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Anwendungen anhand dynamischer Grenzwerte

für Laufzeitmetriken

Author: Akash Mundra

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Louis Viot, PhD., Nico Tippmann, M.Sc.

Date: 16 January, 2023





I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 16 January, 2023 Akash Mundra





Acknowledgements

I would like to express my heartfelt gratitude toward everyone who helped me through
this thesis.

First of all, I would like to thank Univ.-Prof. Dr. habil. Philipp Neumann, Louis Viot,
and Nico Tippmann for supervising my thesis and for the patience they showed me during
the complete duration of this thesis.

I would also like to thank Dr. Axel Auweter and MEGWARE GmbH for the support and
resources they provided me for this thesis.

I am extremely grateful to Amartya Das Sharma who helped me during this thesis and
my team at QYOBO who were also very accommodating and patient toward me while I was
working on this thesis.

vii



viii



Abstract

HPC applications are only able to achieve 15-20% of peak performance as compared to the
theoretical peak performance of modern day supercomputers. Traditionally performance
analysis of HPC applications has been highly developer dependent. The developer is
provided with data containing several metric values and using these metric values the
developer needs to both judge the possible bottlenecks present in the application and find
possible optimisation techniques to counter these bottlenecks. The connection between
analysis and optimization is held together through the ad-hoc knowledge of HPC developers.
[Gra19] The aim of this thesis is to create an autonomous application agnostic analysis tool
that can analyse runtime data for performance bottlenecks on any system architecture. A
blackbox tool, that uses predefined or user defined analysis models to study the performance
data generated during an application run to indicate the presence and type of bottlenecks in
the application. This thesis explores this idea in five parts: 1) identifying key metrics for
analysis models 2) identifying relevant microbenchmarks to aid in calculating thresholds
dynamically 3) Analyse different application runtime data for performance bottlenecks 4)
Explore different methods to calculate dynamic threshold values for different metrics 5)
Propose an idea for the structure of the finished analysis tool and create a prototype of the
tool based on the proposed idea.
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Zusammenfassung

HPC-Anwendungen können lediglich 15-20% der theoretischen Höchstleistung moderner
Supercomputer erreichen. Traditionell ist die Leistungsanalyse von HPC-Anwendungen stark
von den Entwicklern abhängig. Dem Entwickler werden Daten mit verschiedenen Metrik-
Werten zur Verfügung gestellt und anhand dieser Werte muss der Entwickler sowohl die
möglichen Leistungsengpässe in der Anwendung beurteilen als auch mögliche Optimierung-
stechniken finden, um diesen Engpässen zu begegnen. Die Verbindung zwischen Analyse und
Optimierung entsteht durch das Ad-hoc-Wissen der HPC-Entwickler. [Gra19] Ziel dieser
Arbeit ist es, ein Konzept für ein anwendungsunabhängiges Analysewerkzeug zu erstellen,
das Laufzeitdaten auf beliebigen Systemarchitekturen auf Leistungsengpässe hin analysieren
kann. Ein Blackbox-Tool, das vordefinierte oder benutzerdefinierte Analysemodelle verwen-
det, um die während eines Anwendungslaufs erzeugten Leistungsdaten zu untersuchen, um
das Vorhandensein und die Art von Engpässen in der Anwendung anzuzeigen. Diese Arbeit
untersucht diese Idee in fünf Teilen: 1) Identifizierung von Schlüsselmetriken für Analyse-
modelle 2) Identifizierung relevanter Mikrobenchmarks zur Unterstützung der dynamischen
Berechnung von Schwellenwerten 3) Analyse verschiedener Anwendungslaufzeitdaten auf
Leistungsengpässe 4) Erforschung verschiedener Methoden zur Berechnung dynamischer
Schwellenwerte für verschiedene Metriken 5) Vorschlag einer Idee für die Struktur des fertigen
Analysewerkzeugs und Erstellung eines Prototyps auf der Grundlage der vorgeschlagenen
Idee.
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1. Introduction

In modern day High performance computing (HPC), architectures and applications are
developing at a very high rate. Almost every year new processors are brought to market by
companies like Intel and AMD promising better processing capabilities [bus][amd]. Processors
vary in terms of the number of cores, number of threads, memory hierarchy [amd]. Similarly
there are several different parallel input-output (I/O) systems such as Lustre [S+03] and
BeeGFS [Hei14]. There has also been a very drastic increase in the Graphic processing
unit (GPU) technology in recent times. The CPU-GPU processing combination increases
processing speeds exponentially compared to multi-core systems without and GPUs [Bly08].
Performance of both hardware capabilities such as multicore processors, cache, varied
architectures, inter and intra node connectivity developments, and software capabilities such
as compilers, algorithms, libraries have been improving dramatically; however, it is not
necessarily reflected in the increase in application performance. There are several possible
reasons for this such as problems in scaling the application with respect to the architecture,
problems in the application source code causing inefficient behaviour, limited by system
I/O speed, etc [ARR17][HYSW17]. To be able to properly analyse an HPC application for
different performance bottlenecks to improve performance on different supercomputers is
thus very crucial and very typical.

The process of performance analysis of HPC applications would require someone to have
in-depth knowledge about two things: the application source code knowledge and the
required architecture dependent knowledge on which the application is running. Burtscher
et al. in [BKD+10] have described the general workflow of a code optimisation process with
generic workflow tools as follows:

• Selecting relevant performance counters.

• Running multiple measurements.

• Collecting performance data.

• Identifying performance bottlenecks based on collected data.

• Finding different optimisation methods for detected bottlenecks.

• Implementing selected methods of optimisation.

The steps of optimization stated above would traditionally be done manually and the process
can be very tedious and time consuming. Developers are expected to have architecture
dependent knowledge and also have to have the skillset to use this knowledge to analyse the
recorded performance metric data for performance bottlenecks issues. They need to know
which metric values are relevant for their purpose and what should be their ideal values as
compared to what was recorded.

There are several tools that help developers record and/or analyse performance metrics.
These tools can be broadly classified as intrusive and non-intrusive. Tools like ScoreP

2



1.1. Idea

[KRB+12], TAU [MMCS10], Valgrind [NS07] are a few examples of tools that use code
instrumentation to record performance metrics. Instrumentation can be done either statically
by adding instrumentation code at source code level or dynamically by adding instrumentation
code at binary level. These methods tend to increase the size of the application binaries which
can modify system behaviour and can also affect the flow of instructions. Whereas tools like
Likwid [THW10], HPCToolkit [MMCS10] help record performance metrics non-intrusively.
The application is not tampered with in any way in this method.

There are several tools that work on automating the process of analysis such as PerfExpert
[BKD+10], Periscope [MFG16], PerSyst [GC15], TAU [MMCS10], etc. which help users and
developers access the performance of HPC applications at system and application source
code level. One common underlying design objective of any automated analysis tool is to
decrease the dependence upon the “expert knowledge” required for performance bottleneck
analysis of HPC applications at any level. PerSyst does it at system level whereas PerfExpert
and Periscope perform it at source code level. This is essential to decrease the entry level
barrier faced by different HPC application developers and users.

1.1. Idea

The idea behind this thesis is to create a performance bottleneck analysis tool for HPC
applications that takes into account system benchmarks and hardware properties to analyse
performance metrics using analysis models and dynamic thresholds. This analysis tool would
be an extension of Megware’s Continuous Benchmarking (CB) Framework [Tip21], which is
used to record runtime performance metrics data at system level.

The proposed idea is that the tool uses system architecture information, like cache structure
and size, frequency, etc. and several microbenchmarks such as STREAM, likwid-bench,
IOR, etc. to generate important information related to various performance metrics, such
as sustainable peak memory and cache bandwidths, floating point operations (FLOPS),
etc. are together used to obtain system capability information based on which the analysis
is to take place. The tool would consist of different analysis models, a set of heuristics
structured in the structure of a tree, that would help us codify rules to locate bottlenecks.
The generated system capability information will be used to calculate metric thresholds
which are passed to the analysis models along with the runtime performance metric data to
detect bottlenecked regions in the provided data and the type of bottleneck detected. The
tool would essentially serve as a blackbox, a developer would just deploy their application
through the framework and performance results would be generated marking bottlenecked
regions and possible reasons for those bottlenecks.

The novelty of our proposed idea lies in the fact that the tool correlates several different
performance metric data to possible bottlenecks using analysis models with threshold values
of different performance metrics that are dynamic in nature and thus essentially creating a
blackbox tool that allows users and developers to analyse any sort of application on any
system.

3



1. Introduction

1.2. Objectives of this thesis

This thesis is intended to explore different aspects of the proposed idea of creating such a
non-intrusive analysis tool using the data recorded by the CB framework. The idea suggested
above is explored in 5 main parts in this thesis to lay a basic groundwork:

1. Identifying key performance metrics. It is important that the metrics we record and
use for our analysis are generic. Metrics that would be relevant for analysis regardless
of the type of the application and the system architecture.

2. Identifying different microbenchmarks that can help to generate sustainable peak
performance values for many different metrics.

3. Analyse different application runtime to find patterns between different metrics per-
taining to different bottlenecks.

4. Explore different methods to calculate dynamic threshold values for different metrics.

5. Propose an idea for the structure of the finished analysis tool and create a prototype
of the tool based on the proposed idea.

1.3. Structure of this thesis

The rest of the thesis is divided into 4 parts. Part 2 discusses the different tools that are
presently used to monitor and/or analyse HPC applications. Part 3 is divided into 3 chapters.
The first chapter discusses common performance bottlenecks faced by HPC applications
with respect to memory, CPU performance and I/O related bottlenecks. The second chapter
explains what microbenchmarks mean and discusses different microbenchmarks. The third
chapter outlines the idea of the performance analysis tool. The next part explains the
process of analysis, the applications used to gather runtime data for the analysis, the results
derived from this analysis and it also discusses the prototype of the suggested analysis tool.
This last part concludes this thesis and provides a direction for future work on this project.
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2. Related work

Performance monitoring and analysis tools can be broadly classified into two types - intrusive
and non-intrusive.

2.1. Intrusive tools

Intrusive tools use code instrumentation at different levels [GC15]. At source code level,
function calls are added to the application that help generate trace information for the
application. Other methods such as library wrapping, which use wrapper libraries instead of
original libraries. These wrapper libraries have modified routines that contain instrumented
code which call the original routines. [MMCS10] Dynamic binary instrumentation is also a
common intrusive method to generate performance metrics. [RH01] It updates, modifies
or removes instruction from the generated binary code to allow instrumentation. Dynamic
code is injected at execution time and the application does not need to be recompiled.
This method is especially helpful when the source code is unavailable to the user. [RH01]
Users need to be careful of the structural modifications of the application while testing
their applications using such intrusive methods. They also add overheads due to the added
instructions which can modify application behaviour as well in some cases. [AR01]

A few key intrusive performance monitoring and analysis tools are explained below.

2.1.1. ScoreP

Score-P is a performance measurement framework that generates profile and event trace
information using code instrumentation. Several performance analysis tools such as TAU,
Vampir, Periscope, etc use ScoreP as their performance measurement framework to generate
performance metric data. [KRB+12]

2.1.2. TAU

TAU [MMCS10] is a performance monitoring and analysis tool for HPC applications that
uses code instrumentation to generate performance data for any application. Performance
events of interest must be determined for the application before any performance experiment
is conducted.

TAU comes with a parallel profile analysis tool called ParaProf which allows the user to
visualise and generate statistical data for the application run using the performance metrics
generated by the tool. There is also a performance data mining tool called PerfExplorer.
This tool uses techniques like clustering and dimensionality reduction to manage the large
scale performance data generated by the tool to generate relevant data relationships between
different metrics using comparative and correlation analysis of these metrics.

6



2.2. Non-intrusive tools

2.1.3. Periscope

Periscope is an automated performance tuning framework for HPC applications. [MFG16]
It uses intrusive measurement framework ScoreP to generate the metric data. Periscope’s
performance analysis derives information about an application’s execution in the form of
performance properties such as load imbalance, communication, cache misses, redundant
computations, etc. It uses conditions along with a confidence value (between 0-1) to check
for the existence of different performance properties. It also assigns a severity value to all
the different performance properties recorded. Higher the severity, more significant the
performance property.

A performance property is considered a performance bottleneck by the tool if and only if
the severity is over a tool defined threshold value. The tool uses these performance properties
in predefined analysis strategies assembled together in a tree-like structure to create its
analysis models. System monitoring tools like PerSyst [GC15] have incorporated a similar
idea for their work to analyse system wide performance metrics.

2.2. Non-intrusive tools

Non-intrusive performance monitoring methods do not require any sort of code instru-
mentation and use hardware performance counters to generate performance metrics. This
method helps avoid adding more work on the application developer who would have to add
instrumentation code to the application to allow any sort of monitoring. This also helps
avoid any unwanted side effects that can be caused because of code instrumentation. [GC15]

A few key non-intrusive performance monitoring and analysis tools are explained below.

2.2.1. LIKWID

LIKWID is a performance oriented tool that provides a set of lightweight command-line
utilities. [THW10] LIKWID is divided into multiple tools some of which are explained
below:

• likwid-topology - provides thread, cache and NUMA topology.

• likwid-perfctr - provides hardware performance counters.

• likwid-pin - enforces thread-core affinity in a multithreaded application without
modifying the source code.

• likwid-bench - provides micro benchmarks for several CPU architectures.

It uses processor-specific hardware registers, also called model specific registers (MSR)
to measure hardware performance counters. This is performed non-intrusively, without
touching the source code at any level. [THW10] PerSyst [GC15] and CB framework [Tip21]
both use LIKWID to record performance metrics.

2.2.2. HPCToolkit

HPCToolkit is a set of performance observation and analysis tools for HPC applications. It is
based on the idea that data collection should be non-intrusive to avoid unnecessary overheads

7



2. Related work

for which it uses asynchronous sampling to record performance metric data, it should be
language independent and thus works directly with application binaries, and should be able
to record a varied number of metrics to avoid less informed analysis. [MMCS10]

The application is first run through the framework and data is collected using asynchronous
sampling. Then the tool analyses the application binary to understand the structure of the
application with regards to information about files, functions, loops and inlined code. The
recorded data and application’s structure are combined to create a performance database
which links different code sections to their corresponding performance metric data. The tool
allows the user to interactively view and analyse the performance database generated in the
form of a hierarchical top-down graphical user interface.

2.2.3. PerfExpert

PerfExpert is an automated performance analysis tool for HPC applications which identifies,
characterises and suggests solutions to tackle core, chip and node level performance bottle-
necks present in the application. [BKD+10] As system architecture knowledge plays a crucial
role in analysis of parallel applications, the tool consists of embedded expert knowledge
of the system architecture that allows it to identify the relevant performance counters to
measure during the application run.

PerfExpert is built on top of the HPCToolkit, which uses asynchronous sampling to
monitor performance metrics. This is an unobtrusive way to monitor application execution
based on recurring sample triggers. [MMCS10] Thus, no sort of instrumentation is required
to record performance metrics for analysis.

PerfExpert introduces a local cycle-per-instruction (LCPI) metric to measure the runtime
of different code sections. This metric is used to focus optimization efforts of code sections
with higher LCPI value. Only if the LCPI value crosses a predefined threshold value, is the
code region considered for bottleneck detection.

2.2.4. Megware’s Continuous Benchmarking framework

The CB framework presented in [Tip21] allows users to run jobs and non-intrusively collect
important performance metrics at system level with a user defined granularity (≥ 5 seconds).
The framework provides several metrics related to CPU, I/O, memory, GPU, interconnect
and energy consumption. Most of the high level metrics are collected by reading, parsing and
calculating them from the proc filesystem. For other low level metrics the framework uses
the LIKWID, a command line tool suite that works for Intel, AMD, ARMv8 and POWER9
processors on the Linux operating system. [THW10]

The framework maintains a low measurement overhead which makes sure that the moni-
toring is done with minimal impact on runtime. The framework also records system data,
such as NUMA, cache and thread topology using likwid-topology.

The metrics recorded by the framework are:

• CPU usage metrics - total, system, user, iowait, idle.

• CPU utilisation metrics - Single and double precision FLOPS, vectorisation ratio,
branch misprediction rate/ratio, clock speed, CPI, loads to store ratio, operational
intensity, AVX single/double precision etc.

8



2.2. Non-intrusive tools

• I/O - Utilisation, read/write size, average read/write request size, average read/write
wait time, etc.

• Memory - memory bandwidth, memory read/write bandwidth, cache level data -
bandwidth, data volume, miss rate/ratio, etc.

• Energy - CPU energy, CPU power, power.

• Interconnect - throughput, errors and dropped packages, transmitted data volume.

Several different performance metrics can be monitored by the tool. The user can configure
the metrics it wants to monitor and record and after the application runtime, all of this data
is recorded and stored in the database. All the results are displayed on the frontend in the
form of several runtime charts displaying the performance metric values over the complete
runtime.

This thesis explores the idea of extending the CB framework to add an analysis component
to the framework itself.

2.2.5. PerSyst

PerSyst is a system wide on-line analysis tool for all applications running on a supercomputer
[GC15]. The tool is used to detect inefficient use of system capabilities by all the different
applications running simultaneously. The data is collected non-intrusively using LIKWID.

The LIKWID tool can be used to measure system level performance metrics without any
instrumentation. It uses Model-Specific Registers found on Intel and AMD processors. It
records data for selected performance groups from a set of predefined groups. The tool uses
the properties recorded by its measurement tool, with a set of codified strategies. These
strategies are based on expert knowledge and are encoded in a tree-like structure. These
strategies are used to filter through data to determine if further analysis is necessary based
on the performance metrics encountered while traversing the tree from root to leaf.

The strategy maps mentioned in [GC15] analyse for memory bound, compute bound and
I/O bound behaviour. They also look into bottlenecks emerging due to load imbalance and
network connectivity.

The decision for further analysis or the identification of a bottleneck is done using
thresholds. These thresholds also help evaluate the severity of an identified bottleneck.

Carla, et al. in [GC15] talk about different heuristics, based on which these thresholds
can be derived:

• It can be derived based on hardware characteristics and expert knowledge.

• It can be based on a benchmark.

• It can be chosen at a point where changing the property value wouldn’t correlate to
better performance anymore.

• It can be chosen using statistical data collected over a certain period of time.

I use the ideas presented in [GC15] and [BKD+10] to propose an analysis process and
tool in this thesis. Both of these tools function as a blackbox wherein the analysis process is
handled completely by the tool without any input from the user. The PerSyst tool utilises
likwid to measure performance metrics but is limited to monitoring only at a system level

9



2. Related work

whereas the PerfExpert tool analyses applications at source code level. The idea suggested
in this thesis is based on similar guiding principles but the process of analysis is intended to
work on any system architecture and analyse metrics for specific applications rather than a
complete system. By using different microbenchmarks the tool should be able to identify
threshold values automatically for certain metrics like memory bandwidth and FLOP rate.
The proposed analysis models would also be designed to work on all types of applications.
The intention is to create a truly application agnostic analysis tool that works like a blackbox
to analyse application runtime performance metric data on any system architecture.
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3. Performance Bottlenecks

As per [dic], bottleneck is “a place or stage in a process at which progress is impeded”.
There can be several reasons for an HPC application to suffer inefficiencies. They can
be caused by limited resources, such as limited cache sizes, low FLOP rate of the CPU,
latency of the communication hardware [ARR17]. This can also be caused by inefficient
use of resources like caching, unconsolidated read write access [HYSW17], strided accesses
[BMK+99], expensive instructions [CRON+14], heavy branch misprediction [ESE06], etc.

For the purpose of this thesis I have broadly categorised bottlenecks as: Memory related
bottlenecks, CPU related bottlenecks, I/O related bottlenecks.

3.1. Memory bound

An HPC application is said to be memory bound when the majority of the execution time
is spent in memory transfers. [PGB14] In this case, processor frequency scaling has little
or no impact on performance and increasing core count becomes the most effective way to
improve HPC application run-time.

Memory latency can be considered to be a serious bottleneck when the memory bandwidth
of the system during the application run crosses 80% of the sustainable memory bandwidth.
[ARR17] As shown in figure 3.1, memory latency is almost constant when memory bandwidth
lies between 0-40% and increases almost linearly when memory bandwidth lies between
40%-80% of the sustainable memory bandwidth. But there is an exponential increase in
memory latency values when memory bandwidth is over 80%.

Application memory bandwidth starts to affect memory latency and overall performance
when it rises above 40% of the sustained memory bandwidth. The collisions between

Figure 3.1.: Memory access latency versus used memory bandwidth Source: [ARR17]
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3.1. Memory bound

Figure 3.2.: Memory latency vs size of a 1D array Source: [Sel]

concurrent memory requests cause a significant increase in memory delay when the program
uses more than 80% of the sustained memory bandwidth.

The theoretical maximum memory bandwidth of a system is calculated by multiplying
the memory frequency, the number of bytes of width and number of channels supported for
the processor. [the]

In practice, there are many system variables that limit the practically achievable maximum
memory bandwidth, such as software workloads and system power states [the]. Although
theoretical memory bandwidth gives us an idea of the ideal memory throughput power of
the system, peak sustainable memory bandwidth is usually around 65-75% of the theoretical
peak memory bandwidth of any system [ARR17]. There are several benchmarks that can
help us find the sustainable peak memory bandwidth of any system.

Two of the most common factors that make an application memory bound are strided
access and inefficient data locality.

3.1.1. Strided access

As defined in [acc] strided access is when a series of addresses are accessed with a uniform
skip between each referenced address. For instance, sequence 1, 11, 21, 31, 41, . . . is a
strided access pattern with a stride of +10. Strided access can occur due to several reasons
such as when structures are packed into an array and only a particular variable is accessed
for every element in the array, during matrix computations, etc.

In a scenario where we read every element of an array, the memory latency would be
bounded by the L1 latency irrespective of the size of the array. In cases where we have a
strided access of N where N is roughly the size of the L1 cache, we would see that if the
size of the array is also roughly close to N (<N), memory latency would still be bounded by
the L1 latency, but if the size of the array increases (>N), we would see that the memory
latency would be bounded by subsequent memory hierarchy latencies (L2, L3, Memory).

3.1.2. Locality of reference

There are two important types of locality of reference: Spatial and Temporal.
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Spatial locality refers to the likely hood of an application to reference data present close
to a recently referenced data. [JWN10] With this type of locality, access latency can be
significantly reduced by retrieving multiple data items in a single fetch cycle. Poor spatial
locality would result in multiple fetch cycles to retrieve the relevant data items, which would
result in delay due to higher access latency. [Vor13]

Temporal locality refers to the likely hood of an application to refer a recently accessed
data again in the near future. This is the founding principle behind caches. [JWN10]
Inefficient temporal locality would mean that data items whcih could have been reused are
lost from cache memory and must be fetched again. [Vor13]

Poor locality of reference (of either type) would result in longer execution time for the
application with higher access latency.

3.2. CPU bound

Hutcheson et al in [HN11], suggest that problems that are not bounded due to memory are
often bounded by the compute speed of the processor, which means that performance is
constrained by the speed at which the processor can carry out mathematical operations. In
such a situation the processor is the reason for the bottleneck as the memory has to wait on
the processor.

There can be several different reasons for an application to be compute bound. Low
vectorisation, high branch misprediction penalties [ESE06][IOT14][Che00], high number of
expensive floating point operations [Fog06], excessive object instantiations[THW12][GC15].

3.2.1. Vector operations vs Scalar operations

Consider the example code given below:

1 void add ( double∗ r e su l t , const double∗ a , const double∗ b , s i z e t s i z e )
2 {
3 s i z e t i = 0 ;
4 // AVX−512 loop
5 for ( ; i < ( s i z e & ˜0x7 ) ; i += 8)
6 {
7 const m512d kA8 = mm512 load pd ( &a [ i ] ) ;
8 const m512d kB8 = mm512 load pd ( &b [ i ] ) ;
9 const m512d kRes = mm512 add pd ( kA8 , kB8 ) ;

10 mm512 stream pd ( &re s [ i ] , kRes ) ;
11 }
12 // S e r i a l loop
13 for ( ; i < s i z e ; i++ )
14 {
15 r e s u l t [ i ] = a [ i ] + b [ i ] ;
16 }
17 }

Listing 3.1: Example add function that adds two double precision arrays and saves it to the
result array in 2 ways - using scalar and vector operation. [For14]

The above example code performs addition of 2 arrays a and b and stores them in the
result. There are 2 for loops each performing the same computation using:
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• AVX-512 instruction set - 512-bit Advance vector extensions (AVX) instruction set for
x86 architectures proposed by Intel. [cpp] The double precision arrays a and b are
loaded onto 2 m512d kA8 and kB8 respectively, which can hold a vector of 8 64-bit

double precision floating-point values each. These two vectors are then added using
the mm512 add pd intrinsic add operation which takes in kA8 and kB8 and returns a
single m512d vector stored in kRes. At every iteration 8 elements of the array a are
added with 8 elements of array b simultaneously. [cpp] AVX and SSE2 are two more
instruction sets for x86 architectures that enable 256-bit and 128-bit operations
respectively. The stride value, in our case the value of i, would be 4 in the case of
AVX and 2 in the case of SSE2 instruction sets.

• Serial addition - In this loop each element of array a and array b are individually
added to each other in every iteration of the loop.

The first case is an example of a vectorised loop. In this case two registers of size 512-bit

are performing the same operation of each element of one vector with the corresponding
element of the other vector. mm512 add pd() is one of the Intrinsics for Arithmetic
Operations which is used here to perform the add operation. As explained in the Intel
developer guide [cpp], “Intrinsics are assembly-coded functions that let you use C++ function
calls and variables in place of assembly instructions.” In a situation where the size of the
arrays is not a multiple of the array stride i (= 8,4,2) the remaining operations are
conducted serially. This means that performance increases by almost 8, 4 and 2 times
respectively in each case with respect to the performance achieved when each element is
added sequentially.

If an application is performing more scalar operations than vector operations then it would
not be able to use the full potential of the processing unit which could result in a bottleneck.
As suggested in [GC15], in such a situation the applications data level parallelism should be
revisited and architecture specific vector operations should be utilised.

3.2.2. Branch misprediction

Deep pipelining was developed to increase compute capabilities of processors. [Che00] In
the process of instruction pipelining, the pipeline is divided into multiple stages to speed
up the clock. Each stage contains lesser logic and thus runs faster. [HH15] It has been one
of the most effective ways to improve processing speed but at higher levels of instruction
parallelism there are times when processing speed stalls. One of the reasons for these stalls
are unresolved branches. The target address cannot be fetched until the target address has
been computed and the branch is resolved. If this process takes multiple clock cycles, it
tends to create bubbles in the pipeline. [Che00]

Branch predictors were introduced to deal with this issue. There are static branch
prediction schemes where the system predicts whether all branches are taken or not taken.
There are also dynamic branch prediction schemes where the the runtime history of the
branch is taken into account to predict its branching behaviour. [Che00] These methods have
increased performance by decreasing the amount of pipeline bubbles caused due to branching,
but as neither of the predictive models are accurate, every wrong branch prediction, branch
misprediction, results in lost clock cycles. The hardware typically loses more than ten clock
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cycles to remove the instructions from the predicted branch and resume the execution for
the actual branch. [IOT14]

Eyerman et al in [ESE06] conduct a study to characterise branch misprediction penalty
where they have identified and quantified 5 major contributors to the branch misprediction
penalty: the frontend pipeline length, number of instructions since a miss event, such as
branch misprediction, instruction cache miss or long data cache miss, instruction level
parallelism of the application, functional unit latencies and the number of short data
cache (L1D) misses. In this study it was found that programs with more non-branch
miss events resulted in lesser misprediction penalties as compared to programs with more
branch miss events. Results also showed that programs with lower level of instruction level
parallelism showed higher branch misprediction penalties as compared to programs with
higher instruction level parallelism. They also show that programs with a higher fraction of
L1 D-cache misses showed higher branch misprediction penalties.

Inoue et al in [IOT14], show a simple yet elegant way of speeding up set intersection by
decreasing algorithms branch misprediction penalty. They utilise the processor’s SIMD,
single instruction multiple data, vectorisation capabilities which help in decreasing the
number of branches to be computed significantly. Such methods are an intelligent way to
deal with bottlenecks created due to branch misprediction.

3.2.3. Expensive instructions

Different assembly level instructions have different ops and latency. Based on these values
one can judge which instruction is expensive and which isn’t. In this case ops mean the
number of macro-operations issues from instruction decoder to the schedulers and latency is
the delay caused to process the instruction. For example, on the Intel Skylake processors
the ops value ranges from 1-3 and the latency value ranges from 3-4 for an IMUL (signed
multiplication) instruction. Whereas for an IDIV (signed division) instruction the ops value
ranges from 10-57 and the latency value ranges from 23-95. These values vary depending
upon the size of the registers used. [Fog06]

If your application uses a lot of expensive instructions, it will result in higher latency and
more ops that need to be executed. It would increase computation load on the processor
while executing lesser instructions per cycle. Applications with a higher number of expensive
instructions thus face a compute bound bottleneck.

3.2.4. Single precision vs Double precision

In computer architectures, 32-bit floating point numbers are called single precision and 64-bit
floating point numbers are called double precision. Double precision values provide more
than 2 as much precision as compared to single precision values, but computations on these
double precision numbers also take longer time comparatively. [HH15] Many architectures
allow two single precision floating point operations in place of one double precision floating
point operation.

In compute bound applications, using more single precision floating point operations could
help speed up the processing time at the risk of losing higher precision.
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3.2.5. Object instantiation

In object oriented programming, object instantiation can add more latency not observed
with in-built types. [GC15] Excessive object instantiation can cause a bottleneck because
of the added latency. Low FLOPS rate with low clocks per instruction rate (CPI) can be
observed in such situations. [THW12][GC15] In such a situation a developer should try to
decrease the number of objects in their application and check if it increases performance.

3.3. I/O bound

Historical trends of HPC systems show that processor performance and memory management
has been improving at a much higher rate as compared to I/O devices [HP11]. Although
modern day solid state drives help mitigate this gap in performance to quite an extent, but,
it is still not enough to keep up with present day processor technology, with the increasing
and more efficient usage of GPUs in modern day HPC Systems. This gap between better
memory and much better processing power is the main reason for applications to display
I/O bound behaviour. Because of this it becomes very crucial for users to manage the I/O
behaviour of their applications.

Paul et al. [PFM+20] have shown that write intensive applications tend to decrease in
efficiency when they write a lot of data but the bytes of data written per call is very low.
They state that inefficiency created due to I/O operations in several applications (running in
the same system) showed a common trend - total amount of data written by an application
is more than the mean of amount of data written by all applications while the bytes written
per call is less than the mean of the bytes written per call for all applications. Whereas,
efficient write intensive applications tend to have both the total amount of bytes written and
the bytes written per call are both more than their respective mean values across multiple
applications.

They also observe a positive correlation between the number of metadata operations and
the amount of data written. Which means that more the amount of data is written, more is
the stress on the metadata servers.

I/O contention can also limit your application from running faster as the processor has
to wait longer to access the disk. This problem cannot be mitigated at the application
level as multiple I/O intensive applications can be running at the same time on the system
increasing I/O latency per application.
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4. Microbenchmarks

According to HPCWiki [mic], “Microbenchmarking is about measuring the time or perfor-
mance of small to very small building blocks of real programs. This can be a common data
access pattern, a sequence of operations or even a single instruction.”

A microbenchmark is a program or routine used to measure and test the performance of
a single component such as memory bandwidth, I/O speed, latency or FLOP rate. [SZ19]
Generally, microbenchmarks are small kernels that mimic real world applications and measure
performance counters against these kernels. Kernels that perform arithmetic operations
like matrix-matrix multiplication [GFG12], dense linear systems in double precision [Pet04].
Microbenchmarking helps developers understand system capabilities and develop or modify
applications to work more efficiently.

There are several microbenchmarks available that deal with different aspects of a system’s
capabilities. A few important microbenchmarks are covered below.

4.1. STREAM

STREAM is an industry standard, simple microbenchmark that measures sustainable
memory bandwidth (in MB/s) and the corresponding computation rate for simple vector
kernels. [M+95] To ensure that the results are (supposedly) more representative of the
performance of very big, vector-style programs, the microbenchmark was specifically created
to work with datasets substantially larger than the available cache on any given system.
This microbenchmark is intended to measure the bandwidth from main memory so the
general rule while running the STREAM microbenchmark is that each array must have
at least 1 million elements or 4 times the total size of all last-level caches used in the run,
whichever is larger. This makes sure that the data is not cacheable and memory is accessed.

STREAM consists of 4 kernels that are run in a loop and the best results obtained out of
multiple runs (usually around 10 runs) are chosen. These 4 kernels are:

• Copy < a(i) = b(i) > - this kernel executes a simple copy expression. The uses of 16
bytes/iteration and 0 FLOPS/iteration.

• Scale < a(i) = q ∗ b(i) > - this kernel multiplies a scalar to every array element
and saves the value to the corresponding index of another array. The uses of 16

bytes/iteration and 1 FLOPS/iteration.

• Sum < a(i) = b(i) + c(i) > - this kernel adds elements of 2 arrays and saves the value
to another array. The uses of 24 bytes/iteration and 1 FLOPS/iteration.

• Triad < a(i) = b(i) + q ∗ c(i) > - this kernel scales the value of each element of one
array by a constant factor and adds it to the corresponding element of another array.
The result is then stored into the corresponding index of another array. The uses of
24 bytes/iteration and 2 FLOPS/iteration.
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4.2. Interleaved or Random (IOR)

As it can be seen from the list above, the Triad kernel utilises the most number of
system resources per iteration, because of which the values recorded by the Triad kernel are
usually considered to benchmark any machine with respect to the sustainable peak memory
bandwidth of that.

4.2. Interleaved or Random (IOR)

As explained in [iorb], IOR is a parallel I/O benchmark that measures the performance of
parallel storage systems using various interfaces and access patterns. It is a generic parallel
I/O microbenchmark that can be run on any POSIX-compliant file system [iora], but it
does require a fully installed and configured file system implementation in order to run. It
uses MPI to manage the process synchronisation as generally there are many IOR processes
running in parallel across several nodes in an HPC system.

IOR benchmark runs 2 tests, one each for write and read operations and it measures the
following values for each test:

• Read/write bandwidth measured in MB/sec

• Input/output Operations Per Second (IOPS)

• Latency

The repository also provides the mdtest benchmark which helps in measuring the peak
metadata rates of storage systems under varied directory structures. This microbenchmark
also uses MPI to manage its parallel synchronisation.

4.3. High Performance Linpack (HPL)

As described by Petitet in [Pet04], “HPL is a software package that solves a (random) dense
linear system in double precision (64 bits) arithmetic on distributed-memory computers.”
It is a portable and freely available implementation of the High Performance Computing
Linpack Benchmark. It relies upon an efficient implementation of the Basic Linear Algebra
Subprograms (BLAS). It generates a linear system of equations in the order of n and solves
this system of linear equations using the lower-upper (LU) decomposition with partial
row pivoting. It requires installed implementations of MPI and either BLAS or VSIPL to
run. [Don87] It is a highly scalable and efficient benchmarking tool that has been used for
decades as a metric for compiling the Top500 list which maintains a list of the top 500
supercomputers around the world.

HPL reports the following metrics for a system:

• Rmax - the performance (in GFLOPS) of the largest problem run on the system.

• Nmax - the size of the largest problem that ran on the system.

• N1/2 - the size where half the Rmax execution rate is achieved.

• Rpeak - the theoretical peak performance (in GFLOPS) for that system.
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4.4. Likwid-bench

Likwid-bench [RHa] is an assembly microkernel benchmark suite that contains several kernels
that can be used to benchmark any computer system on the basis of memory bandwidths
and instruction throughput for specific instruction code on x86 systems. This benchmark
suite provides a list of kernels such as triad, copy, stream, loads, stores, update, etc. Each
kernel considers an exhaustive list of different combinations of precision type (single precision
and double precision) and different instruction sets such as AVX, Fused multiply-add (FMA)
and Stream SIMD extensions (SSE).

Likwid-bench can be used to measure these performance metrics for different thread
affinity domains, meaning it can be used to measure metric values when running a kernel on
all threads simultaneously or specific thread domains.

4.5. Intel MPI Benchmarks

The Intel MPI (message passing interface) Benchmark is used to measure MPI performance
measurements for point-to-point and global communication operations for message sizes or
varied ranges. The generated benchmark data characterises the performance of a cluster
system, including node performance, network latency, and throughput and the efficiency of
the implemented MPI protocols. [mpi]
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As explained in section 1, this thesis explores the idea of extending the functionality of the
CB Framework mentioned above. Adding an analysis component on top of the measurement
capabilities of the framework. The proposed idea of the analysis tool is based on a few key
guiding principles:

• The tool should essentially work as a blackbox. The traditional optimisation efforts need
a lot of expert knowledge to be able to find inefficient behaviour of HPC applications.
To be able to circumvent this, it is essential that the tool works as a blackbox wherein
the developer just runs the HPC application through the framework and they would
get an analysis report on the existing inefficiencies in the application.

• The tool should be system and application agnostic. Since there are many different
types of processors, file systems, compilers, etc available and different supercomputers
are built to cater to specific needs. There is a need for a tool that allows the user to
be able to analyse any kind of applications on any system.

• Since the process of measuring performance metrics is non-intrusive, the analysis would
be in the form of a general recommendation since application level behaviour such as
execution times of different loops or functions, etc would be unavailable to us.

• The analysis models should be extendable, i.e the developer can add custom analysis
models to the preexisting knowledge base to analyse for certain specific behaviours.

The tool can be broken down into 5 key aspects - performance metrics, analysis models,
dynamic thresholds, bottlenecks the tool can identify and the severity of those bottlenecks.

5.1. Performance metrics

The CB framework provides us with an extensive list of metrics. For our purpose it is
really important that the tool can identify a bottlenecked region just by parsing through
the recorded runtime data. For this, we need to identify a few important metrics that are
indicative of a general type of bottleneck as explained in section 2 above. These metrics are
referred to as “key metrics” in the context of this thesis.

For instance, as explained above, when an application’s recorded memory bandwidth is
above 80% of the system’s sustainable memory bandwidth, it is indicative of a memory
related bottleneck as the amount of latency caused due to memory increases exponentially.
Thus, memory bandwidth becomes a “key metric” for the analysis tool. All the regions in
the recorded runtime data that show memory bandwidth values above this limit would be
facing a bottleneck due to memory operations but what would be a specific reason for this
bottleneck would still be unclear. The key metric would point the tool in the direction in
which further analysis should be conducted.
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The intention here is to break down the process of analysis in such a way that these key
metrics become indicative of a performance bottleneck in the recorded runtime data and
other metrics help us refine our analysis to a specific reason for the bottlenecked behaviour.

The CB framework monitors a wide variety of performance metrics as mentioned in section
2. These metrics have been split into 7 types for the framework frontend, i.e., CPU, memory,
I/O, roofline, cycle, interconnect and energy related metrics. The framework records almost
150 metrics, below is a list of some of the metrics under each type and what they mean:
(the list is not exhaustive of all the metrics that can be recorded by the framework)

CPU related metrics:

• Branching related metrics:

– Branch rate - ratio of the number of retired branch instructions to number of all
retired instructions.

– Branch misprediction rate and ratio - branch misprediction ratio is the ratio
of the number of retired branch mispredicted instructions to the number of all
retired instructions and branch misprediction rate is the ratio of the number of
retired branch mispredicted instructions to the total number of retired branch
instructions.

– Instructions per branch - ratio of the number of all retired instructions to the
number of all branch instructions. It is essentially 1/(branch rate).

• CPI - the number of cycles required to execute an average instruction. [HH15]

• FLOPS for single precision and double precision - number of floating point instructions
executed per second with single or double precision floating point numbers respectively.

• Load to store ratio - ratio of the total number of retired load operations to the total
number of retired store operations.

• Utilisation - This metric records the amount of CPU time spent on various tasks such
as system operations, user operations, etc. It also records the amount of CPU time
used up while waiting for outstanding disk I/O operations to finish. [Can]

• Vectorisation ratio - ratio of all vector operations to the total number vector and scalar
operations.

Memory related metrics:

• Bandwidth - amount of data transferred (read from or stored to) per second at memory
and cache levels L2 and L3.

• Data volume - total amount of data transferred to or from memory and cache levels
L2 and L3.

• Cache miss rate and ratio - miss ratio is the ratio of the number of times the data
was not present in the cache memory when requested to the total number of times the
data was searched for in the cache memory. Miss rate is calculated as the percentage
of the same ratio.
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• Cache request rate - Cache level request rates tell us how data intensive your code is
or how many data accesses you have on average per instruction. [RHb] It is calculated
as the ratio of the number of data access operations requested at a particular cache
level to that of the total number of instructions.

• L2D evict bandwidth and data volume - the evict data volume is the amount of
modified cache lines evicted from the L1D cache and the bandwidth is the amount
of evicted data per second. Caches can be split into 2 types of caches, for example
L1I and L1D respectively are a level 1 instruction and data caches respectively. This
type of cache is called a split cache. It is a common practice to split the lowest level of
cache into 2 physically different caches. The instruction cache only stores instructions
whereas the data cache stores only data. A unified cache, usually higher level caches,
do not differentiate between instruction and data and stores everything on the same
cache. [Cha20]

• L2D load bandwidth and data volume - the load data volume is the amount of data
loaded from the L1-D cache and the bandwidth is the amount of data loaded per
second.

• Memory read/write bandwidth and data volume - similarly this metric tells us about
the total amount of data read from or written to memory and the speed at which
these operations were conducted.

• Memory total, used, free, usage, cached - the framework provides us with informa-
tion regarding the total amount of memory present in the system and also provides
information regarding the amount of memory used, unused, cached, etc. during the
runtime. It also provides us a usage metric which is basically the percent of memory
used during runtime.

I/O related metrics:

• Average read/write request size - mean value of the size of all read or write requests
respectively.

• Average read/write wait time - mean value of the amount of time taken to process
every read or write command respectively.

• Read/write requests per second and size - this metric tells us about the number of
read or write requests made to the disk per second and the size of the request.

• Average request queue length - The average queue length of the requests that were
issued to the device. [Can]

• Merged read requests - The number of read requests merged that were queued to the
device. [Can]

• Utilisation - Percentage of elapsed time during which I/O requests were issued to the
device. [Can]

Device saturation occurs when this value is close to 100% for devices serving requests
serially. The CB framework uses iostat to record these metrics. [Tip21] For devices serving
requests in parallel, such as RAID arrays and modern SSDs, this number does not reflect
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their performance limits as specified in the iostat documentation. [Can]

Roofline related metrics:

• Operations intensity - or arithmetic intensity is the ratio of the amount of arithmetic
operations executed to the total amount of data transferred. Measured as FLOPS/byte.

• FLOPS SP/DP (AVX) - number vectorized FLOPS executed on single or double
precision integer values respectively. This metric only considers operations executed
using the AVX instructions.

Cycle related metrics:

• Cycles without execution - number of clock cycles spent without executing any in-
structions.

• Cycles without execution due to L1D/L2/memory loads - number of clock cycles
spent without executing any instructions due to an outstanding data load operation
at various levels of the memory hierarchy.

• Execution stall rate - percentage of the total number of execution stalls to that of the
number of cycles when the core was not in HALT state.

• Stalls caused by L1D/L2/memory loads miss and miss rate - number and percentage of
execution stalls while a miss demand load is outstanding at different levels of memory
hierarchy respectively.

• Total execution stalls - total number of execution stalls.

5.2. Analysis models

The idea of our analysis models is derived from the strategies used in PerSyst [GC15]. The
structure of our analysis models is also in the form of a tree, much like the strategies used
in PerSyst, where the root node of an analysis model is the “key metric” mentioned above.
These analysis models are the codified knowledge base that the tool would use for the process
of analysis.

The purpose of the analysis model is to provide a refined analysis of all the bottlenecked
regions in the recorded runtime data by filtering such regions using a key metric and then
look into several other metrics to refine the analysis of these bottlenecked regions.

An analysis model would start by analysing a key metric at the root node and then further
analysing different metrics in the bottlenecked regions, leading to the leaf nodes. A leaf node
would either provide a possible reason for the bottleneck, or indicate that it isn’t actually
a bottleneck after all. Since we are able to record only system level metrics during the
applications execution and cannot correlate the runtime metrics to source code level data,
the type of analysis can only be speculative in nature.

An analysis model is built using a deeper understanding of how different supercomputer
architectures behave when facing a bottleneck. Which is basically the “expert knowledge”
that is required to optimise HPC applications for different supercomputers. Below I explain
one possible method of how an analysis model can be derived:
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Figure 5.1.: Example of an analysis tree

Let’s say we want to analyse an application for memory boundedness. As explained above,
memory bandwidth is a very critical metric that can help us identify memory boundedness
during an application’s runtime. This “heuristic” was obtained from literature [ARR17] in
our case, but it can also be derived from general practices in this field, or be derived from
different tests conducted to analyse for specific inefficiencies. Now that we have defined a
key metric, we use that as the root node to our analysis model and then add more layers of
“heuristics” to refine our analysis.

We accumulate all the possible reasons an application can face memory boundedness and
figure out how they can be identified from the metrics available to us from the framework. So
for instance, as we explained above, strided access can be a major reason for an application
to be memory bounded. Our first step here would be to understand what this means and
then finding metrics that can help us find this sort of behaviour in the application’s recorded
runtime data. Since strided access would mean that the array element being accessed is
usually present out of the cache, it would correlate to a lot of cache level misses and high
amount of load operations from memory. This can be identified using cache level miss rates.
So this “heuristic” is added to the analysis model.

In simple english this would mean: “If memory bandwidth and cache level misses are
high, the application could be facing a strided access issue making the application memory
bounded.” [GC15] Similarly other aspects of memory boundedness need to be studied and
metrics need to be identified that would help correlate a problem to a metric or set of
metrics.

Analysis models in this tool would be built using the same ideas where a bottleneck is
identified from a much wider perspective and then more rules or “heuristics” are added onto
it to refine the analysis. This is also one of the reasons why a tree-like structure is chosen
for our analysis models.
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5.3. Thresholds

The process of analysis proposed here uses different metrics structured in a tree-like form
that we call analysis models as explained above. Every path from the root node to the leaf
node can be regarded as a chain of “heuristics” that would end at either identifying the
reason for a bottleneck or the lack of it. In layman terms it would be a list of conditional
statements clubbed together to form one path in the model. But the main engine that would
support these analysis models is the threshold values for different metrics that would be
indicative of the presence of a bottleneck or a possible reason for it.

For the sake of simplicity, I use the same example of memory bandwidth where memory
bandwidth of more than 80% of the sustainable peak memory bandwidth of a system is
indicative of memory boundness in an application. In this situation 0.8*(sustainable peak
memory bandwidth) becomes the threshold value for memory bandwidth, above which the
values are considered to be high and below this threshold value it is considered to be low.
This is what is meant by a threshold in the context of our tool.

To make the process of analysis truly application and system agnostic, we need to identify
metrics and their threshold values in such a way that the analysis process can be generalised
throughout different systems for any application. Therefore not all threshold values for
different metrics can be static in nature. They need to be calculated based upon the system
capabilities and/or can be derived using mathematical or statistical models developed using
historical data of different runtime performance metrics.

Metrics which deal with ratios or rates need not be dynamic in nature, for instance, if
load to store ratio recorded for an HPC application is above 4 for on system A, there is no
reason for it to show a different value on system B. So if it has been identified that 4 load
operations for every store operation is high for an application on system A, then it would
also be high on system B. Similarly vectorisation ratio, branch misprediction rate/ratio, etc
need not necessarily be dynamic in nature.

Whereas threshold values for metrics like memory bandwidth, I/O read/write bandwidth,
AVX FLOPS, etc which would vary from system to system need to be dynamic in nature.

5.4. Analysis of bottlenecks

As mentioned above, this tool would be limited in its capabilities with respect to the
granularity of the level of analysis. The CB framework [Tip21] allows us to measure
performance metrics at a minimum interval of 5 seconds. From the perspective of a
processor, this is a long time interval but from the perspective of a standard HPC application
which might have a runtime of more than a few hours or sometimes even days, this time
interval provides us with enough information to be able to conduct analysis. The tradeoff
between loop level or functional level analysis and system level monitoring is exhibited in
the kind of analysis that can be conducted using this analysis tool.

The tool would never be able to pinpoint the loops or function calls that are causing
inefficiencies in the application, but it would be able to parse the runtime data and filter
the timesteps during which a bottleneck was identified and provide the user with possible
reasons for the identified bottleneck. For example, the tool would ideally be able to identify
strided access during certain time steps based on multiple metrics, but it would not provide
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source code level information as to where exactly in the source code are strided accesses
occurring.

The types of bottlenecks that the tool can address can be broken down into 5 main
categories:

• Memory bound

• CPU bound

• I/O bound

• Load imbalance

• Bottlenecks caused due to the system topology, i.e., data transfer delays between
processors placed physically far away.

Bottlenecks of other kinds such as memory leakage [CBG+][SMMC07], parallel inefficiency,
etc. might be present and could possibly be identified using the metrics recorded by the
framework.

It is important here to identify which different inefficiencies can be identified using only
system level information and nothing else to go on. The analysis models would be derived
based on trying to identify these inefficiencies and help the user identify possible reasons for
said inefficiencies.

5.5. Severity

Since there can be multiple possible reasons for an HPC application to suffer through a
bottleneck over it’s runtime, the user should ideally be provided with the severity metric
which informs them about the seriousness of one bottleneck as compared to the other.

As the tool analyses the runtime data of an application and informs about the timesteps
during which these bottlenecks occur, the severity would ideally be calculated with respect
to the amount of time the said bottleneck was present during the application runtime.

For instance, if an application performs a lot of I/O operations in its initialisation phase
which takes about a minute to process. During this phase a lot of data is read but the read
requests are small. It then moves onto its processing phase during which a lot of expensive
instructions and inefficient scalar operations are encountered. This phase lasts about 10
minutes and about 8 minutes of this phase is CPU bound. In such a situation, both phases
are bottlenecked due to different reasons, but the user should ideally invest it’s time in fixing
the bottleneck that occurs during the processing phase first and focusing their attention to
the initialisation phase of the application as this would ideally solve a bottleneck that is
present for a longer duration in the applications runtime.

This is a very rudimentary method to measure the severity of different bottlenecks that
are identified during an application’s runtime. There can be other more intelligent ways to
arrive at such a metric but this is out of the scope of this thesis.

The need for such a metric comes from a common tendency to first solve a bigger problem
and then trickle down to minor inefficiencies.
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Figure 5.2.: Flowchart to show the proposed analysis process

5.6. Structure of the analysis tool

Based on these points I propose a general flow of the analysis process shown in fig. 5.2
The microbenchmarks would provide relevant results based upon which the certain metric

thresholds would be generated, i.e. dynamic in nature, while the threshold for other metrics
would be hardcoded, i.e. static in nature. These threshold values would be fed to the
analysis models. The tool would take the runtime data generated by the CB framework and
the analysis models as input and generate reports based on the two.

As explained in section [microbenchmark section] Microbenchmarks provide peak values
for a wide array of performance metrics. It makes it an ideal choice for the tool to generate
dynamic thresholds for these metrics.

The idea for the analysis models is closely based on the “strategies” presented in [GC15].
Since the type of data that is being analysed, runtime performance metrics over the course
of job execution, is similar for both PerSyst and the tool suggested in this thesis, it made it
a good starting point to explore this idea.
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Analysis results and Tool Prototype
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6. Analysis results

The workflow of this tool (as shown in fig. 5.2) shows that the tool firstly needs to benchmark
the system based upon which the thresholds for a few important metrics would be derived.
These threshold values are fed to the analysis model which the tool would use to perform
analysis.

A few microbenchmarks were tested for these important metrics against runtime data
of multiple different applications to find the best fit for the analysis tool. Due to a lack
of relevant literature that states how specific metrics behave for different performance
bottlenecks, PerSyst [GC15] was used as a baseline to create specific heuristics. These
heuristics were tested against experiments that were chosen to mimic specific performance
bottlenecks. Based on these results, the heuristics were further refined and the threshold
values for these metrics were derived for the suggested analysis model.

All experiments presented in this thesis were executed on Intel Xeon Gold 6252 CPU @
2.10GHz processor on two different nodes: Node 1 (simultaneous multithreading (SMT)
disabled) - 48 threads (2 sockets * 24 cores/socket * 1 thread/core) and Node 2 (simultaneous
multithreading (SMT) enabled) - 96 threads (2 threads/core). The CPU last level cache
size as per product specifications is 35.75 MB, with a base frequency of 2.1 GHz and a max
frequency of 3.7 GHz [xeo]. The processor data reported by the lscpu command reports
cache size of approximately 38 MB (32 kB * 2 (L1-I and L1-D cache) + 1024 kB L2 cache +
36608 kB L3 cache).

This section highlights the applications used to generate relevant runtime data, and
the process of analysis of these experiments with respect to an initial assumption on the
heuristic and thresholds for two key performance metrics - Memory Bandwidth and FLOP
rate. Memory bandwidth helps in dividing the analysis process into memory bound and
compute bound behaviour, whereas FLOP rate is used to differentiate between good and bad
performance of applications over their runtime with respect to the processor architecture. The
threshold values suggested here for the analysis model are either computed as a percentage
of peak values obtained from a microbenchmark for the system (dynamic - based on system
architecture) or set values for metrics which report a percentage value or a ratio of some
sort.

6.1. Applications studied

6.1.1. LULESH

LULESH is a proxy application created by the Lawrence Livemore National Laboratory
(LLNL). It represents a typical hydrodynamics code, like ALE3D. It approximates the
hydrodynamics equations discretely by partitioning the spatial problem domain into a
collection of volumetric elements defined by a mesh. A node on the mesh is a point where
mesh lines intersect. It is built on the concept of an unstructured hex mesh. [lul]
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Applications dealing with Hydronomics using Arbitrary Langrangian Eularian (ALE)
formulation, perform non-unit-stride access within a region. This makes it an ideal selection
to recreate a performance bottleneck caused due to strided access.

The application was tested on Node 2. To run LULESH in parallel, the number of MPI
processes must be a perfect cube. Since Node 2 has 96 threads in total and 125 is the closest
possible cube (53), 125 MPI processes were assigned to perform the experiment.

total elements = #MPI processes ∗ (per node problem size)3 (6.1)

Two test cases of per node problem size 30 (LULESH30) and 100 (LULESH100) were
executed which equates to 3375000 and 125000000 total number of elements respectively
according to the eq. 6.1.

6.1.2. KRIPKE

KRIPKE is another proxy application presented by LLNL. It is a 3D Sn deterministic
particle transport code. It was built to research how data layout, programming paradigms
and architectures affect the performance of Sn transport. [KBB15] KRIPKE supports
storage of angular fluxes (Psi) using all six striding orders (or ”nestings”) of Directions
(D), Groups (G), and Zones (Z), and provides computational kernels specifically written for
each of these nestings. Most Sn transport codes are designed around one of these nestings,
which is an inflexibility that leads to software engineering compromises when porting to
new architectures and programming paradigms. [KB22] KRIPKE was tested on Node 1.
Much like LULESH, the number of mpi processes needed to be in the power of three so 64
mpi processes were assigned to perform the experiments. Results from experiments with 2
different group sizes - 160 (KRIPKE160) and 320 (KRIPKE320) were used with scattering
legendre expansion order of 6. These values were used to analyse runtime behaviour of the
application at a high problem complexity with different data sizes.

6.1.3. 3-D Lid Driven Cavity

The HPC Benchmark Project [SSBA+] presents us with a 3-D version of the Lid driven
cavity flow tutorial provided by OpenFOAM. [ope] This set of simulations were built to show
how memory bandwidth can become a limiting factor when scaling the size of the simulation.
The simulation is built using simple geometry and boundary conditions, involving transient,
isothermal, incompressible laminar flow in a three-dimensional box domain and uses the
icoFoam solver for its computations. [SSBA+] It uses the Pressure Implicit with Splitting of
Operators algorithm to solve for the continuity and momentum equations [ope]:

∇.u = 0 (6.2)

∂(u)

∂t
+∇.(u⊗ u)−∇(ν∇u) = −∇p (6.3)

Where u is velocity, ν is constant for Newtonian flow [Nil23], and p is the kinematic
pressure.
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The test-case contains a problem set of 4 different sizes - Small (S), Medium (M) and
Extra-Large (XL), Extra-extra-Large (XXL). Simulation results for problem size S, M and
XL are explored here.

Test case S M XL

#Cells (million) 1 8 64

∆x 0.001 0.0005 0.00025

∆t 0.001 0.00025 0.0000625

Table 6.1.: Test cases for the 3-D Lid Driven Cavity

6.1.4. MaMiCo

MaMiCo is a macro-micro coupling tool developed to ease the development of and modularize
molecular-continuum simulations, retaining sequential and parallel performance. It couples
the spatially adaptive Lattice Boltzmann framework waLBerla and continuous fluid dynamics
(CFD) software with four molecular dynamics (MD) codes: the light-weight Lennard-
Jones-based implementation SimpleMD, the node-level optimized software ls1 mardyn, and
the community codes ESPResSo and LAMMPS. [NFA+16] User can set the size of the
Experiments were conducted on simulations with different data sizes using the SimpleMD
solver. SimpleMD stores 3D position, velocity and two forces for each molecule. 3 test cases
with 28 (MAMICO28), 72 (MAMICO72) and 224 (MAMICO224) molecules per direction
were experimented with to see if the solver reproduced a memory bound behaviour.

6.1.5. Switch case

This program consists of a simple switch case that takes in a value ranging from 1-100. The
first 10 cases take in a DP floating point value and performs any one of the following 10
operations on it: divide input by a random number between 1-57, power of the input for
a random integer number between 1-5, log of the input, power of the input by a random
number ranging from 0.33-1, sin, cos, tan and arctan on the input, sqrt of the input or
floating point mod (fmod) of the input with a random number between 1-123. The switch
case is as shown in A.1.

This program was used to try and recreate a performance bottleneck caused due to branch
misprediction. It was parallelized using OpenMP and few components used to create the
dataset and measure performance time were borrowed from [Bog].

6.1.6. Expensive Instructions

This program was adopted from [Bog]. It calculates the average of an array containing
random values. The program was modified to run on multiple threads using OpenMP and a
few more heavy operations were added at every loop iteration to increase operation overhead.
The loop kernel is as shown in A.2.

This program was used to create a performance bottleneck caused when multiple expensive
instructions are executed in a single loop iteration.
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6.2. Memory Bound Analysis

Memory bounded applications, as explained in section 3.1, tend to work at a very high
memory bandwidth. The heuristic translates to - “if the memory bandwidth is high, then it
is bounded by memory” where the threshold value for the metric is 80% of sustainable peak
memory bandwidth as suggested in [ARR17].

The 3-D Lid Driven Cavity test cases were used to record runtime data for memory
bounded application. Results show that mean memory bandwidth increases very sharply
from almost 50000 MB/s for openfoamS to almost 200000 MB/s for openfoamM. Whereas
the mean memory bandwidth for the openfoamXL experiment was close to 160000 MB/s
but 22% of the runtime is spent with almost 0 MB/s on the decomposePar operation. This
operation decomposes the mesh and fields of a case for parallel execution. [ope] If we omit
the data collected during this interval, the mean memory bandwidth jumps to almost 210000
MB/s. The bandwidth does not increase much with respect to openfoamM (≈ 220000 MB/s)
even though the total number of cells is 8 times more for openfoamXL. This confirms the
fact that both openfoamM and openfoamXL are bounded by memory. All of these test cases
were performed on Node 1.

Tests on LULESH showed that by increasing the per node problem size from 30 to 100,
the mean memory bandwidth increased from almost 50000 MB/s to 166000 MB/s.

Three different microbenchmarks were used to benchmark the peak sustainable memory
bandwidth of the system:

• STREAM - as explained in section 4.1, the general rule for this microbenchmark is that
each array must be at least 4x the size of the sum of all the last-level caches used in
the run, or 1 Million elements, whichever is larger. [M+95] An array size of 20 million,
equivalent to 152.6 MB memory per array (38 MB * 4) and total memory of 457.8
MB, to benchmark the system. The value considered here is reported by the Triad
kernel as explained above. Node 1 generated a peak sustainable memory bandwidth
of approximately 150000 MB/s and Node 2 generated almost 130000 MB/s. The
benchmark was compiled using the original source code and with OpenMP directives
enabled to run the benchmarks on multiple threads. [McC]

• Likwid-bench stream - the Likwid-bench microbenchmark suite also provides an
implementation of the STREAM microbenchmark. The results reported by this
benchmark are also based on the same Triad kernel. Node 1 and Node 2 both reported
a value of approximately 180000 MB/s with an array of size 457MB.

• Likwid-bench load - In [RHa] the developers of the likwid-bench tool suggest using the
load benchmark to assess the performance of memory for the system as it generally
produces the highest bandwidth value. The results obtained for this benchmark is
close to 250000 MB/s on Node 1 and close to 242000 MB/s on Node 2.
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Node STREAM
Likwid-bench

stream
Likwid-bench load

Node 1 120000 144000 200000

Node 2 104000 144000 193600

Table 6.2.: Peak sustainable memory bandwidth values obtained from different benchmarks
(MB/s)

Table 6.2 lists the threshold values for memory bandwidth on Node 1 and Node 2 as per
the heuristic stated above for with respect to each microbenchmark. Fig. 6.1 shows 2 graphs
of the memory bandwidth data of LULESH100 on Node 2 and openfoamM on Node 1. The
lines mark the threshold values provided in 6.2 over which the application is considered to
be memory bound.

As we can see from the two test cases, we were able to identify memory bound behaviour
for both the applications using the threshold calculated using both versions of the stream
benchmark but were unable to identify such a behaviour for LULESH when we consider
the load microbenchmark provided by Likwid. The threshold value set using the stream
benchmark provided by likwid-bench seems to work the best with our 80% threshold
hypothesis to provide us a threshold for the memory bandwidth metric.

The runtime data provided by these two applications were further analysed to find a
common pattern between the test cases which could be related to specific performance
bottlenecks.

Both of the memory bounded applications show a common trend of high L3 miss ratio, L3
bandwidth, high stalls caused due to memory loads and very high number of total stalls. Fig.
6.2 shows the peak sustainable bandwidth obtained by the likwid-bench stream benchmark
over different data sizes. At 120 MB, a little more than 3 times the total cache size, the
peak sustainable memory bandwidth was close to 480000 MB/s on both Node 1 and Node 2.
The data size was adjusted so that the array is small enough to completely fit into the cache
memory.

The maximum L3 bandwidth recorded while testing the memory bound test case of
LULESH100 was close to 350000 MB/s whereas for openfoamM and openfoamXL this value
was close to 390000 and 350000 MB/s respectively. While the L3 miss ratio was close to
almost 1 in the case of both openfoamM and openfoamXL and close to 0.9 for the LULESH
test case.

The L3 bandwidth recorded by the LULESH test case with per node problem size 30
shows a maximum value of almost 117000 MB/s. Whereas in the case of 3-D Lid Driven
Cavity test case S the maximum value recorded was almost 535000 MB/s. The L3 miss
ratio showed a maximum value of 0.6 and 0.36 for both of these cases respectively.

This sort of behaviour is expected in situations where the data has to be loaded from
memory quite often as it is not present in the last level caches. This could be indicative of
poor data level parallelism. Either the data is accessed poorly (irregular or strided access)
or there is inefficient data locality. [GC15]

According to these results, it can be said that a memory bound application shows a common
trend of high L3 miss ratio and high L3 bandwidth for both the applications. Whereas only
high L3 bandwidth is not solely indicative of a performance bottleneck as shown by the test
case S. Since the L3 miss ratio metric is independent of the system architecture it should

34



6.2. Memory Bound Analysis

behave evenly for different applications across different system architectures that face a
similar bottleneck as shown by these 2 applications. Which means that the threshold for
this metric should be static in nature. The threshold was set to 0.8 for this metric based on
the values reported by the memory bound and non-memory bound test cases. Whereas the
L3 bandwidth would depend upon the system architecture and its threshold value should be
derived using microbenchmarks that would help to measure cache level bandwidth. The
threshold value for L3 bandwidth was set to 70% of the measured peak bandwidth. This
value was chosen based on the analysis results. For the presented system architecture this
value was close to 336000 MB/s for both Node1 and Node2 for the system architecture used
for experimentation.

I propose the analysis model shown in fig. 6.3 based on these results.

(a) Memory Bandwidth recorded for LULESH100

(b) Memory Bandwidth recorded for openfoamM

Figure 6.1.: Runtime Memory Bandwidth for LULESH100 and openfoamM with three
different threshold values provided in table 6.2
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Figure 6.2.: Peak sustainable memory bandwidth values measured using the likwid-bench
stream benchmark for different data sizes

Figure 6.3.: Proposed analysis model for memory bound analysis
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6.3. CPU Bound Analysis

The model is set to only analyse CPU bound behaviour for timesteps where the memory
bandwidth value is below the set threshold. In such a situation the model checks if the
CPU Usage is above 90%. If an application is unable to utilise at least 90% of the CPU,
it is possible that the application is not utilising all available cores. Either it is running
on fewer threads than available or it is not configured well enough to utilise all of them.
This is a static value set as a starting point for the other half of the analysis model that
would analyse for compute related performance bottlenecks. The heuristics suggested here
are built to analyse situations where the CPU performs inefficiently. Just like in memory
bound analysis it is important to benchmark the processor’s peak performance. Processors
are benchmarked based on their FLOP rate. It tells us how close the processor can perform
with respect to its theoretical peak FLOP rate. Table 6.3 lists the theoretical peak FLOPS
for DP and SP floating point operations for Node 1. It was computed using the eq. 6.4
provided in likwid-bench peakflops documentation. [RHa]

FLOPS = #cores ∗ op width ∗#ops per cycle ∗#FMA ∗ cpu frequency (6.4)

Precision Scalar SSE AVX AVX-512

DP 201.6 - 355.2 403.2 - 710.4 806.4 - 1420.8 1612.8 - 2841.6

SP 201.6 - 355.2 806.4 - 1420.8 1612.8 - 2841.6 3225.6 - 6451.2

Table 6.3.: Theoretical peak FLOPS (GFLOPS) for DP and SP floating point operations

The likwid-bench peakflops microbenchmark and HPL were used to benchmark the
system’s peak FLOP rate:

• Likwid-bench peakflops - The peakflops microbenchmark was tested to measure the
peak performance of the CPU in FLOPS. The CPU frequency value ranges between
2.1 GHz to 3.7 GHz (max turbo frequency [xeo]) in this case. Table 6.4 lists the results
achieved using the likwid-bench peakflops microbenchmark.

Precision Scalar SSE AVX AVX-512

DP 266.2 533.1 906.2 1500

SP 266.7 1062.5 1817.2 3000.1

Table 6.4.: Peak FLOPS (GFLOPS) measured using microbenchmark

These measurements were made using 48 threads on Node 1 and 96 threads on Node
2 using vectors of size and 1536 kB and 3072 kB respectively (number of threads *
L1-D cache size). SMT showed no effect on the FLOP rate. Data suggests that the
processor is able to achieve a 32% higher peak sustainable FLOP rate for scalar and
SSE operations than the calculated minimum theoretical peak, approximately 12%
more for AVX FLOP rate. These values were 25% and 36% lower with respect to the
calculated maximum theoretical peak FLOP rate. Interestingly the microbenchmark
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for AVX-512 FLOP rate could only achieve 1500 GLFOPS which is approximately
7% less than the calculated minimum theoretical peak FLOP rate and approximately
47% less than the maximum possible value. The FMA measurements for the AVX and
AVX-512 were both approximately 2 times the measured FLOP rate for non-FMA test
cases. Which is to be expected as the processor has 2 FMA units. [xeo]

• HPL - As explained in section 4.3, it is a computationally intensive algorithm that has
been used as a metric of performance to rate the Top500 supercomputers. Multiple
tests were performed using different problem sizes and block sizes. The system was able
to achieve a maximum performance of 1.5 TFLOPS (1500 GFLOPS) for a problem
size of 30000 and block size of 160 on Node 1 with an operational intensity of 19. This
value correlates to the maximum GFLOPS measured using the likwid-bench peakflops
benchmark used to measure peak AVX-512 FLOPS. This value was also verified by
the AVX-512 FLOPS DP metric when the HPL microbenchmark was run through
the same CB framework. One important note here is that the benchmark ran using
mostly just vector operations. The Packed DP metric recorded a maximum value of
192000 MUOPS in this case while there were negligible scalar operations conducted.

The maximum FLOP rate that was recorded with respect to all experiments was 118
GFLOPS. This was achieved while experimenting with the expensive instructions program.
Where the ratio of vectorised operations (Packed) and scalar operations (Scalar) was almost
0.5 for the entire run. Since the program’s vectorisation was completely controlled by the
C++ compiler itself, it is very difficult to quantify the significance of the Packed and Scalar
metrics, on the FLOP rate performance of the processor. This makes it a little tricky to
assign a threshold value to the FLOPS metric, statically or dynamically.

6.3.1. Poor Vectorization

s stated above the maximum recorded FLOP rate across different experiments was close to
118 GFLOPS produced by the expensive instructions kernel. The program was compiled
using the O3 gcc compiler optimization flag. This flag enables the compiler to find loops that
can be vectorised and optimises the assembly code accordingly. The Packed metric, which
measures all the retired vectorised micro operations, reported a value of 30000 MUOPS and
the Scalar metric reported a value of 60000 MUOPS. When the same program was compiled
using the O1 gcc compiler optimization flag, no vector microoperations were executed and
the scalar metric recorded close to 60000 MUOPS at a FLOP rate of close to 65 GFLOPS.

APP
Expensive
Instruc-

tions

LULESH
30

LULESH
100

MAMICO
28

MAMICO
224

openfoam
S

openfoam
M

FLOPS
(GFLOPS)

118 60 50 40 50 60 25

Packed
(MUOPS)

30000 5000 700 7200 10000 3300 1500

Scalar
(MUOPS)

60000 48000 20000 25000 30000 400000 20000

Ratio 0.5 0.1 0.035 0.288 0.33 0.0825 0.075

Table 6.5.: FLOP rate, Packed, Scalar and their ratio for a few experiments.
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The 2 cases of the kripke proxy app tested on the framework showed very erratic values
for all three metrics Packed, Scalar and FLOPS. FLOPS peaked at close to a 100 GFLOPS
and a minimum of 21 GFLOPS throughout the run, whereas there were several timesteps
without any vectorised instructions. The scalar metric kept oscillating between a peak close
to 80 GFLOPS and a trough close to 5 GFLOPS.

This shows that a poorly vectorised code can be a reason for limited FLOP rate of the
processor. It is a little difficult to set a threshold value for this ratio as even real world
applications cannot be completely vectorised as well as in the case of the HPL benchmark.
Considering the available data, I suggest a static threshold of 0.25 for the Packed to Scalar
ratio.

If an application is properly vectorised and still the FLOP rate and CPI values are still
low, the recommendation would be to properly analyse the application for inefficiencies.

Based on these results my recommended heuristic to analyse for poor vectorisation would
then be “if low FLOPS and if low Packed to Scalar ratio, then poor vectorisation, else
perform in depth analysis.”

6.3.2. High Branching Misprediction

The switch case program was used to analyse the effect of a heavily branched kernel on
branching related metrics.

PerSyst [GC15] suggests that if the branch misprediction to instructions ratio is high and
if the branch mispredicted to branches ratio is also high it relates to performance bottleneck
caused due to branch misprediction.

According to the likwid documentation, branch misprediction rate is the ratio of the
number of retired mispredicted branches to total number of retired instructions and branch
misprediction ratio is the ratio of the number of retired mispredicted branches to that of
the total number of retired branches. This means that if the branch misprediction rate is
high and if the branch misprediction ratio is also high, it should mean that the program
is bottlenecked due to the extra performance penalties incurred because of abnormally
high branching in the code. The branch predictor’s performance is limiting the processor’s
computing capacity. Using the switch case I was only able to record a branch misprediction
rate of 0.02 and a branch misprediction ratio of 0.1. The branch rate of this program was
recorded at almost 0.22. This metric measures the ratio of the total number of branch
instructions retired to that total number of instructions retired. These values seem to be
small but when compared to all the other applications and programs experimented with,
this was the highest value that I was able to record in all of my experiments. The branch
rate metric for other experiments range from 0.04-0.18 and both the branch misprediction
rate and ratio were all very close to 0. These values are very close to help in making any
estimates on their threshold values. But knowing that the program is heavily branched and
the branch rate is 4% higher than the highest recorded branch rate for other applications
it does make sense to analyse other metrics for clues that could be relevant to analyse for
branch misprediction.

As explained in section 3.2.2 branch mispredictions can waste up to ten clock cycles due
to the wasted clock cycles used on the operations in the mispredicted branch, cycles wasted
to flush out the instructions for the mispredicted branch and then a few cycles to load the
instructions for the correct branch. According to [nac], CPI of 1 is acceptable for HPC
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applications and Evas et al in [EBB+14] even use 1 as a threshold for CPI in their HPC
system monitoring tool to identify applications with possible inefficiencies. Causes for high
CPI values can be long-latency memory, floating-point or SIMD operations or non-retired
instructions due to branch mispredictions. [nac]

The switch case recorded a value of 9.5 CPI, a very high value for this metric as stated
above. The FLOP rate recorded for this program was also very low. It can be reasoned that
the stalls caused due to flushing out the wrong instructions and loading the new instructions
would decrease the FLOP rate of the program. For all the other experiments, the maximum
achieved CPI was for the 3-D Lid Driven Cavity test case XL at almost 1.5 and the test
case M recorded a value of 1.3. Whereas for the HPCG benchmark and the LULESH100
test case, the value recorded was close to almost 1. As all of these applications mentioned
here are memory bound, their CPI values can be expected to be around a threshold of 1.
Other applications such as Mamico, Kripke and even the 3-D Lid Driven Cavity test case S
averaged a consistent CPI rate of 0.4 during their compute intensive phases. Based on this I
suggest the heuristic - “if FLOPS low and if CPI high check for branch misprediction.” with
a threshold of 1 for CPI. Memory bound operations would be filtered out before they even
reach this deep into the analysis by the root node of the suggested analysis model.

6.3.3. Expensive Instructions

As explained in section 3.2.3, heavy operations performed consistently increase the operational
intensity of the application. This usually happens when there are multiple heavy operations
taking place in a loop. [GC15] To analyse for such a behaviour the initial heuristic assumed
was “if low FLOPS and if high CPI and if high Operational Intensity, then check for expensive
instructions.”

The logical basis for this assumption was that if the processor is performing heavy
operations, it would comparatively perform fewer (but heavier - higher ops value 3.2.3)
floating point operations per second and need more cycles per operation.

APP
Expensive
Instruc-

tions

KRIPKE
320

MAMICO
28

MAMICO
72

MAMICO
224

LULESH
30

openfoam
S

FLOPS
(GFLOPS)

118 30-90 40 55 50 60 55

CPI 1 0.35 0.66 0.42 0.4 <1 0.4

Op. In-
tensity

50 1-25 >10 <5 2-5 2 2

Table 6.6.: FLOP rate, CPI and Operational Intensity for a few experiments

Table 6.6 lists the FLOP rate, CPI and operational intensity for a few experiments. The
expensive instructions program recorded an operational intensity of 50 while the FLOP
rate remained fairly low as compared to the peak value measured by our benchmarks. This
behaviour was also recorded while experimenting with the proxy application KRIPKE. The
operational intensity value kept alternating between 25-1 between. The FLOP rate for
this application was also very low. The runtime operational intensity recorded during the
MAMICO28 experiment was close to around 10 throughout the coupling cycle with a FLOP
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rate of close to only 60 GFLOPS. Further experiments on Mamico with different numbers of
molecules in each direction (72, 224, 448) show a maximum FLOP rate close to 70 GFLOPS
for the test-case with 448 molecules per direction. Whereas the lowest operational intensity
was recorded at slightly above 5 for the experiment with 72 molecules in each direction. All
other experiments recorded fairly low values for operational intensity. Operational intensity
for both LULESH30 and openfoamS were limited to 2.

None of the recorded experiment data fits with our assumed heuristic in this case. If the
heuristic would be modified to fit for our use cases it would suggest that low FLOP rate with
low CPI and high operational intensity would be indicative of operationally heavy kernels.
But these results are not conclusive enough to add this heuristic to the analysis model.

6.3.4. Object Instantiation

PerSyst [GC15] suggests that when both the FLOP rate and the CPI of a program are low,
it is indicative of performance being limited due to excessive object instantiation. Hidden
functions are added to the compiled code that increase overheads and decrease the processors
compute efficiency.

Here it is important to note that low FLOP rate and CPI values were also recorded for
programs with high operational intensity values as shown above. This observation works
counter intuitively for our assumption. It cannot be conclusively said the low FLOP rate
with low CPI is indicative of excessive object instantiation.

All memory bound experiments showed low values of operational intensity (<1) which
would be expected due to high memory bandwidth. The smaller test cases LULESH30 and
openfoamS recorded similar values for operational intensity (<2). None of the results from
the experiments were conclusive enough to observe a performance bottleneck caused due to
object instantiation.

Based on the FLOP rate measured for all the different experiments I suggest that the
threshold be set at about 80% of the system’s peak FLOP rate when performing only scalar
operations. Below which it would be considered as low. In this case the value is close to 212
GFLOPS. This value is suggested with respect to the data collected across all experiments
and considering how volatile a processor’s performance is to vectorisation, operational
intensity and CPI. This value would be dynamically calculated using a microbenchmark used
to measure a system’s peak FLOP rate for scalar operations, in our case the likwid-bench
peakflops microbenchmark.

6.3.5. Proposed analysis model

Considering all of the suggested heuristics I propose the analysis model shown in fig. 6.4.
This would be an extension of the analysis model shown in fig. 6.3.

6.4. Tool Prototype

6.4.1. Interface

The prototype of the tool is built as a web application on the Vue.js framework (Vue2). As
shown in fig. 5.2, the microbenchmark results which are used to generate dynamic thresholds
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Figure 6.4.: Proposed analysis model for CPU bound analysis

for the key metrics, the threshold for these metrics are passed onto the analysis model. The
tool takes this analysis model and the runtime data generated by the CB framework as
input to generate relevant charts that mark the bottlenecked regions across the applications
runtime data.

In the prototype version, the analysis model is defined using a JSON file. The frontend
parses through this file and creates a list of objects that contains all the information required
to calculate if a certain metric is above or below its threshold value.

The JSON file contains an array of analysis models. Each model is structured to define a
tree. There can be two types of objects in an analysis model:

• Node - A node is a collection of metric, condition (‘>’/’<’), threshold and branches
of the tree - “yes” and “no” wherein, if the condition is met or not with respect to
the metric and the threshold the analysis moves onto the yes branch or the no branch
respectively. “yes” and “no” are arrays that either contain more node objects or one
leaf object. It is important to note that a model can test for multiple conditions at
every level of the tree except the root node but will always have only one leaf object.

• Leaf - A leaf object just contains the output value that can be either a bottleneck or
not depending upon the analysis.

All branches of the analysis models terminate on either a possible bottleneck or an ‘OKAY’.

Both of these objects also contain a “level” key. This is used to track the position of
the node or leaf in the tree. The root node is indicated using (0). Every step further into
the model adds onto this level. The level of the yes branch from the root node would be
(0)-Y(0) which means that this is the first yes condition of the heuristic at level (0). If
there are 3 conditions that need to be checked in the yes branch, then their levels would be
(0)-Y(1) and (0)-Y(2). A no branch arising from the root node would similarly be (0)-N(0).
The further you go down the tree, the condition initial - Y/N and the array position of the
condition in the corresponding branch is concatenated to the level string of its predecessor
node. Therefore an analysis model from (0) to (0)-Y(1)-N(1) in the form of a tree would
look like fig. 6.5.

It is possible that the analysis model is such that at a single node a combination of
multiple metrics need to be analysed. For example if you want to measure the FLOPS SP
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Figure 6.5.: This figure shows how the levels are defined for the analysis model

and FLOPS DP ratio then the metric would be an object which contains the keys ‘metric1’,
‘metric2’ and ‘op’ which is the operation you want to conduct on the two metrics. The
prototype presently supports only two metrics and they can either be added, subtracted,
multiplied or divided.

The analysis model shown in fig. 6.3 would look like this as a JSON object:

1 {
2 ” type” : ”node” ,
3 ” l e v e l ” : ” (0 ) ” ,
4 ”metr ic ” : ”mem.Memory bandwidth” ,
5 ” cond i t i on ” : ”>” ,
6 ” thr e sho ld ” : 144000 ,
7 ” yes ” : [{
8 ” type” : ”node” ,
9 ” l e v e l ” : ” (0 )−Y(0) ” ,

10 ”metr ic ” : ”mem. L3 Bandwidth” ,
11 ” cond i t i on ” : ”>” ,
12 ” thr e sho ld ” : 336000 ,
13 ” yes ” : [{
14 ” type” : ”node” ,
15 ” l e v e l ” : ” (0 )−Y(0)−Y(0) ” ,
16 ”metr ic ” : ”mem. L3 Miss Ratio ” ,
17 ” cond i t i on ” : ”>” ,
18 ” thr e sho ld ” : 0 . 85 ,
19 ” yes ” : [{
20 ” type” : ” l e a f ” ,
21 ” l e v e l ” : ” (0 )−Y(0)−Y(0)−Y(0) ” ,
22 ”output” : ”Check data l e v e l p a r a l l e l i sm ”
23 } ] ,
24 ”no” : [{
25 ” type” : ” l e a f ” ,
26 ” l e v e l ” : ” (0 )−Y(0)−Y(0)−N(0) ” ,
27 ”output” : ”OKAY”
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28 } ]
29 } ] ,
30 ”no” : [{
31 ” type” : ” l e a f ” ,
32 ” l e v e l ” : ” (0 )−Y(0)−N(0) ” ,
33 ”output” : ”OKAY”
34 } ]
35 } ] ,
36 ”no” : [{
37 ” type” : ” l e a f ” ,
38 ” l e v e l ” : ” (0 )−N(0) ” ,
39 ”output” : ”OKAY”
40 } ]
41 }

Listing 6.1: JSON object for the memory bound analysis model

The benefit of using such a JSON object is to allow the user to create their own analysis
models by following very simple rules. As mentioned earlier, this JSON object is converted
to a list of objects by the frontend. This list is used by the charting library to determine
which charts to display, the threshold line for each chart and the regions that need to be
marked as bottlenecked based on the condition and runtime data. Once a bottleneck region
is marked at one node of the analysis model, only those points of the runtime data are
analysed by the following nodes of the analysis model.

6.4.2. Usage

The proposed analysis model is as shown in fig. 6.6. But the model has been divided in two
parts - memory bound analysis model (root node metric - Memory bandwidth) and compute
bound analysis model (root node metric - CPU Usage) for ease of usage.

Example use case

I present the results generated by the prototype tool to analyse the results from the
KRIPKE160 experiment. The interface is divided into 2 tabs. First tab displays charts
for all the relevant metrics for the selected dataset. The corresponding threshold values
are marked in a green line across each chart. The user can choose the dataset they want
to analyse and the key metric they want to analyse for. The tool updates the charts that
should be displayed depending upon the selected key metric. Second tab lists the analysis
models in the form of a table (fig. 6.7).

Fig. 6.8 shows the memory bandwidth of the KRIPKE160 experiment over its runtime.
The memory bandwidth value never crosses the threshold mark set in the analysis model.

Since there is no memory bound behaviour found in this dataset, the next step is to look
for compute related performance issues. Fig. 6.9 (a) marks the region in the runtime data
that is beyond the set CPU Usage threshold (>90%). This is the root node of the compute
bound analysis model. In the next steps the analysis model would only be used on the
timesteps marked in this stage. At every level these regions are updated based upon their
runtime data and the condition set for that node. The model next checks for the FLOP rate
of the application. Fig. 6.9 (b) shows the results generated at level (0)-Y(0) of the analysis
model. The model checks for the CPI value. The timesteps for which the CPI value is below
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Figure 6.6.: The proposed analysis model used by the prototype. Terms used: MemBand -
peak memory bandwidth measured by the likwid-bench stream benchmark with
the appropriate data size, CacheBound - peak cache bandwidth measured by the
likwid-bench stream benchmark with the appropriate data size, PeakFlopsScalar
- peak DP FLOP rate for scalar operations measured by the likwid-bench
peakflops microbenchmark.

Figure 6.7.: The analysis model tab shows a list of all the analysis models passed to the tool.
Index lists the total number of models present. It shows the level of the node,
the metric, condition and threshold against which the values are checked. Based
on the result, the column yes and no suggest the next steps to be taken in the
analysis process. Suggestions can be - a list of metric, condition and threshold
to analyse next or an OKAY or a possible bottleneck identified by the model.
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Figure 6.8.: Memory Bandwidth for experiment KRIPKE160

1, the packed to scalar ratio is checked for the runtime data. Fig. 6.9 (c) and fig. 6.9 (d)
show these steps of the analysis for the experiment.

As we can see from fig. 6.9 (d) the marked regions in the chart are all a subset of the
bottlenecked regions identified from the prior steps. There are a few regions that were
marked as bottlenecked by the prior steps but the packed to scalar operations ratio is above
the set threshold and thus they are considered to be alright by the analysis model. Due
to the scale of the chart, some of the timesteps where the value is above the threshold are
indistinguishable.

6.4.3. Critical analysis

The roofline model is a performance model proposed by Williams et al in [WWP09]. It is a
popular method to benchmark an application’s performance based on the system capabilities.
This model is built using the peak FLOP rate of the system and the sustainable peak
memory bandwidth using the eq. 6.5.

y =

{
x ∗MaxBand if x ∗MaxBand < MaxFLOPS

MaxFLOPS if x ∗MaxBand > MaxFLOPS
(6.5)

Applications that lie underneath the slope (as shown in fig. 6.10) are considered to be
limited by the memory bandwidth whereas applications that are present on the right side of
the slope in this model are considered to be limited by the FLOP rate of the processor.

The proposed analysis model (with respect to the roofline model shown in fig. 6.10) rightly
suggests that the HPL benchmark is limited by the peak FLOP rate of the system, but there
is no real performance issue - “if FLOPS high, it is OKAY” as shown in the analysis model
6.6. But if we consider the MAMICO224 experiment, the roofline model would suggest that
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(a) (b)

(c) (d)

Figure 6.9.: The first graphs shows the CPU Usage plot, the second graph shows the L3
Bandwidth and the third graphs shows the L3 Miss ratio for the 3-D Lid Driven
Cavity test case M
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Figure 6.10.: The roofline model of the system architecture used in this thesis. The peak
FLOP rate vs the peak memory bandwidth of a few experiments are marked
in blue triangles.
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the application is a memory bound with respect to the peak AVX-512 FLOP rate. But the
analysis model fails to find any region in the runtime data to suggest so.

The LULESH100 and openfoamM experiments which lie very close to the slope (mem-
ory bound) are rightly identified by the analysis tool as well, although the only possible
recommendation of the present analysis model is with respect to strided access. As shown
above the tool marks different regions in the runtime data for the KRIPKE160 experiment
where the packed to scalar ratio is lower than suggested. For MAMICO28 the tool would
recommend performing an in depth analysis to the user for all the timesteps where the CPI
is low but the packed to scalar ratio is high.
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Conclusion and Future Work
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7. Conclusion and Future Work

An analysis model, presented in 6.6, was built using initial assumptions based on ideas
and suggestions collected from literature and modified for our tool with respect to the
obtained experiment results. Applications with known performance bottlenecks were chosen
to generate runtime data. This data was used to analyse metric behaviour during various
performance bottlenecks. The threshold values presented in the analysis model were also
derived based on different sources and verified using the experiment results. The nature
of the threshold value, dynamic or static, for different metrics were suggested along with
different microbenchmarks that can help in computing the dynamic threshold values for
different metrics.

The proposed idea of the tool is based on the work presented in [GC15] and [BKD+10].
The suggested analysis model isn’t currently big enough to work as well compared to other
performance evaluation tools. Only a few important metrics have been incorporated into the
model and it analyses for a limited number of possible inefficiencies right now. A complete
analysis model would ideally consider many other different performance metrics and be able
to identify several other performance inefficiencies in any application.

Expert knowledge does play a crucial role in performance analysis of HPC applications
and it was made evident during the course of this study. There is limited literature that talks
about performance metrics with respect to different performance bottlenecks. It becomes
really difficult to understand if a program is facing a performance bottleneck or not just by
looking at runtime data without understanding how it should ideally perform. If a bottleneck
is identified, the next step of identifying the type of bottleneck is even more difficult.

In this master’s thesis, I was able to identify metric patterns for a few different bottlenecked
situations but the study needs to be widened to be able to create a complete analysis model
that encapsulates several different kinds of performance inefficiencies. To achieve this,
either programs that can help benchmark the system while facing a performance bottleneck
need to be created, or more experiments need to be conducted on the CB framework with
applications that are known to be bounded because of specific reasons, like the 3-D Lid
Cavity Driven OpenFOAM simulation test cases used in this thesis. Runtime data from
various other HPC fields need to be studied to find similar performance patterns. This
would help refine the analysis model and threshold values for different metrics.
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A. Programs used to recreate bottleneck
behaviour

A.1. Switch Case

1 switch ( x ) {
2 case 1 :
3 d = rand ( ) % 57 + 1 ;
4 r e s = a/d ;
5 break ;
6 case 2 :
7 d = rand ( ) % 5 + 1 ;
8 r e s = pow(a , d) ;
9 break ;

10 case 3 :
11 r e s = log ( a ) ;
12 break ;
13 case 4 :
14 d = 1/( rand ( ) % 3 + 1) ;
15 r e s = pow(a , d) ;
16 break ;
17 case 5 :
18 r e s = s i n ( a∗PI /180 .0 ) ;
19 break ;
20 case 6 :
21 r e s = cos ( a∗PI /180 .0 ) ;
22 break ;
23 case 7 :
24 r e s = tan ( a∗PI /180 .0 ) ;
25 break ;
26 case 8 :
27 r e s = atan ( a∗PI /180 .0 ) ;
28 break ;
29 case 9 :
30 r e s = sq r t ( a ) ;
31 break ;
32 case 10 :
33 d = (double ) ( rand ( ) % 123 + 1) ;
34 r e s = fmod (a , d) ;
35 break ;
36 . . .
37
38 default :
39 std : : cout << ” d e f au l t \n” ;
40 break ;
41 }

Listing A.1: Switch statement from the switch case program
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A.2. Expensive Instructions

1 for ( int i = 0 ; i < l oop count ; i++) {
2 std : : swap ( v double [ 0 ] , v double [ 1 ] ) ;
3 sum += ca l c u l a t e a v e r a g e ( v double ) ;
4 double sq = pow(sum , 2) ;
5 double cube = pow(sum , 3) ;
6 double l og = log10 (sum) ;
7 }

Listing A.2: For loop in the program where several expensive instructions are executed at
every iteration

54



A.3. Analysis strategies suggest in PerSyst [GC15]

A.3. Analysis strategies suggest in PerSyst [GC15]

Figure A.1.: Strategies used to differentiate between different performance bottlenecks
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A. Programs used to recreate bottleneck behaviour

Figure A.2.: Memory bandwidth is used to differentiate between memory bound and compute
bound behaviour
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