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ABSTRACT1
Urban traffic state estimation usually describes flow, density and speed. However, urban traffic is2
characterized by many factors that cannot be adequately and explicitly described by these param-3
eters alone, yet they are implicitly considered in their values: stopped buses and delivery trucks or4
an increased number of lane changes affect urban traffic flow. Consequently, the joint estimation5
of these factors together with the traffic state is valuable for obtaining an extended, more informed6
traffic state. Applications of such an extended traffic state can be found in traffic management and7
control or for providing travel information for routing and navigation, e.g., where to expect more8
stopped vehicles during a specific period of time. The availability of complete trajectory data that9
continuously represent all motorized traffic participants for a certain period of time allows to better10
observe these link-microscopic parameters. In this work, we propose a way to estimate the macro-11
scopic values of flow and density as well as the collective number of stops of delivery trucks, taxis12
and buses, and the number of lane changes are estimated using a physics informed neural network.13
The network’s input are different static and dynamic parameters at the link level to obtain the ex-14
tended traffic state. Using the data and the network, different sensor distribution scenarios of loop15
detectors and trajectory data collection are explored to find the optimal sensor distribution for the16
extended traffic state estimation.17
The source code is available at https://github.com/AlexanderKutsch/TRB_Extended_TSE.git18
Keywords: traffic state estimation, extended information on urban traffic states, sensor distribution19
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INTRODUCTION1
Traffic in modern cities is highly complex in its nature. The emergence of more and more modes,2
such as e-scooters, different types of bicycles, etc., is leading to additional interactions in urban3
space and more competition for road space. Furthermore, the increase in deliveries (online shop-4
ping, errands) is leading to increased levels of stops of delivery vehicles on urban streets. All these5
factors make the estimation and interpretation of traffic states more challenging. The traffic state6
is commonly referred to as the traffic density (k), traffic flow (q), and speed (v) on a link. As the7
heterogeneity of urban traffic is only implicitly considered in these traffic states, but not explicitly,8
decision-making could be wrongly informed. Capturing this information is a rather difficult task,9
since with the existing sensors it is almost impossible to detect. Approaches to automatically find10
anomalies, such as accidents, from video data exist, e.g. in (1, 2), but they are limited to stationary11
video data and are not available for use with common sensors. For example, traffic control or rout-12
ing applications could act differently when the measured speed results from congestion rather than13
from a higher number of events like lane changes or stops. Thus, only with solid knowledge on14
the traffic state itself and its enrichment with further factors influencing urban traffic, authorities15
can design and operate traffic management to increase traffic safety and efficiency while reducing16
traffic emissions. In addition, routing platforms can provide better services.17

The main data for traffic state estimation (TSE) are loop detectors (LD) and floating car data18
(FCD) (3). As these data are usually not available continuously everywhere, the data availability19
and combination of different sources are not only determining the estimation method, but also the20
estimation quality (4, 5). The canonical methods for TSE were first developed for freeways. Ex-21
isting approaches using filters, such as the Extended Kalman Filter (6) and an extension using a22
first-order model of traffic flow (7) or using a spatio-temporal lowpass filter (8) were developed23
with data from LD only. A further approach with FCD and a Kalman Filter was proposed by (9).24
Also combinations of LD and FCD using an extended Kalman Filter (10), as well as data-driven25
methods were developed (11). Since machine learning has become more and more popular due26
to higher data availability, these methods have also been used for some time, e.g. (12). A com-27
prehensive literature review on freeway TSE is provided by Seo et al. (3). For the more complex28
case of urban TSE, methods exist as well, also based on available data from LD, FCD and GPS29
data from buses and taxis and different scenarios for combining them. The concepts make use30
of various models, which are partially also used for freeway TSE, such as the LWR-model (13),31
multiple regression (14) or speed transition matrices (15). Also new data sources, e.g., connected32
vehicle communication were used for signalized links (16). Besides that, also machine learning33
and in particular deep learning models were used, a review can be found in (17).34

Describing complicated matters and non-linear relationships in urban traffic situations makes35
the application of traffic control measures difficult. For this purpose, traffic is often simulated and36
predicted by means of simulators, which, however, are complex to calibrate, require high com-37
puting power and are often expensive. One potential solution are data-based approaches utilizing38
machine learning methods. These are increasingly being acknowledged in the field of transporta-39
tion (9). Lately, deep learning methods have advanced towards the modeling of physical systems40
(18–21). These advances utilize the information contained in the differential equations of the phys-41
ical system to regularize or constrain the learning process, e.g., the continuity equation for fluids.42
This approach could be valuable for traffic state estimation, since many traffic flow models include43
differential equations (e.g. LWR), which has already been shown recently (22–25). They were44
compared to canonical TSE methods and their superiority was shown (26, 27). The application of45
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physics-informed but data-based TSE was also shown to be beneficial for the use case of fusing1
LDD and FCD (28). Furthermore, a simple approach was proposed that combines the fundamental2
diagram and a widely used data-driven technique to develop an explainable physics-informed and3
data-driven TSE approach based on loss constraints (29).4

What to the best of our knowledge is still missing are models that capture not only the5
speed, density and flow on urban streets, but also the more complex events causing flow reductions6
and time losses. Measurements of such events do already exist, but are limited to local anomaly7
detection and not used in the context of TSE. Furthermore, there is no possibility to determine such8
events on the basis of permanently and ubiquitous available sensor data like LD and FCD.9

In this paper, we propose the concept of an extended traffic state (EST) and show its es-10
timation in practice. Using the seminal pNEUMA data (30), we describe the proposed extended11
traffic state and show its estimation using a physics-informed deep learning approach. We examine12
the estimation results under five different sensor scenarios, including LD, FCD and trajectory data13
from buses and taxis. The proposed procedure of learning the estimation parameters from drone14
trajectory data is already a step forward to standardization and reproducibility; the employed esti-15
mation and data collection methods are increasingly becoming widely recognized and available to16
many, supporting to scale and reproduce the extended traffic state estimation at various locations.17

EXTENDED TRAFFIC STATE WITH LANE CHANGES AND STOPPING BEHAVIOR18
For dense urban areas, traffic is a strongly heterogeneous entity (31). Slow modes of transport19
interact with faster vehicles, disturbing influences due to traffic lights, parking vehicles, delivery20
stops, bus stops and many more occur permanently and have impact on traffic flow and infrastruc-21
ture for leisure and vulnerable road users make the situation more complex (32, 33). Canonical22
TSE methods aim for estimating either the flow, density or speed in a network using different at-23
tempts with either flow models, data-based methods or a combination of them. However, the three24
variables cannot fully represent the complexity of urban traffic. Phenomena that exist but have not25
yet been measurable on a macroscopic scale thus remain unaddressed. With complete trajectory26
data sets, however, it is now possible to extract this information and use it in control and planning27
applications. An extension of the canonical parameters can be made to include the collective num-28
ber of stops of delivery trucks, as well as taxis and buses for passenger boarding or alighting. A29
possible application is to include this information in the routing process. In addition, the number of30
lane changes in a road section is another possible aspect that provides information that is relevant31
to traffic safety and can be used for planning. The difference between the canonical traffic state32
estimation and the extended traffic state estimation is highlighted in Figure 1. The aspects men-33
tioned above are core subjects in traffic engineering. For lane changes, for example, the detection34
and prediction for the driving task in autonomous driving (34), as well as the development of sim-35
ulation models (35, 36) are prime analysis examples. The effects of bus stops on urban capacity36
has also been investigated, e.g., (37), as well as the automated detection of incidents on roads. e.g.,37
(38, 39). However, these parameters have not yet been used as additional information as an output38
of TSE.39

Data for the extended traffic state estimation40
To illustrate the extended traffic state estimation, we use the seminal pNEUMA data (30). In41
the frame of this experiment, vehicle trajectories were extracted from videos recorded during the42
morning hours of five weekdays by a swarm of ten drones. As Figure 2A shows, the number of43
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FIGURE 1: Extending existing approaches for traffic state estimation in urban areas by extending
it with further information on stops of delivery vehicles, taxis and buses and lane changes.

different vehicle types in the pNEUMA experiment is high. Cars have the highest share of around1
42%, but also the combined share of likely slower vehicles, specifically medium vehicles, heavy2
vehicles and buses is at about 7.5%. These modes have, as visible in Figure 2B, the lowest mean3
speeds per vehicle, as well as the lowest quantile values. Analogously, the outliers also do not4
reach the values of Cars, Motorcycles and Taxis. Therefore, the complexity embedded in this data5
and the fact that it provides ground truth information makes this data perfectly suitable to show the6
extended traffic state estimation. In addition, as such drone data is becoming more and more widely7
available and the data processing standardized, the methods can easily be used and transferred to8
further data.9

Besides that, a closer look into the stopping behavior shows that stopping of vehicles might10
have various reasons. As shown in (33), during the experiment in Athens, buses and freight vehicles11
have a higher stopping frequency than private cars, with buses having the highest frequency. In12
general, freight vehicles cannot be distinguished directly from the data set, but are likely to be13
medium and heavy vehicles, as discussed by the authors. Besides that, of course the stopping of14
buses, just like taxis that let passengers get on and off at the edge of the roadway may have an15
impact on traffic flow variables. Further implications might come from a slower acceleration at16
the stop line of a traffic light after a red signal. From Figure 3 the places of stopped vehicles17
on a exemplary link show that most of the stops are based on the right most lane, likely due to18
drop on- and off events, as well as in front of the stop line. The parameters for a vehicle to be19
considered as stopped in this case were chosen in a way that a vehicle drives less then 1km/h for a20
minimum duration of at least 5seconds, while the mean speed of the cars on the link was equal to21
or higher than 20km/h. This ensured to exclude the large amount of stops caused by traffic signals22
or other waiting processes that are not limited to these type of vehicles. On the other hand, the23
stops of the larger vehicle groups near the stop lines are also included. Especially heavy vehicles24
and buses, but also medium vehicles tend to have lower acceleration than cars or motorcycles.25
Consequently, they force upstream vehicles to temporarily reduce their speed up to standstill, or26
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FIGURE 2: The share of vehicles in the pNEUMA experiment (A) and boxplots of the mean
speeds per vehicle type (B).

prevent them from accelerating as fast as intended, depending of whether they arrive at the end of1
a queue during a green phase or they are currently stopped at a red light. In this way, they act as2
moving bottlenecks, i.e. they continue to move in space, but generate velocity losses upstream,3
which are recovered when the moving bottleneck is passed (40).4

FIGURE 3: Place of stops of medium and heavy vehicles, taxis and buses, exemplary for a link
on the ’Stadiou’ street.
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A second substantial impact on traffic flow and safety are lane changing maneuvers. Al-1
though, probably due to a lack of available data, this effect has mainly been investigated on free-2
ways, e.g. (41), the availability of big data sets in urban areas led to a gained interest here as well3
(42). Consequently, dense, inner-urban traffic contains far more information than is used for cur-4
rent methods of TSE and, accordingly, traffic control. To aggregate this complex composition into5
further measurable, sort of meta variables, we propose to include the amount of lane changes and6
the number of stops of the shown vehicle types in Figure 3, in the following called special vehicles.7

PROCEDURE FOR ESTIMATING EXTENDED TRAFFIC STATES8
The entire process of extended TSE starts with the recording of videos of the traffic, most likely9
with drones. From this, the trajectories of the required road users are extracted and classified, in10
the example of pNEUMA these are all motorized vehicles. From this data set the ground truth can11
then be determined, for the canonical TSE these are the flow, density and speed. In our approach,12
these are extended by the number of lane changes and the number of stops of special vehicles.13
Depending on the available real detectors, the corresponding data can be generated virtually. For14
example, a virtual LD can be generated to simulate the data that a real LD would generate. Any15
suitable functional form for a regression approach can then be chosen to determine the extended16
TSE. The method can be calibrated and validated by comparing the results with the ground truth17
data. The process is summarized in Figure 4. The proposed method is spatially based on link-18
level and up to date limited to the estimation of the extended traffic state, meaning no prediction is19
possible to that point. Consequently, calibration is performed using individual streets in a network20
within the area covered by the aerial survey.21

FIGURE 4: Process overview over the extended TSE with ground truth data.

The method is directly applicable once a function is calibrated with the acutal sensor dis-22
tribution available. Thus, from the abundant data, the extended traffic state can be estimated using23
only permanently available sensors and data, such as LD and FCD. With this additional informa-24
tion, for example, routing can be improved and made more individual. For example, it is conceiv-25
able to increase the cost function of links by the number of stops of special vehicles. The same26
applies to the number of lane changes, which, in addition to the possible effect on traffic flow and27
bottlenecks, can also be critical to safety. The information can therefore also be helpful for plan-28
ning aspects. A prerequisite for the application is that a complete ground truth data is available for29
calibration. Also, because of the link level basis, the method is efficiently scalable.30
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DATA PROCESSING AND EVENT LABELLING1
The data available on the experiment’s web page was processed in the following way to serve as2
an input for this study. The original files were reshaped to a long data format and the step width3
was enlarged from 0.04 seconds to 0.16 seconds, to keep the relevant information, but thin the data4
set somewhat for faster compatibility. Furthermore, the data was joined into a single file, making5
unique ids per vehicle by combining the experiment number and the track id, as well as the travelled6
distances were calculated and a global timestamp added. Afterwards eleven links were selected,7
shown in Figure 5, based on a spatial filtering of the coordinates. For each experiment, the first and8
last 60 seconds were removed from the data, while experiments 8 was completely removed due9
to observed anomalies. Moreover, parked vehicles, i.e., having a travel distance within a link that10
covers less than 10% of the link length during the whole flight period, non-motorized road users,11
as well as vehicles moving in the wrong directions were removed from the data.In a last processing12
step, in order to elicit effects induced by the different phases of the traffic signals, the information13
was temporally aggregated. At the time of the recordings in Athens, the cycle time of the traffic14
signals was mostly about 90 seconds. Using a time span of two cycle lengths, i.e. three minutes15
was chosen, which is updated every 30 seconds.16

FIGURE 5: Selected links in the city center of Athens, covered by the pNEUMA experiment.

The input into the method consists of static and dynamic variables. The static input pa-17
rameters describe the street layout and were extracted using Google Maps and Open Street Maps.18
The dynamic input parameters describe the traffic itself and change over time. The FCD, as well19
as the ground truth flow and density per vehicle type were calculated using Edie’s definition (43)20
for each 30 second interval, which are afterwards aggregated to 3 minutes, using a rolling average.21
The calculation of traffic flow there is given by the sum of the travelled distance of each vehicle,22
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divided by the interval length multiplied by the link length, and the density is given by the sum of1
the travel times of the vehicles, divided by the same numerator. Lastly the speed can be obtained2
by dividing the flow by the density. Besides the virtual FCD, also virtual single LD were created,3
placed 30 meters before the stop line of each street segment. Analogously, flows and occupancies4
were calculated for the loops, and with this again the densities were calculated under the assump-5
tion of an average vehicle length. The difference for the LD is that it was not calculated per vehicle6
type, but for all modes combined, since single loop detectors cannot distinguish vehicle types. The7
values from the virtual FCD and LDD are transformed using a linear transformation such that the8
data of all links can be used in the same extended traffic state estimation model. So all flow and9
density values were divided by their respective link mean values. Subsequently, the flows were10
divided by the free-flow velocity. The linear transformation can always be reversed so that the11
actual link values are obtained.12

The determination of stops of the special vehicle types, namely taxi, bus, medium and13
heavy vehicle, was conducted by assessing the speed parameters for every timestamp on a link, in14
our case every 0.16 second, on the single trajectory basis. For our method, three parameters are15
used to identify a stop: (i) the speed of a single special vehicle drops below 1km/h, (ii) the mean16
speed of all cars on the respective link, calculated per time step, is beyond a minimum of 15km/h17
and (iii) these conditions last for at least 5 seconds. This prevents most of the stops that appear18
due to red lights from being classified as such stop, when the vehicles on the link are also waiting19
in a queue. With this method, still some stops near the stop line are categorized as such, but they20
appear mainly in the beginning of red phase, implying that they are at the front of the queue, which21
is why they impede other vehicles that may be accelerating faster. On the other hand, delivery stops22
and passengers boarding and alighting from buses and taxis are correctly classified as a result. A23
disadvantage of the condition that the average speed of the cars on the link must be at least 15km/h24
is that delivery stops that last for several cycle times are not recognized as one delivery stop, since25
the condition is no longer fulfilled during the red phases. However, the temporal aggregation, as26
well as the fact that only the number of stops but not the stop duration is predicted, takes this fact27
into account and thus compensates for overlong stop duration by increasing the number of stops.28

Although lane assignment methods for the pNEUMA experiment exist (42), a simple ap-29
proach was used for this classification to aim for a easy to scale solution that is extractable from30
any type of trajectory data set. In a first step, motorcycles were excluded from the consideration of31
the lane changing behavior. Having a closer look at the data, motorcyclists, especially during red32
phases, tend to overtake the waiting queue between the designated lanes and the waiting vehicles,33
and therefore do not really change the lane, nor keep the intended lanes as well. So the focus in this34
work was on the other vehicle types. In a first step, for every time step, each vehicle was matched35
to a lane according to its geographical coordinates. A lane change is then simply detected, if the36
assigned lane number changes. This for some cases still leads to a high number of lane changes for37
a single vehicle, since there are still some vehicles left, that drive in between the designated lanes,38
similar to motorcycles, but as Figure 6A exemplary for link 5 shows, these vehicles only make39
a small share of vehicles. As expected, most of the vehicles do not perform a lane change, and40
the distribution appears to be exponentially shaped. The lane changing of a vehicle once is quite41
reasonable, while higher amounts are really rare to expect, especially more than two lane changes.42
Therefore, for each vehicle the first lane change during an interval on the respective link is counted43
as such, each additional lane change is considered a measurement error.The resulting proportion44
of vehicles changing lanes, shown in Figure 6B, varies from link to link, which again supports the45
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motivation to extract this information.1

FIGURE 6: The number of lane changes per vehicle on link 5 (A) and the share of vehicles per-
forming a lane change per link (B). Motorcycles are not included due to their low lane discipline,
especially in waiting queues.

The number of stops, as well as the number of lane changes are then added to the respective2
macroscopic observation intervals of traffic flow and density. As can be seen in Figure 1, adding3
this additional information into the process for estimating the extended traffic state is the first step4
towards the novelties presented in this paper. Regarding the whole process, the steps are completed5
up to the generation of virtual data from the ground truth, shown in Figure 4D.6
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SENSOR DISTRIBUTION AND TRAFFIC STATE ESTIMATION PROCESS1
Dynamic Input for extended traffic state estimation2
Many different sensors are used to detect road traffic, either stationary permanent or mobile avail-3
able. Consequently, the obvious question is how to estimate the extended traffic state as accurately4
as possible with the data available therefrom. To describe realistic sensor distribution or to give5
at least an insight into an optimal solution for such usage, different combinations of sensors were6
chosen. For each link, the minimum requirement is that a loop detector is present for the inves-7
tigated scenarios. This is a single loop, being able to only capture flow and density, but not to8
distinguish between the different vehicle modes. Moreover, a growing proportion of vehicles are9
equipped with GPS devices. Thus, a certain amount of FCD, in this case the position and the speed,10
is available for vehicle manufacturers, navigation service providers or smartphone manufacturers.11
Therefore, the share of available FCD from cars was assumed to be at 5%. On the reverse, of12
course, the proportion of equipped vehicles must be known for real-world applications, but can be13
easily checked by the presence of loop detectors. Besides private cars, also buses and taxis are14
often equipped to deliver such data. Using these assumptions, the different distributions shown in15
Table 1 were used for the dynamic input for the extended traffic state estimation.16

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Loop Detector Loop Detector Loop Detector Loop Detector Loop Detector
- 5% Car 5% Car 5% Car 5% Car
- - Taxi Bus Taxi
- - - - Bus

TABLE 1: Different sensor scenarios for extended traffic state estimation.

Static Input variables17
The dynamic values give information about the traffic parameters for the considered links, but are18
hardly usable if additional information about the road layout is not available. The static variables19
are therefore considered as well. They are link-specific and do not change over time. The con-20
sidered parameters include information on the link length, the number of lanes, the presence of21
and the number of bus stops on a link, the presence of a separate lane for buses and the road rank22
according to Open Street Map, assigning rank 0 for main streets and rank 1 for minor streets. The23
values of these parameters for the links investigated for our model are listed in Table 2.24

Extended traffic state estimation approach25
To capture the complex effects in urban traffic, that up to now are not considered for TSE, a neural26
network approach is chosen. The major advantage of neural networks, that non-linearities are27
implicitly mapped in the network during the training, leads to a data-driven modelling approach as28
motivated earlier (44). Thus, the use of deep learning should not be understood as a new approach29
to TSE itself, but as an application tool to solve the problem in the most efficient way. In this30
paper, we built on recent advances in physics-informed deep learning proposed by Dahmen et al.31
(29). The authors propose a NN, where the input vector consists of the static parameters described32
in 2, combined with the dynamic input according to the scenario from 1. The output consists of33
the estimated flow and density, from which the velocity can be calculated via the fundamental34
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link length [km] lanes bus stops separate lane road rank

0 0.105 3 0 1 0
1 0.105 3 2 0 0
2 0.084 2 0 0 0
3 0.09 3 0 1 0
4 0.075 3 0 1 0
5 0.1305 3 0 1 0
6 0.095 2 0 0 0
7 0.079 3 1 0 0
8 0.093 2 1 0 1
9 0.092 2 1 0 1
10 0.121 4 1 0 0

TABLE 2: Static parameters of the eleven inspected links used as input for the TSE.

equation q = k ∗ v. The network is physics-informed in a way that the loss used for training has an1
extra constraint based on the fundamental diagram (FD). More precisely, an estimated FD is used2
to add an extra penalty to value pairs of q and k that lie above the curve. This aims at filtering for3
unrealistic data points, especially extremely high speed values, since disturbances in traffic flow4
may lead to points that are beneath the FD, but are very unlikely to make points shift far above the5
curve. Therefore, the initial loss function LMSE (mean squared error) is partially replaced by the6
physical loss function LPHY , which is composed of L q

PHY for the flow and L k
PHY for the density.7

The parts with the physical loss are calculated as follows:8

L q
PHY =

(
Q
(
k̂
)
− q̂

)2
(1)

L k
PHY =

(
K (q̂)− k̂

)2
(2)

9
with k̂ being the estimated traffic density and the Q(k̂) the respective point on the fundamental10
diagram, and q̂ being the estimated flow and K(q̂) the respective point on the FD for. The loss11
of the neural network is then calculated with equation 3, where γ describes the extend to which12
the initial loss function is replaced by the physical loss and n being the amount of batches. As13
proposed by the authors, γ was set to a value of 0.6, because results seem the most promising14
regarding speed estimations for this split the between physical and initial loss.15

LNN =
1
2n

( n

∑
i=1

(
(1− γ)∗L q

MSE,i + γ ∗L q
PHY,i

)
+

n

∑
i=1

(
(1− γ)∗L k

MSE,i + γ ∗L k
PHY,i

))
(3)

16
This approach was further developed for our purpose and enhanced by the two parameters. As17
illustrated in Figure 7, the input factors consist of the static link-specific parameters, together with18
the dynamic traffic values, depending on the sensor scenario. The output is then the flow and the19
density on the link, from which speed can then be obtained, as well as the discussed extensions,20
namely the number of stops and the number of lane changes. Since the physical information using21
the FD is only valid for the flow and the density, the loss function had to be adjusted accordingly.22
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Consequently, the two additional output variables were added to the loss using the mean squared1
error, while the loss from the flow and density is still calculated via euqation 3. Nevertheless,2
the physics-informed neural network is enlarged with further information from actual traffic. The3
parameters for the network were left as proposed in the original approach, because a sensitivity4
analysis for this layout did not yield a significant improvement. The network structure is illustrated5
in Figure 7, the respective parameters for initialization, training and the layout are listed in Table 3.6

FIGURE 7: Neural network architecture for estimating the flow, density, number of stops and
number of lane changes.

Parameter Value

Hidden layers 7
Nodes per layer 64
Learning rate 0.001
Optimizer Adam
Activation function LeakyReLu (0.01)
Weight initialization Kaiming
Batch size 256
Regularization early stopping, no dropout
training, validation, testing split 0.7, 0.15, 0.15

TABLE 3: Neural network parameters for extended traffic state estimation

RESULTS AND DISCUSSION7
The network was trained for each scenario individually and the mean of 20 runs for each was8
calculated for the results. Since the problem at hand is a regression problem, for the estimation of9
the flow, the density and the velocity on the one hand the R2 value and on the other hand also the10
mean average percentage error (MAPE) was determined. For the estimation of the number of stops11
and the number of lane changes only the R2 value could be measured, because results with a true of12
zero were included, which makes the MAPE rise to infinite. The R2 score describes the coefficient13
of determination and is best at 1.0, while a R2-score of 0 would mean that the model estimates14
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constantly the mean value of the target vector. The MAPE is described by the mean average error1
between each estimation and the respective actual value in relation to the actual value.2

Besides estimating the input flow and density, the calculated speed is compared to the3
original speed, which is the calculated speed from the input measurements, and the target speed,4
which is the speed calculated from the flow and density of the input vectors during the respective5
intervals. They differ slightly due to the resampling of the data from 30 seconds to the three minute6
intervals.7

Estimating Flow, Density and Speed8
The R2 values for the flow and the density achieved with the method are in the range of about 0.89
for all scenarios, as can be seen in Figure 8A, and are thus very satisfactory. The best results are10
obtained for Scenario 3, which includes the LD, 5% of the FCD and the taxi data as input variables,11
and Scenario 5, including also the bus data. Here, the largest R2 score for flow is about 0.82, and12
for density about 0.85. Larger differences between the R2 scores are seen when comparing the13
velocities in Figure 8B. As expected, the target speed is in general estimated slightly better than14
the original speed, independent of the scenario. Using only the LD as input values results in the15
worst R2-score of only 0.56. By adding the FCD, a significant improvement can be achieved,16
resulting in a score around 0.8. By further having the taxi data available, also the score for the17
velocities is best for Scenario 3, since more available data sources result in better performance. If18
the taxi data are replaced by buses, as in Scenario 4, the goodness of the estimate drops markedly to19
R2 values below 0.6. This difference could be caused by the fact that buses usually have a different20
operational management strategy. There are centrally controlled schedules and target departure21
times, which is why the behavior differs strongly from the other road users. However, as Figure22
2A shows, buses represent only a very small share of vehicles. If buses are equally weighted with23
the small number of FCDs as input variables, an oversampling of buses is achieved. The outputs24
are therefore no longer representative of the data set and thus give a worse overall result than if25
the taxi data are used additionally to the FCD, which represent a significantly larger sample. For26
scenario 5, where both the taxi and the bus data, together with the FCD and the LD are included,27
the score is again significantly better, but due to the abnormal behavior of the buses still slightly28
worse than the scenario without buses.29

The values for the MAPE of the estimations support the findings. Scenario 3 has the lowest30
MAPE for all of the flow, density and velocity estimations, followed by Scenario 5. This again is31
the expected result, since more available data sources help estimating a better result. Only Scenario32
4, including only the buses without the taxis is again having worse results, presumably due to the33
aspect already discussed.34

Estimating the extended parameters: Stops and lane changes35
As can be seen from Figure 10, the estimation of the additional parameters, namely the stops of the36
special vehicles, including the delivery vehicles, taxis and buses, and the lane changes, is worse37
than the estimation of the canonical parameters. This is probably due to the fact that these situations38
are rather difficult to measure with the existing sensors, as explained before. Nevertheless, with LD39
alone, a R2 value in the range of about 0.57 to 0.58 can be obtained for the two parameters. While40
the score for the number of lane changes does not improve significantly and reaches a maximum of41
0.59 for scenario 5, improvements in the estimation of stops are possible. Only a small increase in42
the score is seen due to the availability of FCD. The addition of taxi data greatly improves the result43
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FIGURE 8: R2 values for the estimated flow and density (A) and for the predicted speed compared
to the target speed and the original speed (B) per scenario.

to an R2 score of 0.72. In contrast to the results for the canonical parameters, the bus data also1
brings a significant improvement to a value of about 0.65, but is still not as good as using taxi data.2
Since the considered stops are performed just exactly by buses, besides taxis and delivery vehicles,3
but the flow, density and speed capture all modes, this improvement for the extended variables4
fits the expected result. The better prediction with taxi data can be explained by the significantly5
higher share of taxis compared to buses. Noticable here is that the number of lane changes seems6
to be more affected by buses than by taxis. Despite the different proportions, the estimate here is7
slightly better for the bus data. When all data sources are available, the result for the stops is the8
best. Consequently, scenario 5, which combines all data, i.e. LD, FCD, taxi and bus data, delivers9
the best result with an R2 value of almost 0.8.10

In summation, considering the flow, density and speed estimation as well as the extended11
information, namely the number of stops and lane changes, scenario 5 offers the best results.12
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FIGURE 9: MAPE calculated for the estimated flow und density (D) and the speed compared to
the target and the original speed (E) per scenario.

Having, besides the LD and FCD only the bus data available leads to a significant deterioration1
for the speed estimation. Therefore, scenario 3, using only taxi data as further source, is the more2
promising solution, but may be limited to cities that have this high share of taxis.3

CONCLUSION4
The results presented in this paper show that the extended traffic state provides further information5
on the complexity of urban traffic. Using advances in data collection and physics-informed deep6
learning, we have further shown how to extend the traffic state, which is typically described in7
terms of flow, density and speed, to include the stops of delivery vehicles, buses and taxis, as well8
as the number of lane changes, as well as how to estimate it. Using the proposed method applied to9
different currently existing sensor distributions of loop detector and trajectory data sources (FCD,10
taxis, buses), we have shown how the extended traffic state estimation performs under different11
scenarios of sensor data availability. Our findings help to perform and reproduce the extended traf-12
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FIGURE 10: R2 values for the estimated number and the number of lane changes per scenario.

fic state estimation elsewhere around the world. The proposed approach has practical applications.1
Examples are found, for example, in routing, where segments with an increased number of stops2
can be assigned higher costs in the shortest path algorithm. In addition, the insights can be used3
in planning, since a network-wide estimation of lane changes on links can be used for a safety4
assessment. These applications will be explored in future research.5

Future research will also concentrate on extending the presented idea to out-of-sample6
predictions. In other words, training the estimation method on a subset of links and predicting it7
on the entire network. Since the static features are known and the dynamic features can be observed8
by existing measurement technologies, we expect that these out-of-sample predictions are possible9
at acceptable errors. It will be also addressed whether calibrated networks can be extended to other10
road categories or even other cities and countries. However, the currently available data are still11
too limited. A sample as comprehensive as pNEUMA from Athens, which covers such a large12
interconnected network, does not exist.13

In closing, the presented extended traffic state is a promising approach to describe and14
understand the complexity of urban traffic phenomena at the link level that help decision makers15
to take more informed decisions.16

ACKNOWLEDGMENTS17
Data source: pNEUMA – open-traffic.epfl.ch. Alexander Kutsch acknowlegdes support from the18
German Federal Ministry for Digital and Transport (BMDV) for the funding of the project TEM-19
PUS (Test Field Munich - Pilot Test Urban Automated Road Traffic), grant no. 01MM20008K.20
Allister Loder acknowledges support from the German Federal Ministry for Digital and Transport21
(BMDV) for the funding of the project KIVI (Artificial Intelligence in Ingolstadt’s Transportation22
System), grant no. 45KI05A011. Furthermore, we wish to acknowledge the assistance provided23
by Victoria Dahmen.24



Kutsch et al. 18

AUTHOR CONTRIBUTIONS1
The authors confirm contribution to the paper as follows. Alexander Kutsch: Conceptualization,2
Methodology, Software, Formal Analysis, Data Curation, Writing - Original Draft, Visualization3
Allister Loder: Conceptualization, Methodology, Data Curation, Writing - Original Draft Gabriel4
Tilg: Conceptualization, Methodology, Writing - Review & Editing Klaus Bogenberger: Writ-5
ing - Review & Editing, Supervision, Funding acquisition. All authors reviewed the results and6
approved the final version of the manuscript.7

References8
1. Zhao, J., Z. Yi, S. Pan, Y. Zhao, Z. Zhao, F. Su, and B. Zhuang, Unsupervised Traffic9

Anomaly Detection Using Trajectories. In CVPR Workshops, 2019, pp. 133–140.10
2. Santhosh, K. K., D. P. Dogra, P. P. Roy, and A. Mitra, Vehicular Trajectory Classification11

and Traffic Anomaly Detection in Videos Using a Hybrid CNN-VAE Architecture. IEEE12
Transactions on Intelligent Transportation Systems, 2021, pp. 1–12.13

3. Seo, T., A. M. Bayen, T. Kusakabe, and Y. Asakura, Traffic state estimation on highway:14
A comprehensive survey. Annual Reviews in Control, Vol. 43, 2017, pp. 128–151.15

4. Deng, W., H. Lei, and X. Zhou, Traffic state estimation and uncertainty quantification16
based on heterogeneous data sources: A three detector approach. Transportation Research17
Part B: Methodological, Vol. 57, 2013, pp. 132–157.18

5. Kong, Q.-J., Z. Li, Y. Chen, and Y. Liu, An Approach to Urban Traffic State Estimation19
by Fusing Multisource Information. IEEE Transactions on Intelligent Transportation Sys-20
tems, Vol. 10, No. 3, 2009, pp. 499–511.21

6. Wang, Y., M. Papageorgiou, and A. Messmer, Real-Time Freeway Traffic State Estimation22
Based on Extended Kalman Filter: A Case Study. Transportation Science, Vol. 41, No. 2,23
2007, pp. 167–181.24

7. Van Lint, J., S. P. Hoogendoorn, and A. Hegyi, Dual EKF State and Parameter Estima-25
tion in Multi-Class First-Order Traffic Flow Models. IFAC Proceedings Volumes, Vol. 41,26
No. 2, 2008, pp. 14078–14083, 17th IFAC World Congress.27

8. Treiber, M. and D. Helbing, An adaptive smoothing method for traffic state identifica-28
tion from incomplete information. In Interface and Transport Dynamics, Springer, Berlin,29
Heidelberg, 2003, pp. 343–360.30

9. Herrera, J. C. and A. M. Bayen, Incorporation of Lagrangian measurements in freeway31
traffic state estimation. Transportation Research Part B: Methodological, Vol. 44, No. 4,32
2010, pp. 460–481.33

10. Yuan, Y., Lagrangian Multi-Class Traffic State Estimation. dissertation, Delft University34
of Technology, 2013.35

11. Antoniou, C., H. N. Koutsopoulos, and G. Yannis, Dynamic data-driven local traffic36
state estimation and prediction. Transportation Research Part C: Emerging Technologies,37
Vol. 34, 2013, pp. 89–107.38

12. Belzner, H., K. Bogenberger, and R. Kates, A Hybrid Model for Forecasting Local Traffic39
Parameters. IFAC Proceedings Volumes, Vol. 36, No. 14, 2003, pp. 269–273, 10th IFAC40
Symposium on Control in Transportation Systems 2003, Tokyo, Japan, 4-6 August 2003.41

13. Hiribarren, G. and J. C. Herrera, Real time traffic states estimation on arterials based on42
trajectory data. Transportation Research Part B: Methodological, Vol. 69, 2014, pp. 19–43
30.44



Kutsch et al. 19

14. Pun, L., P. Zhao, and X. Liu, A Multiple Regression Approach for Traffic Flow Estimation.1
IEEE Access, Vol. 7, 2019, pp. 35998–36009.2
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