	3,60	1000,00	-	dataholz.eu, 2021, Bauteil	78,5	1073,4	2198,2	-19,6	-428,8	2262,3
							Holzfaserdämmung (Innenausbau)	5,42	160,00	-	iwmxxo02a-01;						
							Lattung	0,58	484,51	_	jedoch mit						
IW	2002-						Brettsperrholz	24,00	489,41	_	beidseitiger						
wood	2020)	x x	X	Lattung	0,58	484,51	-	Beplankung, dickerer						
_5							Holzfaserdämmung	5,42	160,00	_	Gipsfaserplatte,						
							(Innenausbau) Gipsfaserplatte		1000,00	_	Holzfaserdäm-						
							Cipolascipiano	0,00	1000,00		mung und einer Dicke des BSH						
											von 24 cm						
							Außenputz	2,00	1800,00	1,00	Gruhler et al.,	115,4	841,8	1034,3	112,8	802,5	991,4
CW _1	bis 1945	хх					Vollziegel/Mörtel	51,00	575,00/ 2000,00	0,79	2002,						
-'	1343						Innenputz	1,50	900,00	0,70	S. 31, 61						
0144							·		575,00/		Gruhler et al.,	75.4	550.7	000.0	70.4	500.4	0000
CW _2	bis 1918	x					Vollziegel/Mörtel	38,00	2000,00	0,79	2002,	75,4	558,7	668,8	73,4	529,4	636,8
_	,						Innenputz	1,50	900,00	0,70	S. 31						
CW	1070						Außenputz	2,00	1800	1,00	Gruhler et al.,	140,1	1022,8	1251,3	136,8	973,6	1197,5
CW _3	1870- 1918	X					Vollziegel/Mörtel	64,00	575,00/ 2000,00	0,79	2002,						
							Innenputz	1,50	900	0,70	S. 41, 51						
CW	1070						Vollziegel/Mörtel	25,00	900,00	0,79	Gruhler et al.,	50,7	377,6	451,8	49,4	358,4	430,7
_4	1870- 1918	X						1 50	900,00	0,70	2002,						
							Innenputz	1,50		0,70	S. 41, 51						
CW	1919-	x					Vollziegel/Mörtel	12,00	575,00/ 2000,00	0,79	Gruhler et al., 2002,	26,0	196,6	234,8	25,4	187,4	224,7
_5	1945	^					Innenputz	1,50	900,00	0,70	S. 61						
	•						Außenputz	2,00	1800	1,00		87,9	639,9	792,3	86,0	611,8	761,6
CW	1949-		v				,		575,00/		Gruhler et al.,	, -	-,-	,-		,-	,-
_6	1978	хх	X				Vollziegel/Mörtel	36,50	2000,00	0,79	2002, S. 71						
							Innenputz	1,50	900	0,70							
CW	1949-	хх	×				Vollziegel/Mörtel	24,00	575,00/ 2000,00	0,79	Gruhler et al., 2002,	48,8	363,7	435,1	47,5	345,2	414,9
_7	1978	^ ^	**				Innenputz	1,50	900	0,70	S. 71						
	•						Außenputz	2,00	1800	1,00	Gruhler et al.,	118,7	1124,8	1555,5	114,1	1064,9	1475,4
CW	1949-		v				Stahlbeton B15-B25				2002,						
_8	1978	хх	X				(95/5)	22,60	2400	2,50	S. 81; Durchschnitts-						
							Innenputz	1,50	900	0,70	dicke						

CW _9	1949- 1994	x x x x	Stahlbeton B15-B25 (97/3)	17,30	2400,00	2,50	Gruhler et al., 2002, S. 91; Durchschnitts- dicke; Bestimmung der typischen Baualtersklassen unter zusätzlicher Berücksichtigung von www.ioer- bdat.de, Bauwerksdaten	58,7	524,7	712,8	55,1	477,9	650,2
							MFH für Ostdeutschland						
CW _10	1979- 1990	хх	Stahlbeton B15-B25 (97/3)	22,40	2400,00	2,50	Gruhler et al., 2002, S. 100; Durchschnitts- dicke	76,0	679,4	922,9	71,4	618,8	841,8
			Außenputz	2,00	1800,00	1,00		146,1	1384,3	1783,8	133,9	1216,2	1563,4
CW	1991-		Polystyroldämmung,	6,00	32,00	0,04	Gruhler et al.,						
_11	2000	x x	XPS (KW) Stahlbeton B15-B25	30,00	2400,00	2,50	2002, S. 119						
			(97/3) Innenputz	1,50	900,00	0,70							
			Außenputz	2,00	1800,00	1,00	Gruhler et al.,	92,1	527,8	659,7	83,6	416,2	510,4
CW _12	1961- 1990	x x x x	Beton B5-B20	40,00	2400,00	2,00	2002,						
_ '-	1000		Innenputz	1,50	900,00	0,70	S. 129						
			Außenputz	2,00	1800,00	1,00	Gruhler et al.,	87,9	639,9	792,3	86,0	637,2	764,2
CW _13	1961- 1990	x x x x	Ziegelmauerwerk	36,50	575,00/ 2000,00	0,79	2002,						
_10	1330		Innenputz	1,50	900,00	0,70	S. 138						
			Außenputz	2,00	1800	1,00		100,7	737,7	921,6	100,4	734,0	916,8
CW	1961-	x x x x	Hohlblockstein	36,50	501,00/	0,41	Gruhler et al., 2002,						
_14	1990	^ ^ ^ ^	(75/25)		2000,00		S. 138, 167						
			Innenputz	1,50	900	0,70							
			Bitumenabdichtung Polystyroldämmung,	0,50	1100,00	-		103,2	1167,5	1315,4	95,3	1052,5	1173,0
CW	1991-		XPS (KW)	6,00	32,00	0,04	Gruhler et al.,						
_15	2000	x x	Hochlochziegel	36,50	575,00/	0,79	2002, S. 148, 197						
			(75/25)		2000,00	0,70							
			Innenputz Außenputz	1,50 2,00	1800,00	1,00	Gruhler et al.,	92,1	527,8	659,7	83,6	416,2	510,4
CW	1961-	x x x x	Stampfbeton B5-B20	40,00		2,00	2002,	,-	,-	,.	,-	,_	,-
_16	1990		Innenputz	1,50	900,00	0,70	S. 157						
			Außenputz	2,00	1800,00	1,00	Gruhler et al.,	98,5	567,2	716,5	93,8	505,4	634,4
CW	1961-	x x x x x	Schalsteine mit	36,50	2400,00/	2,10							
_17	2000		Betonfüllung B15		2000,00		S. 177						
		x x	Innenputz Außenputz	1,50 2,00	900,00	0,70 1,00		121,0	793,1	961,9	121,0	793,1	961,9
CW	1961-	:- <i>n</i>	Kalksandstein		1400,00/		Gruhler et al.,	,5			,0		, -
_18	1978	x x	(75/25)	36,50	2000,00	0,70	2002, S. 187						
		X X	Innenputz	1,50	900	0,70							
			Noppenbahn	0,13	960,00	-	Dimensionierung in Anlehnung an	92,9	1060,7	1216,8	81,3	891,2	1004,7
			PE-HD- Flächenabdichtung	0,15	1067,00	-	www.bauwion.de (https://www.bau						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	-	wion.de/wissen/ro hbau/bodenplatte- keller/102-						
			lösemittelhaltig)	2.00	1900.00	1	kellerwaende-						
CW	2002-		Außenputz	2,00	1800,00	0,16/	ziegel; https://www.bauwi						
_19	2020	x x x	Hochlochziegel (99,6/0,4)	30,00	575,00	0,12/ 0,11	on.de/wissen/roh bau/bodenplatte-						
			Innenputz	1,00	900,00	0,7	keller/105- abdichtung- schwarze- wanne); Wahl						
							Verhältnis Ziegel zu Dünn- bettmörtel nach						
							Wienerberger						

						Dimensionismos						
		Noppenbahn	0,13	960,00	-	Dimensionierung in Anlehnung an	106,6	1226,1	1393,2	95,0	1056,8	1181,4
		PE-HD- Flächenabdichtung	0,15	1067,00	-	www.bauwion.de						
		Grundierung				(https://www.bau wion.de/wissen/ro						
		(Bitumenvoranstrich,	0,02	950,00	-	hbau/bodenplatte-						
		lösemittelhaltig)	0.00	4000.00	4.00	keller/102- kellerwaende-						
		Außenputz Hochlochziegel,	2,00	1800,00	1,00	ziegel; https://www.bauwi						
		Dämmstoff gefüllt	30,00	575,00	0,09	on.de/wissen/roh						
CW	2016-	(99,6/0,4) x Innenputz	2,00	900,00	0,70	bau/bodenplatte- keller/105-						
_20	2020	^				abdichtung-						
						schwarze- wanne); Wahl						
						Verhältnis Ziegel						
						zu Dünnbett- mörtel nach						
						Wienerberger;						
						Wärmeleit- fähigkeit						
						Hochlochziegel						
						für Niedrigst- energiestandard						
	•	Noppenbahn	0,13	960,00	-	Dimensionierung	137,8	1437,6	1610,7	122,4	1211,7	1320,3
		Polystyroldämmung, XPS (KW)	6,00	32,00	0,04	in Anlehnung an						
		PE-HD-				www. Kalksandstein.de						
		Flächenabdichtung	0,15	1067,00	-	und						
		Grundierung				www.bauwion.de (https://www.kalks						
CM	2002-	(Bitumenvoranstrich,	0,02	950,00	-	andstein.de/entw urf-und-						
CW _21	2002-	iösemittelhaltig) x Außenputz	2,00	1800,00	1,00	planung/bauteile/						
		Kalksandstein	24,00	1800,00	0,99	keller-und- kellerwaende/;						
		(99,2/0,8)				https://www.bauwi						
						on.de/wissen/roh bau/bodenplatte-						
						keller/105-						
						abdichtung- schwarze-wanne)						
	•	Noppenbahn	0,13	960,00			144.3	1523,2	1701.9	127.3	1275,7	1383.5
		Polystyroldämmung,	7,50	32,00	0,04	Dimensionierung in Anlehnung an	, .	.020,2	,0	,0	,.	.000,0
		XPS (KW)	.,	,	-,- :	www. Kalksandstein.de						
		PE-HD- Flächenabdichtung	0,15	1067,00	-	und						
		Grundierung				www.bauwion.de (https://www.kalks						
		(Bitumenvoranstrich,	0,02	950,00	-	andstein.de/entw						
CW _22	2010- 2015	lösemittelhaltig)		4000.00	4.00	urf-und- planung/bauteile/						
	20.0	Außenputz Kalksandstein		1800,00 1800,00	0,99	keller-und-						
		(99,2/0,8)				kellerwaende/; https://www.bauwi						
						on.de/wissen/roh						
						bau/bodenplatte- keller/105-						
						abdichtung-						
	•		0.40			schwarze-wanne)	450 5	1000.0	4700.0	400.0	1000 =	11100
		Noppenbahn Polystyroldämmung,	0,13	960,00	0.04	Dimensionierung in Anlehnung an	150,7	1608,9	1793,0	132,3	1339,7	1446,8
		XPS (KW)	9,00	32,00	0,04	www.						
		PE-HD-	0,15	1067,00	_	Kalksandstein.de und						
		Flächenabdichtung				www.bauwion.de						
		Grundierung (Bitumenvoranstrich,	0,02	950,00	_	(https://www.kalks andstein.de/entw						
CW	2016-	lösemittelhaltig)				urf-und-						
_23	2020	Außenputz Kalksandstein	2,00 24,00	1800,00 1800,00	1,00 0,99	planung/bauteile/ keller-und-						
		(99,2/0,8)	24,00	1000,00	0,99	kellerwaende/;						
						https://www.bauwi on.de/wissen/roh						
						bau/bodenplatte-						
						keller/105- abdichtung-						
						schwarze-wanne)						

	_												
	•		Noppenbahn Polystyroldämmung,	0,13 6,00	960,00 32,00	0,04	Dimensionierung in Anlehnung an	175,3	1707,9	1928,0	159,9	1482,1	1637,6
			XPS (KW) PE-HD-	0,00	02,00	0,04	www. Kalksandstein.de						
			Flächenabdichtung	0,15	1067,00	-	und www.bauwion.de						
CW	2002-	x	Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	-	(https://www.kalks andstein.de/entw urf-und-						
_24	2009	^	Außenputz	2,00	1800,00	1,00	planung/bauteile/ keller-und-						
			Kalksandstein (95/5)	36,50	1800,00	0,99	kellerwaende/;						
			Innenputz	2,00	900,00	0,70	https://www.bauwi on.de/wissen/roh						
							bau/bodenplatte- keller/105-						
							abdichtung- schwarze-wanne)						
			Noppenbahn	0,13	960,00	-	Dimensionierung	183,9	1822,1	2049,6	166,5	1567,4	1721,9
			Polystyroldämmung, XPS (KW)	8,00	32,00	0,04	in Anlehnung an www.						
			PE-HD- Flächenabdichtung	0,15	1067,00	-	Kalksandstein.de und						
			Grundierung				www.bauwion.de (https://www.kalks						
CW	2010-		(Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	-	andstein.de/entw urf-und-						
_25	2015	Х	Außenputz	2,00	1800,00	1,00	planung/bauteile/ keller-und-						
			Kalksandstein (95/5)	36,50	1800,00	0,99	kellerwaende/; https://www.bauwi						
			Innenputz	2,00	900,00	0,70	on.de/wissen/roh bau/bodenplatte-						
							keller/105- abdichtung-						
							schwarze-wanne)						
			Noppenbahn Polystyroldämmung,	0,13	960,00	-	Dimensionierung in Anlehnung an	190,3	1907,8	2140,7	171,4	1631,3	1785,1
			XPS (KW)	9,50	32,00	0,04	www. Kalksandstein.de						
			PE-HD- Flächenabdichtung	0,15	1067,00	-	und www.bauwion.de						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	(https://www.kalks andstein.de/entw						
CW	2016-	x	lösemittelhaltin)	0,02	330,00		urf-und-						
_26	2020		Außenputz	2,00	1800,00	1,00	planung/bauteile/ keller-und-						
			Kalksandstein (95/5)	36,50	1800,00	0,99	kellerwaende/; https://www.bauwi						
			Innenputz	2,00	900,00	0,70	on.de/wissen/roh bau/bodenplatte-						
							keller/105-						
							abdichtung- schwarze-wanne)						
	•		Noppenbahn	0,13	960,00	-	Dimensionierung	110,0	1019,1	1182,7	100,3	877,1	1000,2
			PE-HD- Flächenabdichtung	0,15	1067,00	-	in Anlehnung an www.ytong- silka.de und						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	www.bauwion.de						
			lösemittelhaltig)				(https://baubuch.y						
			Außenputz Porenbeton P2 04	2,00	1800,00	1,00 0,07/	silka.de/konstrukti onsbeispiele/grue						
			(99,2/0,8)	30,00	380,00	0,11	ndung/gruendung /;						
CW 27	2002- 2020	x x x	Innenputz	1,00	900,00	0,70	https://www.bauwi						
_							on.de/wissen/roh bau/bodenplatte-						
							keller/102- kellerwaende-						
							ziegel; https://www.bauwi						
							on.de/wissen/roh						
							bau/bodenplatte- keller/105-						
							abdichtung- schwarze-wanne)						
							a-25 wainte)						

			Nananhaha	0.40	000.00			1001	1101 7	4076.4	110.1	050.0	1002.1
			Noppenbahn	0,13	960,00	-	Dimensionierung in Anlehnung an	120,1	1101,7	1270,4	116,4	959,2	1093,1
			PE-HD- Flächenabdichtung	0,15	1067,00	-	www.ytong-						
			•				silka.de und						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	www.bauwion.de (https://baubuch.y						
			lösemittelhaltig)	-,-	,		tong-						
			Außenputz	2,00	1800,00		silka.de/konstrukti						
			Porenbeton P4 05	30,00	380,00	0,07/							
CW	2002		(95/5) Innenputz	2,00	900,00	0,11	/;						
CW _28	2002- 2020	x x >		,	,	-,	https://www.bauwi						
_							on.de/wissen/roh bau/bodenplatte-						
							keller/102-						
							kellerwaende-						
							ziegel; https://www.bauwi						
							on.de/wissen/roh						
							bau/bodenplatte- keller/105-						
							abdichtung-						
							schwarze-wanne)						
	•		Noppenbahn	0,13	960,00	-	Ausführung	91,8	964,1	1099,5	77,0	754,8	827,5
			Polystyroldämmung,	6,50	32,00	0,04	schwarze Wanne						
			XPS (KW) Grundierung				in Anlehnung an www.bauwion.de						
			(Bitumenvoranstrich,	0,02	950,00	-	(https://www.bau						
C'	000-		lösemittelhaltig) Stahlbeton C20/25	20,00	2400,00	2,30	wion.de/wissen/ro						
CW _29	2002- 2009	х	(99/1)	20,00	2400,00	2,50	hbau/bodenplatte- keller/105-						
	2000						abdichtung-						
							schwarze-						
							wanne); Annahme:						
							Mindestwand-						
							dicke 200 mm						
	•		Noppenbahn	0,13	960,00	-	Ausführung	98,2	1049,8	1190,7	82,0	818,8	890,7
			Polystyroldämmung, XPS (KW)	8,00	32,00	0,04							
			Grundierung				in Anlehnung an www.bauwion.de						
			(Bitumenvoranstrich,	0,02	950,00	-	(https://www.bau						
CW	2010-		lösemittelhaltig) Stahlbeton C20/25	20,00	2400,00	2,30	wion.de/wissen/ro hbau/bodenplatte-						
_30	2015	х	(99/1)				keller/105-						
							abdichtung-						
							schwarze- wanne);						
							Annahme:						
							Mindestwand- dicke 200 mm						
							dicke 200 mm						
			Noppenbahn Polystyroldämmung,	0,13	960,00	-	Ausführung schwarze Wanne	104,7	1135,5	1281,9	86,9	882,7	953,9
			XPS (KW)	9,50	32,00	0,04	in Anlehnung an						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	www.bauwion.de						
			lösemittelhaltig)	0,02	330,00		(https://www.bau wion.de/wissen/ro						
CW	2016-	,	Stahlbeton C20/25	20,00	2400,00	2,30	hbau/bodenplatte-						
_31	2020	,	(99/1)				keller/105-						
							abdichtung- schwarze-						
							wanne);						
							Annahme: Mindestwand-						
							dicke 200 mm						
	,		Noppenbahn	0,13	960,00	-		165,8	1585,5	1915,4	147,4	1328,5	1580,0
			Polystyroldämmung,	7,00	32,00	0,04	weiße Wanne in Anlehnung an						
			XPS (KW) Grundierung	.,00	52,00	3,0-7	www.bauwion.de						
			(Bitumenvoranstrich,	0,02	950,00	-	(https://www.bau						
CW	2002-		lösemittelhaltig)				wion.de/wissen/ro hbau/bodenplatte-						
_32	2002	X	Stahlbeton C30/37 (98/2)	35,00	2400,00	2,50	keller/106-						
			Innenputz	2,00	900,00	0,70							
							weisse-wanne); Annahme:						
							maximale						
							Wanddicke 350						
							mm						

Negperbalm 1,000														
CW 2016 X 2016				Noppenbahn	0,13	960,00	-	Ausführung weiße Wanne in	174,3	1699,8	2037,0	154,0	1413,8	1664,3
CW 2010					9,00	32,00	0,04							
Value						050.00								
2014					0,02	950,00	-	, ,						
Negrentian 1,000			x		35.00	380.00	2 50							
Nospendarin	_33	2015	^											
Nopperbalm				IIIIeiiputz	2,00	900,00	0,70							
Noppenbahn 0,13 960,00 - Ausführung in Medik Variane in Medika Variane in Medik Var														
Noppenbath														
Polystyroidammung.		_												
Nopembath		•			0,13	960,00	-		180,8	1785,5	2128,2	158,9	1477,7	1727,5
Gunderung (Bitumenvoransitich, 0,02 950,00 1/thtps://www.bau.wion.de/wissen/robable/file/liber/series/liber/s					10,50	32,00	0,04							
								www.bauwion.de						
2016					0,02	950,00	-	, ,						
Second S	CW	2016-			05.00		0.50							
Noppenbahn 0.13 960,00 Nomentalina Noppenbahn 0.15 1067,00 Nomentalina Noppenbahn Noppenb	_34	2020	X	(98/2)				keller/106-						
Noppenbahn 0,13 960,00 - Konstruktion für unbeheizten - Keller; Dimensionierung in Anlehnung an (https://www.bau.widen.org/liver.org/liv				Innenputz	2,00	900,00	0,70							
Noppenbahm 0,13 960,00 Month 1,00								**						
Noppenbahn 0,13 960,00 Konstruktion für unbehörzten Réfler, Flächenabdichtung 0,15 1067,00 Réfler, Diemesionierung in Anlehnung an Werthautwünde, (https://www.bau hourbookensjatte-keller/105-abdichtung-schwarze-warne), Wahrung an 1,00 900,00 1,0														
Noppenbahm 0,13 960,00 - Konstruktion für unbeheitzten Flächenabdichtung 0,15 1067,00 - Konstruktion für unbeheitzten Flächenabdichtung 0,15 1067,00 - Konstruktion für unbeheitzten Keller/102-kellerwande Keller/102-kellerwande Keller/102-kellerwande Keller/102-kellerwande Keller/103-k														
PE-HD-Flächenabdichtung				Noppenbahn	0,13	960,00	-		85,1	980,9	1121,2	74,0	817,6	915,8
Flächenabdichtung				• •					•	·	•	,		,
Crundierung (Bitumenvoranstrich, 0.02 950,00 100					0,15	1067,00	-	,						
Comment Comm				Canadianna										
Außenputz					0,02	950,00	_	www.bauwion.de						
Audenputz								, ,						
CW 200235 2020 X X X X Noppenbahn 0.13 960,00 0.70 0.35 keller/namende- Little Litt				Außenputz	2,00	1800,00	1,00							
Section Sect					24,00	575,00	0,35	keller/102-						
Noppenbahn 0,13 960,00 Selection 138,5 1570,9 1793,0 125,6 1382,4 1560,1 138,5 1570,9 1793,0 138,5 1570,9 1793,0 138,5 1570,9 1793,0 138,5 1570,9 1793,0 138,5 1570,9 1793,0 138,5 1570,9 1793,0 138,5 1570,9 1793,0 1	CW	2002												
On.de/wissen/roh bau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältmis Ziegel zu Dünnbett-mörtel nach Hersteller-angaben (Wienerberger) Noppenbahn 0,13 960,00 - Konstruktion für unbeheitzten (Wienerberger) PE-HD-Flächenabdichtung Grundierung (Bitumervoranstrich, 0,02 950,00 lösemitelhaitig) Außenputz 2,00 1800,00 1,00 wionkeitsen oheautour de (https://www.bau wion.de (https://www.bau haubodenplatte-bau/bodenplatte-bau/bodenplatte-bau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältmis Ziegel zu Dünnbettmörtel nach Hersteller-angaben			x x x	mionputz	1,00	500,00	0,70							
Noppenbahn 0,13 960,00 2														
abdichtung-schwarze-wanne); Wahl Verhältnis Ziegel zu Dünnbett-mörtel nach Hersteller-angaben (Wienerberger) Noppenbahn 0,13 960,00 - Konstruktion für unbeheizten (Wienerberger) PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz 2,00 1800,00 1,00 wind-wiknseur/ro hbau/bodenplatte-beller/angaben (https://www.bau Außenputz 2,00 1800,00 1,00 wind-wiknseur/ro hbau/bodenplatte-beller/angaben (Pierweit-wikneur) W 2002-														
Noppenbahn 0,13 960,00 - Konstruktion für unbeheizten Keller; Dimensionierung 138,5 1570,9 1793,0 125,6 1382,4 1560,1														
Noppenbahn 0,13 960,00 Sonstruktion für unbehizten 138,5 1570,9 1793,0 125,6 1382,4 1560,1														
Noppenbahn 0,13 960,00 - Konstruktion für unbeheizten Kellerangaben (Wienerberger) 138,5 1570,9 1793,0 125,6 1382,4 1560,1								* * * * * * * * * * * * * * * * * * * *						
Noppenbahn 0,13 960,00 - Konstruktion für unbeheizten keller/105- Außenputz 138,5 1570,9 1793,0 125,6 1382,4 1560,1														
Noppenbahn														
Noppenbahn								-						
PE-HD- Flächenabdichtung Grundierung (Bitumenvoranstrich, 0,02 950,00 - www.bauwion.de (https://www.bau hochlochziegel, Dämmstoff gefüllt 49,00 575,00 0,35 keller/102-kellerwaende-linnenputz 2,00 900,00 0,70 ziegel; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältnis Ziegel ZU Dünnbetrieren Grundierung (Bitumenvoranstrich, 0,02 950,00 - www.bauwion.de (https://www.bau wion.de/wissen/rohbau/bodenplatte-keller/102-kellerwaende-linnenputz 2,00 900,00 0,70 ziegel; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältnis Ziegel ZU Dünnbetrieren Leller; Dimensionierung in Anlehnung an (https://www.bau wion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältnis Ziegel Zu Dünnbetmörtel nach Hersteller-angaben		•		Noppenbahn	0.13	960.00	-		138.5	1570.9	1793.0	125.6	1382.4	1560.1
Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Außenputz Außenputz Bornmestoff gefüllt Bornmestorierung in Anlehnung an Www.bauwion.de/wissen/ro hbau/bodenplatte-keller/105- abdichtung-schwarze- wanne); Wahl Verhältnis Ziegel Zu Dünnbettmörtel nach Hersteller- angaben								unbeheizten	,-	-,-	,-		, -	, -
Grundierung (Bitumenvoranstrich, lösemittelhalitig) Außenputz Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Innenputz 2,00 900,00 CW 2002- 36 2020 X X X X Dümmstoff gefüllt Verhältnis Ziegel Verhältnis Ziegel Zu Dünnbettmörtel nach Hersteller- angaben					0,15	1067,00	-							
CW 2002- X X X X X X X X X				Grundierung										
Außenputz 2,00 1800,00 1,00 wion.de/wissen/ro hbau/bodenplatte-keller/102-kellerwaende-linenputz 2,00 900,00 0,70 ziegel; Außenputz 49,00 575,00 0,35 keller/102-kellerwaende-linenputz 2,00 900,00 0,70 ziegel; https://www.bauwi on.de/wissen/roh bau/bodenplatte-keller/105-abdichtung-schwarze-wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Herstellerangaben					0,02	950,00	-							
Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Innenputz 2,00 900,00 0,70 ziegel; https://www.bauwi on.de/wissen/roh baw/bodenplatte- kellerv102- kellerwaende- https://www.bauwi on.de/wissen/roh baw/bodenplatte- keller/105- abdichtung- schwarze- wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Hersteller- angaben					2 00	1800.00	1 00							
Dämmstoff gefüllt					2,00	.000,00	1,50	hbau/bodenplatte-						
CW 200236 2020					49,00	575,00	0,35							
	0111	0000			2.00	900.00	0.70							
on.0e/wissen/ron baw/bodenplatte- keller/105- abdichtung- schwarze- wanne); Wahl Verhältnis Ziegel Zu Dünnbettmörtel nach Hersteller- angaben			x x x	5 P 5	-,	,	- ,- 5	https://www.bauwi						
keller/105- abdichtung- schwarze- wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Hersteller- angaben		-												
schwarze- wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Hersteller- angaben														
wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Hersteller- angaben								-						
Verhältnis Ziegel zu Dünnbettmörtel nach Hersteller- angaben														
Dünnbettmörtel nach Hersteller- angaben														
nach Hersteller- angaben														
angaben														
(Wienerberger)								angaben						
		•						(Wienerberger)						

					Managara	0.40	000.00			440.4	4004.0	4040.0	400.0	055.0	1007.1
		X	Х	Х	Noppenbahn	0,13	960,00	-	Konstruktion für unbeheizten	112,1	1094,8	1246,0	102,6	955,9	1067,4
		x	X	X	PE-HD- Flächenabdichtung	0,15	1067,00	-	Keller;						
					Grundierung				Dimensionierung in Anlehnung an						
		х	х	Х	(Bitumenvoranstrich,	0,02	950,00	-	www.						
		x	x	Y	lösemittelhaltig) Außenputz	2,00	1800,00	1,00	Kalksandstein.de und						
		x			Kalksandstein	24,00	1800,00	0,99							
CW	2002-				(99,2/0,8)				(https://www.kalks						
_37	2020								andstein.de/entw urf-und-						
									planung/bauteile/						
									keller-und- kellerwaende/;						
									https://www.bauwi						
									on.de/wissen/roh bau/bodenplatte-						
									keller/105-						
									abdichtung- schwarze-wanne)						
	•				Noppenbahn	0,13	960,00			140.6	1365,1	1562.2	140.1	1226,3	1204.0
						0,13	960,00	-	Konstruktion für unbeheizten	149,0	1303,1	1303,3	140,1	1220,3	1304,0
					PE-HD- Flächenabdichtung	0,15	1067,00	-	Keller;						
					Grundierung				Dimensionierung in Anlehnung an						
					(Bitumenvoranstrich,	0,02	950,00	-	www.						
					lösemittelhaltig) Außenputz	2,00	1800,00	1,00	Kalksandstein.de						
					Kalksandstein (95/5)	36,50	1800,00	0,99	und www.bauwion.de						
CW	2002-				Innenputz	2,00	900,00		(https://www.kalks						
_38	2020	Х	Х	Х	IIIIeiiputz	2,00	900,00	0,70	andstein.de/entw urf-und-						
									planung/bauteile/						
									keller-und- kellerwaende/;						
									https://www.bauwi						
									on.de/wissen/roh bau/bodenplatte-						
									keller/105-						
									abdichtung- schwarze-wanne)						
	•				Noppenbahn	0,13	960,00	-	Konstruktion für	110,0	1019,1	1182,7	100,3	877,1	1000,2
					PE-HD-	0.45	4007.00		unbeheizten						
					Flächenabdichtung	0,15	1067,00	-	Keller; Dimensionierung						
					Grundierung				in Anlehnung an						
					(Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	-	www.ytong- silka.de und						
					Außenputz	2,00	1800,00	1,00	www.bauwion.de						
					Porenbeton P2 04 (99,2/0,8)	30,00	380,00	0,07/ 0,11	(https://baubuch.y tong-						
					Innenputz	1,00	900,00		silka.de/konstrukti						
CW	2002-								onsbeispiele/grue ndung/gruendung						
_39	2020	х	х	Х					/#image-2;						
									https://www.bauwi on.de/wissen/roh						
									bau/bodenplatte-						
									keller/102-						
									kellerwaende- ziegel;						
									https://www.bauwi						
									on.de/wissen/roh bau/bodenplatte-						
									keller/105-						
									abdichtung- schwarze-wanne)						
									Johnwarze-Warnie)						

				Noppenbahn	0,13	960,00	-	Konstruktion für	168,1	1353,8	1585,1	158,2	1209,0	1398,9
				PE-HD-	0,15	1067,00	_	unbeheizten Keller;						
				Flächenabdichtung	0,13	1007,00		Dimensionierung						
				Grundierung (Bitumenvoranstrich,	0,02	950,00	-	in Anlehnung an www.ytong-						
				lösemittelhaltig) Außenputz	2,00	1800,00	1,00	silka.de und www.bauwion.de						
				Porenbeton P4 05	48,00	380,00	0,07/	(https://baubuch.y						
				(95/5) Innenputz	2,00	900,00	0,11 0,70	tong- silka.de/konstrukti						
								onsbeispiele/grue ndung/gruendung						
CW	2002-							/#image-2; https://www.bauwi						
_40	2020		x x x					on.de/wissen/roh						
								bau/bodenplatte- keller/102-						
								kellerwaende- ziegel;						
								https://www.bauwi on.de/wissen/roh						
								bau/bodenplatte-						
								keller/105- abdichtung-						
								schwarze- wanne); max.						
								Steindicke nach						
								Hersteller- angaben						
				Noppenbahn Grundierung	0,13	960,00	-	Konstruktion für	63,9	592,8	704,5	55,6	477,7	553,6
				(Bitumenvoranstrich,	0,02	950,00	-	unbeheizten Keller;						
				lösemittelhaltig) Stahlbeton C20/25	20,00	2400,00	2,30	Ausführung schwarze Wanne						
				(99/1)				in Anlehnung an www.bauwion.de						
CW	2002-							(https://www.bau						
_41	2020		ххх					wion.de/wissen/ro hbau/bodenplatte-						
								keller/105- abdichtung-						
								schwarze-						
								wanne); Annahme:						
								Mindestwand- dicke 200 mm						
				Noppenbahn	0,13	960,00	-	Ausführung	135,7	1185,6	1490,0	124,3	1030,0	1285,0
				Grundierung (Bitumenvoranstrich,	0,02	950,00	_	weiße Wanne in Anlehnung an						
				lösemittelhaltig) Stahlbeton C30/37				www.bauwion.de und						
				(98/2)	35,00	2400,00	2,50	www.beton.org (https://www.bau						
				Innenputz	2,00	900,00	0,70	wion.de/wissen/ro						
								hbau/bodenplatte- keller/106-						
CW	2002-		x x x					abdichtung- weisse-wanne;						
_42	2020							https://www.beton .org/fileadmin/bet						
								on-						
								org/media/Dokum ente/PDF/Service						
								/Zementmerkbl% C3%A4tter/H10.p						
								df); Annahme: maximale						
								Wanddicke 350						
SCW	bis			Vollziegel/Mörtel	25,50	575,00/ 2000,00	0,79	mm Gruhler et al.,	51,6	384,6	460,1	50,3	365,0	438,7
_1	1945	хх		Innenputz	1,50	900,00	0,70	2002, S. 31, 61			_	L		
scw	bis	x		Vollziegel/Mörtel	19,00	575,00/ 2000,00	0,79	Gruhler et al., 2002,	39,3	294,1	351,6	38,3	279,5	335,6
_2	1918	,		Innenputz	1,50	900,00	0,70	S. 31						
SCW _3	1870- 1918	x		Vollziegel/Mörtel	32,00	575,00/ 2000,00	0,79	Gruhler et al., 2002,	64,0	475,1	568,6	62,3	450,5	541,7
_3	1010			Innenputz	1,50	900,00	0,70	S. 41, 51						
SCW _4	1870- 1918	x		Vollziegel/Mörtel	12,50	900,00	0,79	Gruhler et al., 2002,	26,9	203,6	243,1	26,3	193,9	232,6
				Innenputz Vollziegel/Mörtel	1,50	900,00	0,70	S. 41, 51	115	112.0	1245	1/1 2	109 4	120 6
SCW _5	1919- 1945	x		Vollziegel/Mörtel	6,00	2000,00	0,79	Gruhler et al., 2002, S. 61	14,6	113,0	134,6	14,3	108,4	129,6
				Innenputz	1,50	900	0,70							

SCW _6	1949- 1978	x x x	Vollziegel/Mörtel	18,25	575,00/ 2000,00	0,79	Gruhler et al., 2002, S. 71;	37,9	283,6	339,1	36,9	269,6	323,8
			Innenputz	1,50	900	0,70	Maximaldicke						
SCW _7	1949- 1978	x x x	Vollziegel/Mörtel Innenputz	12,00 1,50	575,00/ 2000,00 900	0,79	Gruhler et al., 2002, S. 71; Mindestdicke	26,0	196,6	234,8	25,4	187,4	224,7
	•		Stahlbeton B15-B25	11,30	2400,00	2,50	Gruhler et al.,	53,2	526,1	720,7	51,0	496,1	680,6
SCW _8	1949- 1978	x x x	(95/5) Innenputz	1,50	900,00	0,70	2002, S. 81; Durchschnitts- dicke	55,2	,-	,-	- 1,2	,	,-
scw _9	1949- 1994	x x x x	Stahlbeton B15-B25 (97/3)	8,65	2400,00	2,50	Gruhler et al., 2002, S. 91; Durchschnitts- dicke; Bestim- mung der typischen Bau- altersklassen unter zusätz- licher Berück- sichtigung von www.ioer-bdat.de, Bauwerksdaten MFH für Ostdeutschland	29,4	262,4	356,4	27,6	239,0	325,1
SCW _10	1979- 1990	x x	Stahlbeton B15-B25 (97/3)	11,20	2400,00	2,50	Gruhler et al., 2002, S. 100; Durchschnitts- dicke	38,0	339,7	461,4	35,7	309,4	420,9
SCW _11	1991- 2000	x x	Stahlbeton B15-B25 (97/3)		2400,00	2,50 0,70	Gruhler et al., 2002, S. 119	54,1	484,5	652,5	51,0	443,9	598,2
	-		Innenputz Beton B5-B20	1,50	900,00	2,00	Gruhler et al.,	40,0	227,6	272,8	35,7	171,8	198,2
SCW _12	1961- 1990	x x x x	Innenputz	1,50	900,00	0,70	2002, S. 129	40,0	221,0	212,0	33,1	171,0	190,2
scw	1961-		Ziegelmauerwerk	18,25	575,00/ 2000,00	0,79	Gruhler et al.,	37,9	283,6	339,1	36,9	282,3	325,1
_13	1990	x x x x	Innenputz	1,50	900,00	0,70	2002, S. 138						
SCW	1961-	x x x x	Hohlblockstein (75/25)	18,25	501,00/	0,41	Gruhler et al., 2002,	44,3	332,6	403,7	44,1	330,7	401,3
_14	1990		Innenputz	1,50	900,00	0,70	S. 138, 167						
SCW _15	1991- 2000	хх	Hochlochziegel (75/25)	18,25	575,00/ 2000,00	0,35	Gruhler et al., 2002, S. 148, 197	37,9	283,6	339,1	36,9	269,6	323,8
SCW	1961-		Innenputz Stampfbeton B5-B20	1,50 20,00	900,00	0,70 2,00	Gruhler et al.,	40,0	227,6	272,8	35,7	171,8	198,2
_16	1990	x x x x	Innenputz	1,50	900,00	0,70	2002, S. 157	40,0	221,0	212,0	33,1	171,0	190,2
SCW	1961-	x x x x x	Schalsteine mit Betonfüllung B15	18,30	2400,00/ 2000,00	2,10	Gruhler et al., 2002,	43,3	247,9	301,9	40,9	216,9	260,8
_17	2000		Innenputz	1,50	900,00	0,70	S. 177						
SCW _18	1961- 1978	x x	Kalksandstein (75/25)		1400,00/	0,70	Gruhler et al., 2002, S. 187	54,6	361,1	425,0	54,6	361,1	425,0
	-		Innenputz Hochlochziegel	1,50	900,00	0,70	Gruhler et al.,						
SCW _19	1991- 2000	хх	(75/25)	18,30	575,00	0,35	2002,	38,0	284,3	339,9	37,0	270,2	324,6
	-		Innenputz Mineralwolle	1,50	900,00	0,70	S. 197 Dimensionierung						
			(Außenwand) Hochlochziegel	2,25	32,00	0,04	nach Hersteller- angaben	32,7	263,3	313,6	30,3	230,6	272,1
SCW _20	2002- 2009	x	(51,6/48/0,4), Trennwand	17,50	2000,00	0,67	(Schlagmann Poroton-S-Pz-						
			Innenputz	1,00	900,00	0,70	Planziegel-175); Mindestdicke						
	-		Mineralwolle (Außenwand)	3,00	32,00	0,04	Dimensionierung nach Hersteller-	33,8	276,4	328,8	31,4	243,7	287,3
SCW _21	2010- 2015	x	Hochlochziegel (51,6/48/0,4), Trennwand	17,50	2000,00	0,67	angaben (Schlagmann Poroton-S-Pz-						
			Innenputz	1,00	900,00	0,70	Planziegel-175); Mindestdicke						
			Mineralwolle (Außenwand) Hochlochziegel	3,75	32,00	0,04	Dimensionierung nach Hersteller- angaben	34,9	289,5	343,9	32,4	256,8	302,5
_22	2016- 2020	:	x (51,6/48/0,4), Trennwand	17,50	2000,00	0,67	(Schlagmann Poroton-S-Pz-						
			Innenputz	1,00	900,00	0,70	Planziegel-175); Mindestdicke						
			Polystyroldämmung, XPS (KW)	1,75	32,00	0,04	Dimensionierung nach Hersteller-	58,6	489,4	572,5	52,7	408,0	468,8
SCW _23	2002- 2009	x	Hochlochziegel (51,6/48/0,4), Trennwand	30,00	2000,00	0,72	angaben (Schlagmann Poroton-S-Pz-						
			Innenputz	2,00	900,00	0,70	Planziegel-300); Maximaldicke						

			Polystyroldämmung,				Dimensionierung			T			
			XPS (KW)	2,75	32,00	0,04	nach Hersteller-	62,9	546,5	633,3	56,0	450,6	511,0
SCW	2010-	X	Hochlochziegel (51,6/48/0,4),	30,00	2000,00	0,72	angaben (Schlagmann						
_24	2015	*	Trennwand	00,00	2000,00	0,72	Poroton-S-Pz-						
			Innenputz	2,00	900,00	0,70	Planziegel-300); Maximaldicke						
			Polystyroldämmung,	3,50	32,00	0,04	Dimensionierung	66,1	589,4	678,9	58,5	482,6	542,6
			XPS (KW) Hochlochziegel	0,00	02,00	0,04	nach Hersteller- angaben	00,1	000,4	0.0,5	00,0	402,0	042,0
SCW _25	2016- 2020	x	(51,6/48/0,4),	30,00	2000,00	0,72	(Schlagmann						
_20	2020		Trennwand				Poroton-S-Pz- Planziegel-300);						
			Innenputz	2,00	900,00	0,70	Maximaldicke						
			Mineralwolle (Außenwand)	2,75	32,00	0,04	Konstruktions- wahl in	32,8	264,9	309,6	32,8	264,9	309,6
			Kalksandstein	11,50	1800,00	0,99	Anlehnung an						
			(99,2/0,8)				www.kalksandstei n.de,						
							zweischalige						
SCW _26	2002- 2009	X					Haustrennwände (https://www.kalks						
_20	2000						andstein.de/entw						
							urf-und- planung/bauteile/t						
							ragende-						
							innenwaende/); Mindestdicke						
			Mineralwolle	3,50	32,00	0,04	Konstruktions-	33,9	278,1	324,7	33,9	278,1	324,7
			(Außenwand) Kalksandstein		1800,00	0,99	wahl in Anlehnung an	20,0	0,.	J,,,	-5,0	,.	V-7,1
			(99,2/0,8)	11,00	1000,00	0,00	www.kalksandstei						
							n.de, zweischalige						
SCW	2010-	v					Haustrennwände						
_27	2015	X					(https://www.kalks						
							andstein.de/entw urf-und-						
							planung/bauteile/t						
							ragende- innenwaende/);						
							Mindestdicke						
			Mineralwolle (Außenwand)	4,25	32,00	0,04	Konstruktions- wahl in	35,0	291,2	339,9	35,0	291,2	339,9
			Kalksandstein	11,50	1800,00	0,99	Anlehnung an						
			Kalksandstein (99,2/0,8)	11,50	1800,00	0,99	Anlehnung an www.kalksandstei						
				11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige						
SCW 28	2016-	x		11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände						
SCW _28	2016- 2020	х		11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw						
		х		11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-						
		х		11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und- planung/bauteile/t ragende-						
		x		11,50	1800,00	0,99	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/);						
		x	(99,2/0,8) Polystyroldämmung,				Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-	76.4	631 5	724 A	73 9	595 3	678.2
		х	Polystyroldämmung, XPS (KW)	2,50	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und- planung/bauteile/t ragende- innenwaende/); Mindestdicke Konstruktions- wahl in Anleh-	76,4	631,5	724,8	73,9	595,3	678,2
		x	Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei	76,4	631,5	724,8	73,9	595,3	678,2
		x	Polystyroldämmung, XPS (KW)	2,50	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwænde/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei n.de,	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020	x	Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwænde/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entwurf-und-planung/bauteile/t	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/);	76,4	631,5	724,8	73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke	76,4			73,9	595,3	678,2
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00	32,00	0,04	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/);	76,4		724,8	73,9	595,3	
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz	2,50 24,00 2,00	32,00 1800,00 900,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktionswahl in Anlehnung an						
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz	2,50 24,00 2,00	32,00 1800,00 900,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktionswahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktionswahl in Anlehnung an www.kalksandstei						
_28 SCW _29	2002-2009		Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige						
_28	2020		Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de,						
_28 SCW _29	2002-2009	×	Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw						
_28 SCW _29	2002-2009	×	Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstei n.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstein.de/entw urf-und-planung/bauteile/t n.de/entw.kalksandstein.de/entw						
_28 SCW _29	2002-2009	×	Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstein.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t ragende-						
_28 SCW _29	2002-2009	×	Polystyroldämmung, XPS (KW) Kalksandstein (95/5) Innenputz Polystyroldämmung, XPS (KW) Kalksandstein (95/5)	2,50 24,00 2,00 3,50 24,00	32,00 1800,00 900,00 32,00 1800,00	0,04 0,99 0,70	Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Mindestdicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalks andstein.de/entw urf-und-planung/bauteile/t ragende-innenwaende/); Maximaldicke Konstruktions-wahl in Anlehnung an www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstei n.de, zweischalige Haustrennwände (https://www.kalksandstein.de/entw urf-und-planung/bauteile/t						

			Polystyroldämmung, XPS (KW)	4,25	32,00	0,04	Konstruktions- wahl in Anleh-	83,9	731,5	831,2	79,7	669,9	752,0
			Kalksandstein (95/5)	24,00	1800,00	0,99	nung an						
			Innenputz	2,00	900,00	0,70	www.kalksandstei n.de,						
00147	0040		•				zweischalige						
SCW _31	2016- 2020	х					Haustrennwände (https://www.kalks						
_0.	2020						andstein.de/entw						
							urf-und- planung/bauteile/t						
							ragende-						
							innenwaende/);						
	,		Luftschicht, ruhend	1,00	32,00	0,04	Maximaldicke Konstruktions-	34,8	227,9	281,8	34,6	226,1	279,5
			Porenbeton P2 04	17,50	380,00	0,07/	wahl in	,-	,-	- /-	,-	-,	-,-
			(99,2/0,8) Innenputz	1,00	900,00	0,11 0,70	Anlehnung an www.ytong-						
			monputz	1,00	500,00	0,10	silka.de						
SCW _32	2002- 2020	x x x					(https://baubuch.y tong-						
							silka.de/konstrukti						
							onsbeispiele/inne nwand/innenwand						
							2/#image-8);						
							Mindestdicke						
			Luftschicht, ruhend Porenbeton P4 05	1,00	-	0,07/	Konstruktions- wahl in	116,2	711,4	869,0	115,7	705,5	861,4
SCW	2002-	x x x	(O = (=)	48,00	380,00	0,11	Anlehnung an						
_33	2020		Innenputz	2,00	900,00	0,70	www.ytong- silka.de;						
			·	2,00	300,00	0,70	Maximaldicke						
			Mineralwolle (Außenwand)	3,00	32,00	0,04	Minimal konstruktiv	39,7	303,3	385,8	36,5	261,8	330,4
scw	2002-	x	(Adiseriwand)				ausführbare						
_34	2009	^	Stahlbeton C20/25	15,00	2400,00	2,30	Wandicke bei Ortbetonwänden						
			(99/1)				(Betonierbarkeit)						
	,	x	Mineralwolle	3,75	32,00	0,04	Minimal	40,8	316,4	401,0	37,6	275,0	345,6
SCW	2010-		(Außenwand)				konstruktiv ausführbare	-,-		- /-	,-	-,-	,-
_35	2015		Stahlbeton C20/25	15,00	380,00	2,30	Wandicke bei						
			(99/1)	.0,00	000,00	2,00	Ortbetonwänden (Betonierbarkeit)						
	,	x	Mineralwolle	4,50	32,00	0,04	Minimal	41,9	329,5	416,2	38,7	288,1	360,8
SCW	2016-	^	(Außenwand)	4,50	32,00	0,04	konstruktiv ausführbare	41,3	323,3	410,2	30,1	200,1	300,0
_36	2020		Stahlbeton C20/25	15,00	380,00	2,30	Wandicke bei						
			(99/1)	13,00	300,00	2,30	Ortbetonwänden						
			Polystyroldämmung,			0.04	(Betonierbarkeit)	445.5		4000.0	1000		4000.0
SCW	2002-		XPS (KW)	3,00	32,00	0,04	Annahme: Maximaldicke	115,5	9/1,/	1233,8	106,2	846,2	1068,2
_37	2009	х	Stahlbeton C30/37 (98/2)	30,00	380,00	2,50	Betonwand 300						
			Innenputz	2,00	900,00	0,70	mm						
			Polystyroldämmung, XPS (KW)	4,00	32,00	0,04	Annahme:	119,7	1028,8	1294,6	109,5	888,8	1110,4
SCW	2010-	х	Stahlbeton C30/37	20.00	200.00	2.50	Maximaldicke Betonwand 300						
_38	2015		(98/2)	30,00	380,00	2,50	mm						
			Innenputz Polystyroldämmung,	2,00	900,00	0,70					4		44.55
SCW	2016-		XPS (KW)	4,75	32,00	0,04	Annahme: Maximaldicke	123,0	1071,6	1340,2	112,0	920,8	1142,0
_39	2020	х	Stahlbeton C30/37 (98/2)	30,00	380,00	2,50	Betonwand 300						
			Innenputz	2,00	900,00	0,70	mm						
	2002-		Hochlochziegel				Konstruktion für						
	2002-		(51,6/48/0,4),	17,50	2000,00	0,67	unbeheizte Keller;	29,5	223,9	268,1	27,0	191,2	226,6
00:11			Trennwand	4.00	000.00	0.30	Dimensionierung						
SCW _40		x x x	Innenputz	1,00	900,00	0,70	nach Herstellerangabe						
	2002-						n (Schlagmann						
	2020						Poroton-S-Pz- Planziegel-175);						
							Mindestdicke						
			Hochlochziegel	00.00	0000.00	0.0=	Konstruktion für	F	000 :	460 :	40.0	000 :	005 1
			(51,6/48/0,4), Trennwand	30,00	2000,00	0,67	unbeheizte Keller;	51,1	389,4	466,1	46,9	333,4	395,1
			Innenputz	2,00	900,00	0,70	Dimensionierung						
_							nach						
SCW 41	2002-	x x x											
SCW _41	2002- 2020	x x x					Herstellerangabe n (Schlagmann						
		x x x					Herstellerangabe n (Schlagmann Poroton-S-Pz-						
		х х х					Herstellerangabe n (Schlagmann						

							Konstruktion für						
							unbeheizte						
							Keller; Konstruk-						
							tionswahl in						
							Anlehnung an www.kalksandstei						
							n.de,						
SCW	2002-		Kalksandstein	44.50	1000.00	0.00	zweischalige	20.0	246.0	252.0	20.0	246.0	252.0
_42	2020	x x x	(99,2/0,8)	11,50	1800,00	0,99	Haustrennwände	28,8	216,8	253,9	28,8	216,8	253,9
							(https://www.kalks						
							andstein.de/entw						
							urf-und-						
							planung/bauteile/t ragende-						
							innenwaende/);						
							Mindestdicke						
	-		Kalksandstein (95/5)	24,00	1800,00	0,99	Konstruktion für	65,6	488,7	572,9	65,6	488,7	572,9
			Innenputz	2,00	900,00	0,70	unbeheizte						
							Keller; Konstruk-						
							tionswahl in						
							Anlehnung an www.kalksandstei						
							n.de,						
SCW	2002-						zweischalige						
_43	2020	x x x					Haustrennwände						
							(https://www.kalks						
							andstein.de/entw						
							urf-und- planung/bauteile/t						
							ragende-						
							innenwaende/);						
							Maximaldicke						
	_		Porenbeton P2 04	17,50	380,00	0,07/	Konstruktion für	34,8	227,9	281.8	34,6	226,1	279.5
			(99,2/0,8)			0,11	unbeheizte	34,0	221,3	201,0	34,0	220,1	213,3
			Innenputz	1,00	900,00	0,70	Keller; Konstruk-						
							tionswahl in						
							Anlehnung an www.ytong-						
scw	2002-						silka.de						
_44	2020	x x x					(https://baubuch.y						
							tong-						
							silka.de/konstrukti						
							onsbeispiele/inne						
							nwand/innenwand						
							2/#image-8); Mindestdicke						
	-		Porenbeton P4 05			0,07/							
			(95/5)	48,00	380,00	0,11	unbeheizte	116,2	711,4	869,0	115,7	705,5	861,4
			Innenputz	2,00	900,00	0,70	Keller; Konstruk-						
SCW	2002-	x x x					tionswahl in						
_45	2020						Anlehnung an						
							www.ytong- silka.de;						
							Maximaldicke						
	-						Konstruktion für						
							unbeheizte						
							Keller; minimal						
SCW	2002-	x x x	Stahlbeton C20/25	15,00	380,00	2,30	konstruktiv	35,4	250.7	325,1	32,2	209.3	269,7
_46	2020		(99/1)	,	,	_,	ausführbare	,:		,-	,-	,-	,-
							Wandicke bei Ortbetonwänden						
							(Betonierbarkeit)						
	-		Stahlbeton C30/37	00.00	000.00	0.50	Konstruktion für	400.0		1051.5			244.0
SCW	2002-		(98/2)	30,00	380,00	2,50	unbeheizte	102,6	800,3	1051,5	96,3	718,3	941,8
_47	2020	x x x	Innenputz	2,00	900,00	0,70							
	2020						dicke Betonwand						
							300 mm						
			Dielung/Bretterboden	2,60	484,54	-		64,1	651,6	863,6	44,0	433,7	815,9
			Schlacken-	8.00	1200,00	-							
			schüttung/-füllung	,,,,									
FLmas	1010-		Beton B5-B20	2,00	2400,00	-	Gruhler et al.,						
_1	1945	X	Hohlziegel	9,00	575,00	-	2002,						
			Luftschicht, ruhend	3,00	-	-	S. 61						
			Beton B5-B20	2,60	2400,00	-							
			Flachstahl	0,50	7850,00	-							
	_		Innenputz	1,50	900,00	-							
	•		Estrich	3,50	2400,00	-		79,2	751,2	938,1	68,8	663,0	852,2
			Schlacken-	9.00	1200.00	-							
			schüttung/-füllung	0,00	1200,00								
F! -	1010		Beton B5-B20	2,00	2400,00	-	Gruhler et al.,						
FLmas _2	1919- 1945	X	Hohlziegel	9,00	575,00	-	2002,						
_4	1340		Luftschicht, ruhend	3,00		-	S. 61						
			Beton B5-B20	2,60	2400,00	-							
			Flachstahl		7850,00	-							
			Innenputz	1,50	900,00								

			Dielung/Bretterboden	2,60	484,54	Gruhler et al.,	61,8	391,1	600,2	48,8	225,0	591,5
			Vergussbeton B5	2,50		- 2002,						
FLmas 1	949-		Betonfertigteil B20	9,20		- S. 71; Dicke						
_3 1	1978	x x x	Bewehrungsstahl	0,00	7850,00	Fertigteil unter Berücksichtigung						
			Holzwolle- Leichtbauplatte	2,50	360,00	des Bewehrungs-						
			Innenputz	1,50	900,00	gehalt						
	-		Estrich	3,50		- Crubbaratal	76,9	490,7	674,8	73,6	454,3	627,9
			Vergussbeton B5	2,50	2000,00	Gruhler et al., 2002,	-,-		, ,	-,-	,-	,-
El 4	0.40		Betonfertigteil B20		2520,00	- S. 71; Dicke						
FLmas 1: _4 1	949- 1978	x x x	Bewehrungsstahl	0,00	7850,00	 Fertigteil unter 						
_7 '	1370		Holzwolle-	2,50	360,00	Berücksichtigung						
			Leichtbauplatte	2,30		des Bewehrungs- gehalt						
	_		Innenputz	1,50	900,00							
			Estrich	3,50	2400,00	-	96,3	1170,4	1554,0	90,2	1099,0	1460,3
			Holzwolle- Leichtbauplatte	3,00	360,00	- Omehlen et el						
FLmas 1		x x x	Bitumendachpappe	0,40	1000,00	Gruhler et al., 2002,						
_5 1	1978	* * *	Hochofenschlacke	2,50	1200,00	- S. 81						
			Stahlbeton B20 (66/4)			-						
			Innenputz	1,50	900,00	-						
FLmas 1	040		Estrich	3,50	2400,00	- Gruhler et al.,	77,8	665,9	886,6	74,0	617,2	821,4
	949- 1994	x x x x x	Stahlbeton B15-B25	18,00	2400,00	2002,						
_• .	_		(97/3)			S. 91						
FLmas 1	979-	V V	Estrich	3,50	2400,00	- Gruhler et al., 2002,	64,2	544,6	721,8	61,3	506,7	671,1
_7 1	1990	хх	Stahlbeton B15-B25 (97/3)	14,00	2400,00	- S. 100						
	_		Estrich	3,50	2400,00	_	86,2	805.2	1065,6	82,9	762.3	1008,3
FLmas 1	979-		Mineralwolle (Boden)	5,00	85,00	Gruhler et al.,	,-	,-	,.	,-	,-	,-
_8 1	1990	X X	Stahlbeton B15-B25			2002, S. 110						
	_		(96/4)	16,00	2400,00	_ 0.110						
			Estrich	3,50	2400,00	-	72,9	657,7	906,7	69,4	614,0	848,5
			Pappe	0,10	800,00	- Gruhler et al.,						
FLmas 1: _9 1	979- 1990	хх	Glasvlies Decke	0,10	229,40	2002,						
_9 1	1990		Hochofenschlacke	3,70	1200,00	- S. 110						
			Stahlbeton B15-B25 (96/4)	14,00	2400,00	-						
	-		Estrich	3,50	2400,00	-	83,3	756,6	1004.4	77,7	681,6	906,5
			Estrichpapier	0,10	800,00	_	,-	, .	,.	,.	,-	,-
				-,	85,00/	Ometale et al						
FLmas 1		x x	Dämmung DE und OGD, jüngere BK	3,00	18,50/	Gruhler et al., 2002,						
_10 2	2000	A A		0.40	160,00	S. 120						
			PE-Folie Decke Stahlbetondecke	0,10	930,00	-						
				16,00		-						
	-		Innenputz Estrich	1,50 3,50	900,00	-	101,4	907,8	1270 /	94,7	926.5	1172,3
			Holzwolle-				101,4	307,0	1213,4	34,1	020,3	1172,3
FLmas 1	961-	V V V V	Leichtbauplatte	2,50	360,00	- Gruhler et al., 2002,						
_11 1	1990	x x x x	Stahlbeton B15-B25	19 00	2400,00	- S. 138						
			(96/4)			555						
	_		Innenputz	1,50	900,00	-	00.7	070.0	4500.2	02.7	775.0	12E1 E
			Estrich Spanplatten	3,50 2,00	633,31	-	99,7	970,0	1596,3	93,7	775,0	1351,5
			Polystyroldämmung	2,00	000,01	Gruhler et al.,						
FLmas 1	991-	x x	Decke und Boden,	8,10	18,50	2002, - S. 148;						
_12 2	2000	^ ^	EPS, WLS 040			durchschnittliche						
			Stahlbeton B15-B25	16,00	2400,00	_ Dämmdicke						
			(96/4)	1 50	000.00							
	-		Innenputz Estrich	1,50	900,00	-	101,4	007.0	4070.4	94,7	006 F	4470.0
			Holzwolle-	3,50	2400,00	Gruhler et al.,	101,4	907,0	1279,4	94,1	020,3	1172,3
FLmas 1	961-		Leichtbauplatte	2,50	360,00	2002,						
_13 2	2000	x x x x x	Stahlbeton B15-B25	19 00	2400,00	S. 158, 168, 177,						
			(96/4)			187						
	_		Innenputz	1,50	900,00	-						
			Estrich	3,50	2400,00	-	96,2	935,4	1189,4	89,1	833,7	1067,7
			Polystyroldämmung Decke und Boden,	12,00	18,50	- Gruhler et al.,						
FLmas 1		хх	EPS, WLS 040	12,00	10,00	2002,						
_14 2	2000		Stahlbeton B15-B25	16.00	2400,00	S. 197						
			(96/4)			-						
	_		Innenputz	1,50	900,00	-						
			Trockenestrich	2,50	800,00	- Mindestdicke	43,4	372,0	472,1	39,4	318,0	402,2
FLmas 2	002-		Polystyroldämmung	2,00	18,50	Stahlbeton nach - Bautabellen für						
	2020	x x	x Decke und Boden, EPS, WLS 040	∠,∪∪	10,30	Ingenieure, 2012,						
			Stahlbeton C20/25	40.00	0400.00	S. 4.97 (l= 4 m;						
			(99/1)	16,00	2400,00	 Zweifeldträger) 						
	_											

					Zementestrich	7,50	2400,00	- Maximaldicke	127,2	1009,1	1448,6	117,5	862,9	1257,1
					PE-Folie Decke	0,02	930,00	Stahlbeton nach						
FLmas	2002-			v v	Holzfaserdämmung	5,00	160,00	Bautabellen für						
_16	2020		^	^ ^	(TSD) Stahlbeton C30/37			Ingenieure, 2012,						
					(98/2)	24,00	2400,00	S. 4.96 (l= 6 m;						
					Innenputz	2,00	900,00	Einfeldträger)						
					Dielung/Bretterboden	2,40	484,51	-	21,2	220,1	484,4	-14,5	-249,3	569,4
					Holzwolle-	2,50	360,00	-						
					Leichtbauplatte			Crushlar at al						
FL					Holzbalken	2,50	492,92	- Gruhler et al., 2002,						
wood	bis	x			Sand/ Lehm/	0.00	1350,00/ 900,00/	S. 32; Annahme						
_1	1918				Schlacke	8,80	1200,00/	Holzbalkenanteil						
					Holzeinschub	1,80	484,54	12 %						
					Schalung	2,00	484,51	_						
					Innenputz	1,50	900,00	_						
					Dielung/Bretterboden	2,40	484,51	-	37,9	340,1	629,3	2,2	-129,4	714,3
					Estrich		2400,00	_	0.,0	0.0,.	020,0	_,_	0,.	,•
					Holzwolle-			_						
					Leichtbauplatte	2,50	360,00	Gruhler et al.,						
FL	1070				Holzbalken	2,50	492,92	2002,						
wood	1870- 1918	x			Sand/		1350,00/	S. 42, 52; Annahme						
_2	1010				Lehm/	8,80	900,00/	Holzbalkenanteil						
					Schlacke		1200,00	12 %						
					Holzeinschub	1,80	484,54	-						
					Schalung	2,00	484,51	-						
					Innenputz	1,50	900,00	-						
					Trockenestrich	2,50	800,00	dataholz.eu,	11,8	184,8	327,7	-11,8	-132,2	397,1
					Polystyroldämmung	0.00	40.50	2021, Bauteil						
					Decke und Boden, EPS, WLS 040	2,00	18,50	 gdstxx01-01; jedoch mit 20 mm 						
					PE-Folie Decke	0,02	930,00	_ TSD und als						
						0,02	330,00	Schüttung wurden						
					Schüttung,	4,00	400,00	_ für ein						
					Porenbetongranulat			Porenbetongranu-						
FL wood	2002-		~	хх	PE-Folie Decke	0,02	930,00	_ lat die geringsten Umweltwirkungen						
_3	2020		^	^ ^	Schalung	4,00	484,51	ermittelt;						
					Konstruktionsvollholz	2,00	492,92	Abmessungen						
								KVH nach						
								Bautabellen für Ingenieure, 2012,						
								S. 4.101						
								(Stützweite > 4 m;						
								bxh = 100x200						
								mm, a= 100 cm)						
					Zementestrich	7,50	2400,00	-	101,7	1211,7	2355,4	45,6	235,3	2002,3
					PE-Folie Decke	0,02	930,00	dataholz.eu, 2021, Bauteil						
					Holzfaserdämmung	5,00	160,00	- gdrnxa05b-13;						
					(TSD)			jedoch ohne						
					OSB-Platte	2,20	600,00	Federlagerung						
					Brettschichtholz Holzfaserdämmung	6,40	507,11	der abgehängten						
					(Innenausbau)	16,00	160,00	Decke, mit 75 mm Estrichdicke						
					OSB-Platte	1,50	600,00	- (Heizestrich),						
FL					Gipsfaserplatte	2,50	1000,00	- 50 mm Holzfaser-						
wood	2002-		х	х х				dämmung als						
_4	2020							TSD und 200 mm						
								Holzfaserdäm- mung als						
								Gefachdämmung,						
								Abmessung BSH						
								nach Bautabellen						
								für Ingenieure,						
								2012, 4.101 (Stützweite < 6.5						
								(Stützweite < 6,5 m; bxh = 200x320						
								mm, a= 100 cm)						

	•			Trockenestrich	2,50	800,00	-	dataholz.eu,	29,1	418,5	771,4	-21,1	-342,8	905,6
				Polystyroldämmung				2021, Bauteil						
				Decke und Boden,	2,00	18,50	_	gdmtxn01-00; jedoch mit EPS-						
				EPS, WLS 040	,	-,		statt MW-TSD in						
				PE-Folie Decke	0,02	930,00		20 mm Dicke und						
FL	2002-				0,02	000,00		einer						
wood	2020		ххх	Schüttung, Porenbetongranulat	4,00	400,00	-	Schüttungshöhe						
_5				•				von 40 mm; Abgleich						
				PE-Folie Decke	0,02	930,00	-	Mindestdicke						
				Brettsperrholz	14,00	489,41	-	Brettsperrholz mit						
								Hersteller-						
								angaben						
	-			Zementestrich	7,50	2400,00		(Binderholz) dataholz.eu,	145.1	1713,8	2706.7	49,0	230 /	2851,1
				PE-Folie Decke	0,02	930,00		2021, Bauteil	143,1	1713,0	2130,1	43,0	233,4	2031,1
				Holzfaserdämmung				gdmnxa02a;						
				(TSD)	5,00	160,00	-	jedoch Holzfaser-						
				Schüttung, Perlite 0-3	8,00	1000,00	-	statt MW- Dämmung, statt						
				PE-Folie Decke	0,02	930,00	-	Splitt- eine Perlit-						
				Brettsperrholz	24,00	489,41	-	mit 80 mm statt						
FL .	2002-			Lattung	0,58	484,51	-	Splittschüttung,						
wood _6	2020		x x x	Holzfaserdämmung	5,42	160,00	_	Estrichdicke 75 mm und doppelte						
_0				(Innenausbau) Gipsfaserplatte	2 50	1000,00		Beplankung mit						
				Cipoladerpiatto	2,00	1000,00		Gipsfaserplatten;						
								maximale						
								Brettsperrholz-						
								dicke 240 mm nach Hersteller-						
								angabe						
								(Binderholz)						
				Kalkgipsputz	1,00	900,00	0,70		56,0	358,1	499,1	49,9	285,8	404,0
TFL	1949-			Beton B5-B20	15,00	2400,00	1,51	711D 2000b						
mas	1949-	x		Dämmung DE und	2,50	30,00-	0,09	ZUB, 2009b, S. 43						
_1				OGD, ältere BK schwimmender		200,00		5						
				Estrich	4,00	2400,00	1,40							
	•			Kalkgipsputz	1,00	900,00	0,70		60,3	389,7	578,1	52,5	299,2	459,6
TFL	4050			Beton B5-B20	15,00	2400,00	1,51	7110 00001						
mas	1958- 1968	x		Dämmung DE und	4,00	30,00-	0,05	ZUB, 2009b, S. 44						
_2	1000			OGD, ältere BK schwimmender		200,00		0. 44						
				Estrich	4,00	2400,00	1,40							
TFL	1949-			schwimmender	4 00	2400,00	1,40	ZUB, 2009b,	70,0	592,1	783,7	66,9	551.5	729,4
mas	1968	хх		Estrich				S. 69;	, .	,-		,-	,-	,-
_3	-			Stahlbeton	15,00	2000,00	1,05	Minimaldicke						
TFL	1949-			schwimmender Estrich	5,00	2400,00	1,40	ZUB, 2009b, S. 69;	84,9	717,3	948,7	81,2	668,6	883,6
mas _4	1968	хх		Stahlbeton	18.00	2000,00	1,05	Maximaldicke						
	-			schwimmender										
TFL	1000			Estrich	4,00	2400,00	1,40	ZUB, 2009b,	74,1	646,6	846,8	71,0	606,0	792,5
mas	1969- 1978	x		Mineralwolle (Boden)	3,00	30,00-	0,04	S. 70;						
_5				, ,		200,00		Minimaldicke						
	-			Stahlbeton schwimmender	15,00	2000,00	1,05							
TFL				Estrich	5,00	2400,00	1,40	ZUB, 2009b,	80,2	699,1	909,3	77,1	658,5	855,0
mas	1969-	x		Mineralwolle (Boden)	4.00	30,00-	0.04	S. 70;						
_6	1978			, ,	4,00	200,00	0,04	Maximaldicke						
	-			Stahlbeton	15,00	2000,00	1,05							
TFL				schwimmender Estrich	4,00	2400,00	1,40	ZUB, 2009b,	87,3	718,6	1099,7	77,3	605,1	951,6
mas	1969-	x		Dämmung DE und		30,00-		S. 71;						
_7	1978			OGD, ältere BK	6,00	200,00	0,04	Minimaldicke						
	-			Stahlbeton	15,00	2000,00	1,05							
				schwimmender	5.00	2400,00	1,40		92,0	752.9	1141,1	82,1	639,4	993,0
TFL	1969-	v		Estrich	,			ZUB, 2009b,	"		,-		-,-	-,-
mas _8	1978	х		Dämmung DE und OGD, ältere BK	6,00	30,00- 200,00	0,04	S. 71; Maximaldicke						
				Stahlbeton	15,00	2000,00	1,05							
	-			schwimmender				711B 2000h	64.0	540.6	722.2	64.0	514.4	675.2
TFL	1949-			Estrich	4,00	2400,00	1,40	ZUB, 2009b, S. 76;	64,6	549,6	722,3	61,9	514,4	675,3
mas	1968	хх		Steinwolle	1,00	30,00-	0,04	Minimaldicke mit						
_9				Stahlbeton	13,00	200,00 2000,00	1,05	Steinwolle						
	-			schwimmender				ZUB, 2009b,						
TFL	4040			Estrich	4,00	2400,00	1,40	S. 76;	66,1	552,5	754,0	62,2	505,2	691,3
mas	1949- 1968	x x		Holzwolle-	1,00	30,00-	0,09	Minimaldicke mit						
_10	1000			Leichtbauplatte		200,00		Holzwolle-						
	-			Stahlbeton	13,00	2000,00	1,05	Leichtbauplatten						

TEI	_			schwimmender	5,00	2400,00	1,40	ZUB, 2009b,	77,5	662,7	867,2	74,4	622,1	812,9
TFL mas	1949-	хх		Estrich	0.00	30,00-	0.04	S. 76;						
_11	1968			Steinwolle	2,00	200,00		Maximaldicke mit Steinwolle						
	-			Stahlbeton	15,00	2000,00	1,05							
TFL				schwimmender Estrich	5,00	2400,00	1,40	ZUB, 2009b, S. 76;	80,5	668,5	930,5	75,1	603,6	844,9
mas	1949- 1968	хх		Holzwolle-	2,00	30,00-	0,09	Maximaldicke mit						
_12	1900			Leichtbauplatte		200,00		Holzwolle-						
	-			Stahlbeton Schwimmender	15,00	2000,00	1,05	Leichtbauplatten						
TFL	1958-			Estrich	6,00	2400,00	0,87	ZUB, 2009b, S. 101:	85,6	727,3	949,8	82,3	684,0	891,9
mas	1978	х	Х	Mineralwolle (Boden)	2,00	85,00	0,09	Minimaldicke mit						
_13	_			Stahlbeton	16,00	2400,00	1,05	Mineralwolle						
TFL	4050			Schwimmender Estrich	6,00	2400,00	0,87	ZUB, 2009b,	88,4	763,7	991,9	85,1	720,4	934,0
mas	1958- 1978	x	Х	Mineralwolle (Boden)	4,00	85,00	0.09	S. 101; Maximaldicke mit						
_14				Stahlbeton	16,00	2400,00	1,05	Mineralwolle						
	-			Schwimmender		2400,00	0,87		85,2	722,9	940,2	81,2	669,8	871,5
TFL				Estrich	0,00	2400,00	0,07	ZUB, 2009b,	03,2	122,3	340,2	01,2	003,0	071,0
mas	1958- 1978	х	x	Polystyroldämmung Decke und Boden,	2,00	18,50	0,09	S. 101; Minimaldicke mit						
_15	1970			EPS, WLS 040	2,00	10,50	0,03	EPS						
				Stahlbeton	16,00	2400,00	1,05							
	_			Schwimmender	6.00	2400,00	0,87		87,5	754,8	972,6	82,9	691,9	893,2
TFL	4050			Estrich	-,	,	-,	ZUB, 2009b,	,-	,-	,-	,-	,-	,-
mas	1958- 1978	х	x	Polystyroldämmung Decke und Boden,	4,00	18,50	0.09	S. 101; Maximaldicke mit						
_16				EPS, WLS 040	.,		-,	EPS						
	_			Stahlbeton	16,00	2400,00	1,05							
TFL				Estrich	5,00	2400,00	0,87		64,6	504,6	632,2	63,8	493,3	619,8
mas	1949- 1957	x		Deckenziegel	40.00	4 400 00	0.00	ZUB, 2009b, S. 107						
_17	1937			(Zwischenraum mit Beton verfüllt)	16,00	1400,00	0,60	3. 107						
	-			Zementestrich	4,00	2400,00	0,87		79,3	688,3	901,5	76,0	645,0	843,6
TFL	1969-			Mineralwolle (Boden)	2,00	30,00-	0,04	ZUB, 2009b,						
mas _18	1978		x	Stahlbeton	16,00	200,00 2000,00	0,60	S. 137						
_10				Innenputz	1,50	900,00	0,70							
TFL	-			Normalbeton	14,00	2400,00	1,51		34,0	247,9	293,1	31,0	208,8	240,8
mas	1969- 1994		ххх	Minoralwalla (Dadan)		30,00-		ZUB, 2009b, S. 180			Í			
_19	-			Mineralwolle (Boden)	6,00	200,00	0,04	C. 100						
TFL	1971-			Normalbeton	14,00	2400,00	1,51	ZUB, 2009b,	34,0	247,9	293,1	31,0	208,8	240,8
mas _20	1990		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	S. 181						
	-			Normalbeton	14,00	2400,00	1,51		34,0	247,9	293,1	31,0	208,8	240,8
TFL mas	1981-		хх	Normalboton		30,00-		ZUB, 2009b,	04,0	2-11,0	200,1	01,0	200,0	240,0
_21	1990			Mineralwolle (Boden)	6,00	200,00	0,04	S. 182						
TFL	-			Normalbeton	14,00	2400,00	1,51		34,0	247,9	293,1	31,0	208,8	240,8
mas	1971- 1990		ххх	Minorolyvollo (Podon)	6.00	30,00-	0.04	ZUB, 2009b, S. 183						
_22	-			Mineralwolle (Boden)	6,00	200,00	0,04	C. 100						
TFL	1976-			Normalbeton	14,00	2400,00	1,51	ZUB, 2009b,	34,0	247,9	293,1	31,0	208,8	240,8
mas _23	1990		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	S. 184						
TFL	-			Normalbeton	14,00	2400,00	1,51		34,0	247,9	293,1	31,0	208,8	240,8
mas	1971- 1990		ххх	Mineralwolle (Boden)	6,00	30,00-	0,04	ZUB, 2009b, S. 185						
_24	-			willeralwolle (bodell)	6,00	200,00	0,04	C. 100						
				Bitumenbahn, Decke	0,40	1000,00	-		84,6	1042,1	1276,0	80,9	993,3	1210,8
TFL				Mineralwolle (Innenausbau)	6,00	26,25	0,04	Gruhler et al.,						
mas	1949-	хх	x x x	Bitumenbahn, Decke	0,50	1000,00	_	2002,						
_25	1994			Estrich	3,50	2400,00	1,40	S. 91						
				Stahlbeton B15-B25	18.00	2400,00	2,50							
	-			(97/3) Bitumendachpappe		1000,00	,		53,9	762,4	926,9	51,0	724 F	876,2
				Mineralwolle			-	Gruhler et al.,	33,9	102,4	9 2 0,9	31,0	1 24,3	070,2
TFL	1070		x x	(Innenausbau)	6,00	26,25	0,04	2002,						
mas	1979- 1990			Stahlbeton B15-B25	4400	2400,00	2,50	S. 100						
					14,00	2400,00	_,00							
mas				(97/3)					55.6	548.1	681.5	54.3	532.1	660.0
mas _26	1990 -				0,40	2400,00	1,40	Gruhler et al.,	55,6	548,1	681,5	54,3	532,1	660,0
mas _26			x x	(97/3) Estrich	0,40			Gruhler et al., 2002, S. 110	55,6	548,1	681,5	54,3	532,1	660,0

				Estrich	3,50	2400,00	1,40		95,5	918,1	1224,3	89,5	836,6	1119,0
				Estrichpapier	0,10	800,00	-							
TFL				Dämmung DE und	6,00	30,00-	0,04	Gruhler et al.,						
mas	1991- 2000		x x	OGD, jüngere BK	0,00	200,00	0,04	2002,						
_28	2000			PE-Folie Decke	0,10	930,00	-	S. 119						
				Stahlbeton B15-B25	16,00	2400,00	2,50							
				(96/4) Innenputz	1,50	900,00	0,70							
								Mindestdicke						
TEI				Mineralwolle (Boden)	19,00	85,00	0,04	Stahlbeton nach	63,9	613,1	746,7	60,5	569,0	687,6
TFL mas	2002-		хх	Stahlbeton C20/25	16,00	2400,00	2,30	Bautabellen für						
_29	2020		A A	^ (99/1)				Ingenieure, 2012,						
								S. 4.97 (l= 4 m; Zweifeldträger)						
	•			Gipsfaserplatte	2,50	1000,00	0,35	Maximaldicke	110.5	1113,9	2040.8	98,0	762.9	1587,1
				Holzfaserdämmung				Stahlbeton nach	113,3	1113,3	2040,0	30,0	705,0	1307,1
TFL mas	2002-		хх	(Inneneusbeu)	18,50	160,00	0,04	Bautabellen für						
_30	2020		* *	Stanibeton C30/37	24,00	2400,00	2,50	Ingenieure, 2012,						
				(98/2)				S. 4.96 (l= 6 m;						
				Innenputz	2,00	900,00	0,70	Einfeldträger)	44.0	4===			252.2	100.0
				Kalkgipsputz	1,00	900,00	0,70		11,8	175,7	367,1	-20,7	-258,3	489,0
				Schilfrohrmatte	1,00	100,00	0,08	ZUB, 2009b,						
				Sparschalung	2,40	484,51	0,14	S. 41,						
TFL wood	bis	v v		Holzbalken	1,90	492,92	0,14	Sandschüttung;						
_1	1948	хх		Luftschicht, ruhend	4,00	-	0,18	Annahme						
				Bretter	1,80	484,51		Holzbalkenanteil						
				Sandschüttung	8,80	1350,00	0,58	12 %						
				Dielung/ Bretterboden	2,50	484,51	0,14							
				Kalkgipsputz	1,00	900,00	0,70		7,3	102,2	290,9	-25,0	-328,6	416,9
				Schilfrohrmatte	1,00	100,00	0,08		7,0	102,2	200,0	20,0	020,0	410,0
				Sparschalung	2,40	484,51	0,14	ZUB, 2009b,						
TFL				Holzbalken	1,90	492,92	0,14	S. 41, Schlacken-						
wood	bis	хх		Luftschicht, ruhend	4,00	-	0,18	schüttung;						
_2	1948			Bretter	1,80	484,51		Annahme Holzbalkenanteil						
				Schlacken-				12 %						
				schüttung/-füllung	8,80	1350,00	0,58							
				Dielung/Bretterboden	2,50	484,51	0,14							
	,			Kalkgipsputz	1,00	900,00	0,70		21,4	187,5	484,1	-9,8	-214,2	505,5
				Holzwolle-	5,00	360,00	0,09	ZUB, 2009b,						
TFL	1949-			Leichtbauplatte				S. 42, Annahme						
wood	1957	x		Sparschalung	2,40	484,51	0,14	Holzbalkenanteil						
_3				Holzbalken Luftschicht, ruhend	1,90 16,00	492,92	0,14	12 %						
				Dielung/Bretterboden	2,50	484,51	0,14							
	,			Kalkgipsputz	1,00	900,00	0,70		25,8	219,2	563,1	-7,2	-200,8	561,1
				Holzwolle-						-,-	-,-	, .	-,-	,
				Leichtbauplatte	3,00	360,00	0,09	7115						
TFL	1958-			Sparschalung	2,40	484,51	0,14	ZUB, 2009b, S. 45, Annahme						
wood	1968	x		Holzbalken	1,90	492,92	0,14	Holzbalkenanteil						
_4	1.23			Dämmung DE und OGD, ältere BK	3,50	30,00- 200,00	0,04	12 %						
				Luftschicht, ruhend	12,00	200,00	_							
				·										
				Dielung/Bretterboden	2,50	484,51	0,14		20.0	245.0	640.0	6.7	100.0	602.4
				Gipskartonplatte	1,25	800,00	0,21		26,8	∠45,8	612,3	-6,7	-180,3	602,4
TFL				Sparschalung	2,40	484,51	0,14	ZUB, 2009b,						
wood	1969-	х		Holzbalken Dämmung DE und	1,90	492,92 30,00-	0,14	S. 46, Annahme						
_5	1978			OGD, ältere BK	7,00	200,00	0,04							
				Luftschicht, ruhend	4,00	-	-	12 %						
				Dielung/Bretterboden	2,50	484,51	0,14							
	,			Dielung/Bretterboden	2,50	484,51	0,14		7,5	104,6	297,1	-25,6	-336,2	426,1
				Schlacken-	10,00	1200,00	0,19							
				schüttung/-füllung				7115						
TFL	1040			Bretter	2,00	484,51	0,14	ZUB, 2009b, S. 72, Annahme						
wood	1949- 1968	x x		Luftschicht, ruhend	4,00	-	0,16	Holzbalkenanteil						
_6	- 30			Holzbalken	1,90	492,92	0,14	12 %						
				Sparschalung	2,40	484,51	0,14							
				Schilfrohrträger	1,00	100,00	0,08							
	٠,			Kalkgipsputz	1,00	900,00	0,70							

				Dielung/Bretterboden	2,50	484,51	0,14		10,3	137,0	323,4	-18,4	-246,6	431,6
				Schlacken-	1,70	k.A.	0,19							
				schüttung/-füllung										
TFL	4040			Lehmschlag	6,20	k.A.	0,70	ZUB, 2009b,						
wood	1949- 1968	хх		Bretter	1,70	k.A.	0,14	S. 74, Annahme Holzbalkenanteil						
_7	1900			Luftschicht, ruhend	4,00	-	0,16	12 %						
				Holzbalken	1,90	492,92	0,14							
				Lattung	1,50	k.A.	0,14							
				Kalkgipsputz	1,00	900,00	0,70							
				Dielung/Bretterboden	2,50	484,51	0,14		9,1	121,5	227,6	-7,5	-99,7	292,0
				Luftschicht, ruhend	8,00	404,01	0,16	ZUB, 2009b,	,,,	121,0	,	1,0	55,1	202,0
TFL				•	0,00	20.00	0,10	S. 75, minimale						
wood	1969-		x	Mineralwolle (Innenausbau)	4,40	30,00- 200,00	0,04	Dämmdicke;						
_8	1978			Holzbalken	1,90	492,92	0,14	Annahme Holzbalkenanteil						
				Gipskartonplatte	1,25	800,00	0,21	12 %						
				Kalkgipsputz	1,00	900,00	0,70							
				Dielung/Bretterboden	2,50	484,51	0,14		10,1	134,9	243,1	-6,4	-86,4	307,5
				Luftschicht, ruhend	11,00		0,61	ZUB, 2009b,	· ·		,	,		
TFL				Mineralwolle		30,00-		S. 75, maximale						
wood	1969- 1978		x	(Innenausbau)	7,00	200,00	0,04	Dämmdicke; Annahme						
_9	1976			Holzbalken	1,90	492,92	0,14	Holzbalkenanteil						
				Gipskartonplatte	1,25	800,00	0,21	12 %						
				Kalkgipsputz	1,00	900,00	0,70							
				Dielung/Bretterboden	2,50	484,51	0,14		7,3	106,5	210,0	-9,2	-114,8	274,4
TFL				Luftschicht, ruhend	10,00	-	0,16	ZUB, 2009b,						
wood	1969-		x	Mineralwolle	5,30	30,00-	0,04	S. 102; Annahme						
_10	1978		^	(Innenausbau)		200,00		Holzbalkenanteil						
				Holzbalken	1,90	492,92	0,14	12 %						
				Gipskartonplatte	1,25	800,00	0,21							
				Dielung/Bretterboden	2,50	484,51	0,14		13,8	129,3	302,8	-5,6	-122,3	328,1
				Luftschicht, ruhend	13,00	-	0,16	ZUB, 2009b,						
TFL	1958-			Mineralwolle (Innenausbau)	2,60	30,00- 200,00	0,04	S. 103, minimale Dämmdicke;						
wood	1968	X		Holzbalken	1,90	492,92	0,14	Annahme						
_11				Holzwolle-				Holzbalkenanteil						
				Leichtbauplatte	2,50	360,00	0,09	12 %						
				Kalkgipsputz	1,00	900,00	0,70							
				D: 1 /D // 1 1										
				Dielung/Bretterboden	2,50	484,51	0,14		14,2	134,0	308,1	-5,2	-117,7	333,4
				Luftschicht, ruhend	2,50 12,00	484,51 -	0,14 0,16	ZUB, 2009b,	14,2	134,0	308,1	-5,2	-117,7	333,4
TFL				Luftschicht, ruhend Mineralwolle	12,00	30,00-	0,16	S. 103, maximale	14,2	134,0	308,1	-5,2	-117,7	333,4
TFL wood	1958-	x		Luftschicht, ruhend Mineralwolle (Innenausbau)	12,00 3,50	30,00- 200,00	0,16 0,04	S. 103, maximale Dämmdicke;	14,2	134,0	308,1	-5,2	-117,7	333,4
	1958- 1968	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken	12,00	30,00-	0,16	S. 103, maximale Dämmdicke; Annahme	14,2	134,0	308,1	-5,2	-117,7	333,4
wood		x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle-	12,00 3,50	30,00- 200,00	0,16 0,04	S. 103, maximale Dämmdicke;	14,2	134,0	308,1	-5,2	-117,7	333,4
wood		х		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte	12,00 3,50 1,90 2,50	30,00- 200,00 492,92 360,00	0,16 0,04 0,14 0,09	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil	14,2	134,0	308,1	-5,2	-117,7	333,4
wood		х		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz	12,00 3,50 1,90 2,50 1,00	30,00- 200,00 492,92 360,00 900,00	0,16 0,04 0,14 0,09 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil					·	·
wood		x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden	12,00 3,50 1,90 2,50 1,00 2,50	30,00- 200,00 492,92 360,00	0,16 0,04 0,14 0,09 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil	6,3	80,8	251,2	-5,2	-350,0	377,2
wood _12	1968	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken-	12,00 3,50 1,90 2,50 1,00	30,00- 200,00 492,92 360,00 900,00	0,16 0,04 0,14 0,09 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b,					·	·
wood _12	1968	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden	12,00 3,50 1,90 2,50 1,00 2,50	30,00- 200,00 492,92 360,00 900,00	0,16 0,04 0,14 0,09 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme					·	·
wood _12	1968			Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung	12,00 3,50 1,90 2,50 1,00 2,50 7,00	30,00- 200,00 492,92 360,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil					·	·
wood _12 TFL wood	1968			Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80	30,00- 200,00 492,92 360,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme					·	·
wood _12 TFL wood	1968			Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00	30,00- 200,00 492,92 360,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil					·	·
wood _12 TFL wood _13	1968			Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 %					·	377,2
wood _12 TFL wood _13	1968	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil	6,3	80,8	251,2	-26,0	-350,0	377,2
wood _12 TFL wood _13	1968 1949- 1957			Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 %	6,3	80,8	251,2	-26,0	-350,0	377,2
wood _12 TFL wood _13	1968 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 16,00	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16 0,14 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme	6,3	80,8	251,2	-26,0	-350,0	377,2
wood _12 TFL wood _13	1968 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 16,00 1,90	30,00- 200,00 492,92 360,00 900,00 484,51 - 492,92 484,51 492,92 492,92	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,16 0,14 0,14 0,61 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil	6,3	80,8	251,2	-26,0	-350,0	377,2
wood _12 TFL wood _13	1968 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 16,00 1,90 2,40	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51 484,51 - 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,61 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1968 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Schalung Dielung/Bretterboden	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 1,90 2,40 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,61 0,14 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134,	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 16,00 1,90 2,40 2,50 10,80	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 484,51 484,51 1000,00	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,14 0,14 0,13 0,35 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger;	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1968 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 10,80 1,80 6,00	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 492,92 484,51 484,51 1000,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,13 0,35 0,14 0,18	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 10,80 1,80 6,00 2,40 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 484,51 1000,00 484,51 - 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,13 0,35 0,14 0,18	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrorhträger; Holzbalkenanteil über	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 10,80 1,80 6,00	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 492,92 484,51 484,51 1000,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,13 0,35 0,14 0,18	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schalung Schalung Schälung Schälung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 16,00 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 1000,00 484,51 1000,00 484,51 1000,00	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt:	6,3	80,8	251,2 197,7	-26,0	-350,0	377,2
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Schalung Schalung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Kalkgipsputz	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 1,90 2,40 2,50 1,90 2,40 1,50 1,50 1,50 1,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 1000,00 484,51 1000,00 484,51 100,00 900,00	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,08 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt:	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Kalkgipsputz Dielung/Bretterboden	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 1,90 2,40 2,50 1,90 2,40 2,50 1,50 1,50 1,50 1,50 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51 1000,00 484,51 100,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,19 0,14 0,14 0,14 0,14 0,13 0,14 0,13 0,13 0,13 0,13 0,13 0,08 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt: 10 %	6,3	80,8 62,4 209,4	251,2 197,7	-26,0	-350,0 -278,6	377,2 297,3 519,9
wood _12 TFL wood _13 TFL wood _14	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50 1,50 1,50 10,80	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 484,51 1000,00 484,51 1000,00 484,51 100,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,14 0,13 0,35 0,14 0,13 0,13 0,08 0,70	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt:	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
TFL wood _13 TFL wood _14 TFL wood _15	1949- 1957 1949- 1957 bis 1948	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung Bretter	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 1,90 2,40 2,50 10,80 1,80 6,00 1,50 1,50 1,50 1,50 1,80 1,80	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 - 492,92 484,51 1000,00 484,51 100,00 900,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,13 0,35 0,13 0,08 0,70 0,13 0,35 0,14	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilffronträger; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 134, Spalierlatten;	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
TFL wood _13 TFL wood _14 TFL wood _15 TFL wood _15	1949- 1957 1949- 1957	x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schalung Bretter Luftschicht, ruhend Holzbalken Schalung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 16,00 1,90 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50 1,50 1,50 1,80 6,00 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 492,92 484,51 1000,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohtträger; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 134, Spalierlatten; Holzbalkenanteil	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
TFL wood _13 TFL wood _14 TFL wood _15	1949- 1957 1949- 1957 bis 1948	x x x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50 1,50 1,50 1,80 6,00 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 1000,00 484,51 1000,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 134, Spalierlatten; Holzbalkenanteil über	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
TFL wood _13 TFL wood _14 TFL wood _15 TFL wood _15	1949- 1957 1949- 1957 bis 1948	x x x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Bretter Luftschicht, ruhend Holzbalken Schalung	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50 1,50 1,80 6,00 2,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 1000,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,13 0,35 0,14 0,13 0,08 0,70 0,70 0,13 0,70 0,13 0,70 0,13 0,70 0,13	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 134, Spalierlatten; Holzbalkenanteil über U-Wert ermittelt: 10 %	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9
TFL wood _13 TFL wood _14 TFL wood _15	1949- 1957 1949- 1957 bis 1948	x x x		Luftschicht, ruhend Mineralwolle (Innenausbau) Holzbalken Holzwolle- Leichtbauplatte Kalkgipsputz Dielung/Bretterboden Schlacken- schüttung/-füllung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohträger Kalkgipsputz Dielung/Bretterboden Lehmschüttung Bretter Luftschicht, ruhend Holzbalken	12,00 3,50 1,90 2,50 1,00 2,50 7,00 1,80 6,00 2,40 2,50 10,80 1,80 6,00 2,00 1,50 1,50 1,50 1,50 1,80 6,00 2,50	30,00- 200,00 492,92 360,00 900,00 484,51 - 484,51 484,51 1000,00 484,51 1000,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 100,00 484,51 492,92 484,51	0,16 0,04 0,14 0,09 0,70 0,14 0,16 0,14 0,14 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	S. 103, maximale Dämmdicke; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 104; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 105; Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 134, Schilfrohrträger; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 134, Spalierlatten; Holzbalkenanteil über	4,9	80,8 62,4 209,4	251,2 197,7 412,9	-26,0 -20,6	-350,0 -278,6	377,2 297,3 519,9

TFL wood 1990	x x x x x x	Dielung/Bretterboden Steinkohleschlacke Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenputz Sparschalung Mineralwolle (Innenputz Schalung Holzwolle- Leichtbauplatte Innenputz Schalung Holzwolle- Leichtbauplatte Innenputz Schalung Mineralwolle	10,80 1,80 6,00 2,00 1,50 1,50 1,00	484,51 905,00 484,51 - 492,92 484,51 100,00 900,00 484,51 900,00/ 716,80 492,92 484,54 900,00 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00 484,51 360,00 900,00 484,51	0,13 0,19 0,13 0,37 0,13 0,08 0,70 0,14 0,70 0,47 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,08	ZUB, 2009b, S. 135; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	16,8	228,8 174,0	277,2 610,4 366,1	-12,4 -4,0	-108,1 -53,0	713,4 400,2
wood	x	Bretter Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,80 6,00 2,00 1,50 1,50 1,00 2,50 4,00 14,00 2,00 2,00 2,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 0,60 2,50	484,51 492,92 484,51 100,00 900,00 484,51 900,00/ 100,00 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,37 0,13 0,08 0,70 0,14 0,70 0,47 0,14 0,70 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04 0,13 0,09	S. 135; Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
wood bis 1948 1948 1948 1948 1948 1948 1948 1918 191	x	Luftschicht, ruhend Holzbalken Schalung Schilfrohrträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	6,00 2,00 1,50 1,50 1,00 2,50 4,00 14,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 3,00 2,50 4,00 2,50 4,00 2,50 4,00 2,00	492,92 484,51 100,00 900,00/ 100,00 900,00/ 100,00 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,37 0,13 0,08 0,70 0,14 0,70 0,47 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04	Holzbalkenanteil über U-Wert ermittelt: 10 % ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood _1990	x	Holzbalken Schalung Schilfrohrträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzballel Leichtbauplatte Innenputz Schalung	2,00 1,50 1,50 1,00 2,50 4,00 14,00 2,00 2,00 1,00 2,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 0,60 2,50 1,50	492,92 484,51 100,00 900,00 484,51 900,00/ 100,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,08 0,70 0,14 0,70 0,47 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,09	über U-Wert ermittelt: 10 % ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood 1990 1990 1990 1990 1990 1990 1990 199	x x x x	Schalung Schilfrohrträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,50 1,50 1,00 2,50 4,00 14,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 0,60 2,50 1,50	484,51 100,00 900,00 484,51 900,00/ 100,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,08 0,70 0,14 0,70 0,47 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,09	U-Wert ermittelt: 10 % ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood	x x x x	Schilfrohrträger Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzballe- Leichtbauplatte Innenputz Schalung	1,50 1,00 2,50 4,00 14,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	100,00 900,00 484,51 900,00/ 100,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,08 0,70 0,14 0,70 0,47 0,14 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04	ZUB, 2009b, S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood	x x x x	Innenputz Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,00 2,50 4,00 14,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 2,50 0,60 2,50 1,50	900,00 484,51 900,00/ 100,00 900,00/ 716,80 492,92 484,54 900,00 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00 900,00 900,00 900,00 900,00	0,70 0,14 0,70 0,47 0,14 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,09 0,70	S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood	x x x x	Dielung/Bretterboden Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	2,50 4,00 14,00 2,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	484,51 900,00/ 100,000/ 900,00/ 100,000/ 716,80 492,92 484,54 900,00 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00 900,00	0,14 0,70 0,47 0,14 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04	S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood	x x x x	Lehmschlag Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	4,00 14,00 2,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 1,50 0,60 2,50 1,50 1,50 1,50	900,00/ 100,00 900,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,70 0,47 0,14 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04 0,13 0,04	S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129	17,7	174,0	366,1	-4,0	-108,1	400,2
TFL wood	x x x x	Lehmwickel Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	14,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 2,50 0,60 2,50 0,60 2,50	100,00 900,00/ 100,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,47 0,14 0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,09 0,70 0,13	S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129						
TFL wood	x x x x	Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	2,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	100,00/ 716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04 0,13 0,09	S. 136; Annahme Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129						
TFL wood 1990	x x x x	Holzbalken Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	2,00 2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	716,80 492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,04 0,13 0,09	Holzbalkenanteil: 10 % Gruhler et al., 2002, S.129 Gruhler et al.,						
TFL wood 1961-wood 20 1990 TFL wood 1990 TFL wood 1990 TFL wood 21 1990 TFL wood 221 1990 TFL wood 2000		Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	492,92 484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,13 0,09	Gruhler et al., 2002, S.129						
TFL wood		Lattung Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	2,00 1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	484,54 900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,14 0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,13 0,09	2002, S.129 Gruhler et al.,						
TFL wood		Kalkgipsputz Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,00 2,00 8,00 2,40 0,60 2,50 0,60 8,00 2,50 0,60 2,50 1,50	900,00 484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,70 0,13 0,04 0,13 0,09 0,70 0,13 0,04 0,13 0,13 0,09	2002, S.129 Gruhler et al.,						
TFL wood		Schalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	2,00 8,00 2,40 0,60 2,50 1,50 0,60 8,00 2,50 0,60 2,50 1,50	484,54 26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,04 0,13 0,13 0,09 0,70 0,13 0,04 0,13 0,09	2002, S.129 Gruhler et al.,						
TFL wood		Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	8,00 2,40 0,60 2,50 1,50 0,60 8,00 2,50 0,60 2,50 1,50	26,25 492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,04 0,13 0,13 0,09 0,70 0,13 0,04 0,13 0,13	2002, S.129 Gruhler et al.,						
TFL wood		Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz	2,40 0,60 2,50 1,50 0,60 8,00 2,50 0,60 2,50 1,50	492,92 484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,13 0,09 0,70 0,13 0,04 0,13 0,13 0,09	2002, S.129 Gruhler et al.,	16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood		Sparschalung Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	0,60 2,50 1,50 0,60 8,00 2,50 0,60 2,50 1,50	484,51 360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,09 0,70 0,13 0,04 0,13 0,13 0,09	2002, S.129 Gruhler et al.,	16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood22		Holzwolle- Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	2,50 1,50 0,60 8,00 2,50 0,60 2,50 1,50	360,00 900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,09 0,70 0,13 0,04 0,13 0,13	Gruhler et al.,	16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood 1961-wood 1990 TFL wood 1990 TFL wood 1990 TFL wood 2000 TFL wood 2000	x x x x	Leichtbauplatte Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,50 0,60 8,00 2,50 0,60 2,50 1,50	900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,70 0,13 0,04 0,13 0,13 0,09		16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood22	x x x x	Innenputz Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	1,50 0,60 8,00 2,50 0,60 2,50 1,50	900,00 484,51 26,25 492,92 484,51 360,00 900,00	0,70 0,13 0,04 0,13 0,13 0,09		16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood22	x x x x	Sparschalung Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	0,60 8,00 2,50 0,60 2,50 1,50	484,51 26,25 492,92 484,51 360,00 900,00	0,13 0,04 0,13 0,13 0,09		16,9	164,3	331,6	0,1	-53,0	346,6
TFL wood22	x x x x	Mineralwolle (Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	8,00 2,50 0,60 2,50 1,50	26,25 492,92 484,51 360,00 900,00	0,04 0,13 0,13 0,09		10,9	104,3	331,0	0,1	-55,0	340,0
TFL wood22	x x x x	(Innenausbau) Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	2,50 0,60 2,50 1,50	492,92 484,51 360,00 900,00	0,13 0,13 0,09							
TFL wood22	x x x x	Holzbalken Sparschalung Holzwolle- Leichtbauplatte Innenputz Schalung	0,60 2,50 1,50	484,51 360,00 900,00	0,13 0,09							
TFL wood 2000 22 2000 275L wood 2000	x x x x	Holzwolle- Leichtbauplatte Innenputz Schalung	2,50 1,50	360,00 900,00	0,09	2002, S.138						
TFL wood _21		Leichtbauplatte Innenputz Schalung	1,50	900,00								
TFL wood 2000		Innenputz Schalung	1,50	900,00								
TFL wood 2000 TFL wood 2000 TFL wood 2000		Schalung			0.70							
TFL wood 2000 TFL wood 2000 TFL wood 2000		•	2,00	484.54								
TFL wood 2000 TFL wood 2000 TFL wood 2000		Mineralwolle			0,13		17,8	175,3	369,5	-4,3	-111,9	405,1
TFL wood 2000 TFL wood 2000 TFL wood 2000			8,00	26,25	0,04							
TFL wood _22		(Innenausbau) Holzbalken	2,50	492,92	0,13	Gruhler et al.,						
TFL wood 2000	x x x x	Sparschalung	0,60	484,51	0,13	2002, S.158;						
wood 1961- 2000 - TFL 1961- wood 2000		Holzwolle-				Minimaldicke						
wood 1961- 2000 - TFL 1961- wood 2000		Leichtbauplatte	2,50	360,00	0,09							
wood 1961- 2000 - TFL 1961- wood 2000		Innenputz	1,50	900,00	0,70							
wood 1961- 2000 - TFL 1961- wood 2000		Schalung	2,00	484,54	0,13		18,5	185,0	404,0	-8,4	-166,9	458,7
wood 1961- 2000 - TFL 1961- wood 2000		Mineralwolle	8,00	26,25	0,04							
wood 1961- 2000 - TFL 1961- wood 2000		(Innenausbau)				Gruhler et al.,						
TFL 1961-wood 2000	x x x x x	Holzbalken	2,40	492,92	0,13	2002, S.158;						
wood 1961-		Sparschalung Holzwolle-	2,00	484,51	0,13	Maximaldicke						
wood 1961-		Leichtbauplatte	2,50	360,00	0,09							
wood 1961-		Innenputz	1,50	900,00	0,70							
wood 1961-		Schalung	2,00	484,54	0,13		16,5	159,9	351,7	-5,5	-127,3	387,3
wood 1961-		Mineralwolle										
wood 1961-		(Innenausbau)	5,00	26,25	0,04							
2000	x x x x x	Holzbalken	2,50	492,92	0,13	Gruhler et al.,						
_23		Sparschalung	0,60	484,51	0,13	2002, S.177						
		Holzwolle-	2,50	360,00	0,09							
		Leichtbauplatte Innenputz	1,50	900,00	0,70							
_		Schalung	0,60	484,54	0,70		13,1	160.2	271,3	-0,8	-17,7	325,4
		Mineralwolle					13,1	109,2	211,3	-0,6	-17,7	323,4
TFL 4004		(Innenausbau)	12,00	26,25	0,04							
wood 1961-	хх	Holzbalken	2,50	492,92	0,13	Gruhler et al.,						
_24 1978		Sparschalung	0,60	484,51	0,13	2002, S.187						
		Gipskartonplatte	1,30	800,00	0,21							
		Innenputz	1,50	900,00	0,70							
		GKF-Platte	1,25	800,00	0,25	Eigene Annahme	21,1	371,6	602,2	-0,5	-13,9	568,7
		OSB-Platte	1,80	600,00	0,13	Ausführung						
		Konstruktionsvollholz	1,60	492,92	0,13	minimale Umwelt-						
TFL		Luftschicht, ruhend	7,36	-	0,49	wirkungen; KVH						
2002-		Zellulosefaser-	11,04	45,00	0,04	nach Schneider						
_25 2009	×	Ethalia Lancia Diagnosia de la constantina della				Bautabelle, 2012, S. 4.101						
	×	Einblasdämmung	1,50	600,00	0,13	(Stützweite < 4 m,						
	×	OSB-Platte		800,00	0,25	bxh= 80x240 mm,						
	X		1,25									

				GKF-Platte	1,25	800,00	0,25	Eigene Annahme	23,4	380,6	682,2	-1,1	-43,8	605,1
				OSB-Platte	1,80	600,00	0,13	Ausführung						
				Konstruktionsvollholz	1,68	492,92	0,13	minimale Umwelt-						
TFL				Zellulosefaser-	19,32	45,00	0,04	wirkungen; KVH						
wood	2010- 2020		х	x Einblasdämmung OSB-Platte			0.40	nach Schneider Bautabelle, 2012,						
_26	2020			GKF-Platte	1,50 1,25	600,00 800,00	0,13	S. 4.101						
				GRI -Flatte	1,23	800,00	0,23	(Stützweite < 4 m,						
								bxh= 80x240 mm,						
								a= 100 cm)						
				Gipsfaserplatte	2,50	1000,00	0,35	Eigene Annahme	54,6	832,1	1550,9	8,9	46,9	1433,4
				OSB-Platte	1,80	600,00	0,13	Ausführung						
				Brettschichtholz	6,40	507,11	0,13	maximale Umwelt-						
TFL				Luftschicht, ruhend	16,00	-	1,23	wirkungen; BSH						
wood	2002- 2009		x	Holzfaserdämmung	9,60	160,00	0,04	nach Schneider Bautabellen,						
_27	2003			(Innenausbau) OSB-Platte	1,50	600,00	0,13	2012, S. 4.101						
				Lattung	0,38	484,51	0,13	(Stützweite < 6.5						
				Luftschicht, ruhend	3,62	_	0,25	m, bxh= 200x320						
				Gipsfaserplatte	2,50	1000,00	0,35	mm, a= 100 cm)						
				Gipsfaserplatte	2,50	1000,00	0,35	F:	66,8	978,2	1989,2	14,0	70,0	1713,5
				OSB-Platte	1,80	600,00	0,13	Eigene Annahme Ausführung						
				Brettschichtholz	6,40	507,11	0,13	maximale Umwelt-						
TFL				Luftschicht, ruhend	8,00	-	0,61	wirkungen; BSH						
wood	2010-		x	x Holzfaserdämmung	17,60	160,00	0,04	nach Schneider						
_28	2020			(Innenausbau)				Bautabellen, 2012, S. 4.101						
				OSB-Platte Lattung	1,50 0,38	600,00	0,13	(Stützweite < 6.5						
				Luftschicht, ruhend	3,62	484,51	0,13	m, bxh= 200x320						
				Gipsfaserplatte	2,50	1000,00	0,35	mm, a= 100 cm)						
				Mineralwolle (Boden)	8,50	85,00	0,04	Eigene Annahme	34,1	454,4	809,5	-15,2	-293,8	958,6
				PE-Folie Decke	0,02	930,00	_	Ausführung	- 1,1	,.	,-	, _	,-	,-
				Brettsperrholz	14,00	489,41	0,13	minimale Umwelt-						
TFL	2002-							wirkungen;						
wood _29	2009		х					Minimaldicke Brettsperrholz						
_20								nach						
								Herstelleranga-						
								ben (Binderholz)						
				Mineralwolle (Boden)	15,00	85,00	0,04	Eigene Annahme Ausführung	43,0	572,7	946,3	-6,3	-175,5	1095,4
				PE-Folie Decke	0,02	930,00	_	Ausiuntuna i						
							0.40							
TFL	2040			Brettsperrholz	14,00	489,41	0,13	minimale Umwelt- wirkungen;						
wood	2010-		x	Brettsperrholz			0,13	minimale Umwelt- wirkungen; Minimaldicke						
	2010- 2020		x	Brettsperrholz			0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz						
wood			x	Brettsperrholz			0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach						
wood			x	Brettsperrholz			0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz						
wood			х	Brettsperrholz	14,00		0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz)	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood			x	x Gipsfaserplatte Holzfaserdämmung	2,50	1000,00	0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood _30	2020		x	x Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00	489,41 1000,00 160,00		minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt-	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood	2020		x	Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke	2,50 4,00 0,02	489,41 1000,00 160,00 930,00	0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood _30	2020			Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00	1000,00 160,00 930,00 489,41	0,35 0,04 - 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood _30	2020			Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung	2,50 4,00 0,02 24,00 0,58	489,41 1000,00 160,00 930,00	0,35 0,04 - 0,13 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood _30	2020			Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00	1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga-	61,3	843,9	1665,4	-28,9	-528,0	1851,7
wood _30 TFL wood	2020			Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend	2,50 4,00 0,02 24,00 0,58 5,42	1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,13 0,37	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz	61,3		1665,4	-28,9		1851,7
wood _30 TFL wood	2020			Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,13 0,37 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung						
wood _30 TFL wood _31	2020			Srettsperrholz X Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 11,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00	0,35 0,04 - 0,13 0,13 0,37 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt-						
wood _30 TFL wood _31	2020		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 11,00 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 930,00	0,35 0,04 - 0,13 0,37 0,35 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen;						
wood _30 TFL wood _31	2020			Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke x Brettsperrholz	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 11,00 0,02 24,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 930,00 489,41	0,35 0,04 - 0,13 0,13 0,37 0,35 0,04 - 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt-						
wood _30 TFL wood _31	2020		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Logisfaserplatte Holzfaserdämmung (Innenausbau) Lattung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 11,00 0,02 24,00 0,02 24,00 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,13 0,37 0,35 0,04 - 0,13 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach						
wood _30 TFL wood _31	2020		x	Srettsperrholz X Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,02 24,00 0,02 5,42 5,42 5,42 5,50 5,42 5,50 5,50 5,42 5,50 5,50 5,50 5,50 5,50 5,50 5,50 5,5	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,13	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga-						
wood _30 TFL wood _31	2020		x	Srettsperrholz X Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,02 24,00 0,02 24,00 0,02 25,50 11,00 0,02 24,00 0,02 25,50 11,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,37 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz)	71,9	971,7	2049,0	-24,4	-507,9	2096,8
wood _30 TFL wood _31	2020		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,02 24,00 0,58 5,42 2,50 1,00	1000,000 160,000 930,000 489,411 484,511 	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,37 0,35 0,87	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9,			2049,0			
wood _30 TFL wood _31 TFL wood _32 CFL mas	2020	x	x	Srettsperrholz X Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,02 24,00 0,02 24,00 0,02 25,50 11,00 0,02 24,00 0,02 25,50 11,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,37 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz)	71,9	971,7	2049,0	-24,4	-507,9	2096,8
wood _30 TFL wood _31	2020 2002- 2009 2010- 2020	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,02 24,00 0,58 5,42 2,50 1,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00 2400,00 30,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,37 0,35 0,87	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9,	71,9	971,7	2049,0	-24,4	-507,9	2096,8
wood _30 TFL wood _31 TFL wood _32	2020 2002- 2009 2010- 2020	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,58 5,42 2,50 11,00 0,58 5,42 2,50 1,58	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00 2400,00 2400,00 2400,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,13 0,37 0,35 0,04 - 0,73 0,73 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke	71,9	971,7	2049,0	-24,4	-507,9	2096,8
wood _30 TFL wood _31 TFL wood _32 CFL mas	2002- 2002- 2009- 2010- 2020- 1949- 1957- 1949-	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,58 5,42 2,50 1,00 1,50	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00 2400,00 30,00- 2400,00 2400,00 30,00-	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz)	71,9	971,7	2049,0	-24,4 54,6	-507,9 475,9	2096,8
wood _30 TFL wood _31 TFL wood _32 CFL mas _1 CFL	2020 2002- 2009 2010- 2020		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Steitsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,58 5,42 2,50 11,00 0,58 5,42 2,50 1,00 1,50 1,50 2,50	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 930,00 489,41 484,51 - 1000,00 2400,00 2400,00 30,00- 2400,00 30,00- 2400,00 2400,00 30,00- 200,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,87 0,04	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maxiführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke	71,9	971,7	2049,0	-24,4 54,6	-507,9 475,9	2096,8
wood _30 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas	2002- 2002- 2009- 2010- 2020- 1949- 1957- 1949-		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 11,00 0,58 5,42 2,50 1,00 1,50 1,50 1,50 1,50	1000,000 160,000 930,000 489,411 484,511 	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,87 0,04 1,51	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale	71,9 57,7 59,1	971,7 516,5 534,7	2049,0 691,0 712,0	-24,4 54,6 56,0	-507,9 475,9 494,1	2096,8 636,7 657,8
wood _30 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas _2	2002- 2002- 2009- 2010- 2020- 1949- 1957- 1949-		x	Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke Dielung/Bretterboden	2,50 4,00 0,02 24,00 0,58 5,42 2,50 11,00 0,02 24,00 0,58 5,42 2,50 1,00 1,50 1,50 15,00 2,50	1000,000 160,000 930,000 489,411 484,511 	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,87 0,04 1,51 0,04 1,51 0,21	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahm Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale Dämmdicke	71,9	971,7	2049,0 691,0 712,0	-24,4 54,6	-507,9 475,9	2096,8
wood _30 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas _2 CFL	2002- 2002- 2009- 2010- 2020- 1949- 1957- 1949- 1957- bis	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 11,00 0,58 5,42 2,50 1,00 1,50 1,50 1,50 1,50	1000,000 160,000 930,000 489,411 484,511 	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,87 0,04 1,51	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale Dämmdicke	71,9 57,7 59,1	971,7 516,5 534,7	2049,0 691,0 712,0	-24,4 54,6 56,0	-507,9 475,9 494,1	2096,8 636,7 657,8
TFL wood _31 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas _2 CFL mas	2002- 2002- 2009- 2010- 2020- 1949- 1957- 1949- 1957- bis		x	Sipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke Dielung/Bretterboden Lagerhölzer mit Sandschüttung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 11,00 0,02 24,00 0,58 5,42 2,50 1,00 1,50 1,50 15,00 2,50	1000,000 160,000 930,000 489,411 484,511 	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,04 1,51 0,04 1,51 0,21 0,21	minimale Umwelt-wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale Dämmdicke	71,9 57,7 59,1	971,7 516,5 534,7	2049,0 691,0 712,0	-24,4 54,6 56,0	-507,9 475,9 494,1	2096,8 636,7 657,8
wood _30 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas _2 CFL	2020 2002- 2009 2010- 2020 1949- 1957 1949- 1957	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke x Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke x Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke Dielung/Bretterboden Lagerhölzer mit	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,58 5,42 2,50 1,00 1,50 15,00 2,50 15,00 2,50 12,00	1000,000 160,000 930,000 489,41 484,51 - 1000,000 160,000 930,000 489,41 484,51 - 1000,000 2400,000 2400,000 2400,000 2400,000 2400,000 2400,000 488,33 492,92/	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,04 1,51 0,04 1,51 0,21 0,21	minimale Umwelt- wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale Dämmdicke	71,9 57,7 59,1	971,7 516,5 534,7	2049,0 691,0 712,0	-24,4 54,6 56,0	-507,9 475,9 494,1	2096,8 636,7 657,8
TFL wood _31 TFL wood _31 TFL wood _32 CFL mas _1 CFL mas _2 CFL mas	2020 2002- 2009 2010- 2020 1949- 1957 1949- 1957	x	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke X Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Estrich Steinwolle Ortbetondecke Estrich Steinwolle Ortbetondecke Dielung/Bretterboden Lagerhölzer mit Sandschüttung Kappendecke aus	2,50 4,00 0,02 24,00 0,58 5,42 2,50 0,02 24,00 0,58 5,42 2,50 1,00 1,50 15,00 2,50 15,00 2,50 12,00	1000,00 160,00 930,00 489,41 484,51 -1000,00 160,00 930,00 489,41 484,51 -1000,00 2400,00 2400,00 2400,00 2400,00 483,33 492,92/ 1350,00 1800,00/	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,13 0,37 0,35 0,04 1,51 0,04 1,51 0,21 0,58	minimale Umwelt-wirkungen; Minimaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) Eigene Annahme Ausführung maximale Umwelt- wirkungen; Maximaldicke Brettsperrholz nach Herstelleranga- ben (Binderholz) ZUB, 2009b, S. 9, minimale Dämmdicke ZUB, 2009b, S. 9, maximale Dämmdicke	71,9 57,7 59,1	971,7 516,5 534,7	2049,0 691,0 712,0	-24,4 54,6 56,0	-507,9 475,9 494,1	2096,8 636,7 657,8

			Dielung/Bretterboden	2,50	488,33	0,21		25,3	203,3	305,4	11,7	20,7	346,1
CFL			Lagerhölzer mit	12,00	492,92/	0,14/	ZUB, 2009b,						
mas	bis 1948	x x	Schlackenfüllung		1200,00	0,42	S. 47, mit						
_4	1040		Kappendecke aus Vollziegel (mit	12 00	1800,00/ 7850,00/	0,79	Schlackenfüllung						
			Stahlträgern)	12,00	2000,00	0,10							
CFL	1010		Verbundestrich	6,00	2400,00	0,87	711D 2000h	66,3	473,1	595,3	62,9	428,9	536,2
mas	1919- 1948	x		-			ZUB, 2009b, S. 48	00,0	,.	000,0	02,0	0,0	000,=
_5			Betondecke (99/1)	16,00	2300,00	1,51	00						
CFL			Dielung/Bretterboden	2,50	488,33	0,21	ZUB, 2009b,	39,4	288,7	420,2	25,9	109,3	400,9
mas	1919-	x x	Lagerhölzer	3,50	484,51	0,14	S. 49,						
_6	1957		Luftschicht, ruhend	3,50	-		Minimaldicke						
			Betondecke (99/1)	16,00	2300,00	1,51			200.4	400.0		40= 0	100.0
CFL	1919-		Dielung/Bretterboden Lagerhölzer	2,50 3,50	488,33 484,51	0,21 0,14	ZUB, 2009b,	44,1	322,1	463,6	30,2	137,2	436,9
mas	1957	x x	Luftschicht, ruhend	3,50	404,51	0,14	S. 49,						
_7			Betondecke (99/1)	18,00		1,51	Maximaldicke						
	•		Schwimmender					74.0	040.0	0047	00.0	500.7	750.4
CFL mas	1949-	x	Estrich	4,00	2400,00	1,40	ZUB, 2009b, S. 50,	71,3	610,3	804,7	68,2	569,7	750,4
_8	1957	*	Steinwolle	1,00	85,00	0,09	Minimaldicke						
			Betondecke (97/3)	15,00	2400,00	1,51							
CFL	1949-		Schwimmender Estrich	5,00	2400,00	1,40	ZUB, 2009b,	76,1	644,5	846,2	73,0	603,9	791,9
mas	1957	X	Steinwolle	1,00	85,00	0,09	S. 50,						
_9			Betondecke (97/3)	15,00	2400,00	1,51	Maximaldicke						
			Schwimmender	4.00	2400,00	0,87	ZUB, 2009b,	73,4	637,5	836,3	70,3	597,0	782,0
CFL mas	1958-	x	Estrich		30,00-		S. 51,	,	,-	,.	-,-	,-	,
_10	1968	*	Steinwolle	2,50	200,00	0,05	minimale						
			Betondecke (97/3)	15,00	2400,00	1,51	Dämmdicke						
			Schwimmender	4,00	2400,00	0,87	ZUB, 2009b,	74,1	646,6	846,8	71,0	606,0	792,5
CFL mas	1958-	X	Estrich		30,00-		S. 51,						
_11	1968	^	Steinwolle	3,00	200,00	0,05	maximale Dämmdicke						
			Betondecke (97/3)	15,00	2400,00	1,51	Dammdicke						
			Schwimmender Estrich	4,00	2400,00	0,87	ZUB, 2009b,	77,2	663,1	873,5	74,1	622,5	819,2
CFL	1958-			0.50	30,00-	0.05	S. 51,						
mas _12	1968	Х	Steinwolle	2,50	200,00	0,05	minimale Dämmdicke, mit						
_12			Betondecke (97/3)	15,00		1,51	Putz						
			Kalkzementputz Schwimmender	1,00	1800,00	0,87							
			Estrich	4,00	2400,00	0,87	ZUB, 2009b,	77,9	672,2	884,0	74,8	631,6	829,7
CFL mas	1958-	x	Steinwolle	3,00	30,00-	0,05	S. 51, maximale						
_13	1968	^	Betondecke (97/3)	15,00	200,00 2400,00		Dämmdicke, mit						
			Kalkzementputz	1,00	1800,00	1,51 0,87	Putz						
	•		Schwimmender										
CFL	1969-		Estrich	4,00	2400,00	1,40	ZUB, 2009b,	72,1	634,5	826,7	69,2	596,6	776,0
mas	1978	X	Steinwolle	4,00	30,00-	0,04	S. 52						
_14			Betondecke (97/3)	14 00	200,00 2400,00	1,51							
			Schwimmender					74.0	640.2	004.7	60.0	ECO 7	750.4
CFL	1949-		Estrich		2400,00	1,40	ZUB, 2009b,	71,3	610,3	804,7	68,2	569,7	750,4
mas _15	1968	хх	Mineralwolle (Boden)	1,00	85,00	0,09	S. 66, minimale Dämmdicke						
_13			Stahlbeton B15-B25 (97/3)	15,00	2400,00	1,05	Danindeke						
	•		Schwimmender	5.00	2400,00	1,40		89,0	771 0	1011,9	85,3	722.2	946,7
CFL	1949-		Estrich				ZUB, 2009b,	03,0	771,3	1011,3	00,0	125,2	340,1
mas _16	1968	хх	Mineralwolle (Boden) Stahlbeton B15-B25	3,00	85,00	0,09	S. 66, maximale Dämmdicke						
_10			(97/3)	18,00	2400,00	1,05	Duningloke						
CFL	•		Schwimmender	4 00	2400,00	1,40	ZUB, 2009b,	70,0	592 1	783,7	66,9	551 5	729,4
mas	1949- 1968	x x	Estrich Stahlbeton B15-B25	.,00	2.00,00	.,	S. 67,	. 0,0	002,.		00,0	001,0	0, .
_17	1900		(97/3)	15,00	2400,00	1,05	Minimaldicke						
CFL	•		Schwimmender	5.00	2400,00	1,40	ZUB, 2009b,	84,9	717,3	948,7	81,2	668,6	883,6
mas	1949-	хх	Estrich	0,00	2400,00	1,40	S. 67,	04,0	,0	040,1	01,2	000,0	000,0
_18	1968		Stahlbeton B15-B25 (97/3)	18,00	2400,00	1,05	Maximaldicke						
			Schwimmender	4.00	2400,00	1,40		78,6	706,3	905,2	73,5	636.7	813,7
CFL	1969-		Estrich	4,00		1,40	ZUB, 2009b,	70,0	100,0	300,2	10,0	000,1	0.0,1
mas	1969-	x	Polystyroldämmung, XPS (KW)	2,00	30,00- 200,00	0,04	S. 68, Minimaldicke mit						
_19			Stahlbeton B15-B25	15,00		1,05	EPS						
			(97/3) Schwimmondor	10,00	2-100,00	1,00							
CE			Schwimmender Estrich	5,00	2400,00	1,40	ZUB, 2009b,	102,1	945,8	1191,8	94,4	839,2	1052,1
CFL mas	1969-	x	Polystyroldämmung,	4,00	30,00-	0,04	S. 68,						
_20	1978		XPS (KW) Stahlbeton B15-B25		200,00		Maximaldicke mit EPS						
			(97/3)	18,00	2400,00	1,05							

			0-1										
CFL			Schwimmender Estrich	4,00	2400,00	1,40	ZUB, 2009b,	72,7	628,4	825,8	69,6	587,9	771,5
mas	1969- 1978	x	Mineralwolle (Boden)	2,00	30,00- 200,00	0,04	S. 68, Minimaldicke mit						
_21			Stahlbeton B15-B25	15.00	2400,00	1,05	MW						
	•		(97/3) Schwimmender	F 00	2400.00	1.40		90,4	700.1	1022.0	96.7	741,4	967,8
CFL	1969-		Estrich	5,00	2400,00	1,40	ZUB, 2009b, S. 68,	90,4	790,1	1032,9	86,7	741,4	907,0
mas _22	1978	Х	Mineralwolle (Boden)	4,00	200,00	0,04	minimale						
			Stahlbeton B15-B25 (97/3)	18,00	2400,00	1,05	Dämmdicke MW						
CFL	•		Schwimmender	4,00	2400,00	0,87	ZUB, 2009b,	76,1	658,8	867,0	72,8	615,5	809,1
mas	1958- 1978	x x	Estrich Mineralwolle (Boden)	2,00	85,00	0,09	S. 100, maximale	,	,	,	,	,	ŕ
_23			Ortbetondecke	16,00	2400,00	1,51	Dämmdicke MW						
CFL	1958-		Schwimmender Estrich	4,00	2400,00	0,87	ZUB, 2009b, S. 100,	78,9	695,2	909,1	75,5	651,9	851,2
mas	1978	x x	Mineralwolle (Boden)	4,00	85,00	0,09	Maximaldicke mit						
_24			Ortbetondecke	16,00	2400,00	1,51	MW						
			Schwimmender Estrich	4,00	2400,00	0,87	ZUB, 2009b,	75,7	654,3	857,3	71,7	601,2	788,7
CFL mas	1969-	x	Polystyroldämmung				S. 100,						
_25	1978	^	Decke und Boden, EPS, WLS 040	2,00	18,50	0,09	maximale Dämmdicke EPS						
			Ortbetondecke	16,00	2400,00	1,51	Danindicke Er o						
	•		Schwimmender	4,00	2400,00	0,87		78,0	686,3	889,7	73,4	623,4	810,4
CFL	1969-		Estrich Polystyroldämmung				ZUB, 2009b, S. 100,						
mas _26	1978	X	Decke und Boden,	4,00	18,50	0,09	Maximaldicke mit						
			EPS, WLS 040 Ortbetondecke	16,00	2400,00	1,51	EPS						
	•		Dielung/Bretterboden	2,50	488,33	0,21		21,1	168,4	257,9	8,7	3,5	295,6
CFL	hio		Holzbalken mit	8,00	492,92/	0,14/	ZUB, 2009b,						
mas _27	bis 1918	х	Steinkohleschlacke Kappendecke aus		905,00	0,19	S. 141						
_21	_		Vollziegel (mit Stahlträgern)	10,00	1800,00	0,81							
CFL	•		Zementestrich	4,00	2400,00	1,40	ZUB, 2009b,	76,1	658,8	867,0	72,8	615,5	809,1
mas	1969- 1978	x	Mineralwolle (Boden)	2,00	30,00- 200,00	0,09	S. 142,						
_28	1370		Stahlbeton B15-B25 (97/3)	16,00	2400,00	2,50	MW-Dämmung						
			Zementestrich	4,00	2400,00	1,40		75,7	654,3	857,3	71,7	601,2	788,7
CFL	1969-		Polystyroldämmung		30,00-		ZUB, 2009b,						
mas _29	1978	X	Decke und Boden, EPS, WLS 040	2,00	200,00	0,09	S. 142, EPS-Dämmung						
_23			Stahlbeton B15-B25	16,00	2400,00	2,50	El O-Daninding						
CFL			(97/3) Zementestrich	4,00	2400,00	1,40		73,4	622,4	824,9	70,0	579,1	767,0
mas	1969- 1978	x	Stahlbeton B15-B25		2400,00	2,50	ZUB, 2009b, S. 143	, .	,	,-	,.	,-	, .
_30			(97/3)		,		ZUB, 2009b,	40.0	422 E	E24 7	46.0	404.7	E00.0
CFL	1919-		Zementestrich Stahlprofil	0,16	2400,00 7850,00	1,40 50,00	S. 144, Annahme	48,8	423,5	521,7	46,0	401,7	502,2
mas _31	1948	Х	Hourdis-Stein	0.00	750,00	0.45	IPE 120 gemäß Zeichnung,						
_*.			(Hohlziegel)	6,00	750,00	0,45	a= 85 cm						
			Zementestrich Dämmung KD, ältere	4,00	2400,00 30,00-	1,40		70,3	553,9	723,2	68,3	528,3	692,8
CFL mas	1949-	x x x	BK	1,00	200,00	0,04	ZUB, 2009b,						
_32	1978	^ ^ ^	Deckenziegel	10.00	575,00/	0.70	S. 145						
			(Zwischenraum mit Beton verfüllt)	19,00	2000,00/ 7850,00	0,79							
CFL	•		Zementestrich	4,00	2400,00	1,40		67,4	532,9	670,5	66,5	519,4	655,8
mas	1949- 1978	x x x	Deckenziegel (Zwischenraum mit	10.00	575,00/ 2000,00/	0,79	ZUB, 2009b, S. 146						
_33			Beton verfüllt)	19,00	7850,00	0,79	0						
CEL	•		Zementestrich	2,00	2400,00	1,40		64,0	449,7	605,9	62,6	433,7	585,3
CFL mas	1949- 1968	хх	Dämmung KD, ältere BK	1,00	30,00- 200,00	0,04	ZUB, 2009b, S. 147						
_34	1900		Füllkörper aus	23,00	k.A.	0,72	J. 141						
			Bimsstein Dielung/Bretterboden	2,50	488,33	0,21		26,0	216,7	304,8	14,9	67,5	334,1
CFL			Lagerhölzer mit	3,50	492,92/	0,14/							
mas	bis 1968	x x x x	Sandschüttung	-,-9	1350,00	0,58	ZUB, 2009b, S. 168						
_35			Kappendecke aus Beton (mit	12,00	2400,00/ 7874,00/	3,21	- 1						

	-		Dielung/Bretterboden	2,50	488,33	0,21		31,0	295,5	401,1	17,1	108,8	436,6
CFL			Lagerhölzer mit	12,00	492,92/	0,14/							
mas	bis 1948	x x	Sandschüttung	,	1350,00	0,58	ZUB, 2009b, S. 169						
_36	1340		Kappendecke aus Vollziegel (mit	12.00	2400,00/	0.70	0. 103						
			Stahlträgern)	12,00	7874,00/ 7850,00	0,79							
	•		Estrich (Anhydrit)	4,00	2100,00	1,20		56,9	552,9	719,6	54,0	515,0	668,9
CFL	1971-		, , ,		30,00-		ZUB, 2009b,	00,0	002,0		0 .,0	0.0,0	000,0
mas _37	1990	ххх	Mineralwolle (Boden)	1,50	200,00	0,04	S. 171-176						
_0,			Betondecke (97/3)	14,00	2400,00	1,51							
			Dielung/Bretterboden	2,40	488,33	0,21		62,5	444,3	573,6	50,5	285,6	559,1
			Estrich	3,50	2400,00	1,40							
FL	1870-		Sand/ Lehm/	6,00	1350,00/ 900,00/	0,19	Gruhler et al.,						
as	1918	х	Schlacke	0,00	1200,00	0,19	2002,						
38			Beton B5-B20	10,00	2400,00	2,00	S. 32, 52						
				40.00	1800,00/								
			Vollziegel	12,00	2000,00	0,79							
			Dielung/Bretterboden	1,30	488,33	0,21	Gruhler et al.,	69,4	440,9	637,5	61,2	339,6	609,
			Estrich	1,75	2400,00	1,40	2002, S. 71; Mischkonstruk-						
			Vergussbeton B5	2,50	2000,00	2,00	tion (50 %						
FL	1949-	V V V	Betonfertigteil B20	9,20	2520,00	2,50	Dielung,						
as 89	1978	x x x	Bewehrungsstahl	0,00	7850,00	-	50 % Bretter-						
			Holzwolle- Leichtbauplatte	2,50	360,00	0,09	boden,						
			•				Bewehrung bei Betonfertigteil						
			Innenputz	1,50	900,00	0,70	berücksichtigt)						
	•		Estrich	3,50	2400,00	1,40		94,4	1016,9	1396,8	88,3	945,5	1303,
			Holzwolle-	3,00	360,00	0,09							
FL	1949-		Leichtbauplatte				Gruhler et al.,						
as	1978	x x x	Bitumenbahn, Decke	0,40	1000,00	0.10	2002, S. 81						
0			Hochofenschlacke Stahlbeton B20 (66/4)	2,50 19,00	1200,00 2400,00	0,19 2,19	3. 61						
			Innenputz	1,50	900,00	0,70							
-L	-		Estrich	3,50	2400,00	1,40	Gruhler et al.,	77,8	665,9	886,6	74,0	617,2	821,
as	1949-	x x x x x	Stahlbeton B15-B25				2002,	,0	000,0	000,0	14,0	V11, <u>z</u>	OZ 1,-
11	1994		(97/3)	18,00	2400,00	2,50	S. 91		_				
FL			Bitumendachpappe	0,40	1000,00	-	Gruhler et al.,	59,7	840,8	1017,6	56,8	802,9	966,9
as	1979- 1990	x x	Mineralwolle (Boden)	6,00	85,00	0,04	2002,						
2	1990		Stahlbeton B15-B25 (97/3)	14,00	2400,00	2,50	S. 100						
	•		Estrich	3,50	2400,00	1,40		87,2	809.2	1068,1	81,2	727,2	962,2
			Estrichpapier	0,10	800,00	_		- ,		,	,	,	,
			Dämmung KD,		85,00/								
			jüngere BK	3,00	18,50/	0,04							
EL as	1991-	x x	7- 3		160,00 85,00/		Gruhler et al., 2002,						
3	2000	* *	Dämmung KD,	3,00	18,50/	0,04	S. 119						
			jüngere BK		160,00								
			PE-Folie Decke	0,10	930,00	-							
			Stahlbetondecke	16,00		2,50							
			Innenputz	1,50	900,00	0,70		101 1	00= 0	4070 1	64-	000 =	4470
			Estrich Holzwolle-	3,50	2400,00	1,40		101,4	907,8	1279,4	94,7	826,5	11/2,
FL	1961-		Leichtbauplatte	2,50	360,00	0,09	Gruhler et al.,						
as 4	1990	x x x x	Stahlbeton B15-B25	19 00	2400,00	2,50	2002, S. 129						
			(96/4)				J. 120						
			Innenputz	1,50	900	0,70		10: 1	ac= -	1077	a · -	20	
			Estrich	3,50	2400,00	1,40	Gruhler et al.,	101,4	907,8	1279,4	94,7	826,5	1172,
-L	1961-		Holzwolle- Leichtbauplatte	2,50	360,00	0,09	2002,						
IS	2000	x x x x x	Stahlbeton B15-B25	19,00	2400,00	2,50	S. 138, 158, 168,						
5			(96/4)				187						
			Innenputz	1,50	900,00	0,70	Finance A						
			Trockenestrich	2,50	800,00	0,25	Eigene Annahme Ausführung	66,1	572,9	725,4	62,7	528,7	666,
			Mineralwolle (Boden)	2,00	85,00	0,04	minimale Umwelt-						
			Stahlbeton C20/25 (99/1)	16,00	2400,00	2,30	wirkungen;						
L	2002-		Mineralwolle	2.50	26.25	0.04	Minimaldicke						
as	2009	Х	(Innenausbau)	3,50	26,25	0,04	Stahlbeton nach						
6			WDVS Verklebung	2,00	1759,00	1,00	Bautabellen für Ingenieure, 2012,						
			und Beschichtung				S. 4.97						
							3. 4.97						
							(Zweifeldträger mit l= 4 m)						

			Trockenestrich	2,50	800,00	0,25		66,7	580,6	734,3	63,3	536,4	675,2
			Mineralwolle (Boden)	2,00	85,00	0,04	Ausführung minimale Umwelt-						
			Stahlbeton C20/25	16,00	2400,00	2,30	wirkungen;						
CFL	2010-		(99/1) Mineralwolle				Minimaldicke						
mas	2015	x	(Innenausbau)	5,00	26,25	0,04							
_47			WDVS Verklebung	2,00	1759,00	1,00	Bautabellen für Ingenieure, 2012,						
			und Beschichtung				S. 4.97						
							(Zweifeldträger						
							mit l= 4 m)						
			Trockenestrich	2,50	800,00	0,25		67,3	588,3	743,2	63,9	544,1	684,1
			Mineralwolle (Boden)	2,00	85,00	0,04	Ausführung minimale Umwelt-						
			Stahlbeton C20/25	16,00	2400,00	2,30	wirkungen;						
CFL	2016-		(99/1) Mineralwolle				Minimaldicke						
mas	2020		x (Innenausbau)	6,50	26,25	0,04							
_48			WDVS Verklebung	2,00	1759,00	1,00	Bautabellen für						
			und Beschichtung				Ingenieure, 2012, S. 4.97						
							(Zweifeldträger						
							mit I = 4 m)						
	-		Zementestrich	7,50	2400,00	1,40	Eigene Annahme	145,2	1166,6	1680,2	134,6	1005,0	1469,0
			PE-Folie Decke	0,02	930,00	-	Ausführung						
			Holzfaserdämmung	5,00	160,00	0,04	maximale Umwelt-						
CFL	2002		(TSD) Stahlbeton C30/37				wirkungen;						
mas	2002- 2009	x	(98/2)	24,00	2400,00	2,50	Minimaldicke Stahlbeton nach						
_49	2003		Holzfaserdämmung	1,00	160,00	0,04	Bautabellen für						
			(Innenausbau)				Ingenieure, 2012,						
			WDVS Verklebung	2,00	1759,00	1,00	S. 4.96 (Einfeld-						
			und Beschichtung				träger mit l= 6 m)						
	•		Zementestrich	7,50	2400,00	1,40	Eigene Annahme	148,2	1203,1	1789,8	135,9	1010,7	1539,0
			PE-Folie Decke	0,02	930,00	_	Ausführung	,	,		,	,	
			Holzfaserdämmung	E 00	160.00	0,04	maximale Umwelt-						
CFL			(TSD)	5,00	160,00	0,04	wirkungen;						
mas	2010-	x	Stahlbeton C30/37	24,00	2400,00	2,50	Minimaldicke						
_50	2015		(98/2) Holzfaserdämmung				Stahlbeton nach Bautabellen für						
			(Innenausbau)	3,00	160,00	0,04	Ingenieure, 2012,						
			WDVS Verklebung	2,00	1759,00	1,00							
			und Beschichtung				träger mit l= 6 m)						
	•		Zementestrich	7,50	2400,00	1,40	Eigene Annahme	150,5	1230,5	1872,0	136,8	1015,1	1591,5
			PE-Folie Decke	0,02	930,00	-	Ausführung	•				•	
							manuimania i impuunit						
CFL			Holzfaserdämmung	5.00	160.00	0.04	maximale Umwelt-						
mas			(TSD)	5,00	160,00	0,04	wirkungen;						
	2016-		(TSD) Stahlbeton C30/37	5,00 24,00	160,00 2400,00	0,04 2,50	wirkungen; Minimaldicke						
_51	2016- 2020		(TSD) Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	wirkungen; Minimaldicke Stahlbeton nach						
_51			(TSD) Stahlbeton C30/37				wirkungen; Minimaldicke						
_51			(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung	24,00 4,50	2400,00	2,50	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012,						
_51			(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau)	24,00 4,50	2400,00	2,50	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012,						
			(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung	24,00 4,50	2400,00	2,50	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m)	5,4	70,5	209,3	-20,5	-275,9	310,4
CFL			(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung	24,00 4,50 2,00	2400,00 160,00 1759,00	2,50 0,04 1,00	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld-		70,5	209,3	-20,5	-275,9	310,4
CFL wood	2020	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden	24,00 4,50 2,00	2400,00 160,00 1759,00 488,33	2,50 0,04 1,00	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil		70,5	209,3	-20,5	-275,9	310,4
CFL	2020		(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken	24,00 4,50 2,00 2,50 2,40	2400,00 160,00 1759,00 488,33 492,92	2,50 0,04 1,00 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme		70,5	209,3	-20,5	-275,9	310,4
CFL wood _1	2020		(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke	24,00 4,50 2,00 2,50 2,40 10,60	2400,00 160,00 1759,00 488,33 492,92 905,00	2,50 0,04 1,00 0,14 0,14 0,19	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil		70,5	·		-275,9	310,4
CFL wood _1	2020 1919- 1957 1919-	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter	24,00 4,50 2,00 2,50 2,40 10,60 2,00	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51	2,50 0,04 1,00 0,14 0,14 0,19 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme	5,4		·			
CFL wood	2020 1919- 1957		(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33	2,50 0,04 1,00 0,14 0,14 0,19 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil	5,4		·			
CFL wood _1	2020 1919- 1957 1919-	x x	(TSD) Stahlbeton C30/37 X (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92	2,50 0,04 1,00 0,14 0,14 0,19 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme	5,4		·			
CFL wood _1 CFL wood _2	2020 1919- 1957 1919-	x x	(TSD) Stahlbeton C30/37 X (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung	24,00 4,50 2,00 2,50 2,40 10,60 2,50 2,40 10,60	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00	2,50 0,04 1,00 0,14 0,14 0,14 0,14 0,35 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme	5,4		331,2	-11,0		
CFL wood _1 CFL wood _2 CFL	1919- 1957 1919- 1957	x x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter	24,00 4,50 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,00	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51	2,50 0,04 1,00 0,14 0,14 0,14 0,14 0,35 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme	5,4	171,8	331,2	-11,0	-180,6	425,1
CFL wood _2 CFL wood	1919- 1957 1919- 1957	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,00 2,50	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33	2,50 0,04 1,00 0,14 0,14 0,14 0,14 0,35 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil	5,4	171,8	331,2	-11,0	-180,6	425,1
CFL wood _1 CFL wood _2 CFL	1919- 1957 1919- 1957	x x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken	24,00 4,50 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,00 2,50 2,40	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33 492,92	2,50 0,04 1,00 0,14 0,14 0,14 0,14 0,35 0,14 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme	5,4	171,8	331,2	-11,0	-180,6	425,1
CFL wood _1 CFL wood _2 CFL wood _3	1919- 1957 1919- 1957	x x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung	24,00 4,50 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33 492,92 1350,00	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil	5,4	171,8	331,2	-11,0	-180,6	425,1
CFL wood _2 CFL wood _3 CFL	1919- 1957 1919- 1957	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter	24,00 4,50 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,00	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,15 8 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit I= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b,	5,4 15,3	171,8	331,2	-11,0 -15,3	-180,6	425,1 399,0
CFL wood _2 CFL wood _3 CFL wood _3	1919- 1957 1919- 1957 1919- 1957	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter	24,00 4,50 2,00 2,40 10,60 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,00 2,50 2,40 2,50 2,50 2,40	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,00/	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,58 0,14	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil	5,4 15,3	171,8	331,2	-11,0 -15,3	-180,6	425,1 399,0
CFL wood _2 CFL wood _3 CFL	1919- 1957 1919- 1957	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschlag	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 10,60 2,10 10,60	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,000 100,000	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,35 0,14 0,14 0,58 0,14 0,21 0,14 0,70	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil	5,4 15,3	171,8	331,2	-11,0 -15,3	-180,6	425,1 399,0
CFL wood _2 CFL wood _3 CFL wood _3	1919- 1957 1919- 1957	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschlag Bretter	24,00 4,50 2,00 2,50 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,50 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 900,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,000 100,00 484,51	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,58 0,14 0,21 0,14 0,70	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 %	5,4 15,3 11,0	171,8 160,7 167,5	331,2 303,0 368,5	-11,0 -15,3 -13,7	-189,7 -159,5	425,1 399,0 455,1
CFL wood _2 CFL wood _3 CFL wood _3	1919- 1957 1919- 1957 1919- 1957 bis 1918	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschlag Bretter Dielung/Bretterboden	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,00/ 484,51 488,33 492,92 900,00/ 484,51 488,33	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,15 0,14 0,14 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,16	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b,	5,4 15,3	171,8	331,2 303,0 368,5	-11,0 -15,3	-180,6	425,1 399,0
CFL wood _2 CFL wood _3 CFL wood _4 CFL wood _4	1919- 1957 1919- 1957 1919- 1957 bis 1918	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschlag Bretter Dielung/Bretterboden Holzbalken Lehmschlag Bretter	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 1,90 14,10 2,50 2,50 1,90	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,00/ 100,00 484,51 488,33 492,92	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,15 0,14 0,14 0,14 0,14 0,15 0,14 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,14 0,15 0,14 0,14 0,14 0,15 0,14 0,16	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 167, Annahme	5,4 15,3 11,0	171,8 160,7 167,5	331,2 303,0 368,5	-11,0 -15,3 -13,7	-189,7 -159,5	425,1 399,0 455,1
CFL wood _2 CFL wood _3 CFL wood _4 CFL CFL	1919- 1957 1919- 1957 1919- 1957 bis 1918	x x	(TSD) Stahlbeton C30/37 (98/2) Holzfaserdämmung (Innenausbau) WDVS Verklebung und Beschichtung Dielung/Bretterboden Holzbalken Steinkohleschlacke Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Sandschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschüttung Bretter Dielung/Bretterboden Holzbalken Lehmschlag Bretter Dielung/Bretterboden	24,00 4,50 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,00 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50 2,40 10,60 2,50	2400,00 160,00 1759,00 488,33 492,92 905,00 484,51 488,33 492,92 1350,00 484,51 488,33 492,92 900,00/ 484,51 488,33 492,92 900,00/ 484,51 488,33	2,50 0,04 1,00 0,14 0,19 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,15 0,14 0,14 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,15 0,14 0,14 0,15 0,14 0,16	wirkungen; Minimaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (Einfeld- träger mit l= 6 m) ZUB, 2009b, S. 138, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 139, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 140, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 166, Annahme Holzbalkenanteil 12 % ZUB, 2009b, S. 167, Annahme	5,4 15,3 11,0	171,8 160,7 167,5	331,2 303,0 368,5	-11,0 -15,3 -13,7	-189,7 -159,5	425,1 399,0 455,1

			Trockenestrich	2,50	800,00	0,25	dataholz.eu,	25,0	453,3	654,1	3,7	72,1	658,2
			Mineralwolle (Boden)	2,00	85,00	0,04	2021, Bauteil						
			OSB-Platte	1,80	600,00	0,13	gdrtxa03a-05,						
			Konstruktionsvollholz	2,00	492,92	0,13	jedoch mit OSB-						
			Luftschicht, ruhend	13,50	_	0,81	Platte, statt						
			Zellulosefaser-				Sparschalung, um						
CFL	2002-		Einblasdämmung	4,50	45,00	0,04	Luftdichtheit zu						
wood	2002-	x x	PE-Folie Decke	0,02	930,00	_	gewährleisten; Minimalabmes-						
_6	2013		OSB-Platte	1,50	600,00	0.13	sungen KVH nach						
			GKF-Platte	1,25	800,00	0,15	Bautabellen für						
			Ord - rialle	1,20	000,00	0,20	Ingenieure, 2012,						
							S. 4.101						
							(Stützweite < 4 m,						
							bxh = 100x200						
							mm, a= 100 cm)						
			Trockenestrich	2,50	800,00	0,25		25,2	454,1	662,5	3,6	69,2	661,7
							dataholz.eu,	23,2	454,1	002,5	3,0	03,2	001,7
			Mineralwolle (Boden)	2,00	85,00	0,04	2021, Bauteil						
			OSB-Platte	1,80	600,00	0,13	gdrtxa03a-05,						
			Konstruktionsvollholz	2,00	492,92	0,13	jedoch mit OSB-						
			Luftschicht, ruhend	12,60	-	0,76	Platte, statt						
			Zellulosefaser-	F 40	45.00	0.04	Sparschalung, um						
CFL	2016-		Einblasdämmung	5,40	45,00	0,04							
wood	2016-	×	PE-Folie Decke	0,02	930,00	-	gewährleisten; Minimalabmes-						
_7	2020		OSB-Platte	1,50	600,00	0.13	sungen KVH nach						
			GKF-Platte	1,25	800,00	0,25	Bautabellen für						
			J. II IIIII	1,20	555,00	0,20	Ingenieure, 2012,						
							S. 4.101						
							(Stützweite < 4 m,						
							bxh = 100x200						
							mm, a= 100 cm)						
			Zementestrich	7,50	2400,00	1,40	dataholz.eu,	79,7	948,7	1566,3	36,4	193,8	1498,1
			PE-Folie Decke	0,02	930,00	-	2002, Bauteil						
			Holzfaserdämmung	E 00	160.00	0.04	gdrnxa05b-13,						
			(TSD)	5,00	160,00	0,04	jedoch ohne						
			OSB-Platte	2,20	600,00	0,13	Federlagerung der abgehängten						
			Brettschichtholz	6,40	507,11	0,13	Decke, mit 75 mm						
			Luftschicht, ruhend	24,00		1,64	Estrichdicke						
			Holzfaserdämmung	24,00		1,04	(Heizestrich),						
			(Innenausbau)	1,60	160,00	0,04	50 mm Holzfaser-						
			OSB-Platte	1 50	600,00	0,13	dämmung als						
CFL	2002-			1,50			TSD und 240 mm						
wood	2015	x x	Gipsfaserplatte	2,50	1000,00	0,33	Holzfaser-						
_8	20.0												
							dammund als I						
							dämmung als Gefachdämmung:						
							Gefachdämmung;						
							Gefachdämmung; Maximalabmes-						
							Gefachdämmung; Maximalabmes- sungen BSH nach						
							Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für						
							Gefachdämmung; Maximalabmes- sungen BSH nach						
							Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101						
							Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite						
							Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101						
							Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m,						
			Zementestrich	7,50	2400,00	1,40	Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320	80,9	963,3	1610,2	36,9	196,1	1526,1
			Zementestrich PE-Folie Decke	7,50 0,02	2400,00 930,00	1,40	Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm)	80,9	963,3	1610,2	36,9	196,1	1526,1
				0,02	930,00	-	Gefachdämmung; Maximalabrnessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bx1=200x320 mm, a= 100 cm)	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke				Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung	0,02 5,00	930,00 160,00	-	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte	0,02 5,00 2,20	930,00 160,00 600,00	0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite l= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz	0,02 5,00 2,20 6,40	930,00 160,00	0,04 0,13 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite l= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend	0,02 5,00 2,20	930,00 160,00 600,00	0,04 0,13	Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdmxa05b-13, jedoch ohne Federlagerung der abgehängten	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung	0,02 5,00 2,20 6,40	930,00 160,00 600,00	0,04 0,13 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke	80,9	963,3	1610,2	36,9	196,1	1526,1
			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau)	0,02 5,00 2,20 6,40 23,20 2,40	930,00 160,00 600,00 507,11 - 160,00	0,04 0,13 0,13 1,58 0,04	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke	80,9	963,3	1610,2	36,9	196,1	1526,1
CEI			PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizzestrich), 50 mm Holzfaser- dämmung als	80,9	963,3	1610,2	36,9	196,1	1526,1
CFL	2016-		PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser-	80,9	963,3	1610,2	36,9	196,1	1526,1
wood	2016- 2020	X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser-	80,9	963,3	1610,2	36,9	196,1	1526,1
		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite l= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmes- sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bx1=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdäm-	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite l= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaserdämmung als TSD und 240 mm Holzfaserdämmung als Gefachdämmung; Maximal-	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdäm- mung; Maximal- abmessungen	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		х	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdämmung; Maximal- abmessungen BSH nach	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bx1=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdäm- mung; Maximal- abmessungen BSH nach Bautabellen für	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaserdämmung als TSD und 240 mm Holzfaserdämmung als Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012,	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaserdämmung als TSD und 240 mm Holzfaserdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stütz-	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdämmung; Maximal- abmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stütz- weite I= 6,5 m,	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmess sungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite l= 6,5 m, bx1=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung; Maximal- abmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stütz- weite l= 6,5 m, bxh=200x320	80,9	963,3	1610,2	36,9	196,1	1526,1
wood		X	PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte	0,02 5,00 2,20 6,40 23,20 2,40 1,50	930,00 160,00 600,00 507,11 - 160,00 600,00	0,04 0,13 0,13 1,58 0,04 0,13	Gefachdämmung; Maximalabmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stützweite I= 6,5 m, bxh=200x320 mm, a= 100 cm) dataholz.eu, 2002, Bauteil gdrnxa05b-13, jedoch ohne Federlagerung der abgehängten Decke, mit 75 mm Estrichdicke (Heizestrich), 50 mm Holzfaser- dämmung als TSD und 240 mm Holzfaser- dämmung als Gefachdämmung; Maximal- abmessungen BSH nach Bautabellen für Ingenieure, 2012, S. 4.101 (Stütz- weite I= 6,5 m,	80,9	963,3	1610,2	36,9	196,1	1526,1

Trochemistrick Americanic (Botton) 2,00 20,00		-												
PE-Folio Docks				Trockenestrich	2,50	800,00	0,25	dataholz.eu,	31,2	458,6	826,9	-18,3	-292,9	971,9
PF-Frois Decker No.				, ,			0,04	The state of the s						
PeFelle Deuke 1,00				PE-Folie Decke	0,02	930,00	-							
Pote-field protected				Schüttung,	4.00	400.00	0.00							
PF-Folio Decko				Porenbetongranulat	4,00	400,00	0,09							
CFL				PF-Folie Decke	0.02	930.00								
2005-	CEL						0.13							
Part		2002-	v	·										
Language		2015	*	A GRE-Flatte	1,23	000	0,25							
Herstellerand golden (**York 1975) Herstellerand (**York 1975) Hersteller	_10													
Particle														
CFL Vision Visi														
Trockenestrich								Dämmschüttung);						
CFL 2016- 2020 2016 2016-								Minimale Brett-						
Per-Folio Decke According														
Trockenestrich								•						
Minoratwolie (Rioden) 3.00 85,00 0,04 2021, Bautiell gridshort-100, glothorth-100, glothorth-100, glothorth elements of the promoteroing multiple promoteroing multipl		-		Trockenestrich	2.50	800.00	0.25		32.6	476.8	848 0	-16.0	-274,7	992,9
PE-Folia Dackia Column C									32,0	470,0	040,0	-10,3	-214,1	332,3
Schüttung							0,04							
Porenbetongranulat				PE-Folle Decke	0,02	930,00	-	jedoch mit einer						
PGF-Folio Decke				Schüttung,	4.00	400.00	0.00							
PEF-folic Docko Dispersion PEF-folic Docko Dispersion Disper				Porenbetongranulat	4,00	400,00	0,03							
CFL 2016				PE-Folie Decke	0.02	930.00	_							
CFL							0 13							
2020	CEL			•				٠.						
Lung nach Herstellerangaben (Ytong Dammschütung); Minimale Brettsperrholz-dicke gemäß Herstellerangaben (Rinderholz)					.,20	300	5,20							
Perstellerange		2020		•										
CFL 2002- 2015 2 2 2 2 2 2 2 2 2	_													
Zementestrich														
Zementestrich														
Zementestrich														
Zementestrich														
Zementestrich														
CFL wood 1-12 2002- 2015 2-12 2016 2-12 2020- 2-12 2-12 2020- 2-12 2-12 2020- 2-12														
PE-Folie Decke		-		Zementestrich	7.50	2400.00	1.40		86.1	944.5	1687.7	-0.3	-371,6	1900.3
Holzfaserdammung (TSD)							.,		00,1	0,0	,.	,,,,	0,0	.000,0
CFL wood								gdmnxa02a, aber						
PE-Folie Decke Pertsperrholz 24,00 489,41 0.13 0.135 0.1				The second secon	2,00	160,00	0,04							
Brettsperrholz					0.02	930.00	_							
CFL 2002- 2015							0.13							
2002- 2015				·										
2005	CEL			O.poiaco.piano	2,00	.000,00	0,00							
Appelle Beplankung mit Gipsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben Gibsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben Gibsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben Gibsfaserplatten Gipsfaserplatten; maximale Gipsfaserplatten; maxima		2002-	•	v										
Beplankung mit Gipsfaserplatten; maximale Brettsperrholiz-dicke nach Hersteller-angaben (Binderholz)		2015	^	A										
CFL wood														
Brettsperrholz-dicke nach Hersteller-angaben (Binderholz) Bep bis 1948 Bep 1919-								Gipsfaserplatten;						
CFL 2016- 2020								maximale						
CFL wood								·						
CFL wood														
CFL wood														
Zementestrich														
PE-Folie Decke		-		Zementectrich	7.50	2400.00	1.40		86.0	052.7	1715 1	0.0	-370,2	1917 0
Holzfaserdämmung (TSD)							1,40		30,3	333,1	1113,1	0,0	-510,2	.317,0
CFL wood							_							
PE-Folie Decke				The second secon	2,50	160,00	0,04							
Brettsperrholz					0.02	930.00	_							
Gipsfaserplatte 2,50 1000,00 0,35 Splitschüttung mit 80 mm, Estrichdicke 75 mm und doppelte Beplankung mit Gipsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben (Binderholz) BP bis _ 1 1948							0.12							
CFL wood 2020 2016- 2020 X Estrichdicke 75 mm und doppelte Beplankung mit Gipsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben (Binderholz) BP bis				·										
November	~=-			Oipsiascipiatte	2,50	1000,00	0,00							
## Page 1919- Page 1919- Table Page 1919		2016-												
Beplankung mit Gipsfaserplatten; maximale Brettsperrholz-dicke nach Hersteller-angaben (Binderholz)		2020		Х										
BP 1919- X	_13													
Maximale Brettsperrholz-dicke nach Hersteller-angaben (Binderholz) Maximale Brettsperrholz-dicke nach Hersteller-angaben (Binderholz)														
Brettsperrholz-dicke nach Hersteller-angaben (Binderholz)														
Hersteller-angaben (Binderholz) Dielung/Bretterboden 2,50 488,33 0,21 ZUB, 2009b, 2,7 33,7 106,0 -11,0														
BP 1919- X								dicke nach						
Dielung/Bretterboden 2,50 488,33 0,21 ZUB, 2009b, 2,7 33,7 106,0 -11,0														
Dielung/Bretterboden 2,50 488,33 0,21 ZUB, 2009b, Holzbalken 1,12 492,92 0,14 S. 53, Holzbalken 2,50 488,33 0,21 ZUB, 2009b, Holzbalken 2,50 488,33 2,50 488,33 0,21 ZUB, 2009b, Holzbalken 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 488,33 2,50 2,50 488,33 2,50 2								-						
BP bis x x Luftschicht, ruhend 14,88 - dicke ergibt sich aus vorgegebenen U-Wert BP 1919- X Verbundestrich 6,00 2400,00 1,40 ZUB, 2009b, 58,0 364,1 439,1 54,6														
BP bis x x x Luftschicht, ruhend 14,88 - dicke ergibt sich aus vorgegebenen U-Wert BP 1919- x Verbundestrich 6,00 2400,00 1,40 ZUB, 2009b, 58,0 364,1 439,1 54,6				-			0,21	ZUB, 2009b,	2,7	33,7	106,0	-11,0	-147,9	159,0
1 1948	BD.	hic				492,92	0,14							
Vorgegebenen U-Wert			x x	Luftschicht, ruhend	14,88	-	-							
BP 1919- Verbundestrich 6,00 2400,00 1,40 ZUB, 2009b, 58,0 364,1 439,1 54,6	_'	1340												
BP 1919- Verbundestrich 6,00 2400,00 1,40 ZUB, 2009b, 58,0 364,1 439,1 54,6														
	BP	1919-		Verbundestrich	6.00	2400.00	1.40		58.0	364.1	439.1	54.6	319,5	379,4
The state of the s			Х						,3	, •	,-,.		,,	,.
					2,00	,00	.,01							

			Estrich	5,00		1,40		77,6	647,4	877,8	73,4	594,7	807,9
BP _3	1949- 1957	X	Dämmung BO (unspezifisch)	1,00	30,00- 200,00	0,09	ZUB, 2009b, S. 55						
_0	1007		Betondecke (97/3)	15,00		1,51	0.00						
	•		Schwimmender	4,00	2400,00	0,87		78,6	655,3	941,7	72,1	578,3	840,5
BP	1958-		Estrich Dämmung BO	4,00		0,01	ZUB, 2009b,	10,0	000,0	041,1	,.	010,0	040,0
_4	1968	Х	(unspezifisch)	3,00	30,00- 200,00	0,05	S. 56						
			Betondecke (97/3)	15,00	2400,00	1,51							
			Schwimmender	4,00	2400,00	1,40		78,1	646,1	953,2	70,6	559,6	840,0
BP	1969-	X	Estrich Dämmung BO		30,00-		ZUB, 2009b,						
_5	1978		(unspezifisch)	4,00	200,00	0,04	S. 57						
			Betondecke (97/3)	14,00		1,51							
BP	1870-		Estrich		2400,00	1,40	Gruhler et al., 2002,	46,3	403,4	456,1	43,6	367,9	409,0
_6	1978	x x x x x	Stampfbeton B5-B20 Kies unter			2,00	S. 31, 41, 51, 61,						
			Bodenplatte	15,00	1850,00	-	71, 81						
			Ziegelpflaster	8,00	1850,00	k.A.	Gruhler et al.,	69,7	817,4	887,3	66,7	778,9	836,4
BP _7	1870- 1918	X	Stampfbeton B5-B20	10,00	2400,00	2,00	2002,						
	.0.0		Kies unter Bodenplatte	15,00	1850,00	-	S. 31, 41, 51						
	•		Estrich	3,50	2400,00	1,40	Gruhler et al.,	46,3	403,4	456,1	43,6	367,9	409,0
BP	1949-	x x x x x	Stampfbeton B5-B20	10,00	2400,00	2,00	2002,						
_8	1994		Kies unter Bodenplatte	15,00	1850,00	-	S. 91						
	•		Estrich	3,50	2400,00	1,40		197,7	1820,9	2397,0	186,7	1678,0	2206,3
BP	1979-		Stahlbeton B15-B25		2400,00	2,50	Gruhler et al.,			·		•	•
_9	1990	хх	(97/3) Kies unter			_,00	2002, S. 100						
			Bodenplatte	15,00	1850,00						L_		
	•		Estrich	3,50	2400,00	1,40	Gruhler et al	419,2	4018,3	5433,2	398,1	3742,9	5065,3
BP	1979-	x x	Stahlbeton B15-B25	100,00	2400,00	2,50	2002,						
_10	1990	^ ^	(96/4) Kies unter				S. 109; Maximaldicke						
			Bodenplatte		1850,00		iviaximaidicke						
			Estrich	3,50	2400,00	1,40	Gruhler et al.,	56,7	539,5	651,4	54,0	504,6	605,0
BP	1991- 2000	x x	Stahlbeton B15-B25 (98/2)	10,00	2400,00	2,50	2002,						
_11	2000		Kies unter	15.00	1850,00	_	S. 119						
			Bodenplatte Estrich		2400,00	1,40		46,3	403,4	456,1	43,6	367,9	409,0
BP	1961-		Stampfbeton B5-B20	10,00	2400,00	2,00	Gruhler et al.,	40,3	403,4	430,1	43,0	301,9	409,0
_12	1990	x x x x	Kies unter		1850,00	2,00	2002, S. 129						
			Bodenplatte			4.40		40.0	400.4	450.4	40.0		100.0
BP	1991-		Estrich Beton B5-B20	3,50	2400,00 2400,00	1,40 2,00	Gruhler et al., 2002,	46,3	403,4	456,1	43,6	367,9	409,0
_13	2000	X X	Kies unter			2,00	S. 138, 157, 167,						
			Bodenplatte	15,00	1850,00	-	177, 187						
			Estrich	3,50	2400,00	1,40		76,0	802,6	982,3	70,8	730,9	888,7
BP	1991-		PE-Folie Decke Stahlbeton B15-B25	0,20	1000,00	-	Gruhler et al.,						
_14	2000	X X	(96/4)	10,00	2400,00	2,50	2002, S. 148						
			Kies unter	15,00	1850,00	_	5						
	•		Bodenplatte Estrich	3.50	2400,00	1,40		55,2	530,3	591,8	50,0	457,4	496,7
pn	1004		PE-Folie Decke			-,40	Gruhler et al.,	55,2	300,0	551,5	23,5	,4	,,,
BP _15	1991- 2000	x x	Beton B5-B20		2400,00	2,00	2002,						
			Kies unter	15,00	1850,00	_	S. 197						
			Bodenplatte Zementestrich	5,00		1,40		91,2	703,3	866,4	84,8	618 /	753,7
			PE-Folie Decke	0,02	930,00	-,0		J.,2	. 50,0	230,4	34,0	510,7	. 50,1
			Mineralwolle (Boden)	5,00	85,00	0,04	Eigene Annahme Ausführung						
P.D.	2022		PE-Folie Decke	0,02	930,00	-	minimale Umwelt-						
BP _16	2002- 2009	х	Stahlbeton C20/25	20,00	2400,00	2,30	wirkungen;						
			(99/1) PE-Folie Bodenplatte	0,02	26,25	_	Plattengründung, kein stauendes						
			Polystyroldämmung,	1,00	32,00	0,04	Sickerwasser						
			XPS (BO)			0,04							
			Sauberkeitsschicht Zementestrich	5,00	2400,00	1,40		95,5	760.4	927,1	88,1	664.4	795,8
			PE-Folie Decke	0,02	930,00	- 1,40		30,0	700,4	<i>921</i> , l	30,1	001,1	1 33,6
			Mineralwolle (Boden)	5,00	85,00	0,04	Eigene Annahme						
			PE-Folie Decke	0,02	930,00	-	Ausführung minimale Umwelt-						
BP _17	2010- 2015	х	Stahlbeton C20/25	20,00	2400,00	2,30	wirkungen;						
-''	2010		(99/1) PE-Folie Bodenplatte	0,02	26,25	_	Plattengründung, kein stauendes						
			Polystyroldämmung,			0.04	Sickerwasser						
			XPS (BO)	3,00	32,00	0,04							
	•		Sauberkeitsschicht	5,00	2400,00	-							

			Zementestrich	5,00	2400,00	1,40		97,6	789,0	957,5	89,8	682,4	816,9
			PE-Folie Decke	0,02	930,00		Eigene Annahme						
			Mineralwolle (Boden)	5,00	85,00	0,04	Ausführung						
BP	2016-		PE-Folie Decke x Stahlbeton C20/25	0,02	930,00	-	minimale Umwelt-						
_18	2020		x Stahlbeton C20/25 (99/1)	20,00	2400,00	2,30	wirkungen; Plattengründung,						
			PE-Folie Bodenplatte	0,02	26,25	-	kein stauendes						
			Polystyroldämmung,	4,00	32,00	0,04	Sickerwasser						
			XPS (BO)			-,-							
			Sauberkeitsschicht Zementestrich	5,00 7,50	2400,00	1,40		224.2	1778,0	2222 1	207.0	1552,8	2025.7
			PE-Folie Decke	0,02	930,00	1,40	Eigene Annahme Ausführung	227,2	1770,0	2000,1	201,3	1332,0	2000,1
			Holzfaserdämmung			0.04	maximale Umwelt-						
			(TSD)	2,00	160,00	0,04	wirkungen;						
BP	2002-	х	PE-Folie Decke	0,02	930,00	-	Plattengründung bei ungünstigem						
_19	2009	^	Stahlbeton C30/37 (98/2)	50,00	2400,00	2,50	Untergrund und						
			PE-Folie Bodenplatte	0,02	26,25	_	hohen						
			Polystyroldämmung,	4,50	32,00	0,04	Gründungslasten, Ausführung als						
			XPS (BO)			0,01	WU-Beton						
			Sauberkeitsschicht Zementestrich	5,00 7,50	2400,00	1 40		220 5	1835,1	2202.0	211.2	1595,4	2077.9
			PE-Folie Decke	0,02	930,00	1,40	Eigene Annahme Ausführung	220,3	1033,1	2393,0	211,2	1393,4	2011,0
			Holzfaserdämmung			0.04	maximale Umwelt-						
			(TSD)	2,00	160,00	0,04	wirkungen;						
BP	2010-		PE-Folie Decke	0,02	930,00	-	Plattengründung bei ungünstigem						
_20	2015	Х	Stahlbeton C30/37 (98/2)	50,00	2400,00	2,50	Untergrund und						
			PE-Folie Bodenplatte	0,02	26,25	_	hohen						
			Polystyroldämmung,	6,50	32,00	0,04	Gründungslasten,						
			XPS (BO)			0,04	Ausführung als WU-Beton						
			Sauberkeitsschicht Zementestrich	5,00 7,50	2400,00	1,40		224.7	1878,0	2420.4	242.7	1627,4	2100 E
			PE-Folie Decke	0,02	930,00	1,40	Eigene Annahme Ausführung	231,1	1070,0	2433,4	213,1	1021,4	2103,3
			Holzfaserdämmung			0.04	maximale Umwelt-						
			(TSD)	2,00	160,00	0,04	wirkungen;						
BP	2016-		PE-Folie Decke	0,02	930,00	-	Plattengründung bei ungünstigem						
_21	2020		X Stahlbeton C30/37 (98/2)	50,00	2400,00	2,50	Untergrund und						
			PE-Folie Bodenplatte	0,02	26,25	_	hohen						
			Polystyroldämmung,	8,00	32,00	0,04	Gründungslasten, Ausführung als						
			XPS (BO) Sauberkeitsschicht	5,00	2400,00		WU-Beton						
			Zementestrich	5,00	2400,00	-	Eigene	83,8	606,2	753,0	77,5	521,6	642,5
			PE-Folie Decke	0,02	930,00	-	Annahmen						
			Polystyroldämmung				Ausführung minimale Umwelt-						
BP	2002-	x x	Decke und Boden, x EPS, WLS 040	2,00	18,50	-	wirkungen bei						
_22	2020	^ ^	PE-Folie Decke	0,02	930,00		unbeheiztem						
			Stahlbeton C20/25				Keller, Plattengründung,						
			(99/1)	20,00	2400,00	-	kein stauendes						
			Sauberkeitsschicht	5,00		-	Sickerwasser						
			Zementestrich	7,50	2400,00	-	Eigene Annahmen	218,2	1691,6	2347,1	201,7	1456,5	2037,1
			PE-Folie Decke Holzfaserdämmung	0,02	930,00	_	Ausführung						
			(TSD)	5,00	160,00	-	maximale Umwelt-						
			PE-Folie Decke	0,02	930,00	-	wirkungen bei						
BP	2002-		Stahlbeton C30/37	50,00	2400,00	_	unbeheiztem Keller, Platten-						
_23	2020	X X	x (98/2) Sauberkeitsschicht	5.00	2400,00	_	gründung bei						
							ungünstigem						
							Untergrund und hohen Grün-						
							dungslasten,						
							Ausführung als						
							WU-Beton						
F_1	1870-	x x x x x	Ziegelmauerwerk	60,00	575,00/	_	Gruhler et al., 2002, S. 31, 41,	114,0	835,5	1001,4	110,8	789,4	951,0
	1978		Fundament		2000,00		51, 61, 71			•			
	1870-		Bruchsteinmauer-		1400,00/		Gruhler et al.,						
F_2	1978	x x x x x	werk Fundament	60,00	2000,00	-	2002, S. 31, 41, 51, 61, 71	59,3	392,4	505,9	59,3	392,4	505,9
F_3	1870-	x x x x x	Stampfbeton B5-B20	60.00	2400,00	_	Gruhler et al., 2002, S. 31, 41,	110,4	594.4	714,8	97,6	427,0	491,0
	1978						51, 61, 71		,	,-	,		
F_4	1949-	x x x	Stahlbeton B15-B25	42,00	2400,00	-	Gruhler et al.,	164,3	1559,9	2140,4	155,7	1447,4	1990,0
	1978 1949-		(96/4) Stahlbeton B15-B25				2002, S. 81 Gruhler et al.,				_		
F_5	1994	x x x x x	(96/4)	60,00	2400,00	-	2002, S. 91	234,7	2228,4	3057,8	222,4	2067,7	2842,8
F_6	1991-	v v	Stahlbeton	44.00	2400,00		Gruhler et al.,	1/0 2	1334,6	1812 0	140 2	1215,5	1653 6
r_0	2000	х х	Glariibelüli	44,00	Z 4 UU,UU		2002, S. 119	149,3	1334,0	1012,6	140,2	1213,3	1000,0

F_7	1961- 2000	x x x x x	Stahlbeton	34,00 2400,00	Gruhler et al., 2002, S. 129, 157, 167	115,4 1031,3 1400,8	108,3 939,3 127	7,8
F_8	1961- 1990	x x x x	Stahlbeton	36,00 2400,00	Gruhler et al., 2002, S. 138	122,2 1091,9 1483,2	114,7 994,5 135	2,9
F_9	1991- 2000	хх	Stahlbeton	35,00 2400,00	Gruhler et al., 2002, S. 148	118,8 1061,6 1442,0	111,5 966,9 131	5,3
F_10	1961- 2000	x x x x x	Stampfbeton B5-B20	34,00 2400,00	Gruhler et al., 2002, S. 187	62,6 336,8 405,1	55,3 242,0 27	8,2
F_11	1991- 2000	хх	Stampfbeton B5-B20	35,00 2400,00	Gruhler et al., 2002, S. 197	64,4 346,7 417,0	56,9 249,1 28	6,4

Bauteilaufbauten — Erklärung Farbschema:
Bezeichnung der Bauteilschichten und ihrer Eigenschaften wie in Literatur und Quellenangaben

Änderungen (Homogenisierung der Materialbezeichnungen, Ergänzung/Homogenisierung von Schichtdicken, Rohdichten und Wärmeleitfähigkeiten)

Tabelle A. 5: Übersicht über die bilanzierten Fensterkonstruktionen im Altbau inklusive der spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung

Rau		Zuţ	Jen		gc	-	aua	itei	SINIC	sser		Aufbau			1		GWP (A-C)	PENRT (A-C)	PET (A-C)	GWP (A-D)	PENRT (A-D)	PET (A-D)
Bau- teil- name	Zeit- raum	1 2	3	4		5	6 7	7 8	3 9	10	Material- bezeichnung	Fläche [m²]	Lauf- meter [lfm]	Ge- wicht [kg]	l	Literaturquelle	(A-C) [kg CO₂- Äq.]	[MJ]	(A-C) [MJ]	(A-D) [kg CO ₂ - Äq.]	[MJ]	(A-D)
											Einfachverglasung	0,9	-			Eigene Annahme	53,9	720,1	861,4	38,7	517,2	592
											Aluminium- Blendrahmen	0,1	0,8		-	in Anlehnung an Verband						
											Aluminium-					Fenster +						
Walu	bis	х	X	>	: :	ĸ					Flügelrahmen	0,1	0,8		-	Fassade &						
_1	1978										Fugendichtungsband	0,4	4,0	0,1	1	Bundesverband						
											Fenstergriff	-	-	0,06		Flachglas e.V.,						
											Fensterbeschlag,	_	_	0,56	6 ²	2017 und BMWI & BMI, 2020						
				_							Doppelflügelfenster Einfachverglagung	0,4	_		_		142 0	1060.1	2505,3	64,4	010 2	1122
											Einfachverglasung Aluminium-					Eigene Annahme in Anlehnung an	142,0	1900,1	2505,3	04,4	910,3	1122
											Blendrahmen	0,3	4,8		-	Verband						
Walu	bis										Aluminium-	0,3	4,8			Fenster +						
_2	1978	Х	X)	:	K					Flügelrahmen			0.4		Fassade &						
_											Fugendichtungsband	0,4	4,0	0,1		Bundesverband Flachglas e.V.,						
											Fenstergriff Fensterbeschlag,	_	-	- /-	2	2017 und BMWI &						
											Doppelflügelfenster	-	-	0,56	6	BMI, 2020						
											Einfachverglasung	1,8	-		-		116,5	1560,6	1888,4	79,6	1069,9	1245
											Aluminium-	0,1	1,6			Eigene Annahme						
											Blendrahmen	0,1	1,0			in Anlehnung an						
											Aluminium-	0,1	1,6		-	Verband						
Walu	bis	×	x	,		ĸ	x				Flügelrahmen Fugendichtungsband	0,8	8,0	0,22	2	Fenster + Fassade &						
_3	1979	^				•	^				Fenstergriff	-	-	0,1		Bundesverband						
											Fensterbeschlag,			- /		Flachglas e.V.,						
											Doppelflügelfenster	_	-	0,50	0 2	2017 und BMWI &						
											Fensterbeschlag,	_	_	0,56	6	BMI, 2020						
				_							Drehkippfenster Einfachverglasung	0,8	_		_		204.2	4040.6	5176,1	121 1	1872,1	2204
											Aluminium-		-		٠,	Eigene Annahme	294,3	4040,0	5176,1	131,1	1072,1	2304
											Blendrahmen	0,6	9,6			in Anlehnung an						
											Aluminium-	0,6	9,6			Verband						
Valu	bis										Flügelrahmen					Fenster +						
_4	1979	Х	X)	:	K	Х				Fugendichtungsband	0,8	8,0	0,22		Fassade &						
											Fenstergriff	-	-	0,1	1	Bundesverband Flachglas e.V.,						
											Fensterbeschlag, Doppelflügelfenster	-	-	0,56	6 2	2017 und BMWI &						
											Fensterbeschlag,					BMI, 2020						
											Drehkippfenster			0,56	b							
											Isolierverglasung	0,9	-		-		93,8	1238,1	1461,7	68,7	905,6	1028
											Aluminium-	0,1	0,8		- 1	Eigene Annahme						
											Blendrahmen, thermisch getrennt	0,1	0,0		1	in Anlehnung an						
											Aluminium-					Verband						
	1978 - 2002					K	x x	x)	()		Flügelrahmen,	0,1	0,8		-	Fenster + Fassade &						
_5	2002										thermisch getrennt					Bundesverband						
											Fugendichtungsband	0,4	4,0	0,11		Flachglas e.V.,						
											Fenstergriff	-	-	0,06	b	2017						
											Fensterbeschlag, Drehkippfenster	-	-	0,56	6							
											Isolierverglasung	0,4	-		-		203,2	2759,3	3461,9	98,3	1364,5	1617
											Aluminium-				,	Eigene Annahme		,-	,-			
											Blendrahmen,	0,3	4,8			in Anlehnung an						
											thermisch getrennt					Verband						
	1978 -					,	x)	v 1			Aluminium- Flügelrahmen,	0,3	4,8			Fenster +						
_6	2002					•		. ,	. ,		thermisch getrennt	0,0	-1,0			Fassade &						
											Fugendichtungsband	0,4	4,0	0,11	1	Bundesverband Flachglas e.V.,						
											Fenstergriff	-	-	0,06	6	2017						
											Fensterbeschlag,	_	_	0,56	6							
											Drehkippfenster WDG zweifach	0.0		-,	_		145.4	1426.2	16077	00 7	1085,3	1220
											WDG, zweifach Aluminium-	0,9	-				115,1	1430,3	1687,7	88,7	1000,3	1230
											Blendrahmen,	0,1	0,8			Eigene Annahme						
											thermisch getrennt	٠,١	0,0			in Anlehnung an Verband						
Valu	1990-										Aluminium-					Verband Fenster +						
_7	2020)	x)	()	X	Flügelrahmen,	0,1	0,8		-	Fassade &						
_	-										thermisch getrennt Fugendichtungsband	0,4	4,0	0,1	1	Bundesverband						
											Fenstergriff	0,4	4 ,0	0,06		Flachglas e.V.,						
											Fensterbeschlag,	_	_	0,56		2017				1		

	-											1				
							WDG, zweifach	0,40	-	-		212,7	2847,4 3562,3	107,3	1444,3	1707,4
							Aluminium- Blendrahmen,	0,30	4,80	_	Eigene Annahme					
Walu	1990-						thermisch getrennt Aluminium-				in Anlehnung an Verband Fenster					
vvalu _8	2020	>	х х	Х	х	х	Flügelrahmen, thermisch getrennt	0,30	4,80	-	+ Fassade & Bundesverband					
							Fugendichtungsband	0,40	4,00	0,11	Flachglas e.V.,					
							Fenstergriff Fensterbeschlag,	-	-	0,06	2017					
	_						Drehkippfenster	-	-	0,56						
							WDG, dreifach Aluminium-	0,90	-	-		155,5	1923,6 2223,0	127,9	1554,1	1742,0
							Blendrahmen, thermisch getrennt	0,05	0,80	-	Eigene Annahme in Anlehnung an					
Walu _9	2005- 2020			х	х	х	Aluminium- Flügelrahmen,	0,05	0,80	_	Verband Fenster + Fassade &					
_9	2020						thermisch getrennt	0,40	4,00	0.11	Bundesverband					
							Fugendichtungsband Fenstergriff	-	4,00	0,11	Flachglas e.V., 2017					
							Fensterbeschlag,	_	_	0,56						
	-						Drehkippfenster WDG, dreifach	0,40	_	_		230,7	3064,0 3800,2	124.7	1652,7	1934.7
							Aluminium-					,	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,
							Blendrahmen, thermisch getrennt	0,30	4,80	-	Eigene Annahme in Anlehnung an					
Walu	2005-						Aluminium-	0.00	4.00		Verband Fenster					
_10	2020			Х	Х	Х	Flügelrahmen, thermisch getrennt	0,30	4,80	_	+ Fassade & Bundesverband					
							Fugendichtungsband	0,40	4,00	0,11	Flachglas e.V.,					
							Fenstergriff Fensterbeschlag,	-	-	0,06	2017					
							Drehkippfenster	-	-	0,56						
							Einfachverglasung Kunststoff-	0,90	-	-	Eigene Annahme	75,4	940,0 1061,4	62,1	802,4	906,8
							Blendrahmen	0,05	0,80	-	in Anlehnung an Verband Fenster					
Wplas		x x x					Kunststoff- Flügelrahmen	0,05	0,80	-	+ Fassade &					
_1	1978	~ ~ ~					Fugendichtungsband	0,40	4,00	0,11	Bundesverband Flachglas e.V.,					
							Fenstergriff	-	-	0,06	2017 und BMWI					
							Fensterbeschlag, Doppelflügelfenster	-	-	0,56	& BMI, 2020					
	_						Einfachverglasung	0,40	-	-	Eigene Annahme	271,7	3279,8 3704,8	205,2	2629,5	3006,2
							Kunststoff- Blendrahmen	0,30	4,80	-	in Anlehnung an					
Wplas	1954 -						Kunststoff- Flügelrahmen	0,30	4,80	_	Verband Fenster + Fassade &					
_2	1978	x x x					Fugendichtungsband	0,40	4,00	0,11	Bundesverband					
							Fenstergriff	-	-	0,06	Flachglas e.V., 2017 und BMWI					
							Fensterbeschlag, Doppelflügelfenster	-	-	0,56	& BMI, 2020					
	-						Einfachverglasung	1,80	-	-		159,5	2000,5 2288,2	126,5	1640,3	1873,7
							Kunststoff- Blendrahmen	0,10	1,60	-	Eigene Annahme					
							Kunststoff-	0,10	1,60	_	in Anlehnung an Verband Fenster					
Wplas		x					Flügelrahmen Fugendichtungsband	0,80	8,00	0,22	+ Fassade &					
_3	1978						Fenstergriff	-	-	0,22	Bundesverband Flachglas e.V.,					
							Fensterbeschlag, Doppelflügelfenster	-	-	0,56	2017 und BMWI & BMI, 2020					
							Fensterbeschlag, Drehkippfenster	_	-	0,56	α DIVII, 2020					
	-						Einfachverglasung	0,80	-	-		552,2	6680,0 7575,1	412,6	5294,5	6072,6
							Kunststoff- Blendrahmen	0,60	9,60	_	Eigene Annahme					
							Kunststoff-	0,60	9,60		in Anlehnung an Verband Fenster					
	1954 -	x					Flügelrahmen Fugendichtungsband	0,80	8,00	0,22	+ Fassade &					
_4	1978	^ ^ ^ ^					Fenstergriff	-	-	0,22	Bundesverband Flachglas e.V.,					
							Fensterbeschlag,	_	_	0,56	2017 und BMWI					
							Doppelflügelfenster Fensterbeschlag,				& BMI, 2020					
							Drehkippfenster	_	-	0,56						

			Isolierverglasung	0,90	-	-	Finana Annahma	108,5	1367,7 1554,0	88,6	1145,1 1294
			Kunststoff- Blendrahmen	0,05	0,80	-	Eigene Annahme in Anlehnung an				
A/1	4070		Kunststoff-	0.05	0.00		Verband Fenster				
vpias _5	1978 - 2002	x x x x x	Flügelrahmen	0,05	0,80	-	+ Fassade &				
	2002		Fugendichtungsband	0,40	4,00	0,11	Bundesverband				
			Fenstergriff	-	-	0,06	Flachglas e.V., 2017				
			Fensterbeschlag, Drehkippfenster	-	_	0,56	2017				
			Isolierverglasung	0,40	_	_		291.3	3536,8 4015,7	218.2	2801,6 3211
			Kunststoff-		4.00		Eigene Annahme	,-	,.	,_	
			Blendrahmen	0,30	4,80	-	in Anlehnung an				
Vplas	1978 -		Kunststoff-	0,30	4,80	-	Verband Fenster + Fassade &				
_6	2002	x x x x x	Flügelrahmen Fugendichtungsband	0,40	4,00	0,11					
			Fenstergriff	-	-	0,06	Flachglas e.V.,				
			Fensterbeschlag,			0,56	2017				
			Drehkippfenster			0,50					
			WDG, zweifach	0,90	-	-	Einen Annahm	129,8	1565,9 1780,0	108,7	1324,8 1496
			Kunststoff- Blendrahmen	0,05	0,80	-	Eigene Annahme in Anlehnung an				
/plas	1000		Kunststoff-	0.05	0.00		Verband Fenster				
7pias _7	2020	x x x x	x Flügelrahmen	0,05	0,80	_	+ Fassade &				
			Fugendichtungsband	0,40	4,00	0,11	Bundesverband				
			Fenstergriff	-	-	0,06	Flachglas e.V., 2017				
			Fensterbeschlag, Drehkippfenster	-	-	0,56	-				
			WDG, zweifach	0,40	-	-		300,8	3624,9 4116,1	227,1	2881,4 3301
			Kunststoff-	0,30	4,80		Eigene Annahme		. ,	·	
			Blendrahmen	0,50	7,00	-	in Anlehnung an				
/plas		Y Y Y Y	Kunststoff- x Flügelrahmen	0,30	4,80	-	Verband Fenster + Fassade &				
_8	2020	* * * *	Fugendichtungsband	0,40	4,00	0,11					
			Fenstergriff	_	_	0,06	Flachglas e.V.,				
			Fensterbeschlag,	_	_	0,56	2017				
			Drehkippfenster WDC dreifeeb	0.00		-,		470.0	2052.2.2245.2	447.0	1793,6 2007
			WDG, dreifach Kunststoff-	0,90	_	-	Eigene Annahme	170,2	2053,2 2315,3	147,9	1793,0 2007
			Blendrahmen	0,05	0,80	-	in Anlehnung an				
/plas	2005-		Kunststoff-	0,05	0,80	_	Verband Fenster				
_9	2020	хх		0,40		0.11	+ Fassade & Bundesverband				
			Fugendichtungsband Fenstergriff	0,40	4,00	0,11	Flachglas e.V.,				
			Fensterbeschlag,				2017				
			Drehkippfenster	-	_	0,56					
			WDG, dreifach	0,40	-	-		318,8	3841,4 4354,0	244,6	3089,8 3528
			Kunststoff- Blendrahmen	0,30	4,80	-	Eigene Annahme in Anlehnung an				
/nlaa	2005		Kunststoff-	0.20	4.90		Verband Fenster				
/pias _10	2005- 2020	х х	x Flügelrahmen	0,30	4,80	-	+ Fassade &				
			Fugendichtungsband	0,40	4,00		Bundesverband				
			Fenstergriff Fensterbeschlag,	-	-	0,06	Flachglas e.V., 2017				
			Drehkippfenster	-	-	0,56					
	•		Einfachverglasung	0,90	-	-	Figono Annahar	45,5	614,2 965,6	37,7	499,8 817
			Holz-Blendrahmen	0,05	0,80	-	Eigene Annahme in Anlehnung an				
W			Holz-Flügelrahmen	0,05	0,80	-	Verband Fenster				
vv ood	bis	x x x x x	Fugendichtungsband	0,40	4,00	0,11	+ Fassade &				
_1	1978		Fenstergriff	-	-	0,06	Bundesverband Flachglas e.V.,				
			Fensterbeschlag, Doppelflügelfenster	-	_	0,56	2017 und BMWI				
			2 oppoint generator				& BMI, 2020				
			Einfachvorglesver	0.40				02.4	1224 0 2420 5	E0 0	914 2 242
			Einfachverglasung Holz-Blendrahmen	0,40	- 4.80	-	Eigene Annahme	92,4	1324,8 3130,5	58,8	814,2 2469
			Holz-Blendranmen Holz-Flügelrahmen	0,30 0,30	4,80 4,80		in Anlehnung an				
W	bis		Fugendichtungsband	0,40	4,00	0,11	Verband Fenster + Fassade &				
boc	1978	x x x x x	Fenstergriff	-	-	0,06	Bundesverband				
_2			Fensterbeschlag,	_	_	0,56	Flachglas e.V.,				
			Doppelflügelfenster				2017 und BMWI & BMI, 2020				
							a DIVII, ZUZU				
	-		Einfachverglasung	1,80	-	-	Eigene Annahme	99,8	1348,8 2096,8	77,7	1035,2 169
			Holz-Blendrahmen	0,10	1,60	-	in Anlehnung an				
W			Holz-Flügelrahmen	0,10	1,60	- 0.00	Verband Fenster				
ood	bis	x x x x x x	Fugendichtungsband Fenstergriff	0,80	8,00	0,22	+ Fassade &				
_3	1979		Fenstergriff Fensterbeschlag,	-	-	0,11	Bundesverband Flachglas e.V.,				
			Doppelflügelfenster	-	-	0,56	2017 und BMWI				
			Fensterbeschlag, Drehkippfenster		_	0,56	& BMI, 2020				

	,			Einfachverglasung	0,80	-	-		193,7	2770,1	6426,5	119,9	1663,9	4998,1
				Holz-Blendrahmen	0,60	9,60	-	Eigene Annahme in Anlehnung an						
				Holz-Flügelrahmen	0,60	9,60	-	Verband Fenster						
W	bis			Fugendichtungsband	0,80	8,00	0,22	+ Fassade &						
wood _4	1979	x x x x x x		Fenstergriff	-	-	0,11	Bundesverband						
				Fensterbeschlag,	_	_	0,56	Flachglas e.V.,						
				Doppelflügelfenster			-,	2017 und BMWI & BMI, 2020						
				Fensterbeschlag, Drehkippfenster	-	-	0,56	& BIVII, 2020						
				Isolierverglasung	0,90	-	-		78,6	1041,9	1458,2	64,2	842,6	1204,4
				Holz-Blendrahmen	0,05	0,80	-	Eigene Annahme						
W				Holz-Flügelrahmen	0,05	0,80	-	in Anlehnung an Verband Fenster						
wood	1978 -	x		Fugendichtungsband	0,40	4,00	0,11	+ Fassade &						
_5	2002			Fenstergriff	-	-	0,06	Bundesverband						
				Fensterbeschlag,	-	-	0,56	Flachglas e.V.,						
				Drehkippfenster				2017						
	•			Isolierverglasung	0,40	_	-		112.0	1581,8	3441.4	71,8	986,3	2674.5
				Holz-Blendrahmen	0,30	4,80		Eigene Annahme	,0	,.	• , .	,0	000,0	-0,0
147				Holz-Flügelrahmen	0,30	4,80	_	in Anlehnung an						
W wood	1978 -	x		Fugendichtungsband	0,40	4,00	0,11	Verband Fenster + Fassade &						
_6	2002	* * * * *		Fenstergriff	-	-	0,06							
_				Fensterbeschlag,	_	_	0,56	Flachglas e.V.,						
				Drehkippfenster				2017						
				WDC ====	0.00				20.0	4040.5	46011	0/ 0	4000 0	1.100 =
				WDG, zweifach	0,90	- 0.00	-	Eigene Annahme	99,9	1240,0	1684,3	84,3	1022,2	1406,7
				Holz-Blendrahmen	0,05	0,80	-	in Anlehnung an						
W	1990-			Holz-Flügelrahmen	0,05	0,80		Verband Fenster						
wood	2020	x x x	х х		0,40	4,00	0,11	+ Fassade &						
_7				Fenstergriff	-	-	0,06	Bundesverband Flachglas e.V.,						
				Fensterbeschlag, Drehkippfenster	-	-	0,56	2017						
				Бтоткерріопосог										
				WDG, zweifach	0,40	-	-	Eigene Annahme	121,5	1669,9	3541,8	80,8	1066,1	2764,4
				Holz-Blendrahmen	0,30	4,80	-	in Anlehnung an						
W	4000			Holz-Flügelrahmen	0,30	4,80	-	Verband Fenster						
wood	1990- 2020	x x x :	х х	Fugendichtungsband	0,40	4,00	0,11	+ Fassade &						
_8	2020			Fenstergriff	-	-	0,06							
				Fensterbeschlag,	-	-	0,56	Flachglas e.V.,						
				Drehkippfenster				2017						
				WDG, dreifach	0,90	-	-		140,3	1727,3	2219,6	123,5	1491,0	1918,1
				Holz-Blendrahmen	0,05	0,80	-	Eigene Annahme						
W				Holz-Flügelrahmen	0,05	0,80	_	in Anlehnung an Verband Fenster						
wood	2005-	x :	x x	Fugendichtungsband	0,40	4,00	0,11	+ Fassade &						
_9	2020			Fenstergriff	-	-	0,06							
				Fensterbeschlag,	-	-	0,56	Flachglas e.V.,						
				Drehkippfenster				2017						
	•			WDG, dreifach	0.40				139 5	1886.5	3779 7	98.2	1274.5	2991 7
				Holz-Blendrahmen	0,30	4,80		Eigene Annahme	100,0	1000,5	3773,7	30,2	1274,5	2331,1
				Holz-Flügelrahmen	0,30	4,80		in Anlehnung an						
W wood	2005-		х х	Fugendichtungsband	0,40	4,00	0,11	Verband Fenster + Fassade &						
_10	2020	X :	x x	Fenstergriff	-	-,00	0,06							
				Fensterbeschlag,	_	_	0,56	Flachglas e.V.,						
				Drehkippfenster			-,	2017						
					0.00				14F 4	10540	2640.0	122.0	1522.0	2224.0
				Einfachverglasung	0,90	-	-		145,4	1854,2	∠049,9	122,0	1522,0	2224,U
				WDG, zweifach	0,90	1.00	-	Eigene Annahme						
				Holz-Blendrahmen	0,10	1,60	-	in Anlehnung an						
W	2014-			Holz-Flügelrahmen	0,10	1,60	0.00	Verband Fenster						
wood _11	2020	1	х х	Fugendichtungsband Fenstergriff	0,80	8,00	0,22	+ Fassade & Bundesverband						
-11				Fenstergriii Fensterbeschlag,	-	-	0,11	Flachglas e.V.,						
				Doppelflügelfenster	-	-	0,56	2017						
				Fensterbeschlag,			0.50							
				Drehkippfenster			0,56							
				Einfachverglasung	0,40	-	-		214,0	2994,7	6672,4	139,6	1880,3	5233,4
				WDG, zweifach	0,40	-	-	Eigene Annahme						
				Holz-Blendrahmen	0,60	9,60	-	in Anlehnung an						
W	204.4			Holz-Flügelrahmen	0,60	9,60	-	Verband Fenster						
wood	2014- 2020	:	x x		0,80	8,00	0,22	+ Fassade &						
_12				Fenstergriff	-	-	0,11							
				Fensterbeschlag,	-	-	0,56	Flachglas e.V., 2017						
				Doppelflügelfenster Fensterbeschlag,										
_				Drehkippfenster		-	0,56							
				**										

Bauteilaufbauten – Erklärung Farbschema:

A.3 Bilanzierte Neubaukonstruktionen

Nachfolgend werden alle bilanzierten Neubaukonstruktionen beschrieben. Die Gliederung erfolgt nach Bauteil und typischer Baualtersklasse. Unter Angabe der schichtspezifischen Materialien, ihrer Rohdichten und Wärmeleitfähigkeiten sowie der verwendeten Literaturquellen sind die lebenszyklusbasierten Umweltwirkungen jeder Baukonstruktion dargestellt.

Tabelle A. 6: Übersicht über die bilanzierten opaken Neubaukonstruktionen inklusive der spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung

			F	Nufbau					PENRT	PET	GWP	PENRT	PET
Bauteil- name	Zeit- raum	Neubau	Material- bezeichnung	Stärke [cm]	Roh- dichte [kg/m³]	λ-Wert [W/mK]	Literaturquelle	(A-C) [kg CO ₂ - Äq.]	(A-C) [MJ]	(A-C) [MJ]	(A-D) [kg CO ₂ - Äq.]	(A-D) [MJ]	(A-D) [MJ]
			Blecheindeckung (Edelstahl)	0,04	7900,00	-		32,2	380,9	784,	-8,5	-165,3	710,6
			Strukturierte Trennlage (Kunststofffaservlies)	0,16	81,25	-							
			Schalung	2,40	484,51	-							
			Konterlattung	0,24	484,51	-	dataholz.eu, 2021, Bauteil sdrhbi01a-						
			Unterdeckbahn	0,02	262,00	-	04; Trennlage						
PRO_h	ab 2021	x	Schalung	2,40	484,51	0,13	nach						
_1	2021		Konstruktionsvollholz	2,50	492,92	0,13	Herstellerangabe für						
			Zellulosefaser- Einblasdämmung	23,50	45,00	0,04	BauderTOP VENT NSK						
			PE-Folie Decke	0,02	930,00	-							
			Lattung	0,38	484,51	0,13							
			Mineralwolle (Innenausbau)	2,63	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
	-		Dachziegel (Biberschwanz; ca. 70 kg/m²)	3,21	2180,00	-		92,4	1292,5	2617,	31,2	305,6	2166,2
			Lattung	0,80	484,51	-	dataholz.eu, 2021,						
			Konterlattung	0,64	484,51	-	Bauteil sdrhzi06b-						
			Unterdeckbahn	0,02	262,00	-	03, jedoch mit						
PRO h	ab		Schalung	2,40	484,51	0,13	Holzfaser- statt						
_2	2021	х	Brettschichtholz	4,03	507,11	0,13	Mineralwoll-						
			Holzfaserdämmung (Innenausbau)	23,97	160,00	0,04	dämmung und BSH statt KVH in						
			OSB-Platte	1,50	600,00	0,13	der Standardab-						
			Lattung	0,38	484,51	0,13	messung 12/28 cm)						
			Holzfaserdämmung (Innenausbau)	3,62	160,00	0,04							
	_		Gipsfaserplatte	2,50	1000,00	0,35							
			Blecheindeckung (Edelstahl)	0,04	7900,00	-	dataholz.eu, 2021, Bauteil	22,5	296,8	483,	-9,4	-129,0	534,7
PRO			Strukturierte Trennlage (Kunststofffaservlies)	0,16	81,25	-	sdrhbi01a-04, jedoch ohne						
uh_	ab 2021	x	Schalung	2,40	484,51	-	Dämmung und Innenverkleidung;						
1	2021		Konterlattung	0,24	484,51	-	Trennlage nach						
			Unterdeckbahn	0,02	262,00	-	Herstellerangabe						
			Schalung	2,40	484,51	-	für BauderTOP						
	-		Konstruktionsvollholz Dachziegel	2,50	492,92	-	VENT NSK	-			-		
			(Biberschwanz; ca. 70 kg/m²)	3,21	2180,00	-	dataholz.eu, 2021,	50,3	788,8	1106,	13,6	226,1	1200,5
			Lattung	0,80	484,51	_	Bauteil						
DDO			Konterlattung	0,64	484,51	_	sdrhzi06b-03,						
PRO_ uh_	ab	x	Unterdeckbahn	0,02	262,00	_	jedoch mit BSH statt KVH in der						
2	2021	^	Schalung	2,40	484,51	-:	Standardabmessung						
			Brettschichtholz	4,03	507,11	_	12/28 cm						
			OSB-Platte	1,50	600,00	_	und ohne						
			Lattung	0,38	484,51	-	Dämmung						
			Gipsfaserplatte	2,50	1000,00						1		

			PVC-Dachbahn	0,12	1250,00	-	Flachdachaus-	112,0	1578,4	1735,3	95,6	1338,4	1453,5
			Glasvlies Dach	0,05	229,40	_	führungen nach DIN						
			Polystyroldämmung	22,00	26,90	0,04	18531, Teil 1-4 und						
FRO	ab		Flachdach, EPS 035			0,04	DIN 18195; Mindestdicke						
mas	2021	х	Bitumendachbahn	0,50	1000,00	-	Stahlbeton nach						
_1			Stahlbeton C20/25 (99/1)	16,00	2400,00	2,30	Bautabellen für						
							Ingenieure, 2012,						
							S. 4.97 (l= 4 m;						
			Vacatationacubatust				Zweifeldträger) Flachdachaus-						
			Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	führungen nach DIN	193,8	3270,3	3667,2	166,8	2883,2	3166,1
			Filtervlies, PP	0,03	95,50	_	18531, Teil 1-4 und						
			Drainmatte, 2,8 kg/m²	0,29	46,70	_	DIN 18195;						
			Schutzvlies, 300 g/m²	0,08	83,30	_	Ausführung in An- lehnung an Optigrün						
FRO			Dachabdichtung, wurzelfest	0,40	1550,00	_	Spardach und						
mas	ab	x	Bitumendachbahn	0,50	1000,00	_	Retensionsdach						
_2	2021		Polystyroldämmung,			0.04	Mäander 60;						
			XPS (DA)	22,00	32,00	0,04	Maximaldicke						
			Bitumendachbahn	0,50	1000,00	-	Stahlbeton nach Bautabellen für						
			Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	Ingenieure, 2012,						
			Innenputz	2,00	900,00	0,70	S. 4.96 (I= 6 m;						
							Einfeldträger)						
			PVC-Dachbahn	0,12	1250,00	-	Flachdachaus-	56,2	747,8	1165,7	27,0	277,9	987,5
			Glasvlies Dach	0,05	229,40		führungen nach DIN						
			OSB-Platte	2,50	600,00	-, -	18531, Teil 1-4 und DIN 18195:						
			Konstruktionsvollholz	2,16	492,92	0,13	Kunststoffdachbahn;						
			Zellulosefaser- Einblasdämmung	27,84	45,00	0,04	dataholz.eu, 2021,						
FRO			PE-Folie Decke	0,02	930,00		Bauteil fdroba01a						
wood	ab	x	GKF-Platte	1,50	800,00	0,25	(ohne Installations-						
_1	2021		ora riado	1,00	000,00	0,20	ebene); Wahl der Abmessungen des						
							KVH nach Informa-						
							tionsdienst Holz,						
							2020, Konstruk-						
							tionsvollholz KVH						
							und Balken- schichtholz						
			N 18 111										
			Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	Flachdachaus- führungen nach DIN	143,3	2843,6	4392,0	52,3	1310,3	3776,6
			Filtervlies, PP	0,03	95,50	_	18531, Teil 1-4 und						
			Drainmatte, 2,8 kg/m²	0,29	46,70	_	DIN 18195;						
			Schutzvlies, 300 g/m²	0,08	83,30	_	Ausführung in An-						
			Dachabdichtung, wurzelfest	0,40	1550,00	_	lehnung an Optigrün						
			Bitumendachbahn	0,50	1000,00	_	Spardach und Retensionsdach						
			OSB-Platte	2,50	600,00	-	Mäander 60;						
			Konterlattung	0,60	484,51	-	dataholz.eu, 2021,						
FRO	ab		Unterdeckbahn	0,02	262,00	-	Bauteil fdrhbi06a;						
wood 2	2021	х	OSB-Platte	1,20	600,00	0,13	Für statische Ver- gleichbarkeit mit den						
_2			Holzfaserdämmung	22,03	160,00	0,04							
			(Innenausbau)				Stahlbetondecken						
			Luftschicht	9,44	- E07.44	0,74	wurde beim						
			Brettschichtholz	8,53	507,11		Holzbalkendach eine						
			OSB-Platte	1,50	600,00	0,13							
			Lattung Holzfaserdämmung	1,00	484,51	0,13	bellen für Ingeni-						
			(Innenausbau)	4,00	160,00	0,04	eure, 2012, S. 4.93:						
			Gipsfaserplatte	2,50	1000,00	0,35	h=I/16; mit I< 6,5 m						
							> h ≈ 40 cm)						
			PVC-Dachbahn	0,12	1250,00	-	Flachdachaus- führungen nach DIN	88,0	1492,5	1852,2	34,3	678,4	1783,0
FRO			Glasvlies Dach	0,05	229,40	-	18531, Teil 1-4 und						
wood	ab 2021	x	Polystyroldämmung Flachdach, EPS 035	19,00	26,90	0,04	DIN 18195;						
_3	2021		Bitumendachbahn	0,50	1000,00	_	Mindestdicke Brett-						
			Brettsperrholz	12,00	489,41	0,13	sperrholz nach Bin-						
			Vegetationssubstrat,			0,13	derholz (Hersteller) Flachdachaus-						
			750 kg/m³	2,60	750,00	-	führungen nach DIN	143,6	3076,4	3874,8	40,4	1520,5	3779,1
			Filtervlies, PP	0,03	95,50	-	18531, Teil 1-4 und						
			Drainmatte, 2,8 kg/m²	0,29	46,70	-	DIN 18195;						
			Schutzvlies, 300 g/m ²	0,08	83,30	-	Ausführung in Anlehnung an						
FRO	- 1.		Dachabdichtung, wurzelfest	0,40	1550,00	-	Optigrün Spardach						
wood	ab 2021	х	Bitumendachbahn	0,50	1000,00	-	und Retensions-dach						
_4			Polystyroldämmung,	16,00	32,00	0,04	Mäander 60;						
			XPS (DA)			-,0 1	dataholz.eu, 2021, Bauteil fdrhbi06a;						
			Bitumendachbahn	0,50	1000,00		Maximaldicke						
			Brettsperrholz Ginsfaserplatte	24,00	489,41	0,13	Brettsperrholz						
			Gipsfaserplatte	2,50	1000,00	0,35	nach Binderholz						
							(Hersteller)						

			Innenputz	1,00	900,00	0,70		71,3	727,2	870,8	69,6	702,7	844,0
EW	ab		Hochlochziegel (99,6/0,4)	24,00	575,00	0,08	Eigene Annahme auf Basis von						
mas	2021	x	Mineralwolle (Außenwand)	12,00	46,25	0,04	Herstellerre-						
_1			WDVS Verklebung und	0.00	000.00	4.00	cherchen						
			Beschichtung	2,00	900,00	1,00							
			Innenputz	2,00	900,00	0,70	Eigene Annahme auf	123,1	1436,1	1696,9	118,3	1367,8	1648,1
EW			Hochlochziegel, Dämmstoff	49,00	575,00	0,07	Basis von Herstellerre-						
mas	ab	x	gefüllt (99,6/0,4)	,		-,-:	cherchen						
_2	2021		Konterlattung	0,38	484,51	-	(Wienerberger,						
			Vorhangfassade	1,00	1300,00	_	Schlagmann POROTON S-8)						
			(Faserzementplatten) Innenputz	1.00	000.00	0.70	Eigene Annahme auf	00.6	012.2	1077,4	98,6	012.2	1077,4
			Kalksandstein (99,2/0,8)	1,00 17,50	900,00	0,70	Basis der vor-	98,6	913,2	1077,4	96,6	913,2	1077,4
EW	ab		Mineralwolle				handenen Konstruk-						
mas	2021	х	(Außenwand)	22,00	46,25	0,04	tionen und Herstel-						
_3			WDVS Verklebung und	2,00	900,00	1.00	lerrecherchen (KS Original, KS-Ratio-						
			Beschichtung	2,00	900,00	1,00	Blocksteine)						
			Innenputz	2,00	900,00	0,70	Eigene Annahme auf	145,4	1518,9	2728,5	110,0	953,9	2251,0
			Kalksandstein (95/5)	24,00	1800,00	0,99	Basis der						
EW			Holzfaserdämmplatte (VF)	26,22	160,00	0,04	vorhandenen						
mas	ab	x	Lattung	2,78	484,51	0,13	Konstruktionen und Herstellerre-						
_4	2021		Winddichtheitsbahn	0,02	262,00	-	cherchen (KS						
			Konterlattung	0,38	484,51	-	Original, max.						
			Vorhangfassade (Faserzementplatten)	1,00	1300,00	-	Steindicke 240 mm)						
			Innenputz	1,00	900,00	0,70		82,1	658,9	803,1	81,9	656,4	799,9
			Porenbeton P2 04	24,00	380,00	0.07	Eigene Annahme auf			,			
EW	ab	~	(99,2/0,8) Minoralwollo	24,00	000,00	0,07	Basis von Hersteller-						
mas _5	2021	Х	Mineralwolle (Außenwand)	10,00	46,25	0,04	recherchen (Ytong-						
			WDVS Verklebung und	2,00	900,00	1,00	Silka)						
			Beschichtung										
			Innenputz	2,00	900,00		Eigene Annahme auf Basis der vor-	152,7	1219,0	1488,9	150,9	1194,4	1486,9
EW			Porenbeton P4 05 (95/5)	48,00 0,38	380,00	0,07	handenen Konstruk-						
mas	ab 2021	x	Konterlattung Vorhangfassade	1,00	484,51 1300,00	_	tionen und Herstel-						
_6	2021		(Faserzementplatten)	1,00	1000,00		lerrecherchen						
							(Ytong-Silka, max. Steindicke)						
			Stahlbeton C20/25 (99/1)	15,00	380,00	2,30	Minimale Stb	88,0	814,4	993,1	84,8	773,0	937,7
EW	ab		Mineralwolle	22,00	46,25	0,04	Wanddicke auf	,	ŕ	,	,	,	,
mas _7	2021	Х	(Außenwand) WDVS Verklebung und	22,00	40,23	0,04	Grund der Betonierbarkeit						
-'			Beschichtung	2,00	1759,00	1,00	(stehend) gewählt						
			Innenputz	2,00	900,00	0,70	Eigene Annahme auf	182,3	1830,5	3207,1	140,6	1183,5	2619,9
			Stahlbeton C30/37 (98/2)	30,00	380,00	2,50	Basis der vorhandenen						
EW			Holzfaserdämmplatte (VF)	26,22	160,00	0,04	Konstruktionen;						
mas	ab 2021	x	Lattung	2,78	484,51	0,13	Annahme: 30 cm						
_8	2021		Winddichtheitsbahn	0,02	262,00	_	Stb. als maximale						
			Konterlattung Vorhangfassade	0,38	484,51	_	Wandstärke bei mehrgeschossigen						
			(Faserzementplatten)	1,00	1300,00	-	Gebäuden						
			GKF-Platte	1,25	800,00	0,25		25,7	285,3	1118,1	-29,1	-449,1	1136,4
			PE-Folie Wand	0,02	930,00	-	dataholz.eu, 2021,						
			Zellulosefaser- Einblasdämmung	27,90	45,00	0,04	Bauteil awrhho04a-06,						
EW			Konstruktionsvollholz	4,10	492,92	0,13	jedoch mit						
wood	ab 2021	x	Gipsfaserplatte	1,25	1000,00	0,35	U-Wert= 0,15 statt						
_1	2021		Winddichtheitsbahn	0,02	262,00	-	0,27; Abmessung						
			Konterlattung	0,38	484,51	-	KVH nach erforderlicher						
			Vorhangfassade (Annahme: Laubholz,	2,40	761,60		Dämmdicke						
			natur)	2,40	701,00								
	•		Gipsfaserplatte	2,50	1000,00	0,35		106,3	1452,2	2801,3	59,0	677,0	2302,6
			Lattung	0,38	484,51	0,13	dataholz.eu, 2021,						
			Holzfaserdämmung (Innenausbau)	3,62	160,00	0,04	Bauteil						
			PE-Folie Wand	0,02	930,00	_	awrhhi08b-04,						
E///			OSB-Platte	1,50	600,00	0,13	jedoch						
EW wood	ab	х	Holzfaserdämmung	24,42	160,00	0,04	U-Wert= 0,15 statt 0,16 und						
_2	2021	~	(Innenausbau)			0,13	Holzfaserdämmung						
			Konstruktionsvollholz Gipsfaserplatte	3,58 2,00	492,92 1000,00	0,13	statt Mineralwolle;						
						0,55	Abmessung KVH						
			Winddichtheitsbahn	0.02	262.00	-	nach erforderlicher						
			Winddichtheitsbahn Konterlattung	0,02 0,38	262,00 484,51	-	nach erforderlicher Dämmdicke						
			Konterlattung Vorhangfassade	0,38	484,51	-							
			Konterlattung			-							

											•		
			GKF-Platte	1,25	800,00	0,25	dataholz.eu, 2021,	65,3	751,0	1072,1	33,8	271,8	1170,3
			Brettsperrholz	9,00	489,41	0,13	Bauteil awmopo01a- 01, jedoch mit						
EW			Mineralwolle (Außenwand)	20,00	46,25	0,04	U-Wert= 0,15 statt						
wood	ab 2021	х	WDVS Verklebung und	2,00	1759,00	1,00	0,23 und einer BSH-						
_3	2021		Beschichtung				Dicke von 90 mm auf						
							Grund der Erfüllung statischer						
							Anforderungen						
	-		Gipsfaserplatte	2,50	1000,00	0,35	dataholz.eu, 2021,	116,5	1564,4	3015,1	7,4	-110,2	2947,6
			Lattung	0,58	484,51	0,13	Bauteil awmohi02a-						
			Holzfaserdämmung	5,42	160,00	0,04	06, jedoch mit						
			(Innenausbau)				doppelter Gips- faserbeplankung,						
			Brettsperrholz	24,00	489,41	0,13	Vorhangfassade aus						
EW	a h		Lattung Holzfaserdämmung	1,34	484,51	0,13	Faserzement-platten						
wood	ab 2021	х	(Innenausbau)	12,66	160,00	0,04	und						
_4			Gipsfaserplatte	1,25	1000,00	0,35	Holzfaserdämmung auch in der						
			Winddichtheitsbahn	0,02	262,00	_	Installationsebene;						
			Konterlattung	0,38	484,51	_	zudem wird die						
			Vorhangfassade	1,00	1300,00	-	maximale						
			(Faserzementplatten)				Standarddicke von						
							BSH angenommen						
SW			Innenputz	1,00	900,00	-	Minimaldicke Trennwand nach	30,9	241,4	288,3	28,5	208,7	246,8
mas	ab	х	Hochlochziegel (51,6/48/0,4), Trennwand	17,50	2000,00	-	Herstellerangaben						
_1	2021			4.00	40.05		(Schlagmann						
			Mineralwolle (Außenwand)	1,00	46,25		POROTON S Pz						
			Innenputz	2,00	900,00	-	Maximaldicke	54,0	424,4	506,6	49,8	368,4	435,5
SW	ab		Hochlochziegel (51,6/48/0,4), Trennwand	30,00	2000,00	-	Trennwand nach Herstellerangaben						
mas	2021	Х	(31,0/40/0,4), Hellilwaliu				(Schlagmann						
_2			Mineralwolle (Außenwand)	2,00	46,25	-	POROTON S Pz						
							Planziegel 300)						
			Innenputz	1,00	900,00	-	Minimaldicke Trennwand nach	32,4	253,9	297,2	32,4	253,9	297,2
			Kalksandstein (99,2/0,8)	11,50	1800,00	-	Herstellerangaben						
SW	ab		Mineralwolle (Außenwand)	1,00	160,00	-	(KS Original KS-						
mas _3	2021	Х					Ratio-Blocksteine,						
_5							KS L-R, SFK 12,						
							RDK 1,4 - 4 DF,						
	-		Innenputz	2,00	900,00	_	t 115) Maximaldicke	68,5	523,7	613,3	68,5	523,7	613,3
			Kalksandstein (95/5)	24,00	1800,00	_	Trennwand nach	00,0	020,.	0.0,0	00,0	020,.	0.0,0
SW			Mineralwolle (Außenwand)	2,00	160,00	_	Herstellerangaben						
mas	ab	х					(KS Original KS-						
_4	2021						Ratio-Blocksteine, KS L-R, SFK 12,						
							RDK 1,4 - 8 DF,						
	_						t 240)						
	_		Innenputz	1,00	900,00	-	Minimaldicke nach	25,0	174,0	213,3	24,9	172,8	211,8
			Porenbeton P2 04	11,50	380,00	_	Herstellerangaben (Bundesverband						
			(99,2/0,8) Mineralwolle (Außenwand)	1,00	160,00		Porenbeton e.V.,						
CVA			WilleralWolle (Adisertwaria)	1,00	100,00		2018, Poren-						
SW mas	ab	х					betonhandbuch,						
_5	2021						S.32: Haustrenn-						
							wände in allen Steindicken mö-						
							glich); Annahme:						
							Haustrennwand						
							nichttragend	<u> </u>					
			Innenputz	2,00	900,00	-	Maximaldicke nach	119,1	746,4	909,4	118,6	740,5	901,9
			Porenbeton P4 05 (95/5)	48,00	380,00	-	Herstellerangaben (Bundesverband						
SW			Mineralwolle (Außenwand)	2,00	160,00	-	Poren-beton e.V.,	I					
mas	ab 2021	x					2018, Porenbeton-						
_6	2021						handbuch, S.32:						
							Haustrennwände in						
							allen Steindicken möglich)						
	-		Out-like to Occupation (CC)	2=	000.55		Annahme: minimale		000	6.5-	**	000	666 -
SW			Stahlbeton C20/25 (99/1)	15,00	380,00	-	konstruktiv aus-	36,8	268,2	345,4	33,6	226,8	290,0
mas	ab 2021	х	Mineralwolle (Außenwand)	1,00	160,00	-	führbare Stahl-	I					
_7	2021						betonwanddicke						
			Innanout-	0.00	000.00		(Betonierbarkeit) Annahme: maximal	405.10	005.0	1001.5	00.400	750 00	000.05
SW			Innenputz	2,00	900,00	-	im Wohnungsbau	105,48	835,3	1091,9	99,189	753,28	982,25
mas	ab	х	Stahlbeton C30/37 (98/2)	30,00	380,00	-	gängig ausgeführte						
_8	2021		Mineralwolle (Außenwand)	2,00	46,25	-	Stahl-						
			. ,				betonwanddicke						

SW wood				1 25	900 00		0.0	1151	275.0	2.4	EO E	240,1
wood			GKF-Platte Zellulosefaser-	1,25	800,00	dataholz.eu, 2021,	9,8	145,4	275,0	3,4	58,5	240,1
	ab		Einblasdämmung	9,04	45,00	Bauteil twrxxo03a- 03; 2-schalige						
_1	2021	х	Konstruktionsvollholz	0,96	492,92	Gebäudetrennwand,						
-'			GKF-Platte	2,50	800,00	 halber Konstruktions- 						
	_		Mineralwolle (Außenwand)	1,00	46,25	_ aufbau						
	_		Gipsfaserplatte	2,50	1000,00	- dataholz.eu, 2021,	60,3	867,3	1833,9	16,3	121,6	1500,4
			Lattung	0,58	484,51	Bauteil twrxxo07b- 00, jedoch mit						
			Holzfaserdämmung	5,42	160,00	- Holzfaser- statt						
			(Innenausbau) OSB-Platte	1,50	600,00	_ Mineralwollge-						
SW	ab		Holzfaserdämmung			fachdämmung,						
wood _2	2021	Х	(Innenausbau)	14,54	160,00	 Ständerdicke von je 18 cm und einer 						
			Konstruktionsvollholz	3,46	492,92	Installationsebene;						
			OSB-Platte	1,50	600,00	2-schalige						
			Gipsfaserplatte	1,25	1000,00	- Gebäudetrennwand,						
			Mineralwolle (Außenwand)	1,00	46,25	halber Kon- struktionsaufbau						
	-		Brettsperrholz	7,80	489,41	dataholz.eu, 2021,	13,5	179,2	365,9	-13,8	-236,1	451,0
			Mineralwolle (Außenwand)	1,00	46,25	- Bauteil twmxxo03a-	,	,	, i	,	,	,
sw						00, jedoch ohne						
wood	ab	х				Verkleidung mit						
_3	2021					Trockenbauplatte; 2-schalige Gebäu-						
						detrennwand, halber						
						Konstruktionsaufbau						
	-		Gipsfaserplatte	2,50	1000,00	- dataholz.eu, 2021,	57,1	764,2	1593,6	-34,0	-625,9	1756,5
			Holzfaserdämmung	5,42	160,00	Bauteil twmxxo06a-			•			
			(Innenausbau)			01, jedoch mit Holz- faser- statt						
SW	ab		Lattung	0,58	484,51	Mineralwoll-						
wood	2021	х	Brettsperrholz	24,00	489,41	dämmung, 2-fachen						
_4			Mineralwolle (Außenwand)	2,00	46,25	Beplankung mit						
						Gipsfaserplatte und						
						einer BSH-Dicke von 240 mm						
	-		Innenputz	1,00	900,00	_ Annahme Ver-	19,1	192,1	229,1	18,3	180,4	216,3
			Hochlochziegel (99,6/0,4)	11,50	575,00	hältnis Planziegel	-,	- ,	-,	-,-		-,-
			Innenputz	1,00	900,00	und Dünnbett-						
						mörtel in Annä- herung an Her-						
IW	ab					stellerangaben						
mas _1	2021	Х				(Wienerberger,						
						Poroton-Hoch-						
						lochziegel-Plan-T- 11,5: Steinhöhe 498						
						mm, Mörtelschicht						
	_					2 mm); Minimaldicke						
			Innenputz	2,00	900,00	- Annahme Verhältnis	40,5	398,5	475,4	38,9	374,4	449,0
			Hochlochziegel (98/2)	24,00	575,00	 Ziegel/Mörtel für den 						
IW	ah		Innenputz	2,00	900,00	ungünstigsten Fall aswählt: Maximal						
mas	ab 2021	x				gewählt; Maximal- dicke für Standard-						
_2						innenwände nach						
						Herstellerangaben						
						(Wienerberger)						
	_		Innenputz	1,00	900,00	- Annahme Verhältnis	33,1	256,1	299,9	33,1	256,1	299,9
			Kalksandstein (99,2/0,8)	11,50	1800,00	 Planziegel und 						
			Innenputz	1,00	900,00	- Dünnbettmörtel in						
IW	ab					Annäherung an Herstellerangaben						
mas	2021	X				(KS Original, KS						
_3						Ratio Plansteine:						
						Steinhöhe 248 mm,						
						Mörtelschicht 2 mm); Minimaldicke						
	-		Towns and the Control of the Control	2	000.05	Annahme Verhältnis		F00 -	646		F00 -	615 -
			Innenputz	2,00	900,00	Ziegel/Mörtel in	69,9	528,0	618,9	69,9	528,0	618,9
			Kalksandstein (95/5) Innenputz	24,00 2,00	1800,00 900,00	Annäherung an						
			ппоприи	۷,00	300,00	Herstellerangaben						
IVA/						(KS Original, KS						
IW mas	ab	х				Ratio Blocksteine: Steinhöhe 238 mm,						
_4	2021					Mörtelschicht 12						
						mm); Maximaldicke						
						für Standardinnen-						
						wände nach Her- stellerangaben (KS						
						Original)						
			Innenputz	1,00	900,00	- Annahme Verhältnis	25,7	176,2	216,1	25,6	175,0	2445
	-		mnemputz	1,00	000,00			- ,	210,1	23,0	175,0	214,5
IW	ab -		Porenbeton P2 04			Planziegel und	,	-,	210,1	23,0	175,0	214,5
IW mas _5	ab 2021	x		11,50	380,00		·	,	210,1	23,0	173,0	214,5

No.														
Bandard Band				Innenputz	2,00	900,00	-	Annahme Verhältnis	64,5	414,7	503,5	64,2	411,7	499,7
December Color C		ah		. ,			-	-						
Name			X	Innenputz	2,00	900,00	-							
West	_6													
Name		-												
No.		ab	~	Stablington C20/25 (00/1)	15.00	380 00			35.4	250.7	325.1	32.2	200.3	260.7
Image: Control Imag		2021	^	Starilleton 620/23 (99/1)	13,00	300,00	_		33,4	230,7	323,1	32,2	209,3	209,1
Name														
Wood 2021 X		-		Innenputz	2,00	900,00	-	Maximaldicke in	90,4	712,8	929,9	85,2	644,4	838,5
Mauerwersaciacken	IW			•	25.00		_	•						
No.			х				_							
March Color Colo	_8	2021						-						
W														
Variable Variable		_		GKF-Platte	1.25	800.00	_		6.7	92.2	208.9	0.3	5.3	174.0
Lindiagadamnung Constitutionsvollholz 0,96 492,92 Geschen Constitutionsvollholz 0,96 492,92 Geschen Constitutionsvollholz 0,96 492,92 Geschen Constitutionsvollholz 0,96 492,92 Geschen Constitutionsvollholz 0,96 492,92 Constitutionsvollholz 0,	IW								-,	,	, .	-,-	-,-	,-
Nonstruktionsvolinitiz	wood		x	Einblasdämmung	9,04	45,00	-							
IW	_1	2021		Konstruktionsvollholz	0,96	492,92	-							
No.		_		GKF-Platte	1,25	800,00	-	gowann. 02,0 om						
Note				Gipsfaserplatte	3,60	1000,00	-	d-t-b-d 0004	75,9	1140,3	2199,5	25,0	264,3	1886,9
Machine Mach				OSB-Platte	2,20	600,00	-							
Variable Variable		ab			19.39	160.00	_							
Note			x											
Note	_2						-	auf 24 cm						
IW							-	Ständerdicke erhöht						
NV		-		Gipsiaserpialle	3,00	1000,00								
Variable Variable	DA/													
Verkleidung mit Trockenbauplatte Trockenbauplat			×	Brettsperrholz	9.00	489 41	_		14.0	186.6	398.8	-17.6	-292.6	497.0
IV		2021	~	2.0.0000	0,00	100,11			,0	.00,0	000,0	,0	202,0	.0.,0
Note								•						
Note		-		Gipsfaserplatte	3,60	1000,00	-	dataholz.eu. 2021.	78,5	1073,4	2198,2	-19,6	-428,8	2262,3
Nopenbarn 100, 10				Holzfaserdämmung	5.42	160.00								
Vocation Vocation								01, jedoch mit						
A 2021		ab					-	-						
Holzfaserdämmung			х	·			-							
CW	_4			•	0,58	484,51	-							
CW				•	5,42	160,00	-							
Noppenbahn					3.60	1000.00	_							
Polystyroldämmung, XPS (KW) PE-HD-Flächenabdichtung 0,15 1067,00 Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz 2,00 1800,00 1,00 kellerwaende-ziegel; Hochlochziegel (99,6/0,4) 49,00 575,00 0,08 https://www.bauwion. Innenputz 1,00 900,00 0,70 de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-		_					_		121.8	1370.3	1580.1	107.9	1166.8	1328.1
XPS (KW) PE-HD-Flächenabdichtung 0,15 1067,00 Grundierung (Bitumenvoranstrich, 105emittelhaltig) Außenputz 2,00 1800,00 1,00 kellerwaende-ziegel; Hochlochziegel (99,6/0,4) 49,00 575,00 0,08 https://www.bauwion. Innenputz 1,00 900,00 0,70 de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-				**					121,0	1010,0	1000,1	101,0	1100,0	1020,1
CW _h _ 1 _ 1 _ 2021 x					1,00	32,00	0,04	•						
CW _h _1 _1 CV _h _h _1 CV _h _h _1 CV _h _h _1 CV _h _h _1 CV _h _N _H _N				PE-HD-Flächenabdichtung	0,15	1067,00	-	-						
CW _h _ 1				Grundierung										
Außenputz 2,00 1800,00 1,00 kellerwaende-ziegel; Hochlochziegel (99,6/0,4) 49,00 575,00 0,08 https://www.bauwion. Innenputz 1,00 900,00 0,70 de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-					0,02	950,00	-	, ,						
Hochlochziegel (99,6/0,4) 49,00 575,00 0,08 https://www.bauwion. Innenputz 1,00 900,00 0,70 de/wissen/rohbau/bo denplatte-keller/105-abdictung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-				•										
ab Innenputz 1,00 900,00 0,70 de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-														
_h _ 2021 x denplatte-keller/105-abdichtung-schwarze	0)4/						0,08	https://www.bauwion.						
abdichtung-schwarze wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-		ab	~	Innenputz	1,00	900,00	0,70							
wanne); Wahl Verhältnis Ziegel zu Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-	1	2021	^					'						
Dünnbettmörtel nach Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-	_							-						
Wienerberger; Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-								Verhältnis Ziegel zu						
Wärmeleitfähigkeit Hochlochziegel für Niedrigstener-														
Hochlochziegel für Niedrigstener-														
Niedrigstener-														
								3						
		_												

			Noppenbahn	0,13	960,00	-		145,2	1740,3	1940,2	124,7	1440,6	1560,7
			Polystyroldämmung, XPS (KW)	9,00	32,00	0,04	Dimensionierung in						
			PE-HD-Flächenabdichtung	0,15	1067,00	-	Anlehnung an www.bauwion.de						
			Grundierung		050.00		(https://www.bauwion						
			(Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	-	.de/wissen/rohbau/b						
			Außenputz	2,00	1800,00	1,00	odenplatte-keller/102- kellerwaende-ziegel;						
			Hochlochziegel, Dämmstoff	00.00	F7F 00	0.07	https://www.bauwion.						
CW _h	ab	x	gefüllt (99,6/0,4)	30,00	575,00	0,07	de/wissen/rohbau/bo denplatte-keller/105-						
_11	2021	^	Innenputz	2,00	900,00	0,70	abdichtung-schwarze						
							wanne); Wahl						
							Verhältnis Ziegel zu Dünnbettmörtel nach						
							Wienerberger;						
							Wärmeleitfähigkeit Hochlochziegel für						
							Niedrigstenergie-						
							standard gewählt						
	١.												
			Noppenbahn Polystyroldämmung,	0,13	960,00	-	Dimensionierung in	206,5	2351,6	2583,1	175,2	1893,9	1994,7
			XPS (KW)	22,00	32,00	0,04	Anlehnung an www.kalksandstein.d						
			PE-HD-Flächenabdichtung	0,15	1067,00	-	e und						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	www.bauwion.de (https://www.kalksan						
CW	ab		lösemittelhaltig)	-,	000,00		dstein.de/bv_ksi/kell						
_h	2021	х	Außenputz	2,00	1800,00	1,00	er-und-						
3			Kalksandstein (99,2/0,8)	24,00	1800,00	0,99	kellerwaende?page id=13402;						
							https://www.bauwion.						
							de/wissen/rohbau/bo denplatte-keller/105-						
							abdichtung-schwarze						
							wanne)						
			Noppenbahn	0,13	960,00	-	Dimensionierung in	256,8	2793,3	3082,8	222,6	2292,2	2438,4
			Polystyroldämmung, XPS (KW)	25,00	32,00	0.04	Anlehnung an						
				,	32,00	0,04							
			PE-HD-Flächenabdichtung	0,15	1067,00	- 0,04	www.kalksandstein.d e und						
			PE-HD-Flächenabdichtung Grundierung	0,15	1067,00	-	www.kalksandstein.d e und www.bauwion.de						
CW	ah		PE-HD-Flächenabdichtung			-	www.kalksandstein.d e und						
_h	ab 2021	x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz	0,15	1067,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksan dstein.de/bv_ksi/kell er-und-						
		х	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5)	0,15 0,02 2,00 36,50	1067,00 950,00 1800,00 1800,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksan dstein.de/bv_ksi/kell						
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz	0,15 0,02 2,00	1067,00 950,00 1800,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksan dstein.de/bv_ksi/kell er-und- kellerwaende?page_ id=13402; https://www.bauwion.						
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5)	0,15 0,02 2,00 36,50	1067,00 950,00 1800,00 1800,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksan dstein.de/bv_ksi/kell er-und- kellerwaende?page_ id=13402; https://www.bauwion. de/wissen/rohbau/bo						
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5)	0,15 0,02 2,00 36,50	1067,00 950,00 1800,00 1800,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze						
_h		х	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5)	0,15 0,02 2,00 36,50	1067,00 950,00 1800,00 1800,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-						
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz	0,15 0,02 2,00 36,50 2,00	950,00 1800,00 1800,00 900,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne)	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung	0,15 0,02 2,00 36,50 2,00	1067,00 950,00 1800,00 1800,00 900,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h		х	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz	0,15 0,02 2,00 36,50 2,00	950,00 1800,00 1800,00 900,00	1,00	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/keller-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h		х	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,15 0,02 2,00 36,50 2,00 0,13 0,15	960,00 950,00 1800,00 1800,00 900,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h		х	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz	0,15 0,02 2,00 36,50 2,00 0,13 0,15	960,00 960,00 1800,00 900,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de)	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,15 0,02 2,00 36,50 2,00 0,13 0,15	960,00 950,00 1800,00 1800,00 900,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h	2021	x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de)	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion sbeispiele/gruendung/gruendung/#image-2;	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion sbeispiele/gruendung/gruendung/#image-	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion sbeispiele/gruendung/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/102-	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion sbeispiele/gruendung/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/102-kellerwaende-ziegel;	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendung/gruendung/mage-2; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bo	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendung/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendung/gruendung/mage-2; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bo	143,6	1233,3	1448,9	133,7	1089,5	1264,0
_h _4	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Kalksandstein (95/5) Innenputz Noppenbahn PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P2 04 (99,2/0,8)	0,15 0,02 2,00 36,50 2,00 0,13 0,15 0,02 2,00 48,00	960,00 950,00 1800,00 900,00 960,00 1067,00 950,00 1800,00 380,00	1,00 0,99 0,70	www.kalksandstein.d e und www.bauwion.de (https://www.kalksandstein.de/bv_ksi/kell er-und-kellerwaende?page_id=13402; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne) Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.ytong-silka.de/konstruktion sbeispiele/gruendung/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze	143,6	1233,3	1448,9	133,7	1089,5	1264,0

			Noppenbahn	0,13	960,00	-		164,8	1615,9	1823,4	146,1	1342,9	1472,4
			Polystyroldämmung, XPS (KW)	9,00	32,00	0,04	Dimensionierung in Anlehnung an						
			PE-HD-Flächenabdichtung	0,15	1067,00	-	www.ytong-silka.de						
			Grundierung (Bitumenvoranstrich,	0,02	950,00		und bauwion.de (https://baubuch.yton						
			lösemittelhaltig)	0,02	930,00		g-						
			Außenputz	2,00	1800,00	1,00	silka.de/konstruktion sbeispiele/gruendun						
CW	ab		Porenbeton P4 05 (95/5) Innenputz	30,00	380,00 900,00	0,07 0,70	g/gruendung/#image-						
_h _6	2021	X	Inneriputz	2,00	900,00	0,70	2; https://www.bauwion.						
_0							de/wissen/rohbau/bo						
							denplatte-keller/102- kellerwaende-ziegel;						
							https://www.bauwion.						
							de/wissen/rohbau/bo denplatte-keller/105-						
							abdichtung-schwarze						
							wanne)						
			Noppenbahn	0,13	960,00	_		158,3	1849,6	2041,6	128,2	1415,7	1480,8
			Polystyroldämmung,	22,00	32,00	0,04	Ausführung	100,0	1043,0	2041,0	120,2	1415,7	1400,0
			XPS (KW)	22,00	32,00	0,04	schwarze Wanne in Anlehnung an						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	www.bauwion.de						
CW h	ab	x	lösemittelhaltig)				(https://www.bauwion .de/wissen/rohbau/b						
_h _7	2021		Stahlbeton C20/25 (99/1)	20,00	380,00	2,30	odenplatte-keller/105-						
							abdichtung-schwarze- wanne); Annahme:						
							Mindestwanddicke						
							200 mm						
			Noppenbahn	0,13	960,00	-	Ausführung weiße	243,0	2613,8	3009,4	206,8	2096,0	2338,6
			Polystyroldämmung, XPS (KW)	25,00	32,00	0,04	Wanne in Anlehnung an www.bauwion.de						
CW			Grundierung				(https://www.bauwion						
_h	ab 2021	x	(Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	-	.de/wissen/rohbau/b odenplatte-keller/106-						
_8	2021		Stahlbeton C30/37 (98/2)	35,00	380,00	2,50	abdichtung-weisse-						
			Innenputz	2,00	900,00	0,70	wanne); Annahme: maximale						
							Wanddicke 350 mm						
			Noppenbahn	0,13	960,00	-		85,1	980,9	1121,2	74,0	817,6	915,8
			PE-HD-Flächenabdichtung	0,15	1067,00	-	Dimensionierung in Anlehnung an						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	bauwion.de						
			lösemittelhaltig)	-,-	,		(https://www.bauwion						
CW	ab		Außenputz	2,00	1800,00	-	.de/wissen/rohbau/b odenplatte-keller/102-						
_uh _1	2021	х	Hochlochziegel (99,6/0,4) Innenputz	24,00 1,00	575,00 900,00		kellerwaende-ziegel;						
				.,			https://www.bauwion. de/wissen/rohbau/bo						
							denplatte-keller/105-						
							abdichtung-schwarze- wanne)						
							,						
	•		Noppenbahn	0,13	960,00	-		138,5	1570,9	1793,0	125,6	1382,4	1560,1
			PE-HD-Flächenabdichtung	0,15	1067,00	-	Dimensionierung in Anlehnung an						
			Grundierung (Bitumenvoranstrich,	0,02	950,00	_	bauwion.de						
			lösemittelhaltig)	-,			(https://www.bauwion						
CW	ab	v	Außenputz	2,00	1800,00	-	.de/wissen/rohbau/b odenplatte-keller/102-						
_uh _2	2021	х	Hochlochziegel, Dämmstoff	49,00	575,00	_	kellerwaende-ziegel;						
			gefüllt (99,6/0,4)				https://www.bauwion. de/wissen/rohbau/bo						
			Innenputz	2,00	900,00	-	denplatte-keller/105-						
							abdichtung-schwarze- wanne)						
	_						, , , , , , , , , , , , , , , , , , ,						
	•												

	_											
			Noppenbahn	0,13	960,00	 Dimensionierung in 	112,1	1094,8	1246,0	102,6	955,9	1067,4
			PE-HD-Flächenabdichtung	0,15	1067,00	 Anlehnung an 						
			Grundierung			www.kalksandstein.d						
			(Bitumenvoranstrich,	0,02	950,00	- e und						
			lösemittelhaltig)	0.00	1000.00	www.bauwion.de _ (https://www.kalksan						
CW			Außenputz	2,00 24,00	1800,00 1800,00	_ dstein.de/bv_ksi/kell						
uh	ab	x	Kalksandstein (99,2/0,8)	24,00	1800,00	er-und-						
3	2021					kellerwaende?page						
						id=13402;						
						https://www.bauwion.						
						de/wissen/rohbau/bo						
						denplatte-keller/105- abdichtung-schwarze-						
						wanne)						
	-			0.10	000.00	, , , , , , , , , , , , , , , , , , ,	440.0	1005.1	4500.0	440.4	1000 0	10010
			Noppenbahn	0,13	960,00	- Dimensionierung in	149,6	1365,1	1563,3	140,1	1226,3	1384,8
			PE-HD-Flächenabdichtung	0,15	1067,00	 Anlehnung an www.kalksandstein.d 						
			Grundierung	0.00	050.00	e und						
			(Bitumenvoranstrich, lösemittelhaltig)	0,02	950,00	www.bauwion.de						
			Außenputz	2,00	1800,00	(https://www.kalksan						
CW	ab		Kalksandstein (95/5)	36,50	1800,00	dstein.de/bv_ksi/kell						
_uh	2021	Х	Innenputz	2,00	900,00	er-und-						
4			IIIIeIiputz	2,00	300,00	kellerwaende?page						
						id=13402; https://www.bauwion.						
						de/wissen/rohbau/bo						
						denplatte-keller/105-						
						abdichtung-schwarze						
						wanne)						
	_		Noppenbahn	0,13	960,00	-	110,0	1019,1	1182,7	100,3	877,1	1000,2
			PE-HD-Flächenabdichtung	0,15	1067,00	- Dimensionierung in						
			Grundierung			Anlehnung an						
			(Bitumenvoranstrich,	0,02	950,00	_ www.ytong-silka.de						
			lösemittelhaltig)			und bauwion.de						
			Außenputz	2,00	1800,00	_ (https://baubuch.yton						
			Porenbeton P2 04	30,00	380,00	g- - silka.de/konstruktion						
			(99,2/0,8)			sbeispiele/gruendun						
CW	oh		Innenputz	1,00	900,00	g/gruendung/#image-						
_uh	ab 2021	x				2;						
_5	2021					https://www.bauwion.						
						de/wissen/rohbau/bo						
						denplatte-keller/102- kellerwaende-ziegel;						
						https://www.bauwion.						
						https://www.bauwion. de/wissen/rohbau/bo						
						https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105-						
	<u>-</u>					https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze						
	_		Noppenbahn	0,13	960,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne)	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	_		PE-HD-Flächenabdichtung	0,13 0,15		https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	_		PE-HD-Flächenabdichtung Grundierung	0,15	1067,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	-		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich,			https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	-		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,15	1067,00 950,00	https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	-		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz	0,15 0,02 2,00	1067,00 950,00 1800,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de	168,1	1353,8	1585,1	158,2	1209,0	1398,9
	-		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion	168,1	1353,8	1585,1	158,2	1209,0	1398,9
a.v.	-		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz	0,15 0,02 2,00	1067,00 950,00 1800,00	https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) - Dimensionierung in Anlehnung an www.ytong-silka.deund bauwion.de(https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendun	168,1	1353,8	1585,1	158,2	1209,0	1398,9
CW	- ab		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) - Dimensionierung in Anlehnung an www.ytong-silka.deund bauwion.de(https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendung/gruendung/#image-	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh	a b 2021	x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze- wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2;	168,1	1353,8	1585,1	158,2	1209,0	1398,9
uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze- wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion.	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze- wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2;	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an - www.ytong-silka.de - und bauwion.de (https://baubuch.yton - g silka.de/konstruktion - sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		×	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion.	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		×	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze- wanne) - Dimensionierung in Anlehnung an - www.ytong-silka.de - und bauwion.de - (https://baubuch.yton - g silka.de/konstruktion - sbeispiele/gruendun g/gruendung/#image- 2; - https://www.bauwion de/wissen/rohbau/bo - denplatte-keller/102 kellerwaende-ziegel; - https://www.bauwion de/wissen/rohbau/bo	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an - www.ytong-silka.de - und bauwion.de (https://baubuch.yton - g silka.de/konstruktion - sbeispiele/gruendun - g/gruendung/#image 2; https://www.bauwion de/wissen/rohbau/bo - denplatte-keller/102 kellerwaende-ziegel; https://www.bauwion de/wissen/rohbau/bo - denplatte-keller/105-	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze- wanne) - Dimensionierung in Anlehnung an - www.ytong-silka.de - und bauwion.de - (https://baubuch.yton - g silka.de/konstruktion - sbeispiele/gruendun g/gruendung/#image- 2; - https://www.bauwion de/wissen/rohbau/bo - denplatte-keller/102 kellerwaende-ziegel; - https://www.bauwion de/wissen/rohbau/bo	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5)	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze	168,1	1353,8	1585,1	158,2	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz	0,15 0,02 2,00 48,00 2,00	1067,00 950,00 1800,00 380,00 900,00	https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne) - Dimensionierung in Anlehnung an www.ytong-silka.deund bauwion.de(https://baubuch.ytong-silka.de/konstruktionsbeispiele/gruendung/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bodenplatte-keller/105-abdichtung-schwarzewanne)						
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz	0,15 0,02 2,00 48,00	1067,00 950,00 1800,00 380,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung	168,1	1353,8 592,8	1585,1 704,5	158,2 55,6	1209,0	1398,9
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz	0,15 0,02 2,00 48,00 2,00	1067,00 950,00 1800,00 380,00 900,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in						
_uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung	0,15 0,02 2,00 48,00 2,00	950,00 950,00 1800,00 380,00 900,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in						
_uh _6	2021		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, lösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich,	0,15 0,02 2,00 48,00 2,00	950,00 950,00 1800,00 380,00 900,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion.de						
_uh _6 CW _uh		x	PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	0,15 0,02 2,00 48,00 2,00 0,13	950,00 1800,00 380,00 900,00 960,00 950,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion. de/kissen/rohbau/b						
_uh _6	2021 -		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	0,15 0,02 2,00 48,00 2,00 0,13	950,00 1800,00 380,00 900,00 960,00 950,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion de/wissen/rohbau/b						
_uh _6 CW _uh	2021 -		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	0,15 0,02 2,00 48,00 2,00 0,13	950,00 1800,00 380,00 900,00 960,00 950,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion.de (https://www.bauwion.de complatte-keller/105- abdichtung-schwarze						
_uh _6 CW _uh	2021 -		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	0,15 0,02 2,00 48,00 2,00 0,13	950,00 1800,00 380,00 900,00 960,00 950,00	https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g- silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image- 2; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/102- kellerwaende-ziegel; https://www.bauwion. de/wissen/rohbau/bo denplatte-keller/105- abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion de/wissen/rohbau/b						
_uh _6 CW _uh	2021 -		PE-HD-Flächenabdichtung Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Außenputz Porenbeton P4 05 (95/5) Innenputz Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	0,15 0,02 2,00 48,00 2,00 0,13	950,00 1800,00 380,00 900,00 960,00 950,00	https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne) - Dimensionierung in Anlehnung an www.ytong-silka.de und bauwion.de (https://baubuch.yton g-silka.de/konstruktion sbeispiele/gruendun g/gruendung/#image-2; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/102-kellerwaende-ziegel; https://www.bauwion.de/wissen/rohbau/bo denplatte-keller/105-abdichtung-schwarze wanne) - Ausführung schwarze Wanne in Anlehnung an www.bauwion.de (https://www.bauwion.de/wissen/rohbau/b odenplatte-keller/105-abdichtung-schwarze wanne); Annahme:						

			Noppenbahn Grundierung	0,13	960,00	-	Ausführung weiße Wanne in Anlehnung	135,7	1185,6	1490,0	124,3	1030,0	1285,0
			(Bitumenvoranstrich,	0,02	950,00	-	an www.bauwion.de						
			lösemittelhaltig) Stahlbeton C30/37 (98/2)	25.00	380,00		(https://www.bauwion .de/wissen/rohbau/b						
			Innenputz	35,00 2,00	900,00		odenplatte-keller/106						
CW	ab			_,-,			abdichtung-weisse-						
_uh _8	2021	Х					wanne; https://www.beton.or						
							g/fileadmin/beton-						
							org/media/Dokument e/PDF/Service/Zeme						
							ntmerkbl%C3%A4tte						
							r/H10. pdf)						
			Mineralwolle (Außenwand)	10,00	32,00	0,04	Dimensionierung	43,9	399,0	470,4	41,5	366,3	428,9
SCW			Hochlochziegel	17,50	2000,00	0,67	nach Herstellerangaben	.,.	, .	-,	,-	,	.,-
_h	ab 2021	х	(51,6/48/0,4), Trennwand				(Schlagmann						
_1	2021		Innenputz	1,00	900,00	0,70	Poroton-S-Pz-						
							Planziegel-175); Mindestdicke						
			Polystyroldämmung, XPS (KW)	11,00	32,00	0,04	Dimensionierung	98,3	1017,8	1134,7	83,2	802,4	858,7
SCW			Hochlochziegel	00.00		0.70	nach Herstellerangaben						
_h	ab 2021	х	(51,6/48/0,4), Trennwand	30,00	2000,00	0,72	(Schlagmann						
_2			Innenputz	2,00	900,00	0,70	Poroton-S-Pz- Planziegel-300);						
							Maximaldicke						
			Mineralwolle (Außenwand)	10,50	32,00	0,04	Konstruktionswahl in	44,0	400,6	466,4	44,0	400,6	466,4
			Kalksandstein (99,2/0,8)	11,50	1800,00	0,99	Anlehnung an www. kalksandstein.de,						
							zweischalige						
SCW _h	ab	x					Haustrennwände (https://www.kalksan						
_3	2021	^					dstein.de/entwurf-						
							und- planung/bauteile/trag						
							ende-innenwaende/);						
	_						Minimaldicke						
			Polystyroldämmung, XPS (KW)	12,00	32,00	0,04	Konstruktionswahl in	117,1	1174,2	1302,2	105,3	1000,3	1078,6
			Kalksandstein (95/5)	24,00	1800,00	0,99	Anlehnung an www.						
			Innenputz	2,00	900,00	0,70	kalksandstein.de, zweischalige						
SCW	ab						Haustrennwände						
_h _4	2021	Х					(https://www.kalksan dstein.de/entwurf-						
							und-						
							planung/bauteile/trag ende-innenwaende/);						
							Maximaldicke						
	-		Mineralwolle (Außenwand)	2,50	32,00	0,04	Konstruktionswahl in	38,4	271,7	332,4	38,2	269,9	330,1
			Porenbeton P2 04	17,50	380,00	0,07	Anlehnung an www. ytong-silka.de						
SCW			(99,2/0,8) Innenputz	1,00	900,00	0,70	(https://baubuch.yton						
_h	ab 2021	x					g- silka.de/konstruktion						
_5							sbeispiele/innenwan						
							d/innenwand- 2/#image-8);						
							Minimaldicke						
SCW	ab		Luftschicht	1,00	-		Konstruktionswahl in Anlehnung an www.	116,2	711,4	869,0	115,7	705,5	861,4
_h _6	2021	х	Porenbeton P4 05 (95/5)	48,00	380,00	0,07	ytong-silka.de;						
	-		Minorphysilla (Außenwand)	2,00	900,00	0,70	Maximaldicke Minimal konstruktiv	E1 2	442.2	E 47.7	40.4	404.0	402.2
SCW	ab		Mineralwolle (Außenwand) Stahlbeton C20/25 (99/1)	11,00 15,00	32,00 380,00	0,04 2,30	ausführbare	51,3	443,3	547,7	48,1	401,9	492,3
_h _7	2021	Х	2 2 (22, 1)	-,	,	,	Wandicke bei Ortbetonwänden						
							(Betonierbarkeit)						
scw	ab		Polystyroldämmung, XPS (KW)	12,00	32,00	0,04	Annahme: Maximaldicke	154,1	1485,8	1780,8	135,9	1229,9	1447,5
_h	2021	X	Stahlbeton C30/37 (98/2)	30,00	380,00	2,50	Stahlbetonwand 300						
_8	١.		Innenputz	2,00	900,00	0,70	mm						
			Hochlochziegel (51,6/48/0.4), Trennwand	17,50	2000,00	-	Dimensionierung nach	29,5	223,9	268,1	27,0	191,2	226,6
SCW	ab		Innenputz	1,00	900,00	-	Herstellerangaben						
_uh _1	2021	х					(Schlagmann Poroton-S-Pz-						
-'							Planziegel-175);						
	-						Mindestdicke						

			Hochlochziegel				Dimensionierung			1			
			(51,6/48/0.4), Trennwand	30,00	2000,00	-	nach	51,1	389,4	466,1	46,9	333,4	395,1
SCW _uh	ab	x	Innenputz	2,00	900,00	-	Herstellerangaben (Schlagmann						
2	2021	^					Poroton-S-Pz-						
							Planziegel-300); Maximaldicke						
	-						Konstruktionswahl in						
							Anlehnung an www.						
							kalksandstein.de, zweischalige						
SCW	- 1-						Haustrennwände						
_uh	ab 2021	Х	Kalksandstein (99,2/0,8)	11,50	1800,00	-	(https://www.kalksan	28,8	216,8	253,9	28,8	216,8	253,9
_3							dstein.de/entwurf- und-						
							planung/bauteile/trag						
							ende-innenwaende/); Minimaldicke						
	•		Kalksandstein (95/5)	24,00	1800,00	-	Konstruktionswahl in	65,6	488,7	572,9	65,6	488,7	572,9
			Innenputz	2,00	900,00	-	Anlehnung an www.						
							kalksandstein.de, zweischalige						
SCW	ab						Haustrennwände						
_uh	2021	Х					(https://www.kalksan dstein.de/entwurf-						
_4							und-						
							planung/bauteile/trag						
							ende-innenwaende/); Maximaldicke						
	•		Porenbeton P2 04	17,50	380,00	-	Konstruktionswahl in	34,8	227,9	281,8	34,6	226,1	279,5
			(99,2/0,8) Innenputz	1,00	900,00		Anlehnung an www. ytong-silka.de						
SCW			iiiionput2	1,00	000,00		(https://baubuch.yton						
_uh	ab	х					g-						
_5	2021						silka.de/konstruktion sbeispiele/innenwan						
							d/innenwand-						
							2/#image-8); Minimaldicke						
CCM	•		Porenbeton P4 05 (95/5)	48,00	380,00	-	Konstruktionswahl in	116,2	711,4	869,0	115,7	705,5	861,4
SCW _uh	ab	х	Innenputz	2,00	900,00	-	Anlehnung an www.	,_	,.	222,2	,.	, .	,-
_6	2021						ytong-silka.de; Maximaldicke						
	•						Minimal konstruktiv						
SCW	ab	x	Stahlbeton C20/25 (99/1)	15,00	380,00		ausführbare Wandicke bei	35,4	250,7	325,1	32,2	209,3	269,7
_uh _7	2021	^	Startibetori 020/23 (99/1)	13,00	300,00		Ortbetonwänden	33,4	230,1	323,1	32,2	209,3	205,1
							(Betonierbarkeit) Annahme:						
SCW	ab		Stahlbeton C30/37 (98/2)	30,00	380,00	-	Maximaldicke	102,6	800,3	1051,5	96,3	718,3	941,8
_uh _8	2021	х	Innenputz	2,00	900,00	-	Stahlbetonwand 300						
			Trockenestrich	2,50	800,00	-	mm Mindestdicke	43,4	372,0	472,1	39,4	318,0	402,2
FL	ah		Polystyroldämmung Decke	0.00	40.50		Stahlbeton nach						
mas	ab 2021	х	und Boden, EPS, WLS 040	2,00	18,50	-	Bautabellen für Ingenieure, 2012,						
_1			Stahlbeton C20/25 (99/1)	16,00	2400,00	_	S. 4.97 (l= 4 m;						
			Zementestrich	7,50	2400,00		Zweifeldträger) Maximaldicke	127,2	1000 1	1448,6	117,5	862,9	1257,1
FL			PE-Folie Decke	0,02	930,00		Stahlbeton nach	121,2	1003,1	10,0	111,3	552,3	1231,1
mas	ab	х	Holzfaserdämmung (TSD)	5,00	160,00	_	Bautabellen für						
_2	2021		Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	Ingenieure, 2012, S. 4.96 (l= 6 m;						
			Innenputz	2,00	900,00	0,70	Einfeldträger)						
	-		Trockenestrich	2,50	800,00	-	dataholz.eu, 2021, Bauteil gdstxx01-01;	11,8	184,8	327,7	-11,8	-132,2	397,1
			Polystyroldämmung Decke und Boden, EPS,	2,00	18,50	_	jedoch mit 20 mm						
			WLS 040				TSD und als						
			PE-Folie Decke	0,02	930,00	-	Schüttung wurden für ein						
FL			Schüttung, Porenbetongranulat	4,00	400,00	-	Porenbetongranulat						
wood	ab	x	PE-Folie Decke	0,02	930,00	-	die geringsten						
_1	2021		Schalung	4,00	484,51	-	Umweltwirkungen ermittelt; Abmes-						
			Konstruktionsvollholz	2,00	492,92	-	sungen KVH nach						
							Bautabellen für Ingenieure, 2012, S.						
							4.101 (Stützweite > 4						
							m; bxh = 100x200						
							mm, a= 100 cm)						

			Zementestrich	7,50	2400,00	-	dataholz.eu, 2021,	101,7	1211,7	2355,4	45,6	235,3	2002,3
			PE-Folie Decke	0,02	930,00	-	Bauteil gdrnxa05b-						
			Holzfaserdämmung (TSD)	5,00	160,00	_	13; jedoch ohne						
			OSB-Platte	2,20	600,00	_	Federlagerung der						
			Brettschichtholz	6,40	507,11	_	abgehängten Decke,						
			Holzfaserdämmung				mit 75 mm Estrichdicke						
			(Innenausbau)	16,00	160,00	-	(Heizestrich), 50 mm						
			OSB-Platte	1,50	600,00	_	Holzfaserdämmung						
FL	ab		Gipsfaserplatte	2,50	1000,00	_	als TSD und 200 mm						
wood	2021	Х					Holzfaserdämmung						
_2							als Gefachdäm-						
							mung, Abmessung						
							BSH nach						
							Bautabellen für						
							Ingenieure, 2012,						
							4.101 (Stützweite						
							<6,5 m; bxh=						
							200x320 mm, a= 100 cm)						
	-						,						
			Trockenestrich	2,50	800,00	-	dataholz.eu, 2021,	29,1	418,5	771,4	-21,1	-342,8	905,6
			Polystyroldämmung Decke	2.00	40.50		Bauteil gdmtxn01-00; jedoch mit EPS- statt						
			und Boden, EPS, WLS 040	2,00	18,50	_	MW-TSD in 20 mm						
FL			PE-Folie Decke	0,02	930,00	_	Dicke und einer						
wood	ab	х	Schüttung,				Schüttungshöhe von						
_3	2021		Porenbetongranulat	4,00	400,00	-	40 mm; Abgleich						
			PE-Folie Decke	0,02	930,00	_	Mindestdicke						
							Brettsperrholz mit						
			Brettsperrholz	14,00	489,41	_	Herstellerangaben						
	-		·				(Binderholz)						
			Zementestrich	7,50	2400,00	-	detabala au 2024	145,1	1713,8	2796,7	49,0	239,4	2851,1
			PE-Folie Decke	0,02	930,00	-	dataholz.eu, 2021, Bauteil gdmnxa02a;						
			Holzfaserdämmung (TSD)	5,00	160,00	_	jedoch Holzfaser-						
			Schüttung, Perlite 0-3	8,00	1000,00	_	statt MW-Dämmung,						
			PE-Folie Decke	0,02	930,00	_	statt einer Splitt- eine						
			Brettsperrholz	24,00	489,41	_	Perlitschüttung mit						
FL	a.b.		Lattung	0,58	484,51		80 mm, Estrichdicke						
wood	ab 2021	х	Holzfaserdämmung	0,56	404,51	_	75 mm und doppelte						
_4	2021		(Innenausbau)	5,42	160,00	-	Beplankung mit						
			Gipsfaserplatte	2,50	1000,00	_	Gipsfaserplatten;						
			- 1										
							maximale						
							Brettsperrholzdicke						
							Brettsperrholzdicke 240 mm nach						
							Brettsperrholzdicke 240 mm nach Herstellerangabe						
							Brettsperrholzdicke 240 mm nach						
			Mineralwolle (Boden)	25,00	85,00	0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe	72,1	722,3	873,0	68,7	678,1	813,9
TFI			Mineralwolle (Boden) Stahlbeton C20/25 (99/1)	25,00 16,00		0,04 2,30	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach	72,1	722,3	873,0	68,7	678,1	813,9
TFL mas	ab	×					Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für	72,1	722,3	873,0	68,7	678,1	813,9
mas	ab 2021	x					Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S.	72,1	722,3	873,0	68,7	678,1	813,9
		x					Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m;	72,1	722,3	873,0	68,7	678,1	813,9
mas		x	Stahlbeton C20/25 (99/1)	16,00	2400,00	2,30	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger)		·	·		·	
mas		x	Stahlbeton C20/25 (99/1) Gipsfaserplatte				Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4,97 (l= 4 m; Zweifeldträger) Maximaldicke	72,1	·	873,0	68,7	678,1 782,6	813,9
mas _1	2021	x	Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung	16,00	2400,00	2,30	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach		·	·		·	
mas _1 TFL mas	2021 ab	x	Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 25,00	2400,00 1000,00 160,00	0,35 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für		·	·		·	
mas _1	2021		Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2)	2,50 25,00 24,00	2400,00 1000,00 160,00 2400,00	0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach		·	·		·	
mas _1 TFL mas	2021 ab		Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 25,00	2400,00 1000,00 160,00	0,35 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S.		·	·		·	
mas _1 TFL mas	2021 ab		Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2)	2,50 25,00 24,00	2400,00 1000,00 160,00 2400,00	0,35 0,04 2,50	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m;		1232,6	·		782,6	
mas _1 TFL mas	2021 ab		Stahlbeton C20/25 (99/1) Gipsfaserplatte Hotzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz	2,50 25,00 24,00 2,00	1000,00 160,00 2400,00 900,00	0,35 0,04 2,50 0,70	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m;	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas	2021 ab		Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte	2,50 25,00 24,00 2,00	2400,00 1000,00 160,00 2400,00 900,00 800,00	2,30 0,35 0,04 2,50 0,70 0,25	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m;	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	2021 ab		Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte	2,50 25,00 24,00 2,00 1,25 1,80 1,92	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger)	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz	2,50 25,00 24,00 2,00 1,25 1,80	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger)	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021		Stahlbeton C20/25 (99/1) Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser-	2,50 25,00 24,00 2,00 1,25 1,80 1,92	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a05, jedoch mit Installationsebene	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00	0,35 0,04 2,50 0,70 0,25 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a05, jedoch mit Installationsebene	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00	0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung	129,4	1232,6	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a- 05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a- 05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte OSB-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zelluosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Bipsfaserplatte Unnenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11 160,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldäm-	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte OSB-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35 0,13 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zelluosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Bipsfaserplatte Unnenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11 160,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luttschicht, ruhend	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11 160,00 600,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,35 0,13 0,04 0,13	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser-statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm,	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luttschicht, ruhend Holzfaserdämmung	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50 0,38 1,81	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 484,51	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,13 0,13 0,04 0,13 0,13 0,04 0,13 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm, Installationsebene und mit BSH bxh= 200x320 mm,	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50 0,38 1,81	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 507,11 160,00 600,00 484,51 	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,13 0,13 0,04 0,13 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bautabellen für Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bautabellen für Installationsebene inkl. OSB-Platte und ohne Sparschalung	129,4	729,0	2397,0	102,2	782,6	1814,7
mas _1 TFL mas _2 TFL wood _1 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 1,80 6,40 25,60 1,50 0,38 1,81 1,81 2,50	2400,00 1000,00 160,00 2400,00 900,00 800,00 600,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 484,51 160,00 160,00 160,00 160,00 100,00 100,00 100,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm, Installationsebene und mit BSH bxh= 200x320 mm,	129,4 41,3 81,8	1232,6 729,0	2397,0	102,2	782,6 261,6	1814,7
mas _1 TFL mas _2 TFL wood _1 TFL wood _1	ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte Mineralwolle (Boden)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50 0,38 1,81 1,81 2,50 21,00	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 484,51 - 160,00 1000,00 85,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,25 0,13 0,13 0,04 0,13 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bautabellen für Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm, Installationsebene und mit BSH bxh= 200x320 mm, a= 100 cm	129,4	1232,6 729,0	2397,0	102,2	782,6 261,6	1814,7
mas _1 TFL mas _2 TFL wood _1 TFL wood _2	ab 2021 ab 2021 ab 2021	x	Gipsfaserplatte Hotzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) GSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte Mineralwolle (Boden) PE-Folie Decke	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50 0,38 1,81 1,81 2,50 21,00 0,02	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 484,51 - 160,00 1000,00 85,00 930,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (I= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (I= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm, Installationsebene und mit BSH bxh= 200x320 mm,	129,4 41,3 81,8	1232,6 729,0	2397,0	102,2	782,6 261,6	1814,7
mas _1 TFL mas _2 TFL wood _1 TFL wood _1	ab 2021 ab 2021 ab 2021	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) Stahlbeton C30/37 (98/2) Innenputz GKF-Platte OSB-Platte Konstruktionsvollholz Zellulosefaser- Einblasdämmung OSB-Platte Lattung Mineralwolle (Innenausbau) GKF-Platte Gipsfaserplatte OSB-Platte Brettschichtholz Holzfaserdämmung (Innenausbau) OSB-Platte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte Lattung Luftschicht, ruhend Holzfaserdämmung (Innenausbau) Gipsfaserplatte Mineralwolle (Boden)	2,50 25,00 24,00 2,00 1,25 1,80 1,92 22,08 1,50 0,38 3,62 12,50 2,50 1,80 6,40 25,60 1,50 0,38 1,81 1,81 2,50 21,00	2400,00 1000,00 160,00 2400,00 900,00 800,00 492,92 45,00 600,00 484,51 26,25 800,00 1000,00 600,00 484,51 - 160,00 1000,00 85,00	2,30 0,35 0,04 2,50 0,70 0,25 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,35	Brettsperrholzdicke 240 mm nach Herstellerangabe (Binderholz) Mindestdicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.97 (l= 4 m; Zweifeldträger) Maximaldicke Stahlbeton nach Bautabellen für Ingenieure, 2012, S. 4.96 (l= 6 m; Einfeldträger) dataholz.eu, 2021, Bauteil ddrtxn01a-05, jedoch mit Installationsebene inkl. OSB-Platte und ohne Sparschalung dataholz.eu, Bauteil ddrtxn01b-02, jedoch mit Holzfaser- statt Mineralwolldämmung, Gipsfaser-platte mit 25 mm, Installationsebene und mit BSH bxh= 200x320 mm, a= 100 cm	129,4 41,3 81,8	1232,6 729,0	2397,0	102,2	782,6 261,6	1814,7

	-		Gipsfaserplatte	2,50	1000,00	0,35		83,3	1107,3	2455,8	-19,7	-486,4	2356,7
			Holzfaserdämmung	13,00	160,00	0,04	dataholz.eu, 2021,						
TFL			(Innenausbau) PE-Folie Decke	0,02	930,00	_	Bauteil ddmxxi01a-						
wood	ab	х	Brettsperrholz	24,00	489,41	0,13	00, jedoch mit						
_4	2021		Lattung	0,58	484,51	0,13	Trockenestrich aus 25 mm						
			Holzfaserdämmung	5,42	160,00	0,04	Gipsfaserplatte						
			(Innenausbau) Gipsfaserplatte	2,50	1000,00	0,35							
	-		Trockenestrich	2,50	800,00	0,25	Eigene Annahme	72,5	652,5	817,3	69,1	608,3	758,2
			Mineralwolle (Boden)	2,00	85,00		Ausführung minimale	,-	,-	, ,		,	
CFL			Stahlbeton C20/25 (99/1)	16,00	2400,00	2,30	Umweltwirkungen; Minimaldicke						
mas	ab	х	Mineralwolle	19,00	26,25	0,04	Stahlbeton nach						
_1	2021		(Innenausbau) WDVS Verklebung und	2,00	1759,00	1,00	Bautabellen für						
			Beschichtung	2,00	1700,00	1,00	Ingenieure, 2012, S.						
							4.97 (Zweifeldträger mit l= 4 m)						
	-		Zementestrich	7,50	2400,00	1,40	Eigene Annahme	172,6	1495,3	2666,5	146,1	1056,9	2099,2
			PE-Folie Decke	0,02	930,00	-	Ausführung						
CFL			Holzfaserdämmung (TSD)	5,00	160,00	0,04	maximale Umwelt- wirkungen; Minimal-						
mas	ab 2021	х	Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	dicke Stahlbeton						
_2	2021		Holzfaserdämmung	19,00	160,00	0,04	nach Bautabellen für						
			(Innenausbau) WDVS Verklebung und				Ingenieure, 2012, S. 4.96 (Einfeldträger						
			Beschichtung	2,00	1759,00	1,00	mit l= 6 m)						
	-		Trockenestrich	2,50	800,00	0,25	dataholz.eu, 2021,	31,2	492,9	848,4	3,1	19,5	765,8
			Mineralwolle (Boden)	3,00	85,00	0,04	Bauteil gdrtxa03a- 05, jedoch mit OSB-						
			OSB-Platte	1,80	600,00	0,13	Platte, statt						
CFL	ab		Konstruktionsvollholz	2,40	492,92	0,13	Sparschalung, um						
wood	2021	х	Zellulosefaser- Einblasdämmung	21,60	45,00	0,04	Luftdichtheit zu						
_1			PE-Folie Decke	0,02	930,00	-	gewährleisten; Minimalabmes-						
			OSB-Platte	1,50	600,00	0,13	sungen KVH nach						
			GKF-Platte	1,25	800,00	0,25	erforderlicher Dämmdicke						
	-		Zementestrich	7,50	2400,00	1,40	dataholz.eu, 2021,	106,6	1270,1	2530,7	47,6	244,6	2114,3
			PE-Folie Decke	0,02	930,00	-	Bauteil gdrnxa05b-						
			Holzfaserdämmung (TSD)	5,00	160,00	0,04	13, jedoch ohne						
			OSB-Platte	2,20	600,00	0,13	Federlagerung der abgehängten Decke,						
			Brettschichtholz	6,40	507,11	0,13	mit 75 mm						
			Holzfaserdämmung (Innenausbau)	19,20	160,00	0,04	Estrichdicke						
			OSB-Platte	1,50	600,00	0,13	(Heizestrich), 50 mm Holzfaserdämmung						
CFL	ab		Gipsfaserplatte	2,50	1000,00	0,35	als TSD und 240 mm						
wood	2021	Х					Holzfaserdämmung						
_2							als Gefach- dämmung, Ab-						
							messungen der						
							Holzbalken ergeben						
							sich aus Bautabellen für Ingenieure, 2012,						
							S. 4.101 (Stützweite						
							l= 6,5 m,						
							bxh=200x320 mm, a= 100 cm)						
	-		Trockenestrich	2,50	800,00	0,25	dataholz.eu, 2021,	39,6	563,0	975,4	-15,7	-265,1	1142,9
			Mineralwolle (Boden)	3,00	85,00		Bauteil gdmtxn01-00,		, .	,	-,		,-
			PE-Folie Decke	0,02	930,00	-	jedoch mit einer						
			Schüttung,	4,00	400,00	0,09	Schüttungshöhe von 40 mm und						
			Porenbetongranulat PE-Folie Decke	0,02	930,00		zusätzlicher						
o=:			Brettsperrholz	14,00	489,41	0,13	unterseitiger						
CFL wood	ab	х	Lattung	1,54	484,51		Dämmung, um U-Wert zu erreichen;						
_3	2021	^	Mineralwolle	14,46	26,25	0.04	Schüttung nach						
			(Innenausbau) GKF-Platte	1,25	800,00	0,25	Herstellerangaben						
			GIAI -1 latte	1,23	555,00	0,23	(Ytong Dämmschüttung);						
							Minimale Bretts-						
							perrholzdicke gemäß						
							Herstellerangaben (Binderholz)						

	-		Zementestrich	7,50	2400,00	1,40	dataholz.eu, 2021,	156,5	1866,6	2954,7	60,4	392,1	3009,1
			PE-Folie Decke	0,02	930,00	1,40	Bauteil gdmnxa02a,	130,3	1000,0	2934,7	60,4	392,1	3009,1
			Holzfaserdämmung (TSD)	5,00	160,00	0.04	aber mit Holzfaser-						
						- , -	dämmung, Perlit-						
CFL			Schüttung, Perlite 0-3 PE-Folie Decke	10,00	1000,00	0,06	schüttung mit 80 mm,						
wood	ab 2021	x	Brettsperrholz	24,00	930,00 489,41	0,13	75 mm Estrichdicke und doppelter						
_4	2021		•			0,13	Beplankung mit						
			Lattung Holzfaserdämmung	0,58	484,51	0,13	Gipsfaserplatten;						
			(Innenausbau)	5,42	160,00	0,04	maximale BSH-Dicke						
			Gipsfaserplatte	2,50	1000,00	0,35	mit 24 cm angenommen						
			Zementestrich	5,00	2400,00	1,40	3. 3.	125,5	1160,3	1352,6	111,2	959,5	1090,9
			PE-Folie Decke	0,02	930,00	_							
			Mineralwolle (Boden)	5,00	85,00	0,04	Eigene Annahme						
BP	ab		PE-Folie Decke	0,02	930,00	_	Ausführung minimale Umweltwirkungen;						
_h	2021	x	Stahlbeton C20/25 (99/1)	20,00	2400,00	2,30	Plattengründung,						
_1	202.		PE-Folie Bodenplatte	0,02	26,25	_	kein stauendes						
			Polystyroldämmung, XPS (BO)	17,00	32,00	0,04	Sickerwasser						
			Sauberkeitsschicht	5,00	2400,00	_							
	_		Zementestrich	7,50	2400,00	1,40	Eigene Annahme	262,0	2275,5	2968,5	235,4	1891,9	2467,4
			PE-Folie Decke	0,02	930,00	-	Ausführung						
			Holzfaserdämmung (TSD)	5,00	160,00	0,04	maximale Umweltwirkungen;						
BP			PE-Folie Decke	0,02	930,00	_	Plattengründung bei						
_h	ab 2021	x	Stahlbeton C30/37 (98/2)	50,00	2400,00	2,50	ungünstigem						
_2	2021		PE-Folie Bodenplatte	0,02	26,25	_	Untergrund und						
			Polystyroldämmung, XPS (BO)	20,00	32,00	0,04	hohen Gründungslasten,						
			Sauberkeitsschicht	5,00	2400,00	-	Ausführung als WU-Beton						
			Zementestrich	5,00	2400,00	-		83,8	606,2	753,0	77,5	521,6	642,5
			PE-Folie Decke	0,02	930,00	-	Eigene Annahme						
BP	-1-		Polystyroldämmung Decke und Boden, EPS,	2,00	18,50		Ausführung minimale						
_uh	ab 2021	x	WLS 040	2,00	10,30	_	Umweltwirkungen; Plattengründung,						
_1	2021		PE-Folie Decke	0,02	930,00	_	kein stauendes						
			Stahlbeton C20/25 (99/1)	20,00	2400,00	_	Sickerwasser						
			Sauberkeitsschicht	5,00	2400,00	_							
	-		Zementestrich	7,50	2400,00	-	Eigene Annahme	218,2	1691,6	2347,1	201,7	1456,5	2037,1
			PE-Folie Decke	0,02	930,00	-	Ausführung						
			Holzfaserdämmung (TSD)	5,00	160,00	_	maximale Umwelt- wirkungen; Platten-						
BP	ab		PE-Folie Decke	0,02	930,00	_	gründung bei						
_uh	2021	Х	Stahlbeton C30/37 (98/2)	50,00	2400,00	_	ungünstigem						
_2			Sauberkeitsschicht	5,00	2400,00	_	Untergrund und						
				-,	1		hohen Gründungs-						
							lasten, Ausführung						
							als WU-Beton						

$\underline{\textbf{Bauteilaufbauten} - \textbf{Erkl\"{a}rung Farbschema:}}$

Bezeichnung der Bauteilschichten und ihrer Eigenschaften wie in Literatur und Quellenangaben

Änderungen (Homogenisierung der Materialbezeichnungen, Ergänzung/Homogenisierung von Schichtdicken, Rohdichten und Wärmeleitfähigkeiten)

Tabelle A. 7: Übersicht über die bilanzierten Fensterkonstruktionen im Neubau inklusive der spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung

Bauteil-	Zeit-			ufbau	Lauf-	Ge-		GWP (A-C)	PENRT (A-C)	PET (A-C)	GWP (A-D)	PENRT (A-D)	PET (A-D)
ame	raum	Neubau	Material- bezeichnung	Fläche [m²]	Meter [Ifm]	wicht [kg]	Literaturquelle	[kg CO ₂ - Äq.]	[MJ]		[kg CO ₂ - Äq.]	[MJ]	(MJ)
			WDG, dreifach	0,9	-	-		155,5	1923,6	2223,0	127,9	1554,1	1742
			Aluminium-Blendrahmen,	0,1	0,8	_	Eigene Annahme						
			thermisch getrennt		-,-		in Anlehnung an						
W	ab		Aluminium-Flügelrahmen, thermisch getrennt	0,1	0,8	-	Verband Fenster + Fassade &						
alu _1	2021	х	Fugendichtungsband	0,4	4,0	0,11	Bundesverband						
			Fenstergriff	-	,0	0,06	Flachglas e.V.,						
			Fensterbeschlag,				2017						
	_		Drehkippfenster	-	-	0,56							
			WDG, dreifach	0,4	-	-		230,7	3064,0	3800,2	124,7	1652,7	1934
			Aluminium-Blendrahmen,	0,3	4,8	_	Eigene Annahme						
w			thermisch getrennt				in Anlehnung an Verband Fenster						
alu	ab	x	Aluminium-Flügelrahmen, thermisch getrennt	0,3	4,8	-	+ Fassade &						
_2	2021	^	Fugendichtungsband	0,4	4	0,11	Bundesverband						
			Fenstergriff	_	_	0,06	Flachglas e.V.,						
			Fensterbeschlag,		_	0,56	2017						
	_		Drehkippfenster			0,50							
			WDG, dreifach	0,9		-	Eigene Annahme	170,2	2053,2	2315,3	147,9	1793,6	2007
			Kunststoff-Blendrahmen	0,1	0,8	-	in Anlehnung an						
W plas	ab	x	Kunststoff-Flügelrahmen	0,1	0,8	0.44	Verband Fenster + Fassade &						
_1	2021	^	Fugendichtungsband	0,4	4,0	0,11 0,06	Bundesverband						
_			Fenstergriff Fensterbeschlag,	-	_		Flachglas e.V.,						
			Drehkippfenster	-	-	0,56	2017						
	_		WDG, dreifach	0,4	-	-	Eigene Annahme	318,8	3841,4	4354,0	244,6	3089,8	3528
			Kunststoff-Blendrahmen	0,3	4,8	-	in Anlehnung an						
W	ab		Kunststoff-Flügelrahmen	0,3	4,8	-	Verband Fenster						
plas	2021	Х	Fugendichtungsband	0,4	4,0	0,11	+ Fassade &						
_2			Fenstergriff	-	-	0,06	Bundesverband						
			Fensterbeschlag,	_		0,56	Flachglas e.V., 2017						
	-		Drehkippfenster WDG, dreifach	0,9				140,3	1727 2	2219,6	123,5	1491,0	1918
			Holz-Blendrahmen	0,9	0,8		Eigene Annahme in Anlehnung an	140,3	1727,3	2219,0	123,3	1431,0	1910
W			Holz-Flügelrahmen	0,1	0,8		Verband Fenster						
vood	ab	x	Fugendichtungsband	0,4	4,0	0,11	+ Fassade &						
_1	2021		Fenstergriff	-	-	0,06	Bundesverband						
			Fensterbeschlag,		_	0,56	Flachglas e.V.,						
	_		Drehkippfenster			0,56	2017						
			WDG, dreifach	0,4		-	Eigene Annahme	139,5	1886,5	3779,7	98,2	1274,5	2991
			Holz-Blendrahmen	0,3	4,8	-	in Anlehnung an						
W wood	ab	x	Holz-Flügelrahmen	0,3	4,8	0.44	Verband Fenster + Fassade &						
_2	2021	^	Fugendichtungsband	0,4	4,0	0,11	Bundesverband						
			Fenstergriff Fensterbeschlag,	_	_	0,06	Flachglas e.V.,						
			Drehkippfenster	-	-	0,56	2017						
	-		Einfachverglasung	0,9	-	-		145,4	1854,2	2649,9	122,0	1522,0	2224
			WDG, zweifach	0,9	-	-	Financ Assets						
			Holz-Blendrahmen	0,1	1,6	-	Eigene Annahme in Anlehnung an						
W			Holz-Flügelrahmen	0,1	1,6	-	Verband Fenster						
vood	ab 2021	х	Fugendichtungsband	0,8	8,0	0,22	+ Fassade &						
_3	2021		Fenstergriff	-	-	0,11	Bundesverband						
			Fensterbeschlag, Doppelflügelfenster	-	-	0,56	Flachglas e.V.,						
			Fensterbeschlag,				2017						
			Drehkippfenster			0,56		<u> </u>			<u></u>		
			Einfachverglasung	0,4	-	-		214,0	2994,7	6672,4	139,6	1880,3	5233
			WDG, zweifach	0,4	-	-	Eigono Annohres						
			Holz-Blendrahmen	0,6	9,6	-	Eigene Annahme in Anlehnung an						
W			Holz-Flügelrahmen	0,6	9,6	-	Verband Fenster						
vood	ab 2021	x	Fugendichtungsband	0,8	8	0,22	+ Fassade &						
_4	2021		Fenstergriff	-	-	0,11	Bundesverband						
			Fensterbeschlag,	-	_	0,56	Flachglas e.V.,						
			Doppelflügelfenster Fensterbeschlag,				2017						
			Drehkippfenster	-	_	0,56		1					

 $\underline{\textbf{Bauteilaufbauten} - \textbf{Erklärung Farbschema:}}$

Eigene Annahmen in Anlehnung an die Literaturquelle

A.4 Bilanzierte Sanierungskonstruktionen

Nachfolgend werden alle bilanzierten Sanierungskonstruktionen beschrieben. Die Gliederung erfolgt nach Bauteil und typischer Baualtersklasse. Unter Angabe der schichtspezifischen Materialien, ihrer Rohdichten und Wärmeleitfähigkeiten sowie der verwendeten Literaturquellen sind die lebenszyklusbasierten Umweltwirkungen jeder Baukonstruktion dargestellt.

Tabelle A. 8: Übersicht über die bilanzierten opaken Sanierungskonstruktionen inklusive der spezifischen Materialkennwerte und Umweltwirkungen; eigene Darstellung

		Zuge	höri	ge B	aual	tersk	las	sen		A	Aufbau					PENRT	PET		PENRT	PET
Bau- teil- name	Zeit- raum	1 2	3 4	5	6 7	8	9 -	10 11	Material bezeich		Stärke [cm]	Roh- dichte [kg/m³]	λ-Wert [W/mK]	Literaturquelle	(A-C) [kg CO ₂ -	(A-C) [MJ]	(A-C) [MJ]	(A-D) [kg CO ₂ -	(A-D) [MJ]	(A-D) [MJ]
									Blecheir	ndeckung	0.04				Äq.]	500.5	200.0	Äq.]	455.5	047.0
									(Edelsta Struktur		0,04	7900,00) -		82,5	506,5	233,8	32,9	-157,7	317,6
									Trennla	ge	0,16	81,25								
									(Kunsts faservlie		0,10	01,20	,	Grundlage						
									Schalun	g	2,40			Altbau-						
									Konterla	-	0,44			konstruktion PRO_1;						
									Unterde Schalun		0,02 2,40		0.13	minimale Umwelt-						
PRO _h	bis	x							Mineral	volle	10,33	26,25	0.04	wirkungen Sanierung:						
_1	1918	^							(Innena Konstru	usbau) ktionsvollholz		529,00	0.13	Ausführung unter						
									Mineral	volle	15,50	26,25		Verwendung von Hersteller-						
									(Innena PE-Folio		0,02			angaben (z.B.						
									Reetdad		35,00			Bauder TOP VENT NSK)						
									Luftschi belüftet	cht, stark	-		-	,						
									Sparren		2,50	529,00) -							
									Schalun	-	2,40									
									Schilfro		1,00 3,40				128 0	1202,6	1972 9	73,6	359 3	1490,8
									Lattung	goi	0,38				120,0	1202,0	1012,0	70,0	000,0	1400,0
									Konterla		0,44	484,51	-							
									platte (E	erdämm- IA)	2,20	160,00	0,05							
									Holzfas	erdämmung	11,19	160,00	0,04	Grundlage						
									(Innena Brettsch	,	1,81			Altbau- konstruktion						
PRO _h	bis	v							Holzfas	erdämmung	15,50			PRO_1;						
_11	1918	^							(Innena PE-Folio		0,02	930,00		maximale Umwelt-						
									Reetdad		35,00			wirkungen						
									Luftschi belüftet	cht, stark	-		-	Sanierung						
									Sparren		2,50	492,92	2 -							
									Schalun	-	2,40									
									Schilfrol Kalkgips		1,00 1,00									
		-							Blecheir	ndeckung		7850,00			101,0	503,8	201,9	42 9	-257,6	215,7
									(Edelsta Struktur		0,04	7000,00	, -		101,0	303,0	201,3	72,3	-231,0	213,7
									Trennla	ge	0,16	81,25	· -							
									(Kunsts faservlie		0,.0	01,20								
									Schalun	g	2,40			Grundlage						
									Konterla	-	0,44			Altbau-						
									Unterde Schalun		0,02 2,40			konstruktion PRO 3;						
									Mineral	volle	8,61	26,25		minimale						
PRO	1949-								(Innena Konstru	usbau) ktionsvollholz				Umwelt- wirkungen						
_h _3	1957		Х						Mineral	volle	15,50			Sanierung;						
_5									(Innena PE-Folio		0,02			Ausführung unter Verwendung von						
									Dachzie			2180,00		Hersteller-						
									Lattung		0,50			angaben (z.B. Bauder TOP						
									Konterla Sparren	-	0,48 2,50			VENT NSK)						
									Luftschi	cht, stark	_,00	020,00								
									belüftet Schalun	a	2,40									
									Holzwol	le-	5,00									
									Leichtba Kalkgips		1,00									
									naikgips	pulz	1,00	900,00	0,70							

	_			0.40	0400.00			1000		4505.5			1000 0
			Dachziegel	3,40	2180,00	-		136,3	989,3	1585,5	74,9	76,8	1068,8
			Lattung	0,38	484,51	-							
			Konterlattung	0,44	484,51	-							
			Holzfaserdämm-	2,20	160,00	0,05							
			platte (DA) Holzfaserdämmung										
			(Innenausbau)	9,47	160,00	0,04							
			Brettschichtholz	1,53	507,11	0,13							
			Holzfaserdämmung				Grundlage Altbau-						
PRO			(Innenausbau)	15,50	160,00	0,04	konstruktion						
_h	1949-	x	PE-Folie Dach	0,02	930,00	-	PRO_3; maximale						
_4	1957		Dachziegel	2,75	2180,00	_	Umwelt- wirkungen						
			Lattung	0,50	484,51	_	Sanierung						
			Konterlattung	0,48	484,51	_	camorang						
			Sparren	2,50	492,92	_							
			Luftschicht, stark										
			belüftet	_	-	-							
			Schalung	2,40	484,51	0,14							
			Holzwolle-	5,00	360,00	0,09							
			Leichtbauplatte										
	_		Kalkgipsputz	1,00	900,00	0,70							
			Blecheindeckung (Edeleteh)	0,04	7850,00	-		99,5	501,6	243,6	38,3	-303,2	256,7
			(Edelstahl) Strukturierte										
			Trennlage	0.40	04.05								
			(Kunststoff-	0,16	81,25	-							
			faservlies)										
			Schalung	2,40	484,51	-							
			Konterlattung	0,49	484,51	-							
			Unterdeckbahn	0,02	262,00	-	Grundlage Altbau-						
			Schalung	2,40	484,51	0,13	konstruktion						
			Mineralwolle	12,69	26,25	0.04	PRO_4; minimale						
			(Innenausbau)				Umwelt-						
PRO			Konstruktionsvollholz	2,31	529,00	0,13	wirkungen						
_h	1958-	х	Mineralwolle	8,42	26,25	0,04	Sanierung;						
_5	1968		(Innenausbau) PE-Folie Dach	0.02	930,00		Ausführung unter Verwendung von						
				0,02	2180,00	_	Hersteller-						
			Dachziegel				angaben (z.B.						
			Lattung	0,50	484,51	-	Bauder TOP						
			Konterlattung Luftschicht, stark	0,48	484,51	-	VENT NSK)						
			belüftet	10,00	-	-							
			Schrägdachdämmun	4.00	30,00-	0.04							
			g (unspezifisch)	4,00	200,00	0,04							
			Sparren	2,20	529,00	0,14							
			Schalung	2,40	484,51	0,14							
			Holzwolle-	5,00	360,00	0,09							
			Leichtbauplatte										
	_		Kalkgipsputz	1,00	900,00	0,70							
			Dachziegel	3,40	2180,00	-		135,6	997,4	1626,3	72,7	60,9	1106,2
			Lattung	0,38	484,51	-							
			Konterlattung	0,49	484,51	-							
			Holzfaserdämm- platte (DA)	2,20	160,00	0,05							
			Holzfaserdämmung										
			(Innenausbau)	12,92	160,00	0,04							
			Brettschichtholz	2,08	507,11	0,13							
			Holzfaserdämmung										
			(Innenausbau)	11,80	160,00	0,04	Grundlage Altbau-						
PRO	1050		PE-Folie Dach	0,02	930,00	-	konstruktion						
_h	1958- 1968	х	Dachziegel	2,75	2180,00 -		PRO_4; maximale Umwelt-						
_6	1000		Lattung	0,50	484,51	-	wirkungen						
			Konterlattung	0,48	484,51	-	Sanierung						
			Luftschicht, stark	10,00	_	-							
			belüftet	.0,00									
			Schrägdachdäm-	4,00	30,00-	0,04							
			mung (unspezifisch)		200,00								
			Sparren	2,20	492,92	0,14							
			Schalung	2,40	484,51	0,14							
			Holzwolle-	5,00	360,00	0,09							
			Leichtbauplatte Kalkgipsputz	1,00	900,00	0,70							
	_		ιναινθιρομαίς	1,00	550,00	5,70							

	-			Blecheindeckung				1			- 1			
				(Edelstahl)	0,04	7850,00	-		67,6	520,5	427,2	22,7	-81,6	490,1
				Strukturierte										
				Trennlage	0,16	81,25	_							
				(Kunststoff- faservlies)										
				Schalung	2,40	484,51	_							
				Konterlattung	0,44	484,51	-	Grundlage Altbau-						
				Unterdeckbahn	0,02	262,00	-	konstruktion						
				Schalung	2,40	484,51	0,13	PRO_16; minimale Umwelt-						
DDO				Mineralwolle	11,19	26,25	0,04	wirkungen						
PRO _h	bis	х х		(Innenausbau) Konstruktionsvollholz		529,00		Sanierung;						
_7	1948			Mineralwolle	1,81	529,00	0,13	Ausführung unter						
				(Innenausbau)	15,50	26,25	0,04	Verwendung von Hersteller-						
				PE-Folie Dach	0,02	930,00	-	angaben (z.B.						
				Dachziegel	2,75	2180,00	-	Bauder TOP						
				Lattung	0,50	484,51	-	VENT NSK)						
				Konterlattung	0,48	484,51	-							
				Luftschicht, stark	_	_	_							
				belüftet Sparren	2,50	529,00	0,14							
				Schilfrohrmatte	1,50		0,08							
				Innenputz	1,00		1,00							
	-			Dachziegel	3,40		-		106,1	1043,0	1942,9	55,6	247,9	1422,2
				Lattung	0,38	484,51	-							
				Konterlattung	0,44	484,51	-							
				Holzfaserdämm-	2,20	160,00	0,05							
				platte (DA)	, -	,	-,							
				Holzfaserdämmung (Innenausbau)	12,06	160,00	0,04							
				Brettschichtholz	1,94	507,11	0,13	Grundlage Altbau-						
PRO				Holzfaserdämmung	15,50	160,00	0,04	konstruktion						
_h	bis 1948	к х		(Innenausbau)			0,04	PRO_16; maximale Umwelt-						
_8	1040			PE-Folie Dach	0,02		-	wirkungen						
				Dachziegel		2180,00	-	Sanierung						
				Lattung	0,50		-							
				Konterlattung Luftschicht, stark	0,48	484,51								
				belüftet	-	-	-							
				Sparren	2,50	492,92	0,14							
				Schilfrohrmatte	1,50	100,00	0,08							
	_			Innenputz	1,00	900,00	1,00							
				Blecheindeckung (Edelstahl)	0,04	7850,00	-		66,2	501,3	455,3	16,4	-168,6	504,6
				Strukturierte										
				Trennlage	0,16	81,25	_							
				(Kunststoff-	0,10	01,20								
				faservlies) Schalung	2,40	484,51	_							
				Konterlattung	0,49	484,51	_							
				Unterdeckbahn	0,02		_	Grundlage Altbau-						
				Schalung	2,40		0,13	konstruktion						
				Mineralwolle	16,08	26,25	0.04	PRO_20; minimale Umwelt-						
				(Innenausbau)				minimale Umwelt- wirkungen						
PRO	1969-		v v	Konstruktionsvollholz	2,92	529,00	0,13	Sanierung;						
_h _9	1983		x x	Mineralwolle (Innenausbau)	3,34	26,25	0,04	Ausführung unter						
				PE-Folie Dach	0,02	930,00	_	Verwendung von Hersteller-						
				Dachziegel		2180,00	-	angaben (z.B.						
				Lattung	0,50	484,51	-	Bauder TOP						
				Konterlattung	0,48	484,51	-	VENT NSK)						
				Luftschicht, stark	10,0/									
				belüftet	8,0/		-							
				Cobrando ob da oo	6,0/4,0									
				Schrägdachdäm- mung (unspezifisch)	10,00	30,00- 200,00	0,04							
				Sparren	2,20		0,14							
				Gipskartonplatte	1,25		0,25							
	_			- 1	-,0	,	.,_,							

	_													
	_			Dachziegel	3,40	2180,00	-		110,1	1091,0	2094,4	53,7	203,1	1532,2
				Lattung	0,38	484,51	-							
				Konterlattung	0,49	484,51	-							
				Holzfaserdämm-	2,20	160,00	0,05							
				platte (DA)	2,20	100,00	0,03							
				Holzfaserdämmung	16,92	160,00	0,04							
				(Innenausbau)										
				Brettschichtholz	3,08	507,11	0,13	Grundlage Althau						
				Holzfaserdämmung	11,80	160,00	0,04	Grundlage Altbau- konstruktion	1					
PRO	1969-			(Innenausbau) PE-Folie Dach	0,02	930,00		PRO_20;						
_h	1983	X)	K	Dachziegel		2180,00		maximale Umwelt-	l					
_10					0,50	484,51		wirkungen						
				Lattung Konterlattung				Sanierung						
				Kontenationg	0,48 10,0/	484,51								
				Luftschicht, stark	8,0/	_	_							
				belüftet	6,0/4,0									
				Schrägdachdäm-		30,00-								
				mung (unspezifisch)	10,00	200,00	0,04							
				Sparren	2,20	492,92	0,14							
				Gipskartonplatte	1,25	800,00	0,25							
	•			Blecheindeckung			-, -							
				(Edelstahl)	0,04	7850,00	-		73,1	545,6	500,3	23,7	-110,7	538,0
				Strukturierte										
				Trennlage	0,16	81,25								
				(Kunststoff-	-,	,								
				faservlies)	2.40	484,51								
				Schalung	2,40		-							
				Konterlattung	0,49	484,51	_	0 " 4"						
				Unterdeckbahn	0,02	262,00		Grundlage Altbau- konstruktion	l					
				Schalung Mineralwolle	2,40	484,51	0,13	PRO_21;						
				(Innenausbau)	14,38	26,25	0,04	minimale Umwelt-						
PRO				Konstruktionsvollholz	2,62	529,00	0,13	wirkungen						
_h	1949-	x x x		Mineralwolle				Sanierung;						
_11	1978			(Innenausbau)	11,80	26,25	0,04	Ausführung unter						
				PE-Folie Dach	0,02	930,00	-	Verwendung von Hersteller-						
				Dachziegel	2,75	2180,00	-	angaben (z.B.						
				Lattung	0,50	484,51	-	Bauder TOP						
				Konterlattung	0,48	484,51	-	VENT NSK)						
				Luftschicht, stark	4,00	_								
				belüftet	4,00									
				Bimshohlblockstein	8,50	900,00	0,28							
				Sparren	2,20	529,00	0,14							
				Holzwolle-	2,20	329,00	0,14							
				Leichtbauplatte	2,00	360,00	0,09							
				Innenputz	1,50	900,00	0,70							
	-			Dachziegel	3,40	2180,00	-		111,4	1067,4	2002,3	56,9	220,8	1463,3
				Lattung	0,38	484,51	-		l					
				Konterlattung	0,49	484,51	-		l					
				Holzfaserdämm-	2,20	160,00	0,05		l					
				platte (DA)	۷,۷۷	100,00	0,03		l					
				Holzfaserdämmung	15,23	160,00	0,04		l					
				(Innenausbau)					l					
				Brettschichtholz	2,77	507,11	0,13	Grundlage Altbau-	l					
DC-0				Holzfaserdämmung (Innenausbau)	11,80	160,00	0,04	konstruktion	l					
PRO	1949-	V V V		PE-Folie Dach	0,02	930,00	_	PRO_21;	l					
_h _12	1978	x x x		Dachziegel		2180,00	_	maximale Umwelt-	l					
				Lattung	0,50	484,51		wirkungen	l					
				Konterlattung	0,30	484,51	Ī	Sanierung	l					
				Luftschicht, stark		404,51			l					
				belüftet	4,00	-	-		l					
				Bimshohlblockstein	8,50	900,00	0,28		l					
				Sparren	2,20	492,92	0,14		l					
				Holzwolle-			0,14		l					
				Leichtbauplatte	2,00	360,00	0,09		l					
				Innenputz	1,50	900,00	0,70		L_					
	-													

		B										
		Blecheindeckung (Edelstahl)	0,04	7850,00	-		81,0	522,5	471,3	28,8	-160,9	461,8
		Strukturierte										
		Trennlage										
		(Kunststoff-	0,16	81,25	_							
		faservlies)										
		Schalung	2,40	484,51	-							
		Konterlattung	0,49	484,51	-	Grundlage Altbau-						
		Unterdeckbahn	0,02	262,00	-	konstruktion						
		Schalung	2,40	484,51	0,13	PRO_23;						
		Mineralwolle	13,54	26,25	0,04	minimale Umwelt- wirkungen						
PRO	bis	(Innenausbau)				Sanierung;						
_h	1978 × × × × ×	Konstruktionsvollholz Mineralwolle	2,46	529,00	0,13	Ausführung unter						
_13		(Innenausbau)	11,80	26,25	0,04	Verwendung von						
		PE-Folie Dach	0,02	930,00	_	Hersteller-						
		Dachziegel		2180,00	_	angaben (z.B.						
		Lattung	0,50	484,51	_	Bauder TOP VENT NSK)						
		Konterlattung	0,48	484,51	_	VEIVI NON)						
		Luftschicht, stark		.0.,0.								
		belüftet	-	-	-							
		Sparren	2,20	529,00	0,14							
		Holzwolle-	5,00	360,00								
		Leichtbauplatte			0,09							
		Kalkgipsputz	1,00	900,00	0,70							
		Dachziegel	3,40		-		116,7	1013,5	1876,0	61,6	175,4	1322,5
		Lattung	0,38	484,51	-							
		Konterlattung	0,49	484,51	-							
		Holzfaserdämm-	2,20	160,00	0,05							
		platte (DA) Holzfaserdämmung										
		(Innenausbau)	13,54	160,00	0,04							
		Brettschichtholz	2,46	507,11	0,13	Grundlage Altbau-						
220		Holzfaserdämmung	44.00			konstruktion						
PRO _h	bis x x x x x	(Innenausbau)	11,80	160,00	0,04	PRO_23;						
_14	1978 ^ ^ ^ ^	PE-Folie Dach	0,02	930,00	-	maximale Umwelt-						
		Dachziegel	2,75	2180,00	-	wirkungen						
		Lattung	0,50	484,51	-	Sanierung						
		Konterlattung	0,48	484,51	-							
		Luftschicht, stark	_	_	_							
		belüftet	0.00	100.00	0.44							
		Sparren Holzwolle-	2,20	492,92	0,14							
		Leichtbauplatte	5,00	360,00	0,09							
		Kalkgipsputz	1,00	900,00	0,70							
		Blecheindeckung	0.04	7050.00			02.4	ECO 0	446.4	20.0	444.0	E40.4
		(Edelstahl)	0,04	7850,00			83,4	562,2	416,1	30,6	-144,8	512,1
		Strukturierte										
		Trennlage (Kunststoff-	0,16	81,25	-							
		faservlies)										
		Schalung	2,40	484,51	_	Grundlage Altbau-						
		Konterlattung	0,49	484,51	_	konstruktion						
		Unterdeckbahn	0,02	262,00	_	PRO_26;						
		Schalung	2,40	484,51	0,13	minimale Umwelt- wirkungen						
PRO	bis	Mineralwolle				Sanierung;						
_h 15	1918 X	(Innenausbau)	13,54	26,25	0,04	Ausführung unter						
_15		Konstruktionsvollholz	2,46	529,00	0,13	Verwendung von						
		Mineralwolle	13,50	26,25	0,04	Hersteller-						
		(Innenausbau)			.,	angaben (z.B. Bauder TOP						
		PE-Folie Dach	0,02	930,00	-	VENT NSK)						
		Bitumendachbahn, besandet	0,40	1000,00	_							
		Bitumendachbahn	0,80	1000,00	_							
		Schalung	2,40	484,51	0,13							
		Sparren	2,50	529,00	0,13							
		GKF-Platte	2,50	800,00	0,25							
		ON FIGURE	2,00	000,00	0,20							

					Dachziegel	3,40	2180,00	-		128,9	1251,5	2136,3	66,2	250,2	1642,8
					Lattung	0,38	484,51	-							
					Konterlattung	0,49	484,51	-							
					Holzfaserdämm- platte (DA)	2,20	160,00	0,05							
					Holzfaserdämmung (Innenausbau)	9,31	160,00	0,04							
					Brettschichtholz	1,69	507,11	0,13	Grundlage Altbau-						
PRO	bis				Holzfaserdämmung (Innenausbau)	13,50	160,00	0,04	konstruktion PRO_26;						
_h _16	1918	х			Bitumendachbahn, besandet	0,40	1000,00	-	maximale Umwelt- wirkungen						
					Bitumendachbahn	0,80	1000,00	-	Sanierung						
					Schalung	2,40	484,51	0,13							
					Sparren	2,50	492,92	0,14							
					OSB-Platte	1,50	600,00	0,13							
					Lattung	0,58	484,51	0,13							
					Holzfaserdämmung (Innenausbau)	5,42	160,00	0,04							
					Gipsfaserplatte	1,80	1000,00	0,35							
	-				Blecheindeckung	0.04	7850,00			53,2	573,5	752,6	16,2	78,1	780,2
					(Edelstahl) Strukturierte	0,04	7650,00	-		33,2	373,3	752,0	10,2	70,1	700,2
					Trennlage (Kunststoff-	0,16	81,25	-							
					faservlies)	2.40	404.54		Grundlage Altbau-						
					Schalung	2,40	484,51		konstruktion						
					Konterlattung	0,28	484,51	-	PRO_27; minimale Umwelt-						
					Unterdeckbahn	0,02	262,00		wirkungen						
PRO	1949-				Schalung	2,40	484,51	0,13	Sanierung;						
_h _17	1978	х	X	Х	Mineralwolle (Innenausbau)	18,70	26,25	0,04	Ausführung unter Verwendung von						
					Konstruktionsvollholz	2,30	529,00	0,13	Hersteller-						
					Mineralwolle (Innenausbau)	13,70	26,25	0,04	angaben (z.B.						
					PE-Folie Dach	0,02	930,00		Bauder TOP						
					Dachziegel		2180,00		VENT NSK)						
					Lattung	1,00	484,51								
					Stahlbeton B15-B25			0.50							
					(97/3)		2400,00	2,50							
	-				GKF-Platte	2,50	800	0,25		1017	1221.0	2722.6	E2 2	466.4	2062.2
					Dachziegel	3,40		-		104,7	1331,9	2133,0	53,3	466,1	2062,3
					Lattung	0,38	484,51	-							
					Konterlattung Holzfaserdämm-	0,28	484,51	-							
					platte (DA)	2,20	160,00	0,05							
					Holzfaserdämmung (Innenausbau)	14,61	160,00	0,04	0 " 4"						
					Brettschichtholz	1,39	507,11	0,13	Grundlage Altbau- konstruktion						
PRO _h	1949- 1978	×	х	х	Holzfaserdämmung (Innenausbau)	13,70	160,00	0,04	PRO_27; maximale Umwelt-						
_18	1070				Dachziegel	1,53	2180,00	-	wirkungen						
					Lattung	1,00	484,51	-	Sanierung						
					Stahlbeton B15-B25 (97/3)	1,30	2400,00	2,50	-						
					OSB-Platte	1,50	600,00	0,13							
					Lattung	0,58	484,51	0,13							
					Holzfaserdämmung (Innenausbau)	5,42	160,00	0,04							
					Gipsfaserplatte	1.80	1000,00	0,35							
	-				Cipolaserplatte	1,00	1000,00	0,00							

	_		Blecheindeckung				1			1			
			(Edelstahl)	0,04	7850,00	-		84,0	523,8	313,4	6,8	-368,8	184,4
			Strukturierte										
			Trennlage	0,16	81,25	-							
			(Kunststoff- faservlies)										
			Schalung	2,40	484,51	_							
			Konterlattung	0,37	484,51	-	Carradia aa Alabari						
			Unterdeckbahn	0,02	262,00	-	Grundlage Altbau- konstruktion						
			Schalung	2,40	484,51	0,13	PRO_28;						
			Mineralwolle	11,19	26,25	0,04	minimale Umwelt-						
PRO	1991-		(Innenausbau)				wirkungen						
_h	2000	x x	Konstruktionsvollholz	1,81	529,00	0,13	Sanierung; Ausführung unter						
_19			Mineralwolle (Innenausbau)	15,50	26,25	0,04	Verwendung von						
			Zinkblech	0,20	7850,00	_	Hersteller-						
			Bitumendachbahn	0,60	1000,00	_	angaben (z.B. Bauder TOP						
			Schalung	2,40	484,51	0,13	VENT NSK)						
			PE-Folie Dach	0,10	930,00	-							
			Sparren	2,50	529,00	0,13							
			Mineralwolle	1,80	26,25	0,04							
			(Innenausbau)			-,-							
			PE-Folie Dach PE-Folie Dach	0,10 0,02	930,00 930,00	-							
			Gipskartonplatte	1,50	800,00	0,25							
	_		Dachziegel	3,40		0,23		122.5	1046,3	1828.8	39,7	-39.3	1116,5
			Lattung	0,38	484,51	_		,0	, .	.020,0	00,.	00,0	,.
			Konterlattung	0,37	484,51	_							
			Holzfaserdämm-		160,00	0.05							
			platte (DA)	2,20	160,00	0,05							
			Holzfaserdämmung	12,05	160,00	0,04							
			(Innenausbau) Brettschichtholz	1,95	507,11	0.13							
			Holzfaserdämmung			0,13	Grundlage Altbau-						
PRO	1991-		(Innenausbau)	15,50	160,00	0,04	konstruktion PRO_28;						
_h	2000	хх	Zinkblech	0,20	7850,00	-	maximale Umwelt-						
_20			Bitumendachbahn	0,60	1000,00	-	wirkungen						
			Schalung	2,40	484,51	0,13	Sanierung						
			PE-Folie Dach	0,10	930,00	-							
			Sparren	2,50	492,92	0,13							
			Mineralwolle (Innenausbau)	1,80	26,25	0,04							
			PE-Folie Dach	0,10	930,00	_							
			PE-Folie Dach	0,02	930,00	_							
			Gipskartonplatte	1,50	800,00	0,25							
			Blecheindeckung	0.04	7850,00			66,5	537,2	531,8	23,9	-34,7	588,4
			(Edelstahl)	0,04	7030,00			00,5	337,2	331,0	20,0	-34,1	300,4
			Strukturierte Trennlage										
			(Kunststoff-	0,16	81,25	-							
			faservlies)				Grundlage Altbau-						
			Schalung	2,40	484,51	-	konstruktion PRO_29;						
			Konterlattung	0,43	484,51	-	minimale Umwelt-						
PRO			Unterdeckbahn	0,02	262,00	- 0.40	wirkungen						
_h	1961-	x x x x x	Schalung Mineralwolle	2,40	484,51	0,13	Sanierung;						
_21	2000		(Innenausbau)	11,27	26,25	0,04	Ausführung unter Verwendung von						
			Konstruktionsvollholz	1,73	529,00	0,13	Hersteller-						
			Mineralwolle	15,60	26,25	0,04	angaben (z.B.						
			(Innenausbau)				Bauder TOP						
			PE-Folie Dach	0,02		-	VENT NSK)						
			Betondachstein		2150,00	-							
			Lattung	0,60	484,51	0.40							
			Sparren GKF-Platte	2,40 2,50	529,00 800,00	0,13							
	_		Ora -r ratte	۷,50	000,00	0,25							

PRO		_												
PNO				Dachziegel		2180,00	-		110,0	1200,6	2178,8	58,4	357,7	1671,5
PRO 1981				Lattung	0,38	484,51	-							
PRO					0,43	484,51	-							
PRO					2,20	160,00	0,05							
PRO 1961				1 ()										
PRO				•	6,07	160,00	0,04	Grundlage Althau	l					
PRO 1				Brettschichtholz	0,93	507,11	0,13	-						
PRO 1990		1961-		Holzfaserdämmung	15.60	160.00	0.04							
PRO 1991		2000	x	(Innenausbau)			0,04							
PRO				Betondachstein	1,50		-							
PRO				•				Sanierung						
PRO														
PRO														
PRO 1991				•	0,58	484,51	0,13							
PRO 1991					5,42	160,00	0,04							
PRO					1.80	1000.00	0.35							
PRO 1991		_					-,				440.0			470.4
PRO 1961					0,04	7850,00	-		66,7	508,8	442,0	29,1	4,8	479,1
PRO 1981														
PRO				•	0,16	81,25	-							
PRO				*										
PRO					2,40	484,51	-		i					
PRO				Konterlattung	0,34	484,51	-							
PRO				Unterdeckbahn	0,02	262,00	-							
1990	PRO			Schalung	2,40	484,51	0,13							
PRO			x x x x	Mineralwolle	1.81	26.25	0.04							
PRO		1990						-						
PRO					0,19	529,00	0,13							
PRO					23,50	26,25	0,04							
PRO					0.02	930.00	_							
PRO							_	VENT NSK)						
PRO														
PRO							_							
PRO														
PRO				•			0,13							
PRO				Holznagelbinder	2,50	529,00								
PRO		_		Holznagelbinder GKF-Platte	2,50 2,50	529,00 800,00	0,25		109,4	1162,7	2050,1	62,3	389,7	1549,7
PRO		-		Holznagelbinder GKF-Platte Dachziegel	2,50 2,50 3,40	529,00 800,00 2180,00	0,25		109,4	1162,7	2050,1	62,3	389,7	1549,7
PRO		_		Holznagelbinder GKF-Platte Dachziegel Lattung	2,50 2,50 3,40 0,38	529,00 800,00 2180,00 484,51	0,25		109,4	1162,7	2050,1	62,3	389,7	1549,7
PRO		-		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm-	2,50 2,50 3,40 0,38 0,34	529,00 800,00 2180,00 484,51 484,51	0,25		109,4	1162,7	2050,1	62,3	389,7	1549,7
PRO		-		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA)	2,50 2,50 3,40 0,38 0,34	529,00 800,00 2180,00 484,51 484,51	0,25			1162,7	2050,1	62,3	389,7	1549,7
PRO		_		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung	2,50 2,50 3,40 0,38 0,34 2,20	529,00 800,00 2180,00 484,51 484,51 160,00	0,25			1162,7	2050,1	62,3	389,7	1549,7
Ronterlattung	PRO	1961.		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau)	2,50 2,50 3,40 0,38 0,34 2,20 23,50	529,00 800,00 2180,00 484,51 484,51 160,00	0,25	konstruktion		1162,7	2050,1	62,3	389,7	1549,7
PRO	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20	529,00 800,00 2180,00 484,51 484,51 160,00 160,00 2150,00	0,25 - - 0,05 0,04	konstruktion PRO_30;		1162,7	2050,1	62,3	389,7	1549,7
PROh2525	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60	529,00 800,00 2180,00 484,51 484,51 160,00 160,00 2150,00 484,51	0,25 - - 0,05 0,04	konstruktion PRO_30; maximale Umwelt-		1162,7	2050,1	62,3	389,7	1549,7
Holzfaserdämmung	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20	529,00 800,00 2180,00 484,51 484,51 160,00 160,00 2150,00 484,51 484,51	0,25 - - 0,05 0,04 - -	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PRO	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50	529,00 800,00 2180,00 484,51 484,51 160,00 160,00 2150,00 484,51 484,51 529,00	0,25 - - 0,05 0,04 - - 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PRO	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50	\$29,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 484,51 529,00 600,00	0,25 0,05 0,04 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PROh25	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 484,51 529,00 600,00 484,51	0,25 - - 0,05 0,04 - - 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PRO	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau)	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PRO _h2002-	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen		1162,7	2050,1	62,3	389,7	1549,7
PRO _h _ 25 PRO _ 1 _ 25 PRO _ 2002-	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80	\$29,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen						
PRO _h _25 PRO _h _PEO _N	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl)	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80	\$29,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen						
PRO _h _2002-	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80 0,04	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 484,51 529,00 600,00 484,51 160,00 1000,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen						
PRO	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff-	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80 0,04	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 484,51 529,00 600,00 484,51 160,00 1000,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13	konstruktion PRO_30; maximale Umwelt- wirkungen						
2002	_h		x x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies)	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80 0,04	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00	0,25 - - 0,05 0,04 - - 0,13 0,13 0,04 0,35	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung	84,2					
Schalung	_h _24	1990	x x x	Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80 0,04 0,16 2,40	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25	0,25 - - 0,05 0,04 - - 0,13 0,13 0,04 0,35	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung	84,2					
Konstruktionsvollholz 2,50 492,92 0,13 Sanierung Konstruktionsvollholz 0,19 492,92 0,13 Mineralwolle (Innenausbau) 25,31 26,25 0,04 PE-Folie Dach 0,02 930,00 -	_h _24	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,29 2,71 1,80 0,04 0,16 2,40 0,24	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25 484,51 484,51	0,25 - - 0,05 0,04 - - 0,13 0,13 0,13 0,04 0,35	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36;	84,2					
Konstruktionsvollholz 0,19 492,92 0,13 Mineralwolle 25,31 26,25 0,04 (Innenausbau) PE-Folie Dach 0,02 930,00 -	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faserviies) Schalung Konterlattung X Unterdeckbahn	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,02 2,71 1,80 0,04 0,16 2,40 0,24 0,02	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25 484,51 484,51 484,51 262,00	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt-	84,2					
Mineralwolle 25,31 26,25 0,04 (Innenausbau) PE-Folie Dach 0,02 930,00 -	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung V Unterdeckbahn Schalung	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,02 2,71 1,80 0,04 0,16 2,40 0,24 0,02 2,40	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 81,25 484,51 484,51 262,00 484,51	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt- wirkungen	84,2					
(Innenausbau) 25,31 26,25 0,04 PE-Folie Dach 0,02 930,00 -	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung V Unterdeckbahn Schalung Konstruktionsvollholz	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,02 2,71 1,80 0,04 0,16 2,40 0,24 0,02 2,40 2,50	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25 484,51 484,51 262,00 484,51 492,92	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt- wirkungen	84,2					
	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung X Unterdeckbahn Schalung Konstruktionsvollholz Konstruktionsvollholz	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,04 0,16 2,40 0,02 2,40 0,02 2,40 0,02 2,40 0,19	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25 484,51 484,51 484,51 262,00 484,51 492,92	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt- wirkungen	84,2					
GKF-Platte 2,50 800,00 0,25	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edeistahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung V Unterdeckbahn Schalung Konstruktionsvollholz Konstruktionsvollholz Mineralwolle	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 1,50 0,04 0,16 2,40 0,02 2,40 0,02 2,40 0,02 2,40 0,19	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 1000,00 7900,00 81,25 484,51 484,51 484,51 262,00 484,51 492,92	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt- wirkungen	84,2					
	_h _24 PRO _h	1990		Holznagelbinder GKF-Platte Dachziegel Lattung Konterlattung Holzfaserdämm- platte (DA) Holzfaserdämmung (Innenausbau) Doppelrömer Lattung Konterlattung Holznagelbinder OSB-Platte Lattung Holzfaserdämmung (Innenausbau) Gipsfaserplatte Blecheindeckung (Edelstahl) Strukturierte Trennlage (Kunststoff- faservlies) Schalung Konterlattung X Unterdeckbahn Schalung Konstruktionsvollholz Konstruktionsvollholz Mineralwolle (Innenausbau) PE-Folie Dach	2,50 2,50 3,40 0,38 0,34 2,20 23,50 1,20 0,60 0,20 2,50 0,29 2,71 1,80 0,04 0,16 2,40 0,24 0,02 2,40 0,24 0,02 2,40 0,24 0,02 2,50 0,19 2,50 0,19 2,50 0,19 2,50 0,19 0,10 0,20	529,00 800,00 2180,00 484,51 484,51 160,00 2150,00 484,51 529,00 600,00 484,51 160,00 7900,00 7900,00 81,25 484,51 484,51 262,00 484,51 492,92 492,92 26,25	0,25	konstruktion PRO_30; maximale Umwelt- wirkungen Sanierung Grundlage Altbau- konstruktion PRO_36; minimale Umwelt- wirkungen	84,2					

	_		Blecheindeckung (Edelstahl) Strukturierte	0,04	7900,00	-		123,4	807,5	1285,9	58,2	-206,5	770,8
			Trennlage (Kunststoff- faservlies)	0,16	81,25	-							
			Schalung	2,40	484,51	-							
			Konterlattung	0,24	484,51	-	Grundlage Altbau- konstruktion						
PRO	2002-		Unterdeckbahn	0,02	262,00	-	PRO_36;						
_h	2020	x x x	Schalung	2,40	484,51	0,13	maximale Umwelt-						
_26			Konstruktionsvollholz	2,50	492,92	0,13	wirkungen						
			Holzfaserdämmung (Innenausbau)	23,50	160,00	0,04	Sanierung						
			OSB-Platte	1,50	600,00	0,13							
			Lattung	0,48	484,51	0,13							
			Holzfaserdämmung	4,52	160,00	0.04							
			(Innenausbau)			0,04							
	-		Gipsfaserplatte	1,80	1000,00	0,35		154,1	05.2	-684,5	00.5	772 7	061.6
			Dachziegel Lattung	3,21 0,80	2180,00 484,51	-		134,1	95,2	-004,3	99,5	-773,7	-961,6
			-		484,51	-							
			Konterlattung Unterdeckbahn	0,64		-							
			Schalung	0,02 2,40	262,00 484,51	0,13							
			Brettschichtholz	4,03	507,11	0,13							
			Luftschicht, ruhend	7,70	307,11	0,13							
220			Holzfaserdämmung (Innenausbau)	16,26	160,00	0,04	Grundlage Altbau- konstruktion						
PRO _h	2002-	x x x					PRO_39;						
_11	2020	* * *	(Innenausbau)	7,70	26,25	0,04	minimale Umwelt-						
_			OSB-Platte	1,50	600,00	0,13	wirkungen						
			Lattung	0,29	484,51	0,13	Sanierung						
			Lattung	0,38	484,51	0,13							
			Holzfaserdämmung (Innenausbau)	2,71	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Mineralwolle (Innenausbau)	3,62	26,25	0,04							
	_		GKF-Platte	2,50	800,00	0,25							
			Dachziegel	3,40	2180,00	-		213,9	929,2	1126,0	133,7	-376,4	320,6
			Lattung	0,38	484,51	-							
			Konterlattung Holzfaserdämm-	0,34	484,51	0.05							
			platte (DA) Holzfaserdämmung	2,20 24,87	160,00	0,05							
			(Innenausbau) Dachziegel	3,21		-							
			Lattung	0,80	484,51	-	Grundlage Altbau-						
			Konterlattung	0,64	484,51	-	konstruktion						
PRO	2002-		Unterdeckbahn	0,02	262,00	-	PRO 39:						
_h _28	2020	x x x	Schalung	2,40	484,51	0,13	maximale Umwelt-						
			Konstruktionsvollholz	0,10	492,92	0,13	wirkungen						
			Brettschichtholz	4,03	507,11	0,13	Sanierung						
			Luftschicht, ruhend	7,70	-	0,55							
			Holzfaserdämmung (Innenausbau)	16,26	160,00	0,04							
			OSB-Platte	1,50	600,00	0,13							
			Lattung	0,29	484,51	0,13							
			Holzfaserdämmung (Innenausbau)	2,71	160,00	0,04							
	_		Gipsfaserplatte	2,50	1000,00	0,35							

			PVC-Dachbahn	0,12	1250,00	-		125,2	841,7	401,5	78,2	145,6	422,4
			Glasvlies Dach	0,05	229,40	_		,	,	,		-,-	,
						0.40							
			OSB-Platte	2,50	600,00	0,13							
			Konstruktionsvollholz	1,06	492,92	0,13							
			Mineralwolle	0.04	26.25	0.04	Grundlage Altbau-						
			(Innenausbau)	9,94	26,25	0,04	konstruktion						
			Mineralwolle	45.50	20.25	0.04	FROwood_1;						
			(Innenausbau)	15,50	26,25	0,04	minimale Umwelt-						
			PE-Folie Decke	0,02	930,00	_	wirkungen						
			Kies				Sanierung;						
FRO				5,00	1850,00		Flachdachaus-						
	1958-	.,	Bitumendachbahn,		1000,00	_	führungen nach						
wood	1968	х	besandet	0,40			DIN 18531, Teil 1-						
_1			Bitumendachbahn	0,80	1000,00		4 und DIN 18195:						
			Schalung	2,40	484,51	-	Kunststoffdach-						
			Flachdachdämmung	8,00	30,00-	0,04	bahn;						
			(unspezifisch)	-,	200,00	-,- :	Mindestdicke PE-						
			Luftschicht, stark				Folie Decke nach						
			belüftet	-	-	-	DIN 18531-2,						
			Holzbalken	2 50	E20.00	0.14	Abschn. 5.4						
				2,50	529,00	0,14	Absoliii. 5.4						
			Schalung	2,40	484,51	0,14							
			Holzwolle-	2,50	360,00	0,09							
			Leichtbauplatte	2,30	300,00	0,09							
			Kalkgipsputz	1,00	900,00	0,70							
			Vegetationssubstrat,	0.00	750.00			225.2	0745.0	.=	400.4	4440.0	
			750 kg/m³	2,60	750,00	-		205,6	2715,8	3718,8	103,1	1110,0	2994,8
			Filtervlies, PP	0,03	95,50								
			Drainmatte.	0,03	33,30	-					I		
				0,29	46,70	-	Crundlage Alth-				I		
			2,8 kg/m²				Grundlage Altbau-				I		
			Schutzvlies,	0,08	83,30	_	konstruktion						
			300 g/m²				FROwood_1;						
			Dachabdichtung,	0,40	1550,00	_	maximale Umwelt-						
			wurzelfest	0, 10	1000,00		wirkungen						
			Bitumendachbahn	0,50	1000,00	-	Sanierung;						
			OSB-Platte	2,50	600,00	0,13	Flachdachaus-						
			Brettschichtholz	3,68	507,11	0,13	führungen nach						
				3,00	307,11	0,13	DIN 18531, Teil 1-						
			Holzfaserdämmung	19,32	26,25	0,04	4 und						
			(Innenausbau)				DIN 18195;						
			Holzfaserdämmung	13,00	26,25	0,04	Ausführung in						
FRO	4050		(Innenausbau)	.0,00	20,20	0,0 .	Anlehnung an						
wood	1958-	x	PE-Folie Decke	0,02	930,00	-	Optigrün						
_2	1968		Brettschichtholz	2,50	507,11	0,13	Spardach und						
			Kies		1850,00	-,	Retensionsdach						
				5,00	1000,00	_	Mäander 60						
			Bitumendachbahn,		1000,00	_	(Dicke						
			besandet	0,40	,		,						
			Bitumendachbahn	0,80	1000,00	-	Vegetationssub-						
			Schalung	2,40	484,51	_	strat wie bei						
			Flachdachdämmung		30,00-		Spardach, denn						
			(unspezifisch)	8,00	200,00	0,04	je dicker das						
			Luftschicht, stark		200,00		Substrat umso						
			belüftet	-	-	-	geringer das						
			Holzbalken	2,50	529,00	0,14	GWP						
							(Kohlenstoff-						
			Gipsfaserplatte	2,50	800,00	0,25	speicher)						
			Schalung	2,40	484,51	0,14							
			Holzwolle-	2 50	360,00	0.00							
			Leichtbauplatte	2,50	500,00	0,09					I		
			Kalkgipsputz	1,00	900,00	0,70							
	,		PVC-Dachbahn	0,12	1250,00	-		118,3	857,0	422,4	73,5	181,5	485,3
								, .	00.,0	, .	, .	,	.00,0
			Glasvlies Dach	0,05	229,40						I		
			OSB-Platte	2,50	600,00	0,13	Grundlage Altbau-						
			Konstruktionsvollholz	1,25	492,92	0,13	konstruktion						
			Mineralwolle				FROwood_2;						
			(Innenausbau)	11,75	26,25	0,04	minimale Umwelt-						
			Mineralwolle										
			(Innenausbau)	15,50	26,25	0,04	wirkungen				I		
				0.00	020.00		Sanierung;						
FB.0			PE-Folie Decke	0,02	930,00	-	Flachdachaus-				I		
FRO	1969-		Kies	5,00	1850,00	-	führungen nach						
wood	1978	x	Bitumendachbahn,		1000.00		DIN 18531, Teil 1-				l		
_3			besandet	0,40	1000,00	-	4 und				I		
			Bitumendachbahn	0,80	1000,00	-	DIN 18195:						
			Schalung	2,40	484,51		Kunststoffdach-				I		
			Flachdachdämmung	10,00	30,00-	0.04	bahn;						
				10,00		0,04	Mindestdicke PE-				l		
			(unspezifisch)		200,00		Folie Decke nach						
			Luftschicht, stark	-	-	-	DIN 18531-2,						
			belüftet	0.55	E00.00	0.44	Abschn. 5.4				l		
			Holzbalken	2,50	529,00	0,14							
			Schalung	2,40	484,51	0,14					l		
			Gipskartonplatte	1,25	680,00	0,21							
						_							

	_												
			Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	Grundlage Altbau-	197,8	2719,3	3722,5	98,2	1144,0	3037,5
			Filtervlies, PP	0,03	95,50	-	konstruktion						
			Drainmatte,	0,29	46,70	_	FROwood_2;						
			2,8 kg/m²	0,20	40,70		maximale Umwelt-						
			Schutzvlies, 300 g/m²	0,08	83,30	-	wirkungen Sanierung;						
			Dachabdichtung,	0.40	4550.00		Flachdachaus-						
			wurzelfest		1550,00	_	führungen nach						
			Bitumendachbahn	0,50		-	DIN 18531, Teil 1-						
			OSB-Platte	2,50	600,00	0,13	Augführung in						
			Brettschichtholz	3,68	507,11	0,13	Anlehnung an						
			Holzfaserdämmung (Innenausbau)	19,32	26,25	0,04							
ED 0			Holzfaserdämmung				Spardach und						
FRO 19	69-	x	(Innenausbau)	13,00	26,25	0,04	Retensionsdach Mäander 60						
_4 19	978	^	PE-Folie Decke	0,02	930,00	-	(Dicke						
			Brettschichtholz	2,50	507,11	0,13							
			Kies	5,00	1850,00	-	substrat wie bei						
			Bitumendachbahn, besandet	0.40	1000,00	_	Spardach, denn je dicker das						
			Bitumendachbahn	0,40	1000,00		Substrat umso						
			Schalung	0,80 2,40	484,51	_	geringer das						
			Flachdachdämmung	10,00	30,00-	0,04	GWP						
			(unspezifisch)	,	200,00	-,	(Kohlenstoff- speicher); Ver-						
			Luftschicht, stark	_	_	_	stärkung Dach-						
			belüftet	0.50	500.00		decke mit						
			Holzbalken	2,50	529,00	0,14	Diettschichtholz-						
			Gipsfaserplatte	2,50	800,00	0,25	banton ini naibon						
			Schalung	2,40 1,25	484,51	0,14 0,21	Balkenabstand						
	_		Gipskartonplatte PVC-Dachbahn		680,00	0,21		108,9	849,0	510,0	68,3	230,9	555,9
			Glasvlies Dach	0,12 0,05	1250,00 229,40	_		100,9	649,0	310,0	66,3	230,9	333,9
			OSB-Platte	2,50	600,00	0,13							
			Konstruktionsvollholz	1,25	492,92		Grundlage Altbau-						
			Mineralwolle				konstruktion						
			(Innenausbau)	11,75	26,25	0,04	1 1 to 1100u1,						
			Mineralwolle	15,50	26,25	0,04	minimale Umwelt-						
			(Innenausbau)			0,04	wirkungen Sanierung;						
			PE-Folie Decke	0,02	930,00	-	Flachdachaus-						
FRO wood 19	69-	×	Kies	5,00	1850,00	-	führungen nach						
_5 19	978	X	Bitumendachbahn, besandet	0,40	1000,00	-	DIN 18531, Teil 1-						
			Bitumendachbahn	0,40	1000,00		4 und DIN 18195: Kunststoffdach-						
			Schalung	2,40	484,51		bahn;						
			Luftschicht, stark	2,70	10,707	Ī	Mindestdicke PE-						
			belüftet	-	-	-	Folie Decke nach						
			Mineralwolle	6,00	30,00-	0,04	DIN 18531-2,						
			(Flachdach)		200,00		ADSCIII. 5.4						
			Holzbalken	2,50	529,00	0,14							
			Profilbretter	1,25	484,51	0,21							
			Innenputz	1,00	900,00	0,70							

	_													
				Vegetationssubstrat,	2,60	750,00	-		188,3	2711,3	3810,1	93,1	1193,3	3108,2
				750 kg/m³				Grundlage Altbau-		,		,	,	•
				Filtervlies, PP	0,03	95,50	-	konstruktion						
				Drainmatte,	0,29	46,70	-	FROwood_4;						
				2,8 kg/m² Schutzvlies,				maximale Umwelt- wirkungen						
				300 g/m ²	0,08	83,30	-	Sanierung;						
				Dachabdichtung,				Flachdachaus-						
				wurzelfest	0,40	1550,00	-	führungen nach						
				Bitumendachbahn	0,50	1000,00		DIN 18531, Teil 1-						
				OSB-Platte	2,50	600,00	0,13	4 und DIN 18195;						
				Brettschichtholz	3,68	507,11	0,13	Ausführung in						
					3,00	307,11	0,13	Anlehnung an						
				Holzfaserdämmung (Innenausbau)	19,32	26,25	0,04	Optigrün						
				Holzfaserdämmung				Spardach und						
FRO	1969-			(Innenausbau)	13,00	26,25	0,04	Retensionsdach						
wood	1978		X	PE-Folie Decke	0,02	930,00		Mäander 60						
_6				Brettschichtholz			0.12	(Dicke						
					2,50	507,11	0,13	Vegetations- substrat wie bei						
				Kies	5,00	1850,00	-	Spardach, denn						
				Bitumendachbahn, besandet	0,40	1000,00	_	je dicker das						
								Substrat umso						
				Bitumendachbahn	0,80	1000,00	-	geringer das						
				Schalung	2,40	484,51	-	GWP						
				Luftschicht, stark	_	_		(Kohlenstoff-						
				belüftet				speicher); Ver-						
				Mineralwolle	6,00	30,00-	0,04	stärkung Dach-						
				(Flachdach)		200,00		decke mit						
				Holzbalken	2,50	529,00	0,14	Brettschichtholz-						
				Gipsfaserplatte	2,50	800,00	0,25	balken im halben						
				Profilbretter	1,25	484,51	0,21	Balkenabstand						
	_			Innenputz	1,00	900,00	0,70							
	_			PVC-Dachbahn	0,12	1250,00	-		105,0	836,9	565,5	66,7	248,7	606,7
				Glasvlies Dach	0,05	229,40	-	Grundlage Altbau-						
				OSB-Platte	2,50	600,00	0,13	konstruktion						
				Konstruktionsvollholz	1,25	492,92	0,13	FROwood_5;						
				Mineralwolle	1,20	432,32	0,10	minimale Umwelt-						
				(Innenausbau)	11,75	26,25	0,04	wirkungen						
				Mineralwolle				Sanierung;						
FRO				(Innenausbau)	15,50	26,25	0,04	Flachdachaus-						
wood	1919-	x		PE-Folie Decke	0,02	930,00		führungen nach						
_7	1945	^		Bitumendachbahn,	0,02	000,00		DIN 18531, Teil 1-						
				besandet	0,40	1000,00	-	4 und DIN 18195:						
				Bitumendachbahn	0.80	1000,00	_	Kunststoffdach-						
				Schalung	2,40	484,51		bahn;						
				Konterlattung	0,20	484,51	_	Mindestdicke PE-Folie Decke						
								nach DIN 18531-						
				Kantholz	0,50	484,51		2, Abschn. 5.4						
				Sparren	2,50	429,29	0,14	_,						
	_			GKF-Platte	1,25	800,00	0,25							
				Vegetationssubstrat,	2,60	750,00	-	Grundlage Altbau-	182,8	2687,1	3829,6	89,7	1199,1	3123,0
				750 kg/m³	0.00	05.50		konstruktion						
				Filtervlies, PP Drainmatte.	0,03	95,50	_	FROwood_5;						
				2,8 kg/m ²	0,29	46,70	-	maximale Umwelt-						
				Schutzvlies,				wirkungen						
				300 g/m²	0,08	83,30	-	Sanierung;						
				Dachabdichtung,	0.40	4550.00		Flachdachaus-						
				wurzelfest	0,40	1550,00	-	führungen nach						
				Bitumendachbahn	0,50	1000,00	-	DIN 18531, Teil 1-						
				OSB-Platte	2,50	600,00	0,13	4 und DIN 18195;						
				Brettschichtholz	3,68	507,11	0,13	Ausführung in Anlehnung an						
				Holzfaserdämmung				Optigrün						
				(Innenausbau)	19,32	26,25	0,04	Spardach und						
FRO				Holzfaserdämmung				Retensionsdach						
wood	1919-	x		(Innenausbau)	13,00	26,25	0,04	Mäander 60						
_8	1945			PE-Folie Decke	0,02	930,00	_	(Dicke						
				Brettschichtholz	2,50	507,11	0,13	Vegetations-						
				Bitumendachbahn,			-,	substrat wie bei						
				besandet	0,40	1000,00	-	Spardach, denn						
				Bitumendachbahn	0,80	1000,00	_	je dicker das						
				Dituinenuachbann	-,			Substrat umso				l		
					2.40	484.51	-							
				Schalung	2,40	484,51 484 51	-	geringer das						
				Schalung Konterlattung	0,20	484,51	-	GWP						
				Schalung Konterlattung Kantholz	0,20 0,50	484,51 484,51	-	GWP (Kohlenstoff-						
				Schalung Konterlattung Kantholz Sparren	0,20 0,50 2,50	484,51 484,51 429,29	0,14	GWP (Kohlenstoff- speicher); Ver-						
				Schalung Konterlattung Kantholz	0,20 0,50	484,51 484,51	0,14 0,25	GWP (Kohlenstoff- speicher); Ver- stärkung Dach-						
				Schalung Konterlattung Kantholz Sparren	0,20 0,50 2,50	484,51 484,51 429,29		GWP (Kohlenstoff- speicher); Ver-						
				Schalung Konterlattung Kantholz Sparren	0,20 0,50 2,50	484,51 484,51 429,29		GWP (Kohlenstoff- speicher); Ver- stärkung Dach- decke mit						
				Schalung Konterlattung Kantholz Sparren	0,20 0,50 2,50	484,51 484,51 429,29		GWP (Kohlenstoff- speicher); Ver- stärkung Dach- decke mit Brettschichtholz-						
	_			Schalung Konterlattung Kantholz Sparren	0,20 0,50 2,50	484,51 484,51 429,29		GWP (Kohlenstoff- speicher); Ver- stärkung Dach- decke mit Brettschichtholz- balken im halben						

		PVC-Dachbahn	0.10	1250,00			450.0	1574,7	46EE 4	67 E	27.4	4527.4
		Glasylies Dach	0,12	229,40	-		150,0	15/4,/	1655,4	67,5	-37,1	1537,4
		OSB-Platte	2,50	600,00	0.42							
		Konstruktionsvollholz			0,13							
		Zellulosefaser-	1,51	492,92	0,13	Grundlage Altbau-						
FRO		Einblasdämmung	19,49	45,00	0,04	konstruktion						
wood 2002- 2020	x x	x PE-Folie Decke	0,02	930,00	-	FROwood_6; minimale Umwelt-						
_9 2020		GKF-Platte	1,50	800,00	0,25	wirkungen						
		OSB-Platte	15,00	600,00	0,13	Sanierung						
		Lattung	0,77	484,51	0,13							
		Mineralwolle (Innenausbau)	7,23	26,25	0,04							
		GKF-Platte	1,25	800,00	0,25							
		Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	Grundlage Altbau- konstruktion	182,5	2449,7	3468,5	100,2	1057,2	2595,2
		Filtervlies, PP	0,03	95,50	-	FROwood_6;						
		Drainmatte,	0,29	46,70	_	maximale Umwelt-						
		2,8 kg/m² Schutzvlies,	-,	-, -		wirkungen						
		300 g/m ²	0,08	83,30	-	Sanierung;						
		Dachabdichtung,	0,40	1550,00		Flachdachaus- führungen nach						
		wurzelfest				DIN 18531, Teil 1-						
		Bitumendachbahn	0,50	1000,00	-	4 und DIN 18195;						
		OSB-Platte	2,50	600,00	0,13	Ausführung in						
		Brettschichtholz	2,02	507,11	0,13	Anlehnung an Optigrün						
		Holzfaserdämmung (Innenausbau)	29,96	26,25	0,04	Spardach und						
FRO 2002-		PE-Folie Decke	0,02	930,00	_	Retensionsdach						
wood 2020 _10	хх	X Brettschichtholz	1,50	507,11	0,13	Mäander 60 (Dicke						
_10		PVC-Dachbahn	0,12	1250,00	-	Vegetations-						
		Glasvlies Dach	0,05	229,40	-	substrat wie bei						
		OSB-Platte	2,50	600,00	0,13	Spardach, denn						
		Konstruktionsvollholz	1,51	492,92	0,13	je dicker das Substrat umso						
		Zellulosefaser- Einblasdämmung	19,49	45,00	0,04	geringer das GWP						
		PE-Folie Decke	0,02	930,00	-	(Kohlenstoff-						
		GKF-Platte	1,50	800,00	0,25	speicher); Ver-						
						stärkung Dach-						
						decke mit						
						Brettschichtholz- balken im halben						
						Balkenabstand						

										1					
					Vegetationssubstrat, 750 kg/m³	2,60	750,00	-		254,6	1080,1	-778,7	150,5	-485,2	-825,9
					Filtervlies, PP	0,03	95,50	_							
					Drainmatte,										
					2,8 kg/m ²	0,29	46,70	-							
					Schutzvlies,	0,08	83,30	_							
					300 g/m ² Dachabdichtung,	-,	,		Grundlage Altbau-						
					wurzelfest	0,40	1550,00	-	konstruktion						
FRO	2002-				Bitumandaahhaha	0,50	1000,00	_	FROwood_9;						
wood _11	2020		Х	х х	Polystyroldämmung,			0.04	minimale Umwelt-						
					XPS (DA)	12,00	32,00	0,04	wirkungen Sanierung						
					Bitumendachbahn	0,50	1000,00	-	Samerung						
					Brettsperrholz	24,00	489,41	0,13							
					Gipsfaserplatte	2,50	1000,00	0,35							
					Lattung	0,77	484,51	0,13							
					Mineralwolle (Innenausbau)	7,23	26,25	0,04							
					GKF-Platte	1,25	800,00	0,25							
	•				Vegetationssubstrat,					0044	0500.0	202.5	007.5	040.0	454.0
					750 kg/m³	2,60	750,00	-		324,1	2593,0	803,5	207,5	840,2	454,6
					Filtervlies, PP	0,03	95,50	-	Grundlage Altbau- konstruktion						
					Drainmatte,	0,29	46,70	-	FROwood_9;						
					2,8 kg/m² Schutzvlies,				maximale Umwelt-						
					300 g/m²	0,08	83,30	-	wirkungen						
					Dachabdichtung,	0,40	1550,00	_	Sanierung; Flachdachaus-						
					wurzelfest				führungen nach						
					Bitumendachbahn	0,50	1000,00	-	DIN 18531, Teil 1-						
					Polystyroldämmung, XPS (DA)	20,00	32,00	0,04	4 und DIN 18195;						
					Bitumendachbahn	0,50	1000,00	-	Ausführung in Anlehnung an						
FRO wood	2002-				Vegetationssubstrat,	2,60	750,00		Optigrün						
_12	2020		X	х х	750 kg/III-				Spardach und						
					Filtervlies, PP	0,03	95,50	-	Retensionsdach Mäander 60						
					Drainmatte, 2,8 kg/m²	0,29	46,70	-	(Dicke						
					Schutzvlies,	0.00	92.20		Vegetations-						
					300 g/m²	0,08	83,30	_	substrat wie bei						
					Dachabdichtung, wurzelfest	0,40	1550,00	_	Spardach, denn je dicker das						
					Bitumendachbahn	0.50	1000,00		Substrat umso						
					Polystyroldämmung,				geringer das						
					XPS (DA)	12,00	32,00	0,04	GWP						
					Bitumendachbahn	0,50	1000,00	-	(Kohlenstoff- speicher)						
					Brettsperrholz	24,00	489,41	0,13	ороголог)						
					Gipsfaserplatte	2,50	1000,00	0,35							
					PVC-Dachbahn	0,12	1250,00	-		177,6	1057,9	86,0	113,2	170,2	-37,5
					Glasvlies Dach	0,05	229,40	-	Grundlage Altbau-						
					Polystyroldämmung	24,00	26,90	0,04	konstruktion						
					Flachdach, EPS 035				FROmas_1;						
					PE-Folie Dach	0,02	930,00	-	minimale Umwelt- wirkungen						
					Kies	5,00	1850,00	-	Sanierung;						
FRO					Bitumendachbahn, besandet	0,40	1000,00	-	Flachdachaus-						
mas	1958-	x			Bitumendachbahn	0,80	1000,00	_	führungen nach						
_1	1968				Schalung	2,40	484,51	_	DIN 18531, Teil 1- 4 und DIN 18195:						
					Flachdachdämmung		30,00-	0.04	Kunststoffdach-						
					(unspezifisch)	8,00	200,00	0,04	bahn;						
					Luftschicht, stark belüftet	2,00	-	-	Mindestdicke PE-						
					Holzbalken	10,00	529,00	0,14	Folie Decke nach DIN 18531-2,						
					Stahlbeton B15-B25				Abschn. 5.4						
					(96/4)	15,00	2400,00	1,51							
					Kalkgipsputz	1,00	900,00	0,70							

	_		Vegetationssubstrat,	2,60	750,00	_	O Althou	215 4	2381,5	1529 7	141 8	1367,4	1212 2
			750 kg/m³	2,00	730,00		Grundlage Altbau- konstruktion	213,4	2301,3	1323,7	141,0	1307,4	1212,2
			Filtervlies, PP	0,03	95,50	-	FROmas_1;						
			Drainmatte,	0,29	46,70		maximale Umwelt-						
			2,8 kg/m²	0,20	.0,.0		wirkungen						
			Schutzvlies,	0,08	83,30	-	Sanierung;						
			300 g/m² Dachabdichtung,				Flachdachaus-						
			wurzelfest	0,40	1550,00	-	führungen nach						
			Bitumendachbahn	0,50	1000,00		DIN 18531, Teil 1-						
				0,50	1000,00		4 und DIN 18195;						
			Polystyroldämmung, XPS (DA)	24,00	529,00	0,04	Ausführung in						
FRO			PE-Folie Dach	0,02	930,00		Anlehnung an						
mas	1958-	х				_	Optigrün						
_2	1968	^	Kies Bitumendachbahn,	5,00	1850,00		Spardach und						
			besandet	0,40	1000,00	-	Retensionsdach						
					4000.00		Mäander 60						
			Bitumendachbahn	0,80	1000,00	-	(Dicke						
			Schalung	2,40	484,51	-	Vegetations-						
			Flachdachdämmung	8,00	30,00-	0,04	substrat wie bei Spardach, denn						
			(unspezifisch)		200,00		je dicker das						
			Luftschicht, stark belüftet	2,00	-	-	Substrat umso						
			Holzbalken	40.00	E20.00	0.44	geringer das						
				10,00	529,00	0,14	GWP						
			Stahlbeton B15-B25 (96/4)	15,00	2400,00	1,51	(Kohlenstoff-						
							speicher)						
	_		Kalkgipsputz	1,00	900,00	0,70							
			PVC-Dachbahn	0,12	1250,00	-	On and all a second little and	97,8	1052,4	917,2	70,7	665,6	649,2
			Glasvlies Dach	0,05	229,40	-	Grundlage Altbau-						
			Polystyroldämmung				konstruktion						
			Flachdach, EPS 035	24,00	26,90	0,04	FROmas_2; minimale Umwelt-						
			r lacifuacii, El O 000				wirkungen						
			PE-Folie Dach	0,02	930,00	-	Sanierung;						
			Kies	5,00	1850,00	-	Flachdachaus-						
FRO	1969-		Bitumendachbahn,		4000.00		führungen nach						
mas	1978	X	besandet	0,40	1000,00	-	DIN 18531, Teil 1-						
_3			Bitumendachbahn	0,80	1000,00	-	4 und DIN 18195:						
			Flachdachdämmung	0.00	30,00-	0.04	Kunststoffdach-						
			(unspezifisch)	8,00	200,00	0,04	bahn;						
			Holzbalken	2,50	529,00	0,14	Mindestdicke PE-						
			Stahlbeton B15-B25	45.00	0.400.00	4.54	Folie Decke nach						
			(96/4)	15,00	2400,00	1,51	DIN 18531-2,						
			Kalkgipsputz	1,00	900,00	0,70	Abschn. 5.4						
	-					-,							
	-		Vegetationssubstrat,	2,60	750,00		Grundlage Altbau-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³	2,60	750,00		Grundlage Altbau- konstruktion	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP		-		•	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte,	2,60	750,00	-	konstruktion	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m²	2,60	750,00 95,50	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies,	2,60	750,00 95,50	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m²	2,60 0,03 0,29 0,08	750,00 95,50 46,70 83,30	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung,	2,60 0,03 0,29 0,08	750,00 95,50 46,70	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest	2,60 0,03 0,29 0,08 0,40	750,00 95,50 46,70 83,30 1550,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	-		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn	2,60 0,03 0,29 0,08	750,00 95,50 46,70 83,30	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195;	135,5	2376,0	2360,9	99,3	1862,9	1898,8
FRO	4060		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung,	2,60 0,03 0,29 0,08 0,40	750,00 95,50 46,70 83,30 1550,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in	135,5	2376,0	2360,9	99,3	1862,9	1898,8
FRO mas	1969-	x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA)	2,60 0,03 0,29 0,08 0,40 0,50 24,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an	135,5	2376,0	2360,9	99,3	1862,9	1898,8
	1969- 1978	x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach	2,60 0,03 0,29 0,08 0,40 0,50 24,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies	2,60 0,03 0,29 0,08 0,40 0,50 24,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn,	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00 1000,00	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 1000,00 30,00-	-	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00 1000,00 30,00- 200,00	- - - - 0,04 - - -	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 1000,00 30,00-	0,04	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00 1000,00 30,00- 200,00	- - - - 0,04 - - -	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 1000,00 1000,00 30,00- 200,00 529,00 2400,00	0,04	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen-	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 1000,00 30,00- 200,00 529,00	0,04	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das	135,5	2376,0	2360,9	99,3	1862,9	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04	konstruktion FROmas_2; maximale Umwelt- wirkungen Sa- nierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen- stoffspeicher)						
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)	77,0	2376,0		99,3	1862,9 778,7	1898,8
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)						
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 1000,00 1000,00 529,00 2400,00 900,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sa- nierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18531, Teil 1-4 und DIN 1870; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4;						
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minmale Umwelt-						
mas		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00 1250,00 229,40 26,90	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung redamierung für den für						
mas _4		x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flach-						
mas _4			750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00 1250,00 229,40 26,90	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flachdachausführun-						
mas _4	1978	x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn,	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 15,00 1,00 0,12 0,05 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 30,00- 200,00 529,00 2400,00 900,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flach-						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 2,50 15,00 0,12 0,05 24,00 0,02 5,00 0,40	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 1000,00 1000,00 529,00 2400,00 900,00 1250,00 229,40 26,90 930,00 1850,00 1000,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 15,00 1,00 0,12 0,05 24,00 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 529,00 2400,00 900,00 1250,00 229,40 26,90 930,00 1850,00 1000,00 1000,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umwelt-wirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung Flachdachdämmung	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 0,40 2,50 15,00 0,12 0,05 24,00 0,02 5,00 0,40	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00 1000,00 200,00 529,00 2400,00 900,00 1250,00 229,40 26,90 930,00 1850,00 1000,00 1000,00 1000,00 1000,00 1000,00 30,00-	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195:						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn Flachdachdämmung (unspezifisch)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05 24,00 0,02 5,00 0,02 5,00 0,12 0,05 0,12 0,05 0,12 0,05 0,02 0,05 0,0	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 200,00 529,00 2400,00 229,40 26,90 930,00 1850,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 200,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 1895; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umwelt-wirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdach-bahn; Mindestdicke PE-Folie						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn Flachdachdämmung (unspezifisch) Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 5,00 15,00 1,00 0,12 0,05 24,00 0,02 5,00 0,40 0,02 5,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1850,00 1000,00 200,00 529,00 2400,00 900,00 1250,00 229,40 26,90 930,00 1850,00 1000,00 1000,00 1000,00 1000,00 1000,00 30,00-	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn Flachdachdämmung (unspezifisch)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05 24,00 0,02 5,00 0,02 5,00 0,12 0,05 0,12 0,05 0,12 0,05 0,02 0,05 0,0	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 200,00 529,00 2400,00 229,40 26,90 930,00 1850,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 200,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN 18531-2, Abschn.						
mas _4	1978		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung (unspezifisch) Holzbalken Stahlbeton B15-B25 (96/4) Kalkgipsputz PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn, besandet Bitumendachbahn Flachdachdämmung Flachdach, EPS 035 PE-Folie Dach Kies Bitumendachbahn Flachdachdämmung (unspezifisch) Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,40 0,80 8,00 2,50 15,00 1,00 0,12 0,05 24,00 0,02 5,00 0,02 5,00 0,12 0,05 0,12 0,05 0,12 0,05 0,02 0,05 0,0	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 200,00 529,00 2400,00 229,40 26,90 930,00 1850,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 1000,00 200,00	0,04 0,04 1,51 0,70	konstruktion FROmas_2; maximale Umwelt-wirkungen Sanierung; Flach-dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_4; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN						

	_														
	_				Vegetationssubstrat	t, 2,60	750,00		Grundlage Altbau-	1147	2362,1	2558 2	88.0	1976,0	2059 7
					750 kg/m ³	2,00	700,00		konstruktion	,,,	2002,1	2000,2	00,0	1010,0	2000,1
					Filtervlies, PP	0,03	95,50	-	FROmas_4;						
					Drainmatte,	0,29	46,70	_	maximale Umwelt-						
					2,8 kg/m²	-,	,.		wirkungen Sa-						
					Schutzvlies,	0,08	83,30	-	nierung; Flach-						
					300 g/m²				dachausführun-						
					Dachabdichtung, wurzelfest	0,40	1550,00	-	gen nach DIN						
					Bitumendachbahn	0.50	1000.00		18531, Teil 1-4						
						0,50	1000,00		und DIN 18195;						
FRO	4040				Polystyroldämmung	, 24,00	529,00	0,04	Ausführung in						
mas	1949-	x >	х х		XPS (DA)				Anlehnung an						
_6	1978				PE-Folie Dach	0,02	930,00	-	Optigrün Spar-						
					Kies	5,00	1850,00	-	dach und Reten- sionsdach Mä-						
					Bitumendachbahn,		1000,00	_	ander 60 (Dicke						
					besandet	0,40			Vegetations-						
					Bitumendachbahn	0,80	1000,00	-	substrat wie bei						
					Flachdachdämmung	2,00	30,00-	0,04							
					(unspezifisch)		200,00		je dicker das						
					Stahlbeton B15-B25	5 15,00	2400,00	1,51	Substrat umso						
					(96/4)				geringer das						
									GWP (Kohlen-						
									stoffspeicher)						
	_				PVC-Dachbahn	0.12	1250,00	-	Grundlage Altbau-	76.2	1025,1	1098.7	61,2	800,0	840,5
					Glasvlies Dach	0,05	229,40	_	konstruktion		-,-	,-	,_	,-	-,-
							,		FROmas_6;						
					Polystyroldämmung		26,90	0 04	minimale Umwelt-						
					Flachdach, EPS 035	5 2,00	20,00	5,04	wirkungen Sa-						
					PE-Folie Dach	0,02	930,00	_	nierung; Flach-						
500					Bitumendachbahn,				dachausführun-						
FRO	1949-				besandet	0,40	1000,00	-	gen nach DIN						
mas	1978	x >	хх		Bitumendachbahn	0.80	1000,00	_	18531, Teil 1-4						
_7					Zementestrich		2400,00	1,40	und DIN 18195:						
									Kunststoffdach- I						
					Stahlbeton B15-B25 (96/4)	3,00	2400,00	2,50	bahn; Mindest-						
					(90/4)				dicke PE-Folie						
									Decke nach DIN						
									18531-2, Abschn.						
									5.4						
					Vegetationssubstrat	t, 2.60	750.00			114.0	23/8 7	25/12 /	80 0	1997 3	2000 1
	_				Vegetationssubstrat 750 kg/m³	t, 2,60	750,00	-	Grundlage Altbau-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_					t, 2,60 0,03	750,00 95,50	-	Grundlage Altbau- konstruktion	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³	0,03	95,50	-	Grundlage Altbau-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m²	2,60		-	Grundlage Altbau- konstruktion FROmas_6;	114,0	2348,7	2542,4	89,9	1997,3	2090,1
					750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies,	0,03	95,50 46,70	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m²	0,03	95,50	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung,	0,03	95,50 46,70	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest	0,03 0,29 0,08 0,40	95,50 46,70 83,30 1550,00	-	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4	114,0	2348,7	2542,4	89,9	1997,3	2090,1
	_				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn	0,03 0,29 0,08 0,40 0,50	95,50 46,70 83,30	-	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195;	114,0	2348,7	2542,4	89,9	1997,3	2090,1
FRO	<u>-</u>				750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung	0,03 0,29 0,08 0,40 0,50	95,50 46,70 83,30 1550,00 1000,00	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in	114,0	2348,7	2542,4	89,9	1997,3	2090,1
FRO mas	1949-	X)	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA)	0,03 0,29 0,08 0,40 0,50	95,50 46,70 83,30 1550,00 1000,00 529,00	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas	1949- 1978	x >	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach	0,03 0,29 0,08 0,40 0,50	95,50 46,70 83,30 1550,00 1000,00	-	Grundlage Altbau- konstruktion FROmas, 6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
		x >	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn,	0,03 0,29 0,08 0,40 0,50 4,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00	-	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Reten-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		х э	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet	0,03 0,29 0,08 0,40 0,50 0,02 0,40	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00	-	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x >	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn,	0,03 0,29 0,08 0,40 0,50 0,02 0,40	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00	-	Grundlage Altbau- konstruktion FROmas_6; maximale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		х)	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet	0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00	-	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetations-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x ›	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		хэ	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dick Vegetationssubstrat wie bei Spardach, denn	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x)	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x ›	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dick Vegetationssubstrat wie bei Spardach, denn	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x ›	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas, 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen-	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		х	××		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas. 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das	114,0	2348,7	2542,4	89,9	1997,3	2090,1
mas		x ›	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas. 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 1819; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)						
mas		x ›	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas, 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)		2348,7		89,9	1997,3 794,2	2090,1
mas		х)	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4)	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,02 0,40 0,80 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)						
mas		х)	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,80 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7;						
mas		x ›	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,80 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umwelt-						
mas		x y	x x		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 038	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,80 2,00 3,00 0,12 0,05	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 220,40 229,40	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen						
mas _8		x y	× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,80 2,00 5 3,00	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flach-						
mas _8					750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 038	2,60 0,03 0,29 0,08 0,40 0,50 24,00 0,80 2,00 3,00 0,12 0,05	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 220,40 229,40	0,04	Grundlage Altbaukonstruktion FROmas, 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführun-						
mas _8 FRO mas	1978		× ×		750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 038 PE-Folie Dach Bitumendachbahn, besandet	0,03 0,29 0,08 0,40 0,50 0,40 0,02 0,40 0,80 2,00 3,00 0,12 0,05 24,00 0,02	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flach-						
mas _8	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 038 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn	0,03 0,29 0,08 0,40 0,50 0,40 0,02 0,40 0,80 2,00 3,00 0,12 0,05 24,00 0,02 0,40 0,02 0,40 0,03	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN						
mas _8 FRO mas	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung PPVC-Dachbahn Glasvlies Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdach-						
mas _8	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdach-						
mas _8	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung PPVC-Dachbahn Glasvlies Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas. 6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachabhn; Mindestdicke PE-Folie						
mas _8	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN						
mas _8	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18531, Teil 1-4 und DIN 18795; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN 18531-2, Abschn.						
mas _8 FRO mas	1978			x	750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25	0,03 0,29 0,08 0,40 0,50 0,02 0,40 0,80 2,00 0,05 0,12 0,05 24,00 0,05 0,05 0,02 0,40 0,05 0,005	95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00 229,40 26,90 930,00 1000,00 1000,00 2400,00	0,04	Grundlage Altbaukonstruktion FROmas_6; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_7; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-Folie Decke nach DIN						

FRO mas _10	1949- 1994	x x x x	Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Zementestrich Stahlbeton B15-B25 (96/4)	0,50 24,00 0,02 0,40 0,80 2,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	-	Grundlage Altbaukonstruktion FROmas_7; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)		2351,0		89,4	1991,5	
FRO mas _11	1979- 1994	x x	PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Ausgleichsestrich Stahlbeton B15-B25 (96/4)	0,80 2,00	1250,00 229,40 26,90 930,00 1000,00 1000,00 2400,00 2400,00		Grundlage Altbau- konstruktion FROmas_8; minimale Umwelt- wirkungen Sanierung; Flach- dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195: Kunststoffdach- bahn; Mindest- dicke PE-Folie Decke nach DIN 18531-2, Abschn.	76,4	1027,4	1101,5	60,8	794,2	832,6
FRO mas _12	1979- 1994	x x	Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach Bitumendachbahn, besandet Bitumendachbahn Ausgleichsestrich Stahlbeton B15-B25 (96/4)	0,50 24,00 0,02 0,40 0,80 2,00	750,00 95,50 46,70 83,30 1550,00 1000,00 529,00 930,00 1000,00 2400,00 2400,00	-	Grundlage Altbaukonstruktion FROmas_8; maximale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)	114,1	2351,0	2545,3	89,4	1991,5	2082,2
FRO mas _13	1979- 1990	x x	PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 PE-Folie Dach Schiefersplitt in Bitumendachbahn Schaumpolystyrol- Gefällebeton Bitumendachbahn Dämmung Flachdach (EPS) Bitumendachbahn Stahlbeton B15-B25 (96/4)	1,20 3,50 0,40 5,00 0,40	1250,00 229,40 26,90 930,00 1045,00 1000,00 350,00 1000,00 18,00 1000,00 2400,00	0,04	Grundlage Altbau- konstruktion FROmas_11; minimale Umwelt- wirkungen Sanierung; Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Kunststoffdach- bahn; Mindestdicke PE- Folie Decke nach DIN 18531-2, Abschn. 5.4	84,7	1053,1	1129,7	64,3	751,9	776,7

	_		Vegetationssubstrat,	2,60	750,00		Grundlage Altbau-	122.4	2376,7	2572.4	02.0	1949,1	2026.2
			750 kg/m³	2,00	730,00		konstruktion	122,4	2370,7	2373,4	32,3	1343,1	2020,3
			Filtervlies, PP	0,03	95,50	-	FROmas_11;						
			Drainmatte,	0,29	46,70	-	maximale Umwelt-						
			2,8 kg/m²				wirkungen						
			Schutzvlies, 300 g/m ²	0,08	83,30	-	Sanierung; Flach-						
			Dachabdichtung,				dachausführun-						
			wurzelfest	0,40	1550,00	-	gen nach DIN						
			Bitumendachbahn	0,50	1000,00	_	18531, Teil 1-4 und DIN 18195;						
			Polystyroldämmung,				Ausführung in						
FRO	1979-		XPS (DA)	24,00	529,00	0,04	Anlehnung an						
mas	1990	x x	PE-Folie Dach	0,02	930,00	-	Optigrün Spar-						
_14			Schiefersplitt in				dach und Reten-						
			Bitumenemulsion	1,00	1045,00	-	sionsdach Mä-						
			Bitumendachbahn	1,20	1000,00	-	ander 60 (Dicke						
			Schaumpolystyrol-	2.50	250.00	4.54	Vegetations-						
			Gefällebeton	3,50	350,00	1,51	substrat wie bei						
			Bitumendachbahn	0,40	1000,00	-	Spardach, denn						
			Dämmung Flachdach	5,00	18,00	0,04	je dicker das Substrat umso						
			(EPS)			0,04	geringer das						
			Bitumendachbahn	0,40	1000,00	-	GWP (Kohlen-						
			Stahlbeton B15-B25	14,00	2400,00	1,51	stoffspeicher)						
	-		(96/4)				. ,						
			PVC-Dachbahn	0,12	1250,00	-	Grundlage Altbau-	73,0	947,8	1024,9	54,8	679,3	709,1
			Glasvlies Dach	0,05	229,40	-	konstruktion						
			Polystyroldämmung	10.00	00.00	0.04	FROmas_12;						
			Flachdach, EPS 035	13,00	26,90	υ,04	minimale Umwelt- wirkungen						
			PVC-Dachbahn	0,12	1250,00		Sanierung; Flach-						
						_	dachausführun-						
FRO	1995-		Glasvlies Dach	0,05	229,40		gen nach DIN						
mas	2001	x	Polystyroldämmung	11,00	26,90	0,04	18531, Teil 1-4						
_15			Flachdach, EPS 035	11,00	20,90	0,04	und DIN 18195:						
			Bitumendachbahn	0,50	1000,00	_	Kunststoffdach-						
			Stahlbeton C20/25		2400,00	2,30	bahn; Mindest-						
			(99/1)	.0,00	2.00,00	2,00	dicke PE-Folie						
			(55, 1)				Decke nach DIN						
							18531-2, Abschn.						
	_						5.4						
			Vegetationssubstrat,	2,60	750,00	_	Grundlage Alt-	127,8	2351,4	2548,9	95,0	1873,2	1946,2
			750 kg/m³				baukonstruktion FROmas_12;				,		
			Filtervlies, PP	0,03	95,50	-	maximale Umwelt-						
			Drainmatte, 2,8 kg/m ²	0,29	46,70	-	wirkungen						
			2,0 KQ/III"										
							Sanierung; Flach-						
			Schutzvlies,	0,08	83,30	-	Sanierung; Flach- dachausführun-						
			Schutzvlies, 300 g/m²			-							
			Schutzvlies,	0,08	83,30 1550,00	-	dachausführun- gen nach DIN 18531, Teil 1-4						
			Schutzvlies, 300 g/m² Dachabdichtung,			-	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195;						
FRO	1005		Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest	0,40	1550,00		dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in						
FRO mas	1995-	x	Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn	0,40	1550,00	- 0,04	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an						
	1995- 2001	x	Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung,	0,40	1550,00	0,04	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar-						
mas		x	Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA)	0,40 0,50 24,00	1550,00 1000,00 529,00	0,04	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten-						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach	0,40 0,50 24,00 0,02 0,12	1550,00 1000,00 529,00 930,00 1250,00	- 0,04	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä-						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach	0,40 0,50 24,00 0,02	1550,00 1000,00 529,00 930,00	0,04	dachausführun- gen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten-						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung	0,40 0,50 24,00 0,02 0,12	1550,00 1000,00 529,00 930,00 1250,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spar- dach und Reten- sionsdach Mä- ander 60 (Dicke Vegetations-						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035	0,40 0,50 24,00 0,02 0,12 0,05 11,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90	-	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn	0,40 0,50 24,00 0,02 0,12 0,05 11,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25	0,40 0,50 24,00 0,02 0,12 0,05 11,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90	-	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso						
mas		X	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn	0,40 0,50 24,00 0,02 0,12 0,05 11,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das						
mas		X	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25	0,40 0,50 24,00 0,02 0,12 0,05 11,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen-						
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1)	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das	85.4	944.1	1022.0	60.0	576.4	561.8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1)	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	0,04	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen-	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Plachdach, EPS 035 Polystyroldämmung Plachdach Polystyroldämmung	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher)	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Plachdach, EPS 035 Polystyroldämmung Plachdach Polystyroldämmung	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 1250,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13;	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach dund Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umwelt-	85,4	944,1	1022,0	60,0	576,4	561,8
mas		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat,	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 1250,00 2400,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16		x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Fittervlies, PP Drainmatte,	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 2,60 0,03	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 1250,00 229,40 26,90 750,00 95,50	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung;	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m²	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 1250,00 229,40 26,90 750,00	- - 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen- stoffspeicher) Grundlage Altbau- konstruktion FROmas_13; minimale Umwelt- wirkungen Sanierung; Flachdachaus-	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001	x	Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationsubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies,	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 2,60 0,03	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 1250,00 229,40 26,90 750,00 95,50	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach der dach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen- stoffspeicher) Grundlage Altbau- konstruktion FROmas_13; minimale Umwelt- wirkungen Sanierung; Flachdachaus- führungen nach	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Fittervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m²	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 0,12 0,05 12,00 2,60 0,03 0,29	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 229,40 26,90 750,00 95,50 46,70	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlen- stoffspeicher) Grundlage Altbau- konstruktion FROmas_13; minimale Umwelt- wirkungen Sanierung; Flachdachaus-	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schulzvlies, 300 g/m² Dachabdichtung,	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 0,12 0,05 12,00 2,60 0,03 0,29	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 229,40 26,90 750,00 95,50 46,70	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachaus- führungen nach DIN 18531, Teil 1-	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 12,00 2,60 0,03 0,29 0,08	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1 und DIN 18195; Kunststoffdachbahn;	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Fittervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 12,00 2,60 0,03 0,29 0,08	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 229,40 26,90 750,00 95,50 46,70 83,30	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mäander 60 (Dicke Vegetationssubstrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Kunststoffdachbahn; Mindestdicke PE-	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung,	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 16,00 12,00 2,60 0,03 0,29 0,08	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 2400,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach det ender det	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA)	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 12,00 2,60 0,03 0,29 0,08 0,40 0,50 13,00	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00 1000,00 32,00	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Kunststoffdach- bahn; Mindestdicke PE- Folie Decke nach DIN 18531-2,	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationsubstrat, 750 kg/m³ Fittervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) Bitumendachbahn	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 12,00 2,60 0,03 0,29 0,08 0,40 0,50 13,00 0,50	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00 1000,00 32,00 1000,00	- 0,04 - 2,30 - 0,04 	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach det ender det	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Filtervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA)	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 12,00 2,60 0,03 0,29 0,08 0,40 0,50 13,00 0,50	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00 1000,00 32,00	- 0,04 - 2,30	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Kunststoffdach- bahn; Mindestdicke PE- Folie Decke nach DIN 18531-2,	85,4	944,1	1022,0	60,0	576,4	561,8
mas _16	2001		Schulzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) PE-Folie Dach PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Bitumendachbahn Stahlbeton C20/25 (99/1) PVC-Dachbahn Glasvlies Dach Polystyroldämmung Flachdach, EPS 035 Vegetationssubstrat, 750 kg/m³ Fittervlies, PP Drainmatte, 2,8 kg/m² Schutzvlies, 300 g/m² Dachabdichtung, wurzelfest Bitumendachbahn Polystyroldämmung, XPS (DA) Bitumendachbahn Stahlbeton C30/37	0,40 0,50 24,00 0,02 0,12 0,05 11,00 0,50 12,00 2,60 0,03 0,29 0,08 0,40 0,50 13,00 0,50	1550,00 1000,00 529,00 930,00 1250,00 229,40 26,90 1000,00 229,40 26,90 750,00 95,50 46,70 83,30 1550,00 1000,00 32,00 1000,00	- 0,04 - 2,30 - 0,04 	dachausführungen nach DIN 18531, Teil 1-4 und DIN 18195; Ausführung in Anlehnung an Optigrün Spardach und Retensionsdach Mä- ander 60 (Dicke Vegetations- substrat wie bei Spardach, denn je dicker das Substrat umso geringer das GWP (Kohlenstoffspeicher) Grundlage Altbaukonstruktion FROmas_13; minimale Umweltwirkungen Sanierung; Flachdachaus- führungen nach DIN 18531, Teil 1- 4 und DIN 18195; Kunststoffdach- bahn; Mindestdicke PE- Folie Decke nach DIN 18531-2,	85,4	944,1	1022,0	60,0	576,4	561,8

		Vegetationssubstrat,				1	44: -			40: :	4=0	404 : :
		750 kg/m³	2,60	750,00	-		141,9	2370,1	2568,7	101,4	1785,9	1814,1
		Filtervlies, PP	0,03	95,50	-	Grundlage Altbau-						
		Drainmatte, 2,8 kg/m ²	0,29	46,70	-	konstruktion FROmas_13;						
		Schutzvlies,	0,08	83,30	_	maximale Umwelt-						
		300 g/m² Dachabdichtung,	-,	,		wirkungen Sanierung; Flach-						
		wurzelfest	0,40	1550,00	-	dachausführun-						
		Bitumendachbahn	0,50	1000,00	-	gen nach DIN						
		Polystyroldämmung, XPS (DA)	24,00	529,00	0,04	18531, Teil 1-4 und DIN 18195;						
		PE-Folie Dach	0,02	930,00	_	Ausführung in						
FRO	1995-	Vegetationssubstrat,	2,60	750,00		Anlehnung an Optigrün						
mas	2001 x	750 kg/m³				Spardach und						
_18		Filtervlies, PP Drainmatte,	0,03	95,50	-	Retensionsdach						
		2,8 kg/m²	0,29	46,70	-	Mäander 60 (Dicke						
		Schutzvlies,	0,08	83,30	-	Vegetations-						
		300 g/m² Dachabdichtung,		4550.00		substrat wie bei						
		wurzelfest	0,40	1550,00	-	Spardach, denn je dicker das						
		Bitumendachbahn	0,50	1000,00	-	Substrat umso						
		Polystyroldämmung, XPS (DA)	13,00	32,00	0,04	geringer das GWP						
		Bitumendachbahn	0,50	1000,00	-	(Kohlenstoff-						
		Stahlbeton C30/37	24,00	2400,00	2,50	speicher)						
		(98/2) Innenputz	2,00	900,00	0,70							
		PVC-Dachbahn	0,12	1250,00	- 0,70	Grundlage Alt-	68,5	814,0	889,4	50,3	545,5	573,7
		Glasvlies Dach	0,05	229,40	-	baukonstruktion			·			
		Polystyroldämmung	7.00	20.00	0,04	FROmas_14; minimale Umwelt-						
		Flachdach, EPS 035	7,00	26,90	0,04	wirkungen						
		PVC-Dachbahn	0,12	1250,00	-	Sanierung; Flach- dachausführun-						
FRO	2002-	Glasvlies Dach	0,05	229,40	-	gen nach DIN						
mas _19	2020 X X	Polystyroldämmung	17,00	26,90	0,04	18531, Teil 1-4						
		Flachdach, EPS 035	,	-,		und DIN 18195: Kunststoffdach-						
		Bitumendachbahn		1000,00	- 2.40	bahn; Mindest-						
		Stahlbeton C20/25 (99/1)	16,00	2400,00	2,40	dicke PE-Folie Decke nach DIN						
		, ,				18531-2, Abschn.						
						5.4						
		Vegetationssubstrat, 750 kg/m³	2,60	750,00	-	Grundlage Alt- baukonstruktion	133,0	2352,1	2549,6	97,4	1832,5	1901,6
		Filtervlies, PP	0,03	95,50	-	FROmas_14;						
		Drainmatte,	0,29	46,70	_	maximale Umwelt- wirkungen						
		2,8 kg/m ² Schutzvlies,				Sanierung; Flach-						
		300 g/m ²	0,08	83,30	-	dachausführun-						
		Dachabdichtung,	0,40	1550,00	-	gen nach DIN 18531, Teil 1-4						
		wurzelfest Bitumendachbahn	0.50	1000,00	_	und DIN 18195;						
FRO	2002-	Polystyroldämmung,	24,00	529,00	0,04	Ausführung in Anlehnung an						
mas	2002- 2020 x x :	XPS (DA)			0,04	Optigrün Spar-						
_20		PE-Folie Dach PVC-Dachbahn	0,02	930,00 1250,00	-	dach und Reten-						
		Glasvlies Dach	0,12	229,40	_	sionsdach Mä- ander 60 (Dicke						
		Polystyroldämmung	-,	,		Vegetations-						
		Flachdach, EPS 035	17,00	26,90	0,04							
		Bitumendachbahn	0,50	1000,00	_	Spardach, denn je dicker das						
		Stahlbeton C20/25		2400,00	2,40	Substrat umso						
		(99/1)				geringer das GWP (Kohlen-						
						stoffspeicher)						
							•					

				PVC-Dachbahn			-		84,5	833,1	909,9	58,3	456,5	431,6
				Glasvlies Dach	0,05	229,40	-							
				Polystyroldämmung	7.00		0.04	Grundlage Altbau-						
				Flachdach, EPS 035	7,00	26,90	0,04	konstruktion						
				Vegetationssubstrat,				FROmas_15;						
				750 kg/m³	2,60	750,00	-	minimale Umwelt-						
				Filtervlies, PP	0,03	95,50	-	wirkungen						
				Drainmatte,	0.20	46.70		Sanierung; Flachdachaus-						
FRO	2002-			2,8 kg/m ²	0,29	46,70	_	führungen nach						
mas	2020		x x x	Schutzvlies,	0,08	83,30	_	DIN 18531, Teil 1-						
_21				300 g/m² Dachabdichtung,				4 und DIN 18195:						
				wurzelfest	0,40	1550,00	-	Kunststoffdach-						
				Bitumendachbahn	0,50	1000,00	_	bahn;						
				Polystyroldämmung,				Mindestdicke PE-Folie Decke						
				XPS (DA)	19,00	32,00	0,04	nach DIN 18531-						
				Bitumendachbahn	0,50	1000,00	-	2, Abschn. 5.4						
				Stahlbeton C30/37	24,00	2400,00	2,50							
				(98/2)	24,00	2400,00	2,50							
	١.			Innenputz	2,00	900,00	0,70							
				Vegetationssubstrat,	2,60	750,00	-		152,0	2729,5	2936,0	109,1	2109,3	2135,1
				750 kg/m³ Filtervlies, PP	0,03	95,50								
				Drainmatte,	0,03	95,50	-	Grundlage Altbau-						
				2,8 kg/m ²	0,29	46,70	-	konstruktion						
				Schutzvlies,	0.00	92.20		FROmas_15;						
				300 g/m ²	0,08	83,30	-	maximale Umwelt-						
				Dachabdichtung,	0,40	1550,00		wirkungen						
				wurzelfest				Sanierung; Flach-						
				Bitumendachbahn	0,50	1000,00	-	dachausführun- gen nach DIN						
				Polystyroldämmung, XPS (DA)	24,00	32,00	0,04	18531, Teil 1-4						
				Bitumendachbahn	0,50	1000,00		und DIN 18195;						
FRO				Vegetationssubstrat,				Ausführung in						
mas	2002-		x x x	750 kg/m ³	2,60	750,00	-	Anlehnung an						
_22	2020			Filtervlies, PP	0,03	95,50	-	Optigrün Spar-						
				Drainmatte,	0.20			dach und Reten- sionsdach Mä-						
				2,8 kg/m ²	0,29	46,70		ander 60 (Dicke						
				Schutzvlies,	0,08	83,30	_	Vegetations-						
				300 g/m² Dachabdichtung,				substrat wie bei						
				wurzelfest	0,40	1550,00	-	Spardach, denn						
				Bitumendachbahn	0,50	1000,00	_	je dicker das						
				Polystyroldämmung,				Substrat umso geringer das						
				XPS (DA)	19,00	32,00	0,04	GWP (Kohlen-						
				Bitumendachbahn	0,50	1000,00	-	stoffspeicher)						
				Stahlbeton C30/37	24.00	2400,00	2,50							
				(98/2)	24,00		2,50							
				Innenputz	2,00	900,00	0,70							
				Kalkgipsputz	1,00	900,00	0,70	Grundlage Altbau-	41,6	498,6	589,9	38,9	459,3	547,1
				Vollziegel	51,00	1800,00/	0,79	konstruktion						
				Außenputz, nach		2000,00		EWmas_2;						
EW	bis			Sanierung	1 50	1800,00	0,87	minimale Umwelt-						
mas	1918	X		innenliegend	1,00	1000,00	0,01	wirkungen						
_1				Mineralwolle	44.00	40.05	0.04	Sanierung mit WDVS und						
				(Außenwand)	14,00	46,25	0,04	Mineralfaser-						
				WDVS Verklebung	2,00	1759,00	1,00	platte						
	•			und Beschichtung					60 -	040.4	4750.0	27.0	405.0	1400.5
				Kalkgipsputz	1,00	900,00	0,70	Grundlage Altbau-	66,7	943,1	1752,6	37,3	485,0	1402,5
				Vollziegel	51,00	1800,00/ 2000,00	0,79	konstruktion						
				Außenputz, nach				EWmas_2;						
				Sanierung	1,50	1800,00	0,87	maximale Umwelt-						
EW	hin			innenliegend				wirkungen						
mas	bis 1918	x		Holzfaserdämm-	17,44	46,25	0,04	Sanierung mit hinter-/belüfteter						
_2				platte (VF) Lattung	2,56	484,51	0,13	Fassade aus						
				Winddichtheitsbahn	0,02		0,13	Faserzement-						
					0,02	262,00 484,51	-	platten und						
				Konterlattung Vorhangfassade		1300,00	-	Holzfaserdämm-						
				(Faserzementplatten	1,00	1000,00		platten						
	•			Kalkgipsputz	1,00	900,00	0,70	Grundlage Alt-	44,0	486,9	578,2	43,0	471,5	561,3
						1800,00/		baukonstruktion		.00,0	3.3,2	-5,0	,5	551,5
				Vollziegel	20,00	2000,00	0,79	EWmas_3;						
EW	bis			Mineralwolle	16,00	46,25	0.04	minimale Umwelt-						
mas	1918	X		(Außenwand)			0,04	wirkungen						
_3				WDVS Verklebung	2,00	1759,00	1,00	Sanierung mit WDVS und						
				und Beschichtung				Mineralfaser-						
								platte						

			Kalkgipsputz	1,00	900,00	0,70	Grundlage Alt-	69,2	930,3	1802,8	38,8	456,5	1448,0
			Vollziegel	20,00	1800,00/	0,79	baukonstruktion EWmas_3;						
			Holzfaserdämm-		2000,00		maximale Umwelt-						
EW			platte (VF)	19,18	46,25	0,04	wirkungen						
mas	bis	х	Lattung	2,82	484,51	0,13	Sanierung mit						
_4	1918		Winddichtheitsbahn	0,02	262,00		hinter-/belüfteter						
			Konterlattung	0,38	484,51	_	Fassade aus Faserzement-						
			Vorhangfassade	1,00	1300,00	-	platten und						
			(Faserzement-				Holzfaserdämm-						
	į.		platten)				platten						
			Kalkgipsputz	1,00	900,00	0,70	Grundlage Altbau-	41,6	498,6	589,9	38,9	459,3	547,1
			Vollziegel	51,00	1800,00/	0,79	konstruktion						
			Außenputz, nach		2000,00		EWmas_33;						
EW	bis		Sanierung	1,50	1800,00	0,87	minimale Umwelt-						
mas _5	1918	X	innenliegend				wirkungen Sanierung mit						
_5			Mineralwolle	14,00	46,25	0,04	WDVS und						
			(Außenwand)	14,00	70,20	0,04	Mineralfaser-						
			WDVS Verklebung	2,00	1759,00	1,00	platte						
			und Beschichtung Kalkgipsputz	1,00	900,00	0,70		66,7	0/13 1	1752,6	37,3	495 N	1402,5
			•		1800,00/		Crumdiana Alabari	00,1	343,1	1732,0	37,3	405,0	1402,3
			Vollziegel	51,00	2000,00	0,79	Grundlage Altbau- konstruktion						
			Außenputz, nach				EWmas_33;						
			Sanierung	1,50	1800,00	0,87	maximale Umwelt-						
EW			innenliegend				wirkungen						
mas	bis	x	Holzfaserdämm- platte (VF)	17,44	46,25	0,04	Sanierung mit						
_6	1918		Lattung	2,56	484,51	0,13	hinter-/belüfteter Fassade aus						
			Winddichtheitsbahn	0,02	262,00	-	Faserzement-						
			Konterlattung	0,38	484,51	_	platten und						
			Vorhangfassade				Holzfaserdämm- platten						
			(Faserzement-	1,00	1300,00	-	platteri						
	•		platten)	4.00	000.00	0.70	0 " 4"	40.0	540.0	200.5	20.0	470.0	560,6
			Kalkgipsputz	1,00	900,00	0,70	Grundlage Alt- baukonstruktion	42,6	510,2	603,5	39,9	470,9	360,6
			Vollziegel	51,00	1800,00/ 2000,00	0,79	EWmas_60;						
EW	bis		Mineralwolle	45.00		0.04	minimale Umwelt-						
mas		x x x x	(Außenwand)	15,00	46,25	0,04	wirkungen						
7	1968		(Auisenwanu)										
_7	1968		WDVS Verklebung	2,00	1759,00	1,00	Sanierung mit						
_7	1968			2,00	1759,00	1,00							
_7	1968		WDVS Verklebung	2,00	1759,00	1,00	Sanierung mit WDVS und Mineralfaser- platte						
_7	1968		WDVS Verklebung	1,00	900,00	0,70	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt-	66,3	937,2	1745,9	36,9	479,1	1395,8
_7	1968		WDVS Verklebung und Beschichtung		900,00		Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion	66,3	937,2	1745,9	36,9	479,1	1395,8
_7	1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel	1,00	900,00	0,70	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt-	66,3	937,2	1745,9	36,9	479,1	1395,8
	1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämm-	1,00	900,00	0,70	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen	66,3	937,2	1745,9	36,9	479,1	1395,8
_7 EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel	1,00 51,00	900,00 1800,00/ 2000,00	0,70	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit	66,3	937,2	1745,9	36,9	479,1	1395,8
EW		x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämm- platte (VF)	1,00 51,00 17,44	900,00 1800,00/ 2000,00 46,25	0,70 0,79 0,04	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter	66,3	937,2	1745,9	36,9	479,1	1395,8
EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämm- platte (VF) Lattung	1,00 51,00 17,44 2,56	900,00 1800,00/ 2000,00 46,25 484,51	0,70 0,79 0,04	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus	66,3	937,2	1745,9	36,9	479,1	1395,8
EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn	1,00 51,00 17,44 2,56 0,02	900,00 1800,00/ 2000,00 46,25 484,51 262,00	0,70 0,79 0,04	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter	66,3	937,2	1745,9	36,9	479,1	1395,8
EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	1,00 51,00 17,44 2,56 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51	0,70 0,79 0,04	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämm-	66,3	937,2	1745,9	36,9	479,1	1395,8
EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten)	1,00 51,00 17,44 2,56 0,02 0,38 1,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00	0,70 0,79 0,04 0,13 -	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten						
EW mas	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	1,00 51,00 17,44 2,56 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00	0,70 0,79 0,04	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämm-	66,3	937,2	1745,9 567,5	36,9	479,1 468,2	1395,8
EW mas _8	bis	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten)	1,00 51,00 17,44 2,56 0,02 0,38 1,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00	0,70 0,79 0,04 0,13 -	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten Grundlage Alt-baukonstruktion EWmas_70;						
EW mas _8	bis		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 1800,00/ 2000,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt-						
EW mas _8	bis 1968	x x x x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel	1,00 51,00 17,44 2,56 0,02 0,38 1,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00	0,70 0,79 0,04 0,13 - -	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen						
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 1800,00/ 2000,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt-						
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand)	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 1800,00/ 2000,00 46,25	0,70 0,79 0,04 0,13 - - - 0,70 0,79	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-						
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 16,00 2,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 1800,00/ 2000,00 46,25 1759,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00	0,70 0,79 0,04 0,13 - - 0,70 0,79	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämm-platten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-platte Grundlage Altbau-Grundlage Altbau-G		477,4			468,2	
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 16,00 2,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-platte Grundlage Altbaukonstruktion	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 16,00 2,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00	0,70 0,79 0,04 0,13 - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70;	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 16,00 2,00	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-platte Grundlage Altbaukonstruktion	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8	bis 1968	x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94	900,00 1800,00/ 2000,00 46,25 484,51 1300,00 900,00 1800,00/ 2000,00 46,25 1759,00 900,00 46,25 484,51	0,70 0,79 0,04 0,13 - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70; maximale Umwelt- wirkungen Sanierung mit	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8	bis 1968		WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94 0,02	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 46,25 484,51 262,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70; maximale Umwelt- wirkungen Sanierung mit Sunderung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8 EW mas _9	bis 1968	x	Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 46,25 484,51 262,00 484,51	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70; maximale Umwelt- wirkungen Sanierung mit	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8 EW mas _9	bis 1968	x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 46,25 484,51 262,00	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser- platte Grundlage Alt- baukonstruktion EWmas_60; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_70; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_70; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8 EW mas _9	bis 1968	x	Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 46,25 484,51 262,00 484,51	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämmplatten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-platte Grundlage Altbaukonstruktion EWmas_70; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämm-	44,1	477,4	567,5	43,5	468,2	557,4
EW mas _8 EW mas _9	bis 1968	x	WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Vollziegel/Mörtel Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Innenputz Vollziegel/Mörtel Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	1,00 51,00 17,44 2,56 0,02 0,38 1,00 1,50 12,00 2,00 1,50 12,00 20,06 2,94 0,02 0,38	900,00 1800,00/ 2000,00 46,25 484,51 262,00 484,51 1300,00 900,00 46,25 1759,00 900,00 46,25 484,51 262,00 484,51	0,70 0,79 0,04 0,13 - - - 0,70 0,79 0,04 1,00	Sanierung mit WDVS und Mineralfaser-platte Grundlage Alt-baukonstruktion EWmas_60; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und Holzfaserdämm-platten Grundlage Alt-baukonstruktion EWmas_70; minimale Umwelt-wirkungen Sanierung mit WDVS und Mineralfaser-platte Grundlage Altbaukonstruktion EWmas_70; maximale Umwelt-wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-platten und	44,1	477,4	567,5	43,5	468,2	557,4

	_												
	_		Innenputz	1,50	900,00	0,70	Crumallana Althau	45,8	485,1	578,5	41,6	429,9	504,7
			Stahlbeton B15-B25	00.00	0.400.00	0.50	Grundlage Altbau- konstruktion						
			(95/5)	20,80	2400,00	2,50	EWmas 73:						
EW			Außenputz, nach				minimale Umwelt-						
mas	1949-	ххх	Sanierung	2,00	1800,00	1,00	wirkungen						
_11	1978		innenliegend				Sanierung mit						
			Mineralwolle	16,00	46,25	0,04	WDVS und						
			(Außenwand)				Mineralfaser-						
			WDVS Verklebung	2,00	1759,00	1,00	platte						
	-		und Beschichtung										
			Innenputz	1,50	900,00	0,70	Grundlage Altbau-	72,4	945,3	1854,4	37,6	412,0	1427,3
			Stahlbeton B15-B25	20,80	2400,00	2,50	konstruktion						
			(95/5)				EWmas_73;						
			Außenputz, nach Sanierung	2.00	1800,00	1.00	maximale Umwelt-						
-144			innenliegend	2,00	1000,00	1,00	wirkungen						
EW	1949-		Holzfaserdämm-				Sanierung mit						
mas	1978	ххх	platte (VF)	20,06	46,25	0,04	hinter-/belüfteter						
_12			Lattung	2,94	484,51	0,13	Fassade aus						
			Winddichtheitsbahn	0,02	262,00	0,10	Faserzement-						
							platten und						
			Konterlattung	0,38	484,51		Holzfaserdämm-						
			Vorhangfassade	1,00	1300,00	-	platten						
	-		(Faserzementplatten				Crup dlags Alt						
			Stahlbeton B15-B25 (97/3)	7,50	2400,00	2,50	Grundlage Alt- baukonstruktion	45,8	481,9	574,0	44,2	461,6	546,9
			(97/3) Mineralwolle				EWmas 74:						
EW			(Außenwand)	17,00	46,25	0,04	minimale Umwelt-						
mas	1949-	x	WDVS Verklebung	2,00	1759,00	1,00	wirkungen						
_13	1994	~ ~ ~ ~ ~	und Beschichtung	,	,	,	Sanierung mit						
							WDVS und						
							Mineralfaser-						
							platte						
	_		Stahlbeton B15-B25	7.50	2400.00	2 50	Grundlage Altbau-	70.0	0247	1920.7	20.0	426.2	1440.2
			(97/3)	7,50	2400,00	2,50	konstruktion	70,9	924,7	1829,7	38,8	426,2	1449,2
			Holzfaserdämm-	20,06	46,25	0,04	EWmas_74;						
			platte (VF)				maximale Umwelt-						
-144			Lattung	2,94	484,51	0,13	wirkungen						
EW	1949-		Winddichtheitsbahn	0,02	262,00	-	Sanierung mit						
mas	1994	x x x x x	Konterlattung	0,38	484,51	-	hinter-/belüfteter						
_14													
			Vorhangfassade	1,00	1300,00	-	Fassade aus						
			Vorhangfassade (Faserzement-	1,00	1300,00	-	Fassade aus Faserzement-						
			•	1,00	1300,00	-	Faserzement- platten und						
			(Faserzement-	1,00	1300,00	-	Faserzement- platten und Holzfaserdämm-						
			(Faserzement-	1,00	1300,00	-	Faserzement- platten und						
	-		(Faserzement-				Faserzement- platten und Holzfaserdämm-	45.5	470.6	F72.0	20.0	405.4	472.0
	-		(Faserzement- platten)		2400,00	2,50	Faserzement- platten und Holzfaserdämm- platten	45,5	479,6	573,0	39,8	405,4	473,8
	-		(Faserzement- platten) Stahlbeton B15-B25	27,40	2400,00	2,50	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76;	45,5	479,6	573,0	39,8	405,4	473,8
EW	- 1979-		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand)				Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt-	45,5	479,6	573,0	39,8	405,4	473,8
mas	1979- 1990	хх	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung	27,40 16,00	2400,00	2,50	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen	45,5	479,6	573,0	39,8	405,4	473,8
	1979- 1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand)	27,40 16,00	2400,00 46,25	2,50 0,04	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit	45,5	479,6	573,0	39,8	405,4	473,8
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung	27,40 16,00	2400,00 46,25	2,50 0,04	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und	45,5	479,6	573,0	39,8	405,4	473,8
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung	27,40 16,00	2400,00 46,25	2,50 0,04	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser-	45,5	479,6	573,0	39,8	405,4	473,8
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	27,40 16,00	2400,00 46,25	2,50 0,04 1,00	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte	45,5	479,6	573,0	39,8	405,4	473,8
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25	27,40 16,00 2,00	2400,00 46,25	2,50 0,04 1,00	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau-	45,5		573,0	39,8		473,8 1396,4
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3)	27,40 16,00 2,00	2400,00 46,25 1759,00	2,50 0,04 1,00	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion						
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm-	27,40 16,00 2,00	2400,00 46,25 1759,00	2,50 0,04 1,00	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76;						
mas		x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF)	27,40 16,00 2,00 27,40 20,06	2400,00 46,25 1759,00 2400,00 46,25	2,50 0,04 1,00 2,50 0,04	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt-						
mas _15	1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung	27,40 16,00 2,00 27,40 20,06 2,94	2400,00 46,25 1759,00 2400,00 46,25 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen						
mas _15	1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn	27,40 16,00 2,00 27,40 20,06 2,94 0,02	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00	2,50 0,04 1,00 2,50 0,04	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter/belüfteter Fassade aus Faserzement- platten und						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten)	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten)	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten						
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00	2,50 0,04 1,00 2,50 0,04 0,13 -	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau-	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15	1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten)	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00	2,50 0,04 1,00 2,50 0,04 0,13	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15	1990 - 1979- 1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00 900,00 472,00/ 2000,00	2,50 0,04 1,00 2,50 0,04 0,13 -	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion EWmas_81;	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15	1990 - 1979- 1990		(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/ -steine) Außenputz, nach Sanierung	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00	2,50 0,04 1,00 2,50 0,04 0,13 -	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15 EW mas _16	1990 - 1979- 1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/ -steine) Außenputz, nach Sanierung innenliegend	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00 900,00 472,00/ 2000,00	2,50 0,04 1,00 2,50 0,04 0,13 - - -	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion EWmas_81; minimale Umwelt-	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15 EW mas _16	1990 - 1979- 1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/ -steine) Außenputz, nach Sanierung innenliegend Mineralwolle	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00 900,00 472,00/ 2000,00 1800,00	2,50 0,04 1,00 2,50 0,04 0,13 - - - 0,70 0,16	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion EWmas_81; minimale Umwelt- wirkungen	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15 EW mas _16	1990 - 1979- 1990	x x	Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämmplatte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzementplatten) Innenputz Gasbeton(block/steine) Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand)	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00 900,00 472,00/ 2000,00	2,50 0,04 1,00 2,50 0,04 0,13 - - -	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion EWmas_81; minimale Umwelt- wirkungen Sanierung mit	72,0	939,9	1848,9	35,8	387,5	1396,4
mas _15 EW mas _16	1990 - 1979- 1990	x x	(Faserzement- platten) Stahlbeton B15-B25 (97/3) Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Stahlbeton B15-B25 (97/3) Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement- platten) Innenputz Gasbeton(block/ -steine) Außenputz, nach Sanierung innenliegend Mineralwolle	27,40 16,00 2,00 27,40 20,06 2,94 0,02 0,38 1,00 1,50 24,00 2,00	2400,00 46,25 1759,00 2400,00 46,25 484,51 262,00 484,51 1300,00 900,00 472,00/ 2000,00 1800,00	2,50 0,04 1,00 2,50 0,04 0,13 - - - 0,70 0,16	Faserzement- platten und Holzfaserdämm- platten Grundlage Alt- baukonstruktion EWmas_76; minimale Umwelt- wirkungen Sanierung mit WDVS und Mineralfaser- platte Grundlage Altbau- konstruktion EWmas_76; maximale Umwelt- wirkungen Sanierung mit hinter/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm- platten Grundlage Altbau- konstruktion EWmas_81; minimale Umwelt- wirkungen Sanierung mit WDVS und	72,0	939,9	1848,9	35,8	387,5	1396,4

			Innenputz	1,50	900,00	0,70		62,7	832,9	1500,2	40,7	490,5	1250,9
			Gasbeton(block/	24,00	472,00/	0.16	Grundlage Altbau-						
			-steine)	,	2000,00	-,	konstruktion						
			Außenputz, nach Sanierung	2,00	1800,00	1 00	EWmas_81; maximale Umwelt-						
			innenliegend	2,00	1000,00	1,00	wirkungen						
EW mas	1961-	x	Holzfaserdämm-	13,95	46,25	0,04	Sanierung mit						
_18	2000	^ ^ ^ ^ ^	platte (VF)				hinter-/belüfteter						
			Lattung	2,05	484,51	0,13	Fassade aus Faserzement-						
			Winddichtheitsbahn	0,02	262,00	-	platten und						
			Konterlattung Vorhangfassade	0,38	484,51	_	Holzfaserdämm-						
			(Faserzement-	1,00	1300,00		platten						
			platten)	,									
			Innenputz	1,50	900,00	0,70	Grundlage Altbau-	40,3	465,0	551,7	38,4	436,9	521,1
			Hochlochziegel	36,50	800,00/	0,35	konstruktion						
			(75/25)	,	2000,00	-,	EWmas_82;						
EW	1961-		Außenputz, nach Sanierung	2.00	1800,00	1,00	minimale Umwelt-						
mas _19	2000	x x x x x	innenliegend	_,	,	.,	wirkungen Sanierung mit						
_			Mineralwolle	13,00	46,25	0,04	WDVS und						
			(Außenwand) WDVS Verklebung				Mineralfaser-						
			und Beschichtung	2,00	1759,00	1,00	platte						
	•		Innenputz	1,50	900,00	0,70		64,1	893,1	1632,1	38,0	485,8	1324,9
			Hochlochziegel	26.50	800,00/	0.25	Grundlage Altbau-						
			(75/25)	36,50	2000,00	0,33	konstruktion						
			Außenputz, nach	2.00	1800,00	1.00	EWmas_82;						
			Sanierung innenliegend	2,00	1800,00	1,00	maximale Umwelt- wirkungen						
EW	1961-		Holzfaserdämm-	15.70	46.25	0,04	Sanierung mit						
mas _20	2000	x x x x x	platte (VF)	15,70	46,25	0,04	hinter-/belüfteter						
_20			Lattung	2,30	484,51	0,13	Fassade aus						
			Winddichtheitsbahn	0,02	262,00	-	Faserzement- platten und						
			Konterlattung	0,38	484,51	_	Holzfaserdämm-						
			Vorhangfassade (Faserzement-	1,00	1300,00		platten						
			platten)	,	,								
	-		Innenputz	1,00	900,00	0,70	Grundlage Altbau-	27,8	301,7	364,1	26,1	277,1	337,3
			Hochlochziegel	24,00	575,00	0,08/	konstruktion						
			(99,6/0,4) Außenputz, nach			0,09	EWmas_84;						
EW	2002-	V V V	Sanjerung	2,00	900,00	1,00	minimale Umwelt-						
mas _21	2009	x x x	innenliegend				wirkungen Sanierung mit						
_			Mineralwolle (Außenwand)	6,00	46,25	0,04	WDVS und						
			WDVS Verklebung				Mineralfaser-						
			und Beschichtung	2,00	900,00	1,00	platte						
			Innenputz	1,00	900,00	0,70		50,5	717,0	1176,1	34,6	471,6	995,8
			Hochlochziegel	24,00	575.00	0,08/	Grundlage Altbau-						
			(99,6/0,4) Außenputz, nach			0,09	konstruktion						
			Sanierung	2,00	900,00	1,00	EWmas_84; maximale Umwelt-						
E\A/			innenliegend				wirkungen						
EW mas	2002-	x x x	Holzfaserdämm-	8,72	46,25	0,04	Sanierung mit						
_22	2009		platte (VF) Lattung	1,28	484,51	0,13	hinter-/belüfteter Fassade aus						
			Winddichtheitsbahn	0,02	262,00	0,13	Faserzement-						
			Konterlattung	0,38	484,51	_	platten und						
			Vorhangfassade				Holzfaserdämm- platten						
			(Faserzement-	1,00	1300,00	-	platteri						
			platten)	1.00	000.00	0.70		40.2	422.0	E04 2	40.2	422.0	504.2
			Innenputz Kalksandstein	1,00	900,00		Grundlage Altbau-	40,2	423,6	504,3	40,2	423,6	504,3
			(99,2/0,8)	17,50	1800,00	0,99	konstruktion EWmas_85;						
			Mineralwolle	7,50	46,25	0,04	minimale Umwelt-						
			(Außenwand)	,,50	,20	0,04	wirkungen						
			WDVS Verklebung und Beschichtung,				Sanierung mit WDVS und						
EW	2022		nach Sanierung	2,00	900,00	1,00	Mineralfaser-						
mas	2002- 2009	X	innenliegend				platte; It.						
_23	_000		Mineralwolle	8,50	46,25	0,04	Hersteller St.						
			(Außenwand) WDVS Verklebung	2,00	900,00	1,00	Gobain Weber Aufbringung						
			und Beschichtung	_,00	223,00	.,00	eines WDVS auf						
							ein bestehendes						
							WDVS mit spezieller						
							Technik möglich						

Processor 1,000								1						
EV 2012 20				Innenputz	1,00	900,00	0,70		72,1	949,6	1856,1	41,6	471,4	1502,8
Five 2020					17,50	1800,00	0,99	Grundlage Altbau-						
File														
MOS Vehickering and Decorations 1,00 1					7,50	46,25	0,04	EWmas_85;						
2002					0.00	000.00	4.00							
1982 2099 X	EW	2002		und Beschichtung	2,00	900,00	1,00							
District (P)			x		20.06	46.25	0.04							
Lating	_24	2000												
Non-interlating							0,13							
Vonmendplassade 1.00 100.00 1							-	platten und						
Company Comp				•	0,38	484,51	-							
EW 2010- 100				•	1.00	1200.00		platten						
Incerporal					1,00	1300,00	-							
Ralisandsteam 1,500 1,7,50 1600,00 0,39 Environment 1,000 0,4,55 0,04 Environment 1,000 0,4,55 0,04 Environment 1,000 0,000 1,000 Mancralister 1,000 0,000 1,000 Mancralister 1,000 1,000 Mancra					1.00	900.00	0.70	Grundlage Alt-	38.0	399.1	475.8	38.0	399.1	475.8
17-20 19-2									00,0	000,1	,.	55,5	000,.	,0
Common C				(99,2/0,8)	17,50	1800,00	0,99							
Sametrung mit Sametrung mi					10.50	46.25	0.04							
Section Sect					,	,	-,							
2010				-										
Name	EW	2010-			2,00	900,00	1,00	Mineralfaser-						
Mineralwords			x	X innenliegend										
February 1,00 1,0	_25	2020		Mineralwolle	5 50	46 25	0.04							
Part														
EW 2010					2,00	900,00	1,00							
EW 2010				und beschichtung										
Technik möglich Fig. Fig								WDVS mit						
EW 2010-														
EW characteristing 1,750 1800.00 0,99 Grundlage Altbau konstruktion EV/mas 2,00 0,00 EV/mas 2,00 EV/mas 2								Technik möglich						
Georgia Geor				·	1,00	900,00	0,70		72,2	951,3	1857,9	41,7	473,1	1504,6
EW ranger 2010-					17,50	1800,00	0,99	Grundlage Altbau-						
EW mas								konstruktion						
EW 2010					10,50	46,25	0,04							
2010-				WDVS Verklebung	2.00	900.00	1.00							
Part	EW	2010-		und Beschichtung	2,00	300,00	1,00							
Latting			x		20,06	46,25	0,04							
Winddichheitsbahn 0.02 262,00 Faserzement 1,00 300,00 1,00	_26				2 9/	181 51	0.13							
EW Sahel- 1918				•			0,13	Faserzement-						
Vorhangfassade (Faserzement-platten)														
Faserzement platten 1,00 1300,00 -					0,50	707,51								
EW Sahe					1.00	1300.00	_	piatteri						
Voliziegel 12,00				(
EW 2shel 1918				platten)										
EW 2shelled 1			-		1,00	900,00	0,70		42,2	452,5	594,9	38,9	406,3	537,9
EW 2shel Dis 1918				Kalkgipsputz		1800,00/			42,2	452,5	594,9	38,9	406,3	537,9
EW 2shel bis 1918 x				Kalkgipsputz Vollziegel		1800,00/			42,2	452,5	594,9	38,9	406,3	537,9
EW 2shel				Kalkgipsputz Vollziegel Luftschicht, ruhend	12,00	1800,00/			42,2	452,5	594,9	38,9	406,3	537,9
Sahel				Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende	12,00	1800,00/		konstruktion	42,2	452,5	594,9	38,9	406,3	537,9
1918 258el-				Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel	12,00	1800,00/		konstruktion EW2shelled_2;	42,2	452,5	594,9	38,9	406,3	537,9
Vormauerziegel 12,00 2000,00 0,79 WDVS (Mineralfaser- platte) und 2wischendämmung (Zellulose)		,		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen)	12,00	1800,00/ 2000,00	0,79	konstruktion EW2shelled_2; minimale Umwelt-	42,2	452,5	594,9	38,9	406,3	537,9
Außenputz, nach Sanierung 1,50 1800,00 0,87 Zwischendämmung (Zellulose) Mineralwolle (Außenwand) 12,00 46,25 0,04 WDVS Verklebung und Beschichtung 2,00 1759,00 1,00 T1,3 959,2 1835,2 40,9 484,1 1478,1 Vollziegel 12,00 1800,00/2000,00 0,79 Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) EWZshelled 2; Vormauerziegel 12,00 1800,00/2000,00 0,79 Sanierung 1,50 1800,00/2000,00 0,79 Wormauerziegel 12,00 1800,00/2000,00 0,79 Sanierung 1,50 1800,00/2000,00 0,79 Sanierung mit Normauerziegel 19,18 46,25 0,04 Fassade aus Fassade aus Fassade aus Fassarde aus Vorhangfassade (Faserzement-Indicating 0,38 484,51 - Monterlattung 0,38 484,51 -	2shel-		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser-	12,00	1800,00/ 2000,00 - 45,00	0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen	42,2	452,5	594,9	38,9	406,3	537,9
Sanierung 1,50 1800,00 0,87 Zwischendämmung (Zellulose) Winderstanding 1,50 1	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung	12,00 10,00 7,00	1800,00/ 2000,00 - 45,00 1800,00/	0,79 - 0,04/ 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit	42,2	452,5	594,9	38,9	406,3	537,9
Innenliegend Mineralwolle (Außenwand) 12,00 46,25 0,04	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel	12,00 10,00 7,00	1800,00/ 2000,00 - 45,00 1800,00/	0,79 - 0,04/ 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser-	42,2	452,5	594,9	38,9	406,3	537,9
Mineralwolle	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach	12,00 10,00 7,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und	42,2	452,5	594,9	38,9	406,3	537,9
Außenwand WDVS Verklebung 2,00 1759,00 1,00	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung	12,00 10,00 7,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	42,2	452,5	594,9	38,9	406,3	537,9
Ralkgipsputz	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend	12,00 10,00 7,00 12,00 1,50	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00	0,79 - 0,04/ 0,79 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	42,2	452,5	594,9	38,9	406,3	537,9
Kalkgipsputz	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand)	12,00 10,00 7,00 12,00 1,50	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00	0,79 - 0,04/ 0,79 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	42,2	452,5	594,9	38,9	406,3	537,9
Vollziegel	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung	12,00 10,00 7,00 12,00 1,50	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25	0,79 - 0,04/ 0,79 0,79 0,87	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	42,2	452,5	594,9	38,9	406,3	537,9
Luftschicht, ruhend (30% einbindende Mauerziegel angenommen)	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	12,00 10,00 7,00 12,00 1,50 12,00 2,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
EW 2shelled 2	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	12,00 10,00 7,00 12,00 1,50 12,00 2,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
Comparison	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz	12,00 10,00 7,00 12,00 1,50 12,00 2,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
Mauerziegel angenommen Konstruktion EWZshelled_2; O,79 maximale Umwelt wirkungen Sanierung mit Sanierung mit Sanierung mit Sanierung mit Holzfaserdämm-platte (VF) Lattung 2,82 484,51 O,13 Holzfaserdämm-platten und Holzfaserdämm-platten und Konterlattung O,38 484,51 O,38 Vorhangfassade (Faserzement- 1,00 1300,00 - Faserzement- Faserzement-platten und Holzfaserdämm-platten und Holzfaserdäm	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel	12,00 10,00 7,00 12,00 1,50 12,00 2,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
EW Shelled 2; 0,79 maximale Umwelt- wirkungen 2,800,00/ 1,50 1,	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00 0,70	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose)						
EW	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00 0,70	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau-						
EW	2shel- led		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 46,25 1759,00 900,00 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00 0,70 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2;						
led2 1918	2shel- led _1		x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen)	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 900,00 1800,00/ 2000,00 - 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00 0,70 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt-						
1916 1916 1917 1918	2shel-led _1	1918	x	Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 900,00 1800,00/ 2000,00 - 1800,00/	0,79 - 0,04/ 0,79 0,79 0,87 0,04 1,00 0,70 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen						
Holzfaserdämm- platte (VF)	2shel-led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach	12,00 10,00 7,00 12,00 1,50 12,00 2,00 10,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 - 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit						
platte (VF) Lattung 2,82 484,51 0,13 Holzfaserdämm- Winddichtheitsbahn 0,02 262,00 - platten Konterlattung 0,38 484,51 - Vorhangfassade (Faserzement- 1,00 1300,00 -	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung	12,00 10,00 7,00 12,00 1,50 12,00 2,00 10,00 12,00	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 - 0,79	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter						
Winddichtheitsbahn 0,02 262,00 - platten Konterlattung 0,38 484,51 - Vorhangfassade (Faserzement- 1,00 1300,00 -	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00 12,00 12,00 12,00 1,50	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00 - 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,70 0,79 - 0,79 0,87	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus						
Konterlattung	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm-	12,00 10,00 7,00 12,00 1,50 12,00 2,00 1,00 12,00 12,00 12,00 1,50	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00 - 1800,00/ 2000,00	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,70 0,79 - 0,79 0,87	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement-						
Vorhangfassade (Faserzement- 1,00 1300,00 -	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm- platte (VF)	12,00 10,00 7,00 12,00 1,50 12,00 1,00 12,00 10,00 12,00 150 19,18	1800,00/ 2000,00 45,00 1800,00/ 2000,00 1800,00/ 900,00 1800,00/ 2000,00 1800,00/ 2000,00 1800,00/ 46,25	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 0,87 0,04	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
(Faserzement- 1,00 1300,00 -	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung	12,00 10,00 7,00 12,00 1,50 12,00 1,00 12,00 10,00 12,00 15,00 19,18 2,82	1800,00/ 2000,00 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00 1800,00/ 46,25 484,51	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 0,87 0,04	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn	12,00 10,00 7,00 12,00 1,50 12,00 1,00 12,00 12,00 15,00 12,00 15,00 12,00 1,50 19,18 2,82 0,02	1800,00/ 2000,00 45,00 1800,00/ 2000,00 1800,00 46,25 1759,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00 1800,00/ 46,25 484,51 262,00	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 0,87 0,04	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
piatten)	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	12,00 10,00 7,00 12,00 1,50 12,00 1,00 12,00 10,00 12,00 1,50 19,18 2,82 0,02 0,38	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00/ 900,00 1800,00/ 2000,00 - 1800,00/ 2000,00 46,25 484,51 262,00 484,51	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 0,87 0,04	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
	2shel- led _1	1918		Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Außenputz, nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Vollziegel Luftschicht, ruhend (30% einbindende Mauerziegel angenommen) Vormauerziegel Außenputz, nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade (Faserzement-	12,00 10,00 7,00 12,00 1,50 12,00 1,00 12,00 10,00 12,00 1,50 19,18 2,82 0,02 0,38	1800,00/ 2000,00 - 45,00 1800,00/ 2000,00 1800,00/ 900,00 1800,00/ 2000,00 - 1800,00/ 2000,00 46,25 484,51 262,00 484,51	0,79 - 0,04/ 0,79 0,87 0,04 1,00 0,79 - 0,79 0,87 0,04	konstruktion EW2shelled_2; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_2; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						

	_												
			Kalkgipsputz	1,00	900,00	0,70		45,8	493,0	617,5	44,5	475,3	594,7
			Kalksandstein	30,00	1800,00/	0,99							
			(75/25)		2000,00								
			Luftschicht, ruhend (30% einbindende				Grundlage Altbau-						
			Kalksandsteine	6,00	-	-	konstruktion						
			angenommen)				EW2shelled_7;						
EW			Zellulosefaser-	4,20	45,00		minimale Umwelt-						
2shel-	1949-		Einblasdämmung	7,20		0,99	wirkungen						
led	1957	х	Vormauerschale (Kalksand-Vollstein)	11,50	1800,00/ 2000,00	0,99	Sanierung mit WDVS						
_3			Glattputz		2000,00		(Mineralfaser-						
			(Kalkzement), nach				platte) und						
			Sanierung	1,50	1800,00	0,87	Zwischendäm-						
			innenliegend				mung (Zellulose)						
			Mineralwolle (Außenwand)	13,00	46,25	0,04							
			WDVS Verklebung										
			und Beschichtung	2,00	1759,00	1,00							
	_		Kalkgipsputz	1,00	900,00	0,70		74,2	984,8	1863,6	44,9	526,4	1525,6
			Kalksandstein	30,00	1800,00/	0,99							
			(75/25)	30,00	2000,00	0,55							
			Luftschicht, ruhend										
			(30% einbindende Kalksandsteine	6,00	-	-	Grundlage Altbau-						
			angenommen)				konstruktion						
			Vormauerschale		1800,00/		EW2shelled_7;						
E14/			(Kalksand-Vollstein)	11,50	2000,00	0,99	maximale Umwelt-						
EW 2shel-	1949-		Glattputz				wirkungen Sanierung mit						
led	1957	Х	(Kalkzement), nach	1.50	1800,00	0.87	hinter-/belüfteter						
_4			Sanierung	,,00	.000,00	0,0.	Fassade aus						
			innenliegend Holzfaserdämm-				Faserzement-						
			platte (VF)	19,18	46,25	0,04	platten und Holzfaserdämm-						
			Lattung	2,82	484,51	0,13	platten						
			Winddichtheitsbahn	0,02	262,00	-	·						
			Konterlattung	0,38	484,51	-							
			Vorhangfassade										
			(Faserzement- platten)	1,00	1300,00	-							
	_			1.00	900.00	0.70		47.4	520.4	631.1	45.4	493.6	596.7
			Kalkgipsputz Ziegelsplittbeton	1,00 24,00	900,00	0,70 0,58		47,4	520,4	631,1	45,4	493,6	596,7
	_		Kalkgipsputz					47,4	520,4	631,1	45,4	493,6	596,7
	_		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende	24,00		0,58	Grundlage Altbau-	47,4	520,4	631,1	45,4	493,6	596,7
	_		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton-			0,58	Grundlage Altbau- konstruktion	47,4	520,4	631,1	45,4	493,6	596,7
	_		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen)	24,00		0,58	konstruktion EW2shelled_10;	47,4	520,4	631,1	45,4	493,6	596,7
EW	_		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser-	24,00		0,58	konstruktion EW2shelled_10; minimale Umwelt-	47,4	520,4	631,1	45,4	493,6	596,7
2shel-	1958-	x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung	24,00 3,00 2,10	1200,00	0,58 - 0,04/ 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led	1958- 1968	x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel	24,00 3,00	1200,00	0,58	konstruktion EW2shelled_10; minimale Umwelt-	47,4	520,4	631,1	45,4	493,6	596,7
2shel-		х	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz	24,00 3,00 2,10	1200,00 - 45,00 1400,00/	0,58 - 0,04/ 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser-	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach	24,00 3,00 2,10 11,50	1200,00 - 45,00 1400,00/	0,58 - 0,04/ 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz	24,00 3,00 2,10 11,50	45,00 1400,00/ 2000,00	0,58 - 0,04/ 0,58 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle	24,00 3,00 2,10 11,50	1200,00 - 45,00 1400,00/ 2000,00 1800,00	0,58 - 0,04/ 0,58 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand)	24,00 3,00 2,10 11,50	45,00 1400,00/ 2000,00	0,58 - 0,04/ 0,58 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung	24,00 3,00 2,10 11,50 1,50	1200,00 - 45,00 1400,00/ 2000,00 1800,00	0,58 - 0,04/ 0,58 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	47,4	520,4	631,1	45,4	493,6	596,7
2shel- led		х	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 - 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00	0,58 - 0,04/ 0,58 0,60 0,87	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-	47,4		1774,1	45,4		
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 - 45,00 1400,00/ 2000,00 1800,00 46,25	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						596,7
2shel- led		х	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm-						
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton-	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau-						
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen)	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00	1200,00 - 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion						
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton-	24,00 3,00 2,10 11,50 1,50 14,00 2,00	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10;						
2shel- led		x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen)	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 -	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion						
2shelled _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70 0,58 - 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit						
2shel-led _5	1968	x	Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 -	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70 0,58	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter						
2shelled _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00	0,58 - 0,04/ 0,58 0,60 0,87 - 0,04 1,00 - 0,70 0,58 - 0,60 0,87	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus						
2shel-led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,70 0,58 - 0,60	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter						
2shel-led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Holzfaserdämm-	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00	0,58 - 0,04/ 0,58 0,60 0,87 - 0,04 1,00 - 0,70 0,58 - 0,60 0,87	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS ((Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
2shel-led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Holzfaserdämm- platte (VF)	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50 17,44	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00 46,25	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,58 - 0,60 0,87 0,04	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belütteter Fassade aus Faserzement- platten und						
2shel-led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50 1,50 17,44 2,56	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00 46,25 484,51	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,58 - 0,60 0,87 0,04	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS ((Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
2shel-led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung Vorhangfassade	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50 17,44 2,56 0,02 0,38	1200,00 - 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00 46,25 484,51 262,00 484,51	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,58 - 0,60 0,87 0,04	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS ((Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						
2shel- led _5	1968		Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Zellulosefaser- Einblasdämmung Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Mineralwolle (Außenwand) WDVS Verklebung und Beschichtung Kalkgipsputz Ziegelsplittbeton Luftschicht, ruhend (30% einbindende Ziegelsplittbeton- steine angenommen) Vormauerziegel Glattputz (Kalkzement), nach Sanierung innenliegend Holzfaserdämm- platte (VF) Lattung Winddichtheitsbahn Konterlattung	24,00 3,00 2,10 11,50 1,50 14,00 2,00 1,00 24,00 3,00 11,50 1,50 17,44 2,56 0,02 0,38	1200,00 45,00 1400,00/ 2000,00 1800,00 46,25 1759,00 900,00 1200,00 - 1400,00/ 2000,00 1800,00 46,25 484,51 262,00	0,58 - 0,04/ 0,58 0,60 0,87 0,04 1,00 0,58 - 0,60 0,87 0,04	konstruktion EW2shelled_10; minimale Umwelt- wirkungen Sanierung mit WDVS ((Mineralfaser- platte) und Zwischendäm- mung (Zellulose) Grundlage Altbau- konstruktion EW2shelled_10; maximale Umwelt- wirkungen Sanierung mit hinter-/belüfteter Fassade aus Faserzement- platten und Holzfaserdämm-						

			Kalkgipsputz	1,00	900,00	0,70		39,2	404,4	516,5	37,4	379,1	484,0
			Porenbeton	24,00	600,00	0,23	Grundlage Altbau-						
			Luftschicht, ruhend				konstruktion						
			(30% einbindende	6,00	_	_	EW2shelled_14;						
EW			Porenbetonsteine	-,			minimale Umwelt-						
2shel-	1969-		angenommen) Zellulosefaser-			0,04/	wirkungen						
led	1978	х	Einblasdämmung	4,20	45,00	0,23	Sanierung mit WDVS						
_7			_	11 50	1400,00/	0,60	(Mineralfaser-						
			Vormauerziegel	11,50	2000,00	0,60	platte) und						
			Mineralwolle	10,00	46,25	0,04	Zwischendäm-						
			(Außenwand)				mung (Zellulose)						
			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00							
			Kalkgipsputz	1,00	900,00	0,70		66,3	881 1	1618,4	41,5	1913	1332,1
			Porenbeton	24,00	600,00	0,23		00,5	001,1	1010,4	41,5	434,3	1332,1
			Luftschicht, ruhend	24,00	000,00	0,20	Crundlaga Althau						
			(30% einbindende				Grundlage Altbau- konstruktion						
			Porenbetonsteine	6,00	-	-	EW2shelled_14;						
			angenommen)				maximale Umwelt-						
EW			Vormauerziegel	11,50	1400,00/	0,60	wirkungen						
2shel-	1969- 1978	x	Holefooodiim		2000,00		Sanierung mit hinter-/belüfteter						
led _8	1978		Holzfaserdämm- platte (VF)	15,70	46,25	0,04	Fassade aus						
_0			Lattung	2,30	484,51	0,13	Faserzement-						
			Winddichtheitsbahn	0,02	262,00	-	platten und						
			Konterlattung	0,38	484,51		Holzfaserdämm-						
			Vorhangfassade	0,00	404,01		platten						
			(Faserzement-	1,00	1300,00								
			platten)		,								
			Innenputz	1,00	900,00	0,70		43,1	474,2	596,7	40,4	436,8	551,5
			Vollziegel	17,50	1800,00/	0,68							
			•	,	2000,00	-,							
			Luftschicht, ruhend (30% einbindende				Grundlage Altbau-						
			Mauerziegel	6,00	-	0,18	konstruktion						
			angenommen)				EW2shelled_19;						
EW			Zellulosefaser-	4.20	45,00	0,04/	minimale Umwelt- wirkungen						
2shel-	1919-	x	Einblasdämmung	4,20		0,68	Sanierung mit						
led	1948		Vormauerziegel	12,00	1800,00/	0,68	WDVS						
_9			Außenputz, nach		2000,00		(Mineralfaser-						
			Sanierung	1,50	1800,00	0,87	platte) und						
			innenliegend	.,	,	-,	Zwischendäm-						
			Mineralwolle	13,00	46,25	0,04	mung (Zellulose)						
			(Außenwand)	13,00	40,23	0,04							
			WDVS Verklebung	2,00	1759,00	1,00							
			und Beschichtung	1.00	000.00	0.70		74 F	000.4	4042.0	40.0	407.0	1482,4
			Innenputz	1,00	900,00 1800,00/	0,70		71,5	900,1	1842,9	40,8	467,9	1462,4
			Vollziegel	17,50	2000,00/	0,68							
			Luftschicht, ruhend		2000,00								
			(30% einbindende	6.00		0.40	Grundlage Altbau-						
			Mauerziegel	6,00	-	0,18	konstruktion						
			angenommen)				EW2shelled_19;						
			Vormauerziegel	12,00	1800,00/	0,68	maximale Umwelt-						
EW	1010		Außenputz, nach		2000,00		wirkungen						
2shel- led	1919-	x	Sanierung	1.50	1800,00	0.87	Sanierung mit hinter-/belüfteter						
_10	.540		innenliegend	.,	,	-,	Fassade aus						
			Holzfaserdämm-	19,18	46,25	0,04	Faserzement-						
			platte (VF)				platten und						
			Lattung	2,82	484,51	0,13	Holzfaserdämm-						
			Winddichtheitsbahn	0,02	262,00	-	platten						
			Konterlattung	0,38	484,51	-							
			Vorhangfassade		4000								
			(Faserzement-	1,00	1300,00	-							
			platten) Kalkgipsputz	1,00	900,00	0,70		40,8	445,0	569,8	37,8	403,8	520,8
					1800,00/			70,0	- ,0	505,0	57,0	-03,0	520,0
			Vollziegel	12,00	2000,00	0,79	Grundlage Altbau-						
			Luftschicht, ruhend				konstruktion						
			(30% einbindende	7,00	-	0,79	EW2shelled_20;						
EW			Mauerziegel	,		, -	minimale Umwelt- wirkungen						
2shel-	bis	x x x x x	angenommen) Zellulosefaser-			0,04/	Sanierung mit						
led _11	1978		Einblasdämmung	4,90	45,00	0,79	WDVS						
			Vollziegel	12,00	1800,00/	0,79	(Mineralfaser-						
			· ·	,00	2000,00	5,75	platte) und						
			Mineralwolle (Außenwand)	13,00	46,25	0,04	Zwischendäm- mung (Zellulose)						
			WDVS Verklebung		4		g (_0000)						
			und Beschichtung	2,00	1759,00	1,00							

February Valleage Valleage				Kallesiaanuta	1.00	000.00	0.70		60.0	026.2	4000.4	20.2	457.0	11100
Lithertoffer in Paris Color Colo									69,0	930,2	1609,4	36,3	437,2	1446,9
Committee Comm				•	12,00		0,79	Crumdiana Althau						
2-bind 1970 X x X x x X Following 1,00	E\A/			(30% einbindende Mauerziegel	7,00	-	0,79	konstruktion EW2shelled_20; maximale Umwelt-						
Part	2shel-		x x x x x	Vollziegel	12,00		0,79	Sanierung mit						
Laming		1976			19,18	46,25	0,04	Fassade aus						
Romanistant 1.00				-	2,82	484,51	0,13							
Volumer							-							
Normalboton 15,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00 1,00 1,00 250,00				Vorhangfassade (Faserzement-			-	platten						
Sept		,			15,00	2350,00	2,10		46,0	418,8	500,9	40,0	336,8	393,3
Schwerheiden					5,00	30,00	0,04							
Section 1990		1971-			6.00	2350.00	2.10							
Normal			x x x											
Normabeton 15,00 2350,00 235	_13			(Außenwand)	12,00	40,25	0,04							
Normabeton					2,00	1759,00	1,00	,						
Polystyroddamrung, XFS (AW) Solventelon Solventelon					15,00	2350,00	2,10	. /	68,4	830,6	1499,0	40,7	409,0	1145,7
EW Schwerheton 6,00 235,000 2.10 maximate Umwelt withrungen 1,00 1,0				Polystyroldämmung,				Ü	·	,		·	,	·
EW Holzberdamm- 13,95 46,25 0,04 Sanisrung mit 1991 14 14				, ,				EW2shelled_21;						
Sahel 1971- Indicated Indicate Indicated Ind	E\\\/				6,00	2350,00	2,10							
Lattung		1971-			13,95	46,25	0,04							
EW Schwerbeton 1,00 10,00 20,00 2,10 Minralisaer 1,00 10,00 2,00 2,10 Minralisaer 1,00 1,00 Minralisaer		1990	x x x	Lattung	2,05	484,51	0,13							
EW 2shel- 1981- 1981-	_14						-							
Final Pattern 1,00 1300,00 1,				•	0,38	484,51	-							
Polystyroldämmung, XPS (AW) S.00 30.00 A.				(Faserzement-	1,00	1300,00	-							
EW 2shel 1981-					15,00	2350,00	2,10		46,0	418,8	500,9	40,0	336,8	393,3
28hel- 1990	514				5,00	30,00	0,04							
Ied 1990		1981-			6,00	2350,00	2,10	minimale Umwelt-						
WDVS Verklebung und Beschichtung	led		хх		12,00	46,25	0,04	Sanierung mit						
Normalbeton				WDVS Verklebung	2,00	1759,00	1,00	(Mineralfaser-						
Polystyroldämmung, XPS (AW) Solution S					15.00	2350.00	2 10		68.4	830.6	1499 0	40.7	409 N	1145 7
EW 2shel- 1981- 1990								Ü	00,4	030,0	1433,0	40,1	403,0	1143,7
EW 2shel- 1981-				XPS (AW)			0,04							
25hel- 1981- 1990					6,00	2350,00	2,10							
Lattung		1981-			13,95	46,25	0,04							
Ronterlattung			X X		2,05	484,51	0,13							
EW 2shel- 1976- led 1990 2 2 2 2 2 2 2 2 2	_16			Winddichtheitsbahn			-							
EW 2shel- 1976- 1990				•	0,38	484,51	-							
EW 2shel- 1976- led 1990				(Faserzement-	1,00	1300,00	-	Holzfaserdämm-						
Polystyroldämmung, XPS (AW)					45.00	2250.00	0.40	piatteri	40.0	440 0	E00.0	40.0	226.0	202.2
EW 2shel- 1976- led 1990									46,0	418,8	500,9	40,0	336,8	393,3
2shel- 1976- 1990	FW				5,00	30,00	0,04							
1990 Wirklander 12,00 46,25 0,04 Wirklangen Sanierung mit WDVS (Mineral-faserplatte)			v v v		6,00	2350,00	2,10							
WDVS Verklebung und Beschichtung		1990	^ ^ ^		12,00	46,25	0,04							
Normalbeton 15,00 2350,00 2,10 Grundlage Altbau- 68,4 830,6 1499,0 40,7 409,0 1145,7	_17							Ü						
Polystyroldämmung, XPS (AW)					2,00	1759,00	1,00	,						
Polystyroldämmung, XPS (AW)				Normalbeton	15,00	2350,00	2,10	Grundlago Althou	68,4	830,6	1499,0	40,7	409,0	1145,7
XPS (AW) Schwerbeton 6,00 2350,00 2,10 maximale Umwelt-wind EW2shelled_23; maximale Umwelt-wind Miles Miles					5.00									
EW				, ,				EW2shelled_23;						
2shel- led 1976- led x x x x x x _18 Undidicated the its balan with the its balan withe	EW													
Lattung 2,05 484,51 0,13 ninter-/belutreter _18			V V V		13,95	46,25		Sanierung mit						
Konterlattung 0,38 484,51 Faserzement- Vorhangfassade (Faserzement- 1,00 1300,00 Holzfaserdämm- platten		1990	^ ^ ^				0,13							
Vorhangfassade (Faserzement- 1,00 1300,00 - platten	_18						-							
(Faserzement- 1,00 1300,00 - platten					0,38	404,51	-	platten und						
platten)					1,00	1300,00	-							
		l .		platten)				piation						

			Stahlbeton B15-B25	19,00	2400,00	2,50		41,2	392,9	471,8	35,6	316,6	375,6
			(97/3) Polystyroldämmung										
			Wand und Dach,	5,00	18,00	0,04	Grundlage Altbau- konstruktion						
EW			EPS				EW2shelled_26;						
2shel-	1979-	x x	Leichtbeton	6,00	501,00/ 2000.00	0,22	minimale Umwelt-						
led	1990	X X			2000,00/		wirkungen						
_19			Fliesen	0,50	1500,00	1,30	Sanierung mit WDVS (Mineral-						
			Mineralwolle	11,00	46,25	0,04	faserplatte)						
			(Außenwand)	,	-, -	-,-	, ,						
			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00							
			Stahlbeton B15-B25	10.00	2400.00	2.50		CE 4	022.2	1400.4	27.0	400.0	1148,2
			(97/3)	19,00	2400,00	2,50		65,1	622,2	1490,1	37,8	406,3	1146,2
			Polystyroldämmung Wand und Dach,	5,00	18,00	0.04	Grundlage Altbau-						
			EPS	3,00	10,00	0,04	konstruktion						
			Leichtbeton	6,00	501,00/	0,22	EW2shelled_26;						
EW			Leichbelon	0,00	2000,00	0,22	maximale Umwelt-						
2shel-	1979-		Fliesen	0,50	2000,00/	1,30	wirkungen Sanierung mit						
led	1990	хх	Holzfaserdämm-		1500,00		hinter-/belüfteter						
_20			platte (VF)	13,95	46,25	0,04	Fassade aus						
			Lattung	2,05	484,51	0,13	Faserzement- platten und						
			Winddichtheitsbahn	0,02	262,00	-	Holzfaserdämm-						
			Konterlattung	0,38	484,51	-	platten						
			Vorhangfassade	4.00	4000.00								
			(Faserzement- platten)	1,00	1300,00	-							
			Kalkgipsputz	1,00	900,00	0,70		98,2	1092,4	1236,6	93,6	1041,0	1194,1
			Kalksandstein	24,00	1400,00/	0,70			,			,	,
			(75/25)	24,00	2000,00	0,70							
			Dämmung AW	3,00	30,00- 200,00	0,04	Grundlage Altbau-						
			(Holzwolle-VF) Lattung	0,30	484,51	_	konstruktion						
EW	1969-		Luftschicht, stark	-,	,		EWcwf_4; minimale Umwelt-						
cwf	1978	X	belüftet		_		wirkungen						
_1			Vorhangfassade	4.50	4000.00		Sanierung mit						
			(Faserzement- platten)	1,50	1300,00	-	WDVS (Mineral-						
			Mineralwolle	40.00	40.05	0.04	faserplatte)						
			(Außenwand)	13,00	46,25	0,04							
			WDVS Verklebung	2,00	1759,00	1,00							
	•		und Beschichtung Kalkgipsputz	1,00	900,00	0,70		127.6	1588,3	2522.0	93.8	1078,5	2141.5
			Kalksandstein		1400,00/			,0	.000,0	2022,0	00,0	, .	,0
			(75/25)	24,00	2000,00	0,70							
			Dämmung AW	3,00	30,00-	0,04	Grundlage Altbau-						
			(Holzwolle-VF) Lattung	0,30	200,00 484,51	_	konstruktion						
			Luftschicht, stark	0,00	.0.,0.		EWcwf_4;						
			belüftet		-	-	maximale Umwelt-						
EW	1969-		Vorhangfassade	4.50	4000.00		wirkungen Sanierung mit						
cwf _2	1978	Х	(Faserzement- platten)	1,50	1300,00	-	hinter-/belüfteter						
_2			Holzfaserdämm-				Fassade aus						
			platte (VF)	19,18	46,25	0,04	Faserzement- platten und						
			Lattung	2,82	484,51	0,13	Holzfaserdämm-						
			Winddichtheitsbahn	0,02	262,00	-	platten						
			Konterlattung	0,38	484,51	-							
			Vorhangfassade (Faserzement-	1,00	1300,00								
			platten)	1,00	1000,00								
	•		Kalkgipsputz	1,00	900,00	0,70		80,7	492,7	362,6	62,6	264,8	279,4
			Ortbeton	16,00	2400,00	1,51							
			Dämmung AW	4,00	30,00-	0,04	Carrier all All 1						
			(Holzwolle-VF) Lattung	0,30	200,00 484,51		Grundlage Altbau- konstruktion						
EW			Lattung Luftschicht, stark	0,30	±04,∂1		EWcwf_5;						
cwf	1969-	x	belüftet	-	-	-	minimale Umwelt-						
_3	1978		Vorhangfassade	0.40	E00.00		wirkungen Sanierung mit						
			(Holzverschalung, lackiert)	2,40	500,00	-	WDVS (Mineral-						
			Mineralwolle	47.00	40.05	0,04	faserplatte)						
			(Außenwand)	17,00	46,25	0,04							
					1759,00	1,00							

			Kalkgipsputz	1,00	900,00	0,70		107,2	952,4	1669,5	57,3	226,6	1217,6
			Ortbeton	16,00		1,51							
			Dämmung AW	4,00	30,00-	0,04							
			(Holzwolle-VF)	0,30	200,00 484,51		Grundlage Altbau-						
			Lattung Luftschicht, stark	0,30	404,51		konstruktion						
			belüftet	-	-	-	EWcwf_5; maximale Umwelt-						
			Vorhangfassade				wirkungen						
EW	1969-		(Holzverschalung,	2,40	500,00	-	Sanierung mit						
cwf 4	1978	Х	lackiert) Holzfaserdämm-				hinter-/belüfteter						
			platte (VF)	20,93	46,25	0,04	Fassade aus						
			Lattung	3,07	484,51	0,13	Faserzement- platten und						
			Winddichtheitsbahn	0,02	262,00	_	Holzfaserdämm-						
							platten						
			Konterlattung Vorhangfassade	0,38	484,51	_							
			(Faserzement-	1,00	1300,00	_							
			platten)										
			Kalkgipsputz	1,00	900,00	0,70		84,6	592,1	354,9	67,4	364,2	388,4
			Naturstein-	40,00	2600,00/	2,33							
			mauerwerk		2000,00	,	Grundlage Altbau-						
			Lattung Luftschicht, stark	0,30	484,51	-	konstruktion						
EW	L:-		belüftet	-	-	-	EWcwf_8;						
cwf	bis 1918	x	Vorhangfassade				minimale Umwelt- wirkungen						
_5	. 5 10		(Annahme: Laubholz,	2,40	761,60	-	Sanierung mit						
			natur)				WDVS (Mineral-						
			Mineralwolle (Außenwand)	16,00	46,25	0,04	faserplatte)						
			WDVS Verklebung		4750.00	4.00							
			und Beschichtung	2,00	1759,00	1,00							
			Kalkgipsputz	1,00	900,00	0,70		111,1	1052,4	1630,8	63,5	346,3	1311,0
			Naturstein-	40,00	2600,00/	2,33							
			mauerwerk	0.20	2000,00		Grundlage Altbau-						
			Lattung Luftschicht, stark	0,30	484,51	-	konstruktion						
			belüftet	-	-	-	EWcwf_8;						
			Vorhangfassade				maximale Umwelt-						
EW	bis		(Annahme: Laubholz,	2,40	761,60	-	wirkungen Sanierung mit						
cwf	1918	x	natur)				hinter-/belüfteter						
_6			Holzfaserdämm- platte (VF)	20,06	46,25	0,04	Fassade aus						
			Lattung	2,94	484,51	0,13	Faserzement-						
			Winddichtheitsbahn	0,02	262,00	_	platten und Holzfaserdämm-						
			Konterlattung	0,38	484,51	_	platten						
			Vorhangfassade										
			(Faserzement-	1,00	1300,00	-							
			platten)	2.00	000.00	0.70		24.2	4E7.0	400.0	22.5	424.0	400.0
			Innenputz Porenbeton P4 05	2,00	900,00	0,70	keine	34,2	457,9	486,3	32,5	434,8	486,0
EW	2022		(95/5)	36,50	380,00	0,07	energetische						
cwf	2002- 2020	x x x	Konterlattung	0,38	484,51	-	Sanierung erforderlich, da						
_7	_525		Vorhangfassade				Dämmstandard						
			(Faserzement-	1,00	1300,00	-	bereits erfüllt ist						
			platten) Innenputz	2,00	900,00	0,70		82.1	1106,0	1489 0	69,9	Q21 A	1381,1
			Porenbeton P4 05					0Z, I	1100,0	1400,0	03,3	3£ 1,4	1301,1
			(95/5)	36,50	380,00	0,11	Grundlage Altbau-						
			Konterlattung	0,38	484,51	-	konstruktion						
			Vorhangfassade				EWcwf_13;						
			(Faserzement-	1,00	1300,00	-	maximale Umwelt- wirkungen						
EW	2002-	.	platten)				Sanierung mit						
cwf _8	2020	x x x	Holzfaserdämm- platte (VF)	6,10	46,25	0,04	hinter-/belüfteter						
_0			Lattung	0,90	484,51	0,13	Fassade aus						
			Winddichtheitsbahn	0,02	262,00	-	Faserzement- platten und						
			Konterlattung	0,38	484,51	-	Holzfaserdämm-						
			Vorhangfassade				platten						
			(Faserzement-	1,00	1300,00	-							
			platten)										

			Innenputz	2,00	900,00	0,70	Grundlage Altbau-	81,8	573,0	566,5	56,8	208,8	310,2
			Stahlbeton C30/37 (98/2)	30,00	380,00	2,50	konstruktion						
			Holzfaserdämm-				EWcwf_14; minimale Umwelt-						
			platte (VF)	9,04	160,00	0,04	wirkungen						
			Lattung	0,96	484,51	0,13	Sanierung mit						
EW	2002-		Winddichtheitsbahn	0,02	262,00	-	Aufdopplung der						
cwf 9	2009	x	Mineralwolle (VF)	9,59	160,00	0,04	Dämmebene mit Mineralwolle;						
_3			Lattung	1,41	484,51	0,13	Fassade wird						
			Winddichtheitsbahn	0,02	262,00	-	weiterverwendet,						
			Konterlattung	0,38	484,51	-	da technische						
			Vorhangfassade	1,00	1300,00	-	Nutzungsdauer						
			(Faserzement- platten)				noch nicht erreicht ist						
			Innenputz	2,00	900,00	0,70		1/12 0	1374,9	2230.0	93,0	607.0	1605,0
			Stahlbeton C30/37					143,0	1374,3	2230,0	33,0	001,0	1005,0
			(98/2)	30,00	380,00	2,50							
			Holzfaserdämm-	9,04	160,00	0,04	Grundlage Altbau-						
			platte (VF)				konstruktion						
			Lattung	0,96	484,51	0,13	EWcwf_14; maximale Umwelt-						
			Winddichtheitsbahn Konterlattung	0,02	262,00		wirkungen						
E\\\			•	0,38	484,51		Sanierung inkl.						
EW	2002-	X	Vorhangfassade (Faserzement-	1,00	1300,00	_	Komplettaus-						
_10	2009	^	platten)	1,00	1000,00		tausch						
			Holzfaserdämm-	20.06	160.00	0,04	hinter-/belüfteter Fassade aus						
			platte (VF)	20,06	160,00	0,04	Faserzement-						
			Lattung	2,94	484,51	0,13	platten und						
			Winddichtheitsbahn	0,02	262,00	-	Holzfaserdämm-						
			Konterlattung	0,38	484,51	-	platten						
			Vorhangfassade	4.00	4000.00								
			(Faserzement- platten)	1,00	1300,00	_							
			Innenputz	2,00	900,00	0,70	Grundlage Alt-	94,2	538,8	485,7	66,4	125,4	156,0
			Stahlbeton C30/37				baukonstruktion			ŕ			
			(98/2)	30,00	380,00	2,50	EWcwf_15;						
			Holzfaserdämm-	12,66	160,00	0,04	minimale Umwelt-						
			platte (VF)				wirkungen Sanierung mit						
EW			Lattung Winddichtheitsbahn	1,34 0,02	484,51	0,13	Aufdopplung der						
cwf	2010- 2015	x			262,00	0.04	Dämmebene mit						
_11	2013		Mineralwolle (VF) Lattung	6,10 0,90	160,00 484,51	0,04	Mineralwolle;						
			Winddichtheitsbahn	0,90	262,00	0,13	Fassade wird weiterverwendet,						
			Konterlattung	0,02	484,51	-	da technische						
			Vorhangfassade	,	1300,00	-	Nutzungsdauer						
			(Faserzement-	.,00	.000,00		noch nicht						
			platten)				erreicht ist						
			Innenputz	2,00	900,00	0,70		158,1	1375,2	2198,4	103,5	532,6	1507,5
			Stahlbeton C30/37 (98/2)	30,00	380,00	2,50							
			Holzfaserdämm-	12,66	160,00	0.04	Grundlage Altbau-						
			platte (VF)				konstruktion						
			Lattung	1,34	484,51	0,13	EWcwf_15;						
			Winddichtheitsbahn	0,02	262,00	-	maximale Umwelt-						
			Konterlattung	0,38	484,51	-	wirkungen						
EW	2010-		Vorhangfassade				Sanierung inkl. Komplettaus-						
cwf	2015	х	(Faserzement-	1,00	1300,00	-	tausch						
_12			platten)				hinter-/belüfteter						
			Holzfaserdämm- platte (VF)	20,06	160,00	0,04	Fassade aus						
			Lattung	2,94	484,51	0,13	Faserzement- platten und						
			Winddichtheitsbahn	0,02	262,00	-	Holzfaserdämm-						
			Konterlattung	0,38			platten						
			Ŭ.	0,30	484,51	_							
			Vorhangfassade (Faserzement-	1.00	1300,00	_							
			platten)	1,00	1000,00								
			*										

			Innenputz	2,00	900,00	0,70		97,3	530,2	465,5	68,8	104,6	117,5
			Stahlbeton C30/37				Grundlage Altbau-	91,3	330,2	405,5	00,0	104,0	117,3
			(98/2)	30,00	380,00	2,50	konstruktion EWcwf_16;						
			Holzfaserdämm-	13,56	160,00	0,04	minimale Umwelt-						
			platte (VF) Lattung	1,44	484,51	0,13	wirkungen						
EW			Winddichtheitsbahn	0,02	262,00	0,13	Sanierung mit Aufdopplung der						
cwf	2016-		X Mineralwolle (VF)	5,23	160,00	0,04	Dämmebene mit						
_13	2020		Lattung	0,77	484,51	0,13	Mineralwolle;						
			Winddichtheitsbahn	0,02	262,00		Fassade wird weiterverwendet,						
							da technische						
			Konterlattung	0,38	484,51 1300,00	-	Nutzungsdauer						
			Vorhangfassade (Faserzement-	1,00	1300,00	-	noch nicht						
			platten)				erreicht ist						
			Innenputz	2,00	900,00	0,70		140,8	1121,4	1421,7	103,8	557,0	945,0
			Stahlbeton C30/37 (98/2)	30,00	380,00	2,50							
			Holzfaserdämm- platte (VF)	13,56	160,00	0,04	Grundlage Altbau- konstruktion						
			Lattung	1,44	484,51	0,13	EWcwf_16; maximale Umwelt-						
			Winddichtheitsbahn	0,02	262,00	-	wirkungen						
EW			Konterlattung Vorhangfassade	0,38	484,51	-	Sanierung inkl.						
cwf	2016- 2020		X (Faserzement-	1,00	1300,00	_	Komplettaus- tausch						
_14	2020		platten)				hinter-/belüfteter						
			Holzfaserdämm-	6,98	160,00	0,04	Fassade aus						
			platte (VF) Lattung	1,02	484,51	0,13	Faserzement-						
			Winddichtheitsbahn	0,02	262,00	-	platten und Holzfaserdämm-						
			Konterlattung	0,38	484,51	-	platten						
			Vorhangfassade										
			(Faserzement- platten)	1,00	1300,00	-							
			Lehmputz innen	1,50	900,00	0,93	Grundlage Alt-	78,2	459,4	182,1	62,2	243,1	240,3
			Holzständer (Eiche)/Gefach:	14.00	492,92/ 2000,00/	0,21/	baukonstruktion EWwood_1;						
EW.	bis		Lehmstaken	14,00	100,00	0,47	minimale Umwelt-						
wood _1	1918	X	Mineralwolle	15,50	46,25	0,04	wirkungen						
_			(Außenwand)	10,00	40,20	0,04	Sanierung mit WDVS (Mineral-						
			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00	faserplatte)						
			Lehmputz innen	1,50	900,00	0,93	Crundlaga Althau	106,9	945,3	1519,4	59,0	231,1	1208,8
			Holzständer		492,92/		Grundlage Altbau- konstruktion		·	·	,	·	,
			(Eiche)/Gefach:	14,00	2000,00/	0,21/ 0,47	EWwood_1;						
			Lehmstaken		100,00	-,	maximale Umwelt-						
EW	bis		Holzfaserdämm- platte (VF)	20,93	46,25	0,04	wirkungen Sanierung mit						
wood _2	1918	X	Lattung	3,07	484,51	0,13	hinter-/belüfteter						
_2			Winddichtheitsbahn	0,02	262,00	-	Fassade aus						
			Konterlattung	0,38	484,51	-	Faserzement- platten und						
			Vorhangfassade (Faserzement-	1.00	1300,00		Holzfaserdämm-						
			platten)	1,00	1300,00		platten						
				1.50	900,00	0,70		60,7	482,9	389,8	51,3	355,5	402,0
			Innenputz	1,50									
			Innenputz Holzständer/		492,92/	0,13/							
							Grundlage Altbau-						
EW			Holzständer/		492,92/ 2000,00/ 100,00		konstruktion EWwood_16;						
EW wood	bis 1918	×	Holzständer/ Vollziegel/Mörtel Ziegel/Mörtel Außenputz, nach	12,00 13,00	492,92/ 2000,00/ 100,00 1800,00/ 2000,00	0,79 0,79	konstruktion EWwood_16; minimale Umwelt-						
	bis 1918	x	Holzständer/ Vollziegel/Mörtel Ziegel/Mörtel Außenputz, nach Sanierung	12,00 13,00	492,92/ 2000,00/ 100,00 1800,00/	0,79	konstruktion EWwood_16;						
wood	bis 1918	х	Holzständer/ Vollziegel/Mörtel Ziegel/Mörtel Außenputz, nach Sanierung innenliegend	12,00 13,00 2,00	492,92/ 2000,00/ 100,00 1800,00/ 2000,00 1800,00	0,79 0,79 1,00	konstruktion EWwood_16; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineral-						
wood	bis 1918	х	Holzständer/ Vollziegel/Mörtel Ziegel/Mörtel Außenputz, nach Sanierung	12,00 13,00	492,92/ 2000,00/ 100,00 1800,00/ 2000,00	0,79 0,79	konstruktion EWwood_16; minimale Umwelt- wirkungen Sanierung mit						
wood	bis 1918	x	Holzständer/ Vollziegel/Mörtel Ziegel/Mörtel Außenputz, nach Sanierung innenliegend Mineralwolle	12,00 13,00 2,00 15,00	492,92/ 2000,00/ 100,00 1800,00/ 2000,00 1800,00	0,79 0,79 1,00	konstruktion EWwood_16; minimale Umwelt- wirkungen Sanierung mit WDVS (Mineral-						

EW wood _4	bis 1918	x						Sanier nnenl Holzfa platte Lattun	tändeegel/ I I I/Mörinputz rung lieger (VF) ng dichthurlattu nngfassrzzem n) serpl	tel , nach nd ämm- neitsbahn ng ssade ent- atte	1 1	1,50 2,00 3,00 2,00 8,31 2,69 0,02 0,38 1,00	900,0 492,9 2000,0 100,0 1800,0 2000,0 1800,0 484,5 262,0 484,5 1300,0	22/ 00/ 000 00/ 00/ 000 000 000 000 000	0,70 0,13/ 0,79 0,79 1,00 0,04 0,13 - -	G m	rundlage Altbau- konstruktion EWwood_16; saximale Umwelt- wirkungen Sanierung mit inter-/belüfteter Fassade aus Faserzement- platten und dolzfaserdämm- platten Grundlage Alt- paukonstruktion	85,8 52,5	926,9	957,2	26,3	360,9	1273,0 789,4
EW wood _5	1979- 1990			x	x		1 (((((((((((((((((((Minera (Auße Asbes GKF-F OSB-F Zelluld Einbla Konstr vollhol MDF-F Minera (Auße	alwollenwarestzem Platte Platte osefa asdän ruktio elz Platte alwollenwar S Ver	le nd) pentplatte seser- nmung ons-	1	5,20 0,60 1,25 1,50 4,82 2,18 1,50 4,00	85,0 1300,0 800,0 650,0 45,0 492,9 700,0 46,2 1759,0	00 00 00 00 00 00 00 00 22		pl:	EWwood_17; inimale Umwelt- irkungen durch Ersatz der Außenwand durch eine Holztafelbau- wand in Verbindung mit einem WDVS (Mineralfaser- atte); Sanierung des Bestands- irfbaus konstruk- tiv nicht prakti- abel; Annahme Ständerabmes- sungen bxh = 80x170 mm, Achsabstand: 62,5 cm						
EW wood _6	1979- 1990			x	x			Gipsfa Holzfa (Innen Lattun OSB-F Holzfa (Innen Konstr vollhol	enbal alwollenwarstzem aserp aserd nausb ng Platte aserd nausb ruktic lz aserp dichth rlattu	hn le nd) leentplatte latte ämmung bau) sämmung bau) sims- latte heitsbahn ng ssade	1	1,00 0,30 5,20 0,60 2,50 5,42 0,58 1,50 3,95 2,05 1,25 0,02 0,38 1,00	849,9 85,0 85,0 1300,0 160,0 1	000 000 000 000 000 000 551 000 000 000	k.A 0,04 k.A. 0,35 0,04 0,13 0,04 0,13	b m w v hii F z ; b nii	Grundlage Alt- baukonstruktion EWwood_17; aximale Umwelt- irikungen durch rsatz der Außen- vand durch eine Holztafelbau- wand in Verbin- dung mit einer inter-/belüfteten fassade (Faser- zementplatten); Sanierung des Bestandsauf- aus konstruktiv icht praktikabel; Annahme Stän- erabmessungen bxh = 80x160 mm, Achs- bstand: 62,5 cm	101,3	1225,4	2084,9	64,4	573,1	1729,6
EW wood _7	2002- 2009					×	F	GKF-F PE-Fo Zellulo Einbla Konstr Gipsfa Windo Konter Vorhar (Annal natur) Minera (Auße	Plattee plie W posefa posef	/and ser- nmung onsvollhol latte neitsbahn ng ssade Laubhol	1 I Z,	1,25 0,02 3,08 1,92 1,25 0,02 0,38 2,40 5,50	800,0 930,0 45,0 492,9 1000,0 262,0 484,5 761,6 46,2	00 00 00 00 51 60	0,25 - 0,04 0,13 0,35 - - - 0,04 1,00	G	rundlage Altbau- konstruktion EWwood_18; inimale Umwelt- wirkungen Sanierung mit WDVS (Mineralfaser- platte)	91,3	282,7	-166,8	63,8	-85,1	-153,8

			GKF-Platte	1,25	800,00	0,25		113,2	689,8	604,1	72,8	121,0	478,9
			PE-Folie Wand	0,02	930,00	-	Grundlage Altbau-						
			Zellulosefaser-	13,08	45,00	0,04	konstruktion						
			Einblasdämmung	4.00	400.00	0.40	EWwood_18;						
			Konstruktionsvollholz	1,92	492,92	0,13	maximale Umwelt-						
			Gipsfaserplatte	1,25	1000,00	0,35	wirkungen in						
			Winddichtheitsbahn	0,02	262,00	-	Verbindung mit einer						
EW			Konterlattung	0,38	484,51	-	hinter-/belüfteten						
wood	2002-	x	Vorhangfassade (Annahme: Laubholz,	2,40	761,60		Fassade						
_8	2009		natur)	2,40	701,00		(Faserzement-						
			Holzfaserdämm-	7.05	400.00	0.04	platten);						
			platte (VF)	7,85	160,00	0,04	Annahme						
			Lattung	1,15	484,51	0,13	Ständerabmes- sungen bxh =						
			Winddichtheitsbahn	0,02	262,00	-	80x160 mm,						
			Konterlattung	0,38	484,51	-	Achsabstand:						
			Vorhangfassade				62,5 cm						
			(Faserzement-	1,00	1300,00	-							
			platten)										
			GKF-Platte	1,25	800,00	0,25	Grundlage Alt-	83,5	55,8	-316,5	34,8	-597,2	-275,3
			PE-Folie Wand	0,02	930,00	-	baukonstruktion EWwood_19;						
			Zellulosefaser-	20,93	45,00	0,04							
			Einblasdämmung				twirkungen; keine						
EW			Konstruktionsvollholz	3,07	492,92	0,13	Sanierung der						
wood	2010-	x :	Gipsfaserplatte		1000,00	0,35	Bestandskon-						
_9	2020		Williadiontholopaini	0,02	262,00	-	struktion erfor-						
			Konterlattung	0,38	484,51	-	derlich, da ihr U-Wert die						
			Vorhangfassade	2,40	761,60	-	Zielanforderun-						
			(Annahme: Laubholz, natur)				gen der						
			,				Sanierung bereits						
							erfüllt						
			Gipsfaserplatte	2,50	100,00	0,35	Grundlage Alt-	251,1	556,4	-1397,2	156,7	-873,5	-1210,5
			Brettsperrholz	24,00	489,41	0,13	baukonstruktion						
			Lattung	0,48	484,51	0,13	EWwood_24; minimale Umwelt-						
			Holzfaserdämmung	4,52	160,00	0,04	wirkungen in						
			(Innenausbau)				Verbindung mit						
			Gipsfaserplatte	1,25	1000,00	0,35	einer hinter-/						
EW			Winddichtheitsbahn	0,02	262,00		belüfteten Fas-						
wood	2002-	x	Lattung	0,67	484,51	0,13	sade; auf Grund						
_10	2009		Mineralwolle	6,33	160,00	0,04	des jungen Bau- alters kann eine						
			(Innenausbau)	1.05	1000,00	0,35	Weiterverwen-						
			Gipsfaserplatte Winddichtheitsbahn	1,25	262,00	0,33	dung der vorhan-						
				0,02			denen						
			Konterlattung Vorhangfassade	0,38 1,00	484,51 1300,00	-	Faserzement-						
			(Faserzement-	1,00	1300,00	-	platten						
			platten)				angenommen werden						
			. ,	2,50	100,00	0.35	worden	204.2	1262.2	-115,5	193,5	-429,0	-140 2
			Gipsfaserplatte		,	0,35		304,3	1263,2	-110,5	193,3	-429,0	-148,3
			Brettsperrholz	24,00	489,41	0,13							
			Lattung Holzfaserdämmung	0,48	484,51	0,13							
			(Innenausbau)	4,52	160,00	0,04							
			Gipsfaserplatte	1,25	1000,00	0.35	Grundlage Altbau-						
			Winddichtheitsbahn	0,02	262,00	-,00	konstruktion						
			Konterlattung	0,38	484,51	_	EWwood_24;						
			Vorhangfassade	2,00	,		maximale Umwelt-						
EW	2002-		(Faserzement-	1,00	1300,00	_	wirkungen in						
wood _11	2009	Х	platten)				Verbindung mit einer hinter-/						
_''			Lattung	1,79	484,51	0,13	belüfteten						
			Holzfaserdämmung				Fassade						
			(Innenausbau)	12,21	160,00	0,04	(Faserzement-						
			Gipsfaserplatte	1,25	1000,00	0,35	platten)						
			Winddichtheitsbahn	0,02	262,00	-							
			Konterlattung	0,38	484,51	-							
			Vorhangfassade										
			(Faserzement-	1,00	1300,00	-							
	١.,		platten)										

	· '		Gipsfaserplatte	2,50	100,00	0,35	0 " 4"	273,5	444,3	-1616,5	172,5	-1099,4	-1568,7
			Lattung	0,38	484,51	0,13	Grundlage Altbau- konstruktion						
			Holzfaserdämmung	3,62	160,00	0,04	EWwood 25;						
			(Innenausbau)	3,02	100,00	0,04	minimale Umwelt-						
			Brettsperrholz	24,00	489,41	0,13	wirkungen; keine						
EW			Lattung	0,86	484,51	0,13	Sanierung der						
wood	2010- 2020	х	x Holzfaserdämmung	8,14	160,00	0,04	Bestandskon- struktion						
_12	2020		(Innenausbau)	1 25	1000.00	0.25	erforderlich, da						
			Gipsfaserplatte Winddichtheitsbahn	1,25 0,02	1000,00 262,00	0,35	ihr U-Wert die						
			Konterlattung	0,02	484,51	-	Zielanforderun-						
			Vorhangfassade	0,30	404,51	_	gen der						
			(Faserzement-	1,00	1300,00	_	Sanierung bereits erfüllt						
			platten)				orraint						
			Innenputz	1,50	900,00	0,70		92,2	1297,6	1397,5	69,1	960,1	971,1
			Vollziegel/	51,00	1800,00/	0,79	Grundlage Altbau-						
			Mörtel		2000,00		konstruktion						
			Außenputz	2,00	1800,00	1,00	CW_1; minimale						
CW			Grundierung (Bitumenvoran-				Umwelt-						
_h	bis 1945	хх	strich,	0,02	950,00	-	wirkungen mit PE-HD-Flächen-						
_1	1940		lösemittelhaltig)				abdichtung nach						
			PE-HD-	0.15	1067,00		DIN 18533, Teil 1						
			Flächenabdichtung	0,10	1007,00		und 2						
			Polystyroldämmung, XPS (KW)	11,00	32,00	0,04	(W 1.1-E)						
			Noppenbahn	0,13	960,00	_							
			Innenputz	1,50	900,00	0,70		91,9	2550,7	2673,4	74,2	2292,2	2348,5
			Vollziegel/	=4.00	1800,00/								
			Mörtel	51,00	2000,00	0,79	Grundlage Altbau-						
			Außenputz	2,00	1800,00	1,00	konstruktion CW 1; maximale						
CW	6.5-		Grundierung				Umwelt-						
_h	bis 1945	X X	(Bitumenvoran-	0,02	950,00	-	wirkungen mit						
_2	10-10		strich, lösemittelhaltig)				Bitumenbahn						
			Bitumenbahn	2,00	1100,00	_	nach DIN 18533, Teil 1 und 2						
			Polystyroldämmung,			0.04	(W 2.1-E)						
			XPS (KW)	11,00	32,00	0,04	,						
			Noppenbahn	0,13	960,00	-							
			Innenputz	1,50	900,00	0,70		92,2	1314,7	1416,6	68,5	967,2	979,3
			Vollziegel/Mörtel	64,00	1800,00/	0,79	Grundlage Altbau-						
			_		2000,00		konstruktion						
			Außenputz	64,00 2,00			konstruktion CW_3; minimale						
CW	1970		_	2,00	2000,00 1800,00		konstruktion						
_h	1870- 1918	Y	Außenputz Grundierung		2000,00		konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD-						
	1870- 1918	Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig)	2,00	2000,00 1800,00		konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich-						
_h		Y	Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) PE-HD-	2,00 0,02	2000,00 1800,00		konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN						
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung	2,00 0,02 0,15	2000,00 1800,00 950,00		konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich-						
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung,	2,00 0,02	2000,00 1800,00 950,00		konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und						
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung	2,00 0,02 0,15	2000,00 1800,00 950,00 1067,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2						
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW)	2,00 0,02 0,15 11,00	2000,00 1800,00 950,00 1067,00 32,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz	2,00 0,02 0,15 11,00 0,13 1,50	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E)	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel	2,00 0,02 0,15 11,00 0,13 1,50 64,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau-	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h		Y	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz	2,00 0,02 0,15 11,00 0,13 1,50 64,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E)	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3	1918		Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt-	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz	2,00 0,02 0,15 11,00 0,13 1,50 64,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoran-	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich,	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung,	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00 950,00 1100,00	1,00 0,04 0,70 0,79 1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533,	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW)	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00 950,00	1,00 - - 0,04 - 0,70 0,79	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2	91,9	2567,8	2692,5	73,5	2299,3	2356,7
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00 0,13	2000,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 1800,00 1100,00 32,00 960,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00 0,13 1,50	2000,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 1800,00 1100,00 32,00 960,00 960,00	1,00 	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau-		2567,8		73,5	2299,3 972,3	2356,7 955,8
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00 0,13	2000,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 1800,00 1100,00 32,00 960,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion						
_h _3 CW _h	1918		Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00 0,13 1,50	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 990,00 1800,00/	1,00 	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale						
_h _3 CW _h	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich)	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 0,02 2,00 11,00 0,13 1,50	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 990,00 1800,00/	1,00 	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt-						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,13 1,50 25,00	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 990,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,02 2,00 11,00 0,13 1,50 25,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 900,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich-						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig)	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,02 2,00 11,00 0,13 1,50 25,00	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 990,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD-	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,13 1,50 25,00 0,02	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumentahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,02 2,00 11,00 0,13 1,50 25,00	2000,00 1800,00 950,00 1067,00 32,00 960,00 1800,00/ 2000,00 1100,00 32,00 960,00 960,00 900,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN						
_h _3 CW _h _4	1918 1870- 1918	x	Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Vollziegel/Mörtel Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung,	2,00 0,02 0,15 11,00 0,13 1,50 64,00 2,00 11,00 0,13 1,50 25,00 0,02	2000,00 1800,00 950,00 32,00 960,00 900,00 1800,00/ 2000,00 1100,00 32,00 960,00 900,00 1800,00/ 2000,00 1800,00/ 2000,00	1,00	konstruktion CW_3; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2 (W 1.1-E) Grundlage Altbau- konstruktion CW_3; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_4; minimale Umwelt- wirkungen mit PE- HD- Flächenabdich- tung nach DIN 18533, Teil 1 und 2						

Part														
Campion Considering		-		Innenputz	1,50	900,00	0,70		92,2	2571,9	2673,5	73,9	2304,3	2333,2
Company Comp				Vollziegel/Mörtel	25,00		0,79							
1916 Street Str				Grundierung		,								
1918 1918		1870-			0.02	950.00								
Display Column			Х		-,-	,								
Polystrycoldensure 1,100 100,00	_0			-	2 00	1100 00	_							
March Marc							0.04							
					13,00	32,00	0,04	(W 2.1-E)						
CW 1919				Noppenbahn	0,13	960,00	-							
Characteristics				Innenputz	1,50				92,6	1301,7	1378,6	69,6	965,2	947,7
California				Vollziegel/Mörtel	12,00		0,79	Grundlage Altbau-						
CW 1919				Grundierung		2000,00								
1945 September	CW			•	0.02	050.00								
Part			X		0,02	330,00								
Fisherhandschung Page Pa		1945												
Part					0,15	1067,00	-	-						
Note					12.00	22.00	0.04							
Innerput				XPS (KW)	13,00	32,00	0,04	(W 1.1-E)						
CW 1949							-							
CW 1919-				Innenputz	1,50				92,2	2554,8	2654,4	74,6	2297,3	2325,1
CW				Vollziegel/Mörtel	12,00		0,79	Grundlage Altbau- konstruktion						
CW 1910				Grundierung		,								
The content of the		1919-			0,02	950,00	_	Umwelt-						
Polystyroidimmung			X					-						
Polystyrotdiammung	_0				2.00	1100.00	_							
Noperbalm							0.04							
CW 1949					13,00		0,04	(W 2.1-E)						
Page									20.0	4047.5	4000.0	00.0	074.0	055.0
CW 1949				·				Grundlago Althau	92,0	1317,5	1396,2	66,9	9/1,0	955,2
CW				Vollziegel/Mörtel	24,00		0,79							
Manual														
1978		10/0			0,02	950,00	-							
PEHD	_h		x x x											
Fisichenabdichtung Polystyroldammung 13,00 32,00 0.04 (W 1.1-E)	_9			PE-HD-	0.15	1067.00		-						
CW 1949- 1978 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1976 1978 1				•	0,13	1007,00	_							
Nopenbahn Nope					13,00	32,00	0,04							
Innenputz					0.13	960.00	_	(** *** =)						
Part		•					0,70		92,2	2570,5	2672,0	74,0	2303,8	2332,6
Part				Vollziegel/Mörtel	24 00		0.79	Grundlage Altbau-						
1948				•	,	2000,00	-,	konstruktion						
1948	CW			•										
Bitumenbahn 2,00 1100,00 - nach DIN 18533, Teil 1 und 2			ххх		0,02	950,00	-							
Polystyroldämmung, XPS (KW) 13,00 32,00 0,04 Teil 1 und 2 (W 2.1-E)	_10	1976		lösemittelhaltig)										
1949					2,00	1100,00	-							
Nopenbahn 0,13 960,00					13,00	32,00	0,04							
Innenputz					0.13	960.00		, ,						
CW		•					0,70		102,1	1361,8	1465,5	75,1	974,6	964,6
CW					22.60	2400.00	2.50	Grundlage Althern						
Aulsenputz 2,00 1800,00 1,00 CW_8; minimale Unweltwirkungen mit PE-HD-Flächenabdiichtung nach DIN PE-HD-Fläc														
CW					∠,00	1000,00	1,00	CW_8; minimale						
Strick	CW	1040		•	0.00	050.00								
CW			x x x	strich,	0,02	950,00	-							
Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn 0,13 960,00 - Innenputz 1,50 900,00 0,70 Stahlbeton B15-B25 (95/5) Außenputz 2,00 1800,00 1,00 Grundierung (Bitumenvoranstrich, 1989 12 12 1949-	_11													
Polystyroldämmung, XPS (KW) Noppenbahn 0,13 960,00 - Innenputz 1,50 900,00 0,70 Stahlbeton B15-B25 (95/5) Außenputz 2,00 1800,00 1,00 CW_B; maximale Umwelt- wirkungen mit Bitumenbahn 1949- 11 1978 11978 12 Reference of the polystyroldämmung, XPS (KW) 13,00 32,00 0,04 (W 2.1-E) Reference of the polystyroldämmung, XPS (KW) Reference of the					0,15	1067,00	-							
Noppenbahn 0,13 960,00 - 101,7 2614,8 2741,3 80,2 2306,6 2342,0				-	40.51	20								
Innenputz					13,00	32,00	υ,04	(··· ··· - /						
Stahlbeton B15-B25 (95/5)							-							
CW				•	1,50	900,00	0,70		101,7	2614,8	2741,3	80,2	2306,6	2342,0
Außenputz 2,00 1800,00 1,00 CW_8; maximale Umwelt- ung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn 2,00 1100,00 7 Teil 1 und 2 Polystyroldämmung, XPS (KW) Außenputz 2,00 1800,00 1,00 CW_8; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)					22,60	2400,00	2,50	Grundlage Altbau-						
CW 1949- _h 1978					2,00	1800,00	1,00							
_h	CW					,								
			x x x		0,02	950,00	_							
Bitumenbahn 2,00 1100,00 - Teil 1 und 2 Polystyroldämmung, XPS (KW) 13,00 32,00 0,04 (W 2.1-E)		14/8		strich.		,								
Polystyroldämmung, XPS (KW) 13,00 32,00 0,04 (W 2.1-E)		1010												
XPS (KW)		1070		lösemittelhaltig)	2,00	1100,00	_	nach DIN 18533,						
Noppenbahn 0,13 960,00 -		1010		lösemittelhaltig) Bitumenbahn			-	nach DIN 18533, Teil 1 und 2						
		1070		lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW)	13,00	32,00	0,04	nach DIN 18533, Teil 1 und 2						

	-		Stahlbeton B15-B25 (97/3) Grundierung	17,30	2400,00	2,50	Grundlage Alt- baukonstruktion	93,4	1296,2	1374,3	67,4	922,1	890,9
CW _h _13	1949- 1994	x x x x x	(Bitumenvoran- strich, lösemittelhaltig)	0,02	950,00	-	CW_9; minimale Umweltwirkungen mit PE-HD- Flächenabdich-						
_13			PE-HD- Flächenabdichtung Polystyroldämmung,	0,15	1067,00	-	tung nach DIN 18533,						
			XPS (KW) Noppenbahn	13,00	32,00 960,00	0,04	Teil 1 und 2 (W 1.1-E)						
	-		Stahlbeton B15-B25 (97/3)		2400,00	2,50	Grundlage Alt-	93,0	2549,2	2650,1	72,5	2254,1	2268,3
CW	1949-		Grundierung (Bitumenvoran- strich,	0,02	950,00	-	baukonstruktion CW_9; maximale Umwelt-						
_h _14	1994	x x x x x	lösemittelhaltig) Bitumenbahn	2 00	1100,00	_	wirkungen mit Bitumenbahn						
			Polystyroldämmung, XPS (KW)	13,00	32,00	0,04	nach DIN 18533, Teil 1 und 2						
	_		Noppenbahn	0,13	960,00	_	(W 2.1-E)						
	-		Noppenbahn	0,13	960,00	-		122,5	1540,2	1656,7	88,0	1044,8	1015,5
			Polystyroldämmung, XPS (KW)	13,00	32,00	0,04	Grundlage Altbau-						
			PE-HD- Flächenabdichtung Grundierung	0,15	1067,00	-	konstruktion CW_11; minimale Umwelt-						
CW _h _15	1991- 2000	x x	(Bitumenvoran- strich, lösemittelhaltig)	0,02	950,00	-	wirkungen mit PE-HD- Flächenabdich-						
			Außenputz	2,00	1800,00	1,00	tung nach DIN						
			Polystyroldämmung, XPS (KW)	6,00	32,00	0,04	18533, Teil 1 und 2						
			Stahlbeton B15-B25 (97/3)	30,00	2400,00	2,50	(W 1.1-E)						
			Innenputz	1,50	900,00	0,70		400.4	0700.0	0000.5	00.0	0070.0	2222.0
			Innenputz Stahlbeton B15-B25	1,50	900,00	0,70		122,1	2793,3	2932,5	93,0	2376,9	2392,9
			(97/3) Polystyroldämmung,		2400,00	2,50	Grundlage Altbau-						
			XPS (KW)	6,00	32,00	0,04	konstruktion CW_11;						
CW	1991-		Außenputz Grundierung	2,00	1800,00	1,00	maximale Umwelt-						
_h _16	2000	x x	(Bitumenvoran- strich, lösemittelhaltig)	0,02	950,00	-	wirkungen mit Bitumenbahn nach DIN 18533,						
			Bitumenbahn	2,00	1100,00	-	Teil 1 und 2 (W 2.1-E)						
			Polystyroldämmung, XPS (KW)	13,00	32,00	0,04							
			Noppenbahn	0,13	960,00	-							
			Innenputz Hohlblockstein	1,50	900,00 800,00/	0,70	Grundlage Altbau-	91,5	1227,8	1322,9	71,8	940,3	953,2
			(75/25)	36,50	2000,00		konstruktion						
			Außenputz Grundierung	2,00	1800,00	1,00	CW_14; minimale Umwelt-						
CW _h	1961-	x	(Bitumenvoran- strich,	0,02	950,00	_	wirkungen mit PE-HD-						
_17	1990	* * * *	lösemittelhaltig)				Flächenabdich-						
			PE-HD- Flächenabdichtung	0,15	1067,00	-	tung nach DIN 18533,						
			Polystyroldämmung, XPS (KW)	10,00	32,00	0,04	Teil 1 und 2 (W 1.1-E)						
	-		Noppenbahn Innenputz	0,13 1,50	960,00	0,70		95.4	2538,0	2659.5	80.2	2314,9	2372 7
			Hohlblockstein	36,50	800,00/ 2000,00		Grundlage Altbau-	55,4	_000,0	1000,0	00,£	_0.7,3	20.2,1
			(75/25) Außenputz		1800,00	1,00	konstruktion CW_14;						
CW _h _18	1961- 1990	x x x x	Grundierung (Bitumenvoran- strich,	0,02	950,00	-	maximale Umwelt- wirkungen mit Bitumenbahn						
			lösemittelhaltig) Bitumenbahn	2,00	1100,00	-	nach DIN 18533, Teil 1 und 2						
			Polystyroldämmung, XPS (KW)	11,00	32,00	0,04	(W 2.1-E)						
			Noppenbahn	0,13	960,00	-							

			Innenputz	1,50	900,00	0,70		95,7	1285,2	1385,4	70,6	925,2	919,8
			Schalsteine mit		2400,00/		Grundlage Altbau-	,		,	.,.	,	,-
			Betonfüllung B15	36,50	2000,00	2,10	konstruktion						
			Außenputz	2,00	1800,00	1,00	CW_17; minimale						
			Grundierung				Umwelt-						
CW	1961-		(Bitumenvoran-	0,02	950,00		wirkungen mit						
_h	2000	x x x x x	strich,	0,02	930,00		PE-HD-						
_19			lösemittelhaltig)				Flächenabdich-						
			PE-HD-	0,15	1067,00	_	tung nach DIN						
			Flächenabdichtung				18533, Teil 1 und 2						
			Polystyroldämmung, XPS (KW)	11,00	32,00	0,04	(W 1.1-E)						
			,	0.42	000.00		(/						
			Noppenbahn	0,13	960,00	0.70		0F 4	2538,3	2004.2	75.7	2257.2	2207.2
			Innenputz	1,50	900,00	0,70		95,4	2556,5	2001,2	75,7	2257,2	2291,2
			Schalsteine mit	36,50	2400,00/ 2000,00	2,10	Grundlage Altbau-						
			Betonfüllung B15	0.00			konstruktion						
			Außenputz	2,00	1800,00	1,00	CW_17;						
CW	1961-		Grundierung (Bitumenvoran-				maximale Umwelt-						
_h	2000	x x x x x	strich,	0,02	950,00	-	wirkungen mit						
_20			lösemittelhaltig)				Bitumenbahn nach DIN 18533,						
			Bitumenbahn	2,00	1100,00	-	Teil 1 und 2						
			Polystyroldämmung,	44.00	20.00	0.04	(W 2.1-E)						
			XPS (KW)	11,00	32,00	0,04	,						
			Noppenbahn	0,13	960,00								
	•		Innenputz	2,00	900,00	0,70		101,6	1123,3	1212,0	76,2	751,6	734,0
			•			0.99	Grundlage Altbau-				ĺ	•	•
			Kalksandstein (95/5)	36,50	1800,00	-,	konstruktion						
			Außenputz	2,00	1800,00	1,00	CW_24; minimale						
			Grundierung				Umwelt-						
			(Bitumenvoran-	0,02	950,00	_	wirkungen; auf						
CW	2002-		strich,	,			Grund des jungen						
_h	2002-	x	lösemittelhaltig)				Baualters kann eine						
_21	2000		PE-HD- Flächenabdichtung	0,15	1067,00	-	Weiterverwen-						
			Polystyroldämmung,				dung der PE-HD-						
			XPS (KW)	6,00	32,00	0,04	Flächenabdich-						
			Noppenbahn	0,13	960,00	_	tung						
			Polystyroldämmung,	0.00	22.00	0.04	angenommen						
			XPS (KW)	8,00	32,00	0,04	werden						
			Noppenbahn	0,13	960,00	-							
			Innenputz	2,00	900,00	0,70		131.9	2750,0	2903,6	106.2	2374.3	2420,5
				-,	,			, .	/ -		,_	0,0	
			•					,-			.00,2		
			Kalksandstein (95/5)	36,50	1800,00	0,99		,.	, .		.00,2	20. 1,0	
			Kalksandstein (95/5) Außenputz					,-	,-		100,2	20. 1,0	
			Kalksandstein (95/5) Außenputz Grundierung	36,50	1800,00	0,99		,-			.00,2	_0,0	
			Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoran-	36,50	1800,00	0,99		,.			.00,2	_0,0	
			Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich,	36,50 2,00	1800,00	0,99	Grundlage Altbau-	,.			.00,2		
			Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoran-	36,50 2,00 0,02	1800,00 1800,00 950,00	0,99	konstruktion				,_	,,	
			Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig)	36,50 2,00 0,02	1800,00	0,99	konstruktion CW_24;				,_		
CW	2002-		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) PE-HD-	36,50 2,00 0,02 0,15	1800,00 1800,00 950,00 1067,00	0,99	konstruktion CW_24; maximale Umwelt-				,_		
_h	2002-2009	x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW)	36,50 2,00 0,02	1800,00 1800,00 950,00 1067,00 32,00	0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit				,-		
		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn	36,50 2,00 0,02 0,15 6,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00	0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn				,-		
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW)	36,50 2,00 0,02 0,15 6,00	1800,00 1800,00 950,00 1067,00 32,00	0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit						
_h		×	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung	36,50 2,00 0,02 0,15 6,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533,						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran-	36,50 2,00 0,02 0,15 6,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich,	36,50 2,00 0,02 0,15 6,00 0,13 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig)	36,50 2,00 0,02 0,15 6,00 0,13 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn	36,50 2,00 0,02 0,15 6,00 0,13 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung,	36,50 2,00 0,02 0,15 6,00 0,13 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00	0,99 1,00 0,04	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 1100 32,00	0,99 1,00 - - 0,04 - 1,00	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 1100 32,00 960,00	0,99 1,00 - - 0,04 - 1,00	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2			1151 6			673.7
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 1100 32,00 960,00 900,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,04 - 0,07	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)		1066,5	1151,6	74,3	694,9	673,7
_h		×	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 1100 32,00 960,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,04 - 0,07	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)			1151,6			673,7
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 1100 32,00 960,00 900,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)			1151,6			673,7
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50	1800,00 1800,00 950,00 1067,00 32,00 960,00 1100 32,00 960,00 900,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)			1151,6			673,7
_h		x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 14,00 0,13 2,00 36,50 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 32,00 960,00 900,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt-wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbaukonstruktion CW_25; minimale			1151,6			673,7
_h _22	2009	x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich,	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50	1800,00 1800,00 950,00 1067,00 32,00 960,00 1100 32,00 960,00 900,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale umwelt- wirkungen; auf Grund des jungen			1151,6			673,7
_h _22	2009	x	Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 14,00 0,13 2,00 36,50 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 32,00 960,00 900,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale Umwelt- wikungen; auf Grund des jungen Baualters kann			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD-	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 32,00 960,00 900,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umweltwirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbaukonstruktion CW_25; minimale Umweltwirkungen; auf Grund des jungen Baualters kanneine			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 980,00 1800,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale Umwelt- wirkungen; auf Grund des jungen Baualters kann eine Weiterverwen-			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung,	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50 2,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 980,00 1800,00 1800,00	0,99 1,00 0,04 - 1,00 - 0,04 - 0,70 0,70 0,99	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale Umwelt- wirkungen; auf Grund des jungen Baualters kann eine Weiterverwen- dung der PE-HD-			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50 2,00 0,02 0,15 8,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1100 32,00 950,00 1800,00 1800,00 1800,00 1067,00 32,00	0,99 1,00 0,04 - 0,70 0,99 1,00	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale Umwelt- wirkungen; auf Grund des jungen Baualters kann eine Weiterverwen-			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 0,02 0,02 0,15 8,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 1800,00 1800,00 1800,00 1067,00 32,00 950,00	0,99 1,00 0,04 - 1,00 - 0,04 - 1,00 - 0,04 0,04 0,04	konstruktion CW_24; maximale Umweltwirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbaukonstruktion CW_25; minimale Umweltwirkungen; auf Grund des jungen Baualters kanneine Weiterverwendung der PE-HD-Flächenabdichtung angenommen			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW)	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 36,50 2,00 0,02 0,15 8,00	1800,00 1800,00 950,00 1067,00 32,00 960,00 1100 32,00 950,00 1800,00 1800,00 1800,00 1067,00 32,00	0,99 1,00 0,04 - 0,70 0,99 1,00	konstruktion CW_24; maximale Umwelt- wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_25; minimale Umwelt- wikungen; auf Grund des jungen Baualters kann eine Weiterverwen- dung der PE-HD- Flächenabdich- tung			1151,6			673,7
_h _22	2009		Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Innenputz Kalksandstein (95/5) Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) PE-HD- Flächenabdichtung Polystyroldämmung, XPS (KW) Noppenbahn	36,50 2,00 0,02 0,15 6,00 0,13 2,00 0,02 2,00 14,00 0,13 2,00 0,02 0,02 0,15 8,00 0,13	1800,00 1800,00 950,00 1067,00 32,00 960,00 1800,00 950,00 1800,00 1800,00 1800,00 1067,00 32,00 950,00	0,99 1,00 0,04 - 1,00 - 0,04 - 1,00 - 0,04 0,04 0,04	konstruktion CW_24; maximale Umweltwirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbaukonstruktion CW_25; minimale Umweltwirkungen; auf Grund des jungen Baualters kanneine Weiterverwendung der PE-HD-Flächenabdichtung angenommen			1151,6			673,7

			Innenputz	2,00	900,00	0,70		134,2	2750,4	2904,0	107,6	2360,2	2402,3
			Kalksandstein (95/5)	36,50	1800,00	0,99							
			Außenputz	2,00	1800,00	1,00							
			Grundierung										
			(Bitumenvoran-	0,02	950,00	_							
			strich,	-,	,								
			lösemittelhaltig) PE-HD-				Grundlage Altbau-						
			Flächenabdichtung	0,15	1067,00	-	konstruktion CW_25;						
CW			Polystyroldämmung,				maximale Umwelt-						
_h	2010-	x	XPS (KW)	8,00	32,00	0,04	wirkungen mit						
_24	2015		Noppenbahn	0,13	960,00	-	Bitumenbahn						
			Außenputz	2,00	1800,00	1,00	nach DIN 18533,						
			Grundierung				Teil 1 und 2						
			(Bitumenvoran-	0,02	950,00	_	(W 2.1-E)						
			strich,	0,02	000,00								
			lösemittelhaltig)	0.00	4400.00								
			Bitumenbahn	2,00	1100,00	-							
			Polystyroldämmung, XPS (KW)	14,00	32,00	0,04							
			Noppenbahn	0,13	960,00								
	•		Innenputz	2,00	900,00	0,70		98.3	1024,0	1106.4	72,9	652,3	628,4
							Grundlage Altbau-	,-	, .	, .	,-	,-	,
			Kalksandstein (95/5)	36,50	1800,00	0,99	konstruktion						
			Außenputz	2,00	1800,00	1,00	CW_26; minimale						
			Grundierung				Umwelt-						
			(Bitumenvoran-	0,02	950,00	_	wirkungen; auf						
CW	2016		strich,	0,02	000,00		Grund des jungen						
_h	2016- 2020	x	lösemittelhaltig)				Baualters kann eine						
_25	2020		PE-HD- Flächenabdichtung	0,15	1067,00	-	Weiterverwen-						
			Polystyroldämmung,				dung der PE-HD-						
			XPS (KW)	9,50	32,00	0,04	Flächenabdich-						
			Noppenbahn	0,13	960,00	-	tung						
			Polystyroldämmung,	4,50	32,00	0,04	angenommen werden						
			XPS (KW)			0,04	werden						
			Noppenbahn	0,13	960,00	-							
			Innenputz	2,00	900,00	0,70		136,0	2750,6	2904,4	108,6	2349,6	2388,7
			Kalksandstein (95/5)	36,50	1800,00	0,99							
			Außenputz	2,00	1800,00	1,00							
			Grundierung	2,00	1000,00	.,00							
			(Bitumenvoran-										
			strich,	0,02	950,00	-							
			lösemittelhaltig)				Grundlage Altbau-						
			PE-HD-	0.15	1067,00		konstruktion CW 26;						
CW			THE RESERVE OF THE RE	0,13	1007,00								
_h	2016-		Flächenabdichtung				maximale Umwelt-						
_26		x	Polystyroldämmung,	9,50	32,00	0,04	maximale Umwelt- wirkungen mit						
	2020	х	Polystyroldämmung, XPS (KW)	9,50	32,00	0,04	wirkungen mit Bitumenbahn						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn	0,13	960,00	-	wirkungen mit Bitumenbahn nach DIN 18533,						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz	0,13		0,04 - 1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung	0,13	960,00	-	wirkungen mit Bitumenbahn nach DIN 18533,						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran-	0,13	960,00	-	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung	0,13 2,00	960,00 1800,00	-	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich,	0,13 2,00 0,02	960,00 1800,00	-	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	х	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung,	0,13 2,00 0,02 2,00	960,00 1800,00 950,00 1100,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW)	0,13 2,00 0,02 2,00 14,00	960,00 1800,00 950,00 1100,00 32,00	-	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW)	0,13 2,00 0,02 2,00	960,00 1800,00 950,00 1100,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2						
	2020	x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25	0,13 2,00 0,02 2,00 14,00	960,00 1800,00 950,00 1100,00 32,00	- 1,00 - - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2	86,3	1121,6	1192,5	61,1	759,2	723,6
	2020	x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1)	0,13 2,00 0,02 2,00 14,00 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2	86,3	1121,6	1192,5	61,1	759,2	723,6
	2020	x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung	0,13 2,00 0,02 2,00 14,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)	86,3	1121,6	1192,5	61,1	759,2	723,6
cw			Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich,	0,13 2,00 0,02 2,00 14,00 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E)	86,3	1121,6	1192,5	61,1	759,2	723,6
_h	2020 2002- 2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich,	0,13 2,00 0,02 2,00 14,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale	86,3	1121,6	1192,5	61,1	759,2	723,6
	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich,	0,13 2,00 0,02 2,00 14,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-	86,3	1121,6	1192,5	61,1	759,2	723,6
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Noppenbahn Polystyroldämmung,	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00 950,00	1,00 - - 0,04 - 2,30	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale	86,3	1121,6	1192,5	61,1	759,2	723,6
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00	- 1,00 - - 0,04 - - 2,30 - -	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-	86,3	1121,6	1192,5	61,1	759,2	723,6
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00 950,00	1,00 - - 0,04 - 2,30	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-	86,3	1121,6	1192,5	61,1	759,2	723,6
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00	- 1,00 - - 0,04 - - 2,30 - -	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-		1121,6		61,1	759,2 769,5	723,6
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00 960,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-						
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00 960,00 380,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt-						
_h	2002-		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoran- strich, Iösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00 960,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2:1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen						
_h _27	2002-2020		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrung)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00 960,00 380,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen						
_h	2002-2020		Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 960,00 32,00 960,00 380,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion						
_h _27	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 32,00 960,00 380,00 950,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen						
_h _27 CW _h	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 15,00 0,13 20,00	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 32,00 960,00 380,00 950,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2:1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion CW_41; Minimale						
_h _27	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 20,00 0,02 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 380,00 960,00 380,00 960,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion CW_41; maximale Umwelt-						
_h _27 CW _h	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, Iösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich) Grundierung (Bitumenvoranstrich)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 20,00 0,02 0,13 0,02	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00 960,00 380,00 960,00 950,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion CW_41; maximale Umwelt-						
_h _27	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig)	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 20,00 0,02 0,13	960,00 1800,00 950,00 1100,00 32,00 960,00 950,00 380,00 960,00 380,00 960,00	1,00 - 0,04 - 2,30 - 0,04	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion CW_41; maximale Umwelt-						
_h _27	2002-2020	x x x	Polystyroldämmung, XPS (KW) Noppenbahn Außenputz Grundierung (Bitumenvoranstrich, lösemittelhaltig) Bitumenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Polystyroldämmung, XPS (KW) Noppenbahn Stahlbeton C20/25 (99/1) Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Noppenbahn Grundierung (Bitumenvoranstrich, lösemittelhaltig) Polystyroldämmung,	0,13 2,00 0,02 2,00 14,00 0,13 20,00 0,02 0,13 20,00 0,02 0,13 0,02	960,00 1800,00 950,00 1100,00 32,00 960,00 380,00 960,00 380,00 960,00 950,00	1,00	wirkungen mit Bitumenbahn nach DIN 18533, Teil 1 und 2 (W 2.1-E) Grundlage Altbau- konstruktion CW_41; minimale Umwelt- wirkungen Grundlage Altbau- konstruktion CW_41; maximale Umwelt-						

			GKF-Platte	1,25	800,00	0,25		10,6	203,4	284,9	1,5	37,9	273,2
			OSB-Platte	1,50	600,00	0,13	Grundlage Alt-						
CCM			Mineralwolle	F 40	20.25	0.04	baukonstruktion						
SCW	bis	хх	(Innenausbau)	5,42	26,25	0,04	SCW_1; minimale Umwelt-						
_h _1	1945	^ ^	Lattung	0,58	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Vollziegel/Mörtel	25,50	1800,00/	0,79	innendämmung						
			Voliziogol/Mortor		2000,00	-							
			Gipsfaserplatte	2,50	800,00	0,35	Grundlage Alt-	20,7	312,1	644,8	9,9	140,1	488,0
			PE-Folie Wand	0,02	930,00	-	baukonstruktion						
SCW			Holzfaserdämmung	7,23	160,00	0,04	SCW_1;						
_h	bis 1945	x x	(Innenausbau)				maximale Umwelt-						
_2	1945		Lattung	0,77	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Holzfaserinnen-						
			Vollziegel/Mörtel	25,50	1800,00/	0,79	dämmung						
			GKF-Platte	1,25	2000,00 800,00	0,25		10,6	211,9	294,5	1,2	41,4	277,3
			OSB-Platte			0,13	Grundlage Alt-	10,0	211,3	234,3	1,2	71,7	211,5
			Mineralwolle	1,50	600,00	0,13	baukonstruktion						
SCW	1870-		(Innenausbau)	5,42	26,25	0,04	SCW_3; minimale						
_h	1918	Y	Lattung	0,58	484,51	0,13	Umwelt-						
_3			Innenputz	1,50	900,00	0,70	wirkungen mit						
			IIIIeiiputz		1800,00/		Mineralwolle- innendämmung						
			Vollziegel/Mörtel	32,00	2000,00	0,79	innendaminding						
			Gipsfaserplatte	2,50	800,00	0,35		19,3	303,4	602,2	9,3	145,1	456,4
			PE-Folie Wand	0,02	930,00	_	Grundlage Alt-	,	,		•	,	
00147			Holzfaserdämmung				baukonstruktion						
SCW	1870-		(Innenausbau)	6,33	160,00	0,04	SCW_3;						
_h _4	1918	X	Lattung	0,67	484,51	0,13	maximale Umwelt- wirkungen mit						
_4			Innenputz	1,50	900,00	0,70	Holzfaserinnen-						
			·		1800,00/		dämmung						
			Vollziegel/Mörtel	32,00	2000,00	0,79							
			GKF-Platte	1,25	800,00	0,25		11,0	191,7	273,8	2,3	31,4	274,4
			OSB-Platte	1,50	600,00	0,13	Grundlage Alt-						
SCW			Mineralwolle	0.00	20.25	0.04	baukonstruktion SCW_4; minimale						
_h	1870-	Y	(Innenausbau)	6,33	26,25	0,04	Umwelt-						
_''	1918	^	Lattung	0,67	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Vallziagal/Märtal	12,50	1800,00/	0,79	innendämmung						
			Vollziegel/Mörtel	12,30	2000,00	0,79							
			Gipsfaserplatte	2,50	800,00	0,35	Grundlage Alt-	20,7	295,0	625,7	10,6	133,0	479,8
			PE-Folie Wand	0,02	930,00	-	baukonstruktion						
scw			Holzfaserdämmung	7,23	160,00	0,04	SCW_4;						
_h	1870-	Y	(Innenausbau)				maximale Umwelt-						
_6	1918		Lattung	0,77	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Holzfaserinnen-						
			Vollziegel/Mörtel	12,50	1800,00/	0,79	dämmung						
				4.05	2000,00	0.05		44.0	100.1	004.0	0.0	07.0	070.4
			GKF-Platte	1,25	800,00	0,25	Grundlage Alt-	11,0	183,1	264,2	2,6	27,8	270,4
			OSB-Platte	1,50	600,00	0,13	baukonstruktion						
SCW	1919-		Mineralwolle	6,33	26,25	0,04	SCW_5; minimale						
_h	1945	X	(Innenausbau)	0.07	404.54	0.42	Umwelt-						
_7	1040		Lattung	0,67	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Vollziegel/Mörtel	6,00	1800,00/ 2000,00	0,79	innendämmung						
			Gipsfaserplatte	0.50	800,00	0.05			303,7	668,3	11,2	128,1	511,4
				250		(1:35		777		200,0	,2	, :	~ , ~
				2,50		0,35	Grundlage Alt-	22,2	,-	I			
			PE-Folie Wand	0,02	930,00	0,35	Grundlage Alt- baukonstruktion	22,2	,-				
scw	1919-		PE-Folie Wand Holzfaserdämmung			0,35	baukonstruktion SCW_5;	22,2					
_h	1919- 1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau)	0,02 8,14	930,00 160,00	-	baukonstruktion SCW_5; maximale Umwelt-	22,2	,-				
		. x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,02 8,14 0,86	930,00 160,00 484,51	0,04 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit	22,2	,-				
_h		×	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz	0,02 8,14 0,86 1,50	930,00 160,00 484,51 900,00	0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen-	22,2					
_h		×	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,02 8,14 0,86	930,00 160,00 484,51	0,04 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit	22,2					
_h		x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz	0,02 8,14 0,86 1,50 6,00	930,00 160,00 484,51 900,00 1800,00/	0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen-	11,0	191,0	273,0	2,3	31,1	274,1
_h		x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte	0,02 8,14 0,86 1,50 6,00	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00	0,04 0,13 0,70 0,79	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung			273,0	2,3	31,1	274,1
_h _8		х	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel	0,02 8,14 0,86 1,50 6,00 1,25 1,50	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00 600,00	0,04 0,13 0,70 0,79 0,25 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion			273,0	2,3	31,1	274,1
_h _8		x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte	0,02 8,14 0,86 1,50 6,00	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00	0,04 0,13 0,70 0,79 0,25 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_7; minimale			273,0	2,3	31,1	274,1
_h _8 SCW _h	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle	0,02 8,14 0,86 1,50 6,00 1,25 1,50	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00 600,00	0,04 0,13 0,70 0,79 0,25 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_7; minimale Umwelt-			273,0	2,3	31,1	274,1
_h _8	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau)	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00 600,00 26,25	0,04 0,13 0,70 0,79 0,25 0,13 0,04	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_7; minimale Umwelt- wirkungen mit			273,0	2,3	31,1	274,1
_h _8 SCW _h	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00 600,00 26,25 484,51	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-			273,0	2,3	31,1	274,1
_h _8 SCW _h	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67	930,00 160,00 484,51 900,00 1800,00/ 2000,00 800,00 600,00 26,25 484,51 900,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13	baukonstruktion SCW_5; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_7; minimale Umwelt- wirkungen mit			273,0	2,3	31,1	274,1
_h _8 SCW _h	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50	930,00 160,00 484,51 900,00 1800,00/ 2000,00 600,00 26,25 484,51 900,00 1800,00/	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung			273,0 625,0	2,3	31,1	274,1
_h _8 SCW _h	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50	930,00 160,00 484,51 900,00 1800,00/ 2000,00 600,00 26,25 484,51 900,00 1800,00/ 2000,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-	11,0	191,0				
_h _8 SCW _h _9	1945	x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00 2,50 0,02	930,00 160,00 484,51 900,00 1800,00 2000,00 800,00 26,25 484,51 900,00 1800,00/ 2000,00 800,00 930,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70 0,79	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wikungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion	11,0	191,0				
_h _8 SCW _h _9	1945 1949- 1978	x x x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte PE-Folie Wand	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00	930,00 160,00 484,51 900,00 1800,00 600,00 26,25 484,51 900,00 1800,00 2000,00 800,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_7;	11,0	191,0				
_h _8 SCW _h _9	1945 1949- 1978	x x x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte PE-Folie Wand Holzfaserdämmung	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00 2,50 0,02	930,00 160,00 484,51 900,00 1800,00 2000,00 800,00 26,25 484,51 900,00 1800,00/ 2000,00 800,00 930,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70 0,79	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_7; maximale Umwelt-wirkungen mit Mineralwolle-innendämmung	11,0	191,0				
_h _8 SCW _h _9	1945 1949- 1978	x x x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau)	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00 2,50 0,02 7,23	930,00 160,00 484,51 900,00 1800,00 2000,00 600,00 26,25 484,51 900,00 1800,00/ 2000,00 930,00 160,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70 0,79	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_7;	11,0	191,0				
_h _8 SCW _h _9	1945 1949- 1978	x x x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00 2,50 0,02 7,23 0,77 1,50	930,00 160,00 484,51 900,00 800,00 600,00 26,25 484,51 900,00 1800,00/ 2000,00 800,00 484,51 900,00 1800,00/ 1800,00/	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,13 0,70 0,35 - 0,04 0,13 0,70	baukonstruktion SCW_5; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_7; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_7; maximale Umwelt-wirkungen mit wirkungen mit Mineralwolle-innendämmung	11,0	191,0				
_h _8 SCW _h _9	1945 1949- 1978	x x x	PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Vollziegel/Mörtel GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Vollziegel/Mörtel Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,02 8,14 0,86 1,50 6,00 1,25 1,50 6,33 0,67 1,50 12,00 2,50 0,02 7,23 0,77	930,00 160,00 484,51 900,00 1800,00 2000,00 600,00 26,25 484,51 900,00 1800,00 930,00 930,00 484,51 900,00	0,04 0,13 0,70 0,79 0,25 0,13 0,04 0,70 0,79 0,35	baukonstruktion SCW_5; maximale Umweltwirkungen mit Holzfaserinnendämmung Grundlage Altbaukonstruktion SCW_7; minimale Umweltwirkungen mit Mineralwolleinnendämmung Grundlage Altbaukonstruktion SCW_7; minimale Umweltwirkungen mit Holzfaserinnen-	11,0	191,0				

	_												
	_		GKF-Platte	1,25	800,00	0,25	O	11,6	183,7	266,1	1,3	3,1	237,2
			OSB-Platte	1,50	600,00	0,13	Grundlage Alt- baukonstruktion						
scw			Mineralwolle	6,33	26,25	0,04	SCW_8; minimale						
_h	1949-	ххх	(Innenausbau)			-,-	Umwelt-						
_11	1978		Lattung	0,67	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Stahlbeton B15-B25	11,30	2400,00	2,50	innendämmung						
	-		(95/5) Gipsfaserplatte	2,50	800,00	0,35		22,8	304,3	670,2	9,9	103,3	478,3
			PE-Folie Wand	0,02	930,00	0,55	Grundlage Altbau-	22,0	304,3	070,2	3,3	100,5	470,5
			Holzfaserdämmung	0,02	930,00		konstruktion						
SCW	1949-		(Innenausbau)	8,14	160,00	0,04	SCW_8;						
_h	1978	x x x	Lattung	0,86	484,51	0,13	maximale Umwelt- wirkungen mit						
_12			Innenputz	1,50	900,00	0,70	Holzfaserinnen-						
			Stahlbeton B15-B25				dämmung						
	_		(95/5)	11,30	2400,00	2,50	ŭ						
			GKF-Platte	1,25	800,00	0,25	Grundlage Alt-	11,4	180,8	262,9	1,1	-0,2	233,5
			OSB-Platte	1,50	600,00	0,13	baukonstruktion						
SCW	1979-		Mineralwolle	6,33	26,25	0,04	SCW_10;						
_h _13	1990	хх	(Innenausbau)				minimale Umwelt- wirkungen mit						
_13			Lattung	0,67	484,51	0,13	Mineralwolle-						
			Stahlbeton B15-B25 (97/3)	11,20	2400,00	2,50	innendämmung						
	-		Gipsfaserplatte	2,50	800,00	0,35	Grundlage Alt-	22,6	301,4	666,9	9,6	100,1	474,6
			PE-Folie Wand	0,02	930,00	-,	baukonstruktion	,-	,-	,-	-,-	,.	,-
SCW	1070		Holzfaserdämmung				SCW_10;						
_h	1979- 1990	x x	(Innenausbau)	8,14	160,00	0,04	maximale Umwelt-						
_14	1000		Lattung	0,86	484,51	0,13	wirkungen mit						
			Stahlbeton B15-B25	11 20	2400,00	2,50	Holzfaserinnen-						
	_		(97/3)				dämmung						
			GKF-Platte	1,25	800,00	0,25	Grundlage Alt-	11,9	186,7	269,9	0,7	-4,6	226,8
			OSB-Platte	1,50	600,00	0,13	baukonstruktion						
SCW	1991-		Mineralwolle	6,33	26,25	0,04	SCW_11;						
_h	2000	X X	(Innenausbau) Lattung	0,67	484,51	0,13	minimale Umwelt-						
_15	2000		•				wirkungen mit						
			Innenputz Stahlbeton B15-B25	1,50	900,00	0,70	Mineralwolle-						
			(97/3)	15,00	2400,00	2,50	innendämmung						
	_		Gipsfaserplatte	2,50	800,00	0,35		23,0	307,3	673,9	9,3	95,7	467,8
			PE-Folie Wand	0,02	930,00	-	Grundlage Altbau-	-					
							konstruktion						
SC/M			Holzfaserdämmung	0.44	400.00	0.04							
SCW	1991-	x x	Holzfaserdämmung (Innenausbau)	8,14	160,00	0,04	SCW_11;						
_h	1991- 2000	x x		8,14 0,86	160,00 484,51	0,04 0,13							
		x x	(Innenausbau)				SCW_11; maximale Umwelt-						
_h		хх	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25	0,86 1,50	484,51 900,00	0,13 0,70	SCW_11; maximale Umwelt- wirkungen mit						
_h		хх	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3)	0,86 1,50 15,00	484,51 900,00 2400,00	0,13 0,70 2,50	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung	400	101.0	075.0		45.5	244.0
_h		x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20	0,86 1,50 15,00 20,00	484,51 900,00 2400,00 2400,00	0,13 0,70 2,50 2,00	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16		x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz	0,86 1,50 15,00 20,00 1,50	484,51 900,00 2400,00 2400,00 900,00	0,13 0,70 2,50 2,00 0,70	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16			(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung	0,86 1,50 15,00 20,00	484,51 900,00 2400,00 2400,00	0,13 0,70 2,50 2,00	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12;	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16	2000	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle	0,86 1,50 15,00 20,00 1,50	484,51 900,00 2400,00 2400,00 900,00	0,13 0,70 2,50 2,00 0,70	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt-	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16	2000		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau)	0,86 1,50 15,00 20,00 1,50 0,67 6,33	484,51 900,00 2400,00 2400,00 900,00 484,51 26,25	0,13 0,70 2,50 2,00 0,70 0,13 0,04	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16	2000		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50	484,51 900,00 2400,00 2400,00 900,00 484,51 26,25 600,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt-	12,2	191,0	275,3	-0,1	-15,5	211,9
_h _16	2000		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25	484,51 900,00 2400,00 2400,00 900,00 484,51 26,25 600,00 800,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung				,		,
_h _16	2000		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25	484,51 900,00 2400,00 2400,00 900,00 484,51 26,25 600,00 800,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt-	12,2	191,0	275,3 679,4	-0,1 8,4	-15,5 84,7	211,9
_h _16 SCW _h _17	1961- 1990		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion				,		,
_h _16 SCW _h _17	1961- 1990		(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25	484,51 900,00 2400,00 2400,00 900,00 484,51 26,25 600,00 800,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt-				,		,
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12;				,		,
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau)	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25 0,35	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen-				,		,
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit				,		,
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahibeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen-				,		,
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00	0,13 0,70 2,50 2,00 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,05	SCW_11; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_12; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_12; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_15;	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 800,00 600,00	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,05	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt-	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17	1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 800,00 600,00 26,25	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,05	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 800,00 26,25 484,51 900,00 575,00/	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 0,25 0,13 0,70 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle-	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25)	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 600,00 26,25 484,51 900,00 575,00/ 2000,00	0,13 0,70 2,50 0,70 0,73 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,13 0,04 0,13 0,70 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 800,00 600,00 26,25 484,51 900,00 575,000 2000,00	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 0,25 0,13 0,70 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung	23,4	311,6	679,4	8,4	84,7	452,9
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 600,00 26,25 484,51 900,00 575,00/ 2000,00	0,13 0,70 2,50 0,70 0,73 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,13 0,04 0,13 0,70 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle-	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18	1961- 1990 - 1961- 1990 - 1991- 2000	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 484,51 900,00 2400,00 800,00 600,00 26,25 484,51 900,00 575,000 2000,00	0,13 0,70 2,50 0,70 0,73 0,04 0,13 0,25 0,35 - 0,04 0,13 0,70 2,00 0,25 0,13 0,04 0,13 0,70 0,25	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18 SCW _h _19	1961- 1990 - 1991- 2000	x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenputz	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25 2,50 0,02	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 2400,00 20,25 484,51 900,00 575,00/ 2000,00 800 930 160	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,70 0,25 0,04 0,13 0,70 0,13 0,04 0,13 0,70 0,04 0,13 0,70 0,04	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_15; maximale Umwelt- baukonstruktion SCW_15; maximale Umwelt-	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18 SCW _h _19	1961- 1990 - 1961- 1990 - 1991- 2000	x x x x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenputz Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25 2,50 0,02 6,33 0,67	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 2400,00 26,25 484,51 900,00 575,00/ 2000,00 800 930 160	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,70 0,25 0,04 0,13 0,70 0,13 0,04 0,13 0,70 0,04 0,13 0,70 0,04	SCW_11; maximale Unwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_12; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_12; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_15; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_15; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18 SCW _h _19	1961- 1990 - 1991- 2000	x x x x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Lattung Innenputz Lattung Innenputz Lattung L	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25 2,50 0,02 6,33 0,67 1,50	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 2400,00 2400,00 600,00 26,25 484,51 900,00 575,00/ 2000,00 800,00 600,00 484,51 900,00 930 484,51 900,00	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,70 0,25 0,13 0,04 0,13 0,70 0,25 0,13 0,04 0,13 0,70 0,25 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,04 0,13 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	SCW_11; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_12; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_12; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion SCW_15; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_15; maximale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Alt- baukonstruktion SCW_15; maximale Umwelt- wirkungen mit Holzfaserinnen-	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3
_h _16 SCW _h _17 SCW _h _18 SCW _h _19	1961- 1990 - 1991- 2000	x x x x x x x	(Innenausbau) Lattung Innenputz Stahlbeton B15-B25 (97/3) Beton B5-B20 Innenputz Lattung Mineralwolle (Innenausbau) OSB-Platte GKF-Platte Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Beton B5-B20 GKF-Platte OSB-Platte Mineralwolle Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenputz Lattung Innenputz Hochlochziegel (75/25) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	0,86 1,50 15,00 20,00 1,50 0,67 6,33 1,50 1,25 2,50 0,02 8,14 0,86 1,50 20,00 1,25 1,50 4,52 0,48 1,50 18,25 2,50 0,02 6,33 0,67	484,51 900,00 2400,00 900,00 484,51 26,25 600,00 800,00 930,00 160,00 2400,00 26,25 484,51 900,00 575,00/ 2000,00 800 930 160	0,13 0,70 2,50 0,70 0,13 0,04 0,13 0,70 0,25 0,04 0,13 0,70 0,13 0,04 0,13 0,70 0,04 0,13 0,70 0,04	SCW_11; maximale Unwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_12; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_12; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung Grundlage Alt-baukonstruktion SCW_15; minimale Umwelt-wirkungen mit Mineralwolle-innendämmung Grundlage Alt-baukonstruktion SCW_15; maximale Umwelt-wirkungen mit Holzfaserinnen-dämmung	23,4	311,6 188,5	679,4 266,3	1,8	33,3	452,9 259,3

			GKF-Platte	1,25	800,00	0,25	Grundlage Alt-	12,2	191,0	275,3	-0,1	-15,5	211,9
			OSB-Platte	1,50	600,00	0,13	baukonstruktion						
SCW	1961-		Mineralwolle	6,33	26,25	0,04	SCW_16;						
_h	1990	x x x x	(Innenausbau)				minimale Umwelt-						
_21			Lattung	0,67	484,51	0,13	wirkungen mit Mineralwolle-						
			Innenputz	1,50	900,00	0,70	innendämmung						
			Stampfbeton B5-B20	20,00	2400,00	2,00	imichaammang						
			Gipsfaserplatte	2,50	800	0,35	Grundlage Alt-	23,4	311,6	679,4	8,4	84,7	452,9
			PE-Folie Wand	0,02	930	-	baukonstruktion						
SCW	1961-		Holzfaserdämmung	8,14	160	0,04	SCW_16;						
_h	1990	x x x x	(Innenausbau)				maximale Umwelt-						
_22			Lattung	0,86	484,51	0,13	wirkungen mit						
			Innenputz	1,50	900,00	0,70	Holzfaserinnen-						
			Stampfbeton B5-B20	20,00	2400,00	2,00	dämmung						
			GKF-Platte	1,25	800,00	0,25		21,5	269,4	353,7	5,3	7,6	195,0
			OSB-Platte	1,50	600,00	0,13	Carrier all a sea. A labe acc						
			Mineralwolle	2.02	20.25	0.04	Grundlage Altbau- konstruktion						
scw			(Innenausbau)	3,62	26,25	0,04	SCW_37;						
_h	2002-	×	Lattung	0,38	484,51	0,13	minimale Umwelt-						
_23	2009		Innenputz	2,00	900,00	0,70	wirkungen mit						
			Stahlbeton C30/37	20.00	200.00	2 50	Mineralwolle-						
			(98/2)	30,00	380,00	2,50	innendämmung						
			Polystyroldämmung,	3,00	32,00	0,04							
			XPS (KW)						007 :	F=0 :		4.5 :	004.5
			Gipsfaserplatte	2,50	800,00	0,35		28,2	337,1	573,1	13,0	115,4	321,6
			PE-Folie Wand	0,02	930,00	-	Grundlage Altbau-						
			Holzfaserdämmung	4,52	160,00	0,04	konstruktion						
SCW	2002-		(Innenausbau)				SCW_37;						
_h	2002-	x	Lattung	0,48	484,51	0,13	maximale Umwelt-						
_24	2003		Innenputz	2,00	900,00	0,70	wirkungen mit						
			Stahlbeton C30/37	30,00	380,00	2,50	Holzfaserinnen-						
			(98/2)	,	,	,	dämmung						
			Polystyroldämmung, XPS (KW)	3,00	32,00	0,04							
			GKF-Platte	1,25	800,00	0,25		24,4	292,8	376,3	7,5	21,3	197,6
			OSB-Platte					27,7	232,0	370,3	7,5	21,5	137,0
			Mineralwolle	1,50	600,00	0,13	Grundlage Altbau-						
			(Innenausbau)	2,71	26,25	0,04	konstruktion						
SCW	2010-		Lattung	0,29	484,51	0,13	SCW_38;						
_h	2015	x	Innenputz	2,00	900,00	0,70	minimale Umwelt-						
_25			Stahlbeton C30/37		300,00	0,70	wirkungen mit Mineralwolle-						
			(98/2)	30,00	380,00	2,50	innendämmung						
			Polystyroldämmung,				imichaammang						
			XPS (KW)	4,00	32,00	0,04							
			Gipsfaserplatte	2,50	800,00	0,35		28,7	331,3	499,4	14,7	132,5	262,2
			PE-Folie Wand	0,02	930,00	-	Grundlage Altbau-						
			Holzfaserdämmung	2.71	160.00	0,04	konstruktion						
scw			(Innenausbau)	2,71	160,00	0,04	SCW_38;						
_h	2010-	x	Lattung	0,29	484,51	0,13	maximale Umwelt-						
_26	2015		Innenputz	2,00	900,00	0,70	wirkungen mit						
			Stahlbeton C30/37	30,00	380,00	2,50	Holzfaserinnen-						
			(98/2)	00,00	000,00	2,00	dämmung						
			Polystyroldämmung,				daniindig						
			VDO (IAM)	4,00	32,00	0,04	damining						
			XPS (KW)				daninung	00.5	200.0	204.0			107.0
			GKF-Platte	1,25	800,00	0,25	danimung	26,5	308,9	391,3	9,2	31,3	197,2
			GKF-Platte OSB-Platte				Grundlage Altbau-	26,5	308,9	391,3	9,2	31,3	197,2
			GKF-Platte OSB-Platte Mineralwolle	1,25	800,00	0,25	Grundlage Altbau- konstruktion	26,5	308,9	391,3	9,2	31,3	197,2
SCW	2016-		GKF-Platte OSB-Platte Mineralwolle (Innenausbau)	1,25 1,50 1,81	800,00 600,00 26,25	0,25 0,13 0,04	Grundlage Altbau- konstruktion SCW_39;	26,5	308,9	391,3	9,2	31,3	197,2
_h	2016- 2020	,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung	1,25 1,50 1,81 0,19	800,00 600,00 26,25 484,51	0,25 0,13 0,04 0,13	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt-	26,5	308,9	391,3	9,2	31,3	197,2
		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz	1,25 1,50 1,81	800,00 600,00 26,25	0,25 0,13 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit	26,5	308,9	391,3	9,2	31,3	197,2
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37	1,25 1,50 1,81 0,19	800,00 600,00 26,25 484,51	0,25 0,13 0,04 0,13	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle-	26,5	308,9	391,3	9,2	31,3	197,2
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2)	1,25 1,50 1,81 0,19 2,00 30,00	800,00 600,00 26,25 484,51 900,00 380,00	0,25 0,13 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit	26,5	308,9	391,3	9,2	31,3	197,2
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung,	1,25 1,50 1,81 0,19 2,00	800,00 600,00 26,25 484,51 900,00	0,25 0,13 0,04 0,13 0,70	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle-	26,5	308,9	391,3	9,2	31,3	197,2
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2)	1,25 1,50 1,81 0,19 2,00 30,00	800,00 600,00 26,25 484,51 900,00 380,00	0,25 0,13 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle-	26,5	308,9	391,3 470,3	9,2	31,3	197,2
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) (Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte	1,25 1,50 1,81 0,19 2,00 30,00 4,75	800,00 600,00 26,25 484,51 900,00 380,00 800,00	0,25 0,13 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minale Umwelt- wirkungen mit Mineralwolle- innendämmung						, , , , , , , , , , , , , , , , , , ,
_h		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) (Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02	800,00 600,00 26,25 484,51 900,00 380,00 800,00 930,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung						, , , , , , , , , , , , , , , , , , ,
_h _27		,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand	1,25 1,50 1,81 0,19 2,00 30,00 4,75	800,00 600,00 26,25 484,51 900,00 380,00 800,00	0,25 0,13 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion						, , , , , , , , , , , , , , , , , , ,
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02	800,00 600,00 26,25 484,51 900,00 380,00 800,00 930,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39;						, , , , , , , , , , , , , , , , , , ,
_h _27	2020	,	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81	800,00 600,00 26,25 484,51 900,00 380,00 800,00 930,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt-						, , , , , , , , , , , , , , , , , , ,
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,35 - 0,04 0,13 0,70	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39;						, , , , , , , , , , , , , , , , , , ,
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19	800,00 600,00 26,25 484,51 900,00 380,00 800,00 930,00 160,00 484,51	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,35 - 0,04 0,13	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt- wirkungen mit						, , , , , , , , , , , , , , , , , , ,
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung,	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00	800,00 600,00 26,25 484,51 900,00 380,00 800,00 930,00 160,00 484,51 900,00 380,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,35 - 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt- wirkungen mit Holzfaserinnen-						, , , , , , , , , , , , , , , , , , ,
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00 380,00 32,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,35 - 0,04 0,13 0,70 2,50 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung	29,7	335,6	470,3	16,2	144,6	235,5
_h _27	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75 1,25	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00 380,00 32,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt-						, , , , , , , , , , , , , , , , , , ,
_h _27 SCW _h _28	2020		GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte OSB-Platte	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00 380,00 32,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,35 - 0,04 0,13 0,70 2,50 0,04	Grundlage Altbau- konstruktion SCW_39; minimale Umwelt- wirkungen mit Mineralwolle- innendämmung Grundlage Altbau- konstruktion SCW_39; maximale Umwelt- wirkungen mit Holzfaserinnen- dämmung Grundlage Alt- baukonstruktion	29,7	335,6	470,3	16,2	144,6	235,5
_h _27 SCW _h _28	2020	y	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte OSB-Platte Mineralwolle	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75 1,25 1,50	800,00 600,00 26,25 484,51 900,00 32,00 800,00 930,00 160,00 484,51 900,00 380,00 32,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50 0,04 0,13 0,70 0,25 0,04	Grundlage Altbaukonstruktion SCW_39; minimale Umweltwirkungen mit Mineralwolle-innendämmung Grundlage Altbaukonstruktion SCW_39; maximale Umweltwirkungen mit Holzfaserinnendämmung Grundlage Altbaukonstruktion SCW_42;	29,7	335,6	470,3	16,2	144,6	235,5
_h _27 scw _h _28	2016-2020	y	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte OSB-Platte Mineralwolle (Innenausbau)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75 1,25 1,50 6,33	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00 380,00 800,00 600,00 26,25	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50 0,04 0,13 0,70 0,25 0,13 0,04	Grundlage Altbaukonstruktion SCW_39; minimale Umweltwirkungen mit Mineralwolle-innendämmung Grundlage Altbaukonstruktion SCW_39; maximale Umweltwirkungen mit Holzfaserinnendämmung Grundlage Altbaukonstruktion SCW_42; minimale Umwelt-	29,7	335,6	470,3	16,2	144,6	235,5
_h _27 SCW _h _28	2016-2020	y	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75 1,25 1,50	800,00 600,00 26,25 484,51 900,00 32,00 800,00 930,00 160,00 484,51 900,00 380,00 32,00	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50 0,04 0,13 0,70 0,25 0,04	Grundlage Altbaukonstruktion SCW_39; minimale Umweltwirkungen mit Mineralwolle-innendämmung Grundlage Altbaukonstruktion SCW_39; maximale Umweltwirkungen mit Holzfaserinnendämmung Grundlage Altbaukonstruktion SCW_42; minimale Umweltwirkungen mit	29,7	335,6	470,3	16,2	144,6	235,5
_h _27 scw _h _28	2016-2020	y	GKF-Platte OSB-Platte Mineralwolle (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) Gipsfaserplatte PE-Folie Wand Holzfaserdämmung (Innenausbau) Lattung Innenputz Stahlbeton C30/37 (98/2) Polystyroldämmung, XPS (KW) GKF-Platte OSB-Platte Mineralwolle (Innenausbau)	1,25 1,50 1,81 0,19 2,00 30,00 4,75 2,50 0,02 1,81 0,19 2,00 30,00 4,75 1,25 1,50 6,33 0,67	800,00 600,00 26,25 484,51 900,00 380,00 930,00 160,00 484,51 900,00 380,00 800,00 600,00 26,25	0,25 0,13 0,04 0,13 0,70 2,50 0,04 0,13 0,70 2,50 0,04 0,13 0,70 0,25 0,13 0,04	Grundlage Altbaukonstruktion SCW_39; minimale Umweltwirkungen mit Mineralwolle-innendämmung Grundlage Altbaukonstruktion SCW_39; maximale Umweltwirkungen mit Holzfaserinnendämmung Grundlage Altbaukonstruktion SCW_42; minimale Umwelt-	29,7	335,6	470,3	16,2	144,6	235,5

			Gipsfaserplatte	2,50	800,00	0,35	Grundlage Alt-	21,1	286,6	616,0	11,6	134,3	480,6
			PE-Folie Wand	0,02	930,00	-	baukonstruktion						
SCW	2002-		Holzfaserdämmung	7,23	160,00	0,04	SCW_42;						
_h _30	2020	x x x	(Innenausbau) Lattung	0,77	484,51	0,13	maximale Umwelt- wirkungen mit						
			Kalksandstein				Holzfaserinnen-						
			(99,2/0,8)	11,50	1800,00	0,99	dämmung						
			Mineralwolle (Boden)	27,00	85,00	0,04	Grundlage Alt-	47,5	526,3	609,5	41,5	454,0	514,5
TFL			schwimmender	4,00	2400,00	1,40	baukonstruktion						
mas	1949-		Estrich	4,00		1,10	TFLmas_1;						
_h	1957	Х	Dämmung DE und OGD, ältere BK	2,50	30,00- 200,00	0,09	minimale Umwelt- wirkungen mit						
_1			Beton B5-B20	15,00		1,51	Mineralwolle-						
			Kalkgipsputz	1,00	900,00	0,70	dämmung						
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	66,7	738,5	1960,4	18,0	-6,7	1342,8
			Lattung	4,35	484,51	0,13	baukonstruktion TFLmas_1;						
			Holzfaserdämmung	29,65	160,00	0,04	maximale Umwelt-						
			(Innenausbau) schwimmender				wirkungen mit						
TFL			Estrich	4,00	2400,00	1,40	Holzfaserdäm-						
mas _h	1949- 1957	X	Dämmung DE und	2,50	30,00-	0,09	mung und begehbarem						
_11	1937		OGD, ältere BK		200,00		Trockenestrich;						
_			Beton B5-B20 Kalkgipsputz	15,00 1,00	2400,00 900,00	1,51 0,70	Holzabmessung						
			. amgipopuiz	1,00	500,00	0,70	bxh = 80x(2*170)						
							mm, Achsabstand:						
							62,5 cm						
			Mineralwolle (Boden)	27,00	85,00	0,04	Grundlage Alt-	52,3	526,4	609,7	44,5	435,9	491,2
TFL			schwimmender	4.00	2400,00	1,40	baukonstruktion						
mas	1958-	v	Estrich Dämmung DE und	.,	30,00-		TFLmas_2; minimale Umwelt-						
_h	1968	X	OGD, ältere BK	4,00	200,00	0,05	wirkungen mit						
_3			Beton B5-B20	15,00	2400,00	1,51	Mineralwolle-						
			Kalkgipsputz	1,00	900,00	0,70	dämmung						
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	71,4	738,7	1960,6	21,1	-24,9	1319,6
			Lattung	4,35	484,51	0,13	baukonstruktion TFLmas_2;						
			Holzfaserdämmung	29,65	160,00	0,04	maximale Umwelt-						
			(Innenausbau) schwimmender				wirkungen mit						
TFL	4050		Estrich	4,00	2400,00	1,40	Holzfaser-						
mas _h	1958- 1968	Х	Dämmung DE und	4,00	30,00-	0,05	dämmung und begehbarem						
_4			OGD, ältere BK Beton B5-B20	15,00	200,00 2400,00	1,51	Trockenestrich;						
			Kalkgipsputz	1,00	900,00	0,70	Holzabmessung						
			0				bxh = 80x(2*170) mm,						
							Achsabstand:						
							62,5 cm						
			Mineralwolle (Boden)	21,00	85,00	0,04	Grundlage Alt-	29,9	399,3	462,5	26,9	360,3	410,3
TFL			Mineralwolle (Boden)	6,00	30,00-	0,04	baukonstruktion TFLmas_19;						
mas	1969-	ххх	Normalbeton	14 00	200,00 2400,00	1.51	minimale Umwelt-						
_h _5	1994		Tronnai boton	,00	2 100,00	.,	wirkungen mit						
_5							Mineralwolle-						
							dämmung						
			Gipsfaserplatte	2,50		0,35	Grundlage Alt- baukonstruktion	57,3	720,8	1939,7	11,7	8,7	1364,9
			Lattung Holzfaserdämmung	4,35	484,51	0,13	TFLmas_19;						
			(Innenausbau)	29,65	160,00	0,04	maximale Umwelt-						
TEI			Mineralwolle (Boden)	6,00	30,00-	0,04	wirkungen mit						
TFL mas	1969-				200,00		Holzfaser- dämmung und						
_h	1994	x x x	Normalbeton	14,00	2400,00	1,51	begehbarem						
_6							Trockenestrich;						
							Holzabmessung						
							bxh = 80x(2*170) mm,						
							Achsabstand:						
							62,5 cm						
			Mineralwolle (Boden)	21,00	85,00	0,04	Grundlage Alt-	29,9	399,3	462,5	26,9	360,3	410,3
TFL			Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	baukonstruktion TFLmas_20;						
mas	1971-	x x x	Normalbeton	14,00	2400,00	1,51	minimale Umwelt-						
_h _7	1990						wirkungen mit						
							Mineralwolle-						
							dämmung			ļ			

			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	57,3	720,8	1939,7	11,7	8,7	1364,9
			Lattung	4,35	484,51	0,13	baukonstruktion						
			Holzfaserdämmung	29,65	160,00	0,04	TFLmas_20; maximale Umwelt-						
TEI			(Innenausbau)		30,00-		wirkungen mit						
TFL mas	1971-		Mineralwolle (Boden)	6,00	200,00	0,04	Holzfaser-						
_h	1990	x x x	Normalbeton	14,00	2400,00	1,51	dämmung und						
8							begehbarem Trockenestrich;						
							Holzabmessung						
							bxh = 80x(2*170)						
							mm, Achsab-						
							stand: 62,5 cm						
			Mineralwolle (Boden)	21,00	85,00	0,04	Grundlage Alt-	29,9	399,3	462,5	26,9	360,3	410,3
TFL			Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	baukonstruktion TFLmas_21;						
mas	1981-	x x	Normalbeton	14.00	2400,00	1.51	minimale Umwelt-						
_h _9	1990			,	,	,-	wirkungen mit						
_0							Mineralwolle-						
			Cinefesernlette	2.50	1000.00	0.25	dämmung			4000 =			10010
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	57,3	720,8	1939,7	11,7	8,7	1364,9
			Lattung	4,35	484,51	0,13	baukonstruktion TFLmas_21;						
			Holzfaserdämmung (Innenausbau)	29,65	160,00	0,04	maximale Umwelt-						
TFL				6.00	30,00-	0.04	wirkungen mit						
mas	1981-		Mineralwolle (Boden)	6,00	200,00	0,04	Holzfaser-						
_h	1990	хх	Normalbeton	14,00	2400,00	1,51	dämmung und begehbarem						
_10							Trockenestrich;						
							Holzabmessung						
							bxh = 80x(2*170)						
							mm, Achsab-						
							stand: 62,5 cm						
			Mineralwolle (Boden)	21,00	85,00	0,04	Grundlage Alt- baukonstruktion	29,9	399,3	462,5	26,9	360,3	410,3
TFL			Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	TFLmas_22;						
mas	1971- 1990	x x x	Normalbeton	14,00	2400,00	1,51	minimale Umwelt-						
_h _11	1990						wirkungen mit						
_							Mineralwolle-						
			Gipsfaserplatte	2,50	1000,00	0,35	dämmung Grundlage Alt-	57,3	720.8	1939,7	11,7	9.7	1364,9
			Lattung	4,35	484,51	0,13	baukonstruktion	37,3	120,0	1939,1	11,7	0,1	1304,5
			Holzfaserdämmung		404,51	0,13	TFLmas_22;						
TFL			(Innenausbau)	29,65	160,00	0,04	maximale Umwelt-						
mas					30,00-		wirkungen mit						
_h	1971-	x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04							
12	1971- 1990	x x x		6,00	30,00-		wirkungen mit Holzfaserdäm-						
_12		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich;						
_12		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung						
_12		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170)						
_12		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung						
_12		x x x	Mineralwolle (Boden)	6,00	30,00- 200,00	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt-	29,9	399,3	462,5	26,9	360,3	410,3
_12		x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden)	6,00 14,00	30,00- 200,00 2400,00 85,00 30,00-	0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion	29,9	399,3	462,5	26,9	360,3	410,3
			Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden)	6,00 14,00 21,00 6,00	30,00- 200,00 2400,00 85,00 30,00- 200,00	0,04 1,51 0,04 0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23;	29,9	399,3	462,5	26,9	360,3	410,3
TFL mas _h	1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden)	6,00 14,00 21,00 6,00	30,00- 200,00 2400,00 85,00 30,00-	0,04 1,51 0,04 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23; minimale Umwelt-	29,9	399,3	462,5	26,9	360,3	410,3
TFL mas	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden)	6,00 14,00 21,00 6,00	30,00- 200,00 2400,00 85,00 30,00- 200,00	0,04 1,51 0,04 0,04	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23;	29,9	399,3	462,5	26,9	360,3	410,3
TFL mas _h	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden)	6,00 14,00 21,00 6,00	30,00- 200,00 2400,00 85,00 30,00- 200,00	0,04 1,51 0,04 0,04	wirkungen mit Holzfaserdämmung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23; minimale Umwelt- wirkungen mit	29,9	·			360,3	410,3
TFL mas _h	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden)	6,00 14,00 21,00 6,00	30,00- 200,00 2400,00 85,00 30,00- 200,00	0,04 1,51 0,04 0,04 1,51	wirkungen mit Holzfaserdäm- mung und begeh- barem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt-	29,9	·	462,5	26,9		410,3
TFL mas _h	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung	6,00 14,00 21,00 6,00 14,00	30,00- 200,00 2400,00 85,00 30,00- 200,00 2400,00	0,04 1,51 0,04 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion		·				410,3
TFL mas _h	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung	6,00 14,00 21,00 6,00 14,00	30,00- 200,00 2400,00 85,00 30,00- 200,00 2400,00	0,04 1,51 0,04 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23;		·				410,3
TFL mas _h _13	1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau)	6,00 14,00 21,00 6,00 14,00 2,50 4,35 29,65	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion		·				410,3
TFL mas _h _13	1990 1976- 1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung	6,00 14,00 21,00 6,00 14,00	30,00- 200,00 2400,00 85,00 30,00- 200,00 2400,00 484,51	0,04 1,51 0,04 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab- stand: 62,5 cm Grundlage Alt- baukonstruktion TFLmas_23; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLmas_23; maximale Umwelt- wirkungen mit Holzfaser-		·				410,3
TFL mas	1990 1976- 1990		Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00-	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und		·				410,3
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem		·				410,3
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich;		·				410,3
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem		·				410,3 1364,9
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsab-		·				410,3 1364,9
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	21,00 6,00 14,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00 2400,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaser-dämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm	57,3	720,8	1939,7	11,7	8,7	
TFL mas _h _13	1990 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden)	21,00 6,00 14,00 2,50 4,35 29,65 6,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00 2400,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Alt-		·				410,3 1364,9
TFL mas _h _13	1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	21,00 6,00 14,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00 2400,00	0,04 1,51 0,04 0,04 1,51 0,35 0,13 0,04 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion	57,3	720,8	1939,7	11,7	8,7	
TFL mas _h _13	1976- 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	6,00 14,00 21,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 30,00- 200,00 2400,00 85,00 30,00- 200,00 200,00	0,04 1,51 0,04 1,51 0,35 0,13 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_24;	57,3	720,8	1939,7	11,7	8,7	
TFL mas _h _14	1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	6,00 14,00 21,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 484,51 160,00 30,00- 200,00 2400,00	0,04 1,51 0,04 1,51 0,35 0,13 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaser-dämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_24; minimale Umweltwirkungen mit	57,3	720,8	1939,7	11,7	8,7	
TFL mas _h _13	1976- 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	6,00 14,00 21,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 30,00- 200,00 2400,00 85,00 30,00- 200,00 200,00	0,04 1,51 0,04 1,51 0,35 0,13 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*10) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolle-	57,3	720,8	1939,7	11,7	8,7	
TFL mas _h _14	1976- 1976- 1990	x x x	Mineralwolle (Boden) Normalbeton Mineralwolle (Boden) Mineralwolle (Boden) Normalbeton Gipsfaserplatte Lattung Holzfaserdämmung (Innenausbau) Mineralwolle (Boden) Normalbeton	6,00 14,00 21,00 6,00 14,00 2,50 4,35 29,65 6,00 14,00	30,00- 200,00 2400,00 2400,00 30,00- 200,00 2400,00 30,00- 200,00 2400,00 85,00 30,00- 200,00 200,00	0,04 1,51 0,04 1,51 0,35 0,13 0,04 1,51	wirkungen mit Holzfaserdämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_23; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLmas_23; maximale Umweltwirkungen mit Holzfaser-dämmung und begehbarem Trockenestrich; Holzabmessung bxh = 80x(2*170) mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLmas_24; minimale Umweltwirkungen mit	57,3	720,8	1939,7	11,7	8,7	

			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	57,3	720,8	1939,7	11,7	8,7	1364,9
			Lattung	4,35	484,51	0,13	baukonstruktion						
			Holzfaserdämmung	20.65	160.00	0.04	TFLmas_24;						
			(Innenausbau)	29,65	160,00	0,04	maximale Umwelt- wirkungen mit						
TFL			Mineralwolle (Boden)	6,00	30,00-	0,04	Holzfaser-						
mas	1971-	x x x	Normalbeton	14.00	200,00 2400,00	1,51	dämmung und						
_h 16	1990		Normalbelon	14,00	2400,00	1,51	begehbarem						
_16							Trockenestrich;						
							Holzabmessung						
							bxh = 80x(2*170)						
							mm, Achsab- stand: 62,5 cm						
			Mineralwolle (Boden)	21,00	85,00	0,04	Stariu. 02,5 cm	32,0	427,4	494,2	28,2	378,7	429,1
			Bitumenbahn, Decke	0,40	1000,00	0,04	Grundlage Alt-	32,0	421,4	434,2	20,2	370,7	423,1
TFL			Mineralwolle	0,40	1000,00		baukonstruktion						
mas	1949-		(Innenausbau)	6,00	26,25	0,04	TFLmas_25;						
_h	1994	x x x x x	Bitumenbahn, Decke	0,50	1000,00	-	minimale Umwelt- wirkungen mit						
_17			Estrich		2400,00	1,40	Mineralwolle-						
			Stahlbeton B15-B25				dämmung						
			(97/3)	18,00	2400,00	2,50	3						
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	59,3	748,8	1971,4	13,0	27,0	1383,7
			Lattung	4,35	484,51	0,13	baukonstruktion						
			Holzfaserdämmung	29,65	160,00	0,04	TFLmas_25;						
			(Innenausbau)			0,0 .	maximale Umwelt- wirkungen mit						
TFL			Bitumenbahn, Decke	0,40	1000,00	-	Holzfaser-						
mas	1949-	x x x x x	Mineralwolle	6,00	26,25	0,04	dämmung und						
_h 18	1994		(Innenausbau) Bitumenbahn, Decke	0,50	1000,00	_	begehbarem						
_18			Estrich		2400,00	1 40	Trockenestrich;						
			Stahlbeton B15-B25		2400,00	1,40 2,50	Holzabmessung						
			(97/3)	10,00	2400,00	2,50	bxh = 80x(2*170)						
			(3770)				mm, Achsab- stand: 62,5 cm						
			Minanahaalla (Daalaa)	04.00	05.00	0.04	Stariu. 02,5 cm	07.0	400.4	400.4	04.7	222.0	201.1
			Mineralwolle (Boden)	21,00	85,00	0,04		37,8	420,1	486,4	31,7	338,6	381,1
			Estrich	3,50	2400,00	1,40	Grundlage Alt-						
TFL			Estrichpapier	0,10	800,00	-	baukonstruktion TFLmas_28;						
mas	1991-	хх	Dämmung DE und OGD, jüngere BK	6,00	85,00	0,04	minimale Umwelt-						
_h	2000		PE-Folie Decke	0,10	930,00	_	wirkungen mit						
_19			Stahlbeton B15-B25				Mineralwolle-						
			(96/4)	16,00	2400,00	2,50	dämmung						
			Innenputz	1,50	900,00	0,70							
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	65,1	741,5	1963,5	16,5	-13,0	1335,7
			Lattung	4,35	484,51	0,13	baukonstruktion						
			Holzfaserdämmung	29,65	160,00	0.04	TFLmas_28;						
			(Innenausbau)	29,00	100,00	0,04	maximale Umwelt-						
TFL			Estrich	3,50	2400,00	1,40	wirkungen mit Holzfaser-						
mas	1991-	x x	Estrichpapier	0,10	800,00	-	dämmung und						
_h	2000		Dämmung DE und	6,00	85,00	0,04	begehbarem						
_20			OGD, jüngere BK				Trockenestrich;						
			PE-Folie Decke	0,10	930,00	-	Holzabmessung						
			Stahlbeton B15-B25 (96/4)	16,00	2400,00	2,50	bxh = 80x(2*170)						
			Innenputz	1,50	900,00	0,70	mm, Achsab-						
	•		Mineralwolle (Boden)				stand: 62,5 cm	126	177 0	205,0	9,3	133,6	145,9
			willeralwolle (Doden)	8,00	85,00	0,04	Grundlage Alt- baukonstruktion	12,6	177,8	205,0	9,3	133,0	140,9
TFL			Mineralwolle (Boden)	19,00	85,00	0,04	TFLmas_29;						
mas	2002-	x x x	Stahlbeton C20/25	16,00	2400,00	2,30	minimale Umwelt-						
_h _21	2020		(99/1)				wirkungen mit						
_21							Mineralwolle-						
							dämmung						
	-		Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	57,9	735,7	1955,8	11,9	18,5	1374,2
			Lattung	4,35	484,51	0,13	baukonstruktion TFLmas 29;						
			Holzfaserdämmung	29,65	160,00	0,04	maximale Umwelt-						
			(Innenausbau)				wirkungen mit						
TFL	2002		Mineralwolle (Boden)	19,00	85,00	0,04	Holzfaser-						
mas _h	2002- 2020	x x x	Stahlbeton C20/25 (99/1)	10,00	2400,00	2,30	dämmung und						
_22	2020		(55/1)				begehbarem						
							Trockenestrich;						
							Holzabmessung $bxh = 80x(2*170)$						
							mm, Achsab-						
							stand: 62,5 cm						
	•		Mineralwolle (Boden)	9,00	85,00	0,04	Grundlage Alt-	76,4	192,4	224,5	54,9	-157,8	-229,1
TC:			Gipsfaserplatte	2,50	1000,00	0,35	baukonstruktion	1	,	, ,	,-	,-	•
TFL	2002-		Holzfaserdämmung				TFLmas_30;						
mas _h	2020	x x x	(Innenausbau)	18,50	160,00	0,04	minimale Umwelt-						
_23			Stahlbeton C30/37	24.00	2400,00	2,50	wirkungen mit						
			(98/2)				Mineralwolle- dämmung						
			Innenputz	2,00	900,00	0,70	uarriiriufig	Ī			i		

				Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	120,2	732,1	1954,3	56,2	-291,0	978,1
				Lattung	4,35	484,51	0,13	baukonstruktion						
				Holzfaserdämmung	29,65	160,00	0,04	TFLmas_30; maximale Umwelt-						
				(Innenausbau)				wirkungen mit						
TFL	2002-			Gipsfaserplatte	2,50	1000,00	0,35	Holzfaser-						
mas _h	2020		х х	x Holzfaserdämmung (Innenausbau)	18,50	160,00	0,04	dämmung und						
_24	2020			Stahlbeton C30/37				begehbarem						
_				(98/2)	24,00	2400,00	2,50	Trockenestrich;						
				Innenputz	2,00	900,00	0,70	Holzabmessung $bxh = 80x(2*170)$						
								mm, Achsab-						
								stand: 62,5 cm						
				Mineralwolle (Boden)	9,00	85,00	0,04		93,3	300,3	-44,1	61,8	-160,5	-99,3
				Spanplatten	1,00	633,31	0,14							
				Mineralwolle	14,08	85,00	0.04							
				(Innenausbau)	14,00	65,00	0,04	Grundlage Altbau-						
TFL				PE-Folie Decke	0,02	930,00	-	konstruktion TFLwood_3;						
wood	1949-	x		Dielung/Bretterboden		484,51	0,14	minimale Umwelt-						
_uh	1957			Luftschicht, ruhend	16,00	-	-	wirkungen mit						
_1				Holzbalken	1,90	492,92	0,14	Mineralwolle-						
				Sparschalung	2,40	484,51	0,14	dämmung						
				Holzwolle-	5,00	360,00	0,09							
				Leichtbauplatte Kalkgipsputz	1,00	900,00	0,70							
				01 1				Grundlage Alt-	122.2	650.4	1154.4	62.2	222.4	GEG A
				Gipsfaserplatte Holzfaserdämmung	2,50	1000,00	0,35	baukonstruktion	122,3	039,4	1154,4	62,2	-232,4	656,4
				(Innenausbau)	12,66	160,00	0,04	TFLwood_3;						
				Brettschichtholz	1,34	507,11	0,13	maximale Umwelt-						
				Holzfaserdämmung				wirkungen mit						
TFL				(Innenausbau)	14,10	160,00	0,04	Holzfaserdäm-						
wood	1949-			PE-Folie Decke	0,02	930,00	-	mung, BSH (zu- sätzliche						
_uh	1957	X		Dielung/Bretterboden	2,50	484,51	0,14	statische						
_2				Luftschicht, ruhend	16,00	-	-	Wirkung) und						
				Holzbalken	1,90	492,92	0,14	begehbarem						
				Sparschalung	2,40	484,51	0,14	Trockenestrich;						
				Holzwolle-	5,00	360,00	0,09	Holzabmessung						
				Leichtbauplatte	3,00	300,00	0,09	bxh = 60x140 mm, Achsab-						
				Kalkgipsputz	1,00	900,00	0,70	stand: 62,5 cm						
				Mineralwolle (Boden)	11,00	85,00	0,04		99,3	318,7	-22,7	66,2	-160,3	-101,3
				Spanplatten	1,00	633,31	0,14		, .	,	,	,	, .	,-
				Mineralwolle										
				(Innenausbau)	10,56	85,00	0,04							
				PE-Folie Decke	0,02	930,00	-	Grundlage Altbau-						
TFL				Dielung/Bretterboden	2,50	484,51	0,14	konstruktion TFLwood_4;						
wood	1958-	x		Luftschicht, ruhend	12,00	-	-	minimale Umwelt-						
_uh	1968	^		Dämmung DE und	3,50	30,00-	0,04	wirkungen mit						
_3				OGD, ältere BK		200,00		Mineralwolle-						
				Holzbalken	1,90	492,92	0,14	dämmung						
				Sparschalung	2,40	484,51	0,14							
				Holzwolle-	3,00	360,00	0,09							
				Leichtbauplatte	1.00	000.00	0,70							
				Kalkgipsputz	1,00 2,50	900,00			128,6	677.5	1207.6	65,6	-251,5	669,7
				Gipsfaserplatte Holzfaserdämmung	∠,50		0,35	Grundlage Alt-	1∠0,0	011,6	1207,6	05,0	-251,5	009,/
				(Innenausbau)	13,56	160,00	0,04							
				Brettschichtholz	1,44	507,11	0,13	TFLwood_4;						
				Holzfaserdämmung				maximale Umwelt- wirkungen mit						
				(Innenausbau)	14,08	160,00	0,04	Holzfaser-						
TFL				PE-Folie Decke	0,02	930,00	-	dämmung, BSH						
wood	1958-	x		Dielung/Bretterboden	2,50	484,51	0,14	(zusätzliche						
_uh	1968	^		Luftschicht, ruhend	12,00	-	-	statische						
_4				Dämmung DE und	3,50	30,00-	0,04	Wirkung) und						
				OGD, ältere BK		200,00		begehbarem Trockenestrich;						
				Holzbalken	1,90	492,92	0,14	Holzabmessung						
				Sparschalung	2,40	484,51	0,14	bxh = 60x150						
				Ulatania II			0,09	mm, Achsab-						
				Holzwolle-	3,00	360,00	0,00	, , , , , , , , , ,						
				Leichtbauplatte				stand: 62,5 cm						
				Leichtbauplatte Kalkgipsputz	1,00	900,00	0,70		51 2	562.7	1158 1	17 <i>A</i>	77 A	1071 6
				Leichtbauplatte Kalkgipsputz Mineralwolle (Boden)	1,00	900,00	0,70		51,2	562,7	1158,1	17,4	77,6	1071,6
				Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten	1,00 12,00 1,00	900,00 85,00 633,31	0,70 0,04 0,14		51,2	562,7	1158,1	17,4	77,6	1071,6
				Leichtbauplatte Kalkgipsputz Mineralwolle (Boden)	1,00	900,00	0,70		51,2	562,7	1158,1	17,4	77,6	1071,6
TEI				Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle	1,00 12,00 1,00	900,00 85,00 633,31	0,70 0,04 0,14	stand: 62,5 cm Grundlage Altbaukonstruktion	51,2	562,7	1158,1	17,4	77,6	1071,6
TFL wood	1969-			Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau)	1,00 12,00 1,00 7,92	900,00 85,00 633,31 85,00	0,70 0,04 0,14	Grundlage Altbau- konstruktion TFLwood_5;	51,2	562,7	1158,1	17,4	77,6	1071,6
	1969- 1978	x		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke	1,00 12,00 1,00 7,92 0,02	900,00 85,00 633,31 85,00 930,00	0,70 0,04 0,14 0,04	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt-	51,2	562,7	1158,1	17,4	77,6	1071,6
wood		x		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke Dielung/Bretterboden	1,00 12,00 1,00 7,92 0,02 2,50 4,00	900,00 85,00 633,31 85,00 930,00	0,70 0,04 0,14 0,04 - 0,14	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt- wirkungen mit	51,2	562,7	1158,1	17,4	77,6	1071,6
wood _uh		x		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke Dielung/Bretterboden Luftschicht, ruhend	1,00 12,00 1,00 7,92 0,02 2,50	900,00 85,00 633,31 85,00 930,00 484,51	0,70 0,04 0,14 0,04	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt-	51,2	562,7	1158,1	17,4	77,6	1071,6
wood _uh		x		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke Dielung/Bretterboden Luftschicht, ruhend Dämmung DE und	1,00 12,00 1,00 7,92 0,02 2,50 4,00	900,00 85,00 633,31 85,00 930,00 484,51 - 30,00-	0,70 0,04 0,14 0,04 - 0,14	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt- wirkungen mit Mineralwolle-	51,2	562,7	1158,1	17,4	77,6	1071,6
wood _uh		x		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke Dielung/Bretterboden Luftschicht, ruhend Dämmung DE und OGD, ältere BK	1,00 12,00 1,00 7,92 0,02 2,50 4,00 7,00	900,00 85,00 633,31 85,00 930,00 484,51 - 30,00- 200,00	0,70 0,04 0,14 0,04 - 0,14 -	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt- wirkungen mit Mineralwolle-	51,2	562,7	1158,1	17,4	77,6	1071,6
wood _uh		×		Leichtbauplatte Kalkgipsputz Mineralwolle (Boden) Spanplatten Mineralwolle (Innenausbau) PE-Folie Decke Dielung/Bretterboden Luftschicht, ruhend Dämmung DE und OGD, ältere BK Holzbalken	1,00 12,00 1,00 7,92 0,02 2,50 4,00 7,00 1,90	900,00 85,00 633,31 85,00 930,00 484,51 - 30,00- 200,00 492,92	0,70 0,04 0,14 0,04 - 0,14 - 0,04 0,14	Grundlage Altbau- konstruktion TFLwood_5; minimale Umwelt- wirkungen mit Mineralwolle-	51,2	562,7	1158,1	17,4	77,6	1071,6

Part		_												
TFL		_		Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	130,2	677,8	1208,0	66,7	-257,3	662,2
Page				•	13 56	160.00	0.04							
House Hous														
FF					1,44	507,11	0,13							
PR				•	14,08	160,00	0,04							
DelangMentenboden 2-50 2	TFL													
Second 1978			x											
Description Company of the Part Compan		1978	^	•		484,51	0,14							
Page	_6				4,00	-	-							
Holzschristensung				•	7.00		0.04	Trockenestrich;						
Spanschalung								Holzabmessung						
Cigiskanopiante 1.25 800,00 0.21 sandt 62.5 cm														
Intercemental (Boden) 21,00 25,00 348,51 0.14 0.15 0.15 0.14 0.15														
Dielung Brettertoods		_		Gipskartonplatte				stand: 62,5 cm						
TFL				Mineralwolle (Boden)	21,00	85,00	0,04		99,9	395,3	-282,6	66,8	-45,5	-153,6
TFL				Dielung/Bretterboden	2,50	484,51	0,14							
TFL Uniformation 1998 X x Extension 2,00 484,51 0,14 Minoralyonic 1,00 1,00 0,10 Minoralyonic 1,00 1,00 Minoralyonic 1,00 1,00 Minoralyonic 1,00 1,00 Minoralyonic 1,00 Mi				Schlackenschüt-	10.00	1200.00	0.10							
1988	TFI			tung/-füllung	10,00	1200,00	0,19							
Luftschicht, ruhend 1988		1949-		Bretter	2,00	484,51	0,14							
Holzbalken			хх	Luftschicht, ruhend	4.00	_	0.16							
Sparschalung				•		492 92		-						
Schilfrohmräger 1,00 00,000 0,70 125,9 702,8 1100,3 61,7 -266,3 676,5 10,000 0,70 1,000 1,														
Raligipsputz								daniillulig						
Comparison Com				ŭ										
Holzfaserdammung (Innenausbau) 14,46 160,00 0.04		-		•, ,										
Comparison Com					2,50	1000,00	0,35	Carradiana Alt	125,9	702,8	1100,3	61,7	-266,3	676,5
TFL				•	14,46	160,00	0,04							
FEL Nood 1448-														
TFL					1,54	507,11	0,13							
FEL Wood 1949- 1988				•	14,08	160,00	0,04							
TFL wood 1949- 1968				· · · · · · · · · · · · · · · · · · ·	0.02	020.00		Holzfaser-						
1988 X X Schlackenschüt Lung-fellung 10,00 120,000 0,19 Statische Wirkung) und begehbaren Holzbalken 1,90 492,92 0,14 Holzbalken 1,90 100,000 0,70 Sparschaltung 2,40 484,51 0,14 Holzbalken 1,90 1969 Holzbalken 1,90	TFL						0.44	dämmung, BSH						
Samura S	wood	1949-	v v	•	2,50	484,51	0,14	(zusätzliche						
Bretter		1968	^ ^		10,00	1200,00	0,19							
Luftschicht, ruhend Holzbalken 1,90 492,92 0,14 Molzamessung 1,00 100,000 1,	_8_							•						
Holzbalken 1,90 492,92 0,14 Holzabressung 5,93 2,04 484,51 0,14 5,04 1978 19						484,51								
Sparschalung				Luftschicht, ruhend	4,00	-	0,16							
Sparschalung				Holzbalken	1,90	492,92	0,14							
Schilfrohträger 1,00 100,00 0,08 stand: 62,5 cm				Sparschalung	2,40	484,51	0,14							
TFL Wood 1969- 1978 X Mineralwolle (Boden) 20,00 85,00 0,00 0,70 Grundlage Alt- baukonstruktion mineralwolle 6,30 370,3 57,9 46,5 149,0 122,3 149,0				Schilfrohrträger	1,00	100,00	0,08							
TFL				Kalkgipsputz	1,00	900,00	0,70							
TFL		_						O all a sua Alt	63.0	370.3	57.9	46.5	149.0	122.3
TFL									, .	,-	,	-,-	-,-	,-
Mineralwolle	TFL			•										
1978			x	·	10,00		0,61							
Holzbalken		1978	^		5,30		0,04							
Comparison Com	_9			,	1 00		0.14	•						
TFL wood														
Holzfaserdämmung (Innenausbau) 16,27 160,00 0,04 baukonstruktion TFLwood_10; maximale Umweltwirkungen mit Holzfaserdämmung 14,08 160,00 0,04 Holzfaserdämmung 14,08 160,00 0,04 Holzfaserdämmung 16,27 160,00 0,04 Holzfaserdämmung 16,00 0,		-						Carredians Alt	00.4	700.0	4570.0	40.4	55.4	4047.0
TFL				· · ·	2,50	1000,00	0,35		93,4	132,8	15/0,2	43,4	-55,4	1047,9
Brettschichtholz					16,27	160,00	0,04							
Holzfaserdämmung (Innenausbau)					1 72	507 11	0.12							
TFL wood 1969-														
PE-Folie Decke				•	14,08	160,00	0,04	•						
Variable	TFL				0.02	930.00	_	dämmung, BSH						
Luftschicht, ruhend 10,00 - 0,61 Wirkung) und begehbarem Trockenestrich; Holzbalken 1,90 492,92 0,14 Holzbalken 62,5 cm Mineralwolle (Boden) 24,00 85,00 0,04 Grundlage Altbaukonstruktion TFL wood 1949- Luftschicht, ruhend 16,00 - 0,61 Molzbalken 1,90 492,92 0,14 Holzbalken 1,90 492,92 0,14 Holzbalken 1,90 492,92 0,14 Holzbalken 1,90 492,92 0,14 Wirkung) und begehbarem Trockenestrich; Holzbalken 1,90 492,92 0,14 Wirkungen mit Schalung 2,40 484,51 0,14 Mineralwolle-			Y				0 14	,						
Mineralwolle (Innenausbau) 5,30 30-200 0,04 begehbarem Trockenestrich; Holzbalken 1,90 492,92 0,14 Holzabmessung bath = 60x180 mm, Achsabstand: 62,5 cm		1978	^	•		.04,01								
Continue	_10					_		•,						
Holzbalken 1,90 492,92 0,14 Holzabmessung Gipskartonplatte 1,25 800,00 0,21 bxh = 60x180 mm, Achsabstand: 62,5 cm Mineralwolle (Boden) 24,00 85,00 0,04 Grundlage Altbaukonstruktion TFL wood 1949- Luftschicht, ruhend 16,00 - 0,61 minimale Umwelt- wirkungen mit Schalung 2,40 484,51 0,14 Mineralwolle-					5,30	30-200	0,04							
Gipskartonplatte				· · · · · · · · · · · · · · · · · · ·	1.90	492.92	0.14							
Mineralwolle (Boden) 24,00 85,00 0,04 Grundlage Altabulkon September Septemb														
Mineralwolle (Boden 24,00 85,00 0,04 Grundlage Altabulkonstruktion TFL Dielung/Bretterboden 2,50 484,51 0,14 Dielung/Bretterboden 1,90 492,92 0,14 Mineralwolle Mineralwolle Mineralwolle 1,00				Oipokaitoripiatte	1,20	555,00	٠,٢ ١							
Mineralwolle (Boden) 24,00 85,00 0,04 Grundlage Altbaukonstruktion 87,5 440,6 -61,1 61,9 99,6 38,6														
Dielung/Bretterboden 2,50 484,51 0,14 baukonstruktion TFLwood_14; wood 1949- Luftschicht, ruhend 16,00 - 0,61 minimale Umwelt- wirkungen mit 1957 Schalung 2,40 484,51 0,14 Mineralwolle-		-		Mineralwelle (Roden)	24.00	85 NO	0.04		Q7 F	440.6	-61 1	61.0	90 6	38 6
Variable									07,3	440,0	-01,1	01,9	33,0	30,0
_uh		10.10		•										
_un			x											
estimated and the second and the sec		195/												
dämmung	-''			Schalung	2,40	484,51	0,14							
		_						dämmung						

			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	110,8	711,9	1312,9	53,0	-176,7	842,7
			Holzfaserdämmung	15,37	160,00	0,04	baukonstruktion						
			(Innenausbau)				TFLwood_14; maximale Umwelt-						
			Brettschichtholz	1,63	507,11	0,13	wirkungen mit						
			Holzfaserdämmung (Innenausbau)	14,08	160,00	0,04	Holzfaser-						
TFL			PE-Folie Decke	0,02	930,00		dämmung, BSH						
wood	1949-	v	Dielung/Bretterboden	2,50	484,51	0,14	(zusätzliche						
_uh	1957		Luftschicht, ruhend	16,00	-	0,61	statische Wirkung) und						
_12			Holzbalken	1,90	492,92	0,14	begehbarem						
			Schalung	2,40	484,51	0,14	Trockenestrich;						
			· ·				Holzabmessung						
							bxh = 60x170						
							mm, Achsab- stand: 62,5 cm						
			Mineralwolle (Boden)	23,00	85,00	0,04	Staria. 02,0 om	106,5	432,7	-279,7	71,2	-39,2	-150,6
			Dielung/Bretterboden	2,50	484,51	0,13		,.	.02,.	,.	,=	00,=	,.
			Lehmschüttung	10,80	1000,00	0,35	Grundlage Altbau-						
TFL			Bretter	1,80	484,51	0,14	konstruktion TFLwood 16;						
wood	bis	хх	Luftschicht, ruhend	6,00	-		minimale Umwelt-						
_uh	1948		Holzbalken	2,00	492,92	0,13	wirkungen mit						
_13			Schalung	1,50	484,51	0,13	Mineralwolle-						
			Spalierlatten	1,50	k.A.	0,14	dämmung						
			Kalkgipsputz	1,50	900,00	0,70							
	'		Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	130,6	712,7	1091,5	64,4	-283,6	648,9
			Holzfaserdämmung	11,75	160,00	0,04	baukonstruktion						
			(Innenausbau)				TFLwood_16;						
			Brettschichtholz	1,25	507,11	0,13	maximale Umwelt-						
			Holzfaserdämmung	17,60	160,00	0,04	wirkungen mit						
TFL			(Innenausbau) PE-Folie Decke	0,02	930,00		Holzfaser- dämmung, BSH						
wood	bis		Dielung/Bretterboden	2,50	484,51	0,13	(zusätzliche						
_uh	1948	x x	Lehmschüttung	10,80	1000,00	0,35	statische						
_14			Bretter	1,80	484,51	0,14	Wirkung) und						
			Luftschicht, ruhend	6,00	-	0,37	begehbarem						
			Holzbalken	2,00	492,92	0,13	Trockenestrich; Holzabmessung						
			Schalung	1,50	484,51	0,13	bxh = 60x130						
			Spalierlatten	1,50	k.A.	0,14	mm, Achsab-						
			Kalkgipsputz	1,50	900,00	0,70	stand: 62,5 cm						
			Mineralwolle (Boden)	23,00	85,00	0,04		94,7	430,0	-159,8	65,4	39,0	-45,5
			Dielung/Bretterboden	2,50	484,51	0,13			,	Í	,	,	,
			Steinkohleschlacke	10,80	905,00	0,19	Grundlage Altbau- konstruktion						
TFL			Bretter	1,80	484,51	0,13	TFLwood_17;						
wood	bis	x x	Luftschicht, ruhend	6,00	_	0,37	minimale Umwelt-						
_uh _15	1948		Holzbalken	2,00	492,92	0,13	wirkungen mit						
_13			Schalung	1,50	484,51	0,13	Mineralwolle-						
			Schilfrohrträger	1,50	100,00	0,08	dämmung						
			Innenputz	1,00	900,00	0,70							
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	117,2	691,6	1157,2	58,2	-204,6	716,7
			Holzfaserdämmung	10,85	160,00	0,04	baukonstruktion						
			(Innenausbau)				TFLwood_17;						
			Brettschichtholz	1,15	507,11	0,13	maximale Umwelt-						
			Holzfaserdämmung (Innenausbau)	17,60	160,00	0,04	wirkungen mit Holzfaser-						
TFL			PE-Folie Decke	0,02	930,00	_	dämmung, BSH						
wood	bis		Dielung/Bretterboden	2,50	484,51	0,13	(zusätzliche						
_uh	1948	хх	Steinkohleschlacke	10,80	905,00	0,19	statische						
_16			Bretter	1,80	484,51	0,13	Wirkung) und						
			Luftschicht, ruhend	6,00	· · · · ·	0,37	begehbarem						
			Holzbalken	2,00	492,92	0,13	Trockenestrich; Holzabmessung						
			Schalung	1,50	484,51	0,13	bxh = 60x120						
			Schilfrohrträger	1,50	100,00	0,08	mm, Achsab-						
			Innenputz	1,00	900,00	0,70	stand: 62,5 cm						
			Mineralwolle (Boden)	24,00	85,00	0,04		100,6	449,4	-33,3	71,4	59,3	69,7
			Dielung/Bretterboden	2,50	484,51	0,14	Carrier all All				•	•	
			Lehmschlag	4,00	900,00/	0,70	Grundlage Altbau- konstruktion						
TFL			Lorinoonlag	7,00	100,00	0,70	TFLwood_18;						
					900,00/		minimale Umwelt-						
wood	bis	x	Lehmwickel	14 00	100 00/	0.47	minimale on west						
wood _uh	bis 1918	x	Lehmwickel	14,00	100,00/ 716,80	0,47	wirkungen mit						
wood		x	Lehmwickel Holzbalken	14,00 2,00	100,00/ 716,80 492,92	0,47	wirkungen mit Mineralwolle-						
wood _uh		x			716,80	-,	wirkungen mit						
wood _uh		х	Holzbalken	2,00	716,80 492,92	0,14	wirkungen mit Mineralwolle-						

			Gipsfaserplatte	2,50	1000	0,35	Grundlage Alt-	123,6	716,0	1328,8	62,9	-210,2	861,0
			Holzfaserdämmung	40.50	400	0.04	baukonstruktion						
			(Innenausbau)	13,56	160	0,04	TFLwood_18;						
			Brettschichtholz	1,44	507,11	0,13	maximale Umwelt-						
			Holzfaserdämmung	45.04	400	0.04	wirkungen mit						
			(Innenausbau)	15,84	160	0,04	Holzfaser-						
TFL			PE-Folie Decke	0,02	930	_	dämmung, BSH						
wood	bis		Dielung/Bretterboden	2,50	484,51	0,14	(zusätzliche						
_uh	1918	x	Diciding/Dictionbodon	2,00	900,00/	0,14	statische						
_18			Lehmschlag	4,00	100,00	0,70	Wirkung) und						
					900,00/		begehbarem						
			Lehmwickel	14,00	100,00/	0,47	Trockenestrich;						
			Lemmore	14,00	716,80	0,47	Holzabmessung						
			Holzbalken	2,00	492,92	0,14	bxh = 60x150						
							mm, Achsab-						
			Lattung	2,00	484,54	0,14	stand: 62,5 cm						
			Kalkgipsputz	1,00	900,00	0,70							
			Mineralwolle (Boden)	10,00	85,00	0,04		80,4	279,1	-35,4	53,5	-129,0	-53,8
			Spanplatten	1,00	633,31	0,14							
			Mineralwolle	7.00	05.00	0.04							
			(Innenausbau)	7,66	85,00	0,04	Grundlage Altbau-						
TFL			Schalung	2,00	484,54	0,13	konstruktion						
wood	1961-		Mineralwolle				TFLwood_22;						
_uh	2000	x x x x x	(Innenausbau)	8,00	26,25	0,04	minimale Umwelt-						
_19			Holzbalken	2,40	492,92	0,13	wirkungen mit Mineralwolle-						
			Sparschalung	2,00	484,51	0,13							
			Holzwolle-				dämmung						
			Leichtbauplatte	2,50	360,00	0,09							
			Innenputz	1,50	900,00	0,70							
			Gipsfaserplatte	2,50	1000,00	0,75	Grundlage Alt-	114,1	604 2	1285,7	56,8	-174,4	786,4
				2,30	1000,00	0,00	baukonstruktion	. 14, 1	U34,Z	.203,1	30,0	-114,4	100,4
			Holzfaserdämmung (Innenausbau)	12,66	160,00	0,04	TFLwood_22;						
			Brettschichtholz	1,34	507,11	0,13	maximale Umwelt-						
				1,34	507,11	0,13	wirkungen mit						
			Holzfaserdämmung	15,84	160,00	0,04	Holzfaser-						
TFL			(Innenausbau) PE-Folie Decke	0.00	020.00		dämmung, BSH						
wood	1961-			0,02	930,00		(zusätzliche						
_uh	2000	x x x x x	Schalung	2,00	484,54	0,13	statische						
_20			Mineralwolle	8,00	26,25	0,04	Wirkung) und						
			(Innenausbau)				begehbarem						
			Holzbalken	2,40	492,92	0,13	Trockenestrich;						
			Sparschalung	2,00	484,51	0,13	Holzabmessung						
			Holzwolle-	2,50	360,00	0,09	bxh = 60x140						
			Leichtbauplatte				mm, Achsab-						
			Innenputz	1,50	900,00	0,70	stand: 62,5 cm						
			Mineralwolle (Boden)	10,00	85,00	0,04		71,1	290,2	86,0	49,0	-53,1	48,5
			Spanplatten	1,00	633,31	0,14							
			Mineralwolle	10.17	05.00	0.04							
			(Innenausbau)	10,17	85,00	0,04	Grundlage Altbau-						
TFL			Schalung	2,00	484,54	0,13	konstruktion						
wood	1961-		Mineralwolle	F 00	00.05	0.04	TFLwood_23;						
_uh	2000	x x x x x	(Innenausbau)	5,00	26,25	0,04	minimale Umwelt-						
_21			Holzbalken	2,50	492,92	0,13	wirkungen mit Mineralwolle-						
			Sparschalung	0,60	484,51	0,13	dämmung						
			Holzwolle-				danimung						
			Leichtbauplatte	2,50	360,00	0,09							
			Innenputz	1,50	900,00	0,70							
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	104,7	704.7	1427,7	51,4	-113,3	899,2
			Holzfaserdämmung	2,30	1000,00	0,00	baukonstruktion	.04,7	, 04,7	.721,1	31,4	-113,3	033,Z
			(Innenausbau)	13,56	160,00	0,04	TFLwood_23;						
			Brettschichtholz	1,44	507,11	0,13	maximale Umwelt-						
				1,	007,11	0,10	wirkungen mit						
			Holzfaserdämmung (Innenausbau)	15,50	160,00	0,04	Holzfaser-						
TFL			PE-Folie Decke	0,02	930,00		dämmung, BSH						
wood	1961-					0.40	(zusätzliche						
_uh	2000	x x x x x	Schalung	2,00	484,54	0,13	statische						
_22			Mineralwolle	5,00	26,25	0,04	Wirkung) und						
			(Innenausbau)				begehbarem						
			Holzbalken	2,50	492,92	0,13	Trockenestrich;						
			Sparschalung	0,60	484,51	0,13	Holzabmessung						
			Holzwolle-	2,50	360,00	0,09	bxh = 60x150						
			Leichtbauplatte				mm, Achsab-						
			Innenputz	1,50	900,00	0,70	stand: 62,5 cm						
			Mineralwolle (Boden)	15,00	85,00	0,04		77,1	266,3	-167,4	55,5	-119,2	-201,0
			GKF-Platte	1,25	800,00	0,25	Grundlage Altbau-						
			OSB-Platte	1,80	600,00	0,13	konstruktion						
TFL			Konstruktionsvollholz	1,60	492,92	0,13	TFLwood_25;						
	2002-	х					minimale Umwelt-						
_uh	2009	^	Luftschicht, ruhend	7,36	-	0,49	wirkungen mit						
_23			Zellulosefaser-	11,04	45,00	0,04	Mineralwolle-						
			Einblasdämmung				dämmung						
			OSB-Platte	1,50	600,00	0,13							
			GKF-Platte	1,25	800,00	0,13							

			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	92,0	666,7	1490,3	41,4	-214,2	906,6
			Holzfaserdämmung	9,94	160,00	0,04	baukonstruktion						
			(Innenausbau)	3,34			TFLwood_25;						
			Brettschichtholz	1,06	507,11	0,13	maximale Umwelt- wirkungen mit						
			Holzfaserdämmung (Innenausbau)	18,40	160,00	0,04	Holzfaser-						
TFL			GKF-Platte	1,25	800,00	0,25	dämmung, BSH						
wood	2002-	x	OSB-Platte	1,80	600,00	0,13	(zusätzliche						
_uh	2009	^	Konstruktionsvollholz	1,60	492,92	0,13	statische						
_24			Luftschicht, ruhend	7,36	.02,02	0,49	Wirkung) und begehbarem						
			Zellulosefaser-				Trockenestrich;						
			Einblasdämmung	11,04	45,00	0,04	Holzabmessung						
			OSB-Platte	1,50	600,00	0,13	bxh = 60x110						
			GKF-Platte	1,25	800,00	0,25	mm, Achsab- stand: 62,5 cm						
			Minorolyvollo (Podon)		85,00	0,04	Stariu. 62,5 cm	85,9	266.4	-174,0	61,5	-158,0	-251,2
			Mineralwolle (Boden) GKF-Platte	15,00 1,25	800,00	0,04	Grundlage Altbau-	65,9	266,4	-174,0	61,5	-136,0	-231,2
TFL			OSB-Platte	1,80	600,00	0,23	konstruktion						
wood	2010-		Manatu dational allhalm	1,68	492,92		TFLwood_26;						
_uh	2020	X X	Zellulosefaser-		492,92	0,13	minimale Umwelt-						
_25			Einblasdämmung	19,32	45,00	0,04	wirkungen mit Mineralwolle-						
			OSB-Platte	1,50	600,00	0,13	dämmung						
			GKF-Platte	1,25	800,00	0,25	ŭ						
			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	116,9	641,9	1236,8	64,6	-258,6	626,4
			Holzfaserdämmung	9,04	160,00	0,04	baukonstruktion						
			(Innenausbau)				TFLwood_26;						
			Brettschichtholz	0,96	507,11	0,13	maximale Umwelt- wirkungen mit						
			Holzfaserdämmung	18,40	160,00	0,04	Holzfaser-						
TFL			(Innenausbau) GKF-Platte	1,25	800,00	0,25	dämmung, BSH						
wood	2010-	x x	OSB-Platte	1,80	600,00	0,23	(zusätzliche						
_uh	2020	^ ^	Konstruktionsvollholz	1,68	492,92	0,13	statische						
_26			Zellulosefaser-				Wirkung) und begehbarem						
			Einblasdämmung	19,32	45,00	0,04	Trockenestrich;						
			OSB-Platte	1,50	600,00	0,13	Holzabmessung						
			GKF-Platte	1,25	800,00	0,25	bxh = 60x110						
							mm, Achsab-						
			Mineralis (Dadas)	45.00	05.00	0.04	stand: 62,5 cm	222.2	000.4	4707.0	440.0	1001 5	4500.0
	•		Mineralwolle (Boden)	15,00	85,00	0,04		230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
			Gipsfaserplatte	15,00 2,50	85,00 1000,00	0,04 0,35	stand: 62,5 cm Grundlage Altbau-	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
TFL	•		Gipsfaserplatte Holzfaserdämmung				stand: 62,5 cm Grundlage Altbaukonstruktion	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood	2002-	x	Gipsfaserplatte	2,50	1000,00	0,35	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31;	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood _uh	2002- 2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00	1000,00	0,35	stand: 62,5 cm Grundlage Altbaukonstruktion	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke	2,50 4,00 0,02	1000,00 160,00 930,00	0,35 0,04	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt-	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood _uh		x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00	1000,00 160,00 930,00 489,41	0,35 0,04 - 0,13	Grundlage Altbau- konstruktion TFLwood_31; minimale Umwelt- wirkungen mit	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung	2,50 4,00 0,02 24,00 0,58	1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,13	Grundlage Altbau- konstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle-	230,2	280,4	-1707,0	140,0	-1091,5	-1520,8
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend	2,50 4,00 0,02 24,00 0,58 5,42	1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,13 0,37	Grundlage Altbau- konstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle-	230,2	280,4 550,6	-1707,0 -644,4		-1091,5 -1249,0	-1520,8 -834,0
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung	2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,13 0,37 0,35	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion						
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00	0,35 0,04 - 0,13 0,13 0,37 0,35 0,35	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31;	252,1					
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00 507,11	0,35 0,04 - 0,13 0,13 0,37 0,35 0,35	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt-	252,1					
wood _uh		х	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00 507,11 930,00	0,35 0,04 - 0,13 0,13 0,37 0,35 0,35 0,04 0,13	stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31;	252,1					
wood _uh _27	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00 507,11	0,35 0,04 - 0,13 0,13 0,37 0,35 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH	252,1					
wood _uh _27	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00 507,11 930,00	0,35 0,04 - 0,13 0,13 0,37 0,35 0,35 0,04 0,13	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche	252,1					
wood _uh _27 TFL wood _uh	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 160,00 507,11 930,00 1000,00 160,00	0,35 0,04 - 0,13 0,13 0,37 0,35 0,04 0,13 - 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche statische	252,1					
wood _uh _27	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02	1000,00 160,00 930,00 489,41 484,51 1000,00 1000,00 507,11 930,00 1000,00 160,00 930,00	0,35 0,04 - 0,13 0,37 0,35 0,35 0,04 0,13 - 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und	252,1					
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 507,11 930,00 160,00 930,00 489,41	0,35 0,04 - 0,13 0,37 0,35 0,04 0,13 - 0,35 0,04 - 0,13	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche statische	252,1					
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00 0,58	1000,00 160,00 930,00 489,41 484,51 1000,00 1000,00 507,11 930,00 1000,00 160,00 930,00	0,35 0,04 - 0,13 0,37 0,35 0,04 0,13 - 0,35 0,04 - 0,13 0,04 -	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung	252,1					
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 507,11 930,00 1000,00 160,00 930,00 489,41 484,51	0,35 0,04 - 0,13 0,13 0,37 0,35 0,04 - 0,35 0,04 - 0,13 0,13 0,13	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220	252,1					
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42	1000,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 507,11 930,00 160,00 930,00 489,41	0,35 0,04 - 0,13 0,37 0,35 0,04 0,13 - 0,35 0,04 - 0,13 0,04 -	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab-	252,1					
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 1000,00 160,00 507,11 930,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,37 0,35 0,04 0,13 0,13 0,13 0,13 0,13	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Mineralwolle (Boden)	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 1000,00 160,00 507,11 930,00 1000,00 160,00 930,00 489,41 484,51 - 1000,00 85,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,35 0,04 - 0,13 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm	252,1	550,6		136,3		-834,0
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Mineralwolle (Boden) Gipsfaserplatte	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 1000,00 160,00 507,11 930,00 1000,00 160,00 930,00 489,41 484,51 - 1000,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,35 0,04 - 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche Statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh	2009		Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Mineralwolle (Boden) Gipsfaserplatte Holzfaserdämmung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42 2,50	1000,00 160,00 930,00 489,41 484,51 1000,00 160,00 507,11 930,00 1000,00 160,00 930,00 489,41 484,51 - 1000,00 85,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,35 0,04 - 0,13 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm Grundlage Altbau- konstruktion	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh _28	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau)	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00 0,02 24,00 0,58 5,42 2,50 1,00 1,	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 507,11 930,00 160,00 930,00 489,41 - 1000,00 85,00 1000,00 160,00	0,35 0,04 - 0,13 0,37 0,35 0,04 - 0,35 0,04 - 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umweltwirkungen mit Mineralwolledämmung Grundlage Altbaukonstruktion TFLwood_31; maximale Umweltwirkungen mit Holzfaserdämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsabstand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_32;	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh _28 TFL wood _uh	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Mineralwolle (Boden) Gipsfaserplatte Holzfaserdämmung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 2,50 19,89 2,11 0,02 2,50 4,00 0,58 5,42 2,50 8,00 2,50	1000,00 160,00 930,00 489,41 484,51 1000,00 1000,00 507,11 930,00 1000,00 489,41 484,51 - 1000,00 85,00 1000,00	0,35 0,04 0,13 0,35 0,04 0,13 0,35 0,04 0,13 0,35 0,04 0,13 0,35 0,04 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm Grundlage Altbau- konstruktion	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh _28 TFL wood _uh _28	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke	2,50 4,00 0,02 24,00 0,58 5,42 2,50 19,89 2,11 0,02 2,50 4,00 0,02 24,00 0,58 5,42 2,50 8,00 2,50 11,00 0,02	1000,00 160,00 930,00 489,41 484,51 - 1000,00 160,00 507,11 930,00 160,00 930,00 489,41 484,51 - 1000,00 85,00 1000,00 1000,00 1000,00 930,00	0,35 0,04 - 0,13 0,13 0,35 0,35 0,04 0,13 0,35 0,04 - 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche Statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_32; minimale Umwelt- wirkungen mit Mineralwolle-	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh _28 TFL wood _uh	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lettung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz	2,50 4,00 0,02 24,00 0,58 5,42 2,50 19,89 2,11 0,02 2,50 4,00 0,58 5,42 2,50 8,00 2,50 11,00 0,02 2,50 2,40 0,58 1,00 1,0	1000,00 160,00 930,00 489,41 484,51 1000,00 160,00 507,11 930,00 160,00 930,00 489,41 - 1000,00 85,00 1000,00 1000,00 1000,00 489,41	0,35 0,04 0,13 0,37 0,35 0,34 0,35 0,04 0,13 0,37 0,35 0,04 0,13 0,37 0,35	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_32; minimale Umwelt- wirkungen mit	252,1	550,6	-644,4	136,3	-1249,0	-834,0
wood _uh _27 TFL wood _uh _28 TFL wood _uh	2009	x	Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) Brettschichtholz PE-Folie Decke Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung Luftschicht, ruhend Gipsfaserplatte Holzfaserdämmung (Innenausbau) PE-Folie Decke Brettsperrholz Lattung	2,50 4,00 0,02 24,00 0,58 5,42 2,50 19,89 2,11 0,02 2,50 4,00 0,58 5,42 2,50 8,00 2,50 11,00 0,02 24,00 0,58 5,42 2,50 8,00 2,50 11,00 2,50 8,00 2,50 8,00 2,50 11,00 2,50 8,00 2,50 8,00 2,50 8,00 2,50 8,00 2,50 8,00	1000,00 160,00 930,00 489,41 484,51 1000,00 1000,00 160,00 507,11 930,00 160,00 930,00 489,41 484,51 - 1000,00 1000,00 1000,00 489,41 484,51	0,35 0,04	Grundlage Altbaukonstruktion TFLwood_31; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Alt- baukonstruktion TFLwood_31; maximale Umwelt- wirkungen mit Holzfaser- dämmung, BSH (zusätzliche Statische Wirkung) und begehbarem Trockenestrich; Holzabmessung bxh = 60x220 mm, Achsab- stand: 62,5 cm Grundlage Altbaukonstruktion TFLwood_32; minimale Umwelt- wirkungen mit Mineralwolle-	252,1	550,6	-644,4	136,3	-1249,0	-834,0

			Gipsfaserplatte	2,50	1000,00	0,35	Grundlage Alt-	275,5	550,8	-644,0	153,6	-1356,4	-972,1
			Holzfaserdämmung	19,89	160,00	0,04	baukonstruktion TFLwood_32;						
			(Innenausbau) Brettschichtholz	2,11	507,11	0,13	maximale Umwelt-						
			PE-Folie Decke	0,02	930,00	-	wirkungen mit						
TEL			Gipsfaserplatte	2,50		0,35	Holzfaserdäm-						
TFL wood	2010-		Holzfaserdämmung		160,00		mung, BSH (zusätzliche						
_uh	2020		X X (Innenausbau)	11,00	160,00	0,04	statische						
_30			PE-Folie Decke	0,02	930,00	-	Wirkung) und						
			Brettsperrholz	24,00	489,41	0,13	begehbarem						
			Lattung	0,58	484,51	0,13	Trockenestrich; Holzabmessung						
			Luftschicht, ruhend Gipsfaserplatte	5,42 2,50	1000,00	0,37 0,35	bxh = 60x220						
			Gipsiaserpiatte	2,30	1000,00	0,33	mm, Achsab-						
			Dielung/Dretterbeden	2.50	400.00	0.24	stand: 62,5 cm	25.4	400.0	400.7	47.4	420.2	64.6
			Dielung/Bretterboden Lagerhölzer mit	2,50	488,33 492,92/	0,21 0,14/		35,4	106,6	-123,7	17,1	-138,3	-64,6
			Schlackenfüllung	12,00	1200,00	0,14/	Grundlage Altbau-						
CFL			Kappendecke aus		1800,00/		konstruktion						
mas	bis	x x	Vollziegel (mit	12,00	7850,00/	0,79	CFLmas_4; minimale Umwelt-						
_uh	1948		Stahlträgern)		2000,00		wirkungen mit						
_1			Lattung	1,25	484,51	0,13	Mineralwolle-						
			Mineralwolle (Innenausbau)	11,75	26,25	0,04	dämmung						
			GKF-Platte	1,25	800,00	0,25							
	•		Dielung/Bretterboden	2,50	488,33	0,21		56,5	394,1	643,4	26,7	-50,2	453,6
			Lagerhölzer mit	12,00	492,92/	0,14/	Crum allog - Alti-						
			Schlackenfüllung	12,00	1200,00	0,42	Grundlage Altbau- konstruktion						
CFL	6.50		Kappendecke aus		1800,00/		CFLmas_4;						
mas _uh	bis 1948	x x	Vollziegel (mit Stahlträgern)	12,00	7850,00/ 2000,00	0,79	maximale Umwelt-						
_2	10-10		Lattung	1,34	484,51	0,13	wirkungen mit						
			Holzfaserdämmung				Holzfaser- dämmung						
			(Innenausbau)	12,66	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Verbundestrich	6,00	2400,00	0,87	Grundlage Alt-	11,3	137,0	206,9	2,5	20,9	168,9
CFL			Betondecke (99/1)	16,00		1,51	baukonstruktion CFLmas_5;						
mas _uh	1919- 1948	х	Lattung	1,44	484,51	0,13	minimale Umwelt-						
_3	1340		Mineralwolle (Innenausbau)	13,56	26,25	0,04	wirkungen mit						
_			GKF-Platte	1,25	800,00	0,25	Mineralwolle- dämmung						
	•		Verbundestrich	6,00		0,87	Grundlage Alt-	34,5	448.2	1062,3	12,5	104,9	739,7
CFL			Betondecke (99/1)	16,00		1,51	baukonstruktion	- 1,0	,=	,.	1_,0	,.	
mas	1919-		Lattung	1,54	484,51	0,13	CFLmas_5;						
_uh	1948	Х	Holzfaserdämmung	14,46	160,00	0,04	maximale Umwelt- wirkungen mit						
_4			(Innenausbau)	14,40	100,00	0,04	Holzfaser-						
			Gipsfaserplatte	2,50	1000,00	0,35	dämmung						
			Schwimmender	5,00	2400,00	1,40	Grundlage Altbau-	11,1	133,0	202,5	1,9	12,4	158,5
CFL			Estrich Stahlbeton B15-B25				konstruktion						
mas	1949-		(97/3)	18,00	2400,00	1,05	CFLmas_18;						
_uh	1968	хх	Lattung	1,44	484,51	0,13	minimale Umwelt- wirkungen mit						
_5			Mineralwolle	13,56	26,25	0,04	Mineralwolle-						
			(Innenausbau) GKF-Platte	1,25	800,00	0,25	dämmung						
	•		Schwimmender										
			Estrich	5,00	2400,00	1,40	Grundlage Altbau-	34,3	444,9	1060,0	11,9	96,5	730,6
CFL			Stahlbeton B15-B25	18,00	2400,00	1,05	konstruktion CFLmas_18;						
mas _uh	1949- 1968	x x	(97/3) Lattung	1,54	484,51	0,13	maximale Umwelt-						
_uii _6	1900		Holzfaserdämmung	14,50	160,00	0,04	wirkungen mit						
			(Innenausbau)	,00		-,01	Holzfaser- dämmung						
			Gipsfaserplatte	2,50	1000,00	0,35	daminung						
			Dielung/Bretterboden	2,50	488,33	0,21		32,6	100,4	-103,3	15,6	-126,7	-47,3
			Holzbalken mit	8,00	492,92/	0,14/ 0,19	Grundlage Altbau-						
CFL			Steinkohleschlacke Kappendecke aus		905,00	υ,19	konstruktion						
mas	bis		Vollziegel (mit	10.00	1800,00	0,81	CFLmas_27;						
_uh	1918	X	Stahlträgern)	-,	,- 3	-,-,	minimale Umwelt- wirkungen mit						
_7			Lattung	1,25	484,51	0,13	Mineralwolle-						
			Mineralwolle	11,75	26,25	0,04	dämmung						
			(Innenausbau) GKF-Platte										
			Ora France	1,25	800,00	0,25							

			Dielung/Bretterboden	2,50	488,33	0,21		53,8	387,9	663,8	25,2	-38,6	471,0
			Holzbalken mit	8,00	492,92/	0,14/							
OFI			Steinkohleschlacke	-,	905,00	0,19	konstruktion						
CFL mas	bis		Kappendecke aus Vollziegel (mit	10,00	1800,00	0,81	CFLmas_27;						
_uh	1918	Х	Stahlträgern)	10,00	1000,00	0,01	maximale Umwelt-						
_8			Lattung	1,34	484,51	0,13	wirkungen mit Holzfaser-						
			Holzfaserdämmung	12,66	160,00	0,04	dämmung						
			(Innenausbau)				•						
			Gipsfaserplatte	2,50		0,35			445.5	50.0		105.0	
			Dielung/Bretterboden	2,50	488,33	0,21		30,7	115,5	-52,0	14,2	-105,6	-1,6
			Lagerhölzer mit Sandschüttung	3,50	492,92/ 1350,00	0,14/ 0,58	Grundlage Altbau-						
CFL			Kappendecke aus		2400,00/	0,00	konstruktion						
mas	bis	x x x x	Beton (mit	12,00	7874,00/	3,21	CFLmas_35; minimale Umwelt-						
_uh	1968	~ ~ ~ ~	Stahlträgern)		7850,00		wirkungen mit						
_9			Lattung	1,44	484,51	0,13	Mineralwolle-						
			Mineralwolle (Innenausbau)	13,56	26,25	0,04	dämmung						
			GKF-Platte	1,25	800,00	0,25							
			Dielung/Bretterboden	2,50		0,21		53,9	426,7	803,5	24,1	-21,6	569,2
			Lagerhölzer mit	2.50	492,92/	0,14/							
			Sandschüttung	3,50	1350,00	0,58	Grundlage Altbau- konstruktion						
CFL	6.5-		Kappendecke aus		2400,00/		CFLmas_35;						
mas _uh	bis 1968	x x x x	Beton (mit Stahlträgern)	12,00	7874,00/ 7850,00	3,21	maximale Umwelt-						
_10	.000		Lattung	1,54		0,13	wirkungen mit Holzfaser-						
			Holzfaserdämmung				dämmung						
			(Innenausbau)	14,46	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Estrich (Anhydrit)	4,00		1,20	Grundlage Altbau-	9,1	107,6	169,5	1,5	7,4	137,2
CFL			Mineralwolle (Boden)	1,50	30,00- 200,00	0,04							
mas	1971-		Betondecke (97/3)	14,00		1,51	CFLmas_37;						
_uh	1990	ххх	Lattung	1,25	484,51	0,13	minimale Umwelt- wirkungen mit						
_11			Mineralwolle	11,75	26,25	0,04	Mineralwolle-						
			(Innenausbau) GKF-Platte	1,25	800,00	0,25	dämmung						
			Estrich (Anhydrit)	4,00		1,20		31,7	412,3	988,8	11,4	94,0	691,0
			Mineralwolle (Boden)	1,50	30,00-	0,04	Grundlage Altbau-	- ,	,-	, .	,	,-	,-
CFL			, ,		200,00		konstruktion CFLmas_37;						
mas _uh	1971- 1990	x x x	Betondecke (97/3)	14,00		1,51	maximale Umwelt-						
_12	1990		Lattung Holzfaserdämmung	1,44	484,51	0,13	wirkungen mit						
			(Innenausbau)	13,56	160,00	0,04	Holzfaser- dämmung						
			Gipsfaserplatte	2,50	1000,00	0,35	aammang						
			Dielung/Bretterboden	2,40	488,33	0,21		28,7	131,3	-4,8	12,1	-89,7	-0,9
			Estrich	3,50	2400,00	1,40							
			Sand/ Lehm/	6,00	1350,00/ 900,00/	0.10	Grundlage Altbau-						
CFL			Schlacke	0,00	1200,00	0,10	konstruktion						
mas	1870-	x	Beton B5-B20	10,00	2400,00	2,00	CFLmas_38; minimale Umwelt-						
_uh	1918	^	Vollziegel	12,00	1800,00/	0,79	wirkungen mit						
_13			-		2000,00		Mineralwolle-						
			Lattung Mineralwolle	1,25	484,51	0,13	dämmung						
			(Innenausbau)	11,75	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
			Dielung/Bretterboden	2,40	488,33	0,21	Grundlage Alt-	51,2	436,0	814,5	21,9	-3,1	553,0
			Estrich	3,50	2400,00	1,40	baukonstruktion						
			Sand/	6.00	1350,00/	0.50	CFLmas_38;						
			Lehm/ Schlacke	6,00	900,00/ 1200,00	0,58	maximale Umwelt- wirkungen mit						
CFL	1870		Beton B5-B20	10,00	2400,00	2,00	Holzfaser-						
mas _uh	1870- 1918	х			1800,00/	-	dämmung; Verän-						
_14	3		Vollziegel	12,00	2000,00	0,79	derung der Wärmeleitfähig-						
			Lattung	1,44	484,51	0,13	keit der Sand-,						
			Holzfaserdämmung (Innenausbau)	13,56	160,00	0,04	Lehm-, Schlacken-						
				0.50	1000.00	0.05	Schüttung mit						
			Gipsfaserplatte	2,50	1000,00	0,35	0,58 W/mK						

	•		Dielung/Bretterboden	1,30	488,33	0,21		29,3	138,3	95,7	16,0	-30,1	87,7
			Estrich	1,75	2400,00	1,40							
			Vergussbeton B5	2,50	2000,00	2,00							
			Betonfertigteil B20	9,20	2520,00	2,50	Grundlage Altbau-						
CFL			Bewehrungsstahl	0,00	7850,00	-	konstruktion CFLmas_39;						
mas	1949-	x x x	Holzwolle-	2.50	200.00	0.00	minimale Umwelt-						
_uh	1978		Leichtbauplatte	2,50	360,00	0,09	wirkungen mit						
_15			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Lattung	1,34	484,51	0,13	dämmung						
			Mineralwolle	12,66	26,25	0,04							
			(Innenausbau)										
	_		GKF-Platte	1,25	800,00	0,25							
			Dielung/Bretterboden	1,30	488,33	0,21		51,4	437,6	907,0	25,8	56,0	632,2
			Estrich	1,75		1,40							
			Vergussbeton B5	2,50		2,00	Grundlage Altbau-						
CFL			Betonfertigteil B20	9,20		2,50	konstruktion						
mas	1949-		Bewehrungsstahl	0,00	7850,00	-	CFLmas_39;						
_uh	1978	x x x	Holzwolle- Leichtbauplatte	2,50	360,00	0,09	maximale Umwelt-						
_16			Innenputz	1,50	900,00	0,70	wirkungen mit						
			Lattung	1,44	484,51	0,13	Holzfaser-						
			Holzfaserdämmung				dämmung						
			(Innenausbau)	13,56	160,00	0,04							
	_		Gipsfaserplatte	2,50	1000,00	0,35							
	-		Estrich	3,50	2400,00	1,40		19,5	120,2	183,5	8,7	-13,6	108,2
			Holzwolle-	3,00	360,00	0,09							
			Leichtbauplatte		•								
			Bitumenbahn, Decke	0,40			Grundlage Altbau-						
CFL			Hochofenschlacke	2,50	1200,00	0,19	konstruktion CFLmas_40;						
mas	1949-	x x x	Stahlbeton B20	19,00	2000,00/	2 10	minimale Umwelt-						
_uh	1978	* * *	(66/4)	13,00	7850,00	2,10	wirkungen mit						
_17			Innenputz	1,50	900,00	0,70	Mineralwolle-						
			Lattung	1,25	484,51	0,13	dämmung						
			Mineralwolle	11,75	26,25	0,04							
			(Innenausbau)										
	-		GKF-Platte	1,25	800,00	0,25							
			Estrich	3,50	2400,00	1,40		40,6	407,6	950,7	18,3	74,5	626,4
			Holzwolle-	3,00	360,00	0,09							
			Leichtbauplatte	0.40	1000,00		Grundlage Altbau-						
051			Bitumenbahn, Decke				konstruktion						
CFL	1010		Hochofenschlacke	2,50	1200,00	0,19	CFLmas_40;						
mas _uh	1949- 1978	x x x	Stahlbeton B20 (66/4)	19,00	2000,00/ 7850,00	2,19	maximale Umwelt-						
_18	1370			1,50	900,00	0.70	wirkungen mit						
			Innenputz	1,34	484,51	0,70	Holzfaser-						
			Lattung Holzfaserdämmung	1,34	404,51	0,13	dämmung						
			(Innenausbau)	12,66	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
	-		Estrich	3,50		1,40		14,5	98,7	152,2	5,2	-26,3	59,0
			Estrichpapier	0,10				,-		,	-,	,	
				0,.0	85,00/								
			Dämmung KD,	3,00	18,50/	0,04							
			jüngere BK		160,00								
			Dämmung KD,		85,00/		Grundlage Altbau- konstruktion						
CFL			jüngere BK	3,00	18,50/	0,04	CFLmas_43;						
mas	1991-	хх	PE-Folie Decke	0.10	160,00		minimale Umwelt-						
_uh	2000		FE-FOILE DECKE	0,10	930,00	-	wirkungen mit						
_19			Stahlbetondecke	16,00	2000,00/ 7850,00	2,50	Mineralwolle-						
			Innenputz	1,50	900,00	0,70	dämmung						
			Lattung	0,86	484,51	0,13							
			Mineralwolle	0,00	404,51	0,13							
			(Innenausbau)	8,14	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
	-		Estrich	3,50	2400,00	1,40		30,2	321,5	690,5	13,7	71,3	436,4
			Estrichpapier	0,10	800,00	-		-,	,-	-,-	-,	,-	-,
				, -	85,00/								
			Dämmung KD,	3,00	18,50/	0,04							
			jüngere BK		160,00		Grundlage Alther						
			Dämmung KD,	0.00	85,00/	001	Grundlage Altbau- konstruktion						
CFL			jüngere BK	3,00	18,50/	0,04	CFLmas_43;						
mas	1991-	хх	PE-Folie Decke	0.40	160,00 930,00		maximale Umwelt-						
_uh	2000		FE-FOILE DECKE	0,10		-	wirkungen mit						
_20			Stahlbetondecke	16,00	2000,00/ 7850,00	2,50	Holzfaser-						
			Innenputz	1,50	900,00	0,70	dämmung						
				0,86	484,51	0,70							
								•					
			Lattung Holzfaserdämmung										
			Holzfaserdämmung	8,14	160,00	0,04							
					160,00								

			Estrich	3,50	2400,00	1,40		18,3	123,5	190,1	6,5	-24,9	102,7
			Holzwolle-	2,50	360,00	0.09	Grundlage Altbau-						
			Leichtbauplatte	2,00		0,00	konstruktion						
CFL	4004		Stahlbeton B15-B25 (96/4)	19,00	2000,00/ 7850,00	2,50	CFLmas_44;						
mas _uh	1961- 1990	x x x x	, ,	4.50		0.70	minimale Umwelt-						
_21	1990		Innenputz Lattung	1,50	900,00 484,51	0,70	wirkungen mit						
_			Mineralwolle	1,34	404,31	0,13	Mineralwolle-						
			(Innenausbau)	12,66	26,25	0,04	dämmung						
			GKF-Platte	1,25	800,00	0,25							
			Estrich	3,50	2400,00	1,40		40,4	422,8	1001,4	16,2	61,2	647,2
			Holzwolle-	2,50	360,00	0,09	Grundlage Altbau-						
			Leichtbauplatte	2,00		0,00	konstruktion						
CFL	4004		Stahlbeton B15-B25 (96/4)	19,00	2000,00/ 7850,00	2,50	CFLmas_44;						
mas _uh	1961- 1990	x x x x	Innenputz	1,50		0,70	maximale Umwelt-						
_22	1000		Lattung	1,44	484,51	0,13	wirkungen mit						
			Holzfaserdämmung				Holzfaser- dämmung						
			(Innenausbau)	13,56	160,00	0,04	daminung						
			Gipsfaserplatte	2,50	1000,00	0,35							
			Estrich	3,50	2400,00	1,40		18,3	123,5	190,1	6,5	-24,9	102,7
			Holzwolle-	2,50	360,00	0.09	Grundlage Altbau-						
			Leichtbauplatte Stahlbeton B15-B25	,		-,	konstruktion						
CFL	1961-		(96/4)	19,00	2000,00/ 7850,00	2,50	CFLmas_45;						
mas _uh	2000	x x x x x	Innenputz	1,50	900,00	0,70	minimale Umwelt-						
_23			Lattung	1,34	484,51	0,13	wirkungen mit						
_			Mineralwolle	12,66	26,25	0,04	Mineralwolle- dämmung						
			(Innenausbau)	.2,00	20,20	0,01	daminung						
			GKF-Platte	1,25	800,00	0,25							
			Estrich	3,50	2400,00	1,40		40,4	422,8	1001,4	16,2	61,2	647,2
			Holzwolle- Leichtbauplatte	2,50	360,00	0,09	Grundlage Altbau-						
CFL			Stahlbeton B15-B25		2000,00/		konstruktion						
mas	1961-		(96/4)	19,00	7850,00	2,50	CFLmas_45;						
_uh	2000	x x x x x	Innenputz	1,50	900,00	0,70	maximale Umwelt- wirkungen mit						
_24			Lattung	1,44	484,51	0,13	Holzfaser-						
			Holzfaserdämmung	13,56	160,00	0,04	dämmung						
			(Innenausbau)	2.50	1000.00	0.25							
			Gipsfaserplatte	2,50		0,35			1015	101.1			100.0
			Trockenestrich Mineralwolle (Boden)	2,50 2,00	800,00 85,00	0,25 0,04		8,8	104,5	164,4	1,1	2,9	122,2
			Stahlbeton C20/25										
			(99/1)	16,00	2400,00	2,30	Grundlage Altbau- konstruktion						
CFL	0000		Mineralwolle	3,50	26,25	0,04	CFLmas_46;						
mas _uh	2002- 2009	Х	(Innenausbau) WDVS Verklebung				minimale Umwelt-						
_25	2003		und Beschichtung	2,00	1759,00	1,00	wirkungen mit						
			Lattung	1,15	484,51	0,13	Mineralwolle- dämmung						
			Mineralwolle	10,85	26,25	0,04	g						
			(Innenausbau) GKF-Platte										
			Trockenestrich	1,25 2,50	800,00	0,25		30,4	397,4	939,5	10,7	91,6	649,8
			Mineralwolle (Boden)	2,00	85,00	0,04		30,4	331,4	333,3	10,7	31,0	043,0
			Stahlbeton C20/25				Grundlage Altbau-						
			(99/1)	16,00	2400,00	2,30	konstruktion						
CFL	0000		Mineralwolle	3,50	26,25	0,04							
mas _uh	2002- 2009	Х	(Innenausbau) WDVS Verklebung				maximale Umwelt-						
_26	2000		und Beschichtung	2,00	1759,00	1,00	wirkungen mit						
			Lattung	1,34	484,51	0,13	Holzfaser- dämmung						
			Holzfaserdämmung	12,66	160,00	0,04							
			(Innenausbau)										
			Gipsfaserplatte Trockenestrich	2,50 2,50		0,35		8,8	105,0	164,9	1,1	3,4	122,7
			Mineralwolle (Boden)	2,00	85,00	0,25		0,0	100,0	104,3	1,1	3,4	122,1
			Stahlbeton C20/25				Carradiana Althar						
			(99/1)	16,00	2400,00	2,30	Grundlage Altbau- konstruktion						
CFL	2010-		Mineralwolle	5,00	26,25	0,04							
mas _uh	2010-	х	(Innenausbau) WDVS Verklebung				minimale Umwelt-						
_27	-		und Beschichtung	2,00	1759,00	1,00	wirkungen mit Mineralwolle-						
			Lattung	1,15	484,51	0,13	dämmung						
			Mineralwolle	10,85	26,25	0,04							
			(Innenausbau) GKF-Platte	1,25		0,25							
			Jiti Flatto	1,20	000,00	0,20							

			Trockenestrich	2,50	800,00	0,25		30,4	397,9	940,0	10,7	92,0	650,3
			Mineralwolle (Boden)	2,00	85,00	0,04							
			Stahlbeton C20/25	40.00	0.400.00	0.00	Grundlage Altbau-						
			(99/1)	16,00	2400,00	2,30	konstruktion						
CFL			Mineralwolle	5,00	26,25	0,04	CFLmas_47;						
mas	2010-	x	(Innenausbau)	3,00	20,23	0,04	maximale Umwelt-						
_uh	2015	^	WDVS Verklebung	2,00	1759,00	1,00	wirkungen mit						
_28			und Beschichtung				Holzfaser-						
			Lattung	1,34	484,51	0,13	dämmung						
			Holzfaserdämmung	12,66	160,00	0,04	_						
			(Innenausbau)										
			Gipsfaserplatte	2,50	1000,00	0,35							
			Trockenestrich	2,50	800,00	0,25		8,8	105,5	165,4	1,1	3,8	123,2
			Mineralwolle (Boden)	2,00	85,00	0,04							
			Stahlbeton C20/25	16,00	2400,00	2 30	Grundlage Altbau-						
CFL			(99/1)	.0,00	2 .00,00	2,00	konstruktion						
mas	2016-		Mineralwolle	6,50	26,25	0,04	CFLmas_48;						
_uh	2020	×	(Innenausbau) WDVS Verklebung				minimale Umwelt-						
_29	2020		und Beschichtung	2,00	1759,00	1,00	wirkungen mit						
			Lattung	1,15	484,51	0,13	Mineralwolle-						
			Mineralwolle				dämmung						
			(Innenausbau)	10,85	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
	•		Trockenestrich	2,50	800,00	0,25		30,4	398,4	940,5	10,8	92,5	650,8
			Mineralwolle (Boden)	2,00	85,00	0,04		00, .	000, .	0.0,0	, .	0_,0	000,0
			Stahlbeton C20/25	۷,00	05,00								
			(99/1)	16,00	2400,00	2,30	Grundlage Altbau-						
CFL			Mineralwolle				konstruktion						
mas	2016-		(Innonquebau)	6,50	26,25	0,04	CFLmas_48;						
_uh	2020	х	WDVS Verklebung	2.00	1750.00	1.00	maximale Umwelt-						
_30			und Beschichtung	2,00	1759,00	1,00	wirkungen mit Holzfaser-						
			Lattung	1,34	484,51	0,13	dämmung						
			Holzfaserdämmung	12,66	160,00	0,04	daminang						
			(Innenausbau)	12,00	100,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Zementestrich	7,50	2400,00	1,40		30,8	126,5	184,8	17,0	-78,2	-13,8
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	F 00	100.00	0.04							
			(TSD)	5,00	160,00	0,04	Grundlage Altbau-						
			Stahlbeton C30/37	24,00	2400,00	2,50	konstruktion						
CFL			(98/2)	24,00	2400,00	2,50	CFLmas_49;						
mas	2002-	×	Holzfaserdämmung	1,00	160,00	0,04	minimale Umwelt-						
_uh	2009		(Innenausbau)				wirkungen mit						
_31			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00	Mineralwolle-						
			Lattung	0,86	484,51	0,13	dämmung						
			Mineralwolle	0,00	404,51	0,13							
			(Innenausbau)	8,14	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
			Zementestrich	7,50	2400,00	1,40		48,0	366,6	775,2	25,7	18,0	399,3
			PE-Folie Decke	0,02	930,00	1,40		70,0	550,0	,2	23,1	10,0	555,5
				0,02	930,00	-							
			Holzfaserdämmung (TSD)	5,00	160,00	0,04							
			Stahlbeton C30/37				Grundlage Altbau-						
CFL			(98/2)	24,00	2400,00	2,50	konstruktion						
mas	2002-	x	Holzfaserdämmung	1,00	160,00	0.04	CFLmas_49; maximale Umwelt-						
_uh	2009	^	(Innenausbau)	1,00	100,00	0,04	wirkungen mit						
_32			WDVS Verklebung	2,00	1759,00	1,00	Holzfaser-						
			und Beschichtung				dämmung						
			Lattung	0,96	484,51	0,13	ŭ						
			Holzfaserdämmung	9,04	160,00	0,04							
			(Innenausbau)										
			Gipsfaserplatte	2,50	1000,00	0,35							
			Zementestrich	7,50	2400,00	1,40		37,5	126,6	184,9	21,9	-108,9	-53,2
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	5,00	160,00	0,04							
			(TSD)	,	-,	,	Grundlage Altbau-						
CFL			Stahlbeton C30/37 (98/2)	24,00	2400,00	2,50	konstruktion						
mas	2010-		(98/2) Holzfaserdämmung				CFLmas_50;						
_uh	2015	Х	(Innenausbau)	3,00	160,00	0,04	minimale Umwelt-						
_33			WDVS Verklebung	2.00	1750.00	1.00	wirkungen mit						
			und Beschichtung	2,00	1759,00	1,00	Mineralwolle-						
			Lattung	0,86	484,51	0,13	dämmung						
			Mineralwolle	8,14	26.2F	0,04							
			(Innenausbau)		26,25								
			GKF-Platte	1,25	800,00	0,25							

			Zementestrich	7,50	2400,00	1,40		54,7	366,6	775,4	30,7	-12,7	359,8
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	5,00	160,00	0,04							
			(TSD)	3,00	100,00	0,04	Grundlage Altbau-						
051			Stahlbeton C30/37	24.00	2400,00	2,50	konstruktion						
CFL	2010		(98/2)	,	,	_,	CFLmas_50;						
mas	2010- 2015	x	Holzfaserdämmung	3,00	160,00	0,04	maximale Umwelt-						
_uh _34	2015		(Innenausbau)				wirkungen mit						
_34			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00	Holzfaser-						
			Lattung	0,96	484,51	0,13	dämmung						
			Holzfaserdämmung	0,90	404,31	0,13							
			(Innenausbau)	9,04	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Zementestrich	7,50		1,40		42,6	126,7	185,0	25,6	-131,9	-82,8
						1,40		42,0	120,7	103,0	23,0	-131,9	-02,0
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung (TSD)	5,00	160,00	0,04							
			Stahlbeton C30/37				Grundlage Altbau-						
CFL			(98/2)	24,00	2400,00	2,50	konstruktion						
mas	2016-		Holzfaserdämmung		400.00		CFLmas_51;						
_uh	2020	,	(Innenausbau)	4,50	160,00	0,04	minimale Umwelt-						
_35			WDVS Verklebung	2,00	1759,00	1,00	wirkungen mit Mineralwolle-						
			und Beschichtung	2,00	1755,00	1,00	dämmung						
			Lattung	0,86	484,51	0,13	aammang						
			Mineralwolle	8,14	26,25	0,04							
			(Innenausbau)	0,14	20,20	0,04							
			GKF-Platte	1,25	800,00	0,25							
			Zementestrich	7,50	2400,00	1,40		161,2	1278,3	2109,6	135,9	875,9	1664,5
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	F 00	100.00	0.04							
			(TSD)	5,00	160,00	0,04	Grundlage Altbau-						
			Stahlbeton C30/37	24 00	2400,00	2,50	konstruktion						
CFL	0040		(98/2)	2-1,00	2400,00	2,00	CFLmas_51;						
mas	2016-	,	Holzfaserdämmung	4,50	160,00	0,04	maximale Umwelt-						
_uh _36	2020		(Innenausbau)				wirkungen mit						
_30			WDVS Verklebung und Beschichtung	2,00	1759,00	1,00	Holzfaser-						
			Lattung	0,96	484,51	0,13	dämmung						
			Holzfaserdämmung	9,04									
			(Innenausbau)	9,04	160,00	0,04							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Dielung/Bretterboden	2,50	488,33	0,14		61,6	74,9	-454,2	32,1	-319,5	-339,1
			Holzbalken			0,14	Grundlage Altbau-	01,0	74,3	-434,2	32,1	-515,5	-333,1
				2,40	492,92		konstruktion						
CFL	1010		Steinkohleschlacke	10,60	905,00	0,19	CFLwood_1;						
wood	1919- 1957	x x	Bretter	2,00	484,51	0,14	minimale Umwelt-						
_uh _1	1957		Lattung	0,96	484,51	0,13	wirkungen mit						
-'			Mineralwolle	9,04	26,25	0,04	Mineralwolle-						
			(Innenausbau)				dämmung						
			GKF-Platte	1,25	800,00	0,25							
			Estrich	7,50	2400,00	1,40		128,3	798,0	863,2	95,5	308,2	962,2
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	3,00	160,00	0,04							
			(Innenausbau)	5,00	100,00		Grundlage Altbau-						
CFL			OSB-Platte	1,80	650,00	0,13	konstruktion						
wood	1919-		Holzfaserdämmung	10,56	160,00	0.04	CFLwood_1;						
_uh	1957	хх	(Innenausbau)	10,00	100,00		maximale Umwelt-						
_2			Dielung/Bretterboden	2,50	488,33	0,14	wirkungen mit Holzfaser-						
			Holzbalken	2,40	492,92	0,14	dämmung						
			Steinkohleschlacke	10,60	905,00	0,19	danimung						
			Bretter	2,00	484,51	0,14							
			Gipsfaserplatte	2,50	1000,00	0,35							
			Dielung/Bretterboden	2,50	488,33	0,33		62,1	81,1	-445,4	31,8	-324,0	-336,0
			•			0,14	Grundlage Altbau-	02,1	01,1	-440,4	31,8	-324,0	-330,0
			Holzbalken	2,40	492,92		konstruktion						
CFL.	40:-		Lehmschüttung	10,60	900,00	0,35	CFLwood_2;						
wood	1919-	x x	Bretter	2,00	484,51	0,14	minimale Umwelt-						
_uh	1957		Lattung	1,06	484,51	0,13	wirkungen mit						
_3			Mineralwolle	9,94	26,25	0,04	Mineralwolle-						
			(Innenausbau)				dämmung						
			GKF-Platte	1,25	800,00	0,25							
		·											

		_														
						Estrich	7,50	2400,00	1,40		127,0	782,8	815,8	93,8	287,0	907,7
						PE-Folie Decke	0,02	930,00	-							
						Holzfaserdämmung	3,00	160,00	0,04	Grundlage Altbau-						
						(Innenausbau)	4.00	050.00		konstruktion						
CFL						OSB-Platte	1,80	650,00	0,13	CFLwood_2;						
wood	1919-		х	х		Holzfaserdämmung (Innenausbau)	9,68	160,00	0,04		l					
_uh _4	1957					Dielung/Bretterboden	2,50	488,33	0,14	wirkungen mit						
_*						Holzbalken	2,40	492,92	0,14	Holzfaser-						
						Lehmschüttung		900,00	0,14	dämmung						
						•	10,60									
						Bretter	2,00	484,51	0,14							
		_				Gipsfaserplatte	2,50	1000,00	0,35		·		222.4			200.1
						Dielung/Bretterboden	2,50	488,33	0,21		59,4	91,6	-393,1	30,2	-297,7	-288,1
						Holzbalken	1,90	492,92	0,14	Grundlage Altbau-	1					
CFL						Lehmschlag	14,10	900,00/	0,70	konstruktion						
wood	bis					Bretter	2,00	484,51	0.14	CFLwood_4; minimale Umwelt-						
_uh	1918	Х							0,14	wirkungen mit						
_5						Lattung Mineralwolle	1,25	484,51	0,13	Mineralwolle-						
						(Innenausbau)	11,75	26,25	0,04	dämmung						
						GKF-Platte	1,25	800,00	0,25							
		-				Estrich	7,50	2400,00	1,40		123,4	782,5	852,2	92,1	312,1	936,8
						PE-Folie Decke	0,02	930,00	1,40		123,4	702,3	032,2	32,1	312,1	330,0
						Holzfaserdämmung	0,02	930,00	_							
						(Innenausbau)	3,00	160,00	0,04	Grundlage Altbau-	l					
CFL						OSB-Platte	1,80	650,00	0,13	konstruktion						
wood	bis					Holzfaserdämmung				CFLwood_4;						
_uh	1918	Х				(Innenausbau)	9,68	160,00	0,04	maximale Umwelt-	l					
_6						Dielung/Bretterboden	2,50	488,33	0,21	wirkungen mit						
						Holzbalken	1,90	492,92	0,14	Holzfaser-						
						Lehmschlag	14,10		0,70	dämmung						
						Bretter	2,00	484,51	0,14							
						Gipsfaserplatte	2,50	1000,00	0,35							
		-				Dielung/Bretterboden	2,50	488,33	0,21		60,0	109,0	-367,9	30,9	-279,5	-262,5
						Holzbalken	1,90	492,92	0,14	Grundlage Altbau-		103,0	-301,3	30,3	-213,3	-202,5
CFL									0,14	konstruktion						
wood	bis					Sandschüttung		1350,00		CFLwood_5;						
_uh	1948	Х	X			Bretter	2,00	484,51	0,14	minimale Umwelt-						
_7	.0.0					Lattung	1,25	484,51	0,13	wirkungen mit						
						Mineralwolle	11,75	26,25	0,04	Mineralwolle-						
						(Innenausbau)	4.05	000.00	0.05	dämmung						
		_				GKF-Platte	1,25	800,00	0,25		404.0	700.0	077.4	00.7	222.2	000.5
						Estrich	7,50	2400,00	1,40		124,0	799,9	877,4	92,7	330,3	962,5
						PE-Folie Decke	0,02	930,00	-							
						Holzfaserdämmung	3,00	160,00	0,04	Grundlage Altbau-	1					
						(Innenausbau) OSB-Platte	1.00		0,13	konstruktion						
CFL							1,80	650,00	0,13	CFLwood_5;						
wood	bis	х	x			Holzfaserdämmung (Innenausbau)	9,68	160,00	0,04	maximale Umwelt-	l					
_uh	1948					Dielung/Bretterboden	2,50	488,33	0,21	wirkungen mit						
_8						Holzbalken	1,90	492,92	0,14	Holzfaser-						
										dämmung						
						Sandschüttung		1350,00	0,58							
						Bretter	2,00	484,51	0,14							
		_				Gipsfaserplatte	2,50	1000,00	0,35		<u> </u>					
						Trockenestrich	2,50	800,00	0,25		58,1	42,3	-428,4	34,6	-367,6	-415,9
						Mineralwolle (Boden)	2,00	85,00	0,04							
						OSB-Platte	1,80	600,00	0,13							
						Konstruktionsvollholz	2,00	492,92	0,13	0	1					
						Luftschicht, ruhend	13,50	-	0,81	Grundlage Altbau- konstruktion	Ī					
CFL						Zellulosefaser-	1 50	45,00	0,04	CFLwood_6;						
					хх	Einblasdämmung	4,50		0,04	minimale Umwelt-						
_uh	2015					PE-Folie Decke	0,02	930,00	-	wirkungen mit						
_9						OSB-Platte	1,50	600,00	0,13	Mineralwolle-						
						GKF-Platte	1,25	800,00	0,25	dämmung						
						Lattung	0,58	484,51	0,13		1					
						Mineralwolle	5,42	26.2F	0,04							
						(Innenausbau)	5,42	26,25	0,04							
						GKF-Platte	1,25	800,00	0,25		I					
		_				Orti Flatto	1,20	000,00	0,20							

			Estrich	7,50	2400,00	1,40		117,2	647,0	707,9	89,0	122,5	710,0
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	3,00	160,00	0,04							
			(Innenausbau)										
			OSB-Platte	1,80	650,00	0,13							
			Holzfaserdämmung (Innenausbau)	9,90	160,00	0,04	Grundlage Altbau-						
			Luftschicht, ruhend	8,10	_	0,49	konstruktion						
CFL	2002		Trockenestrich	2,50	800,00	0,25	CFLwood_6;						
wood _uh	2002- 2015	х	Mineralwolle (Boden)	2,00	85,00	0,04	maximale Umwelt-						
_10	2010		OSB-Platte	1,80	600,00	0,13	wirkungen mit						
			Konstruktionsvollholz	2,00	492,92	0,13	Holzfaser- dämmung						
			Luftschicht, ruhend	13,50		0,81	danimung						
			Zellulosefaser-		45.00								
			Einblasdämmung	4,50	45,00	0,04							
			PE-Folie Decke	0,02	930,00	-							
			OSB-Platte	1,50	600,00	0,13							
			GKF-Platte	1,25	800,00	0,25							
			Trockenestrich	2,50	800,00	0,25		58,6	36,9	-436,4	35,2	-371,9	-430,1
			Mineralwolle (Boden)	2,00	85,00	0,04							
			OSB-Platte	1,80	600,00	0,13							
			Konstruktionsvollholz	2,00	492,92	0,13	Crumdiana Althau						
			Luftschicht, ruhend	12,60	-	0,76	Grundlage Altbau- konstruktion						
CFL	2042		Zellulosefaser-	5,40	45,00	0,04	CFLwood_7;						
_uh	2016- 2020	х	Einblasdämmung				minimale Umwelt-						
_11	2020		PE-Folie Decke	0,02	930,00	0.40	wirkungen mit						
_			OSB-Platte	1,50	600,00	0,13	Mineralwolle-						
			GKF-Platte	1,25	800,00	0,25	dämmung						
			Lattung Mineralwolle	0,48	484,51	0,13							
			(Innenausbau)	4,52	26,25	0,04							
			GKF-Platte	1,25	800,00	0,25							
			Estrich	7,50	2400,00	1,40		118,1	647,0	707,9	89,6	118,7	705,1
			PE-Folie Decke	0,02	930,00	-							
			Holzfaserdämmung	3,00	160,00	0,04							
			(Innenausbau)										
			OSB-Platte	1,80	650,00	0,13							
			Holzfaserdämmung (Innenausbau)	9,90	160,00	0,04	Grundlage Altbau-						
							Cranalage / litbaa						
CFL				8.10	_	0.49	konstruktion						
	2016		Luftschicht, ruhend	8,10 2.50		0,49 0,25	konstruktion CFLwood_7;						
wood	2016- 2020	x	Luftschicht, ruhend Trockenestrich	2,50	800,00	0,25	CFLwood_7; maximale Umwelt-						
wood _uh	2016- 2020	x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden)	2,50 2,00	800,00 85,00	0,25 0,04	CFLwood_7; maximale Umwelt- wirkungen mit						
wood		х	Luftschicht, ruhend Trockenestrich	2,50 2,00 1,80	800,00 85,00 600,00	0,25 0,04 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte	2,50 2,00	800,00 85,00	0,25 0,04	CFLwood_7; maximale Umwelt- wirkungen mit						
wood _uh		х	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz	2,50 2,00 1,80 2,00 12,60	800,00 85,00 600,00 492,92	0,25 0,04 0,13 0,13 0,76	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		х	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung	2,50 2,00 1,80 2,00	800,00 85,00 600,00 492,92	0,25 0,04 0,13 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		х	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke	2,50 2,00 1,80 2,00 12,60	800,00 85,00 600,00 492,92 - 45,00 930,00	0,25 0,04 0,13 0,13 0,76	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung	2,50 2,00 1,80 2,00 12,60 5,40	800,00 85,00 600,00 492,92 - 45,00	0,25 0,04 0,13 0,13 0,76	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		х	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-						
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00	0,25 0,04 0,13 0,13 0,76 0,04	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD)	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00 2400,00 930,00 160,00	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 -	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12		×	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 2400,00 930,00 160,00 600,00	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12		x	Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20 6,40	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00 2400,00 930,00 160,00	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20 6,40 24,00	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 2400,00 930,00 160,00 600,00 507,11	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13 1,64	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20 6,40	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 2400,00 930,00 160,00 600,00 507,11	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20 6,40 24,00	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 2400,00 930,00 160,00 600,00 507,11	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13 1,64	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit Mineralwolle-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau)	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 1,25 7,50 0,02 5,00 2,20 6,40 24,00	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00 2400,00 930,00 160,00 600,00 507,111 - 160,00	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13 1,64	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte Lattung	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 0,02 5,00 2,20 6,40 24,00 1,60	800,00 85,00 600,00 492,92 45,00 930,00 600,00 2400,00 930,00 160,00 600,00 507,11 	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 1,64 0,04 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit Mineralwolle-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenusbau) OSB-Platte Gipsfaserplatte Lattung Mineralwolle	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 0,02 5,00 2,20 6,40 24,00 1,50 2,50	800,00 85,00 600,00 492,92 45,00 930,00 600,00 2400,00 930,00 160,00 600,00 507,11 - 160,00 600,00	0,25 0,04 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 1,64 0,04 0,13 0,35	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit Mineralwolle-	118,4	71,7	-816,4	73,1	-709,6	-877,0
wood _uh _12	2002-		Luftschicht, ruhend Trockenestrich Mineralwolle (Boden) OSB-Platte Konstruktionsvollholz Luftschicht, ruhend Zellulosefaser- Einblasdämmung PE-Folie Decke OSB-Platte GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) OSB-Platte Brettschichtholz Luftschicht, ruhend Holzfaserdämmung (Innenausbau) OSB-Platte Gipsfaserplatte Lattung	2,50 2,00 1,80 2,00 12,60 5,40 0,02 1,50 0,02 5,00 2,20 6,40 24,00 1,60 1,50 2,50 0,53	800,00 85,00 600,00 492,92 - 45,00 930,00 600,00 800,00 160,00 600,00 507,11 - 160,00 600,00 1000,00 484,51	0,25 0,04 0,13 0,13 0,76 0,04 - 0,13 0,25 1,40 - 0,04 0,13 0,13 0,13 0,04 0,04 0,13 0,04 0,13	CFLwood_7; maximale Umwelt- wirkungen mit Holzfaser- dämmung Grundlage Altbau- konstruktion CFLwood_8; minimale Umwelt- wirkungen mit Mineralwolle-	118,4	71,7	-816,4	73,1	-709,6	-877,0

				Estrich	7,50	2400,00	1,40		133,8	1054,2	1658,4	83,7	155,9	1588,1
				PE-Folie Decke	0,02	930,00	_							
				Holzfaserdämmung	0.00	400.00	0.04							
				(Innenausbau)	3,00	160,00	0,04							
				OSB-Platte	1,80	650,00	0,13							
				Holzfaserdämmung										
				(Innenausbau)	9,60	160,00	0,04	Crundlaga Althau						
				Luftschicht, ruhend	16,00	-	1,09	Grundlage Altbau- konstruktion						
CFL				Zementestrich	7,50	2400,00	1,40	CFLwood_8;						
wood	2002-	хх		PE-Folie Decke	0,02	930,00		maximale Umwelt-						
_uh	2015	^ ^			0,02	930,00	_	wirkungen mit						
_14				Holzfaserdämmung (TSD)	5,00	160,00	0,04	Holzfaser-						
				OSB-Platte	2,20	600,00	0,13	dämmung						
								aummang						
				Brettschichtholz	6,40	507,11	0,13							
				Luftschicht, ruhend	24,00	-	1,64							
				Holzfaserdämmung	1,60	160,00	0,04							
				(Innenausbau)										
				OSB-Platte	1,50	600,00	0,13							
				Gipsfaserplatte	2,50	1000,00	0,35							
				Zementestrich	7,50	2400,00	1,40		120,6	66,3	-824,4	75,0	-722,4	-902,1
				PE-Folie Decke	0,02	930,00	_							
				Holzfaserdämmung										
				(TSD)	5,00	160,00	0,04							
				OSB-Platte	2,20	600,00	0,13	Carried I ama Althory						
				Brettschichtholz	6,40	507,11	0,13	Grundlage Altbau- konstruktion						
CFL						001,11		CFLwood_9;						
wood	2016-			Luftschicht, ruhend	23,20	-	1,58	minimale Umwelt-						
_uh	2020		Х	Holzfaserdämmung	2,40	160,00	0,04	wirkungen mit						
_15				(Innenausbau)				Mineralwolle-						
				OSB-Platte	1,50	600,00	0,13	dämmung						
				Gipsfaserplatte	2,50	1000,00	0,35	daniindig						
				Lattung	0,43	484,51	0,13							
				Mineralwolle	4,07	26,25	0,04							
				(Innenausbau)	4,07	20,23	0,04							
				GKF-Platte	1,25	800,00	0,25							
				Estrich	7,50	2400,00	1,40		136,5	1054,2	1658,5	85,6	143,7	1572,4
				PE-Folie Decke	0,02	930,00	_							
				Holzfaserdämmung										
				(Innenausbau)	3,00	160,00	0,04							
				OSB-Platte	1,80	650,00	0,13							
				Holzfaserdämmung										
				(Innenausbau)	9,60	160,00	0,04	0 11 411						
				Luftschicht, ruhend	16,00		1,09	Grundlage Altbau-						
CFL				Zementestrich	7,50	2400,00	1,40	konstruktion						
wood	2016-							CFLwood_9; maximale Umwelt-						
_uh	2020		X	PE-Folie Decke	0,02	930,00	-	wirkungen mit						
_16				Holzfaserdämmung	5,00	160,00	0,04	Holzfaser-						
				(TSD)	0.00			dämmung						
				OSB-Platte	2,20	600,00	0,13	daniindig						
				Brettschichtholz	6,40	507,11	0,13							
				Luftschicht, ruhend	23,20	-	1,58							
				Holzfaserdämmung	2,40	160,00	0,04							
				(Innenausbau)	∠,+∪		5,04							
				OSB-Platte	1,50	600,00	0,13							
				Gipsfaserplatte	2,50	1000,00	0,35							
				Trockenestrich	2,50	800,00	0,25		116,7	52,7	-1064,0	65,0	-727,6	-910,6
				Mineralwolle (Boden)	2,00	85,00	0,04			•	<i>,</i> -	,-	,-	,-
				PE-Folie Decke	0,02	930,00	5,54							
					0,02	330,00	-	Grundlage Altbau-						
				Schüttung,	4,00	400,00	0,09	konstruktion						
CFL	000-			Porenbetongranulat				CFLwood_10;						
	2002-	хх		PE-Folie Decke	0,02	930,00	-	minimale Umwelt-						
_uh	2015			Brettsperrholz	14,00	489,41	0,13	wirkungen mit						
_17				GKF-Platte	1,25	800,00	0,25	Mineralwolle-						
				Lattung	0,58	484,51	0,13	dämmung						
				Mineralwolle				Ť						
				(Innenausbau)	5,42	26,25	0,04							
				GKF-Platte	1,25	800,00	0,25							
				Trockenestrich	2,50	800,00	0,25		130,1	248,4	-632,1	73,0	-624,6	-594,2
									130,1	240,4	-032,1	13,0	-024,0	-534,2
				Mineralwolle (Boden)	2,00	85,00	0,04							
				PE-Folie Decke	0,02	930,00	-	Current Alii						
				Schüttung,	4,00	400,00	0,09	Grundlage Altbau-						
CFL				Porenbetongranulat	4,00	400,00	0,09	konstruktion						
wood	2002-			PE-Folie Decke	0,02	930,00	-	CFLwood_10;						
_uh	2015	хх		Brettsperrholz	14,00	489,41	0,13	maximale Umwelt- wirkungen mit						
_18				GKF-Platte				Wirkungen mit Holzfaser-						
					1,25	800,00	0,25	dämmung						
				Lattung	0,62	484,51	0,13	uanimung						
				Holzfaserdämmung	5,88	160,00	0,04							
				(Innenausbau)										
				Gipsfaserplatte	2,50	1000,00	0,35							

Trockmerstein Fried Decke 0,00											
PE-Finis Docker Color				Trockenestrich					116,1	45,6 -1074,8	64,9 -727,4 -923,6
Schriftungs				, ,	3,00	85,00	0,04				
Professional Pro				PE-Folie Decke	0,02	930,00	-	O			
CFL Professional parameter Professional				•	4 00	400.00	0.09				
Mono				Porenbetongranulat	4,00	400,00	0,00				
19			x	PE-Folie Decke	0,02	930,00	-				
CFL Lamung		2020		Brettsperrholz	14,00	489,41	0,13				
Mineralworile Concensionabay 4,07 26,25 0,04	_19			GKF-Platte	1,25	800,00	0,25	Mineralwolle-			
CFL				Lattung	0,43	484,51	0,13	dämmung			
CFL Perfolio Decke				Mineralwolle	4.07	26.25	0.04				
CFL											
CFL											
PE-Folic Decke PE-F					,				128,0	223,6 -709,2	72,6 -621,4 -646,6
CFL Porterbedregarulus				, ,			0,04				
CFL Portinsbutngranulat Portinsbutngra					0,02	930,00	-	Grundlago Althau			
CFL wood 2016-				-	4,00	400,00	0,09				
April		0040		•			-,				
Detailspiration			x				-				
CFL Lating Holzbaredimmung Holzbaredimmu		2020		Brettsperrholz	14,00	489,41	0,13				
Moderage dammung	_20			GKF-Platte	1,25	800,00	0,25				
CFL wood 2002- X x Bretsperholtz 2,50 100,000 0,35 204,3 80,2 -1860,9 116,7 -1259,9 -1641,2 204,000 1,40 204,000 1,4				•	0,48	484,51	0,13	dämmung			
CFL wood 2002-					4.52	160.00	0.04				
CFL wood 2002- CFL											
PE-Folie Decke									0010	00.0 1000.5	4407 40500 40415
CFL wood 2002- PE-Folie Decke 0,02 930,00 C- C- C- C- C- C- C-						,	1,40		204,9	80,2 -1860,9	116,7 -1259,9 -1641,2
CFL wood 2002-					0,02	930,00	-				
PE-Folia Dacke Quide Qui				-	2,00	160,00	0,04				
2015	CFL			. ,	0.02	930.00	_				
CFL Wood 2015 CFL Wood 2016 Wood 2016 PE-Folie Decke Deck D			x x				0.13				
Lattung		2015	^ ^			,					
CFL Wood 2015 2015 2016 2	_21										
CFL Wood Cycle					0,40	404,51	0,13	dämmung			
CFL					4,52	26,25	0,04				
Zementestrich PE-Folie Decke 0.02 930,00 -				* * * * * * * * * * * * * * * * * * * *	1,25	800,00	0,25				
PE-Folic Decke				Zementestrich		2400,00	1,40		217,3	264,1 -1473,2	124,5 -1154,9 -1351,2
CFL Holzfaserdämmung (TSD) 2,00 160,00 0,04 Grundlage Altibau konstruktion CFL C							_		,-	, , ,	, , ,
CFL								Grundlage Althau-			
Variety	051			(TSD)	2,00	160,00	0,04	konstruktion			
2015 Seretsperrholz 24,00 489,41 0,13 maximale Unwelt-wirkungen mit Holzfaserdammung (Innenausbau) 4,97 160,00 0,04		2002		PE-Folie Decke	0,02	930,00	-	CFLwood_12;			
CFL			x x	Brettsperrholz	24,00	489,41	0,13				
Lattung				Gipsfaserplatte	2,50	1000,00	0,35				
Holz/Jaserdammung (Innenausbau)				Lattung	0.53	10151					
CFL wood					0,00	484,51	0,13				
CFL wood				•							
PE-Folie Decke				(Innenausbau)	4,97	160,00	0,04				
Holzfaserdämmung (TSD)				(Innenausbau) Gipsfaserplatte	4,97 2,50	160,00 1000,00	0,04 0,35				
CFL wood				(Innenausbau) Gipsfaserplatte Zementestrich	4,97 2,50 7,50	160,00 1000,00 2400,00	0,04 0,35		206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
CFL wood		,		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke	4,97 2,50 7,50	160,00 1000,00 2400,00	0,04 0,35 1,40	dämmung	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
Noverthead Nov				(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung	4,97 2,50 7,50 0,02	160,00 1000,00 2400,00 930,00	0,04 0,35 1,40	dämmung Grundlage Altbau-	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
CFL wood	CFL			(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD)	4,97 2,50 7,50 0,02 2,50	160,00 1000,00 2400,00 930,00 160,00	0,04 0,35 1,40	dämmung Grundlage Altbau- konstruktion	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
Lattung				(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke	4,97 2,50 7,50 0,02 2,50 0,02	160,00 1000,00 2400,00 930,00 160,00 930,00	0,04 0,35 1,40 - 0,04	dämmung Grundlage Altbaukonstruktion CFLwood_13;	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
CFL Wood 2016- Wirkungen Wishers Wirkungen mit Holzfaserdämmung Holzfaser	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz	4,97 2,50 7,50 0,02 2,50 0,02 24,00	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41	0,04 0,35 1,40 - 0,04 - 0,13	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt-	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
CFL wood	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35	dämmung Grundlage Altbaukonstruktion CFLwood_13; minimale Umwelt- wirkungen mit	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
CFL wood under the content of the	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle-	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
Zementestrich 7,50 2400,00 1,40 218,3 255,4 -1499,2 125,6 -1161,8 -1378,8 PE-Folie Decke 0,02 930,00 - Holzfaserdämmung (TSD) 2,50 160,00 0,04 Grundlage Altbaukonstruktion PE-Folie Decke 0,02 930,00 - CFLwood_13; CFLwood_13; Pe-Folie Decke 0,02 930,00 - CFLwood_13; Pe-Folie Decke 0,	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle-	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
PE-Folie Decke Holzfaserdämmung (TSD) 2,50 160,00 0,04 Grundlage Altbau-konstruktion PE-Folie Decke 0,02 930,00 - CFLwood_13; wood 2016-	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau)	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle-	206,4	77,5 -1864,8	117,9 -1267,9 -1655,8
Holzfaserdämmung (TSD)	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle-			
CFL	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle-			
CFL wood 2016-	wood _uh		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25 1,40	dämmung Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Minerralwolle- dämmung			
2020 X Brettsperrholz 24,00 489,41 0,13 maximale Umwelt- 2020 Gipsfaserplatte 2,50 1000,00 0,35 wirkungen mit Holzfaser- dämmung Holzfaserdämmung 4,52 160,00 0,04 dämmung 160,00 0,04 0,00	wood _uh _23		x	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25 1,40	Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung			
Color Colo	wood _uh _23	2020	×	(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD)	4,97 2,50 7,50 0,02 2,50 0,02 24,00 0,43 4,07 1,25 7,50 0,02 2,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00 160,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25 1,40	dämmung Grundlage Altbaukonstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbaukonstruktion			
Lattung 0,48 484,51 0,13 Holzfaser- dämmung (Innenausbau) 4,52 160,00 0,04	wood _uh _23	2020		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02 2,50 0,02	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00 160,00 930,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25 1,40 - 0,04	dämmung Grundlage Altbaukonstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbaukonstruktion CFLwood_13;			
Holzfaserdämmung 4,52 160,00 0,04 (Innenausbau)	wood _uh _23 CFL wood _uh	2020		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02 2,50 0,02 2,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00 160,00 930,00 489,41	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 0,25 1,40 - 0,04 - 0,04	dämmung Grundlage Altbaukonstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbaukonstruktion CFLwood_13; maximale Umwelt- wirkungen mit			
(Innenausbau) 4,52 160,00 0,04	wood _uh _23 CFL wood _uh	2020		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02 2,50 0,02 2,4,00 2,50	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51 26,25 800,00 2400,00 930,00 160,00 930,00 489,41 1000,00	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 - 0,25 1,40 - 0,04 - 0,04 -	Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbau- konstruktion CFLwood_13; maximale Umwelt- wirkungen mit Holzfaser-			
Gipsfaserplatte 2,50 1000,00 0,35	wood _uh _23 CFL wood _uh	2020		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Lattung	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02 2,50 0,02 24,00 2,50 0,048	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 - 0,04 - 0,03 0,04 0,03 0,04 0,03 0,04 0,04 0,13	Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbau- konstruktion CFLwood_13; maximale Umwelt- wirkungen mit Holzfaser-			
	wood _uh _23 CFL wood _uh	2020		(Innenausbau) Gipsfaserplatte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung Mineralwolle (Innenausbau) GKF-Platte Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Brettsperrholz Gipsfaserplatte Lattung UTSD) Holzfaserdämmung (TSD) Holzfaserdämmung (TSD) Holzfaserdämmung (TSD) Holzfaserdämmung (TSD) Holzfaserdämmung (TSD)	4,97 2,50 7,50 0,02 2,50 0,02 24,00 2,50 0,43 4,07 1,25 7,50 0,02 2,50 0,02 24,00 2,50 0,048	160,00 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 2400,00 930,00 160,00 930,00 489,41 1000,00 484,51	0,04 0,35 1,40 - 0,04 - 0,13 0,35 0,13 0,04 - 0,04 - 0,03 0,04 0,03 0,04 0,03 0,04 0,04 0,13	Grundlage Altbau- konstruktion CFLwood_13; minimale Umwelt- wirkungen mit Mineralwolle- dämmung Grundlage Altbau- konstruktion CFLwood_13; maximale Umwelt- wirkungen mit Holzfaser-			

			Dielung/Bretterboden	2,50	488,33	0,21	Grundlage Alt-	240,6	1057,5	-348,5	162,8	7,5	-225,0
			Holzbalken	16,00	492,92	0,14	baukonstruktion						
			Luftschicht, ruhend	16,00	-	-	BP_1; minimale						
			Estrich	5,00		1,40	Umweltwirkun-						
BP	bis		PE-Folie Decke	0,02	930,00	- 0.04	gen mit Mineral- wolle- und Poly-						
_h	1948	X X	Mineralwolle (Boden)	5,00	85,00	0,04	styroldämmung;						
_1			Bitumenabdichtung Stahlbeton C20/25	0,45	85,00		Abdich-tung nach						
			(99/1)	15,00	2300,00	2,30	DIN 18533,						
			PE-Folie Decke	0,02	930,00	-	Wassereinwir- kungsklasse						
			Polystyroldämmung,	9,00	32,00	0,04	W.1-E						
			XPS (BO)										
			Dielung/Bretterboden	2,50	488,33	0,21		318,6	1580,3	447,3	233,2	418,6	425,2
			Holzbalken Luftschicht, ruhend	16,00 16,00	492,92	0,14							
			Estrich	7,50	2400,00	1,40	Grundlage Altbau-						
			PE-Folie Decke	0,02	930,00	1,40	konstruktion						
			Holzfaserdämmung	0,02	000,00		BP_1; maximale Umwelt-						
BP	bis		(TSD)	3,00	160,00	0,04	wirkungen mit						
_h _2	1948	хх	PE-Folie Decke	0,02	930,00	-	Holzfaser- und						
			Stahlbeton C25/30	30,00	2400,00	2,50	Polystyroldäm-						
			(98/2) PE-Folie Decke	0,02	930,00	_	mung; Ausführung als						
			Polystyroldämmung,				weiße Wanne						
			XPS (BO)	11,00	32,00	0,04							
			Kies unter	15,00	1850,00	_							
	į		Bodenplatte Estrich			1,40	Grundlage Alt-	40.0	E07.4	E04.0	45,1	457,2	F07.0
			PE-Folie Decke	5,00 0,02	2400,00 930,00	1,40	baukonstruktion	48,9	507,4	594,8	45,1	457,2	527,9
BP	1919-		Mineralwolle (Boden)	15,00	85,00	0,04	BP_2; minimale						
_h	1948	X	PE-Folie Decke	0,02	930,00	- 0,04	Umwelt-						
_3			Verbundestrich		2400,00	1,40	wirkungen mit Mineralwolle-						
			Beton B5-B20	16,00		1,51	dämmung						
			Verbundestrich	6,00	2400,00	1,40		172,2	1614,4	2055,1	153,2	1345,8	1703,3
			Beton B5-B20	16,00	2400,00	1,51							
			Estrich	7,50	2400,00	1,40	Grundlage Altbau-						
			PE-Folie Decke	0,02	930,00	-	konstruktion						
			Holzfaserdämmung	3,00	160,00	0,04	BP_2; maximale Umwelt-						
BP	1919-		(TSD) PE-Folie Decke	0,02	930,00	_	wirkungen mit						
_h 4	1948	X	Stahlbeton C25/30			0.50	Holzfaser- und						
			(98/2)	30,00	2400,00	2,50	Polystyroldäm-						
			PE-Folie Decke	0,02	930,00	-	mung; Ausführung als						
			Polystyroldämmung, XPS (BO)	11,00	32,00	0,04	weiße Wanne						
			Kies unter										
			Bodenplatte	15,00	1850,00	-							
	•		Estrich	5,00	2400,00	1,40	Grundlage Alt-	55,4	749,9	853,7	50,9	694,4	780,2
			Dämmung BO	1,00	30-200	0,09	baukonstruktion BP_3; minimale						
			(unspezifisch) Estrich		2400,00	1,40	Umweltwirkun-						
BP	1949-		PE-Folie Decke	0,02	930,00	-,40	gen mit Mineral-						
_h _5	1957	Х	Mineralwolle (Boden)	15,00	85,00	0,04	wolledämmung; Abdichtung nach						
_5			Bitumenabdichtung	0,45		-	DIN 18533,						
			Betondecke (97/3)	15,00	2400,00	1,51	Wassereinwir-						
							kungsklasse						
			Estrich	5,00	2400,00	1,40	W.1-E	17/10	1608,0	2047.8	155,1	1331,4	1685.8
			Dämmung BO					,,,	. 555,0	_3-1,0	.00,1	, -	. 555,6
			(unspezifisch)	1,00	30-200	0,09							
			Betondecke (97/3)	15,00		1,51	Grundlage Altbau-						
			Estrich		2400,00	1,40	konstruktion						
			PE-Folie Decke	0,02	930,00	-	BP_3; maximale Umwelt-						
BP	1949-		Holzfaserdämmung (TSD)	3,00	160,00	0,04	wirkungen mit						
_h _6	1957	Х	PE-Folie Decke	0,02	930,00	_	Holzfaser- und						
_0			Stahlbeton C25/30		2400,00	2,50	Polystyroldäm-						
			(98/2)			2,50	mung; Ausführung als						
			PE-Folie Decke Polystyroldämmung,	0,02	930,00	-	weiße Wanne						
			XPS (BO)	11,00	32,00	0,04							
			Kies unter	15.00	1850,00								
			Bodenplatte	10,00	1000,00								

Diaments Diaments		ļ		Schwimmender Estrich	4,00	2400,00	0,87	Grundlage Alt- baukonstruktion	61,3	744,8	848,0	54,6	665,0	743,2
1985				Dämmung BO	3,00	30-200	0,05	BP_4; minimale						
Per	BP	1958-			5,00	2400,00	1,40							
Mariewalue (Education 1.50 2.50			Х	PE-Folie Decke			-	-						
Section Sect	_'			Mineralwolle (Boden)	15,00	85,00	0,04							
Schwimmender 240,00 240,00 0.87 180,0 1602,0 2042, 158,8 1302,0 1648,0 1648,0				Bitumenabdichtung	0,45	529,00	-							
Bank				Betondecke (97/3)	15,00	2400,00	1,51	klasse W.1-E						
December December				Estrich	4,00	2400,00	0,87		180,9	1602,9	2042,1	158,8	1302,0	1648,9
BP					3,00	30-200	0,05							
Page					15,00	2400,00	1,51	-						
Part 1988				Estrich	7,50		1,40							
1986	DD.				0,02	930,00	-							
PEF-Folio Decko Care Care Polystyroddam Polystyrodda			X		3,00	160,00	0,04	-						
Statishibetic C25/30 30,00 240,000 2,50 Austithrung als verifie Wanne Polystyroidismrung 11,00 32,00 0,04 Vary (R0) Niss unter Rockerplates 15,00 160,00 0,04 Vary (R0) Rockerplates R		1968			0,02	930,00	-							
PF-Folie Decke					30,00	2400,00	2,50							
Polyshyroidismrung, 11,00 32,00 0,04							_	-						
New Name							0.04	wellse vvanne						
Bodenplate				XPS (BO)	11,00	32,00	0,04							
Schwimmender 1,00 2400,00 1,40 5400,00 1,40					15,00	1850,00	-							
Dammung BO		•			4.00	2400.00	1.40	Grundlage Alt-	64.5	744 1	847.2	61.4	703.4	702 0
Part 1989									04,0	, .	047,2	01,4	700,4	702,0
1989	BP													
Mineralwolle (Boden 15.00 85.00 0.04 Abdichtung nach 1833 Wasseriemwirkungs 1840 2400,00 1.51 1840 1802,3 2041,3 165,6 1340,5 1698,6 1840 1840 1860,5 1840 1840 1860,5 1840,5			X				1,40	•						
Bitumenabdichtung 0,45 529,00 Seriemiwrikungs Schwimmender 4,00 2400,00 1,51 Sklasse W.1-E Strich Dämmung BO (unspezifisch) 4,00 2400,00 1,40 Strich Dämmung BO (unspezifisch) 4,00 30-200 0,04 Strich PE-Folie Decke 0,02 930,00 PE-Folie Decke 0,	_9	1370					0.04	-						
Betondecke (97/3) 14,00 2400,00 1,51 348se W.1-E							0,04							
BP				_			1.51	-						
BP		· ·		, ,					194.0	1602.3	2041.3	165.6	1240 5	1608 6
BP					4,00	2400,00	1,40		104,0	1002,3	2041,3	103,0	1340,3	1030,0
Betondecke (97/3) 14,00 2400,00 1,41 15 Grundlage Althaukonstruktion 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1870 1978 1978 1978 1870 1978 1978 1870 1978 1978 1978 1978 1870 1978 197					4,00	30-200	0,04							
PE-Folie Decke					14,00	2400,00	1,51	-						
PF-Folie Decke				Estrich	7,50	2400,00	1,40							
1989- 1978	DD.				0,02	930,00	-							
PE-Folie Decke			x		3,00	160,00	0,04							
Stahlbeton C25/30 (98/2) 975-Folie Decke 0,02 930,00 - O,04 Weiße Wanne Polystyroldämmung, XPS (BO) 11,00 32,00 0,04 Weiße Wanne Polystyroldämmung, XPS (BO) 15,00 85,00 - O,04 BP-6; minimale Bodenplatte 15,00 1850,00 - O,04 BP-6; minimale BP-6; minimale Bodenplatte 15,00 10,00 2400,00 1,40 BP-6; minimale Bodenplatte 15,00 15,00 85,00 - O,04 BP-6; minimale BP-		1978			0,02	930,00	_							
PE-Folie Decke 0,02 930,00 welfie Wanne PE-Folie Decke 11,00 32,00 0,04 PE-Folie Decke 0,02 930,00 - PE-Folie Decke 0,02 930,00					30,00	2400,00	2,50							
Polystyroldämmung, XPS (BO) 11,00 32,00 0,04								-						
BP							0.04	wellse vvanne						
BP					11,00	32,00	0,04							
BP					15,00	1850,00	-							
PE-Folie Decke					5,00	2400,00	1,40	Caunalis Ali	49,7	523,4	611,4	46,6	482,3	557,1
BP				PE-Folie Decke		930,00	-					•	•	•
PE-Folie Decke	RP			Mineralwolle (Boden)	15,00	85,00	0,04							
Estrich 3,50 2400,00 1,40 9der fill Millerlar wolledämmung; Wolledämmung; Innendämmung Und neuer Estrich Stampfbeton B5-B20 10,00 2400,00 2,00 1,40 161,7 1445,9 1879,7 144,0 1194,2 1550,3			x x x x x				-							
Stampfoeton B5-B20 10,00 2400,00 2,00 Innendämmung 15,00 1850,00 - und neuer Estrich 161,7 1445,9 1879,7 144,0 1194,2 1550,3 160,00 1,40 161,7 1445,9 1879,7 144,0 1194,2 1550,3 160,00 1,40 161,7 1445,9 1879,7 144,0 1194,2 1550,3 160,00 1,40 160,00 1,40 160,00 1,40 160,00 1,40 160,00 1,40	_11	19/8												
Bodenplatte				•			∠,00	Innendämmung						
PE-Folie Decke					15,00	1850,00		und neuer Estrich						
Holzfaserdämmung (TSD)		'					1,40		161,7	1445,9	1879,7	144,0	1194,2	1550,3
BP					0,02	930,00	-							
PE-Folie Decke 0,02 930,00 - BP_6; maximale Unweltwirkungen mit Holzfaser und Polystyroldämmung; XPS (BO) Estrich Stampfbeton B5-B20 10,00 2400,00 2,00 Estrich Stampfbeton B5-B20 15,00 150,00 1,40 Estrich Stampfbeton B5-B20 15,00 150,00 1,40 Estrich 15,00 1850,00 - Indicated with the product of				•	3,00	160,00	0,04							
Stahlbeton C25/30 (98/2) 30,00 2400,00 2,50 Umweltwirkungen mit					0,02	930,00	-							
_h	BP				30,00	2400,00	2,50	Umwelt-						
Polystyroldämmung, 11,00 32,00 0,04 Polystyroldämmung; XPS (BO) Estrich 3,50 2400,00 1,40 Ausführung als Stampfbeton B5-B20 10,00 2400,00 2,00 Weiße Wanne Kies unter 15,00 1850,00 -			x x x x x				,,	-						
XPS (BO) Estrich 3,50 2400,00 1,40 Ausführung als Stampfbeton B5-B20 10,00 2400,00 2,00 weiße Wanne Kies unter 15,00 1850,00 -	_12	1010												
Stampfbeton B5-B20 10,00 2400,00 2,00 weiße Wanne Kies unter 15 00 1850 00 -				XPS (BO)			U,04	mung;						
Kies unter 15.00, 1850.00 -														
15 00 1850 00 -				•	10,00	2400,00	2,00							
					15,00	1850,00	-							

			Ziegelpflaster	8,00	1850,00	k.A.	Grundlage Alt-	53,5	775,5	881,0	50,4	734,2	826,5
			Estrich	5,00	2400,00	1,40	baukonstruktion						
			PE-Folie Decke	0,02	930,00	_	BP_7; minimale						
BP	1870-		Mineralwolle (Boden)	15,00	85,00	0,04	Umweltwirkun- gen mit Mineral-						
_h	1918	X	Bitumenabdichtung	0,45	529,00	_	wolledämmung;						
_13			Stampfbeton B5-B20	10,00		2,00	Abdichtung nach						
			•	-,	,	,	DIN 18533, Was-						
			Kies unter Bodenplatte	15,00	1850,00	-	sereinwirkungs-						
			•	0.00	4050.00	I. A	klasse W.1-E	101.0	4440.0	4000.0	440.0	4404.5	4550.0
			Ziegelpflaster	8,00	1850,00	k.A.		161,8	1449,3	1883,2	143,9	1194,5	1550,0
			Stampfbeton B5-B20	10,00		2,00	Grundlage Altbau-						
			Estrich PE-Folie Decke	7,50		1,40	konstruktion						
			Holzfaserdämmung	0,02	930,00		BP_7; maximale						
BP			(TSD)	3,00	160,00	0,04	Umwelt-						
_h	1870-	X	PE-Folie Decke	0,02	930,00	-	wirkungen mit						
_14	1918		Stahlbeton C25/30	30,00	2400,00	2,50	Holzfaser- und						
			(98/2)			2,50	Polystyroldäm- mung;						
			PE-Folie Decke	0,02	930,00	-	Ausführung als						
			Polystyroldämmung, XPS (BO)	11,00	32,00	0,04	weiße Wanne						
			Kies unter										
			Bodenplatte	15,00	1850,00	-							
			Estrich	5,00	2400,00	1,40	Grundlage Alt-	53,4	772,2	877,6	50,5	733,9	826,9
			PE-Folie Decke	0,02	930,00	-	baukonstruktion						
			Mineralwolle (Boden)	15,00	85,00	0,04	BP_8; minimale Umweltwirkun-						
BP	1949-		Bitumenabdichtung	0,45	529,00	-	gen mit Mineral-						
_h	1994	x x x x x	Estrich	3,50	2400,00	1,40	wolledämmung;						
_15			Stampfbeton B5-B20	10,00		2,00	Abdichtung nach						
			Kies unter	,	,	_,	DIN 18533, Was-						
			Bodenplatte	15,00	1850,00	-	sereinwirkungs-						
			•	2.50	2400.00	1.40	klasse W.1-E	464.7	11150	4070.7	1110	11012	4550.2
			Estrich	3,50		1,40		161,7	1445,9	1679,7	144,0	1194,2	1550,3
			Stampfbeton B5-B20	10,00		2,00	Crundlaga Althau						
			Estrich	7,50		1,40	Grundlage Altbau- konstruktion						
			PE-Folie Decke	0,02	930,00		BP_8; maximale						
BP			Holzfaserdämmung (TSD)	3,00	160,00	0,04	Umwelt-						
_h	1949-	x	PE-Folie Decke	0,02	930,00	-	wirkungen mit						
_16	1994	* * * * * *	Stahlbeton C25/30			0.50	Holzfaser- und						
			(98/2)	30,00	2400,00	2,50	Polystyroldäm-						
			PE-Folie Decke	0,02	930,00	-	mung; Ausführung als						
			Polystyroldämmung,	11,00	32,00	0,04	weiße Wanne						
			XPS (BO)	,00	02,00	0,01							
			Kies unter Bodenplatte	15,00	1850,00	-							
			Estrich	5,00	2400,00	1,40	Grundlage Alt-	57,2	821,7	942,0	35,9	543,4	570,5
			PE-Folie Decke	0,02	930,00	_	baukonstruktion	,	,	,	, .		,-
			Mineralwolle (Boden)	14,00	85,00	0,04	BP_10; minimale						
BP	4070		Bitumenabdichtung	0,45	529,00	-	Umweltwirkun-						
_h	1979- 1990	x x	Estrich	3,50		1,40	gen mit Mineral- wolledämmung;						
_17	1000		Stahlbeton B15-B25				Abdichtung nach						
			(96/4)	100,00	2400,00	2,50	DIN 18533, Was-						
			Kies unter	15.00	1850,00	_	sereinwirkungs-						
			Bodenplatte	.0,00	.000,00		klasse W.1-E						
			Estrich	7,50		1,40	Grundlage Alt-	86,0	1582,5	2307,7	37,8	848,5	1676,0
			PE-Folie Decke	0,02	930,00	-	baukonstruktion						
			OSB-Platte	1,50	600,00	0,13	BP_10; maximale Umweltwirkun-						
			Holzfaserdämmung	14,82	160,00	0,04	gen mit Holzfaser-						
			(TSD)				dämmung; Auf						
			Holzbalken	2,18	529,00	0,13	Grund der be-						
BP			Bitumenbahn	1,00		4 40	reits bestehen-						
_h	1979-	хх	Estrich Stahlbeton B15-B25	3,50	2400,00	1,40	den dicken Stahl-						
_18	1990		(96/4)	100,00	2400,00	2,50	betonschicht wird kein Austausch						
			Kies unter	15,00	1850,00	-	und Ersatz durch						
			Bodenplatte				eine weiße						
							Wanne angenom-						
							men, sondern						
							eine Abdichtung						
							nach DIN 18533 gewählt						
			Fatri-t-	F 00	0400.00	4.10	Grundlage Alt-	F0 1	770 0	07- 0	FC -	700 0	000.0
			Estrich	5,00		1,40	baukonstruktion	53,4	772,2	877,6	50,5	733,9	826,9
			PE-Folie Decke	0,02	930,00	-	BP_12; minimale						
BP			Mineralwolle (Boden)	15,00	85,00	0,04	Umweltwirkun-						
_h	1961-	x x x x	Bitumenabdichtung	0,45	529,00	4 40	gen mit Mineral-						
_19	1990		Estrich		2400,00	1,40	wolledämmung;						
			Stampfbeton B5-B20	10,00	2400,00	2,00	Abdichtung nach DIN 18533, Was-						
			Kies unter	15.00	1850,00	_	sereinwirkungs-						
			Bodenplatte	.,	-,		klasse W.1-E						
												_	

	•		Estrich	3,50	2400,00			161 7	1445,9	1879 7	144 0	1194,2	1550 3
								101,7	1445,5	1073,7	144,0	1134,2	1550,5
			Stampfbeton B5-B20	10,00	2400,00	2,00							
			Estrich	7,50	2400,00	1,40	Grundlage Altbau-						
			PE-Folie Decke	0,02	930,00	_	konstruktion						
			Holzfaserdämmung				BP_12; maximale						
			(TSD)	3,00	160,00	0,04	Umwelt-						
BP	1961-		PE-Folie Decke	0,02	930,00		wirkungen mit						
_h	1990	x x x x		0,02	930,00	_	Holzfaser- und						
_20	1000		Stahlbeton C25/30	30,00	2400,00	2,50	Polystyroldäm-						
			(98/2)	,	,	_,	mung;						
			PE-Folie Decke	0,02	930,00	-	-						
			Polystyroldämmung,	44.00	00.00	0.04	Ausführung als weiße Wanne						
			XPS (BO)	11,00	32,00	0,04	weilse vvanne						
			Kies unter										
			Bodenplatte	15,00	1850,00	-							
				= 00	0.400.00	4.40	0 " 4"						
			Estrich	5,00	2400,00	1,40	Grundlage Alt-	53,4	772,2	877,6	50,5	733,9	826,9
			PE-Folie Decke	0,02	930,00	-	baukonstruktion						
			Mineralwolle (Boden)	15,00	85,00	0,04	BP_13; minimale						
BP				0,45		-,-	Umweltwirkun-						
	1991-	V V	Bitumenabdichtung		529,00		gen mit Mineral-						
_h	2000	x x	Estrich	3,50	2400,00	1,40	wolledämmung;						
_21			Beton B5-B20	10,00	2400,00	2,00	Abdichtung nach						
			Kies unter	15.00	1850,00	_	DIN 18533, Was-						
			Bodenplatte	10,00	1000,00		sereinwirkungs-						
			Dodenplatte				klasse W.1-E						
							NIASSE W.I-L						
			Estrich	3,50	2400,00	1,40		161,7	1445,9	1879,7	144,0	1194,2	1550,3
			Beton B5-B20	10,00	2400,00	2,00							
			Estrich	7,50	2400,00		Grundlaga Altha						
						1,40	Grundlage Altbau-						
			PE-Folie Decke	0,02	930,00	-	konstruktion						
			Holzfaserdämmung	0.00	400.00	0.04	BP_13; maximale						
BP			(TSD)	3,00	160,00	0,04	Umwelt-						
	1991-		PE-Folie Decke	0,02	930,00		wirkungen mit						
_h	2000	x x		0,02	930,00		Holzfaser- und						
_22			Stahlbeton C25/30	30,00	2400,00	2,50	Polystyroldäm-						
			(98/2)	,	,	_,							
			PE-Folie Decke	0,02	930,00	-	mung;						
			Polystyroldämmung,				Ausführung als						
			XPS (BO)	11,00	32,00	0,04	weiße Wanne						
			Kies unter										
			Bodenplatte	15,00	1850,00	-							
				0.50	0.400.00	4.40							
			Estrich	3,50	2400,00	1,40	Grundlage Alt-	58,5	772,7	878,2	53,2	698,2	781,0
			PE-Folie Decke	0,20	1000,00	-	baukonstruktion						
			Estrich	5.00	2400,00	1,40	BP_14; minimale						
						1,40							
BP			PE-Folie Decke	0,02	930,00	_	Umweltwirkun-						
_h	1991-	x x	Mineralwolle (Boden)	15,00	85,00	0,04	gen mit Mineral-						
_23	2000		Bitumenabdichtung	0,45	529,00	_	wolledämmung;						
			Stahlbeton B15-B25	-,	,		Abdichtung nach						
			(96/4)	10,00	2400,00	2,50	DIN 18533, Was-						
							sereinwirkungs-						
			Kies unter				klasse W.1-E						
				15,00	1850,00	-	KIASSE W.I-E						
			Bodenplatte	15,00	1850,00		KIASSE W.I-E						
				15,00 3,50	1850,00	1,40	KidSSE W.I-E	166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich	3,50	2400,00		Klasse W.1-E	166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich PE-Folie Decke	3,50 0,20	2400,00 1000,00		NIASSE W.I-E	166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25	3,50 0,20	2400,00			166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4)	3,50 0,20 10,00	2400,00 1000,00 2400,00	1,40 - 2,50	Grundlage Altbau-	166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich	3,50 0,20 10,00 7,50	2400,00 1000,00 2400,00 2400,00	1,40	Grundlage Altbau- konstruktion	166,8	1446,5	1880,3	146,7	1158,5	1504,4
			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4)	3,50 0,20 10,00	2400,00 1000,00 2400,00	1,40 - 2,50	Grundlage Altbau- konstruktion BP_14; maximale	166,8	1446,5	1880,3	146,7	1158,5	1504,4
RP			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich	3,50 0,20 10,00 7,50 0,02	2400,00 1000,00 2400,00 2400,00 930,00	1,40 - 2,50 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt-	166,8	1446,5	1880,3	146,7	1158,5	1504,4
BP	1991-		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung	3,50 0,20 10,00 7,50	2400,00 1000,00 2400,00 2400,00	1,40 - 2,50	Grundlage Altbau- konstruktion BP_14; maximale	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h	1991- 2000	хх	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD)	3,50 0,20 10,00 7,50 0,02 3,00	2400,00 1000,00 2400,00 2400,00 930,00 160,00	1,40 - 2,50 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt-	166,8	1446,5	1880,3	146,7	1158,5	1504,4
		хх	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke	3,50 0,20 10,00 7,50 0,02	2400,00 1000,00 2400,00 2400,00 930,00	1,40 - 2,50 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30	3,50 0,20 10,00 7,50 0,02 3,00 0,02	2400,00 1000,00 2400,00 2400,00 930,00 160,00	1,40 - 2,50 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm-	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		хх	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00	2400,00 1000,00 2400,00 2400,00 930,00 160,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung;	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30	3,50 0,20 10,00 7,50 0,02 3,00 0,02	2400,00 1000,00 2400,00 2400,00 930,00 160,00 930,00	1,40 - 2,50 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00	1,40 - 2,50 1,40 - 0,04 - 2,50	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung;	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung,	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00	2400,00 1000,00 2400,00 2400,00 930,00 160,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00	1,40 - 2,50 1,40 - 0,04 - 2,50	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00	1,40 - 2,50 1,40 - 0,04 - 2,50	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als	166,8	1446,5	1880,3	146,7	1158,5	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als						
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als	57,8	1446,5	1880,3 527,4	146,7	217,8	1504,4
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als						
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00 5,00 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04 - 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als						
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 11,00 15,00 0,02 10,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne						
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00 5,00 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04 - 1,40	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion						
_h		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 11,00 15,00 0,02 10,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale						
_h _24		x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00 930,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 0,04 1,40 - 0	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt-						
_h _24			Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung	3,50 0,20 10,00 7,50 0,02 3,00 0,02 11,00 15,00 0,02 10,00 7,50	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 1,40 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit						
_h _24 BP _h	2000	x x	Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD)	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 15,00 0,02 10,00 7,50 0,02 2,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00 930,00 160,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 0,04 1,40 - 0	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle-						
_h _24	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00 930,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 0,04 1,40 - 0	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD)	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 2400,00 930,00 2400,00 930,00 160,00 930,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04 - 0,04 1,40 - 0,04 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle-						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 85,00 2400,00 930,00 160,00	1,40 - 2,50 1,40 - 0,04 - 0,04 - 0,04 1,40 - 0	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C30/37 (98/2)	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02 50,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 160,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04 - 0,04 1,40 - 0,04 - 0,04	Grundlage Altbau- konstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldäm- mung; Ausführung als weiße Wanne Grundlage Altbau- konstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus konstruktiven						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C30/37 (98/2) PE-Folie Bodenplatte	3,50 0,20 10,00 7,50 0,02 3,00 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 2400,00 930,00 2400,00 930,00 160,00 930,00	1,40 - 2,50 1,40 - 0,04 - 0,04 1,40 - 0,04 - 2,50 - 0,04 - 2,50 - 0,04 -	Grundlage Altbaukonstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldämmung; Ausführung als weiße Wanne Grundlage Altbaukonstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus konstruktiven Gründen Ausbau der vorhandenen						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C30/37 (98/2) PE-Folie Bodenplatte Polystyroldämmung,	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02 50,00	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 160,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 2,50 - 0,04 0,04 1,40 - 0,04 1,40 - 0,04 - 2,50	Grundlage Altbaukonstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldämmung; Ausführung als weiße Wanne Grundlage Altbaukonstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus konstruktiven Gründen Ausbau						
_h _24 BP _h	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C30/37 (98/2) PE-Folie Bodenplatte Polystyroldämmung, XPS (BO)	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02 50,00 0,02 4,50	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 2400,00 930,00 2400,00 930,00 2400,00 930,00 2400,00 930,00 2400,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 0,04 1,40 - 0,04 - 2,50 - 0,04 - 2,50 - 0,04 -	Grundlage Altbaukonstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldämmung; Ausführung als weiße Wanne Grundlage Altbaukonstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus konstruktiven Gründen Ausbau der vorhandenen						
_h _24	2000		Bodenplatte Estrich PE-Folie Decke Stahlbeton B15-B25 (96/4) Estrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C25/30 (98/2) PE-Folie Decke Polystyroldämmung, XPS (BO) Kies unter Bodenplatte Estrich PE-Folie Decke Mineralwolle (Boden) Zementestrich PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Holzfaserdämmung (TSD) PE-Folie Decke Stahlbeton C30/37 (98/2) PE-Folie Bodenplatte Polystyroldämmung,	3,50 0,20 10,00 7,50 0,02 30,00 0,02 11,00 5,00 0,02 10,00 7,50 0,02 2,00 0,02 50,00 0,02 4,50	2400,00 1000,00 2400,00 930,00 160,00 930,00 2400,00 930,00 32,00 1850,00 2400,00 930,00 160,00 930,00 2400,00 930,00 2400,00	1,40 - 2,50 1,40 - 0,04 - 0,04 1,40 - 0,04 - 2,50 - 0,04 - 2,50 - 0,04 -	Grundlage Altbaukonstruktion BP_14; maximale Umwelt- wirkungen mit Holzfaser- und Polystyroldämmung; Ausführung als weiße Wanne Grundlage Altbaukonstruktion BP_19; minimale Umwelt- wirkungen mit Mineralwolle- dämmung; aus konstruktiven Gründen Ausbau der vorhandenen						

Part														
				Estrich	7,50	2400,00	1,40		71,8	541,7	978,6	46,3	157,1	476,2
Professional Content				PE-Folie Decke	0,02	930,00	-							
Part				Holzfaserdämmung	10.00	160.00	0.04							
PEF-Fule Bodes							0,01							
PEF-Fule Decks PEF-							-	Grundlage Altbau-						
1000 2000							1,40	konstruktion						
PEF-pline Decker Quantification Qu		2002-			0,02	930,00	-							
PFF-Folio Decke Subhbort 03037 (827) (X	•	2,00	160,00	0,04							
Sambheno C3007 50,0 200,000 2,50 36mmrung 1	_20				0,02	930,00								
Gest							0.50							
Polystyroidimmung, XP Report Repo					50,00	2400,00	2,50	-						
Sub-Principal Continue Sub-Principal Conti				•	0,02	26,25	-							
Part					4,50	32,00	0,04							
Estatch Solid 240000 140					5.00	2400.00								
Part		•					1 40		57.4	409.8	485 R	39.9	167 3	166.2
Part							1,10		01,4	400,0	400,0	00,0	101,0	100,2
Perfusion Perf							0.04	Grundlage Altbau-						
PEF-folia Decke														
Part							-,							
1915 1915	RP													
PEF-Folia Pocke 10,000 20,000 2,50 30,000 2,50 30,000 2,50 30,000			x		2,00	160,00	0,04	-						
PE-Folie Bodenplatte PE-Folie Bodenplatte		2015		PE-Folie Decke	0,02	930,00	-							
PEF-Folic Bodenplatte					50.00	2400.00	2.50							
Polystynoidismunis														
Marchesisteric						26,25								
Part					6,50	32,00	0,04	Daningonion						
Estrich PE-Folie Decke Redictaserdiamrung Redictaserdiamrun				, ,	5,00	2400,00	_							
Holz/Isserdiamung (TSD)							1,40		71,1	505,6	869,5	46,4	137,2	388,0
CF- Color Decke CF- CF- Color Decke CF- CF- CF- CF- CF- CF- CF- CF				PE-Folie Decke	0,02	930,00	-							
PE-Folie Decke				Holzfaserdämmung	9 00	160.00	0.04							
Section Perfolic Decke Perfolic De							0,04							
Part							-	Grundlage Althau-						
Note							1,40							
PEF-pile Decke Polystyroldammung PEF-pile Boderplatte Polystyroldammung PEF-pile Boderplatte Polystyroldammung PEF-pile Boderplatte Polystyroldammung PEF-pile Boderplatte PeF-pile Decke PeF-pile Poleke Per-pile Poleke PeF-pile Poleke PeF-pile Poleke PeF-pile Poleke Per-pile Poleke PeF-pile Poleke PeF-pile Poleke Per-pile Poleke PeF-pile Poleke Per-pile Poleke Per	BP	2010-			0,02	930,00	-	BP_20; maximale						
PE-Folie Decke 0,02 930,00 - Holzfaser- diammung 1,000 2,50 2,600 2,50 2			X	•	2,00	160,00	0,04							
Stahlbeton C30/37 (98/2) PE-Folie Bodenplatte Polystyroldämmung PE-Folie Bodenplatte Pe-Folie Bodenplatte Pe-Folie Bodenplatte Polystyroldämmung PE-Folie Bodenplatte Pe-Folie Bodenplatte Pe-Folie Bodenplatte Polystyroldämmung PE-Folie Bodenplatte Pe-	_28				0.02	930.00	_							
PEF-Folia Bodenplatte														
Polystyroidammung, XPS (BO) Sauberikeitschicht Soud Soud					50,00	2400,00	2,50	admining						
APS (BO) Sauberkeitsschicht Sauberkeitsschich				PE-Folie Bodenplatte	0,02	26,25	-							
PE-Folie Decke No.					6.50	32.00	0.04							
Estrich PE-Folie Decke Q,02 930,00 1,40 PE-Folie Decke PE-Folie Decke Q,02 26,25 Grundlage Altibau-konstruktion PE-Folie Decke Q,02 930,00 1,40 PE-Folie Decke PE-Folie Decke Q,02 930,00 PE-Fo														
PE-Folie Decke									E7.0	204.0	46E 0	20 E	420 E	424 E
Mineralwolle (Boden) 7,00 85,00 0,04 Grundlage Althaukonstruktion PE-Folie Decke 0,02 930,00 0,04 Mineralwolle PE-Folie Decke 0,02 930,00 0,04 Mineralwolle PE-Folie Decke 0,02 930,00 0,04 Mineralwolle Min							1,40		57,8	391,9	465,0	39,5	138,5	131,5
Per							0.04	Grundlage Altbau-						
PE-Folie Decke				, ,										
December Part Par							1,40							
2016- 2020	D D				0,02	930,00	-							
PE-Folie Decke Stahlbeton C30/37 (98/2)			Y	•	2,00	160,00	0,04							
Stahlbeton C30/37 (98/2)		2020	^		0,02	930,00	-							
PE-Folie Bodenplatte				Stahlbeton C30/37	50.00	2400.00	2 50	konstruktiven						
Polystyroldämmung, XPS (BO) Sauberkeitsschicht 5,00 2400,00 -														
Sauberkeitsschicht					0,02	26,25	-							
Sauberkeitsschicht 5,00 2400,00 -					8,00	32,00	0,04	Darrimschicht						
Estrich 7,50 2400,00 1,40 71,4 487,6 815,0 46,8 123,7 339,4 PE-Folie Decke 0,02 930,00 -				, ,	5.00	2400.00	_							
PE-Folie Decke							1.40		71.4	487.6	815.0	46.8	123.7	339.4
Holzfaserdämmung (TSD)							-,		,.	,•	, .	,•	,-	,•
BP							0.04							
BP 2016-					7,00	160,00	U,U4							
BP				PE-Folie Decke			-	Grundlago Althou						
PE-Folie Decke				Zementestrich	7,50	2400,00	1,40							
h30 2020	BP	2016			0,02	930,00	-							
Class Wirkungen mit PE-Folie Decke 0,02 930,00 - Holzfaser Stahlbeton C30/37 50,00 2400,00 2,50 dämmung dämmung PE-Folie Bodenplatte 0,02 26,25 - Polystyroldämmung, XPS (BO) 8,00 32,00 0,04			X		2,00	160,00	0,04							
Stahlbeton C30/37 50,00 2400,00 2,50 dämmung (98/2) PE-Folie Bodenplatte 0,02 26,25 - Polystyroldämmung, XPS (BO)	_30	2020												
(98/2) 50,00 2400,00 2,50 PE-Folie Bodenplatte 0,02 26,25 - Polystyroldämmung, XPS (BO) 8,00 32,00 0,04														
PE-Folie Bodenplatte 0,02 26,25 - Polystyroldämmung, XPS (BO) 8,00 32,00 0,04					50,00	2400,00	2,50	Gammung						
XPS (BO)					0,02	26,25	-							
XPS (BO)					8 00	32 00	0.04							
Sauberkeitsschicht 5,00 2400,00 -							0,04							
		•		Sauberkeitsschicht	5,00	2400,00	-							

				Estrich	5,00	2400,00	1,40	1	50,4	499,9	587,7	43,9	412,5	473,6
				PE-Folie Decke	0,02	930,00		Grundlage Altbau-	-,	-,-	<i>'</i>	-,-	,-	.,-
				Mineralwolle (Boden)	15,00	85,00	0,04	konstruktion						
				Zementestrich	5,00	2400,00	-	BP_22; minimale Umwelt-						
BP				PE-Folie Decke	0,02	930,00	-	wirkungen mit						
_h	2002- 2020	х	х х					Mineralwolle-						
_31	2020			Decke und Boden, EPS, WLS 040	2,00	18,50	-	dämmung; aus konstruktiven						
				PE-Folie Decke	0,02	930,00	-	Gründen Ausbau						
				Stahlbeton C20/25 (99/1)	20,00	2400,00	2,30	der vorhandenen Dämmschicht						
				Sauberkeitsschicht	5,00	2400,00	-							
				Estrich	7,50	2400,00	1,40		66,0	605,2	1235,0	45,5	276,7	810,8
				PE-Folie Decke	0,02	930,00	-							
				Holzfaserdämmung (TSD)	15,50	160,00	0,04							
				PE-Folie Decke	0,02	930,00	-	Grundlage Altbau-						
BP				Zementestrich	5,00	2400,00	-	konstruktion BP 22; maximale						
_h	2002-	х	x x	PE-Folie Decke	0,02	930,00	-	Umwelt-						
_32	2020			Polystyroldämmung Decke und Boden, EPS, WLS 040	2,00	18,50	-	wirkungen mit Holzfaser- dämmung						
				PE-Folie Decke	0,02	930,00	-	•						
				Stahlbeton C20/25 (99/1)	20,00	2400,00	2,30							
				Sauberkeitsschicht	5,00	2400,00	-							

$\underline{\textbf{Bauteilaufbauten} - \textbf{Erkl\"{a}rung Farbschema:}}$

Bauteilschichten, die bei der Sanierung neu eingebaut und für 50 Jahre genutzt werden

Bestehende Bauteilschichten, die bei der Sanierung ausgebaut werden

Bestehende Bauteilschichten, die bei der Sanierung erhalten und für 50 Jahre weitergenutzt werden

Nachfolgend findet sich in Tabelle A. 9 und Tabelle A. 10 eine Übersicht aller verwendeter Datensätze der ÖKOBAUDAT 2020-II, die für die Bilanzierung der Baukonstruktionen je LZPH herangezogen werden. Ebenfalls ausgewiesen sind die Bezugseinheiten (Volumen [m³], Fläche [m²], Gewicht [kg; t], Länge [m], Stück [Stk.]) der Umweltwirkungen. Die maßgebenden Bezugseinheiten je Material sind fett markiert. Tabelle A. 10 sind zudem je Materialbezeichnung die durchschnittlichen Nutzungsdauern in Jahren sowie die daraus resultierenden Austauschzyklen innerhalb von 50 Jahren zu entnehmen.

Tabelle A. 9: Materialspezifisch verwendete ÖKOBAUDAT-Datensätze (Version 2020-II) und Umweltwirkungen der LZPH A1-A3, C3 und C4; eigene Darstellung

Materialbezeich- nung	Datensatz A1-A3	Bezugs- einheiten	GWP A1-A3 [kg CO₂- Äq.]	PENRT A1-A3 [MJ]	PET A1-A3 [MJ]	Datensatz C3	Bezugs- einheit	GWP C3 [kg CO ₂ - Äq.]	PENRT C3 [MJ]	PET C3 [MJ]	Datensatz C4	Bezugsein- heiten	GWP C4 [kg CO ₂ - Äq.]	PENRT C4 [MJ]	PET C4 [MJ]
Aluminium-Blend- rahmen	7.1.05 Aluminium-Rah- menprofil, pulverbe- schichtet	m (1,02 kg/m)	13,1	179,9	232,8	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0
Aluminium-Flügel- rahmen	7.1.05 Aluminium-Flügel- rahmenprofil, pulverbe- schichtet	m (0,98 kg/m)	12,5	172,8	223,6	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0
Aluminium-Blend- rahmen, thermisch getrennt	7.1.06 Aluminium-Rah- menprofil, thermisch ge- trennt, pulverbeschichtet	m (1,43 kg/m)	15,8	224,2	283,7	7.1.06 Aluminium-Rah- menprofil, thermisch ge- trennt, pulverbeschichtet	m (1,43 kg/m)	0,7	0,4	0,4	-	-	0,0	0,0	0,0
Aluminium-Flügel- rahmen, thermisch getrennt	7.1.06 Aluminium-Flügel- rahmenprofil, thermisch getrennt, pulverbe- schichtet	m (1,51 kg/m)	17,1	240,7	306,4	7.1.06 Aluminium-Flü- gelrahmenprofil, ther- misch getrennt, pulver- beschichtet	m (1,51 kg/m)	0,6	0,3	0,3	-	-	0,0	0,0	0,0
Asbestzement- platte	1.3.12 Faserzement- platte	m² (13 kg/m²; 1.300 kg/m³); m³	699,3	7.695,6	12.596,5	-	-	0,0	0,0	0,0	1.3.12 Faserzement- platte	m² (13 kg/m²; 1300 kg/m³); m³	19,5	284,7	322,1
Ausgleichsestrich	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	440,5	2.901,4	3.547,4	-	-	0,0	0,0	0,0	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	36,0	525,7	594,7
Außenputz	1.4.04 Kalkzement Putz- mörtel (de)	m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	-	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	m³ (1.800 kg/m³)	27,0	394,2	446,0
Außenputz, nach Sanierung innenlie- gend	1.4.04 Kalkzement Putz- mörtel (de)	m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	-	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	m³ (1.800 kg/m³)	27,0	394,2	446,0
Beton B5-B20	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	178,0	912,0	1.092,0	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	6,0	78,7	99,4	-	-	0,0	0,0	0,0
Betonfertigteil B20	1.3.05 Betonfertigteil De- cke 20 cm	m² (504 kg/m² mit 2.520 kg/m³); m³	422,4	2.412,9	3.111,1	1.3.05 Betonfertigteil Decke 20cm	m ² (504 kg/m ² mit 2.520 kg/m ³); m ³	17,6	292,3	323,8	-	-	0,0	0,0	0,0
Betondachstein	1.3.10 Dachsteine	t (2.150 kg/m³); m³	449,4	2.902,5	3.242,2	100.1.01 Bauschuttauf- bereitung	kg; m³	5,7	110,9	120,7	-	-	0,0	0,0	0,0
Betondecke (99/1)	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 1% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	229,9	1.593,6	2.069,2	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,9	77,9	98,4	-	-	0,0	0,0	0,0
Betondecke (97/3)	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2.956,8	4.023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2.400 kg/m³)	5,8	76,3	96,4	-		0,0	0,0	0,0
Bewehrungsstahl	4.1.02 Bewehrungsstahl	kg (7.850 kg/m³); m³	5.364,3	69.073,0	98.812,7	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0

7 110 00010101	10 20 0011 10111011	ao.c		0 ,											
Bimshohlblockstein	75% 1.3.04 Bims-Planstein (SFK-4); 25% 1.4.02 Zementmörtel	m³ (900 kg/m³); m³ (2.000 kg/m³)	144,8	641,0	792,2	75% 1.3.04 Bims-Planstein (SFK-4)	m³ (900 kg/m³)	5,0	82,2	91,1	25% 1.4.02 Zement-mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Bimsvollsteine	75% 1.3.04 Bims-Planstein (SFK-4); 25% 1.4.02 Zementmörtel	m³ (900 kg/m³); m³ (2000 kg/m³)	144,8	641,0	792,2	75% 1.3.04 Bims-Planstein (SFK-4)	m³ (900 kg/m³)	5,0	82,2	91,1	25% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Bitumenabdichtung	6.7.04 Bitumen Emulsion	kg (1.100 kg/m³); m³	392,0	27.216,1	29.118,6	-	-	0,0	0,0	0,0	6.7.04 Bitumen Emulsion	kg (1.100 kg/m³); m³	94,5	1483,8	1588,1
Bitumenbahn	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	407,9	37.126,6	37.976,7	-	-	0,0	0,0	0,0	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	79,3	1.245,2	1.332,7
Bitumenbahn, De- cke	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	407,9	37.126,6	37.976,7	-	-	0,0	0,0	0,0	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	79,3	1.245,2	1.332,7
Bitumendachbahn, besandet	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	407,9	37.126,6	37.976,7	-	-	0,0	0,0	0,0	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	79,3	1.245,2	1.332,7
Bitumendachbahn	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	407,9	37.126,6	37.976,7	-	-	0,0	0,0	0,0	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	79,3	1.245,2	1.332,7
Bitumendachpappe	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	407,9	37.126,6	37.976,7	-	-	0,0	0,0	0,0	6.3.01 Bitumenbahnen V60 (Dicke 0,005 m)	m² (5 kg/m²; 1.000 kg/m³); m³	79,3	1.245,2	1.332,7
Blecheindeckung (Edelstahl)	4.2.01 Edelstahlbleche	kg (7.900 kg/m³); m³	27.075,4	346.116,4	419.805,8	-	-	0,0	0,0	0,0	100.1.04 End of Life von Edelstahl	kg; m³	5,4	78,7	89,0
Bretter	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Brettschichtholz	3.1.04 Brettschichtholz - Standardformen (Durch- schnitt DE)	m³ (507,11 kg/m³)	-668,0	2.034,2	13.429,7	3.1.04 Brettschichtholz - Standardformen (Durch- schnitt DE)	m³ (507,11 kg/m³)	819,7	-29,2	-8.613,8	-	-	0,0	0,0	0,0
Brettsperrholz	3.1.05 Brettsperrholz (Durchschnitt DE)	m³ (489,41 kg/m³)	-637,7	2.090,1	12.713,8	3.1.05 Brettsperrholz (Durchschnitt DE)	m³ (489,41 kg/m³)	792,8	-16,7	-8.282,3	-	-	0,0	0,0	0,0
Dielung/ Bretterboden	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Bruchsteinmauer- werk Fundament	80% 1.2.02 Schotter 16/32; 20% 1.4.02 Ze- mentmörtel	kg (1.400 kg/m³); m³ (2.000 kg/m³)	85,5	443,4	607,9	80% 1.2.02 Schotter 16/32	kg (1.400 kg/m³); m³	7,5	125,1	138,6	20% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	5,9	85,5	96,8
Dachabdichtung, wurzelfest	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m² (6,2 kg/m²; 1.550 kg/m³); m³	1.341,0	64.553,5	66.920,5	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m ² (6,2 kg/m ² ; 1.550 kg/m ³); m ³	0,0	0,0	0,0	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m² (6,2 kg/m²; 1.550 kg/m³); m³	123,0	1.930,0	2.065,6

Dachziegel	1.3.10 Dachziegel	m² (45 kg/m² mit 2.180 kg/m³); m³	769,2	12.056,7	13.090,7	1.3.10 Dachziegel	m² (45 kg/m² mit 2.180 kg/m³); m³	14,7	243,5	269,7	-	-	0,0	0,0	0,0
Dachziegel (Biber- schwanz; ca. 70 kg/m²)	1.3.10 Dachziegel	m² (45 kg/m² mit 2.180 kg/m³); m³	769,2	12.056,7	13.090,7	1.3.10 Dachziegel	m² (45 kg/m² mit 2.180 kg/m³); m³	14,7	243,5	269,7	-	-	0,0	0,0	0,0
Dämmung AW (Holzwolle-WDVS)	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Dämmung AW (Holzwolle-VF)	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Dämmputz	1.4.04 Kalkzement Putz- mörtel (de)	m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	-	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	m³ (1.800 kg/m³)	27,0	394,2	446,0
Dämmung BO (un- spezifisch)	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Dämmung Flach- dach (EPS)	2.2.01 EPS-Hartschaum (Styropor ®) für De- cken/Böden und als Pe- rimeterdämmung B/P- 040	m³ (18,5 kg/m³)	53,8	1.590,0	1.612,7		-	0,0	0,0	0,0	2.2.01 EPS-Hart- schaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-040	m³ (18,5 kg/m³)	61,0	7,8	8,5
Dämmung KD, äl- tere BK	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Dämmung KD, jüngere BK	64% 2.1.01 Mineralwolle (Boden-Dämmung); 31% 2.2.01 EPS-Hartschaum (Styropor ®) für De- cken/Böden und als Pe- rimeterdämmung B/P- 040; 5% 2.10.01 Holzfa- serdämmplatte (Nass- verfahren)	m³ (85 kg/m³); m³ (18,5 kg/m³); m³ (160 kg/m³)	93,3	1.682,0	2.050,2	64% 2.1.01 Mineralwolle (Boden-Dämmung); 5% 2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (85 kg/m³); m³ (160 kg/m³)	18,2	54,6	57,1	64% 2.1.01 Mineral- wolle (Boden-Däm- mung); 31% 2.2.01 EPS-Hartschaum (Sty- ropor ®) für De- cken/Böden und als Perimeterdämmung B/P-040	m³ (85 kg/m³); m³ (18,5 kg/m³)	19,7	14,5	16,3
Dämmung DE und OGD, ältere BK	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Dämmung DE und OGD, jüngere BK	64% 2.1.01 Mineralwolle (Boden-Dämmung); 31% 2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-040; 5% 2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (85 kg/m³); m³ (18,5 kg/m³); m³ (160 kg/m³)	93,3	1.682,0	2.050,2	64% 2.1.01 Mineralwolle (Boden-Dämmung); 5% 2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (85 kg/m³); m³ (160 kg/m³)	18,2	54,6	57,1	64% 2.1.01 Mineral- wolle (Boden-Däm- mung); 31% 2.2.01 EPS-Hartschaum (Sty- ropor ®) für De- cken/Böden und als Perimeterdämmung B/P-040	m³ (85 kg/m³); m³ (18,5 kg/m³)	19,7	14,5	16,3
Deckenziegel (Zwischenraum mit Beton verfüllt)	69% 1.3.02 Mauerziegel; 30% 1.4.02 Zementmör- tel; 1% 4.1.02 Beweh- rungsstahl	m³ (575 kg/m³); m³ (2.000 kg/m³); kg (7.850 kg/m³)	252,6	1.932,1	2.487,8	69% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-6,9	19,5	20,6	69% 1.3.02 Mauerziegel; 30% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	9,0	131,3	148,4
Doppelrömer	1.3.10 Dachsteine	kg (2.150 kg/m³); m³	449,4	2.902,5	3.242,2	100.1.01 Bauschuttauf- bereitung	kg; m³	5,7	110,9	120,7	-	-	0,0	0,0	0,0

Drainmatte, 2.8 kg/m²	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0,00125 m)	m² (1,2 kg/m²; 960 kg/m³); m³	3.271,3	94.611,2	99.038,3	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0.00125 m)	m² (1,2 kg/m²; 960 kg/m³); m³	3.316,3	534,6	644,5	-	-	0,0	0,0	0,0
Einfachverglasung	7.2.01 Fensterglas einfach	m² (10 kg/m² mit 2.500 kg/m³)	13,3	168,3	179,0	-	- -	0,0	0,0	0,0	7.2.01 Fensterglas einfach	m² (10 kg/m² mit 2.500 kg/m³)	0,2	2,4	2,7
Estrich	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	440,5	2.901,4	3.547,4	-	-	0,0	0,0	0,0	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	36,0	525,7	594,7
Estrich (Anhydrit)	1.4.03 Calciumsul- fatestrich	kg (1.500 kg/m³); m³	160,5	2.195,7	2.407,8	-	-	0,0	0,0	0,0	1.4.03 Calciumsulfa- testrich	kg (1.500 kg/m³); m³	22,5	328,5	371,7
Estrichpapier	6.6.05 Kraftpapier	m² (0,08 kg/m² mit 800 kg/m³); m³	-897,3	5.888,0	34.095,0	6.6.05 Kraftpapier	m² (0,08 kg/m² mit 800 kg/m³); m³	1.620,7	18,3	28,9	-	-	0,0	0,0	0,0
Fensterbeschlag, Doppelflügelfenster	7.4.02 Fenster-Beschlag für Doppelflügelfenster	Stk (1,014 kg/Stk.); kg	8,6	124,2	157,7	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0
Fensterbeschlag, Drehkippfenster	7.4.02 Fenster-Beschlag für Drehkippfenster (Aluminium)	Stk (1,014 kg/Stk); kg	12,2	170,1	227,2	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0
Fenstergriff	7.4.07 Fenstergriff	Stk (0,1 kg/Stk); kg m ² (0,5	9,6	176,6	188,9	7.4.07 Fenstergriff	Stk (0,1 kg/Stk); kg m ² (0,5	2,5	1,3	1,5	-	-	0,0	0,0	0,0
Filtervlies, PP	6.6.04 PE/PP-Vlies	kg/m²; 396 kg/m³); m³	998,3	35.093,7	37.250,4	6.6.04 PE/PP-Vlies	kg/m²; 396 kg/m³); m³	1492,3	240,6	290,0	-	-	0,0	0,0	0,0
Flachstahl	4.1.03 Stahlprofil	kg (7.850 kg/m³); m³	7.806,4	86.273,9	110.967,0	-	- -	0,0	0,0	0,0	100.1.04 End of Life von Stahlprofilen	kg (7.850 kg/m³); m³	5,4	78,2	88,4
Flachdachdäm- mung (unspezi- fisch)	2.1.01 Mineralwolle (Flachdach-Dämmung)	m³ (145 kg/m³)	209,5	2.048,5	2.377,6	2.1.01 Mineralwolle (Flachdach-Dämmung)	m³ (145 kg/m³)	4,0	145,0	151,4	2.1.01 Mineralwolle (Flachdach-Dämmung)	m³ (145 kg/m³)	2,2	32,2	36,4
Fliesen	90% 1.3.07 Steinzeug- fliesen unglasiert; 10% Fliesenkleber	m² (20 kg/m² mit 2.000 kg/m³); kg (1.500 kg/m³); m³	668,7	10.303,4	11.222,8	90% 1.3.07 Steinzeug- fliesen unglasiert	m² (20 kg/m² mit 2.000 kg/m³); m³	13,2	219,3	243,0	10% Fliesenkleber	kg (1.500 kg/m³); m³	2,5	35,8	40,5
Fugendichtungs- band	7.3.04 Fugendichtungs- bänder Gewebebänder	kg (0,264 g/m²; 339 kg/m³)	6,6	126,7	182,6	7.3.04 Fugendichtungs- bänder Gewebebänder	kg (339 kg/m³)	2,4	0,3	0,3	-	-	0,0	0,0	0,0
Füllkörper aus Bimsstein	69% 1.3.04 Bims-Planstein (SFK-4); 30% 1.4.02 Zementmörtel; 1% 4.1.02 Bewehrungsstahl	m³ (900 kg/m³); m³ (2.000 kg/m³); kg (7.850 kg/m³)	211,0	1.361,6	1.816,3	69% 1.3.04 Bims-Planstein (SFK-4)	m³ (900 kg/m³)	4,6	75,7	83,8	30% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	8,8	128,3	145,2

Gasbeton(block/- steine)	90% 1.3.03 Porenbeton P4 05 unbewehrt; 10% 1.4.02 Zementmörtel	m³ (472 kg/m³); m³ (2.000 kg/m³)	234,9	1.319,8	1.623,5	90% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (472 kg/m³)	2,9	47,4	52,6	10% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	2,9	42,8	48,4
Gipsfaserplatte	1.3.13 Gipsfaserplatte (Dicke 0,01 m)	m² (1.000 kg/m³); m³ m² (10	318,6	4.900,9	6.822,5	1.3.13 Gipsfaserplatte (Dicke 0,01 m)	m² (1.000 kg/m³); m³	0,0	0,0	0,0	1.3.13 Gipsfaserplatte (Dicke 0,01 m)	m² (1.000 kg/m³); m³ m² (10	15,0	219,0	247,8
Gipskartonplatte	1.3.13 Gipskartonplatte (Feuerschutz)	kg/m² mit 800 kg/m³); m³	123,3	2.679,8	3.469,7	-	-	0,0	0,0	0,0	1.3.13 Gipskartonplatte (Feuerschutz)	kg/m² mit 800 kg/m³); m³	12,0	175,2	198,2
GKF-Platte	1.3.13 Gipskartonplatte (Feuerschutz)	m ² (10 kg/m ² mit 800 kg/m ³); m ³	123,3	2.679,8	3.469,7	-	-	0,0	0,0	0,0	1.3.13 Gipskartonplatte (Feuerschutz)	m ² (10 kg/m ² mit 800 kg/m ³); m ³	12,0	175,2	198,2
Glasvlies Dach	6.6.04 Glasvlies	m ² (0,12 kg/m ² mit 229,4 kg/m ³); m ³ m ² (0,12	560,3	9.164,1	11.099,0	6.6.04 Glasvlies	m ² (0,12 kg/m ² mit 2.294 kg/m ³); m³ m ² (0,12	0,0	0,0	0,0	6.6.04 Glasvlies	m ² (0,12 kg/m ² mit 2.294 kg/m ³); m ³ m ² (0,12	3,8	54,8	62,0
Glasvlies Decke	6.6.04 Glasvlies	kg/m² mit 229,4	560,3	9.164,1	11.099,0	6.6.04 Glasvlies	kg/m² mit 2.294	0,0	0,0	0,0	6.6.04 Glasvlies	kg/m² mit 2.294	3,8	54,8	62,0
Glattputz (Kalkze- ment)	1.4.04 Kalkzement Putz- mörtel (de)	kg/m³); m³ m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	kg/m³); m³ -	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	kg/m³); m³ m³ (1.800 kg/m³)	27,0	394,2	446,0
Glattputz (Kalkze- ment), nach Sanie- rung innenliegend	1.4.04 Kalkzement Putz- mörtel (de)	m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	-	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	m³ (1.800 kg/m³)	27,0	394,2	446,0
Grundierung (Bitu- menvoranstrich, lö- semittelhaltig)	6.7.04 Bitumen Kaltkle- ber (60% Bitumen, 23%LM, 17% Wasser)	kg (950 kg/m³); m³	582,6	47.839,4	50.376,1	6.7.04 Bitumen Kaltkle- ber (60% Bitumen, 23%LM, 17% Wasser)	kg (950 kg/m³); m³	0,0	0,0	0,0	6.7.04 Bitumen Kaltkle- ber (60% Bitumen, 23%LM, 17% Wasser)	kg (950 kg/m³); m³	81,6	1281,5	1371,5
Hartfaserplatte	3.2.07 Hochdichte Fa- serplatte (Durchschnitt DE)	m³ (849,9 kg/m³)	-854,2	6.307,5	22.508,0	3.2.07 Hochdichte Fa- serplatte (Durchschnitt DE)	m³ (849,9 kg/m³)	1.230,9	-1.130,4	-14.066,7	-	-	0,0	0,0	0,0
Hohlblockstein (75/25)	75% 1.3.04 Blähton LB Planstein Außenwand; 25% 1.4.02 Zementmör- tel	m³ (501 kg/m³); m³ (2.000 kg/m³)	215,3	1.511,9	1.855,9	75% 1.3.04 Blähton LB Planstein Außenwand;	m³ (501 kg/m³); m³ (2.000 kg/m³)	2,5	41,9	46,4	25% 1.4.02 Zement-mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Hohlblockstein (90/10)	90% 1.3.04 Blähton LB Planstein Außenwand; 10% 1.4.02 Zementmör- tel	m³ (501 kg/m³); m³ (2.000 kg/m³)	189,4	1.582,5	1.943,2	90% 1.3.04 Blähton LB Planstein Außenwand;	m³ (501 kg/m³); m³ (2.000 kg/m³)	3,0	50,3	55,7	10% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	2,9	42,8	48,4
Hohlziegel	1.3.02 Mauerziegel	m³ (575 kg/m³)	138,3	1.295,0	1.556,4	1.3.02 Mauerziegel	m³ (575 kg/m³)	-10,1	28,3	29,9	1.3.02 Mauerziegel	m³ (575 kg/m³)	0,3	4,4	4,8
Hochlochziegel (75/25)	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Hochlochziegel (90/10)	90% 1.3.02 Mauerziegel; 10% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	159,0	1.281,5	1.542,7	90% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-9,1	25,5	26,9	90% 1.3.02 Mauerziegel; 10% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	3,2	46,7	52,7
Hochlochziegel (98/2)	98% 1.3.02 Mauerziegel; 2% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	142,4	1.292,3	1.553,7	98% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-9,9	27,8	29,3	98% 1.3.02 Mauerziegel; 2% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	0,9	12,9	14,3

	1 2 a aoii voi woi	301011 20		,		•									
Hochlochziegel (99,6/0,4)	99,6% 1.3.02 Mauerziegel; 0,4% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	139,1	1.294,5	1.555,9	99,6% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-10,0	28,2	29,8	99,6% 1.3.02 Mauer- ziegel; 0,4% 1.4.02 Zement- mörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	0,4	6,1	6,7
Hochlochziegel (51,6/48/0,4), Trennwand	51.6% 1.3.02 Mauerziegel; 48% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 0,4% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.400 kg/m³); m³ (2.000 kg/m³)	158,2	1.110,6	1.332,9	51,6% 1.3.02 Mauerziegel; 48% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (575 kg/m³); m³ (2.400 kg/m³)	-2,3	52,4	63,1	51,6% 1.3.02 Mauerziegel;-; 0,4% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	0,3	4,0	4,4
Hochlochziegel, Dämmstoff gefüllt (99,6/0,4)	99,6% 1.3.02 Mauerziegel (Dämmstoff gefüllt); 0,4% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	177,7	1.780,5	2.067,5	99,6% 1.3.02 Mauerziegel (Dämmstoff gefüllt)	m³ (575 kg/m³)	-10,0	28,2	29,8	99,6% 1.3.02 Mauerziegel (Dämmstoff gefüllt); 0,4% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	0,4	6,1	6,7
Hochofenschlacke	1.2.08 Schmelzkammer- granulat	kg (1.200 kg/m³); m³	0,0	0,0	0,0	100.1.01 Bauschuttauf- bereitung	kg; m³	3,2	61,9	67,4	-	-	0,0	0,0	0,0
Holzbalken	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE)	m³ (492,92 kg/m³)	-711,7	1.210,7	11.849,7	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE) 8% 3.1.02 Konstrukti-	m³ (492,92 kg/m³)	810,1	53,7	-8.431,4	-	-	0,0	0,0	0,0
Holzbalken mit Steinkohleschlacke	8% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 92% 1.2.08 Stein- kohleflugasche	m³ (492,92 kg/m³); kg (905 kg/m³)	-56,9	96,9	948,0	onsvollholz (Durch- schnitt DE); 92 % 100.1.01 Bauschuttauf- bereitung	m³ (492,92 kg/m³); kg	67,0	47,2	-627,8	-	-	0,0	0,0	0,0
Holz-Blendrahmen	7.1.01 Holz-Blendrah- men	m (2,11 kg/m mit ca. 520 kg/m³)	-0,4	53,1	144,5	7.1.01 Holz-Blendrah- men	m (2,11 kg/m mit ca. 520 kg/m³)	4,0	0,0	0,1	-	-	0,0	0,0	0,0
Holzeinschub	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Holzfaserdämm- platte (VF)	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	-182,2	1.822,5	5.473,6	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	334,7	3,7	5,8	-	-	0,0	0,0	0,0
Holzfaserdämm- platte (DA)	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	-182,2	1.822,5	5.473,6	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	334,7	3,7	5,8	-	-	0,0	0,0	0,0
Holzfaserdäm- mung (Innenaus- bau)	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	-182,2	1.822,5	5.473,6	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³)	334,7	3,7	5,8	-	-	0,0	0,0	0,0
Holzfaserdäm- mung (TSD)	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³) m (2,11	-182,2	1.822,5	5.473,6	2.10.01 Holzfaserdämm- platte (Nassverfahren)	m³ (160 kg/m³) m (2,11	334,7	3,7	5,8	-	-	0,0	0,0	0,0
Holz-Flügelrahmen	7.1.01 Holz-Flügelrah- men	kg/m mit ca. 520	-0,1	57,0	148,7	7.1.01 Holz-Flügelrah- men	kg/m mit ca. 520	4,0	0,0	0,1	-	-	0,0	0,0	0,0
Holznagelbinder	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE)	kg/m³) m³ (492,92 kg/m³)	-711,7	1.210,7	11.849,7	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE)	kg/m³) m³ (492,92 kg/m³)	810,1	53,7	-8.431,4	-	-	0,0	0,0	0,0
Holzständer (Ei- che)/Gefach: Lehmstaken	30% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 35% 1.3.17 Stampflehm- wand; 35% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (492,92 kg/m³); m³ (2.000 kg/m³); m³ (100 kg/m³)	-254,7	428,5	4.198,7	30% 3.1.02 Konstrukti- onsvollholz (Durch- schnitt DE); 35% 1.3.17 Stampflehm- wand; 35% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (492,92 kg/m³); m³ (2.000 kg/m³); m³ (100 kg/m³)	245,4	61,8	-2.479,9	35% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	4,7	0,0	-57,1

Holzständer (Ei- che)/Gefach: Lehmstein	18% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE);62% 1.3.17 Lehm- stein;20% 1.4.02 Ze- mentmörtel	m³ (492,92 kg/m³); m³ (1.200 kg/m³); m³ (2.000 kg/m³)	-1,0	1.408,4	3.423,9	18% 3.1.02 Konstruktionsvollholz (Durchschnitt DE);62% 1.3.17 Lehmstein;	m³ (492,92 kg/m³); m³ (1.200 kg/m³)	148,3	58,2	-1.465,0	20% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	5,9	85,5	96,8
Holzständer (Eiche)/Gefach: Ziegel	18% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 62% 1.3.02 Mauer- ziegel; 20% 1.4.02 Zementmörtel	m³ (492,92 kg/m³); m³ (575 kg/m³); m³ (2.000 kg/m³)	26,7	1.252,7	3.381,8	18% 3.1.02 Konstrukti- onsvollholz (Durch- schnitt DE); 62% 1.3.02 Mauerziegel	m³ (492,92 kg/m³); m³ (575 kg/m³)	139,6	27,2	-1.499,1	62% 1.3.02 Mauerziegel; 20% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	6,1	88,3	99,7
Holzständer/Voll- ziegel/Mörtel	18% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 62% 1.3.02 Mauerziegel; 20% 1.4.02 Zementmör- tel	m³ (492,92 kg/m³); m³ (575 kg/m³); m³ (2.000 kg/m³)	26,7	1.252,7	3.381,8	18% 3.1.02 Konstrukti- onsvollholz (Durch- schnitt DE); 62% 1.3.02 Mauerziegel	m³ (492,92 kg/m³); m³ (575 kg/m³)	139,6	27,2	-1.499,1	62% 1.3.02 Mauerziegel; 20% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	6,1	88,3	99,7
Holzwolle-Leicht- bauplatte	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	-29,4	2.101,3	5.254,3	2.7.01 Holzwolle-Leicht- bauplatte	m³ (360 kg/m³)	317,5	8,3	13,0	-	-	0,0	0,0	0,0
Holzwolle-Leicht- bauplatte mit Poly- styrolkern	50% 2.7.01 Holzwolle- Leichtbauplatte; 50% 2.2.01 EPS-Hartschaum (Styropor ®) für Wände und Dächer W/D-040	m³ (360 kg/m³); m³ (18 kg/m³)	11,6	1.815,6	3.403,3	50% 2.7.01 Holzwolle- Leichtbauplatte	m³ (360 kg/m³)	158,7	4,1	6,5	50% 2.2.01 EPS-Hart- schaum (Styropor ®) für Wände und Dächer W/D-040	m³ (18 kg/m³)	29,8	3,8	4,2
Hourdis-Stein (Hohlziegel)	1.3.02 Mauerziegel	m³ (575 kg/m³)	138,3	1.295,0	1.556,4	1.3.02 Mauerziegel	m³ (575 kg/m³)	-10,1	28,3	29,9	1.3.02 Mauerziegel	m³ (575 kg/m³)	0,3	4,4	4,8
Innenputz	1.4.04 Kalk-Gips-Innen- putz	m³ (900 kg/m³)	198,9	1.768,4	2.077,2	-	-	0,0	0,0	0,0	1.4.04 Kalk-Gips-In- nenputz	m³ (900 kg/m³)	13,5	197,1	223,0
Isolierverglasung	200% 7.2.01 Fensterglas einfach	m² (10 kg/m² mit 2.500 kg/m³)	26,7	336,6	358,0	-	-	0,0	0,0	0,0	200% 7.2.01 Fenster- glas einfach	m² (10 kg/m² mit 2.500 kg/m³)	0,3	4,8	5,4
Kalksandstein (99,2/0,8)	99.2% 1.3.01 Kalksandstein; 0.8% 1.4.02 Zementmörtel	t (1.800 kg/m³); m³ (2.000 kg/m³); m³	245,6	1.789,5	2.104,1	99.2% 100.1.01 Bauschuttaufbereitung	kg; m³	4,8	92,1	100,3	0.8% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	0,2	3,4	3,9
Kalksandstein (95/5)	95% 1.3.01 Kalksandstein; 5% 1.4.02 Zementmörtel	t (1.800 kg/m³); m³ (2.000 kg/m³); m³	249,8	1.762,8	2.075,1	95% 100.1.01 Bauschuttaufbereitung	kg; m³	4,6	88,2	96,0	5% 1.4.02 Zementmörtel	m³ (2.000 kg/m³)	1,5	21,4	24,2
Kalksandstein (75/25)	75% 1.3.01 Kalksandstein; 25% 1.4.02 Zementmörtel	t (1.800 kg/m³); m³ (2.000 kg/m³); m³	269,9	1.635,8	1.937,0	75% 100.1.01 Bauschuttaufbereitung	kg; m³	3,6	69,6	75,8	25% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Kalkgipsputz	1.4.04 Kalk-Gips-Innen- putz	m³ (900 kg/m³)	198,9	1.768,4	2.077,2	-	-	0,0	0,0	0,0	1.4.04 Kalk-Gips-In- nenputz	m³ (900 kg/m³)	13,5	197,1	223,0
Kalkzementputz	1.4.04 Kalkzement Putz- mörtel (de)	m³ (1.800 kg/m³)	356,6	2.157,8	3.268,8	-	-	0,0	0,0	0,0	1.4.04 Kalkzement Putzmörtel (de)	m³ (1.800 kg/m³)	27,0	394,2	446,0
Kantholz	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0

71.0 000101011	11 24 4011 10111011	acton Do	itorioat	2011 jo 1	viatoria										
Kappendecke aus Beton (mit Stahlträ- gern)	95,5% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl; 1,5% 4.1.03 Stahlprofil	m³ (2.400 kg/m³); kg (7.874 kg/m³); kg (7.850 kg/m³)	448,0	4.237,3	5.671,7	95,5% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2.400 kg/m³)	5,7	75,2	94,9	1,5% 100.1.04 End of Life von Stahlprofilen	kg; m³	0,1	1,2	1,3
Kappendecke aus Vollziegel (mit Stahlträgern)	74% 1.3.02 Mauerziegel; 24,5% 1.4.02 Zementmörtel; 1,5% 4.1.03 Stahlprofil	m³ (575 kg/m³); m³ (2.000 kg/m³); kg (7.850 kg/m³)	186,9	1.242,5	1.499,7	74% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,4	21,0	22,1	74% 1.3.02 Mauerziegel; 24,5% 1.4.02 Zementmörtel; 1,5% 100.1.04 End of Life von Stahlprofilen	m³ (575 kg/m³); m³ (2.000 kg/m³); kg (7.850 kg/m³)	7,5	109,2	123,4
Kies	1.2.01 Kies 2/32 getrock- net	kg (1.850 kg/m³); m³	61,5	1.003,7	1.030,3	1.2.01 Kies 2/32 ge- trocknet	kg (1.850 kg/m³); m³	13,6	225,4	249,7	-	-	0,0	0,0	0,0
Kies unter Boden- platte	1.2.01 Kies 2/32 getrock- net	kg (1.850 kg/m³); m³	61,5	1.003,7	1.030,3	1.2.01 Kies 2/32 ge- trocknet	kg (1.850 kg/m³); m³	13,6	225,4	249,7	-	-	0,0	0,0	0,0
Konstruktionsvoll-	3.1.02 Konstruktionsvoll-	m³ (492,92	-711,7	1.210,7	11.849,7	3.1.02 Konstruktionsvoll-	m³ (492,92	810,1	53,7	-8.431,4	-	-	0,0	0,0	0,0
holz Konterlattung	holz (Durchschnitt DE) 3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	kg/m³) m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	holz (Durchschnitt DE) 3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	kg/m³) m³ (484,51 kg/m³)	797,1	58,8	-8.285,9		-	0,0	0,0	0,0
Kunststoffbahn	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	1857,2	63.044,2	67.341,0	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	2.585,2	420,5	508,3	-	-	0,0	0,0	0,0
Kunststoff-Blend- rahmen	7.1.09 Blendrahmen PVC-U	m (2,8 kg/m)	8,3	136,2	151,7	7.1.09 Blendrahmen PVC-U	m (2,8 kg/m)	3,9	8,3	10,7	-	-	0,0	0,0	0,0
Kunststoff-Flügel- rahmen	7.1.09 Flügelrahmen PVC-U	m (3,1 kg/m)	9,2	159,0	177,6	7.1.09 Flügelrahmen PVC-U	m (3,1 kg/m)	4,8	10,2	13,2	-	-	0,0	0,0	0,0
Lagerhölzer	6% 3.1.01 Nadelschnitt- holz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	-44,1	43,5	659,7	6% 3.1.01 Nadelschnitt- holz - getrocknet (Durch- schnitt DE)	m ³ (484,51 kg/m ³)	47,8	3,5	-497,2	-	-	0,0	0,0	0,0
Lagerhölzer mit Sandschüttung	8% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 92% 1.2.01 Sand 0/2 getrocknet	m³ (492,92 kg/m³); kg (1.350 kg/m³)	-15,6	770,7	1.639,6	8% 3.1.02 Konstrukti- onsvollholz (Durch- schnitt DE); 92% 1.2.01 Sand 0/2 getrocknet	m³ (492,92 kg/m³); kg (1.350 kg/m³)	73,9	155,6	-506,9	-	-	0,0	0,0	0,0
Lagerhölzer mit Schlackenfüllung	8% 3.1.02 Konstrukti- onsvollholz (Durchschnitt DE); 92% 1.2.08 Schmelzkammergranulat	m³ (492,92 kg/m³); kg (1.200 kg/m³)	-56,9	96,9	948,0	8% 3.1.02 Konstrukti- onsvollholz (Durch- schnitt DE); 92% 100.1.01 Bauschuttauf- bereitung	m³ (492,92 kg/m³); kg	67,7	61,2	-612,5	-	-	0,0	0,0	0,0
Lattung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Lehmputz innen	1.4.04 Lehmputz	m³ (900 kg/m³)	93,1	948,0	1.141,9	1.4.04 Lehmputz	m³ (900 kg/m³)	2,8	54,2	58,8	-	-	0,0	0,0	0,0
Lehmputz außen	1.4.04 Lehmputz	m³ (900 kg/m³)	93,1	948,0	1.141,9	1.4.04 Lehmputz	m³ (900 kg/m³)	2,8	54,2	58,8	-	-	0,0	0,0	0,0
Lehmputz außen, nach Sanierung in- nenliegend	1.4.04 Lehmputz	m³ (900 kg/m³)	93,1	948,0	1.141,9	1.4.04 Lehmputz	m³ (900 kg/m³)	2,8	54,2	58,8	-	-	0,0	0,0	0,0
Lehmschlag	75% 71.4.04 Lehmputz; 25% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (900 kg/m³); m³ (100 kg/m³)	38,1	726,7	1.284,6	75% 1.4.04 Lehmputz; 25% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (900 kg/m³); m³ (100 kg/m³)	2,1	40,7	44,1	25% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	3,4	0,0	-40,8

		m³ (900					m³ (900								
Lehmschüttung	1.4.04 Lehmputz	kg/m³)	93,1	948,0	1.141,9	1.4.04 Lehmputz	kg/m³)	2,8	54,2	58,8	-	-	0,0	0,0	0,0
	69% 71.4.04 Lehmputz; 23% 2.23.01 FASBA	m³ (900 kg/m³); m³				69% 71.4.04 Lehmputz; 23% 2.23.01 FASBA	m³ (900 kg/m³); m³				23% 2.23.01 FASBA				
Lehmwickel	e.V. Baustroh 100 kg/m³; 8% 3.1.01 Schnittholz	(100 kg/m³); m³	-50,0	803,8	2.463,5	e.V. Baustroh 100 kg/m³; 8% 3.1.01 Schnittholz	(100 kg/m³); m³	105,0	38,6	42,5	e.V. Baustroh 100	m³ (100 kg/m³)	3,1	0,0	-37,5
	Eiche (12% Feuchte/10.7% H2O)	(716,8 kg/m³)				Eiche (12% Feuchte/10.7% H2O)	(716,8 kg/m³)				kg/m³	<i>3</i> ,			
	90% 1.3.04 Blähton LB	m³ (501				,	m³ (501								
Leichtbeton	Planstein Außenwand; 10% 1.4.02 Zementmör-	kg/m³); m³ (2.000	189,4	1.582,5	1.943,2	90% 1.3.04 Blähton LB Planstein Außenwand:	kg/m³); m³ (2.000	3,0	50,3	55,7	10% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	2,9	42,8	48,4
	tel	kg/m³)				, idiotom / idiotimana,	kg/m³)					0 ,			
Leichthochlochzie-	96% 1.3.02 Mauerzie- gel;4% 1.4.02 Zement-	m³ (575 kg/m³); m³	146.6	1289,6	1.550,9	96% 1.3.02 Mauerziegel	m³ (575	-9,7	27,2	28,7	96% 1.3.02 Mauerzie- gel;4% 1.4.02 Zement-	m³ (575 kg/m³); m³	1,5	21,3	23,9
gel	mörtel	(2.000 kg/m³)	140,0	1209,0	1.550,9	90 % 1.3.02 Waderzieger	(373 kg/m³)	-9,1	21,2	20,1	mörtel	(2.000 kg/m³)	1,5	21,3	23,9
Luftschicht, ruhend	-	Ng/III /	0,0	0,0	0,0	-	-	0,0	0,0	0.0	-	- -	0,0	0,0	0,0
Luftschicht, ruhend															
(30% einbindende Kalksandsteine an-	30% 1.3 .01 Kalksandstein	t (1.800 kg/m³); m³	73,4	538,4	632,9	30% 100.1.01 Bau- schuttaufbereitung	kg; m³	1,4	27,8	30,3	-	-	0,0	0,0	0,0
genommen)	Ciciii.	g/ /,				Conditions									
Luftschicht, ruhend (30% einbindende	30% 1.3.02 Mauerziegel	m³ (575	41.5	388,5	466,9	30% 1.3.02 Mauerziegel	m³ (575	-3,0	8,5	9.0	30% 1.3.02 Mauerzie-	m³ (575	0,1	1,3	1,4
Mauerziegel ange- nommen)	30 % 1.3.02 Maderzieger	kg/m³)	41,5	300,3	400,9	30 % 1.3.02 Made12legel	kg/m³)	-3,0	0,5	9,0	gel	kg/m³)	0,1	1,3	1,4
Luftschicht, ruhend															
(30% einbindende Porenbetonsteine	30% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	66,8	401,3	493,9	30% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	1,0	15,8	17,5	-	-	0,0	0,0	0,0
angenommen) Luftschicht, ruhend		o ,					0 /								
(30% einbindende	30% 1.3.05 Beton-Mau-	m³ (2.000				30% 1.3.05 Beton-Mau-	m³ (2.000								
Ziegelsplittbeton- steine angenom-	ersteine	kg/m³)	72,7	354,3	448,4	ersteine	kg/m³)	4,0	67,0	74,2	-	-	0,0	0,0	0,0
men)															
Luftschicht, stark belüftet	-		0,0	0,0	0,0	-	-	0,0	0,0	0,0	-	-	0,0	0,0	0,0
MDF-Platte	3.2.07 MDF (Roh)	m³ (700 kg/m³)	-668,6	7.530,8	25.064,4	3.2.07 MDF (Roh)	m³ (700 kg/m³)	633,5	0,0	0,0	-	-	0,0	0,0	0,0
Mineralwolle (Au-	2.1.01 Mineralwolle	m³ (46,25	70,4	818,9	951,5	2.1.01 Mineralwolle	m³ (46,25	1,3	46,3	48,4	2.1.01 Mineralwolle	m³ (46,25	0,7	10,3	11,6
ßenwand) Mineralwolle (Bo-	(Fassaden-Dämmung) 2.1.01 Mineralwolle (Bo-	kg/m³) m³ (85	133,9	1.715,6	1.994,7	(Fassaden-Dämmung) 2.1.01 Mineralwolle (Bo-	kg/m³) m³ (85	2,3	85,0	88,8	(Fassaden-Dämmung) 2.1.01 Mineralwolle	kg/m³) m³	1,3	18,9	21,3
den) Mineralwolle	den-Dämmung) 2.1.01 Mineralwolle	kg/m³) m³ (mit	,	,	,	den-Dämmung) 2.1.01 Mineralwolle	kg/m³) m³ (mit	,	,	,	(Boden-Dämmung) 2.1.01 Mineralwolle	(85 kg/m³) m³ (mit 145		,	,
(Flachdach)	(Flachdach-Dämmung)	145 kg/m³)	209,5	2.048,5	2.377,6	(Flachdach-Dämmung)	145 kg/m³)	4,0	145,0	151,4	(Flachdach-Dämmung)	kg/m³)	2,2	32,2	36,4
Mineralwolle (In- nenausbau)	2.1.01 Mineralwolle (In- nenausbau-Dämmung)	m³ (26,25 kg/m³)	40,3	481,2	559,2	2.1.01 Mineralwolle (In- nenausbau-Dämmung)	m³ (26,25 kg/m³)	0,7	26,3	27,5	2.1.01 Mineralwolle (Innenausbau-Dämmung)	m³ (26,25 kg/m³)	0,4	5,8	6,6
Mineralwolle	2.1.01 Mineralwolle	m³ (30	46.5	570,9	663,6	2.1.01 Mineralwolle	m³ (30	8,0	28,6	29,8	2.1.01 Mineralwolle (Schrägdach-Däm-	m³ (30	0,5	6,6	7,5
(Schrägdach)	(Schrägdach-Dämmung)	kg/m³)	, .		,-	(Schrägdach-Dämmung)	kg/m³)	-,-		,-	mung)	kg/m³)	-,-	5,5	.,-
Mineralwolle (VF)	2.1.01 Mineralwolle (Fassaden-Dämmung)	m³ (46,25 kg/m³)	70,4	818,9	951,5	2.1.01 Mineralwolle (Fassaden-Dämmung)	m³ (46,25 kg/m³)	1,3	46,3	48,4	2.1.01 Mineralwolle (Fassaden-Dämmung)	m³ (46,25 kg/m³)	0,7	10,3	11,6
	75% 1.3.08 Naturstein-	m² (208 kg/m²;					m² (208								
Natursteinmauer-	platte, hart, Außenbe- reich (Dicke 0,080 m);	2.600	140,0	1.036,4	1.141,2	75% 1.3.08 Naturstein- platte, hart, Außenbe-	kg/m²;	13,1	217,8	241,3	25% 1.4.02 Zement-	m³ (2.000	7,3	106,9	121,0
werk	25% 1.4.02 Zementmör-	kg/m³); m³ (2.000	-,-	, -	,—	reich (Dicke 0,080 m)	2.600 kg/m³); m³	- 1 -	,-	-,-	mörtel	kg/m³)	,-	, -	,-
	tel	kg/m³)					- ,.								

A.5 00013101	it zu den verwen	acten De	ittisat		viatoriai										
Noppenbahn	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0.00125 m)	m² (960 kg/m³); m³	3.271,3	94.611,2	99.038,3	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0.00125 m)	m² (960 kg/m³); m³	3.316,3	534,6	644,5	-	-	0	0	0
Normalbeton	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	178,0	912,0	1.092,0	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	6,0	78,7	99,4	-	-	0,0	0,0	0,0
Ortbeton	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	178,0	912,0	1.092,0	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	6,0	78,7	99,4	-	-	0,0	0,0	0,0
Ortbetondecke	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2.956,8	4.023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2.400 kg/m³)	5,8	76,3	96,4	-	-	0,0	0,0	0,0
OSB-Platte	3.2.04 Oriented Strand Board (Durchschnitt DE)	m³ (600 kg/m³) m² (0,08	-572,7	8.528,2	21.397,8	3.2.04 Oriented Strand Board (Durchschnitt DE)	m³ (600 kg/m³) m² (0,08	977,2	-362,5	-10.708,5	-	-	0,0	0,0	0,0
Pappe	6.6.05 Kraftpapier	kg/m² mit 800 kg/m³); m³	-897,3	5.888,0	34.095,0	6.6.05 Kraftpapier	kg/m² mit 800 kg/m³); m³	1.620,7	18,3	28,9	-	-	0,0	0,0	0,0
PE-Folie Boden- platte	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	1.857,2	63.044,2	67.341,0	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	2.585,2	420,5	508,3	-	-	0,0	0,0	0,0
PE-Folie Dach	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	1.857,2	63.044,2	67.341,0	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	2.585,2	420,5	508,3	-	-	0,0	0,0	0,0
PE-Folie Decke	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	1.857,2	63.044,2	67.341,0	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	2.585,2	420,5	508,3	-	-	0,0	0,0	0,0
PE-Folie Wand	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	1.857,2	63.044,2	67.341,0	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0,2 kg/m ² mit 930 kg/m ³); m ³	2.585,2	420,5	508,3	-	-	0,0	0,0	0,0
PE-HD-Flächenab- dichtung	6.6.03 PE-HD mit PP- Vlies zu Abdichtung	m² (1,3 kg/m²; ca. 1.067 kg/m³); m³	2.636,0	93.295,2	98.070,9	6.6.03 PE-HD mit PP- Vlies zu Abdichtung	m ² (1,3 kg/m ² ; ca. 1.067 kg/m ³); m ³	3.974,8	641,0	772,9	-	-	0,0	0,0	0,0
Polystyroldäm- mung Decke und Boden, EPS, WLS 040	2.2.01 EPS-Hartschaum (Styropor ®) für De- cken/Böden und als Pe- rimeterdämmung B/P- 040	m³ (18,5 kg/m³)	53,8	1.590,0	1.612,7	-	-	0,0	0,0	0,0	2.2.01 EPS-Hart- schaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-040	m³ (18,5 kg/m³)	61,0	7,8	8,5
Polystyroldäm- mung Decke und Boden, EPS, WLS 035	2.2.01 EPS-Hartschaum (Styropor ®) für De- cken/Böden und als Pe- rimeterdämmung B/P- 035	m³ (25,9 kg/m³)	75,4	2.230,0	2.257,5	-	-	0,0	0,0	0,0	2.2.01 EPS-Hart- schaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-035	m³ (25,9 kg/m³)	85,9	11,0	12,1
Polystyroldäm- mung Flachdach, EPS 035	2.2.01 EPS-Hartschaum (Styropor ®) für De- cken/Böden und als Pe- rimeterdämmung B/P- 035	m³ (25,9 kg/m³)	75,4	2.230	2.257,5	-	-	0,0	0,0	0,0	2.2.01 EPS-Hart- schaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-035	m³ (25,9 kg/m³)	85,9	11,0	12,1
Polystyroldäm- mung Wand und Dach, EPS	2.2.01 EPS-Hartschaum (Styropor ®) für Wände und Dächer W/D-040	m³ (18,0 kg/m³)	52,5	1.530,0	1.552,2	-	-	0,0	0,0	0,0	2.2.01 EPS-Hart- schaum (Styropor ®) für Wände und Dächer W/D-040	m³ (18,0 kg/m³)	59,5	7,6	8,3
Polystyroldäm- mung, XPS (AW)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	96,3	2.838,7	3.017,3	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	118,2	17,8	21,6	-	-	0,0	0,0	0,0

						1	_				1				
Polystyroldäm- mung, XPS (BO)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	96,3	2.838,7	3.017,3	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	118,2	17,8	21,6	-	-	0,0	0,0	0,0
Polystyroldäm- mung, XPS (DA)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	96,3	2.838,7	3.017,3	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	118,2	17,8	21,6	-	-	0,0	0,0	0,0
Polystyroldäm- mung, XPS (KW)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	96,3	2.838,7	3.017,3	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	118,2	17,8	21,6	-	-	0,0	0,0	0,0
Porenbeton	1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	222,6	1.337,6	1.646,2	1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	3,2	52,7	58,4	-	-	0,0	0,0	0,0
Porenbeton P2 04 (99,2/0,8)	99.2% 1.3.03 Porenbeton P2 04 unbewehrt; 0.8% 1.4.02 Zementmörtel	m³ (380 kg/m³); m³ (2.000 kg/m³)	183,7	1.144,6	1.428,4	99.2% 1.3.03 Porenbeton P2 04 unbewehrt	m³ (380 kg/m³)	2,5	42,1	46,6	0.8% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	0,2	3,4	3,9
Porenbeton P4 05 (95/5)	95% 1.3.03 Porenbeton P4 05 unbewehrt; 5% 1.4.02 Zementmör- tel	m³ (380 kg/m³); m³ (2.000 kg/m³)	228,73	1.328,70	1.634,88	95% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	3,0	50,1	55,5	5% 1.4.02 Zementmörtel	m³ (2.000 kg/m³)	1,5	21,4	24,2
Profilbretter	3.3.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.3.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
PVC-Dachbahn	6.3.02 PVC-Dachbahnen (Dicke 0.0012 m)	m² (1.250 kg/m³); m³	5.060,8	107.877,5	121.753,6	6.3.02 PVC-Dachbah- nen (Dicke 0.0012 m)	m² (1.250 kg/m³); m³	4.108,6	8.735,2	11.210,2	-	-	0,0	0,0	0,0
Reetdach	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	-127,0	62,8	1.712,8	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	13,4	0,0	-163,0
Sand/Lehm/ Schlacke	34% 1.2.01 Sand 0/2 getrocknet; 33% 1.4.04 Lehmputz, 33% 1.2.08 Schmelzkammergranulat	kg (1.350 kg/m³); m³ (900 kg/m³); kg (1.200 kg/m³); m³	46,0	561,9	632,4	34% 1.2.01 Sand 0/2 getrocknet; 33% 1.4.04 Lehmputz; 33% 100.1.01 Bauschuttaufbereitung;	kg (1.350 kg/m³); m³ (900 kg/m³); kg; m³	5,3	94,2	103,6	-	-	0,0	0,0	0,0
Sandschüttung	1.2.01 Sand 0/2 getrock- net	kg (1.350 kg/m³); m³	44,9	732,4	751,8	1.2.01 Sand 0/2 getrock- net	kg (1.350 kg/m³); m³	9,9	164,5	182,2	-	-	0,0	0,0	0,0
Sauberkeitsschicht	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	178,0	912,0	1.092,0	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	6,0	78,7	99,4	-	-	0,0	0,0	0,0
Schalsteine mit Be tonfüllung B15	51% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 49% 1.3.05 Beton-Mauersteine	m³ (2.400 kg/m³); m³ (2.000 kg/m³)	209,5	1.043,9	1.289,3	51% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 49% 1.3.05 Be- ton-Mauersteine	m³ (2.400 kg/m³); m³ (2.000 kg/m³)	9,7	149,6	172,0	-	-	0,0	0,0	0,0
Schalung	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Schaumglas	2.6.01 FOAMGLAS® W+F und FOAMGLAS® T3+	kg (100 kg/m³); m³	126,0	1.980,0	2.846,0	-	-	0,0	0,0	0,0	2.6.01 FOAMGLAS® W+F und FOAM- GLAS® T3+	kg (100 kg/m³); m³	1,4	18,6	20,1
Schaumpolystyrol- Gefällebeton	2.2.01 Schüttung aus Polystyrolschaumstoff- Partikeln (zementgebunden)	m³ (350 kg/m³)	160,1	3.004,0	3.115,1	2.2.01 Schüttung aus Polystyrolschaumstoff- Partikeln (zementgebun- den)	m³ (350 kg/m³)	103,4	15,5	18,9	-	-	0,0	0,0	0,0
Schiefer/Ziegel/Bi- ber	20% 1.3.09 Schiefer; 80% 1.3.10 Dachziegel	m² (30 kg/m²; 2.727 kg/m³); m² (63,75 kg/m²; 2.180 kg/m³); m³	707,8	10.498,9	11.973,7	20% 1.3.09 Schiefer; 80% 1.3.10 Dachziegel	m² (30 kg/m²; 2.727 kg/m³); m² (63,75 kg/m²; 2.180 kg/m³); m³	11,9	198,4	219,8	-	-	0,0	0,0	0,0

Schiefersplitt in Bi- tumenemulsion	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m² (6,2 kg/m²; 1.550 kg/m³); m³ m² (30	1.341,0	64.553,5	66.920,5	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m² (6,2 kg/m²; 1.550 kg/m³); m³ m² (30	0,0	0,0	0,0	6.3.01 Bitumenbahnen PYE-PV 200 S5 ns (ge- schiefert)	m² (6,2 kg/m²; 1.550 kg/m³); m³	123,0	1.930,0	2.065,6
Schieferverklei- dung	1.3.09 Schiefer	kg/m²; 2.727 kg/m³); m³	1.367,0	18.452,1	22.906,3	1.3.09 Schiefer	kg/m²; 2.727 kg/m³): m³	18,3	304,6	337,4	-	-	0,0	0,0	0,0
Schilfrohrmatte	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	-127,0	62,8	1.712,8	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	13,4	0,0	-163,0
Schilfrohrträger	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	-127,0	62,8	1.712,8	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	13,4	0,0	-163,0
Schlackenschüt- tung/-füllung	1.2.08 Schmelzkammer- granulat	kg (1.200 kg/m³); m³	0,0	0,0	0,0	100.1.01 Bauschuttauf- bereitung	kg; m³	3,2	61,9	67,4	-	-	0,0	0,0	0,0
Schrägdachdäm- mung (unspezi- fisch)	50% 2.1.01 Mineralwolle (Schrägdach-Däm- mung); 50% 2.2.01 EPS-Hart- schaum (Styropor ®) für Wände und Dächer W/D-040	m³ (30 kg/m³); m³ (18 kg/m³)	49,5	1.050,5	1.107,9	50% 2.1.01 Mineralwolle (Schrägdach-Dämmung)	m³ (30 kg/m³)	0,8	28,6	29,8	50% 2.1.01 Mineral- wolle (Schrägdach- Dämmung); 50% 2.2.01 EPS-Hart- schaum (Styropor ®) für Wände und Dächer W/D-040	m³ (30 kg/m³); m³ (18 kg/m³)	30,0	7,1	7,9
Schutzvlies, 300 g/m²	6.6.04 PE/PP-Vlies	m² (0,5 kg/m²; 396 kg/m³); m³	998,3	35.093,7	37.250,4	6.6.04 PE/PP-Vlies	m² (0,5 kg/m²; 396 kg/m³); m³	1492,3	240,6	290,0	-	-	0,0	0,0	0,0
Schüttung, Perlite 0-3	1.2.07 Perlite 0-3	kg (1.000 kg/m³); m³	558,3	7.437,4	7.672,7	-	-	0,0	0,0	0,0	100.1.01 Bauschutt-Deponierung	kg; m³	13,6	199,1	225,2
Schüttung, Poren- betongranulat	1.3.03 Porenbeton Gra- nulat	m³ (400 kg/m³)	5,3	70,2	85,8	1.3.03 Porenbeton Gra- nulat	m³ (400 kg/m³)	2,7	44,7	49,5	-	-	0,0	0,0	0,0
Schwerbeton	1.3.05 Betonfertigteil Wand 12 cm	m² (291,3 kg/m²; 2.427.5 kg/m³); m³	324,8	382,5	1.657,5	1.3.05 Betonfertigteil Wand 12 cm	m² (291,3 kg/m²; 2.427.5 kg/m³); m³	17,5	290,6	322,0	-	-	0,0	0,0	0,0
Schwimmender Estrich	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	440,5	2.901,4	3.547,4	-	-	0,0	0,0	0,0	1.4.03 Zementestrich	kg (2.400 kg / m³); m³	36,0	525,7	594,7
Sichtbeton	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2956,8	4023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,8	76,3	96,4	-	-	0,0	0,0	0,0
Spalierlatten	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durch- schnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Sparren	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE)	m³ (492,92 kg/m³)	-711,7	1.210,7	11.849,7	3.1.02 Konstruktionsvoll- holz (Durchschnitt DE)	m³ (492,92 kg/m³)	810,1	53,7	-8.431,4	-	-	0,0	0,0	0,0
Sparschalung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	-735,1	724,6	10.994,9	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484,51 kg/m³)	797,1	58,8	-8.285,9	-	-	0,0	0,0	0,0
Spanplatten	3.2.06 Spanplatte (Durchschnitt)	m³ (mit 633,31 kg/m³)	-873,6	4.827,2	23.582,0	3.2.06 Spanplatte (Durchschnitt)	m³ (mit 633,31 kg/m³)	1.268,5	16,1	25,3	-	-	0,0	0,0	0,0
Stahlbeton	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2.956,8	4.023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,8	76,3	96,4	-	-	0,0	0,0	0,0

Stahlbeton B15- B25 (98/2)	98% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 2% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	281,7	2.275,2	3.046,4	98% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,9	77,1	97,4	-	-	0,0	0,0	0,0
Stahlbeton B15- B25 (97/3)	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2.956,8	4.023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,8	76,3	96,4	-	-	0,0	0,0	0,0
Stahlbeton B15- B25 (96/4)	96% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 4% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	385,5	3.638,4	5.000,8	96% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,8	75,6	95,4	-	-	0,0	0,0	0,0
Stahlbeton B15- B25 (95/5)	95% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 5% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	437,3	4.320,1	5.978,0	95% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,7	74,8	94,4	-	-	0,0	0,0	0,0
Stahlbeton B20 (66/4)	66% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 4% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	332,1	3.364,8	4.673,2	66% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	4,0	51,9	65,6	-	-	0,0	0,0	0,0
Stahlbeton C20/25 (99/1)	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 1% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	229,9	1.593,6	2.069,2	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,9	77,9	98,4	-	-	0,0	0,0	0,0
Stahlbeton C30/37 (98/2)	98% 1.4.01 Beton der Druckfestigkeitsklasse C 30/37; 2% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	321,9	2.459,5	3.254,2	98% 1.4.01 Beton der Druckfestigkeitsklasse C 30/37; -	m³ (2.400 kg/m³)	5,9	77,1	97,4	-	-	0,0	0,0	0,0
Stahlbetondecke	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 3% 4.1.02 Be- wehrungsstahl	m³ (2.400 kg/m³); kg (7.850 kg/m³)	333,6	2.956,8	4.023,6	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2.400 kg/m³)	5,8	76,3	96,4	-		0,0	0,0	0,0
Stahlprofil	4.1.03 Stahlprofil	kg (7.850 kg/m³); m³	7.806,4	86.273,9	110.967,0	-	-	0,0	0,0	0,0	100.1.04 End of Life von Stahlprofilen	kg (7.850 kg/m³); m³	5,4	78,2	88,4
Stampfbeton B5- B20	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	178,0	912,0	1.092,0	1.4.01 Beton der Druck- festigkeitsklasse C 20/25	m³ (2.400 kg/m³)	6,0	78,7	99,4	-	-	0,0	0,0	0,0
Steinkohleschlacke	1.2.08 Steinkohleflug- asche	kg (905 kg/m³); m³	0,0	0,0	0,0	100.1.01 Bauschuttauf- bereitung	kg; m ³	2,4	46,7	50,8	-	-	0,0	0,0	0,0
Steinwolle	2.1.01 Mineralwolle (Boden-Dämmung)	m³ (85 kg/m³)	407,9	37.126,6	37.976,7	2.1.01 Mineralwolle (Boden-Dämmung)	m³ (85 kg/m³)	0,0	0,0	0,0	2.1.01 Mineralwolle (Boden-Dämmung)	m³ (85 kg/m³)	79,3	1.245,2	1.332,7
Strukturierte Trennlage (Kunst- stofffaservlies)	6.6.04 PE/PP-Vlies	m² (0,5 kg/m²; 396 kg/m³); m³	998,3	35.093,7	37.250,4	6.6.04 PE/PP-Vlies	m² (0,5 kg/m²; 396 kg/m³); m³	1.492,3	240,6	290,0	-	-	0,0	0,0	0,0
Trockenestrich	1.3.14 Trockenestrich (Gipskartonplatte) (Dicke 0,025 m)	m² (800 kg/m³); m³	124,8	2.727,7	3.514,1	-	-	0,0	0,0	0,0	1.3.14 Trockenestrich (Gipskartonplatte) (Dicke 0,025 m)	m²; m³	12,1	176,1	199,2
Unterdeckbahn	6.6.01 Unterspannbahn PE gewebeverstärkt (Di- cke 0,00015 m)	m³ (262 kg/m³)	2.837,5	73.038,7	78.975,3	6.6.01 Unterspannbahn PE gewebeverstärkt (Di- cke 0,00015 m)	m³ (262 kg/m³)	2.102,9	347,5	422,1	-	-	0,0	0,0	0,0
Vegetationssub- strat, 750 kg/m³	1.3.19 Vegetationssubstrat	kg (750 kg/m³); m³	-35,2	1.124,6	2.740,9	1.3.19 Vegetationssubstrat	kg (750 kg/m³); m³	5,5	91,4	101,2	-	-	0,0	0,0	0,0

71.0 00010101	it za dom vorwom	acton De	atorioat	2011 jo 1	viatoria										
Verbundestrich	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	440,5	2.901,4	3.547,4	-	-	0,0	0,0	0,0	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	36,0	525,7	594,7
Vergussbeton B5	1.4.02 Zementmörtel	m³ (2.000 kg/m³)	345,1	1.159,4	1.419,3	-	-	0,0	0,0	0,0	1.4.02 Zementmörtel	m³ (2.000 kg/m³)	29,3	427,7	483,8
Vollziegel	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Vollziegel/Mörtel	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Vorhangfassade (Annahme: Laub- holz, natur)	3.1.01 Laubschnittholz - getrocknet	m³ (761,6 kg/m³)	-1.120,2	1.453,3	24.313,3	3.1.01 Laubschnittholz - getrocknet	m³ (761,6 kg/m³)	1.250,4	58,8	-13.080,4	-	-	0,0	0,0	0,0
Vorhangfassade (Faserzement- platten)	1.3.12 Faserzement- platte	m² (13 kg/m²; 1.300 kg/m³); m³	699,3	7.695,6	12.596,5	-	-	0,0	0,0	0,0	1.3.12 Faserzement- platte	m² (13 kg/m²; 1.300 kg/m³); m³	2.930,2	42.770,0	48.383,6
Vorhangfassade (Holzverschalung, lackiert)	99,6 % 3.1.01 Nadel- schnittholz - getrocknet (Durchschnitt DE); 0,4 % 5.6.02 Lacksys- teme Holzfassade halb- pigmentiert	m³ (484,51 kg/m³); kg (1.040 kg/m³); m³	-720,7	980,1	11.226,5	99,6 % 3.1.01 Nadel- schnittholz - getrocknet (Durchschnitt DE); 0,4 % 5.6.02 Lacksys- teme Holzfassade halb- pigmentiert	m³ (484,51 kg/m³); kg (1.040 kg/m³); m³	797,4	61,4	-8.249,3	-	-	0,0	0,0	0,0
Vormauerschale (Kalksand-Voll- stein)	75% 1.3.01 Kalksand- stein; 25% 1.4.02 Ze- mentmörtel	t (1.800 kg/m³); m³ (2.000 kg/m³); m³	269,9	1.635,8	1.937,0	75% 100.1.01 Bauschuttaufbereitung	kg; m³	3,6	69,6	75,8	25% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Vormauerziegel	75% 1.3.02 Vormauerziegel; 25% 1.4.02 Zementmörtel	m³ (1.800 kg/m³); m³ (2.000 kg/m³)	482,7	6.402,9	6.899,0	75% 1.3.02 Vormauerziegel	m³ (1.800 kg/m³)	9,9	164,5	182,2	25% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
WDG, zweifach	7.2.01 Isolierglas 2- Scheiben	m² (20,5 kg/m²)	37,0	445,9	482,7	7.2.01 Isolierglas 2- Scheiben	m² (20,5 kg/m²)	1,5	0,7	0,9	7.2.01 Isolierglas 2- Scheiben	m² (20,5 kg/m²)	0,3	4,8	5,4
WDG, dreifach	7.2.01 Dreifachverglasung (Dicke: 0,036 m)	m² (30 kg/m² mit 833,3 kg/m³)	57,8	713,6	776,5	7.2.01 Dreifachvergla- sung (Dicke: 0,036 m)	m² (30 kg/m² mit 833.3 kg/m³)	3,0	1,4	1,8	7.2.01 Dreifachvergla- sung (Dicke: 0,036 m)	m² (30 kg/m² mit 833,3 kg/m³)	0,5	7,2	8,1
WDVS Verklebung und Beschichtung	2.21.01 WDVS Verkle- bung und Beschichtung Kratzputz mineralisch	m² (35,18 kg/m²; ca. 1.759 kg/m³); m ³	492,2	4.077,9	5.135,8	2.21.01 WDVS Verkle- bung und Beschichtung Kratzputz mineralisch	m² (35,18 kg/m²; ca. 1.759 kg/m³); m³	0,0	0,0	0,0	2.21.01 WDVS Verkle- bung und Beschichtung Kratzputz mineralisch	m³ (35,18 kg/m²; ca. 1.759 kg/m³)	26,4	385,2	435,8
WDVS Verklebung und Beschichtung, nach Sanierung in- nenliegend	2.21.01 WDVS Verkle- bung und Beschichtung Kratzputz mineralisch	m² (35,18 kg/m²; ca. 1.759 kg/m³); m³	492,2	4.077,9	5.135,8	-	-	0,0	0,0	0,0	2.21.01 WDVS Verkle- bung und Beschichtung Kratzputz mineralisch	m³ (35,18 kg/m²; ca. 1.759 kg/m³)	26,4	385,2	435,8
Winddichtheits- bahn	6.6.01 Unterspannbahn PE gewebeverstärkt (Di- cke 0,00015 m)	m³ (262 kg/m³)	2.837,5	73.038,7	78.975,3	6.6.01 Unterspannbahn PE gewebeverstärkt (Di- cke 0,00015 m)	m³ (262 kg/m³)	2102,9	347,5	422,1	-	-	0,0	0,0	0,0
Zellulosefaser-Ein- blasdämmung	2.11.01 Zellulose-Ein- blas-Dämmung	m³ (45 kg/m³)	-73,4	94,8	932,0	2.11.01 Zellulose-Ein- blas-Dämmung	m³ (45 kg/m³)	99,1	1,0	1,6	-	-	0,0	0,0	0,0
Zementestrich	1.4.03 Zementestrich	kg (2.400 kg/m³); m ³	440,5	2.901,4	3.547,4	-	-	0,0	0,0	0,0	1.4.03 Zementestrich	kg (2.400 kg/m³); m³	36,0	525,7	594,7

Ziegel/Mörtel	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Ziegelmauerwerk	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Ziegelmauerwerk Fundament	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	190,0	1.261,1	1.522,1	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,5	21,2	22,4	75% 1.3.02 Mauerziegel; 25% 1.4.02 Zementmörtel	m³ (575 kg/m³); m³ (2.000 kg/m³)	7,6	110,2	124,5
Ziegelpflaster	75% 1.3.02 Vormauerziegel; 25% 1.4.02 Zementmörtel	m³ (1.800 kg/m³); m³ (2.000 kg/m³)	482,7	6.402,9	6.899,0	75% 1.3.02 Vormauerziegel	m³ (1.800 kg/m³)	9,9	164,5	182,2	25% 1.4.02 Zement- mörtel	m³ (2.000 kg/m³)	7,3	106,9	121,0
Ziegelsplittbeton	1.3.05 Beton-Mauer- steine	m³ (2.000 kg/m³)	242,4	1.181,2	1.494,6	1.3.05 Beton-Mauer- steine	m³ (2.000 kg/m³)	13,5	223,4	247,5	-	-	0,0	0,0	0,0
Zinkblech	4.1.04 Stahl Feinblech (20µm bandverzinkt)	kg (7.850 kg/m³); m³	21.008,8	201.683,8	217.395,7	-	-	0,0	0,0	0,0	100.1.04 End of Life von verzinktem Stahl	kg (7.850 kg/m³); m³	5,4	78,2	88,4

Tabelle A. 10: Materialspezifisch verwendete ÖKOBAUDAT-Datensätze (Version 2020-II) und Umweltwirkungen der Phase D, durchschnittliche Nutzungsdauer und Austauschzyklen in 50 Jahren; eigene Darstellung

Materialbezeichnung	Datensatz D	Bezugseinheiten	GWP D [kg CO₂- Äq.]	PENRT D [MJ]	PET D [MJ]	Durchschnittliche Nutzungsdauer [Jahren]	Austauschzyklen in 50 Jahren
Aluminium-Blendrahmen	7.1.05 Aluminium-Rahmenprofil, pulverbeschichtet	m (1.02 kg/m)	-8,0	-107,0	-142,1	50	0
Aluminium-Flügelrahmen	7.1.05 Aluminium-Flügelrahmenprofil, pulverbeschichtet	m (0.98 kg/m)	-7,7	-102,8	-136,5	50	0
Aluminium-Blendrahmen, thermisch getrennt	7.1.06 Aluminium-Rahmenprofil, thermisch getrennt, pulverbeschichtet	m (1.43 kg/m)	-9,5	-126,8	-168,4	50	0
Aluminium-Flügelrahmen, thermisch getrennt	7.1.06 Aluminium-Flügelrahmenprofil, thermisch getrennt, pulverbeschichtet	m (1.51 kg/m)	10,4	-138,8	-184,3	50	0
Asbestzementplatte		-	0,0	0,0	0,0	50	0
Ausgleichsestrich	-	-	0,0	0,0	0,0	50	0
Außenputz	-	-	0,0	0,0	0,0	45	1
Außenputz, nach Sanierung innenliegend	-	-	0,0	0,0	0,0	50	0
Beton B5-B20	1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2400 kg/m³)	-21,4	-279,0	-373,1	50	0
Betonfertigteil B20	1.3.05 Betonfertigteil Decke 20cm	m² (504 kg/m² mit 2520 kg/m³); m³	-4,9	-65,8	-84,5	50	0
Betondachstein	-	-	0,0	0,0	0,0	50	0
Betondecke (99/1)	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-21,2	-276,2	-369,4	50	0
Betondecke (97/3)	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
Bewehrungsstahl	-	-	0,0	0,0	0,0	50	0
Bimshohlblockstein	75% 1.3.04 Bims-Planstein (SFK-4); -	m³ (900 kg/m³)	-1,4	-18,5	-23,8	50	0

7 1.0 Oboroloni Za don vorwei	idotori Batorioatzori je Matoriai						
Bimsvollsteine	75% 1.3.04 Bims-Planstein (SFK-4); -	m³ (900 kg/m³)	-1,4	-18,5	-23,8	50	0
Bitumenabdichtung	-	-	0,0	0,0	0,0	30	1
Bitumenbahn	-	-	0,0	0,0	0,0	30	1
Bitumenbahn, Decke	-	-	0,0	0,0	0,0	50	0
Bitumendachbahn, besandet	-	-	0,0	0,0	0,0	30	1
Bitumendachbahn	-	-	0,0	0,0	0,0	30	1
Bitumendachpappe	-	-	0,0	0,0	0,0	30	1
Blecheindeckung (Edelstahl)	4.2.01 Edelstahlbleche	kg (7900 kg/m³); m³	-5.238,4	-64.238,7	-77.004,8	50	0
Bretter	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Brettschichtholz	3.1.04 Brettschichtholz - Standardformen (Durchschnitt DE)	m³ (507.11 kg/m³)	-367,5	-5.635,4	997,2	50	0
Brettsperrholz	3.1.05 Brettsperrholz (Durchschnitt DE)	m³ (489.41 kg/m³)	-350,8	-5.324,7	1.090,7	50	0
Dielung/Bretterboden	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Bruchsteinmauerwerk Fundament	-	-	0,0	0,0	0,0	50	0
Dachabdichtung, wurzelfest	-	-	0,0	0,0	0,0	30	1
Dachziegel	1.3.10 Dachziegel	m² (45 kg/m² mit 2180 kg/m³); m³	-4,5	-59,8	-76,8	50	0
Dachziegel (Biberschwanz; ca. 70 kg/m²)	1.3.10 Dachziegel	m² (45 kg/m² mit 2180 kg/m³); m³	-4,5	-59,8	-76,8	50	0
Dämmung AW (Holzwolle-WDVS)	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	40	1
Dämmung AW (Holzwolle-VF)	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	50	0
Dämmputz	-	-	0,0	0,0	0,0	40	1
Dämmung BO (unspezifisch)	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	50	0
Dämmung Flachdach (EPS)	2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeter-dämmung B/P-040	m³ (18.5 kg/m³)	-32,1	-490,0	-536,8	50	0
Dämmung KD, ältere BK	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	50	0
Dämmung KD, jüngere BK	31% 2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-040; 5% 2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (18.5 kg/m³); m³ (160 kg/m³)	-14,4	-228,8	-265,3	50	0
Dämmung DE und OGD, ältere BK	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	50	0
Dämmung DE und OGD, jüngere BK	31% 2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeterdämmung B/P-040; 5% 2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (18.5 kg/m³); m³ (160 kg/m³)	-14,4	-228,8	-265,3	50	0
Deckenziegel (Zwischenraum mit Beton verfüllt)	69% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-4,8	-70,8	-77,4	50	0
Doppelrömer	-	-	0,0	0,0	0,0	50	0
Drainmatte, 2.8 kg/m²	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0,00125 m)	m² (1.2 kg/m²; 960 kg/m³); m³	-1.637,4	-23.959,3	-30.811,4	30	1
Einfachverglasung	-	-	0,0	0,0	0,0	30	1
Estrich	-	-	0,0	0,0	0,0	50	0

Functionapping	Estrich (Anhydrit)	•	-	0,0	0,0	0,0	50	0
Fernatepartier	Estrichpapier	6.6.05 Kraftpapier		-579,0	-6.234,3	-8.018,8	50	0
Filteroffeet, PP	Fensterbeschlag, Doppelflügelfenster	7.4.02 Fenster-Beschlag für Doppelflügelfenster	Stk (1.014 kg/Stk.); kg	-4,0	-53,5	-69,7	50	0
Filen/nies, PP	Fensterbeschlag, Drehkippfenster	7.4.02 Fenster-Beschlag für Drehkippfenster (Aluminium)	Stk (1.014 kg/Stk); kg	-7,9	-102,9	-129,4	25	1
Filestries, PP 66,04 PE/PF-Viles 66,04 PE/PF-Viles 66,04 PE/PF-Viles 67,04 PE/PF-VIIes 67,04 P	Fenstergriff	7.4.07 Fenstergriff	Stk (0.1 kg/Stk); kg	-1,1	-15,8	-20,8	25	1
Flaschalchdämmung (unspezifisch) -	Filtervlies, PP	6.6.04 PE/PP-Vlies		-675,4	-9.883,2	-12.709,7	30	1
Filesen	Flachstahl	4.1.03 Stahlprofil	kg (7850 kg/m³); m³	-1.750,5	-13.237,8	-11.727,4	50	0
Fileson	Flachdachdämmung (unspezifisch)	-	-	0,0	0,0	0,0	50	0
Figendichtungsband 7.3.04 Figendichtungsbander Gewebebander Rig (339 kg/m²) -0.7 -10.8 -13.9 -13	Fliesen	90% 1.3.07 Steinzeugfliesen unglasiert; 10% Fliesenkleber	kg/m³); kg (1500 kg/m³);	-4,1	-55,6	-71,4	50	0
Gasbeton(block/-steine) 90% 1.3.03 Porenbeton P4 05 unbewehrt;	Fugendichtungsband	7.3.04 Fugendichtungsbänder Gewebebänder		-0,7	-10,8	-13,9	20	2
Cipstaserplatte	Füllkörper aus Bimsstein			-1,3	-17,0	-21,9	50	0
Cipkartonplatte	Gasbeton(block/-steine)	90% 1.3.03 Porenbeton P4 05 unbewehrt; -	m³ (472 kg/m³)	-0,9	-11,6	-15,0	50	0
CKF-Platte -	Gipsfaserplatte	-	-	0,0	0,0	0,0	50	0
Glasviles Dach	Gipskartonplatte		-	0,0	0,0	0,0	50	0
Glasvies Decke	GKF-Platte		-	0,0	0,0	0,0	50	0
Clattputz (Kalkzement) Clattputz (Kalkzement), nach Sanierung in-nenliegend Crundierung (Bitumenvoranstrich, lösemittel-haltig) Clattputz (Kalkzement), nach Sanierung in-nenliegend Crundierung (Bitumenvoranstrich, lösemittel-haltig) Clattputz (Kalkzement) Clattputz (Kalkzement), nach Sanierung in-nenliegend Crundierung (Bitumenvoranstrich, lösemittel-haltig) Clattputz (Kalkzement) Clattputz (Kalkzement), nach Sanierung in-nenliegend Clattputz (Kalkzement) Clattputz (K	Glasvlies Dach		-	0,0	0,0	0,0	20	2
Clattputz (Kalkzement), nach Sanierung innenliegend Curudierung (Bitumenvoranstrich, lösemittel-haltig) Curudierung (Bitumenvoranstrich, lösemittel-haltig) Curudierung (Bitumenvoranstrich, lösemittel-haltig) Curudierung (Bitumenvoranstrich, lösemittel-haltig) Curudierung (Standardszenario) Cistandardszenario) Cis	Glasvlies Decke		-	0,0	0,0	0,0	50	0
Renliegend Grundierung (Bitumenvoranstrich, lösemittel-haltig)	Glattputz (Kalkzement)		-	0,0	0,0	0,0	45	1
No.	Glattputz (Kalkzement), nach Sanierung in-			0.0	0.0	0.0	50	0
Hartfaserplatte 3.2.07 Hochdichte Faserplatte (Durchschnitt DE) - thermische Verwertung (Standardszenario) m³ (849.9 kg/m³) -255.3 -8.149.6 -1.179.0 50 0	nenliegend	-	-	0,0	0,0	0,0	50	U
Hartfaserplatte 3.2.07 Hochdichte Faserplatte (Durchschnitt DE) - thermische Verwertung (Standardszenario) m³ (849.9 kg/m³) -255,3 -8.149,6 -1.179,0 50 0			-	0.0	0.0	0.0	40	1
Hartiaserplatte (Standardszenario) F255,3 F25,3 F25,	haltig)			-,-	- / -	- /-		
Hohlblockstein (90/10) Hohlziegel 1.3.02 Mauerziegel; - 75% 1.3.02 Mauerz	Hartfaserplatte		m³ (849.9 kg/m³)	-255,3	-8.149,6	-1.179,0	50	0
Hohlziegel	Hohlblockstein (75/25)	75% 1.3.04 Blähton LB Planstein Außenwand; -	m³ (501 kg/m³)	-0,8	-10,3	-13,2	50	0
Hochlochziegel (75/25) Hochlochziegel (90/10) Hochlochziegel (98/2) Hochlochziegel (99,6/0,4) Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel (Dämmstoff gefüllt); - Hochlochziegel (Dämmstoff gefüllt);	Hohlblockstein (90/10)	90% 1.3.04 Blähton LB Planstein Außenwand; -	m³ (501 kg/m³)	-0,9	-12,3	-15,9	50	0
Hochlochziegel (90/10) Hochlochziegel (98/2) Hochlochziegel (98/2) Hochlochziegel (99,6/0,4) Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel (Dämmstoff gefüllt); - Hochlochziegel (Dämmstoff gefüllt); - Hochlochziegel (Dämmstoff gefüllt); - Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel (Dämmstoff gefüllt); - Hochlochzie	Hohlziegel	1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-7,0	-102,6	-112,1	50	0
Hochlochziegel (98/2) Hochlochziegel (99,6/0,4) Hochlochziegel (99,6/0,4) Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochofenschlacke 98% 1.3.02 Mauerziegel; - m³ (575 kg/m³) -7,0 -102,2 -111,7 -7,0 -102,2 -111,7 -10,9 -102,2 -111,7 -10,9	Hochlochziegel (75/25)	75% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-5,3	-76,9	-84,1	50	0
Hochlochziegel (99,6/0,4) Hochlochziegel (99,6/0,4) Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochofenschlacke 99,6% 1.3.02 Mauerziegel; - 51,6% 1.3.02 Mauerziegel; 48% 1.4.01 Beton der Druckfestigkeitsklasse (2.400 kg/m³) -7,0 -102,2 -111,7 50 0 -13,9 -186,9 -236,9 50 0 Hochofenschlacke -6,9 -101,4 -110,8 50 0 0 0 0 0 0 0 0 0 0 0 0	Hochlochziegel (90/10)	90% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-6,3	-92,3	-100,9	50	0
Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochofenschlacke 51,6% 1.3.02 Mauerziegel; 48% 1.4.01 Beton der Druckfestigkeitsklasse (2.400 kg/m³) (2.400 kg/m³) -13,9 -186,9 -236,9 50 0 Hochofenschlacke 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hochlochziegel (98/2)	98% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-6,9	-100,5	-109,9	50	0
Hochlochziegel (51,6/48/0.4), Trennwand Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) Hochofenschlacke C20/25; - (2.400 kg/m³) -13,9 -186,9 -236,9 50 0 Hochlochziegel, Dämmstoff gefüllt (99,6/0,4) -101,4 -110,8 50 0 0 0 0 0 0 0 0 0 0 0 0	Hochlochziegel (99,6/0,4)	99,6% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-7,0	-102,2	-111,7	50	0
Hochofenschlacke 0,0 0,0 0,0 50 0	Hochlochziegel (51,6/48/0.4), Trennwand			-13,9	-186,9	-236,9	50	0
	Hochlochziegel, Dämmstoff gefüllt (99,6/0,4)	99,6% 1.3.02 Mauerziegel (Dämmstoff gefüllt); -	m³ (575 kg/m³)	-6,9	-101,4	-110,8	50	0
Holzbalken 3.1.02 Konstruktionsvollholz (Durchschnitt DE) m³ (492.92 kg/m³) -377,9 -5.081,7 1.457,8 50 0	Hochofenschlacke	-	-	0,0	0,0	0,0	50	0
	Holzbalken	3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-377,9	-5.081,7	1.457,8	50	0

71.0 Obolololit Za doll volvol	ideteri Baterieatzeri je izlateria.						
Holzbalken mit Steinkohleschlacke	-; 8% 3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-30,2	-406,5	116,6	50	0
Holz-Blendrahmen	7.1.01 Holz-Blendrahmen	m (2.11 kg/m mit ca. 520 kg/m³)	-1,6	-24,7	-32,0	40	1
Holzeinschub	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Holzfaserdämmplatte (VF)	2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (160 kg/m³)	-88,7	-1.537,8	-1.978,0	50	0
Holzfaserdämmplatte (DA)	2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (160 kg/m³)	-88,7	-1.537,8	-1.978,0	50	0
Holzfaserdämmung (Innenausbau)	2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (160 kg/m³)	-88,7	-1.537,8	-1.978,0	50	0
Holzfaserdämmung (TSD)	2.10.01 Holzfaserdämmplatte (Nassverfahren)	m³ (160 kg/m³)	-88,7	-1.537,8	-1.978,0	50	0
Holz-Flügelrahmen	7.1.01 Holz-Flügelrahmen	m (2.11 kg/m mit ca. 520 kg/m³)	-1,6	-24,8	-32,1	40	1
Holznagelbinder	3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-377,9	-5.081,7	1.457,8	50	0
Holzständer (Eiche)/Gefach: Lehmstaken	30% 3.1.02 Konstruktionsvollholz (Durchschnitt DE); 35% 1.3.17 Stampflehmwand; 35% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (492.92 kg/m³); m³ (2000 kg/m³); m³ (100 kg/m³)	-114,4	-1.538,6	422,4	50	0
Holzständer (Eiche)/Gefach: Lehmstein	18% 3.1.02 Konstruktionsvollholz (Durchschnitt DE); 62% 1.3.17 Lehmstein;	m³ (492.92 kg/m³); m³ (1200 kg/m³)	-69,1	-929,7	246,5	50	0
Holzständer (Eiche)/Gefach: Ziegel	18% 3.1.02 Konstruktionsvollholz (Durchschnitt DE); 62% 1.3.02 Mauerziegel; -	m³ (492.92 kg/m³); m³ (575 kg/m³)	-72,4	-978,3	192,9	50	0
Holzständer/Vollziegel/Mörtel	18% 3.1.02 Konstruktionsvollholz (Durchschnitt DE); 62% 1.3.02 Mauerziegel; -	m³ (492.92 kg/m³); m³ (575 kg/m³)	-72,4	-978,3	192,9	50	0
Holzwolle-Leichtbauplatte	2.7.01 Holzwolle-Leichtbauplatte	m³ (360 kg/m³)	-113,8	-1.215,7	-1.563,7	50	0
Holzwolle-Leichtbauplatte mit Polystyrolkern	50% 2.7.01 Holzwolle-Leichtbauplatte; 50% 2.2.01 EPS-Hartschaum (Styropor ®) für Wände und Dächer W/D-040	m³ (360 kg/m³); m³ (18 kg/m³)	-72,5	-846,3	-1.043,2	50	0
Hourdis-Stein (Hohlziegel)	1.3.02 Mauerziegel	m³ (575 kg/m³)	-7,0	-102,6	-112,1	50	0
Innenputz	-	-	0,0	0,0	0,0	50	0
Isolierverglasung	-	-	0,0	0,0	0,0	30	1
Kalksandstein (99,2/0,8)	-	-	0,0	0,0	0,0	50	0
Kalksandstein (95/5)	-	-	0,0	0,0	0,0	50	0
Kalksandstein (75/25)		-	0,0	0,0	0,0	50	0
Kalkgipsputz		-	0,0	0,0	0,0	50	0
Kalkzementputz		-	0,0	0,0	0,0	50	0
Kantholz	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Kappendecke aus Beton (mit Stahlträgern)	95,5% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 1,5% 4.1.03 Stahl- profil	m³ (2400 kg/m³); kg (7850 kg/m³)	-46,7	-465,0	-532,2	50	0
Kappendecke aus Vollziegel (mit Stahlträgern)	74% 1.3.02 Mauerziegel; 1,5% 4.1.03 Stahlprofilen	m³ (575 kg/m³); kg (7850 kg/m³); kg (7850 kg/m³); m ³	-5,2	-75,9	-83,0	50	0
Kies	1.2.01 Kies 2/32 getrocknet	kg (1850 kg/m³); m³	-3,8	-50,7	-65,2	30	1
Kies unter Bodenplatte	1.2.01 Kies 2/32 getrocknet	kg (1850 kg/m³); m³	-3,8	-50,7	-65,2	50	0

Konstruktionsvollholz	3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-377,9	-5.081,7	1.457,8	50	0
Konterlattung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Kunststoffbahn	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m² (0.2 kg/m² mit 930 kg/m³); m³	-1.276,2	-18.675,1	-24.016,1	30	1
Kunststoff-Blendrahmen	7.1.09 Blendrahmen PVC-U	m (2.8 kg/m)	-3,2	-30,6	-32,1	40	1
Kunststoff-Flügelrahmen	7.1.09 Flügelrahmen PVC-U	m (3.1 kg/m)	-3,4	-33,5	-35,9	40	1
Lagerhölzer	6% 3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE)	m³ (484.51 kg/m³)	-22,5	-299,3	88,1	50	0
Lagerhölzer mit Sandschüttung	8% 3.1.02 Konstruktionsvollholz (Durchschnitt DE); 92% 1.2.01 Sand 0/2 getrocknet	m³ (492.92 kg/m³); kg (1350 kg/m³); m³	-32,8	-440,6	72,9	50	0
Lagerhölzer mit Schlackenfüllung	8% 3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-30,2	-406,5	116,6	50	0
Lattung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Lehmputz innen	1.4.04 Lehmputz	m³ (900 kg/m³)	-3,9	-55,9	-67,4	50	0
Lehmputz außen	1.4.04 Lehmputz	m³ (900 kg/m³)	-3,9	-55,9	-67,4	40	1
Lehmputz außen, nach Sanierung innenliegend	1.4.04 Lehmputz	m³ (900 kg/m³)	-3,9	-55,9	-67,4	50	0
Lehmschlag	75% 1.4.04 Lehmputz; 25% 2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (900 kg/m³); m³ (100 kg/m³)	-2,9	-41,9	-50,5	50	0
Lehmschüttung	1.4.04 Lehmputz	m³ (900 kg/m³)	-3,9	-55,9	-67,4	50	0
Lehmwickel	69% 71.4.04 Lehmputz; 23% 2.23.01 FASBA e.V. Baustroh 100 kg/m³; 8% 3.1.01 Schnittholz Eiche (12% Feuchte/10.7% H2O)	m³ (900 kg/m³); m³ (100 kg/m³); m³ (716.8 kg/m³)	-32,9	-445,1	70,1	50	0
Leichtbeton	90% 1.3.04 Blähton LB Planstein Außenwand; -	m³ (501 kg/m³)	-0,9	-12,3	-15,9	50	0
Leichthochlochziegel	96% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-6,7	-98,5	-107,6	50	0
Luftschicht, ruhend		-	0,0	0,0	0,0	50	0
Luftschicht, ruhend (30% einbindende Kalksandsteine angenommen)	-	-	0,0	0,0	0,0	50	0
Luftschicht, ruhend (30% einbindende Mauerziegel angenommen)	30% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-2,1	-30,8	-33,6	50	0
Luftschicht, ruhend (30% einbindende Porenbetonsteine angenommen)	30% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	-0,3	-3,9	-5,0	50	0
Luftschicht, ruhend (30% einbindende Ziegelsplittbetonsteine angenommen)	30% 1.3.05 Beton-Mauersteine	m³ (2000 kg/m³)	-1,2	-16,4	-21,1	50	0
Luftschicht, stark belüftet	-	-	0,0	0,0	0,0	50	0
MDF-Platte	3.2.07 MDF (Roh)	m³ (700 kg/m³)	-357,0	-6.488,1	-7.258,5	50	0
Mineralwolle (Außenwand)		-	0,0	0,0	0,0	40	1
Mineralwolle (Boden)		-	0,0	0,0	0,0	50	0
Mineralwolle (Flachdach)		-	0,0	0,0	0,0	50	0
Mineralwolle (Innenausbau)		-	0,0	0,0	0,0	50	0
Mineralwolle (Schrägdach)	-	-	0,0	0,0	0,0	50	0

Mineralwolle (VF)	-		0,0	0,0	0,0	50	0
Natursteinmauerwerk	75% 1.3.08 Natursteinplatte, hart, Außenbereich (Dicke 0,080 m); -	m² (208 kg/m²; 2600 kg/m³); m³	-4,0	-53,4	-68,7	50	0
Noppenbahn	6.6.03 PE-Noppenfolie zur Abdichtung (Dicke 0.00125 m)	m² (960 kg/m³); m³	-1.637,4	-23.959,3	-30.811,4	40	1
Normalbeton	1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2400 kg/m³)	-21,4	-279,0	-373,1	50	0
Ortbeton	1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2400 kg/m³)	-21,4	-279,0	-373,1	50	0
Ortbetondecke	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
OSB-Platte	3.2.04 Oriented Strand Board (Durchschnitt DE)	m³ (600 kg/m³)	-369,9	-7.810,6	88,0	50	0
Pappe	6.6.05 Kraftpapier	m² (0,08 kg/m² mit 800 kg/m³); m³	-579,0	-6.234,3	-8.018,8	50	0
PE-Folie Bodenplatte	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m² (0.2 kg/m² mit 930 kg/m³); m³	-1.276,2	-18.675,1	-24.016,1	50	0
PE-Folie Dach	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m² (0.2 kg/m² mit 930 kg/m³); m³	-1.276,2	-18.675,1	-24.016,1	30	1
PE-Folie Decke	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m² (0.2 kg/m² mit 930 kg/m³); m³	-1.276,2	-18.675,1	-24.016,1	50	0
PE-Folie Wand	6.6.03 Dampfbremse PE (Dicke 0,0002 m)	m ² (0.2 kg/m ² mit 930 kg/m ³); m ³	-1.276,2	-18.675,1	-24.016,1	50	0
PE-HD-Flächenabdichtung	6.6.03 PE-HD mit PP-Vlies zu Abdichtung	m² (1.3 kg/m²; ca. 1067 kg/m³); m³	-1.798,9	-26.323,6	-33.852,0	40	1
Polystyroldämmung Decke und Boden, EPS, WLS 040	2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeter- dämmung B/P-040	m³ (18.5 kg/m³)	-32,1	-490,0	-536,8	50	0
Polystyroldämmung Decke und Boden, EPS, WLS 035	2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeter- dämmung B/P-035	m³ (25.9 kg/m³)	-45,2	-690,0	-756,0	50	0
Polystyroldämmung Flachdach, EPS 035	2.2.01 EPS-Hartschaum (Styropor ®) für Decken/Böden und als Perimeter- dämmung B/P-035	m³ (25.9 kg/m³)	-45,2	-690,0	-756,0	50	0
Polystyroldämmung Wand und Dach, EPS	2.2.01 EPS-Hartschaum (Styropor ®) für Wände und Dächer W/D-040	m³ (18.0 kg/m³)	-31,3	-477,0	-522,7	50	0
Polystyroldämmung, XPS (AW)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	-49,5	-724,5	-931,6	50	0
Polystyroldämmung, XPS (BO)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	-49,5	-724,5	-931,6	50	0
Polystyroldämmung, XPS (DA)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	-49,5	-724,5	-931,6	50	0
Polystyroldämmung, XPS (KW)	2.3.01 XPS-Dämmstoff	m³ (32 kg/m³)	-49,5	-724,5	-931,6	40	1
Porenbeton	1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	-1,0	-12,9	-16,6	50	0
Porenbeton P2 04 (99,2/0,8)	99.2% 1.3.03 Porenbeton P2 04 unbewehrt	m³ (380 kg/m³)	-0,8	-10,3	-13,3	50	0
Porenbeton P4 05 (95/5)	95% 1.3.03 Porenbeton P4 05 unbewehrt	m³ (380 kg/m³)	-0,9	-12,3	-15,8	50	0
Profilbretter	3.3.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
PVC-Dachbahn	6.3.02 PVC-Dachbahnen (Dicke 0.0012 m)	m² (1250 kg/m³); m³	-834,1	-12.226,5	-15.672,3	20	2
Reetdach	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	30	1
Sand/Lehm/Schlacke	34% 1.2.01 Sand 0/2 getrocknet; 33% 1.4.04 Lehmputz	kg (1350 kg/m³); m³ (900 kg/m³); m ³	-2,2	-31,0	-38,4	50	0

Sandschüttung	1.2.01 Sand 0/2 getrocknet	kg (1350 kg/m³); m³	-2,8	-37,0	-47,6	50	0
Sauberkeitsschicht	1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2400 kg/m³)	-21,4	-279,0	-373,1	50	0
Schalsteine mit Betonfüllung B15	51% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; 49% 1.3.05 Beton-Mauersteine	m³ (2400 kg/m³); m³ (2000 kg/m³)	-12,9	-169,2	-224,8	50	0
Schalung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Schaumglas	2.6.01 FOAMGLAS® W+F und FOAMGLAS® T3+	kg (100.0 kg/m³); m³	-1,0	-21,9	-22,8	50	0
Schaumpolystyrol-Gefällebeton	2.2.01 Schüttung aus Polystyrolschaumstoff-Partikeln (zementgebunden)	m³ (350 kg/m³)	-43,3	-634,0	-815,2	50	0
Schiefer/Ziegel/Biber	20% 1.3.09 Schiefer; 80% 1.3.10 Dachziegel	m² (30kg/m²; 2727 kg/m³); m² (63.75 kg/m²; 2180 kg/m³); m³	-3,6	-48,7	-62,6	50	0
Schiefersplitt in Bitumenemulsion	-	-	0,0	0,0	0,0	20	2
Schieferverkleidung	1.3.09 Schiefer	m² (30kg/m²; 2727 kg/m³); m³	-5,6	-74,7	-96,1	50	0
Schilfrohrmatte	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	50	0
Schilfrohrträger	2.23.01 FASBA e.V. Baustroh 100 kg/m³	m³ (100 kg/m³)	0,0	0,0	0,0	50	0
Schlackenschüttung/-füllung	-	-	0,0	0,0	0,0	50	0
Schrägdachdämmung (unspezifisch)	-; 50% 2.2.01 EPS-Hartschaum (Styropor ®) für Wände und Dächer W/D-040	-	-15,7	-238,5	-261,4	50	0
Schutzvlies, 300 g/m²	6.6.04 PE/PP-Vlies	m² (0.5 kg/m²; 396 kg/m³); m³	-675,4	-9.883,2	-12.709,7	30	1
Schüttung, Perlite 0-3	-	-	0,0	0,0	0,0	50	0
Schüttung, Porenbetongranulat	1.3.03 Porenbeton Granulat	m³ (400 kg/m³)	-0,8	-11,0	-14,1	50	0
Schwerbeton	1.3.05 Betonfertigteil Wand 12 cm	m² (291.3 kg/m²; 2427.5 kg/m³); m³	-4,9	-65,4	-84,0	50	0
Schwimmender Estrich	-	-	0,0	0,0	0,0	50	0
Sichtbeton	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
Spalierlatten	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Sparren	3.1.02 Konstruktionsvollholz (Durchschnitt DE)	m³ (492.92 kg/m³)	-377,9	-5.081,7	1.457,8	50	0
Sparschalung	3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE) thermische Verwertung (Standardszenario)	m³ (484.51 kg/m³)	-375,0	-4.988,9	1.468,2	50	0
Spanplatten	3.2.06 Spanplatte (Durchschnitt)	m³ (mit 633.31 kg/m³)	-2,9	-5.619,2	-7.303,4	50	0
Stahlbeton	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
Stahlbeton B15-B25 (98/2)	98% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-21,0	-273,4	-365,6	50	0
Stahlbeton B15-B25 (97/3)	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
Stahlbeton B15-B25 (96/4)	96% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,5	-267,8	-358,2	50	0
Stahlbeton B15-B25 (95/5)	95% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,3	-265,1	-354,4	50	0
Stahlbeton B20 (66/4)	66% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-14,1	-184,1	-246,2	50	0
Stahlbeton C20/25 (99/1)	99% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-21,2	-276,2	-369,4	50	0

Stahlbeton C30/37 (98/2)	98% 1.4.01 Beton der Druckfestigkeitsklasse C 30/37; -	m³ (2400 kg/m³)	-21,0	-273,4	-365,6	50	0
Stahlbetondecke	97% 1.4.01 Beton der Druckfestigkeitsklasse C 20/25; -	m³ (2400 kg/m³)	-20,8	-270,6	-361,9	50	0
Stahlprofil	4.1.03 Stahlprofil	kg (7850 kg/m³); m³	-1.750,5	-13.237,8	-11.727,4	50	0
Stampfbeton B5-B20	1.4.01 Beton der Druckfestigkeitsklasse C 20/25	m³ (2400 kg/m³)	-21,4	-279,0	-373,1	50	0
Steinkohleschlacke		-	0,0	0,0	0,0	50	0
-		-	0,0	0,0	50,0	50	0
Strukturierte Trennlage (Kunststofffaservlies)	6.6.04 PE/PP-Vlies	m² (0.5 kg/m²; 396 kg/m³); m³	-675,4	-9.883,2	-12.709,7	50	0
Trockenestrich		-	0,0	0,0	0,0	50	0
Unterdeckbahn	6.6.01 Unterspannbahn PE gewebeverstärkt (Dicke 0,00015 m)	m³ (262 kg/m³)	-951,5	-13.922,7	-17.904,4	40	1
Vegetationssubstrat, 750 kg/m³	1.3.19 Vegetationssubstrat	kg (750 kg/m³); m³	-1,5	-20,6	-26,4	30	1
Verbundestrich	-	-	0,0	0,0	0,0	50	0
Vergussbeton B5	-	•	0,0	0,0	0,0	50	0
Vollziegel	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-5,3	-76,9	-84,1	50	0
Vollziegel/Mörtel	75% 1.3.02 Mauerziegel	m³ (575 kg/m³)	-5,3	-76,9	-84,1	50	0
Vorhangfassade (Annahme: Laubholz, natur)	3.1.01 Laubschnittholz - getrocknet - therm. Verwertung	m³ (761.6 kg/m³)	-601,9	-7.982,3	2.357,4	40	1
Vorhangfassade (Faserzementplatten)	-	-	0,0	0,0	0,0	50	0
Vorhangfassade (Holzverschalung, lackiert)	99,6 % 3.1.01 Nadelschnittholz - getrocknet (Durchschnitt DE); 0,4 % 5.6.02 Lacksysteme Holzfassade halb-pigmentiert	m³ (mit 484.51 kg/m³); kg (mit 1040 kg/m³)	-374,5	-4.984,9	1.442,1	40	1
Vormauerschale (Kalksand-Vollstein)	-	-	0,0	0,0	0,0	50	0
Vormauerziegel	75% 1.3.02 Vormauerziegel	m³ (1800 kg/m³)	-2,8	-37,0	-47,6	50	0
WDG, zweifach	7.2.01 Isolierglas 2-Scheiben	m² (20.5 kg/m²)	-0,7	-10,3	-13,2	30	1
WDG, dreifach	7.2.01 Dreifachverglasung (Dicke: 0,036 m)	m² (30 kg/m² mit 833.3 kg/m³)	-1,4	-20,6	-26,5	30	1
WDVS Verklebung und Beschichtung		-	0,0	0,0	0,0	30	1
WDVS Verklebung und Beschichtung, nach		_	0,0	0,0	0,0	50	0
Sanierung innenliegend			0,0	0,0	0,0		Ü
Winddichtheitsbahn	6.6.01 Unterspannbahn PE gewebeverstärkt (Dicke 0,00015 m)	m³ (262 kg/m³)	-951,5	-13.922,7	-17.904,4	40	1
Zellulosefaser-Einblasdämmung	2.11.01 Zellulose-Einblas-Dämmung	m³ (45 kg/m³)	-30,5	-420,8	-541,3	50	0
Zementestrich	-	-	0,0	0,0	0,0	50	0
Ziegel/Mörtel	75% 1.3.02 Mauerziegel; -	m ³ (575 kg/m ³)	-5,3	-76,9	-84,1	50	0
Ziegelmauerwerk	75% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-5,3	-7,1	-76,9	50	0
Ziegelmauerwerk Fundament	75% 1.3.02 Mauerziegel; -	m³ (575 kg/m³)	-5,3	-76,9	-84,1	50	0
Ziegelpflaster	75% 1.3.02 Vormauerziegel; -	m³ (1800 kg/m³)	-2,8	-37,0	-47,6	50	0
Ziegelsplittbeton	1.3.05 Beton-Mauersteine	m³ (2000 kg/m³)	-4,1	-54,8	-70,5	50	0
Zinkblech	4.1.04 Stahl Feinblech (20µm bandverzinkt)	kg (7850 kg/m³); m³	-12.373,1	-93.570,4	-82.893,9	40	1

A.6 Übersichtstabellen über die baualterspezifischen Umweltwirkungen je Altbaukonstruktion

Hier finden sich je Bauteil im Altbau die Tabellen zu den baualtersklassenbezogenen minimal und maximal auftretenden Umweltwirkungen. Die Umweltwirkungen sind separat nach den Phasen A1 bis A3, B4, C3, C4, D und D aus B4 ("DofB4") ausgegeben. Die Tabellen können als csv-Dateien abgespeichert und so in Softwarelösungen importiert werden, um auf deren Grundlage automatisierte Lebenszyklusanalysen für verschiedene Baumaßnahmen durchzuführen. Das GWP ist in kg CO₂-Äq./m²_{Bauteil}, das PET und PENRT sind in MJ/ m²_{Bauteil} ausgewiesen. Sind in einer Baualtersklasse keine Werte vorhanden, ist dies mit "n.v." (nicht vorhanden) vermerkt.

Die Nennung der Bauteile erfolgt in alphabetischer Reihenfolge:

- BP_old
- CFLmas_old
- CFLwood old
- CW_old
- EW2shelled_old
- EWcwf_old
- EWmas_old
- EWwood_old
- F_old
- FLmas_old
- FLwood old
- FROmas_old
- FROwood_old
- SW2shelled_old
- SWcwf_old
- SWmas_old
- SWwood_old
- IWmas_old
- IWwood_old
- PRO_old
- SCW_old
- TFLmas_old
- TFLwood_old
- Walu_old

- Wplas_old
- Wwood_old

Tabelle A. 11: Bodenplatte Altbau – BP_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

iciiui ig			
Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m²]
1_A1A3_min	-26,3	31,7	407,6
1_A1A3_max	65,6	754,0	815,7
2_A1A3_min	-26,3	31,7	407,6
2_A1A3_max 3_A1A3_min	54,9 42,4	320,0 343,3	387,6
3_A1A3_max	71,8	609,6	387,9 833,5
4_A1A3_min	42,4	343,3	387,9
4_A1A3_max	66,8	622,6	903,1
5_A1A3_min	42,4	343,3	387,9
5_A1A3_max	63,1	614,1	915,4
6_A1A3_min	42,4	343,3	387,9
6_A1A3_max 7_A1A3_min	410,1 42,4	3890,5	5279,5
7_A1A3_IIIII 7_A1A3_max	410,1	343,3 3890,5	387,9 5279,5
8_A1A3_min	42,4	343,3	387,9
8_A1A3_max	66,9	742,0	913,5
9_A1A3_min	78,5	560,1	698,3
9_A1A3_max	204,7	1695,0	2233,4
10_A1A3_min	78,5	560,1	698,3
10_A1A3_max	206,6	1751,7 560,1	2293,7
11_A1A3_min 11_A1A3_max	78,5 208,1	1794,3	698,3 2339,0
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min 4 B4 50a max	0,0 0,0	0,0 0,0	0,0 0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min 8_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	0,0	0,0	0,0
11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min 1_C3_max	29,0 3,4	2,1 54,8	-301,6 62,0
2_C3_min	29,0	2,1	-301,6
2_C3_max	1,0	12,6	15,9
3_C3_min	2,6	41,7	47,4
3_C3_max	4,0	11,5	14,6
4_C3_min	2,6	41,7	47,4
4_C3_max 5_C3_min	10,4 2,6	11,7	14,9 47,4
5_C3_max	13,5	41,7 11,0	14,0
6_C3_min	2,6	41,7	47,4
6_C3_max	7,8	109,4	132,9
7_C3_min	2,6	41,7	47,4
7_C3_max	7,8	109,4	132,9
8_C3_min	2,6	41,7	47,4
8_C3_max 9_C3_min	7,8	42,2 19,6	48,0 24,8
9_C3_max	2,3 16,8	43,6	24,6 55,1
10_C3_min	2,3	19,6	24,8
10_C3_max	19,2	44,0	55,5
11_C3_min	2,3	19,6	24,8
11_C3_max	20,9	44,2	55,8
1_C4_min 1 C4 max	0,0	0,0 8,6	0,0
1_C4_max 2_C4_min	0,6 0,0	0,0	9,7 0,0
2_C4_max	2,2	31,5	35,7
3_C4_min	1,3	18,4	20,8
3_C4_max	1,8	26,3	29,7
4_C4_min	1,3	18,4	20,8
4_C4_max	1,4	21,0	23,8
5_C4_min 5_C4_max	1,3 1,4	18,4 21,0	20,8 23,8
6_C4_min	1,4	18,4	20,8
6_C4_max	1,3	18,4	20,8
7_C4_min	1,3	18,4	20,8
7_C4_max	1,3	18,4	20,8
8_C4_min	1,3	18,4	20,8
8_C4_max	1,3	18,4	20,8
9_C4_min	3,0	26,4	29,9
9_C4_max 10_C4_min	2,7 3,0	39,4 26,4	44,6 29,9
10_C4_min 10_C4_max	3,0 2,7	26,4 39,4	29,9 44,6
11_C4_min	3,0	26,4	29,9
11_C4_max	2,7	39,4	44,6
1_D_min	-13,6	-181,6	53,0

1_D_max -2,9 -38,5 -50	
2_D_min -13,6 -181,6 53,	
2_D_max -3,4 -44,6 -59	
3_D_min -2,7 -35,5 -47	
3_D_max -4,3 -52,8 -69	
4_D_min -2,7 -35,5 -47	
4_D_max -6,5 -77,1 -10 ⁻¹	
5_D_min -2,7 -35,5 -47	
5_D_max -7,5 -86,5 -113	3,2
6_D_min -2,7 -35,5 -47	',1
6_D_max -21,1 -275,4 -368	3,0
7_D_min -2,7 -35,5 -47	',1
7_D_max -21,1 -275,4 -368	3,0
8_D_min -2,7 -35,5 -47	,1
8_D_max -5,2 -71,7 -93	,6
9_D_min -6,3 -84,6 -110	0,5
9_D_max -16,3 -225,2 -297	7,4
10_D_min -6,3 -84,6 -110	0,5
10_D_max -17,3 -239,7 -316	3,0
11_D_min -6,3 -84,6 -110	0,5
11_D_max -18,1 -250,6 -330	0,0
1_DofB4_min 0,0 0,0 0,0	0
1_DofB4_max 0,0 0,0 0,0	0
2_DofB4_min 0,0 0,0 0,0	0
2_DofB4_max 0,0 0,0 0,0	0
3_DofB4_min 0,0 0,0 0,0	0
3_DofB4_max 0,0 0,0 0,0	0
4_DofB4_min 0,0 0,0 0,0	0
4_DofB4_max 0,0 0,0 0,0	0
5_DofB4_min 0,0 0,0 0,0	0
5_DofB4_max 0,0 0,0 0,0	
6_DofB4_min 0,0 0,0 0,0	0
6_DofB4_max 0,0 0,0 0,0	0
7_DofB4_min 0,0 0,0 0,0	0
7_DofB4_max 0,0 0,0 0,0	0
8_DofB4_min 0,0 0,0 0,0	0
8_DofB4_max 0,0 0,0 0,0	0
9_DofB4_min 0,0 0,0 0,0	0
9_DofB4_max 0,0 0,0 0,0	0
10_DofB4_min 0,0 0,0 0,0	0
10_DofB4_max 0,0 0,0 0,0	0
11_DofB4_min 0,0 0,0 0,0	
	0

Tabelle A. 12: Kellerdecke in Massivbauweise, Altbau – CFLmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	-41,2	158,1	901,0
1_A1A3_max	-40,3	158,9	825,9
2_A1A3_min	-50,2	61,7	779,2
2_A1A3_max	-40,3	162,2	900,2
3_A1A3_min	-50,2	61,7	779,2
3_A1A3_max	-40,3	162,2	900,2
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max	n.v.	n.v.	n.v.
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min	n.v.	n.v.	n.v.
7_A1A3_max	n.v.	n.v.	n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	-28,8	455,4	1166,3
9_A1A3_max	-114,9	903,4	3624,3
10_A1A3_min	-28,8	455,4	1166,3
10_A1A3_max	-114,9	903,4	3624,3
11_A1A3_min	-29,5	456,2	1174,7
11_A1A3_max	-115,8	912,5	3651,7
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	10,4	89,3	111,4
9_B4_50a_max	10,4	89,3	111,4
10_B4_50a_min	10,4	89,3	111,4
10_B4_50a_max	10,4	89,3	111,4

11_B4_50a_min 11_B4_50a_max	10,4 10,4	89,3 89,3	111,4 111,4
1_C3_min	24,5	7,3	-255,2
1_C3_max	19,1	17,5	-180,0
2_C3_min	27,2	11,3	-278,0
2_C3_max	1,0	12,5	15,7
3_C3_min 3_C3_max	21,6 10,4	9,4 11,7	-222,2 14,5
4_C3_min	21,6	9.4	-222.2
4_C3_max	10,4	11,7	14,5
5_C3_min	19,9	27,9	-77,6
5_C3_max	10,4	11,7	14,5
6_C3_min	0,9	12,0	14,8
6_C3_max	9,0	14,6	18,5
7_C3_min	0,9	12,0	14,8
7_C3_max	9,0	14,6	18,5
8_C3_min	6,2	15,9	19,4
8_C3_max 9_C3_min	9,0 1,0	14,6 15,1	18,5 18,5
9_C3_max	22,0	18,8	23,8
10_C3_min	1,0	15,5	18,9
10_C3_max	28,7	18,9	23,9
11_C3_min	1,0	15,9	19,3
11_C3_max	33,7	18,9	24,0
1_C4_min	0,7	10,9	12,3
1_C4_max	2,2	31,6	35,8
2_C4_min	0,9	13,1	14,8
2_C4_max	2,2	31,5	35,7
3_C4_min 3_C4_max	0,9 1,8	13,1 26.3	14,8 29,5
3_C4_max 4_C4_min	0,9	26,3 13,1	29,5 14,8
4_C4_max	1,8	26,3	29,5
4_C4_max 5_C4_min	1,6	22,8	25,8
5_C4_max	1,8	26,3	29,5
6_C4_min	0,9	13,4	15,2
6_C4_max	1,5	21,4	24,2
7_C4_min	0,9	13,4	15,2
7_C4_max	1,5	21,4	24,2
8_C4_min	2,6	22,2	25,1
8_C4_max	1,5	21,4	24,2
9_C4_min	0,9	12,7	14,4
9_C4_max	3,2	47,1	53,3
10_C4_min 10_C4_max	0,9 3,2	12,8 47,1	14,5 53,3
11_C4_min	0,9	12,9	14,6
11_C4_max	3,2	47,1	53,3
1 D min	-12,3	-164,8	37,7
1_D_max	-11,9	-158,7	-14,5
2_D_min	-13,6	-182,6	40,7
2_D_max	-3,4	-44,2	-59,1
3_D_min	-11,1	-149,3	29,3
3_D_max	-6,1	-71,5 -149,3	-93,7
4_D_min 4_D_max	-11,1 -6,1	-71,5	29,3 -93,7
5 D min	-8,2	-101,3	-27,8
5_D_max	-6,1	-71,5	-93,7
6_D_min	-2,9	-37,9	-50,7
6_D_max	-6,7	-81,3	-107,1
7_D_min	-2,9	-37,9	-50,7
7_D_max	-6,7	-81,3	-107,1
8_D_min	-6,0	-81,9	-105,9
8_D_max	-6,7	-81,3	-107,1
9_D_min 9_D_max	-3,4 -10,6	-44,2 -161,6	-59,1 -211,2
9_D_max 10 D min	-10,6 -3,4	-161,6 -44,2	-211,2 -59,1
10_D_max	-3,4 -12,4	-192,4	-250,8
11_D_min	-3,4	-44,2	-59,1
11_D_max	-13,7	-215,4	-280,5
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max 4_DofB4_min	0,0 0,0	0,0 0,0	0,0 0,0
4_DofB4_min 4 DofB4 max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	0,0	0,0	0,0
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	0,0	0,0	0,0
10_DofB4_min 10_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
10_DofB4_max 11_DofB4_min	0,0	0,0	0,0
11_DofB4_max	0,0	0,0	0,0
	٠,٠	0,0	٥,٠

Tabelle A. 13: Kellerdecke- in Holzbauweise, Altbau – CFLwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min 1 A1A3 max	-4,2	150,1	500,7
1_A1A3_max 2_A1A3_min	41,1 -2,8	395,2	717,8
2_A1A3_IIIII 2_A1A3_max	63,2	178,8 429,1	568,6 543,9
3 A1A3 min	3,5	194,2	512,2
3 A1A3 max	82,2	978,9	1352.8
4_A1A3_min	3,5	194,2	512,2
4_A1A3_max	82,2	978,9	1352,8
5_A1A3_min	47,9	390,2	689,2
5_A1A3_max	82,2	978,9	1352,8
6_A1A3_min	55,1	527,5	689,5
6_A1A3_max 7 A1A3 min	90,9 55,1	871,9 527,5	1236,8 689,5
7_A1A3_max	90,9	871,9	1236,8
8_A1A3_min	78,3	771,0	1023,5
8_A1A3_max	90,9	871,9	1236,8
9_A1A3_min	53,8	455,9	581,1
9_A1A3_max	109,6	1011,4	1491,7
10_A1A3_min	54,4	463,1	589,5
10_A1A3_max	105,9	1047,8	1601,1
11_A1A3_min	55,0	470,3	597,9
11_A1A3_max 1 B4 50a min	103,2	1075,2	1683,2
1_B4_50a_min 1_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	n.v.	n.v.	n.v.
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min 5_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_max 6_B4_50a_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_B4_50a_min	n.v.	n.v.	n.v.
7 B4 50a min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max 11_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min	51,6	9,4	-526,8
1_C3_max	52,7	26,9	-507,4
2_C3_min	55,6	8,9	-569,8
2_C3_max	55,6	9,7	-569,0
3_C3_min	55,6	8,9	-569,8
3_C3_max	55,6	9,7	-569,0
4_C3_min 4_C3_max	n.v. n.v.	n.v.	n.v.
4_C3_max 5_C3_min	n.v.	n.v. n.v.	n.v. n.v.
5_C3_max	n.v.	n.v.	n.v.
6_C3_min	n.v.	n.v.	n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min	n.v.	n.v.	n.v.
8_C3_max 9 C3 min	n.v. 53 3	n.v. -9,1	n.v. -520.1
9_C3_max	53,3 198,0	-9, i -3,8	-520,1 -1987,4
10_C3_min	53,3	-9,1	-520,1
10_C3_max	198,0	-3,8	-1987,4
11_C3_min	54,2	-9,1	-520,1
11_C3_max	199,7	-3,8	-1987,4
1_C4_min	0,5	0,0	-5,7
1_C4_max	0,0	0,0	0,0
2_C4_min 2_C4_max	0,0 0,0	0,0 0,0	0,0 0,0
2_C4_max 3 C4 min	0,0	0,0	0,0
3_C4_max	0,0	0,0	0,0
4_C4_min	n.v.	n.v.	n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min	n.v.	n.v.	n.v.
5_C4_max	n.v.	n.v.	n.v.
6_C4_min	n.v.	n.v.	n.v.
6_C4_max	n.v.	n.v.	n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max 8 C4 min	n.v. n.v.	n.v. n.v.	n.v. n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	0,5	7,0	7,9
9_C4_max	3,1	44,9	50,8
10_C4_min	0,5	7,0	7,9
10_C4_max	3,1	44,9	50,8
11_C4_min	0,5	7,0	7,9
_11_C4_max	3,1	44,9	50,8

A.6	Übersichtstabellen	über	die	baualterspezifischen	Umweltwirkungen	je
Δltha	ukonstruktion					

1_D_min	-24,5	-327,0	86,6
1_D_max	-24,4	-326,3	87,1
2_D_min	-25,9	-346,5	101,1
2_D_max	-26,4	-352,4	93,9
3_D_min	-25,9	-346,5	101,1
3_D_max	-26,4	-352,4	93,9
4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v.	n.v.	n.v.
5_D_min	n.v.	n.v.	n.v.
5_D_max	n.v.	n.v.	n.v.
6_D_min	n.v.	n.v.	n.v.
6_D_max	n.v.	n.v.	n.v.
7_D_min	n.v.	n.v.	n.v.
7_D_max	n.v.	n.v.	n.v.
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	-21,3	-381,1	4,1
9_D_max	-86,5	-1316,2	212,6
10_D_min	-21,3	-381,1	4,1
10_D_max	-86,5	-1316,2	212,6
11_D_min	-21,6	-384,9	-0,8
11_D_max	-86,9	-1323,8	202,7
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	n.v.	n.v.	n.v.
4_DofB4_max	n.v.	n.v.	n.v.
5_DofB4_min	n.v.	n.v.	n.v.
5_DofB4_max	n.v.	n.v.	n.v.
6_DofB4_min	n.v.	n.v.	n.v.
6_DofB4_max	n.v.	n.v.	n.v.
7_DofB4_min	n.v.	n.v.	n.v.
7_DofB4_max	n.v.	n.v.	n.v.
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	0,0	0,0	0,0
10_DofB4_min	0,0	0,0	0,0
10_DofB4_max	0,0	0,0	0,0
11_DofB4_min	0,0	0,0	0,0
11_DofB4_max	0,0	0,0	0,0
	,	,	•

Tabelle A. 14: Kelleraußenwand Altbau – CW_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1 A1A3 min	50,5	341,8	411,7
1 A1A3 max	131,7	876,8	1070,7
2 A1A3 min	75,2	505,8	609,6
2_A1A3_max	107,0	712,9	872,8
3 A1A3 min	48,6	329,2	396,5
3_A1A3_max	108,9	1046,0	1447,6
4 A1A3 min	48,6	329,2	396,5
4 A1A3 max	108,9	1046,0	1447,6
5_A1A3_min	48,6	329,2	396,5
5 A1A3 max	108,9	1046,0	1447,6
6_A1A3_min	57,7	511,5	696,1
6_A1A3_max	88,7	621,5	773,9
7_A1A3_min	57,7	511,5	696,1
7_A1A3_max	116,0	1127,1	1484,7
8_A1A3_min	86,6	450,7	567,1
8_A1A3_max	116,0	1127,1	1484,7
9_A1A3_min	50,2	447,0	548,2
9_A1A3_max	116,2	1160,5	1326,8
10_A1A3_min	50,2	447,0	548,2
10_A1A3_max	118,2	1217,3	1387,2
11_A1A3_min	50,2	447,0	548,2
_11_A1A3_max	119,6	1259,9	1432,5
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	7,7	51,0	74,3
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	7,7	51,0	74,3
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	7,7	51,0	74,3
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	7,7	51,0	74,3
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	7,7	51,0	74,3
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	7,7	51,0	74,3
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	20,5	222,4	256,6
8_B4_50a_min	7,7	51,0	74,3
8_B4_50a_max	20,5	222,4	256,6
9_B4_50a_min	8,4	129,2	135,5
9_B4_50a_max	38,8	492,6	540,4
10_B4_50a_min	8,4	129,2	135,5

10_B4_50a_max	43,1	549,7	601,1
11_B4_50a_min	8,4	129,2	135,5
11_B4_50a_max	46,3 -1,9	592,6	646,7 5.6
1_C3_min 1_C3_max	-1,9 -4,8	5,3 13,6	14,3
2_C3_min	-2,9	8,1	8,5
2_C3_max 3 C3 min	-3,8 -1,8	10,8 5,1	11,4 5,4
3_C3_max	1,3	16,9	21,3
4_C3_min	-1,8	5,1	5,4
4_C3_max 5_C3_min	1,3 -1,8	16,9 5,1	21,3 5,4
5_C3_max	1,3	16,9	21,3
6_C3_min	1,0	13,2	16,7
6_C3_max 7 C3 min	0,9 1,0	15,3 13,2	16,9 16,7
7_C3_min 7_C3_max	8,8	24,0	30,2
8_C3_min	3,5	54,6	62,8
8_C3_max	8,8	24,0	30,2
9_C3_min 9_C3_max	5,3 18,9	16,3 34,9	20,5 38,3
10_C3_min	5,3	16,3	20,5
10_C3_max 11_C3_min	21,2 5,3	35,2 16,3	38,7 20,5
11_C3_max	23,0	35,5	20,5 39,1
1_C4_min	2,1	30,5	34,5
1_C4_max	5,6	81,4	92,0
2_C4_min 2_C4_max	3,1 4,6	44,8 67,1	50,7 75,8
3_C4_min	2,0	29,4	33,2
3_C4_max	0,7	10,8	12,3
4_C4_min 4_C4_max	2,0 0,7	29,4 10,8	33,2 12,3
5_C4_min	2,0	29,4	33,2
5_C4_max	0,7	10,8	12,3
6_C4_min 6 C4 max	0,0 3,4	0,0 49,9	0,0 56,4
7_C4_min	0,0	0,0	0,0
7_C4_max	0,7	10,8	12,3
8_C4_min 8_C4_max	0,7 0,7	10,8 10,8	12,3 12,3
9_C4_min	0,0	0,3	0,3
9_C4_max	1,4	19,9	22,5
10_C4_min 10_C4_max	0,0 1,4	0,3 19,9	0,3 22,5
10_C4_min	0,0	0,3	0,3
11_C4_max	1,4	19,9	22,5
1_D_min 1 D max	-1,3 -3,4	-19,2 -49,2	-21,0 -53,8
2_D_min	-2,0	-29,2	-32,0
2_D_max	-2,7	-39,2	-42,9
3_D_min 3_D_max	-1,3 -4,6	-18,5 -59,9	-20,2 -80,1
4_D_min	-1,3	-18,5	-20,2
4_D_max	-4,6	-59,9	-80,1
5_D_min 5_D_max	-1,3 -4,6	-18,5 -59,9	-20,2 -80,1
6_D_min	-3,6	-46,8	-62,6
6_D_max	-0,3	-3,8	-4,8
7_D_min 7_D_max	-3,6 -9,2	-46,8 -124,7	-62,6 -164,5
8_D_min	-4,7	-61,7	-82,1
8_D_max	-9,2	-124,7	-164,5
9_D_min 9_D_max	-6,3 -7,7	-85,2 -112,9	-112,4 -145,2
10_D_min	-6,3	-85,2	-112,4
10_D_max	-8,7	-127,4	-163,8
11_D_min 11_D_max	-6,3 -9,4	-85,2 -138,3	-112,4 -177,8
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min 2_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min 4_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min 6_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	-3,0	-43,5	-55,9
8_DofB4_min 8_DofB4_max	0,0 -3,0	0,0 -43,5	0,0 -55.9
8_DofB4_max 9_DofB4_min	-3,0 -2,0	-43,5 -29,9	-55,9 -38,5
9_DofB4_max	-7,7	-112,9	-145,2
10_DofB4_min 10_DofB4_max	-2,0 -8,7	-29,9 -127,4	-38,5 -163,8
10_DofB4_max 11_DofB4_min	-0,7 -2,0	-127,4 -29,9	-165,6 -38,5
11_DofB4_max	-9,4	-138,3	-177,8

Tabelle A. 15: 2-schalige Außenwand, Altbau – EW2shelled_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
1 A1A3 min	50,5	347,5	418,8
1_A1A3_max	92,2	1008,6	1127,0
2_A1A3_min	50,5	347,5	418,8
2_A1A3_max	101,0	1062,4	1192,1
3_A1A3_min	50,5	347,5	418,8
3_A1A3_max	123,7	761,2	911,6
4_A1A3_min	50,5	347,5	418,8
4_A1A3_max	123,2	1080,5	1235,4
5_A1A3_min 5_A1A3_max	50,5 114,9	347,5 1099,1	418,8 1238,9
6_A1A3_min	51,0	301,7	414,1
6_A1A3_max	80,7	784,8	1014,8
7 A1A3 min	51,0	301,7	414,1
7_A1A3_max	80,7	784,8	1014,8
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	n.v.	n.v.	n.v.
9_A1A3_max	n.v.	n.v.	n.v.
10_A1A3_min 10_A1A3_max	n.v.	n.v.	n.v.
11_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_A1A3_max	n.v.	n.v.	n.v.
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	5,8	38,3	55,7
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	5,8	38,3	55,7
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	5,8	38,3	55,7
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	5,8	38,3	55,7
5_B4_50a_min 5_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
6_B4_50a_min	0,0	0,0	0,0
6 B4 50a max	0,0	0,0	0,0
7 B4 50a min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	n.v.	n.v.	n.v.
9_B4_50a_max	n.v.	n.v.	n.v.
10_B4_50a_min	n.v.	n.v.	n.v.
10_B4_50a_max	n.v.	n.v.	n.v.
11_B4_50a_min	n.v.	n.v.	n.v.
11_B4_50a_max 1_C3_min	n.v. -2,0	n.v. 5,7	n.v. 6,0
1_C3_max	0,0	23,1	25,5
2_C3_min	-2,0	5,7	6,0
2_C3_max	-0,3	24,0	26,3
3_C3_min	-2,0	5,7	6,0
3_C3_max	1,6	30,6	33,3
4_C3_min	-2,0	5,7	6,0
4_C3_max	4,5	74,5	82,6
5_C3_min	-2,0	5,7	6,0
5_C3_max	2,0	32,5	36,0
6_C3_min	7,9	30,1	35,3
6_C3_max	1,4	18,6	22,9
7_C3_min 7_C3_max	7,9 1,4	30,1 18,6	35,3 22,9
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	n.v.	n.v.	n.v.
9_C3_max	n.v.	n.v.	n.v.
10_C3_min	n.v.	n.v.	n.v.
10_C3_max	n.v.	n.v.	n.v.
11_C3_min	n.v.	n.v.	n.v.
11_C3_max	n.v.	n.v.	n.v.
1_C4_min	2,0	28,5	32,2 38,5
1_C4_max 2_C4_min	2,3 2,0	34,1 28,5	38,5 32,2
2_C4_min 2_C4_max	2,0	20,5 40,1	32,2 45,3
3_C4_min	2,0	28,5	32,2
3_C4_max	3,6	52,3	59,1
4_C4_min	2,0	28,5	32,2
4_C4_max	1,4	20,2	22,8
5_C4_min	2,0	28,5	32,2
5_C4_max	1,0	14,3	16,1
6_C4_min	0,0	0,0	0,0
6_C4_max	3,2	3,1	3,5
7_C4_min	0,0	0,0	0,0
7_C4_max	3,2	3,1	3,5
8_C4_min	n.v.	n.v.	n.v.
8_C4_max 9_C4_min	n.v. n.v.	n.v. n v	n.v. n.v.
9_C4_min 9_C4_max	n.v.	n.v. n.v.	n.v.
10_C4_min	n.v.	n.v.	n.v.
10_C4_max	n.v.	n.v.	n.v.
11_C4_min	n.v.	n.v.	n.v.
11_C4_max	n.v.	n.v.	n.v.
_			

1_D_min	-1,4	-20,6	-22,5
1_D_max	-1,2	-16,8	-19,2
2_D_min	-1,4	-20,6	-22,5
2_D_max	-1,4	-19,8	-22,4
3 D min	-1,4	-20,6	-22,5
3_D_max	0,0	0,0	0,0
4_D_min	-1,4	-20,6	-22,5
4_D_max	-1,3	-17,9	-23,0
5_D_min	-1,4	-20,6	-22,5
5 D max	-0,6	-7,6	-9,8
6_D_min	-6,0	-82,0	-107,6
6 D max	-5,6	-76,3	-96,2
7 D min	-6,0	-82,0	-107,6
7 D max	-5,6	-76,3	-96,2
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	n.v.	n.v.	n.v.
9_D_max	n.v.	n.v.	n.v.
10_D_min	n.v.	n.v.	n.v.
10_D_max	n.v.	n.v.	n.v.
11_D_min	n.v.	n.v.	n.v.
11_D_max	n.v.	n.v.	n.v.
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	n.v.	n.v.	n.v.
9_DofB4_max	n.v.	n.v.	n.v.
10_DofB4_min	n.v.	n.v.	n.v.
10_DofB4_max	n.v.	n.v.	n.v.
11_DofB4_min	n.v.	n.v.	n.v.
11_DofB4_max	n.v.	n.v.	n.v.

Tabelle A. 16: Außenwand mit Vorhang- oder hinter-/bzw. belüfteter Fassade, Altbau – EWcwf_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äg./m ²]	[MJ/m²]	[MJ/m²]
1 A1A3 min	28,9	469,3	1093,8
1 A1A3 max	28,9	469,3	1093,8
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	9,8	273,3	708,1
5_A1A3_max	74,2	590,9	865,2
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min	n.v.	n.v.	n.v.
7_A1A3_max	n.v.	n.v.	n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	91,7	600,0	805,5
9_A1A3_max	81,7	1035,5	1797,2
10_A1A3_min	91,7	600,0	805,5
10_A1A3_max	72,3	1104,2	2037,3
11_A1A3_min	91,7	600,0	805,5
_11_A1A3_max	69,9	1121,4	2097,4
1_B4_50a_min	3,1	36,3	269,6
1_B4_50a_max	3,1	36,3	269,6
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	n.v.	n.v.	n.v.
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min	1,8	25,0	71,5
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	n.v.	n.v.	n.v.
6_B4_50a_max	n.v.	n.v.	n.v.
7_B4_50a_min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,7	11,0	11,9
10_B4_50a_min	0,0	0,0	0,0

10_B4_50a_max	0,7	11,0	11,9
11_B4_50a_min 11_B4_50a_max	0,0 0,7	0,0 11,0	0,0 11,9
1_C3_min	37,6	88,7	-242,3
1 C3 max	37,6	88,7	-242,3
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min	n.v.	n.v.	n.v.
4_C3_max 5_C3_min	n.v. 35,2	n.v. 14,6	n.v. -206,4
5_C3_max	12,8	17,1	-200,4 -6,3
6 C3 min	n.v.	n.v.	n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	4,1	18,5	-10,8
9_C3_max	43,0	24,3	-80,8
10_C3_min 10_C3_max	4,1 58,1	18,5 24,7	-10,8 -112,4
11_C3_min	4,1	18,5	-10,8
11_C3_max	61,9	24,8	-120,3
1_C4_min	3,1	44,7	50,6
1_C4_max	3,1	44,7	50,6
2_C4_min	n.v.	n.v.	n.v.
2_C4_max	n.v.	n.v.	n.v.
3_C4_min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min 4 C4 max	n.v.	n.v.	n.v. n v
4_C4_max 5_C4_min	n.v. 0,1	n.v. 2,0	n.v. 2,2
5_C4_max	45,8	669,2	757,0
6_C4_min	n.v.	n.v.	n.v.
6_C4_max	n.v.	n.v.	n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	30,1	439,4	497,1
9_C4_max 10_C4_min	29,6	431,6	488,3 497,1
10_C4_max	30,1 29,6	439,4 431,6	488,3
11_C4_min	30,1	439,4	497,1
11_C4_max	29,6	431,6	488,3
1_D_min	-17,2	-227,9	33,5
1_D_max	-17,2	-227,9	33,5
2_D_min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	n.v.	n.v.	n.v.
3_D_max 4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_D_min	-18.1	-227,9	-83,2
5_D_max	-4,5	-51,4	-42,5
6_D_min	n.v.	n.v.	n.v.
6_D_max	n.v.	n.v.	n.v.
7_D_min	n.v.	n.v.	n.v.
7_D_max	n.v.	n.v.	n.v.
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	-1,7 -19.5	-23,2 -280.7	-0,3 -271.6
9_D_max 10_D_min	-19,5 -1,7	-289,7 -23,2	-271,6 -0,3
10_D_max	-24,1	-364,5	-337,5
11_D_min	-1,7	-23,2	-0,3
11_D_max	-25,3	-383,2	-353,9
1_DofB4_min	-14,4	-191,6	56,6
1_DofB4_max	-14,4	-191,6	56,6
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	n.v.	n.v.	n.v.
3_DofB4_max 4_DofB4_min	n.v.	n.v. n.v.	n.v.
4_DofB4_min	n.v. n.v.	n.v.	n.v. n.v.
5_DofB4_min	-9,0	-119,6	34,6
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	n.v.	n.v.	n.v.
6_DofB4_max	n.v.	n.v.	n.v.
7_DofB4_min	n.v.	n.v.	n.v.
7_DofB4_max	n.v.	n.v.	n.v.
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max 10_DofB4_min	-0,1 0,0	-2,1 0,0	-2,7 0,0
10_DofB4_max	-0,1	-2,1	-2,7
11 DofB4 min	0,0	0,0	0,0
11_DofB4_max	-0,1	-2,1	-2,7
TT_DOID4_IIIax	-0,1	<u></u>	

Tabelle A. 17: Massive, monolithische Außenwand, Altbau – EWmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
1_A1A3_min	40,0	269,9	325,2
1_A1A3_max	104,2	693,2	846,1
2_A1A3_min 2 A1A3 max	25,8 98,9	177,9 660,9	213,8 797,1
3 A1A3 min	25,0	221,8	301,8
3_A1A3_max	101,1	968,3	1340,0
4_A1A3_min	25,0	221,8	301,8
4_A1A3_max	101,1	968,3	1340,0
5_A1A3_min 5_A1A3_max	25,0 101,1	221,8 968,3	301,8 1340,0
6_A1A3_min	25,0	221,8	301,8
6_A1A3_max	91,4	810,2	1102,5
7_A1A3_min	25,0	221,8	301,8
7_A1A3_max 8_A1A3_min	91,4 66,5	810,2 386,4	1102,5 486,2
8_A1A3_max	79,5	530,0	652,1
9_A1A3_min	42,5	371,5	459,6
9_A1A3_max	60,1	473,8	563,1
10_A1A3_min	42,5	371,5	459,6
10_A1A3_max 11_A1A3_min	62,2 42,5	498,4 371,5	591,6 459,6
11_A1A3_max	62,2	498,4	591,6
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	5,8	38,3	55,7
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max 3 B4 50a min	0,0 0,0	0,0 0,0	0,0 0,0
3_B4_50a_max	7,7	51,0	74,3
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	7,7	51,0	74,3
5_B4_50a_min	0,0	0,0	0,0 74,3
5_B4_50a_max 6_B4_50a_min	7,7 0,0	51,0 0,0	74,3 0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min 8_B4_50a_max	7,7 7,7	51,0 51,0	74,3 74,3
9_B4_50a_min	7,7	51,0	74,3 74,3
9_B4_50a_max	15,8	154,9	187,3
10_B4_50a_min	7,7	51,0	74,3
10_B4_50a_max	18,0	181,2	217,6
11_B4_50a_min 11_B4_50a_max	7,7 18,0	51,0 181,2	74,3 217,6
1_C3_min	-1,5	4,2	4,5
1_C3_max	-3,8	10,8	11,4
2_C3_min	-0,9	2,5	2,7
2_C3_max	-3,8	10,8	11,4
3_C3_min 3 C3 max	0,4 1,2	5,7 15,6	7,2 19,6
4_C3_min	0,4	5,7	7,2
4_C3_max	1,2	15,6	19,6
5_C3_min	0,4	5,7	7,2
5_C3_max 6_C3_min	1,2 0,4	15,6 5,7	19,6 7,2
6_C3_max	1,6	20,9	26,4
7_C3_min	0,4	5,7	7,2
7_C3_max	1,6	20,9	26,4
8_C3_min	0,7	11,4	12,6
8_C3_max 9 C3 min	-2,8 -2,4	7,8 6,8	8,2 7,1
9_C3_max	0,9	19,6	21,2
10_C3_min	-2,4	6,8	7,1
10_C3_max	1,0	21,0	22,6
11_C3_min 11 C3 max	-2,4 1,0	6,8 21,0	7,1 22,6
1_C4_min	1,6	24,0	27,1
1_C4_max	4,4	64,1	72,4
2_C4_min	1,1	16,2	18,3
2_C4_max	4,0	58,2	65,7
3_C4_min 3_C4_max	0,0 0,7	0,0 10,8	0,0 12,3
4_C4_min	0,0	0,0	0,0
4_C4_max	0,7	10,8	12,3
5_C4_min	0,0	0,0	0,0
5_C4_max	0,7	10,8	12,3
6_C4_min 6_C4_max	0,0 0,0	0,0 0,0	0,0 0,0
7_C4_min	0,0	0,0	0,0
7_C4_max	0,0	0,0	0,0
8_C4_min	1,4	21,1	23,9
8_C4_max	3,5	51,1	57,7
9_C4_min 9_C4_max	0,8 0,8	11,3 11,0	12,8 12,5
10_C4_min	0,8	11,3	12,8
10_C4_max	0,8	11,4	12,8
11_C4_min	0,8	11,3	12,8
11_C4_max _	0,8	11,4	12,8

A.6 Übersichtsta Altbaukonstruktion	bellen über	die	baualterspezifischen	Umweltwirkungen	je
	1_D_min 1_D_max 2_D_min 2_D_max 3_D_min 3_D_max 4_D_min 4_D_max 5_D_min 5_D_max 6_D_min 6_D_max 7_D_min 7_D_max 8_D_min	-1,1 -2,7 -0,6 -2,7 -1,6 -4,2 -1,6 -4,2 -1,6 -4,2 -1,6 -5,7 -1,6	-15,4 -16,8 -39,2 -42,9 -9,2 -10,1 -39,2 -42,9 -20,3 -27,1 -55,1 -73,7 -20,3 -27,1 -55,1 -73,7 -20,3 -27,1 -55,1 -73,7 -20,3 -27,1 -55,1 -73,7 -20,3 -27,1 -54,2 -99,2 -20,3 -27,1 -74,2 -99,2 -20,3 -27,1 -74,2 -99,2 -28 -3,6 -28,1 -30,7		,
	9_D_min 9_D_max 10_D_min 10_D_max 11_D_min 11_D_max 1_DofB4_min 1_DofB4_max 2_DofB4_min 2_DofB4_min 3_DofB4_min 3_DofB4_max 4_DofB4_min 4_DofB4_min	-1,7 0,0 -1,7 0,0 -1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-24,5 -26,8 0,0 0,0 -24,5 -26,8 0,0 0,0 -24,5 -26,8 0,0		
	5_DofB4_min 5_DofB4_max 6_DofB4_min 6_DofB4_min 7_DofB4_min 7_DofB4_min 8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_min 10_DofB4_min 11_DofB4_min	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0 0,0		

Tabelle A. 18: Außenwand in Holzbauweise, Altbau – EWwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	-34,3	74,2	605,0
1_A1A3_max	38,0	384,0	700,2
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max	n.v.	n.v.	n.v.
6_A1A3_min	-1,0	245,6	443,7
6_A1A3_max	-1,0	245,6	443,7
7_A1A3_min	-1,0	245,6	443,7
7_A1A3_max	-1,0	245,6	443,7
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	-46,7	188,4	1124,8
9_A1A3_max	-148,2	861,9	3786,4
10_A1A3_min	-60,6	209,8	1334,4
10_A1A3_max	-167,0	999,3	4266,7
11_A1A3_min	-60,6	209,8	1334,4
_11_A1A3_max	-167,0	999,3	4266,7
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	7,7	51,0	74,3
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	n.v.	n.v.	n.v.
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min	n.v.	n.v.	n.v.
5_B4_50a_max	n.v.	n.v.	n.v.
6_B4_50a_min	1,5	115,1	117,9
6_B4_50a_max	1,5	115,1	117,9
7_B4_50a_min	1,5	115,1	117,9
7_B4_50a_max	1,5	115,1	117,9
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	3,9	47,3	281,5
9_B4_50a_max	0,7	11,0	11,9
10_B4_50a_min	3,9	47,3	281,5

10_B4_50a_max	0,7	11,0	11,9
11_B4_50a_min 11_B4_50a_max	3,9 0,7	47,3 11,0	281,5
1_C3_min	34,4	9,5	11,9 -346,3
1_C3_IIIII 1 C3 max	15,8	6,0	-340,3 -177,0
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min	n.v.	n.v.	n.v.
4_C3_max	n.v.	n.v.	n.v.
5_C3_min	n.v.	n.v.	n.v.
5_C3_max 6 C3 min	n.v. 12.3	n.v.	n.v. -139,2
6 C3 max	12,3	-9,9 -9,9	-139,2
7_C3_min	12,3	-9,9 -9,9	-139,2
7_C3_max	12,3	-9,9	-139,2
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	62,2	2,9	-506,5
9_C3_max	212,5	-3,3	-2058,3
10_C3_min	79,3	3,6	-603,5
10_C3_max	242,9	-2,6	-2121,5
11_C3_min	79,3	3,6	-603,5
11_C3_max	242,9	-2,6	-2121,5
1_C4_min	0,7	0,0	-8,0 40.4
1_C4_max 2 C4 min	2,5 n.v.	35,8 n.v.	40,4 n.v.
2_C4_max	n.v.	n.v.	n.v.
3 C4 min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min	n.v.	n.v.	n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min	n.v.	n.v.	n.v.
5_C4_max	n.v.	n.v.	n.v.
6_C4_min	0,4	5,7	6,3
6_C4_max	0,4	5,7	6,3
7_C4_min 7_C4_max	0,4 0,4	5,7 5,7	6,3 6,3
8_C4_min	n.v.	n.v.	n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	0,3	4,9	5,6
9_C4_max	29,9	435,9	493,1
10_C4_min	0,3	4,9	5,6
10_C4_max	29,9	435,9	493,1
11_C4_min	0,3	4,9	5,6
11_C4_max	29,9	435,9	493,1
1_D_min	-16,1	-216,2	58,1
1_D_max 2_D_min	-9,4 n.v.	-127,4 n.v.	12,2 n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	n.v.	n.v.	n.v.
3_D_max	n.v.	n.v.	n.v.
4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v.	n.v.	n.v.
5_D_min	n.v.	n.v.	n.v.
5_D_max	n.v.	n.v.	n.v.
6_D_min	-2,6	-81,5	-11,8
6_D_max	-2,6	-81,5	-11,8
7_D_min	-2,6	-81,5 91.5	-11,8 11.8
7_D_max 8_D_min	-2,6 n.v.	-81,5 n.v.	-11,8 n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	-27,4	-367,8	13,0
9_D_max	-91,5	-1392,2	182,2
10_D_min	-34,2	-459,4	-12,7
10_D_max	-100,8	-1541,7	50,5
11_D_min	-34,2	-459,4	-12,7
11_D_max	-100,8	-1541,7	50,5
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max 2 DofB4 min	0,0 n.v.	0,0 n.v.	0,0 n.v.
2_DofB4_min 2 DofB4 max	n.v.	n.v.	n.v.
3_DofB4_min	n.v.	n.v.	n.v.
3_DofB4_max	n.v.	n.v.	n.v.
4_DofB4_min	n.v.	n.v.	n.v.
4_DofB4_max	n.v.	n.v.	n.v.
5_DofB4_min	n.v.	n.v.	n.v.
5_DofB4_max	n.v.	n.v.	n.v.
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max 8_DofB4_min	0,0 n.v.	0,0 n.v.	0,0 n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	-14,6	-193,7	53,9
9_DofB4_max	-0,1	-2,1	-2,7
10_DofB4_min	-14,6	-193,7	53,9
10_DofB4_max	-0,1	-2,1	-2,7
11_DofB4_min	-14,6	-193,7	53,9
11_DofB4_max	-0,1	-2,1	-2,7

Tabelle A. 19: Fundament Altbau - F_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO₂-Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
1_A1A3_min	51,3	266,0	364,7
1_A1A3_max	114,0	756,7	913,3
2_A1A3_min 2 A1A3 max	51,3 114,0	266,0 756,7	364,7 913,3
3_A1A3_min	51,3	266,0	364,7
3_A1A3_max	231,3	2183,1	3000,5
4_A1A3_min	60,5	310,1	371,3
4_A1A3_max 5_A1A3_min	231,3 60,5	2183,1 310,1	3000,5 371,3
5_A1A3_max	231,3	2183,1	3000,5
6_A1A3_min	60,5	310,1	371,3
6_A1A3_max 7 A1A3 min	231,3 60,5	2183,1 310,1	3000,5 371,3
7_A1A3_max	231,3	2183,1	3000,5
8_A1A3_min	60,5	310,1	371,3
8_A1A3_max 9_A1A3_min	146,8 n.v.	1301,0 n.v.	1770,4 n.v.
9_A1A3_max	n.v.	n.v.	n.v.
10_A1A3_min	n.v.	n.v.	n.v.
10_A1A3_max 11_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_A1A3_max	n.v.	n.v.	n.v.
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min 2_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min 4 B4 50a max	0,0 0,0	0,0 0,0	0,0 0,0
5 B4 50a min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min 6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max 9_B4_50a_min	0,0 n.v.	0,0 n.v.	0,0 n.v.
9_B4_50a_max	n.v.	n.v.	n.v.
10_B4_50a_min	n.v.	n.v.	n.v.
10_B4_50a_max 11_B4_50a_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_B4_50a_min	n.v.	n.v.	n.v.
1_C3_min	4,5	75,0	83,2
1_C3_max 2_C3_min	-4,5 4,5	12,7 75,0	13,4 83,2
2_C3_max	-4,5 -4,5	12,7	13,4
3_C3_min	4,5	75,0	83,2
3_C3_max 4_C3_min	3,5 2,0	45,3 26,8	57,3 33,8
4_C3_max	3,5	45,3	57,3
5_C3_min	2,0	26,8	33,8
5_C3_max	3,5	45,3	57,3
6_C3_min 6_C3_max	2,0 3,5	26,8 45,3	33,8 57,3
7_C3_min	2,0	26,8	33,8
7_C3_max	3,5	45,3	57,3
8_C3_min 8_C3_max	2,0 2,6	26,8 33,6	33,8 42,4
9_C3_min	n.v.	n.v.	n.v.
9_C3_max	n.v.	n.v.	n.v.
10_C3_min 10_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_C3_min	n.v.	n.v.	n.v.
11_C3_max	n.v.	n.v.	n.v.
1_C4_min 1_C4_max	3,5 4,5	51,3 66,1	58,1 74,7
2_C4_min	3,5	51,3	58,1
2_C4_max	4,5	66,1	74,7
3_C4_min	3,5	51,3	58,1
3_C4_max 4_C4_min	0,0 0,0	0,0 0,0	0,0 0,0
4_C4_max	0,0	0,0	0,0
5_C4_min	0,0	0,0	0,0
5_C4_max 6_C4_min	0,0 0,0	0,0 0,0	0,0 0,0
6_C4_max	0,0	0,0	0,0
7_C4_min	0,0	0,0	0,0
7_C4_max 8_C4_min	0,0 0,0	0,0 0,0	0,0 0,0
8_C4_max	0,0	0,0	0,0
9_C4_min	n.v.	n.v.	n.v.
9_C4_max 10_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
10_C4_max	n.v.	n.v.	n.v.
11_C4_min	n.v.	n.v.	n.v.
11_C4_max	n.v.	n.v.	n.v.

1_D_min	0,0	0,0	0,0
1_D_max	-3,2	-46,2	-50,5
2_D_min	0,0	0,0	0,0
2_D_max	-3,2	-46,2	-50,5
3_D_min	0,0	0,0	0,0
3_D_max	-12,3	-160,7	-214,9
4_D_min	-7,3	-94,9	-126,9
4_D_max	-12,3	-160,7	-214,9
5_D_min	-7,3	-94,9	-126,9
5_D_max	-12,3	-160,7	-214,9
6_D_min	-7,3	-94,9	-126,9
6_D_max	-12,3	-160,7	-214,9
7_D_min	-7,3	-94,9	-126,9
7_D_max	-12,3	-160,7	-214,9
8_D_min	-7,3	-94,9	-126,9
8_D_max	-9,1	-119,1	-159,2
9_D_min	n.v.	n.v.	n.v.
9_D_max	n.v.	n.v.	n.v.
10_D_min	n.v.	n.v.	n.v.
10_D_max	n.v.	n.v.	n.v.
11_D_min	n.v.	n.v.	n.v.
_11_D_max	n.v.	n.v.	n.v.
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	0,0	0,0	0,0
9_DofB4_min	n.v.	n.v.	n.v.
9_DofB4_max	n.v.	n.v.	n.v.
10_DofB4_min	n.v.	n.v.	n.v.
10_DofB4_max	n.v.	n.v.	n.v.
11_DofB4_min	n.v.	n.v.	n.v.
11_DofB4_max	n.v.	n.v.	n.v.

Tabelle A. 20: Geschossdecke in Massivbauweise, Altbau – FLmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m ²]
1_A1A3_min	n.v.	n.v.	n.v.
1_A1A3_max	n.v.	n.v.	n.v.
2_A1A3_min	43,5	635,2	1062,2
2_A1A3_max	78,1	717,9	900,5
3_A1A3_min	30,6	348,9	770,1
3_A1A3_max	82,2	978,9	1352,8
4_A1A3_min	30,6	348,9	770,1
4_A1A3_max	82,2	978,9	1352,8
5 A1A3 min	30,6	348,9	770,1
5 A1A3 max	82,2	978,9	1352,8
6 A1A3 min	62,1	515,5	687,5
6 A1A3 max	90,9	871,9	1236,8
7 A1A3 min	62,1	515,5	687,5
7 A1A3 max	67,0	935,6	1557,7
8_A1A3_min	75,5	720,6	962,0
8_A1A3_max	67,0	935,6	1557,7
9_A1A3_min	41,0	355,0	451,2
9_A1A3_max	105,5	947,0	1375,7
10_A1A3_min	41,0	355,0	451,2
10_A1A3_max	105,5	947,0	1375,7
11_A1A3_min	41,0	355,0	451,2
_11_A1A3_max	105,5	947,0	1375,7
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	1,9	153,5	157,2
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	1,9	153,5	157,2
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	1,9	153,5	157,2
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0

6_DofB4_min 6_DofB4_max

7_DofB4_min

7_DofB4_max 8 DofB4 min

8_DofB4_max

9_DofB4_min 9_DofB4_max

10_DofB4_min

10_DofB4_max

11 DofB4 min

11_DofB4_max

0,0

0,0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0.0

0,0

0,0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0

ie

1	1	1
4	-1	4

Tabelle A. 21: Geschossdecke in Holzbauweise, Altbau – FLwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min	-57,1	203,7	1196,1
1_A1A3_max 2_A1A3_min	-41,7	305,2	1320,3
2_ATA3_IIIII 2 A1A3 max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min 4 A1A3 max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max	n.v.	n.v.	n.v.
6_A1A3_min 6 A1A3 max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7 A1A3 min	n.v.	n.v.	n.v.
7_A1A3_max	n.v.	n.v.	n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max 9_A1A3_min	n.v. -38,7	n.v. 174,9	n.v. 820,5
9_A1A3_max	-89,9	1656,1	4762,6
10_A1A3_min	-38,7	174,9	820,5
10_A1A3_max 11_A1A3_min	-89,9 -38,7	1656,1 174,9	4762,6 820,5
11_A1A3_max	-89,9	1656,1	4762,6
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max 2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_min 2_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min 4_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_B4_50a_min	n.v.	n.v.	n.v.
5_B4_50a_max	n.v.	n.v.	n.v.
6_B4_50a_min 6_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7 B4 50a min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max 9_B4_50a_min	n.v. 0,0	n.v. 0,0	n.v. 0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max 11_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min	78,1	13,5	-715,1
1_C3_max 2_C3_min	78,1 n.v.	13,5 n.v.	-715,1 n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min 4_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_C3_min	n.v.	n.v.	n.v.
5_C3_max	n.v.	n.v.	n.v.
6_C3_min 6_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min 8_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C3_min	49,0	5,3	-497,9
9_C3_max	230,8	-3,1	-2034,7
10_C3_min 10_C3_max	49,0 230,8	5,3 -3,1	-497,9 -2034,7
11_C3_min	49,0	5,3	-497,9
11_C3_max	230,8	-3,1	-2034,7
1_C4_min 1_C4_max	0,2 1,5	3,0 21,4	3,3 24,2
1_C4_max 2_C4_min	1,5 n.v.	∠1, 4 n.v.	24,2 n.v.
2_C4_max	n.v.	n.v.	n.v.
3_C4_min	n.v.	n.v.	n.v.
3_C4_max 4 C4 min	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min	n.v.	n.v.	n.v.
5_C4_max 6_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_C4_max	n.v.	n.v.	n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min 8_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C4_min	1,5	4,6	5,2
9_C4_max	4,2	60,8	68,8
10_C4_min 10_C4_max	1,5 4,2	4,6 60,8	5,2 68,8
11_C4_min	1,5	4,6	5,2
11_C4_max	4,2	60,8	68,8

A.6 Übersichtstab Altbaukonstruktion	ellen über	die	baualterspezifischen	Umweltwirkungen	je
	1_D_min	-35,7	-469,5 85,0		
	1_D_max	-35,7	-469,5 85,0		
	2_D_min	n.v.	n.v. n.v.		
	2_D_max	n.v.	n.v. n.v.		
	3_D_min	n.v.	n.v. n.v.		
	3_D_max	n.v.	n.v. n.v.		
	4_D_min	n.v.	n.v. n.v.		
	4_D_max	n.v.	n.v. n.v.		
	5_D_min	n.v.	n.v. n.v.		
	5_D_max	n.v.	n.v. n.v.		
	6_D_min	n.v.	n.v. n.v.		
	6_D_max	n.v.	n.v. n.v.		
	7_D_min	n.v.	n.v. n.v.		
	7_D_max	n.v.	n.v. n.v.		
	8_D_min	n.v.	n.v. n.v.		
	8_D_max	n.v.	n.v. n.v.		
		-23,6			
	9_D_min	-23,6 -96,1			
	9_D_max				
	10_D_min	-23,6	-317,0 69,4		
	10_D_max	-96,1	-1474,4 54,4		
	11_D_min	-23,6	-317,0 69,4		
	11_D_max	-96,1	-1474,4 54,4		
	1_DofB4_min	0,0	0,0 0,0		
	1_DofB4_max	0,0	0,0 0,0		
	2_DofB4_min	n.v.	n.v. n.v.		
	2_DofB4_max	n.v.	n.v. n.v.		
	3_DofB4_min	n.v.	n.v. n.v.		
	3_DofB4_max	n.v.	n.v. n.v.		
	4_DofB4_min	n.v.	n.v. n.v.		
	4_DofB4_max	n.v.	n.v. n.v.		
	5_DofB4_min	n.v.	n.v. n.v.		
	5_DofB4_max	n.v.	n.v. n.v.		
	6_DofB4_min	n.v.	n.v. n.v.		
	6_DofB4_max	n.v.	n.v. n.v.		
	7_DofB4_min	n.v.	n.v. n.v.		
	7_DofB4_max	n.v.	n.v. n.v.		
	8_DofB4_min	n.v.	n.v. n.v.		
	8_DofB4_max	n.v.	n.v. n.v.		
	9_DofB4_min	0,0	0,0 0,0		
	9_DofB4_max	0,0	0,0 0,0		
	10 DofB4 min	0,0	0,0 0,0		
	10 DofB4 max	0,0	0,0 0,0		
	11_DofB4_min	0,0	0,0 0,0		
	11_DofB4_max	0,0	0,0 0,0		
-	23121_11lax	0,0	0,0		

Tabelle A. 22: Flachdach in Massivbauweise, Altbau – FROmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1 A1A3 min	n.v.	n.v.	n.v.
1 A1A3 max	n.v.	n.v.	n.v.
2 A1A3 min	n.v.	n.v.	n.v.
2 A1A3 max	n.v.	n.v.	n.v.
3_A1A3_min	25,3	612,7	676,7
3_A1A3_max	70,0	1082,4	1304,9
4_A1A3_min	25,3	612,7	676,7
4_A1A3_max	-4,3	1361,5	2917,2
5_A1A3_min	25,3	612,7	676,7
5_A1A3_max	66,7	1253,3	1764,6
6_A1A3_min	36,8	721,9	826,7
6_A1A3_max	83,8	2082,1	2318,5
7_A1A3_min	36,8	721,9	826,7
7_A1A3_max	83,8	2082,1	2318,5
8_A1A3_min	53,5	820,1	921,2
8_A1A3_max	112,9	1967,2	2262,5
9_A1A3_min	58,0	953,9	1056,6
9_A1A3_max	118,7	2137,5	2443,6
10_A1A3_min	58,0	953,9	1056,6
10_A1A3_max	118,7	2137,5	2443,6
11_A1A3_min	58,0	953,9	1056,6
_11_A1A3_max	118,7	2137,5	2443,6
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	5,8	460,5	471,7
3_B4_50a_max	9,6	521,9	535,7
4_B4_50a_min	5,8	460,5	471,7
4_B4_50a_max	9,6	521,9	535,7
5_B4_50a_min	5,8	460,5	471,7
5_B4_50a_max	9,6	521,9	535,7
6_B4_50a_min	5,8	460,5	471,7
6_B4_50a_max	39,0	2097,1	2165,9
7_B4_50a_min	5,8	460,5	471,7
7_B4_50a_max	39,0	2097,1	2165,9
8_B4_50a_min	25,0	481,3	527,3
8_B4_50a_max	31,9	996,9	1074,1
9_B4_50a_min	25,0	481,3	527,3
9_B4_50a_max	31,9	996,9	1074,1
10_B4_50a_min	25,0	481,3	527,3

10_B4_50a_max 11_B4_50a_min 11_B4_50a_max	31,9 25,0 31,9	996,9 481,3 996,9	1074,1 527,3 1074,1
1_C3_min	n.v.	n.v.	n.v.
1_C3_max	n.v.	n.v.	n.v.
2_C3_min	n.v.	n.v. n.v.	n.v.
2_C3_max 3_C3_min	n.v. 0,2	2,3	n.v. 2,9
3_C3_max	1,6	25,5	29,8
4_C3_min	0,2	2,3	2,9
4_C3_max	102,0	41,0 2,3	-1003,1
5_C3_min 5_C3_max	0,2 22,1	2,3 35,5	2,9 -171,9
6_C3_min	0,3	4,5	5,7
6_C3_max	4,4	11,1	14,0
7_C3_min 7_C3_max	0,3 4,4	4,5 11,1	5,7 14,0
8_C3_min	5,9	22,9	29,2
8_C3_max	28,2	25,0	31,0
9_C3_min	5,9	22,9	29,2
9_C3_max	35,3	26,1	32,3
10_C3_min 10_C3_max	5,9 35,3	22,9 26,1	29,2 32,3
11_C3_min	5,9	22,9	29,2
11_C3_max	35,3	26,1	32,3
1_C4_min	n.v.	n.v.	n.v.
1_C4_max 2_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_C4_max	n.v.	n.v.	n.v.
3_C4_min	1,7	25,5	27,9
3_C4_max	1,0	15,6	16,7
4_C4_min 4_C4_max	1,7 1,3	25,5 19,5	27,9 21,1
5_C4_min	1,7	25,5	27,9
5_C4_max	1,3	19,5	21,1
6_C4_min	1,7	25,5	27,9
6_C4_max 7_C4_min	5,9 1,7	44,6 25,5	47,7 27,9
7_C4_max	5,9	44,6	47,7
8_C4_min	9,8	7,5	8,0
8_C4_max	1,6	24,1	26,0
9_C4_min 9_C4_max	15,0 1,6	8,1 24,1	8,7 26,0
10_C4_min	15,0	8,1	8,7
10_C4_max	1,6	24,1	26,0
11_C4_min	15,0	8,1	8,7
11_C4_max 1_D_min	1,6 n.v.	24,1 n.v.	26,0 n.v.
1_D_max	n.v.	n.v.	n.v.
2_D_min	n.v.	n.v.	n.v.
2_D_max 3_D_min	n.v. -0,6	n.v. -8,0	n.v. -10,7
3_D_max	-3,3	-42,7	-57,0
4_D_min	-0,6	-8,0	-10,7
4_D_max	-50,1	-670,6	124,0
5_D_min 5_D_max	-0,6 -12,7	-8,0 -169,8	-10,7 -20,5
6_D_min	-1,2	-16,1	-21,5
6_D_max	-6,0	-84,2	-105,5
7_D_min	-1,2	-16,1	-21,5
7_D_max 8 D min	-6,0 -9,4	-84,2 -134,8	-105,5 -161,1
8_D_max	-17,0	-240,8	-313,1
9_D_min	-12,1	-176,2	-206,4
9_D_max 10_D_min	-20,0 -12,1	-284,3 -176,2	-369,0 -206,4
10_D_min	-12,1	-176,2	-369,0
11_D_min	-12,1	-176,2	-206,4
11_D_max	-20,0	-284,3	-369,0
1_DofB4_min 1_DofB4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max 4_DofB4_min	-0,2 0,0	-2,5 0,0	-3,3 0,0
4_DofB4_max	-0,2	-2,5	-3,3
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	-0,2	-2,5	-3,3
6_DofB4_min 6_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	-2,0	-29,3	-37,6
8_DofB4_max	-5,5 -2.0	-81,0 -29,3	-104,2 -37.6
9_DofB4_min 9_DofB4_max	-2,0 -5,5	-29,3 -81,0	-37,6 -104,2
10_DofB4_min	-2,0	-29,3	-37,6
10_DofB4_max	-5,5	-81,0	-104,2
11_DofB4_min 11_DofB4_max	-2,0 -5,5	-29,3 -81,0	-37,6 -104,2
. 1_50154_11101		51,0	107,2

Tabelle A. 23: Flachdach in Holzbauweise, Altbau – FROwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m ²]
1_A1A3_min 1_A1A3_max	n.v.	n.v.	n.v.
2_A1A3_min	n.v. -35,7	n.v. 498,2	n.v. 1092,8
2_A1A3_max	-35,7	498,2	1092,8
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min 4_A1A3_max	-27,1 -27,1	794,8 794,8	1673,6 1673,6
5_A1A3_min	-27,1 -22,1	693,0	1368,2
5_A1A3_max	-22,6	799,1	1612,4
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min 7_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	-30,8	437,0	1113,2
9_A1A3_max	-114,4 -30,8	1937,3	4631,7
10_A1A3_min 10_A1A3_max	-30,6 -114,4	437,0 1937,3	1113,2 4631,7
11_A1A3_min	-30,8	437,0	1113,2
_11_A1A3_max	-114,4	1937,3	4631,7
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v. 460 5	n.v.
2_B4_50a_min 2_B4_50a_max	5,8 5,8	460,5 460,5	471,7 471,7
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	9,6	521,9	535,7
4_B4_50a_max	9,6	521,9 521.0	535,7
5_B4_50a_min 5_B4_50a_max	9,6 9,6	521,9 521,9	535,7 535,7
6_B4_50a_min	n.v.	n.v.	n.v.
6_B4_50a_max	n.v.	n.v.	n.v.
7_B4_50a_min	n.v.	n.v.	n.v.
7_B4_50a_max 8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_B4_50a_min	22,6	289,5	330,7
9_B4_50a_max	31,9	996,9	1074,1
10_B4_50a_min	22,6	289,5	330,7
10_B4_50a_max 11_B4_50a_min	31,9	996,9	1074,1 330,7
11_B4_50a_min	22,6 31,9	289,5 996,9	1074,1
1_C3_min	n.v.	n.v.	n.v.
1_C3_max	n.v.	n.v.	n.v.
2_C3_min	45,0	3,2	-467,6
2_C3_max 3_C3_min	45,0 n.v.	3,2 n.v.	-467,6 n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min	67,4	27,2	-583,6
4_C3_max	67,4	27,2	-583,6
5_C3_min	50,3	23,5	-491,6
5_C3_max 6_C3_min	59,6 n.v.	29,9 n.v.	-580,9 n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min	n.v.	n.v.	n.v.
8_C3_max 9 C3 min	n.v. 61,4	n.v. 2,5	n.v. -381,4
9_C3_max	215,9	2,3	-1980,3
10_C3_min	61,4	2,5	-381,4
10_C3_max	215,9	2,3	-1980,3
11_C3_min 11 C3 max	61,4 215,9	2,5 2,3	-381,4 -1980,3
1_C4_min	n.v.	n.v.	n.v.
1_C4_max	n.v.	n.v.	n.v.
2_C4_min	1,0	14,9	16,0
2_C4_max	1,0	14,9	16,0
3_C4_min 3_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_C4_min	1,3	19,5	21,1
4_C4_max	1,3	19,5	21,1
5_C4_min	1,2	18,8	20,4
5_C4_max	1,3	20,3	22,1
6_C4_min 6_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min 9_C4_max	0,2 1,7	2,7 25,6	3,0 27,8
10_C4_min	0,2	2,7	3,0
10_C4_max	1,7	25,6	27,8
11_C4_min	0,2	2,7	3,0
11_C4_max	1,7	25,6	27,8

	_		
1_D_min	n.v.	n.v.	n.v.
1_D_max	n.v.	n.v.	n.v.
2_D_min	-21,1	-281,7	82,0
2_D_max	-21,1	-281,7	82,0
3_D_min	n.v.	n.v.	n.v.
3_D_max	n.v.	n.v.	n.v.
4_D_min	-30,5	-399,4	64,6
4_D_max	-30,5	-399,4	64,6
5 D min	-23,3	-311,7	86,8
5 D max	-27,6	-369,0	103,7
6 D min	n.v.	n.v.	n.v.
6 D max	n.v.	n.v.	n.v.
7 D min	n.v.	n.v.	n.v.
7 D max	n.v.	n.v.	n.v.
8 D min	n.v.	n.v.	n.v.
8 D max	n.v.	n.v.	n.v.
9 D min	-22.2	-372.5	-104,8
9 D max	-95,7	-1445,9	45,8
10 D min	-22,2	-372,5	-104,8
10 D max	-95,7	-1445.9	45.8
11 D min	-22,2	-372,5	-104,8
11 D max	-95,7	-1445,9	45,8
1 DofB4 min	n.v.	n.v.	n.v.
1 DofB4 max	n.v.	n.v.	n.v.
2 DofB4 min	0,0	0,0	0,0
2 DofB4 max	0,0	0,0	0,0
3 DofB4 min	n.v.	n.v.	n.v.
3 DofB4 max	n.v.	n.v.	n.v.
4_DofB4_min	-0,2	-2,5	-3,3
4_DofB4_max	-0,2	-2,5	-3,3
5 DofB4 min	-0,2	-2,5	-3,3
5 DofB4 max	-0,2	-2,5	-3,3
6 DofB4 min	n.v.	n.v.	n.v.
6 DofB4 max	n.v.	n.v.	n.v.
7 DofB4 min	n.v.	n.v.	n.v.
7 DofB4 max	n.v.	n.v.	n.v.
8 DofB4 min	n.v.	n.v.	n.v.
8 DofB4 max	n.v.	n.v.	n.v.
9 DofB4 min	-2,0	-29,3	-37,6
9 DofB4 max	-5,5	-81,0	-104,2
10 DofB4 min	-2,0	-29,3	-37,6
10 DofB4 max	-5,5	-81,0	-104,2
11 DofB4 min	-2,0	-29,3	-37,6
11_DofB4_max	-5,5	-81,0	-104,2
	- 1-		

Tabelle A. 24: Gebäudetrennwand über GOK bei 2-schaliger Außenwand, Altbau – SW2shelled_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	13,4	93,4	112,1
1 A1A3 max	13,4	93,4	112,1
2_A1A3_min	13,4	93,4	112,1
2_A1A3_max	18,6	128,0	154,0
3_A1A3_min	13,4	93,4	112,1
3_A1A3_max	42,5	263,1	311,3
4_A1A3_min	13,4	93,4	112,1
4_A1A3_max	34,4	214,0	253,2
5_A1A3_min	13,4	68,4	81,9
5_A1A3_max	25,0	221,8	301,8
6_A1A3_min	13,4	68,4	81,9
6_A1A3_max	31,7	280,9	382,2
7_A1A3_min	13,4	68,4	81,9
7_A1A3_max	31,7	280,9	382,2
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	n.v.	n.v.	n.v.
9_A1A3_max	n.v.	n.v.	n.v.
10_A1A3_min	n.v.	n.v.	n.v.
10_A1A3_max	n.v.	n.v.	n.v.
11_A1A3_min	n.v.	n.v.	n.v.
_11_A1A3_max	n.v.	n.v.	n.v.
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	n.v.	n.v.	n.v.
9_B4_50a_max	n.v.	n.v.	n.v.
10_B4_50a_min	n.v.	n.v.	n.v.

10_B4_50a_max 11_B4_50a_min	n.v.	n.v.	n.v.
11_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
1_C3_min	-0,5	1,3	1,3
1_C3_max	-0,5	1,3	1,3
2_C3_min 2_C3_max	-0,5 -0,7	1,3 1,9	1,3 2,0
3_C3_min	-0,5	1,3	1,3
3_C3_max	0,5	10,4	11,4
4_C3_min	-0,5	1,3	1,3
4_C3_max 5_C3_min	0,4 0,5	8,4 5,9	9,1 7,5
5_C3_max	0,4	5,7	7,2
6_C3_min	0,5	5,9	7,5
6_C3_max	0,6	7,3	9,2 7,5
7_C3_min 7_C3_max	0,5 0,6	5,9 7,3	9,2
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min 9_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
10_C3_min	n.v.	n.v.	n.v.
10_C3_max	n.v.	n.v.	n.v.
11_C3_min	n.v.	n.v.	n.v.
11_C3_max 1 C4 min	n.v. 0,6	n.v. 8,6	n.v. 9,7
1_C4_min 1_C4_max	0,6	8,6	9,7
2_C4_min	0,6	8,6	9,7
2_C4_max	0,8	11,6	13,1
3_C4_min 3_C4_max	0,6 1,2	8,6 18,0	9,7 20,4
4_C4_min	0,6	8,6	9,7
4_C4_max	1,0	14,8	16,7
5_C4_min	0,0	0,0	0,0
5_C4_max 6 C4 min	0,0 0,0	0,0 0,0	0,0 0,0
6_C4_max	0,0	0,0	0,0
7_C4_min	0,0	0,0	0,0
7_C4_max	0,0	0,0	0,0
8_C4_min 8_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C4_min	n.v.	n.v.	n.v.
9_C4_max	n.v.	n.v.	n.v.
10_C4_min 10_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_C4_min	n.v.	n.v.	n.v.
11_C4_max	n.v.	n.v.	n.v.
1_D_min 1_D_max	-0,3 -0,3	-4,6 -4,6	-5,0 -5,0
2_D_min	-0,3	-4,6	-5,0
2_D_max	-0,5	-6,7	-7,4
3_D_min	-0,3	-4,6	-5,0
3_D_max 4 D min	0,0 -0,3	0,0 -4,6	0,0 -5,0
4_D_max	0,0	0,0	0,0
5_D_min	-1,6	-20,9	-28,0
5_D_max	-1,6	-20,3	-27,1
6_D_min 6_D_max	-1,6 -2,0	-20,9 -25,7	-28,0 -34,4
7_D_min	-1,6	-20,9	-28,0
7_D_max	-2,0	-25,7	-34,4
8_D_min 8 D max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_D_min	n.v.	n.v.	n.v.
9_D_max	n.v.	n.v.	n.v.
10_D_min	n.v.	n.v.	n.v.
10_D_max 11_D_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_D_max	n.v.	n.v.	n.v.
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max 2 DofB4 min	0,0 0,0	0,0 0,0	0,0 0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min 4_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max 7_DofB4_min	0,0 0,0	0,0 0,0	0,0 0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min 9_DofB4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
10_DofB4_min	n.v.	n.v.	n.v.
10_DofB4_max	n.v.	n.v.	n.v.
11_DofB4_min 11_DofB4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.

Tabelle A. 25: Gebäudetrennwand über GOK bei Außenwand mit Vorhang- oder hinter-/bzw. belüfteter Fassade, Altbau – SWcwf_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit 1_A1A3_min	[kg CO ₂ -Äq./m ²] 30,0	[MJ/m²] 225,0	[MJ/m²] 249,0
1_A1A3_max	30,0	225,0	249,0
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max 3_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max 5_A1A3_min	n.v. 16,2	n.v. 90,6	n.v. 108,1
5_A1A3_max	34,4	214,0	253,2
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max 7_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_A1A3_max	n.v.	n.v.	n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max 9_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_A1A3_max	n.v.	n.v.	n.v.
10_A1A3_min	n.v.	n.v.	n.v.
10_A1A3_max	n.v.	n.v.	n.v.
11_A1A3_min 11_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min 2_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	n.v. n.v.	n.v.	n.v.
4_B4_50a_max 5 B4 50a min	n.v. 0,0	n.v. 0,0	n.v. 0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	n.v.	n.v.	n.v.
6_B4_50a_max 7_B4_50a_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_B4_50a_min 7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max 9_B4_50a_min	n.v. n.v.	n.v.	n.v.
9_B4_50a_min 9_B4_50a_max	n.v.	n.v. n.v.	n.v. n.v.
10_B4_50a_min	n.v.	n.v.	n.v.
10_B4_50a_max	n.v.	n.v.	n.v.
11_B4_50a_min 11_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
1_C3_min	2,6	43,6	48,3
1_C3_max	2,6	43,6	48,3
2_C3_min 2_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min 4_C3_max	n.v. n.v.	n.v.	n.v.
5_C3_min	0,5	n.v. 6,3	n.v. 8,0
5_C3_max	0,4	8,4	9,1
6_C3_min	n.v.	n.v.	n.v.
6_C3_max 7_C3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min	n.v.	n.v.	n.v.
8_C3_max 9_C3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C3_max	n.v.	n.v.	n.v.
10_C3_min	n.v.	n.v.	n.v.
10_C3_max 11 C3 min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_C3_max	n.v.	n.v.	n.v.
1_C4_min	1,6	23,4	26,4
1_C4_max 2 C4 min	1,6	23,4	26,4
2_C4_min 2_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_C4_min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min 4_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_C4_min	0,1	2,0	2,2
5_C4_max	1,0	14,8	16,7
6_C4_min 6_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max 9_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C4_max	n.v.	n.v.	n.v.
10_C4_min	n.v.	n.v.	n.v.
10_C4_max 11_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
	11.7.	11.7.	11. * .

11_C4_max	n.v.	n.v.	n.v.
1_D_min	-0,8	-10,7	-13,7
1_D_max	-0,8	-10,7	-13,7
2_D_min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	n.v.	n.v.	n.v.
3_D_max	n.v.	n.v.	n.v.
4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v.	n.v.	n.v.
5_D_min	-1,7	-22,3	-29,8
5_D_max	0,0	0,0	0,0
6_D_min	n.v.	n.v.	n.v.
6_D_max	n.v.	n.v.	n.v.
7_D_min	n.v.	n.v.	n.v.
7_D_max	n.v.	n.v.	n.v.
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	n.v.	n.v.	n.v.
9_D_max	n.v.	n.v.	n.v.
10_D_min	n.v.	n.v.	n.v.
10_D_max	n.v.	n.v.	n.v.
11_D_min	n.v.	n.v.	n.v.
_11_D_max	n.v.	n.v.	n.v.
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	n.v.	n.v.	n.v.
3_DofB4_max	n.v.	n.v.	n.v.
4_DofB4_min	n.v.	n.v.	n.v.
4_DofB4_max	n.v.	n.v.	n.v.
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	n.v.	n.v.	n.v.
6_DofB4_max	n.v.	n.v.	n.v.
7_DofB4_min	n.v.	n.v.	n.v.
7_DofB4_max	n.v.	n.v.	n.v.
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	n.v.	n.v.	n.v.
9_DofB4_max	n.v.	n.v.	n.v.
10_DofB4_min	n.v.	n.v.	n.v.
10_DofB4_max	n.v.	n.v.	n.v.
11_DofB4_min	n.v.	n.v.	n.v.
11_DofB4_max	n.v.	n.v.	n.v.

Tabelle A. 26: Gebäudetrennwand über GOK bei massiver, monolithischer Außenwand, Altbau – SWmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	20,1	97,8	119,8
1_A1A3_max	50,4	339,3	408,9
2_A1A3_min	14,4	102,2	122,5
2_A1A3_max	50,4	339,3	408,9
3_A1A3_min	16,4	115,4	138,5
3_A1A3_max	50,4	339,3	408,9
4_A1A3_min	19,4	94,6	115,8
4_A1A3_max	50,4	339,3	408,9
5_A1A3_min	16,4	115,4	138,5
5_A1A3_max	42,5	263,1	311,3
6_A1A3_min	24,8	169,0	203,4
6_A1A3_max	45,7	405,1	551,2
7_A1A3_min	24,8	169,0	203,4
7_A1A3_max	45,7	405,1	551,2
8_A1A3_min	25,8	177,9	213,8
8_A1A3_max	37,7	256,7	308,9
9_A1A3_min	23,8	157,5	194,5
9_A1A3_max	102,0	789,6	1036,8
10_A1A3_min	23,8	157,5	194,5
10_A1A3_max	102,0	789,6	1036,8
11_A1A3_min	23,8	157,5	194,5
11_A1A3_max	102,0	789,6	1036,8
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,7	8,8	10,1
9_B4_50a_max	1,4	17,5	20,2

10_B4_50a_max	10 D4 50 '			40.4
11_B4_50a_min	10_B4_50a_min	0,7 1 <i>4</i>	8,8 17.5	10,1 20.2
1.C3.min				
C3_min				
2.C3_mix				
2.C3_max				
3.C3 max				
4. C3. mia	3_C3_min			
4.C3_max				
5. C3.max				
5.C3_mxi				
6.C3, mair				
7. C.3. min				
7. C3. max				
8. C3. min 9. C4. min 9. C4. min 9. C4. min 9. C4. min 9. C7. 9. 66 10. 8 2. C4. min 9. C7. 9. 66 10. 8 2. C4. min 9. C7. 10. C7. 10. C7. 12. 1 3. C4. min 10. C7. 10. C7. 12. 1 3. C4. min 10. C5. C4. min 10. C7. C4. min 10. C7. C4. min 10. C4. m				
8 C3_main				
9.C3_max				
10_C3_max				
10_C3_max				
11_C3_min 0.3 5,3 5,8 11_C4_min 1,1 15,3 17,3 1_C4_max 2,1 30,1 34,0 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 30,1 34,0 3_C4_min 0,7 10,7 12,1 3_C4_min 1,0 14,8 16,7 4_C4_min 1,0 14,8 16,7 4_C4_min 1,0 14,8 16,7 4_C4_min 1,0 14,8 16,7 4_C4_min 1,0 10,7 12,1 5_C4_min 0,7 10,7 12,1 5_C4_min 1,0 15,2 17,2 6_C4_max 0,0 0,0 0,0 7_C4_min 1,0 15,2 17,2 7_C4_min 1,0 15,2 17,2 7_C4_min 1,0 15,2 17,2 7_C4_min 1,0 15,2 17,2 7_C4_min 1,0 <td< td=""><td></td><td></td><td></td><td></td></td<>				
1.C4 min				
Cc4 max				
2 C4 min				
2.C4_max				
3. C4_min				
3.C4_max				
4.C4_max	3_C4_max			34,0
5.C4_max 1,2 18,0 20,4 6.C4_min 1,0 15,2 17,2 6.C4_min 1,0 15,2 17,2 6.C4_max 0,0 0,0 0,0 7.C4_max 0,0 0,0 0,0 8.C4_min 1,1 16,2 18,3 8.C4_max 1,6 23,1 26,1 9.C4_min 0,2 2,5 2,8 9.C4_max 0,3 4,1 4,7 10_C4_min 0,2 2,5 2,8 9.C4_max 0,3 4,1 4,7 10_C4_min 0,2 2,5 2,8 10_C4_max 0,3 4,1 4,7 11_C4_max 0,3 4,1 4,7 11_C4_max 0,3 4,1 4,7 11_D_min -0,2 2,2,3 -3,0 1_D_max -1,3 -19,6 -21,4 2_D_max -1,3 -19,6 -21,4 4_D_min -0,4 -5,4<				
5 C4_max			,	
6.C4_min				
7. C4_min				
7. C4_max				
8.C4_min				
8 C4_max				
9_C4_min				
10_C4_min				
10_C4_max 0,3 4,1 4,7 11_C4_min 0,2 2,5 2,8 11_C4_max 0,3 4,1 4,7 1_D_min -0,2 -2,3 -3,0 1_D_max -1,3 -19,6 -21,4 2_D_min -0,3 -4,6 -5,0 2_D_max -1,3 -19,6 -21,4 3_D_min -0,4 -5,4 -5,9 3_D_max -1,3 -19,6 -21,4 4_D_min -0,2 -2,2 -2,9 4_D_max -1,3 -19,6 -21,4 4_D_max -1,3 -19,6 -21,4 4_D_max -1,3 -19,6 -21,4 4_D_max -1,3 -19,6 -21,4 5_D_max -0,0 0,0 0,0 6_D_max -1,3 -19,6 -21,4 5_D_min -0,6 -9,2 -10,1 7_D_max -2,8 -37,1 -49,6 8_D_min -0,6				
11_C4_max 0,3 4,1 4,7 11_D min -0,2 -2,3 -3,0 1_D max -1,3 -19,6 -21,4 2_D min -0,3 -4,6 -5,0 2_D max -1,3 -19,6 -21,4 3_D min -0,4 -5,4 -5,9 3_D max -1,3 -19,6 -21,4 4_D min -0,2 -2,2 -2,9 4_D min -0,2 -2,2 -2,9 4_D max -1,3 -19,6 -21,4 4_D min -0,2 -2,2 -2,9 4_D max -1,3 -19,6 -21,4 5_D min -0,4 -5,4 -5,9 5_D max -0,0 0,0 0,0 6_D max -2,8 -37,1 -49,6 7_D min -0,6 -9,2 -10,1 7_D max -2,8 -37,1 -49,6 8_D min -0,6 -9,2 -10,1 8_D max -1,0				
11_C4_max				
1_D_min				
2_D_min -0,3 -4,6 -5,0 2_D_max -1,3 -19,6 -21,4 3_D_min -0,4 -5,4 -5,9 3_D_max -1,3 -19,6 -21,4 4_D_min -0,2 -2,2 -2,9 4_D_max -1,3 -19,6 -21,4 5_D_min -0,4 -5,4 -5,9 5_D_min -0,4 -5,4 -5,9 5_D_min -0,6 -9,2 -10,1 6_D_min -0,6 -9,2 -10,1 6_D_max -2,8 -37,1 -49,6 7_D_min -0,6 -9,2 -10,1 7_D_max -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_D_max -1,0 -14,0 -15,3 9_D_max -1,0 -14,0 -15,3 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max				
2_D_max				
3_D_min				
3_D_max				
4_D_min -0,2 -2,2 -2,9 4_D_max -1,3 -19,6 -21,4 5_D_min -0,4 -5,4 -5,9 5_D_max 0,0 0,0 0,0 6_D_min -0,6 -9,2 -10,1 6_D_max -2,8 -37,1 -49,6 7_D_min -0,6 -9,2 -10,1 7_D_max -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_D_max -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_D_max -1,0 -14,0 -15,3 9_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max				
5_D_min -0,4 -5,4 -5,9 5_D_max 0,0 0,0 0,0 6_D_min -0,6 -9,2 -10,1 6_D_max -2,8 -37,1 -49,6 7_D_min -0,6 -9,2 -10,1 7_D_max -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_D_min -0,6 -9,2 -10,1 8_D_max -1,0 -14,0 -15,3 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 11_D_max -6,3 -82,0 -109,7 11_D_max -6,3 -82,0 -109,7 11_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min				
5_D_max 0,0 0,0 0,0 6_D_min -0,6 -9,2 -10,1 6_D_max -2,8 -37,1 -49,6 7_Dmin -0,6 -9,2 -10,1 7_Dmax -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_Dmax -1,0 -14,0 -15,3 9_Dmin -0,1 -1,2 -1,5 9_Dmax -6,3 -82,0 -109,7 10_Dmin -0,1 -1,2 -1,5 10_Dmin -0,1 -1,2 -1,5 10_Dmax -6,3 -82,0 -109,7 11_Dmax -6,3 -82,0 -109,7 11_Dmax -6,3 -82,0 -109,7 11_Dmax -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_max				
6_D_min				
6_D_max				
7_D_min -0,6 -9,2 -10,1 7_D_max -2,8 -37,1 -49,6 8_D_min -0,6 -9,2 -10,1 8_D_max -1,0 -14,0 -15,3 9_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 11_D_max -6,3 -82,0 -109,7 11_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_max<				
8_D_min -0,6 -9,2 -10,1 8_D_max -1,0 -14,0 -15,3 9_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_max	7_D_min	-0,6	-9,2	-10,1
8_D_max -1,0 -14,0 -15,3 9_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 10_Dmin -0,1 -1,2 -1,5 10_Dmax -6,3 -82,0 -109,7 11_Dmin -0,1 -1,2 -1,5 11_Dmax -6,3 -82,0 -109,7 11_Dmax -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_max				
9_D_min -0,1 -1,2 -1,5 9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min				
9_D_max -6,3 -82,0 -109,7 10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min				
10_D_min -0,1 -1,2 -1,5 10_D_max -6,3 -82,0 -109,7 11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min				
11_D_min -0,1 -1,2 -1,5 11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 9_DofB4_max				
11_D_max -6,3 -82,0 -109,7 1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 9_DofB4_max				
1_DofB4_min 0,0 0,0 0,0 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 10_DofB4_min				
1_DofB4_max 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 2_DofB4_min 0,0 0,0 0,0 3_DofB4_min 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 4_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 10_DofB4_min				
2_DofB4_max	1_DofB4_max	0,0	0,0	0,0
3_DofB4_min 0,0 0,0 0,0 0,0 0,0 3_DofB4_max 0,0 0,0 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,				
3_DofB4_max				
4_DofB4_min 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
4_DofB4_max 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 5_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
5_DofB4_max 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 6_DofB4_min 0,0 0,0 0,0 7_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 11_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0 0,0 0,0 0,0 0,0	4_DofB4_max	0,0	0,0	0,0
6_DofB4_min				
6_DofB4_max				
7_DofB4_min 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
7_DofB4_max 0,0 0,0 0,0 8_DofB4_min 0,0 0,0 0,0 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
8_DofB4_max 0,0 0,0 0,0 9_DofB4_min 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0	7_DofB4_max	0,0	0,0	0,0
9_DofB4_min 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
9_DofB4_max 0,0 0,0 0,0 10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
10_DofB4_min 0,0 0,0 0,0 10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
10_DofB4_max 0,0 0,0 0,0 11_DofB4_min 0,0 0,0 0,0				
		0,0	0,0	0,0
11_D0ID4_IIIX				
	I I_DOID4_Max	U,U	U,U	U,U

Tabelle A. 27: Gebäudetrennwand über GOK in Holzbauweise, Altbau – SWwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
1_A1A3_min	-14,3	35,2	263,3
1_A1A3_max 2_A1A3_min	29,3 n.v.	265,6 n.v.	431,9 n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max 4_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max 6 A1A3 min	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min	n.v.	n.v.	n.v.
7_A1A3_max 8 A1A3 min	n.v. n.v.	n.v. n.v.	n.v. n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	-8,1 60.7	128,9	337,6
9_A1A3_max 10_A1A3_min	-69,7 -8,1	857,8 128,9	2473,1 337,6
10_A1A3_max	-69,7	857,8	2473,1
11_A1A3_min 11_A1A3_max	-8,1 -69,7	128,9 857,8	337,6 2473,1
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min 2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min 4_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_B4_50a_min	n.v.	n.v.	n.v.
5_B4_50a_max	n.v.	n.v.	n.v.
6_B4_50a_min 6_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_B4_50a_min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min 8_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_B4_50a_min	0,7	8,8	10,1
9_B4_50a_max 10_B4_50a_min	0,7 0,7	8,8 8,8	10,1 10,1
10_B4_50a_min	0,7	8,8	10,1
11_B4_50a_min	0,7	8,8	10,1
11_B4_50a_max 1_C3_min	0,7 14,8	8,8 4,2	10,1 -148,2
1_C3_max	7,4	4,4	-87,0
2_C3_min 2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min 4_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_C3_min	n.v.	n.v.	n.v.
5_C3_max	n.v.	n.v.	n.v.
6_C3_min 6_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min 8 C3 max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C3_min	16,7	1,1	-80,3
9_C3_max	128,7	-7,5 1 1	-658,7
10_C3_min 10_C3_max	16,7 128,7	1,1 -7,5	-80,3 -658,7
11_C3_min	16,7	1,1	-80,3
11_C3_max 1_C4_min	128,7 0,3	-7,5 0,0	-658,7 -3,4
1_C4_max	1,5	22,6	25,5
2_C4_min	n.v.	n.v.	n.v.
2_C4_max 3_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min 4_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_C4_min	n.v.	n.v.	n.v.
5_C4_max	n.v.	n.v.	n.v.
6_C4_min 6_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min 8_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C4_min	0,5	6,7	7,5
9_C4_max 10_C4_min	0,6 0,5	8,3 6,7	9,4 7,5
10_C4_max	0,6	8,3	9,4
11_C4_min	0,5	6,7	7,5
11_C4_max	0,6	8,3	9,4

1_D_min	-6,9	-92,9	24,7
1_D_max	-5,0	-68,7	0,6
2_D_min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	n.v.	n.v.	n.v.
3_D_max	n.v.	n.v.	n.v.
4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v.	n.v.	n.v.
5_D_min	n.v.	n.v.	n.v.
5_D_max	n.v.	n.v.	n.v.
6_D_min	n.v.	n.v.	n.v.
6_D_max	n.v.	n.v.	n.v.
7_D_min	n.v.	n.v.	n.v.
7_D_max	n.v.	n.v.	n.v.
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	-6,4	-86,8	-34,9
9_D_max	-44,0	-745,7	-333,5
10_D_min	-6,4	-86,8	-34,9
10_D_max	-44,0	-745,7	-333,5
11_D_min	-6,4	-86,8	-34,9
11_D_max	-44,0	-745,7	-333,5
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	n.v.	n.v.	n.v.
3_DofB4_max	n.v.	n.v.	n.v.
4_DofB4_min	n.v.	n.v.	n.v.
4_DofB4_max	n.v.	n.v.	n.v.
5_DofB4_min	n.v.	n.v.	n.v.
5_DofB4_max	n.v.	n.v.	n.v.
6_DofB4_min	n.v.	n.v.	n.v.
6_DofB4_max	n.v.	n.v.	n.v.
7_DofB4_min	n.v.	n.v.	n.v.
7_DofB4_max	n.v.	n.v.	n.v.
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	0,0	0,0	0,0
10_DofB4_min	0,0	0,0	0,0
10_DofB4_max	0,0	0,0	0,0
11_DofB4_min	0,0	0,0	0,0
11_DofB4_max	0,0	0,0	0,0
	,	,	

Tabelle A. 28: Innenwand in Massivbauweise, Altbau – IWmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	28,8	204,4	245,0
1 A1A3 max	127,6	860,2	1036,5
2_A1A3_min	21,2	153,9	184,1
2_A1A3_max	102,9	696,2	838,6
3_A1A3_min	19,3	141,3	168,9
3_A1A3_max	110,9	1089,9	1497,0
4_A1A3_min	19,3	141,3	168,9
4_A1A3_max	110,9	1089,9	1497,0
5_A1A3_min	19,3	141,3	168,9
5_A1A3_max	110,9	1089,9	1497,0
6_A1A3_min	19,5	142,6	170,4
6_A1A3_max	100,1	887,0	1207,1
7_A1A3_min	19,3	141,3	168,9
7_A1A3_max	100,1	887,0	1207,1
8_A1A3_min	19,3	141,3	168,9
8_A1A3_max	75,3	513,4	617,9
9_A1A3_min	20,0	184,2	220,5
9_A1A3_max	88,4	685,6	896,6
10_A1A3_min	20,0	184,2	220,5
10_A1A3_max	88,4	685,6	896,6
11_A1A3_min	20,0	184,2	220,5
_11_A1A3_max	88,4	685,6	896,6
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0

7_DofB4_max 8 DofB4 min

8_DofB4_max

9_DofB4_min 9_DofB4_max

10_DofB4_min

10_DofB4_max

11 DofB4 min

11_DofB4_max

0,0

0,0

0,0

0,0

0,0

0.0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0

ie

1	റ	c
4	_	n

Tabelle A. 29: Innenwand in Holzbauweise, Altbau – IWwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	9,2	203,4	468,1
1_A1A3_max 2_A1A3_min	9,2	203,4	468,1
2_A1A3_IIIII 2 A1A3 max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3 A1A3 min	n.v.	n.v.	n.v.
3 A1A3 max	n.v.	n.v.	n.v.
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max	n.v.	n.v.	n.v.
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max 7 A1A3 min	n.v. n.v.	n.v.	n.v.
7_A1A3_max	n.v.	n.v. n.v.	n.v. n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	-10,4	87,2	284,7
9_A1A3_max	-158,3	1060,5	4263,0
10_A1A3_min	-10,4	87,2	284,7
10_A1A3_max	-158,3	1060,5	4263,0
11_A1A3_min 11_A1A3_max	-10,4 -158,3	87,2 1060,5	284,7 4263,0
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_min	0,0	0,0	0,0
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	n.v.	n.v.	n.v.
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min 5_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_B4_50a_min	n.v.	n.v.	n.v.
6_B4_50a_max	n.v.	n.v.	n.v.
7_B4_50a_min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max 10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_min 10_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min	16,7	3,3	-179,9
1_C3_max	16,7	3,3	-179,9
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min 3 C3 max	n.v.	n.v.	n.v.
4_C3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_C3_max	n.v.	n.v.	n.v.
5_C3_min	n.v.	n.v.	n.v.
5_C3_max	n.v.	n.v.	n.v.
6_C3_min	n.v.	n.v.	n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min 8_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_C3_min	16,7	0,6	-80,8
9_C3_max	235,8	-2,9	-2082,6
10_C3_min	16,7	0,6	-80,8
10_C3_max	235,8	-2,9	-2082,6
11_C3_min	16,7	0,6	-80,8
11_C3_max	235,8	-2,9 16.5	-2082,6 18.7
1_C4_min 1_C4_max	1,1 1,1	16,5 16,5	18,7 18,7
2 C4 min	n.v.	n.v.	n.v.
2_C4_max	n.v.	n.v.	n.v.
3_C4_min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min	n.v.	n.v.	n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min	n.v.	n.v.	n.v.
5_C4_max 6_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_C4_max	n.v.	n.v.	n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	0,3	4,4	5,0
9_C4_max	1,1	15,8	17,8
10_C4_min	0,3	4,4	5,0
10_C4_max 11_C4_min	1,1 0,3	15,8 4,4	17,8 5,0
11_C4_max	1,1	15,8	17,8
•ax	•, •	, .	,0

A.6 Übersichtstabelle Altbaukonstruktion	en über	die	baualterspezifis	chen	Umweltwirkungen
1_D_	min	-8,7	-117,4	23,1	
1_D		-8,7	-117,4	23,1	
2_D		n.v.	n.v.	n.v.	
2_D		n.v.	n.v.	n.v.	
3_D_		n.v.	n.v.	n.v.	
3_D_		n.v.	n.v.	n.v.	
4_D		n.v.	n.v.	n.v.	
4_D_		n.v.	n.v.	n.v.	
5_D		n.v.	n.v.	n.v.	
5_D		n.v.	n.v.	n.v.	
6_D		n.v.	n.v.	n.v.	
6_D_		n.v.	n.v.	n.v.	
7_D		n.v.	n.v.	n.v.	
7_D		n.v.	n.v.	n.v.	
8_D_		n.v.	n.v.	n.v.	
8_D_		n.v.	n.v.	n.v.	
9_D_		-6,4	-86,8	-34,9	
9_D_		-98,1	-1502,2	64,1	
	 D_min	-6,4	-86,8	-34,9	
)_max	-98,1	-1502,2	64,1	
)_min	-6,4	-86,8	-34,9	
	_)_max	-98,1	-1502,2	64,1	
	ofB4_min	0,0	0,0	0,0	
	ofB4_max	0,0	0,0	0,0	
	ofB4 min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4 min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	n.v.	n.v.	n.v.	
	ofB4_max	n.v.	n.v.	n.v.	
	ofB4_min	0,0	0,0	0,0	
	ofB4_max	0,0	0,0	0,0	
	OofB4_min	0,0	0,0	0,0	
	ofB4 max	0,0	0,0	0,0	
	OofB4_min	0,0	0,0	0,0	
	ofB4_max	0,0	0,0	0,0	
		-,-	-,-	-,0	

je

Tabelle A. 30: Steildach Altbau - PRO_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

_			
Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m ²]
1_A1A3_min	-32,7	201,7	835,5
1_A1A3_max	-30,5	493,2	1015,8
2_A1A3_min	-3,8	387,6	810,5
2_A1A3_max	-1,2	488,0	1011,9
3_A1A3_min	8,8	230,2	362,5
3_A1A3_max	-21,0	509,1	1311,4
4_A1A3_min	-18,3	70,9	423,1
4_A1A3_max	-16,8	547,5	1320,1
5_A1A3_min	-18,3	70,9	423,1
5_A1A3_max	13,0	488,3	932,0
6_A1A3_min	-18,3	70,9	423,1
6_A1A3_max	4,8	503,8	882,6
7_A1A3_min	-18,3	70,9	423,1
7_A1A3_max	15,3	848,7	1419,6
8_A1A3_min	-14,7	76,9	399,0
8_A1A3_max	15,3	848,7	1419,6
9_A1A3_min	-41,8	277,3	1094,8
9_A1A3_max	-67,2	1110,0	2961,8
10_A1A3_min	-41,8	277,3	1094,8
10_A1A3_max	-67,2	1110,0	2961,8
11_A1A3_min	-41,8	277,3	1094,8
11_A1A3_max	-67,2	1110,0	2961,8
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	5,8	460,5	471,7
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	53,8	760,7	806,5
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	53,8	760,7	806,5
9_B4_50a_min	1,0	14,7	15,9
9_B4_50a_max	1,0	14,7	15,9
10_B4_50a_min	1,0	14,7	15,9

10_B4_50a_max	1,0	14,7	15,9
11_B4_50a_min	1,0	14,7	15,9
11_B4_50a_max	1,0	14,7	15,9
1_C3_min 1_C3_max	47,4 39,4	6,1 2,8	-487,8 -409,6
2_C3_min	28,5	2,6 8,6	-284,6
2_C3_max	41,9	8,9	-258,6
3_C3_min	8,3	5,3	-77,5
3_C3_max	63,5	10,4	-482,8
4_C3_min	26,7	3,1	-275,6
4_C3_max	61,1	11,4	-456,3
5_C3_min	26,7	3,1	-275,6
5_C3_max	32,8	15,6	-251,3
6 C3 min	26,7	3,1	-275,6
6_C3_max	26,1	11,3	-256,3
7_C3_min	26,7	3,1	-275,6
7_C3_max	44,6	4,1	-408,1
8_C3_min	24,3	3,3	-250,3
8 C3 max	44,6	4,1	-408,1
9_C3_min	63,3	4,8	-627,6
9_C3_max	145,0	4,4	-840,3
10_C3_min	63,3	4,8	-627,6
10_C3_max	145,0	4,4	-840,3
11_C3_min	63,3	4,8	-627,6
_11_C3_max	145,0	4,4	-840,3
1_C4_min	0,0	0,0	0,0
1_C4_max	1,0	14,9	16,0
2_C4_min	0,3	2,0	-0,2
2_C4_max	0,1	2,0	2,2
3_C4_min	0,0	0,0	0,0
3_C4_max	0,1	2,0	2,2
4_C4_min	0,0	0,0	0,0
4_C4_max	1,3	2,3	2,5
5_C4_min	0,0	0,0	0,0
5_C4_max	0,8	12,0	13,6
6_C4_min	0,0	0,0	0,0
6_C4_max	3,1	2,9	3,3
7_C4_min	0,0	0,0	0,0
7_C4_max	0,7	10,4	11,3
8_C4_min	0,0	0,0	0,0
8_C4_max	0,7	10,4	11,3
9_C4_min	0,0	0,0	0,0
9_C4_max	0,4	5,5	6,2
10_C4_min	0,0	0,0	0,0
10_C4_max	0,4	5,5	6,2
11_C4_min	0,0	0,0	0,0
11_C4_max	0,4	5,5	6,2
1_D_min	-22,2	-296,3	85,2
1_D_max	-18,4	-246,8 477.6	71,7
2_D_min	-13,2	-177,6	48,7
2_D_max	-17,8 -4,1	-223,1	-33,8 8,8
3_D_min 3_D_max	-4,1	-54,3 -358,1	5,8
4_D_min	-12,4	-167,0	48,2
4_D_max	-12,4	-352,4	-9,1
5_D_min	-12,4	-167,0	48,2
5_D_max	-14,5	-188,2	11,1
6_D_min	-12,4	-167,0	48,2
6_D_max	-13,7	-186,2	18,2
7 D min	-12,4	-167,0	48,2
7_D_max	-45,7	-471,3	-142,1
8 D min	-11,3	-151,9	43,8
8_D_max	-45,7	-471,3	-142,1
9_D_min	-31,7	-423,0	55,2
9_D_max	-53,0	-846,9	-279,2
10_D_min	-31,7	-423,0	55,2
10_D_max	-53,0	-846,9	-279,2
11_D_min	-31,7	-423,0	55,2
_11_D_max	-53,0	-846,9	-279,2
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	-27,3	-224,5	-213,8
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	-27,3	-224,5	-213,8
9_DofB4_min	-0,2	-2,8	-3,6
9_DofB4_max	-0,2	-2,8	-3,6
10_DofB4_min	-0,2	-2,8	-3,6
10_DofB4_max	-0,2	-2,8	-3,6
11_DofB4_min 11_DofB4_max	-0,2 -0,2	-2,8 -2,8	-3,6 -3,6
- 1_DOD4_IIIaX	٠,٧	۷,0	-3,6

Tabelle A. 31: Gebäudetrennwand unter GOK, Altbau – SCW_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Unit	Indicator	GWP	PENRT	PET
1_A1A3_max	unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
2_A1A3_min				
2_A1A3_max				
3.A1A3_max 52.4 514.7 706.7 4.A1A3_max 52.4 514.7 706.7 5.A1A3_min 52.8 5.A1A3_min 52.8 5.A1A3_min 52.8 5.A1A3_min 52.8 5.A1A3_min 52.8 5.A1A3_min 52.8 5.A1A3_min 38.6 6.A1A3_min 37.4 331.2 450.6 7.A1A3_min 37.7 256.7 308.9 249.6 6.A1A3_min 37.7 256.7 308.9 249.6 6.A1A3_min 37.7 256.7 308.9 249.6 8.A1A3_min 37.7 256.7 308.9 249.6 8.A1A3_min 37.7 256.7 308.9 2.A1A3_min 38.6 28.2 205.8 242.0 10.A1A3_min 28.2 205.8 242.0 10.A1A3_min 28.2 205.8 242.0 10.A1A3_min 28.2 205.8 242.0 11.A1A3_min 28.2 205.8 242.0 11.A1A3_min 28.2 205.8 242.0 11.B4.50a_min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				
4_A1A3_min				
4_A1A3_max			- ,	
5.A1A3.min				
5_A1A3_max				
6_A1A3_min				
7_A1A3_min				
T_AIA3_max 53.0 470.1 634.7 8.A1A3_min 37.7 256.7 308.9 8.A1A3_min 53.0 470.1 634.7 9.A1A3_min 53.0 470.1 634.7 9.A1A3_min 28.2 205.8 242.0 9.A1A3_min 28.2 205.8 242.0 9.A1A3_min 28.2 205.8 242.0 10.A1A3_min 28.2 205.8 242.0 10.A1A3_min 28.2 205.8 242.0 11.A1A3_min 28.2 205.8 242.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				
8_A1A3_min				
8_A1A3_max 53.0 470.1 634,7 9_A1A3_min 28.2 205.8 242.0 9_A1A3_min 28.2 205.8 242.0 10_A1A3_max 103.4 858.4 1108.3 10_A1A3_max 104.4 886.8 1138.5 11_A1A3_max 105.1 908.0 1151.1 1_B14_50a_min 0.0 0.0 0.0 0.0 1_B4_50a_max 0.0 0.0 0.0 0.0 2_B4_50a_max 0.0 0.0 0.0 0.0 2_B4_50a_min 0.0 0.0 0.0 0.0 3_B4_50a_max 0.0 0.0 0.0 0.0 3_B4_50a_max 0.0 0.0 0.0 0.0 4_B4_50a_min 0.0 0.0 0.0 0.0 4_B4_50a_min 0.0 0.0 0.0 0.0 0.0 4_B4_50a_min 0.0 0.0 0.0 0.0 0.0 5_B4_50a_min 0.0 0.0 0.0 0.0 0.0 0.0 5_B4_50a_min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				
9_A1A3_min				
9_A1A3_max				
10.A143_min				
11. A1A3_max	10_A1A3_min	28,2	205,8	242,0
11. Al A3 max				
1.84.50a_min				
1_B4_50a_max				
2_B4_50a_min				
2_B4_50a_max				
3.B4.50a_max				
4. B4. 50a_min				
4_B4_50a_max				
5.B4.50a_min 0.0 0.0 0.0 6.B4.50a_min 0.0 0.0 0.0 6.B4.50a_min 0.0 0.0 0.0 7.B4.50a_max 0.0 0.0 0.0 7.B4.50a_max 0.0 0.0 0.0 8.B4.50a_min 0.0 0.0 0.0 8.B4.50a_min 0.0 0.0 0.0 9.B4.50a_min 0.0 0.0 0.0 9.B4.50a_min 0.0 0.0 0.0 10.B4.50a_min 0.0 0.0 0.0 10.B4.50a_min 0.0 0.0 0.0 10.B4.50a_max 10.0 0.0 0.0 10.B4.50a_max 10.0 0.0 0.0 11.B4.50a_max 10.0 0.0 0.0 11.B4.50a_max 10.2 135.7 144.3 1_C3_min -0.9 2.7 2.8 1_C3_max -2.4 6.8 7.2 2_C3_min -0.5 1.3 1.3 2_				
5 B4_50a_max 0.0 0.0 0.0 6_B4_50a_min 0.0 0.0 0.0 7_B4_50a_min 0.0 0.0 0.0 7_B4_50a_min 0.0 0.0 0.0 8_B4_50a_min 0.0 0.0 0.0 8_B4_50a_min 0.0 0.0 0.0 9_B4_50a_min 0.0 0.0 0.0 9_B4_50a_min 0.0 0.0 0.0 10_B4_50a_max 6.4 85,7 91,2 10_B4_50a_min 0.0 0.0 0.0 10_B4_50a_min 0.0 0.0 0.0 10_B4_50a_min 0.0 0.0 0.0 10_B4_50a_min 0.0 0.0 0.0 11_B4_50a_min 0.0 0.0 0.0 11_B4_50a_max 10,2 135,7 144,3 1_C3_min -0.9 2,7 2,8 1_C3_min -0.9 2,7 2,8 1_C3_min -0.9 2,5 2,7 4_				
6_B4_50a_min 0.0 0.0 0.0 6_B4_50a_max 0.0 0.0 0.0 7_B4_50a_min 0.0 0.0 0.0 7_B4_50a_max 0.0 0.0 0.0 8_B4_50a_min 0.0 0.0 0.0 9_B4_50a_min 0.0 0.0 0.0 9_B4_50a_min 0.0 0.0 0.0 10_B4_50a_max 6.4 85.7 91.2 10_B4_50a_min 0.0 0.0 0.0 10_B4_50a_max 10.2 135.7 144.3 1_C3_min 0.0 0.0 0.0 1_L63_min 0.0 0.0 0.0 1_L73_min -0.9 2.7 2.8 1_C3_min -0.5 1.3 1.3 1_C3_min -0.9 2.5 2.7 3_C3_max 0.6 8.4 10.7 4_C3_min -0.9 2.5 2.7 4_C3_min -0.9 2.5 2.7 5_C3_min				
6_B4_50a_max				
7. B4. 50a_max 0.0 0.0 0.0 8_B4.50a_min 0.0 0.0 0.0 9_B4.50a_min 0.0 0.0 0.0 9_B4.50a_min 0.0 0.0 0.0 9_B4.50a_min 0.0 0.0 0.0 10_B4_50a_max 8.6 114,3 121,6 11_B4_50a_min 0.0 0.0 0.0 11_B4_50a_max 10.2 135,7 144,3 1_C3_min -0.9 2,7 2,8 1_C3_max -2,4 6,8 7,2 2_C3_max -1,9 5,4 5,7 3_C3_min -0,5 1,3 1,3 2_C3_max -1,9 5,4 5,7 3_C3_min -0,9 2,5 2,7 4_C3_min -0,9 2,5 2,7 4_C3_min -0,9 2,5 2,7 4_C3_min -0,9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_min <	6_B4_50a_max			
8_B4_50a_min				
8_B4_50a_max				
9_B4_50a_min				
9_B4_50a_max				
10_B4_50a_max				
11_B4_50a_min 0.0 0,0 0,0 11_B4_50a_max 10,2 135,7 144,3 1_C3_min -0.9 2,7 2,8 1_C3_max -2,4 6,8 7,2 2_C3_min -0,5 1,3 1,3 2_C3_max -1,9 5,4 5,7 3_C3_min -0,9 2,5 2,7 3_C3_max 0,6 8,4 10,7 4_C3_min -0,9 2,5 2,7 4_C3_max 0,6 8,4 10,7 5_C3_max 0,6 8,4 10,7 5_C3_min -0,9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 <				
11_B4_50a_max				
1_C3_min -0,9 2,7 2,8 1_C3_max -2,4 6,8 7,2 2_C3_min -0,5 1,3 1,3 2_C3_max -1,9 5,4 5,7 3_C3_min -0,9 2,5 2,7 4_C3_min -0,9 2,5 2,7 4_C3_min -0,9 2,5 2,7 4_C3_max 0,6 8,4 10,7 5_C3_min -0,9 2,5 2,7 4_C3_max 0,6 8,4 10,7 5_C3_max 0,6 8,4 10,7 6_C3_min -1,2 15,7 19,9 6_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 10_C3_max 5,3 23,7 </td <td></td> <td></td> <td></td> <td></td>				
1_C3_max				
2_C3_min -0.5 1,3 1,3 2_C3_max -1.9 5,4 5,7 3_C3_min -0.9 2.5 2,7 3_C3_max 0,6 8,4 10,7 4_C3_min -0.9 2,5 2,7 4_C3_max 0,6 8,4 10,7 5_C3_min -0.9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_min -1,4 3,9 4,1 8_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5				
3_C3_min				
3_C3_max				
4_C3_min -0,9 2,5 2,7 4_C3_max 0,6 8,4 10,7 5_C3_min -0,9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_min 1,2 15,7 19,9 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 1_C4_min 0,7 <				
4_C3_max 0,6 8,4 10,7 5_C3_min -0,9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 1,1 16,7 18,9 1_C4_min 1,1				
5_C3_min -0,9 2,5 2,7 5_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_max 0,9 11,5 14,5 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C4_max 2,6 38,2 43,2 2_C4_min 1,1 16,7 18,9 1_C4_max 2,6				
5_C3_max 0,6 8,4 10,7 6_C3_min 1,2 15,7 19,9 6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_min 1,1 16,2 18,3 4_C4_min 1,1 <				
6_C3_max 0,7 8,5 10,8 7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1				
7_C3_min 1,2 15,7 19,9 7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_min 0,5 10,6 11,5 10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_min 0,7 9,6 10,8 2_C4_min 1,1 16,2 18,3 3_C4_min 1,1 16,2 18,3 4_C4_min 1,1				
7_C3_max 0,9 11,5 14,5 8_C3_min -1,4 3,9 4,1 8_C3_max 0,9 11,5 14,5 9_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_min 1,1 16,2 18,3 5_C4_min 0,2		4.0	4 = -	40.0
8 C3_min -1,4 3,9 4,1 8 C3_max 0,9 11,5 14,5 9 C3_min 0,5 10,6 11,5 9 C3_min 0,5 10,6 11,5 9 C3_min 0,5 10,6 11,5 10 C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 0,5 10,6 11,5 11_C3_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_min 1,1			15,7	19,9
8_C3_max 0,9 11,5 14,5 9.63_min 0.5 10,6 11,5 9.63_min 0.5 10,6 11,5 9.63_max 5,3 23,7 29,9 10,6 11,5 10.6 11,5 11,5 10,6 11,5 11,5 10,6 11,5 11,1 11,1				
9_C3_min 0,5 10,6 11,5 9_C3_max 5,3 23,7 29,9 10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_min 0,7 9,6 10,8 2_C4_min 1,1 16,2 18,3 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_min 0,2 <t< td=""><td></td><td></td><td></td><td></td></t<>				
10_C3_min 0,5 10,6 11,5 10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_min 0,7 9,6 10,8 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_min 1,1 16,2 18,3 5_C4_min 1,1 16,2 18,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_max 0,2 3,0 3,3 6_C4_max 0,2 3,0 3,3 6_C4_max 0,2 3,0 3,3 7_C4_min 0,2 3,0<	9_C3_min	0,5	10,6	11,5
10_C3_max 6,5 23,8 30,1 11_C3_min 0,5 10,6 11,5 11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_min 0,2 3,0 <td></td> <td></td> <td></td> <td></td>				
11_C3_min 0,5 10,6 11,5 11_C3 max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_min 0,7 9,6 10,8 2_C4_min 1,1 16,2 18,3 3_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_min 1,1 16,2 18,3 5_C4_min 1,1 16,2 18,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 7_C4_min 0,2 3,0				
11_C3_max 7,4 24,0 30,2 1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 5_C4_max 0,2 3,0 3,3 6_C4_max 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_min 0,2 3,0 3,3 7_C4_min 0,2 3,0 3,3 7_C4_min 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_min 1,6 23,1				
1_C4_min 1,1 16,7 18,9 1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_max 0,2 3,0 3,3 5_C4_max 0,2 3,0 3,3 5_C4_max 0,2 3,0 3,3 6_C4_max 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 8_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 <td< td=""><td></td><td></td><td></td><td></td></td<>				
1_C4_max 2,6 38,2 43,2 2_C4_min 0,7 9,6 10,8 2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 10_C4_min 0,0 0,4 0,4				
2_C4_max 2,1 31,1 35,1 3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_max 0,2 3,0 3,3 5_C4_max 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_min 1,6 23,1 26,1 8_C4_min 0,0 0,4 0,4 9_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_min 0,0 0,4 0,4 9_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 <td< td=""><td>1_C4_max</td><td>2,6</td><td>38,2</td><td>43,2</td></td<>	1_C4_max	2,6	38,2	43,2
3_C4_min 1,1 16,2 18,3 3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4				
3_C4_max 0,2 3,0 3,3 4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_max 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4				
4_C4_min 1,1 16,2 18,3 4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_min 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4				
4_C4_max 0,2 3,0 3,3 5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
5_C4_min 1,1 16,2 18,3 5_C4_max 0,2 3,0 3,3 6_C4_min 0,2 3,0 3,3 6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4				
6_C4_min	5_C4_min	1,1	16,2	
6_C4_max 0,0 0,0 0,0 7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
7_C4_min 0,2 3,0 3,3 7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
7_C4_max 0,2 3,0 3,3 8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4 11_C4_min 0,0 0,4 0,4				
8_C4_min 1,6 23,1 26,1 8_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
8_C4_max 0,2 3,0 3,3 9_C4_min 0,0 0,4 0,4 9_C4_max 0,3 3,9 4,5 10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
9_C4_max	8_C4_max	0,2	3,0	3,3
10_C4_min 0,0 0,4 0,4 10_C4_max 0,3 3,9 4,5 11_C4_min 0,0 0,4 0,4				
10_C4_max				
11_C4_min 0,0 0,4 0,4				

1_D_min	-0,7	-9,6	-10,5
1_D_max	-1,7	-24,6	-26,9
2_D_min	-0,3	-4,6	-5,0
2_D_max	-1,3	-19,6	-21,4
3_D_min	-0,6	-9,2	-10,1
3_D_max	-2,3	-30,0	-40,1
4_D_min	-0,6	-9,2	-10,1
4_D_max	-2,3	-30,0	-40,1
5_D_min	-0,6	-9,2	-10,1
5_D_max	-2,3	-30,0	-40,1
6_D_min	-4,3	-55,8	-74,6
6_D_max	-2,3	-30,3	-40,5
7 D min	-4,3	-55,8	-74,6
7 D max	-3,1	-40,6	-54,3
8_D_min	-1,0	-14,0	-15,3
8 D max	-3,1	-40,6	-54,3
9 D min	0,0	0,0	0,0
9 D max	-7,8	-103,8	-137,6
10 D min	0,0	0,0	0,0
10 D max	-8,3	-111,0	-147,0
11 D min	0,0	0,0	0,0
11_D_max	-8,6	-116,4	-153,9
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	0,0	0,0	0,0
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	-1,5	-21,7	-27,9
10_DofB4_min	0,0	0,0	0,0
10_DofB4_max	-2,0	-29,0	-37,3
11_DofB4_min	0,0	0,0	0,0
11_DofB4_max	-2,4	-34,4	-44,3

Tabelle A. 32: Oberste Geschossdecke in Massivbauweise, Altbau – TFLmas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	n.v.	n.v.	n.v.
1_A1A3_max	n.v.	n.v.	n.v.
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	45,6	323,1	457,8
3_A1A3_max	81,6	996,8	1223,8
4_A1A3_min	45,1	354,6	536,6
4_A1A3_max	81,6	996,8	1223,8
5_A1A3_min	33,0	230,6	272,6
5_A1A3_max	81,6	996,8	1223,8
6_A1A3_min	33,0	230,6	272,6
6_A1A3_max	81,6	996,8	1223,8
7_A1A3_min	33,0	230,6	272,6
7_A1A3_max	81,6	996,8	1223,8
8_A1A3_min	86,6	880,1	1179,9
8_A1A3_max	86,6	880,1	1179,9
9_A1A3_min	62,2	580,9	710,1
9_A1A3_max	55,5	1085,3	2005,7
10_A1A3_min	62,2	580,9	710,1
10_A1A3_max	55,5	1085,3	2005,7
11_A1A3_min	62,2	580,9	710,1
_11_A1A3_max	55,5	1085,3	2005,7
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0

0,0

0,0

0,0

0,0

0,0 0.0

0,0

0,0

0.0

0,0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0 0,0 0,0

0,0 0,0 0,0

0,0

0.0

0,0

7_DofB4_min

7_DofB4_max 8 DofB4 min

8_DofB4_max

9_DofB4_min 9_DofB4_max

10_DofB4_min

10_DofB4_max

11 DofB4 min

11_DofB4_max

ie

1	n	2
4	. 1	_

Tabelle A. 33: Oberste Geschossdecke in Holzbauweise, Altbau – TFLwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min 1_A1A3_max	-56,8 -50,8	84,9 216,1	921,2 1148,8
2_A1A3_min	-56,8	84,9	921,2
2_A1A3_max	-54,9	206,0	1194,1
3_A1A3_min	-49,5	58,5	763,9
3_A1A3_max	-49,0	181,3	1047,4
4_A1A3_min 4_A1A3_max	-63,5 -49,5	91,3 212,8	1021,7 1126,2
5_A1A3_min	-49,5	100,1	573,0
5_A1A3_max	-50,1	239,1	1175,1
6_A1A3_min	-21,1	156,5	635,4
6_A1A3_max	-41,0 -21.1	175,6	931,4
7_A1A3_min 7_A1A3_max	-21,1 -41,0	156,5 175,6	635,4 931,4
8_A1A3_min	-32,6	152,2	772,6
8_A1A3_max	-41,0	175,6	931,4
9_A1A3_min	-35,3	378,3	1085,4
9_A1A3_max 10_A1A3_min	-148,3 -41,9	836,4 387,1	3688,2 1172,0
10_A1A3_max	-161,0	963,9	4071,3
11_A1A3_min	-41,9	387,1	1172,0
_11_A1A3_max	-161,0	963,9	4071,3
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max 2_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
2_B4_50a_min	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max 5_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max 8_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min 10_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min	62,7	9,5	-643,7
1_C3_max	66,9	10,8	-533,8
2_C3_min 2_C3_max	62,7 74,7	9,5 11,2	-643,7 -767,1
3_C3_min	54,5	3,9	-566,2
3_C3_max	70,3	4,3	-565,6
4_C3_min	70,7	11,3	-725,2
4_C3_max 5_C3_min	75,1 35,4	4,4 3,9	-565,4
5_C3_max	76,7	4,5	-365,9 -565,3
6_C3_min	37,8	4,4	-307,7
6_C3_max	59,3	6,0	-531,3
7_C3_min	37,8	4,4	-307,7
7_C3_max 8 C3 min	59,3 48,9	6,0 4,4	-531,3 -424,5
8_C3_max	46,9 59,3	4,4 6,0	-424,5 -531,3
9_C3_min	56,1	-11,0	-488,1
9_C3_max	208,8	-3,4	-2035,2
10_C3_min 10_C3_max	65,0 232,2	-10,9 -3,2	-494,7 -2034,7
10_C3_max 11_C3_min	65,0	-3,2 -10,9	-2034,7 -494,7
11_C3_max	232,2	-3,2	-2034,7
1_C4_min	0,3	2,0	-0,2
1_C4_max	0,7	2,0	-4,6 0.2
2_C4_min 2_C4_max	0,3 0,2	2,0 3,0	-0,2 3,3
3_C4_min	0,0	0,0	0,0
3_C4_max	0,1	2,0	2,2
4_C4_min	0,3	2,0	0,6
4_C4_max	0,1	2,0	2,2
5_C4_min 5_C4_max	0,2 0,2	2,5 2,2	2,8 2,5
6_C4_min	0,2	3,4	3,9
6_C4_max	0,2	3,4	3,9
7_C4_min	0,2	3,4	3,9
7_C4_max	0,2	3,4	3,9
8_C4_min 8_C4_max	0,2 0,2	3,2 3,4	3,7 3,9
9_C4_min	0,3	4,4	5,0
9_C4_max	0,8	11,0	12,4
10_C4_min	0,3	4,4	5,0
10_C4_max 11_C4_min	0,8 0,3	11,0 4,4	12,4 5,0
11_C4_max	0,8	11,0	12,4

A.6 Übersichtstabe Altbaukonstruktion	ellen über	die	baualterspezifischen	Umweltwirkungen	je
		-29,3	-391,0 114,3		
1	_D_max	-29,2	-390,1 103,0		
2	2_D_min	-29,3	-391,0 114,3		
2	2_D_max	-35,3	-471,9 129,1		
3	B_D_min	-25,6	-341,0 99,6		
3	B_D_max	-31,2	-401,8 21,5		
4	I_D_min	-33,1	-440,8 129,0		
4	I_D_max	-32,9	-420,0 -2,0		
5	5_D_min	-16,6	-221,3 64,4		
5	5_D_max	-33,5	-426,1 -9,8		
6	S_D_min	-16,8	-217,3 15,0		
6	S_D_max	-26,9	-351,9 54,6		
7	_D_min	-16,8	-217,3 15,0		
7	_D_max	-26,9	-351,9 54,6		
8	B_D_min	-22,0	-287,1 35,5		
8	B_D_max	-26,9	-351,9 54,6		
	D_min	-21,6	-385,5 -33,5		
	D_max	-90,1	-1371,9 186,3		
	0_D_min	-24,4	-424,4 -77,2		
	0_D_max	-96,3	-1479,6 47,8		
	1_D_min	-24,4	-424,4 -77,2		
	1_D_max	-96,3	-1479,6 47,8		
	DofB4 min	0,0	0,0 0,0		
	_DofB4_max	0,0	0,0 0,0		
	_DofB4_min	0,0	0,0 0,0		
	_DofB4_max	0,0	0,0 0,0		
	B_DofB4_min	0,0	0,0 0,0		
	B_DofB4_max	0,0	0,0 0,0		
	_DofB4_min	0,0	0,0 0,0		
	_DofB4_max	0,0	0,0 0,0		
	_DofB4_min	0,0	0,0 0,0		
	_DofB4_max	0,0	0,0 0,0		
	DofB4_min	0,0	0,0 0,0		
	DofB4_max	0,0	0,0 0,0		
	_DofB4_min	0,0	0,0 0,0		
	DofB4_max	0,0	0,0 0,0		
	B_DofB4_min	0,0	0,0 0,0		
	B_DofB4_max	0,0	0,0 0,0		
	DofB4_min	0,0	0,0 0,0		
	DofB4 max	0,0	0,0 0,0		
	0_DofB4_min	0,0	0,0 0,0		
	0_DofB4_max	0,0	0,0 0,0		
	1_DofB4_min	0,0	0,0 0,0		
	1_DofB4_max	0,0	0,0 0,0		
		0,0	0,0		

Tabelle A. 34: Alurahmen-Fenster, Altbau – Walu_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	n.v.	n.v.	n.v.
1_A1A3_max	n.v.	n.v.	n.v.
2_A1A3_min	38,5	526,5	644,6
2_A1A3_max	270,5	3731,6	4800,2
3_A1A3_min	38,5	526,5	644,6
3_A1A3_max	270,5	3731,6	4800,2
4_A1A3_min	38,5	526,5	644,6
4_A1A3_max	270,5	3731,6	4800,2
5_A1A3_min	38,5	526,5	644,6
5_A1A3_max	270,5	3731,6	4800,2
6_A1A3_min	58,3	793,4	951,5
6_A1A3_max	270,5	3731,6	4800,2
7_A1A3_min	58,3	793,4	951,5
7_A1A3_max	180,4	2528,7	3183,1
8_A1A3_min	58,3	793,4	951,5
8_A1A3_max	180,4	2528,7	3183,1
9_A1A3_min	58,3	793,4	951,5
9_A1A3_max	188,7	2635,8	3300,6
10_A1A3_min	67,6	891,8	1063,7
10_A1A3_max	188,7	2635,8	3300,6
11_A1A3_min	67,6	891,8	1063,7
_11_A1A3_max	188,7	2635,8	3300,6
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min	14,8	191,3	214,3
2_B4_50a_max	22,9	306,8	373,5
3_B4_50a_min	14,8	191,3	214,3
3_B4_50a_max	22,9	306,8	373,5
4_B4_50a_min	14,8	191,3	214,3
4_B4_50a_max	22,9	306,8	373,5
5_B4_50a_min	14,8	191,3	214,3
5_B4_50a_max	22,9	306,8	373,5
6_B4_50a_min	33,7	439,8	504,5
6_B4_50a_max	22,9	306,8	373,5
7_B4_50a_min	33,7	439,8	504,5
7_B4_50a_max	25,0	313,2	373,0
8_B4_50a_min	33,7	439,8	504,5
8_B4_50a_max	25,0	313,2	373,0
9_B4_50a_min	33,7	439,8	504,5
9_B4_50a_max	34,0	421,4	492,0
10_B4_50a_min	44,4	538,9	617,5

10_B4_50a_max 11_B4_50a_min	34,0 44,4	421,4 538,9	492,0 617,5
11_B4_50a_max	34,0	421,4	492,0
1_C3_min	n.v.	n.v.	n.v.
1_C3_max 2_C3_min	n.v. 0,4	n.v. 0,1	n.v. 0,1
2_C3_max	0,8	0,2	0,2
3_C3_min	0,4	0,1	0,1
3_C3_max 4_C3_min	0,8 0,4	0,2 0,1	0,2 0,1
4_C3_max	0,8	0,2	0,2
5_C3_min	0,4	0,1	0,1
5_C3_max 6 C3 min	0,8 1,4	0,2 0,6	0,2 0,7
6_C3_max	0,8	0,2	0,2
7_C3_min	1,4	0,6	0,7
7_C3_max 8 C3 min	7,2 1,4	3,6 0,6	4,1 0,7
8_C3_max	7,2	3,6	4,1
9_C3_min	1,4	0,6	0,7
9_C3_max 10_C3_min	7,8 2,8	3,9 1,3	4,4 1,5
10_C3_max	2,8 7,8	3,9	4,4
11_C3_min	2,8	1,3	1,5
11_C3_max	7,8	3,9	4,4
1_C4_min 1_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_C4_min	0,1	2,2	2,4
2_C4_max	0,1	1,9	2,2
3_C4_min 3 C4 max	0,1 0,1	2,2 1,9	2,4 2,2
4_C4_min	0,1	2,2	2,4
4_C4_max	0,1	1,9	2,2
5_C4_min 5_C4_max	0,1 0,1	2,2 1,9	2,4 2,2
6_C4_min	0,3	4,3	4,9
6_C4_max	0,1	1,9	2,2
7_C4_min	0,3	4,3	4,9
7_C4_max 8_C4_min	0,1 0,3	1,9 4,3	2,2 4,9
8_C4_max	0,1	1,9	2,2
9_C4_min	0,3	4,3	4,9
9_C4_max 10_C4_min	0,2 0,3	2,9 4,3	3,2 4,9
10_C4_max	0,2	2,9	3,2
11_C4_min	0,3	4,3	4,9
11_C4_max 1 D min	0,2 n.v.	2,9 n.v.	3,2 n.v.
1_D_max	n.v.	n.v.	n.v.
2_D_min 2_D_max	-15,0 -158,4	-199,6 -2104,6	-264,4 -2791,0
3_D_min	-150,4	-199,6	-2791,0
3_D_max	-158,4	-2104,6	-2791,0
4_D_min 4_D_max	-15,0 -158,4	-199,6	-264,4
5_D_min	-150,4	-2104,6 -199,6	-2791,0 -264,4
5_D_max	-158,4	-2104,6	-2791,0
6_D_min	-20,5	-271,9	-357,0
6_D_max 7_D_min	-158,4 -20,5	-2104,6 -271,9	-2791,0 -357,0
7_D_max	-100,5	-1338,4	-1773,3
8_D_min	-20,5	-271,9	-357,0
8_D_max 9_D_min	-100,5 -20,5	-1338,4 -271,9	-1773,3 -357,0
9_D_max	-100,8	-1342,5	-1778,6
10_D_min	-21,1	-281,2	-368,9
10_D_max 11 D min	-100,8 -21,1	-1342,5 -281,2	-1778,6 -368,9
11_D_max	-100,8	-1342,5	-1778,6
1_DofB4_min	n.v.	n.v.	n.v.
1_DofB4_max 2 DofB4 min	n.v. -0.2	n.v. -3,3	n.v. -4,2
2_DofB4_max	-4,8	-63,9	-80,6
3_DofB4_min	-0,2	-3,3	-4,2
3_DofB4_max 4_DofB4_min	-4,8 -0,2	-63,9 -3,3	-80,6 -4,2
4_DofB4_max	-4,8	-63,9	-80,6
5_DofB4_min	-0,2	-3,3	-4,2
5_DofB4_max 6_DofB4_min	-4,8 -4,6	-63,9 -60,6	-80,6 -76,4
6_DofB4_max	-4,8	-63,9	-80,6
7_DofB4_min	-4,6	-60,6	-76,4
7_DofB4_max 8_DofB4_min	-4,9 -4,6	-64,7 -60,6	-81,6 -76,4
8_DofB4_min 8_DofB4_max	-4,6 -4,9	-60,6 -64,7	-76,4 -81,6
9_DofB4_min	-4,6	-60,6	-76,4
9_DofB4_max	-5,2 -5.3	-68,8 -69,9	-86,9 -88 3
10_DofB4_min 10_DofB4_max	-5,3 -5,2	-69,9 -68,8	-88,3 -86,9
11_DofB4_min	-5,3	-69,9	-88,3
11_DofB4_max	-5,2	-68,8	-86,9

Tabelle A. 35: Kunststoffrahmen-Fenster, Altbau – Wplas_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min 1_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	32,1	480,5	543,0
3_A1A3_max	192,7	3180,2	3580,1
4_A1A3_min 4_A1A3_max	32,1 192,7	480,5 3180,2	543,0 3580,1
5 A1A3 min	32,1	480,5	543,0
5_A1A3_max	192,7	3180,2	3580,1
6_A1A3_min	46,0	657,6	742,9
6_A1A3_max 7 A1A3 min	192,7	3180,2	3580,1
7_A1A3_IIIII 7_A1A3_max	46,0 106,8	657,6 1714,0	742,9 1930,9
8_A1A3_min	46,0	657,6	742,9
8_A1A3_max	106,8	1714,0	1930,9
9_A1A3_min	46,0	657,6	742,9
9_A1A3_max 10_A1A3_min	119,9 55,3	1930,5 756,0	2172,5 855,1
10_A1A3_max	119,9	1930,5	2172,5
11_A1A3_min	55,3	756,0	855,1
11_A1A3_max	119,9	1930,5	2172,5
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max 2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_min 2_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_B4_50a_min	35,8	442,4	496,8
3_B4_50a_max	274,7	3319,3	3763,7
4_B4_50a_min	35,8	442,4	496,8
4_B4_50a_max 5_B4_50a_min	274,7 35,8	3319,3 442,4	3763,7 496,8
5_B4_50a_min	35,6 274,7	3319,3	3763,7
6_B4_50a_min	54,7	690,8	787,0
6_B4_50a_max	274,7	3319,3	3763,7
7_B4_50a_min	54,7	690,8	787,0
7_B4_50a_max 8_B4_50a_min	150,9 54,7	1819,4 690,8	2068,1 787,0
8_B4_50a_max	150,9	1819,4	2068,1
9_B4_50a_min	54,7	690,8	787,0
9_B4_50a_max	169,0	2046,4	2323,0
10_B4_50a_min	65,4	789,9	900,1
10_B4_50a_max 11_B4_50a_min	169,0 65,4	2046,4 789,9	2323,0 900,1
11_B4_50a_max	169,0	2046,4	2323,0
1_C3_min	n.v.	n.v.	n.v.
1_C3_max	n.v.	n.v.	n.v.
2_C3_min 2_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_C3_min	7,4	15,0	19,2
3_C3_max	84,7	178,5	229,1
4_C3_min	7,4	15,0	19,2
4_C3_max	84,7	178,5	229,1
5_C3_min 5_C3_max	7,4 84,7	15,0 178,5	19,2 229,1
6_C3_min	7,4	15,0	19,2
6_C3_max	84,7	178,5	229,1
7_C3_min	7,4	15,0	19,2
7_C3_max 8_C3_min	42,9 7,4	89,6 15,0	114,9 19,2
8_C3_min 8 C3 max	7,4 42,9	89,6	114,9
9_C3_min	7,4	15,0	19,2
9_C3_max	47,9	99,1	127,1
10_C3_min	8,8	15,6	20,0
10_C3_max 11 C3 min	47,9 8,8	99,1 15,6	127,1 20,0
11_C3_max	47,9	99,1	127,1
1_C4_min	n.v.	n.v.	n.v.
1_C4_max	n.v.	n.v.	n.v.
2_C4_min 2_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_C4_max 3_C4_min	n.v. 0,1	n.v. 2,2	n.v. 2,4
3_C4_max	0,1	1,9	2,2
4_C4_min	0,1	2,2	2,4
4_C4_max	0,1	1,9	2,2
5_C4_min 5_C4_max	0,1 0,1	2,2 1,9	2,4 2,2
6 C4 min	0,1	4,3	2,2 4,9
6_C4_max	0,1	1,9	2,2
7_C4_min	0,3	4,3	4,9
7_C4_max	0,1	1,9	2,2
8_C4_min 8_C4_max	0,3 0,1	4,3 1,9	4,9 2,2
9_C4_min	0,1	4,3	4,9
9_C4_max	0,2	2,9	3,2
10_C4_min	0,3	4,3	4,9
10_C4_max	0,2	2,9	3,2
11_C4_min 11_C4_max	0,3 0,2	4,3 2,9	4,9 3,2
-	٠,٢	۷,0	٠,٠

1_D_min	n.v.	n.v.	n.v.
1_D_max	n.v.	n.v.	n.v.
2_D_min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	-7,7	-83,1	-95,9
3_D_max	-70,8	-706,5	-769,2
4 D min	-7,7	-83,1	-95.9
4 D max	-70,8	-706,5	-769,2
5 D min	-7,7	-83,1	-95,9
5 D max	-70,8	-706,5	-769,2
6 D min	-9,9	-110,7	-129,2
6 D max	-70,8	-706,5	-769,2
7 D min	-9,9	-110,7	-129,2
7 D max	-36,8	-371,1	-406,5
8 D min	-9,9	-110,7	-129,2
8 D max	-36.8	-371.1	-406.5
9 D min	-9,9	-110,7	-129.2
9 D max	-38,0	-389,3	-429.9
10 D min	-10,5	-119,9	-141,1
10 D max	-38,0	-389,3	-429,9
11 D min	-10,5	-119,9	-141,1
11 D max	-38,0	-389,3	-429,9
1_DofB4_min	n.v.	n.v.	n.v.
1_DofB4_max	n.v.	n.v.	n.v.
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	-5,5	-54,5	-58,6
3_DofB4_max	-68,7	-679,1	-733,4
4_DofB4_min	-5,5	-54,5	-58,6
<pre>4_DofB4_max</pre>	-68,7	-679,1	-733,4
5_DofB4_min	-5,5	-54,5	-58,6
5_DofB4_max	-68,7	-679,1	-733,4
6_DofB4_min	-9,9	-111,9	-130,8
6_DofB4_max	-68,7	-679,1	-733,4
7_DofB4_min	-9,9	-111,9	-130,8
7 DofB4 max	-36,9	-372,3	-408,0
	00,0	012,0	
8_DofB4_min	-9,9	-111,9	-130,8
8_DofB4_min 8_DofB4_max			
8_DofB4_min 8_DofB4_max 9_DofB4_min	-9,9 -36,9 -9,9	-111,9	-130,8 -408,0 -130,8
8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max	-9,9 -36,9 -9,9 -38,1	-111,9 -372,3 -111,9 -390,5	-130,8 -408,0 -130,8 -431,4
8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_min	-9,9 -36,9 -9,9 -38,1 -10,6	-111,9 -372,3 -111,9 -390,5 -121,1	-130,8 -408,0 -130,8 -431,4 -142,7
8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_min 10_DofB4_max	-9,9 -36,9 -9,9 -38,1 -10,6 -38,1	-111,9 -372,3 -111,9 -390,5 -121,1 -390,5	-130,8 -408,0 -130,8 -431,4 -142,7 -431,4
8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_min 10_DofB4_max 11_DofB4_min	-9,9 -36,9 -9,9 -38,1 -10,6 -38,1 -10,6	-111,9 -372,3 -111,9 -390,5 -121,1 -390,5 -121,1	-130,8 -408,0 -130,8 -431,4 -142,7 -431,4 -142,7
8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_min 10_DofB4_max	-9,9 -36,9 -9,9 -38,1 -10,6 -38,1	-111,9 -372,3 -111,9 -390,5 -121,1 -390,5	-130,8 -408,0 -130,8 -431,4 -142,7 -431,4

Tabelle A. 36: Holzrahmen-Fenster, Altbau – Wwood_old: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	17,6	332,4	514,1
1 A1A3 max	19,8	1402,7	3233,4
2_A1A3_min	17,6	332,4	514,1
2_A1A3_max	19,8	1402,7	3233,4
3_A1A3_min	17,6	332,4	514,1
3_A1A3_max	19,8	1402,7	3233,4
4_A1A3_min	17,6	332,4	514,1
4_A1A3_max	19,8	1402,7	3233,4
5_A1A3_min	17,6	332,4	514,1
5_A1A3_max	19,8	1402,7	3233,4
6_A1A3_min	31,6	509,5	714,0
6_A1A3_max	19,8	1402,7	3233,4
7_A1A3_min	31,6	509,5	714,0
7_A1A3_max	20,4	825,2	1757,5
8_A1A3_min	31,6	509,5	714,0
8_A1A3_max	20,4	825,2	1757,5
9_A1A3_min	31,6	509,5	714,0
9_A1A3_max	28,7	932,3	1875,1
10_A1A3_min	40,9	607,9	826,2
10_A1A3_max	29,3	1513,8	3354,8
11_A1A3_min	40,9	607,9	826,2
_11_A1A3_max	29,3	1513,8	3354,8
1_B4_50a_min	20,8	279,4	448,9
1_B4_50a_max	95,4	1364,4	3189,4
2_B4_50a_min	20,8	279,4	448,9
2_B4_50a_max	95,4	1364,4	3189,4
3_B4_50a_min	20,8	279,4	448,9
3_B4_50a_max	95,4	1364,4	3189,4
4_B4_50a_min	20,8	279,4	448,9
4_B4_50a_max	95,4	1364,4	3189,4
5_B4_50a_min	20,8	279,4	448,9
5_B4_50a_max	95,4	1364,4	3189,4
6_B4_50a_min	39,8	527,9	739,2
6_B4_50a_max	95,4	1364,4	3189,4
7_B4_50a_min	39,8	527,9	739,2
7_B4_50a_max	61,3	841,9	1781,0
8_B4_50a_min	39,8	527,9	739,2
8_B4_50a_max	61,3	841,9	1781,0
9_B4_50a_min	39,8	527,9	739,2
9_B4_50a_max	70,2	950,2	1899,9
10_B4_50a_min	50,5	627,0	852,2

10_B4_50a_max	105,6	1476,7	3312,3
11_B4_50a_min	50,5	627,0	852,2
_11_B4_50a_max	105,6	1476,7	3312,3
1_C3_min	6,9	0,2	0,2
1_C3_max	78,3	1,1	1,6
2_C3_min 2_C3_max	6,9 78,3	0,2 1,1	0,2 1,6
3_C3_min	6,9	0,2	0,2
3_C3_max	78,3	1,1	1,6
4_C3_min	6,9	0,2	0,2
4_C3_max	78,3	1,1	1,6
5_C3_min	6,9	0,2	0,2
5_C3_max	78,3	1,1	1,6
6_C3_min	6,9	0,2	0,2
6_C3_max	78,3	1,1	1,6
7_C3_min	6,9	0,2	0,2
7_C3_max	39,8	0,8	1,2
8_C3_min	6,9	0,2	0,2
8_C3_max	39,8	0,8	1,2
9_C3_min	6,9	0,2	0,2
9_C3_max	40,4	1,1	1,5
10_C3_min	8,2	0,8	1,1
10_C3_max	78,9	1,3	1,9
11_C3_min	8,2	0,8	1,1
11_C3_max	78,9	1,3	1,9
1_C4_min 1 C4 max	0,1	2,2	2,4
1_C4_max 2_C4_min	0,1 0,1	1,9 2,2	2,2 2,4
2_C4_max	0,1	1,9	2,2
3_C4_min	0,1	2,2	2,4
3_C4_max	0,1	1,9	2,2
4 C4 min	0,1	2,2	2,4
4_C4_max	0,1	1,9	2,2
5_C4_min	0,1	2,2	2,4
5_C4_max	0,1	1,9	2,2
6_C4_min	0,3	4,3	4,9
6_C4_max	0,1	1,9	2,2
7_C4_min	0,3	4,3	4,9
7_C4_max	0,1	1,9	2,2
8_C4_min	0,3	4,3	4,9
8_C4_max	0,1	1,9	2,2
9_C4_min	0,3	4,3	4,9
9_C4_max	0,2	2,9	3,2
10_C4_min	0,3	4,3	4,9
10_C4_max	0,2	2,9	3,2
11_C4_min 11_C4_max	0,3 0,2	4,3 2,9	4,9 3,2
1 D min	-5,0	-71,5	-92,9
1 D max	-38,0	-566.8	-732,1
2_D_min	-5,0	-71,5	-92,9
2_D_max	-38,0	-566,8	-732,1
3_D_min	-5,0	-71,5	-92,9
3_D_max	-38,0	-566,8	-732,1
4_D_min	-5,0	-71,5	-92,9
4_D_max	-38,0	-566,8	-732,1
5_D_min	-5,0	-71,5	-92,9
5_D_max	-38,0	-566,8	-732,1
6_D_min	-7,1	-99,1	-126,1
6_D_max	-38,0	-566,8	-732,1
7_D_min	-7,1	-99,1	-126,1
7_D_max	-20,3	-301,3	-388,0
8_D_min 8_D_max	-7,1 -20,3	-99,1 -301,3	-126,1 -388,0
9_D_min	-20,3 -7,1	-301,3 -99,1	-126,1
9 D max	-20,6	-305,4	-393,3
10_D_min	-7,8	-108,3	-138,0
10_D_max	-38,2	-570,9	-737,4
11_D_min	-7,8	-108,3	-138,0
11_D_max	-38,2	-570,9	-737,4
1_DofB4_min	-2,8	-42,9	-55,5
1_DofB4_max	-35,9	-539,4	-696,3
2_DofB4_min	-2,8	-42,9	-55,5
2_DofB4_max	-35,9	-539,4	-696,3
3_DofB4_min	-2,8	-42,9	-55,5
3_DofB4_max	-35,9	-539,4	-696,3
4_DofB4_min	-2,8 25.0	-42,9 520.4	-55,5
4_DofB4_max	-35,9 -2.8	-539,4 -42.0	-696,3 -55.5
5_DofB4_min 5_DofB4_max	-2,8 -35,9	-42,9 -539,4	-55,5 -696,3
6_DofB4_min	-35,9 -7,2	-100,2	-096,3 -127,7
6_DofB4_max	-7,2 -35,9	-539,4	-696,3
7_DofB4_min	-35,9 -7,2	-100,2	-127,7
7_DofB4_max	-20,4	-302,5	-389,5
8_DofB4_min	-7,2	-100,2	-127,7
8_DofB4_max	-20,4	-302,5	-389,5
9_DofB4_min	-7,2	-100,2	-127,7
9_DofB4_max	-20,7	-306,6	-394,8
10_DofB4_min	-7,8	-109,5	-139,6
10_DofB4_max	-36,1	-543,5	-701,6
11_DofB4_min	-7,8	-109,5	-139,6
11_DofB4_max	-36,1	-543,5	-701,6

A.7 Übersichtstabellen über die Umweltwirkungen je Neubaukonstruktion

Diesem Anhang sind die minimal und maximal auftretenden Umweltwirkungen je Neubaukonstruktion zu entnehmen. Die Umweltwirkungen sind separat nach den Phasen A1 bis A3, B4, C3, C4, D und D aus B4 ("DofB4") ausgegeben. Die Tabellen können als csv-Dateien abgespeichert und so in Softwarelösungen importiert werden, um auf deren Grundlage automatisierte Lebenszyklusanalysen für verschiedene Baumaßnahmen durchzuführen. Das GWP ist in kg CO₂-Äq./m²_{Bauteil}, das PET und PENRT sind in MJ/ m²_{Bauteil} ausgewiesen.

Die Nennung der Bauteile erfolgt in alphabetischer Reihenfolge:

- BP_h_nb
- BP_uh_nb
- CFLmas_nb
- CFLwood_clt_nb
- CFLwood_tf_nb
- CW_mas_h_nb
- CW_mas_uh_nb
- CW_rc_h_nb
- CW_rc_uh_nb
- EWmas_mas_nb
- EWmas_rc_nb
- EWwood_clt_nb
- EWwood_tf_nb
- FLmas_nb
- FLwood_clt_nb
- FLwood_tf_nb
- FROmas_nb
- FROwood_clt_nb
- FROwood_tf_nb
- IWmas_mas_nb
- IWmas_rc_nb
- IWwood_clt_nb
- IWwood_tf_nb
- PRO_h_nb
- PRO_uh_nb
- SCW_mas_h_nb
- SCW_mas_uh_nb

- SCW_rc_h_nb
- SCW_rc_uh_nb
- SWmas_mas_nb
- SWmas_rc_nb
- SWwood_clt_nb
- SWwood_tf_nb
- TFLmas nb
- TFLwood_clt_nb
- TFLwood_tf_nb
- Walu_nb
- Wplas_nb
- Wwood_nb

Tabelle A. 37: Bodenplatte, beheizt, Neubau – BP_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	100,8	1106,1	1288,8
_nb_A1A3_max	214,2	2189,6	2865,3
nb_B4_50a_min	0,0	0,0	0,0
_nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	22,9	27,0	33,0
nb_C3_max	45,2	46,5	58,6
nb_C4_min	1,9	27,2	30,8
nb_C4_max	2,7	39,4	44,6
nb_D_min	-14,3	-200,8	-261,7
nb_D_max	-26,7	-383,7	-501,1
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 38: Bodenplatte, unbeheizt, Neubau – BP_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	78,5	560,1	698,3
nb_A1A3_max	194,5	1609,3	2248,4
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	2,3	19,6	24,8
nb_C3_max	21,0	42,8	54,2
nb_C4_min	3,0	26,4	29,9
nb_C4_max	2,7	39,4	44,6
nb_D_min	-6,3	-84,6	-110,5
nb_D_max	-16,5	-235,0	-310,0
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 39: Kellerdecke in Massivbauweise, Neubau – CFLmas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	60,1	530,5	667,8
nb_A1A3_max	76,8	1339,4	2476,9
nb_B4_50a_min	10,4	89,3	111,4
nb_B4_50a_max	10,4	89,3	111,4
nb_C3_min	1,1	19,2	22,7
nb_C3_max	82,3	19,5	24,9
nb_C4_min	0,9	13,6	15,4
nb_C4_max	3,2	47,1	53,3
nb_D_min	-3,4	-44,2	-59,1
nb_D_max	-26,6	-438,4	-567,3
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 40: Kellerdecke in massiver Holzbauweise, Neubau – CFLwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	-85,3	548,2	2244,4
nb_A1A3_max	-78,7	1804,9	4916,0
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	124,3	6,8	-1278,0
nb_C3_max	230,8	-3,1	-2034,7
nb_C4_min	0,5	8,0	9,1
nb_C4_max	4,4	64,8	73,3
nb_D_min	-55,3	-828,1	167,5
nb_D_max	-96,1	-1474,4	54,4
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 41: Kellerdecke in Holzrahmenbauweise, Neubau – CFLwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	-42,9	493,6	1393,0
nb_A1A3_max	-66,7	1239,5	3425,9
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	73,5	-7,8	-552,6
nb_C3_max	170,1	-14,3	-946,0
nb_C4_min	0,5	7,2	8,1
nb_C4_max	3,1	44,9	50,8
nb_D_min	-28,1	-473,4	-82,6
nb_D_max	-58,9	-1025,5	-416,4
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 42: Kelleraußenwand in Mauerwerksbauweise, beheizt, Neubau – CW_mas_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	105,5	878,5	1053,2
nb_A1A3_max	134,5	1699,9	1900,1
nb_B4_50a_min	26,0	321,2	358,0
nb_B4_50a_max	79,6	1035,3	1117,8
nb_C3_min	11,3	21,8	24,4
nb_C3_max	41,3	38,3	42,4
nb_C4_min	0,8	11,8	13,3
nb_C4_max	1,4	19,9	22,5
nb_D_min	-5,1	-74,4	-95,7
nb_D_max	-17,1	-250,6	-322,2
nb_DofB4_min	-4,7	-69,4	-89,3
nb_DofB4_max	-17,1	-250,6	-322,2

Tabelle A. 43: Kelleraußenwand in Mauerwerksbauweise, unbeheizt, Neubau – CW_mas_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	50,7	639,8	741,0
nb_A1A3_max	106,3	1219,2	1401,5
nb_B4_50a_min	26,0	321,2	358,0
nb_B4_50a_max	26,0	321,2	358,0
nb_C3_min	7,7	8,4	9,1
nb_C3_max	5,2	15,5	16,5
nb_C4_min	0,8	11,6	13,0
nb_C4_max	1,0	15,1	16,9
nb_D_min	-6,4	-94,0	-116,1
nb_D_max	-8,1	-119,1	-143,6
nb_DofB4_min	-4,7	-69,4	-89,3
nb DofB4 max	-4,7	-69,4	-89,3

Tabelle A. 44: Kelleraußenwand in Stahlbetonbauweise, beheizt, Neubau – CW_rc_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	71,4	1071,5	1212,0
nb_A1A3_max nb_B4_50a_min	144,9 55,6	1734,2 757,7	2069,2 804,0
nb_B4_50a_max	62,0	843,4	895,2
nb_C3_min	31,3	20,2	25,2
nb_C3_max	35,8	32,1	40,3
nb_C4_min	0,0	0,3	0,3
nb_C4_max	0,3	4,2	4,7
nb_D_min	-17,2	-244,6	-317,3
nb_D_max	-21,8	-306,8	-399,4
nb_DofB4_min	-12,9	-189,3	-243,5
nb_DofB4_max	-14,4	-211,1	-271,4

Tabelle A. 45: Kelleraußenwand in Stahlbetonbauweise, unbeheizt, Neubau – CW_rc_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	50,2	447,0	548,2
nb_A1A3_max	120,9	1024,5	1314,9
nb_B4_50a_min	8,4	129,2	135,5
nb_B4_50a_max	8,4	129,2	135,5
nb_C3_min	5,3	16,3	20,5
nb_C3_max	6,2	27,7	34,9
nb_C4_min	0,0	0,3	0,3
nb_C4_max	0,3	4,2	4,7
nb_D_min	-6,3	-85,2	-112,4
nb_D_max	-9,4	-125,6	-166,5
nb_DofB4_min	-2,0	-29,9	-38,5
nb_DofB4_max	-2,0	-29,9	-38,5

Tabelle A. 46: Außenwand in Mauerwerksbauweise, Neubau – EWmas_mas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	53,7	508,2	611,1
nb_A1A3_max	0,4	1047,0	2459,7
nb_B4_50a_min	19,1	194,3	232,8
nb_B4_50a_max	0,7	11,0	11,9
nb_C3_min	-2,3	12,3	12,9
nb_C3_max	114,3	24,0	-237,1
nb_C4_min	0,9	12,4	13,9
nb_C4_max	29,9	436,8	494,1
nb_D_min	-1,7	-24,5	-26,8
nb_D_max	-35,2	-562,8	-474,9
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	-0,1	-2,1	-2,7

Tabelle A. 47: Außenwand in Stahlbetonbauweise, Neubau – EWmas_rc_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	59,8	500,7	622,4
nb_A1A3_max	37,0	1361,8	2937,9
nb_B4_50a_min	26,3	281,9	334,0
nb_B4_50a_max	0,7	11,0	11,9
nb_C3_min	1,2	21,9	25,4
nb_C3_max	115,0	26,0	-230,9
nb_C4_min	0,7	10,0	11,3
nb_C4_max	29,6	431,6	488,3
nb_D_min	-3,2	-41,4	-55,4
nb_D_max	-41,5	-644,9	-584,5
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	-0,1	-2,1	-2,7

Tabelle A. 48: Außenwand in massiver Holzbauweise, Neubau – EWwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO₂-Äg./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb A1A3 min	-31.9	466,9	1480,6
	- /-		
nb_A1A3_max	-183,5	1119,5	4686,9
nb_B4_50a_min	24,8	264,3	313,7
_nb_B4_50a_max	0,7	11,0	11,9
nb_C3_min	71,6	7,8	-735,7
nb_C3_max	269,4	-1,9	-2176,8
nb_C4_min	0,8	11,9	13,5
nb_C4_max	29,9	435,9	493,1
nb_D_min	-31,6	-479,2	98,2
nb_D_max	-109,0	-1672,5	-64,8
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	-0,1	-2,1	-2,7

Tabelle A. 49: Außenwand in Holzrahmenbauweise, Neubau – EWwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	-73,0	228,8	1520,8
nb_A1A3_max	-68,7	1005,6	2818,4
nb_B4_50a_min	3,9	47,3	281,5
_nb_B4_50a_max	0,7	11,0	11,9
nb_C3_min	94,5	4,2	-689,8
nb_C3_max	144,3	-1,9	-523,9
nb_C4_min	0,3	4,9	5,6
nb_C4_max	30,0	437,6	495,0
nb_D_min	-40,2	-540,7	-35,5
nb_D_max	-47,1	-773,1	-496,0
nb_DofB4_min	-14,6	-193,7	53,9
nb_DofB4_max	-0,1	-2,1	-2,7

Tabelle A. 50: Geschossdecke in Massivbauweise, Neubau – FLmas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	41,0	355,0	451,2
nb_A1A3_max	105,5	947,0	1375,7
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	1,0	12,5	15,7
nb_C3_max	18,7	18,8	23,8
nb_C4_min	1,5	4,6	5,2
nb_C4_max	3,0	43,4	49,1
nb_D_min	-4,0	-54,0	-69,8
nb_D_max	-9,7	-146,2	-191,5
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 51: Geschossdecke in Holzmassivbauweise, Neubau – FLwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-84,3	414,3	1923,7
nb_A1A3_max	-89,9	1656,1	4762,6
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	111,9	-0,4	-1157,4
nb_C3_max	230,8	-3,1	-2034,7
nb_C4_min	1,5	4,6	5,2
nb_C4_max	4,2	60,8	68,8
nb_D_min	-50,2	-761,3	134,2
nb_D_max	-96,1	-1474,4	54,4
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 52: Geschossdecke in Holzrahmenbauweise, Neubau – FLwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO₂-Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-38,7	174,9	820,5
nb_A1A3_max	-60,8	1181,2	3250,8
nb_B4_50a_min nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	49,0	5,3	-497,9
nb_C3_max	159,4	-14,4	-946,2
nb_C4_min	1,5	4,6	5,2
nb_C4_max	3,1	44,9	50,8
nb_D_min	-23,6	-317,0	69,4
nb_D_max	-56,1	-976,3	-353,1
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 53: Flachdach in Massivbauweise, Neubau – FROmas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	61,8	1065,4	1169,5
nb_A1A3_max	121,6	2222,7	2534,1
nb_B4_50a_min	25,0	481,3	527,3
_nb_B4_50a_max	31,9	996,9	1074,1
nb_C3_min	5,9	22,9	29,2
nb_C3_max	38,8	26,6	33,0
nb_C4_min	19,3	8,7	9,4
nb_C4_max	1,6	24,1	26,0
nb_D_min	-14,3	-210,7	-244,2
nb_D_max	-21,5	-306,0	-396,9
nb_DofB4_min	-2,0	-29,3	-37,6
nb_DofB4_max	-5,5	-81,0	-104,2

Tabelle A. 54: Flachdach in Holzmassivbauweise, Neubau – FROwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	-53,8	994,4	2296,3
nb_A1A3_max	-110,5	2050,9	4752,4
nb_B4_50a_min	25,0	481,3	527,3
nb_B4_50a_max	31,9	996,9	1074,1
nb_C3_min	100,1	8,5	-980,4
nb_C3_max	220,6	3,0	-1979,5
nb_C4_min	16,7	8,3	9,0
nb_C4_max	1,7	25,6	27,8
nb_D_min	-51,7	-784,7	-31,6
nb_D_max	-97,6	-1474,9	8,5
nb_DofB4_min	-2,0	-29,3	-37,6
nb_DofB4_max	-5,5	-81,0	-104,2

Tabelle A. 55: Flachdach in Holzrahmenbauweise, Neubau – FROwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	-41,5	452,8	1267,8
nb_A1A3_max	-120,4	2023,4	4899,4
nb_B4_50a_min	22,6	289,5	330,7
nb_B4_50a_max	30,2	816,0	889,5
nb_C3_min	75,0	2,9	-435,9
nb_C3_max	232,4	-15,2	-1418,1
nb_C4_min	0,2	2,7	3,0
nb_C4_max	1,3	19,4	21,1
nb_D_min	-27,2	-440,6	-140,6
nb_D_max	-85,4	-1450,2	-508,5
nb_DofB4_min	-2,0	-29,3	-37,6
nb_DofB4_max	-5,7	-83,1	-106,9

Tabelle A. 56: Innenwand in Mauerwerksbauweise, Neubau – IWmas_mas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO₂-Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	20,0	184,2	220,5
nb_A1A3_max nb_B4_50a_min	67,9	493,8	581,1 0,0
nb_B4_50a_max	0,0 0,0	0,0 0,0	0,0
nb_C3_min	-1,2	3,2	3,4
nb_C3_max	1,1	21,2	23,0
nb_C4_min	0,3	4,6	5,2
nb_C4_max	0,9	13,0	14,7
nb_D_min	-0,8	-11,8	-12,8
nb_D_max	0,0	0,0	0,0
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 57: Innenwand in Stahlbetonbauweise, Neubau – IWmas_rc_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb A1A3 min	34,5	239,0	310,4
nb_A1A3_max	88,4	685,6	896,6
nb_B4_50a_min	0,0	0,0	0,0
_nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	0,9	11,7	14,8
nb_C3_max	1,5	19,3	24,4
nb_C4_min	0,0	0,0	0,0
nb_C4_max	0,5	7,9	8,9
nb_D_min	-3,2	-41,4	-55,4
nb_D_max	-5,2	-68,4	-91,4
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 58: Innenwand in Holzmassivbauweise, Neubau – IWwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-57,4	188,1	1144,2
nb_A1A3_max	-158,3	1060,5	4263,0
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	71,4	-1,5	-745,4
nb_C3_max	235,8	-2,9	-2082,6
nb_C4_min	0,0	0,0	0,0
nb_C4_max	1,1	15,8	17,8
nb_D_min	-31,6	-479,2	98,2
nb_D_max	-98,1	-1502,2	64,1
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 59: Innenwand in Holzrahmenbauweise, Neubau – IWwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO₂-Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-10,4	87,2	284,7
nb_A1A3_max	-70,4	1137,3	3040,2
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	16,7	0,6	-80,8
nb_C3_max	145,2	-12,8	-858,6
nb_C4_min	0,3	4,4	5,0
nb_C4_max	1,1	15,8	17,8
nb_D_min	-6,4	-86,8	-34,9
nb_D_max	-50,9	-876,0	-312,5
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 60: Steildach, beheizt, Neubau – PRO_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	-58,9	357,9	1423,2
nb_A1A3_max	-83,6	1267,5	3443,5
nb_B4_50a_min	1,0	14,7	15,9
nb_B4_50a_max	1,0	14,7	15,9
nb_C3_min	90,0	6,0	-657,5
nb_C3_max	174,6	4,8	-847,7
nb_C4_min	0,2	2,4	2,7
nb_C4_max	0,4	5,5	6,2
nb_D_min	-40,5	-543,4	-70,1
nb_D_max	-61,0	-984,1	-448,1
nb_DofB4_min	-0,2	-2,8	-3,6
nb DofB4 max	-0,2	-2,8	-3,6

Tabelle A. 61: Steildach, unbeheizt, Neubau – PRO_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	-41,8	277,3	1094,8
nb_A1A3_max	-33,4	764,9	1933,8
nb_B4_50a_min	1,0	14,7	15,9
nb_B4_50a_max	1,0	14,7	15,9
nb_C3_min	63,3	4,8	-627,6
nb_C3_max	82,3	3,8	-849,3
nb_C4_min	0,0	0,0	0,0
nb_C4_max	0,4	5,5	6,2
nb_D_min	-31,7	-423,0	55,2
nb_D_max	-36,5	-559,9	97,5
nb_DofB4_min	-0,2	-2,8	-3,6
nb_DofB4_max	-0,2	-2,8	-3,6

Tabelle A. 62: Gebäudetrennwand unter GOK in Mauerwerksbauweise, beheizt, Neubau – SCW_mas_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	35,6	291,8	341,9
nb_A1A3_max	75,5	799,1	901,6
nb_B4_50a_min	7,6	91,9	106,2
nb_B4_50a_max	25,7	342,8	364,7
nb_C3_min	0,7	15,4	16,6
nb_C3_max	15,3	23,3	25,6
nb_C4_min	0,1	1,5	1,7
nb_C4_max	0,6	9,1	10,3
nb_D_min	0,0	0,0	0,0
nb_D_max	-5,9	-86,9	-111,8
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	-5,9	-86,9	-111,8

Tabelle A. 63: Gebäudetrennwand unter GOK in Mauerwerksbauweise, unbeheizt, Neubau – SCW_mas_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	28,2	205,8	242,0
nb_A1A3_max	113,8	673,1	826,3
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	0,5	10,6	11,5
nb_C3_max	1,4	24,0	26,6
nb_C4_min	0,0	0,4	0,4
nb_C4_max	1,0	14,2	16,1
nb_D_min	0,0	0,0	0,0
nb_D_max	-0,4	-5,9	-7,6
nb_DofB4_min	0,0	0,0	0,0
nb DofB4 max	0,0	0,0	0,0

Tabelle A. 64: Gebäudetrennwand unter GOK in Stahlbetonbauweise, beheizt, Neubau – SCW_rc_h_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äg./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	42,2	329,1	415,0
nb_A1A3_max	112,1	1113,8	1379,9
nb_B4_50a_min	8,0	96,3	111,3
nb_B4_50a_max	25,7	342,8	364,7
nb_C3_min	1,0	16,8	20,1
nb_C3_max	16,0	25,3	31,8
nb_C4_min	0,1	1,1	1,3
nb_C4_max	0,3	3,9	4,5
nb_D_min	-3,2	-41,4	-55,4
nb_D_max	-12,2	-169,0	-221,5
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	-5,9	-86,9	-111,8

Tabelle A. 65: Gebäudetrennwand unter GOK in Stahlbetonbauweise, unbeheizt, Neubau – SCW_rc_uh_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	34,5	239,0	310,4
nb_A1A3_max	96,6	737,8	976,3
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	0,9	11,7	14,8
nb_C3_max	1,8	23,1	29,2
nb_C4_min	0,0	0,0	0,0
nb_C4_max	0,0	0,0	0,0
nb_D_min	-3,2	-41,4	-55,4
nb_D_max	-6,3	-82,0	-109,7
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 66: Gebäudetrennwand über GOK in Mauerwerksbauweise, Neubau – SWmas_mas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

unit [kg CO₂-Äq./m²] [MJ/m²] [MJ/m²] nb_A1A3_min 23,8 157,5 194,5 157,5 194,5 157,5 194,5	
	2]
1 4440 4450 4055	,
nb_A1A3_max 115,2 689,5 845,3	3
nb_B4_50a_min 0,7 8,8 10,1	
nb_B4_50a_max 1,4 17,5 20,2	
nb_C3_min 0,3 5,3 5,8	
nb_C3_max 1,5 25,0 27,6	
nb_C4_min 0,2 2,5 2,8	
_nb_C4_max 1,0 14,4 16,3	
nb_D_min -0,1 -1,2 -1,5	
_nb_D_max -0,4 -5,9 -7,6	
nb_DofB4_min 0,0 0,0 0,0	
nb_DofB4_max 0,0 0,0 0,0	

Tabelle A. 67: Gebäudetrennwand über GOK in Stahlbetonbauweise, Neubau – SWmas_rc_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	35,2	247,2	319,9
nb_A1A3_max	102,0	789,6	1036,8
nb_B4_50a_min	0,7	8,8	10,1
nb_B4_50a_max	1,4	17,5	20,2
nb_C3_min	0,9	12,1	15,2
nb_C3_max	1,8	24,1	30,2
nb_C4_min	0,0	0,1	0,1
nb_C4_max	0,3	4,1	4,7
nb_D_min	-3,2	-41,4	-55,4
nb_D_max	-6,3	-82,0	-109,7
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 68: Gebäudetrennwand über GOK in Holzmassivbauweise, Neubau – SWwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO₂-Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-49,0	171,2	1001,2
nb_A1A3_max	-157,8	743,6	3601,1
nb_B4_50a_min	0,7	8,8	10,1
nb_B4_50a_max	1,4	17,5	20,2
nb_C3_min	61,9	-0,8	-645,5
nb_C3_max	213,0	-2,6	-2034,2
nb_C4_min	0,0	0,1	0,1
nb_C4_max	0,4	5,7	6,4
nb_D_min	-27,4	-415,3	85,1
nb_D_max	-91,2	-1390,1	162,9
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 69: Gebäudetrennwand über GOK in Holzrahmenbauweise, Neubau – SWwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator unit	GWP [kg CO ₂ -Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
nb_A1A3_min	-8,1	128,9	337,6
nb_A1A3_max	-69,7	857,8	2473,1
nb_B4_50a_min	0,7	8,8	10,1
nb_B4_50a_max	0,7	8,8	10,1
nb_C3_min	16,7	1,1	-80,3
nb_C3_max	128,7	-7,5	-658,7
nb_C4_min	0,5	6,7	7,5
nb_C4_max	0,6	8,3	9,4
nb_D_min	-6,4	-86,8	-34,9
nb_D_max	-44,0	-745,7	-333,5
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 70: Oberste Geschossdecke in Massivbauweise, Neubau – TFLmas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	70,3	683,9	829,7
nb_A1A3_max	43,7	1203,8	2361,5
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	1,5	33,7	37,9
nb_C3_max	85,1	19,4	24,8
nb_C4_min	0,3	4,7	5,3
nb_C4_max	0,6	9,4	10,7
nb_D_min	-3,4	-44,2	-59,1
nb_D_max	-27,2	-450,1	-582,2
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 71: Oberste Geschossdecke in Holzmassivbauweise, Neubau – TFLwood_clt_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	-60,9	662,4	2208,9
nb_A1A3_max	-174,5	1099,2	4477,7
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	111,9	15,6	-1140,8
nb_C3_max	257,0	-2,9	-2034,3
nb_C4_min	0,3	4,0	4,5
nb_C4_max	0,8	11,0	12,4
nb_D_min	-49,3	-748,3	149,1
nb_D_max	-102,9	-1593,7	-99,0
nb_DofB4_min	0,0	0,0	0,0
nb DofB4 max	0,0	0,0	0,0

Tabelle A. 72: Oberste Geschossdecke in Holzrahmenbauweise, Neubau – TFLwood_tf_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO₂-Äq./m²]	[MJ/m²]	[MJ/m²]
nb_A1A3_min	-33,2	714,3	1678,9
nb_A1A3_max	-98,5	1159,0	3449,2
nb_B4_50a_min	0,0	0,0	0,0
nb_B4_50a_max	0,0	0,0	0,0
nb_C3_min	72,8	-9,5	-545,7
nb_C3_max	179,5	-12,6	-934,9
nb_C4_min	1,7	24,3	27,5
nb_C4_max	0,8	11,0	12,4
nb_D_min	-27,6	-467,4	-83,0
nb_D_max	-61,5	-1059,0	-469,8
nb_DofB4_min	0,0	0,0	0,0
nb_DofB4_max	0,0	0,0	0,0

Tabelle A. 73: Alurahmen-Fenster, Neubau – Walu_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	86,3	1132,7	1328,1
nb_A1A3_max	188,7	2635,8	3300,6
nb_B4_50a_min	64,6	782,5	885,2
nb_B4_50a_max	34,0	421,4	492,0
nb_C3_min	4,2	1,9	2,4
nb_C3_max	7,8	3,9	4,4
nb_C4_min	0,4	6,5	7,3
nb_C4_max	0,2	2,9	3,2
nb_D_min	-21,8	-290,4	-380,8
nb_D_max	-100,8	-1342,5	-1778,6
nb_DofB4_min	-5,9	-79,1	-100,2
nb_DofB4_max	-5,2	-68,8	-86,9

Tabelle A. 74: Kunststoffrahmen-Fenster, Neubau – Wplas_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	74,0	996,9	1119,4
nb_A1A3_max	115,1	1821,0	2048,4
nb_B4_50a_min	85,6	1033,6	1167,7
nb_B4_50a_max	159,9	1927,7	2187,1
nb_C3_min	10,1	16,3	20,8
nb_C3_max	43,6	89,8	115,3
nb_C4_min	0,4	6,5	7,3
nb_C4_max	0,2	2,9	3,2
nb_D_min	-11,1	-129,2	-153,0
nb_D_max	-37,1	-375,2	-411,8
nb_DofB4_min	-11,2	-130,4	-154,6
nb_DofB4_max	-37,1	-376,4	-413,3

Tabelle A. 75: Holzrahmen-Fenster, Neubau – Wwood_nb: min. und max. Umweltwirkungen je LZPH und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
nb_A1A3_min	59,6	848,8	1090,6
nb_A1A3_max	29,3	1513,8	3354,8
nb_B4_50a_min	70,7	870,7	1119,8
nb_B4_50a_max	105,6	1476,7	3312,3
nb_C3_min	9,6	1,5	1,9
nb_C3_max	78,9	1,3	1,9
nb_C4_min	0,4	6,5	7,3
nb_C4_max	0,2	2,9	3,2
nb_D_min	-8,4	-117,6	-149,9
nb_D_max	-38,2	-570,9	-737,4
nb_DofB4_min	-8,5	-118,8	-151,5
nb_DofB4_max	-36,1	-543,5	-701,6

įе

A.8 Übersichtstabellen über die baualterspezifischen Umweltwirkungen je Sanierungskonstruktion

Die folgenden Tabellen enthalten je Sanierungsbauteil die baualtersklassenabhängigen minimalen und maximalen Umweltwirkungen. Die Umweltwirkungen sind separat nach den Phasen A1 bis A3, B4, C3, C4, D und D aus B4 ("DofB4") ausgegeben. Die Tabellen können als csv-Dateien abgespeichert und so in Softwarelösungen importiert werden, um auf deren Grundlage automatisierte Lebenszyklusanalysen für verschiedene Baumaßnahmen durchzuführen. Das GWP ist in kg CO₂-Äq./m²_{Bauteil}, das PET und PENRT sind in MJ/ m²_{Bauteil} ausgewiesen. Sind in einer Baualtersklasse keine Werte vorhanden, ist dies mit "n.v." (nicht vorhanden) vermerkt.

Die Nennung der Bauteile erfolgt in alphabetischer Reihenfolge:

- BP_h_ren
- CFL_uh_ren
- CW_h_ren
- EW2shelled_ren
- EWcwf_ren
- EWmas_ren
- EWwood_ren
- FROmas_ren
- FROwood_ren
- PRO_h_ren
- SCW_h_ren
- TFL_uh_ren

Tabelle A. 76: Bodenplatte, beheizt, Sanierung – BP_h_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m²]
1_A1A3_min 1_A1A3_max	42,7 129,1	421,3 1321,0	496,8 1734,9
2_A1A3_min	42,7	421,3	496,8
2_A1A3_max	138,3	1471,6	1889,4
3_A1A3_min 3_A1A3_max	42,7 138,3	421,3 1471,6	496,8 1889,4
4_A1A3_min	42,7	421,3	496,8
4_A1A3_max	138,3	1471,6	1889,4
5_A1A3_min	42,7	421,3	496,8
5_A1A3_max 6_A1A3_min	138,3 44,2	1471,6 534,3	1889,4 617,7
6_A1A3_max	129,1	1321,0	1734,9
7_A1A3_min	44,2	534,3	617,7
7_A1A3_max 8 A1A3 min	129,1 44,2	1321,0 534,3	1734,9 617,7
8_A1A3_max	129,1	1321,0	1734,9
9_A1A3_min	35,7	326,1	386,9
9_A1A3_max	5,4	519,0	1134,7
10_A1A3_min 10_A1A3_max	33,0 5,4	291,8 519,0	347,0 1134,7
11_A1A3_min	31,7	274,6	327,1
11_A1A3_max	5,4	519,0	1134,7
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max 2_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
2_B4_50a_min 2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min 4_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	2,2	129,1	138,2
6_B4_50a_max 7_B4_50a_min	0,0 2,2	0,0 129,1	0,0 138,2
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	2,2	129,1	138,2
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min 9_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	0,0	0,0	0,0
11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max 1_C3_min	0,0 3,8	0,0 54,6	0,0 60,9
1_C3_max	29,4	80,2	94,0
2_C3_min	2,1	25,5	29,4
2_C3_max 3_C3_min	29,0 3,8	71,8 54,6	85,4 60,9
3_C3_max	32,1	70,7	84,1
4_C3_min	3,8	54,6	60,9
4_C3_max	38,4	70,9	84,3
5_C3_min 5_C3_max	3,8 41,5	54,6 70,2	60,9 83,5
6_C3_min	3,4	54,5	60,8
6_C3_max	28,6	67,1	79,4
7_C3_min 7_C3_max	3,4 33.8	54,5 67.6	60,8 80.0
7_C3_max 8_C3_min	33,8 3,4	67,6 54,5	80,0 60,8
8_C3_max	33,8	67,6	80,0
9_C3_min	17,4	52,2	64,0
9_C3_max 10_C3_min	54,9 19,7	20,3 50,8	25,9 62,7
10_C3_max	19,7 54,9	20,3	62,7 25,9
11_C3_min	21,5	50,3	62,1
11_C3_max	54,9	20,3	25,9
1_C4_min 1 C4 max	3,3 3,3	47,5 48,0	53,7 54,3
2_C4_min	4,2	60,7	68,6
2_C4_max	4,9	71,0	80,3
3_C4_min 3_C4_max	3,3 4.5	47,5 65.7	53,7 74.3
3_C4_max 4_C4_min	4,5 3,3	65,7 47,5	74,3 53,7
4_C4_max	4,1	60,5	68,4
5_C4_min	3,3	47,5	53,7
5_C4_max 6_C4_min	4,1 3,7	60,5 54,2	68,4 60,9
6_C4_max	4,0	57,8	65,4
7_C4_min	3,7	54,2	60,9
7_C4_max	4,0	57,8	65,4
8_C4_min 8_C4_max	3,7 4,0	54,2 57,8	60,9 65,4
9_C4_min	4,0 4,6	67,6	76,5
9_C4_max	5,7	65,9	74,5
10_C4_min	4,6 5.7	67,2	76,0
10_C4_max 11_C4_min	5,7 4,6	65,9 67,0	74,5 75,8
11_C4_max	5,7	65,9	74,5
1_D_min	-3,1	-41,1	-54,3

A.8 Übersichtstab Sanierungskonstruk		die	baualterspezifischen	Umweltwirkungen	je
Carnerungskonstruk	1_D_max 2_D_min 2_D_max 3_D_min 3_D_max 4_D_min 4_D_max 5_D_min 5_D_max 6_D_min 6_D_max	-17,9 -3,8 -19,0 -3,1 -19,8 -3,1 -22,1 -3,1 -18,4 -2,9 -17,7	-254,7 -333, -50,2 -66,5 -268,5 -351, -41,1 -54,3 -276,6 -362, -41,1 -54,3 -300,9 -393, -41,1 -54,3 -261,8 -342, -38,3 -50,7 -251,8 -329,	3 3 5 5 6 7 8 8 8 8	
	7_D_min 7_D_min 7_D_max 8_D_min 8_D_max 9_D_min 9_D_max 10_D_min 10_D_max 11_D_min 11_D_min	-17,7 -2,9 -20,1 -2,9 -20,1 -16,5 -20,5 -17,5 -20,5 -18,2 -20,5	-251,6 -322, -38,3 -50,7 -288,0 -375, -38,3 -50,7 -288,0 -301, -328,6 -424, -242,5 -319, -328,6 -424, -253,4 -333, -328,6 -424,	9 9 0 3 3 6 5 3	
	1 Dolf84 min 1 Dolf84 min 2 Dolf84 min 2 Dolf84 max 3 Dolf84 min 3 Dolf84 max 4 Dolf84 max 4 Dolf84 max 5 Dolf84 min 5 Dolf84 max	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	<u> </u>	
	G_DofB4_min 6_DofB4_min 6_DofB4_min 7_DofB4_min 7_DofB4_min 8_DofB4_min 8_DofB4_min 9_DofB4_min 9_DofB4_min 10_DofB4_min 10_DofB4_min 11_DofB4_min	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0		

Tabelle A. 77: Kellerdecke zu unbeheiztem Keller, Sanierung - CFL_uh_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m ²]
1_A1A3_min	-2,9	75,5	236,4
1_A1A3_max	7,9	734,2	1525,9
2_A1A3_min	-3,6	85,6	267,7
2_A1A3_max	6,3	750,2	1574,1
3_A1A3_min	-3,6	85,6	267,7
3_A1A3_max	6,3	750,2	1574,1
4_A1A3_min	-3,6	85,6	267,7
4_A1A3_max	-27,3	380,1	1071,1
5_A1A3_min	-2,9	75,5	236,4
5_A1A3_max	-27,3	380,1	1071,1
6_A1A3_min	-2,9	75,5	236,4
6_A1A3_max	-27,3	380,1	1071,1
7_A1A3_min	-2,9	75,5	236,4
7_A1A3_max	-27,3	380,1	1071,1
8_A1A3_min	-1,5	55,3	174,0
8_A1A3_max	-27,3	380,1	1071,1
9_A1A3_min	-2,6	70,4	220,8
9_A1A3_max	-43,3	990,8	2702,0
10_A1A3_min	-2,6	70,4	220,8
10_A1A3_max	-43,3	990,8	2702,0
11_A1A3_min	-2,6	70,4	220,8
_11_A1A3_max	86,0	1205,8	2105,1
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	0,0	0,0	0,0

11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max	0,0	0,0	0,0
1_C3_min	34,6	11,2	-355,3
1_C3_max	113,1	20,9	-699,3
2_C3_min	33,2	13,8	-337,8
2_C3_max 3_C3_min	118,9 33,2	2,9 13,8	-761,7 -337,8
3_C3_max	118,9	2,9	-761,7
4_C3_min	12,6	18,2	-98,2
4_C3_max	76,8	29,2	-196,1
5_C3_min	10,9	15,8	-85,3
5_C3_max	76,8	29,2	-196,1
6_C3_min	10,9 65,9	15,8 15,9	-85,3 -100,1
6_C3_max 7_C3_min	10,9	15,8	-85,3
7_C3_max	65,9	15,9	-100,1
8_C3_min	13,2	18,6	-50,0
8_C3_max	65,9	15,9	-100,1
9_C3_min	10,3	18,6	-74,0
9_C3_max	171,4	-21,0	-1139,0
10_C3_min	10,3	19,0	-73,6
10_C3_max 11_C3_min	171,4 10,3	-21,0 19,4	-1139,0 -73,2
11_C3_max	71,6	19,8	-55,0
1_C4_min	0,9	13,8	15,6
1_C4_max	3,1	44,9	50,8
2_C4_min	1,1	16,1	18,2
2_C4_max	3,1	44,9	50,8
3_C4_min	1,1	16,1	18,2
3_C4_max 4_C4_min	3,1 2,0	44,9 29,3	50,8 33,1
4_C4_max	1,9	28,3	32,0
5_C4_min	1,1	16,3	18,4
5_C4_max	1,9	28,3	32,0
6_C4_min	1,1	16,3	18,4
6_C4_max	1,8	26,8	30,4
7_C4_min	1,1	16,3	18,4
7_C4_max	1,8	26,8	30,4
8_C4_min 8_C4_max	2,8 1,8	24,9 26,8	28,2 30,4
9_C4_min	1,1	15,5	17,5
9_C4_max	5,8	84,3	95,4
10_C4_min	1,1	15,6	17,6
10_C4_max	5,8	84,3	95,4
11_C4_min	1,1	15,7	17,7
11_C4_max 1_D_min	3,6	52,6	59,5
1_D_IIIIII 1_D_max	-17,0 -31,3	-227,1 -469,7	56,1 85,0
2_D_min	-16,5	-221,1	50,4
2_D_max	-32,8	-489,9	99,0
3_D_min	-16,5	-221,1	50,4
3_D_max	-32,8	-489,9	99,0
4_D_min 4 D max	-9,1 -25,6	-120,6 -381,7	-44,0 -274,9
5_D_min	-25,6 -7,6	-100,1	-32,3
5_D_max	-25,6	-381,7	-274,9
6_D_min	-7,6	-100,1	-32,3
6_D_max	-24,2	-361,6	-354,2
7_D_min	-7,6	-100,1	-32,3
7_D_max	-24,2	-361,6	-354,2
8_D_min 8 D max	-9,3 -24,2	-125,0 -361,6	-93,2 -354,2
9 D min	-7,7	-101,7	-42,2
9_D_max	-50,2	-898,3	-70,3
10_D_min	-7,7	-101,7	-42,2
10_D_max	-50,2	-898,3	-70,3
11_D_min	-7,7	-101,7	-42,2
11_D_max	-25,3	-402,4	-445,2
1_DofB4_min 1_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0 0,0	0,0
5_DofB4_min 5_DofB4_max	0,0 0,0	0,0	0,0 0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	0,0	0,0	0,0
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max 10_DofB4_min	0,0 0,0	0,0 0,0	0,0 0,0
10_DofB4_min	0,0	0,0	0,0
11_DofB4_min	0,0	0,0	0,0
_11_DofB4_max	0,0	0,0	0,0

Tabelle A. 78: Kelleraußenwand im beheizten Keller, Sanierung – CW_h_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

	indikator; eigen		
Indicator unit	GWP [kg CO₂-Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
1_A1A3_min	18,8	580,5	613,4
1_A1A3_max	23,0	1183,1	1225,8
2_A1A3_min 2_A1A3_max	20,7 23,0	637,3 1183,1	673,7 1225,8
3_A1A3_min	20,7	637,3	673,7
3_A1A3_max	24,9	1239,9	1286,2
4_A1A3_min 4_A1A3_max	17,8 24,9	552,1 1239,9	583,2 1286,2
5_A1A3_min	17,8	552,1	583,2
5_A1A3_max	24,9	1239,9	1286,2
6_A1A3_min	17,8	552,1 1183,1	583,2 1225,8
6_A1A3_max 7_A1A3_min	23,0 17,8	552,1	583,2
7_A1A3_max	24,9	1239,9	1286,2
8_A1A3_min	18,8	580,5	613,4
8_A1A3_max 9_A1A3_min	24,9 18,5	1239,9 544,1	1286,2 576,4
9_A1A3_max	33,0	1311,4	1381,7
10_A1A3_min	18,5	544,1	576,4
10_A1A3_max 11_A1A3_min	33,0 18,5	1311,4 544,1	1381,7 576,4
11_A1A3_max	33,0	1311,4	1381,7
1_B4_50a_min	49,6	635,4	692,3
1_B4_50a_max	49,4	1261,9	1330,2
2_B4_50a_min 2_B4_50a_max	46,2 49,4	641,5 1261,9	678,8 1330,2
3_B4_50a_min	46,2	641,5	678,8
3_B4_50a_max	53,7	1319,1	1391,0
4_B4_50a_min 4_B4_50a_max	47,4 53,7	606,8 1319,1	661,9 1391,0
5 B4 50a min	47,4	606,8	661,9
5_B4_50a_max	53,7	1319,1	1391,0
6_B4_50a_min	47,4	606,8	661,9
6_B4_50a_max 7_B4_50a_min	49,4 47,4	1261,9 606,8	1330,2 661,9
7_B4_50a_max	66,6	1490,4	1573,3
8_B4_50a_min	49,6	635,4	692,3
8_B4_50a_max 9_B4_50a_min	66,6 40,6	1490,4 557,7	1573,3 591,3
9_B4_50a_max	55,8	1347,6	1421,4
10_B4_50a_min	40,6	557,7	591,3
10_B4_50a_max	55,8	1347,6	1421,4
11_B4_50a_min 11_B4_50a_max	40,6 55,8	557,7 1347,6	591,3 1421,4
1_C3_min	19,3	14,4	15,8
1_C3_max	12,3	16,2	17,5
2_C3_min 2_C3_max	24,6 13,3	6,5 13,5	7,5 14,6
3_C3_min	26,5	17,1	21,5
3_C3_max	20,8	19,9	25,0
4_C3_min 4_C3_max	22,8 20,8	18,7 19,9	21,1 25,0
5_C3_min	22,8	18,7	21,1
5_C3_max	20,8	19,9	25,0
6_C3_min	22,8	18,7	21,1
6_C3_max 7_C3_min	18,1 22,8	17,9 18,7	20,1 21,1
7_C3_max	28,4	26,9	33,8
8_C3_min	26,6	58,2	67,1
8_C3_max 9_C3_min	28,4 27,2	26,9 19,6	33,8 24,5
9_C3_max	39,6	38,0	42,1
10_C3_min	27,2	19,6	24,5
10_C3_max 11_C3_min	41,9 27,2	38,4 10.6	42,6 24,5
11_C3_max	43,7	19,6 38,7	42,9
1_C4_min	4,6	67,3	76,1
1_C4_max	7,2	106,6	118,9
2_C4_min 2_C4_max	1,1 6,2	16,5 92,2	18,6 102,7
3_C4_min	0,0	0,3	0,3
3_C4_max	2,3	36,0	39,2
4_C4_min 4_C4_max	3,4 2,3	50,1 36,0	56,7 39,2
5_C4_min	3,4	50,1	56,7
5_C4_max	2,3	36,0	39,2
6_C4_min	3,4 5.0	50,1	56,7
6_C4_max 7_C4_min	5,0 3,4	75,0 50,1	83,4 56,7
7_C4_max	2,3	36,0	39,2
8_C4_min	0,8	11,1	12,6
8_C4_max 9_C4_min	2,3 0,0	36,0 0,3	39,2 0,3
9_C4_max	3,5	53,0	58,4
10_C4_min	0,0	0,3	0,3
10_C4_max 11_C4_min	3,5	53,0	58,4
11_C4_min 11_C4_max	0,0 3,5	0,3 53,0	0,3 58,4
1_D_min	-12,9	-188,4	-234,7

1_D_max	-10,9	-158,9	-194,8
2_D_min	-11,8	-172,9	-220,5
2_D_max	-10,2	-148,9	-183,9
3 D min	-14,8	-210,4	-273,0
3 D max	-13,1	-184,0	-239,7
4 D min	-10,0	-145,6	-187,3
4 D max	-13,1	-184,0	-239,7
5_D_min	-10,0	-145,6	-187,3
5 D max	-13,1	-184,0	-239,7
6 D min	-10,0	-145,6	-187,3
6 D max	-7,8	-113,4	-145,8
7 D min	-10,0	-145,6	-187,3
7 D max	-17,7	-248,8	-324,1
8 D min	-14,9	-210,9	-273,8
8 D max	-17,7	-248,8	-324,1
9 D min	-15,8	-223,8	-290,6
9 D max	-16,7	-244,3	-314,1
10 D min	-15,8	-223,8	-290,6
10 D max	-17,7	-258,8	-332,8
11_D_min	-15,8	-223,8	-290,6
11 D max	-18,4	-269,7	-346,7
1 DofB4 min	-10,2	-149,1	-191.8
1 DofB4 max	-7,5	-109,6	-141,0
2 DofB4 min	-11,2	-163,6	-210,4
2 DofB4 max	-7,5	-109,6	-141,0
3 DofB4 min	-11,2	-163,6	-210,4
3 DofB4 max	-8,5	-124,1	-159,6
4 DofB4 min	-9,7	-141,9	-182,5
4 DofB4 max	-8,5	-124,1	-159,6
5 DofB4 min	-9,7	-141,9	-182,5
5 DofB4 max	-8,5	-124,1	-159,6
6 DofB4 min	-9,7	-141,9	-182,5
6 DofB4 max	-7,5	-109,6	-141,0
7 DofB4 min	-9,7	-141,9	-182,5
7 DofB4 max	-11,5	-167,6	-215,5
8 DofB4 min	-10,2	-149,1	-191,8
8 DofB4 max	-11,5	-167,6	-215,5
9 DofB4 min	-9,5	-138,6	-178,3
9 DofB4 max	-9,0	-131,4	-168,9
10 DofB4 min	-9,5	-138,6	-178,3
10 DofB4 max	-9,0	-131,4	-168,9
11 DofB4 min	-9,5	-138,6	-178,3
11 DofB4 max	-9,0	-131,4	-168,9
	-,-	, .	

Tabelle A. 79: 2-schalige Außenwand, Sanierung – EW2shelled_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	15,4	192,7	272,1
1_A1A3_max	-51,0	460,7	1538,7
2_A1A3_min	15,4	192,7	272,1
2_A1A3_max	-51,0	460,7	1538,7
3_A1A3_min	15,4	192,7	272,1
3_A1A3_max	-51,0	460,7	1538,7
4_A1A3_min	15,4	192,7	272,1
4_A1A3_max	-45,9	427,0	1415,1
5_A1A3_min	13,8	167,4	237,0
5_A1A3_max	-51,0	460,7	1538,7
6_A1A3_min	17,6	171,6	207,4
6_A1A3_max	-35,8	359,7	1167,9
7_A1A3_min	17,6	171,6	207,4
7_A1A3_max	-35,8	359,7	1167,9
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	n.v.	n.v.	n.v.
9_A1A3_max	n.v.	n.v.	n.v.
10_A1A3_min	n.v.	n.v.	n.v.
10_A1A3_max	n.v.	n.v.	n.v.
11_A1A3_min	n.v.	n.v.	n.v.
_11_A1A3_max	n.v.	n.v.	n.v.
1_B4_50a_min	19,8	203,1	242,9
1_B4_50a_max	0,7	11,0	11,9
2_B4_50a_min	19,8	203,1	242,9
2_B4_50a_max	0,7	11,0	11,9
3_B4_50a_min	19,8	203,1	242,9
3_B4_50a_max	0,7	11,0	11,9
4_B4_50a_min	19,8	203,1	242,9
4_B4_50a_max	0,7	11,0	11,9
5_B4_50a_min	17,6	176,8	212,6
5_B4_50a_max	0,7	11,0	11,9
6_B4_50a_min	18,3	185,6	222,7
6_B4_50a_max	0,7	11,0	11,9
7_B4_50a_min	18,3	185,6	222,7
7_B4_50a_max	0,7	11,0	11,9
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min	n.v.	n.v.	n.v.
9_B4_50a_max	n.v.	n.v.	n.v.
10_B4_50a_min	n.v.	n.v.	n.v.
10_B4_50a_max	n.v.	n.v.	n.v.

11_B4_50a_min	n.v.	n.v.	n.v.
11_B4_50a_max 1_C3_min	n.v. 3,0	n.v. 11,8	n.v. 12,4
1_C3_max	89,9	25,8	-237,8
2_C3_min	3,0	11,8	12,4
2_C3_max	89,6	26,6	-236,9
3_C3_min 3_C3_max	3,0 91,5	11,8 33,2	12,4 -230,0
4_C3_min	3,0	11,8	12,4
4_C3_max	86,6	77,0	-159,5
5_C3_min	6,2	37,2	40,9
5_C3_max	87,9	8,3	-257,2
6_C3_min 6_C3_max	1,5 74,2	23,7 32,1	28,2 -164,6
7_C3_min	1,5	23,7	28,2
7_C3_max	74,2	32,1	-164,6
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min 9_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
10_C3_min	n.v.	n.v.	n.v.
10_C3_max	n.v.	n.v.	n.v.
11_C3_min	n.v.	n.v.	n.v.
11_C3_max	n.v.	n.v.	n.v.
1_C4_min	2,6	37,6	42,4
1_C4_max 2_C4_min	31,6 2,6	461,8 37,6	522,4 42,4
2_C4_max	32,1	467,8	529,1
3_C4_min	2,6	37,6	42,4
3_C4_max	32,9	480,0	543,0
4_C4_min 4_C4_max	2,6 30,7	37,6 447,9	42,4 506,7
4_C4_max 5_C4_min	30,7 1,6	23,0	26,0
5_C4_max	31,3	456,2	516,1
6_C4_min	3,8	12,0	13,5
6_C4_max	29,3	427,7	483,8
7_C4_min	3,8	12,0	13,5
7_C4_max 8_C4_min	29,3 n.v.	427,7 n.v.	483,8 n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	n.v.	n.v.	n.v.
9_C4_max	n.v.	n.v.	n.v.
10_C4_min	n.v.	n.v.	n.v.
10_C4_max 11_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_C4_max	n.v.	n.v.	n.v.
1_D_min	-2,9	-41,2	-49,1
1_D_max	-30,3	-473,0	-354,5
2_D_min	-2,9	-41,2	-49,1
2_D_max 3_D_min	-30,5 -2,9	-476,0 -41,2	-357,7 -49,1
3_D_max	-29,1	-456,3	-335,3
4_D_min	-2,9	-41,2	-49,1
4_D_max	-28,0	-434,6	-327,6
5_D_min	-1,9	-25,3	-32,5
5_D_max 6_D_min	-30,5 -5,6	-476,9 -76,3	-357,8 -96,2
6_D_max	-27,6	-419,5	-350,7
7_D_min	-5,6	-76,3	-96,2
7_D_max	-27,6	-419,5	-350,7
8_D_min	n.v.	n.v.	n.v.
8_D_max 9 D min	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_D_max	n.v.	n.v.	n.v.
10_D_min	n.v.	n.v.	n.v.
10_D_max	n.v.	n.v.	n.v.
11_D_min 11 D max	n.v.	n.v.	n.v.
11_D_max 1_DofB4_min	n.v. 0,0	n.v. 0,0	n.v. 0,0
1_DofB4_min	-0,1	-2,1	-2,7
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	-0,1	-2,1	-2,7
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max 4_DofB4_min	-0,1 0,0	-2,1 0,0	-2,7 0,0
4_DofB4_max	-0,1	-2,1	-2,7
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	-0,1	-2,1	-2,7
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max 7_DofB4_min	-0,1 0,0	-2,1 0,0	-2,7 0,0
7_DofB4_min	-0,1	-2,1	-2,7
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	n.v.	n.v.	n.v.
9_DofB4_max	n.v.	n.v.	n.v.
10_DofB4_min 10_DofB4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
11_DofB4_min	n.v.	n.v.	n.v.
11_DofB4_max	n.v.	n.v.	n.v.

Tabelle A. 80: Außenwand mit Vorhang- oder hinter-/bzw. belüfteter Fassade, Sanierung – EWcwf_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Aq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min	21,1	212,6	255,0
1_A1A3_max	-53,5	477,5	1600,5
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max	n.v.	n.v.	n.v.
4_A1A3_min	n.v.	n.v.	n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	21,8	220,8	264,5
5_A1A3_max	-51,0	460,7	1538,7
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min	n.v.	n.v.	n.v.
7_A1A3_max	n.v. n.v.	n.v.	n.v.
8_A1A3_min 8 A1A3 max		n.v.	n.v.
	n.v.	n.v.	n.v.
9_A1A3_min	0,0 53.5	0,0 477.5	0,0 1600 5
9_A1A3_max 10_A1A3_min	-53,5 0,0	477,5 0,0	1600,5 0,0
10_A1A3_max	-53,5	477,5	
11_A1A3_min	0,0	0,0	1600,5 0,0
11_A1A3_max	-15,6	225,2	673,5
1_B4_50a_min	22,0	229,3	273,3
1_B4_50a_max	0,7	11,0	11,9
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v.
3_B4_50a_min	n.v. n.v.		n.v.
3_B4_50a_max 4_B4_50a_min		n.v.	n.v. n.v.
	n.v.	n.v.	
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min	22,7	238,1	283,4
5_B4_50a_max	0,7	11,0	11,9
6_B4_50a_min	n.v.	n.v.	n.v.
6_B4_50a_max	n.v.	n.v.	n.v.
7_B4_50a_min	n.v.	n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max 9_B4_50a_min	n.v.	n.v.	n.v.
9_B4_50a_max	0,0 0,7	0,0 11,0	0,0 11,9
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	0,7	11,0	11,9
11_B4_50a_min	0,0	0,0	0,0
11_B4_50a_max	0,7	11,0	11,9
1_C3_min	37,9	96,1	-234,5
1_C3_max	131,5	91,4	-516,1
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4 C3 min	n.v.	n.v.	n.v.
4_C3_max	n.v.	n.v.	n.v.
5_C3_min	35,4	22,4	-198,2
5_C3_max	102,7	19,8	-269,5
6_C3_min	n.v.	n.v.	n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max	n.v.	n.v.	n.v.
8_C3_min	n.v.	n.v.	n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	4,1	18,5	-10,8
9_C3_max	136,9	27,0	-354,6
10_C3_min	4,1	18,5	-10,8
10_C3_max	152,0	27,4	-386,2
11_C3_min	4,1	18,5	-10,8
11_C3_max	96,8	25,9	-235,8
1_C4_min	3,7	54,1	61,2
1_C4_max	32,4	472,4	534,4
2_C4_min	n.v.	n.v.	n.v.
2_C4_max	n.v.	n.v.	n.v.
3_C4_min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min	n.v.	n.v.	n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min	0,8	11,4	12,9
5_C4_max	75,1	1096,9	1240,8
6_C4_min	n.v.	n.v.	n.v.
6_C4_max	n.v.	n.v.	n.v.
7_C4_min	n.v.	n.v.	n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max	n.v.	n.v.	n.v.
9_C4_min	30,1	439,4	497,1
9_C4_max	58,9	859,3	972,1
10_C4_min	30,1	439,4	497,1
10_C4_max	58,9	859,3	972,1
11_C4_min	30,1	439,4	497,1
11_C4_max	58,9	859,3	972,1
1_D_min	-17,2	-227,9	33,5

A.8 Sanier	Übersichtstabellen rungskonstruktion	über	die	baualterspezi	fischen	Umweltwirkungen	je
		ax in ax	-47,5 n.v. n.v. n.v. n.v18,1 -33,7 n.v. n.v. n.v. n.v1,7 -49,8 -1,7 -54,5 -1,7 -36,8 0,0	-704,0 n.v. n.v. n.v. n.v. n.v227,9 -507,7 n.v. n.v. n.v. n.v. 23,2 -765,8 -23,2 -840,6 -23,2 -562,3 0,0	-317,2 n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v	Umweltwirkungen	je
	1_Dofe 2_Dofe 2_Dofe 2_Dofe 3_Dofe 3_Dofe 3_Dofe 4_Dofe 4_Dofe 5_Dofe 6_Dofe 7_Dofe 7_Dofe 8_Dofe 9_Dofe 10_Dof 11_Dof	44_max 44_min	-0,1 n.v. n.v. n.v. n.v. n.v. 0,0 -0,1 n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v	-2,1 n.v. n.v. n.v. n.v. n.v. 0,0 -2,1 n.v. n.v. n.v. n.v. 0,0 -2,1 0,0 -2,1	-2,7 n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v		

Tabelle A. 81: Außenwand in Massivbauweise, Sanierung – EWmas_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	19,7	196,2	235,9
1_A1A3_max	-51,0	460,7	1538,7
2_A1A3_min	21,1	212,6	255,0
2_A1A3_max	-53,5	477,5	1600,5
3_A1A3_min	21,8	220,8	264,5
3_A1A3_max	-53,5	477,5	1600,5
4_A1A3_min	18,3	179,8	216,9
4_A1A3_max	-53,5	477,5	1600,5
5_A1A3_min	18,3	179,8	216,9
5_A1A3_max	-53,5	477,5	1600,5
6_A1A3_min	18,3	179,8	216,9
6_A1A3_max	-53,5	477,5	1600,5
7_A1A3_min	18,3	179,8	216,9
7_A1A3_max	-53,5	477,5	1600,5
8_A1A3_min	18,3	179,8	216,9
8_A1A3_max	-40,9	393,4	1291,5
9_A1A3_min	14,1	130,7	159,8
9_A1A3_max	-53,5	477,5	1600,5
10_A1A3_min	14,1	130,7	159,8
10_A1A3_max	-53,5	477,5	1600,5
11_A1A3_min	14,1	130,7	159,8
_11_A1A3_max	-53,5	477,5	1600,5
1_B4_50a_min	20,5	211,8	253,0
1_B4_50a_max	0,7	11,0	11,9
2_B4_50a_min	22,0	229,3	273,3
2_B4_50a_max	0,7	11,0	11,9
3_B4_50a_min	22,7	238,1	283,4
3_B4_50a_max	0,7	11,0	11,9
4_B4_50a_min	19,1	194,3	232,8
4_B4_50a_max	0,7	11,0	11,9
5_B4_50a_min	19,1	194,3	232,8
5_B4_50a_max	0,7	11,0	11,9
6_B4_50a_min	19,1	194,3	232,8
6_B4_50a_max	0,7	11,0	11,9
7_B4_50a_min	19,1	194,3	232,8
7_B4_50a_max	0,7	11,0	11,9
8_B4_50a_min	19,1	194,3	232,8
8_B4_50a_max	0,7	11,0	11,9
9_B4_50a_min	14,7	141,8	172,1
9_B4_50a_max	0,7	11,0	11,9
10_B4_50a_min	14,7	141,8	172,1
10_B4_50a_max	0,7	11,0	11,9

11_B4_50a_min	14,7	141,8	172,1
11_B4_50a_max	0,7	11,0	11,9
1_C3_min	-3,7	17,3	18,2
1_C3_max	88,5	6,9	-258,7
2_C3_min 2_C3_max	-0,7 93,0	10,0 5,3	10,4 -271,1
3_C3_min	0,7	13,6	15,5
3_C3_max	95,1	18,3	-254,1
4_C3_min	0,8	16,9	18,4
4_C3_max 5_C3_min	95,1 0,8	18,3 16,9	-254,1 18,4
5_C3_max	95,1	18,3	-254,1
6_C3_min	0,8	16,9	18,4
6_C3_max	95,5	23,7	-247,4 19.4
7_C3_min 7_C3_max	0,8 95,5	16,9 23,7	18,4 -247,4
8_C3_min	0,8	16,9	18,4
8_C3_max	71,5	10,0	-212,8
9_C3_min	-2,3	9,5	10,0
9_C3_max 10_C3_min	94,8 -2,3	22,3 9,5	-252,6 10,0
10_C3_max	94,9	23,7	-251,2
11_C3_min	-2,3	9,5	10,0
11_C3_max	94,9	23,7	-251,2
1_C4_min 1_C4_max	5,0 30,9	73,2 451,7	82,8 511,0
1_C4_max 2 C4 min	30,9 1,8	25,5	28,9
2_C4_max	30,4	443,9	502,1
3_C4_min	0,6	9,4	10,7
3_C4_max	30,0	438,5	496,1
4_C4_min 4_C4_max	2,1 30,0	30,0 438,5	34,0 496,1
5_C4_min	2,1	30,0	34,0
5_C4_max	30,0	438,5	496,1
6_C4_min	2,1	30,0	34,0
6_C4_max	29,3	427,7	483,8
7_C4_min 7_C4_max	2,1 29,3	30,0 427,7	34,0 483,8
8_C4_min	2,1	30,0	34,0
8_C4_max	32,8	478,8	541,6
9_C4_min	1,3	19,6	22,2
9_C4_max 10_C4_min	30,1 1,3	438,7 19,6	496,3 22,2
10_C4_max	30,1	439,1	496,7
11_C4_min	1,3	19,6	22,2
_11_C4_max	30,1	439,1	496,7
1_D_min 1_D_max	-2,7 -30,2	-39,2 -471,7	-42,9 -352,1
2_D_min	-0,6	-9,2	-10,1
2_D_max	-31,0	-485,3	-360,7
3_D_min	-1,6	-20,3	-27,1
3_D_max 4_D_min	-34,6 -0,2	-531,2 -2,8	-424,4 -3,6
4 D max	-34,6	-531,2	-424,4
5_D_min	-0,2	-2,8	-3,6
5_D_max	-34,6	-531,2	-424,4
6_D_min 6 D max	-0,2 -36,1	-2,8 -550,2	-3,6 -449,8
7_D_min	-0,2	-2,8	-3,6
7_D_max	-36,1	-550,2	-449,8
8_D_min	-0,2	-2,8	-3,6
8_D_max 9_D_min	-26,0 -1,7	-405,2	-304,5
9_D_max	-30,4	-24,5 -476,1	-26,8 -350,7
10_D_min	-1,7	-24,5	-26,8
10_D_max	-30,4	-476,1	-350,7
11_D_min 11_D_max	-1,7 -30,4	-24,5 -476,1	-26,8 -350,7
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	-0,1	-2,1	-2,7
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	-0,1	-2,1	-2,7
3_DofB4_min 3_DofB4_max	0,0 -0,1	0,0 -2,1	0,0 -2,7
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	-0,1	-2,1	-2,7
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max 6_DofB4_min	-0,1 0,0	-2,1 0,0	-2,7 0,0
6_DofB4_max	-0,1	-2,1	-2,7
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	-0,1	-2,1	-2,7
8_DofB4_min	0,0 -0.1	0,0	0,0 -2.7
8_DofB4_max 9_DofB4_min	-0,1 0,0	-2,1 0,0	-2,7 0,0
9_DofB4_min	-0,1	-2,1	-2,7
10_DofB4_min	0,0	0,0	0,0
10_DofB4_max	-0,1	-2,1 0.0	-2,7
11_DofB4_min 11_DofB4_max	0,0 -0,1	0,0 -2,1	0,0 -2,7
	0, 1	۷,۱	۷,۱

Tabelle A. 82: Außenwand in Holzbauweise, Sanierung – EWwood_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

ZFII, BK ullu	indikator, eigen	e Darstellung	3
Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_min 1_A1A3_max	20,4 -56,0	204,4 494,3	245,4 1662,3
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	n.v.	n.v.	n.v.
3_A1A3_max 4_A1A3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_A1A3_max	n.v.	n.v.	n.v.
5_A1A3_min	n.v.	n.v.	n.v.
5_A1A3_max	n.v.	n.v.	n.v.
6_A1A3_min	-30,8	405,5	1267,2
6_A1A3_max 7 A1A3 min	-46,1 -30,8	784,4 405,5	2122,4 1267,2
7_A1A3_max	-46,1	784,4	2122,4
8 A1A3 min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min	13,7	126,6	155,1
9_A1A3_max	-18,1	242,0	735,3
10_A1A3_min 10_A1A3_max	0,0 0,0	0,0 0,0	0,0 0,0
11_A1A3_min	0,0	0,0	0,0
11_A1A3_max	0,0	0,0	0,0
1_B4_50a_min	21,2	220,6	263,2
1_B4_50a_max	0,7	11,0	11,9
2_B4_50a_min 2_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_max 3 B4 50a min	n.v. n.v.	n.v. n.v.	n.v. n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min	n.v.	n.v.	n.v.
4_B4_50a_max	n.v.	n.v.	n.v.
5_B4_50a_min	n.v.	n.v.	n.v.
5_B4_50a_max 6_B4_50a_min	n.v. 13,3	n.v. 124,3	n.v. 151,9
6_B4_50a_max	0,7	11,0	11,9
7_B4_50a_min	13,3	124,3	151,9
7_B4_50a_max	0,7	11,0	11,9
8_B4_50a_min	n.v.	n.v.	n.v.
8_B4_50a_max	n.v.	n.v.	n.v.
9_B4_50a_min 9_B4_50a_max	14,4 0,7	137,4 11,0	167,1 11,9
10_B4_50a_min	3,9	47,3	281,5
10_B4_50a_max	0,7	11,0	11,9
11_B4_50a_min	3,9	47,3	281,5
11_B4_50a_max	0,7	11,0	11,9
1_C3_min 1_C3_max	16,0 132,2	13,0 12,3	-169,7 -630,6
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min	n.v.	n.v.	n.v.
3_C3_max	n.v.	n.v.	n.v.
4_C3_min 4_C3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
5_C3_min	n.v.	n.v.	n.v.
5_C3_max	n.v.	n.v.	n.v.
6_C3_min	68,9	-11,2	-480,1
6_C3_max	116,4	-11,9	-549,1
7_C3_min	68,9	-11,2 11.0	-480,1
7_C3_max 8_C3_min	116,4 n.v.	-11,9 n.v.	-549,1 n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	62,3	5,5	-503,9
9_C3_max	101,0	4,2	-632,5
10_C3_min	79,3 242,9	3,6 -2,6	-603,5 -2121.5
10_C3_max 11_C3_min	242,9 79,3	-2,6 3,6	-2121,5 -603,5
11_C3_max	242,9	-2,6	-2121,5
1_C4_min	3,1	45,0	50,9
1_C4_max	30,0	427,7	475,8
2_C4_min 2_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_C4_max 3_C4_min	n.v.	n.v.	n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min	n.v.	n.v.	n.v.
4_C4_max	n.v.	n.v.	n.v.
5_C4_min 5_C4_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
6_C4_min	1,1	16,3	11.v. 18,2
6_C4_max	30,3	441,9	499,7
7_C4_min	1,1	16,3	18,2
7_C4_max	30,3	441,9	499,7
8_C4_min	n.v.	n.v.	n.v.
8_C4_max 9_C4_min	n.v. 0,9	n.v. 13,2	n.v. 14,9
9_C4_max	29,6	432,6	489,4
10_C4_min	0,3	4,9	5,6
10_C4_max	29,9	435,9	493,1
11_C4_min	0,3	4,9	5,6
11_C4_max 1_D_min	29,9 -9,4	435,9 -127,4	493,1
1_D_IIIIII	-9,4	-121,4	12,2

1_D_max	-47,7	-712,1	-307,9
2_D_min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	n.v.	n.v.	n.v.
3_D_max	n.v.	n.v.	n.v.
4_D_min	n.v.	n.v.	n.v.
4_D_max	n.v.	n.v.	n.v.
5_D_min	n.v.	n.v.	n.v.
5_D_max	n.v.	n.v.	n.v.
6_D_min	-26,2	-468,9	-167,9
6_D_max	-36,7	-650,2	-352,6
7_D_min	-26,2	-468,9	-167,9
7_D_max	-36,7	-650,2	-352,6
8_D_min	n.v.	n.v.	n.v.
8_D_max	n.v.	n.v.	n.v.
9_D_min	-27,4	-367,8	13,0
9_D_max	-40,3	-566,7	-122,5
10_D_min	-34,2	-459,4	-12,7
10_D_max	-100,8	-1541,7	50,5
11_D_min	-34,2	-459,4	-12,7
11_D_max	-100,8	-1541,7	50,5
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	-0,1	-2,1	-2,7
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max	n.v.	n.v.	n.v.
3_DofB4_min	n.v.	n.v.	n.v.
3_DofB4_max	n.v.	n.v.	n.v.
4_DofB4_min	n.v.	n.v.	n.v.
4_DofB4_max	n.v.	n.v.	n.v.
5_DofB4_min	n.v.	n.v.	n.v.
5_DofB4_max	n.v.	n.v.	n.v.
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	-0,1	-2,1	-2,7
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	-0,1	-2,1	-2,7
8_DofB4_min	n.v.	n.v.	n.v.
8_DofB4_max	n.v.	n.v.	n.v.
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	-0,1	-2,1	-2,7
10_DofB4_min	-14,6	-193,7	53,9
10_DofB4_max	-0,1	-2,1	-2,7
11_DofB4_min	-14,6	-193,7	53,9
11_DofB4_max	-0,1	-2,1	-2,7
		·	

Tabelle A. 83: Flachdach in Massivbauweise, Sanierung – FROmas_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	n.v.	n.v.	n.v.
1_A1A3_max	n.v.	n.v.	n.v.
2_A1A3_min	n.v.	n.v.	n.v.
2_A1A3_max	n.v.	n.v.	n.v.
3_A1A3_min	24,8	682,0	707,1
3_A1A3_max	40,6	1480,8	1595,5
4_A1A3_min	24,8	682,0	707,1
4_A1A3_max	40,6	1480,8	1595,5
5_A1A3_min	24,8	682,0	707,1
5_A1A3_max	40,6	1480,8	1595,5
6_A1A3_min	24,8	682,0	707,1
6_A1A3_max	40,6	1480,8	1595,5
7_A1A3_min	24,8	682,0	707,1
7_A1A3_max	40,6	1480,8	1595,5
8_A1A3_min	16,2	424,1	445,4
8_A1A3_max	40,6	1480,8	1595,5
9_A1A3_min	11,6	290,3	309,9
9_A1A3_max	42,3	1653,8	1771,9
10_A1A3_min	11,6	290,3	309,9
10_A1A3_max	42,3	1653,8	1771,9
11_A1A3_min	11,6	290,3	309,9
_11_A1A3_max	42,3	1653,8	1771,9
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min	n.v.	n.v.	n.v.
2_B4_50a_max	n.v.	n.v.	n.v.
3_B4_50a_min	23,5	302,2	344,3
3_B4_50a_max	30,3	817,7	891,2
4_B4_50a_min	23,5	302,2	344,3
4_B4_50a_max	30,3	817,7	891,2
5_B4_50a_min	23,5	302,2	344,3
5_B4_50a_max	30,3	817,7	891,2
6_B4_50a_min	23,5	302,2	344,3
6_B4_50a_max	30,3	817,7	891,2
7_B4_50a_min	23,5	302,2	344,3
7_B4_50a_max	30,3	817,7	891,2
8_B4_50a_min	25,0	481,3	527,3
8_B4_50a_max	30,3	817,7	891,2
9_B4_50a_min	25,0	481,3	527,3
9_B4_50a_max	31,9	996,9	1074,1
10_B4_50a_min	25,0	481,3	527,3
10_B4_50a_max	31,9	996,9	1074,1

11_B4_50a_min	25,0	481,3	527,3
11_B4_50a_max	31,9	996,9	1074,1
1_C3_min	n.v.	n.v.	n.v.
1_C3_max	n.v.	n.v.	n.v.
2_C3_min	n.v.	n.v.	n.v.
2_C3_max	n.v.	n.v.	n.v.
3_C3_min 3_C3_max	5,6 41,9	12,8 34,0	16,4 39,9
4_C3_min	5,6	12,8	16,4
4_C3_max	142,3	49,5	-993,0
5_C3_min	5,6	12,8	16,4
5_C3_max	62,4	44,1	-161,8
6_C3_min 6_C3_max	5,8 44,7	15,1 19,7	19,3 24,1
7_C3_min	5,8	15,1	19,3
7_C3_max	44,7	19,7	24,1
8_C3_min	10,8	33,4	42,6
8_C3_max	68,5	33,6	41,1
9_C3_min	10,8	33,4	42,6
9_C3_max 10_C3_min	75,1 10,8	34,5 33,4	42,3 42,6
10_C3_max	75,1	34,5	42,3
11_C3_min	10,8	33,4	42,6
11_C3_max	75,1	34,5	42,3
1_C4_min	n.v.	n.v.	n.v.
1_C4_max 2 C4 min	n.v.	n.v.	n.v. n.v.
2_C4_IIIII 2 C4 max	n.v. n.v.	n.v. n.v.	n.v.
3_C4_min	22,3	28,1	30,8
3_C4_max	1,9	29,5	31,6
4_C4_min	22,3	28,1	30,8
4_C4_max	2,2	33,4	36,1
5_C4_min 5 C4 max	22,3 2,2	28,1 33,4	30,8 36,1
6_C4_min	22,3	28,1	30,8
6_C4_max	6,8	58,5	62,7
7_C4_min	22,3	28,1	30,8
7_C4_max	6,8	58,5	62,7
8_C4_min	21,0	8,9	9,6
8_C4_max 9_C4_min	2,4 21,0	38,1 8,9	41,0 9,6
9_C4_max	2,8	44,3	47,6
10_C4_min	21,0	8,9	9,6
10_C4_max	2,8	44,3	47,6
11_C4_min	21,0	8,9	9,6
11_C4_max	2,8	44,3	47,6
1_D_min 1_D_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2 D min	n.v.	n.v.	n.v.
2_D_max	n.v.	n.v.	n.v.
3_D_min	-12,7	-192,0	-215,8
3_D_max	-20,9	-301,4	-389,6
4_D_min 4_D_max	-12,7 -67,7	-192,0 -929,3	-215,8 -208,6
5 D min	-12,7	-192,0	-215,8
5_D_max	-30,4	-428,4	-353,1
6_D_min	-13,3	-200,1	-226,5
6_D_max	-23,7	-342,8	-438,1
7_D_min	-13,3 -23,7	-200,1 -342,8	-226,5 -438,1
7_D_max 8_D_min	-23, <i>1</i> -16,2	-239,1	-436,1
8_D_max	-34,7	-499,5	-645,6
9_D_min	-16,2	-239,1	-278,2
9_D_max	-37,4	-539,2	-696,7
10_D_min 10_D_max	-16,2 -37,4	-239,1 -539,2	-278,2 -696.7
10_D_max 11 D min	-37,4 -16,2	-539,2 -239,1	-696,7 -278,2
11_D_max	-37,4	-539,2	-696,7
1_DofB4_min	n.v.	n.v.	n.v.
1_DofB4_max	n.v.	n.v.	n.v.
2_DofB4_min	n.v.	n.v.	n.v.
2_DofB4_max 3_DofB4_min	n.v. -2,3	n.v. -33,1	n.v. -42,4
3_DofB4_max	-5,8	-84,8	-109,0
4_DofB4_min	-2,3	-33,1	-42,4
4_DofB4_max	-5,8	-84,8	-109,0
5_DofB4_min	-2,3	-33,1	-42,4
5_DofB4_max	-5,8	-84,8	-109,0
6_DofB4_min 6_DofB4_max	-2,3 -5,8	-33,1 -84,8	-42,4 -109,0
7_DofB4_min	-3,8 -2,3	-33,1	-42,4
7_DofB4_max	-5,8	-84,8	-109,0
8_DofB4_min	-2,0	-29,3	-37,6
8_DofB4_max	-5,8	-84,8	-109,0
9_DofB4_min	-2,0	-29,3	-37,6 104.2
9_DofB4_max 10_DofB4_min	-5,5 -2,0	-81,0 -29,3	-104,2 -37,6
10_DofB4_min	-2,0 -5,5	-29,3 -81,0	-37,6 -104,2
11_DofB4_min	-2,0	-29,3	-37,6
11_DofB4_max	-5,5	-81,0	-104,2

Tabelle A. 84: Flachdach in Holzbauweise, Sanierung – FROwood_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit 1_A1A3_min	[kg CO ₂ -Aq./m ²]	[MJ/m²]	[MJ/m²]
1_A1A3_IIIII 1_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
2_A1A3_min	-3,9	516,1	1034,1
2_A1A3_max	-89,0	1850,0	4175,8
3_A1A3_min 3_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
4_A1A3_min	-4,8	495,2	967,7
4_A1A3_max	-89,0	1850,0	4175,8
5_A1A3_min 5_A1A3_max	-5,5 -89,0	506,3 1850,0	1000,6 4175,8
6_A1A3_min	n.v.	n.v.	n.v.
6_A1A3_max	n.v.	n.v.	n.v.
7_A1A3_min 7_A1A3_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
8_A1A3_min	n.v.	n.v.	n.v.
8_A1A3_max	n.v.	n.v.	n.v.
9_A1A3_min 9_A1A3_max	-1,2 -74,9	50,2 1630,2	158,4 3518,3
10_A1A3_min	-1,2	50,2	158,4
10_A1A3_max	-74,9	1630,2	3518,3
11_A1A3_min 11_A1A3_max	-1,2 -74,9	50,2 1630,2	158,4 3518,3
1_B4_50a_min	n.v.	n.v.	n.v.
1_B4_50a_max	n.v.	n.v.	n.v.
2_B4_50a_min 2_B4_50a_max	22,6 29,4	289,5 805,0	330,7 877,6
3_B4_50a_min	n.v.	n.v.	n.v.
3_B4_50a_max	n.v.	n.v.	n.v.
4_B4_50a_min 4_B4_50a_max	22,6 29,4	289,5 805,0	330,7 877,6
5_B4_50a_min	22,6	289,5	330,7
5_B4_50a_max	29,4	805,0	877,6
6_B4_50a_min 6_B4_50a_max	n.v. n.v.	n.v.	n.v. n.v.
7_B4_50a_min	n.v.	n.v. n.v.	n.v.
7_B4_50a_max	n.v.	n.v.	n.v.
8_B4_50a_min 8_B4_50a_max	n.v. n.v.	n.v. n.v.	n.v. n.v.
9_B4_50a_min	31,9	996,9	1074,1
9_B4_50a_max	29,4	805,0	877,6
10_B4_50a_min	31,9	996,9	1074,1
10_B4_50a_max 11_B4_50a_min	29,4 31,9	805,0 996,9	877,6 1074,1
11_B4_50a_max	29,4	805,0	877,6
1_C3_min	n.v.	n.v.	n.v.
1_C3_max 2_C3_min	n.v. 85,1	n.v. 12,5	n.v. -819,5
2_C3_max	240,2	-2,2	-1260,9
3_C3_min	n.v.	n.v.	n.v.
3_C3_max 4 C3 min	n.v. 106,1	n.v. 36,0	n.v. -919,8
4_C3_max	262,6	21,8	-1376,8
5_C3_min 5 C3 max	90,4	32,8	-843,5
6_C3_min	254,8 n.v.	24,5 n.v.	-1374,1 n.v.
6_C3_max	n.v.	n.v.	n.v.
7_C3_min	n.v.	n.v.	n.v.
7_C3_max 8_C3_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
8_C3_max	n.v.	n.v.	n.v.
9_C3_min	222,0	4,7	-2042,0 045,4
9_C3_max 10_C3_min	226,9 222,0	-2,2 4,7	-945,4 -2042,0
10_C3_max	226,9	-2,2	-945,4
11_C3_min	222,0 226.9	4,7 -2,2	-2042,0 -945.4
11_C3_max 1_C4_min	226,9 n.v.	-2,2 n.v.	-945,4 n.v.
1_C4_max	n.v.	n.v.	n.v.
2_C4_min	1,2	18,8	20,3 37.1
2_C4_max 3_C4_min	2,2 n.v.	34,4 n.v.	37,1 n.v.
3_C4_max	n.v.	n.v.	n.v.
4_C4_min	1,4 2.5	21,0	22,8
4_C4_max 5_C4_min	2,5 1,3	38,9 20,5	42,3 22,2
5_C4_max	2,6	39,8	43,2
6_C4_min	n.v.	n.v.	n.v.
6_C4_max 7_C4_min	n.v. n.v.	n.v. n.v.	n.v. n.v.
7_C4_max	n.v.	n.v.	n.v.
8_C4_min	n.v.	n.v.	n.v.
8_C4_max 9_C4_min	n.v. 1,8	n.v. 28,3	n.v. 30,7
9_C4_max	1,1	16,6	17,9
10_C4_min	1,8	28,3	30,7
10_C4_max 11_C4_min	1,1 1,8	16,6 28,3	17,9 30,7
11_C4_max	1,1	16,6	17,9
1_D_min	n.v.	n.v.	n.v.

A.8 Übersichts Sanierungskonst		die	baualterspezifischen	Umweltwirkungen	je
		n.v. -36,3 -87,5 n.v. n.v. -45,0 -96,9 -38,5 -94,0 n.v. n.v. n.v. n.v. n.v. n.v. n.v. -76,7 -98,5 -76,7 -76,7 -76,7 n.v. n.v. -2,0 -5,5	n.v.		je —
	5_DofB4_min 5_DofB4_max 6_DofB4_max 6_DofB4_max 7_DofB4_min 7_DofB4_min 8_DofB4_min 8_DofB4_max 9_DofB4_min 9_DofB4_max 10_DofB4_max 11_DofB4_min 11_DofB4_min	-2,0 -5,5 n.v. n.v. n.v. n.v. -5,5 -5,5 -5,5 -5,5 -5,5	-29,3 -37,6 -81,0 -104,2 n.v. n.v81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2 -81,0 -104,2		

Tabelle A. 85: Steildach im beheizten Dachgeschoss, Sanierung - PRO_h_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m²]	[MJ/m²]	[MJ/m ²]
1_A1A3_min	-27,2	411,5	1198,1
1_A1A3_max	-54,1	1225,6	2940,5
2_A1A3_min	-27,2	411,5	1198,1
2_A1A3_max	-46,5	980,8	2391,8
3_A1A3_min	-24,1	463,4	1336,8
3_A1A3_max	-60,5	1318,2	3177,7
4_A1A3_min	-12,4	404,2	1054,0
4_A1A3_max	-60,5	1318,2	3177,7
5_A1A3_min	-38,5	390,3	1295,0
5_A1A3_max	-60,5	1318,2	3177,7
6_A1A3_min	-38,5	390,3	1295,0
6_A1A3_max	-46,4	1188,9	2768,9
7_A1A3_min	-12,4	404,2	1054,0
7_A1A3_max	-46,4	1188,9	2768,9
8_A1A3_min	-23,4	431,0	1255,5
8_A1A3_max	-46,4	1188,9	2768,9
9_A1A3_min	4,8	77,0	172,5
9_A1A3_max	-29,1	909,6	2016,4
10_A1A3_min	4,8	77,0	172,5
10_A1A3_max	-29,1	909,6	2016,4
11_A1A3_min	4,8	77,0	172,5
_11_A1A3_max	-29,1	909,6	2016,4
1_B4_50a_min	6,0	85,2	90,9
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	6,0	85,2	90,9
2_B4_50a_max	0,9	12,7	13,6
3_B4_50a_min	6,0	85,2	90,9
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	6,0	85,2	90,9
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	6,0	85,2	90,9
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	6,0	85,2	90,9
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	6,0	85,2	90,9
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	6,0	85,2	90,9
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,4	0,1	0,1
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,4	0,1	0,1
10_B4_50a_max	0,0	0,0	0,0

11_Bd_50a_mx
2 C3_miax
2 C3_main
3. C3. miax
3. C3. max
4. C3_max
4. C3. max
5. C3. min
5. C3. max
6 C3 min
6.C3_main
7. C.3. min 72,7 13,5 -709,6 7. C.3. max 156.1 7,8 594.6 8. C.3. min 83.6 14.9 821.4 8. C.3. min 156.1 7,8 594.6 8. C.3. min 148.2 7,6 869,0 9. C.3. min 148.2 7,6 869,0 9. C.3. min 148.2 7,6 869,0 9. C.3. min 148.2 7,6 869,0 10. C.3. min 148.2 7,6 869,0 11. C.4. min 0.4 3,6 1.6 1.6 1. C.4. min 0.4 3,6 1.6 1.6 1.2 1.2 18.9 20.5 1.6 1.2 1.3 1.3 1.4 1.2 18.9 1.5 1.6 1.6 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
7. C3. max
8 C3, max
9. C3. min
9.C3. max
10_C3_min
10_C3_max
11_C3_min 148,2 7,6 868,0 1_C4_min 0,4 3,6 1,6 1_C4_max 1,2 18,9 20,5 2_C4_min 0,4 3,6 1,6 2_C4_max 0,1 2,0 2,2 3_C4_min 0,4 6,3 7,1 3_C4_min 0,4 5,9 6,7 4_C4_max 0,3 3,9 4,5 4_C4_max 0,3 3,9 4,5 5_C4_min 3,2 4,1 4,6 5_C4_max 0,3 3,9 4,5 6_C4_max 0,3 3,9 4,5 6_C4_max 0,3 3,9 4,5 6_C4_max 0,3 3,9 4,5 7_C4_max 0,3 3,9 4,5 8_C4_min 0,4 5,9 6,7 7_C4_max 0,3 3,9 4,5 9_C4_min 0,7 10,5 11,9 9_C4_min 0,7 10,5 1
11_C3_max
1. C4. min
1.C4. max
2 C.4_min
2 C.4_max
3. C.4. min
3 C4_max
4 Cd_min 0.4 5.9 6.7 4_Cd_max 0.3 3.9 4.5 5_Cd_min 3.2 4.1 4.6 5_Cd_max 0.3 3.9 4.5 6_Cd_min 3.2 4.1 4.6 6_Cd_max 0.3 3.9 4.5 7_Cd_min 0,4 5.9 6.7 7_Cd_max 0.3 3.9 4.5 8_Cd_max 0.3 3.9 4.5 8_Cd_max 0.4 6.0 6.8 8_Cd_max 0.4 6.0 6.8 8_Cd_min 0.7 10.5 11.9 9_Cd_min 0.7 10.5 11.9 10_Cd_min 0.7 10.5 11.9 10_Cd_min 0.7 10.5 11.9 11_Cd_min 0.7 10.5 11.9 11_Cd_min 0.7 10.5 11.9 11_Cd_min 0.7 10.5 6.2 1_D_min -43.4 -579.4
5.C4_min 3.2 4,1 4,6 5.C4_max 0,3 3,9 4,5 6.C4_min 3.2 4,1 4,6 6.C4_max 0,3 3,9 4,5 7.C4_max 0,3 3,9 4,5 8.C4_min 0,4 6,0 6,8 8.C4_max 0,3 3,9 4,5 9.C4_min 0,7 10,5 11,9 9.C4_min 0,7 10,5 11,9 9.C4_min 0,7 10,5 11,9 10.C4_max 0,4 5,5 6,2 10_C4_min 0,7 10,5 11,9 11_C4_min 0,7 10,
5 C4_max
6_C4_min
6 C4_max
7. C4_min
7_C4_max
8_C4_min
8_C4_max
9_C4_min
9_C4_max 0,4 5,5 6,2 10_C4_min 0,7 10,5 11,9 10_C4_max 0,4 5,5 6,2 11_C4_min 0,7 10,5 11,9 11_C4_max 0,4 5,5 6,2 11_D_min -43,4 -579,4 92,0 1_D_max -62,8 -1001,3 -493,5 2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_max -51,4 -865,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3
10_C4_min 0,7 10,5 6,2 11_C4_min 0,7 10,5 11,9 11_C4_max 0,4 5,5 6,2 1_D_min -43,4 -579,4 92,0 1_D_max -62,8 -1001,3 -493,5 2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_max -51,4 -865,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_min -48,2 -647,2 78,5 6_D_min -48,2 -647,2 78,5 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 <t< td=""></t<>
10_C4_max 0,4 5,5 6,2 11_C4_min 0,7 10,5 11,9 11_C4_max 0,4 5,5 6,2 1_D_min -43,4 -579,4 92,0 1_D_max -62,8 -1001,3 -493,5 2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_max -51,4 -865,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -54,4 -866,1 -273
11_C4_max 0,4 5,5 6,2 1_D_min -43,4 -579,4 92,0 1_D_max -62,8 -1001,3 -493,5 2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_max -51,4 -865,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 5_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_min -41,1 -549,1 85,8
11_C4_max 0,4 5,5 6,2 1_D_min -43,4 -579,4 92,0 1_D_max -62,8 -1001,3 -493,5 2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_min -36,1 -481,3 66,4 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 8_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3
1_D_max
2_D_min -43,4 -579,4 92,0 2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_max -51,4 -865,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_min -41,1 -549,1 85,8 8_D_min -51,6 -842,8 -507,3 8_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6
2_D_max -54,9 -834,3 -548,7 3_D_min -35,5 -472,7 56,8 3_D_max -51,4 -866,8 -671,3 4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 8_D_max -51,6 -842,8 -507,3 9_D_max -80,2 -1305,6 -805,4
3_D_min
3_D_max
4_D_min -36,1 -481,3 66,4 4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_min -51,6 -842,8 -507,3 8_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 <td< td=""></td<>
4_D_max -51,4 -865,8 -671,3 5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -866,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 9_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_max -80,2 -1305,6 -805,4 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 1_Doff84_min -1,6 -22,7 -29,2 1_Dof84_max 0,0 0,0
5_D_min -48,2 -647,2 78,5 5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_D_min -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 9_D_max -51,6 -842,8 -507,3 9_D_max -51,6 -842,8 -507,3 9_D_max -51,6 -842,8 -507,3 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7
5_D_max -51,4 -865,8 -671,3 6_D_min -48,2 -647,2 78,5 6_D_max -51,6 -842,8 -507,3 7_Dmin -36,1 -481,3 66,4 7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 9_Dmin -54,4 -866,1 -273,6 9_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_Dmax -80,2 -1305,6 -805,4 11_Dmin -54,4 -866,1 -273,6 11_Dmax -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_max 0,0 0,0 0,
6_D_min
6_D_max
7_D_max -51,6 -842,8 -507,3 8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 9_Dmin -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 11_Dmax -80,2 -1305,6 -805,4 11_Dmax -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_max 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 <td< td=""></td<>
8_D_min -41,1 -549,1 85,8 8_D_max -51,6 -842,8 -507,3 9_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,0 0,0 0,0 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 <td< td=""></td<>
8_D_max -51,6 -842,8 -507,3 9_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29
9_D_min -54,4 -866,1 -273,6 9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_min -1,6 -22,7 -29,2 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0
9_D_max -80,2 -1305,6 -805,4 10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 </td
10_D_min -54,4 -866,1 -273,6 10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -2
10_D_max -80,2 -1305,6 -805,4 11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_min -1,6 -22,7 -29,2 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0
11_D_min -54,4 -866,1 -273,6 11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2
11_D_max -80,2 -1305,6 -805,4 1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2
1_DofB4_min -1,6 -22,7 -29,2 1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7
1_DofB4_max 0,0 0,0 0,0 2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
2_DofB4_min -1,6 -22,7 -29,2 2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
2_DofB4_max -0,3 -3,7 -4,8 3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_max 0,0 0,0 0,0 5_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
3_DofB4_min -1,6 -22,7 -29,2 3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_min -1,6 -22,7 -29,2 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
3_DofB4_max 0,0 0,0 0,0 4_DofB4_min -1,6 -22,7 -29,2 4_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_min -0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
4_DofB4_max 0,0 0,0 0,0 5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5_DofB4_min -1,6 -22,7 -29,2 5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5_DofB4_max 0,0 0,0 0,0 6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0 9_DofB4_max 0,0 0,0 0,0
6_DofB4_min -1,6 -22,7 -29,2 6_DofB4_max 0,0 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 0,0 0,0 7_DofB4_max 0,0 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0 0,0 0,0
6_DofB4_max
7_DofB4_min -1,6 -22,7 -29,2 7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
7_DofB4_max 0,0 0,0 0,0 8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
8_DofB4_min -1,6 -22,7 -29,2 8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
8_DofB4_max 0,0 0,0 0,0 9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
9_DofB4_min -0,2 -2,8 -3,6 9_DofB4_max 0,0 0,0 0,0
9_DofB4_max 0,0 0,0 0,0
10_DofB4_min -0,2 -2,8 -3,6
10_DofB4_max 0,0 0,0 0,0
11_DofB4_min -0,2 -2,8 -3,6
11_DofB4_max 0,0 0,0 0,0

Tabelle A. 86: Gebäudetrennwand unter GOK im beheizten Keller, Sanierung – SCW_h_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

	i, BK und indika		
Indicator unit	GWP [kg CO₂-Äq./m²]	PENRT [MJ/m²]	PET [MJ/m²]
1_A1A3_min 1_A1A3_max	-9,4 -10,6	173,1 269,3	463,7 661,0
2_A1A3_min	-9,4	173,1	463,7
2_A1A3_max	-12,9	286,5	721,0
3_A1A3_min 3_A1A3_max	-9,4 -12,9	173,1 286,5	463,7 721,0
4_A1A3_min	-9,4	173,1	463,7
4_A1A3_max	-12,9	286,5	721,0
5_A1A3_min 5_A1A3_max	-9,4 -12,9	173,1 286,5	463,7 721,0
6_A1A3_min	-8,8	163,0	432,5
6_A1A3_max	-12,9	286,5	721,0
7_A1A3_min 7_A1A3_max	-8,8 -12,9	163,0	432,5 721,0
7_A1A3_IIIAX 8_A1A3_min	-12,9 -8,8	286,5 163,0	432,5
8_A1A3_max	-12,9	286,5	721,0
9_A1A3_min	-9,4	173,1	463,7
9_A1A3_max 10_A1A3_min	-3,5 -9,4	217,8 173,1	480,8 463,7
10_A1A3_max	1,2	183,5	360,8
11_A1A3_min	-9,4	173,1	463,7
11_A1A3_max 1 B4 50a min	3,5 0,0	166,3 0,0	300,7 0,0
1_B4_50a_max	0,0	0,0	0,0
2 B4 50a min	0,0	0,0	0,0
2_B4_50a_max 3_B4_50a_min	0,0 0,0	0,0 0,0	0,0 0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max 5 B4 50a min	0,0 0,0	0,0 0,0	0,0 0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min 7_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min 9_B4_50a_max	0,0 6,4	0,0 85,7	0,0 91,2
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	8,6	114,3	121,6
11_B4_50a_min 11_B4_50a_max	0,0 10,2	0,0 135,7	0,0 144,3
1_C3_min	19,1	-0,7	-211,8
1_C3_max	28,8	6,2	-57,4
2_C3_min 2_C3_max	19,6 34,1	-2,1 2,1	-213,2 -69,7
3_C3_min	20,7	5,1	-203,9
3_C3_max	35,2	9,3	-60,4
4_C3_min 4_C3_max	20,7 35,7	5,1 16,6	-203,9 -51,2
5_C3_min	20,7	5,1	-203,9
5_C3_max	35,7	16,6	-51,2
6_C3_min	17,1 35,7	-0,1	-195,1 -51,2
6_C3_max 7_C3_min	17,1	16,6 -0,1	-195,1
7_C3_max	35,7	16,6	-51,2
8_C3_min	17,1 35.4	-0,1 12.3	-195,1 -56.6
8_C3_max 9_C3_min	35,4 20,6	12,3 7,2	-56,6 -203,0
9_C3_max	24,7	24,2	-9,6
10_C3_min	20,6	7,2	-203,0
10_C3_max 11_C3_min	18,3 20,6	24,2 7,2	6,5 -203,0
11_C3_max	15,4	24,2	14,5
1_C4_min	1,3	19,3	21,8
1_C4_max 2_C4_min	2,5 0,8	36,5 12,1	41,3 13,7
2_C4_max	1,0	15,0	17,0
3_C4_min	0,4	5,5	6,2
3_C4_max 4 C4 min	0,6 0,4	8,4 5,5	9,5 6,2
4_C4_max	0,6	8,4	9,5
5_C4_min	0,4	5,5	6,2
5_C4_max 6_C4_min	0,6 1,8	8,4 25,5	9,5 28,8
6_C4_max	0,6	8,4	9,5
7_C4_min	1,8	25,5	28,8
7_C4_max	0,6	8,4 25.5	9,5
8_C4_min 8_C4_max	1,8 0,6	25,5 8,4	28,8 9,5
9_C4_min	0,2	3,0	3,3
9_C4_max	0,6	9,4	10,7
10_C4_min 10_C4_max	0,2 0,6	3,0 9,4	3,3 10,7
10_C4_max 11_C4_min	0,6	3,0	3,3
11_C4_max	0,6	9,4	10,7
1_D_min	-8,7	-160,3	0,7

1_D_max	-10,8	-171,9	-156,8
2_D_min	-8,4	-155,3	6,1
2_D_max	-11,0	-175,6	-156,9
3_D_min	-10,4	-180,6	-28,9
3_D_max	-12,9	-201,0	-191,9
4_D_min	-10,4	-180,6	-28,9
4_D_max	-14,9	-226,8	-226,5
5_D_min	-10,4	-180,6	-28,9
5_D_max	-14,9	-226,8	-226,5
6_D_min	-8,3	-155,1	-7,0
6_D_max	-14,9	-226,8	-226,5
7_D_min	-8,3	-155,1	-7,0
7_D_max	-14,9	-226,8	-226,5
8_D_min	-8,3	-155,1	-7,0
8_D_max	-13,8	-211,6	-206,1
9_D_min	-8,1	-150,7	11,2
9_D_max	-13,8	-200,0	-223,6
10_D_min	-8,1	-150,7	11,2
10_D_max	-11,9	-169,9	-200,0
11_D_min	-8,1	-150,7	11,2
_11_D_max	-11,2	-156,6	-190,5
1_DofB4_min	0,0	0,0	0,0
1_DofB4_max	0,0	0,0	0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min	0,0	0,0	0,0
4_DofB4_max	0,0	0,0	0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min	0,0	0,0	0,0
7_DofB4_max	0,0	0,0	0,0
8_DofB4_min	0,0	0,0	0,0
<pre>8_DofB4_max</pre>	0,0	0,0	0,0
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	-1,5	-21,7	-27,9
10_DofB4_min	0,0	0,0	0,0
10_DofB4_max	-2,0	-29,0	-37,3
11_DofB4_min	0,0	0,0	0,0
_11_DofB4_max	-2,4	-34,4	-44,3
·	·	·	<u> </u>

Tabelle A. 87: Oberste Geschossdecke zu unbeheiztem Dachgeschoss, Sanierung – TFL_uh_ren: min. und max. Umweltwirkungen je LZPH, BK und Indikator; eigene Darstellung

Indicator	GWP	PENRT	PET
unit	[kg CO ₂ -Äq./m ²]	[MJ/m ²]	[MJ/m ²]
1_A1A3_min	30,8	394,6	458,8
1_A1A3_max	-54,9	697,1	1983,3
2_A1A3_min	30,8	394,6	458,8
2_A1A3_max	-53,6	692,3	1954,9
3_A1A3_min	28,1	360,3	418,9
3_A1A3_max	-78,0	694,4	2271,9
4_A1A3_min	8,8	268,8	492,1
4_A1A3_max	-78,0	694,4	2271,9
5_A1A3_min	8,8	268,8	492,1
5_A1A3_max	-51,7	665,0	1886,9
6_A1A3_min	28,1	360,3	418,9
6_A1A3_max	-54,3	690,9	1964,7
7_A1A3_min	28,1	360,3	418,9
7_A1A3_max	-54,3	690,9	1964,7
8_A1A3_min	8,8	268,8	492,1
8_A1A3_max	-54,3	690,9	1964,7
9_A1A3_min	10,7	137,2	159,6
9_A1A3_max	-78,0	694,4	2271,9
10_A1A3_min	10,7	137,2	159,6
10_A1A3_max	-78,0	694,4	2271,9
11_A1A3_min	10,7	137,2	159,6
_11_A1A3_max	-78,0	694,4	2271,9
1_B4_50a_min	0,0	0,0	0,0
1_B4_50a_max	0,0	0,0	0,0
2_B4_50a_min	0,0	0,0	0,0
2_B4_50a_max	0,0	0,0	0,0
3_B4_50a_min	0,0	0,0	0,0
3_B4_50a_max	0,0	0,0	0,0
4_B4_50a_min	0,0	0,0	0,0
4_B4_50a_max	0,0	0,0	0,0
5_B4_50a_min	0,0	0,0	0,0
5_B4_50a_max	0,0	0,0	0,0
6_B4_50a_min	0,0	0,0	0,0
6_B4_50a_max	0,0	0,0	0,0
7_B4_50a_min	0,0	0,0	0,0
7_B4_50a_max	0,0	0,0	0,0
8_B4_50a_min	0,0	0,0	0,0
8_B4_50a_max	0,0	0,0	0,0
9_B4_50a_min	0,0	0,0	0,0
9_B4_50a_max	0,0	0,0	0,0
10_B4_50a_min	0,0	0,0	0,0
10_B4_50a_max	0,0	0,0	0,0

11_B4_50a_min 11_B4_50a_max	0,0 0,0	0,0 0,0	0,0 0,0
1_C3_min	63,2	29,1	-623,3
1_C3_max	177,4	11,5	-656,0
2_C3_min 2_C3_max	63,2 183,6	29,1 12,0	-623,3 -872,9
3_C3_min	1,6	33,2	37,6
3_C3_max	142,8	15,7	-343,7
4_C3_min	61,9	15,7	-412,6
4_C3_max	147,5	15,8	-343,5
5_C3_min 5_C3_max	61,9 181,4	15,7 5,1	-412,6 -687,7
6_C3_min	1,5	34,0	37,9
6_C3_max	158,4	5,1	-546,8
7_C3_min	1,5	34,0	37,9
7_C3_max	158,4	5,1	-546,8
8_C3_min 8 C3 max	61,9 158,4	15,7 5,1	-412,6 -546,8
9_C3_min	1,6	35,4	39,7
9_C3_max	197,3	22,8	-334,4
10_C3_min	1,6	35,4	39,7
10_C3_max	197,3	22,8	-334,4
11_C3_min 11_C3_max	1,6 197,3	35,4 22,8	39,7 -334,4
1 C4 min	0,6	6,3	4,7
1_C4_max	1,1	7,4	1,5
2_C4_min	0,6	6,3	4,7
2_C4_max	0,6	8,4	9,5
3_C4_min 3 C4 max	2,3 2,0	33,9 28,5	37,7 32,2
3_C4_max 4_C4_min	2,0 0,4	20,5 5,7	6,5
4_C4_max	2,0	28,5	32,2
5_C4_min	0,4	5,7	6,5
5_C4_max	0,5	7,7	8,7
6_C4_min 6_C4_max	0,3 0,6	5,1 8,7	5,8 9,9
7 C4 min	0,8	5,1	5,8
7_C4_max	0,6	8,7	9,9
8_C4_min	0,4	5,7	6,5
8_C4_max	0,6	8,7	9,9
9_C4_min 9 C4 max	0,3 1,0	5,1 14,9	5,8 16,8
9_C4_max 10_C4_min	0,3	5,1	5,8
10_C4_max	1,0	14,9	16,8
11_C4_min	0,3	5,1	5,8
11_C4_max	1,0	14,9	16,8
1_D_min 1_D_max	-29,3 -60,7	-391,0 -926,2	114,3 -467,7
2 D min	-29,3	-391,0	114,3
2_D_max	-66,2	-996,4	-442,7
3_D_min	-3,7	-48,7	-65,1
3_D_max 4_D_min	-48,7 -22,1	-745,3 -343,3	-617,6 -37,5
4_D_max	-22,1 -50,4	-763,5	-641,0
5_D_min	-22,1	-343,3	-37,5
5_D_max	-63,5	-935,1	-545,8
6_D_min	-3,0	-39,1	-52,2 500.5
6_D_max 7 D min	-53,3 -3,0	-818,0 -39,1	-528,5 -52,2
7_D_max	-53,3	-818,0	-528,5
8_D_min	-22,1	-343,3	-37,5
8_D_max	-53,3	-818,0	-528,5
9_D_min	-3,4 -64.0	-44,2 -1023 1	-59,1 -976.2
9_D_max 10_D_min	-64,0 -3,4	-1023,1 -44.2	-976,2 -59,1
10_D_max	-64,0	-1023,1	-976,2
11_D_min	-3,4	-44,2	-59,1
11_D_max	-64,0	-1023,1	-976,2
1_DofB4_min 1 DofB4 max	0,0 0,0	0,0 0,0	0,0 0,0
2_DofB4_min	0,0	0,0	0,0
2_DofB4_max	0,0	0,0	0,0
3_DofB4_min	0,0	0,0	0,0
3_DofB4_max	0,0	0,0	0,0
4_DofB4_min 4_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
5_DofB4_min	0,0	0,0	0,0
5_DofB4_max	0,0	0,0	0,0
6_DofB4_min	0,0	0,0	0,0
6_DofB4_max	0,0	0,0	0,0
7_DofB4_min 7_DofB4_max	0,0 0,0	0,0 0,0	0,0 0,0
7_DoiB4_max 8_DofB4_min	0,0	0,0	0,0
8_DofB4_max	0,0	0,0	0,0
9_DofB4_min	0,0	0,0	0,0
9_DofB4_max	0,0	0,0	0,0
10_DofB4_min 10_DofB4_max	0,0	0,0 0,0	0,0 0,0
10_DofB4_max 11_DofB4_min	0,0 0,0	0,0	0,0
11_DofB4_max	0,0	0,0	0,0

A.9 Berechnungslogiken der Bauteilflächen für die LCA auf Quartiersebene

Tabelle A. 88 definiert die Variablen und Attribute der geometrischen und energetischen Gebäudeeigenschaften in englischer Sprache, damit sie international nachvollzogen werden können. Sie bilden die Grundlage für die nachfolgenden Flächenberechnungen der Quartiersentwicklungsszenarien (siehe Tabelle A. 89 bis Tabelle A. 93). Damit die Logiken von Programmierenden besser verstanden werden können, wird "Consolas" als Clear-Type-Schriftart verwendet.

Tabelle A. 88: Definierte Variablen und Attribute zu den geometrischen und energetischen Gebäudeeigenschaften; eigene Darstellung in englischer Sprache

Variable	Explanation	Basics and definitions
bldg:YearOfConstruction	-	If it is not still existing, this must be deposit as an at-
[Value: Integer]		tribute at the 3D city model
BAC [Value: String]	Building age class	To be calculated and deposit as an attribute: If bldg:YearOfConstruction < 1919, then "BAC1"; else if 1918 < bldg:YearOfConstruction < 1949, then "BAC2"; else if 1948 < bldg:YearOfConstruction < 1958, then "BAC3"; else if 1957 < bldg:YearOfConstruction < 1969, then "BAC4"; else if 1968 < bldg:YearOfConstruction < 1979, then "BAC5"; else if 1978 < bldg:YearOfConstruction < 1984, then "BAC6"; else if 1983 < YearOfConstruction < 1995, then "BAC7"; else if 1994 < bldg:YearOfConstruction < 2002, then "BAC8"; else if 2001 < bldg:YearOfConstruction < 2010, then "BAC9"; else if 2009 < bldg:YearOfConstruction < 2016, then "BAC10"; else if 2015 < bldg:YearOfConstruction < 2021, then "BAC11"; else if 2020 < bldg:YearOfConstruction, then "nb"
StoreysAboveGround_V0	at date t=0	StoreysAboveGround_V0 =
[Value: Integer]		bldg:storeysAboveGround, must be > 0
StoreysAboveGround_V1	at date t=1	If bldg:roofType = 1000 then
[Value: Integer]		StoreysAboveGround_V1
-		= bldg:storeysAboveGround + 2
		else (bldg.:roofType > 1000)
		StoreysAboveGround_V1
		= bldg:storeysAboveGround + 1
		(in the last case the height of the former pitched roof is considered)
StoreysBelowGround_V0	at date t=0	To be defined by user and to be deposit as an attrib-
[Value: Integer]		ute, here defined with 1
StoreysBelowGround_V1	at date t=1	To be defined by user and to be deposit as an attrib-
-		ute, here defined with 1

		,
RoofType_V0	at date t=0	Pitched Roof, if bldg:roofType > 1000
[Value: String]		and
		Flat roof, if bldg:roofType = 1000
RoofType_V1	at date t=1	Here always defined as flat roof:
-00		RoofType_V1 = 1000
SC District Otalia al	Scenario	"SC1.1": StatusQuo with min. environmental value
[Value: String]		without phase D
		"SC1.2": StatusQuo with max. environmental value
		without phase D "SC1.3": StatusQuo with min. environmental value
		with phase D
		"SC1.4": StatusQuo with ax. environmental value with
		phase D
		"SC2.1.1": Renovation with same volume, min. envi-
		ronmental value and without phase D
		"SC2.1.2": Renovation with same volume, max. envi-
		ronmental value and without phase D
		"SC2.1.3": Renovation with same volume, min. envi-
		ronmental value and with phase D
		"SC2.1.4": Renovation with same volume, max. envi-
		ronmental value and with phase D
		"SC2.2.1": Renovation with densification (2 more sto-
		reys), min. environmental value and without phase D
		"SC2.2.2": Renovation with densification (2 more sto-
		reys), max. environmental value and without phase D
		"SC2.2.3": Renovation with densification (2 more sto-
		reys), min. environmental value and with phase D
		"SC2.2.4": Renovation with densification (2 more sto-
		reys), max. environmental value and with phase D
		"SC3.1.1": Demolition and new construction (2 more
		storeys) with timber construction, min. environmental
		value and without phase D "SC3.1.2": Demolition and new construction (2 more
		storeys) with timber construction, max. environmental
		value and without phase D
		"SC3.1.3": Demolition and new construction (2 more
		storeys) with timber construction, min. environmental
		value and with phase D
		"SC3.1.4": Demolition and new construction (2 more
		storeys) with timber construction, max. environmental
		value and with phase D
		"SC2 2.4" Domolitics and now construction (Con
		"SC3.2.1": Demolition and new construction (2 more storeys) with massive construction, min. environmen-
		tal value and without phase D
		"SC3.2.2": Demolition and new construction (2 more
		storeys) with massive construction, max. environmen-
		tal value and without phase D
		"SC3.2.3": Demolition and new construction (2 more
		storeys) with massive construction, min. environmen-
		tal value and with phase D
		"SC3.2.4": Demolition and new construction (2 more
		storeys) with massive construction, max. environmen-
		tal value and with phase D
HTFL _V0	HeatedTopFLoor; to	"false"(not heated) or
[Value: String]	determine, if top floor	"true"(heated)

	is heated at date t= 0;	
	only, of bldg:roofType	
	is > 1000	
HTFL _V1	HeatedTopFLoor; to	"false"(not heated) or
[Value: String]	determine, if top floor	"true"(heated)
	is heated at date t= 1;	
	only, of bldg:roofType	
	is > 1000	
HCFL_V0	HeatedCellarFLoor;	"false"(not heated) or
[Value: String]	to determine, if cellar	"true"(heated)
	floor is heated at date	
	t= 0	
HCFL_V1	HeatedCellarFLoor;	"false"(not heated) or
[Value: String]	to determine, if cellar	"true"(heated)
	floor is heated at date	,
	t= 1	
GrossExternalArea V0	at date t=0	Calculated by:
[Value: Double]	at date t=0	bldg:GroundSurface * (StoreysAboveGround_V0 +
[value. Double]		StoreysBelowGround_V0)
GrossExternalArea_V1	at date t=1	Calculated by:
[Value: Double]	at dato t=1	bldg:GroundSurface * (StoreysAboveGround_V1 +
[Value: Double]		StoreysBelowGround_V1)
NetExternalArea_V0	or net floor area at	Calculated by:
[Value: Double]	date t=0	GrossExternalArea_V0 * 0,89
NetExternalArea_V1	or net floor area at	Calculated by:
[Value: Double]	date t=1	GrossExternalArea_V1 * 0,89
BuildingType	of residential	BuildingType = SFH:
- · · · ·		if StoreysAboveGround_V0 <= 2
[Value: String]	building	and/or NetExternalArea_V0 <= 300 [m²]
		BuildingType = MFH:
		If StoreysAboveGround_V0 > 2
		and/or NetExternalArea > 300 [m²]
		//O-1.11 O
		("SFH": SingleFamilyHouse, also valid for two
		family houses;
IWTEW	InteriorWallToExteri-	"MFH": MultiFamilyHouse) IWTEW must be > 0; to be defined by user
[Value: Double]	orWall;	TWILW ITHUST DE 20, TO DE MEILITEM DY MOET
(InteriorWallToExterior-	share of area interior	Here defined with:
Wall)	wall to area exterior	IWTEW_SFH = 0.54 (for SFH)
·		IWTEW_MFH = 1.34 (for MFH)
	wall	
FTBP	FoundationTo-	Between 0 and 1; to be defined by user for old buildings
[Value: Double]	BasePlate;	ings, not required for new buildings
	share of area founda-	Here defined:
	tion to area base	if BAC == BAC1 to BAC8 then
	plate	FTBP = 0.27
		else
		FTBP = 0.00
WTWR_V0	WindowToWallRatio;	FTBP = 0.00 Between 0 and 1; to be defined by user
WTWR_V0 [Value: Double]	WindowToWallRatio; Share of area window	Between 0 and 1; to be defined by user
		Between 0 and 1; to be defined by user Here defined with:
	Share of area window	Between 0 and 1; to be defined by user

WTWR_V1 [Value: Double]	WindowToWallRatio; Share of area window to area exterior wall at date t= 1	Between 0 and 1; to be defined by user Here defined with: WTWR_SFH_V1 = 0.12 WTWR_MFH_V1 = 0.15
bldg:areaSharedWall_V0	Area of walls at date t=0, which are used parallely by neighbouring buildings, e. g. at terraced houses	This area must be determined and deposited; in the used 3D-city model this are still exists (see Harter (2021, S. 38))
bldg:areaSharedWall_V1	Area of walls at date t=1, which are used parallely by neighbouring buildings, e. g. at terraced houses	This area must be determined and deposited; in the used 3D-city model this are still exists (see Harter (2021, S. 38))

Description:

A variable, which is highlighted in orange is a basic attribute in the 3D-city model; if not, they should be determined and deposit before the calculation.

A variable, which is highlighted in blue is a new defined variable. It must be determined at the beginning of the calculation.

Date t=0: At t=0 the 3D-city model shows the current properties of the existing buildings; all dependent building variables get the index "_V0"

Date t=1: At t=1 the 3D-city model shows the future properties of the existing buildings (e. g. after renovation or demolition and new building).

Tabelle A. 89: Berechnungslogik der Basisdaten; eigene Darstellung in englischer Sprache

```
Following Attributes must be deposited in the 3D-city model for each building from the
beginning
bldg:function
bldg:YearOfConstruction;
bldg:storeysAboveGround
bldg:roofType
bldg:GroundSurface
bldg:WallSurface
bldg:RoofSurface
bldg:areaSharedWall_V0
bldg:areaSharedWall_V1
Then, the values of the variables must be inquired and stored in the digital model,
which must be defined by the user
StoreysBelowGround_V0
StoreysBelowGround_V1
HTFL_V0
HTFL_V1
HCFL_V0
HCFL_V1
IWTEW_SFH
IWTEW_MFH
FTBP
WTWR SFH V0
WTWR_SFH_V1
WTWR_MFH_V0
WTWR MFH V1
Now, the basic attributes and variables can be calculated for each residential build-
ing, which are needed for calculating the LCA of the following scenarios; please con-
sider Tabelle A. 88
If bldg:function == 31001_100, then (calculate)
    BAC
    StoreysAboveGround_V0
    StoreysAboveGround_V1
    RoofType_V0
    RoofType_V1
    GrossExternalArea_V0
    GrossExternalArea_V1
    NetExternalArea_V0
```

```
NetExternalArea_V1
{\tt BuildingType}
if RoofType_V0 > 1000 then
    AreaPitchedRoof_V0 = bldg:RoofSurface
    AreaFlatRoof_V0 = 0
else (RoofType_V0 = 1000)
    AreaPitchedRoof_V0 = 0
    AreaFlatRoof_V0 = bldg:RoofSurface
AreaPitchedRoof_V1 = 0 (at the following scenarios AreaPitchedRoof_V1
doesn't exist)
AreaFlatRoof_V1 = bldg:RoofSurface
AreaGroundFloor = bldg:GroundSurface (as AreaGroundFloor_V0 would
be the same as AreaGroundFloor_V1, you don't need the differentiation
between V0 and V1)
AreaExteriorWall_total_V0 = bldg:WallSurface (at date t= 0;
this area includes the area of exterior wall, with area of windows but
without area of shared walls)
AreaExteriorWall_total_V1 = bldg:WallSurface (at date t= 1; this area in
cludes the area of exterior wall, with area of windows but without area
of shared walls)
```

Description:

A variable, which is highlighted in orange is a basic attribute in the 3D-city model; if not, they should be determined and deposit before the calculation.

A variable or value, which is highlighted in blue is newly defined.

Additional comments are highlighted in *green and italic*.

Tabelle A. 90: Berechnungslogik Bauteilflächen Szenario 1, Status Quo; eigene Darstellung in englischer Sprache

```
The areas of each residential building of scenario 1, status quo is calculated as fol-
Firstly, please define SC.
If SC == 1.1 or if SC == 1.2 or if SC == 1.3 or if SC == 1.4 then
    AreaPitchedRoof_old = AreaPitchedRoof_V0
    AreaFlatRoof_old = AreaFlatRoof_V0
    if BuildingType == SFH then
        AreaWindow_old = WTWR_SFH_V0 * AreaExteriorWall_total_V0
    else
        AreaWindow_old = WTWR_MFH_V0 * AreaExteriorWall_total_V0
    AreaExteriorWall_old = AreaExteriorWall_total_V0 - AreaWindow_old
    AreaSharedWall_old = AreaSharedWall_V0
    if StoreysBelowGround V0 > 0 then
        AreaCellarWall_old = (AreaExteriorWall_total_V0
        / StoreysAboveGround_V0) * StoreysBelowGround_V0
        AreaSharedCellarWal_old = (AreaSharedWall_V0 / StoreysAboveGround_V0)
        * StoreysBelowGround V0
    else (StoreysBelowGround <= 0)</pre>
        AreaCellarWall old = 0
        AreaSharedCellarWall old = 0
    if BuildingType == SFH then
        AreaInteriorWall old = IWTEW SFH * (AreaExteriorWall total V0
        + AreaSharedWall_V0 + AreaCellarWall_old + AreaSharedCellarWall_old)
    else (BuildingType == MFH)
        AreaInteriorWall old = IWTEW MFH * (AreaExteriorWall total V0
        + AreaSharedWall_V0 + AreaCellarWall_old + AreaSharedCellarWall_old)
    AreaBasePlate_old = AreaGroundFloor
    AreaFoundation_old = FTBP * AreaBasePlate_old (only for BAC 1 to 8, afterwards
    FTBP = 0)
    if RoofType_V0 > 1000 then
        if HTFL_V0 == false then
            AreaTopFloor_old = AreaGroundFloor
        else (HTFL_V0 == true)
            AreaTopFloor_old = 0
    else (RoofType_V0 = 1000)
        AreaTopFloor_old = 0
    If StoreysBelowGround_V0 > 0 then
        if HCFL_V0 == false
            AreaCellarFloor_old = AreaGroundFloor
```

```
else (HCFL_V0 == true)
        AreaCellarFloor_old = 0
else (StoreysBelowGround <= 0)</pre>
    AreaCellarFloor_old = 0
If RoofType_V0 = 1000 then
    if StoreysBelowGround V0 > 0 then
        if HCFL_V0 == true then
            AreaFloor_old = (StoreysAboveGround_V0 + (StoreysBelowGround_V0 - 1))
            * AreaGroundFloor
        else (HCFL_V0 == false)
            AreaFloor_old = ((StoreysAboveGround_V0 - 1)
            + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
    else (StoreysBelowGround V0 <= 0)</pre>
        AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
else (RoofeType_V0 > 1000)
    if StoreysBelowGround_V0 > 0 then
        if HCFL V0 == true then
            if HTFL V0 == true then
                AreaFloor_old = (StoreysAboveGround_V0
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HTFL_V0 == false)
                  AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
        else (HCFL_V0 == false)
            if HTFL_V0 == true then
                AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HTFL V0 == false)
                AreaFloor_old = ((StoreysAboveGround_V0 - 2)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
    else (StoreysBelowGround V0 <= 0)
        if HTFL_V0 == true then
            AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
        else (HTFL_V0 == false)
            AreaFloor_old = (StoreysAboveGround_V0 - 2) * AreaGroundFloor
```

Description:

A variable or value, which is highlighted in blue is newly defined in this scenario.

Additional comments are highlighted in *green and italic*.

Tabelle A. 91: Berechnungslogik Bauteilflächen Szenario 2.1, Sanierung mit gleichbleibender Gebäudekubatur; eigene Darstellung in englischer Sprache

```
The areas of each residential building of scenario 2.1, renovation with same volume is calculated as follows:

If SC == 2.1.1 or if SC == 2.1.2 or if SC == 2.1.3 or if SC == 2.1.4 then
```

```
if RoofType_V0 > 1000 then
    if HTFL V1 == true then
        AreaPitchedRoof_ren = AreaPitchedRoof_V0
        AreaPitchedRoof old = 0
        AreaFlatRoof ren = 0
    else (HTFL_V1 == false)
        AreaPitchedRoof ren = 0
        AreaPitchedRoof old = AreaPitchedRoof V0
        AreaFlatRoof_ren = 0
else (RoofType_V0 = 1000)
        AreaFlatRoof ren = AreaFlatRoof V0
        AreaPitchedRoof ren = 0
        AreaPitchedRoof_old = 0
if BuildingType == SFH then
    AreaWindow_ren = WTWR_SFH_V0 * AreaExteriorWall_total_V0
else (BuildingType == MFH)
    AreaWindow_ren = WTWR_MFH_V0 * AreaExteriorWall_total_V0
AreaExteriorWall_ren = AreaExteriorWall_total_V0 - AreaWindow_ren
AreaSharedWall_old = AreaSharedWall_V0
if StoreysBelowGround V0 > 0 then
    if HCFL V1 == true then
        AreaCellarWall ren = (AreaExteriorWall total V0 / StoreysAboveGround V0)
        * StoreysBelowGround V0
        AreaCellarWall old = 0
        AreaSharedCellarWall_ren = (AreaSharedWall_V0 / StoreysAboveGround_V0)
        * StoreysBelowGround V0
        AreaSharedCellarWall old = 0
    else (HCFL V1 == false)
        AreaCellarWall ren = 0
        AreaCellarWall old = (AreaExteriorWall total V0 / StoreysAboveGround V0)
        * StoreysBelowGround V0
        AreaSharedCellarWall_ren = 0
        AreaSharedCellarWall old = (AreaSharedWall V0 / StoreysAboveGround V0)
        * StoreysBelowGround V0
else (StoreysBelowGround <= 0)</pre>
    AreaCellarWall ren = 0
    AreaCellarWall old = 0
    AreaSharedCellarWall_ren = 0
    AreaSharedCellarWall_old = 0
if BuildingType == SFH then
```

```
AreaInteriorWall_old = IWTEW_SFH * (AreaExteriorWall_total_V0
    + AreaSharedWall_V0 + AreaCellarWall_ren + AreaCellarWall_old
    + AreaSharedCellarWall_ren + AreaSharedCellarWall_old)
else (BuildingType == MFH)
    AreaInteriorWall_old = IWTEW_MFH * (AreaExteriorWall_total_V0
    + AreaSharedWall_V0 + AreaCellarWall_ren + AreaCellarWall_old
    + AreaSharedCellarWall_ren + AreaSharedCellarWall_old)
if StoreysBelowGround > 0 then
    if HCFL_V1 == false then
        AreaBasePlate old = AreaGroundFloor
        AreaBasePlate_ren = 0
    else (HCFL_V1 == true)
        AreaBasePlate old = 0
        AreaBasePlate ren = AreaGroundFloor
else (StoreysBelowGround <= 0)
    AreaBasePlate_old = 0
    AreaBasePlate_ren = AreaGroundFloor
AreaFoundation_old = FTBP * AreaGroundFloor (only for BAC 1 to 8, afterwards
FTBP = 0)
if RoofType V0 > 1000 then
    if HTFL_V0 == false then
        if HTFL_V1 == false then
            AreaTopFloor ren = AreaGroundFloor
            AreaTopFloor_old = 0
        else (HTFL V1 == true)
            AreaTopFloor ren = 0
            AreaTopFloor_old = AreaGroundFloor
    else (HTFL_V0 == true)
        if HTFL V1 == true then
            AreaTopFloor_ren = 0
            AreaTopFloor_old = 0
        else (HTFL V1 == false)
            AreaTopFloor_ren = AreaGroundFloor
            AreaTopFloor_old = 0
else (RoofType_V0 = 1000)
    AreaTopFloor ren = 0
    AreaTopFloor_old = 0
if StoreysBelowGround V0 > 0 then
    if HCFL V0 == false then
        if HCFL V1 == false then
            AreaCellarFloor ren = AreaGroundFloor
            AreaCellarFloor old = 0
        else (HCFL V1 == true)
            AreaCellarFloor ren = 0
            AreaCellarFloor_old = AreaGroundFloor
    else (HCFL_V0 == true)
```

```
if HCFL V1 == true then
            AreaCellarFloor_ren = 0
            AreaCellarFloor old = 0
        else (HCFL_V1 == false)
            AreaCellarFloor_ren = AreaGroundFloor
            AreaCellFloor old = 0
Else (StoreysBelowGround V0 <= 0)</pre>
    AreaCellarFloor_ren = 0
    AreaCellarFloor_old = 0
if RoofType V0 = 1000 then
    if StoreysBelowGround_V0 > 0 then
        if HCFL_V0 == false then
            AreaFloor_old = ((StoreysAboveGround_V0 - 1)
            + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
        else (HCFL V0 == true)
            if HCFL_V1 == true then
                AreaFloor_old = (StoreysAboveGround_V0
                + (StoreysBelowGround V0 - 1)) * AreaGroundFloor
            else (HCFL_V1 == false)
                AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
    else (StoreysBelowGround V0 <= 0)
        AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
else (RoofType > 1000)
    if StoreysBelowGround V0 > 0 then
        if HCFL_V0 == false then
            if HTFL V0 == false then
                AreaFloor old = ((StoreysAboveGround V0 - 2)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HTFL_V0 == true)
                if HTFL V1 == true then
                    AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                else (HTFL_V1 == false)
                    AreaFloor old = ((StoreysAboveGround V0 - 2)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
        else (HCFL V0 == true)
            if HCFL V1 == false then
                if HTFL V0 == false then
                    AreaFloor old = ((StoreysAboveGround V0 - 2)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                else (HTFL V0 == true)
                    if HTFL V1 == true then
                        AreaFloor old = ((StoreysAboveGround V0 - 1)
                        + (StoreysBelowGround V0 - 1)) * AreaGroundFloor
                    else (HTFL V1 == false)
                        AreaFloor_old = ((StoreysAboveGround_V0 - 2)
                        + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HCFL V1 == true)
```

```
if HTFL_V0 == true then
                if HTFL_V1 == true then
                    AreaFloor_old = (StoreysAboveGround_V0
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                else (HTFL_V1 == false)
                    AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HTFL_V0 == false)
                AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
else (StoreysBelowGround <= 0)</pre>
    if HTFL_V0 == false then
        AreaFloor_old = (StoreysAboveGround_V0 - 2) * AreaGroundFloor
    else (HTFL_V0 == true)
        if HTFL_V1 == true
            AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
        else (HTFL_V1 == false)
            AreaFloor_old = (StoreysAboveGround_V0 - 2) * AreaGroundFloor
```

Tabelle A. 92: Berechnungslogik Bauteilflächen Szenario 2.2, Sanierung mit Aufstockung in Holzrahmenbauweise; eigene Darstellung in englischer Sprache

```
The areas of each residential building of scenario 2.2, renovation with densification
(2 more storeys) is calculated as follows:
If SC == 2.2.1 or if SC == 2.2.2 or if SC == 2.2.3 or if SC == 2.2.4 then
    if RoofType_V0 > 1000 then
        AreaPitchedRoof_old = AreaPitchedRoof_V0
        AreaFlatRoof_old = 0
        AreaFlatRoof_nb = AreaFlatRoof_V1 (at this scenario all new roofs are
        flat roofs, a pitched roof doesn't exist after renovation
        (AreaPitchedRoof_V1 is 0 or RoofType_V1 is never > 1000))
    else (RoofType V0 = 1000)
        AreaPitchedRoof_old = 0
        AreaFlatRoof_old = AreaFlatRoof_V0
        AreaFlatRoof_nb = AreaFlatRoof_V1 (here: AreaFlatRoof_V0 should be
        the same as AreaFlatRoof_V1)
    if BuildingType == SFH then
        AreaWindow_ren = WTWR_SFH_V0 * AreaExteriorWall_total_V0
        AreaWindow_nb = WTWR_SFH_V1 * (AreaExteriorWall_total_V1
        - AreaExteriorWall_total_V0)
    else (BuildingType == MFH)
        AreaWindow ren = WTWR MFH V0 * AreaExteriorWall total V0
        AreaWindow_nb = WTWR_MFH_V1 * (AreaExteriorWall_total_V1
        - AreaExteriorWall_total_V0)
    AreaExteriorWall_ren = AreaExteriorWall_total_V0 - AreaWindow_ren
    AreaExteriorWall_nb = AreaExteriorWall_total_V1
    - AreaExteriorWall_total_V0 - AreaWindow_nb
    AreaSharedWall_old = AreaSharedWall_V0
    AreaSharedWall_nb = AreaSharedWall_V1 - AreaSharedWall_V0
    if StoreysBelowGround_V0 > 0 then
        if HCFL_V1 == true then
            AreaCellarWall_ren = (AreaExteriorWall_total_V0
            / StoreysAboveGround_V0) * StoreysBelowGround_V0
            AreaCellarWall_old = 0
            AreaSharedCellarWall ren = (AreaSharedWall V0
            / StoreysAboveGround V0) * StoreysBelowGround V0
            AreaSharedCellarWall old = 0
        else (HCFL V1 == false)
            AreaCellarWall_ren = 0
            AreaCellarWall_old = (AreaExteriorWall_total_V0
            / StoreysAboveGround V0) * StoreysBelowGround V0
            AreaSharedCellarWall_ren = 0
            AreaSharedCellarWall_old = (AreaSharedWall_V0
            / StoreysAboveGround_V0) * StoreysBelowGround_V0
    else (StoreysBeLowGround <= 0)</pre>
        AreaCellarWall_ren = 0
        AreaCellarWall old = 0
        AreaSharedCellarWall ren = 0
        AreaSharedCellarWall_old = 0
    if BuildingType == SFH then
```

```
AreaInteriorWall_old = IWTEW_SFH * (AreaExteriorWall_total_V0
   + AreaSharedWall_V0 + AreaCellarWall_ren + AreaCellarWall_old
   + AreaSharedCellarWall_ren + AreaSharedCellarWall_old)
   AreaInteriorWall_nb = IWTEW_SFH * (AreaExteriorWall_total_V1
    - AreaExteriorWall_total_V0 + AreaSharedWall_V1 - AreaSharedWall_V0)
else (BuildingType == MFH)
   AreaInteriorWall old = IWTEW MFH * (AreaExteriorWall total V0
   + AreaSharedWall V0 + AreaCellarWall ren + AreaCellarWall old
   + AreaSharedCellarWall ren + AreaSharedCellarWall old);
   AreaInteriorWall_nb = IWTEW_MFH * (AreaExteriorWall_total_V1
   - AreaExteriorWall_total_V0 + AreaSharedWall_V1 - AreaSharedWall_V0)
if StoreysBelowGround V0 > 0 then
   if HCFL V1 == false then
        AreaBasePlate old = AreaGroundFloor
        AreaBasePlate ren = 0
   else (HCFL_V1 == true)
        AreaBasePlate old = 0
        AreaBasePlate ren = AreaGroundFloor
else (StoreysBelowGround_V0 <= 0)
   AreaBasePlate old = 0
   AreaBasePlate ren = AreaGroundFloor
AreaFoundation_old = FTBP * AreaGroundFloor (only for BAC 1 to 8, afterwards
FTBP = 0)
if RoofType_V0 > 1000 then
   if HTFL V0 == false then
        AreaTopFloor old = AreaGroundFloor (after renovation all
        buildings get a flat roof; so, the old top floor is demolished
        and replaced by a new floor in timber construction; the upper
        floor is always heated after renovation)
   else (HTFL V0 == true)
        AreaTopFloor old = 0
else (RoofType V0 = 1000)
   AreaTopFloor_old = 0
if StoreysBelowGround_V0 > 0 then
    if HCFL_V0 == false then
        if HCFL_V1 == false then
            AreaCellarFloor ren = AreaGroundFloor
            AreaCellarFloor old = 0
        else (HCFL_V1 == true)
            AreaCellarFloor_ren = 0
            AreaCellarFloor_old = AreaGroundFloor
   else (HCFL_V0 == true)
        if HCFL_V1 == true then
            AreaCellarFloor ren = 0
            AreaCellarFloor_old = 0
        else (HCFL_V1 == false)
            AreaCellarFloor ren = AreaGroundFloor
            AreaCellFloor_old = 0
else (StoreysBelowGround V0 <= 0)
   AreaCellarFloor ren = 0
   AreaCellarFloor_old = 0
```

```
if RoofType_V0 > 1000 then (the upper floor is demolished and replaced by
a new floor in timber construction)
    AreaFloor_nb = (StoreysAboveGround_V1 - StoreysAboveGround_V0 + 1)
    * AreaGroundFloor_V0
else (RoofType_V0 = 1000; the old flat roof is demolished and replaced)
    AreaFloor_nb = (StoreysAboveGround_V1 - StoreysAboveGround_V0)
    * AreaGroundFloor V0
if RoofType_V0 = 1000 then
    if StoreysBelowGround_V0 > 0 then
        if HCFL V0 == false then
            AreaFloor_ren = ((StoreysAboveGround_V0 - 1)
            + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
        else (HCFL_V0 == true)
            if HCFL_V1 == true then
                AreaFloor_ren = (StoreysAboveGround_V0
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HCFL V1 = false)
                AreaFloor_ren = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
    else (StoreysBelowGround_V0 <= 0)</pre>
        AreaFloor_ren = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
else RoofType > 1000
    if StoreysBelowGround_V0 > 0 then
        if HCFL_V0 == false then
            if HTFL_V0 == false then
                AreaFloor_ren = ((StoreysAboveGround_V0 - 2)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                (all interior floors are used for further 50 years)
                AreaFloor_old = 0 (the upper floor is demolished and
                replaced)
            else (HTFL_V0 == true)
                AreaFloor_ren = ((StoreysAboveGround_V0 - 2)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                AreaFloor_old = AreaGroundFloor
        else (HCFL V0 == true)
            if HCFL_V1 == false then
                if HTFL_V0 == false then
                    AreaFloor_ren = ((StoreysAboveGround_V0 - 2)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                    AreaFloor_old = 0
                else (HTFL_V0 == true)
                    AreaFloor ren = ((StoreysAboveGround V0 - 2)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                    AreaFloor_old = AreaGroundFloor
            else (HCFL_V1 == true)
                if HTFL V0 == true then
                    AreaFloor_ren = ((StoreysAboveGround_V0 - 1)
                    + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
                    AreaFloor_old = AreaGroundFloor
                else (HTFL_V0 == false)
```

Tabelle A. 93: Berechnungslogik Bauteilflächen Szenario 3.1 und 3.2, Abriss und Ersatzneubau in Holz- oder Massivbauweise; eigene Darstellung in englischer Sprache

```
The areas of each residential building of scenario 3.1, demolition and new construc-
tion with timber construction is calculated as follows:
If SC == 3.1.1 or if SC == 3.1.2 or if SC == 3.1.3 or if SC == 3.1.4 then
    if RoofType_V0 > 1000 then
        AreaPitchedRoof_old = AreaPitchedRoof_V0
        AreaFlatRoof_old = 0
        AreaFlatRoof_nb = AreaFlatRoof_V1 (in these scenarios all new
        buildings get a flat roof)
    else (RoofType_V0 = 1000)
        AreaPitchedRoof old = 0
        AreaFlatRoof_old = AreaFlatRoof_V0
        AreaFlatRoof_nb = AreaFlatRoof_V1
    if BuildingType == SFH then
        AreaWindow_old = WTWR_SFH_V0 * AreaExteriorWall_total_V0
        AreaWindow_nb = WTWR_SFH_V1 * AreaExteriorWall_total_V1
    else (BuildingType == MFH)
        AreaWindow_old = WTWR_MFH_V0 * AreaExteriorWall_total_V0
        AreaWindow_nb = WTWR_MFH_V1 * AreaExteriorWall_total_V1
    AreaExteriorWall_old = AreaExteriorWall_total_V0 - AreaWindow_old
    AreaExteriorWall_nb = AreaExteriorWall_total_V1 - AreaWindow_nb
    AreaSharedWall_old = AreaSharedWall_V0
    AreaSharedWall_nb = AreaSharedWall_V1
    if StoreysBelowGround V0 > 0 then
        AreaCellarWall_old = (AreaExteriorWall_total_V0 / StoreysAboveGround_V0)
        * StoreysBelowGround V0
        AreaSharedCellarWall old = (AreaSharedWall V0 / StoreysAboveGround V0)
        * StoreysBelowGround_V0
    else (StoreysBelowGround_V0 <= 0)</pre>
        AreaCellarWall old = 0
        AreaSharedCellarWall_old = 0
    if StoreysBelowGround V0 > 0 then
        if HCFL V0 == false then
            AreaCellarFloor old = AreaGroundFloor
        else (HCFL V0 == true)
            AreaCellarFloor_old = 0
    else (StoreysBelowGround_V0 <= 0)
        AreaCellarFloor old = 0
    if StoreysBelowGround_V1 > 0 then
        if HCFL V1 == true then
            AreaCellarWall_h_nb = (AreaExteriorWall_total_V1 / StoreysAboveGround_V1)
            * StoreysBelowGround_V1
            AreaCellarWall uh nb = 0
            AreaSharedCellarWall_h_nb = (AreaSharedWall_V1 / StoreysAboveGround_V1)
            * StoreysBelowGround_V1
            AreaSharedCellarWall_uh_nb = 0
            AreaCellarFloor_nb = 0
```

```
else (HCFL_V1 == false)
        AreaCellarWall h nb = 0
        AreaCellarWall uh nb = (AreaExteriorWall total V1 / StoreysAboveGround V1)
        * StoreysBelowGround_V1
        AreaSharedCellarWall_h_nb = 0
        AreaSharedCellarWall_uh_nb = (AreaSharedWall_V1 / StoreysAboveGround_V1)
        * StoreysBelowGround V1
        AreaCellarFloor nb = AreaGroundFloor
else (StoreysBelowGround V1 <= 0)
   AreaCellarWall_h_nb = 0
   AreaCellarWall_uh_nb = 0
   AreaSharedCellarWall_h_nb = 0
   AreaSharedCellarWall uh nb = 0
   AreaCellarFloor_nb = 0
if BuildingType == SFH then
   AreaInteriorWall_old = IWTEW_SFH * (AreaExteriorWall_total_V0
   + AreaSharedWall_V0 + AreaCellarWall_old + AreaSharedCellarWall_old)
   AreaInteriorWall nb = IWTEW SFH * (AreaExteriorWall total V1
   + AreaSharedWall_V1 + AreaCellarWall_h_nb + AreaCellarWall_uh_nb
   + AreaSharedCellarWall_h_nb + AreaSharedCellarWall_uh_nb)
else (BuildingType == MFH)
   AreaInteriorWall_old = IWTEW_MFH * (AreaExteriorWall_total_V0
   + AreaSharedWall_V0 + AreaCellarWall_old + AreaSharedCellarWall_old)
   AreaInteriorWall nb = IWTEW MFH * (AreaExteriorWall total V1
   + AreaSharedWall V1 + AreaCellarWall h nb + AreaCellarWall uh nb
   + AreaSharedCellarWall_h_nb + AreaSharedCellarWall_uh_nb)
AreaFoundation_old = FTBP * AreaGroundFloor (only for BAC 1 to 8, afterwards
FTBP = 0)
if RoofType_V0 > 1000 then
   if HTFL_V0 == false then
        AreaTopFloor old = AreaGroundFloor
   else (HTFL_V0 == true)
       AreaTopFloor_old = 0
else (RoofType_V0 = 1000)
   AreaTopFloor_old = 0
if RoofType V0 = 1000 then
    if StoreysBelowGround_V0 > 0 then
        if HCFL_V0 == true then
            AreaFloor_old = (StoreysAboveGround_V0 + (StoreysBelowGround_V0 - 1))
            * AreaGroundFloor
        else (HCFL V0 == false)
            AreaFloor old = ((StoreysAboveGround V0 - 1)
            + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
   else (StoreysBelowGround_V0 = 0)
        AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
else (RoofType V0 > 1000)
   if StoreysBelowGround_V0 > 0 then
        if HCFL_V0 == true then
            if HTFL V0 == true then
                AreaFloor_old = (StoreysAboveGround_V0
                + (StoreysBelowGround V0 - 1)) * AreaGroundFloor
            else (HTFL V0 == false)
                AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
```

```
else (HCFL_V0 == false)
            if HTFL_V0 == true then
                AreaFloor_old = ((StoreysAboveGround_V0 - 1)
                + (StoreysBelowGround_V0 - 1)) * AreaGroundFloor
            else (HTFL_V0 == false)
                AreaFloor_old = ((StoreysAboveGround_V0 - 2)
                + (StoreysBelowGround V0 - 1)) * AreaGroundFloor
    else (StoreysBelowGround V0 <= 0)
        if HTFL V0 == true then
            AreaFloor_old = (StoreysAboveGround_V0 - 1) * AreaGroundFloor
        else (HTFL_V0 == false)
            AreaFloor_old = (StoreysAboveGround_V0 - 2) * AreaGroundFloor
if StoreysBelowGround_V1 > 0 then (as AreaPitchedRoof_V1 doesn't
    exist, you don't need a distinction of RoofType_V1 > 1000 and
    RoofType = 1000 here)
    if HCFL_V1 == true then
            AreaFloor_nb = (StoreysAboveGround_V1 + (StoreysBelowGround_V1 - 1))
            * AreaGroundFloor
            AreaBasePlate_h_nb = AreaGroundFloor
            AreaBasePlate_uh_nb = 0
    else (HCFL_V1 == false)
        AreaFloor_nb = ((StoreysAboveGround_V1 - 1) + (StoreysBelowGround_V1 - 1))
        * AreaGroundFloor
        AreaBasePlate h \ nb = 0
        AreaBasePlate_uh_nb = AreaGroundFloor
else (StoreysBelowGround_V1 <= 0)</pre>
    AreaFloor_nb = (StoreysAboveGround_V1 - 1) * AreaGroundFloor
    AreaBasePlate h nb = AreaGroundFloor
    AreaBasePlate uh nb = 0
```

A.10 Berechnungslogiken der ökologischen Kennwerte für die LCA auf Quartiersebene

Im Anschluss an die Bestimmung der einzelnen Bauteilflächen je Szenario (siehe Anhang A.9 ab Seite 469) kann die Ökobilanzierung auf Quartiersebene durchgeführt werden. Die folgenden Tabellen zeigen die szenarienspezifischen Berechnungsschritte auf. Damit die Logiken von den Programmierenden international besser verstanden werden können, werden sie in englischer Sprache und mit der Clear-Type-Schriftart Consolas wiedergegeben.

Tabelle A. 94: Logik der Kennwertberechnung Szenario 1, Status Quo; eigene Darstellung in englischer Sprache

After the determination of the building construction areas, the environmental values of every building construction of each residential building can be calculated. The next lines show the calculation of the GWP of scenario 1.1 to 1.4 for buildings in building age class 1. The other building age classes as well as PET and PENRT aren't shown in detail, but they are calculated in the same way.

```
If SC == 1.1 or if SC == 1.2 or if SC == 1.3 or if SC == 1.4 and
if BAC == BAC1 then
    PRO_old_gwp_1_1 = AreaPitchedRoof_old * (PRO_old_1_A1A3_min_gwp
    + PRO_old_1_B4_min_gwp + PRO_old_1_C3_min_gwp + PRO_old_1_C4_min_gwp)
    (For PET in BAC3: PRO_old_pet_1_1 = AreaPitchedRoof_old
    * (PRO_old_3_A1A3_min_pet + PRO_old_3_B4_min_pet + PRO_old_3_C3_min_pet
    + PRO_old_3_C4_min_pet);
    for PENRT: PRO_old_penrt_1_1 = AreaPitchedRoof_old
    * (PRO_old_3_A1A3_min_penrt + PRO_old_3_B4_min_penrt
    + PRO_old_3_C3_min_penrt + PRO_old_3_C4_min_penrt) etc.)
    PRO_old_gwp_1_2 = AreaPitchedRoof_old * (PRO_old_1_A1A3_max_gwp
    + PRO_old_1_B4_max_gwp + PRO_old_1_C3_max_gwp
    + PRO old 1 C4 max gwp)
    PRO_old_gwp_1_3 = AreaPitchedRoof_old * (PRO_old_1_A1A3_min_gwp
    + PRO_old_1_B4_min_gwp + PRO_old_1_C3_min_gwp + PRO_old_1_C4_min_gwp
    + PRO_old_1_D_min_gwp + PRO_old_1_DofB4_min_gwp)
    PRO_old_gwp_1_4 = AreaPitchedRoof_old * (PRO_old_1_A1A3_max_gwp
    + PRO_old_1_B4_max_gwp + PRO_old_1_C3_max_gwp + PRO_old_1_C4_max_gwp
    + PRO_old_1_D_max_gwp + PRO_old_1_DofB4_max_gwp)
    FRO_old_gwp_1_1 = AreaFlatRoof_old * (FRO_old_1_A1A3_min_gwp
    + FRO_old_1_B4_min_gwp + FRO_old_1_C3_min_gwp + FRO_old_1_C4_min_gwp)
    FRO_old_gwp_1_2 = AreaFlatRoof_old * (FRO_old_1_A1A3_max_gwp
    + FRO_old_1_B4_max_gwp + FRO_old_1_C3_max_gwp + FRO_old_1_C4_max_gwp)
    FRO_old_gwp_1_3 = AreaFlatRoof_old * (FRO_old_1_A1A3_min_gwp
    + FRO old 1 B4 min gwp + FRO old 1 C3 min gwp + FRO old 1 C4 min gwp
    + FRO_old_1_D4_min_gwp + FRO_old_1_DofB4_min_gwp)
    FRO_old_gwp_1_4 = AreaFlatRoof_old * (FRO_old_1_A1A3_max_gwp
    + FRO_old_1_B4_max_gwp + FRO_old_1_C3_max_gwp + FRO_old_1_C4_max_gwp +
    FRO_old_1_D4_max_gwp + FRO_old_1_DofB4_max_gwp)
```

```
(Here, you could differentiate between FROmas and FROwood if it's
necessary. But you must check, if every relevant building age class
has a value.)
EW_old_gwp_1_1 = AreaExteriorWall_old * (EW_old_1_A1A3_min_gwp
+ EW_old_1_B4_min_gwp + EW_old_1_C3_min_gwp + EW_old_1_C4_min_gwp)
EW old gwp 1 2 = AreaExteriorWall old * (EW old 1 A1A3 max gwp
+ EW_old_1_B4_max_gwp + EW_old_1_C3_max_gwp + EW_old_1_C4_max_gwp)
EW_old_gwp_1_3 = AreaExteriorWall_old * (EW_old_1_A1A3_min_gwp
+ EW_old_1_B4_min_gwp + EW_old_1_C3_min_gwp + EW_old_1_C4_min_gwp
+ EW_old_1_D_min_gwp + EW_old_1_DofB4_min_gwp)
EW_old_gwp_1_4 = AreaExteriorWall_old * (EW_old_1_A1A3_max_gwp
+ EW_old_1_B4_max_gwp + EW_old_1_C3_max_gwp + EW_old_1_C4_max_gwp
+ EW_old_1_D_max_gwp + EW_old_1_DofB4_max_gwp)
(Here, you could differentiate between EWmas, EW2shelled, EWcwf and
EWwood if it's necessary. But you must check, if every relevant
building age class has a value.)
SW_old_gwp_1_1 = AreaSharedWall_old * (SW_old_1_A1A3_min_gwp
+ SW_old_1_B4_min_gwp + SW_old_1_C3_min_gwp + SW_old_1_C4_min_gwp)
SW old gwp 1 2 = AreaSharedWall old * (SW old 1 A1A3 max gwp
+ SW_old_1_B4_max_gwp + SW_old_1_C3_max_gwp + SW_old_1_C4_max_gwp)
SW_old_gwp_1_3 = AreaSharedWall_old * (SW_old_1_A1A3_min_gwp
+ SW_old_1_B4_min_gwp + SW_old_1_C3_min_gwp + SW_old_1_C4_min_gwp
+ SW_old_1_D_min_gwp + SW_old_1_DofB4_min_gwp)
SW_old_gwp_1_4 = AreaSharedWall_old * (SW_old_1_A1A3_max_gwp
+ SW_old_1_B4_max_gwp + SW_old_1_C3_max_gwp + SW_old_1_C4_max_gwp
+ SW_old_1_D_max_gwp + SW_old_1_DofB4_max_gwp)
(Here, you could differentiate between SWmas, SW2shelled, SWcwf and
SWwood if it's necessary. But you must check, if every relevant
building age class has a value.)
IW_old_gwp_1_1 = AreaInteriorWall_old * (IW_old_1_A1A3_min_gwp
+ IW_old_1_B4_min_gwp + IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp)
IW old gwp 1 2 = AreaInteriorWall old * (IW old 1 A1A3 max gwp
+ IW_old_1_B4_max_gwp + IW_old_1_C3_max_gwp + IW_old_1_C4_max_gwp)
IW_old_gwp_1_3 = AreaInteriorWall_old * (IW_old_1_A1A3_min_gwp
+ IW_old_1_B4_min_gwp + IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp
+ IW old 1 D min gwp + IW old 1 DofB4 min gwp)
IW_old_gwp_1_4 = AreaInteriorWall_old * (IW_old_1_A1A3_max_gwp
+ IW_old_1_B4_max_gwp + IW_old_1_C3_max_gwp + IW_old_1_C4_max_gwp
+ IW_old_1_D_max_gwp + IW_old_1_DofB4_max_gwp)
(Here, you could differentiate between IWmas and IWwood if it's
necessary. But you must check, if every relevant building age
class has a value.)
CW_old_gwp_1_1 = AreaCellarWall_old * (CW_old_1_A1A3_min_gwp
+ CW_old_1_B4_min_gwp + CW_old_1_C3_min_gwp + CW_old_1_C4_min_gwp)
CW_old_gwp_1_2 = AreaCellarWall_old * (CW_old_1_A1A3_max_gwp
+ CW_old_1_B4_max_gwp + CW_old_1_C3_max_gwp + CW_old_1_C4_max_gwp)
```

```
CW_old_gwp_1_3 = AreaCellarWall_old * (CW_old_1_A1A3_min_gwp
+ CW_old_1_B4_min_gwp + CW_old_1_C3_min_gwp + CW_old_1_C4_min_gwp
+ CW_old_1_D_min_gwp + CW_old_1_DofB4_min_gwp)
CW_old_gwp_1_4 = AreaCellarWall_old * (CW_old_1_A1A3_max_gwp
+ CW_old_1_B4_max_gwp + CW_old_1_C3_max_gwp + CW_old_1_C4_max_gwp
+ CW_old_1_D_max_gwp + CW_old_1_DofB4_max_gwp)
SCW_old_gwp_1_1 = AreaSharedCellarWall_old * (SCW_old_1_A1A3_min_gwp
+ SCW_old_1_B4_min_gwp + SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp)
SCW_old_gwp_1_2 = AreaSharedCellarWall_old * (SCW_old_1_A1A3_max_gwp
+ SCW_old_1_B4_max_gwp + SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp)
SCW_old_gwp_1_3 = AreaSharedCellarWall_old * (SCW_old_1_A1A3_min_gwp
+ SCW_old_1_B4_min_gwp + SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp
+ SCW_old_1_D_min_gwp + SCW_old_1_DofB4_min_gwp)
SCW_old_gwp_1_4 = AreaSharedCellarWall_old * (SCW_old_1_A1A3_max_gwp
+ SCW_old_1_B4_max_gwp + SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp
+ CW_old_1_D_max_gwp + CW_old_1_DofB4_max_gwp)
FL_old_gwp_1_1 = AreaFloor_old * (FL_old_1_A1A3_min_gwp
+ FL_old_1_B4_min_gwp + FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp)
FL_old_gwp_1_2 = AreaFloor_old * (FL_old_1_A1A3_max_gwp
+ FL_old_1_B4_max_gwp + FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp)
FL_gwp_1_3 = AreaFloor_old * (FL_old_1_A1A3_min_gwp + FL_old_1_B4_min_gwp
+ FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp + FL_old_1_D_min_gwp
+ FL_old_1_DofB4_min_gwp)
FL_old_gwp_1_4 = AreaFloor_old * (FL_old_1_A1A3_max_gwp
+ FL_old_1_B4_max_gwp + FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp
+ FL_old_1_D_max_gwp + FL_old_1_DofB4_max_gwp)
(Here, you could differentiate between FLmas and FLwood if it's
necessary. But you must check, if that every relevant building age
class has a value.)
TFL_old_gwp_1_1 = AreaTopFloor_old * (TFL_old_1_A1A3_min_gwp
+ TFL_old_1_B4_min_gwp + TFL_old_1_C3_min_gwp + TFL_old_1_C4_min_gwp)
TFL old gwp 1 2 = AreaTopFloor old * (TFL old 1 A1A3 max gwp
+ TFL_old_1_B4_max_gwp + TFL_old_1_C3_max_gwp + TFL_old_1_C4_max_gwp)
TFL_old_gwp_1_3 = AreaTopFloor_old * (TFL_old_1_A1A3_min_gwp
+ TFL_old_1_B4_min_gwp + TFL_old_1_C3_min_gwp + TFL_old_1_C4_min_gwp
+ TFL old 1 D min gwp + TFL old 1 DofB4 min gwp)
TFL_old_gwp_1_4 = AreaTopFloor_old * (TFL_old_1_A1A3_max_gwp
+ TFL_old_1_B4_max_gwp + TFL_old_1_C3_max_gwp + TFL_old_1_C4_max_gwp
+ TFL_old_1_D_max_gwp + TFL_old_1_DofB4_max_gwp)
(Here, you could differentiate between TFLmas and TFLwood if it's
necessary. But you must check, if every relevant building age
class has a value.)
CFL_old_gwp_1_1 = AreaCellarFloor_old * (CFL_old_1_A1A3_min_gwp
+ CFL_old_1_B4_min_gwp + CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp)
CFL_old_gwp_1_2 = AreaCellarFloor_old * (CFL_old_1_A1A3_max_gwp
+ CFL_old_1_B4_max_gwp + CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp)
```

```
CFL_old_gwp_1_3 = AreaCellarFloor_old * (CFL_old_1_A1A3_min_gwp
+ CFL_old_1_B4_min_gwp + CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp
+ CFL_old_1_D_min_gwp + CFL_old_1_DofB4_min_gwp)
CFL_old_gwp_1_4 = AreaCellarFloor_old * (CFL_old_1_A1A3_max_gwp
+ CFL_old_1_B4_max_gwp + CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp
+ CFL_old_1_D_max_gwp + CFL_old_1_DofB4_max_gwp)
(Here, you could differentiate between CFLmas and CFLwood if it's
necessary. But you must check, if every relevant building age
class has a value.)
BP_old_gwp_1_1 = AreaBasePlate_old * (BP_old_1_A1A3_min_gwp
+ BP_old_1_B4_min_gwp + BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp)
BP_old_gwp_1_2 = AreaBasePlate_old * (BP_old_1_A1A3_max_gwp
+ BP_old_1_B4_max_gwp + BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp)
BP_old_gwp_1_3 = AreaBasePlate_old * (BP_old_1_A1A3_min_gwp
+ BP_old_1_B4_min_gwp + BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp
+ BP_old_1_D_min_gwp + BP_old_1_DofB4_min_gwp)
BP_old_gwp_1_4 = AreaBasePlate_old * (BP_old_1_A1A3_max_gwp
+ BP_old_1_B4_max_gwp + BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp
+ BP_old_1_D_max_gwp + BP_old_1_DofB4_max_gwp)
F_old_gwp_1_1 = AreaFoundation_old * (F_old_1_A1A3_min_gwp
+ F_old_1_B4_min_gwp + F_old_1_C3_min_gwp + F_old_1_C4_min_gwp)
F_old_gwp_1_2 = AreaFoundation_old * (F_old_1_A1A3_max_gwp
+ F_old_1_B4_max_gwp + F_old_1_C3_max_gwp + F_old_1_C4_max_gwp)
F_old_gwp_1_3 = AreaFoundation_old * (F_old_1_A1A3_min_gwp
+ F_old_1_B4_min_gwp + F_old_1_C3_min_gwp + F_old_1_C4_min_gwp
+ F_old_1_D_min_gwp + F_old_1_DofB4_min_gwp)
F old gwp 1 4 = AreaFoundation old * (F old 1 A1A3 max gwp
+ F_old_1_B4_max_gwp + F_old_1_C3_max_gwp + F_old_1_C4_max_gwp
+ F_old_1_D_max_gwp + F_old_1_DofB4_max_gwp)
W_old_gwp_1_1 = AreaWindow_old * (W_old_1_A1A3_min_gwp
+ W_old_1_B4_min_gwp + W_old_1_C3_min_gwp + W_old_1_C4_min_gwp)
W old gwp 1 2 = AreaWindow old * (W old 1 A1A3 max gwp
+ W_old_1_B4_max_gwp + W_old_1_C3_max_gwp + W_old_1_C4_max_gwp)
W_old_gwp_1_3 = AreaWindow_old * (W_old_1_A1A3_min_gwp
+ W_old_1_B4_min_gwp + W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W old 1 D min gwp + W old 1 DofB4 min gwp)
W_old_gwp_1_4 = AreaWindow_old * (W_old_1_A1A3_max_gwp
+ W_old_1_B4_max_gwp + W_old_1_C3_max_gwp + W_old_1_C4_max_gwp
+ W_old_1_D_max_gwp + W_old_1_DofB4_max_gwp)
(Here, you could differentiate between Walu, Wwood and Wplas if it's
necessary. But you must check, if every relevant building age
class has a value.)
```

Tabelle A. 95: Logik der Kennwertberechnung Szenario 2.1, Sanierung mit gleichbleibender Gebäudekubatur; eigene Darstellung in englischer Sprache

After the determination of the building construction areas, the environmental values of every building construction of each residential building can be calculated. The

```
next lines show the calculation of the GWP of scenario 2.1.1 to 2.1.4 for buildings in
building age class 1. The other building age classes as well as PET and PENRT aren't
shown in detail, but they are calculated in the same way.
If SC == 1.1 or if SC == 1.2 or if SC == 1.3 or if SC == 1.4 and
if BAC == BAC1 then
    PRO old gwp 2 1 1 = AreaPitchedRoof old * (PRO old 1 B4 min gwp
    + PRO_old_1_C3_min_gwp + PRO_old_1_C4_min_gwp)
    (For PET in BAC3: PRO old pet 2 1 1 = AreaPitchedRoof old
    * (PRO old 3 B4 min pet + PRO old 3 C3 min pet + PRO old 3 C4 min pet);
    for PENRT: PRO_old_penrt_2_1_1 = AreaPitchedRoof_old
    * (PRO_old_3_B4_min_penrt + PRO_old_3_C3_min_penrt + PRO_old_3_C4_min_penrt) etc.)
    PRO old gwp 2 1 2 = AreaPitchedRoof old * (PRO old 1 B4 max gwp
    + PRO_old_1_C3_max_gwp + PRO_old_1_C4_max_gwp)
    PRO_old_gwp_2_1_3 = AreaPitchedRoof_old * (PRO_old_1_B4_min_gwp
    + PRO old 1 C3 min gwp + PRO old 1 C4 min gwp + PRO old 1 D min gwp
    + PRO old 1 DofB4 min gwp)
    PRO old gwp 2 1 4 = AreaPitchedRoof old * (PRO old 1 B4 max gwp
    + PRO_old_1_C3_max_gwp + PRO_old_1_C4_max_gwp + PRO_old_1_D_max_gwp
    + PRO old 1 DofB4 max gwp)
    PRO_ren_gwp_2_1_1 = AreaPitchedRoof_ren * (PRO_h_ren_1_A1A3_min_gwp
    + PRO h ren 1 B4 min gwp + PRO h ren 1 C3 min gwp + PRO h ren 1 C4 min gwp)
    PRO_ren_gwp_2_1_2 = AreaPitchedRoof_ren * (PRO_h_ren_1_A1A3_max_gwp
    + PRO_h_ren_1_B4_max_gwp + PRO_h_ren_1_C3_max_gwp + PRO_h_ren_1_C4_max_gwp)
    PRO_ren_gwp_2_1_3 = AreaPitchedRoof_ren * (PRO_h_ren_1_A1A3_min_gwp
    + PRO h ren 1 B4 min gwp + PRO h ren 1 C3 min gwp
    + PRO_h_ren_1_C4_min_gwp + PRO_h_ren_1_D_min_gwp + PRO_h_ren_1_DofB4_min_gwp)
    PRO_ren_gwp_2_1_4 = AreaPitchedRoof_ren * (PRO_h_ren_1_A1A3_max_gwp
    + PRO_h_ren_1_B4_max_gwp + PRO_h_ren_1_C3_max_gwp + PRO_h_ren_1_C4_max_gwp
    + PRO_h_ren_1_D_max_gwp + PRO_h_ren_1_DofB4_max_gwp)
    FRO_ren_gwp_2_1_1 = AreaFlatRoof_ren * (FRO_ren_1_A1A3_min_gwp
    + FRO ren 1 B4 min gwp + FRO ren 1 C3 min gwp + FRO ren 1 C4 min gwp)
    FRO_ren_gwp_2_1_2 = AreaFlatRoof_ren * (FRO_ren_1_A1A3_max_gwp
    + FRO ren 1 B4 max gwp + FRO ren 1 C3 max gwp + FRO ren 1 C4 max gwp)
    FRO_ren_gwp_2_1_3 = AreaFlatRoof_ren * (FRO_ren_1_A1A3_min_gwp
    + FRO ren 1 B4 min gwp + FRO ren 1 C3 min gwp + FRO ren 1 C4 min gwp
    + FRO ren 1 D min gwp + FRO ren 1 DofB4 min gwp)
    FRO_ren_gwp_2_1_4 = AreaFlatRoof_ren * (FRO_ren_1_A1A3_max_gwp
    + FRO ren 1 B4 max gwp + FRO ren 1 C3 max gwp + FRO ren 1 C4 max gwp
    + FRO ren 1 D max gwp + FRO ren 1 DofB4 max gwp)
    (Here, you could differentiate between FROmas_ren and FROwood_ren if it's
    necessary. But you must check, if every relevant building age class has a
    value.)
```

```
EW ren gwp 2 1 1 = AreaExteriorWall ren * (EW ren 1 A1A3 min gwp
+ EW_ren_1_B4_min_gwp + EW_ren_1_C3_min_gwp + EW_ren_1_C4_min_gwp)
EW ren gwp 2 1 2 = AreaExteriorWall ren * (EW ren 1 A1A3 max gwp
+ EW_ren_1_B4_max_gwp + EW_ren_1_C3_max_gwp + EW_ren_1_C4_max_gwp)
EW_ren_gwp_2_1_3 = AreaExteriorWall_ren * (EW_ren_1_A1A3_min_gwp
+ EW_ren_1_B4_min_gwp + EW_ren_1_C3_min_gwp + EW_ren_1_C4_min_gwp
+ EW ren 1 D min gwp + EW ren 1 DofB4 min gwp)
EW_ren_gwp_2_1_4 = AreaExteriorWall_ren * (EW_ren_1_A1A3_max_gwp
+ EW_ren_1_B4_max_gwp + EW_ren_1_C3_max_gwp + EW_ren_1_C4_max_gwp
+ EW_ren_1_D_max_gwp + EW_ren_1_DofB4_max_gwp)
(Here, you could differentiate between EWmas ren, EW2shelled ren, EWcwf ren and
EWwood_ren if it's necessary. But you must check, if every relevant building
age class has a value.)
SW_old_gwp_2_1_1 = AreaSharedWall_old * (SW_old_1_B4_min_gwp
+ SW_old_1_C3_min_gwp + SW_old_1_C4_min_gwp)
SW_old_gwp_2_1_2 = AreaSharedWall_old * (SW_old_1_B4_max_gwp
+ SW_old_1_C3_max_gwp + SW_old_1_C4_max_gwp)
SW old gwp 2 1 3 = AreaSharedWall old * (SW old 1 B4 min gwp
+ SW_old_1_C3_min_gwp + SW_old_1_C4_min_gwp + SW_old_1_D_min_gwp
+ SW old 1 DofB4 min gwp)
SW_old_gwp_2_1_4 = AreaSharedWall_old * (SW_old_1_B4_max_gwp
+ SW_old_1_C3_max_gwp + SW_old_1_C4_max_gwp + SW_old_1_D_max_gwp
+ SW_old_1_DofB4_max_gwp)
(Here, you could differentiate between SWmas old, SW2shelled old, SWcwf old and
SWwood old if it's necessary. But you must check, if every relevant building
age class has a value.)
IW old gwp 2 1 1 = AreaInteriorWall old * (IW old 1 B4 min gwp
+ IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp)
IW_old_gwp_2_1_2 = AreaInteriorWall_old * (IW_old_1_B4_max_gwp
+ IW old 1 C3 max gwp + IW old 1 C4 max gwp)
IW_old_gwp_2_1_3 = AreaInteriorWall_old * (IW_old_1_B4_min_gwp
+ IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp + IW_old_1_D_min_gwp
+ IW old 1 DofB4 min gwp)
IW old gwp 2 1 4 = AreaInteriorWall old * (IW old 1 B4 max gwp
+ IW_old_1_C3_max_gwp + IW_old_1_C4_max_gwp + IW_old_1_D_max_gwp
+ IW old 1 DofB4 max gwp)
(Here, you could differentiate between IWmas old and IWwood old if it's necessary.
But you must check, if every relevant building age class has a value.)
CW_old_gwp_2_1_1 = AreaCellarWall_old * (CW_old_1_B4_min_gwp
+ CW old 1 C3 min gwp + CW old 1 C4 min gwp)
CW old gwp 2 1 2 = AreaCellarWall old * (CW old 1 B4 max gwp
+ CW old 1 C3 max gwp + CW old 1 C4 max gwp)
CW_old_gwp_2_1_3 = AreaCellarWall_old * (CW_old_1_B4_min_gwp
+ CW_old_1_C3_min_gwp + CW_old_1_C4_min_gwp + CW_old_1_D_min_gwp
+ CW old 1 DofB4 min gwp)
```

```
CW_old_gwp_2_1_4 = AreaCellarWall_old * (CW_old_1_B4_max_gwp
+ CW_old_1_C3_max_gwp + CW_old_1_C4_max_gwp + CW_old_1_D_max_gwp
+ CW_old_1_DofB4_max_gwp)
CW_ren_gwp_2_1_1 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_min_gwp
+ CW_h_ren_1_B4_min_gwp + CW_h_ren_1_C3_min_gwp + CW_h_ren_1_C4_min_gwp)
CW_ren_gwp_2_1_2 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_max_gwp
+ CW_h_ren_1_B4_max_gwp + CW_h_ren_1_C3_max_gwp + CW_h_ren_1_C4_max_gwp)
CW_ren_gwp_2_1_3 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_min_gwp
+ CW_h_ren_1_B4_min_gwp + CW_h_ren_1_C3_min_gwp + CW_h_ren_1_C4_min_gwp
+ CW_h_ren_1_D_min_gwp + CW_h_ren_1_DofB4_min_gwp)
CW_ren_gwp_2_1_4 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_max_gwp
+ CW_h_ren_1_B4_max_gwp + CW_h_ren_1_C3_max_gwp + CW_h_ren_1_C4_max_gwp
+ CW_h_ren_1_D_max_gwp + CW_h_ren_1_DofB4_max_gwp)
SCW_old_gwp_2_1_1 = AreaSharedCellarWall_old * (SCW_old_1_B4_min_gwp
+ SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp)
SCW_old_gwp_2_1_2 = AreaSharedCellarWall_old * (SCW_old_1_B4_max_gwp
+ SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp)
SCW_old_gwp_2_1_3 = AreaSharedCellarWall_old * (SCW_old_1_B4_min_gwp
+ SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp + SCW_old_1_D_min_gwp
+ SCW_old_1_DofB4_min_gwp)
SCW_old_gwp_2_1_4 = AreaSharedCellarWall_old * (SCW_old_1_B4_max_gwp
+ SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp + SCW_old_1_D_max_gwp
+ SCW_old_1_DofB4_max_gwp)
SCW_ren_gwp_2_1_1 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_min_gwp
+ SCW_h_ren_1_B4_min_gwp + SCW_h_ren_1_C3_min_gwp + SCW_h_ren_1_C4_min_gwp)
SCW_ren_gwp_2_1_2 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_max_gwp
+ SCW_h_ren_1_B4_max_gwp + SCW_h_ren_1_C3_max_gwp + SCW_h_ren_1_C4_max_gwp)
SCW ren gwp_2_1_3 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_min_gwp
+ SCW_h_ren_1_B4_min_gwp + SCW_h_ren_1_C3_min_gwp + SCW_h_ren_1_C4_min_gwp
+ SCW_h_ren_1_D_min_gwp + SCW_h_ren_1_DofB4_min_gwp)
SCW_ren_gwp_2_1_4 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_max_gwp
+ SCW_h_ren_1_B4_max_gwp + SCW_h_ren_1_C3_max_gwp + SCW_h_ren_1_C4_max_gwp
+ SCW_h_ren_1_D_max_gwp + SCW_h_ren_1_DofB4_max_gwp)
FL_old_gwp_2_1_1 = AreaFloor_old * (FL_old_1_B4_min_gwp + FL_old_1_C3_min_gwp
+ FL_old_1_C4_min_gwp)
FL_old_gwp_2_1_2 = AreaFloor_old * (FL_old_1_B4_max_gwp + FL_old_1_C3_max_gwp
+ FL_old_1_C4_max_gwp)
FL_old_gwp_2_1_3 = AreaFloor_old * (FL_old_1_B4_min_gwp + FL_old_1_C3_min_gwp
+ FL_old_1_C4_min_gwp + FL_old_1_D_min_gwp + FL_old_1_DofB4_min_gwp)
FL_old_gwp_2_1_4 = AreaFloor_old * (FL_old_1_B4_max_gwp + FL_old_1_C3_max_gwp
+ FL_old_1_C4_max_gwp + FL_old_1_D_max_gwp + FL_old_1_DofB4_max_gwp)
(Here, you could differentiate between FLmas old and FLwood old if it's
necessary. But you must check, if every relevant building age class has
a value.)
```

```
TFL old gwp 2 1 1 = AreaTopFloor old * (TFL old 1 B4 min gwp
+ TFL_old_1_C3_min_gwp + TFL_old_1_C4_min_gwp)
TFL old gwp 2 1 2 = AreaTopFloor old * (TFL old 1 B4 max gwp
+ TFL_old_1_C3_max_gwp + TFL_old_1_C4_max_gwp)
TFL_old_gwp_2_1_3 = AreaTopFloor_old * (TFL_old_1_B4_min_gwp
+ TFL_old_1_C3_min_gwp + TFL_old_1_C4_min_gwp + TFL_old_1_D_min_gwp
+ TFL old 1 DofB4 min gwp)
TFL_old_gwp_2_1_4 = AreaTopFloor_old * (TFL_old_1_B4_max_gwp
+ TFL_old_1_C3_max_gwp + TFL_old_1_C4_max_gwp + TFL_old_1_D_max_gwp
+ TFL_old_1_DofB4_max_gwp)
(Here, you could differentiate between TFLmas old and TFLwood old if it's
necessary. But you must check, if every relevant building age class has a
value.)
TFL_ren_gwp_2_1_1 = AreaTopFloor_ren * (TFL_uh_ren_1_A1A3_min_gwp
+ TFL_uh_ren_1_B4_min_gwp + TFL_uh_ren_1_C3_min_gwp
+ TFL_uh_ren_1_C4_min_gwp)
TFL_ren_gwp_2_1_2 = AreaTopFloor_ren * (TFL_uh_ren_1_A1A3_max_gwp
+ TFL_uh_ren_1_B4_max_gwp + TFL_uh_ren_1_C3_max_gwp
+ TFL_uh_ren_1_C4_max_gwp)
TFL ren gwp 2 1 3 = AreaTopFloor ren * (TFL uh ren 1 A1A3 min gwp
+ TFL_uh_ren_1_B4_min_gwp + TFL_uh_ren_1_C3_min_gwp
+ TFL_uh_ren_1_C4_min_gwp + TFL_uh_ren_1_D_min_gwp
+ TFL_uh_ren_1_DofB4_min_gwp)
TFL_ren_gwp_2_1_4 = AreaTopFloor_ren * (TFL_uh_ren_1_A1A3_max_gwp
+ TFL_uh_ren_1_B4_max_gwp + TFL_uh_ren_1_C3_max_gwp
+ TFL_uh_ren_1_C4_max_gwp + TFL_uh_ren_1_D_max_gwp
+ TFL uh ren 1 DofB4 max gwp)
(Here, you could differentiate between TFLmas ren and TFLwood ren if it's
necessary. But you must check, if every relevant building age class has
a value.)
CFL old gwp 2 1 1 = AreaCellarFloor_old * (CFL_old_1_B4_min_gwp
+ CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp)
CFL old gwp 2 1 2 = AreaCellarFloor old * (CFL old 1 B4 max gwp
+ CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp)
CFL_old_gwp_2_1_3 = AreaCellarFloor_old * (CFL_old_1_B4 min gwp
+ CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp + CFL_old_1_D_min_gwp
+ CFL old 1 DofB4 min gwp)
CFL_old_gwp_2_1_4 = AreaCellarFloor_old * (CFL_old_1_B4_max_gwp
+ CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp + CFL_old_1_D_max_gwp
+ CFL old 1 DofB4 max gwp)
(Here, you could differentiate between CFLmas old and CFLwood old if it's
necessary. But you must check, if every relevant building age class has
a value.)
CFL ren gwp 2 1 1 = AreaCellarFloor ren * (CFL uh ren 1 A1A3 min gwp
+ CFL_uh_ren_1_B4_min_gwp + CFL_uh_ren_1_C3_min_gwp + CFL_uh_ren_1_C4_min_gwp)
CFL_ren_gwp_2_1_2 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_max_gwp
+ CFL uh ren 1 B4 max gwp + CFL uh ren 1 C3 max gwp + CFL uh ren 1 C4 max gwp)
```

```
CFL_ren_gwp_2_1_3 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_min_gwp
+ CFL_uh_ren_1_B4_min_gwp + CFL_uh_ren_1_C3_min_gwp + CFL_uh_ren_1_C4_min_gwp r
+ CFL_uh_ren_1_D_min_gwp + CFL_uh_ren_1_DofB4_min_gwp)
CFL_ren_gwp_2_1_4 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_max_gwp
+ CFL_uh_ren_1_B4_max_gwp + CFL_uh_ren_1_C3_max_gwp + CFL_uh_ren_1_C4_max_gwp
+ CFL_uh_ren_1_D_max_gwp + CFL_uh_ren_1_DofB4_max_gwp)
(Here, you could differentiate between CFLmas ren and CFLwood ren if it's
necessary. But you must check, if every relevant building age class has a
value.)
\label{eq:bpold_gwp_2_1_1} \texttt{BP\_old\_gwp\_2\_1\_1} \ = \ \texttt{AreaBasePlate\_old} \ * \ (\texttt{BP\_old\_1\_B4\_min\_gwp} \ + \ \texttt{BP\_old\_1\_C3\_min\_gwp}
+ BP_old_1_C4_min_gwp)
BP_old_gwp_2_1_2 = AreaBasePlate_old * (BP_old_1_B4_max_gwp + BP_old_1_C3_max_gwp
+ BP_old_1_C4_max_gwp)
BP_old_gwp_2_1_3 = AreaBasePlate_old * (BP_old_1_B4_min_gwp + BP_old_1_C3_min_gwp
+ BP_old_1_C4_min_gwp + BP_old_1_D_min_gwp
+ BP_old_1_DofB4_min_gwp)
BP_old_gwp_2_1_4 = AreaBasePlate_old * (BP_old_1_B4_max_gwp + BP_old_1_C3_max_gwp
+ BP_old_1_C4_max_gwp + BP_old_1_D_max_gwp + BP_old_1_DofB4_max_gwp)
BP_ren_gwp_2_1_1 =AreaBasePlate_ren * (BP_h_ren_1_A1A3_min_gwp
+ BP_h_ren_1_B4_min_gwp + BP_h_ren_1_C3_min_gwp + BP_h_ren_1_C4_min_gwp)
BP_ren_gwp_2_1_2 =AreaBasePlate_ren * (BP_h_ren_1_A1A3_max_gwp
+ BP_h_ren_1_B4_max_gwp + BP_h_ren_1_C3_max_gwp + BP_h_ren_1_C4_max_gwp)
BP_ren_gwp_2_1_3 =AreaBasePlate_ren * (BP_h_ren_1_A1A3_min_gwp
+ BP_h_ren_1_B4_min_gwp + BP_h_ren_1_C3_min_gwp + BP_h_ren_1_C4_min_gwp
+ BP_h_ren_1_D_min_gwp + BP_h_ren_1_DofB4_min_gwp)
BP_ren_gwp_2_1_4 =AreaBasePlate_ren * (BP_h_ren_1_A1A3_max_gwp
+ BP_h_ren_1_B4_max_gwp + BP_h_ren_1_C3_max_gwp + BP_h_ren_1_C4_max_gwp
+ BP_h_ren_1_D_max_gwp + BP_h_ren_1_DofB4_max_gwp)
F_old_gwp_2_1_1 = AreaFoundation_old * (F_old_1_B4_min_gwp + F_old_1_C3_min_gwp
+ F_old_1_C4_min_gwp)
F_old_gwp_2_1_2 = AreaFoundation_old * (F_old_1_B4_max_gwp + F_old_1_C3_max_gwp
+ F old 1 C4 max gwp)
F_old_gwp_2_1_3 = AreaFoundation_old * (F_old_1_B4_min_gwp + F_old_1_C3_min_gwp
+ F_old_1_C4_min_gwp + F_old_1_D_min_gwp + F_old_1_DofB4_min_gwp)
F_old_gwp_2_1_4 = AreaFoundation_old * (F_old_1_B4_max_gwp + F_old_1_C3_max_gwp
+ F_old_1_C4_max_gwp + F_old_1_D_max_gwp + F_old_1_DofB4_max_gwp)
W_ren_gwp_2_1_1 = AreaWindow_ren * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W_nb_A1A3_min_gwp + W_nb_B4_min_gwp + W_nb_C3_min_gwp + W_nb_C4_min_gwp)
W_ren_gwp_2_1_2 = AreaWindow_ren * (W_old_C3_max_gwp + W_old_C4_max_gwp
+ W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp)
W_ren_gwp_2_1_3 = AreaWindow_ren * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W_old_1_D_min_gwp + W_nb_A1A3_min_gwp + W_nb_B4_min_gwp + W_nb_C3_min_gwp +
W nb C4 min gwp + W nb D min gwp + W nb DofB4 min gwp)
W_ren_gwp_2_1_4 = AreaWindow_ren * (W_old_1_C3_max_gwp + W_old_1_C4_max_gwp
+ W_old_1_D_max_gwp + W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp
+ W_nb_C4_max_gwp + W_nb_D_max_gwp + W_nb_DofB4_max_gwp)
```

(Here, you could differentiate between Walu_old, Walu_nb, Wwood_old, Wwood_nb, Wplas_old and Wplas_nb if it's necessary. But you must check, if every relevant building age class has a value.)

Description:

Tabelle A. 96: Logik der Kennwertberechnung Szenario 2.2, Sanierung mit Aufstockung in Holzrahmenbauweise; eigene Darstellung in englischer Sprache

After the determination of the building construction areas, the environmental values of every building construction of each residential building can be calculated. The

```
next lines show the calculation of the GWP of scenario 2.2.1 to 2.2.4 for buildings in
building age class 1. The other building age classes as well as PET and PENRT aren't
shown in detail, but they are calculated in the same way.
If SC == 2.2.1 or if SC == 2.2.2 or if SC == 2.2.3 or if SC == 2.2.4 and
if BAC == BAC1 then
    PRO_old_gwp_2_2_1 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
    + PRO_old_1_C4_min_gwp)
    (For PET and BAC3: PRO old pet 2 2 1 = AreaPitchedRoof old
    * (PRO old 3 C3 min pet + PRO old 3 C4 min pet);
    for PENRT: PRO_old_penrt_2_2_1 = AreaPitchedRoof_old
    * (PRO_old_3_C3_min_penrt + PRO_old_3_C4_min_penrt) etc.)
    PRO_old_gwp_2_2_2 = AreaPitchedRoof_old * (PRO_old_1_C3_max_gwp
    + PRO_old_1_C4_max_gwp)
    PRO_old_gwp_2_2_3 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
    + PRO old 1 C4 min gwp + PRO old 1 D min gwp)
    PRO_old_gwp_2_2_4 = AreaPitchedRoof_old * (PRO_old_1_C3_max_gwp
    + PRO_old_1_C4_max_gwp + PRO_old_1_D_max_gwp)
    FRO old gwp 2 2 1 = AreaFlatRoof old * (FRO old 1 C3 min gwp
    + FRO_old_1_C4_min_gwp)
    FRO_old_gwp_2_2_2 = AreaFlatRoof_old * (FRO_old_1_C3_max_gwp
    + FRO old 1 C4 max gwp)
    FRO_old_gwp_2_2_3 = AreaFlatRoof_old * (FRO_old_1_C3_min gwp
    + FRO_old_1_C4_min_gwp + FRO_old_1_D_min gwp)
    FRO old gwp 2 2 4 = AreaFlatRoof old * (FRO old 1 C3 max gwp
    + FRO_old_1_C4_max_gwp + FRO_old_1_D_max_gwp)
    (Here, you could differentiate between FROmas old and FROwood old if
    it's necessary. But it must be checked that every relevant building age
    class has a value.)
    FRO nb gwp 2 2 1 = AreaFlatRoof nb * (FROwood tf nb A1A3 min gwp
    + FROwood_tf_nb_B4_min_gwp + FROwood_tf_nb_C3_min_gwp + FROwood_tf_nb_C4_min_gwp)
    FRO nb gwp 2 2 2 = AreaFlatRoof nb * (FROwood tf nb A1A3 max gwp
    + FROwood tf nb B4 max gwp + FROwood tf nb C3 max gwp + FROwood tf nb C4 max gwp)
    FRO nb gwp 2 2 3 = AreaFlatRoof nb * (FROwood tf nb A1A3 min gwp
    + FROwood_tf_nb_B4_min_gwp + FROwood_tf_nb_C3_min_gwp + FROwood_tf_nb_C4_min_gwp
    + FROwood tf nb D min gwp + FROwood tf nb DofB4 min gwp)
    FRO nb gwp 2 2 4 = AreaFlatRoof nb * (FROwood tf nb A1A3 max gwp
    + FROwood_tf_nb_B4_max_gwp + FROwood_tf_nb_C3_max_gwp + FROwood_tf_nb_C4_max_gwp
    + FROwood tf nb D max gwp + FROwood tf nb DofB4 max gwp)
    (In this scenario it is assumed, that the new upper building part is built in
    timber frame construction (FROwood_tf). But also, a solid wood construction would
    be conceivable. In this case, the environmental values of cross-laminated timber
    constructions (FROwood clt) could be used.)
```

```
EW ren gwp 2 2 1 = AreaExteriorWall ren * (EW ren 1 A1A3 min gwp
+ EW_ren_1_B4_min_gwp + EW_ren_1_C3_min_gwp + EW_ren_1_C4_min_gwp)
EW ren gwp 2 2 2 = AreaExteriorWall ren * (EW ren 1 A1A3 max gwp
+ EW_ren_1_B4_max_gwp + EW_ren_1_C3_max_gwp + EW_ren_1_C4_max_gwp)
EW_ren_gwp_2_2_3 = AreaExteriorWall_ren * (EW_ren_1_A1A3_min_gwp
+ EW_ren_1_B4_min_gwp + EW_ren_1_C3_min_gwp + EW_ren_1_C4_min_gwp
+ EW ren 1 D min gwp + EW ren 1 DofB4 min gwp)
EW_ren_gwp_2_2_4 = AreaExteriorWall_ren * (EW_ren_1_A1A3_max_gwp
+ EW_ren_1_B4_max_gwp + EW_ren_1_C3_max_gwp + EW_ren_1_C4_max_gwp
+ EW_ren_1_D_max_gwp + EW_ren_1_DofB4_max_gwp)
(Here, you could differentiate between EWmas_ren, EW2shelled_ren, EWcwf_ren and
EWwood_ren if it's necessary. But it must be checked that every relevant building
age class has a value.)
EW_nb_gwp_2_2_1 = AreaExteriorWall_nb * (EWwood_tf_nb_A1A3_min_gwp
+ EWwood_tf_nb_B4_min_gwp + EWwood_tf_nb_C3_min_gwp + EWwood_tf_nb_C4_min_gwp)
EW_nb_gwp_2_2_2 = AreaExteriorWall_nb * (EWwood_tf_nb_A1A3_max_gwp
+ EWwood_tf_nb_B4_max_gwp + EWwood_tf_nb_C3_max_gwp + EWwood_tf_nb_C4_max_gwp)
EW_nb_gwp_2_2_3 = AreaExteriorWall_nb * (EWwood_tf_nb_A1A3_min_gwp
+ EWwood_tf_nb_B4_min_gwp + EWwood_tf_nb_C3_min_gwp + EWwood_tf_nb_C4_min_gwp
+ EWwood_tf_nb_D_min_gwp + EWwood_tf_nb_DofB4_min_gwp)
EW_nb_gwp_2_2_4 = AreaExteriorWall_nb * (EWwood_tf_nb_A1A3_max_gwp
+ EWwood_tf_nb_B4_max_gwp + EWwood_tf_nb_C3_max_gwp + EWwood_tf_nb_C4_max_gwp
+ EWwood_tf_nb_D_max_gwp + EWwood_tf_nb_DofB4_max_gwp)
(See comment at FRO nb)
SW_old_gwp_2_2_1 = AreaSharedWall_old * (SW_old_1_B4_min_gwp
+ SW old 1 C3 min gwp + SW old 1 C4 min gwp)
SW old gwp 2 2 2 = AreaSharedWall old * (SW old 1 B4 max gwp
+ SW_old_1_C3_max_gwp + SW_old_1_C4_max_gwp)
SW_old_gwp_2_2_3 = AreaSharedWall_old * (SW_old_1_B4_min_gwp
+ S_old_1_C3_min_gwp + SW_old_1_C4_min_gwp + SW_old_1_D_min_gwp
+ SW old 1 DofB4 min gwp)
SW_old_gwp_2_2_4 = AreaSharedWall_old * (SW_old_1_B4_max_gwp
+ SW old 1 C3 max gwp + SW old 1 C4 max gwp + SW old 1 D max gwp
+ SW old 1 DofB4 max gwp)
(Here, you could differentiate between SWmas old, SW2shelled old, SWcwf old and
SWwood old if it's necessary. But it must be checked that every relevant building
age class has a value.)
SW nb gwp 2 2 1 = AreaSharedWall nb * (SWwood tf nb A1A3 min gwp
+ SWwood_tf_nb_B4_min_gwp + SWwood_tf_nb_C3_min_gwp + SWwood_tf_nb_C4_min_gwp)
SW nb gwp 2 2 2 = AreaSharedWall nb * (SWwood tf nb A1A3 max gwp
+ SWwood_tf_nb_B4_max_gwp + SWwood_tf_nb_C3_max_gwp + SWwood_tf_nb_C4_max_gwp)
SW nb gwp 2 2 3 = AreaSharedWall nb * (SWwood tf nb A1A3 min gwp
+ SWwood tf nb B4 min gwp + SWwood tf nb C3 min gwp + SWwood tf nb C4 min gwp
+ SWwood tf nb D min gwp + SWwood tf nb DofB4 min gwp)
SW nb gwp 2 2 4 = AreaSharedWall nb * (SWwood tf nb A1A3 max gwp
+ SWwood_tf_nb_B4_max_gwp + SWwood_tf_nb_C3_max_gwp + SWwood_tf_nb_C4_max_gwp
+ SWwood_tf_nb_D_max_gwp + SWwood_tf_nb_DofB4_max_gwp)
```

```
(See comment at FRO_nb)
IW_old_gwp_2_2_1 = AreaInteriorWall_old * (IW_old_1_B4_min_gwp
+ IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp)
IW_old_gwp_2_2_2 = AreaInteriorWall_old * (IW_old_1_B4_max_gwp
+ IW_old_1_C3_max_gwp + IW_old_1_C4_max_gwp)
IW_old_gwp_2_2_3 = AreaInteriorWall_old * (IW_old_1_B4_min_gwp
+ IW_old_1_C3_min_gwp + IW_old_1_C4_min_gwp + IW_old_1_D_min_gwp
+ IW_old_1_DofB4_min_gwp)
IW_old_gwp_2_2_4 = AreaInteriorWall_old * (IW_old_1_B4_max_gwp
+ IW_old_1_C3_max_gwp + IW_old_1_C4_max_gwp + IW_old_1_D_max_gwp
+ IW_old_1_DofB4_max_gwp)
(Here, you could differentiate between IWmas_old and IWwood_old if it's
necessary. But it must be checked that every relevant building age class
has a value.)
IW_nb_gwp_2_2_1 = AreaInteriorWall_nb * (IWwood_tf_nb_A1A3_min_gwp
+ IWwood_tf_nb_B4_min_gwp + IWwood_tf_nb_C3_min_gwp + IWwood_tf_nb_C4_min_gwp)
IW_nb_gwp_2_2_2 = AreaInteriorWall_nb * (IWwood_tf_nb_A1A3_max_gwp
+ IWwood_tf_nb_B4_max_gwp + IWwood_tf_nb_C3_max_gwp + IWwood_tf_nb_C4_max_gwp)
IW_nb_gwp_2_2_3 = AreaInteriorWall_nb * (IWwood_tf_nb_A1A3_min_gwp
+ IWwood_tf_nb_B4_min_gwp + IWwood_tf_nb_C3_min_gwp
+ IWwood_tf_nb_C4_min_gwp + IWwood_tf_nb_D_min_gwp + IWwood_tf_nb_DofB4_min_gwp)
IW_nb_gwp_2_2_4 = AreaInteriorWall_nb * (IWwood_tf_nb_A1A3_max_gwp
+ IWwood_tf_nb_B4_max_gwp + IWwood_tf_nb_C3_max_gwp + IWwood_tf_nb_C4_max_gwp
+ IWwood_tf_nb_D_max_gwp + IWwood_tf_nb_DofB4_max_gwp)
(See comment at FRO_nb)
CW old gwp 2 2 1 = AreaCellarWall old * (CW old 1 B4 min gwp
+ CW_old_1_C3_min_gwp + CW_old_1_C4_min_gwp)
CW_old_gwp_2_2_2 = AreaCellarWall_old * (CW_old_1_B4_max_gwp
+ CW old 1 C3 max gwp + CW old 1 C4 max gwp)
CW_old_gwp_2_2_3 = AreaCellarWall_old * (CW_old_1_B4_min_gwp
+ CW_old_1_C3_min_gwp + CW_old_1_C4_min_gwp + CW_old_1_D_min_gwp
+ CW old 1 DofB4 min gwp)
CW_old_gwp_2_2_4 = AreaCellarWall_old * (CW_old_1_B4_max_gwp
+ CW_old_1_C3_max_gwp + CW_old_1_C4_max_gwp + CW_old_1_D_max_gwp
+ CW_old_1_DofB4_max_gwp)
CW_ren_gwp_2_2_1 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_min_gwp
+ CW_h_ren_1_B4_min_gwp + CW_h_ren_1_C3_min_gwp + CW_h_ren_1_C4_min_gwp)
CW_ren_gwp_2_2_2 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_max_gwp
+ CW_h_ren_1_B4_max_gwp + CW_h_ren_1_C3_max_gwp + CW_h_ren_1_C4_max_gwp)
CW_ren_gwp_2_2_3 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_min_gwp
+ CW_h_ren_1_B4_min_gwp + CW_h_ren_1_C3_min_gwp + CW_h_ren_1_C4_min_gwp
+ CW_h_ren_1_D_min_gwp + CW_h_ren_1_DofB4_min_gwp)
CW_ren_gwp_2_2_4 = AreaCellarWall_ren * (CW_h_ren_1_A1A3_max_gwp
+ CW_h_ren_1_B4_max_gwp + CW_h_ren_1_C3_max_gwp + CW_h_ren_1_C4_max_gwp
+ CW_h_ren_1_D_max_gwp + CW_h_ren_1_DofB4_max_gwp)
```

```
SCW old gwp 2 2 1 = AreaSharedCellarWall old * (SCW old 1 B4 min gwp
+ SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp)
SCW old gwp 2 2 2 = AreaSharedCellarWall old * (SCW old 1 B4 max gwp
+ SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp)
SCW_old_gwp_2_2_3 = AreaSharedCellarWall_old * (SCW_old_1_B4_min_gwp
+ SCW_old_1_C3_min_gwp + SCW_old_1_C4_min_gwp + SCW_old_1_D_min_gwp
+ SCW old 1 DofB4 min gwp)
SCW_old_gwp_2_2_4 = AreaSharedCellarWall_old * (SCW_old_1_B4_max_gwp
+ SCW_old_1_C3_max_gwp + SCW_old_1_C4_max_gwp + SCW_old_1_D_max_gwp
+ SCW_old_1_DofB4_max_gwp)
SCW_ren_gwp_2_2_1 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_min_gwp
+ SCW_h_ren_1_B4_min_gwp + SCW_h_ren_1_C3_min_gwp + SCW_h_ren_1_C4_min_gwp)
SCW_ren_gwp_2_2_2 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_max_gwp
+ SCW_h_ren_1_B4_max_gwp + SCW_h_ren_1_C3_max_gwp + SCW_h_ren_1_C4_max_gwp)
SCW_ren_gwp_2_2_3 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_min_gwp
+ SCW_h_ren_1_B4_min_gwp + SCW_h_ren_1_C3_min_gwp + SCW_h_ren_1_C4_min_gwp
+ SCW_h_ren_1_D_min_gwp + SCW_h_ren_1_DofB4_min_gwp)
SCW_ren_gwp_2_2_4 = AreaSharedCellarWall_ren * (SCW_h_ren_1_A1A3_max_gwp
+ SCW_h_ren_1_B4_max_gwp + SCW_h_ren_1_C3_max_gwp + SCW_h_ren_1_C4_max_gwp
+ SCW_h_ren_1_D_max_gwp + SCW_h_ren_1_DofB4_max_gwp)
FL_ren_gwp_2_2_1 = AreaFloor_ren * (FL_old_1_B4_min_gwp + FL_old_1_C3_min_gwp
+ FL_old_1_C4_min_gwp)
FL_ren _gwp_2_2_2 = AreaFloor_ren * (FL_old_1_B4_max_gwp + FL_old_1_C3_max_gwp
+ FL_old_1_C4_max_gwp)
FL_ren_1_gwp_2_2_3 = AreaFloor_ren * (FL_old_1_B4_min_gwp + FL_old_1_C3_min_gwp
+ FL_old_1_C4_min_gwp + FL_old_1_D_min_gwp + FL_old_1_DofB4_min_gwp)
FL ren 1 gwp 2 2 4 = AreaFloor ren * (FL old 1 B4 max gwp + FL old 1 C3 max gwp
+ FL_old_1_C4_max_gwp + FL_old_1_D_max_gwp + FL_old_1_DofB4_max_gwp)
(The FL_ren will stay in the building for another 50 years as it is. Nothing is
renovated. You could differentiate between FLmas ren and FLwood ren if it's
necessary. But it must be checked that every relevant building age class has a
value.)
FL_old_gwp_2_2_1 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp)
FL_old_gwp_2_2_2 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp)
FL_old_gwp_2_2_3 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp
+ FL old 1 D min gwp)
FL_old_gwp_2_2_4 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp
+ FL old 1 D max gwp)
(FL old relevant if the building has an old FRO or a heated top floor with a PRO.
Then the top FL is demolished and replaced by a new wooden floor. You could also
differentiate between FLmas old and FLwood old if it's necessary. But it must be
checked that every relevant building age class has a value.)
FL_nb_gwp_2_2_1 = AreaFloor_nb * (FLwood_tf_nb_A1A3_min_gwp
+ FLwood_tf_nb_B4_min_gwp + FLwood_tf_nb_C3_min_gwp + FLwood_tf_nb_C4_min_gwp)
FL_nb_gwp_2_2_2 = AreaFloor_nb * (FLwood_tf_nb_A1A3_max_gwp
+ FLwood tf nb B4 max gwp + FLwood tf nb C3 max gwp + FLwood tf nb C4 max gwp)
```

```
FL_nb_gwp_2_2_3 = AreaFloor_nb * (FLwood_tf_nb_A1A3_min_gwp
+ FLwood_tf_nb_B4_min_gwp + FLwood_tf_nb_C3_min_gwp + FLwood_tf_nb_C4_min_gwp
+ FLwood_tf_nb_D_min_gwp + FLwood_tf_nb_DofB4_min_gwp)
FL_nb_gwp_2_2_4 = AreaFloor_nb * (FLwood_tf_nb_A1A3_max_gwp
+ FLwood_tf_nb_B4_max_gwp + FLwood_tf_nb_C3_max_gwp + FLwood_tf_nb_C4_max_gwp
+ FLwood_tf_nb_D_max_gwp + FLwood_tf_nb_DofB4_max_gwp)
(See comment at FRO nb)
TFL_old_gwp_2_2_1 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp)
TFL_old_gwp_2_2_2 = AreaTopFloor_old * (TFL_old_1_C3_max_gwp
+ TFL_old_1_C4_max_gwp)
TFL_old_gwp_2_2_3 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp + TFL_old_1_D_min_gwp)
TFL_old_gwp_2_2_4 = AreaTopFloor_old * (TFL_old_1_C3_max_gwp
+ TFL_old_1_C4_max_gwp + TFL_old_1_D_max_gwp)
(The TFL_old only exists if the top floor is unheated and the old roof is a PRO.
It is demolished and replaced by a new floor in wooden construction. You could
differentiate between TFLmas old and TFLwood old if it's necessary. But it must be
checked that every relevant building age class has a value.)
CFL_old_gwp_2_2_1 = AreaCellarFloor_old * (CFL_old_1_B4_min_gwp
+ CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp)
CFL_old_gwp_2_2_2 = AreaCellarFloor_old * (CFL_old_1_B4_max_gwp
+ CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp)
CFL_old_gwp_2_2_3 = AreaCellarFloor_old * (CFL_old_1_B4_min_gwp
+ CFL_old_1_C3_min_gwp + CFL_old_1_C4_min_gwp + CFL_old_1_D_min_gwp
+ CFL old 1 DofB4 min gwp)
CFL old gwp 2 2 4 = AreaCellarFloor old * (CFL old 1 B4 max gwp
+ CFL_old_1_C3_max_gwp + CFL_old_1_C4_max_gwp + CFL_old_1_D_max_gwp
+ CFL_old_1_DofB4_max_gwp)
(Here, you could differentiate between CFLmas old and CFLwood old if it's
necessary. But it must be checked that every relevant building age class has
a value.)
CFL_ren_gwp_2_2_1 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_min_gwp
+ CFL_uh_ren_1_B4_min_gwp + CFL_uh_ren_1_C3_min_gwp + CFL_uh_ren_1_C4_min_gwp)
CFL_ren_gwp_2_2_2 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_max_gwp
+ CFL uh ren 1 B4 max gwp + CFL uh ren 1 C3 max gwp + CFL uh ren 1 C4 max gwp)
CFL_ren_gwp_2_2_3 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_min_gwp
+ CFL_uh_ren_1_B4_min_gwp + CFL_uh_ren_1_C3_min_gwp + CFL_uh_ren_1_C4_min_gwp
+ CFL_uh_ren_1_D_min_gwp + CFL_uh_ren_1_DofB4_min_gwp)
CFL ren gwp_2_2_4 = AreaCellarFloor_ren * (CFL_uh_ren_1_A1A3_max_gwp
+ CFL_uh_ren_1_B4_max_gwp + CFL_uh_ren_1_C3_max_gwp + CFL_uh_ren_1_C4_max_gwp
+ CFL_uh_ren_1_D_max_gwp + CFL_uh_ren_1_DofB4_max_gwp)
(Here, you could differentiate between CFLmas ren and CFLwood ren if it's
necessary. But it must be checked that every relevant building age class has
a value.
```

```
BP old gwp 2 2 1 = AreaBasePlate old * (BP old 1 B4 min gwp
+ BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp)
BP old gwp 2 2 2 = AreaBasePlate old * (BP old 1 B4 max gwp
+ BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp)
BP_old_gwp_2_2_3 = AreaBasePlate_old * (BP_old_1_B4_min_gwp + BP_old_1_C3_min_gwp
+ BP_old_1_C4_min_gwp + BP_old_1_D_min_gwp + BP_old_1_DofB4_min_gwp)
BP old gwp 2 2 4 = AreaBasePlate old * (BP old 1 B4 max gwp + BP old 1 C3 max gwp
+ BP_old_1_C4_max_gwp + BP_old_1_D_max_gwp + BP_old_1_DofB4_max_gwp)
BP_ren_gwp_2_2_1 = AreaBasePlate_ren * (BP_h_ren_1_A1A3_min_gwp
+ BP_h_ren_1_B4_min_gwp + BP_h_ren_1_C3_min_gwp + BP_h_ren_1_C4_min_gwp)
BP_ren_gwp_2_2_2 = AreaBasePlate_ren * (BP_h_ren_1_A1A3_max_gwp
+ BP_h_ren_1_B4_max_gwp + BP_h_ren_1_C3_max_gwp + BP_h_ren_1_C4_max_gwp)
BP_ren_gwp_2_2_3 = AreaBasePlate_ren * (BP_h_ren_1_A1A3_min_gwp
+ BP_h_ren_1_B4_min_gwp + BP_h_ren_1_C3_min_gwp + BP_h_ren_1_C4_min_gwp
+ BP_h_ren_1_D_min_gwp + BP_h_ren_1_DofB4_min_gwp)
BP_ren_gwp_2_2_4 = AreaBasePlate_ren * (BP_h_ren_1_A1A3_max_gwp
+ BP_h_ren_1_B4_max_gwp + BP_h_ren_1_C3_max_gwp + BP_h_ren_1_C4_max_gwp
+ BP_h_ren_1_D_max_gwp + BP_h_ren_1_DofB4_max_gwp)
F_old_gwp_2_2_1 = AreaFoundation_old * (F_old_1_B4_min_gwp + F_old_1_C3_min_gwp
+ F_old_1_C4_min_gwp)
F_old_gwp_2_2_2 = AreaFoundation_old * (F_old_1_B4_max_gwp + F_old_1_C3_max_gwp
+ F_old_1_C4_max_gwp)
F_old_gwp_2_2_3 = AreaFoundation_old * (F_old_1_B4_min_gwp + F_old_1_C3_min_gwp
+ F_old_1_C4_min_gwp + F_old_1_D_min_gwp + F_old_1_DofB4_min_gwp)
F_old_gwp_2_2_4 = AreaFoundation_old * (F_old_1_B4_max_gwp + F_old_1_C3_max_gwp
+ F_old_1_C4_max_gwp + F_old_1_D_max_gwp + F_old_1_DofB4_max_gwp)
W_ren_gwp_2_2_1 = AreaWindow_ren * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W_nb_A1A3_min_gwp + W_nb_B4_min_gwp + W_nb_C3_min_gwp + W_nb_C4_min_gwp)
W_ren_gwp_2_2_2 = AreaWindow_ren * (W_old_1_C3_max_gwp + W_old_1_C4_max_gwp
+ W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp)
W_ren_gwp_2_2_3 = AreaWindow_ren * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W old 1 D min gwp + W nb A1A3 min gwp + W nb B4 min gwp + W nb C3 min gwp
+ W nb C4 min gwp + W nb D min gwp + W nb DofB4 min gwp)
W_ren_gwp_2_2_4 = AreaWindow_ren * (W_old_1_C3_max_gwp + W_old_1_C4_max_gwp
+ W_old_1_D_max_gwp + W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp
+ W nb C4 max gwp + W nb D max gwp + W nb DofB4 max gwp)
(Here, you could differentiate between Walu_old. Walu_nb, Wwood_old, Wwood_nb,
Wplas_old and Wplas_nb if it's necessary. But it must be checked that every
relevant building age class has a value.)
W nb gwp 2 2 1 = AreaWindow nb * (W nb A1A3 min gwp + W nb B4 min gwp
+ W nb C3 min gwp + W nb C4 min gwp)
W nb gwp 2 2 2 = AreaWindow nb * (W nb A1A3 max gwp + W nb B4 max gwp
+ W nb C3 max gwp + W nb C4 max gwp)
W_nb_gwp_2_2_3 = AreaWindow_nb * (W_nb_A1A3_min_gwp + W_nb_B4_min_gwp
+ W_nb_C3_min_gwp + W_nb_C4_min_gwp + W_nb_D min_gwp + W_nb_DofB4_min_gwp)
```

```
W_nb_gwp_2_2_4 = AreaWindow_nb * (W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp + W_nb_D_max_gwp + W_nb_DofB4_max_gwp)

(Here, you could differentiate between Walu_nb, Wwood_nb and Wplas_nb if it's necessary. But it must be checked that every relevant building age class has a value.)
```

Tabelle A. 97: Logik der Kennwertberechnung Szenario 3.1, Abriss und Ersatzneubau in Holzbauweise; eigene Darstellung in englischer Sprache

After the determination of the building construction areas, the environmental values

```
of every building construction of each residential building can be calculated. The
next lines show the calculation of the GWP of scenario 3.1.1 to 3.1.4 for buildings in
building age class 1. The other building age classes as well as PET and PENRT aren't
shown in detail, but they are calculated in the same way.
If SC == 3.1.1 or if SC == 3.1.2 or if SC == 3.1.3 or if SC == 3.1.4 and
if BAC == BAC1 then
    PRO_old_gwp_3_1_1 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
    + PRO_old_1_C4_min_gwp)
    PRO_old_gwp_3_1_2 = AreaPitchedRoof_old * (PRO_old_1_C3_max_gwp
    + PRO_old_1_C4_max_gwp)
    PRO_old_gwp_3_1_3 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
   + PRO_old_1_C4_min_gwp + PRO_old_1_D_min_gwp)
    PRO old gwp 3 1 4 = AreaPitchedRoof old * (PRO old 1 C3 max gwp
    + PRO_old_1_C4_max_gwp + PRO_old_1_D_max_gwp)
    (For PET and BAC3: PRO_old_pet_3_1_1 = AreaPitchedRoof_old * (PRO_old_3_C3_min_pet
    + PRO old 3 C4 min pet);
   for PENRT: PRO_old_penrt_3_1_1 = AreaPitchedRoof_old * (PRO_old_3_C3_min_penrt
    + PRO_old_3_C4_min_penrt) etc.)
    FRO old gwp 3 1 1 = AreaFlatRoof old * (FRO old 1 C3 min gwp
   + FRO_old_1_C4_min_gwp)
    FRO_old_gwp_3_1_2 = AreaFlatRoof_old * (FRO_old_1_C3_max_gwp
    + FRO old 1 C4 max gwp)
    FRO_old_gwp_3_1_3 = AreaFlatRoof_old * (FRO_old_1_C3_min_gwp
   + FRO_old_1_C4_min_gwp + FRO_old_1_D_min_gwp)
    FRO_old_gwp_3_1_4 = AreaFlatRoof_old * (FRO_old_1_C3_max_gwp
   + FRO_old_1_C4_max_gwp + FRO_old_1_D_max_gwp)
    (Here, you could differentiate between FROmas old and FROwood old if it's
    necessary. But it must be checked that every relevant building age class has a
    value.)
    FRO nb gwp 3 1 1 = AreaFlatRoof nb * (FROwood nb A1A3 min gwp
    + FROwood nb B4 min gwp + FROwood nb C3 min gwp + FROwood nb C4 min gwp)
    FRO nb gwp 3 1 2 = AreaFlatRoof nb * (FROwood nb A1A3 max gwp
    + FROwood nb B4 max gwp + FROwood nb C3 max gwp + FROwood nb C4 max gwp)
    FRO nb gwp 3 1 3 = AreaFlatRoof nb * (FROwood nb A1A3 min gwp
    + FROwood_nb_B4_min_gwp + FROwood_nb_C3_min_gwp + FROwood_nb_C4_min_gwp
    + FROwood nb D min gwp + FROwood nb DofB4 min gwp)
    FRO nb gwp 3 1 4 = AreaFlatRoof nb * (FROwood nb A1A3 max gwp
    + FROwood_nb_B4_max_gwp + FROwood_nb_C3_max_gwp + FROwood_nb_C4_max_gwp
    + FROwood nb D max gwp + FROwood nb DofB4 max gwp)
    (In this scenario two timber construction types are considered: timber frame
    construction and cross-laminated timber construction. If you want to, you could
    only choose one of them (FROwood_tf or FROwood_clt).)
```

```
EW_old_gwp_3_1_1 = AreaExteriorWall_old * (EW_ old_1_C3_min_gwp
+ EW_old_1_C4_min_gwp)
EW old gwp 3 1 2 = AreaExteriorWall old * (EW old 1 C3 max gwp
+ EW_old_1_C4_max_gwp)
EW_old_gwp_3_1_3 = AreaExteriorWall_old * (EW_old_1_C3_min_gwp
+ EW_old_1_C4_min_gwp + EW_old_1_D_min_gwp)
EW_old_gwp_3_1_4 = AreaExteriorWall_old * (EW_old_1_C3_max_gwp
+ EW_old_1_C4_max_gwp + EW_old_1_D_max_gwp)
(Here, you could differentiate between EWmas_old, EW2shelled_old, EWcwf_old and
EWwood_old if it's necessary. But it must be checked that every relevant building
age class has a value.)
EW_nb_gwp_3_1_1 = AreaExteriorWall_nb * (EWwood_nb_A1A3_min_gwp
+ EWwood_nb_B4_min_gwp + EWwood_nb_C3_min_gwp + EWwood_nb_C4_min_gwp)
EW_nb_gwp_3_1_2 = AreaExteriorWall_nb * (EWwood_nb_A1A3_max_gwp
+ EWwood_nb_B4_max_gwp + EWwood_nb_C3_max_gwp + EWwood_nb_C4_max_gwp)
EW_nb_gwp_3_1_3 = AreaExteriorWall_nb * (EWwood_nb_A1A3_min_gwp
+ EWwood_nb_B4_min_gwp + EWwood_nb_C3_min_gwp + EWwood_nb_C4_min_gwp
+ EWwood nb D min gwp + EWwood nb DofB4 min gwp)
EW_nb_gwp_3_1_4 = AreaExteriorWall_nb * (EWwood_nb_A1A3_max_gwp
+ EWwood_nb_B4_max_gwp + EWwood_nb_C3_max_gwp + EWwood_nb_C4_max_gwp
+ EWwood_nb_D_max_gwp + EWwood_nb_DofB4_max_gwp)
(See comment at FRO_nb)
SW_old_gwp_3_1_1 = AreaSharedWall_old * (SW_old_1_C3_min_gwp
+ SW_old_1_C4_min_gwp)
SW_old_gwp_3_1_2 = AreaSharedWall_old * (SW_old_1_C3_max_gwp
+ SW_old_1_C4_max_gwp)
SW_old_gwp_3_1_3 = AreaSharedWall_old * (SW_old_1_C3_min_gwp
+ SW_old_1_C4_min_gwp + SW_old_1_D_min_gwp)
SW_old_gwp_3_1_4 = AreaSharedWall_old * (SW_old_1_C3_max_gwp
+ SW old 1 C4 max gwp + SW old 1 D max gwp)
(Here, you could differentiate between SWmas_old, SW2shelled_old, SWcwf_old and
SWwood_old if it's necessary. But it must be checked that every relevant building
age class has a value.)
SW_nb_gwp_3_1_1 = AreaSharedWall_nb * (SWwood_nb_A1A3_min_gwp
+ SWwood_nb_B4_min_gwp + SWwood_nb_C3_min_gwp + SWwood_nb_C4_min_gwp)
SW nb gwp 3 1 2 = AreaSharedWall nb * (SWwood nb A1A3 max gwp
+ SWwood_nb_B4_max_gwp + SWwood_nb_C3_max_gwp + SWwood_nb_C4_max_gwp)
SW nb gwp 3 1 3 = AreaSharedWall nb * (SWwood nb A1A3 min gwp
+ SWwood_nb_B4_min_gwp + SWwood_nb_C3_min_gwp + SWwood_nb_C4_min_gwp
+ SWwood nb D min gwp + SWwood nb DofB4 min gwp)
SW_nb_gwp_3_1_4 = AreaSharedWall_nb * (SWwood_nb_A1A3_max_gwp
+ SWwood_nb_B4_max_gwp + SWwood_nb_C3_max_gwp + SWwood_nb_C4_max_gwp
+ SWwood_nb_D_max_gwp + SWwood_nb_DofB4_max_gwp)
(See comment at FRO nb)
IW_old_gwp_3_1_1 = AreaInteriorWall_old * (IW_old_1_C3_min_gwp
+ IW_old_1_C4_min_gwp)
```

```
IW old gwp 3 1 2 = AreaInteriorWall old * (IW old 1 C3 max gwp
+ IW_old_1_C4_max_gwp)
IW old gwp 3 1 3 = AreaInteriorWall old * (IW old 1 C3 min gwp
+ IW_old_1_C4_min_gwp + IW_old_1_D_min_gwp)
IW_old_gwp_3_1_4 = AreaInteriorWall_old * (IW_old_1_C3_max_gwp
+ IW_old_1_C4_max_gwp + IW_old_1_D_max_gwp)
(Here, you could differentiate between IWmas old and IWwood old if it's
necessary. But it must be checked that every relevant building age class
has a value.)
IW_nb_gwp_3_1_1 = AreaInteriorWall_nb * (IWwood_nb_A1A3_min_gwp
+ IWwood_nb_B4_min_gwp + IWwood_nb_C3_min_gwp + IWwood_nb_C4_min_gwp)
IW_nb_gwp_3_1_2 = AreaInteriorWall_nb * (IWwood_nb_A1A3_max_gwp
+ IWwood_nb_B4_max_gwp + IWwood_nb_C3_max_gwp + IWwood_nb_C4_max_gwp)
IW_nb_gwp_3_1_3 = AreaInteriorWall_nb * (IWwood_nb_A1A3_min_gwp
+ IWwood_nb_B4_min_gwp + IWwood_nb_C3_min_gwp + IWwood_nb_C4_min_gwp
+ IWwood_nb_D_min_gwp + IWwood_nb_DofB4_min_gwp)
IW_nb_gwp_3_1_4 = AreaInteriorWall_nb * (IWwood_nb_A1A3_max_gwp
+ IWwood_nb_B4_max_gwp + IWwood_nb_C3_max_gwp + IWwood_nb_C4_max_gwp
+ IWwood_nb_D_max_gwp + IWwood_nb_DofB4_max_gwp)
(See comment at FRO nb)
CW_old_gwp_3_1_1 = AreaCellarWall_old * (CW_old_1_C3_min_gwp
+ CW_old_1_C4_min_gwp)
CW_old_gwp_3_1_2 = AreaCellarWall_old * (CW_old_1_C3_max_gwp
+ CW old 1 C4 max gwp)
CW_old_gwp_3_1_3 = AreaCellarWall_old * (CW_old_1_C3_min_gwp
+ CW_old_1_C4_min_gwp + CW_old_1_D_min_gwp)
CW old gwp 3 1 4 = AreaCellarWall old * (CW old 1 C3 max gwp
+ CW_old_1_C4_max_gwp + CW_old_1_D_max_gwp)
CW_h_nb_gwp_3_1_1 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_min_gwp
+ CW h nb B4 min gwp + CW h nb C3 min gwp + CW h nb C4 min gwp)
CW_h_nb_gwp_3_1_2 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_max_gwp
+ CW_h_nb_B4_max_gwp + CW_h_nb_C3_max_gwp + CW_h_nb_C4_max_gwp)
CW h nb gwp 3 1 3 = AreaCellarWall h nb * (CW h nb A1A3 min gwp
+ CW h nb B4 min gwp + CW h nb C3 min gwp + CW h nb C4 min gwp
+ CW_h_nb_D_min_gwp + CW_h_nb_DofB4_min_gwp)
CW_h_nb_gwp_3_1_4 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_max_gwp
+ CW h nb B4 max gwp + CW h nb C3 max gwp + CW h nb C4 max gwp
+ CW_h_nb_D_max_gwp + CW_h_nb_DofB4_max_gwp)
(In this scenario four massive construction types are considered: construction
with brick (CW_h_br), lime sand brick (CW_h_lsb), gas concrete (CW_h_gs) and
reinforced concrete (CWh h rc). If you want to, you could only choose only a part
of them.)
CW_uh_nb_gwp_3_1_1 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_min_gwp
+ CW uh nb B4 min gwp + CW uh nb C3 min gwp + CW uh nb C4 min gwp)
CW_uh_nb_gwp_3_1_2 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_max_gwp
+ CW_uh_nb_B4_max_gwp + CW_uh_nb_C3_max_gwp + CW_uh_nb_C4_max_gwp)
```

```
CW_uh_nb_gwp_3_1_3 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_min_gwp
+ CW_uh_nb_B4_min_gwp + CW_uh_nb_C3_min_gwp + CW_uh_nb_C4_min_gwp
+ CW_uh_nb_D_min_gwp + CW_uh_nb_DofB4_min_gwp)
CW_uh_nb_gwp_3_1_4 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_max_gwp
+ CW_uh_nb_B4_max_gwp + CW_uh_nb_C3_max_gwp + CW_uh_nb_C4_max_gwp
+ CW_uh_nb_D_max_gwp + CW_uh_nb_DofB4_max_gwp)
(see comment at CW h nb)
SCW_old_gwp_3_1_1 = AreaSharedCellarWall_old * (SCW_old_1_C3_min_gwp
+ SCW_old_1_C4_min_gwp)
SCW_old_gwp_3_1_2 = AreaSharedCellarWall_old * (SCW_old_1_C3_max_gwp
+ SCW_old_1_C4_max_gwp)
SCW_old_gwp_3_1_3 = AreaSharedCellarWall_old * (SCW_old_1_C3_min_gwp
+ SCW_old_1_C4_min_gwp + SCW_old_1_D_min_gwp)
SCW_old_gwp_3_1_4 = AreaSharedCellarWall_old * (SCW_old_1_C3_max_gwp
+ SCW_old_1_C4_max_gwp + SCW_old_1_D_max_gwp)
(see comment at CW_h_nb)
SCW_h_nb_gwp_3_1_1 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_min_gwp
+ SCW_h_nb_B4_min_gwp + SCW_h_nb_C3_min_gwp + SCW_h_nb_C4_min_gwp)
SCW_h_nb_gwp_3_1_2 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_max_gwp
+ SCW_h_nb_B4_max_gwp + SCW_h_nb_C3_max_gwp + SCW_h_nb_C4_max_gwp)
SCW_h_nb_gwp_3_1_3 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_min_gwp
+ SCW_h_nb_B4_min_gwp + SCW_h_nb_C3_min_gwp + SCW_h_nb_C4_min_gwp
+ SCW_h_nb_D_min_gwp + SCW_h_nb_DofB4_min_gwp)
SCW_h_nb_gwp_3_1_4 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_max_gwp
+ SCW_h_nb_B4_max_gwp + SCW_h_nb_C3_max_gwp + SCW_h_nb_C4_max_gwp
+ SCW_h_nb_D_max_gwp + SCW_h_nb_DofB4_max_gwp)
(see comment at CW h nb)
SCW_uh_nb_gwp_3_1_1 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_min_gwp
+ SCW uh nb B4 min gwp + SCW uh nb C3 min gwp + SCW uh nb C4 min gwp)
SCW_uh_nb_gwp_3_1_2 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_max_gwp
+ SCW_uh_nb_B4_max_gwp + SCW_uh_nb_C3_max_gwp + SCW_uh_nb_C4_max_gwp)
SCW uh nb gwp 3 1 3 = AreaSharedCellarWall uh nb * (SCW uh nb A1A3 min gwp
+ SCW_uh_nb_B4_min_gwp + SCW_uh_nb_C3_min_gwp + SCW_uh_nb_C4_min_gwp
+ SCW_uh_nb_D_min_gwp + SCW_uh_nb_DofB4_min_gwp)
SCW_uh_nb_gwp_3_1_4 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_max_gwp
+ SCW uh nb B4 max gwp + SCW uh nb C3 max gwp + SCW uh nb C4 max gwp
+ SCW_uh_nb_D_max_gwp + SCW_uh_nb_DofB4_max_gwp)
(see comment at CW_h_nb)
FL_old_gwp_3_1_1 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp)
FL_old_gwp_3_1_2 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp)
FL_old_gwp_3_1_3 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp
+ FL old 1 D min gwp)
FL_old_gwp_3_1_4 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp
+ FL_old_1_D_max_gwp)
(Here, you could differentiate between FLmas and FLwood, if it's necessary. But it
must be checked that every relevant building age class has a value.
```

```
FL_nb_gwp_3_1_1 = AreaFloor_nb * (FLwood_nb_A1A3_min_gwp + FLwood_nb_B4_min_gwp
+ FLwood_nb_C3_min_gwp + FLwood_nb_C4_min_gwp)
FL_nb_gwp_3_1_2 = AreaFloor_nb * (FLwood_nb_A1A3_max_gwp + FLwood_nb_B4_max_gwp
+ FLwood_nb_C3_max_gwp + FLwood_nb_C4_max_gwp)
FL_nb_gwp_3_1_3 = AreaFloor_nb * (FLwood_nb_A1A3_min_gwp + FLwood_nb_B4_min_gwp
+ FLwood_nb_C3_min_gwp + FLwood_nb_C4_min_gwp + FLwood_nb_D_min_gwp
+ FLwood nb DofB4 min gwp)
FL_nb_gwp_3_1_4 = AreaFloor_nb * (FLwood_nb_A1A3_max_gwp + FLwood_nb_B4_max_gwp
+ FLwood_nb_C3_max_gwp + FLwood_nb_C4_max_gwp + FLwood_nb_D_max_gwp
+ FLwood_nb_DofB4_max_gwp)
(See comment at FRO_nb)
TFL_old_gwp_3_1_1 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp)
TFL_old_gwp_3_1_2 = AreaTopFloor_old * (TFL_old_1_C3_max_gwp
+ TFL_old_1_C4_max_gwp)
TFL_old_gwp_3_1_3 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp + TFL_old_1_D_min_gwp)
TFL old gwp 3 1 4 = AreaTopFloor old * (TFL old 1 C3 max gwp
+ TFL_old_1_C4_max_gwp + TFL_old_1_D_max_gwp)
(Here, you could differentiate between TFLmas and TFLwood, if it's necessary. But
it must be checked that every relevant building age class has a value.
CFL_old_gwp_3_1_1 = AreaCellarFloor_old * (CFL_old_1_C3_min_gwp
+ CFL_old_1_C4_min_gwp)
CFL_old_gwp_3_1_2 = AreaCellarFloor_old * (CFL_old_1_C3_max_gwp
+ CFL_old_1_C4_max_gwp)
CFL_old_gwp_3_1_3 = AreaCellarFloor_old * (CFL_old_1_C3_min_gwp
+ CFL_old_1_C4_min_gwp + CFL_old_1_D_min_gwp)
CFL_old_gwp_3_1_4 = AreaCellarFloor_old * (CFL_old_1_C3_max_gwp
+ CFL_old_1_C4_max_gwp + CFL_old_1_D_max_gwp)
(Here, you could differentiate between CFLmas and CFLwood, if it's necessary. But
it must be checked that every relevant building age class has a value.
CFL_nb_gwp_3_1_1 = AreaCellarFloor_nb * (CFLwood_nb_A1A3_min_gwp
+ CFLwood_nb_B4_min_gwp + CFLwood_nb_C3_min_gwp + CFLwood_nb_C4_min_gwp)
CFL_nb_gwp_3_1_2 = AreaCellarFloor_nb * (CFLwood_nb_A1A3_max_gwp
+ CFLwood_nb_B4_max_gwp + CFLwood_nb_C3_max_gwp + CFLwood_nb_C4_max_gwp)
CFL nb gwp 3 1 3 = AreaCellarFloor nb * (CFLwood nb A1A3 min gwp
+ CFLwood_nb_B4_min_gwp + CFLwood_nb_C3_min_gwp + CFLwood_nb_C4_min_gwp
+ CFLwood nb D min gwp + CFLwood nb DofB4 min gwp)
CFL_nb_gwp_3_1_4 = AreaCellarFloor_nb * (CFLwood_nb_A1A3_max_gwp
+ CFLwood nb B4 max gwp + CFLwood nb C3 max gwp + CFLwood nb C4 max gwp
+ CFLwood nb D max gwp + CFLwood nb DofB4 max gwp)
(See comment at FRO nb)
BP old gwp_3_1_1 = AreaBasePlate_old * (BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp)
BP_old_gwp_3_1_2 = AreaBasePlate_old * (BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp)
BP_old_gwp_3_1_3 = AreaBasePlate_old * (BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp
+ BP old 1 D min gwp)
```

```
BP_old_gwp_3_1_4 = AreaBasePlate_old * (BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp
+ BP_old_1_D_max_gwp)
BP_h_nb_gwp_3_1_1 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_min_gwp
+ BP_h_nb_B4_min_gwp + BP_h_nb_C3_min_gwp + BP_h_nb_C4_min_gwp)
BP_h_nb_gwp_3_1_2 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_max_gwp
+ BP_h_nb_B4_max_gwp + BP_h_nb_C3_max_gwp + BP_h_nb_C4_max_gwp)
BP_h_nb_gwp_3_1_3 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_min_gwp
+ BP_h_nb_B4_min_gwp + BP_h_nb_C3_min_gwp + BP_h_nb_C4_min_gwp
+ BP_h_nb_D_min_gwp + BP_h_nb_DofB4_min_gwp)
BP_h_nb_gwp_3_1_4 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_max_gwp
+ BP_h_nb_B4_max_gwp + BP_h_nb_C3_max_gwp + BP_h_nb_C4_max_gwp
+ BP_h_nb_D_max_gwp + BP_h_nb_DofB4_max_gwp)
BP_uh_nb_gwp_3_1_1 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_min_gwp
+ BP_uh_nb_B4_min_gwp + BP_uh_nb_C3_min_gwp + BP_uh_nb_C4_min_gwp)
BP_uh_nb_gwp_3_1_2 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_max_gwp
+ BP_uh_nb_B4_max_gwp + BP_uh_nb_C3_max_gwp + BP_uh_nb_C4_max_gwp)
BP uh nb gwp 3 1 3 = AreaBasePlate uh nb * (BP uh nb A1A3 min gwp
+ BP_uh_nb_B4_min_gwp + BP_uh_nb_C3_min_gwp + BP_uh_nb_C4_min_gwp
+ BP_uh_nb_D_min_gwp + BP_uh_nb_DofB4_min_gwp)
BP_uh_nb_gwp_3_1_4 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_max_gwp
+ BP_uh_nb_B4_max_gwp + BP_uh_nb_C3_max_gwp + BP_uh_nb_C4_max_gwp
+ BP_uh_nb_D_max_gwp + BP_uh_nb_DofB4_max_gwp)
F_old_gwp_3_1_1 = AreaFoundation_old * (F_old_1_C3_min_gwp + F_old_1_C4_min_gwp)
F_old_gwp_3_1_2 = AreaFoundation_old * (F_old_1_C3_max_gwp + F_old_1_C4_max_gwp)
F_old_gwp_3_1_3 = AreaFoundation_old * (F_old_1_C3_min_gwp + F_old_1_C4_min_gwp
+ F old 1 D min gwp)
F_old_gwp_3_1_4 = AreaFoundation_old * (F_old_1_C3_max_gwp + F_old_1_C4_max_gwp
+ F_old_1_D_max_gwp)
W_old_gwp_3_1_1 = AreaWindow_old * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp)
W_old_gwp_3_1_2 = AreaWindow_old * (W_old_1_C3_max_gwp + W_old_1_C4_max_gwp)
W_old_gwp_3_1_3 = AreaWindow_old * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W old 1 D min gwp)
W_old_gwp_3_1_4 = AreaWindow_old * (W_old_1_C3_max_gwp + W_old_1_C4_max_gwp
+ W_old_1_D_max_gwp)
(Here, you could differentiate between Walu old. Walu nb, Wwood old, Wwood nb,
Wplas_old and Wplas_nb if it's necessary. But it must be checked that every
relevant building age class has a value.)
W_nb_gwp_3_1_1 = AreaWindow_nb * (W_nb_A1A3_min_gwp + W_nb_B4_min_gwp
+ W_nb_C3_min_gwp + W_nb_C4_min_gwp)
W_nb_gwp_3_1_2 = AreaWindow_nb * (W_nb_A1A3_max_gwp + W_nb_B4_max_gwp
+ W nb C3 max gwp + W nb C4 max gwp)
W_nb_gwp_3_1_3 = AreaWindow_nb * (W_nb_A1A3_min_gwp + W_nb_B4_min_gwp
+ W_nb_C3_min_gwp + W_nb_C4_min_gwp + W_nb_D_min_gwp + W_nb_DofB4_min_gwp)
```

```
W_nb_gwp_3_1_4 = W_nb_gwp_3_2_4 = AreaWindow_nb * (W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp + W_nb_D_max_gwp + W_nb_DofB4_max_gwp)

(Here, you could differentiate between Walu_nb, Wwood_nb and Wplas_nb if it's necessary. But it must be checked that every relevant building age class has a value.)
```

Tabelle A. 98: Logik der Kennwertberechnung Szenario 3.2, Abriss und Ersatzneubau in Massivbauweise; eigene Darstellung in englischer Sprache

After the determination of the building construction areas, the environmental values

```
of every building construction of each residential building can be calculated. The
next lines show the calculation of the GWP of scenario 3.2.1 to 3.2.4 for buildings in
building age class 1. The other building age classes as well as PET and PENRT aren't
shown in detail, but they are calculated in the same way.
If SC == 3.2.1 or if SC == 3.2.2 or if SC == 3.2.3 or if SC == 3.2.4 and
if BAC == BAC1 then
    PRO_old_gwp_3_2_1 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
    + PRO_old_1_C4_min_gwp)
    PRO_old_gwp_3_2_2 = AreaPitchedRoof_old * (PRO_old_1_C3_max_gwp
    + PRO old 1 C4 max gwp)
    PRO_old_gwp_3_2_3 = AreaPitchedRoof_old * (PRO_old_1_C3_min_gwp
    + PRO_old_1_C4_min_gwp + PRO_old_1_D_min_gwp)
    PRO old gwp 3 2 4 = AreaPitchedRoof old * (PRO old 1 C3 max gwp
    + PRO_old_1_C4_max_gwp + PRO_old_1_D_max_gwp)
    (For PET and BAC3: PRO_old_pet_3_2_1 = AreaPitchedRoof_old * (PRO_old_3_C3_min_pet
    + PRO old 3 C4 min pet);
    for PENRT: PRO_old_penrt_3_2_1 = AreaPitchedRoof_old * (PRO_old_3_C3_min_penrt
    + PRO_old_3_C4_min_penrt) etc.)
    FRO old gwp 3 2 1 = AreaFlatRoof old * (FRO old 1 C3 min gwp
    + FRO_old_1_C4_min_gwp)
    FRO_old_gwp_3_2_2 = AreaFlatRoof_old * (FRO_old_1_C3_max_gwp
    + FRO old 1 C4 max gwp)
    FRO_old_gwp_3_2_3 = AreaFlatRoof_old * (FRO_old_1_C3_min gwp
    + FRO_old_1_C4_min_gwp + FRO_old_1_D_min_gwp)
    FRO old gwp 3 2 4 = AreaFlatRoof old * (FRO old 1 C3 max gwp
    + FRO_old_1_C4_max_gwp + FRO_old_1_D_max_gwp)
    (Here, you could differentiate between FROmas old and FROwood old if
    it's necessary. But it must be checked that every relevant building age
    class has a value.)
    FRO nb gwp 3 2 1 = AreaFlatRoof nb * (FROmas nb A1A3 min gwp
    + FROmas nb B4 min gwp + FROmas nb C3 min gwp + FROmas nb C4 min gwp)
    FRO nb gwp 3 2 2 = AreaFlatRoof nb * (FROmas nb A1A3 max gwp
    + FROmas nb B4 max gwp + FROmas nb C3 max gwp + FROmas nb C4 max gwp)
    FRO nb gwp 3 2 3 = AreaFlatRoof nb * (FROmas nb A1A3 min gwp
    + FROmas_nb_B4_min_gwp + FROmas_nb_C3_min_gwp + FROmas_nb_C4_min_gwp
    + FROmas nb D min gwp + FROmas nb DofB4 min gwp)
    FRO nb gwp 3 2 4 = AreaFlatRoof nb * (FROmas nb A1A3 max gwp
    + FROmas_nb_B4_max_gwp + FROmas_nb_C3_max_gwp + FROmas_nb_C4_max_gwp
    + FROmas nb D max gwp + FROmas nb DofB4 max gwp)
    (In this scenario the flat roof are always built with reinforced concrete
    (FROmas_rc).)
    EW old gwp 3 2 1 = AreaExteriorWall old * (EW old 1 C3 min gwp
    + EW_old_1_C4_min_gwp)
```

```
EW_old_gwp_3_2_2 = AreaExteriorWall_old * (EW_old_1_C3_max_gwp
+ EW_old_1_C4_max_gwp)
EW old gwp 3 2 3 = AreaExteriorWall old * (EW old 1 C3 min gwp
+ EW_old_1_C4_min_gwp + EW_old_1_D_min_gwp)
EW_old_gwp_3_2_4 = AreaExteriorWall_old * (EW_old_1_C3_max_gwp
+ EW_old_1_C4_max_gwp + EW_old_1_D_max_gwp)
(Here, you could differentiate between EWmas old, EW2shelled old, EWcwf old and
EWwood_old, if it's necessary. But it must be checked that every relevant building
age class has a value.)
EW nb gwp 3 2 1 = AreaExteriorWall nb * (EWmas nb A1A3 min gwp
+ EWmas_nb_B4_min_gwp + EWmas_nb_C3_min_gwp + EWmas_nb_C4_min_gwp)
EW_nb_gwp_3_2_2 = AreaExteriorWall_nb * (EWmas_nb_A1A3_max_gwp
+ EWmas_nb_B4_max_gwp + EWmas_nb_C3_max_gwp + EWmas_nb_C4_max_gwp)
EW_nb_gwp_3_2_3 = AreaExteriorWall_nb * (EWmas_nb_A1A3_min_gwp
+ EWmas_nb_B4_min_gwp + EWmas_nb_C3_min_gwp + EWmas_nb_C4_min_gwp
+ EWmas_nb_D_min_gwp + EWmas_nb_DofB4_min_gwp)
EW_nb_gwp_3_2_4 = AreaExteriorWall_nb * (EWmas_nb_A1A3_max_gwp
+ EWmas_nb_B4_max_gwp + EWmas_nb_C3_max_gwp + EWmas_nb_C4_max_gwp
+ EWmas_nb_D_max_gwp + EWmas_nb_DofB4_max_gwp)
(In this scenario four massive construction types are considered: construction
with brick (EWmas br), lime sand brick (EWmas Lsb), gas concrete (EWmas gs) and
reinforced concrete (EWmas rc). If you want to, you could only choose only a part
of them.)
SW_old_gwp_3_2_1 = AreaSharedWall_old * (SW_old_1_C3_min_gwp
+ SW_old_1_C4_min_gwp)
SW old gwp 3 2 2 = AreaSharedWall old * (SW old 1 C3 max gwp
+ SW old 1 C4 max gwp)
SW_old_gwp_3_2_3 = AreaSharedWall_old * (SW_old_1_C3_min_gwp
+ SW_old_1_C4_min_gwp + SW_old_1_D_min_gwp)
SW old gwp 3 2 4 = AreaSharedWall old * (SW old 1 C3 max gwp
+ SW_old_1_C4_max_gwp + SW_old_1_D_max_gwp)
(Here, you could differentiate between SWmas_old, SW2shelled_old, SWcwf_old and
SWwood old if it's necessary. But it must be checked that every relevant building
age class has a value.)
SW_nb_gwp_3_2_1 = AreaSharedWall_nb * (SWmas_nb_A1A3_min_gwp + SWmas_nb_B4_min_gwp
+ SWmas nb C3 min gwp + SWmas nb C4 min gwp)
SW nb gwp 3 2 2 = AreaSharedWall nb * (SWmas nb A1A3 max gwp + SWmas nb B4 max gwp
+ SWmas_nb_C3_max_gwp + SWmas_nb_C4_max_gwp)
SW nb gwp 3 2 3 = AreaSharedWall nb * (SWmas nb A1A3 min gwp + SWmas nb B4 min gwp
+ SWmas_nb_C3_min_gwp + SWmas_nb_C4_min_gwp + SWmas_nb_D_min_gwp
+ SWmas nb DofB4 min gwp)
SW nb gwp 3 2 4 = AreaSharedWall nb * (SWmas nb A1A3 max gwp + SWmas nb B4 max gwp
+ SWmas_nb_C3_max_gwp + SWmas_nb_C4_max_gwp + SWmas_nb_D_max_gwp
+ SWmas nb DofB4 max gwp)
(See comment at EW nb)
IW_old_gwp_3_2_1 = AreaInteriorWall_old * (IW_old_1_C3_min_gwp
+ IW old 1 C4 min gwp)
```

```
IW_old_gwp_3_2_2 = AreaInteriorWall_old * (IW_old_1_C3_max_gwp
+ IW_old_1_C4_max_gwp)
IW old gwp 3 2 3 = AreaInteriorWall old * (IW old 1 C3 min gwp
+ IW_old_1_C4_min_gwp + IW_old_1_D_min_gwp)
IW_old_gwp_3_2_4 = AreaInteriorWall_old * (IW_old_1_C3_max_gwp
+ IW_old_1_C4_max_gwp + IW_old_1_D_max_gwp)
(Here, you could differentiate between IWmas old and IWwood old if it's
necessary. But it must be checked that every relevant building age class
has a value.)
IW_nb_gwp_3_2_1 = AreaInteriorWall_nb * (IWmas_nb_A1A3_min_gwp
+ IWmas_nb_B4_min_gwp + IWmas_nb_C3_min_gwp + IWmas_nb_C4_min_gwp)
IW_nb_gwp_3_2_2 = AreaInteriorWall_nb * (IWmas_nb_A1A3_max_gwp
+ IWmas_nb_B4_max_gwp + IWmas_nb_C3_max_gwp + IWmas_nb_C4_max_gwp)
IW_nb_gwp_3_2_3 = AreaInteriorWall_nb * (IWmas_nb_A1A3_min_gwp
+ IWmas_nb_B4_min_gwp + IWmas_nb_C3_min_gwp + IWmas_nb_C4_min_gwp
+ IWmas_nb_D_min_gwp + IWmas_nb_DofB4_min_gwp)
IW_nb_gwp_3_2_4 = AreaInteriorWall_nb * (IWmas_nb_A1A3_max_gwp
+ IWmas_nb_B4_max_gwp + IWmas_nb_C3_max_gwp + IWmas_nb_C4_max_gwp
+ IWmas_nb_D_max_gwp + IWmas_nb_DofB4_max_gwp)
(See comment at EW nb)
CW_old_gwp_3_2_1 = AreaCellarWall_old * (CW_old_1_C3_min_gwp
+ CW_old_1_C4_min_gwp)
CW_old_gwp_3_2_2 = AreaCellarWall_old * (CW_old_1_C3_max_gwp
+ CW_old_1_C4_max_gwp)
CW_old_gwp_3_2_3 = AreaCellarWall_old * (CW_old_1_C3_min_gwp
+ CW_old_1_C4_min_gwp + CW_old_1_D_min_gwp)
CW old gwp 3 2 4 = AreaCellarWall old * (CW old 1 C3 max gwp
+ CW_old_1_C4_max_gwp + CW_old_1_D_max_gwp)
CW_h_nb_gwp_3_2_1 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_min_gwp
+ CW h nb B4 min gwp + CW h nb C3 min gwp + CW h nb C4 min gwp)
CW_h_nb_gwp_3_2_2 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_max_gwp
+ CW_h_nb_B4_max_gwp + CW_h_nb_C3_max_gwp + CW_h_nb_C4_max_gwp)
CW h nb gwp 3 2 3 = AreaCellarWall h nb * (CW h nb A1A3 min gwp
+ CW_h_nb_B4_min_gwp + CW_h_nb_C3_min_gwp + CW_h_nb_C4_min_gwp
+ CW_h_nb_D_min_gwp + CW_h_nb_DofB4_min_gwp)
CW_h_nb_gwp_3_2_4 = AreaCellarWall_h_nb * (CW_h_nb_A1A3_max_gwp
+ CW h nb B4 max gwp + CW h nb C3 max gwp + CW h nb C4 max gwp
+ CW_h_nb_D_max_gwp + CW_h_nb_DofB4_max_gwp)
(In this scenario four massive construction types are considered: construction
with brick (CW_h_br), lime sand brick (CW_h_lsb), gas concrete (CW_h_gs) and
reinforced concrete (CWh_h_rc). If you want to, you could only choose only a part
of them.)
CW uh nb gwp 3 2 1 = AreaCellarWall uh nb * (CW uh nb A1A3 min gwp
+ CW uh nb B4 min gwp + CW uh nb C3 min gwp + CW uh nb C4 min gwp)
CW_uh_nb_gwp_3_2_2 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_max_gwp
+ CW_uh_nb_B4_max_gwp + CW_uh_nb_C3_max_gwp + CW_uh_nb_C4_max_gwp)
```

```
CW uh nb gwp 3 2 3 = AreaCellarWall uh nb * (CW uh nb A1A3 min gwp
+ CW_uh_nb_B4_min_gwp + CW_uh_nb_C3_min_gwp + CW_uh_nb_C4_min_gwp
+ CW_uh_nb_D_min_gwp + CW_uh_nb_DofB4_min_gwp)
CW_uh_nb_gwp_3_2_4 = AreaCellarWall_uh_nb * (CW_uh_nb_A1A3_max_gwp
+ CW_uh_nb_B4_max_gwp + CW_uh_nb_C3_max_gwp + CW_uh_nb_C4_max_gwp
+ CW_uh_nb_D_max_gwp + CW_uh_nb_DofB4_max_gwp)
(See comment at CW h nb)
SCW_old_gwp_3_2_1 = AreaSharedCellarWall_old * (SCW_old_1_C3_min_gwp
+ SCW_old_1_C4_min_gwp)
SCW_old_gwp_3_2_2 = AreaSharedCellarWall_old * (SCW_old_1_C3_max_gwp
+ SCW_old_1_C4_max_gwp)
SCW_old_gwp_3_2_3 = AreaSharedCellarWall_old * (SCW_old_1_C3_min_gwp
+ SCW_old_1_C4_min_gwp + SCW_old_1_D_min_gwp)
SCW_old_gwp_3_2_4 = AreaSharedCellarWall_old * (SCW_old_1_C3_max_gwp
+ SCW_old_1_C4_max_gwp + SCW_old_1_D_max_gwp)
(Here, you could differentiate between SWmas_old, SW2shelled_old, SWcwf_old and
SWwood_old if it's necessary. But it must be checked that every relevant building
age class has a value.)
SCW_h_nb_gwp_3_2_1 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_min_gwp
+ SCW_h_nb_B4_min_gwp + SCW_h_nb_C3_min_gwp + SCW_h_nb_C4_min_gwp)
SCW_h_nb_gwp_3_2_2 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_max_gwp
+ SCW_h_nb_B4_max_gwp + SCW_h_nb_C3_max_gwp + SCW_h_nb_C4_max_gwp)
SCW_h_nb_gwp_3_2_3 = AreaSharedCellarWall_h_nb * (SCW_h_nb_A1A3_min_gwp
+ SCW h nb B4 min gwp + SCW h nb C3 min gwp + SCW h nb C4 min gwp
+ SCW_h_nb_D_min_gwp + SCW_h_nb_DofB4_min_gwp)
SCW h nb gwp 3 2 4 = AreaSharedCellarWall h nb * (SCW h nb A1A3 max gwp
+ SCW_h_nb_B4_max_gwp + SCW_h_nb_C3_max_gwp + SCW_h_nb_C4_max_gwp
+ SCW_h_nb_D_max_gwp + SCW_h_nb_DofB4_max_gwp)
(See comment at CW_h_nb)
SCW_uh_nb_gwp_3_2_1 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_min_gwp
+ SCW_uh_nb_B4_min_gwp + SCW_uh_nb_C3_min_gwp + SCW_uh_nb_C4_min_gwp)
SCW uh nb gwp 3 2 2 = AreaSharedCellarWall uh nb * (SCW uh nb A1A3 max gwp
+ SCW uh nb B4 max gwp + SCW uh nb C3 max gwp + SCW uh nb C4 max gwp)
SCW_uh_nb_gwp_3_2_3 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_min_gwp
+ SCW_uh_nb_B4_min_gwp + SCW_uh_nb_C3_min_gwp + SCW_uh_nb_C4_min_gwp
+ SCW uh nb D min gwp + SCW uh nb DofB4 min gwp)
SCW_uh_nb_gwp_3_2_4 = AreaSharedCellarWall_uh_nb * (SCW_uh_nb_A1A3_max_gwp
+ SCW_uh_nb_B4_max_gwp + SCW_uh_nb_C3_max_gwp + SCW_uh_nb_C4_max_gwp
+ SCW uh nb D max gwp + SCW uh nb DofB4 max gwp)
(See comment at CW h nb)
FL_old_gwp_3_2_1 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp)
FL_old_gwp_3_2_2 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp)
FL_old_gwp_3_2_3 = AreaFloor_old * (FL_old_1_C3_min_gwp + FL_old_1_C4_min_gwp
+ FL old 1 D min gwp)
FL_old_gwp_3_2_4 = AreaFloor_old * (FL_old_1_C3_max_gwp + FL_old_1_C4_max_gwp
+ FL old 1 D max gwp)
```

```
(Here, you could differentiate between FLmas and FLwood, if it's necessary. But it
must be checked that every relevant building age class has a value.
FL_nb_gwp_3_2_1 = AreaFloor_nb * (FLmas_nb_A1A3_min_gwp + FLmas_nb_B4_min_gwp
+ FLmas_nb_C3_min_gwp + FLmas_nb_C4_min_gwp)
FL_nb_gwp_3_2_2 = AreaFloor_nb * (FLmas_nb_A1A3_max_gwp + FLmas_nb_B4_max_gwp
+ FLmas_nb_C3_max_gwp + FLmas_nb_C4_max_gwp)
FL_nb_gwp_3_2_3 = AreaFloor_nb * (FLmas_nb_A1A3_min_gwp + FLmas_nb_B4_min_gwp
+ FLmas_nb_C3_min_gwp + FLmas_nb_C4_min_gwp + FLmas_nb_D_min_gwp
+ FLmas_nb_DofB4_min_gwp)
FL_nb_gwp_3_2_4 = AreaFloor_nb * (FLmas_nb_A1A3_max_gwp + FLmas_nb_B4_max_gwp
+ FLmas_nb_C3_max_gwp + FLmas_nb_C4_max_gwp + FLmas_nb_D_max_gwp
+ FLmas_nb_DofB4_max_gwp)
(See comment at FRO nb)
TFL_old_gwp_3_2_1 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp)
TFL_old_gwp_3_2_2 = AreaTopFloor_old * (TFL_old_1_C3_max_gwp
+ TFL_old_1_C4_max_gwp)
TFL_old_gwp_3_2_3 = AreaTopFloor_old * (TFL_old_1_C3_min_gwp
+ TFL_old_1_C4_min_gwp + TFL_old_1_D_min_gwp)
TFL_old_gwp_3_2_4 = AreaTopFloor_old * (TFL_old_1_C3_max_gwp
+ TFL_old_1_C4_max_gwp + TFL_old_1_D_max_gwp)
(Here, you could differentiate between TFLmas and TFLwood, if it's
necessary. But it must be checked that every relevant building age
class has a value.
CFL_old_gwp_3_2_1 = AreaCellarFloor_old * (CFL_old_1_C3_min_gwp
+ CFL old 1 C4 min gwp)
CFL_old_gwp_3_2_2 = AreaCellarFloor_old * (CFL_old_1_C3_max_gwp
+ CFL_old_1_C4_max_gwp)
CFL old gwp 3 2 3 = AreaCellarFloor old * (CFL old 1 C3 min gwp
+ CFL_old_1_C4_min_gwp + CFL_old_1_D_min_gwp)
CFL_old_gwp_3_2_4 = AreaCellarFloor_old * (CFL_old_1_C3_max_gwp
+ CFL old 1 C4 max gwp + CFL old 1 D max gwp)
(Here, you could differentiate between CFLmas_old and CFLwood_old if it's
necessary. But it must be checked that every relevant building age
class has a value.)
CFL_nb_gwp_3_2_1 = AreaCellarFloor_nb * (CFLmas_nb_A1A3_min_gwp
+ CFLmas_nb_B4_min_gwp + CFLmas_nb_C3_min_gwp + CFLmas_nb_C4_min_gwp)
CFL_nb_gwp_3_2_2 = AreaCellarFloor_nb * (CFLmas_nb_A1A3_max_gwp
+ CFLmas_nb_B4_max_gwp + CFLmas_nb_C3_max_gwp + CFLmas_nb_C4_max_gwp)
CFL_nb_gwp_3_2_3 = AreaCellarFloor_nb * (CFLmas_nb_A1A3_min_gwp
+ CFLmas_nb_B4_min_gwp + CFLmas_nb_C3_min_gwp + CFLmas_nb_C4_min_gwp
+ CFLmas_nb_D_min_gwp + CFLmas_nb_DofB4_min_gwp)
CFL_nb_gwp_3_2_4 = AreaCellarFloor_nb * (CFLmas_nb_A1A3_max_gwp
+ CFLmas_nb_B4_max_gwp + CFLmas_nb_C3_max_gwp + CFLmas_nb_C4_max_gwp
+ CFLmas_nb_D_max_gwp + CFLmas_nb_DofB4_max_gwp)
(See comment at FRO nb)
```

```
BP_old_gwp_3_2_1 = AreaBasePlate_old * (BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp)
BP_old_gwp_3_2_2 = AreaBasePlate_old * (BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp)
BP_old_gwp_3_2_3 = AreaBasePlate_old * (BP_old_1_C3_min_gwp + BP_old_1_C4_min_gwp
+ BP_old_1_D_min_gwp)
BP_old_gwp_3_2_4 = AreaBasePlate_old * (BP_old_1_C3_max_gwp + BP_old_1_C4_max_gwp
+ BP old 1 D max gwp)
BP_h_nb_gwp_3_2_1 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_min_gwp
+ BP_h_nb_B4_min_gwp + BP_h_nb_C3_min_gwp + BP_h_nb_C4_min_gwp)
BP_h_nb_gwp_3_2_2 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_max_gwp
+ BP_h_nb_B4_max_gwp + BP_h_nb_C3_max_gwp + BP_h_nb_C4_max_gwp)
BP_h_nb_gwp_3_2_3 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_min_gwp
+ BP_h_nb_B4_min_gwp + BP_h_nb_C3_min_gwp + BP_h_nb_C4_min_gwp
+ BP_h_nb_D_min_gwp + BP_h_nb_DofB4_min_gwp)
BP_h_nb_gwp_3_2_4 = AreaBasePlate_h_nb * (BP_h_nb_A1A3_max_gwp
+ BP_h_nb_B4_max_gwp + BP_h_nb_C3_max_gwp + BP_h_nb_C4_max_gwp
+ BP_h_nb_D_max_gwp + BP_h_nb_DofB4_max_gwp)
BP_uh_nb_gwp_3_2_1 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_min_gwp
+ BP_uh_nb_B4_min_gwp + BP_uh_nb_C3_min_gwp + BP_uh_nb_C4_min_gwp)
BP_uh_nb_gwp_3_2_2 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_max_gwp
+ BP_uh_nb_B4_max_gwp + BP_uh_nb_C3_max_gwp + BP_uh_nb_C4_max_gwp)
BP_uh_nb_gwp_3_2_3 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_min_gwp
+ BP_uh_nb_B4_min_gwp + BP_uh_nb_C3_min_gwp + BP_uh_nb_C4_min_gwp
+ BP_uh_nb_D_min_gwp + BP_uh_nb_DofB4_min_gwp)
BP_uh_nb_gwp_3_2_4 = AreaBasePlate_uh_nb * (BP_uh_nb_A1A3_max_gwp
+ BP_uh_nb_B4_max_gwp + BP_uh_nb_C3_max_gwp + BP_uh_nb_C4_max_gwp
+ BP_uh_nb_D_max_gwp + BP_uh_nb_DofB4_max_gwp)
F_old_gwp_3_2_1 = AreaFoundation_old * (F_old_1_C3_min_gwp + F_old_1_C4_min_gwp)
F_old_gwp_3_2_2 = AreaFoundation_old * (F_old_1_C3_max_gwp + F_old_1_C4_max_gwp)
F_old_gwp_3_2_3 = AreaFoundation_old * (F_old_1_C3_min_gwp + F_old_1_C4_min_gwp
+ F_old_1_D_min_gwp)
F old gwp 3 2 4 = AreaFoundation old * (F old 1 C3 max gwp + F old 1 C4 max gwp
+ F_old_1_D_max_gwp)
W_old_gwp_3_2_1 = AreaWindow_old * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp)
W old gwp 3 2 2 = AreaWindow old * (W old 1 C3 max gwp + W old 1 C4 max gwp)
W_old_gwp_3_2_3 = AreaWindow_old * (W_old_1_C3_min_gwp + W_old_1_C4_min_gwp
+ W old 1 D min gwp)
\label{eq:wold_gwp_3_2_4} \textbf{W\_old\_gwp\_3\_2\_4} = \textbf{AreaWindow\_old} * (\textbf{W\_old\_1\_C3\_max\_gwp} + \textbf{W\_old\_1\_C4\_max\_gwp}) + \textbf{W\_old\_1\_C4\_max\_gwp} + \textbf{W\_old
+ W old 1 D max gwp)
(Here, you could differentiate between Walu old. Walu nb, Wwood old, Wwood nb,
Wplas old and Wplas nb if it's necessary. But it must be checked that every
relevant building age class has a value.)
W_nb_gwp_3_2_1 = AreaWindow_nb * (W_nb_A1A3_min_gwp + W_nb_B4_min_gwp
+ W_nb_C3_min_gwp + W_nb_C4_min_gwp)
```

```
W_nb_gwp_3_2_2 = AreaWindow_nb * (W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp)

W_nb_gwp_3_2_3 = AreaWindow_nb * (W_nb_A1A3_min_gwp + W_nb_B4_min_gwp + W_nb_C3_min_gwp + W_nb_C4_min_gwp + W_nb_D_min_gwp + W_nb_DofB4_min_gwp)

W_nb_gwp_3_2_4 = AreaWindow_nb * (W_nb_A1A3_max_gwp + W_nb_B4_max_gwp + W_nb_C3_max_gwp + W_nb_C4_max_gwp + W_nb_D_max_gwp + W_nb_DofB4_max_gwp)

(Here, you could differentiate between Walu_nb, Wwood_nb and Wplas_nb if it's necessary. But it must be checked that every relevant building age class has a value.)
```