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Abstract

Shrinkage porosity is one of the defects that occurs in the manufacturing of components
during solidification and insufficient feeding. This can significantly reduce the life duration
of components by causing fatique stress. As a result, it is necessary to detect and evaluate
the casting porosity. Typically, porosity evaluation has to be performed manually by
experts. However, manual assessment is not reproducible method and time inefficient.
Moreover, the task of determining whether different pores in a 2D cross section should be
treated as a single connected pore in terms of an initial failure size for fracture mechanical
assessment is difficult. Therefore, the used criteria such as the threshold distance between
pores to be unified as a pore group or pore size metrics are needed to be examined, whether
they are plausible and valid. Since only little work in automation of measuring defect
sizes has been achieved so far, there is the demand to develop an automated tool for
microstructural analysis of casting porosity.

In this paper, an automated defect size assessment method based on image processing
techniques is presented. This method allows for a quicker, more cost-effective, and most
significantly, more consistent evaluation of porosity. Furthermore, the used criteria is
validated through 3D renderings of sample materials. The results of this thesis provide
the groundwork for follow-up projects to evaluate porosity effects on the fatigue life of
components.

i



Contents

Contents ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Casting porosity and its effect on the fatigue life . . . . . . . . . . . . . . . 4

2.1.1 The area model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Feret diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Metallographic evaluation of porosity in blades . . . . . . . . . . . . . . . . 7
2.3 Image processing and clustering algorithms . . . . . . . . . . . . . . . . . . 9

2.3.1 Mathematical image processing (Non machine learning approach) . 9
2.3.2 Traditional machine learning approach . . . . . . . . . . . . . . . . 16
2.3.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Pore size analysis evaluation with 3D Examination . . . . . . . . . . . . . 19

3 Implementation 20
3.1 Full system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Image & data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Image type estimation . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Contour detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Defect size estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Evaluation 43
4.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ii



CONTENTS iii

5 Conclusion 62

List of Figures 64

List of Tables 69

6 Abbreviations 70

Bibliography 73



Chapter 1

Introduction

1.1 Motivation

A superalloy – or high-performance alloy – is an alloy able to withstand high temperatures
that would deteriorate other metallic materials industrially used such as steel or aluminum
alloys. The term was first used shortly after World War II to describe a group of alloys
developed for use in turbosuperchargers and aircraft-turbine engines that required high-
temperature performance [GLK97]. Superalloys exhibit excellent mechanical strength and
creep resistance at high temperatures, good surface stability, corrosion and oxidation re-
sistance [MS14]. Due to these properties nickel-based superalloys have been widely used in
the manufacture of advanced aero-engine blades and gas turbine blades [WLY+21]. In the
aerospace industry, turbine blades from nickel-based superalloys are typically manufactured
by investment casting.

Porosity occurs in cast solidifying metals and alloys due to negative pressures generated
during solidification contraction, and pressure developed by gases dissolved in the motten
metal [GSTM92]. This thesis looks only at the porosity in Ni-based superalloys, which
represents an applicable method in general due to the similarity of pores in different metals.

The influence of casting defects on the mechanical properties of these thermally and me-
chanically highly stressed components is indispensable [BR4]. The evaluation of porosity
of turbine components made of nickel-based superalloys constitutes a key criteria in qual-
ity assessment [Ros13] (see figure 1.1). In many cases, porosity is a key microstructural
feature which has a strong effect on fatigue life of a cast component [GYLL04]. Therefore,
detection and evaluation of the defect size and morphology of casting pores are requisite.

Commonly porosity evaluation has to be performed manually by experts [SYS00, HBPL16].
The key tasks of such a manual check contain estimation of potential defects – which would
be fracture mechanically effective by clustering pores into pore groups – and measuring the
biggest defect size. The selection of the images that should be ignored in further analysis
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Figure 1.1: Distribution of titanium and nickel alloys in an aero-engine. The titanium finds
its use in the cooler parts of the engine (fan and compressor), since it is stable to approximately
880◦C. The nickel-based superalloys run in the hotter parts of the engine (combustor chamber
and turbine), which can reach up to 1000◦C [ICC+19].

according to their low porosity percentage is also such a key task.

However, this method has some drawbacks. It takes a huge amount of time and money
to train and pay personnel for this task. Its performance vary from time to time and
expert to expert and therefore it is not reproducible. Moreover, the used criteria such as
the threshold distance between pores to be unified as pore group or pore size measures
are needed to be investigated whether they are reasonable. The manual checks are done
in two dimensional (2D) images and therefore the plausibility of defect size measurements
acquired from 2D images needs to be investigated.

1.2 Goal

Since only little work in automation of measuring defect sizes has been achieved so far,
there is the demand to develop an automated tool for the microstructural analysis of
casting porosity (this will be outlined in Chapter 2). Defining the critical defect size is
complex because of the inconsistency of 2D estimations and the different morphology
of pores. Consequently, the manual assessments have uncertainties which need to
be covered by further conservatism in the fatigue life predictions. This adds addi-
tional complexity to this problem when trying to automatically evaluate images based on
ground truth images. Therefore, the thesis tries to answer the following research questions:

Research Question 1: Is it possible to develop a computer vision model to perform a
robust and precise quantity analysis of pore space in Ni-based superalloys?

Research Question 2: Is the used criteria for estimating defect sizes of superalloy samples
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plausible and valid when compared with slice-by-slice analysis on three dimensional (3D)
segmented images of these samples?

1.3 Overview

The thesis is structured as follows: having introduced the topic in Chapter 1, Chapter
2 takes a deeper look into the current literature about pore structure analysis with its
effects, metallographic evaluation of porosity and different image processing algorithms.
After describing the main differences between state-of-the-art algorithms, Chapter 3 pro-
vides a detailed insight into the implementation of the automatic detection algorithm and
the analysis of 3D results. Chapter 4 takes a critical look on how far the implementation
was able to answer the research question by evaluating and discussing the resulting out-
puts. Lastly, Chapter 5 summarizes noteworthy observations inferred from the results and
outlines future work in this field.



Chapter 2

Related Work

2.1 Casting porosity and its effect on the fatigue life

Porosity is defined as undesired irregularity such as any gap or hole in metal casting process.
There are three main reasons why porosity might occur in casting superalloys [Vyn20]:

• a lack of feeding of melt to compensate for the solidification shrinkage;

• the rejection of gas, typically nitrogen, oxygen and hydrogen, from the newly formed
solid phase to the surrounding melt;

• solid deformation as a result of tensile stresses, which can also be traced back to a
lack of feeding of melt.

There are two main categories in the formation of porosity: gas porosity and shrinkage
porosity, since the last reason can also be assigned as shrinkage porosity. The formation
of gas porosity is based on the fact that the saturation for the important gases [H], [N]
and [O] (formation of CO) in liquid steel decreases as the temperature drops, which is
depicted in Figure 2.1 (see [RMB16]). On the other hand, insufficient development of the
interdendritic flow lowers the pressure to certain point resulting in inadequate feeding and
the creation of shrinkage porosity (see Figure 2.1). Since the shrinkage pores are more
tortuous and larger than gas pores, their impact on the fatigue behavior is greater than
gas porosity [LEH02, PGC+19].
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Figure 2.1: The image on the left-hand side illustrates the raising gas concentration wlg in

the mushy region based on gas microsegregation and the diminution of the solubility limit wl∗g .
The image on the right-hand side depicts the liquid pressure drop in the mushy region based on
solidification shrinkage. The parameter ρl is the specific mass of the liquid, T is the temperature
and vl is the velocity of the grain. The figures are taken from [RMB16].

The control of porosity in cast nickel-based superalloys is essential to extend the period
of use – also known as service life – of jet engine components being operated at high-
temperature under cyclic loads 1 [PGC+19]. Fatigue of metals is characterized by the
initiation and growth of cracks which grow in a self-similar fashion [WVD89].

The exact influence of a pore on fatigue behavior depends on several factors. For example,
the pore shape and the distance of the pores to free surfaces and to other pores can influence
the fatigue behavior. Furthermore, the size of the pores is an important factor. Defect sizes
ranging from a few microns to several hundreds of microns can affect fatigue properties. It
is complex to assess approximately the influence of several individual pores in a specimen.
Nevertheless, the largest defect is often considered as the key parameter that governs the
fatigue resistance [Mur85]. For the effective pore size of the materials in order to analyze
their fatigue limit, some concepts are presented below.

2.1.1 The area model

Experimental evidence supports the concept that the critical stress for crack initiation
does not constitute the fatigue limit of most materials [MB99]. Rather, it is affected
by the threshold stress for nonpropagation of the crack which emanated from original
cracks, defects or inhomogeneities. Therefore the stress intensity factor controls the critical
condition for fatigue which is described by the following equation:

∆K = Y ·∆σ ·
√
π
√
area, (2.1)

where ∆K is the stress intensity factor range, Y is the shape factor (0.5 for internal pore
defect and 0.65 for surface pore defect as depicted in Figure 2.2) and ∆σ is the applied

1Cyclic loading is defined as the continuous and repeated application of a load (fluctuating stresses,
strains, forces, tensions, etc.) on a material or on a structural component that causes degradation of the
material and ultimately leads to fatigue [Cor20].
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normal stress amplitude (see in Figure 2.3). The threshold stress is correlated with the
square root of the defect area i.e.

√
area projected onto a plane perpendicular to applied

stress. This
√
areamodel is presented as size of the defect and easy to apply when compared

with other models [ME94].

Figure 2.2: The image on the left-hand side demonstrates the internal pores, whereas the image
on the right-hand side shows the surface pores. The blue marks represent porosity. The figure is
taken from [WYZ16].

Figure 2.3: The component shown is simultaneously loaded by a force F and a torsional moment
MT . The fatigue crack grows perpendicular to the principal normal stress σ1 [RS09].

2.1.2 The Feret diameter

The Feret diameter Φsurr – the circumscribed circle diameter of a pore defect – is commonly
used to describe the size of pore defects with complex shapes [NKF12, OSC+20]. Sphericity
describes the shape of the pore defects and ranges from 1 to 0, showing that the pore
defect becomes more and more irregular [WLY+21]. While the pore defect size increases,
the shape becomes more irregular. The group with smaller pore sizes is named SP (Small
Porosity), and the group with larger pore sizes is named LP (Large Porosity). Since the
shape of large pores in SP samples is generally simple and the shape of large pores in LP
samples is more complex, the Feret diameter is used to describe the size of the porosity
defects [WLY+21]. A visual example of the Feret diameter is given in Figure 2.4.
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Figure 2.4: Lengths and widths of a pore are analyzed. Maximum Feret is also to be found on
the figure [Pic17].

2.2 Metallographic evaluation of porosity in blades

As mentioned above, material inhomogeneities such as pores can reduce the service life
and strength of a component under cyclic loading. Such that, a method is needed that can
predict the lower limit of the service life. If the distance between two pores is less than a
critical distance, it is expected that the crack nuclei corresponding to the pores will unite
after a few load changes [ME94]. These pores are not considered as a single pore but as
a pore network or a pore nest. A pore network defines several pores whose distances to
each other are smaller than a critical distance. For the critical distances there are different
assumptions such as:

Figure 2.5: This figure shows two pores represented by the two circles i, j and the distance a
between them.

• a ≤ acrit = di [MB99]
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• a ≤ acrit = di + dj [Kra13]

• a ≤ acrit = 2dj

The circle i is the smaller pore and j is the bigger pore, di and dj are the diameters of
the pores, a is the distance between the two pores, where acrit is the critical/threshold
distance. Following on from this thesis, fatigue tests will be performed to determine the
service life of specimens. For estimating the real lifetime of the components, the crack
nucleation size of this pore or pore group needs to be calculated. In the following some
suggestions in related papers are presented for defining the size of the pore network in 2D
images.

Bounding rectangle

Finding the bounding rectangle around the pores which have the minimum threshold dis-
tance according to the given criteria is a recommended approach by MTU metallography
experts and also used in [Kra13]. As the name implies, this approach finds the smallest
rectangle which can contain all the pores in a pore network and the longest edge is taken
as the defect size.

Pore areas

Murakami et al. proposed that the formula for calculating the crack nucleation size of a
single pore from Section 2.1.1 can be applied to pore groups and be the size of the pore
network [MB99, ME94, Mur85]. This results in calculating the sum of the pore areas in a
pore network and taking the square of the result. The formula for the single pore size 2.1
is transformed into:

d =

√√√√ n∑
i=1

Ai (2.2)

where d is the defect size or crack size, i is the index of a single pore, n is the amount of
pores in the pore network and A is the area of the i -th pore.

Pore areas with imaginary pores

Another alternative approach for pore network size is the half of the sum of the pore areas
and as well as the area of an imaginary pore [Kra13]. Since the distance between pores
are not taken into account in the above approach, this method is proposed. First the
pores of the pore nest are defined then the areas are calculated as above. Consequently,
it is “imagined” that there is another pore between two actual pores which has the same
diameter as the distance between them (see Figure 2.6). Then, its area is added to the
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“real” pore area sum. Finally it is divided by two in order to reduce the extra amount
of the imaginary pore. This approach has some drawbacks, which are presented in the
Evaluation chapter.

Figure 2.6: The left and right circles represent pores: AB is the area of the bigger pore and
AS of a smaller pore. The dashed circle in the middle is the “imagined” pore which has the area
AIm. The method considers the half of each area.

2.3 Image processing and clustering algorithms

There are various approaches in image processing for performing microstructural analy-
sis [CMY+17, RFB15, MBH+18]. In the following, some methods and applications are
presented.

2.3.1 Mathematical image processing (Non machine learning ap-
proach)

Zafari et al. present a method for segmentation of partially overlapping objects with
a shape that may be approximated using an ellipse [ZES+15]. The method starts with
seed point extraction which is followed by edge-to-seed point association. Afterwards,
the contours are fitted to ellipses. The experiments carried out throughout the research
have proven the method presented as highly accurate in the detection and segmentation
of overlapping objects. Their method achieves an accuracy up to 94 %. Smith et al. used
the same approach and implemented an image processing method for a segmentation task
using mathematical algorithms [SSS+19].

The results of the research by Campbell et al. demonstrates the potential of using image
processing techniques for microstructural analysis of titanium components [CMY+17]. The
authors segmented microstructural images of a Ti6Al4V alloy into its constituent grains
and produce measurements with an automated method. Their approach is based on the
Watershed algorithm outlined by Lalitha et al. with a range of pre- and post-processing
steps [LAMS16].
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Another approach is presented by Perzyk et al. involving a developed vision system [PŚ13].
It uses an advanced image processing algorithm based on modified Laplacian of Gaussian
edge detection method and advanced lighting system. Their method contributes to inspec-
tion of surface casting defects.

Non machine learning methods are considered when a labeled “ground truth” training
dataset is not available. It requires preprocessing such as denoising and thresholding and
also more manual testing and adapting of the code than machine learning models [Sen20].
Edge detection is also an important preprocessing step for tasks including segmentation,
active contours and object recognition.

In the following section, some methods and algorithms which are considered in non machine
learning approaches to perform pore detection and clustering pore networks are presented.

Denoising

Denoising is a fundamental task in image processing applications, since the majority of the
images are degraded by noise. The goal of the task is suppressing the noise whilst keeping
key image features (see Figure 2.7).

• Local denoising : Local mean filters take the mean value of a group of pixels surround-
ing a target pixel to smooth the image. For instance Gaussian blurring or median
blurring perform local denoising. These methods use a Gaussian weighted average
or median of the values to replace the pixel element in a small region around that
pixel. Another approach is bilateral filtering. It is highly effective in noise removal
while keeping edges sharp [Ope21a]. However, the operation is slower compared to
other filters. Compared to Gaussian filters, bilateral filter checks if a pixel lies on the
edge or not, and thus avoids blurring edges.

• Non local denoising : Non-local means filtering takes a mean of all pixels in the image,
weighted by how similar these pixels are to the target pixel. This results in much
greater post-filtering clarity, and less loss of detail in the image compared with local
mean algorithms [CM05].
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Figure 2.7: (a) Illustration of the non-local mean denoising, (b) the original and (c) denoised
light micrographs containing subsurface cracks. The figure is taken from [ZYSL18].

As seen in Figure 2.7a, the basic principle of this method is as follows: for a certain
pixel i in the image, each 3x3 pixel matrix (with the center pixel j, symbolised by
“matrix Vj” in Figure 2.7a) within the neighboring range LxL pixel region (denoted
as the region Ωi) is compared with the pixel i neighboring matrix (symbolized by
“matrix Vj” in Figure 2.7a) [ZYSL18].

Thresholding

In order to obtain binary images, the image processing operation of thresholding is required.
Pixels are assigned 1 or 0 according to a set of criteria for gray scale values (see Figure
2.8).

• Simple thresholding : Also known as global thresholding, applies the same threshold
value to every pixel. If the pixel value is smaller than the threshold, it is set to 0,
otherwise it is set to a maximum value.

• Adaptive thresholding : The algorithm determines the threshold for a pixel based on
a small area around the pixel. In this way, different thresholds are set for different
regions of the same image, which gives better results for images with different lighting
conditions in different areas [Ope20b].

• Otsu thresholding : This algorithm determines the threshold automatically from the
image histogram. The mean value of the two gray scale peaks are calculated and set
as the threshold value.
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Figure 2.8: (a) Illustration of a gray scale image, (b) binary image obtained with Otsu thresh-
olding algorithm. The figure is taken from [RIMB19].

Contour detection

In image detection applications, contour detection is a crucial step. The goal of contour
detection is to identify the edges of objects on an image. An example of the steps that
lead to contour detection is given in Figure 2.9. There are various methods for locating
the borders of an object and the most common ones are listed below.

Figure 2.9: An example of an edge detection algorithm operation. The figure is taken from
[Kho12].

• findContours: Suziki et al. determined the surrounding relationship of the boundary
of the image. The function findContours in opencv library depends on the algorithm
outlined in [S+85].

This algorithm defines the hierarchical relationships between the contours and dis-
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tinguishes between the outer and hole boundaries. Figure 2.10 depicts an example of
an outer and inner boundary. The binary images are used as input. The algorithm
iteratively checks pixels from the leftmost column to the rightmost and from the
uppermost to the lowermost. When it evaluates an object pixel, it checks whether
it belongs to the outer or inner border based on the following pixel type. Opencv
supports also only obtaining the outer contour of an object. The full code for this
function can be found in [Ope20a].

Figure 2.10: The left image shows the original image and on the right image the outer and
inner contours are marked with blue and red colors, respectively. Figure is from [Tom20].

• Sobel filter : Sobel filter detects vertical edges (Sobel X ) and horizontal edges (Sobel
Y ) independently and the sum of them (Sobel X + Y ) contains all the edges. The
gradient along x, and y directions are calculated using the convolution masks of 3x3
as follows:

Gx =

−1 0 1
−2 0 2
−1 0 1

 Gy =

−1 −2 −1
0 0 0
1 2 1

 (2.3)

Here Gx and Gy are gradients along x and y directions. Gradient strength and
direction of the edges are calculated as follows:

G =
√
G2
x +G2

y (2.4)

θ = arctan(Gy/Gx) (2.5)

• Prewitt’s Operator : The difference between a Sobel filter and a Prewitt’s operator is
the used mask. Unlike the Sobel, this operator does not place any emphasis on the
pixels that are closer to the center of the mask [Tsa18]. The mask is:

Gx =

1 0 −1
1 0 −1
1 0 −1

 Gy =

 1 1 1
0 0 0
−1 −1 −1

 (2.6)
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• Laplacian filter : Unlike the Sobel and Prewitt’s operators, the Laplacian filter uses
only one kernel. It calculates two-dimensional gradients at once. Two commonly
used small kernels are:

0 -1 0
-1 4 -1
0 -1 0

-1 -1 -1
-1 8 -1
-1 -1 -1

• Canny edge detector : In recent work, canny edge detection is one of the most popular
image detection techniques [Uch13]. It is a nonlinear filter due to the nonlinear
operations, whereas the above mentioned filters are linear. First, noise reduction is
performed with a Gaussian filter. Using the Sobel or Prewitt’s operator, the gradient
is computed. Afterwards, non-maximum suppression is performed, to remove pixels
which are not considered as part of an edge. The final step is hysteresis, where upper
and lower thresholds are used. If the gradient value of a pixel is higher than the upper
threshold, then the pixel is considered as an edge pixel. Accordingly, if the gradient
value is less than the lower threshold, then the pixel is rejected. If the gradient value
is between the lower and upper thresholds, then the pixel will be accepted only if it
is connected to a pixel that is above the upper threshold [RNR16].

Morphology correction

Binary images may have a variety of flaws. They contain noise and imperfections. Mor-
phological transformations aim to overcome this issue by taking the shape and form of
the image into account. An example image with a morphological correction is shown in
Figure 2.11. They are performed with two main elements: image and structuring element
i.e kernel. Some of the main morphology operations are:

• Erosion: A pixel in the original image (either 1 or 0) will be considered only 1 if all
the pixels under the kernel is 1, otherwise it is eroded (made zero)[Ope21c]. Hence,
the thickness or size of the foreground object decreases, the contour gets more thin.

• Dilation:Unlike erosion, dilation assigns 1 to the pixel if at least one of the pixels
under the kernel is 1. It uniformly expands the size of objects [AAK00].

• Opening : Opening is combination of the two operations above “erosion followed by
dilation” and used for removing noise such as small spurs and single-pixel noise spikes
(high frequencies) by maintaining the original shapes and size of objects in the image
[AAK00].

• Closing : The reverse of the opening operation, closing means “dilation followed by
erosion”. As a consequence, small holes inside the foreground objects are closed or
interruptions in the contour are corrected.

• Morphological gradient : Morphological gradient is the difference between dilation
and erosion of an image. It gives the contour of a filled object as an output.
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Figure 2.11: Implementation of dilation on the input image on the left-hand side. Figure is
from [AAK00].

Defect size estimation

The main task of porosity analysis revolves around determining the defects in a material
(see Figure 2.12). For the defect size estimation, it is needed to find the pores along a line
or in one plane. Therefore one method is finding the bounding rectangle around the pores
as mentioned in Section 2.2 and the other method is the Hough transformation.

Figure 2.12: The red line marks the single pore in a specimen. The dotted yellow line shows
the bounding right triangle. Figure is from [YMM+17].

• Hough transformation: Hough Transform aims to identify straight lines on a given
image. One should perform first an edge detection before a Hough transformation
in image processing. For a Hough transform, a line is expressed in its polar form.
Hence, the equation of a line can be written as ([Ope21b]):

y =
−cos(θ)
sin(θ)

x+
r

sin(θ)
, (2.7)
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and with arranging the terms as:

r = xcosθ + ysinθ (2.8)

Figure 2.13: A line (red) can be represented in its polar form with another line which passes
through the origin (blue). Its length from origin to the main line r and the angle of this line to
the x-axis θ describes the line in polar form.

Each pair of points (x0,y0) can be substituted into the equation 2.8:

rθ = x0cosθ + y0sinθ, (2.9)

where all possible lines that pass through this point are represented. The value ’r’ can
be referred as resolution parameter rho. If one would plot all these lines, a sinusoid
function appears. The Hough transformation performs plotting this sinusoid func-
tion for all the points in an image. If there are intersects, then those points are on
the same line. In order to assign points as a line a threshold amount of intersects is
set.

There are two types of Hough transformation: standard and probabilistic. Standard
Hough line transformation performs the above steps and gives the result of vectors
as an output. Probabilistic Hough transformation is more efficient and the output is
the extremes of the detected line [Ope21b]. It also allows to change maximum line
gap and minimum line length.

2.3.2 Traditional machine learning approach

Machine learning (ML) approaches generate solutions for classification and clustering prob-
lems in scientific images [DYL+17, WKH+18]. An overview to machine learning algorithms
is given in Figure 2.14. Overall, these methods are examples of Artificial Intelligence (AI),
which broadly “mimics” human behavior. Machine Learning is sub-branch of AI and Deep
Learning (DL) is sub-branch of ML, which is explained in the following section.
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Traditional machine learning models involve algorithms like Support Vector Machine
(SVM) see [BP12], Random Forest (RF) see [Bre01], Principal Component Analysis (PCA)
see [JC16]. The advantage of traditional machine learning models is that, the training set
does not have to be as large as in neural networks.

Figure 2.14: This figure highlights the relationship between Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning (DL). Some example approaches of ML and DL are also given
in the picture. Figure is from [O’R21].

Carter et al. attempted different approaches for the identification and segmentation of
different microstructural elements and compared their performance [Sen20]. RF and SVM
perform with 94 %, 91 % accuracy and a running time of 4s and 128s respectively in
segmenting different microstructures.

K-means clustering is an example of unsupervised machine learning technique that iden-
tifies a predefined number of centroids and clusters ’a’ data points close to a centroid by
minimizing inertia (or squared Euclidean distances) to the closest centroid [Llo82]. The
mathematical description of the stop criteria or inertia minimization can be described as
below:

a∑
i=0

min
µj∈Ca

‖xi − µj‖2 (2.10)

where xi are the data points within the cluster whose centroid is given by Ca and µj is the
mean of all the data points in every cluster (see [SRRL+20]).

Singh et al. presented a novel application of contour detection, a computer vision-based
technique coupled with k-means clustering, an unsupervised machine learning algorithm
to distinguish between fractures and granular pores in a 3D segmented image [SRRL+20].
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Their contribution is using also PCA to the contour features and then applying the k-means
algorithm to the principal components (PCs).

The first output of PCA is PCs and the second is PC scores and PC loadings [LKA17].
PC loadings is a weight matrix that transforms the high-dimensional feature space into
PC scores that can be projected onto the PC axes. These PC scores, zk are given by
[SRRL+20]:

zk(i) = p(i]w(i] (2.11)

where k = 1....m and i = 1....n, w represents the weights that transform each row contour
properties into PC scores and m stands for the total number of PCs. The used PCs are
determined according to their information capacity, which is described by the variance.

Another method in estimating the orientation line of a pore network is Linear Regression
[MMA20]. It tries to determine the best linear relationship between data points. It is
usually used for survival prediction of components for estimating the life duration or in
medical studies for the remaining life span of a patient [Pei20].

2.3.3 Neural networks

Deep Learning (DL) – or more commonly known as deep structured learning or hierarchical
learning – is a division of machine learning which is based on a set of algorithms that
attempt to model high-level abstractions in data [HYS16]. DL uses neural networks to
analyze large data sets.

Many image processing methods benefit from deep learning algorithms. For example,
Senanayake et al. (see [Sen20]) showed the best results in segmenting different microstruc-
tures with neural network in particular using a U-net structure with a modified, pretrained,
residual, 50 layer deep, network (ResNet-50) [TAL16]. The running time for the prediction
is one second, and the accuracy is 95 %. Hence, it is the best approach among mathe-
matical and traditional machine learning methods. The U-net architecture achieves very
good performance on very different biomedical segmentation applications as well [RFB15].
However, it requires thousands of labeled datasets.

Ma et al. proposed a novel deep learning-based image segmentation for microscopic im-
ages of Al–La alloys [MBH+18]. Using experimental results, the authors showed that this
method outperforms existing segmentation methods such as K-means.

There is also a master thesis written at MTU, where a U-net structure is used to detect
and segment microstructures in light microscopy images with nearly human-like precision
[Eli18]. With this work, it is revealed that the U-Net is able to learn meaningful features
without the need of manual feature extraction. The size of the training set is 2391 and the
test set is 491 images. The executions are performed on a GPU to keep the training time
at a reasonable level.
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2.4 Pore size analysis evaluation with 3D Examina-

tion

Analyzing defect size on the 2D images is not adequate, since the observation is only
restricted to one plane of the component. Therefore, 3D reproducible quantitative analysis
of the materials are needed for the validation of 2D analysis tasks. Many of the recent
techniques can not effectively collect large volumes while maintaining a high resolution,
thus statistical evaluations are difficult to make [RNF18]. One solution for obtaining 3D
microstructural data is serial sectioning.

Robo-Met offers an automated serial sectioning through a fully automated polishing station
and a fully automated optical metallograph. It has been used to characterize the 3D
morphologies of particles and pores in alloys [SMP03]. In its simplest form, the technique
involves the repetitive grinding and polishing of the layers of the material. In each step,
2D images are taken which are then reassembled and rendered into 3D models. Spowart et
al. achieved a slice thickness of 0.16–2.7 µm ± 0.01 µm in a Ni-based superalloy [SMP03].

Lu et al. showed not a great agreement between 2D and 3D measures [LWW+20]. It is
explained partly by the limited ability of 2D images dealing with features with a concave
shape and partly to the limitations arising due to the projection of 3D information into a
2D plane.

Alternative approach for obtaining the 3D model is micro computer tomography (micro-
ct). It offers the possibility to visualize pores in large volume of material and quantify
their geometrical features and volume fraction using image analysis routines [HBPL16].
However, Robo-Met has two significant advantages for the type of work described here: (i)
it relies for optical reflective contrast on etching rather than density and (ii) the specimen
can generally be much larger [LWW+20].

Bright field microscopy aids in easy identification of pores due to large difference in re-
flection of light between metal and pores present in the sample and resolution is an order
of magnitude higher compared to micro-ct which is useful in identification of small pores
[GVG+17].
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Implementation

The algorithm was written in Python (version 3.7 see [Pyt18]) using standard numpy,
matplotlib, skimage, opencv, pil, math, scipy libraries. The implementation was structured
into five major steps: image & data collection, preprocessing, contour detection, defect size
estimation and validation. In the following section, the full system overview is presented.

3.1 Full system overview

This section summarizes the workflow implemented for the analysis in Figure 3.1. The
steps of the workflow can be assigned to three parts. In “Structural analysis”, the contour
properties are detected and saved in a dataframe for further investigation. “Defect size
estimation” has two main aspects: clustering and size estimation. Clustering means that
the single pores are assigned to pore groups either according to their nearest distance
(“Distance criteria”), or according to the grouping of the contour centroids (“K-means”), or
aggregation regarding many contour properties such as perimeter, shape factors etc. (“PCA
with K-means”). After defining the clusters, second step is estimating the size of the group
either with “Bounding rectangle” algorithm or with “Pore area model”. The biggest group
size is accepted as the defect size. There is also another approach “Hough transformation”,
which is applied directly to the contours and does not require the clustering step. The size
of the line determines the size of the defect.

20



CHAPTER 3. IMPLEMENTATION 21

Figure 3.1: This figure shows overall pore analysis and defect size estimation workflow. The
workflow is divided into three main parts: (1) Structural analysis of contours with the preprocess-
ing and contour detection steps, (2) Defect size estimation with determining the biggest cluster
and determining the defect size (3) Validation with obtaining the 3D model and comparing the
results with 2D analysis.
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3.2 Image & data collection

Firstly, images from the MTU internal database “Image Management System” (IMS) were
extracted and used in this study. Under a light microscope, metal samples can only be
viewed in incident light, since they are opaque [Für05]. Light microscopy allows mag-
nifications by a factor of 1500x depending on the microscope [IS05]. In general, such
magnification is sufficient to capture pores. They are clearly visible due to the high con-
trast from the surrounding area and appear dark and clear in light microscopic images.
Also due to the increasing automation of microscopy, focusing, aperture adjustment and
calibration are no longer a significant source of error. Therefore, this work considers only
light microscopy images of turbine blades.

The MTU metallography department performs this process and uploads the images to
the IMS. The images are labeled with a specific number assigned by the operator and
the subfolders indicate the slice number that corresponding to different depths of the
material. Metallography carries out the first analysis e.g. the percentage of pores. Then,
these images are saved in the system and the porosity evaluator checks each image for a
potentially critical defect. Those images might differ in calibration and also have different
labels on them such as scale bars or some measurements on the image. For the automated
analysis, images that should be considered are not allowed to have any text or scale bar.
Therefore the images are saved without those additional features to a folder. For better
tool development, the images which shows overviews of the total component are eliminated.

For defect size estimation, one should know the equivalent meter value per pixel on the
images, which can be obtained from the metadata files (XML files) in IMS. To save the
original image names and calibrations in a CSV file, a script is executed before the defect
size estimating algorithm. In other words, the pre-step of running the tool is reading the
meter per pixel value from XML file and saving with the original image name in a CSV
file. During the execution of the program, this value is applied whenever a distance is
measured in order to get the real defect size.

3.3 Preprocessing

A preprocessing step with the images is necessary to later use them in the program. This
step contains an image type estimation, noise reduction and thresholding.

3.3.1 Image type estimation

The images in the collection for this study can be broadly divided into two main categories:
overview images with a large field of view and detailed images of particular “pore nests”
at higher magnification than the overview images (see Figure 3.2). Overview images shows
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part of the turbine blade usually with a black background when imaged using a light
microscope. “Pore nest” images result after the metallography checks the overview image
and selects the region where the porosity density is rather high. They usually have a
measure about 1 mm2.

Image type estimation is required, since different types necessitate different preprocessing
procedures. For instance, the background in overview photos must be detected and ignored
when measuring the porosity percentage. Furthermore, the threshold length of a contour
for removing very small and very large pores differs. In order not to include the outer
contour of the component in the analysis, the overview images have a smaller allowed
maximum length for contours. The minimum threshold contour is also smaller, since they
have smaller amount of pixels per pore. Also a closing operation is needed for overview
images, in the cases where the pores conjugate the outer contour of the component. Then,
contour estimation detects the outer contour, as well as the pore as one and the result is
eliminated with the outer contour.

Figure 3.2: The image on the left is an example of an overview image, whereas the image on
the right shows a pore nest image.

In order to differentiate between pore nest and overview images, one should take a look at
the main difference which is the ratio of black pixels to white pixels. In general, overview
images show higher ratio than pore nest images, since the background is also visible on
the image. Based on that, the first approach is setting a threshold for the gray scale mean
value of an image. To assign an image into a class, its grey scale value is compared to the
set threshold value. 50 overview images and 40 pore nest images were analyzed. The result
of the gray scale mean value of the overview images was 105 and of the pore nest images
217. The mean value of both taken as a threshold value which was 161. So when an image
is read for the analysis, first the gray scale mean value is estimated from the whole pixels
and if it is below 161 then it is assigned to the overview class, otherwise to the pore nest
class. However, this algorithm results in a low accuracy (47%) with another dataset of 50
pore nest and 50 overview images. This occurs due to the different lightening conditions
of images. Hence, various subsets have different mean values, and the range cannot be
restricted to a single interval.

The second method is directly computing the ratio of the black values of all pixels. This
method yields that 94% of the pore nest images have the percentage of black pixels below
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10%. Therefore, the percentage method is implemented in the pipeline and the threshold
value is set at 10%. Below that value the image is classified as a pore network.

3.3.2 Denoising

To reduce the background noise of the images, there are different approaches as outlined in
the previous chapter. In order to determine the best suitable algorithm in the image set,
both local and non-local algorithms are used. Non-local denoising approach yields better
results in removing the noise. Two example images are shown in Figure 3.3, that were
denoised with different methods.

In the scope of this study, a non-local denoising algorithm is applied on gray scale images.
In order to perform non-local denoising, some parameters needed to be preset. Filter
strength h regulates how strong the denoising is. Higher values of h cause some loss of
details and smaller h preserve residual noise. In the implementation, visual tests show the
best result with 30. Also the sizes of search and template windows needs to be estimated.
The template patch is used to compute weights. Search window is utilized to compute
weighted average for given pixel. Both window sizes are measured in pixels and should be
odd. Greater size for search window causes greater denoising. An optimal setting for the
images studied was 7 as template window size and 21 as search window size.

3.3.3 Thresholding

On various sample images, both global and adaptive thresholding were evaluated. The
Figure 3.4 demonstrates that, global thresholding achieved better results in porosity clarity.
On the other hand, adaptive thresholding causes noise in the image.

The challenge of global thresholding is calculating the threshold value at which a pixel’s
gray scale value should be allocated as black or white. Otsu thresholding is used to estimate
that threshold for this purpose. In the image data collection, the gray scale values show
two peaks in their image histogram, since foreground and background are distinguishable.
Figure 3.5 shows the result for the sample images.
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(a) Original pore nest (b) Original overview

(c) Non-local (d) Non-local

(e) Gaussian blur (f) Gaussian blur

(g) Median blur (h) Median blur

(i) Bilateral filter (j) Bilateral filter

Figure 3.3: The images (c), (e), (g) and (i) show a pore nest image (a) denoised by different
algorithms. The images (d), (f), (h), (j) show the same process on an overview image (b) accord-
ingly. For the non-local denoising, h value is chosen as 30, template window size is 7 and search
window size is 21. The used Gaussian kernel size here is (5,5), aperture linear size for median
blur is 5. For bilateral filter is the sigma color 9, sigma space is 75 and border mode is 75. These
input parameters are used in order to render the sample images with opencv library.
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(a) Global thresholding (b) Adaptive thresholding

(c) Global thresholding (d) Adaptive thresholding

Figure 3.4: First row of images show an pore nest image both global and adaptive thresholding
applied. Second row shows the same process on an overview image accordingly. For the global
threshold 127 is chosen. For adaptive threshold, size of a pixel neighborhood that is used to
calculate a threshold value for the pixel is 11.
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Figure 3.5: The image on the left shows a pore nest image with Otsu thresholding applied.
Right image shows the same process on an overview image accordingly.

3.4 Contour detection

So far, the pipeline has prepared the images in order to have a better contour detection
performance. This section revolves around constructing the contour map of pores. Figure
3.6 shows some example images with different contour detection algorithms.

Sobel filter, Canny edge detection, Laplacian filter and the function findContours from
opencv library is applied to images. findContours has the best performance detecting
the contours correctly and has the benefit of being able to use the implemented functions
immediately without any other operation. Sample images are shown with detected contours
in Figure 3.7.

It can be seen from Figure 3.7 that the outer contour of the metal is also detected and
needs to be ignored in the following pore analysis. Therefore the maximum allowed area
of a contour in overview images is adapted and set to 100 000 pixels. Then, the outcome
appears to have eliminated some pores as well. This is caused by the fact that some contours
conjugate with the outer contour of the component and elimination of outer contour results
in elimination of those pore contours as well. Thus, morphology operations are needed. In
general, morphology operations did not affect the contour detection performance according
to visual tests. It is therefore applied only overview images, where pores may be detected
together with the outer contour. The output image can be seen in Figure 3.8. In pore nest
images, this does not cause a problem and the contours are mostly detected correctly since
there is no outer contour of components to be seen on the images. According to their pixel
ratio in pores and background the maximum allowed area of a contour is determined as
20 000 and minimum as 50. For overview images, the minimum value corresponds to pore
nest images.
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(a) Denoised image (b) Canny edge detection

(c) Sobel x (d) Sobel y

(e) Laplacian (f) findContours

Figure 3.6: Different edge detection algorithms are applied to a sample image. For Canny edge
detection, the first threshold for the hysteresis procedure is 100 and the second threshold for the
hysteresis procedure is 200. For Sobel filters, kernel size is 5.
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Figure 3.7: The image on the left shows a pore nest image with findContours function applied
and the detected contours are drawn on the image. Right image shows the same process on an
overview image accordingly.

Figure 3.8: Closing morphology (dilation followed by erosion) applied to the image with the
kernel size (8,8).

3.5 Defect size estimation

The approaches outlined in Section 2.3.1 are assessed before beginning to implement defect
size estimation method, and some of them are eliminated. For instance, the defining pore
networks with imaginary pores from Section 2.2 is not implemented, since it necessitates
numerous calculations. In order to find the imaginary pore in the inter-pore area, the
distances are taken into account. As shown in Figure 3.9, the pores in the perpendicular
direction of the defect orientation might increase the measurements.
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Figure 3.9: The pore nest image shows a pore nest with marked lines in inter-pore area. One
can recognize the pores which are perpendicular to the main defect orientation.

Since the task of the thesis revolves around the maximum defect size and does not require
segmentation between microstructures, supervised machine learning techniques such as
SVM and RF models are not considered as useful for this use case. Moreover, neural
network models are eliminated for the same reason. In addition, they require thousands
of labeled data, which puts more time and effort in the analysis. Therefore, the intensive
training of neural networks is saved.

Following the decision on the methodologies to be employed in the analysis, certain prelim-
inary operations are carried out. Firstly, some major properties of contours are saved in a
dataframe, so that they are not calculated repetitively in each step and can be read from
that dataframe directly. These properties are the coordinates of the contour center, the
contour area, perimeter and the radius of the circumscribed circle. Except for coordinates,
other variables are all saved after they are calibrated with the previously saved calibration
scale value, so that they correspond to the real measures.

Consequently, the distance matrix of the contours needs to be estimated in order to define
pore network groups. After the contour detection was performed as described in Section
3.4, the distances between each contour pair are calculated. In order to increase the
efficiency, the distance matrix is created as an upper triangular matrix, where the diagonal
elements are also zero. So when a distance of one pair is saved, that pair is not checked
again. To calculate the nearest distance between two contours, all pixels from these two
contours are regarded and the smallest distance is saved.

For further analysis with mathematical models, the pore group needs to be estimated with
the different threshold methods (see Section 2.2). Once the assigning of the pores into
pore network groups is completed, the algorithms such as bounding rectangle and pore
area model can be applied.

To measure the defect size of a pore group, different algorithms are applied. The imple-
mented methods are: bounding rectangle (Section 2.2) , pore area model (Section 2.2),
Hough transformation (Section 2.3.1), K-means and PCA analysis (Section 2.3.2).
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In the program, all methods are available for the user and can be implemented where
needed for the defect size estimation.

Bounding rectangle

First model is bounding rectangle, which serves as an automated substitute to the manual
approach, i.e. takes over the manual task. During manual check of an image, the expert
tries to find the largest orientation line of pore network groups. To perform this automati-
cally, the bounding rectangle method draws a rectangle around the assigned pore networks.
The largest edge of the bounding rectangle is determined as the defect size.

To find the smallest bounding rectangle of pores, the first step is computing a convex hull
(see Figure 3.10) of the points of interest. The edge orientations are calculated with the
arctan function. Then, these orientations are used to rotate the convex hull and each time
the minimum and maximum x and y values are computed. Consequently, these values are
the axis of the surrounding rectangle. The rotation setting which results in the minimum
area of the rectangle is stored as the operational output.

Figure 3.10: Convex hull of a bounded planar set.

Pore area model

For this model, a similar approach is used as previously outlined for the bounding rectangle
model. First the pore network groups are assigned. Then, the biggest cluster is defined
according to the largest sum of the pore areas in that group. Consequently, the defect
size is calculated using equation 2.2 with the areas saved in the properties of the contours
matrix.



CHAPTER 3. IMPLEMENTATION 32

Hough transformation

In this study, a standard Hough transformation does not provide reasonable results using
the available image set, more specifically there is not a detected line in many cases. Hence,
the probabilistic Hough transformation is applied in the pipeline.

The first visual results appear to be more akin to manual estimations with Canny edge
detection than the edge detection algorithm included (see Figure 3.11 and for manual
estimation result 4.10a). Therefore, the Canny edge detection algorithm is performed
before running the Hough transformation for the images. For using the probabilistic Hough
transformation function with opencv library, the resolution parameters rho and theta are
selected as 1 pixel and 1 degree, respectively.

In the conclusion of testing, the threshold parameter to assign a group of intersections as a
line was found to be 50. The minimum allowed contour area 50 px2 resulted in a minimum
allowed diameter of 8 pixels. Correspondingly, the minimum line length is determined to
be 10 pixels. The maximum gap between two points is also a free variable and can be set
by the users when starting the Hough transformation in the program. This parameter is
equivalent to the distance threshold in the bounding rectangle model. Reasonable results
can be achieved with a minimum of 250 pixels.

(a) Canny edge detection (b) findContours function

Figure 3.11: The image (a) is created with probabilistic Hough transformation after applying
Canny edge detection algorithm. The image (b) displays detected lines on denoised images using
the probabilistic Hough transformation and the findContours algorithm.

K-means algorithm

K-means clustering is an unsupervised machine learning technique that requires one prede-
fined paramater, number of clusters ’r’. Changing the number of clusters can significantly
enhance the performance of the K-means algorithm and therefore, this number needs to be
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fitted. This fitting can be combined by the Silhouette score analysis. The Silhouette score
assesses the distance between clusters and the likelihood of a data point being assigned to
the correct one. It is calculated as:

Silhouette score =
s− t

max(s, t)
(3.1)

where s is the mean of pairwise distances between points of the same cluster (or intra-
cluster distance) and t is the mean of pairwise distance of each point of one cluster to
another point of the nearest cluster (or nearest cluster distance) [Rou87]. A score of “1”
denotes that the clusters are properly separated, whereas a score of “-1” denotes that
the clusters are not well separated and that the data points are assigned to the incorrect
clusters.

For each case, where the K-means algorithm is carried out, a Silhouette score is computed
with a variable number of clusters. The Figure 3.12 shows the Silhouette score with a
variable number of clusters of two example images. The optimum number of clusters to
utilize for K-means clustering analysis is the number of clusters for which the Silhouette
score has the highest value. From Figure 3.12, it can be concluded that this is achieved
with either 4 or 5 clusters.

Figure 3.12: Red and blue lines represent the Silhouette score of two different images with
various number of clusters. In general Silhouette score differs between 0.4 and 0.5. The best
score is achieved with 4 clusters for one image and with 5 clusters for the other, whereas it
slightly differs from the score of 4 clusters.

Another approach to find the optimum number of clusters is called the “Elbow Criterion”
using the “Sum of Squared Error” (SSE). The goal of K-means is to organize data in such
a way that data similarity within each cluster is maximized while data similarity between
clusters is minimized. The distance function is utilized in the cluster as a measure of
similarity. As a result, the data similarity is maximized by using the shortest distance from
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data points to the centroid point. SSE is the measure for evaluating this data similarity.
Via Euclidean distance as the distance function, SSE is calculated as in the following
formula:

SSE =
n∑
i=0

d (3.2)

where n is the amount of data that will be clustered and d is the distance between the
data and the cluster center according to Nainggolan et al. [NPaST19]. The d is described
as follows:

dik =

√√√√ m∑
j=1

(xij − ckj)2 (3.3)

where xij(i = 1, ...nj = 1, ...m) with n is the amount of data that will be clustered, m is
the number of variables, c the cluster center, k cluster number [NPaST19].

For a better performance of K-means SSE should be minimized. The elbow criterion is a
method for determining the best number of clusters by calculating the percentage of the
difference between the number of clusters that will form an elbow at a given point. Figure
3.13 shows the SSE values for two different images as an example. For the image in ??,
there is a clear elbow point at 2 clusters and an uncertain elbow point at 5 clusters. The
image ?? has the elbow points at 2 and 4 clusters.

(a) (b)

Figure 3.13: Both images show the correlation between SSE value and the number of clusters.
The number of clusters is ranging from 1 to 10.

In Figure 3.14, some example images are shown with 2, 4 and 5 clusters. First example
image on the left, shows better visual results with five clusters, whereas the optimal cluster
number for the right image is two. It is a visual proof that shows the inconsistency of
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the optimal number of clusters and to determine this number, other factors should be
considered as well.

In the light of SSE plots and Silhouette scores with the whole dataset and the visual
evaluation of the formed clusters, the optimal value for the number of clusters in K-means
is selected as 4, even though it does not always result in reasonable clustering in our case,
depending on how the pore distribution is.

The K-means algorithm is applied after the centroids of contours are determined. The
coordinates of centroids are taken as input into K-means analysis and the clusters are
identified.

K-means with PCA analysis

The proposed model mentioned in Section 2.3.2 is applied in this method. This is an
alternative for clustering pores into pore networks by calculating PCs and applying K-
means on the variations of the PCs. In the following, it is explained how the K-means on
PCA is conducted.

First step is saving the contour properties in pandas dataframe. This step is similar to the
one that is implemented in defect size estimation (Section 3.5). However, it differentiates
by the regarded properties. For defect size estimation, the saved properties are the con-
tour center, the contour area, perimeter and the radius of the circumscribed circle. The
properties of a contour analyzed in this method are given in the following:

• Aspect ratio ellipse: It is the ratio of major axis to the minor axis of an ellipse.

• Angle ellipse: It gives the orientation of the ellipse.

• Aspect ratio rectangle: It is the ratio of the width to the height of a rectangle.

• Extent rectangle: It is the ratio of the contour area to bounding rectangle area.

• Hu moments: That is a shape feature vector. It can be found on a thresholded
image or on the detected contours and describes the shape of the contour. They are
invariant to image transformations.

• M Moments: It is also called typically as image moments. Individual objects in a
segmented image can be described using moments. The formula for moments of any
order is:

mij =
∑
x,j

(array(x, y)xiyj) (3.4)

where mij is the moment for the order (i,j), array calculates the intensity of each pixel (x, y)
of the image [Doc17]. This result is called as spatial image moment. In order to ignore the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: The images (a), (b) show the centers of contours assigned into two different clusters
represented in red and purple colors. The images (c), (d) and (e), (f) show the contour centers
assigned into 4 and 5 clusters, respectively.
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effect, where the contours in the image are, one can calculate the central moments:

muij =
∑
x,j

(array(x, y)(x− x)i(y − y)j) (3.5)

where the mass center (x, y) is subtracted from the pixel positions [Doc17]. The mass
center is calculated as:

x =
m10

m00

y =
m01

m00

(3.6)

The zeroth-order moment describes the contour area, the first-order moment describes the
center of mass, the second-order moment describes the moment of inertia according to
Singh et al. [SRRL+20]. As Rahman et al. showed in their study, the remaining higher-
order moments describe projection skewness and kurtosis [RHH19]. Aspect ratios are scale
invariant parameters, whereas the moments are scale variant. Both scale variant and scale
invariant moments are used in order to determine the better performance. In total 20
properties (10 spatial and 7 central moments, 2 aspect ratios and perimeter) are regarded.
Contour area is excluded since the parameter m00 refers to the area. Ellipse angle gives
not valuable information for the analysis.

The next step is using this input for the PCA analysis. The goal with PCA analysis is pro-
jecting the contours from high dimensional matrices onto a new axis. A high dimensional
matrix is nxp, where n stands for the number of the detected contours and p is the used
contour properties. This is managed by the PCs. The PCs consist of linear combinations
of the input properties and are orthogonal to each other. The criteria for selecting the
PCs is that the data should be easily distinguishable with the representation through PCs.
Each PC is associated with a variance, which represents the ability of parsing the data.
Therefore, the PCs with the highest variance should be selected.

Before calculating PCs and the variances, preprocessing of the dataframe is needed. If
a contour property value is too small, all moment entity return zero. The zero rows in
the dataframe are then removed. Also NaN values are removed using the “aspect ratio
ellipse”, which is caused by very small contours. Standardisation is also performed so
that the variables with higher standard deviation do not cause bigger weight on the PCs.
Normalization of the variables makes all variables range from 0 to 1.

Once the PCs are computed via scikit-learn library, the optimal number of PCs is deter-
mined by checking the variance that allow the best segregation with the fewest possible
PCs. Figure 3.15 shows that a combination of PC1 and PC2 would achieve up to 80 %
variance, which is sufficient for the analysis. Adding other PCs would not cause a big
difference, therefore 2 PCs are selected. K-means clustering is utilized afterwards for the
selected PCs.
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Figure 3.15: Each PC is shown with the variance percentage with bar plot. The sum value
of variances results in 100 %. To get the variances, 50 images are checked, 3120 contours are
remained after detection and elimination process. Therefore the high dimensional matrix is 3120
x 20.

To better understand the PCs, the correlations between the contour properties in each
PC are depicted in Figure 3.16. For instance, the perimeter has a greater impact on the
selected two PCs. For the PC1, the first- and second-order moments have higher weight
on the component than the third-order moments. For PC20, m20 has a negative weight,
hence they have a contrast.
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Figure 3.16: The heatmap shows for each PC, the correlations between the original variables.
The right-hand bar shows the values that colors refer to. A positive correlation is shown by a
positive value, and negative correlation by a negative value.

Applying K-means to PCs is performed the same way as described in Section 3.5. The
centroids of each PC is computed and assigned to clusters. To find the optimum cluster
amount Silhouette score is used. The 50 test images prove that the optimal value differs
between 2 and 5. However, 5 clusters is the majority with the highest score. Therefore,
cluster number is chosen as 5. In Figure 3.17, the Silhouette scores of two images are given.
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Figure 3.17: Red and blue lines represent the Silhouette score of two different images with
n = 2, 3, 4, 5 number of clusters. In general, the Silhouette score differs between 0.7 and 0.9. The
best score is achieved with 5 clusters for both images.

3.6 Validation

The presented methods are compared with the results of manual estimation. However, the
manual estimations are also based on 2D image analysis, which is not capable of giving
the 3D insights of the microstructures. For instance, the actual pore size and shape might
differ in different 2D image sections. Also the interconnectivity of pores are not clear with
one layer images. Therefore, 3D modeling is required to validate the proposed approaches.
The automated serial sectioning method presented in Section 2.4 from Robo-Met is used
for the validation task. For the analysis, appropriate sample materials were picked out and
sent to Robo-Met for 3D rendering. This method allows an optical magnification of 50x
(approx. 2 µm x− y resolution), and a section pitch of approx. 5 µm.

Material selection

Three samples and one spare sample of irregular shapes were chosen for this study. There
are various criteria used to pick these materials in order to ensure that these contain
a large number of pore networks to investigate. For instance, they are all picked from
polycystalline2 superalloys, a casting process that results in a higher porosity. Furthermore,

2Single crystal superalloys are produced through directional solidification techniques whereby the final
component comprises only of a single grain, whereas polycrystals are composed of many individual grains.
Single crystals have a better creep resistance and polycrystals have higher tensile strength [LWS+19].
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they are not processed through Hot Isostatic Pressing (HIP) during the heat treatment
process, since HIP reduces the porosity inside the material. After checking the supply,
some candidates were picked and the computed tomography (ct) images were checked if
they have enough porosity. Final selection for the materials were for two superalloys:
INCONEL 718 (IN-718) and INCONEL 713 (IN-713), which are typically used in aircraft
engine components. Two samples from IN-718 (Sample 1 and 2) and two samples from
IN-713 (Sample 3 and as a spare Sample 4) were cut. Cuts were extracted from areas of
turbine components where ct imaging had shown a high likelihood of porosity. Sample 1
and 2 are approx. 20x10x4 µm3. Sample 5 is approx. 20x5x2 µm3.

Comparison methods 2D vs. 3D

To find how realistic the 2D results, a comparison of 2D analysis with 3D results is needed.
For that purpose, different methods are used. The first parameter to be compared is the
porosity percentage. Porosity percentage depicts the ratio of pores to the whole volume
(in 3D) or area (in 2D) of the material. The value that is found in 2D image layers are
compared to the porosity percentage value of pores in 3D analysis.

For single pore size comparison, Equivalent Spherical Diameter (ESD) is applied. It is
calculated with the following formula (taken from the study of Pabst et al.[PG07]):

Dvolume = (
6

π
Vparticle)

1/3 (3.7)

where Dvolume is the diameter of a sphere with the same volume as the particle Vparticle, i.e.
volume-equivalent sphere diameter. ESD for a cross sectional area in 2D is calculated as:

Dsurface = (
6

π
Sparticle)

1/2 (3.8)

where Dsurface is the surface-equivalent sphere diameter, i.e. the diameter of a sphere with
the same surface as the particle Sparticle [PG07].

Furthermore, the key part of the comparison is determining the appropriate threshold for
accepting pores in a pore network. For that purpose, a crop area is selected and the 2D
image layer stack (100 layers) of this area is processed with the “Fiji-ImageJ” image tool.
The program returns the interconnected pores with the same color in the 2D images as
shown in Figure 3.18). These images are investigated for validating the used threshold
methods mentioned in Section 2.2.

In order to perform the comparison, the contours are identified which are the same color.
Since images are compressed, the RGB values are not exactly the same for each pixel that
belongs to the same color. Therefore, the RGB images are first converted to HSV – H is
for hue, S stands for saturation and V represents value i.e. brightness – to get the same
colors in a smaller interval. Then an interval of 10 for the H value is used to identify
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the same colors according to some test applications. After the same groups are identified,
the majority color group in the biggest cluster group is determined. Consequently, it is
checked, whether this cluster contains all the pores with the same color on the image.

Figure 3.18: This image is obtained by the image tool Fiji. The same colors depict the same
pores. To create this image, a maximum image stack of 2GB can be used in Fiji and this process
takes approx. 20 hours.



Chapter 4

Evaluation

4.1 Evaluation metrics

This section presents the metrics used for evaluating the results of the different methods
and their performance. Through these metrics, it is possible to quantify the error of a given
measurement. An error can be defined as the difference between measurement’s outcome
and the measurand’s true value. For instance, the measurand’s true value is the manual
measurement of the defect size and the measurement’s outcome is the algorithm’s solution
in the comparison of methods with manual approach. There are four different categories
to describe the performance of a prediction, where the result is binary, i.e. the outcome
can be referred as positive or negative:

• True positive (TP) : The result where the model predicts the positive class correctly.

• True negative (TN) : The result where the model predicts the negative class correctly.

• False positive (FP) : The result where the model predicts the negative class incor-
rectly as positive.

• False negative (FN) : The result where the model predicts the positive class incor-
rectly as negative [HPJ+21].

An example of such a prediction is defining the biggest pore cluster on an image with
different methods. The positive value is regarded as the pores that belong to the biggest
cluster. The negative value represent the pores, which do not contribute to the biggest
cluster. The TP becomes the pores that are assigned as part of the biggest cluster, which
is also true in “reality”. The pores that are actually not in that cluster but assigned as
positive build the FP group. Compared to TP and FP, TN and FN are the metrics for the
pores that are assigned as negative. The TN describes the a correct assignment, whereas
FN defines the group that should be in biggest cluster. These values give an insight on the
results with the help of different measures such as “Accuracy”, “Recall” and “Precision”,

43
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which are described as in the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Recall =
TP

TP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

Accuracy emphasizes overall performance of the model predictions. High accuracy equates
to more accurate predictions. Precision highlights the impact of FP results. Higher pre-
cision is a result of a remarkable accuracy, even if the negative results are dominating on
the image. Higher recall ensures that the major part of the positive results are predicted
correctly.

To compare the defect sizes obtained with various algorithms, the arithmetical mean value
x and standard variation s are used. The mean value gives an insight about where ap-
proximately the data points lie. In statistics, the standard deviation is a measure of the
amount of variation or dispersion of a set of values [BA96]. A small standard deviation
value implies that the values are close to the set’s mean, whereas a large standard deviation
value shows that the values are spread out over a larger range. The values s and x are
calculated as:

x =
n∑
i=1

xi
n

(4.4)

s = (
(
∑n

i=1 xi − x)2

n− 1
)1/2 (4.5)

where n is the number of measurements and xi are the results for defect sizes. The last
operation of standard deviation is taking the square of the term in the parenthesis. That
term builds the variance (VAR(X)) of the dataset, which also explains the dispersion of
the data. In comparison to standard deviation, variance has the drawback that its units
from random variables differ and thus, standard deviation is more commonly used.

4.2 Results

In this section, the results of the methods that are presented in the previous sections are
shown. Additionally, the evaluation metrics are used to draw conclusions. The results are
grouped by their relevance.
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Image type estimation

The image type estimation algorithm forms the beginning of the pipeline and therefore
its accuracy is important for the rest of the analysis. During implementation its accuracy
was already tested with company images and it was tested again with an extended dataset
using the images from Robo-Met. The achieved accuracy of 75 porenest images was 96 %
and of 65 overview images 85%. The accuracy of the entire dataset achieved up to 90%.
Two example images which were not assigned correctly are shown in Figure 4.1.

(a) (b)

Figure 4.1: The image (a) shows a pore nest image, which was assigned to the overview class.
The overview image (b) was detected as pore nest image.

Exploratory analysis

Before calculating the defect sizes, an exploratory analysis was executed in order to have
better insights on the dataset and its microstructural features. In Figure 4.2, the manually
estimated defect sizes in pore nest images and overview images are given.
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Figure 4.2: The image shows for 75 pore nest and 65 overview images the manually estimated
defect sizes. Red points represent overview images and black circles represent pore nest images.

The mean value of the defect sizes is 770 µm and the standard deviation is 454 µm. There
is no direct correlation between porosity percentage and the defect size value. The pore
nest images have overall lower porosity than the overview images. Their mean defect size
value is 512 µm with a standard variation of 286 µm, whereas as the mean defect size from
overview images is 950µm with a standard variation of 510 µm.

In a similar manner, increasing porosity percentage does not influence the maximum values
of perimeter and max. Feret diamater on an image. However, it results in a slightly
increased mean value of max. Feret and perimeter (see Figure 4.3 and 4.4). The square
root area of a pore has a variance of 18%, whereas the Feret diameter has a variance of
0.4%.
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Figure 4.3: This plot shows max. Feret diameters of the detected contours in 140 component
images. Black circles represent the mean value of max. Feret diameters in each image, whereas
the red points represent the maximum value. They are depicted in relation to the porosity
percentage.

Figure 4.4: This plot shows perimeters of the detected contours in 140 component images. Black
circles represent the mean value of the perimeters in each image, whereas the red points represent
the maximum perimeter value. They are depicted in relation to the porosity percentage.
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Defect size estimation

Manual check results build the ground truth for comparing various defect size estimation
methods. For that purpose, the defect sizes of the dataset, which were estimated manually
were given in Figure 4.2.

Figure 4.5 shows the bounding rectangles with different thresholds on an example image.
There, it is also possible to see the different sizes of bounding rectangles.

(a) “d” threshold (b) “d+D” threshold

(c) “2D” threshold

Figure 4.5: First image on the left-hand side shows the bounding rectangle around the detected
pores with “d” threshold. Second image shows with “d+D” and third image shows with “2D”
accordingly.

Figure 4.6 shows the defect sizes calculated with bounding rectangle algorithm with differ-
ent minimum criteria for pore network acceptance and the defect sizes estimated manually.
It shows that the criteria “2D” results in bigger defect size and “d” results in the smallest
defect size. Furthermore, it can be seen that manual estimations are more close to “d+D”
method when one compares the data points in the 40% and 20% error intervals. The
“d+D” threshold has around 10% error in average, where the “2D” has 30% and “d” has
45%. The average time for estimating the defect size on one image with bounding rectangle
algorithm was 55 seconds.
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(a) “d” threshold

(b) “d+D” threshold

(c) “2D” threshold

Figure 4.6: This plot shows the defect sizes estimated with different thresholds in comparison
with manually estimated defect sizes. The green line is perfect match line where the light and
dark brown colors depict 20% and 40% error lines, accordingly.
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Figure 4.7 shows the defect size estimated with pore area model. It is given with manual
estimation for a better overview. It is possible to see that the defect sizes with pore area
model are smaller than manual estimations. The mean estimated defect size is 180µm
with the standard deviation 102µm. The presented defect sizes are estimated with the
contour group estimated with “2D” threshold. Since this threshold produces the largest
defect size of all the thresholds, the ”d” and ”d+D” thresholds would produce significantly
smaller defect sizes. Therefore,it is not necessary to check the pore area model with other
thresholds.

Figure 4.7: This plot shows defect sizes of 140 component images. Red points represent the
manual estimation results, whereas black circles points represent the defect sizes calculated with
pore area model. They are depicted in relation to the porosity percentage of the image.

Another method to estimate defect size is using the Hough transformation. Figure 4.8
shows two example images which were applied the Hough transformation and the longest
detected line was drawn. The analysis for one image was about 6 seconds on average. One
can conclude that the problem with overview images is detection of the outer contour of
the component as a line. Therefore, the analysis does not provide the true defect value.
However, on a pore nest image, the results were very similar to the manual estimations.
Figure 4.9 presents defect sizes estimated manually. With a mean value of 2489 µm, Hough
transformation reached larger values than manual results, which were caused by the issue
in overview images.
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(a) Overview image (b) Pore nest image

Figure 4.8: The figure (a) shows an overview image with the longest detected line of 4625 µm
by the Hough transformation algorithm. The image(b) shows a pore nest image with the longest
detected line of 1038 µm. The red lines represent the detected lines with minimum line length of
10 pixels and maximum line gap of 250 pixels.

Figure 4.9: This plot shows defect sizes of 140 component images. Black circles represent the
manual estimation results, whereas red points represent the defect sizes calculated with Hough
transformation. They are depicted in relation to the porosity percentage of the image.

Two examples with K-means algorithm are shown in Figure 4.10. The average time for
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analyzing one image was 8 seconds. Visual check proved that the clusters do not match
the manually detected groups. The K-means method resulted in smaller pore groups
than manual estimation. Therefore, the defect sizes estimated by K-means algorithm are
calculated in combination with PCA analysis. The results with two example images are to
be found in Figure 4.11.

(a) Manual estimation (b) K-means clustering with 4 clusters

(c) Manual estimation (d) K-means clustering with 4 clusters

Figure 4.10: The images on the left show the manually checked images. On the image (a), the
biggest cluster has the size 1056µm and the image (c) has the value of 783µm. The images (b)
and (c) show the K-means algorithm applied to the centroids of the detected contours. The red
points represent the four cluster centers and other colors represent different clusters, respectively.

The two examples in Figure 4.11 illustrates that this algorithm takes the form of the pores
into account and therefore the distances between the pores are ignored.
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Figure 4.11: PCA analysis with K-means algorithm are applied to both images. The contours
marked with purple lines are the biggest cluster resulted from the algorithm.

3D comparison

The sample analysis and 3D rendering took two months to complete. The magnification
achieved after rerndering was 50x. Some data was lost due to planarization at the beginning
and at the end. For each sample the final parameters after the analysis are as follows:

• Sample 1: A section pitch of average 5.6 µm was achieved. 625 slices were used for
the analysis. A depth of 3500 microns was analyzed. The voxel resolution was 21
µm3. The 3D rendered image is presented in Figure 4.12.

Figure 4.12: This representation is obtained with 20x8x2 subsampling. The illustrated pores
have a minimum volume of 10.000µm3.

• Sample 2: A section pitch of average 5.5 µm was achieved. 643 slices (28 GB image
stack) was used for the analysis. A depth of 3500 microns was analyzed. The voxel
resolution was 20.7 µm3. The 3D rendered image is presented in Figure 4.13.
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Figure 4.13: This representation is obtained with 20x8x2 subsampling. The illustrated pores
have the minimum volume of 100µm3.

• Sample 3: A section pitch of average 4.7 µm was achieved. 407 slices were used for
the analysis. A depth of 1950 microns was analyzed. The voxel resolution was 24.3
µm3. The 3D rendered image is presented in Figure 4.14.

Figure 4.14: This representation is obtained with 20x5x1 subsampling. The illustrated pores
have the minimum volume of 10.000µm3.

The statistical analysis is carried out on Sample 3, because the other two samples appear to
have extremely dense porosity, that performing the 2D analysis does not bring meaningful
conclusions. The results of the microstructural features for the Sample 3 are shown in
Table 4.1. The mean value for are fraction was 3.38%, where the mean volume fraction
was with 1.83% around the half value of the area fraction. The mean max. Feret and
area/volume mean values depict how big a single pore in reality is and how it looks like in
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Table 4.1: Microstructural analysis 2D vs. 3D

Area/Volume Fraction Max Feret (mean) Max Feret (std) Area/Volume (mean) Area/Volume (std) ESD
2D 3.38 % 43 µm 0.56 µm 639 µm2 21 µm2 35 µm
3D 1.83 % 199 µm 115 µm 198870 µm3 250000 µm3 72 µm

2D image. The ESD value (shown in Section 3.6) of 2D is around half of the ESD of 3D
analysis.

In Figure 4.15, a single layer of Sample 3 is compared to the 3D porosity only rendering.
Looking at the figure it is clear that, not all pores are visible in every layer.

(a) 2D image of the first layer from Sample 3

(b) 3D model of the Sample 3 obtained with Paraview software

Figure 4.15: The figure presents one of the layer in 2D (a) with 3D model of the sample (b).
The microstructures are depicted as 3D surface mesh of triangles with Paraview software.

For finding the reasonable distance threshold, the colored pore groups are analyzed as
shown in Figure 3.18. The performance of the three threshold settings is examined using
two metrics: recall and precision. Recall is 100%, when there is no outlier in detection.
Outlier implies the pores that have the same color but not assigned to the same contour
group. Precision emphasizes the over estimation of pores. If there are many other pores
which have various colors than the dominating one in the detected pore group, the precision
is low. The best performance is considered to be a threshold setting with high recall and
precision. In Table 4.2, the results of the distance thresholds are given.
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Table 4.2: Performance of different threshold settings

Recall Precision
2D 85% 41%

d+D 80% 85%
d 13% 45%

The Table 4.2 demonstrates the highest recall with “2D” threshold, however the precision
is significantly lower than “d+D” setting. The threshold value “d” does not achieve high
recall or high precision.

4.3 Discussion

In this section, the introduced results are discussed and evaluated. The evaluation is
grouped by the same structure as in the previous section.

Image type estimation

The results show that image type estimation algorithm performs well (with 90% accuracy).
Checking the incorrectly assigned images, the wrong estimation of image type does not
result in wrong consequences due to their “unexpected” black and white pixel ratio. If
an image is assigned as an overview image, it means that it requires elimination of outer
contour and different method in percentage calculation, so that the background is not taken
into account. It is exactly the case in pore nest images if they are detected as overview
images. For instance they have also part of a background on the image. Hence, that image
also requires the steps as in overview images. In the end, the importance of image type
estimation lies in different preprocessing steps. The used methods therefore serves the aim
of applying the right methods and can be used.

Exploratory analysis

The first outcome of exploratory analysis is that, the porosity percentage does not allow to
draw conclusions about the defect size, since there is no direct correlation between them.
Also pore network images in general show smaller defect size than overview images, since
the regarded area is restricted. The size of overview images differ from each other and it
might be possible to get a better overview of the component. However, the analysis with
pore nest images are more stable. It highlights the need of having the overview images in
the right order wherever one can estimate where exactly in the component they are from.
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Square root area of a pore has a larger variance than the max. Feret diameter (see Section
4.2). Based on this result, the size of a pore is better defined by with its max. Feret
diameter instead of its square root area.

Defect size estimation

The comparison of defect sizes estimated manually and with bounding rectangle using
three different thresholds showed that “d” and “d+D” distance thresholds result in more
close values to manual measurements than “2D” threshold. The Figure 4.16 highlights
the overestimation of defect sizes with “2D” threshold and the underestimation with “d”
threshold. Therefore, the threshold “d+D” can be considered as the actual used threshold
while performing manual defect size estimations. However, this needs to be validated.

Figure 4.16: This plot shows the defect sizes estimated with different thresholds in comparison
with manually estimated defect sizes. The green line is perfect match line where the light and
dark brown colors depict 20% and 40% error lines, accordingly.

For the challenge with the Hough transformation detecting outer contours, one solution
might be setting a maximum value for line. For a better performance the gap size between
pixels in order to be detected as line can also be optimized. On the other hand, it is a
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faster method than bounding rectangle, since it eliminates the need to examine all of the
distances between contours.

The advantage of the K-means algorithm and PCA analysis is that these methods do not
necessitate a lot of training time or manually labeled data for the analyses. Furthermore,
there is an imbalanced class problem where the number of pores in the biggest cluster is to
other pores usually lower than other pores, using supervised machine learning techniques
such as random forests in such a case would not detect the biggest cluster with high
accuracy.

The issue with the K-means algorithm is that it separates the biggest cluster into multiple
smaller ones when there are not many pore groups on the image. The detection on images
with 4 or more pore groups performs well. Therefore, one additional step can be added,
where after defining the pore groups checking the distances between groups and unify two
groups into one, if they are below a set threshold (e.g. “d”,“d+D”,“2D”).

K-means algorithm with PCA analysis is in some of the cases profitable, however for the
example images in Figure 4.11, the marked pores are not similar in the group that are
manually estimated. Furthermore, if one calculates the defect size accordingly, the result
is higher than expected values, since the distribution of the pores are dispersed.

The best performance in computation time was achieved by Hough transformation. K-
means clustering is also faster than threshold distance algorithm, however its total duration
depends on the defect size estimation method. Although the bounding rectangle method
is the slowest, it is adequate when compared to manual processing time.

3D comparison

The 3D models are particularly beneficial for understanding the interconnection of pores.
This becomes clear in the Figure 4.19. There, the different appearance of the same pore
groups becomes visible.

The porosity percentage in 2D is around double of the porosity percentage in 3D (see
Table 4.3). This may lead to the classification of pictures with low porosity as important.
However, the high amount of pores implies that the 2D analysis is not sufficient for checking
the pores.

The ESD values are also different from 2D and 3D analysis. 3D analysis shows larger
values than 2D results (see Table 4.3). One reason for this could be the fact that pores do
not always have a spherical shape (see Figure 4.17). Hence, the ESD may be calculated
differently from a 2D image, in order to get a more realistic result.
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Table 4.3: Microstructural analysis 2D vs. 3D

Area/Volume Fraction ESD
2D 3.38 % 35 µm
3D 1.83 % 72 µm

(a) 3D image in XY Axis

(b) 3D image in ZY Axis

(c) 2D image in XYZ Axis

Figure 4.17: An example of a single pore (a) in XY axis, (b) in ZY axis and (c) shows one slice
of this pore where all axis can bee seen. The pore is selected from Sample 3.
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The distance threshold evaluation for pore groups showed the best results with “d+D”
threshold. It has a similar recall as “2D” and a higher precision percentage. Even though,
the first visual checks showed also good results with “d” algorithm, its recall including
the same pores in bounding rectangular was not high. Moreover, the precision was low,
because the “d” threshold only detects a small number of contours, and the error has a
larger impact on the precision (see Figure 4.18).

Figure 4.18: This plot shows an example image with “d” threshold estimated bounding rect-
angles.
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(a) (b)

(c) (d)

(e)

Figure 4.19: The images (a)-(e) show different layers of Sample 3. The red, green and blue
marked areas highlight the same pore groups, which appear differently on different layers.
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Conclusion

Casting defects have a big influence on the mechanical properties of the thermally and
mechanically highly stressed components. Thus, the evaluation of porosity in turbine com-
ponents made of nickel-based superalloys is a key criteria in quality assessment. Therefore,
it is necessary to detect and evaluate the defect sizes in materials and to analyze the
morphology of casting pores.

Metallographic examination is performed to determine the defect size and to understand
the critical pictures. To begin with the first challenge, manual examination results are
not reproducible. Secondly, monitoring for the threshold distance between pores is not
always precise. So there is no strict rule in defining the defect size. Moreover, the checks
are carried out in two dimensional (2D) images and thus the plausibility of defect size
measurements acquired from 2D images needs to be validated. This study fulfills the
requirement to combine all of these necessities into a model, and performs the validation of
used methods via 3D rendering. It contains automatic detection solution which produces
a faster, cheaper and most importantly a more consistent evaluation of defects.

In order to process the defect size estimation, the image type differentiation was needed
(pore nest and overview image). After assigning an image to the right group according
to its black/white pixel ratio (with 90% accuracy), noise reduction and thresholding is
applied. For that purpose, the best performance was achieved with non-local denoising
and Otsu thresholding.

Afterwards, the contours are found with findContours function of opencv library. The
detected outer contours of the image and the metal are eliminated with a contour elimina-
tion process. The contour properties such as area, circumscribed diameter, perimeter and
centroid are saved to use in clustering pores into pore groups.

The implemented defect size estimation methods contain different algorithms. It has two
main aspects: clustering and size estimation. For the size of a pore network, “bounding
rectangle” and “pore area model” were tested. The pore area model yields substantially
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lower values than manual estimates, which makes it ineligible. For clustering the pores into
pore networks, “K-means””, “K-means with PCA analysis”, “distance criteria method in
bounding rectangle algorithm” are compared.

K-means approach has the drawback that the amount of clusters determines the perfor-
mance and the optimal value varies in each image. K-means with PCA analysis takes also
the shape of the pores into account, which has the advantage in following the rules of man-
ual estimation but then the result is higher than expected values, since the distribution
of the pores are dispersed. For finding the pore groups as in manual estimation, the best
algorithm was bounding rectangle with the threshold “d+D”. It calculates the defect size
of an image in around 55 seconds with around 10% error.

There is also another approach “Hough transformation”, which is applied directly to the
contours and does not require the clustering step. The size of the line determines the size
of the defect. Hough transformation is the fastest approach with around 6 seconds per
image and is the best alternative method to bounding rectangle algorithm. However, it
fails in finding reasonable results with overview images.

The structural analysis with image processing methods revealed that the average defect
size among the image dataset is less than 1mm. The comparison results between porosity
percentage and defect size point out no direct correlation between them. Furthermore,
the microstructural parameters such as perimeter and max. Feret diamater do not have a
dependency on the porosity percentage. For a single pore size representation, max. Feret
diameter is a better metric in pore size estimation.

The comparison between bounding rectangle results and validation via 3D renderings
proved that the algorithm with “d+D” distance threshold value performs the most valid
and plausible defect size estimation. The threshold had a recall 80% and a precision 85%.

This study achieved to compare the used methods with the analysis of 3D rendering images.
The calculated ESD in 2D is not realistic and should be larger than estimated. Porosity
percentage also differs in 2D and 3D. Hence, the results from 2D for porosity percentage
should be adjusted to a lower value, if one wants to achieve 3D porosity predictions.

The analysis and evaluation on the life duration of components according to the defect sizes
remains as future work. Fatigue testing and a study of the fracture surfaces of specimens
are the next steps in the project. Furthermore, the evaluation can be generalized with
other metal samples.

Since various image processing algorithms are already implemented in the automated tool,
they can be also improved further. For reducing the computation time, clustering algo-
rithms can be evolved more efficiently. For fully automated approach, the other types of
component images can be analyzed and integrated into the tool.
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[NKF12] Gianni Nicoletto, Radomila Konečná, and Stanislava Fintova. Characterization
of microshrinkage casting defects of al–si alloys by x-ray computed tomography
and metallography. International journal of fatigue, 41:39–46, 2012.

[NPaST19] Rena Nainggolan, Resianta Perangin-angin, Emma Simarmata, and Astuti Fe-
riani Tarigan. Improved the performance of the k-means cluster using the sum
of squared error (sse) optimized by using the elbow method. In Journal of
Physics: Conference Series, volume 1361, page 012015. IOP Publishing, 2019.

[Ope20a] Opencv. Contours.cpp. https://github.com/opencv/opencv/blob/master/
modules/imgproc/src/contours.cpp, 05 2020. Last accessed: August 2021.

[Ope20b] Opencv. Image thresholding. https://docs.opencv.org/4.5.1/d7/d4d/

tutorial_py_thresholding.html, 12 2020. Last accessed: August 2021.

[Ope21a] Opencv. 2d convolution (image filtering). https://docs.opencv.org/4.5.2/
d4/d13/tutorial_py_filtering.html, 04 2021. Last accessed: August 2021.

[Ope21b] Opencv. Hough line transform. https://docs.opencv.org/3.4/d9/db0/

tutorial_hough_lines.html, 04 2021. Last accessed: August 2021.

[Ope21c] Opencv. Morphological transformations. https://docs.opencv.org/4.5.

2/d9/d61/tutorial_py_morphological_ops.html, 04 2021. Last accessed:
August 2021.

[O’R21] O’Reilly. A brief overview of deep learning. https://www.oreilly.

com/library/view/python-natural-language/9781787121423/

3a3082d5-ecc5-4b2a-bee5-c9636d63710d.xhtml, 2021. Last accessed:
July 2021.

[OSC+20] L.M. Bortoluci Ormastroni, L. Mataveli Suave, A. Cervellon, P. Villechaise,
and J. Cormier. Lcf, hcf and vhcf life sensitivity to solution heat treatment of
a thirdgeneration ni-based single crystal superalloy. Int. J. Fatigue, 130, 2020.

[Pei20] Vidyaratne L. Rahman M.M. et al. Pei, L. Context aware deep learning for
brain tumor segmentation, subtype classification, and survival prediction using
radiology images. Sci Rep, 10, 2020.

[PG07] W Pabst and E Gregorova. Characterization of particles and particle systems.
ICT Prague, 122:122, 2007.

[PGC+19] Emeric Plancher, Pauline Gravier, Edouard Chauvet, Jean-Jacques Blandin,
Elodie Boller, Guilhem Martin, Luc Salvo, and Pierre Lhuissier. Tracking pores
during solidification of a ni-based superalloy using 4d synchrotron microtomog-
raphy. Acta Materialia, 181:1–9, 2019.



BIBLIOGRAPHY 77

[Pic17] Vincent Picandet. Particle Size Distribution, pages 91–110. Springer Nether-
lands, Dordrecht, 2017.
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