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ABSTRACT
Time, much like space, has always influenced the human experience
due to its ubiquity. Yet, how we have communicated temporal
information graphically throughout our history, is still
inadequately studied. How does our image of time and temporal
events evolve as the human world continuously transforms into a
globally more and more synchronized community? Within this
overview paper, we elaborate on these questions, we analyze
visualizations of time and temporal data from a variety of sources
connected to exploratory data analysis. We assign codes and
cluster the visualizations based on their graphical properties. The
result gives an overview of different visual structures apparent in
graphic representations of time.

ABSTRAITE
Le temps, comme l’espace, a toujours influencé l’expérience humaine
en raison de son ubiquité. Pourtant, la façon dont nous avons
communiqué graphiquement l’information temporelle au travers de
l’histoire est encore insuffisamment étudiée. Comment notre image
du temps et des évènements temporels évolue-t-elle alors que le
monde se transforme continument en une communauté
globalement de plus en plus synchronisée ? Dans cet article, nous
construisons sur ces questions, nous analysons des visualisations du
temps et des données temporelles à partir de diverses sources liées à
l’analyse exploratoire de données. Nous donnons des codes et nous
regroupons des visualisations en fonction de leurs propriétés
graphiques. Le résultat offre une vue d’ensemble sur différentes
structures visuelles présentes dans les représentations graphiques du
temps.
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1. Introduction and related work

1.1. Why should we analyze visualizations of temporal data?

Our concept of time has, during only a few centuries, evolved from being defined by reli-
gious and worldly chronologies, which were used by generations of leaders to justify their
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power (cf. Rosenberg & Grafton, 2012), to the observation of rapid movements at minus-
cule atomic levels used to synchronize and enable modern technology, such as GNSS.
However, given its physical ubiquity, time has always structured our lives across many
different scales and we have organized our human and social activities into hours,
days, weeks, months, seasons, years and lifetimes. Contrasting its ubiquity, time pos-
sesses, unlike space, no inherent visual component. When we ‘picture’ time, we can there-
fore not be led by any intrinsic appearance but have to rely on an abstract concept of
time. But what constitutes our concept of time? Do we imagine time to be something
linear, represented by an ever-increasing number or does time have a cyclic character
determining our seasons? Do we see time as something branching into the past or
future or does it provide us with a calendrical grid that we can fill with activities? These
are questions that we want to address in this paper by taking stock of how we see time.

Drawing from linguistic relativity, also known as the Sapir–Whorf hypothesis, (cf. Kay &
Kempton, 1984) and extending it to visual language, we can argue that how we visualize
time and temporal data influences our cognitive concept of time, and vice-versa. Analyz-
ing how we visualize time and temporal data can therefore contribute to a better under-
standing of the concepts of time prevalent in our culture.

Grasping these concepts is important because time is elemental to causal inference.
For a cause to have an effect in our world, time needs to pass. In order to understand
causal relations, we therefore need to reason temporally. If we on top of that aspire to
have an effect on those causal relations, e.g. mitigating climate change by changing
our behaviors, we need confidence in our choices and a sense of agency. Suspecting
that an effective visual communication of causal theories, e.g. different predicted scen-
arios, is central to this sense of agency and sufficient confidence in our decisions, we
suggest that starting by analyzing visualizations of time and temporal data, we will be
able to discover patterns as well as possible blind spots in how we see time.

1.2. How are temporal components visualized and how can we interact with
these visual representations?

The sections below describe three contexts of creating time visualizations – using time as
a coordinate, unfolding time through a set of related spatial events and manipulating
time with data interactions.

The prevalent approaches of showing the time component in data visualizations jux-
tapose dependent variables such as qualitative or quantitative properties of the objects
with the independent time variable (Wills, 2012). The dominant visualization styles for
temporal data utilize line graphs, bar charts, stacked area charts, steam graphs, density
or heatmaps and polar area diagrams (DataViz Project, 2022). These style limitations
stem from the nature of the dependent variable, be it univariate, bivariate, trivariate,
and hypervariate (Cleveland, 1993). Univariate visualizations present one variable
moving over time with the same or different quality or quantity. Similarly, multivariate
visualizations visually stack the values of two or more variables over time. The novel tem-
poral visualizations proposed so far, such as data vases, cycle plots, space-time cubes
(Bach et al., 2016) and trajectory walls (Tominski et al., 2017), have not been widely utilized
and established as temporal visualization genres.
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The second context is to look at time visualizations as artifacts unfolding time through
a set of related spatial events (G. Andrienko et al., 2013). On one hand, these events can
feature existential changes, such as emergence and destruction (N. Andrienko et al., 2003),
but also cause-and-effect, genesis, metamorphosis, convergence, divergence, and oscil-
lation (Phillips, 2012). On the other hand, events can lead to changes of spatial properties
(e.g. location, extent), or changes of thematic properties, e.g. qualitative or quantitative
properties of the objects (Peuquet, 1994).

Finally, interactive time visualizations allow for manipulating time with data inter-
actions (Aigner et al., 2011). In general, such interactions enable identification of pro-
portions and patterns (e.g. temporal data concentrations, recursive data patterns or
temporal data outliers), comparisons, and finding relationships and connections (Kirk,
2012). This can be achieved by operations of time coloring, cutting, flattening, or
scaling (Bach et al., 2016).

In the early 2000s (N. Andrienko et al., 2003), research efforts centered around design-
ing interactions from the perspective of time-oriented users tasks. The created interactive
one-page visualization prototypes allowed for segmentation, overlay or arrangement of
temporal visualization snippets. Typical segmentation functionalities involved dividing
a linear chart into bins or splitting a calendar into square grids, the details of which
can be enlarged and compared. Overlay functionalities enabled superimposition of
single visualization snippets with animation and transparency controllers. Finally, arrange-
ment functionalities allowed for comparing temporal distributions in a linear way or a
radiating way from an origin in the middle. The single visualization snippets were
placed side by side in a perspective view or arranged along a time axis at certain intervals.

The period between 2007–2015 was further inclined by researchers associated with the
ICA Commission on Visualization and Virtual Environments towards the use of ‘interactive
maps and cartographic techniques to support interactive visual analysis of complex, volu-
minous and heterogeneous information involving measurements made in space and
time.’ G. Andrienko et al. (2016). Therefore, authors like Rodrigues and Figueiras (2020)
revise the previous achievements and derive new sets of interactions for spatio-temporal
data sets: filter, select, zoom, connect, reconfigure, encode and overview. Recently, Dodge
& Noi argue for a ‘human-centered’ approach to knowledge discovery from movement
data with visualization and mapping. ‘As movement data becomes more available and
diverse in dimension and resolution, mapping becomes particularly important in the
exploratory analysis of movement’ (Dodge & Noi, 2021).

1.3. GIS and visual analysis for time series data

In 2010, G. Andrienko et al. (2010) furthermore suggested to ‘develop scalable visual ana-
lytics solutions to enable integrated processing and analysis of multiple diverse types of
spatial, temporal and spatio-temporal data and information, including measured data,
model outputs and action plans from diverse official and community-contributed
sources.’ G. Andrienko et al. (2010). Today, more than a decade after that appeal, we
still lack sophisticated methods for analyzing temporal data, such as real-time data
streams in geographic information systems (GIS). GIS are commonly used software
tools in the analysis of geographic data. This includes dynamic data with a fast changing
temporal component. In their book Exploratory Analysis of Spatial and Temporal Data
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(2006), Natalia and Gennady Andrienko introduced a number of tools as well as principles
which help connect different analytic tasks to relevant tools. They are organized into
display manipulation, data manipulation, querying and computational tools (N.
Andrienko & Andrienko, 2006). These tools are provided through stand-alone applications
or visual analytics systems, as well as through custom programmed applications for a
given collection of tasks, e.g. in computational notebooks or web-applications. There
are a number of challenges when developing such a tool or tool-set to handle spatio-tem-
poral data. Among them is how to deal with temporal ranges in which interval-based data
are valid, in particular, how to convey them visually to the analyst (G. Andrienko et al.,
2010). It seems that current of-the-shelf GIS and other software systems do not consider
the temporal data visualization challenge in depth. The temporal dimension of geo-
graphic data is often neglected in the development of spatial data analysis methods.
Tools implemented into GISs are usually very well suited for dealing with static data.
Analysis models (e.g. for watersheds, vegetation maps etc.) are based on functionalities
that do not account for highly dynamic phenomena. GIS tools and to some extent
visual analytics tools are not sufficiently developed to support temporal reasoning. There-
fore, an extension of current GIS tools needs to be considered. Attempts from ESRI or
other commercial software providers are on the way or available. For example ESRIs
‘insight software extension to ArcGISPro’ includes a number of functionalities to visualize
data in different plots and maps. Still, the options to visualize data that includes a time
component are very limited. For example, there are, at this point, no options to alternate
between linear or cyclic visualizations.

1.4. Related work on visual analysis of exploratory data analysis systems

All of these exploratory data analysis tools use visualization to communicate between the
data and the user. It is therefore beneficial to take a close look at their basic visual building
blocks. To do so, research communities widely utilize the Quantitative Content Analysis
(QCA). QCA relies on systematical collection and categorization of visualizations based
on the pre-defined category schema.

There have been several initiatives using QCA to generate a comprehensive, interactive
overview of data visualization techniques that are particularly suitable for analysis and
presentation of temporal data. The online repository of the Dataviz Project (DataViz
Project, 2022) lists 31 visual techniques for time visualizations and provides 270 examples
of their implementations, stemming mostly from modern data journalism practices.

Two further collections focus on the building blocks of spatio-temporal visualizations.
First, the TimeViz Browser (Tominski & Aigner, 2011) is an online interface that allows to
filter, explore, investigate and compare time-oriented visualization techniques. Its
authors collected 115 examples published between 1913–2015 in scientific literature
and grouped them according to three broad categories: data, time and visualization.
The second initiative by Rodrigues (2020) gathered 25 examples of interactive spatio-tem-
poral visualizations published between 2005–2019 on the web by data journalists. Each of
the examples was then scored across 11 categories such as data properties, temporal
scales, interaction techniques and storytelling elements.

Recently, the manual collection of visualizations is being facilitated with object recog-
nition algorithms. In their VISImageNavigator, Chen et al. (2021) replaced manual image
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collection with automatic image extraction supported by convolutional neural networks
(CNN). This approach resulted in extracting more than 30.000 figures and tables published
in each track of the IEEE Visualization conference series (Vis, SciVis, InfoVis, VAST) between
1990–2020. Temporal visualizations are a subset of this vast collection – the keyword-
based filtering of the dataset returned 1730 temporal visualizations, among them bar
charts, scatter plots, line charts, node-link networks and grids.

2. The process of analyzing temporal data visualizations

The different angles (conceptual, research-driven, and tool-driven) on the topic of visual
representations of time each pose their own open questions as discussed above. To get to
the core of the question of howwe see time, we complement the theoretical aspect with a
practical analysis of visual outputs of a selection of sources. We analyze a collection of 302
visualization samples by combining manual Quantitative Content Analysis with object
recognition algorithms (Figure 1).

2.1. Codebook construction

The process starts from designing a codebook – a list of mutually exclusive and exhaustive
design implementations, also referred to as codes. Figure 2 presents the structure of the
codebook as a set of codes for three broad design categories: metadata, data-driven cat-
egories and visual-driven categories. To ensure that codes are analytically meaningful and
grounded in the previous research, we re-use the code definitions proposed by Tominski
et al. (2017). We add several new codes emphasizing the visual components of the tem-
poral visualizations. These new codes include, time representation (visual metaphor), user
guidance and interaction design.

2.2. Sampling procedure

The goal of the sampling is to create a relatively small, but well curated image set featur-
ing time visualizations present in the scientific discourse. To this end, multiple sources are
combined to capture a wide temporal range, i.e. include historical material from carto-
graphic textbooks as well as their counterparts in state-of-the art cartography and

Figure 1. The process of analyzing the state-of-the-art in temporal data visualizations.
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visual analytics. Thererefore, seven sources of temporal visualizations are selected for
detailed investigation: the previously mentioned TimeViz Browser (Tominski & Aigner,
2023), the David Rumsey Historical Map Collection, the book History of Information Graphics
(Rendgen, 2019), the book Cartographies of Time (Rosenberg & Grafon, 2012), examples
from the coding package matplotlib1, GIS softwares and digital design guidelines. The
selected sources feature a variety of temporal visualizations:

. The online David Rumsey Historical Map Collection is a searchable database of more
than 150.000 maps and map-like visualizations. A subset of this collection focuses on
gathering spatio-temporal visualizations.

. In Cartographies of Time: A History of the Timeline (2012), the historians Rosenberg &
Grafton set out to critically analyze graphic representations of time along with ‘the
formal and historical problems posed by [these representations]’ (Rosenberg &

Figure 2. The structure of the codebook for temporal data visualizations consists of 48 single codes
grouped into three broad design categories: metadata, data-driven categories and visual-driven
categories.
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Grafton, 2012). With a strong focus on time and temporal data, the book gives a com-
prehensive overview over many centuries of graphics, relating them to each other and
their specific context.

. In her book History of Information Graphics (2019), Rendgen portrays the rich history of
infographics, focusing not on ‘presenting a succession of singular masterpieces [but on
the fact] that the practice of information visualization was always a natural part of intel-
lectual culture’ (Rendgen, 2019).

. Matplotlib is a widely used Python-based library for creating static, animated, and inter-
active visualizations

. The common Geographic Information Systems: QGIS, ArcGIS Pro, Kepler.GL, and
Mapbox.

. Digital design guidelines such as Google Material Design provide adaptable systems of
visual components to be used in interface design. Time and date pickers defined there
are widely used and penetrate modern life.

The search for representative visualizations is different for each source. The David
Rumsey Historical Map Collection, Matplolib and Google Material Design feature temporal
visualizations as static images on their websites. Therefore, it is possible to investigate the
source code of these websites and use two Google Chrome extensions (Image Link
Grabber and Tab Save) to save the visualizations directly in the *.jpg image format. If visu-
alizations are interactive or generated on-the-fly, as in the case of GIS software, one of
their interaction states is captured in a screenshot. The book-based examples are cap-
tured on photographs.

2.3. Manual and automated coding, analysis and reporting

The two coders are researchers in information visualization. Manual coding starts with a
careful and detailed pass on the visualization image. Then the presence of certain codes is
marked in the spreadsheet. To ensure the consistency of the multiple-author coding, the
first 20% of the visualizations are coded together. Any potential ambiguities are marked
and then resolved in the follow-up clarification meeting. The whole dataset is coded two
times within a 2 months interval.

After manual coding the resulting spreadsheet and image archive are loaded into a set
of interconnected Jupyter notebooks (Crockett, 2021). Due to their capacity to integrate
multiple programing languages, notebooks facilitate visual data exploration and generate
high quality vector figures for each exploration step.

In the next step, the manually assigned codes are extended with automatically com-
puted similarity scores. This is done using IVPY’s high-dimensional neural net vector,
which is the output of the penultimate layer of ResNet50 (He et al., 2015). We then
apply a k-means clustering algorithm to the image-vectors which we test with multiple
numbers of clusters. Eventually, we find that with sixteen clusters, we end up with a
good mix of bigger clusters and some outliers. We proceed to analyze and organize
the clusters. To compare this manual organization of clusters to machine-generated
compact overviews, we apply three different algorithms (PCA, t-SNE and umap) to the
high-dimensional image-vectors created by the neural network. We end up with three
two-dimensional classifications of each individual visualization. Machine learning
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techniques themselves cannot capture the semantics of visual representations. Therefore
we overlay the individual samples with different colors depending on their semantic
classification captured in the codebook. This way, we can analyze in how far their seman-
tic and their visual characteristics align.

Eventually, the design space of visualizations is explored by creating descriptive statistics
and metaimages – digital collages that provide a preview of all images in the image collec-
tion (Manovich, 2020). The size of the images is kept small to allow for their location in the
dataset to act as an entry point for generating research hypotheses. Where applicable,
metaimages are annotated with key findings on visual characteristics of the samples.

3. Results

3.1. Metadata

The final collection includes 302 samples from three types of temporal visualization:

. 116 samples from the online repository of temporal visualization techniques TimeViz
Browser (Tominski & Aigner, 2023)

. 131 samples from historical depictions recognized as cartographic heritage
○ 79 samples stemming from the David Rumsey Map Collection (https://www.

davidrumsey.com/)
○ 40 samples from the book History of Information Graphics by Rendgen
○ 12 samples from the book Cartographies of Time by Rosenberg & Grafton

. 55 samples from interactive tools and libraries implemented for wide practical re-use
○ 48 samples from the matplotlib example gallery (https://matplotlib.org/stable/

gallery/index)
○ 5 samples from GIS software
○ 2 samples from digital design blocks

Figure 3 presents a histogram of all coded and analyzed visualizations. Visualizations
sourced from Matplotlib library are not dated and are therefore assigned 2020 as their
year, resulting in the peak on the right end of the plot. Most of the historical examples
gather in the nineteenth century, while most modern examples are from the past 25 years.

Figure 3. A histogram of all coded and analyzed visualizations. Visualizations sourced from matplotlib
coding examples are not dated and were therefore assigned 2020 as their year, resulting in the peak
on the right end of the plot. Most of the historical examples gather in the nineteenth century, while
most modern examples are from the past 25 years. The graphic features 302 samples as indicated in
section 3.1. Metadata of this paper.
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3.2. Descriptive statistics

. Frame of reference (cf. Figure 4): 67% of the samples provided only the abstract refer-
ence, while 11% only the spatial one. Combination of both references was present in
22% of cases (66 graphics).

. Variable representation: in most cases (61%) temporal variable was combined with
other variable(s). The univariate depictions were less of use (39%).

. Time arrangement: the dominant type was the linear placement (258 visualizations –
85%), the least popular was the cyclic one (19 visualizations). Both types of arrange-
ment (linear + cyclical) were present in 25 cases. Cyclic depictions were in sparse
use until 2010s, with the following 10 years marked by further decline of this
pattern. Its re-emergence was brought through the release of Google Material
Design patterns for representing time in digital designs.

. Time primitives: 61% of the visualizations used instant primitives, 13% time intervals,
and 26% provided both temporal markers.

. Mapping: 91% temporal depictions were static, with only 8% being dynamic. Both
views were offered in 1% of cases (4 samples).

. Dimensionality: two-dimensional depictions made up most of the sample (87%), fol-
lowed by much rarer three-dimensional visualizations (9%). Both views co-occurred
12 times (4%).

. Visual representation: when looking at the visual metaphor of time flow, the most
popular depiction is the static straight line (107 samples) or branching line (23
samples). 37 samples visualized time as a grid. In 19 samples time was shown as a
circle, rarely the timeline was replaced by animated transitions (9 cases) or sets of of
pictograms (5 cases). The visual guidance through time is provided by longer textual
narrations on ‘how to’ navigate the timeline (41 cases), or shorter textual annotations
(38 cases) or graphical-textual legends (18 cases).

Figure 4. Histograms of the analyzed visualizations, grouped by their assigned frame of reference.
Older examples are in the middle of each group and newer examples further out. Two thirds of
the examples show purely abstract data, a fifth shows both abstract and spatial data and a tenth is
portraying purely spatial data. The graphic features 302 samples as indicated in section 3.1. Metadata
of this paper.
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. Level of interactivity: For 87 cases we were not able to assign any interactivity label.
Where assessment was feasible, most of the representations were passive (178
cases), with 31 interactive and 6 highly interactive samples.

Figure 5. Sixteen clusters obtained by applying k-means clustering to 2048-dimensional image-
vectors resulting from a neural net similarity measure. Organized from strict structures (top) to
organic shapes (bottom) and from dominantly historical examples (left) to dominantly modern
ones (right). The graphic features 302 samples as indicated in section 3.1. Metadata of this paper.
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. Instant time primitive was equally useful for both univariate (90 samples) and multi-
variate visualizations (94 samples). Yet, multivariate visualizations more often mixed
both intervals and instant time points (63 samples vs. 15 samples).

3.3. Visual description and analysis of clustered visualizations

The resulting sixteen clusters of visualizations show a general division between historical
examples and modern ones, which becomes apparent, when plotting the clusters with a
color overlay that encodes the image source, see the left part of Figure 6. This is presum-
ably a result of the fact that the neural net similarity algorithm, in combination with the
clustering algorithm, is sensitive to paper color and the older examples tend to have
acquired a more yellow background color. We have thus organized the sixteen clusters
according to their prevalent age group – clusters with older graphics on the left and clus-
ters with more recent graphics on the right, see Figure 5. On the vertical axis, we orga-
nized the clusters according to their visual characteristics: we observed that the

Figure 6. The same sixteen clusters as in Figure 5 but overlaid in three different color schemes, encod-
ing the image source (left), the assigned frame of reference (middle), and the time arrangement
(right). The graphic features 302 samples as indicated in section 3.1. Metadata of this paper. Colour
schemes based on ColorBrewer2 (Brewer, 2022).
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clusters can be arranged along a spectrum ranging from precise plots and stricter struc-
tures, such as line plots, grids and tables, across rounder shapes (circles and spirals) to
more organic shapes and illustrations, such as trees, rivers and branches. Most of these
different visual types can be found in both, clusters featuring mostly historical samples
as well as within in those featuring predominantly modern examples. When coloring
the samples according to their assigned type of time arrangement (cyclic, linear or
both, see right part of Figure 6), we observe that most samples with a cyclic time arrange-
ment can be found in the clusters featuring circles and spirals.

Figures 7, 8 and 9 show the annotated outcomes of the visual dimensionality
reduction, with color overlays in Figure 10. Again, a tendency to big overall clusters of his-
torical and modern examples can be seen. However, there is quite some overlap between

Figure 7. The annotated result of the principal component analysis (PCA) of the high-dimensional
neural net similarity image-vectors. Historical examples gather towards the right of the plot while
modern ones are located towards the left. Examples featuring 3D-plots, perspective views and
stacked plots all show up towards the top of the plot, which also exposes the famous ‘Temple of
Time’ (Willard, 1846) on the top right. The graphic features 302 samples as indicated in section 3.1.
Metadata of this paper.

12 V. KLASEN ET AL.



different image sources, specifically for the PCA result (see top-left part of Figure 10).
Zooming in on sub-clusters and the individual visualizations, we can detect similar
accumulations of structures as in the manually organized k-means clusters. In Figure 7
(the annotated result of the PCA algorithm), examples featuring 3D-plots, perspective
views and stacked plots all show up towards the top of the plot, which also exposes
the famous ‘Temple of Time’ (Willard, 1846) on the top right. In Figure 8 (the annotated
result of the t-SNE algorithm), the diagonal from the top-left to the bottom-right seems to
be representing the historical span of examples. Towards the bottom of the top-left quad-

Figure 8. The annotated result of the t-distributed Stochastic Neighbor Embedding algorithm (t-SNE)
of the high-dimensional neural net similarity image-vectors. The diagonal from the top-right to the
bottom-left seems to be representing the historical span of examples. Towards the bottom of the
top-right quadrant, there seems to be an accumulation of visualizations that were photographed
from a book and one of the three instances of the ‘Temple of Time’ visualization is located quite
far from the other two (the top of the historic cluster as opposed to the bottom of the cluster).
This indicates that less relevant, features are being taken up by this algorithm. Nevertheless, many
sub-clusters can be determined. The graphic features 302 samples as indicated in section 3.1. Meta-
data of this paper.
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rant, there seems to be an accumulation of visualizations that were photographed from a
book and one of the three instances of the ‘Temple of Time’ visualization is located quite
far from the other two. This indicates that less relevant, features are being taken up by this
algorithm. Nevertheless, many sub-clusters can be determined. In Figure 9 (the annotated
result of the UMAP algorithm), historical examples gather towards the bottom-right while
modern ones tend to locate towards the top. Again, an accumulation of photographed
open book pages can be observed at the top of the big historical cluster, separating
one instance of the ‘Temple of Time’-example from the other two located further to
the bottom-right. In general, however, rather clear sub-clusters can be made out.

Figure 9. The annotated result of the Uniform Manifold Approximation and Projection algorithm
(UMAP) of the high-dimensional neural net similarity image-vectors. Here, historical examples
gather towards the bottom-right while modern ones tend to locate towards the top. Again, an
accumulation of photographed open book pages can be observed at the top of the big historical
cluster, separating one instance of the ‘Temple of Time’-example from the other two located
further to the bottom-right. In general, however, rather clear sub-clusters can be made out. The
graphic features 302 samples as indicated in section 3.1. Metadata of this paper.
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4. Discussion and conclusion

What can we learn about temporal visualizations by this approach? On one hand, in line
with the quantitative findings by Rodrigues (2020), we observed an underrepresenta-
tion of the cyclic time arrangement (6% of our collection). On the other hand, we
observed that time arrangement should not be considered as either cyclic or linear.

Figure 10. The result of three different dimensionality reduction algorithms applied to the high-
dimensional neural net similarity image-vectors: Principal component analysis (PCA, top), t-distributed
Stochastic Neighbor Embedding algorithm (t-SNE, middle), and Uniform Manifold Approximation and
Projection algorithm (UMAP, bottom). After the automatic analysis, the images were overlaid in three
different color schemes, encoding the image source (left), the assigned frame of reference (middle),
and the time arrangement (right). The graphic features 302 samples as indicated in section 3.1. Meta-
data of this paper. Colour schemes based on ColorBrewer2 (Brewer, 2022).
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In our collection we found that the combined cyclic and linear views are used slightly
more often than exclusively cyclic depictions (8%). User experiences of the existing tem-
poral visualizations are underreported. There were only 6 highly interactive samples in
our collection that enabled data filtering, aggregation and calculations. We did not dis-
cover any new types of functionalities, such as collaboration or gamification (Rodrigues,
2020). With 80% of our samples serving presentation purpose and 83% being static,
there is a further need to extend design solutions for visualizing highly dynamic data
streams.

The visual analysis of our samples resulted in a concise and direct overview of the ana-
lyzed data. There are many different types of visual structures present in both historical as
well as modern examples. The different structures tend to cluster together, both when
applying a k-means algorithm as well as when using a neural network analysis combined
with various dimensionality reduction algorithms. This co-occurrence of clusters within
both historical as well as modern samples might point to a very limited evolution
when it comes to visualizing temporal data. What can be seen, however, is the underlying
evolution in how we capture and manipulate temporal data. Historical examples within
our collection tend to show much coarser time steps and intervals and often feature
illustrative aspects. More modern samples in our collection often feature a much more
detailed temporal axis and higher overall precision. A turning point concerning this evol-
ution can be seen in early train time tables. Contrary to previous visualizations, these
feature very densely drawn straight lines at specific angles which represent the trains’
locations and speeds at different points in time.

In our cross-analysis of manual coding with automated image analysis, some corre-
spondence between the two can be seen. This is especially true for the visualization of
cyclic vs linear time arrangements. Data with a cyclic time arrangement appears to be
more likely to feature circles or spirals on a visual level. However, what remains to dom-
inate the image analysis is the background color and potentially the general visualization
style. This is of course connected to the specifics of the present collection. We aimed to
select a combination of sources that capture a wide temporal range, i.e. included histori-
cal material, but also feature the state-of-the art within cartography and visual analytics.
This lead to a rather broad and diverse collection which helps obtaining a good overview
and connecting modern visualization styles to their historical counterparts. Naturally
however, the diversity within the image collection to some extent hinders (automated)
analysis from accessing a deeper structural level of visualization which might show
even greater correspondence to the semantic (manually coded) content of the visualiza-
tion. To make this possible, one way to go in future work would be to carry out substantial
pre-processing on the images, including manipulations concerning color, contrast and
brightness. Another path will be to focus on a specific source or type of source with a
greater continuity across time, e.g. journalistic visualizations. While the overall overview
would be reduced, we would expect clearer clustering within this group of images
which could help to determine the level of intentionality with which different temporal
data types are visualized. In a further step, comparing different subsets, e.g. culturally
different sources, historical and modern sources or scientific and journalistic examples,
will help determine whether there are different distributions across different clusters.
Finally, extending the sample size, e.g. by consulting the VISImageNavigator (Chen
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et al., 2021) and collections of journalistic visualizations, will give a more comprehensive
overview of used and distributed visualizations.

Note

1. Examples—Matplotlib 3.6.2 documentation. https://matplotlib.org/stable/gallery/index.html.
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