
Technical University of Munich

School of Computation, Information and Technology - Informatics

Master’s Thesis in Informatics

Efficient Simulation of Tsunamis Using a Dispersive Shallow

Water Model

Effiziente Tsunamisimulation mit einem dispersiven

Flachwassermodell

Author David Jonathan Schneller
Supervisor Prof. Dr. Michael Bader
Advisor M. Sc. Lukas Krenz
Date of Submission January 16, 2023

Eidesstattliche Erklärung

Ich versichere, dass ich diese Masterarbeit selbstständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

I confirm that this Masters’s thesis is my own work and I have documented all sources
and material used.

Place / Date / Signature

iii

Abstract

The accurate simulation of tsunamis is generally deemed a computationally expensive
task, since the multitude of effects usually requires a three-dimensional model. On the
other hand, two-dimensional, depth-averaged systems like the shallow water equations
can be simulated fairly quickly, but they only capture the tsunami wave itself and fail
to capture any dispersivity, since it assumes only hydrostatic pressure. For a higher
accuracy, we consider the H-BMSS-γ system [Escalante et. al, 2019]. It is hyperbolized
by applying a Generalized Lagrange Multiplier procedure, and it contains a component
for non-hydrostatic pressure. For the H-BMSS-γ system, we develop three methods to
model the effect of a moving ocean floor: the first method assume an instantaneous
undersea earthquake. The second method adds a non-hydrostatic pressure correction as
a response to the sudden earthquake. Finally, the third method couples the ocean floor
movement to the non-hydrostatic pressure itself. We simulate the H-BMSS-γ model
with all three methods in sam(oa)². For the numerical discretization using the ADER-
DG (Adaptive DERivative Discontinuous Galerkin) method, for which we also suggest
an optimized implementation which utilizes the intrinsic tensor product structure to
simplify the computational effort. Also, we avoid a nonlinear integration in the corrector
step. Furthermore, we add support for adaptive mesh refinement. Finally, we show the
high-order convergence of our model and the implementation, and we benchmark the
three earthquake coupling methods which we derived. In particular, we see that all of
them manage to capture dispersive effects.

v

Acknowledgments

I thank the Almighty God, and my parents for their continuous support not only through
this thesis, but also during all of my higher education. Moreover, I would like to thank
my advisors and my supervisor for their help and assistance with any questions I had
while writing this thesis, and for many helpful discussions which I had with them.

vii

Contents

Contents ix

1 Introduction 1

2 Tsunami Modelling 5
2.1 Tsunami Waves . 5

2.2 Depth-Averaged Equation Systems . 5

2.2.1 The Governing Equations . 6

2.2.2 Eigenstructure . 7

2.2.3 Solitary Waves . 8

2.3 Modelling the Bathymetry Influence on the Governing Equations 9

2.3.1 Immediate Earthquake (Method 1a) 10

2.3.2 Time-Dependent Bathymetry (Method 2) 10

2.3.3 Pressure-Corrected Instantaneous Source Method (Method 1b) . . 14

3 Numerical Updates 15
3.1 The ADER-DG Method . 15

3.2 Preliminaries . 16

3.3 The Predictor Iteration . 18

3.3.1 Using The Tensor Product Structure 19

3.3.2 Handling Bathymetry and External Source Terms 21

3.4 The Corrector Step in Strong Form . 21

3.5 Adaptive Mesh Refinement . 23

3.6 An Updated Finite Volume Scheme . 25

4 Changes to sam(oa)² 27
4.1 sam(oa)² . 27

4.2 Changes to the Implementation . 28

4.2.1 Scenario Implementation and ASAGI 28

4.2.2 Including YaTeTo . 28

4.2.3 Adaptive Mesh Refinement . 29

4.2.4 Convergence Measuring Traversal 31

4.3 Changes to the Repository Structure . 32

4.3.1 Code Reorganization . 32

4.3.2 Build System . 32

4.3.3 Compiler Support . 33

ix

CONTENTS

5 Evaluation 35
5.1 Model Tests . 35

5.1.1 Convergence Analysis . 35
5.1.2 Bathymetry Changes . 41

5.2 Adaptive Mesh Refinement . 45
5.3 Tsunami Simulation . 45

5.3.1 Gaussian Uplift . 49
5.3.2 Tsunami Benchmark . 51

6 Outlook 55

References 57

List of Figures 61

List of Tables 63

List of Algorithms 65

x

1 Introduction

We are given the problem of simulating tsunamis, both efficiently and accurate. This
means that we consider an ocean, and we assume that the ground under it moves due
to an earthquake. With this, we are posed with two modelling problems: firstly, we
need to model the interaction between the earthquake and the ocean, and secondly,
the modelling of ocean response to a moving ground. Some models (e.g. [16]) resolve
this problem by simulating both earthquake and ocean at the same time, using similar
models. While this proves to be able to capture various wave effects, it also involves
a lot of computational power for simulating the ocean. Other methods decouple the
two parts: we are given the ground uplift which was recorded during the simulation of
an earthquake. Using this data, the ocean is simulated using a different model and a
different code.1 For example, we can use the (depth-averaged) shallow water equations
for this, as it is compared in e.g. [1]. Due to their two-dimensional nature, they are
easy and quick to simulate. However, they only manage to capture the tsunami wave
itself, and no dispersive effects. Thus, we need to look at more sophisticated depth-
averaged models (e.g. [7, 8, 9, 28]) which do not neglect the non-hydrostatic pressure.
In [7], a hyperbolic partial differential equation (PDE) which includes a component
for non-hydrostatic pressure and vertical velocity was published. In [29], we called it
the H-BMSS-γ model. It can be derived similarly to the shallow water equations, by
depth-averaging the three-dimensional Euler equations [2], and then coupling the three-
dimensional incompressibility condition to the non-hydrostatic pressure [7]. In [29], we
presented a working simulation of said hyperbolic system in sam(oa)² [19] which uses
the Adaptive DERivative Discontinuous Galerkin (ADER-DG) method with a Finite
Volume limiter. However, it did not include support for responding to earthquakes so
far. Additionally, the H-BMSS-γ model requires small modifications to be able to handle
a moving ocean floor, as it is done in e.g. [9]. The scope of this work is to extend the
implementation presented there to be able to simulate tsunamis accurately and quickly.

Therefore, we structure this thesis as follows: after giving a review of the system used
in [29], we turn to the simulation of tsunamis using the H-BMSS-γ system (Chapter 2).
To do so, we consider three different models: the first model assumes that the earthquake
happens instantly. Thus, we can simply re-use our existing simulation from [29], and
only need updated initial conditions. Secondly, we model the behavior of the earthquake
as time-dependent bathymetry. This requires us to modify the H-BMSS-γ model, as
the non-hydrostatic pressure is directly influenced by the velocity of the uplift. We also
compare this model to the fully-coupled model in [1]. The last model again, just like the
first model, assumes that the earthquake happens in an instant. However, this time, we

1The effects of the ocean onto the crust of the Earth are neglected.

1

1 Introduction

change the pressure during the uplift as well.
Moreover, the new models need to be simulated and discretized efficiently (Chapter 3).

To this end, we use the tensor product structure between time and space, and we de-
compose the matrices using the Kronecker product which leads to a faster simulation.
In addition, we suggest an alternative formulation of the ADER-DG corrector equa-
tion which avoids a nonlinear integral evaluation. Lastly, we consider Adaptive Mesh
Refinement (AMR) in order to avoid computations, where they are unnecessary.
Next, we present our additions to sam(oa)² (Chapter 4), in order to accommodate the

changes from the previous chapter. To accelerate the matrix computations which are
necessary for the numerical discretization, we use YaTeTo [33] and libxsmm [13]. We
integrate ASAGI [26] to read earthquake data from existing simulations. Additionally,
we re-organize the code and the build system of the project.
Lastly, we show the results of our the model (Chapter 5). Firstly, we show that our

model converges by using a manufactured solution with a solitary wave which is close
to a solution of the model. Secondly, we demonstrate the AMR capabilities of our code.
And thirdly, we examine the performance of our three tsunami models at some simple
earthquake test cases from [1]. Finally, we look at a tsunami test case adapted from [18]
which shows that our model captures dispersivity.
We close with a summary and an outlook on future work in Chapter 6.

Notation and Basic Assumptions Scalar functions, scalar constants and vectors are
denoted by lower-case Latin alphabet letters. Vectors may also be marked with an arrow,
i.e. v⃗. For the i-th component of a vector v⃗ ∈ RN , we write v⃗i. Matrices use uppercase
Latin alphabet letters. By ∂if , we denote the partial derivative to the i-th component
of the function f . The gradient is given as2

∇f =

∂1f
...

∂Nf

 . (1.0.1)

For two matrices A and B, we define the Kronecker product (A⊗B) by

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 , (1.0.2)

where A = (aij) ∈ Rm×n.
Vector-valued functions are denoted by lowercase and uppercase Latin alphabet letters

in bold font, e.g. u, f , or S. For vectors and vector-valued functions v,w, the dot operator
means

v ·w =
N∑
i=1

viwi. (1.0.3)

2Note that throughout this work, we only use the Cartesian coordinate system.

2

The divergence ∇ · v is given as

∇ · v =

N∑
i=1

∂ivi. (1.0.4)

Uppercase calligraphic Latin alphabet letters denote higher-order tensor functions,
unless noted otherwise. We write for a tensor function

F = (f1, ..., fN). (1.0.5)

The notation F · n with a vector n ∈ RN means

F · n =
N∑
i=1

nif
i. (1.0.6)

Similarly, ∇ · F means

∇ · F =

n∑
i=1

∂if
i. (1.0.7)

For a vector-valued function, ∇f is given as

∇f = (∂1f , ..., ∂N f). (1.0.8)

If f and g are two vector-valued functions, then define

f ⊗ g = (f1g, ..., fNg). (1.0.9)

In this particular case, ⊗ does not denote the Kronecker product. Subsequently, we have

∇ · (f ⊗ g) =
n∑

i=1

∂i(fig). (1.0.10)

Likewise, we have bold-faced calligraphic letters which denote tensor functions of
matrices. Write

B = (B1, ...,BN). (1.0.11)

The dot product B · n is defined as for F. In particular, for f differentiable, we have

B · ∇f =
n∑

i=1

Bi∂if . (1.0.12)

Furthermore, given a function ϕ : [0, 1]→ RN which is continuously differentiable, its
path integral for f : RN → RN is defined as∫

ϕ
f(z) dz =

∫ 1

0
f(ϕ(t))ϕ′(t) dt. (1.0.13)

3

2 Tsunami Modelling

Most generally speaking, we consider the following situation: we have the crust of the
Earth and the ocean as two separate systems which share the ocean floor as a common
surface. The effects from the ocean onto the crust are neglected. Therefore, we can de-
couple the simulation by treating the effect from the crust onto the ocean over a change
in the bathymetry. In particular, we can simulate the earthquake in advance (using
e.g. a different simulator), and compute the ocean response afterwards. For the water,
we may then use a cheaper depth-averaged formulation instead of a three-dimensional
simulation.

2.1 Tsunami Waves

To begin with, we briefly summarize the different types of waves that we want to simulate.
For a more extensive review, we refer to [28]. Roughly speaking, we differentiate between
two types of waves.

The permanent change in bathymetry which occurs during the earthquake causes the
main tsunami wave. This bathymetry change then causes the water above it to be
displaced. The wave is also visible when considering the ocean to be incompressible.
Since the wavelength of the tsunamis is comparably long, we have that the wave of a
near-instantaneous earthquake travels at the speed

√
gh0, where h0 is a typical water

height at the earthquake location. We should note that there are usually also acoustic
waves propagating in the Earth crust which cause a temporary bathymetry change: we
can assume that they have already left the domain as soon as we reach the end of the
simulation, and they are not the target of our simulations.

The second type of waves are acoustic waves in the ocean. These are caused by
the spontaneous compression of the water near the fault when the ocean floor (i.e. the
bathymetry) moves, and they travel at the speed of sound, and therefore faster than the
main tsunami wave.

The third type of waves are caused by dispersive effects. They move slower than the
main tsunami wave, since the movement of water caused by the tsunami wave causes
small changes in the density (and thus in pressure) which are cause smaller trailing waves
to appear.

2.2 Depth-Averaged Equation Systems

Next, we give a brief overview over the equation system that we are going to use. Note
that in this section, we assume that the bathymetry b is not time-dependent, i.e. we

5

2 Tsunami Modelling

write b(x, y).
A well-known depth-averaged system are the shallow water equations. They read

∂th+∇ · (hu) = 0, (2.2.1a)

∂t(hu) +∇ · (hu⊗ u) +
g

2
∇(h2) = −gh∇b. (2.2.1b)

Here, h(t, x, y) is the water height, and u(t, x, y) = (u(t, x, y), v(t, x, y)) is the horizontal
velocity vector in two dimensions.1 We write for the water height η = h + b. The
constant g denotes the gravitational acceleration. Naturally, we require h ≥ 0. All in
all, the equation system (2.2.1) is strictly hyperbolic for h > 0.
The first equation (2.2.1a) is called the mass conservation equation, and the second

equation (2.2.1b) is called the momentum conservation equation.2

2.2.1 The Governing Equations

The system which we are going to mainly consider was introduced in [7], and it is named
H-BMSS-γ in [29]. It reads

∂th+∇ · (hu) = 0, (2.2.2a)

∂t(hu) +∇ · (hu⊗ u) +∇
(g
2
h2 + hp

)
= −(gh+ γp)∇b, (2.2.2b)

∂t(hw) +∇ · (huw) = γp, (2.2.2c)

∂t(hp) +∇ · (hu(p+ c2))− c2(u · ∇)h = 2c2(u · ∇)b− 2c2w. (2.2.2d)

Once again, h(t, x, y) denotes the water height and u(t, x, y) the horizontal velocity. In
addition, w(t, x, y) is the vertical velocity, p(t, x, y) is the non-hydrostatic pressure and
b(x, y) is the bathymetry. For the constants, we have g as the gravitational acceleration,
γ as model parameter, and c as an artificial pressure wave phase speed.
In short, the system can be understood as extending the shallow water equations with

a dynamic pressure component which is coupled to a divergence-free condition using the
parameter c. The equations (2.2.2c) and (2.2.2d) form a subsystem resembling the wave
equation which is coupled with the subsystem consisting of (2.2.2a) and (2.2.2b) which
is similar to the shallow water equations. For more details on the derivation of (2.2.2),
see [2, 7, 29].

When ignoring the source terms, the system is hyperbolic, given that the following
two positivity properties

h > 0, (2.2.3a)

C(h, p) = gh+ p+ c2 > 0 (2.2.3b)

are fulfilled (cf. [29]). With flat bathymetry (i.e. ∇ · b = 0), we also have strict hyper-
bolicity, if (2.2.3) are given.

1The equation system can be freely extended to higher or lower-dimensional cases—but for the scope
of this work, we will always use two dimensions.

2Some variants, e.g. in [7] add a friction term to the momentum equation.

6

2.2 Depth-Averaged Equation Systems

If we set c = 0 and γ = 0 in (2.2.2), we retrieve the shallow water equations (2.2.1).
In [7] and [29], an optional friction term is added to (2.2.2b), and a wave-breaking

term is added to (2.2.2c). But since we do not use them in this work, we omitted them
in (2.2.2).

2.2.2 Eigenstructure

We can write (2.2.2) in a more compact formulation (as it is done in [29]) which is

∂tq+∇ · F(q) +B(q) · ∇q = S(q,∇q). (2.2.4)

Here, we have

q(t, x, y) =

h
hu
hv
hw
hp
b

 . (2.2.5)

In addition, we write

f1(q) =

hu
h(u2 + p)
huv
huw

hu(c2 + p)
0

 , f2(q) =

hv
hvu

h(v2 + p)
hvw

hv(c2 + p)
0

 , (2.2.6)

and

B1 =

0 0 0 0 0 0
gh 0 0 0 0 (gh+ γp)
0 0 0 0 0 0
0 0 0 0 0 0
c2u 0 0 0 0 2c2u
0 0 0 0 0 0

 , B2 =

0 0 0 0 0 0
0 0 0 0 0 0
gh 0 0 0 0 (gh+ γp)
0 0 0 0 0 0
c2v 0 0 0 0 2c2v
0 0 0 0 0 0

 . (2.2.7)

Then, we can define
F = (f1, f2), (2.2.8)

and
B = (B1,B2). (2.2.9)

Moreover, we define
A = DF +B. (2.2.10)

Here, DF means
DF = (Df1, Df2), (2.2.11)

7

2 Tsunami Modelling

where Dfk denotes the Jacobian of fk for k = 1, 2. Finally, the source term S is given
by

S(q,∇q) =

0
0
γp
−2c2w

0

 . (2.2.12)

Note that τb is vector-valued, and hence, S still maps to a vector of dimension 6. By
using A, we can compactify the notation even more to

∂tq+A(q) · ∇q = S(q,∇q). (2.2.13)

With this notation, we are going to shortly give the eigenstructure of (2.2.2) as de-
scribed in [29] (and incorrectly described in [7]). In particular, we look at A1, where

A = (A1,A2). (2.2.14)

Note thatA1 includes the bathymetry as a component. The eigenvalues and eigenvectors
are given as

λ1 = u−
√
C, r1 = (1, u−

√
C, v, w, p+ c2, 0)T , (2.2.15a)

λ2 = u, r2 = (1, u, 0, 0,−gh, 0)T , (2.2.15b)

λ3 = u+
√
C, r3 = (1, u+

√
C, v, w, p+ c2, 0)T , (2.2.15c)

λv = u, rv = (0, 0, 1, 0, 0, 0)T , (2.2.15d)

λw = u, rw = (0, 0, 0, 1, 0, 0)T , (2.2.15e)

(2.2.15f)

and for the bathymetry:

λb = 0, rb =

2c2 + gh+ γp
0(

2c2 + gh+ γp
)
v(

2c2 + gh+ γp
)
w

2c2u2 + gh(p− c2) + γp(p+ c2)
u2 − C

 . (2.2.15g)

2.2.3 Solitary Waves

Next, we are going to give a short overview over a special case of (2.2.2) and its solution.
For the solitary wave, we are given a water height H > 0 and a wave amplitude A > 0.

In addition, we will only consider the case c→∞. Then, we employ a change of variables
using

ξ =
x− cAt

l
. (2.2.16)

8

2.3 Modelling the Bathymetry Influence on the Governing Equations

Method Description

1a Instant uplift
1b Instant uplift with pressure correction
2 Time-dependent bathymetry

Table 2.1: The different tsunami modelling methods for (2.2.2).

Here, the constants cA and l are defined as

cA =
√
g(A+H), (2.2.17)

l = H

√
2

γA
(A+H), (2.2.18)

respectively. In particular, cA is different from c.

For c→∞, we obtain the solution

h = H +A(sech(ξ))2, (2.2.19a)

u = cA
h−H
h

, (2.2.19b)

w = −AcAH
lh

sech(ξ) sech′(ξ), (2.2.19c)

p =
Ac2AH

2

2l2h2

(
(2H − h)

(
sech′(ξ)

)2
+ hsech(ξ) sech′′(ξ)

)
. (2.2.19d)

Here sech denotes the secans hyperbolicus given by

sech(x) =
2

ex + e−x
. (2.2.20)

The system (2.2.19) is also described in [2]. For finite values of c, a quasi-exact solution
is described in [29] (which corrects some incorrect formulas from [7]).

2.3 Modelling the Bathymetry Influence on the Governing
Equations

With the previously-described equation system, we now want to simulate the tsunami
waves described in Section 2.1. That is, now we look at a time-dependent bathymetry
b(t, x, y). For our purposes, we consider the situation where an earthquake occurs in the
timeframe [0, teq) for some teq ≥ 0, and that the bathymetry does not change afterwards:
∂tb(t, · , ·) ≡ 0 for t > teq.

All methods which we derived are listed in Table 2.1. They mainly form the analogues
to the treatment of the shallow water equations (2.2.1), as discussed in [1, Methods 2
and 3].

9

2 Tsunami Modelling

2.3.1 Immediate Earthquake (Method 1a)

The simplest method is to assume that the earthquake happens in an instant, i.e. we
take the bathymetry

blim(x, y) = lim
t→∞

b(t, x, y) = b(teq, x, y). (2.3.1)

Then, we insert blim into (2.2.2), while all other variables and initial conditions stay the
same. In particular, this means that h stays as it was before, but η = h+ blim uses the
limit bathymetry. This method can be run with the existing simulation code from [29]
immediately, as we merely change the initial conditions.
In [1], the same method is tested for the shallow water equations, and it shows to

work well for small teq. Naturally, the shallow water equations only capture the tsunami
wave; therefore, we expect the method applied to (2.2.2) to not only show the tsunami
wave, but also dispersion effects.

2.3.2 Time-Dependent Bathymetry (Method 2)

Other than adjusting the time-dependent bathymetry to our existing equations, we can
do the opposite and adjust our equation system to support time-dependent bathymetry.
This was also done for similar systems like [9].

Extending the Governing Equations to Time-Dependent Bathymetry

As indicated by [2, Remark 3], we merely need to modify equation (2.2.2d). The
equations (2.2.2a), (2.2.2b), and (2.2.2c) do not change their form when we have time-
dependent bathymetry.3 Thus, we look at the original equation where (2.2.2d) is derived
from. It is

∂t(η
2 − b2) +∇ ·

(
(η2 − b2)u

)
= 2hw (2.3.2)

which is given in the one-dimensional form in [2, eq. (40)]. Using that η = h + b, we
obtain

η2 − b2 = h(h+ 2b) (2.3.3)

Together with the chain rule, this yields

(h+ 2b) (∂th+∇ · (hu)) + h (∂t(h+ 2b) + (u · ∇)(h+ 2b)) = 2hw. (2.3.4)

Inserting the mass conservation equation (2.2.2a) to remove the first term as well as to
replace ∂th, we obtain

0 + h (−∇ · (hu) + 2∂tb+ (u · ∇)(h+ 2b)) = 2hw. (2.3.5)

Next, we divide by h to obtain

−∇ · (hu) + (u · ∇)(h+ 2b) = 2w − 2∂tb. (2.3.6)

3Likewise, the shallow water equations also do not gain any new terms.

10

2.3 Modelling the Bathymetry Influence on the Governing Equations

Lastly, we once again apply the GLM procedure again (see e.g. [29]) and couple (2.3.6)
with the continuity equation for hp. This yields

∂t(hp) +∇ · (hu(p+ c2))− c2(u · ∇)h = 2c2((u · ∇)b+ ∂tb− w). (2.3.7)

Thus, in comparison to the non-time dependent method, we only gained the term 2c2∂tb
on the right-hand side as another source term.

The Resulting System

In total, the new system reads

∂th+∇ · (hu) = 0, (2.3.8a)

∂t(hu) +∇ · (hu⊗ u) +∇
(g
2
h2 + hp

)
= −(gh+ γp)∇b, (2.3.8b)

∂t(hw) +∇ · (huw) = γp, (2.3.8c)

∂t(hp) +∇ · (hu(p+ c2))− c2(u · ∇)h = 2c2((u · ∇)b+ ∂tb− w). (2.3.8d)

These changes in the equations conform with similar models from e.g. [8, 9]. In these
models, the effects of time-dependent bathymetry are included in the same way as done in
(2.3.8), as far as comparable.4 The counteraction of ∂tb to w has an intuitive explaination
as follows (assuming a flat bathymetry): an uplift of the seafloor causes the ocean water
to be effectively compressed. In our equation system, this translates to an increase of
pressure. In contrast, a positive value for w means that the water wants to expand, and
therefore we have a decrease in pressure.
Once again, a comparable method is used for the shallow water equations in [1]. Just

as in the instantaneous case, we can expect a similar behavior for (2.3.8), but with
additional dispersion effects.

Model Test Cases

In order to investigate the changed equations more closely, we look at a simple example.
As initial conditions, we assume a flat bathymetry, as well as a constant water height
and no velocity. We also assume w and p to be constant in space. Thus, we have

h(0, ·) ≡ H, (2.3.9)

u(0, ·) ≡ 0, (2.3.10)

w(0, ·) ≡ w0, (2.3.11)

p(0, ·) ≡ p0. (2.3.12)

Here w0, p0, H ∈ R are three constants, and we require H > 0. The bathymetry is
described by a function which depends only on the time, i.e. there is a differentiable
function f , so that

b(t, ·) ≡ f(t) (2.3.13)

4This means: looking at the equations for the non-hydrostatic pressure hp near the bathymetry, and
look to the contribution of the vertical velocity w.

11

2 Tsunami Modelling

for all t. As a result, ∇b ≡ 0. All other constants can be chosen freely. Inserting
the conditions into (2.3.8) yields that h and u stay constant in time, since all spatial
derivatives are zero. Thus, we are ultimately left with the system

∂tw =
γ

H
p, (2.3.14a)

∂tp =
2c2

H
(∂tb− w) (2.3.14b)

which can be seen as an inhomogenous ordinary differential equation (ODE). In short, we
could imagine this scenario to happen in a zero-dimensional domain which only consists
of a single point. This is because these test scenarios assume a flat water surface,
and thus the pressure cannot be converted into horizontal velocity. Furthermore, the
incompressibility assumption prevents any change in water height related to the pressure.
If γ = 0, then we have the immediate solution for (2.3.14) that

w(t) = w0, (2.3.15a)

p(t) =
2c2

H
(b(t)− b0 − tw0) + p0. (2.3.15b)

If γ > 0, we as usually for an inhomogenous linear ODE system (see e.g. [32]). For that,
write

ω = c

√
2γ

H
. (2.3.16)

Then we begin to look at the homogenous equation (i.e. ∂tb ≡ 0)

∂ttw = γ∂tp = −ω2w (2.3.17)

which has the family of solutions

wH
A,B(t) = A cos (ωt) +B sin (ωt) , (2.3.18)

where A and B depend on p0 and w0. Next, we solve the inhomogenous equation

∂ttw = −ω2(w − ∂tb). (2.3.19)

For this, we use the “variation of constants” method [32]: for A, we insert a function
A(t), and for B, we insert a function B(t). After differentiating wH

A(t),B(t)(t) by t twice
and comparing to the homogenous solution, we impose the following conditions:

wH
∂tA(t),∂tB(t)(t) = 0, (2.3.20)

∂tw
H
∂tA(t),∂tB(t)(t) = ω2∂tb. (2.3.21)

This can be written as(
cos (ωt) sin (ωt)
−ω sin (ωt) ω cos (ωt)

)(
∂tA(t)
∂tB(t)

)
=

(
0

ω2∂tb

)
. (2.3.22)

12

2.3 Modelling the Bathymetry Influence on the Governing Equations

Solving this linear system yields

∂t

(
A(t)
B(t)

)
= ω∂tb(t)

(
− sin (ωt)
cos (ωt)

)
= ω∂tb(t)

(
sin (−ωt)
cos (−ωt)

)
. (2.3.23)

Integrating over t gives us an expression for A(t) and B(t). Thus, by further simplifica-
tions and re-substituting into wA(t),B(t)(t), we obtain

wA0,B0(t) = wH
A0,B0

(t) + ω

∫ t

0
∂tb(s) sin (ω(t− s)) ds. (2.3.24)

Here A0, B0 are determined from p0 and w0. In addition, we obtain

∂twA0,B0(t) = ∂tw
H
A0,B0

(t) + ω2

∫ t

0
∂tb(s) cos (ω(t− s)) ds. (2.3.25)

The integral derivative vanishes here, since we have a sine under the integral. Further-
more, we have by differentiating again and recalling that ∂ttw

H
A0,B0

(t) = −ω2wH
A0,B0

(t)
that

∂ttwA0,B0(t)

= ∂ttw
H
A0,B0

(t)− ω2

(
∂tb(t) + ω

∫ t

0
∂tb(s) sin (ω(t− s)) ds

)
= −ω2(wA0,B0(t)− ∂tb).

(2.3.26)

The term ∂tb(t) stems from the integral derivative. In total, this shows that our choice
for wA0,B0 is a solution to (2.3.14). We also obtain

pA0,B0(t)

=
1

γ
∂twA0,B0(t)

=
1

γ
∂tw

H
A0,B0

(t) +
2c2

H

∫ t

0
∂tb(s) cos (ω(t− s)) dt.

(2.3.27)

If we consider starting with a resting lake, i.e. p0 = 0 and w0 = 0, then we only need to
specify b, or rather, ∂tb. For example, suppose that for some C ∈ R, we have

∂tb ≡ C. (2.3.28)

Then, we obtain

p(t) =
2c2C

H

∫ t

0
(cos (ω(t− s))) ds = Cc

√
2

γH
sin (ωt) . (2.3.29)

And we also get w as5

w(t) = Cω

∫ t

0
sin (ω(t− s)) ds = C(1− cos(ωt)) = 2C

(
sin
(ω
2
t
))2

. (2.3.30)

5The identity 1 − cos(2x) = 2 sin2(x) can be seen by subtracting the identities 1 = cos2(x) + sin2(x)
and cos(2x) = cos2(x)− sin2(x).

13

2 Tsunami Modelling

2.3.3 Pressure-Corrected Instantaneous Source Method (Method 1b)

We revisit the instantaneous source method: suppose that once again, teq is very small,
so that we can ignore all spatial derivatives. This puts us into the situation that we dis-
cussed in the previous section, i.e. h, u, and v do not change. This time, we additionally
assume that due to teq being small, p and w do not influence each other.6 Thus, we are
left with

∂t(hw) = 0, (2.3.31)

∂t(hp) = 2c2∂tb. (2.3.32)

Integrating both equations yields

(hw)(teq) = w0, (2.3.33)

(hp)(teq) = p0 + 2c2(b(teq)− b(0)). (2.3.34)

We are also able to deduce this result from (2.3.24) and (2.3.27) derived in the previous
section, without looking at (2.3.31). For that, we assume that we have teq but very small,
so that we can ignore all terms which are polynomial in teq, but b(teq) is not set to b(0).
Then, given k ≥ 0, we have that for teq close to 0 that∣∣∣∣∫ teq

0
tk∂tb(s) ds

∣∣∣∣ ≈
{
|b(teq)− b(0)| k = 0,

0 k > 0.
(2.3.35)

This is because we can bound∣∣∣∣∫ teq

0
tk∂tb(s) dt

∣∣∣∣
≤
∣∣∣∣∫ teq

0
∂tb(s) ds

∣∣∣∣ (max
s∈[0,teq]

sk
)

= |b(teq)− b(0)| (teq)k .

(2.3.36)

Since |b(teq)− b(0)| is constant, we have that the whole term can be seen as approxima-
tively 0 for teq close to 0, if k > 0. Using this, we obtain for hp that

(hp)(teq) = 2c2
∫ teq

0
∂tb(s) cos (ω(s− teq)) ds ≈ −2c2(b(teq)− b(0)), (2.3.37)

due to cos(x) = 1 + o(x) for x→ 0. For w, this gives us

(hw)(teq) = ω

∫ teq

0
∂tb(s) sin (ω(s− teq)) ds ≈ 0, (2.3.38)

since sin(x) = o(x) for x→ 0. Thus, the whole term can be neglected for teq close to 0.
If we consider the shallow water case, method 1b collapses into method 1a. The

pressure correction can be understood as follows: the sudden seafloor movement which
happens without spatial movement should effectively cause a sudden compression of the
surrounding water—thus it translates into an increase in pressure.
6This is equivalent to γ = 0.

14

3 Numerical Updates

We next present the improvements to our numerical scheme as compared to [29]. This
constitutes mostly two main points: the improvement in the computation of the ADER-
DG corrector step, and the utilization of the tensor product structure in space and
time.

3.1 The ADER-DG Method

The method which we use to discretize and simulate the equations is called the Adaptive
DERivative Discontinuous Galerikin, or abbreviated, ADER-DG method. Subdividing
a space into cells, we choose a function space in both space and time.

1. Prediction Step: we compute a local time evolution on each cell, for a given function
space in space and time. Thus, we usually end up searching for a fixed point per
cell, and we do not communicate with any neighboring element.

2. Correction Step: given the time evolution from the prediction step, we compute the
result for the next timestep. Here, we also take the interaction with the neighboring
cells into account, effectively amounting to the evaluation of the numerical fluxes
at the boundary. Thus, we are required to exchange information with the directly
adjacent cells.

These steps are repeated until we reach the target simulation time. Due to Godunov’s
Theorem[12], we are naturally expected to run into spurious oscillations near shocks or
contact disconinuities. The usual strategy is to employ a limiter (see e.g. [34]) in this
situation which is triggered when the method described above runs into problems (e.g.
the fixed-point iteration diverges). In addition, heuristic strategies like the “Discrete
Maximum Principle”[6, 34] can be employed.

For a more extensive introduction to the background of ADER-DG, see [29] or one of
the original papers (e.g. [4, 34]). We are going to discuss some parts of the method in
the following, since we have improved our implementation compared to [29].

The finite volume method is used for the limiter in our code. It assumes piece-wise con-
stant functions, and we only exchange numerical fluxes between neighboring cells. The
method equals an ADER-DG method when using a function space which only consists
of constant functions in space and time: then the prediction step is skipped completely,
and in the correction step only adds the numerical fluxes from the neighboring cells.
Other than that, source terms can be integrated using a splitting scheme.

15

3 Numerical Updates

3.2 Preliminaries

For discussing the ADER-DG method, we need two function spaces: one function space
SC denoting the corrector function space, and a function space SP denoting the function
space for the predictor. Both SC and SP are assumed to be finite-dimensional. Note
that SC and SP contain vector-valued functions: functions in SC map R2 → R6, and
functions in SP map R3 → R6. The target space is the space of conserved variables. By
NP , we denote the polynomial degree of SC and SP .

In this work, we are going to assume that SP has a tensor product structure, i.e. it
can be decomposed into

SP = ST ⊗ SC := {f(t, x⃗) | f(t, x⃗) = ϕ(t)⊙ ψ(x⃗); ϕ ∈ ST , ψ ∈ SC} , (3.2.1)

where ST is a function space in time. The operator ⊙ denotes the point-wise vector
multiplication.
Moreover, we assume that for each of the vector components, SC and SP have the

same basis.1 We assume that we have given a basis of scalar functions written as BZ

for SZ , where Z = T,C, P . We write

BC = {v1, ..., vDC
} , (3.2.2)

BP = {w1, ..., wDP
} , (3.2.3)

BT = {z1, ..., zDT
} , (3.2.4)

we can decompose each wk into vi and zj , where k = jDC + i, so that

wk(t, x⃗) = zj(t)vi(x⃗). (3.2.5)

Secondly, we look at the numerical fluxes. Firstly, we introduce the notion of a family
of paths by Φ[q−, q+] : [0, 1] → R6. Here q− and q+ are given end points. We require
the family of paths to fulfill for all q− and q+ (when chosen appropriately) that

Φ[q−, q+](0) = q−, (3.2.6)

Φ[q−, q+](1) = q+, (3.2.7)

Φ[q−, q−] ≡ q−. (3.2.8)

The first two conditions determine the end point, and the last condition states that if
start and end point are the same, then the whole path needs to be constant. Moreover,
we require (q−, q+, t) 7→ Φ[q−, q+](t) to be locally Lipschitz continuous in all three vari-
ables.2 A more formal introduction to the topic is given in [29] or [23].3 Given a family

1This means that we have the same basis for the variable h, hu, hv, hw, hp, and b.
2In the case of the third variable t, this results in Lipschitz continuity on all of [0, 1].
3When considering the Riemann problem, the whole concept of a family of paths is mainly needed for
quantifying the shocks in the non-conservative case, i.e. concerning the matrix B. In the conservative
case, the family of paths is not needed, and in the case of a contact discontinuity or rarefaction, we
can deduce a suitable choice of paths by an associated ODE from an eigenvector of A. For details,
see e.g. [23].

16

3.2 Preliminaries

of paths, we may introduce a prototypical numerical flux given by

N (q−, q+) =
1

2

(
F(q+) + F(q−) +

∫
Φ[q−,q+]

B(q) dq −
∫
Φ[q−,q+]

Θ[q−, q+](q) dq

)
.

(3.2.9)
This formulation encompasses a large family of approximate numerical fluxes, including
HLL, Roe, etc. [3], or the DOT method [5].4 It should be noted that in this structure,
the numerical flux treats parts of the equation differently, depending on if they belong
to the conservative part in F or the non-conservative part in B. For the scope of this
work, we are going to exclusively rely on a Rusanov-type flux, i.e. Θ[q−, q+] reads

Θ[q−, q+](q) = max
{
s(q−), s(q+)

}

1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 . (3.2.10)

Here s(q) is the maximum wave speed of the vector q = (h, hu, hv, hw, hp, b)T . It is given
by

s(q) =
√
u2 + v2 +

√
gh+ p+ c2. (3.2.11)

The first row of the matrix in (3.2.10) is chosen to have no influence on the water height
η in a Resting Lake scenario.5 Since Θ[q−, q+] is constant (it does only depend on q−

and q+), we obtain ∫
Φ[q−,q+]

Θ[q−, q+](q) dq = Θ[q−, q+](q+ − q−). (3.2.12)

For more details about the numerical fluxes and other choices we refer to [29].
In this work, we chose to replace the numerical fluxes by numerical fluctuations which

are defined as
D(q−, q+) = N (q−, q+)−F(q−). (3.2.13)

This yields for a normal vector n that

D(q−, q+) · n =

∫
Φ[q−,q+]

A(u) · n du−
∫
Φ[q−,q+]

Θ[q−, q+](q) · n dq, (3.2.14)

In particular, a different treatment of the conservative and the non-conservative part is
no longer needed.6 Additionally, we have for q that

D(q, q) = 0, (3.2.15)

4In particular, PVM methods [3] have Θ[q−, q+](q) to be a constant function in q, i.e. only dependent
on q− and q+. In contrast, the Θ from the DOT method [5] does depend on q, and thus the result
in general also depends on the choice of paths.

5That is: for q− = (h−, 0, 0, 0, 0, b−)T and q+ = (h+, 0, 0, 0, 0, b+)T , so that h− + b− = h+ + b+, we
obtain Θ = 0.

6It is advantageous to still know about F when computing the path integral, in order to reduce the
computational effort: for F the path integral always collapses to (F(q+)−F(q−)).

17

3 Numerical Updates

if N is consistent (which is the case for (3.2.9)).

3.3 The Predictor Iteration

The first part in an ADER-DG step is the cell-wise predictor iteration. Let un ∈ SC be
the function representing the solution at timestep tn. Then we are looking for a q ∈ SP ,
so that the equation∫

T
w(tn+1, x⃗)

Tq(tn+1, x⃗) dx⃗−
∫
[tn,tn+1]×T

∂tw(t, x⃗)Tq(t, x⃗) d(t, x⃗)

=

∫
T
w(tn, x⃗)

Tun(x⃗) dx⃗

−
∫
[tn,tn+1]×T

w(t, x⃗)T (A(q) · ∇q− S(q,∇q)) d(t, x⃗)

(3.3.1)

is fulfilled for all w ∈ SP . It shall be noted that the vector-valued test functions are
used slightly differently in comparison to [29] and [7], but the equations can be shown
to be equivalent nonetheless. However, for equivalence to the formulation from [7], we
need to use the same function space in each component of the vector-valued functions.

The predictor is derived by testing the original PDE and integrating it in space and
time. After that, we use integration by parts in time, and replace q(tn, x⃗) by un (this
happens in the second row in (3.3.1)). For more details, we refer to [29]. Most notably,
the underlying PDE from (2.2.13) is not altered in (3.3.1), except for the time derivative.
In fact, the predictor iteration as in (3.3.1) can be thought of as applying the method
of lines: we test and integrate the original equation in space only which yields an ODE
per test function. For the time integration, we can now choose any ODE integration
method that looks suitable to us.7 On the other hand, we see by this as well that the
ADER-DG predictor includes an ODE integrator8 which can be seen as a weak form of
the Power Series Method forwarded in [24].
The predictor iteration (3.3.1) usually done by a fixed-point iteration, requiring the

evaluation of the integral in the last line (usually using quadrature), and then solving
against the left-hand side. This fixed-point iteration in the ADER-DG Predictor turned
out to be the most expensive part of the simulation. Once having chosen a basis for SC
and SP , we introduce matrices Un and Qk, so that we can write

WQk+1 = V 0Un − (tn+1 − tn)Ψ(Qk). (3.3.2)

Here, the matrices W , and V 0 are given as

Wij =

∫
T

(
wi(tn+1, x⃗)wj(tn+1, x⃗)−

∫ tn+1

tn

∂twi(t, x⃗)wj(t, x⃗) dt

)
dx⃗, (3.3.3)

V 0
ij =

∫
T
wi(tn, x⃗)vj(x⃗) dx⃗. (3.3.4)

7Depending on if the area of convergence is sufficient for our equation system.
8Take e.g. A ≡ 0 to see it in (3.3.1)

18

3.3 The Predictor Iteration

The function Ψ denotes the discretized nonlinear integral from the third row in (3.3.1)

Ψ(Q) = (diag(p)C)T
(
Â(CQ) · C∂sQ− Ŝ(CQ,C∂sQ,C∂tQ)

)
. (3.3.5)

The function Â : Ωk ⊆ Rk×6 → Rk×(6×6) means that A : Ω ⊆ R6 → R6×6 is evaluated
on each row of the input, and likewise for Ŝ and S. In addition, C denotes the collocation
matrix for some quadrature scheme on [0, 1] × T , and p are the quadrature weights. If
we denote by X the matrix which has all quadrature points as rows on [0, 1]×T and by
Xi its i-th row, then we have for basis functions BP = {w1, ..., wNP

} that

Cij = wi(Xj). (3.3.6)

C∂s denotes the collocation tensor when applying the gradient in space. This means9

C∂s = (∂xwi(Xj), ∂ywi(Xj)). (3.3.7)

Likewise C∂t denotes
C∂t = ∂twi(Xj). (3.3.8)

diag(p) means the matrix with p as its diagonal and zeros everywhere else.

3.3.1 Using The Tensor Product Structure

By the structure of the predictor equation (3.3.1), the tensor product structure can be
carried down to the matrix level. Thus, the matrix W , can be re-written in tensor
product form, since we note by writing wk(t, x⃗) = vk(x⃗)zk(t) that

Wij

=

∫
T
vi(x⃗)vj(x⃗)

(
zi(tn+1)zj(tn+1)−

∫ tn+1

tn

∂tzi(x⃗)zj(t, x⃗) dt

)
dx⃗

=M s
ijW

t
ij .

(3.3.9)

Here M s denotes the mass matrix in space given by

M s
ij =

∫
T
vi(x⃗)vj(x⃗) dx⃗, (3.3.10)

and W t is defined as the time-dependent part of W . Thus, we have

W t
ij = zi(tn+1)zj(tn+1)−

∫ tn+1

tn

∂tzi(t)zj(t) dt. (3.3.11)

Since the inverse commutes with the Kronecker product, we get

W−1 = (W t)−1 ⊗ (M s)−1. (3.3.12)

9For the scope of this description, we ignore the rotation of the cells. In the code however, rotating the
cells requires us to adjust the partial derivatives in space.

19

3 Numerical Updates

For the matrix V 0, we get by inserting wk = vkzk that

V 0
ij = zi(tn)

∫
T
vi(x⃗)vj(x⃗) dx⃗ = v0iM

s
ij , (3.3.13)

where
v0i = zi(tn). (3.3.14)

Thus, we can simplify the contribution term of Un to

W−1V 0 = ((W t)−1 ⊗ (M s)−1)(v0 ⊗M s) = (W t)−1v0 ⊗ I. (3.3.15)

In other words: Un is projected in time only, but not changed in space.
We choose the quadrature rule to also have this tensor structure, and thus the collo-

cation matrix C can be decomposed into a space and a time collocation matrix

C = Ct ⊗ Cs. (3.3.16)

When considering C∂s and C∂t, we likewise obtain

C∂s = (Ct ⊗ Cs,∂s
x , Ct ⊗ Cs,∂s

y), (3.3.17)

C∂t = Ct,∂t ⊗ Cs. (3.3.18)

Note that we still use Ct and Cs here, since the derivative only gets applied to one of the
components. The tensor product structure is also valid for the quadrature point weight
vector for which we may write

p = pT ⊗ pS . (3.3.19)

Here, the Kronecker product is applied on vectors which again results in a vector. As a
result, we may decompose

diag(p)C = diag(pt)Ct ⊗ diag(ps)Cs. (3.3.20)

Thus, the computation of Ψ becomes:

1. Compute (Ct ⊗ Cs)Qk, as well as (Ct ⊗ Cs,∂s)Qk and (Ct,∂t ⊗ Cs)Qk.

2. Evaluate the nonlinear function Â and Ŝ at each quadrature point, call the result
Q′.

3. Compute (diag(pt)Ct ⊗ diag(ps)Cs)Q′.

From the point of complexity, suppose that in space, our basis has the size ns, and we
have ks quadrature points. In time, we have dimension nt, and kt quadrature points. The
quadrature requires O(nsntkskt) flops without utilizing the Kronecker product. With
the Kronecker product, it becomes O(nsks+ntkt). Thus, if the nonlinear part of Ψ needs
f(n) flops for n points, we obtain O(nsntkskt+f(kskt)) against O(nsks+ntkt+f(kskt)).
Thus, if the nonlinear evaluations are comparably cheap, the tensor product evaluation
is asymptotically more efficient as soon as the matrices are larger than (2× 2).

20

3.4 The Corrector Step in Strong Form

3.3.2 Handling Bathymetry and External Source Terms

In each iteration of the predictor, we also need b evaluated at each space-time quadrature
point. Since b does not change during an iteration, we can re-use the evaluations once
we have computed them once.
For time-dependent bathymetry, we need to re-sample from the input in every time

step. This means that given the exact bathymetry b̄, we need to construct a projection b
in our basis on [tn, tn+1]× T . As we already do for the initial conditions, we interpolate
and use the tensor product structure once again. In space, we use the same interpolation
points as for the initial conditions. In time, we choose the Gauss-Lobatto quadrature
nodes.10 With b, we can compute ∇b and ∂tb over the collocation matrices.

3.4 The Corrector Step in Strong Form

Given a solution q for the predictor iteration (3.3.1), as well as the previous estimate
un and the next step un+1, we have for each test function v ∈ SC that∫

T
v(x⃗)Tun+1(x⃗) dx⃗

=

∫
T
v(x⃗)Tun(x⃗) dx⃗

−
∫
[tn,tn+1]×∂T

v(ξ)T (N (q,q+(ξ)) · n(ξ)) d(t, S(ξ))

+

∫
[tn,tn+1]×T

F(q) · ∇v(x⃗) d(t, x⃗)

−
∫
[tn,tn+1]×T

v(x⃗)T (B(q) · ∇q+ S(q,∇q)) d(t, x⃗).

(3.4.1)

Here, the third row contains a surface integral. n(ξ) denotes the outward normal, and
q+(ξ) the value from the adjacent cell at a boundary point ξ.
In comparison to the predictor iteration, we only use test functions in space. After

integrating by parts in time just as for (3.3.1), we again replace q(tn, x) by un. But
additionally, we also insert q(tn+1, x) for un+1, and we applied Gauss’ Theorem to
introduce the boundary flux terms (cf. the third and fourth row in (3.4.1)). Note that
this only modifies the conservative part of the PDE—but it also means that we take the
influence of neighboring cells into account. The detailed derivation is shown in [29] or
e.g. [7]. It shall be noted that as before, the usage of the test functions differs again to
[29] and [7], but we can again show that the formulations are equivalent under certain
conditions.
When evaluating the corrector equation as described in (3.4.1), we once again need to

evaluate q at quadrature points, then evaluate all the integrals, and sum the points up

10We shall note that it may be possible to avoid interpolating b̄ at least in time: the expression ∂tb in
(3.3.1) can be removed using integration by parts. Then, we only need to evaluate b̄ at tn and tn+1,
and at all other quadrature points in time. We have not tried nor implemented this idea.

21

3 Numerical Updates

again. This procedure is almost identical to a single predictor iteration step—however,
we have already found a fixed point at this time, thus effectively we do no additional
work. But, since the corrector and the predictor equation are structurally similar, we
can simply re-cast the solution q to the predictor iteration to obtain un+1 by a mere
linear transformation.

To begin, we transform (3.4.1) to the so-called “strong form” [22]. Using Gauss’
Theorem again yields∫

T
v(x⃗)Tun+1(x⃗) dx⃗ =

∫
T
v(x⃗)Tun(x⃗) dx⃗

−
∫
[tn,tn+1]×∂T

v(ξ)T (N (q,q+(ξ))−F(q)) · n(ξ)) d(t, S(ξ))

−
∫
[tn,tn+1]×T

v(x⃗)T (A(q) · ∇q+ S(q,∇q)) d(t, x⃗).

(3.4.2)

This time, we do not replace the boundary integral over F by the numerical flux. As a
result, we can now insert the numerical fluctuations D = N −F in the second line.

The strong form in (3.4.2) still requires us to evaluate a volume integral, but this can
be removed under the condition of a weak assumption. Under a very slight abuse of
notation, we can write the following.

Assumption 3.1. We have SC ⊆ SP , i.e. for v ∈ SC , there is a w ∈ SP , such that
w(t, x⃗) = v(x⃗) for all t and x⃗.

This means that the predictor function space contains each possible space function
frozen in time. If we assume a tensor product structure for SP , then this assumption
means that the time function space ST contains the constant functions.11

We recall now that q(t, x⃗) fulfills the predictor equation (3.3.1) for all w ∈ SP . Given
Assumption 3.1, it therefore holds in particular for all w = v ∈ SC . In this case, we
obtain for the predictor∫

T
v(x⃗)Tq(tn+1, x⃗) dx⃗ =

∫
T
v(x⃗)Tun(x⃗) dx⃗

−
∫
[tn,tn+1]×T

v(x⃗)T (A(q) · ∇q− S(q,∇q)) d(t, x⃗),
(3.4.3)

since the time-dependent terms vanish. Inserting this equation into the strong corrector
equation (3.4.2), we obtain∫

T
v(x⃗)Tun+1(x⃗) dx⃗ =

∫
T
v(x⃗)Tq(tn+1, x⃗) dx⃗

−
∫
[tn,tn+1]×∂T

v(ξ)T
(
D(q,q+(ξ)) · n(ξ)

)
d(t, S(ξ)).

(3.4.4)

11As it is the case when choosing e.g. the monomial basis in time.

22

3.5 Adaptive Mesh Refinement

T
T1

T2

Figure 3.1: The scenario for the adaptive mesh refinement. We are given an orthogonal
triangle T which is split into two orthogonal triangles T1 and T2.

As a result, we only need to evaluate the predictor solution q at time tn+1 against the
space basis.12 In particular, we are able to avoid a nonlinear volume integral evaluation
by this step.

When converting to matrices, we can once again make use of the tensor product
structure.

M sUn+1 = (V 1)TQ− (∆t)ΨF (Q). (3.4.5)

Here, the matrix V 1 is defined as

V 1
ij =

∫
T
wi(tn+1, x⃗)vj(x⃗) dx⃗ = v1iM

s
ij . (3.4.6)

The vector v1 is given similarly to v0 as

v1i = zi(tn+1). (3.4.7)

Then we get again that the mass matrix cancels out due to the tensor product structure,
and we are left with

(M s)−1(V 1)T = (v1)T ⊗ I. (3.4.8)

The integration term over the numerical fluctuations need the same treatment as the
collocation matrices in the predictor.

3.5 Adaptive Mesh Refinement

We also added support for adaptive mesh refinement. This process was already started
in [29], but it was ultimately not finished.

12Given that the construction of the corrector involves replacing q(tn+1, x) with un+1(x), this result
does in hindsight almost seem to be expected—if Assumption 3.1 is fulfilled.

23

3 Numerical Updates

In the situation given in sam(oa)², we consider a triangle T split in two halves T1 and
T2, as shown in Figure Figure 3.1. To project our basis from T onto T1 and T2, we use
an L2 projection, i.e. we compute for k = 1, 2 the matrix

1

2
M sAk = Bk, (3.5.1)

where the matrix Bk is defined as

Bk
ij =

∫
Tk

ψk
i φj dx⃗. (3.5.2)

Here, the (φi) are the basis functions from BC transformed to T , and (ψk
i) denote the

basis functions transformed to Tk. The mass matrix M s of T is given by

M s
ij =

∫
T
φiφj dx⃗, (3.5.3)

and we have ∫
Tk

ψk
i ψ

k
j dx⃗ =

|Tk|
|T |

∫
T
φiφj dx⃗ =

1

2
M s

ij . (3.5.4)

Here |T | denotes the volume of T , and |Tk| the volume of Tk. We utilize that |T | =
|T1|+ |T2|, and |T1| = |T2|.

For the projection from T1 and T2 back to T , we compute the Moore-Penrose inverse
of

A =

(
A1

A2

)
. (3.5.5)

Thus, denoting the Moore-Penrose inverse by A†, we obtain

A†A = I. (3.5.6)

This means: if we project from T to T1 and T2, and then back to T immediately, we get
the same coefficients as before.
Furthermore, we need to choose a criterion by which we decide to refine or to coarsen.

Inspired by [15], we look at a formulation which uses the idea of the variance from
probability theory, as well as the concept of total variation. For that, we look at the
finite volume representation. Given a set of edges {e1, ..., ek} and adjacent cells ci,1, ci,2,
we compute the discrete total variation

v1 =
1

k

k∑
i=1

|ci,1 − ci,2| , (3.5.7)

and weigh it by the number of edges.13 We also compute the squared total variation

v2 =
1

k

k∑
i=1

(ci,1 − ci,2)2. (3.5.8)

13We note that not all edges in our finite volume representation have the same length; but we have
chosen to neglect this for now.

24

3.6 An Updated Finite Volume Scheme

By Jensen’s inequality,14 we have that

v21 ≤ v2. (3.5.9)

Next, we choose two parameters aref ≤ acor, so that for

v21 ≤ acorv2, (3.5.10)

we coarsen the cell. For

v21 ≥ arefv2, (3.5.11)

we refine the cell. In all other cases, we keep it as it is.

3.6 An Updated Finite Volume Scheme

Lastly, we updated the finite volume scheme to accommodate the changes described in
the previous sections. In [29], we used a Godunov splitting15 scheme for the hyperbolic
part and the source term. In particular, we had for a value Un that

Un+1 = (S∆t ◦ V∆t)(U
n). (3.6.1)

The finite volume operator is given as

V∆t(U) = U − ∆t

∆x

∫
∂T
N (U,U+(ξ)) · n(ξ) dS(ξ). (3.6.2)

In essence, this is the ADER-DG method when using constant functions in time and
space. Here ∆x is the length of the shortest edge of T . The source operator S∆t(U) is
given as the solution V of the implicit Euler method

V = U + (∆t)S(V, 0). (3.6.3)

The exact formula is given in [29].

Numerical Fluctuations Switching from numerical fluxes to numerical fluctuations did
not require us to make any changes in the finite volume scheme: this is due to assuming
a constant value U for each patch, and the integral of a constant over a closed boundary
being zero. Thus, we have for any triangle T that∫

∂T
F(U) · n(ξ) dS(ξ) = 0. (3.6.4)

14As a reminder: Jensen’s inequality can be used to prove that Var (X) ≥ 0 for a square-integrable
random variable X. Using Var (X) = E

(
X2

)
−E (X)2, or rather, E

(
X2

)
≥ E (X)2, gave us the idea.

15Alternatively called Lie-Trotter splitting

25

3 Numerical Updates

As a result, we obtain that∫
∂T
D(U,U+(ξ)) · n(ξ) dS(ξ)

=

∫
∂T

(
N (U,U+(ξ))−F(U)

)
· n(ξ) dS(ξ)

=

∫
∂T
N (U,U+(ξ)) · n(ξ) dS(ξ)−

∫
∂T
F(U) · n(ξ) dS(ξ)

=

∫
∂T
N (U,U+(ξ)) · n(ξ) dS(ξ).

(3.6.5)

Therefore, we may simply replace N by D in the formulation of V∆t to get

V∆t(U) = U − ∆t

∆x

∫
∂T
D(U,U+(ξ)) · n(ξ) dS(ξ). (3.6.6)

Time-Dependent Bathymetry We extend the splitting scheme to handle the time-
dependent bathymetry. Integrating

∂t(hp) = 2c2∂tb (3.6.7)

over [tn, tn+1] gives

(hp)(tn+1) = (hp)(tn) + 2c2(b(tn+1)− b(tn)). (3.6.8)

We combine this with the previous steps from our numerical scheme as described in [29],
and thus we obtain the new scheme as

Un+1 = (P∆t ◦ S∆t ◦ V∆t)(U
n). (3.6.9)

In short, we now apply three operators which are applied one after another: first the
finite volume scheme, then the source term S without the pressure correction, and finally
the pressure correction (3.6.8).

26

4 Changes to sam(oa)²

We continued working on the implementation from [29], and development continued on
the dswe branch of the sam(oa)² repository[30].

4.1 sam(oa)²

sam(oa)²[19] stands for “Space-Filling Curves and Adaptive Meshes for Oceanic And
Other Applications”, and it is written in FORTRAN 90. The program implements a
structured grid over a space-filling curve (SFC). The main operations in sam(oa)² are
grid traversals which operate independently on each cell, edge, and node of the grid.
For that, sam(oa)² takes care of the distribution and the parallelization of the traversal
using MPI and OpenMP. Thus, each implemented application only needs to take care
of their respective logic for the cells, edges, and nodes and optimize them for a single
thread.

The space-filling curve in sam(oa)² yields a quadratic domain, and orthogonal trian-
gular cells. By refining the space-filling curve, a triangle can be split into two as shown
in Figure 3.1. Depending on how often we do this for the whole mesh, we can speak of
different subdivision levels ND. We denote the number of triangles by NM . At ND = 0,
we have only NM = 2 triangles which form a square. At ND = 1, we have NM = 4
triangles, and for a general level ND, we have NM = 2ND+1 triangles.

So far, different linear equation system solvers[19], or equation systems like the heat
equation, Darcy’s equation or a finite volume implementation of the shallow water equa-
tions[10] have been implemented in sam(oa)². An implementation of the ADER-DG
method for the shallow water equations (2.2.1) was forwarded in [25]. In [29], we im-
plemented the system (2.2.2) using the ADER-DG method. The code currently resides
on the dswe branch of the sam(oa)² repository[30]. For each timestep, the grid is tra-
versed twice: the first traversal computes the ADER-DG predictor on each cell and
transfers the resulting data onto the edges of the cells. The second traversal calculates
the numerical fluxes with the projected data and completes the corrector step of the
ADER-DG method. This traversal also computes the next timestep. The implementa-
tion also includes a finite volume limiter (called on demand in the second traversal) and
the Discrete Maximum Principle. However, there was only minimal support for adaptive
mesh refinement and no support for time-dependent bathymetry until this work.

27

4 Changes to sam(oa)²

4.2 Changes to the Implementation

The aderdg app of sam(oa)² was adapted to include the enhancements described in the
previous chapters. This includes the improvements which we made to the ADER-DG
method, the updates to the finite volume scheme, as well as support for AMR.

4.2.1 Scenario Implementation and ASAGI

In comparison to the previous implementation, the scenario1 interface was reworked.
All functions are assumed to be marked with elemental or impure elemental, i.e. they
operate on scalars, but the operations can be broadcasted to arrays.

ASAGI [26] is used for parsing and evaluating earthquake data. It had already been
included in the FVM app of sam(oa)², where it replaced the built-in scenario initial con-
ditions. In the current ADERDG-DSWE simulation, ASAGI is included as a scenario
itself instead. Thus, we were able to remove the dependency to ASAGI from the core
ADERDG code. The functions of the ASAGI scenario are marked as impure elemental

which allows them to call ASAGI element-wise. The command line arguments are the
same as for the FVM app in sam(oa)².

4.2.2 Including YaTeTo

To speed up the matrix computations, we replaced the FORTRAN matmul calls with
YaTeTo [33] kernels. YaTeTo is Matrix kernels are specified in Python using the Einstein
Summation Notation. That is, for a matrix-vector multiplication c = Ab of a matrix
A ∈ Rm×n, and a vector b ∈ Rn, we have the computation

ci =
n∑

j=1

Aijbj . (4.2.1)

The Einstein Summation Notation allows us to omit the summation sign, since we im-
plicitly assume a sum over all indices which are not on the right-hand side. Thus, we
obtain

ci = Aijbj . (4.2.2)

In YaTeTo, this is written as

c[’i’] <= A[’ij’] * b[’j’]

This assumes that we have previously defined A, b, and c as tensors. The <= symbol
is overloaded from Python to indicate an assignment to a tensor. Three- or higher-
dimensional tensors can be indexed likewise.

In order to deal with scalar variables, we re-interpret them as zero-order tensors. Thus,
they are written as a[’’] for a scalar a.

1In scons, this was the parameter swe_scenario for the SWE application.

28

4.2 Changes to the Implementation

The Kronecker product structure can be translated directly: given matrices A ∈
Rn1×m1 and B ∈ Rn2×m2 , and C ∈ Rm1×m2 ; write c = vec(C), i.e. c is C written as a
vector. Then d = (A⊗B)c is written in the Einstein Summation Notation, i.e.

Di1i2 = Ai1j1Bi2j2Cj1j2 . (4.2.3)

In YaTeTo, this becomes

D[’iI’] <= A[’ij’] * B[’IJ’] * C[’jJ’]

A broadcast operation, i.e. the introduction of a new tensor dimension, could be
accommodated by a multiplication with the vector i = (1, ..., 1)T which contains only
the number 1. If we have a matrix A, the vector i named ones, and an output tensor of
dimension 3 called B, then broadcasting A to B can be done by

B[’ijk’] <= A[’ij’] * ones[’k’]

Broadcasting is needed for converting a space-only vector to a predictor (i.e. space-time)
vector.

So far, YaTeTo only has an interface for C++ on its current master branch. While
there is a FORTRAN interface, it does not seem to be up-to-date with the latest de-
velopments. Hence, we wrote our own adapter for YaTeTo to FORTRAN which mimics
the behavior of the existing interface. It exports all functions into a FORTRAN module
which is subsequently included into all other files.

In addition, we needed to define a file which exports the symbols libxsmm_num_total_
flops and pspamm_num_total_flops, as YaTeTo did not define them in the generated
code, but referenced them nonetheless.

4.2.3 Adaptive Mesh Refinement

The mesh refinement was implemented using the adaptive traversal template in sam(oa)².
That is, the space-filling curve is changed according to given flags. For each cell, we have
one of the following cases, depending on a given refinement flag.

• A cell stays the same. In this case, we can simply copy the data.

• A cell is refined. An adaptive traversal pass allows for a refinement to at most two
levels, i.e. one cell can become four cells at most.

• A cell is coarsened. This can only be done for one level, i.e. one cell can only be
combined with the cell which lies next to it in the space-filling curve.2

Thus, we can handle at most one mesh subdivision per traversal. Moreover, the adaption
traversal assures that the mesh stays conform, i.e. an edge is shared between only two
triangles at most at all times.

2The refinement flag of this next cell is subsequently ignored.

29

4 Changes to sam(oa)²

Input: A SFC SI containing all cells
Input: rv: the number of cells to be refined
Input: r(c): indicates refinement for each cell c. Either r(c) = 1 for

refinement, r(c) = −1 for coarsening, or r(c) = 0.
Output: An output SFC SO
S ← SI ;
while rv > 0 do

Start an empty SFC S′;
rv ← 0;
forall cells c in S do

if r(c)← 1 then
Create child cells c1, ..., cn and add them to S′;
forall i = 1, ..., n do

Project c onto ci;
if (3.5.11) is true for ci then

r(ci)← 1;
rv ← rv + 1;

end
r(ci)← 0;

end

else if r(c) = −1 then
Take the next cell cD from S;
Merge the two cells to a cell cC and add it to S′;
Project c and cD to cC ;
if (3.5.10) is true for cC then

r(cC)← −1;
rv ← rv + 1;

end
r(cC)← 0;

else
Copy c to S′;

end

end
S ← S′;

end
SO ← S;

Algorithm 4.1: The algorithm for multiple iterations of the adaptive mesh refine-
ment procedure. Each iteration of the outer while loop executes one traversal.

30

4.2 Changes to the Implementation

Whether a coarsening or refinement is needed is specified in a traversal before the
adaption. That is in our case, the corrector traversal: at the point where the next
timestep is computed, we also check the refinement criterion. After the corrector, the
adaption traversal is called. The basic logic for a single adaption traversal is similar to
the FVM [10] implementation.

Especially in the context of time-dependent bathymetry, it is sometimes useful to
refine multiple levels at the same time. This is for example the case, if at some point
during the simulation, we have a more complex or small ocean floor movement appearing.
Therefore, after refining or coarsening a cell, we check the adaption criterion again. If
we want to refine a cell again, we re-run the adaption traversal. This process is repeated
until there are no more cell refinements requested in either direction. However, we need
to consider the possibility of cycling: suppose that in one step we refine a cell, but in
the next step, the same cell is marked for coarsening again. We end up at the same grid
with what we started, and by the construction of the projection operators, we also have
the same cell values. As a result, we refine again, only to coarsen in the next pass. To
solve this problem, we only allow a cell to be refined, if it has been previously refined
(but not if it was coarsened). Likewise, we only allow the further coarsening, if a cell
has previously been coarsened.
Moreover, the time stepping needs to be re-evaluated once the adaption traversal was

completed, this is due to the cell size being changed.
The complete procedure is skipped entirely, if the corrector traversal requests no re-

finements. Then, we proceed with the predictor step immediately instead.
See Algorithm 4.1 for an overview over the complete procedure after calling the cor-

rector traversal.

4.2.4 Convergence Measuring Traversal

We implemented an additional traversal to output convergence-related data. For this,
we assume that the scenario is known over the whole time frame, so that we can evaluate
the scenario functions for all values of t and x⃗.

We can then write for a (scalar) function u and its reference solution ū that

∥u− ū∥p =
(∫

Ω
(u(x⃗)− ū(x⃗))p dx⃗

) 1
p

=

(∑
T∈T

∫
T
(u(x⃗)− ū(x⃗))p dx⃗

) 1
p

(4.2.4)

for p ∈ [1,∞). Thus, we can compute the error by computing the integral∫
T
(u(x⃗)− ū(x⃗))p dx⃗ (4.2.5)

on each triangle T . This can be done by simply traversing all cells, and the integrals
can be computed using a high-order quadrature rule. For a vector-valued function, this
can be done for each of its components.
The resulting values are formatted into a JSON file, and the convergence traversal is

called by request on each output step.

31

4 Changes to sam(oa)²

4.3 Changes to the Repository Structure

Apart from the implementation, we made some general changes to the sam(oa)² reposi-
tory and the build environment. These were done to mainly ease the development. Once
again, they only reside on the dswe branch for now.

4.3.1 Code Reorganization

The code of sam(oa)² was reorganized into a new folder structure, to make the code
more easy to navigate. For that, the sam(oa)² scenarios (i.e. equations) were re-named
to sam(oa)² apps, to avoid confusion with the SWE or ADER-DG scenarios (i.e. initial
data) which were also called “scenarios”.
The code is still contained in src, but it now contains the following sub folders.

• include contains all files which are included via preprocessor directive. This in-
cludes all generic data structures, as well as the traversals.

• core contains the sam(oa)² files which are needed regardless of the application run
on top of it. This includes mostly the grid and space-filling curve logic.

• lib contains code to connect to other libraries, or parts of code which are not
needed by all apps.

• app contains the code of each of the apps, as well as the code to run them.

Most of the previous folders only contained a single app (e.g. cppcodeSWE or Darcy),
and were therefore moved to the app folder.

Temporarily, two files are still shared between all apps; these are Config.f90 which
the command line argument parsing logic, as well as SFC_traversal.f90 which contains
the main methods for all apps.

4.3.2 Build System

The new code uses CMake [14] as build system, as compared to scons [11] before. How-
ever, GNU Makefiles cannot be used for building sam(oa)², as it fails to parse the
non-preprocessed FORTRAN files for dependencies correctly. As a replacement, ninja
[21] can be employed.
Currently, the limitation that only one app can be built at the same time is still in

place; since the grid data types do not support templates so far.
With scons, all code files were compiled regardless if they contained code for the

currently activated app or not, and activated over macros when necessary. This was
changed to only compiling the code files which belong to the active app. For that, each
app has a CMake file in its main folder located in src/app.
For detecting libraries such as libxsmm [13], we used the CMake files from the SeisSol

repository [31]. Thus, we also introduced the same notation for the host architectures
from SeisSol.

32

4.3 Changes to the Repository Structure

4.3.3 Compiler Support

The compilers flang and nvfortran3 are supported now as well. More specifically, we
tested the compilers AOCC flang 3.2.0, and NVHPC nvfortran 22.09.
This required us to fix a bug in the stream data structure which would cause seg-

mentation faults otherwise. The initialization and subroutine overloading of some types
had to be fixed as well. For nvfortran, the cross-compilation with C++ caused a linker
error, since the FORTRAN main function is not recognized by the nvc++ compiler which
CMake applied for linking. This problem could be fixed by setting the linker executable
for C++ to nvfortran explicitly.

3Formerly known as pgfortran

33

5 Evaluation

In this chapter, we present results computed with sam(oa)² and the H-BMSS-γ system
(2.3.8). The list of scenario names which are present in sam(oa)² is given in Table 5.1.

Since the evaluation was mostly focused on testing and verifying the model, we com-
puted the results on a laptop with a Ryzen 4800H processor (8 cores, 2 threads per core),
and 32 GiB RAM. As operating system, we used Linux in version 6.0.12-arch1-1

(Arch Linux distribution). As a compiler, we used GCC (including g++ and gfortran)
in version 12.2.0. Furthermore, we used the rome hardware configuration, and the
libxsmm_jit backend for YaTeTo.

5.1 Model Tests

We begin with some simple test scenarios. These are meant for verifying our imple-
mentation, as well as testing the behavior of time-dependent bathymetry for the system
(2.3.8).

5.1.1 Convergence Analysis

To begin with, we re-do the convergence test which was already done in [29]. This time,
we use a manufactured solution analysis instead, using the solitary wave for the system
(2.2.2) for c→∞, as described in Chapter 2. That is, we look at equation (2.2.19). We

Name Description

QUASI_SOLITARY_WAVE Eq. (2.2.19), expanded in the y direction
FLAT1 Eq. (5.1.9), k = 1
FLAT2 Eq. (5.1.9), k = 2
FLAT3 Eq. (5.1.9), k = 3
CYLINDER Eq. (5.2.1)
GAUSS1 Eq. (5.3.2) with A = 1, σr = 12.5 km, σt = 125 s
GAUSS2 Eq. (5.3.2) with A = 1, σr = 12.5 km, σt = 1.25 s
GAUSS3 Eq. (5.3.2) with A = 1, σr = 1.25 km, σt = 1.25 s
ASAGI Bathymetry taken from ASAGI [26]

Table 5.1: The scenarios with their corresponding name in sam(oa)².

35

5 Evaluation

write

q̄(t, x, y) =

h(ξ(t, x))

h(ξ(t, x)) · u(ξ(t, x))
0

h(ξ(t, x)) · w(ξ(t, x))
h(ξ(t, x)) · p(ξ(t, x))

 . (5.1.1)

The functions h, u, w, p are taken from (2.2.19). ξ is defined as in (2.2.16). In essence,
q̄ is the representation in conserved variables, and extended in the y direction. Using
q̄(t, x, y), we compute the function z(t, x, y) defined as

z = ∂tq̄+A(q̄) · ∇q̄− S(q̄,∇q̄). (5.1.2)

We computed z using the sagemath [27] computer algebra system by inserting (2.2.19),
and converted it to FORTRAN using sympy [20]. In [29], we compared the solitary wave
solution for c→∞ (i.e. system (2.2.19)) to the quasi-exact solution of the solitary wave
for finite values of c. As expected, we obtain system (2.2.19) for c → ∞. Thus, if we
choose c to be large enough, the influence of z should be minimal. Using z, we solve the
PDE

∂tq+A(q) · ∇q = S(q,∇q)− z (5.1.3)

in sam(oa)² for q. By the construction of z, we have the solution q = q̄,1 but we cannot
represent q̄ without error in our function basis on the given grid. Therefore, we will get
an error during the simulation.

We ran our code for polynomials of degree 1 to 6. This is more than in [29], where
we only tested up to degree 4. For each degree, we test the subdivisions 4 to 13. As
parameters for (2.2.19), we chose A = 0.005 to have a smooth solution, so that the
interpolation error of the initial conditions is manageable. The basic water height is set
to H = 1. Furthermore, γ = 2 and c = 3

√
gH ≈ 9.40. For the boundary condition, we

enforce the exact solution. We used a domain of 50× 50, and positioned the peak of the
wave at x = 12.5 of it. The time is chosen so that the peak of the wave is positioned at
x = 37.5 at the end of the simulation. In short, we let the wave travel over half of the
domain. Given our value for A, this was Tend ≈ 7.962 s. We wrote an output file at 26
timestamps, i.e. ∆t = Tend/25 ≈ 0.3185 s.

Two-Dimensional Convergence Analysis

We first use the built-in convergence traversal described in Section 4.2.4.

Figure 5.1 shows the results for h at the last timestep. There seemed to be an accuracy
barrier below 10−11, so we marked it with a line. For all other variables, the picture
looked similar; therefore, we do not offer extra plots for them.

In Table 5.2, we give the convergence orders. Most of the time, we have for polynomial
degree NP only the order NP . For NP = 6, we even get an order of 7 in the area above
the accuracy barrier. Thus, we reach a high-order convergence for our implementation.

1We silently assume here that the solution to (5.1.3) is unique, but we do not prove it.

36

5.1 Model Tests

NP h hu hv hw hp

1 1.43 1.41 1.45 1.36 1.20
2 2.00 2.02 1.81 2.01 1.81
3 2.63 2.74 2.83 2.52 2.38
4 3.72 3.86 3.62 3.94 3.83

*5 4.98 5.20 5.44 4.84 4.79
*6 7.45 7.50 6.79 7.43 7.19

Table 5.2: The empirical convergence order w.r.t. L2 norm, measured in two dimensions,
as shown in Figure 5.1. The values were determined by a linear regression over
the logarithmic values. All orders marked with a star were only computed on
all values where the error for h was larger than 10−11 to rule out errors due
to numerical barriers.

The convergence order is approximately the same in all variables. This should not seem
to be surprising; only hv is of special interest. Ideally, we should have hv ≡ 0; however,
the triangular cells cause small imbalances at their corners and edges, as it can be seen
in Figure 5.3 for one example.
In Figure 5.2, we show the error for each of the 26 output timestamps. The timestamp

0 therefore effectively shows the initial interpolation error. Thus, the error seems to be
mostly dominated by the interpolation of the initial conditions. The first point to notice
is that the mesh subdivisions always lie pairwise next to each other, i.e. an even and the
next-higher uneven subdivision lie closer to each other than an uneven subdivision and
the next-higher even subdivision. Furthermore, we can observe a slight wave-resembling
pattern in the error, in the lower subdivisions like 4 or 5. Finally, we note the behavior for
the subdivision 13 for the degrees 4, 5, 6, as well as 12 for 5, 6 and 10 and 11 for 6, i.e. that
the L2 error slowly rises. Our conjecture is that this is related to the accuracy barrier we
observe. Furthermore, for degrees 5 and 6, the said subdivision show a stronger increase
after timestamp 0, effectively nullifying the advantage of the higher subdivisions in the
case of degree 6.
We should note that we also tried to do the whole two-dimensional convergence test

with A = 0.2 as in [7]. However, here the interpolation of the initial condition on our
grid caused large inaccuracies for the subdivisions up to 13.

One-Dimensional Convergence Analysis

Secondly, we re-visit the one-dimensional analysis from [29] and examine it more closely.
Here, we take a line through the quadratic domain and reconstruct the polynomials
along this line. After that, we compare against the one-dimensional reference solution
given by (2.2.19). We should be able to see convergence in this case as well, we already
run into an accuracy barrier at around 4 · 10−6. In Figure 5.4, we show the convergence
for the degrees 1 to 3; other than the one-dimensional setting, the situation is the same
as for the two-dimensional convergence test. It should be noted that for higher degrees,

37

5 Evaluation

26 28 210 212 214

Number of cells

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

NP = 1

NP = 2

NP = 3

NP = 4

NP = 5

NP = 6

Figure 5.1: The empirical convergence order w.r.t. L2 norm, measured in two dimensions
by a convergence traversal. The values were determined by a simulation of
(2.2.19) with (2.2.2) using a manufactured solution, and compared against
the reference solution. The black dashed line at 10−11 shows the accuracy
barrier, below which we deem values too inaccurate to be considered for
the calculation of the empirical convergence. The crosses show the actually
measured values; the solid lines are for visual clarity only. The dashed lines
show the empirical convergence order for each degree, as determined by a
linear regression over each value higher than the accuracy barrier at 10−11.
For subdivision ND, we have NM = 2ND+1.

38

5.1 Model Tests

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 1

NM = 25

NM = 26

NM = 27

NM = 28

NM = 29

NM = 210

NM = 211

NM = 212

NM = 213

NM = 214

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 2

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 3

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on
h,NP = 4

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 5

0 5 10 15 20 25

Timestep

10−14

10−12

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 6

Figure 5.2: The error w.r.t. L2 norm, measured in two dimensions by a convergence
traversal over time for (2.2.19) against the manufactured solution. The
timestep is ∆t ≈ 0.3185 s.

39

5 Evaluation

Figure 5.3: The values of hv (ideally, it should be zero 0). We chose polynomials of
degree NP = 4, a mesh subdivision ND = 10, and the time 3.185 s.

40

5.1 Model Tests

26 28 210 212 214

Number of cells

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

NP = 1

NP = 2

NP = 3

Figure 5.4: The empirical convergence order w.r.t. L2 norm, measured in one dimension.
The values were determined by a simulation of (2.2.19) with (2.2.2) using
a manufactured solution, and compared against the reference solution. The
black dashed line at 4·10−6 shows the accuracy barrier, below which we deem
values too inaccurate to be considered for the calculation of the empirical
convergence. The crosses show the actually measured values; the solid lines
are for visual clarity only. The dashed lines show the empirical convergence
order for each degree, as determined by a linear regression over each value
higher than the accuracy barrier at 4 · 10−6. For subdivision ND, we have
NM = 2ND+1.

we stay below the accuracy barrier in almost all cases, and hence we omitted them in
the plot. Figure 5.5 shows the error over time. Already for the higher mesh subdivisions
for degree 2 polynomials, we observe that we reach the accuracy barrier—which only
occurred around 10−11 for the two-dimensional analysis. When looking at the difference
between the computed and the exact solution, we see a smooth error function which
means that the computed wave is slightly tilted in the moving direction. This error
function shown persists throughout the simulation, and a similar function can be seen
for all other orders. Its amplitude slightly changes or oscillates over time, but in general,
it does not increase noticeably. A similar type of problem with a similar error function
was already noticed (but not shown) in [29] for the quasi-exact solution used there.

5.1.2 Bathymetry Changes

In order to test the effect of moving bathymetry in the most simple cases, we use the
equations derived in Section 2.3.2. That is, we take a still ocean and a flat bathymetry,

41

5 Evaluation

0 5 10 15 20 25

Timestep

10−10

10−8

10−6

10−4

10−2
L

2
er

ro
r

fo
r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on
h,NP = 1

NM = 25

NM = 26

NM = 27

NM = 28

NM = 29

NM = 210

NM = 211

NM = 212

NM = 213

NM = 214

0 5 10 15 20 25

Timestep

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 2

0 5 10 15 20 25

Timestep

10−10

10−8

10−6

10−4

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

h,NP = 3

Figure 5.5: The error w.r.t. L2 norm, measured in one dimension by a convergence traver-
sal over time for (2.2.19) against the manufactured solution. The timestep
is ∆t ≈ 0.3185 s.

42

5.1 Model Tests

NP h

1 1.85
*2 2.10
*3 2.04

Table 5.3: The empirical convergence order w.r.t. L2 norm, measured in one dimension,
as shown in Figure 5.4. The values were determined by a linear regression over
the logarithmic values. All orders marked with a star were only computed on
all values where the error for h was larger than 4 · 10−6 to rule out errors due
to numerical barriers.

and move it upwards.2 In short, we consider the following conditions:

h(0, ·) ≡ 1, (5.1.4)

u(0, ·) ≡ 0, (5.1.5)

v(0, ·) ≡ 0, (5.1.6)

w(0, ·) ≡ 0, (5.1.7)

p(0, ·) ≡ 0. (5.1.8)

For b, we prescribe the following function. For a given k, we define

b(t) = max
{
tk, 1

}
. (5.1.9)

To compute the solution for this b analytically, we take (2.3.24), (2.3.27) for the time
frame [0, 1), since b is differentiable in this region. For t < 1 and k = 1, we have already
computed the solution in Section 2.3.2 and obtained (2.3.30) and (2.3.29). Hiegher k can
be reached by using integration by parts, until all polynomial terms vanish. For t ≥ 1,
we take the previously-computed solution, and use its continuous extension to t = 1.3

This gives us the values p(1) and h(1) which we subsequently use as initial conditions
for the ODE (2.3.14) with ∂tb ≡ 0, i.e. we have the homogenous case. Alternatively, we
may use integration by parts on (2.3.24) and (2.3.27) to replace ∂tb by b.

In Figure 5.6, we show the results for k = 1, 2, 3. As it can be seen, the results conform
with the analytic structure: for t < 1, we observe that both w and p show an oscillatory,
but for k = 2, 3 also an increasing motion. In fact, p shows a similar pattern for k + 1
as w for k. In the case k = 1, the phase and the amplitude are exactly as we computed
with (2.3.30) and (2.3.29) when inserting h = 1, C = 1, and c = 4. For t ≥ 1, we observe
an un-dampened oscillation, as predicted in the previous paragraph. We also note that
w is differentiable at t = 1, while p is only continuous, but not differentiable there.

2Effectively, we could speak of a point (i.e. zero-dimensional) domain.
3This is possible, because with the given b, the solutions (2.3.24), (2.3.27) produce a continuous and
bounded function on [0, 1).

43

5 Evaluation

0.0 0.5 1.0 1.5 2.0

Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
w

k = 1

0.0 0.5 1.0 1.5 2.0

Time [s]

−6

−4

−2

0

2

4

6

p

k = 1

0.0 0.5 1.0 1.5 2.0

Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w

k = 2

0.0 0.5 1.0 1.5 2.0

Time [s]

−6

−4

−2

0

2

4

6

p

k = 2

0.0 0.5 1.0 1.5 2.0

Time [s]

−3

−2

−1

0

1

2

3

w

k = 3

0.0 0.5 1.0 1.5 2.0

Time [s]

−10

−5

0

5

10

p

k = 3

Figure 5.6: The bathymetry (5.1.9) for k = 1, 2, 3 on a zero-dimensional domain, i.e. h,
u, and v are constant, and h ≡ 1. We have γ = 2, as well as c = 4. We show
the values for w = hw and p = hp. The subdivision of the domain is set to
1, and the polynomial degree to NP = 1.

44

5.2 Adaptive Mesh Refinement

5.2 Adaptive Mesh Refinement

For showing the AMR performance of our code, we choose the following setup: given a
domain of 10 km× 10 km, we consider the time-dependent bathymetry (units in meter)

b(t, x, y) =

{
max {2t, 1}

√
x2 + y2 < 2000

0 otherwise
(5.2.1)

The water height is set to 1 km; i.e. we start with a flat and still ocean. We simulate for
30 s. The parameters are set to c = 100 and γ = 2. The mesh subdivision is allowed to
range from 6 to 12. The polynomial degree is NP = 4. We additionally set the AMR
parameters to acor = 0.8 and aref = 0.5. If v2 < 10−6, we also coarsen.

Since the uplift of the ocean floor happens very quickly, we observe that the water
in the simulation behaves as in a dam-break scenario, i.e. a Riemann Problem. The
structure of these for (2.3.8) was discussed in [29]. In short, we observe three different
waves: a fast outwards-travelling shock wave, a quasi-stationary contact discontinuity
which separates two areas with different non-hydrostatic pressure, as well as a rarefaction
wave in the center. In particular, the rarefaction, since we are in a two-dimensional
setting, is expected to collapse very quickly once it reaches the center.

In Figure 5.7, we see the first few milliseconds of the simulation. As soon as the
cylinder causes uplift, we see that the AMR becomes active around the new edges in
the water level. Moreover, we have already multiple cell refinements once we reach
t = 10ms. Near t = 50ms, the shock wave begins to separate from the rest of the
cylinder. However, the center of the cylinder stays at a slightly coarser level, since the
rarefaction has not reached it yet.

The seconds after the first expansion, are shown in Figure 5.8. We see more cells
getting refined, as the shockwave travels through the domain. Also, the rarefaction
wave causes more refinement in the center and begins to collapse. However, as soon as it
has travelled far enough, some cells between the shockwave and the contact discontinuity
get coarsened.

This trend becomes more apparent in the next seconds, as seen in Figure 5.9. The
shockwave has by now reached the border of the domain and gets reflected, but in
between, we see that cells are being coarsened. In the center, the rarefaction has fully
collapsed, oscillates, and then begins to send out a second wave. This causes the center
of the cylinder to become flat again, so we observe coarsening effects here as well. Until
this second wave arrives, the contact discontinuity still causes the cells to be refined to
a high subdivision.

5.3 Tsunami Simulation

Lastly, we evaluate the models which we introduced in Chapter 2 together with a change
in space, unlike the model scenario from Section 2.3.2.

45

5 Evaluation

(a) t = 0ms (b) t = 10ms

(c) t = 20ms (d) t = 30ms

(e) t = 40ms (f) t = 50ms

Figure 5.7: The simulation of a cylindrical uplift with adaptive mesh refinement. The
black lines indicate the current cells. Simulation time 0ms to 50ms. The
simulation was done with polynomials of degree 4 in space and time, c = 100
and γ = 2. The water height is set to 1 km. The bathymetry (5.2.1) consists
of a small rising cylinder.

46

5.3 Tsunami Simulation

(a) t = 2 s (b) t = 4 s

(c) t = 6 s (d) t = 8 s

(e) t = 10 s (f) t = 12 s

Figure 5.8: The simulation of a cylindrical uplift with adaptive mesh refinement. The
black lines indicate the current cells. Simulation time 2 s to 12 s. The simu-
lation was done with polynomials of degree 4 in space and time, c = 100 and
γ = 2. The water height is set to 1 km. The bathymetry (5.2.1) consists of
a small rising cylinder.

47

5 Evaluation

(a) t = 15 s (b) t = 18 s

(c) t = 21 s (d) t = 24 s

(e) t = 27 s (f) t = 30 s

Figure 5.9: The simulation of a cylindrical uplift with adaptive mesh refinement. The
black lines indicate the current cells. Simulation time 15 s to 30 s. The
simulation was done with polynomials of degree 4 in space and time, c = 100
and γ = 2. The water height is set to 1 km. The bathymetry (5.2.1) consists
of a small rising cylinder.

48

5.3 Tsunami Simulation

5.3.1 Gaussian Uplift

We begin by comparing our three methods from Table 2.1 in the three test scenarios
which are presented in [1]. In each of these, we have

∂tb(t, x, y) =
A

σt
√
2π

exp

(
−
(
(t− 4σt)

2

2σ2t

)
−
(
x2 + y2

2σ2r

))
(5.3.1)

Here σt and σr are model parameters which control the speed and shape of the earth-
quake, respectively. The parameter A controls the amplitude of the earthquake. Since
our current implementation in sam(oa)² only supports the initialization on b, and not
∂tb, we need to integrate in time. Assuming that b(0, x, y) = 0 for all (x, y), we obtain

b(t, x, y) = A ·
(
Φ

(
t− 4σt√

2σt

)
− Φ(−2

√
2)

)
· exp

(
−
(
x2 + y2

2σ2r

))
, (5.3.2)

where Φ is the distribution function of the Standard Normal Distribution given as

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−s
2

)
ds. (5.3.3)

In our code, we use the erf function for Φ. The parameters for the three test cases are
given in Table 5.1 by the scenarios GAUSS1, GAUSS2, and GAUSS3.4 They can also be
found in [1]. In short, scenario 1 (GAUSS1) only shows the main tsunami wave, scenario
2 (GAUSS2) adds acoustic waves, and scenario 3 (GAUSS3) adds dispersion to the main
tsunami wave and keeps the acoustic waves.
We simulate all three test cases using methods 1a, 1b, and 2. As parameters for

(2.3.8), we chose c = 1000, and γ = 2. The choice of c = 1000 is motivated by the
fact that with a characteristic water height of h0 ≈ 4000 km and g ≈ 10m s−2, we want
c = α

√
gh0 ≈ 200α and α ≥ 1. The idea behind this choice is to let the error wave

travel faster than the main tsunami wave (cf. [7]). According to [7], choosing α = 5 is
supposed to provide a good approximation to the original model for c→∞.

The results for the water level displacement is shown in Figure 5.10. For scenario 1, the
results of method 1a and 2 conform with the results shown for the shallow water equations
in [1], when compared to the respective initialization. Method 1b shows slightly distorted
results. While the scenario has negligible pressure effects, the instantaneous pressure
build-up causes slight oscillations which faintly resemble acoustic effects, but they have
(to our knowledge) no physical meaning. We are going to call them error-correcting
waves. For scenario 2, we see that method 1a shows the same results as in scenario 1
which is to be expected, since the initial conditions are exactly the same, since we have
the same value for σr. Method 2 also shows the same behavior as the shallow water
method, however small pressure oscillations are visible. While these are not as strong as
shown in [1], they roughly have the same frequency. Furthermore, method 1b this time
roughly matches the results of method 2.

4The preprint of [1] which we worked with did not include a value for A. However, A = 1 yielded the
same results as shown in [1] when comparing the resulting plots.

49

5 Evaluation

−100 −50 0 50 100

Method 1a, Scenario 1

0

100

200

300

400

500

600

700

800
T

im
e

[s
]

−100 −50 0 50 100

Method 1b, Scenario 1

−100 −50 0 50 100

Method 2, Scenario 1

−100 −50 0 50 100

Method 1a, Scenario 2

0

50

100

150

200

250

300

350

400

T
im

e
[s

]

−100 −50 0 50 100

Method 1b, Scenario 2

−100 −50 0 50 100

Method 2, Scenario 2

−20 −10 0 10 20

Method 1a, Scenario 3

Offset [km]

0

25

50

75

100

125

150

T
im

e
[s

]

−20 −10 0 10 20

Method 1b, Scenario 3

Offset [km]

−20 −10 0 10 20

Method 2, Scenario 3

Offset [km]

−0.2

−0.1

0.0

0.1

0.2

D
is

p
la

ce
m

en
t

[m
]

−1.0

−0.5

0.0

0.5

1.0

D
is

p
la

ce
m

en
t

[m
]

−0.250

−0.125

0.000

0.125

0.250

D
is

p
la

ce
m

en
t

[m
]

Figure 5.10: Scenarios 1,2, and 3 from [1] simulated with methods 1a, 1b, and 2 from
Table 2.1 and (2.3.8). The polynomial degree was set to NP = 4, and the
subdivision to ND = 8 for scenarios 1 and 2, and to ND = 12 for scenario
3. The constants were set to c = 1000 and γ = 2.

50

5.3 Tsunami Simulation

In scenario 3, we see the biggest changes compared to the original methods. The
center oscillates strongly for all three methods. These oscillations seem to be the source
of the surrounding dispersion which is visible from around 5 km from the center onwards.
Moreover, the tsunami wave propagates seemingly slower than expected for the shallow
water case (cf. Figure 5.13, the image for c = 0), and it also seems to dissipate. While
this may look like an inaccuracy at first, a similar effect is visible in [1] for scenario 3 and
the fully-coupled model (method 1, i.e. [1, Figure 5(i)]). However, our methods seems
to indicate that the phase wave accelerates over time—whereas the fully-coupled model
shows a visually constant phase velocity nonetheless. This may be related to the central
oscillations pushing water mass and pressure waves outwards. When comparing the three
methods among each other, we notice that method 1b and method 2 yield fairly similar
results. The only noticeable difference is that method 1b overshoots the displacement
in the beginning which conforms with the effects seen in the other scenarios for method
1a and 1b. In contrast to method 2 and method 1b, method 1a yields a different result.
Firstly, the oscillation in the center still occurs with the same wavelength, but with an
inverted phase. This is most likely due to the missing pressure correction, since method
1b shows an inverted phase. Furthermore, the fast error-correcting waves are absent.
To summarize, we could qualitatively reproduce the dispersion effects. However, the

accuracy and meaning of both the error-correcting waves and the strong oscillation in
scenario 3 still pose open questions.
Our analysis so far focused on the value c = 1000. To examine the effects with regard

to the parameter c, we compare scenario 3 with different values for it, the results being
shown in Figure 5.13. For low values of c, the central oscillations begin to form. The
shallow water tsunami wave propagates more quickly, and loses in amplitude, the higher
c rises. Furthermore, we see that the central oscillations converge towards a certain
frequency which does also not change much after reaching c = 400. This confirms the
statements given in [7]. A dispersive tsunami wave replacing the shallow water tsunami
wave can be seen for c = 600 and higher. For c = 1500, the error-correcting waves
propagate even quicker than for c = 1000, but the rest of the picture, i.e. the tsunami
wave and the dispersion, is almost identical.
A second point we need to rule out is the influence of the mesh size on the central

oscillations. To this end, we re-computed scenario 3 with method 2 for subdivision
14 and 16. The result was visually indistinguishable from the solution computed with
subdivision 12; hence we also do not show a graphic comparing the three results.

5.3.2 Tsunami Benchmark

We adapted a scenario presented in [18]. In particular, the water height was set to
10 km, and the bathymetry was assumed to be flat in the beginning. For the scenario,
we loaded the displacement file using ASAGI from [17]. We ran the simulation using
NP = 4, γ = 2, and we tested both c = 0 and c = 1500. We enabled AMR and allowed
mesh subdivisions between 6 and 12 (both ends included). Once again, we set aref = 0.5
and acor = 0.8. See Figure 5.11 for an example during the simulation.
Figure 5.12 shows the results of a simulation with c = 0, and a simulation with

51

5 Evaluation

Figure 5.11: A screenshot of the adapted tsunami benchmark simulation from [18] with
a sea depth of 10 km. The black lines show the current mesh.

c = 1500. We chose the latter value due to 5
√
gh0 ≈ 1566. The first differences between

the two simulations are already clearly visible after about 40s, and the further the
simulation progresses, the more additional waves are visible for the case c = 1500.

52

5.3 Tsunami Simulation

(a) t = 30s, b (b) t = 30s, η, c = 0 (c) t = 30s, η, c = 1500

(d) t = 60s, b (e) t = 60s, η, c = 0 (f) t = 60s, η, c = 1500

(g) t = 90s, b (h) t = 90s, η, c = 0 (i) t = 90s, η, c = 1500

(j) t = 120s, b (k) t = 120s, η, c = 0 (l) t = 120s, η, c = 1500

Figure 5.12: An adaption of the tsunami benchmark from [18] with a sea depth of 10 km.
We simulate both with c = 0 and c = 1500, the latter roughly equalling
5
√
gh0. The left-most column shows the bathymetry at the given timesteps,

the middle column shows the displacement for c = 0, and the right-most
column shows the displacement for c = 1500.

53

5 Evaluation

−20 −10 0 10 20

c = 0

0

25

50

75

100

125

150
T

im
e

[s
]

−20 −10 0 10 20

c = 50

−20 −10 0 10 20

c = 100

−20 −10 0 10 20

c = 200

0

25

50

75

100

125

150

T
im

e
[s

]

−20 −10 0 10 20

c = 400

−20 −10 0 10 20

c = 600

−20 −10 0 10 20

c = 800

Offset [km]

0

25

50

75

100

125

150

T
im

e
[s

]

−20 −10 0 10 20

c = 1000

Offset [km]

−20 −10 0 10 20

c = 1500

Offset [km]

−0.250

−0.125

0.000

0.125

0.250

D
is

p
la

ce
m

en
t

[m
]

−0.250

−0.125

0.000

0.125

0.250

D
is

p
la

ce
m

en
t

[m
]

−0.250

−0.125

0.000

0.125

0.250

D
is

p
la

ce
m

en
t

[m
]

Figure 5.13: Scenario 3 from [1] simulated with method 2 from Table 2.1 and (2.3.8) for
different values of c. The polynomial degree was set to NP = 4, and the
subdivision to ND = 12. Furthermore, γ = 2.

54

6 Outlook

We presented three different ways to simulate tsunamis using the H-BMSS-γ equation
system, and we reproduced the scenarios from [1] using them. In addition, we showed
the high-order convergence of the H-BMSS-γ model in our implementation. Moreover,
we extended our code in sam(oa)² to use the Kronecker product and include YaTeTo,
so that we can run more complex simulations. Furthermore, we are now able to use
adaptive mesh refinement efficiently, and it avoids an integration step in the ADER-DG
corrector step by re-using the fixed point found in the predictor.
For future work, all parts offer possibilities to be developed further. From the mod-

elling point of view, it would be interesting to give the artificial wave parameter c a phys-
ical relevance. From the numerical side, the next steps are to look into two-dimensional
numerical fluxes to be able to simulate with fewer elements, and to further accelerate
the predictor iteration. For the ADER-DG simulation in sam(oa)², the next step is
to generalize the existing code to support arbitrary hyperbolic equations, possibly by
merely entering them into a computer algebra system.

55

References

[1] Lauren S. Abrahams, Lukas Krenz, Eric M. Dunham, Alice-Agnes, Gabriel, and
Tatsuhiko Saito. “Comparison of methods for coupled earthquake and 1 tsunami
modeling”. In: 2022.

[2] Marie-Odile Bristeau, Anne Mangeney, Jacques Sainte-Marie, and Nicolas Seguin.
“An energy-consis-tent depth-averaged Euler system: Derivation and properties”.
In: Discrete & Continuous Dynamical Systems - B 20.4 (2015), pp. 961–988.

[3] M. J. Castro Dı́az and E. Fernández-Nieto. “A Class of Computationally Fast First
Order Finite Volume Solvers: PVM Methods”. In: SIAM Journal on Scientific
Computing 34.4 (2012), A2173–A2196. doi: 10.1137/100795280. eprint: https:
//doi.org/10.1137/100795280. url: https://doi.org/10.1137/100795280.

[4] Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-Dieter Munz.
“A unified framework for the construction of one-step finite volume and discon-
tinuous Galerkin schemes on unstructured meshes”. In: Journal of Computational
Physics 227.18 (2008), pp. 8209–8253. issn: 0021-9991. doi: 10.1016/j.jcp.
2008.05.025. url: https://www.sciencedirect.com/science/article/pii/
S0021999108002829.

[5] Michael Dumbser and Eleuterio F. Toro. “A Simple Extension of the Osher Rie-
mann Solver to Non-conservative Hyperbolic Systems”. In: Journal of Scientific
Computing 48.1 (2011), pp. 70–88. issn: 1573-7691. doi: 10.1007/s10915-010-
9400-3.

[6] Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven Diot. “A pos-
teriori subcell limiting of the discontinuous Galerkin finite element method for
hyperbolic conservation laws”. In: Journal of Computational Physics 278 (2014),
pp. 47–75. issn: 0021-9991. doi: 10.1016/j.jcp.2014.08.009. url: https:
//www.sciencedirect.com/science/article/pii/S0021999114005555.

[7] C. Escalante, M. Dumbser, and M.J. Castro. “An efficient hyperbolic relaxation
system for dispersive non-hydrostatic water waves and its solution with high or-
der discontinuous Galerkin schemes”. In: Journal of Computational Physics 394
(2019), pp. 385–416. issn: 0021-9991. doi: 10.1016/j.jcp.2019.05.035. url:
https://www.sciencedirect.com/science/article/pii/S0021999119303730.

[8] C. Escalante, E. D. Fernández-Nieto, T. Morales de Luna, and M. J. Castro. “An
Efficient Two-Layer Non-hydrostatic Approach for Dispersive Water Waves”. In:
Journal of Scientific Computing 79.1 (2019), pp. 273–320. issn: 1573-7691. doi:
10.1007/s10915-018-0849-9.

57

https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/10.1016/j.jcp.2008.05.025
https://www.sciencedirect.com/science/article/pii/S0021999108002829
https://www.sciencedirect.com/science/article/pii/S0021999108002829
https://doi.org/10.1007/s10915-010-9400-3
https://doi.org/10.1007/s10915-010-9400-3
https://doi.org/10.1016/j.jcp.2014.08.009
https://www.sciencedirect.com/science/article/pii/S0021999114005555
https://www.sciencedirect.com/science/article/pii/S0021999114005555
https://doi.org/10.1016/j.jcp.2019.05.035
https://www.sciencedirect.com/science/article/pii/S0021999119303730
https://doi.org/10.1007/s10915-018-0849-9

References

[9] C. Escalante and T. Morales de Luna. “A General Non-hydrostatic Hyperbolic
Formulation for Boussinesq Dispersive Shallow Flows and Its Numerical Approxi-
mation”. In: Journal of Scientific Computing 83.3 (2020), p. 62. issn: 1573-7691.
doi: 10.1007/s10915-020-01244-7.

[10] Chaulio R. Ferreira and Michael Bader. “A Generic Interface for Godunov-Type
Finite Volume Methods on Adaptive Triangular Meshes”. In: Computational Sci-
ence – ICCS 2019. Ed. by João M. F. Rodrigues, Pedro J. S. Cardoso, Jânio
Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Jack J.
Dongarra, and Peter M.A. Sloot. Cham: Springer International Publishing, 2019,
pp. 402–416. isbn: 978-3-030-22741-8.

[11] SCons Foundation. SCons: A software construction tool. url: https://scons.
org/ (visited on 03/13/2022).

[12] Sergei K. Godunov and I. Bohachevsky. “Finite difference method for numerical
computation of discontinuous solutions of the equations of fluid dynamics”. In:
Matematičeskij sbornik 47(89).3 (1959), pp. 271–306. url: https://hal.archiv
es-ouvertes.fr/hal-01620642.

[13] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst. “LIBXSMM: Accelerat-
ing Small Matrix Multiplications by Runtime Code Generation”. In: SC16: In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis (SC). Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2016,
pp. 981–991. doi: 10.1109/SC.2016.83. url: https://doi.ieeecomputersocie
ty.org/10.1109/SC.2016.83.

[14] Inc. Kitware. CMake. url: https://cmake.org/ (visited on 01/13/2023).

[15] Lukas Krenz, Leonhard Rannabauer, and Michael Bader. “A High-Order Discon-
tinuous Galerkin Solver with Dynamic Adaptive Mesh Refinement to Simulate
Cloud Formation Processes”. en. In: Parallel Processing and Applied Mathemat-
ics: 13th International Conference, PPAM 2019. Lecture Notes in Computer Sci-
ence 12043. Archive-ID: 2019 11 05 krenz PPAM cloudSupercomputing. Springer,
Mar. 2020, pp. 311–323. doi: 10.1007/978-3-030-43229-4_27. url: https:
//link.springer.com/chapter/10.1007/978-3-030-43229-4_27.

[16] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. “3D Acoustic-Elastic Coupling
with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami”.
In: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. SC ’21. St. Louis, Missouri: Association
for Computing Machinery, 2021. isbn: 9781450384421. doi: 10.1145/3458817.
3476173. url: https://doi.org/10.1145/3458817.3476173.

[17] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. Supplementary material for 3D
Acoustic-Elastic Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi
Earthquake and Tsunami. Apr. 2021. doi: 10.5281/zenodo.5159333.

58

https://doi.org/10.1007/s10915-020-01244-7
https://scons.org/
https://scons.org/
https://hal.archives-ouvertes.fr/hal-01620642
https://hal.archives-ouvertes.fr/hal-01620642
https://doi.org/10.1109/SC.2016.83
https://doi.ieeecomputersociety.org/10.1109/SC.2016.83
https://doi.ieeecomputersociety.org/10.1109/SC.2016.83
https://cmake.org/
https://doi.org/10.1007/978-3-030-43229-4_27
https://link.springer.com/chapter/10.1007/978-3-030-43229-4_27
https://link.springer.com/chapter/10.1007/978-3-030-43229-4_27
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.5281/zenodo.5159333

[18] E H Madden, M Bader, J Behrens, Y van Dinther, A-A Gabriel, L Rannabauer,
T Ulrich, C Uphoff, S Vater, and I van Zelst. “Linked 3-D modelling of megathrust
earthquake-tsunami events: from subduction to tsunami run up”. In: Geophysical
Journal International 224.1 (Oct. 2020), pp. 487–516. issn: 0956-540X. doi: 10.
1093/gji/ggaa484. eprint: https://academic.oup.com/gji/article-pdf/
224/1/487/34192866/ggaa484.pdf. url: https://doi.org/10.1093/gji/
ggaa484.

[19] Oliver Meister, Kaveh Rahnema, and Michael Bader. “Parallel Memory-Efficient
Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid
Cells”. In: ACM Trans. Math. Softw. 43.3 (Sept. 2016). issn: 0098-3500. doi: 10.
1145/2947668. url: https://doi.org/10.1145/2947668.

[20] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. “SymPy:
symbolic computing in Python”. In: PeerJ Computer Science 3 (Jan. 2017), e103.
issn: 2376-5992. doi: 10.7717/peerj-cs.103. url: https://doi.org/10.7717/
peerj-cs.103.

[21] Ninja-Build. Ninja, a small build system with a focus on speed. url: https://
ninja-build.org/ (visited on 01/13/2023).

[22] Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications.
New York, NY: Springer New York, 2008. isbn: 978-0-387-72067-8. doi: 10.1007/
978-0-387-72067-8. url: https://doi.org/10.1007/978-0-387-72067-8.

[23] Carlos Parés. “Numerical methods for nonconservative hyperbolic systems: a theo-
retical framework.” In: SIAM Journal on Numerical Analysis 44.1 (2006), pp. 300–
321. doi: 10.1137/050628052. eprint: https://doi.org/10.1137/050628052.
url: https://doi.org/10.1137/050628052.

[24] G. Edgar Parker and James S. Sochacki. “Implementing the Picard Iteration”. In:
Neural, Parallel Sci. Comput. 4.1 (Mar. 1996), pp. 97–112. issn: 1061-5369.

[25] Leonhard Rannabauer, Michael Dumbser, and Michael Bader. “ADER-DG with a-
posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh
refinement framework”. In: Computers & Fluids 173 (2018), pp. 299–306. issn:
0045-7930. doi: 10.1016/j.compfluid.2018.01.031. url: https://www.
sciencedirect.com/science/article/pii/S0045793018300392.

[26] Sebastian Rettenberger, Oliver Meister, Michael Bader, and Alice-Agnes Gabriel.
“ASAGI: A Parallel Server for Adaptive Geoinformation”. In: Proceedings of the
Exascale Applications and Software Conference 2016. New York, NY: Association
for Computing Machinery, 2016.

59

https://doi.org/10.1093/gji/ggaa484
https://doi.org/10.1093/gji/ggaa484
https://academic.oup.com/gji/article-pdf/224/1/487/34192866/ggaa484.pdf
https://academic.oup.com/gji/article-pdf/224/1/487/34192866/ggaa484.pdf
https://doi.org/10.1093/gji/ggaa484
https://doi.org/10.1093/gji/ggaa484
https://doi.org/10.1145/2947668
https://doi.org/10.1145/2947668
https://doi.org/10.1145/2947668
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://ninja-build.org/
https://ninja-build.org/
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1137/050628052
https://doi.org/10.1137/050628052
https://doi.org/10.1137/050628052
https://doi.org/10.1016/j.compfluid.2018.01.031
https://www.sciencedirect.com/science/article/pii/S0045793018300392
https://www.sciencedirect.com/science/article/pii/S0045793018300392

References

[27] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
x.y.z). https://www.sagemath.org. 2022.

[28] Tatsuhiko Saito. Tsunami Generation and Propagation. Ed. by Tatsuhiko Saito.
Tokyo: Springer Japan, 2019. isbn: 978-4-431-56850-6. doi: 10.1007/978-4-431-
56850-6.

[29] David Schneller. “Discontinuous Galerkin Schemes for Dispersive Non-Hydrostatic
Shallow Water Equations”. Mar. 15, 2022.

[30] The sam(oa)² Team. sam(oa)². url: https://gitlab.lrz.de/samoa/samoa
(visited on 03/02/2022).

[31] The SeisSol Team. SeisSol source code repository. url: https://github.com/
SeisSol/SeisSol (visited on 01/14/2023).

[32] Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. Graduate
Studies in Mathematics 140. 2012. isbn: 978-0-8218-8328-0.

[33] Carsten Uphoff and Michael Bader. “Yet Another Tensor Toolbox for discontinu-
ous Galerkin methods and other applications”. In: CoRR abs/1903.11521 (2019).
arXiv: 1903.11521. url: http://arxiv.org/abs/1903.11521.

[34] Olindo Zanotti, Francesco Fambri, Michael Dumbser, and Arturo Hidalgo. “Space–
time adaptive ADER discontinuous Galerkin finite element schemes with a pos-
teriori sub-cell finite volume limiting”. In: Computers & Fluids 118 (Sept. 2015),
pp. 204–224. issn: 0045-7930. doi: 10.1016/j.compfluid.2015.06.020. url:
http://dx.doi.org/10.1016/j.compfluid.2015.06.020.

60

https://doi.org/10.1007/978-4-431-56850-6
https://doi.org/10.1007/978-4-431-56850-6
https://gitlab.lrz.de/samoa/samoa
https://github.com/SeisSol/SeisSol
https://github.com/SeisSol/SeisSol
https://arxiv.org/abs/1903.11521
http://arxiv.org/abs/1903.11521
https://doi.org/10.1016/j.compfluid.2015.06.020
http://dx.doi.org/10.1016/j.compfluid.2015.06.020

List of Figures

3.1 The scenario for adaptive mesh refinement 23

5.1 Convergence in two dimensions . 38
5.2 The L2 error over time in two dimensions 39
5.3 Error of hv against 0 . 40
5.4 Convergence in one dimension . 41
5.5 The L2 error over time in one dimension 42
5.6 Flat ocean with rising bathymetry . 44
5.7 AMR Simulation, Part 1 . 46
5.8 AMR Simulation, Part 2 . 47
5.9 AMR Simulation, Part 3 . 48
5.10 Scenarios 1,2,3 simulated with methods 1a,1b, and 2 50
5.11 Display of adaptive mesh refinement during tsunami simulation 52
5.12 Model comparison for a deep ocean . 53
5.13 Scenario 3 simulated with method 2 for different values of c 54

61

List of Tables

2.1 List different tsunami modelling methods 9

5.1 The scenarios with their corresponding name in sam(oa)² 35
5.2 Empirical convergence order in two dimensions 37
5.3 Empirical convergence order in one dimension 43

63

List of Algorithms

4.1 The adaptive mesh refinement algorithm 30

65

	Contents
	Introduction
	Tsunami Modelling
	Tsunami Waves
	Depth-Averaged Equation Systems
	The Governing Equations
	Eigenstructure
	Solitary Waves

	Modelling the Bathymetry Influence on the Governing Equations
	Immediate Earthquake (Method 1a)
	Time-Dependent Bathymetry (Method 2)
	Pressure-Corrected Instantaneous Source Method (Method 1b)

	Numerical Updates
	The ADER-DG Method
	Preliminaries
	The Predictor Iteration
	Using The Tensor Product Structure
	Handling Bathymetry and External Source Terms

	The Corrector Step in Strong Form
	Adaptive Mesh Refinement
	An Updated Finite Volume Scheme

	Changes to sam(oa)²
	sam(oa)²
	Changes to the Implementation
	Scenario Implementation and ASAGI
	Including YaTeTo
	Adaptive Mesh Refinement
	Convergence Measuring Traversal

	Changes to the Repository Structure
	Code Reorganization
	Build System
	Compiler Support

	Evaluation
	Model Tests
	Convergence Analysis
	Bathymetry Changes

	Adaptive Mesh Refinement
	Tsunami Simulation
	Gaussian Uplift
	Tsunami Benchmark

	Outlook
	References
	List of Figures
	List of Tables
	List of Algorithms

