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Abstract

The autonomous driving field poses an immense demand for reliable training data
for the neural networks of its perception systems. A training dataset is required
to be exact, comprehensive, and diverse. Acquisition of data that fulfills these
requirements can be a challenging task for a multitude of reasons. For instance,
manual annotation of samples can be a cost-ine�cient process. Another example
can be capturing near-accident scenarios, which can be ethically compromised
due to endangering road users.

Synthetic data o↵ers a solution to the challenges of manual data acquisition.
Nevertheless, the domain gap between simulated and real images limits their
applicability in the real world. The problem of domain gap is addressed in many
recent works through the framework known as generative adversarial network
(GAN) employed in sim-to-real image transfer. These methods take rendered
images as input and map them into a closer representation of the real data
domain through realistic style transfer. Often this procedure results in a realistic
appearance of translated images but corrupted macro structure of its content.
Image perturbations make them inconsistent with corresponding annotations and
thus unsafe for critical recognition tasks in autonomous driving.

This work explores data synthesis techniques that can alleviate the gap between
the simulated and real domains. It first proposes a data augmentation pipeline
for geometrically correct, collision-free placement of virtual models of pedestrians
into real tra�c scenes. This procedure improves the quality of blending the
computer-aided design (CAD) models by learning appearance from reference
data via generative adversarial network (GAN). To achieve that, the method
proposed a class-specific discriminator which counter-acts the content corruption
exemplified by vanishing out-of-distribution 3D objects.

The problem of content hallucination in a sim-to-real setting caused by GANs
is further analyzed in work through the lens of global class statistics. It identifies
that adversarial transfer is a↵ected by dataset bias, which leads to inconsistent
generation results. As a solution, the method proposes the combination of ad-
versarial learning and density pre-matching through an importance estimation
procedure so that the model can learn from the most informative samples. The
proposed combination e↵ectively mitigated the semantic inconsistency problem;
it required, though, privileged knowledge about target data statistics which is
not available in the preferred setting.

Further, this works investigates semantically consistent sim-to-real image trans-
fer where reference data annotations are not available. To address this problem,
a content disentanglement strategy is utilized. It aims to learn domain-agnostic
content features separately from domain-specific appearance features. Separation
of both vectors constrains the appearance component, so cross-domain image
transfer merely changes the sample on low-level without modifying its macro-
structure. On the other hand, fixed style disentangling reduces the generative
capacity of the model by learning of the entire content vectors manifold.
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The final part addresses the compromise between the degree of generative per-
turbations and semantic consistency. It suggests a procedural scene generation
accompanied by appearance learning as an alternative to arduous high-fidelity
virtual environments. The proposed pipeline produces tra�c scenes without vi-
sual attributes, whereas the appearance learning part lets them attain a realistic
look. To achieve that, the approach employs synthetic scene graphs extended to
an unsupervised setting, allowing users to manipulate the scene according to a
required scenario and encode spatial and global parameters.
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Kurzfassung

Im Bereich des autonomen Fahrens besteht ein immenser Bedarf an zuverlässigen
Trainingsdaten für die Wahrnehmungssysteme. Ein Trainingsdatensatz muss
genau, umfassend und vielfältig sein. Die Bescha↵ung von Daten, die diese An-
forderungen erfüllen, kann aus einer Vielzahl von Gründen eine Herausforderung
darstellen. So kann beispielsweise die manuelle Beschriftung von Proben ein
kostenine�zienter Prozess sein. Ein weiteres Beispiel ist die Erfassung von unfall-
nahen Szenarien, die aufgrund der Gefährdung von Verkehrsteilnehmern ethisch
bedenklich sein kann.

Synthetische Daten bieten eine Lösung für die Herausforderungen der manuellen
Datenerfassung. Allerdings schränkt die Domänenlücke zwischen simulierten
und realen Bildern ihre Anwendbarkeit in der realen Welt ein. Das Problem
der Domänenlücke wird in vielen neueren Methoden durch den Rahmen, der
als generative adversarial network (GAN) bekannt ist und bei der Übertragung
von simulierten zu realen Bildern verwendet wird, angegangen. Diese Metho-
den nehmen gerenderte Bilder als Eingabe und bilden sie durch eine realistische
Stilübertragung in eine genauere Darstellung des realen Datenbereichs ab. Oft
führt dieses Verfahren zu einem realistischen Aussehen der übersetzten Bilder,
aber zu einer verfälschten Makrostruktur ihres Inhalts. Die Bildmanipulatio-
nen führen dazu, dass die Bilder nicht mit den entsprechenden Anmerkungen
übereinstimmen und somit für kritische Erkennungsaufgaben beim Autonomen
Fahren unbrauchbar sind.

In dieser Arbeit werden Datensynthesemethoden untersucht, die die Diskrepanz
zwischen simulierter und realer Domäne abmildern können. Zunächst wird eine
Methode zur Datenagmentierung für die geometrisch korrekte, kollisionsfreie
Platzierung von virtuellen Fußgängermodellen in realen Szenen vorgeschlagen.
Dieses Verfahren verbessert die Qualität der Zusammenstellung der CAD-Modelle
durch Lernen ihres Aussehens aus Referenzdaten über GAN. Um dies zu er-
reichen, schlägt die Methode einen klassenspezifischen Diskriminator vor, der
der Inhaltsverderbung entgegenwirkt, die durch das Verschwinden von out-of-
distribution 3D-Objekten entsteht.

Das Problem der Inhaltshalluzination in einer Sim-zu-Real-Umgebung wird in
der Arbeit durch die Linse der globalen Klassenstatistik weiter analysiert und
es wird festgestellt, dass Transfermethoden durch Datensatz-Bias beeinträchtigt
werden, was zu inkonsistenten Generierungsergebnissen führt. Als Lösung schlägt
die Methode die Kombination von adversarialem Lernen und Density Matching
durch ein Wichtigkeitsschätzungsverfahren vor, so dass das Modell aus den in-
formativsten Proben lernen kann. Die vorgeschlagene Kombination entschärft
wirksam das Problem der semantischen Inkonsistenz; sie erfordert privilegiertes
Wissen über die Statistik der Zieldaten, das in der bevorzugten Umgebung nicht
verfügbar ist.

Darüber hinaus wird in dieser Arbeit die semantisch konsistente Übertragung
von Simulations- zu Realbildern untersucht, wenn keine realen Annotationen
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verfügbar sind. Um dieses Problem zu lösen, wird eine Methode zur Disentan-
glement von Inhalten vorgeschlagen. Sie zielt darauf ab, domänenagnostische In-
haltsmerkmale getrennt von domänenspezifischen Erscheinungsmerkmalen zu ler-
nen. Durch die Trennung beider Aspekte wird die Erscheinungsbildkomponente
eingeschränkt, so dass bei der domänenübergreifenden Bildübertragung lediglich
die Low-level-Aspekte des Beispiels geändert wird, ohne seine Makrostruktur zu
modifizieren. Darüber hinaus reduziert die feste Stil-Disentanglement die gen-
erative Kapazität des Übersetzungsmodells, indem sie das Lernen des gesamten
Inhaltsvektor-Mannigfaltigkeit ermöglicht.

Der letzte Teil befasst sich mit dem Kompromiss zwischen dem Ausmaß der
generativen Änderungen und der semantischen Konsistenz. Er schlägt eine proze-
durale Szenengenerierung vor, die mit dem Lernen von Erscheinungsbildern ein-
hergeht und eine Alternative zu mühsamen High-Fidelity-3D-Umgebungen darstellt.
Die Pipeline erzeugt Verkehrsszenen ohne visuelle Attribute, während der Teil des
Erscheinungsbild-Lernens ihnen ein realistisches Aussehen verleiht. Um dies zu
erreichen, verwendet die Methode synthetische Szenegraphen, die auf eine nicht
überwachte Art und Weise erweitert werden und es dem Benutzer ermöglichen,
die Szene entsprechend einem gewünschten Szenario zu manipulieren und räumliche
und globale Parameter zu kodieren.
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1 Introduction

1.1 Autonomous Driving

History. Autonomous driving is a field of applied research and technology about
the systems capable of navigating the environment without human control. Such
systems are expected to significantly impact society in various areas, from road
safety [16] to environmental pollution [17] to urban space planning [18]. Early
research in autonomous driving began in the 1950s, but the first autonomous ve-
hicle, ALVINN [1], did not appear until the 1980s. ALVINN pioneered employing
neural networks for road detection and using synthesized images for their train-
ing. Other notable vehicles developed in the following years include VaMP [19]
and ARGO [20]. Several influential milestones include ProLab2 of Prometheus
Program [21], BART [22], and REMI [23], which also employed neural networks
in their designs. In these works, researchers analyzed which types of networks
were best suited for an autonomous vehicle. For instance, Kornhauser [24] used
a computer visual simulation system known as Road Machine. Later Rosenblum
et al. [25] used radial basis function networks as an alternative to ALVINN’s
multilayer perceptron (MLP), and Yu et al. [26] proposed to use reinforcement
learning to eliminate supervision. In the 2000s, a series of DARPA Grand Chal-
lenges further advanced research in the field of autonomous driving, where some
participants, including the winning team Stanley [27], relied on the learning al-
gorithms as a part of the perception stack. Learning helped to deal with the
variance of possible driving scenarios, and nowadays, it is almost impossible to
imagine an autonomous vehicle without neural networks.

Data. The success of deep neural networks [28] in image classification led
to the subsequent application of this technology to a broader range of computer
vision tasks. The transition of deep learning from a mere research topic to an
application in a broad spectrum of real-world tasks made the accessibility of com-
prehensive and reliable training data exceptionally crucial. The training dataset
must be exact – maintain error-free annotations; comprehensive – provide abun-
dant training samples; diverse – comprise high variance of scenarios. However,
large amounts of annotated training data required for the e↵ective use of neural
networks may not be cost-e�cient to obtain with manual labelling. Thus more
economical solutions are required for productive use.

The transition from the research to the application imposes an obligation for
perception systems of autonomous vehicles to understand the surrounding envi-
ronments and to deal with a wide variety of tra�c situations in the real world.
These environments and tra�c scenarios include myriad variations caused by
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Figure 1.1: Autonomous vehicle ALVINN used a neural network trained on synthesized
data for road perception [1].

factors such as lighting, weather conditions, locations, sensor setups, novel traf-
fic users, near-accident and rare events. The ability to perform well in these
unseen tra�c situations determines if a vehicle can navigate fully autonomously
and represents one of the main challenges of developing autonomous systems.
To meet this criterion, the perception algorithms of an autonomous vehicle must
generalize well in various tra�c situations that it may confront.

While neural networks have significantly advanced the recognition algorithms
of autonomous vehicles, their generalization capacity is highly dependent on the
availability of a substantial collection of reliable and well-annotated tra�c scenar-
ios. This property significantly influences the development and quality assurance
of perception systems. It is necessary to include specific scenarios in the training
dataset beforehand to ensure that the system will handle them correctly. En-
gineers continually adjust their deep models by acquiring new tra�c scenarios
during the field drives and retraining, a process that requires annotating every
newly captured scene.

A collection of su�cient training data that covers various tra�c scenarios
in real-world environments for autonomous driving is often not feasible, which
makes the incremental strategy of capturing new scenarios during field drives
impractical. Moreover, such data acquisition typically implies manual annota-
tion, which is a laborious and time-consuming process [29], especially in the tasks
such as semantic segmentation, as it requires dense per-pixel labelling. Although
the data sample annotation routine seems relatively straightforward, real-world
data at scale di↵ers. Additionally, annotating long-tail scenarios that occur infre-
quently and are challenging to capture can be non-trivial. Moreover, capturing
near-accident events can be ethically constrained, as it may put vulnerable road
users in unsafe tra�c situations. As a result, productive use of deep neural
networks requires e�cient acquisition and annotation of training samples.
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1.2 Synthetic Data

Synthetic data is a potential solution for the challenges of data acquisition and
annotation described in Section 1.1. The straightforward approach involves ren-
dering engines for generating data that computer vision models could use. It is a
cost-e↵ective method that can reveal potentially unbounded variance of training
data at a reduced cost, decrease manual labelling e↵ort, and cover potential rare
or near-accident scenarios. Many researchers have utilized images rendered with
computer graphics in their works on vision tasks [30] [31], [32], [33]. Similarly,
autonomous driving and deep learning researchers utilized data rendering as an
alternative to data acquisition and annotation. Indeed, simulation has a long
history of use in autonomous driving [1], Figure 1.1 demonstrates one of the first
attempts to utilize synthesized road images to train a recognition neural network
of an autonomous vehicle in 1988. In recent years, with the renaissance of deep
learning, the research community has intensified e↵orts in this direction, and
many synthetic datasets [3, 5, 6], and simulation systems [34, 35] emerged.

Although simulation can generate a large amount of training data, it still
exhibits limited applicability in a real-world environment. Recent research results
[3, 36, 37] indicate that training deep models on synthetic data leads to inferior
performance on real data. Multiple works have demonstrated that models trained
merely on synthetic data show a drastic performance drop on real-world data
compared to the models trained on real data. Specifically, Richter et al. [4]
reported a decrease of almost 20% mean intersection over union (IoU) for a
semantic segmentation model [38], which has been trained on CamVid train set
[39], and synthetic dataset [4] but evaluated on CamVid validation set.

In machine learning, training and validation data are assumed to be indepen-
dent and identically distributed (iid), which may nevertheless be not an accurate
assumption in a sim-to-real setting. The underlying rendered domain can cause
specific bias in the data even though the rendering engine approximates light
transport physically correctly and generates realistic images. The reasons mainly
lie in rendering specifics, including the correctness of light transport simulation
or low-level realism, and discrepancy in the overall structure of the virtual envi-
ronment, such as the building shape or the occurrence of di↵erent objects. While
computer graphics images are often seen as a cost-e↵ective way to obtain train-
ing samples, algorithms that are trained using this data do not tend to achieve
comparable results on real-world data due to the domain gap between artificial
and acquired samples and that contradicts the iid assumption common to most
models.

The direct way to solve the iid contradiction and address the domain discrep-
ancy is to elevate the quality of rendered images and make the generated and
real data distributions similar. A more precise approximation of the rendering
process, which minimizes artefacts resulting from image generation, can help to
achieve that goal. However, it is crucial to consider the variation in the macro-
structure of rendered images, which can vary due to changes in the environment,

5



1 Introduction

or the sensor suite of an autonomous system [36]. Thus, despite being a valu-
able research tool, computer graphics can still exhibit a significant domain gap
compared to target data. The phenomenon, which is believed to be the main
cause of degraded performance mentioned previously [40], is known as covariate
shift [41]. It describes a setting when marginal distributions in both domains
diverge. The phenomenon highlights that the assumption of iid does not hold
for a synthetic-and-real setting where domains di↵er in content and appearance.
Typically, domain adaptation methods such as sim-to-real image transfer ad-
dress the mismatch. They improve the performance of vision models compared
to models trained exclusively synthetically.

1.3 Domain Adaptation

Figure 1.2: Example of class mismatch introduced by domain adaptation in class-
imbalanced setup. Original PfD image (topmost), original image translated
to Cityscapes by CycleGAN (second from the top), original image trans-
lated to Cityscapes with proposed approach (bottommost). © 2019 IEEE

Multiple works proposed improving the realism in synthetic images using do-
main adaptation techniques in order to address the domain gap problem discussed
in Section 1.2. These works include, for example, DTN [42], FCNs in the Wild
[43], CycleGAN [10] or DualGAN [13]. Typical adaptation mechanism employs
generative adversarial network (GAN) [8], which aims to minimize the gap be-
tween two domains by translating the synthetic data into a representation that is
closer to the real data [44, 45]. A generative adversarial network (GAN) attempts
to fit distribution over target observations x from target data Dt by training two
neural networks: a generator and a discriminator, which is a binary classifier.
The generator performs permutations of source input samples xs

i
2 Ds from the
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source dataset so that they are indistinguishable for the discriminator network
from target samples xt

j
2 Dt. Thus, generative adversarial network indirectly

imposes target distribution over the generated distribution [8]. Convergence of
the networks’ training in the Nash equilibrium leads to minimizing the distance
between both distributions but cannot ensure the immutability of the samples.
As a result, generative adversarial network deliver visually realistic data but
causes semantic mismatch and embeds visual artefacts into synthesized images.
Adversarial training is a powerful tool for adaptation tasks, but it is also a↵ected
by covariate shift, as the discriminator inflicts the regularities learned from the
target data on the generated samples.

Figure 1.2 demonstrates a failure of a GAN model to correctly translate ren-
dered images into the real domain. Specifically, the generator introduces seman-
tically mismatching artefacts into refined images. For these two datasets, the
network generates an inconsistency between the vegetation and sky classes in an
attempt to restore the target data distribution [46]. The example with augmented
meshes of pedestrians in Figure 4.4 visualizes reinstating the target distribution
more clearly. In this case, the discriminator recovers the original distribution by
removing the out-of-distribution objects. This behaviour can be undesirable for
several reasons. Two main issues can impact the realism of images generated
using a generative adversarial network. First, the GAN’s capacity or perceptive
field may not be su�cient to generate a realistic class instance, leading to lower-
quality images. Second, to use the generated images for a downstream task, it
is necessary to have a ground truth in accordance with the image’s semantic
structure. The artefacts shown in Figure 1.2 can make it challenging to use the
generated samples for training computer vision models.

More samples from various datasets where a generative adversarial network
introduces semantic inconsistencies during the translation process are demon-
strated in Figure 5.5. For example, image transfer imposes the vegetation patches
in sky regions in Playing for Data (PfD) [4] and Cityscapes [29] setting. It also
removes road users from the tra�c scene in SYNTHIA and Cityscapes. The
domain adaptation process, where a network introduces semantically mismatch-
ing artefacts to restore the reference data distribution, can be especially critical
in tra�c scene understanding as it results in unreliable training data. Indeed,
inconsistent permutations of the image significantly diminish the applicability of
data synthesis for computer vision tasks.

Several works addressed the problem of inconsistent transfer in order to guar-
antee invariance of the image macro-structure during domain adaptation. The
main idea of such methods is to leverage available knowledge about the scene
by using semantic maps [47, 48, 49]. Constraining the adaptation process on
semantic maps is e↵ective but depends on manual labels. Other works introduce
constraints such as self-regularization [9], semantic consistency [10], regulariza-
tion by enforcing bijectivity [47], modeling a shared latent space [50], [51], or
semantic aware discriminator [52].

7



1 Introduction

Many works proposed to generate the images in a consistent way by doing
that from scratch via conditioning on alternative content representations. For
example, the approach Pix2Pix [53] introduced a supervised generator and dis-
criminator conditioning on semantic maps. Another strategy proposed by Qi
et al. [54] involves using predefined patches from the database to combine an
image canvas. Wang et al. [55] analyzed the reasons for lacking high-quality
textures and details in the results produced by Conditional GANs and proposed
a multi-scale GAN architecture to mitigate them. Other works, such as those
presented in [51] and [15], combined cycle loss and adversarial loss to disentangle
appearance and content by learning the corresponding latent space.

1.4 Objectives

Previous sections highlighted the challenges of employing synthetic data for train-
ing deep perception models. This thesis aims to explore the methodology of data
synthesis in autonomous driving and to advance the field. Given the initial
condition where the discrepancy between synthetic and real data distributions
restricts the application of the generated data in the real world, this thesis pur-
sues to find synthesis techniques to alleviate these limitations. They intend to
produce data that entirely su�ce for training perception models employed in
real-world scenarios.

First, the thesis examines the applicability of synthesized data in a simpli-
fied setting. It proposes an augmentation technique for placing synthetic objects
of interest in a real-world tra�c scene and visually adjusting them to the sur-
rounding environment. The augmentation only focuses on the scenarios with
vulnerable road users so that any real scene can be manipulated to configure
a scenario of interest. Additionally, it explores the enforcing of visual charac-
teristics from real data onto in-painted objects in lieu of translating complete
synthetic scenes to the real domain. Furthermore, it studies the ability of the
translation to overcome semantic inconsistency inflicted during image transfer
and resulted in the disappearance of augmented objects.

Next, the thesis analyzes the weaknesses of the standard image transfer ap-
proaches, which minimize the discrepancy between the synthetic and real data.
In particular, it investigates the origin of semantic inconsistency occurring dur-
ing the transfer between two domains. A method proposed in this work explores
direct manipulation of the datasets for preventing class confusion and later inte-
gration of a density estimation technique as a solution for semantically consistent
sim-to-real domain adaptation.

Further, the thesis explores a way to perform sim-to-real domain adaptation
in an unsupervised fashion without privileged information about global statis-
tics. It studies a technique of disentangling the content and style representation
for implicit sifting out the apparent discrepancies between both domains. By
disentangling both features, the model aims to learn the domain and content-
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agnostic image transfer model, which is intended to apply visual characteristics of
any particular domain to individual content vectors from the underlying content
manifold.

Finally, the thesis rounds up by merging initial intuition with the obtained
findings. It studies the potential of newly introduced data synthesis concepts
with procedural content generations and learned appearance. Procedural content
generation is dedicated to the controlled and explicit content definition, and
appearance learning synthesises realistic imagery based on it. The thesis aims to
explore data synthesis mechanisms with accordance to several principles:

• Scalable data generation with high variance of content.

• Similarity of the generated data to reference data.

• Consistency of the generated data with ground truth.

• Straightforward manipulation of the synthesized data

1.5 Contribution

Consequent chapters propose several methods to fulfil the objectives outlined in
Section 1.4 whose contribution can be summarized as follows:

Augmentation. Chapter 4 focuses on pedestrian detection and proposes
an augmentation pipeline that enhances real urban tra�c datasets with virtual
pedestrians in di↵erent scenarios. This pipeline performs geometrically consis-
tent placement of the pedestrian CAD models into real tra�c scenes. Since mere
augmentation does not consider the appearance of the image of a tra�c scene,
the pipeline requires a mechanism for realistic pedestrian depiction. This work
introduces a domain adaptation model which learns the realistic appearance and
makes the pedestrian CAD models visually integrated into the scene. The adap-
tation network employs multiple discriminators similar to those used in [56] for
various image resolutions. However, the use of a masking approach makes it
resistant to di↵erences in distribution between real and synthetic data. Mask
discriminators enable the production of consistent synthetic imagery with real-
istic illumination and the appearance of the original dataset. Figure 4.1 shows
augmented and translated images, along with semantic and instance segmenta-
tion labels. The corresponding publication is:

• Artem Savkin, Thomas Lapotre, Kevin Strauss, Uzair Akbar, Federico
Tombari, ”Adversarial Appearance Learning in Augmented Cityscapes for
Pedestrian Recognition in Autonomous Driving”, IEEE Int. Conf. on
Robotics and Automation (ICRA), 2020

Density Matching. Chapter 5 introduces an approach which tackles the
semantic inconsistency issue in sim-to-real domain transfer as a class imbalance
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problem. In a class imbalanced setting, it is assumed that marginal distributions
for source and target samples are di↵erent: Ps(X) 6= Pt(X) [57, 41]. If labels of
the target domain are known, then the resampling technique can be employed
to tackle the class imbalance [58, 59, 60, 61]. These approaches typically ma-
nipulate the training set of data and include several directions over-sampling,
under-sampling, and hybrid approach [58].

This work proposes a sim-to-real translation mechanism based on matching
target distribution via Sampling Importance Resampling (SIR) [62] strategy in
an ensemble with e↵ective cycle-consistent loss [10]. The proposed dataset resam-
pling mitigates the semantic perturbations in translated images, which leads to
improved performance of the downstream semantic segmentation models. Chap-
ter 5, further, proposes the use of density ratio-based distribution pre-matching
in conjunction with the cyclic-consistency loss for direct sim-to-real adaptation
without dataset manipulation. Contrary to other works utilizing importance
weights [63] or kernel density [64] to improve GAN training the proposed method
employs a technique named KLIEP [65] to pre-match distribution densities along-
side adversarial and cycle consistency loss. Density ratio estimation maintains
the semantic consistency of generated images, and thus betters their visual char-
acteristics. Evaluation of semantic segmentation showed improvement in dedi-
cated computer vision models. Moreover, the proposed method positively im-
pacts the stability of underlying architecture, as it does not introduce additional
constraints. The corresponding publications are:

• Artem Savkin, Federico Tombari, ”KLIEP-based Density Ratio Estimation
for Semantically Consistent Synthetic to Real Images Adaptation in Urban
Tra�c Scenes,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2020

• Artem Savkin, Monika Kasperek, Federico Tombari, ”Sampling/Impor-
tance Resampling for Semantically Consistent Synthetic to Real Image
Domain Adaptation in Urban Tra�c Scenes,” IEEE Intelligent Vehicles
Symposium (IV), 2019

Disentanglement. Chapter 6 introduces a novel, end-to-end learning ar-
chitecture that aims at semantically consistent unsupervised sim-to-real domain
adaptation. One limiting requirement is that the architecture refrains from priv-
ileged information, such as semantic segmentation maps or pre-trained networks,
in the form of perception loss. Contrary to the methods introduced in Chap-
ter 5, this approach does not rely on global statistics about the source and target
domains. The main principle is that the generator learns features separately
by using a single content encoder and decoder. The decoder, in turn, operates
on learned content features with fixed style codes. Furthermore, the proposed
network is lightweight since it includes only one encoder, a decoder for both
domains. The generator network is constrained through repeating intra-domain
and cross-domain reconstruction. The corresponding publication is:
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• Mert Keser, Artem Savkin, Federico Tombari, ”Content Disentanglement
for Semantically Consistent Synthetic-to-Real Domain Adaptation”, IEEE
Int. Conf. on Intelligent Robots and Systems (IROS), 2021

Scenegraph. Chapter 7 describes a method for scalable, realistic, and consis-
tent image synthesis with tra�c scene manipulation capabilities. The core idea is
to entirely avoid the usage of the rendering process. The key idea comes from the
fact that rendered images carry a bias originating from rendering. These images
require then adaptation to the real domain in order to abolish the bias. The pro-
posed idea consists in replacing the rendered images with generic representations
such as scene graphs and directly creating images from those representations.
Scene graphs encode the scene’s objects as nodes and relations between them
as edges [66]. In addition, they can also integrate specific characteristics of the
objects or entire scene as dedicated parameters [67]. A procedural content gen-
eration pipeline randomly produces the synthetic scene graphs from a virtual
scene in a domain-agnostic way. In addition, the graphs are reasonably straight-
forward to automatically derive from the virtual scene and manipulate manually
when required, this contributes to data synthesis of possibly arbitrary extent and
variability, thus increasing scalability.

Furthermore, this work introduces an end-to-end learnable model that extends
synthetic graph processing in an unsupervised fashion to facilitate realistic image
generation. The proposed model improves realism by directly synthesizing the
images from scene descriptions. Synthetic scene graphs obtained from a simu-
lated environment include typical tra�c objects such as car, person, and others,
and relations like left to, right to. Procedural tra�c scene simulation lets ex-
tend this setting with other classes required for automotive data road, sidewalk,
building, and vegetation. Additionally, the virtual environment yields spatial
information, which results in spatial attributes and object relations. Finally, the
virtual environment provides accurate pixel-dense annotations at no additional
cost.

• Artem Savkin, Rachid Ellouze, Nassir Navab, Federico Tombari, ”Un-
supervised Tra�c Scene Generation with Synthetic 3D Scene Graphs”,
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2021

Further work explores domain adaptation methods for other data modalities
common in autonomous driving - Lidar point cloud, but will not be discussed in
this dissertation.

• Artem Savkin, Yida Wang, Sebastian Wirkert, Nassir Navab, Federico
Tombari, ”Lidar Upsampling with Sliced Wasserstein Distance”, IEEE
Robotics and Automation Letters (RAL), 2022
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2 Fundamentals

2.1 The Rendering Equation

Rendering, also known as image synthesis, is the problem of generating images
from virtual scenes. Global illumination algorithms aim to solve the synthesis
problem by simulating the physical travel of light from its source to the vir-
tual sensor [2]. However, computer graphics typically rely on the simplest light
propagation model, called geometric optics, which, in essence, can simulate only
limited types of phenomena such as emission, reflection, and transmission. In
accordance with the geometric model, light travels on straight lines at infinite
speed. As a result, a straightforward rendering approach involves simulating the
emission of light ray from the light sources, their interaction with the environ-
ment, and tracking the light that reaches the virtual camera sensor. However,
this naive rendering technique is very computationally intensive, as only a frac-
tion of the emitted rays reaches the sensor, requiring the simulation of numerous
beams to capture enough of them for image creation on the sensor side.

Figure 2.1: Cornell box experiment with the photographed (left) and rendered (right)
scene [2].

The global illumination algorithm which neglects the rays that do not reach
the sensor is known as ray tracing [68]. This algorithm, proposed by Whitted
[68], relies on reciprocity - a property that allows reversing the light trace from
the sensor to the source without violating physical simulation. It helps capturing
essential e↵ects of direct illumination such as shadows, reflections, and refrac-
tion [69]. Simulating the e↵ects of indirect illumination, such as inter-reflection,
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commonly known as color bleeding or caustics, requires a notion of radiance.
Radiance describes the amount of power transmitted or reflected by a surface
that an optical system viewing the surface from a certain angle will receive.

L(x,!) =
@�(x,!)

@!A(x)
(2.1)

Equation 2.1 expresses the amount of light that reaches a hypothetical area A
perpendicular to a direction of its origin !. � represents the radiant power, or
flux, which is the amount of energy passing through a surface. The amount of
incident power on a unit of surface is known as irradiance and can be expressed
as:

E(x) =
@�(x)

@A(x)
(2.2)

The relation between irradiance and reflected radiance is described by the
bidirectional reflectance distribution function (BRDF) [70] as:

fr(x, !̂,!) =
@L(x,!)

@E(x, !̂)
(2.3)

The bidirectional reflectance distribution function describes the interaction
between the light and a surface. Essentially, it specifies the perceived brightness
of the surface when viewed from the particular direction ! and illuminated from
the other direction !̂.

The equilibrium radiance leaving a point x in a particular direction ! can
therefore be expressed as the sum of emitted radiance and reflected radiance as:

L(x,!) = Le(x,!) +

Z

!

fr(x, !̂,!)L(x,�!̂)(!̂ · n)d!̂ (2.4)

Equation 2.4, also known as the rendering equation, was introduced indepen-
dently by [71] and [72]. Various mechanisms, including Monte Carlo methods,
path tracing, or photon mapping, seek to solve this equation to achieve realistic
rendering. Photo-realistic or unbiased rendering involves minimizing statistical
bias in the approximation of radiance, thus accurately reproducing optical e↵ects
such as those described previously.

2.2 Synthetic Datasets

Advances in realistic rendering achieved by computer graphics engines o↵ered
access to a potentially unbounded training data source for deep learning-based
perception methods. Furthermore, image rendering extended the variation of
the covered tra�c scenarios and extensively increased the number of produced
training samples. Recently several large-scale automotive datasets emerged in the
field and strengthened research in the direction of synthetic data for perception.
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Figure 2.2: Examples of SYNTHIA dataset and corresponding semantic labels [3].

2.2.1 SYNTHIA

Ros et al. [3] introduced a method for realistically generated images with pixel-
dense annotations using 3D scenes and demonstrated the SYNTHIA dataset. The
primary application of SYNTHIA is training the data-driven algorithms for se-
mantic segmentation for autonomous driving scenarios, where it o↵ered multiple
variations of individual scenes and accurate annotations. The SYNTHIA dataset
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consists of photo-realistic frames rendered from various viewpoints and dense se-
mantic annotations covering 13 classes such as sky, building, road, sidewalk,
fence, vegetation, lane-marking, pole, car, tra�c signs, pedestrians, cyclists, and
miscellaneous. In addition to semantic maps, it provides corresponding dense
depth maps.

The authors obtained the tra�c scenes in the SYNTHIA dataset using a vir-
tual city constructed from dedicated basic blocks that contain elements typically
found in the tra�c environment, like streets, sidewalks, cars, or pedestrians. The
virtual environment includes various seasons, weather conditions, and dynamic
illumination, which enables the simulation of diverse daylight conditions for the
same scene. The simulated multi-cameras with a baseline of 0.8 meters capture
the frames of the virtual environment. Each multi-camera system consists of four
monocular cameras with a common centre but di↵erent orientations spaced by
90 degrees apart. All cameras have a field of view of 100 degrees. Figure 2.2
shows an example frame and accompanying semantic map.

The SYNTHIA dataset consists of the frames of a resolution 960⇥ 720 pixels
divided into two subsets: SYNTHIA-Rand and SYNTHIA-Seqs, which include
13, 400 and 200, 000 examples, respectively. The SYNTHIA-Rand subset was
obtained by randomly moving the camera within a scene at a height between 1.5
and 2 meters, ensuring that individual camera positions were at least 10 meters
apart to achieve high variability. The SYNTHIA-Seqs subset simulates four video
sequences, each containing 50, 000 frames.

2.2.2 VIPER

The VIPER benchmark suite introduced by Richter et al. [5] is an extension to
the previous work Playing for Data (PfD) [4] of the authors, who explore the use
of commercial video games as a source of large-scale, pixel-accurate ground truth
data for semantic segmentation task. The previous work, PfD, exploits the real-
ism of the GTA video game, which is characterized by its high-fidelity textures
and materials, and realistic light transport simulation, to generate superior ren-
ders. On the other hand, high-level realism on a large scale is primarily defined
by factors such as the content, motion, and interactions between the objects or
objects and the environment within the game.

The authors of Playing for Data were able to intercept the rendering com-
mands and reproduce the game frames by introducing a wrapper between the
game engine and the operating system. The key idea lies in intercepting the calls
between the game and the graphics hardware typically accessed through encap-
sulating the dedicated dynamic-link library (DLL). The wrapper can be injected
by mimicking such a library during the loading process so that all consequent
communication with the hardware will be intercepted, a technique known as de-
touring [73]. During the gameplay, all necessary information for reconstructing
the frame was stored and post-processed separately afterwards.
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Figure 2.3: Examples of Playing for Data dataset and corresponding semantic annota-
tions samples [4].

The procedure described previously returns a per-pixel ID map for each pro-
duced frame, which identifies the mesh, texture, and shader used for computing
an individual pixel. These maps are later subsequently dissected into patches,
which share the same Mesh-Texture-Shader (MTS) triplet. Objects often consist
of multiple patches, but the boundaries between patches are consistently aligned
with class boundaries. As a result, semantic labels can be obtained by simply
grouping the patches by annotators.

This way, a dataset of 24, 966 frames along with semantic annotations was
extracted from the video game. Each frame has a resolution of 1914 ⇥ 1052
pixels. Figure 2.3 demonstrates several examples of the extracted frames along
with their corresponding semantic maps. The annotations encompass 19 classes,
including road, building, sky, sidewalk, vegetation, car, terrain, wall, truck, pole,
fence, bus, person, tra�c light, tra�c sign, train, motorcycle, rider, and bicycle.
Therefore, the dataset is compatible with standard real-world datasets such as
Cityscapes [29]. Furthermore, it reveals a relatively high degree of variability
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Figure 2.4: Example of the VIPER dataset frame along with corresponding semantic,
instance, flow, odometry and detection labels [5].

where 26.5% of all Mesh-Texture-Shader combinations only occur in one frame
of the entire collected dataset.

In comparison to PfD, VIPER comprises significantly more data, containing
250, 000 examples in contrast to the original 25, 000, and covers a wider range of
computer vision tasks, including semantic and instance segmentation, optical flow
estimation, 3D object detection and visual odometry. Figure 2.4 shows several
examples of described ground truth. Additionally, this ground truth is provided
in a temporally consistent manner through a number of video sequences. The
extended list of label types could be achieved by employing the dynamic soft-
ware updating [74], which broadcasts resource identifier, depth, and transparency
value for every single pixel by exploiting the bytecode of the shaders distributed
on a GPU. Additionally, this method utilizes access to the transformation ma-
trices of individual objects. Clustering such matrices enable the segmentation of
the individual objects and the generation of the instance segmentation ground
truth. These transformation matrices, along with meshes used for rendering,
allow the reconstruction of camera positions and the generation of ground truth
for visual odometry. Furthermore, the vertex bu↵ers of these meshes provide
information about bounding boxes.

The VIPER captures data in five distinct ambient conditions: daytime, sunset,
rainy, snowy, and nighttime. The split between training, validation, and testing
shares a balanced distribution of data acquired across these conditions but covers
geographically diverse areas. Such split reveals relatively high realism regarding
distributions of the number of categories and instances present in each image
measured with Jensen–Shannon divergence (JSD). As a point of reference, the
VIPER utilizes the Cityscapes [29] dataset for realism measures.
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2.2 Synthetic Datasets

Figure 2.5: Example of the Synscape dataset frame along with corresponding semantic,
instance and depth annotations [6].

2.2.3 Synscapes

Synscapes dataset [6] addresses several limitations of previous synthetic datasets
by focusing on two main directions of improvement. Firstly, it captures the e↵ects
of illumination and the scene’s geometric and material composition on sensors in
a more accurate manner compared to datasets like SYNTHIA, which rely on o↵-
the-shelf assets. Secondly, it tackles the scalability issues of the VIPER dataset by
utilizing the technique known as the procedural content generation to create the
scenarios. The VIPER bases on the grounds laid by the third-party commercial
product and thus avoid the amount of technical and artistic work required to
create a comprehensive virtual environment. Contrary to that, Synscapes uses
a procedural engine introduced by Tsirikoglou et al. [75] to parameterise the
scenarios for virtual world generation.

Synscapes defines a set of rules and parameters for constructing a unique vir-
tual world for any single rendered frame. These rules include width, number
of lanes for the roads, the height of curbs for sidewalks, and window sizes for
buildings, in addition to standard parameters such as sizes and materials,

The data generation pipeline utilizes the unbiased path tracing and Monte
Carlo integration [71] rendering technique, which calculates the transport of light
based on the radiometric properties of the sun and sky and simulates light inter-
action using reflectance models. The pipeline renders 25, 000 RGB images of the
resolution 2048⇥ 1024 pixels similar to the Cityscapes dataset. For every image,
there is also an associated semantic map, an instance map, and a depth map.
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2.3 Transfer Learning

In machine learning, the common assumption states that training and test data
are independent and identically distributed (iid). However, such a setting is
rarely achievable in the real world, where, more often, the domain in which data
was acquired may di↵er from the domain of interest. Handling such discrepancy is
immensely important in autonomous driving, as it can arise due to various factors
such as outdated training data, multi-sensor setup, and changes in geographic,
meteorologic, or temporal conditions. A subfield of machine learning that applies
the knowledge gained in one domain to another is known as transfer learning [76].
The transfer learning methods aim to extract knowledge from a source domain
and apply it in a target domain. Pan et al. [76] defines the transfer learning as
follows:

”Given a source domain Ds and learning task Ts, a target domain Dt and
learning task Tt, transfer learning aims to improve the learning of the target
predictive function ft() in Dt using the knowledge in Ds and Ts, where Ds 6= Dt,
or Ts 6= Tt.”

Here, D = {X , P (X)} is described by a feature space X and X is a random
variable so that X = {x1, x2, ..., xn} 2 X follows marginal distribution P (X).
Task T = {Y, P (Y |X)} assumes estimation of the P (Y |X) based on observation
pairs {xi, yi} where xi 2 X and yi 2 Y . Source and target domains are denoted as
Ds and Dt, respectively. Two sets of {x, y} sample and label pairs are described
as follows:

Ds = (xsi , y
s

i );x
s

i 2 Xs ⇢ Xs, y
s

i 2 Ys ⇢ Y
Dt = (xtj , y

t

j);x
t

j 2 Xt ⇢ Xt, y
t

i 2 Yt ⇢ Y
(2.5)

Based on the definition, Pan et al. [76] propose a taxonomy where trans-
fer learning distinguishes between inductive transfer learning and transductive
transfer learning. According to Pan et al., these two categories can be defined in
relation to source and target domains as follows:

• Inductive transfer learning assumes that source and target domains are the
same, but tasks are di↵erent (though related). It refers to transferring the
learned knowledge from one task to another.

• Transductive transfer learning relates to a process where the tasks are the
same, but the domains are di↵erent. Transferring knowledge from one
domain into another is related to domain adaptation.

Therefore, the methods of transductive transfer learning involve adapting to a
new setting where either the input space di↵ers from target Xs 6= Xt or the input
space is the same Xs = Xt, but the distribution of the data di↵ers Ps(X) 6= Pt(X).
In both cases, domain adaptation techniques reduce the di↵erence between the
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Figure 2.6: Taxonomy of deep generative models according to Goodfellow [7].

two domains. Some common strategies to achieve the reduction involve instance
weighting, and feature transformation [77]. The first strategy performs domain
adaptation by reweighing the importance of the individual samples based on their
similarity to the target data. The second approach seeks shared latent features
between the source and target. A model can discover such features explicitly
by applying the loss function on learned feature vectors or by mapping source
samples into the target domain. In computer vision, the task of finding this
mapping function that approximates the target distribution P̂t(X) ⇡ Pt(X) is
often referred to as image-to-image translation.

2.4 Deep Generative Models.

Unlike discriminative models, which learn p(y|x) conditional probability distri-
bution over labels y given data samples x, generative models learn a distribution
over x. Their goal is to find the parameters ✓ of a neural network so that it
describes a distribution p✓ that matches the actual distribution of the data p(x)
or joint probability p(x, y). According to the taxonomy proposed by Goodfellow
[7], deep generative models distinguish the likelihood approximation or repre-
sentation principle from the likelihood maximization. One category explicitly
estimates the density function of the probability distribution of the underlying
data p✓, while the other can sample from p✓. The challenge of explicit mod-
elling lies in the complexity of the underlying information that a model must
capture. There are two ways of dealing with that complexity. Methods like auto-
regressive models guarantee tractability by their structure, while other models
use variational or Markov chain tractable approximations of density functions.
Figure 2.6 shows the taxonomy proposed by Goodfellow. Currently, the research
community’s most popular deep generative models belong to one of these three
categories:
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• autoregressive (AR) models reproduce the conditional distribution of
a particular pixel given previous pixels. This principle assumes that input
space has an ordering, where every individual feature depends on the pre-
vious feature. These models define the joint distribution of features as a
product of conditional distributions on each feature given the value of the
preceding feature. Typically such models generate images by processing
the pixels sequentially, starting from the top left and moving to the bot-
tom right, so that the probability of each pixel is determined by conditional
probabilities of previous pixels [78, 79].

• variational autoencoder (VAE) is a type of generative models, which
acquire their generative characteristics by regularizing the learned latent
space. Specifically, VAE encodes an input as a distribution over the latent
space, allowing it to sample from this distribution. A decoder within the
variational autoencoder then reconstructs the input from a sampled latent
vector. Furthermore, regularised latent space allows encoding similar fea-
tures close to each other and decoding any sampled point from latent space
into a meaningful output. VAE achieves these two qualities by minimizing
the reconstruction error on the output and the Kullback-Leibler divergence
on the distribution over the latent space by maximizing the evidence lower
bound (ELBO). In addition, variational autoencoder employs a technique
known as the reparameterization trick to overcome the backpropagation
problem on the sampling step [80].

• generative adversarial network (GAN) is a kind of model that is able,
similarly to generative stochastic network (GSN) [81], to sample from the
distribution directly. GAN involves a minimax game between two actors.
One of the actors, the generator network, learns to produce samples from
the training data, while the other actor, named a discriminator network,
learns to classify samples as coming from training data or the generator.
The task of the discriminator is to minimize the classification error, whereas
the generator’s goal is to maximize it [8].

Autoregressive models are very e↵ective in generating plausible data, but they
are computationally ine�cient for sampling. On the other hand, VAEs are highly
e�cient in sampling, but they tend to produce images with less clear details.
Finally, GANs can create images with distinguishable features, but they can be
unstable during training. These three types of models are actively researched,
and there is some overlap among the directions. Currently, the most active
research focuses on improving image generation quality and increasing adversarial
models’ stability. Section 2.4.1 provides more information on GANs.
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Figure 2.7: Architecture of the original generative adversarial network (GAN) with
generator G, discriminator D, sampled variable z, generated sample x̂ and
real sample x.

2.4.1 Generative Adversarial Networks.

A generative adversarial network [8] is a class of generative models that intuitively
distinguish themselves from discriminative models by being able to sample new
data points following given data distribution in contrast to predicting labels y
given existing samples x. Furthermore, generative models learn to model the
joint probability p(x, y) of the inputs x and the labels y or p(x) if labels are
not available, whereas discriminative models learn conditional probability p(y|x)
[82]. Compared to other generative models, GANs approximate a function that
can draw samples from target distribution, making them an example of a direct
implicit density model. However, unlike explicit density models, they do not
estimate actual probability density functions.

GAN aims to learn the distribution of data Pg over samples x by approximat-
ing a di↵erential function G(z, ✓G) called the generator, which takes a random
noise vector z ⇠ Pz as input and produces a sample x̂ ⇠ Pg conditioned on the
vector z so that this sample is indistinguishable from an arbitrary reference sam-
ple x ⇠ Pdata. A multilayer perceptron (MLP) with parameters ✓G represents the
generator function G. A generative adversarial network is exposed to the actual
data through the target samples x ⇠ Pdata. The loss function, which measures
the similarity of the generated images, is derived from the second component of
the model called discriminator D. The discriminator, in turn, learns to distin-
guish the images produced by the generator from those of reference data. The
discriminator is trained to maximize logD(x) the probability of correctly clas-
sifying samples x and G(z) and the generator to minimize binary cross-entropy
log(1�D(G(z))). The value function L guides the process of training the G and
D simultaneously, which represents a zero-sum game that reaches its optimum
in a Nash equilibrium when Pg = Pdata:

L(G,D) = E
x

[logD(x)] + E
z

[log(1�D(G(z)))] (2.6)

Thus, generative adversarial network aims to optimize following objective
which is equivalent to minimizing Jensen–Shannon divergence between Pg and
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Figure 2.8: Images produced by the original generative adversarial network (GAN) [8].

Pdata:

argmin
G

max
D

L(G,D) (2.7)

2.4.2 Other Generative Models

Recently also, alternative generative mechanisms gained attention in the com-
munity. These research directions include flow-based, di↵usion-based, and NeRF
methods.

Di↵usion. Denoising di↵usion models [83] belongs to a class of energy-based
model (EBM) that gradually deconstructs a data sample x0 by adding, for in-
stance, Gaussian noise. After T steps of forward di↵usion trajectory q resulted
xT sample is normally distributed:

q(x0..T ) = q(x0)
TY

t=1

q(xt|xt�1) (2.8)

The reverse trajectory is parameterized by ✓ and learns to gradually recon-
struct the sample from noise p✓(xt�1, t):
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xs G✓ x̂

xt

D✓ 0/1

Figure 2.9: Architecture of the SimGAN approach along with generator G, discrimina-
tor D, synthetic input sample xs, generated sample x̂ and real sample xt.

p✓(x0..T ) = p✓(xT )
TY

t=1

q(xt�1|xt) (2.9)

Normalizing Flow. Similarly to auto-regressive models, normalizing flows
belong to a class of generative models, which allow exact likelihood calculation
and feature learning by applying series transformations to a random variable Z
drawn from base distribution P (Z = z). An invertible function f : Rn ! Rn, x =
f(z), z = f�1(x) represents each transformation and maps z to observed data x.
Normalizing flow model learns parameters ✓ of such invertible function f✓ over
observed variables x so that marginal distribution p✓(x) can be obtained from
p(z) and Jacobian matrix by change of variables rule.

2.5 Sim-to-Real Domain Adaptation

It became evident that learning from simulated is strongly a↵ected by the domain
gap between the simulator’s output and real data distributions. The research
community identified the necessity to reduce the discrepancy between them so
that several methods based on generative adversarial network emerged to tackle
the problem of sim-to-real adaptation. The adaptation’s general idea is to im-
prove the realism of renders using unlabelled real images.

2.5.1 SimGAN

One of the early works that identified the potential of generative adversarial
networks to reduce the gap between synthetic and real distributions was the
SimGAN approach [9]. In contrast to plain GAN, which generates images from
random vectors, authors of SimGAN conditioned the generation process on syn-
thetic images. Moreover, the authors identified a requirement to preserve the
content of the conditioning image and avoid artifacts caused by adversarial adap-
tation in order to comply with synthetic annotations. To achieve this, the authors
modified adversarial loss L from Equation 2.6 as follows:
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Figure 2.10: Realistic images generated by SimGAN method [9].

LG = E log(1�D(G(xs)))

LD = E log(D(G(xs)) + E log(1�D(xt))
(2.10)

In Equation 2.10, xs represents synthetic input image and xt – real target im-
age. The method further extended the generator’s loss LG with a regularisation
term to enforce content preservation:

LR = kG(xs)� xsk1 (2.11)

In Equation 2.11, kk1 is an l1 norm. It was su�cient to employ the l1 for
the experiments on gaze and hand pose images conducted in [9], but for more
complex images such as urban tra�c scenes, it is not feasible anymore to employ
this loss in an unsupervised setting.

2.5.2 CycleGAN

CycleGAN [10] is a method that utilizes the idea of conditional generative adver-
sarial network [53] for creating the general-purpose image-to-image translation.
It builds upon the pix2pix [53] framework, which learns a mapping function from
source to target images. Its applicability for a general-purpose image translation
in an unsupervised setting makes it suitable for domain adaptation from syn-
thetic to real image domains. Furthermore, the CycleGAN enforces consistency
between image generators in source and target domains through transitivity, a
principle adopted in many areas [84, 85]. Introducing a cycle consistency al-
lows CycleGAN to impose visual characteristics of target images upon source
images without making assumptions about similarities between the source and
the target in pixel, class, or feature space. In the context of sim-to-real transfer,
such consistency improves the realism of generated images and makes them more
visually aligned with target data.

In detail, CycleGAN is constructed of two mapping functions GX and GY such
that:

GY : X ! Y ;GX : Y ! X (2.12)
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Figure 2.11: Architecture of the CycleGAN network with generators GX and GY , dis-
criminators DX and DY , synthetic input sample x, reconstructed syn-
thetic sample x̂, real sample y and reconstructed real sample ŷ.

These mapping functions are learned with the training data {xi}, {yj} from
both domains which follow respective distributions PX and PY :

xi 2 X ⇢ X , i = 0, 1, ..., NX

x ⇠ PX(x)
(2.13)

yj 2 Y ⇢ Y, j = 0, 1, ..., NY

y ⇠ PY (y)
(2.14)

For the learning both adversarial Ladv and cycle consistency Lcyc losses are
applied so that total loss L is calculated as follows:

L = Ladv(GX , DX) + Ladv(GY , DY ) + Lcyc(GX , GY ) (2.15)

Here,DY is a discriminator network that learns to distinguish generated images
GY (x) from target images x via maximizing the following loss function, while GY

minimizes it as described in 2.4.1:

Ladv(GY , DY ) = Ey⇠PY [logDY (y)]

+ Ex⇠PX [log(1�DY (GY (x)))]
(2.16)
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Figure 2.12: Images generated by the CycleGAN approach [10].

The loss term Ladv(GX , DX) with discriminatorDX is defined similarly to 2.16.
Finally, the cyclic consistency loss is calculated as follows:

Lcyc(GY , GX) = Ex⇠PX [kGX(GY (x))� xk1]
+ Ey⇠PY [kGY (GX(y))� yk1]]

(2.17)

Equation 2.17 formalizes the intuition behind the cyclic consistency loss, which
reduces the space of possible mapping functions so that the output distribution
matches the target distribution. For example, this mapping function applied to
source image x shall return an identical image: GX(GY (x)) ⇡ x. This intuition
is best visualized in Figure 2.11.

The approach aims to solve the following:

arg min
GX ,GY

max
DX ,Dy

L(GX , GY , DX , DY ) (2.18)

Both generators consist of three convolutional layers followed by 9 residual
blocks. Discriminators are based on PatchGAN [53] operating on 70⇥70 patches.

Although CycleGAN achieves compelling and stable results in appearance
learning, the results reveal multiple examples where failure cases prevail (see
original publication [10]). Such cases include, for example, the confusion related
to out-of-distribution objects in the horse-to-zebra experiments with a person
on the horse. Another example includes class permutations in the image and
semantic map task. The authors attribute such inconsistencies to the unsuper-
vised nature of the method and the global statistics of the source and target data.
Nevertheless, this work shows that the abovementioned problem is consistent in
synthetic to real domain adaptation.
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3.1 Synthetic Data

3.1.1 Computer Vision

As previously mentioned in Chapter 1, a common approach to synthesizing traf-
fic scene images is to use rendering engines to generate such images along with
the ground-truth data required in computer vision. Many methods already em-
ploy rendered images in various recognition tasks, so researchers are increas-
ingly interested in using virtual environments. Many modern approaches ap-
plied computer-aided design (CAD) models to a wide range of tasks, including
human pose estimation, object detection, motion estimation, flow estimation,
and others.

Algorithm Evaluation. Synthetic data for evaluating computer vision algo-
rithms’ performance has demonstrated e↵ectiveness in various domains, including
pose estimation, object recognition, segmentation, and flow estimation. Simu-
lation as a controllable environment provides nearly ideal conditions for bench-
marking and evaluation. For instance, one of the early works, known as OVVV
[32], created a surveillance testbed using the well-known computer game to sim-
ulate various scenarios, including omnicams, controllable signal noise e↵ects, as
well as comprehensive ground truth. Another example, Kaneva et al. [86] used
virtual worlds to test traditional image feature descriptors under varying illu-
mination conditions and viewpoints. Additionally, Aubry et al. [87] analyzed
convolutional neural network (CNN) feature changes originating from factors
of variation occurring in real image data such as translation, scale, lighting, or
colour. Other works [88], [89] used synthetic environments to evaluate algorithms
for such tasks as tracking and visual odometry or SLAM. While the controllable
factors of variation make synthetic data well-suited for algorithm evaluation, the
recent dominance of deep learning-based computer vision methods led to the
primary application of simulated data for training purposes.

Pose estimation. Shotton et al. [90] showed that the usage of large-scale syn-
thetic imagery, which is highly varied, results in quick and accurate prediction of
human body joints’ position invariantly to a large number of factors of variation.
Later Varol et al. [91] introduced the SURREAL dataset, which consists of 6.5
million rendered frames from motion sequences based on realistic 3D human aug-
mentations. In the context of 6-DoF object pose estimation, [92] demonstrates
that reality gap can be successfully mitigated by combining domain randomiza-
tion and photo-realism. The authors of the DOPE network trained it entirely
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on synthetic data from two datasets with objects of interest in di↵erent virtual
environments: one dataset contained distractor objects on a random background
and the other contained objects in a realistic background like a kitchen or forest.
Another successful example of synthetic-only training for 3D pose estimation is
described in [93]. In this work, a network maps feature extracted from a given
real image into synthetic feature space to predict a 3D pose further.

Flow Estimation. Synthetically generated data is beneficial when labelling
real data is laborious, such as estimating depth, optical flow, and scene flow. For
example, Dosovitskiy et al. [94] created an unrealistic synthetic dataset called
Flying Chairs and demonstrated that flow estimators could achieve substantial
generalization abilities with synthetic images. Handa et al. [95] focused on depth-
based semantic per-pixel labelling, and Papon et al. [96] rendered cluttered rooms
with objects on the fly for room scene understanding, which was also a subject
of study in [97]. Some early works, such as [30] and [98], proposed test suites for
benchmarking flow algorithms. More recent works, including [99, 100], provide
new benchmarks and evaluation methods. Mayer et al. [101] addressed the
question of the synthetic data requirements for low-level tasks such as optical
flow and disparity estimation and found that low-level realism involving textures
or lighting is important for these tasks, while high-level realism may be necessary
for tasks such as detection.

Detection. In addition, to pose estimation, several studies, such as [33],
[102], [103], performed multi-category object class recognition based merely on
CAD objects. Liebelt et al. [33] extracted view-agnostic class and pose features
from 3D objects to find matches in real data and improve multi-view object
class recognition. Aubry et al. [103] learned alignment between 3D CAD models
and real examples based on specific parts. Sun et al. [104] demonstrated that
a method trained on data augmented with non-photorealistic 3D CAD models
can perform on par with real large-scale data when the dataset bias issue is
addressed appropriately. Synthetic data in [105] demonstrated the e↵ectiveness
of training data augmentation with crowd-sourced 3D meshes without realistic
texture, pose, or background. Precisely, Peng et al. [105] demonstrated that
some detection models could generalize well on real test data regarding object
shapes, despite the absence of textures, by varying those cues. In [106], the part
model leverages CAD data of the cars to extend them with viewpoint and part-
level geometry information and, by that, to achieve viewpoint estimation at any
degree of granularity.

Segmentation. Segmentation tasks also face challenges similar to flow esti-
mation, where pixel-dense labelling can be a resource-intensive problem. Thus,
virtual environments were extensively used for indoor segmentation [107, 96] and
surveillance [108]. The rendering pipeline from [96] enabled the production of
7000 random indoor scenes with a total of 59, 784 instances and demonstrated
high adaptability to real data for the classification and pose estimation of objects.
Other segmentation works using rendered data include [109], [110], [111]. Zhang
et al. [109] studied the robustness of stereo feature matching by controlling the
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texture or transparency of the objects in synthesized images. Su et al. [110] used
a hybrid dataset with various renderings of the same synthetic scene for viewpoint
estimation. McCormac et al. [112] extended upon the SceneNet dataset [107]
scene layouts and objects from ShapeNet [113] by randomly sampling the scenes,
camera positions, and camera trajectories. Additionally, randomized textures
and lighting in [112] allowed acquiring 16, 895 various configurations for the in-
door scene, resulting in 5 million di↵erent samples. This work demonstrated that
pre-training solely on synthetic data could be very beneficial and significantly im-
prove indoor scene understanding with CNNs. The results of [112] confirm the
findings from [107] but to a larger extent. Another significant advancement in
indoor scene understanding is demonstrated in [114], which focuses on seman-
tic scene completion, where complete voxel representations and semantic labels
are produced based on single-view depth-map input. To this end, the authors
trained an end-to-end network on a manually constructed synthetic dataset of
indoor environments consisting of 45, 000 indoor scenes with room layouts as-
sembled manually from predefined 3D furniture models.

Miscellaneous. Other notable works employed rendered images for a wider
variety of tasks. One of them presented the PHAV dataset [115] with 39, 982
videos dedicated to action recognition tasks. The dataset includes 35 di↵erent
action categories like jump, run, stand, walk but also more complex as brush
hair, moonwalk or walk holding hands. The data synthesis pipeline introduced
in PHAV allows the procedural generation of physically plausible variations of
actions obtained through motion capture or even from scratch with programmat-
ically defined behaviours. Another significant work, CLEVR [116], is focused on
visual reasoning and represents an unbiased diagnostic dataset for intelligent sys-
tems answering questions about visual data. A visual question-answering (VQA)
system must be able to recognize objects and their spatial relations and perform
higher-level logical inference or comparisons. CLEVR, with its 853, 000 questions,
was designed to determine whether such an intelligent system can understand the
underlying scene rather than simply finding statistical cues in biased datasets.

3.1.2 Autonomous Driving

Data synthesis is very beneficial in the autonomous driving field due to the com-
plexity and diversity of data and scenarios. It has been utilized for various tasks
related to tra�c scene understanding, including pedestrian detection, to cover a
wide range of potential tra�c scenarios. For example, Pishchulin et al. [117] used
3D human models to create many shape variations and showed that only eleven
models su�ce for substantial dataset generation for the pedestrian detection
task. Marin et al. [118] and Vazquez et al. [119] assessed commonplace his-
togram of oriented gradients (HOG), and linear support vector machines (SVM)
in the context of pedestrian detection by applying them in a virtual environ-
ment. Veeravasarapu et al. [120] studied realism for urban scene understanding.
Another work that exploited the idea of texture realism was [121], which used
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two separate segmentation, and detection backbones focused on the texture re-
alism of the background classes in one and the shape realism of the objects in
another. Busto et al. [122] refined coarse annotations of car pose by discretiza-
tion of 3D car model views, and Chen et al. [123] improved car segmentation
using 3D bounding boxes. Finally, Shafei et al. [124] demonstrate a number of
experiments to evaluate the fitness of computer graphics imagery for semantic
segmentation and depth prediction.

Multiple recent works revealed synthetic datasets consisting entirely of ren-
dered imagery. The most prominent of them were discussed in more detail in
Section 2.2. For example, Haltakov et al. [125] provided accurate annotations of
depth and segmentation for around 8, 000 frames. One of the significant large-
scale datasets in the field is SYNTHIA [3], which provides more than 200, 000
frames of urban tra�c scenes in di↵erent environmental conditions. Another im-
portant dataset, Playing for Data (PfD) [4], used a video game engine to annotate
25, 000 images. Finally, Gaidon et al. [126] introduced proxy virtual worlds by
virtually mirroring the original KITTI tra�c scenes [127]. Virtual KITTI with
17, 000 frames intended to cover the complete spectrum of computer vision tasks,
including object detection, multi-object tracking, semantic and instance segmen-
tation, optical flow, and depth estimation. Also, the authors quantitatively ana-
lyzed the domain gap between the proposed data and its real counterpart in the
object detection downstream task. The authors found that the real-to-synthetic
gap was relatively insignificant as the deep models trained on real KITTI per-
formed comparably well on the proposed data. Another approach [128] that
examined the domain gap between real and synthetic data for object detectors
utilized the same game engine as [4]. While the evaluation protocol di↵ered from
that of [126], in that a detector was trained on synthetic data and evaluated on
real data, their results were consistent with the findings of [126]. They show that
the gap between generated and KITTI data for the detection task was relatively
minor and even smaller than that from Cityscapes. There have been several
synthetic datasets created for a wide range of tasks. One such dataset is VIPER
[5], potentially containing the highest variability of scenes with approximately
500, 000 densely annotated frames. One of the recent datasets, Synscapes [6],
is another dataset known for its realistic samples, achieved through unbiased
rendering, camera e↵ects simulation, motion blur, and procedural scene gener-
ation, which can significantly contribute to improvement in downstream object
detection. Other recently developed datasets include Parallel Domain [129] and
SHIFT [130]. These datasets became standard benchmarks frequently used for
training and evaluating sim-to-real transfer methods, though several simulators
can also o↵er the possibility to create customized synthetic data and extend it
to a preferred learning task. There are several publicly available driving simu-
lators, such as TORCS [131], [132], CARLA [34], and VIVID [133], which allow
the capture of sensor data along with annotations. For example, TORCS is an
open-source racing simulator that became widely acknowledged for its accurate
simulation of physical characteristics of driving dynamics, including inertia, sus-
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pension, and friction. However, its focus on the racing environment limits its
application for typical urban driving-related tasks. Another open-source simula-
tion, CARLA, aims to address such shortcomings and provide additional func-
tions required for research in autonomous driving. It o↵ers a configurable setup
of sensors with ground truth data covering various computer vision tasks like
segmentation, depth estimation, and detection. Additionally, CARLA provides
customizable scenarios and environmental conditions described through scripts.

Several works have explored using semi-synthetic data by rendering single ob-
jects of interest rather than entire images. For example, [134] used virtual humans
to study human pose estimation. MixedPeds, introduced by Cheung et al. [135],
exploited the idea of pedestrian augmentation in autonomous driving. Huang et
al. [136] introduced a data synthesis pipeline for so-called long tail tra�c situa-
tions and a resulting dataset with pedestrians in unsafe tra�c scenarios. Alhaija
[137] also proposed a flexible technique for data generation by augmenting vir-
tual car models into real images. The augmentation pipeline proposed by Alhaija
et al. [137] aims to address some of the challenges of synthetic data generation
by using realistic backgrounds to reduce the need to model complex 3D tra�c
scenes and environment maps to enable object placement consistent with the en-
tire scene. Finally, Lee et al. [138] proposed a model that statistically estimates
optimal locations and shapes of objects inserted onto layouts and its semantics
for generating novel images. More advanced augmentation pipelines like AADS
[139] used the several available techniques and information sources for tra�c
scene augmentation to achieve high-quality in-paintings with comprehensive an-
notations. For example, AADS relied on ApolloScape [140] camera images, point
cloud labels, and trajectories as raw data. The augmentation process removes
dynamic objects, estimates tra�c, places synthetic cars into plausible locations,
and performs illumination estimation and texture enhancement. While the ear-
lier methods produced valuable training samples, they were still dissimilar to
real samples. More sophisticated techniques, such as those based on generative
models and generative adversarial network architecture, learned the appearance
features, which help create examples looking like the domain of interest. So [141]
proposed a flexible technique to augment real images with realistic car objects
and confirmed that augmented data improves car detection compared to pure
synthetic data. Such augmentation gets increasingly advanced with the recent
successes demonstrated by GeoSim [142].

3.2 Generative Modeling

3.2.1 Domain Adaptation

Standard machine learning methods presume that the training and test examples
are sampled from the same distribution and thus are independent and identically
distributed (iid). However, when synthetic and real image data are used, this
assumption may not hold as the underlying distributions of these two data sources
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di↵er, leading to a phenomenon known as domain shift [41]. As a result, models
trained solely on synthetic data can exhibit poor generalization performance on
real-world data. Domain adaptation techniques aim to mitigate this issue by
reducing the discrepancy between the distributions of the two data sources.

Unsupervised Domain Adaptation. Minimizing the discrepancy between
two domains is especially di�cult in an unsupervised setting, where pairs of
images from corresponding domains are not accessible. This setting is idiosyn-
cratic for sim-to-real domain adaptation, which seeks to attune models trained
on synthetic data to real-world data. Multiple strategies fall into the category of
unsupervised domain adaptation: naive joint training or combined pretraining
with fine-tuning, entropy minimization [143], curriculum learning [144], genera-
tive adversarial network based approaches [10], and classifier discrepancy [145].
Many highly regarded works rely on the adversarial framework GAN [8] to fa-
cilitate the adaptation process. They use adversarial training for either data
generation or direct task learning. Task learning methods commonly utilize syn-
thetic and real images as input and aim to produce segmentation maps or other
computer vision predictions but do not generate additional data. While the ad-
versarial loss can alleviate the di↵erence between rendered and real images, it is
not su�cient for accurately classifying or detecting objects in the target domain.
Multiple approaches introduced various regularization techniques to address this
issue. Saito et al. [145] utilize discrepancy loss to align features from source and
target samples. Luo et al. [146] follow a similar hypothesis, but they distinguish
between well and poorly-aligned features in order to tackle the latter stronger.
Instead of applying adversarial loss directly on features, Tsai et al. [147] apply
it to inferred segmentation maps. Other examples include [121], [148], [149] and
[150], [48], [151] [15] but they are out of scope of this dissertation. Another cat-
egory of sim-to-real domain adaptation known as generative methods focuses on
translating synthetic images to real ones, which are then used for task prediction
learning. These mechanisms use an adversarial loss to generate high-resolution,
visually pleasing images by minimizing the distance between the generated and
reference distributions. This work focuses on exploring and advancing research
in this direction.

3.2.2 Adversarial Domain Adaptation

Both task- and data-generation approaches often utilize generative adversarial
network to perform image-to-image translation, and both are prone to generat-
ing semantics confusing samples. Various constraints have been introduced to
address this issue and preserve the semantics of the generated samples. Many
researchers focused on designing such constraints in adversarial models to over-
come the sim-to-real mismatch problem. The CycleGAN, introduced by Zhu
et al. [10], is one of the fundamental image transfer frameworks. CycleGAN
restricts the generator network by adopting the transitivity principle upon bi-
jective image transformations as a regularization in order to ensure common
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semantics between the source and target samples. Liu et al. [50] use weight
sharing between the layers of the generator and discriminator to learn the joint
distribution of data. In subsequent work, the authors [51] introduced the UNIT
framework, which extends the idea of weight sharing and common latent space.
Huang et al. extend this idea in their work on a multi-modal version of the
previous work, known as MUNIT [14], which allows the separation of internal
image representation into the content and style features. GAN-based algorithms
generate visually satisfying images, but they often cannot preserve the high-level
semantic structure of the original image.

Semantic Consistency. Various attempts were made to address the prob-
lem of semantic inconsistency in the image-to-image translation. For example,
SimGAN [9] is a model that uses self-regularization loss to discourage seman-
tic changes and avoid significant alteration of the original image. The authors
of CoupledGAN [50], and VAE-GAN [51] assume the existence of a common
latent space for source and target domains. An alternative line of research in-
volves using additional information, such as semantic maps, to identify changes
between the source and translated samples. However, when translating to the
target distribution Pt(X), generative adversarial networks only operate in the
input space X , ignoring the target labels space Y, which can lead to the intro-
duction of semantically inconsistent artifacts in the generated samples, as shown
in Figure 1.2. Recent research has used the target labels as privileged informa-
tion about the distribution Pt(Y ) to address the inconsistency. For example,
CyCADA [47] improves upon the work of Zhu et al. [10] by introducing percep-
tion loss, which preserves semantic consistency by constraining cycle consistent
task-loss and encourages equivalent segmentation of the input sample before and
after refinement. As an alternative to segmentation loss, [152] utilized the geom-
etry consistency loss for a similar purpose. The task loss measures the di↵erence
between the inferred semantic maps from the original input and the translation.
Chen et al. [48] also agree with the assumption that the original input sample
in the target domain should result in equivalent segmentation prediction. Li et
al. [49] demonstrate that integrating image transfer and segmentation leads to
improved translation quality. Other studies, such as [51] and [15], combine cycle
consistency and adversarial loss in an e↵ort to separate appearance and content
by learning the latent representation space.

There are various methods for image transfer problems preserving the macro-
structure of original samples, apart from the ones leveraging perception models
to measure the dissimilarity of source and translation. Li et al. [52] integrated
the soft gradient-sensitive objective to maintain semantics. It tracks deviation
by applying the Sobel filter to the image and its corresponding semantic map
since alterations in the translated image would change the boundaries of objects.
According to the proponents of the DLOW approach [153], intermediate domains
are beneficial representations for mitigating the gap between domains. Their
work proposes multiple target domains to generate corresponding intermediate
domains, which are used as sources for discriminators in adversarial learning.
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Chen et al. [154] proposed that, in addition to semantic labels, depth maps
represent an e↵ective tool for measuring the di↵erences between sources and
translations. Another method is to adapt the feature maps obtained from images.
Hong et al. [44] employs an adversarial loss to di↵erentiate source and target
samples based on the features extracted by Fully Convolutional Network (FCN)
[155].

Conditional Generation. Several works have adopted the strategy of condi-
tional generation to circumvent the challenges and limitations of pure sim-to-real
transfer. Isola et al. and Liu et al. in Pix2Pix [53, 51] proposed a GAN model
conditioned on layouts corresponding to images. Other approaches, such as CRN
[156], Pix2PixHD [157], SPADE [158], OASIS [159], and CUT [160] also utilize
privileged information such as semantics. In the paper by Qi et al. [54], a dif-
ferent approach to conditioned image synthesis was proposed in which a model
uses pre-stored patches from a collection to generate an image canvas. Wang
et al. improved Conditional GANs in [55] and integrated instance information
with image manipulation possibility. A plehora of these methods [161], [162],
[163], [164] are based on generative adversarial network [8] for image synthesis.
Alternative conditioning techniques include more conceptual inputs like natural
language description [165] or scene graphs. The latter ones are data structures,
which represent scenes as directed graphs with nodes embodying objects and
edges embodying relations between them, they have been used as an alternative
to textual query for image retrieval [66], and description [166], as well as to im-
age generation [167, 67, 168]. Ashual et al. extended the graph-convolutional
approach from [167] in a multitude of ways. The authors proposed dual em-
bedding for layout and appearance introduced location attributes in the image
space, and improved object shapes in the image layout by applying adversarial
loss to them. Dhamo et al. in [168] enhanced the scene graphs with more com-
plex semantic relations between objects and also enabled graph manipulation in
an unsupervised fashion.

3.2.3 Metrics

The original GAN method and a plethora of subsequent generative adversarial
networks lack direct objective function, which makes it challenging to objectively
evaluate their performance and the quality of generated samples, in particular,
[169]. Furthermore, physical realism pursued by rendering engines is only loosely
related to the data realism of generative models. As discussed in Section 2.1,
the rendering engines aim at the optically correct approximation of light trans-
port, whilst generative models seek to reconstruct reference data distribution
producing samples that are most similar to it. This similarity presents a com-
plex problem of quantification.

Perceptual study. Generative methods for image synthesis have been widely
studied, and humans are able to assess the similarity of generated images to ref-
erence data with relative ease. Perceptual studies formalize human evaluations
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of the generated images, often using Amazon Mechanical Turk (AMT) to asses
their realism. The AMT evaluation protocol involves presenting human partici-
pants with both reference data and generated images and asking them to choose
which images they believe are authentic. These evaluations are conducted in
multiple trials and sessions, and the final results are reported as the ratio of gen-
erated images labelled as authentic by the participants. While this metric can
provide some general information about image quality, it is still subjective and
may require domain expertise in certain cases, such as medical imaging.

Inception Score. More objective evaluation methods are necessary due to
the lack of correlation between standard log-likelihood comparisons and the per-
ceptual evaluation of generated images, besides it is di�cult to use kernel density
estimation in high-dimensional spaces. IS [170] and Fréchet inception distance
(FID)[171] are commonly used metrics for this purpose, with various variations
also existing. IS and FID rely on the Inception classification model pre-trained
on the ImageNet dataset but assess di↵erent statistics. IS analyses generated
images by computing the Kullback-Leibler divergence between a conditional and
marginal class distribution. FID, in turn, calculates the 2-Wasserstein distance
between the multi-variate Gaussian fitted to latent space of the Inception model
applied to generated and real reference data. Although these metrics can capture
certain aspects of the generated samples, they show a bias towards the ImageNet
dataset and Inception model and therefore do not adequately evaluate generative
models.

Alternatives. Several metrics have been proposed for evaluating the per-
formance of generative models, with a focus on minimizing bias towards the
ImageNet dataset. These are perceptual path length (PPL) [164] and local in-
trinsic dimensionality (LID) [172]. The PPL quantifies the disentanglement de-
gree of the generator’s latent space and how factors of variation are adequately
separated, while LID measures the degree to which two manifolds of data distri-
butions overlap. In contrast, learned perceptual image patch similarity (LPIPS)
and structural similarity index measure (SSIM) assess the similarity in the im-
age domain. The LPIPS utilizes a VGG model, and SSIM relies on luminance,
contrast, and structure.

Downstream Task. Most approaches to evaluating generative models rely
on the assumption that if a model can produce perceptually meaningful data,
it should be able to support downstream tasks. Therefore, evaluation of the
generated data commonly employs dense class prediction models such as Fully
Convolutional Network (FCN) [155], Dilated Residual Network (DRN) [173], or
Deeplab[174]. These semantic segmentation models are trained on generated
images and evaluated on real ones. Segmentation models typically consist of sev-
eral convolutional layers that learn feature vectors, which are then upsampled to
produce a semantic map using a combination of interpolations or convolutions.
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Chapter 1 discussed an immense demand for reliable training data for deep com-
puter vision models. A training dataset must be exact, i.e., with error-free an-
notations; comprehensive, i.e., provide abundant training samples; diverse, i.e.,
comprise high variance of scenarios. Synthetic data aims to ease the fulfillment
of some of those requirements but struggles with others. Domain gap between
simulated and real data is an additional obstacle that arises while using the
virtual 3D environment. Alhaija et al. [137] suggested a problem relaxation
where a computer vision task such as car detection does not require the entire
render but can rely on real images augmented with 3D models of cars. The
method suggested in [137] places the cars onto the image and estimates an envi-
ronment map to improve augmented cars’ quality and retain generated images’
low-level realism. The proposed relaxation decreases the discrepancy between
both domains and, thus, the complexity of the sim-to-real setting for a computer
vision model. If the downstream task permits, augmentation can reduce that
discrepancy. Indeed, many tasks in autonomous driving, such as object detec-
tion, semantic segmentation, and instance segmentation, only involve identifying
individual objects, such as cars, pedestrians, and cyclists.

This chapter proposes an augmentation pipeline for data synthesis focusing on
a group of objects known as vulnerable road users (VRU). This approach involves
separating the generated data’s high-level realism and high-level realism by han-
dling the content placement and appearance individually. More specifically, the
strategy proposes to simulate the content automatically in a geometrically cor-
rect way and separately to learn the appearance of simulated objects from real
reference data. The proposed appearance learning of the augmented pedestri-
ans relies on an adversarial style transfer technique. As discussed previously the
transfer concept involves learning a function that maps the samples from a source
domain to a target domain.

4.1 Pedestrian Augmentation and Appearance Learning

The proposed synthesis pipeline includes data augmentation and appearance
learning. The data augmentation inserts 3D models of pedestrians into the vir-
tual scene and blends the resulting render with the actual camera frame of the
scene. The goal of the augmentation is to ensure that the blending process is
accurate in terms of geometry and optics. Geometrical correctness requires that
the VRUs are placed only in designated areas of the scene, such as sidewalks and
roads and that there are no collisions with other objects present in the scene,
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Augmented Image

Semantic Ground Truth

Instance Ground Truth

Translated Image

Figure 4.1: An example of a real image from Cityscapes dataset augmented with 3D
pedestrian models along with generated semantic and instance maps and
translated image © 2020 IEEE.

such as cars, trees, and poles. The calibration parameters of the virtual camera
are adjusted to match those provided by the dataset to guarantee optical cor-
rectness. Since the blending only handles the correct placement of the virtual
models in a 3D environment but not the visual realism, the in-painted 3D models
in the resulting frames stand out in an obtrusive manner. Figure 4.1 shows an
example of such appearance.

The synthetic appearance of the in-painted models is addressed by the ap-
pearance learning phase of the data generation pipeline, which extracts the tar-
get data’s visual features and applies them to the blended models so that they
look more like target data. In addition, the adversarial framework, which has
demonstrated its e↵ectiveness at reducing the visual discrepancy between data
samples from di↵erent domains, helps to learn the realistic appearance. Thus,
the final architecture of the pipeline consists of a generator and several masked
discriminator networks. The generator uses the architecture proposed by Zhu et
al. [10], and the discriminator adopts the proposed multi-discriminator architec-
ture. Section 4.3 discusses the structure of the multi-discriminator in detail.

4.2 Data Augmentation

Spawn Map. The data augmentation phase begins with estimating a spawn
map, which identifies the proper positioning of virtual pedestrians without the
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Point cloud (black) Spawn Map (orange)

Projection Blending

Figure 4.2: Visualization of 3D model placement pipeline with reconstructed stereo
point cloud, estimated collision-free spawn map, and rendering of the 3D
model blended with the scene frame. © 2020 IEEE

risk of collision. Collision avoidance prevents newly positioned objects from over-
lapping with objects already present in the scene, such as buildings, vegetation,
or cars. The estimation of the spawn map relies merely on the spatial informa-
tion about the virtual tra�c scene, which can be obtained using sensors such as
lidar or a stereo camera. Next, the proposed method estimates the underlying
geometry of the tra�c scene by calculating the depth from disparity maps. The
Cityscapes dataset provides camera intrinsic and extrinsic parameters along with
per-pixel disparity values for every camera frame to support depth estimation:

1 de f get depth map ( dispar i ty map , camera )
2 depth map = camera . b a s e l i n e ∗camera . f / d i spar i ty map
3 return depth map

Figure 4.2 demonstrates a point cloud obtained from the calculated depth map
along with spawn map and the final blending of a 3D model and background
images. Figure 4.3 shows the augmentation process based on the available Lidar
point cloud in the KITTI dataset.

Next, estimating the ground plane where the algorithm can meaningfully place
3D models is necessary. A pragmatic approach to identifying the points of the
obtained point cloud, which belong to the ground plain, relies on a naive thresh-
old heuristic. Additionally, since the placement of the 3D model occurs auto-
matically, it is necessary to remove the outliers resulting from the point cloud
calculation so that the introduced models are not located outside the scene. A
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Point cloud Spawn Map Blending

Figure 4.3: Visualization of 3D model placement pipeline with Lidar point cloud, es-
timated collision-free spawn map, and rendering of the 3D model blended
with the KITTI scene frame.

technique known as isolation forest helps to remove the outlier points. Using
the ground plane, which includes sidewalk and road surfaces - a commonplace
location for pedestrians in the real world- helps to prevent placing them in inap-
propriate areas such as buildings or walls. Therefore, any arbitrary point of the
spawn map represents the right area for a virtual pedestrian.

Collision Tracking. Additionally, the proposed method avoids collision be-
tween introduced 3D models and other objects already placed in the scene. To
achieve this, a collision map tracks the positions occupied by these dynamic
objects. This tracking represents an inverted free space. After spawn map calcu-
lation, all remaining points are added to the collision map. Subsequently, freshly
introduced objects expand the collision map, helping to avert the overlapping.
This strategy ensures that virtual pedestrians and other dynamic tra�c partici-
pants do not overlap.

Blending. After the virtual scene is constructed, the rendering happens. It
generates an image of virtual pedestrians with transparent backgrounds, blended
with the scene’s original image in the next step. Figure 4.2 illustrates the re-
sulting blended frame with the described pedestrian layer, as well as the recon-
structed point cloud, spawn map, and collision map estimates, which do not
appear in the composite image. Optical correctness of the augmentation process
is accomplished by adopting the intrinsic and extrinsic of the dataset’s camera.

4.3 Appearance Learning

The appearance learning part addresses the problem of the synthetic look of
the blended 3D models, which makes them highly discrepant with the original
scene background. The main idea is to learn the visual style features of the real
pedestrians in the reference dataset and apply them to augmented models. The
style features can include a color scheme, camera sensor low-level features, or
scene illumination.

4.3.1 Vanishing Pedestrians

Currently, most advanced techniques for image style transfer employ a framework
known as generative adversarial network[8]. This framework consists of two net-
works involved in a mini-max game. One network learns to classify images into
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Original Vanishing objects Translated

Figure 4.4: Examples of semantically inconsistent sim-to-real image transfer performed
by the adversarial network during adaptation of SYNTHIA images and
augmented images to the Cityscapes domain. © 2020 IEEE

two categories, original and generated, by minimizing the objective function, and
the other network, the generator, learns to create realistic images by maximizing
the objective. The mini-max game ends ideally in the Nash equilibrium when
distributions of the generated data and reference data are close, and the images
are indistinguishable. The drawback of this approach is that adversarial training
manipulates the structure of produced images in an attempt to restore target
distribution.

As previously discussed, several domain adaptation methods exhibit this be-
havior. Figure 4.4 exemplifies perturbations in the augmented data resulting
from the adversarial training. These perturbations can negatively impact the
employing of the augmented images in the downstream task, as the images be-
come inconsistent with the accompanied ground truth. In the case of domain
adaptation between augmented and real data, the discriminator quickly learns
to identify out-of-distribution objects and implicitly guides the generator to re-
move them. As shown in Figure 4.4, removing objects is undesirable in the
designed data generation pipeline.

4.3.2 Multi-Discriminator

The proposed technique of multi-discriminator aims to address the issue of van-
ishing objects during the appearance learning phase by splitting the individual
discriminator into multiple class-specific ones. This split decreases the decision-
making freedom of the individual discriminator originally encompassing the entire
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G

Dp

Dr

Figure 4.5: Multi-discriminator architecture consisting of generator G and two class
specific discriminators Dp and Dr along with MaskLayer introduced after
each convolution block. © 2020 IEEE

image context. Instead, the separation encourages the class-specific discriminator
to assess a single class contrary to the whole image.

The multi-discriminator architecture employs several discriminators, where ev-
ery individual only focuses on a patch of the images which belong to a particular
class. To achieve that, dedicated masks dissect the original image into a set of
disjoint patches along the semantic borders. Thus, the individual masked dis-
criminator only gets a patch as an input. Figure 4.5 shows the overview of the
masked multi-discriminator network.

During the adaptation process, a generator G takes an augmented image as
an input and translates it into the original domain. Next, masking splits the
translated image into patches, and each discriminatorDc receives a corresponding
patch. Training a joint multi-discriminator D results in the specialization of a
single Dc on the distinctive features of the corresponding class c. Optimization
of the aggregated objective Ladv enables such specialization.

The objective Ladv combines several class-specific objectives:

Ladv(G,D) =
NcX

c

L(Dc, r) (4.1)

In Equation 4.1, c denotes a class, and Nc represents the total number of
classes. The pedestrian augmentation pipeline having only two classes requires
merely a discriminator for the augmented objects p (pedestrians) and a discrimi-
nator for the background r (rest). As a result, the simplified version of the initial
objective given in Equation 4.1 can be reduced to:
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Ladv(G,D) = L(Dp, G) + L(Dr, G) (4.2)

4.3.3 Masking

The proposed method adopts the PatchGAN architecture [53] for each class-
specific discriminator. Masking replaces the pixels of other classes with 0 values.
However, convolutions allow the signal from undesired areas to propagate through
the network layers and contribute to the final result. Therefore, it is necessary to
suppress the activations that originate from outside the patches at each layer of
the discriminator. A proposed MaskLayer applies an original mask Mc, of a class
c to every feature map resulting from the discriminator’s convolution layer. It
requires the down-sampling of the mask to the size of the corresponding feature
map. Figure 4.5 illustrates an overview of a specialized class discriminator.

Cost-sensitive loss. During the adaptation phase, the system receives pairs
of input images xi, each with a size of 3 ⇥ h ⇥ w, along with the labels yi from
the augmented dataset: {(xia, yia)}Na

i=1 and pairs {(xjr, yjr)}Nr
j=1 from the original

dataset. The random variable X takes values xia from the input space X and
Y the values yia from the labels space Y, which are iid and follows the joint
probability distribution Pa:

xia 2 Xa ⇢ X ⇢ N3⇥h⇥w, i = 0, 1, ..., Na

yia 2 Ya ⇢ Y ⇢ Nh⇥w, i = 0, 1, ..., Na

{xia, yia}Na
i=1 ⇠ Pa

(4.3)

In contrast, the real samples xjr follow the distribution Pr:

xjr 2 Xr ⇢ X ⇢ N3⇥h⇥w, j = 0, 1, ..., Nr

yjr 2 Yr ⇢ Y ⇢ Nh⇥w, j = 0, 1, ..., Nr

{xjr, yjr}Nr
j=1 ⇠ Pr

(4.4)

As previously discussed, the loss function for each specialized discriminator
calculates error values for the pixels belonging to dedicated patches, so the masks
Mc are used for the loss calculation. Therefore, the objective function for the
class discriminator omitting i and j can be expressed as follows :

L(Dc

r, Gr) =

E(xr,yr)⇠Pr


1

wh
kDc

r(xr,M
c) �M c(yr)kF 2

�
+

E(xa,ya)⇠Pa


1

wh
k(Dc

r(Gr(xa),M
c)� J) �M c(ya)kF 2

�
(4.5)
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In Equation 4.5, J represents an ones-matrix of size h ⇥ w, and k·kF 2 is the
Frobenius norm. The Masked mean squared error (MSE) is intentionally normal-
ized by the sample size, allowing the masks of di↵erent sizes to contribute dif-
ferently to the loss. The normalization enables learning the appearance features
from the bigger instances where the mentioned features are more distinctive.

However, when this loss function is employed in an adversarial setting naively,
it makes the background overweighing, as it commonly incorporates larger classes
like road and building. The Augmented Cityscapes dataset is heavily imbalanced,
with 95% of pixels representing non-pedestrian classes and contributing 19 times
more strongly to the final objective compared to pedestrian pixels. This illus-
trates the importance of considering the impact of prevailing classes at the scale
of the entire dataset when dealing with class-unbalanced data.

Experiments showed that using the weighting factor � e↵ectively enables this
scaling. Furthermore, the empirical study indicates performance improvement
when � represents the class ratio:

� =

P
kMp(y)k1P
kM r(y)k1

(4.6)

A similar calculation can be performed for multi-discriminator with higher c.
Thus, the resulting cost-sensitive objective can be expressed as:

L = �cycLcyc+

Ladv(D
p

r , Gr) + �Ladv(D
r

r , Gr)+

Ladv(D
p

a, Ga) + �Ladv(D
r

a, Ga)+
(4.7)

In Equation 4.7, Lcyc denotes the cyclic-consistency loss along with the param-
eter �cyc analogous to [10]. The full optimization problem is therefore defined as
follows:

min
Gr,Ga

max
D
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r ,D

p
a,D

r
r ,D

r
a

L(Gr, Ga, D
p

r , D
p

a, D
r

r , D
r

a) (4.8)

4.4 Experiments

Augmentation learning experiments also reside on the Cityscapes public dataset
[29], which contains camera frames, disparity maps, and calibration parameters –
resources necessary for data augmentation. Additionally, the Cityscapes dataset
includes ground truth for detection and segmentation, which can be used to
evaluate the results of the augmentation pipeline on the downstream computer
vision task.

Datasets. The selected dataset must fulfill certain criteria so as to be suit-
able for augmentation. For example, it must provide spatial information about

48



4.4 Experiments

Original Image Virtual Pedestrians Adaptation

Figure 4.6: Examples of domain transfer performed by multi-discriminator network
from augmented images to Cityscapes domain. © 2020 IEEE

the scene chosen for augmentation and ground truth for evaluating the per-
formance of computer vision models on the generated data. The Cityscapes
dataset is an example of a dataset that meets these requirements. It consists of
5000 stereo camera snapshots with a resolution of 2048⇥ 1024 pixels and dense
pixel annotations. These labels comprise ground truth for semantic and instance
segmentation as well as object detection. The proposed augmentation pipeline
renders the Augmented Cityscapes dataset, which also incorporates 2975 images
of 2048 ⇥ 1024 pixels with one to five augmented pedestrians. Each image is
accompanied by generated semantic and instance maps, and the dataset follows
the standard Cityscapes annotation format for classes and categories.

A multi-discriminator network is employed to adjust the appearance of the
augmented objects to make them more realistic. The model is trained using the
augmented images as the source domain and real Cityscapes images as the target
domain, and the training process runs for 200 epochs. The training runs without
initialization of the network with a cyclic loss weight of 10 and cost-sensitive loss
parameter � of 0.2. Similar to the work of Zhu et al. [10], the initial learning rate
is 0.0002, remaining fixed for the first 100 epochs before decreasing to 0 over the
subsequent 100 epochs. The experiments used images downsized by ⇥2 without
random crops.
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Figure 4.6 illustrates the images produced by the proposed framework. It vi-
sualizes the e↵ects introduced via the adaptation approach by comparing both
augmented and translated images. The impact of the appearance learning part
is demonstrated by magnifying the parts of the image where they are most ap-
parent. It is worth noting that the proposed masked discriminator architecture
e↵ectively alleviates inconsistent domain translation evident in vanishing pedes-
trians. Synthesized samples did not exhibit inconsistencies, and augmented vir-
tual pedestrians remained in the image after translation. Another characteristic
of the translated images is the appearance of the rendered objects, which follow
the color scheme of the target dataset. Finally, the translated images incorporate
realistic illumination extracted from the real data, as highlighted by the magni-
fied segments of the images, which accentuate applied light spots, shades, and
soft object borders.

The results of the experiments are additionally evaluated quantitatively by
employing the obtained images in semantic and instance segmentation tasks.
For this purpose, Deeplabv3 [174] and Mask-RCNN [175] models were trained
with augmented images.

Instance Segmentation. The quality of the image transfer is assessed us-
ing the standard COCO average precision (AP) metric [176] in the instance
segmentation task. During the experiment, it deploys a detection model Mask-
RCNN pre-trained on the COCO dataset and fine-tuned on the introduced Aug-
mented Cityscapes dataset. Table 4.1 reports the results of the instance segmen-
tation model tested on 500 images from the Cityscapes val.

Semantic Segmentation. The e↵ectiveness of the generated data for the
semantic segmentation task is evaluated using the Deeplabv3 model. Similar
to the previous evaluation, the segmentation model is trained on the Cityscapes
training set and the augmented data. Figure 4.7 shows the model’s results tested
on 500 images from the Cityscapes validation set. In both experiments, the
images are downsized to the resolution of 1024 ⇥ 512. Deeplabv3 model uses
xception65 backbone and is trained for 90, 000 iterations with 16 random crops
of size 513⇥512 pixels in every iteration. The learning rate for this model is kept
at 0.007. Table 4.1 reports mean IoU metric for the best-performing snapshots.

In these experiments, the generated data achieves comparable performance in
overall metrics such as average precision (AP) but exhibits better scores for the
class of interest - person. Specifically, the improvement in the APperson metric in
Mask-RCNN experiments is 2.6. In contrast, the Deeplab only showed a relatively
small improvement in the pedestrian class, with an increase of less than 0.5%.
The pixel accuracy and mean IoU for all 19 classes show a decrease of 0.3%,
which is relatively insignificant. These results suggest that the proposed method
for data generation does not introduce a domain gap between the generated and
real data.
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Instance segmentation Semantic segmentation

Figure 4.7: Prediction results on Cityscapes validation set, for instance, and seman-
tic segmentation obtained by Mask-RCNN and Deeplabv3 models, respec-
tively, trained on proposed augmented training images. © 2020 IEEE

4.5 Discussion

As previously discussed in Chapter 1, deep models for object detection in tra�c
scenes trained with only synthetic data face the challenges of the sim-to-real
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Method APavg AP50avg APperson AP50person Accuracy mean IoU preson

Cityscapes 31.8 59.0 33.0 67.7 95.6 75.6 77.1

Augmented 32.6 60.4 35.6 74.2 95.3 75.3 77.3

Table 4.1: Prediction results obtained on Cityscapes validation set for instance seg-
mentation (AP) obtained by Mask-RCNN and semantic segmentation (IoU)
obtained by Deeplabv3, when trained on Cityscapes train set (top) and aug-
mented images (bottom) and generated by proposed augmentation method.
© 2020 IEEE.

domain gap. This gap leads to the suboptimal performance of named detectors in
real-world scenarios. To address the decreasing performance, several works, such
as [137], proposed to simplify the sim-to-real setting by augmenting real images
with virtual objects instead of using pure rendered images. Inspired by the
augmentation strategy of Alhaija et al. [137], the work described in this chapter
proposes a pipeline for geometrically correct tra�c scene augmentation with 3D
pedestrians. The proposed method relies on spatial information obtained from
the available point cloud to ensure geometrical correctness and avoid collisions
among the objects. The experiments conducted for evaluation utilized the depth
maps derived from available disparity maps.

Furthermore, the approach extends the augmentation with an adversarial ap-
pearance learning to make in-painted objects visually indistinguishable from the
background scene. Adversarial learning of visual characteristics leads to the phe-
nomenon of vanishing pedestrians motivated by the out-of-distribution kind of
renderings. The proposed approach further extends the augmentation pipeline
with novel masked multi-discriminators to learn the style of real pedestrians
without removing rendered ones from the image.

Experiments demonstrated that the proposed pipeline can augment real traf-
fic images with synthetic pedestrians that resemble the reference dataset’s real
pedestrians. Additional experiments on instance segmentation and pedestrian
detection confirmed the decrease of the domain gap between augmented and
original data. Further chapters look closer into the problem of the sim-to-real
domain gap and the causes of semantic inconsistencies emerging during the ad-
versarial domain adaptation.
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5.1 Class Balance

The Cityscapes dataset is a large-scale dataset for computer vision tasks for urban
tra�c scenes. It comprises 2975 train images and 500 validation images and pixel-
wise annotations for semantic and instance segmentation. These annotations
include 19 classes: road, building, sky, sidewalk, vegetation, car, terrain, wall,
truck, pole, fence, bus, person, tra�c light, tra�c sign, train, motorcycle, rider,
bicycle. The Playing for Data is a synthetic dataset extracted from a video game
comprising 24, 966 images. Every sample is provided with a dense semantic map
annotated in a way that conforms with the Cityscapes dataset. The KITTI is
also a real large-scale dataset, which supports ground truth for object detection
in addition to the semantic segmentation task. Initially, it provides a limited
number of semantic maps limited to 200 examples for the train and 200 for the
test. Having the size of 1024 ⇥ 256, they are compatible with the Cityscapes
dataset [137]. However, additional annotations from Kreso et al. [177] and
Ros et al. [178] have been provided by some researchers, increasing the size
of the dataset to 600 samples. The SYNTHIA dataset is a di↵erent synthetic
dataset used for the experiments. It comprises 9, 400 frames created in a virtual
environment and 9, 400 annotations consistent with the Cityscapes dataset.

Figure 5.1 illustrates the class distribution in the synthetic and real datasets
regarding four main classes. The histogram shows that the class distribution in
Cityscapes and Playing for Data datasets reveals a strong imbalance concerning
certain classes, particularly sky and vegetation. The PfD dataset has almost
three times more instances of the sky class than the Cityscapes dataset. Addi-
tionally, the vegetation class is two times stronger underrepresented in PfD than
in Cityscapes. Another histogram shows class distribution di↵erences between
KITTI and PfD images. The KITTI dataset has a higher proportion of the veg-
etation class compared to the PfD dataset, which has more pixels corresponding
to the building class. The third histogram compares the Cityscapes and SYN-
THIA class distributions. The SYNTHIA dataset contrasts with other presented
datasets in capturing the images from a surveillance viewpoint contrary to the
ego car viewpoint. Viewpoint discrepancy is also reflected in the class distribu-
tion histogram provided in Figure 5.1. The comparison shows road and sidewalk
are two imbalanced classes.
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Figure 5.1: Histograms visualizing class balance statistics observed in real, original
synthetic, and re-sampled synthetic datasets for the specific classes sky,
vegetation, building, sidewalk, and road.
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5.2 Importance Resampling

The hypothesis is that semantically mismatching artefacts in Figure 1.2 are re-
lated to the class imbalance observed in Figure 5.1. Under this hypothesis, it is
plausible to approach the class inconsistency by resampling the synthetic sam-
ples so that the resulting distribution of the source samples Ps and the target
distribution Pt are approximately equal. The Sampling Importance Resampling
(SIR) rebalances the data in two phases [179]: first, it draws L samples {xs

i
}L
i=1

from Ps(x), then it calculates the weights of the drawn samples !s

i
, known as

importance weights. They can be obtained from the labels as follows:

!i =
pt(ysi )

ps(ysi )
(5.1)

Finally, a subset of samples {xs
i
}l
i=1 is drawn from {xs

i
}L
i=1, where l < L,

with probabilities given by the importance weights !s

i
. Importance weights are

dedicated to remedying the bias of source data distribution. Given the source
labels {ys

i
}Ns
i=1, the probability distribution ps(y) in our task can be estimated in

a relatively simple manner [41]:

ps(y
s

i ) =
X

c

N c

y
s
i
/Ny

s
i

N c
s/(Ny

s
i
Ns)

(5.2)

In Equation 5.2, N c

y
s
i
represents the number of pixels belonging to class c

and Ny
s
i
is the number of all pixels in a specific sample ys

i
. Ns represents the

number of all source samples, c 2 {road, building, etc} are the label classes,
and N c

s =
P

i
N c

y
s
i
denotes the number of class c pixels in the source dataset.

For the target distribution Pt it can be obtained by similar calculation where
N c

t =
P

j
N c

y
t
j
:

pt(y
s

i ) =
X

c

N c

y
s
i
/Ny

s
i

N c
t
/(Ny

s
i
Nt)

(5.3)

Therefore, given labels {ys
i
}Ns
i=1 and {yt

j
}Nt
j=1, the weights !i can be determined

this way:

!i =
Nt

Ns

P
c
N c

y
s
i
/N c

tP
c
N c

y
s
i
/N c

s

(5.4)

Sampling Importance Resampling (SIR) algorithm states that as L/l ! 1,
the samples {xs

i
}l
i=1 will be approximately distributed according to Pt. It is

possible to adjust the synthetic dataset by resampling it based on the naively
approximated class balance in the source and target domains. The estimate can
be done using the probabilities given by !i.

The resulting class distributions for the resampled synthetic datasets show
favourable agreement with the corresponding real data, at least for the four
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Original CyCADA CycleGAN Resampling

Figure 5.2: Examples of synthetic images translated by the proposed method and base-
line methods from PfD to Cityscapes domain. © 2019 IEEE

main classes. These equalized class distributions can be seen in Figure 5.1. The
only exception is the sidewalk class in the Cityscapes-SYNTHIA setting, which
presumably regards the significantly di↵erent viewpoint in the SYNTHIA dataset
which prevents rebalancing.

5.3 Experiments

An established translation method CycleGAN [10] was trained with the resam-
pled data to evaluate the impact of the importance sampling strategy on the
domain adaptation process. In line with the original work, the model’s training
continued 200 epochs with resampled images as the source data and real im-
ages as the target data and then translated images were evaluated qualitatively
and quantitatively. Preprocessing step downsampled the training images to a
resolution of 1024 ⇥ 512 pixels in the experiment with Cityscapes. The KITTI
experiment used the downsampling to 1024 ⇥ 256 pixels. In both settings, the
downsizing was performed due to training hardware limitations. The experi-
ments fall in three settings: the adaptation of PfD to Cityscapes, PfD to KITTI,
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PfD CycleGAN Resampling

Figure 5.3: Examples of images translated by the proposed method and baseline meth-
ods from PfD to KITTI domain. © 2019 IEEE

and the transformation of SYNTHIA to PfD. The domain adaptation strategy
was evaluated visually and through its performance on a downstream semantic
segmentation task and compared to recent sim-to-real adaptation networks.

Qualitative Evaluation. The qualitative results are presented in Figures 5.2
and 5.3. In Figure 5.2, it can be seen that the original translation results confuse
the patches of the classes vegetation and sky. However, by using resampling, the
domain adaptation model can better maintain the image’s semantics. Figure 5.3
compares samples generated in the PfD-KITTI experiment by CycleGAN trained
on the original and resampled data. Resampling helps to prevent the transla-
tion model from introducing unwanted artefacts, such as vegetation patches on
buildings and roads contrary to the results without resampling, where the model
confuses imbalanced classes and produces mismatch errors.

Segmentation. Two segmentation models DRN-C-26 [173], and Deeplabv3
[174] were used in the downstream task evaluation experiment. The DRN net-
work was first initialized with weights pre-trained on the ImageNet dataset [28]
and then fine-tuned with random crops of 600 ⇥ 600 of the translated PfD to
Cityscapes data for 250 epochs, using the momentum of 0.99 and a learning rate
of 0.001 that decreased by a factor of 10 every 100 training steps. For Deeplab,
training used a learning rate of 0.007 and crops of 513⇥ 513. Identical settings,
including the hyper-parameters for both the DRN and Deeplab in all experimen-
tal settings, guaranteed a fair comparison with baselines. Benchmark translation
methods included CycleGAN [10], CyCADA [47] and UNIT [51]. Figure 5.4
demonstrates several examples of semantic maps predicted using the benchmark
data and proposed approach.
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Input Ground Truth CycleGAN CyCADA Resampling

Figure 5.4: Semantic segmentation results obtained on Cityscapes validation set per-
formed by DRN method, which was trained on the synthetic images trans-
lated by the proposed and baseline methods. © 2019 IEEE

The evaluation used the Jaccard index, also known as the intersection over
union (IoU) metric, which for any specific class represents the ratio of correct
prediction to the sum of true positive, false positive, and false negative predictions
[180]. In addition, the mean value of the Jaccard index overall 19 classes was
reported. Tables 5.1 and 5.2 present the results obtained in the experiments.
The performance values for UNIT originate from the work of Dundar et al. [40].

In addition, Tables 5.1 and 5.2 show DRN and Deeplab results trained on
the dataset obtained by translating PfD images to Cityscapes, as measured on
the Cityscapes validation dataset. One can see that resampling demonstrates
higher mean IoU performance compared to benchmark methods for both DRN
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5.4 Adversarial Translation with Importance Estimation

and Deeplabv3 without introducing additional semantic-preserving constraints
and losses.

Additionally, the proposed approach was compared to CycleGAN in the PfD-
KITTI setting. In this experiment, the performance of the DRN network trained
on 25, 000 PfD images translated to KITTI was evaluated using the validation
subset of the initial KITTI semantic segmentation data. It should be noted
that, despite having relatively moderate mean IoU in this experiment, resampling
helped to achieve performance improvement compared to baseline by over 2 per
cent. However, the resampling of SYNTHIA-Cityscapes data demonstrated a
significant decrease in segmentation performance. Such performance is likely
due to the di↵erent sensor setups in the synthetic and real datasets, which makes
class balancing across all five imbalanced classes non-trivial.

5.4 Adversarial Translation with Importance Estimation

As introduced in Section 5.2 the setting consists of synthetic tuples of images
x and labels y: {(xs

i
, ys

i
)}Ns

i=1 from the synthetic domain Ds and real tuples
{(xr

j
, yr

j
)}Nr

j=1 from the real domain Dr:

Ds = {xsi}Ns
i=1

Dr = {xrj}Nr
j=1

(5.5)

Consider a variable x in the input space X that takes on values xs
i
, which are

iid according to the probability distribution Ps(x):

xsi 2 Xs ⇢ X , i = 0, 1, ..., Ns

{xsi}Ns
i=1 ⇠ Ps(x)

(5.6)

In contrast, the samples xr
j
are distributed according to Pr:

xri 2 Xr ⇢ X , i = 0, 1, ..., Nr

{xrj}Nr
j=1 ⇠ Pr(x)

(5.7)

Samples of synthetic and real datasets are profoundly dissimilar, so the marginal
distributions of these samples {xs

i
} and {xt

j
} are not equal Ps(x) 6= Pr(x). On the

other hand, the P (y|x) conditional distribution of labels y given x is unchanged.
This scenario is known as covariate shift [41], which is generally addressed by
domain adaptation methods.

As discussed in Section 1.3, a number of methods related to sim-to-real domain
adaptation aim to find a mapping function g : Xs ! Xr that translates samples
from the synthetic space into the real. Recent works generally use neural net-
works in order to approximate this mapping function for high-dimensional image
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Original synthetic Translated

Figure 5.5: Semantically inconsistent sim-to-real adaptation performed by the adver-
sarial network by translating Playing for Data and SYNTHIA images to
the Cityscapes domain. © 2020 IEEE

spaces. A large number of these neural networks adopt a renowned generative
adversarial network (GAN) framework [8] and are called generators. Training
of such an adversarial model, as described in Section 2.4.1, involves another
network, known as the discriminator, which is given input samples from the ref-
erence distribution Pr and from the generated distribution P (g(xs)). During the
training, two networks are involved in a zero-sum game, where the discriminator
learns to classify synthesized and reference samples, and the generator learns to
synthesize samples that reduce classification to random guessing. The mini-max
game converges ideally to Nash equilibrium, where the samples synthesized by the
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5.4 Adversarial Translation with Importance Estimation

generator g are distributed similarly to reference data such that P (g(xs)) ⇠ Pr.
The use of adversarial loss e↵ectively performs perturbations in the images at a
low level so that the resulting images resemble the visual properties of reference
samples. Such perturbations imposed on the images by the generator are driven
by the fact that the discriminator learns certain regularities distinct for the ref-
erence data. These perturbations make the generated images appear similar to
the target ones but introduce inconsistency between high-level image content and
the corresponding semantic layout as demonstrated in Figure 5.5.

5.4.1 Importance Function

The proposed method alleviates the sim-to-real bias and thereby decreases class
inconsistencies in image transfer. The importance weighting procedure is a tech-
nique, which is e↵ective in mitigating the covariate shift in machine learning.
The central principle behind this technique involves a notion of importance of
the training samples and consists of identifying and prioritizing the most in-
formative samples in compliance to that importance. Indeed, the importance
value of a particular sample can be defined by applying an importance function,
provided the density functions of both distributions:

!(x) =
pr(x)

ps(x)
(5.8)

5.4.2 Density Ratio Estimation

In an unsupervised sim-to-real setting estimating the densities for both distribu-
tions is reasonably di�cult. However, as seen from Equation 5.8, it is possible
to circumvent the estimation of individual densities by directly estimating their
density ratio. To this end, the Kullback–Leibler Importance Estimation Pro-
cedure (KLIEP) introduced by Sugiyama et al. [65] is a compelling technique
to address the task. By modeling the importance function !(x), this method
directly estimates the ratio of both distributions’ densities instead of estimating
the densities independently.

!̂(x) =
X

l

↵l'l(y), (5.9)

In Equation 5.9 the parameters ↵l are learned from the source samples ys
i

and target samples yt
j
and 'l(y) represent basis functions. The model !̂(x)

approximates the density p̂t(x) = !̂(x)ps(x) so that parameters ↵l of the model
minimize the Kullback-Leibler divergence between pt(x) and p̂t(x).

KL(pt||p̂t) = E
xt

⇥
log

pt(x)

!̂(x)ps(x)

⇤

= E
xt

⇥
log

pt(x)

ps(x)

⇤
� E

xt
[log !̂(x)]

(5.10)
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Since Ext

⇥
log pt(x)

ps(x)

⇤
does not depend on ↵ let us only consider Ext [log !̂(x)]:

E
xt
[log !̂(x)] =

1

Nt

NtX

j

log
X

l

↵l�l(y
t

j) (5.11)

Therefore, since p̂t(x) is a probability density function, maximizing the 5.11
over ↵ under the following constraint will minimize the Kullback-Leibler diver-
gence:

E
xs
[!̂(x)] =

1

Ns

NsX

i

X

l

↵l�l(y
s

i ) = 1, (5.12)

Hence, the optimization problem is defined as follows:

maximize
↵l

X

j

log
X

l

↵l'(y
t

j) (5.13a)

subject to
X

l

↵l

X

i

'l(y
s

i ) = Ns, (5.13b)

↵ � 0. (5.13c)

Optimization employs the radial basis function (RBF) kernel K�t centered at
yt
j
and with width �t defined by grid search maximizing Equation 5.11. A similar

optimization problem can be defined for the reversed direction of adaptation:

!̂(xs) =
X

l

↵lK�r(y
s, yt

l
),

 ̂(xt) =
X

k

�kK�s(y
t, ys

k
)

(5.14)

Finally, pre-matching the densities of marginal distributions employs the gra-
dient ascent with constraint satisfaction to find !̂(xs) and  ̂(xt).

5.4.3 Weighted Loss

The underlying image transfer method is based on an adversarial approach de-
scribed in Section 5.2, which also utilizes a cycle-consistency loss [10]. Therefore,
the final objective combines importance weights with both adversarial losses for
both gr : Xs ! Xr and gs : Xr ! Xs, and cyclic-consistency losses:
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L = LIWAdv + LIWCyc

= E
xr
[ (yr) log dr(x

r)]

+ E
xs
[!(ys) log(1� dr(gr(x

s))]

+ E
xs
[!(ys) log ds(x

s)]

+ E
xr
[ (yr) log(1� ds(gs(x

r))]

+ E
xr
[ (yr)kgr(gs(xr))� xrk]

+ E
xs
[!(ys)kgs(gr(xs))� xsk]

(5.15)

5.5 Experiments

Evaluation of the importance weighting approach employs two experimental set-
tings: a toy example and tra�c data. In the first experiment, Gaussian and
uniform samplers produce source and target distributions. In the second setup,
experiments are conducted in the tra�c environment using large-scale datasets
in synthetic and real tra�c scene scenarios.

5.5.1 Toy Example

Domain adaptation problem in the toy example setting is simulated by sampling
one dataset with 10, 000 random vectors of size 300 per domain. The target
domain is distributed normally with a mean value of 7.0 and a standard deviation
of 0.5. The goal is to find a mapping function approximated by GAN model,
which translates the source samples distributed uniformly in the segment [0, 10)
into samples so that their distribution and the target distributions are equal.
Figure 5.6 shows the histograms of both distributions.

Toy experiment uses an original generative adversarial network as a baseline.
The baseline goal is, similarly, to translate the source samples into a closer rep-
resentation of the target distribution. Both models are trained on simulated
datasets for 40 epochs with batches measuring 200 vectors. The original under-
lying GAN model comprises several activation functions and scaled exponential
linear units [181] in the generator part and additional sigmoid activation in the
discriminator part. A stochastic gradient descent optimizer for the generator uses
a learning rate of 8e� 3 and the one for the discriminator 4e� 3. The proposed
method extends the previously defined original GAN with the KLIEP-based im-
portance loss according to Equation 5.16. Training of the extended model follows
the same experimental setup.
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5 Density Matching

Figure 5.6: Histograms for source (blue), target (red) distributions along with distribu-
tions generated by original GAN (orange), and by proposed KLIEP GAN
(green). © 2020 IEEE

L = LIWAdv = E
xs
[log d(xt)]

+ E
xs
[
X

l

↵lK�t(x
s, xt

l
) log(1� d(g(xs))]

(5.16)

After training, 10, 000 vectors are inferred from uniformly distributed vectors
using the original GAN and importance weighted GAN. Figure 5.6 illustrates
the resulting distributions. Additionally, Table 5.3 evaluates both generated
distributions by presenting the moments and distances measured to the target
distribution. The calculations of the distances rely on the Wasserstein distance
and Energy distances metrics.

The results of the experiments with toy data show that distribution pre-
matching using the density ratio estimation increases the similarity of the target
and adversarially generated distribution. Similarity improvement is indicated by
both moments as well as decreasing the Wasserstein distance by 20% and energy
distances by 15%.

5.5.2 Tra�c Data

The large-scale evaluation experiment follows a similar process to the toy ex-
ample, comprising two stages. The first stage of this process involves learning
the adaptation model to translate source images into the target domain. The
network then produces a realistic synthetic dataset inferred from source images.
Next, several segmentation networks use the translated dataset for training. The
assessment of the sim-to-real translation quality of the images succeeds by eval-
uating the segmentation accuracy on the real data.
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Distribution µ � Wasserstein distance Energy distance

Target (Gauss) 7.0 0.5 - -

Source (uniform) 5.0 2.9 2.56 1.39

Vanilla GAN 7.7 2.0 1.32 0.79

Instance weighted 6.7 1.8 1.08 0.67

Table 5.3: Distances between generated and target distributions (less is better).
© 2020 IEEE

The experimental setting with automotive data relies on two large-scale datasets:
Cityscapes [29] and Playing for Data (PfD) [4]. The Cityscapes dataset repre-
sents the real or target domain and comprises 5000 frames of urban tra�c scenes
with resolution 2048 ⇥ 1024 pixels together with fine-annotated dense semantic
maps. These samples include 50 cities captured at various times of the year
under di↵erent weather and lighting conditions. The Cityscapes dataset pro-
vides ground truth for semantic, instance, and panoptic segmentation, covering
30 classes and annotating single instances of dynamic objects of class car, person,
and rider. The evaluation of the proposed method focuses on 19 commonly used
classes such as road, building, sky, sidewalk, vegetation, car, person, and others.
On the other hand, the PfD dataset contains approximately 25000 frames with
a resolution of 1914 ⇥ 1052, originated from a computer game engine and an-
notated with semantic labels. While the PfD dataset exhibits a large degree of
high-level realism in terms of tra�c scene composition, including a wide range
of scenery, scenarios, and appearances, it also contains labelling inconsistencies.
Nonetheless, the PfD dataset remains a popular choice for synthetic data among
researchers in the field of autonomous driving.

Figure 5.7 shows the results of domain adaptation on the Cityscapes and PfD
images performed by the proposed method and the benchmarks. According to
the presented samples, the benchmarks introduce several mismatching patches in
the samples during the translation. These inconsistent patches occur in several
classes, mainly imbalanced vegetation and sky. On the other hand, the proposed
density ratio pre-matching helps the translation model maintains semantic con-
sistency, resulting in a more accurate translation of the source data.

Also, the quality of domain adaptation is quantitatively assessed on the down-
stream semantic segmentation task. For that, state-of-the-art segmentation mod-
els Dilated Residual Network (DRN) [173] and Deeplabv3 [149] are trained on
the translated samples produced by the proposed method and benchmarks and
evaluated on the Cityscapes validation dataset. It is important to note that the
segmentation model had no access to the target training dataset. The experi-
mental setup follows the protocol of the original works [173] and [149] for the
quantitative evaluation. Specifically, preprocessing downsized the images to the
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resolution of 1024 ⇥ 512. Additionally, DRN used pre-trained on the Imagenet
[28] weights as initialization. After that, the model was trained for 200 epochs
on randomly cropped patches of translated images of size 600⇥ 600. The entire
training has a momentum of 0.99 and starting learning rate of 0.001, which de-
creases by a factor of 10 every 100 iteration. The Deeplabv3 model was trained
for 90000 steps using a batch size of 16 patches of size 513 ⇥ 513. In this case,
the optimizer had a learning rate of 0.007. The backbone used for the Deeplab
model was the xception65 network. Table 5.4 shows obtained segmentation per-
formance. Additionally, the table shows the results for the previous version of
Deeplab - v2 [174].

The evaluation uses intersection over union (IoU) for a particular class, also
known as Jaccard Index, as a primary metric in all downstream experiments.
IoU computes correctly predicted pixels as a fraction of the true positives, false
positives, and false negatives summed[180]. The ratio enables evaluation that is
agnostic to the class size. Table 5.4 shows the results obtained for both segmen-
tation networks DRN and Deeplab trained on datasets generated by respective
adaptation methods. Additionally, the table reports the mean IoU value for 19
classes and overall pixel accuracy. Furthermore, the table compares the results
of the proposed approach to lower and upper bounds obtained by training the
segmentation models on real and synthetic data only.

The findings in Table 5.4 show that pre-matching densities using the Kullback-
Leibler Importance Estimation Procedure (KLIEP) improves the average as well
as class-specific segmentation performance for classes such as road, building,
vegetation, sky, and car. For example, the sky class increased segmentation
by 7%, while the remaining classes saw about 2% improvement. In the Deeplab
experiments, CyCADA achieved the highest mean IoU, but density pre-matching
demonstrated better results for certain classes, including building, vegetation,
sky, truck, and bus.

Figures 5.8 and 5.9 exemplify the segmentation results for DRN and Deeplab,
respectively. Demonstrated semantic maps confirm that class-consistent image
translation leads to improved class consistency in semantic prediction.

5.5.3 Ablation Study

Apart from the tra�c scene experiments, a supplementary ablation study was
conducted on tra�c scene images. The goal of the study is to investigate the
contribution of the importance estimation strategy to the performance of the
proposed sim-to-real domain adaptation method. In this experiment, the source
dataset PfD is divided into three proportionate groups according to the impor-
tance values of the samples. Every cohort includes 8322 samples and denotes
a distinct importance range: low, medium, and high. The experiment closely
recreates the evaluation protocol discussed in Section 5.5.2, with a few modifica-
tions to accelerate the process. Firstly, all samples are downsized to 512 ⇥ 256
pixels. After that, three instances of the proposed translation model are trained
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Cityscapes GT CycleGAN CyCADA UNIT Proposed

Figure 5.8: Semantic segmentation results obtained on Cityscapes validation set per-
formed by DRN model, which was trained on the synthetic images trans-
lated by the proposed density matching method and baseline methods.
© 2020 IEEE

Cityscapes GT CycleGAN CyCADA UNIT Proposed

Figure 5.9: Semantic segmentation results obtained on Cityscapes validation set per-
formed by Deeplab model, which was trained on the synthetic images trans-
lated by the proposed density matching method and baseline methods.
© 2020 IEEE

using each importance group as the source and the entire Cityscapes training
set as the target. Next, each of the three trained models performs inference
on the entire PfD, providing three translated datasets. Each of the resulting
datasets exhibits di↵erent adaptation quality. Finally, three DRN segmentation
models were trained on the respective translated datasets and evaluated on the
Cityscapes validation set.
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Original Low Medium High

Figure 5.10: Examples of image transfer by KLIEP GAN trained on translated syn-
thetic images of di↵erent importance cohorts. © 2020 IEEE

The results of the ablation study, shown in Table 5.5, confirm that higher im-
portance as estimated by KLIEP reflects greater similarity to the target distribu-
tions. This suggests that leveraging more informative samples, as indicated via
their importance estimates, can increase the consistency of adversarial image-to-
image domain adaptation. This trend can also be observed in the improvement of
image translation going from the low-importance cohort to the high-importance
cohort, as demonstrated by the increase in mean IoU. Figure 5.10 illustrates this
qualitative improvement in translation consistency.

5.6 Discussion

As discussed in Chapter 1, traditional deep models for computer vision tasks in
the context of autonomous driving cannot e�ciently perform in the real world
if they are trained purely on synthetic data. It is necessary for the synthesized
training data to be closer to real test data. One way of achieving that is known
as domain adaptation, a technique that aims to make both data distributions
closer. An attempt to resemble target distribution typically results in structural
perturbations of the source images and semantic inconsistency with ground truth
annotations.

Chapter 4 showed distorted image semantics during appearance learning where
an adversarial network removed synthetic pedestrians augmented into real scenes.
Similarly, this chapter showed class confusion arising in multiple sim-to-real adap-
tation settings such as PfD-Cityscapes, SYNTHIA-Cityscapses, or PfD-KITTI.
Subsequently, it analyzed the causes of the observed phenomenon by applying a
SIR strategy to tackle the imbalance problem and restore the global statistics of
both datasets in each setting. The experiments show that this strategy is e�-
cient for a setting where target labels are available. Furthermore, applying SIR
improves the visual quality of translated images of an underlying method as well
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Cityscapes [29] 67.4 97.3 79.8 88.6 32.5 48.2 89.0 93.0 92.2

PfD [4] 21.7 42.7 26.3 51.7 5.5 6.8 75.5 36.8 46.7

Low 27.9 75.6 28.7 69.1 14.5 18.5 63.4 45.8 75.7

Medium 28.3 77.8 24.0 71.6 10.7 17.1 69.3 69.6 73.5

High 30.2 82.2 40.2 72.1 15.3 23.2 72.9 69.5 77.6

Table 5.5: Semantic segmentation results (IoU) obtained on Cityscapes validation set
by DRN method trained on translated synthetic images from di↵erent im-
portance cohorts. © 2020 IEEE

as the performance of the semantic segmentation network trained on the trans-
lated images. These results could be achieved without introducing additional
constraining loss functions.

This chapter further improves the proposed density pre-matching strategy by
integrating it directly into the adversarial sim-to-real adaptation model. Em-
ploying the KLIEP density ratio estimation procedure in conjunction with the
cycle-consistency loss function allows tackling class covariate shift problems in
synthetic and real datasets on-the-fly. The experiments show that this strategy is
similarly e↵ective in multiple sim-to-real settings in an autonomous driving con-
text. First, the toy experiment showed the e↵ects of the density ratio estimation
by making a plane GAN model sampling the Gaussian target distribution more
accurately. Consequently, additional large-scale experiments have shown that
KLIEP loss is beneficial for adversarial learning not only due to improving the
semantic consistency of translated images but also due to improved performance
of segmentation networks trained on them. Finally, the ablation study demon-
strated how obtained importance scores a↵ect adversarial learning by compar-
ing several cohorts of translated samples divided according to their importance
weights. Equally to data subsampling using SIR, the extension based on den-
sity pre-matching is an e↵ective tool for reducing the sim-to-real gap, but the
availability of privileged knowledge about target data global statistics limits both
techniques. This limitation can be circumvented by relying only on a representa-
tive annotated subset of target data; otherwise, more sophisticated methods are
required.
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Recent domain adaptation techniques rely on adversarial loss and act in the im-
age space. Adversarial training inflicts perturbations at the pixel level in the
translated images attempting to reconstruct the distribution of reference data.
As demonstrated in Chapter 5, the discrepancy in the global statistics results
in significant corruption of the images arising during the adaptation procedure.
Such hallucinations substantially reduce the applicability of translated images as
they become inconsistent with the underlying ground truth. The previous chap-
ter suggested alleviating these undesirable e↵ects by pre-matching the densities
of both datasets to circumvent the problem. The proposed technique showed
its e↵ectiveness but required privileged information about the global statistics of
reference data unavailable in typically sim-to-real settings.

This chapter describes a mechanism that aims to perform semantically consis-
tent sim-to-real domain adaptation without knowledge about underlying target
distribution in any form, such as e.g. semantic labels as demonstrated in Fig-
ure 6.1. The proposed method follows the assumption that domain-agnostic
content features and domain-specific style features can be learned independently.
Consequently, this idea suggests learning the entire content manifold so that a
disentangled style allows the generation of images from arbitrary content directly
in the target domain.

6.1 Content and Style Disentanglement for Semantic
Consistency

The proposed unsupervised domain adaptation method utilizes a single encoder
to extract the domain-agnostic content features of images from both source and
target datasets, along with fixed style codes to represent the domain-specific
appearance features. A decoder can use a content vector learned from a source
image and an appearance vector from the target domain to synthesize an image
with original content looking similar to the images in the target data. This
adaptation method operates unsupervised, as there is no correspondence between
source and target images. By separating content and style learning, it aims to
learn semantic consistency without using privileged information, such as pre-
trained segmentation networks or semantic or depth maps.

Figure 6.2 shows the overview of the approach. It consists of several networks:
an encoder E, a decoder G, along with individual discriminator Di per each
domain xi 2 Xi (i = a, b), with a and b denoting source and target domains,
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Figure 6.1: An example of semantically consistent sim-to-real adaptation achieved by
disentanglement. © 2020 IEEE

respectively. As shown in Figure 6.2, the encoder E maps the input image xi
to a code ci = E(xi), which aims to represent domain-agnostic content. Each
domain also has a fixed style code si, that represents the appearance features of
the particular domain. The style code si is initialized as si by sampling a vector
of size 256 from a uniform distribution within (0, 1). During the training, a
repeating cross-domain translation facilitates the disentanglement of the vectors
ci and si and stimulates them to embrace content and style features, respectively.
Specifically, cross-domain transfer consists of extracting the content features from
the source samples and normalizing them to the target style vector using AdaIN
[136]:

AdaIN(ci, si) = �(si)

✓
ci � µ(ci)

�(ci)

◆
+ µ(si) (6.1)

In Equation 6.1, ci represents the extracted content code. In contrast to in-
stance normalization (IN), which normalizes the input to the style predefined
by a�ne parameters, AdaIN normalizes the content input to an arbitrary given
style.

The learning process is constrained to image reconstruction and translation to
enable image generation in both domains. The first constraint uses reconstruction
loss to facilitate feature learning by autoencoding the input. The encoder learns
the content feature vector of an image, which for reconstruction, is then combined
with the style of the domain where the image originates. To achieve that, the
optimization task minimizes the reconstruction loss Laa

rec:

Laa

rec(E,G) = Exa⇠PakG(E(xa), sa)� xak1 (6.2)
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6 Disentanglement

Further constraint ensures consistency in cross-domain translation by employ-
ing the cycle reconstruction technique [10]. Specifically, the process translates an
image xa to the domain b, resulting in image xab, and maps it again to the origi-
nal domain a, producing xaba. The cross-domain constraint requires the network
to reconstruct the input after translating it to the target domain and back to the
source domain. The cycle reconstruction loss which implements cross-domain
constraint is defined as follows:

Laba

cyc (E,G) = Exa⇠PakG(E(xab), sa)� xak1 (6.3)

In Equation 6.3, xab represents a sample translated from a to b.
Lastly, the proposed method employs standard adversarial loss to facilitate

the similarity of the translated images to the target domain distribution and
further ensure visual consistency. Similarly to [182], adversarial loss operates on
random patches x̂ of the translated and reference images. Figure 6.2 shows the
reconstruction, cycle reconstruction, and adversarial losses. The adversarial loss
is calculated as follows:

La

adv
(E,G,Da) = Exa⇠Pa logDa(x̂a)

+ Exb⇠Pb log(1�Da(x̂ba))
(6.4)

In Equation 6.4, x̂ represents the random image patches, and xba represents
the image translated from b to a. Other components such as Lbb

rec, Laba
cyc , and

Lb

adv
are given analogously to Equations 6.2, 6.3 and 6.4. The following equation

defines the aggregated loss:

min
E,G

max
Da,Db

L(E,G,Da, Db) = �1(Laa

rec + Lbb

rec)

+ �2(Laba

cyc + Lbab

cyc)

+ �3(La

adv
+ Lb

adv
)

(6.5)

In Equation 6.5 �1, �2, and �3 define the contribution of each loss term.
Network Architecture. The proposed algorithm consists of a generator

network comprising an encoder and decoder, and two discriminators, one for
each domain. The encoder and decoder are similar to the MUNIT network
[14], and PatchGAN is used as a discriminator [53]. The encoder comprises
several blocks of convolutional layers, instance normalization layers, and ReLu as
well as ResBlocks. Symmetrically, decoders have nearest-neighbor interpolation
layers along with deconvolutional upsampling layers. Each discriminator obtains
random patches from translated and source images with a size between 1/8 and
1/4 of the total image size on each side. Figure 6.2 gives a detailed overview of the
encoder-decoder network. The objective function defined in Equation 6.5 guides
the training of the generator network to translate images from the source domain
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6 Disentanglement

to the target domain in a visually indistinguishable manner while preserving the
content.

The parameters �1, �2, and �3 of loss function in Equation 6.5 are set to 10,
10, and 1 respectively. The optimization is performed by Adam using mini-batch
stochastic gradient descent [183] with coe�cients of 0.5 and 0.999. The training
process goes for 200 epochs using 2975 random images from the synthetic dataset
Playing for Data (PfD) [4] and 2975 images from the Cityscapes [29] dataset.

6.2 Experiments

Datasets. Like the experiments described in the previous chapters, this ex-
perimental setting uses real Cityscapes [29] and the synthetic PfD large-scale
datasets for urban tra�c scenes. The Cityscapes dataset consists of 5, 000 im-
ages of resolution of 2048 ⇥ 1024 pixel, divided into a training set with 2, 975
samples, validation set with 500 samples, and remaining images as publicly not
available test set. The semantic labels have 19 classes, with the road, building,
fence, vegetation, sky, person, and car among the most crucial ones. The Playing
for Data (PfD) dataset contains 24, 966 images of resolution 1914 ⇥ 512 pixels
grabbed from the GTA [4] computer game. This dataset also includes annota-
tions for 19 semantic classes as the Cityscapes dataset. Due to memory and time
constraints, the disentanglement experiments use images that are downsampled
to 1024⇥ 512 pixels for both datasets.

Evaluation. The proposed unsupervised image translation method is com-
pared to the baselines that do not utilize privileged knowledge, such as pre-
trained additional segmentation critics or plain semantic maps. These baselines
include CycleGAN [10], MUNIT [14], DRIT [138], and CUT [160]. The config-
uration of the MUNIT disabled the perceptual loss to avoid using a pre-trained
segmentation network. All models used the PfD and Cityscapes datasets for
training, with images resized to 1024⇥ 512 pixels. During the evaluation exper-
iments, each baseline and the proposed approach translate created a translated
dataset by transferring the entire PfD dataset to the Cityscapes domain. These
translated PfD samples were then used to train semantic segmentation networks,
and the performance of these networks on the Cityscapes val built quantita-
tive evaluation of the translation. A higher segmentation score indicates better
domain translation.

Qualitative Results. Figure 6.4 demonstrates the translation results of the
proposed network, which illustrates the high quality of the style transfer but
also preserved semantics of the translated image. The style quality is especially
prominent in the road texture or color of lane marking. Figure 6.7 shows a
comparison with other baselines. Each row shows the synthetic source image
along with the translated images. It is evident that CycleGAN translates a car
in an image to appear as if it is part of a road and adds vegetation-like features
to the sky region of the image. The network MUNIT can translate images in
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Source Translated

Figure 6.4: Examples of synthetic images translated by the disentanglement method
from PfD to Cityscapes domain. © 2021 IEEE.
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6 Disentanglement

multiple styles using the style sampling technique but struggles to preserve the
semantic content unchanged. For example, MUNIT also covers the entire sky
area with vegetation patterns. Like CycleGAN, it also represents the ego car to
the part of the road. Images translated by DRIT also exhibit class perturbations.
CUT demonstrates superior style learning by increasing the mutual information
between the patches sampled from exact locations in generated images. However,
it has the same translation mismatches as CycleGAN. In contrast, the proposed
style distillation mechanism can perform domain adaptation while maintaining
class consistency of the entire image.

Quantitative Results. In the quantitative experiment, the segmentation
performance of the DRN-C-26 network [173] trained on the dataset generated
by translating PfD images to the Cityscapes domain was assessed with the
Cityscapes validation set. The first experiment in Table 6.1 serves as an oracle
and represents the upper bound for semantic segmentation, which is the perfor-
mance of the algorithm trained and evaluated within the same real domain. The
second experiment represents the lower bound for the semantic segmentation,
where a network is trained on the PfD dataset but evaluated on the Cityscapes
validation set. It also shows the translation performance of the baselines dis-
cussed previously. According to the table, the proposed content and style disen-
tanglement increases the segmentation score by an average of 2.9 points, resulting
in 88.7. It also increases the intersection over union by 1.6 points, resulting in a
score of 39.0. The proposed method also explicitly improves the segmentation of
several classes, including buildings, vegetation, sky, and car.

6.2.1 Content Space

This experiment evaluates the e↵ectiveness of the proposed approach for learn-
ing relevant content codes through an ablation study. To do this, the t-SNE
algorithm [11] is applied to the content codes learned during the previously de-
scribed training. Figure 6.5 depicts the processed vectors. The features obtained
from source images overlap the codes obtained from cross-domain translated im-
ages, with ca coinciding cab and cb coinciding cba. The exact matching confirms
e↵ective learning of the domain-agnostic content vectors and detachment from
style codes. On the other hand, the disentanglement is evident since the method
does not directly apply constraints on content vectors but instead learns them
implicitly through intra-domain and cross-domain reconstruction. Figure 6.6
demonstrates images reconstructed from interpolated content vectors in di↵erent
styles.

6.3 Discussion

Chapters 4 and 5 demonstrated how adversarial domain adaptation tends to
impose regularities learned in the target data onto the translated images when
attempting to reconstruct the target distribution. Additionally, these chapters
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6 Disentanglement

Figure 6.5: t-SNE[11] projections derived for the extracted random content codes of
source synthetic images ca (red ⇤), synthetic images translated to target
domain cab (red ⇥), target real images cb (blue ⇤), and real images trans-
lated to source domain cba (blue ⇥). © 2021 IEEE

Figure 6.6: Interpolation results for content vectors c1a (leftmost) and c2a (rightmost)
extracted from two random PfD images with source (top) and target ap-
pearances (bottom). © 2021 IEEE

showed that known global statistics of source and target help to mitigate such
perturbations if matching densities are applied. In a sim-to-real setting, though,
the global statistics of target data, as well as image pairs, are not available.
Therefore more complex unsupervised methods are required.
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6 Disentanglement

Source Translated

Figure 6.8: Examples of texture-less images translated to Cityscapes domain with pro-
posed disentanglement method.

This chapter proposed a technique of independent learning of content and style
vectors in order to achieve consistent sim-to-real image transfer. Disentangling
the domain-agnostic content feature and domain-specific style feature allows for
domain transfer by simply applying the target style of interest to arbitrary con-
tent. Extracting a meaningful content feature can potentially enable learning of
the entire content manifold so that generation from any particular content with
a target style preserves the macro-structure consistency.

The proposed model embraces a lightweight architecture consisting of a single
encode and decoder and multiple discriminators, one per domain. The architec-
ture uses the AdaIN [184] technique for integrating domain-specific fixed style
codes into the content learning process.

E�cient independent learning of content vectors is demonstrated through the
ablation study and visualization of the codes using the t-SNE technique. Fur-
thermore, a comparison of translated images shows that the proposed method
improves the visual consistency of produced samples and alleviates the confusion
of imbalanced patches. Additionally, the improved performance of a semantic
segmentation network trained on the translated examples indicates improved
transfer consistency and better suitability for autonomous driving tasks.

Nevertheless, class consistency has the other side of a medal such that the gen-
erative power of the transfer model is fairly limited. The textures of the trans-
lations are mostly derived from synthetic input images. Additional experiments
with texture-less synthetic renders confirm that finding. Figure 6.8 shows that
the transfer of synthetic images generated from a 3D scene without textures and
materials to the real domain cannot produce samples that resemble target data.
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Another indicator for such behavior is for example the bonnet area produced
in the PfD-Cityscapes setting. The adaptation networks with high generative
power produce the bonnet patch typical for Cityscapes, whereas networks with
low generative power preserve the GTA game car bonnet. That means that a
synthesis pipeline must still rely on the tedious and expensive creation of the vir-
tual environment, or other methods not relying on high-fidelity synthetic images
are required. The next chapter investigates it in more detail.
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The independent learning of content and style features discussed in Chapter 6
o↵ers numerous possibilities for data generation. Such content vector extraction
enables learning the entire manifold of possible contents and consequent image
generation using a predefined appearance. However, implicit content learning
limits the ability to manually manipulate content, which is necessary for defining
individual tra�c scenarios as discussed in Chapter 1. Moreover, the style learned
by the disentangling method is limited to high-level visual characteristics, so the
data synthesis pipeline is still dependent on textures and materials provided by
the original simulation.

An alternative to this is the explicit formulation of tra�c scene content using
available forms of scene description. One of such forms recently proposed in
the area of visual question-answering (VQA) is scene graphs, which allow for
reasoning about scene content and structure. While manual content definition
does not encompass the wide range of potential real-world tra�c scenarios, it can
allow dedicated configuration of required scenarios. Therefore, the following data
synthesis concept suggests using two principles: procedural content generation
and appearance learning. The first makes an unbounded variety of generated
scenarios possible while the latter ensures that produced images closely resemble
the reference data. Moreover, explicit content formulation permits the manual
design of tra�c scenarios.

7.1 Image Generation with Procedural Synthetic Scene
Graphs

Procedural generation is a technique that originates from video game develop-
ment and also finds wide application in the movie industry. This technique is
motivated by the fact that traditional manual content generation has several
limitations in terms of scalability. First, it requires highly qualified and skilled
computer graphic artists and designers to create complex virtual environments
and objects. While the Playing for Data (PfD) [4] dataset may give the im-
pression that training data is freely available, the data is only accessible to the
research community due to the e↵orts of video game developers. Additionally,
once created, such environments are di�cult to modify. Furthermore, manual
content generation is becoming increasingly complicated as computer graphics
technology advances [185]. As an alternative, content can be produced in an
automated fashion using an algorithm that is guided by predefined rules, pa-
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Figure 7.1: Examples tra�c scenes images generated from synthetic scene graphs by
the proposed method using BDD and Cityscapes appearances. © 2021
IEEE

rameters, and heuristics. In computer game development, procedural content
generation techniques are often used to create textures and model the e↵ects of
smoke, fire, clouds, or trees. More sophisticated procedural content generation
mechanisms aim to create pseudo-infinite cities and indoor environments [186].
For example, the proposed tra�c environment generation pipeline, demonstrated
in Figure 7.2, largely relies on city generation from [186].

7.1.1 Synthetic 3D Scene Graphs

Similar to previously discussed sim-to-real settings, the graph-based approach
focuses on unsupervised tra�c scene generation. In a graph-based setting, like
in unsupervised image-to-image translation, pairs of synthetic inputs and real
scenes are unavailable. The general idea is to condition the generation process
on the content of a procedurally generated tra�c scene that does not have typical
visual characteristics like textures and materials. This condition is formulated
as a scene graph describing the scene’s content and geometry. The scene graph
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conventionally serves as an alternative to textual scene description proposed ini-
tially by Johnson et al. [167]. Graph-based description allows the networks to
”reason” explicitly about the objects in the scene and their relations, in this
case, spatial relations. The data synthesis method aims to produce an image of
a tra�c scene with the content defined by the dedicated synthetic graph and a
realistic style resembling the target data. Figure 7.4 gives a detailed overview of
the proposed pipeline, which consists of synthetic scene graph construction and
realistic image generation. The graph processor adopts the architecture from the
original work of Ashual et al. [67]. And the image generator represents a ResNet
architecture which consists of two blocks with convolutional layers, normalization
layer and ReLu as well as nine ResBlocks with the following set of two transposed
convolutional layers.

Scene graph generation involves procedural 3D scene modeling and a scene
graph generator. Procedural modeling requires a road network to build upon
and a set of rules to produce typical tra�c content. Using the existing street
network from an OpenStreetMap [187] ensures high-level realism of generated
scenes in terms of the content, but any arbitrary network can also be used. The
rules are divided into rules that define the appearance of buildings and rules
that define the placement of dynamic objects. Figure 7.2 shows several examples
of such procedural tra�c scene generation without textures. These examples
contain tra�c scenes generated in a randomized fashion. Additionally, as the
meta-information about the scene is available, the data synthesis pipeline pro-
duces the ground truth for each generated image sample. For example, Figure 7.3
demonstrates semantic segmentation ground truth corresponding to the proce-
durally generated tra�c scenes.

After the procedural generation of a synthetic 3D scene, a scene graph can
be constructed based on the spatial information available. The relative position
between a pair of objects in the scene determines their spatial relation. A simple
comparison of z coordinates of the objects establishes the relation in front of or
before. Additionally, rasterizing the z-coordinate mentioned before into several
bins provides a depth parameter for scene manipulation.

For the construction of the scene graphs, the proposed approach adopts the
setup from [167] for tra�c scene data. In this setting, each scene graph consists
of the nodes ni encoding the objects i of the scene and edges eij representing
relations between any two nodes ni and nj . Each scene graph serves as input
for the graph processor P , which is based on the work of Ashual et al. [67]
but enhances it in several ways, fostering spatial information fusion. First, the
presented method expands the set of basic object relations like left of or above
described in [67] by incorporating the spatial information related to objects.
This information results in spatial relations between objects such as in front of
or behind, as well as spatial attributes of single objects like depth component z.
Importantly, this information is available in the simulation at no additional cost.
The approach extends the set of objects to generate a comprehensive tra�c scene
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Figure 7.2: Examples of tra�c scene images created with procedural generation using
Blender without textures [12].

and integrates background classes sky, building, and vegetation. Accordingly, ni

denotes every single node in a graph:

ni = [oi, li, zi], oi 2 R, li 2 {0, 1}L⇥L, zi 2 {0, 1}Z (7.1)

In Equation 7.1, oi is an index of class C, li represents the location of the object
on the image grid of the size L, and zi represents the position of the object along
the z-axis of the scene with depth Z. Similarly, each edge ei,j 2 R is a code of a
particular relation from the dedicated list.

Given a scene graph, the graph processor P produces an intermediate represen-
tation called a scene layout t 2 RH⇥ W⇥C , which serves as the basis for sequential
image generation. Therefore, the graph-layout tuples are derived from the sim-
ulation to train the graph processor P in a supervised fashion. This training
requires mask mi and bounding box bi 2 R4 for each object i from the simulated
3D scene. Similar to [167], the graph processor P is composed of 3 networks:
graph network, the mask regression network, and the box regression network.
The graph network encompasses graph-convolutional layers that extract features
from scene graphs and encode per-object embeddings. A network dedicated to
the generation of masks for each object comprises a number of deconvolution lay-
ers, and the network for bounding box generation is a plain MLP. Both synthetic
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Textureless tra�c scenes Semantic segmentation ground truth

Figure 7.3: Semantic segmentation maps corresponding to images of tra�c scenes gen-
erated procedurally.

scene graphs and corresponding layouts produced by the graph processor P are
based solely on the scene’s content and do not require visual characteristics.

7.1.2 Tra�c Scenes

In the second phase, the generated layout t represents a basis for the synthesis
of the realistic image x by the image generator G. Generated image x visually
resembles the target data X = {x̂ 2 X} while maintaining the content of the
original scene graph. The image generation phase takes synthetic graphs and
real images as input, a setting where training pairs of samples are not feasible
so that the training occurs in an unsupervised fashion. Generated layouts lack
distinctive characteristics, so using only adversarial loss [8] is insu�cient. Exper-
iments show that pure adversarial training exhibits insu�cient generative power
for learning and creating textures. The results of those experiments are demon-
strated in Figures 7.5 and 7.6. A combination of adversarial and contrastive
[188] losses have been shown to produce better-quality generated textures, as
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observed in Figure 7.7. Therefore, the final objective for training the processor
P and generator G can be defined:

L = LSG + LTS

= LMSE(bi, b̂i) + LGAN (mi, m̂i) + LFM (mi, m̂i)

+ LGAN (x, x̂) + LNCE(x, x̂)

(7.2)

In Equation 7.2, LFM represents a feature matching loss [170], LNCE repre-
sents a multi-layer, patch-wise contrastive loss [189, 160] and LGAN represents an
adversarial loss on masks mi and images x, m̂ denotes a synthetic ground-truth
mask, and x̂ is a target domain images:

LGAN (mi, m̂i) =

E logDm(mi) + E log(1�Dm(m̂i))

LFM (mi, m̂i) = kEf(mi)� Ex⇠f(m̂i)k22
LGAN (x, x̂) = Ex⇠X logD(x) + Ex̂⇠X log(1�D(x̂))

LNCE(x, x̂) = Ex⇠X

X

l

X

s

`(x̂s
l
, xs

l
, xs

l
)

(7.3)

In Equation 7.3, f represents activations in the discriminator’s intermediate
layers, ` denotes a cross-entropy loss for a positive pair of patches as defined by
contrastive loss, and xs

l
is the generator’s l-th layer feature at specific location s

[189].

7.2 Experiments

To accurately evaluate the proposed method, it is necessary to assess its per-
formance on established public datasets from the autonomous driving domain.
These datasets include Cityscapes [29], and Berkeley DeepDrive (BDD) [190],
which are widely adopted real datasets, and PfB [5] and Synscapes [6], which
are synthetic datasets. The evaluation process requires the generation of scene
graphs for the existing synthetic datasets. The graph generator takes bound-
ing boxes along with semantic and instance maps as input and creates synthetic
scene graphs for both the PfD and Synscapes datasets. During the evaluation
experiments, the graph processor uses the resulting triples of a graph, bounding
boxes, and semantic maps for the training. In particular, the synthetic datasets
PfB [5] and Synscapes [6], which are used for scene graph generation, are tra�c
datasets with about 25000 urban tra�c scene images at a resolution of 1914⇥1052
and 1440 ⇥ 720 respectively. In addition, bounding boxes, semantic maps, and
instance maps accompany the images. For image generation, the experiments uti-
lize the real Cityscapes [29] and BDD [190] datasets as a source of visual style.
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7 Scene Graphs

Figure 7.7: Comparison of the generated images (top! bottom) using other unsu-
pervised generative networks: CycleGAN[10], DualGAN[13], MUNIT[14],
DRIT[15], proposed. © 2020 IEEE

The Cityscapes dataset includes approximately 3000 images of tra�c scenes with
labeled semantic maps, while the BDD dataset includes approximately 100, 000
images, with only 10, 000 used in the experiments.

Scene graphs generation. The scene graph generator initially creates a
dataset with 5, 000 synthetic scene graphs. The experiments were conducted
with these samples used as input for the training of the scene graph processor,
while the image generator uses images from Cityscapes and BDD with a similar
setting for both datasets. The preprocessing step downsized the samples to a
256⇥ 512 pixels resolution. After that, the training of all networks goes for 150
epochs. The optimizer uses a learning rate of 1e � 3 and a momentum of 0.99.
Figures 7.5 and 7.6 show the results of the experiments with Cityscapes and BDD
datasets. The results demonstrate that the proposed pipeline can accurately
capture the appearance of real datasets, resulting in the production of realistic
imagery. While the generated objects exhibit a certain degree of inaccuracy in
details within specific objects, such as cars, the images are fairly consistent at the
class level. The generator e↵ectively creates a coherent appearance for objects
belonging to the classes road, sidewalk, building, and vegetation.

The influence of the conditioning of the generation process on scene graphs is
demonstrated in Figures 7.5 and 7.6. Furthermore, Section 7.2.1 provides further
details on the conditioning possibilities and demonstrates how to manipulate
tra�c scenes by introducing new classes, spatial attributes, and spatial relations.
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No car z -attribute 5 z -attribute 2

Figure 7.8: An example of tra�c scene manipulation by changing the spatial attribute
of the car object. © 2021 IEEE

No relation in front of behind

Figure 7.9: An example of tra�c scene manipulation by changing the spatial relation
of two car objects. © 2021 IEEE

Also, Figure 7.7 shows the comparison with baseline unsupervised image transfer
techniques. The comparison includes CycleGAN [10] and MUNIT [14]. Figure 7.7
illustrates that the proposed method produces more convincing textures, which is
also reflected in the lower FID score, with CycleGAN achieving 103.05, MUNIT
- 75.98, and introduced approach 47.26.

7.2.1 Tra�c Scene Manipulation

Spatial Attributes and Relations. The synthetic scene graph generation
process enables incorporation of the spatial information about the tra�c scenes.
For example, Figure 7.8 illustrates how changing the value of an object’s z-
coordinate a↵ects the image synthesis from the same scene graph. The first image
does not contain a car in the scene. In the following images, a car appears, and
modifications of its z-attribute moves it along the tra�c scene.

The integration of spatial information provided by the scene, in addition to the
z-attribute of objects, allows the representation of spatial relationships between
them. For example, Figure 7.9 shows several images of a tra�c scene created
from a scene graph by exchanging the spatial relation between two car objects.
Initially, both car objects appear in the scene spatial without constraint circa
equally sized. However, introducing the in front of relation leads to moving the
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Building right of the
car

Vegetation right of
the car

Vegetation above the
car

Building above the
car

Figure 7.10: An example of tra�c scene manipulation by changing classes.
© 2021 IEEE

right car closer to the ego camera and the left car farther away. Changing the
relation to behind, in turn, pulls the left car before the right car.

Tra�c Scene Classes. The proposed method extends the number of object
classes that characterize tra�c scene scenarios. They include road, sidewalk,
vegetation, building, sky, car. The class manipulation experiments confirm the
e↵ectiveness of the introduced novel classes. Figure 7.10 illustrates the impact
of manipulating the object classes in corresponding scene graphs. Substituting
the classes of the particular nodes pointedly adjusts the semantic layout of the
synthesized image. In the first image the building is located on the right side
of the car, changing the node’s class puts vegetation instead of building. Next,
adjusting the right of relation to above results in placing the car under the newly
introduced vegetation area. In the final example, the class vegetation is reverted,
which leads to returning of the building object.

Global Manipulation. The scene graph makes possible parametrization of
any tra�c scene characteristic of interest. Including an additional parameter
only requires an additional one-hot vector in the scene graph definition. Fig-
ures 7.12, 7.11, 7.13 show examples of images generated from a single scene graph
but with parameter variation related to weather conditions, daylight conditions
and overall appearance of reference dataset or sensor suite.

7.2.2 Image Segmentation

Quantitative assessment of the data generation relies on the downstream vision
task. In quantitative experiments, synthesized data is used for training a state-of-
the-art semantic segmentation network. This experiment uses the scene graphs
derived from the Playing for Data dataset, where it randomly selected two sets
with 5, 000 and 10, 000 scene graphs. The pipeline generated images and cor-
responding semantic maps for these scene graphs, which were then used in a
training of Dilated Residual Network (DRN) segmentation model [173] for 200
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Day Night

Figure 7.11: Examples of image manipulation with global scene graph parameter re-
lated to daylight conditions.

Normal Snowy Rainy

Figure 7.12: Examples of image manipulation with global scene graph parameter re-
lated to weather conditions.

epochs. The baseline, in this case, was trained on plain synthetic data. Both
models have been evaluated on the real Cityscapes validation set concerning 8
main supported classes. Table 7.1 shows the IoU scores also known as Jaccard
Index [180].

The table shows that the model trained on a dataset of 5, 000 generated ex-
amples is 5% less accurate compared to the model trained on the original PfD
dataset. However, increasing the size of the generated dataset to include twice as
many scene graphs and corresponding images narrows this gap to 2 percentage
points. Adding 5, 000 synthesized samples to original PfD further improves the
performance of the baseline. The table also includes the experiment’s results
with scene graphs resembling class balance on a real dataset used for evalua-
tion. Knowing the global target data class statistics makes it possible to reduce
the number of scene graphs to 2000 examples and segmentation score by 5%
compared to the baseline synthetic dataset of 25, 000 examples.

7.3 Discussion

The preceding chapter investigated the methods of semantically consistent trans-
fer of synthetic images into the real domain. Such transfer aimed to leverage
available data rendering pipelines but make produced images resemble visual
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Figure 7.13: Tra�c scene images generated from the same synthetic scene graph using
appearances BDD and Cityscapes. © 2021 IEEE

Sky Road Tree Building Person Car Bus Truck Mean
PfB 25k [5] 62.8 41.1 67.8 64.3 14.0 38.8 1.1 8.1 37.3
3D Scene graphs 5k 23.4 76.1 44.7 46.3 8.1 41.2 3.5 1.6 30.6
3D Scene graphs 10k 34.2 68.0 62.5 60.8 9.7 40.7 1.3 3.0 35.0
3D Scene graphs 5k + PfB 25.4 80.2 55.9 64.6 29.3 64.2 6.3 7.7 41.7
3D Scene graphs 2k* 64.7 91.3 67.4 64.9 13.2 39.5 1.5 2.8 43.2

Table 7.1: Semantic segmentation results (IoU) on Cityscapes validation obtained by
DRN model trained on images generated from synthetic 3D scene graphs
or/and synthetic PfD images. (*) denotes class balanced scene graphs.
© 2021 IEEE

characteristics of target data. Image transfer is necessary for downstream tasks
which are intended to be trained on synthesized data but used on real data.

Chapter 6 proposed a mechanism for independent content and style learning
which resulted in the reduced generative power of the employed transfer mech-
anism. This e↵ect retains a strong dependency of data synthesis on the quality
of the manually created 3D environment as discussed in Chapter 1. The cre-
ation of a such high-fidelity environment of the video game GTA, needed for
dataset Playing for Data, required many years of development and substantial
investment budgets. This chapter attempts to circumvent this disadvantage and
proposes a pipeline for controllable and salable image synthesis for realistic tra�c
scenes.

The proposed pipeline comprises a procedural content generation part and an
appearance or texture learning part. It utilizes domain-agnostic scene represen-
tation in the middle, known as scene graphs. This representation is an alternative
to commonly used photo-realistic image rendering. The proposed method uti-
lizes the scene graphs processing introduced by Ashual et al. [67] but extends it
in several ways. First, it complements the scene graphs by spatial attributes z
and spatial relations such as behind. Furthermore, it extends image generation
in an unsupervised fashion.
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The proposed pipeline shows convincing generation results, which a qualitative
evaluation demonstrates. Tra�c scene manipulation also illustrates the e↵ec-
tiveness of the pipeline in image generation. The data synthesized in that way
can be e↵ectively used in a downstream task and demonstrate an improvement
in their performance compared to pure synthetic data. Nevertheless, the data
produced by the proposed pipeline exhibit significant incongruities and disagree-
ment within individual classes and objects. Furthermore, several classes, such
as pedestrians, are not synthesized in a feasible way. These limitations can be
addressed in further research.
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8.1 Conclusion

This dissertation explored data synthesis methodology in the field of autonomous
driving. Recent recognition algorithms based on deep learning and deployed in
autonomous vehicles demonstrated the necessity of abundant training data. This
data have to be large-scale, error-free and have considerable variance. Simulated
data o↵ered a solution for satisfying these criteria. Nevertheless, the use of simple
computer graphics commonplace for data generation exhibited limitations due to
the revealed domain gap. This work is dedicated to the problem of the sim-to-real
domain gap and the ways of mitigating it.

The proposed augmentation and appearance learning approach relied on the
known technique of combining real-world and virtual content but employed re-
cent advances in image transfer to alleviate the discrepancy between augmented
virtual pedestrians and real tra�c scenes. The method realized a pipeline with
a focus on the geometrical correctness of objects’ placement and their realis-
tic appearance. The first part relied on the underlying geometry of the tra�c
scene in order to provide an allocation of virtual models in meaningful loca-
tions collision-free. The other part proposed class-specific adversarial training
allowing synthetic pedestrians to acquire a realistic look and consistent illumina-
tion while mitigating the problem of vanishing out-of-distribution objects. The
mechanism showed qualitative improvement of synthesized images as compared
to mere rendering. Furthermore, quantitative evaluation on downstream tasks
showed comparable performance of the augmented and real data and its inter-
changeability.

The work further investigated the problem exemplified by vanishing virtual ob-
jects from transferred images during the sim-to-real domain adaptation process.
It analyzed the class balance statistics of several synthetic and real datasets and
observed a correlation between classes exhibiting strong imbalance with semantic
mismatches introduced during transfer. This assumption was further verified by
calculating the importance weights of particular samples based on global class
statistics and resampling the data according to these importance values. As
expected, resampling solved the content corruption problem, so an adversarial
network combined with importance-based densities pre-matching was proposed.
This network can estimate the informativeness of specific samples on the fly and
e↵ectively perform sim-to-real domain transfer in a semantically consistent man-
ner. The consistency of the produced images was evaluated both qualitatively
and quantitatively in a downstream task of semantic segmentation. Despite its
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e↵ectiveness, the method exhibited dependency on prior knowledge about dataset
global statistics.

The disentanglement further explored the problem of semantically consistent
transfer in a preferred sim-to-real setting with inaccessible privileged informa-
tion. The proposed technique assumed that separating learned content and
style vectors enables semantic consistency. The disentanglement implies that
learned image representations can be divided into domain-agnostic components
interpreted as content and domain-specific component interpreted as appearance.
The method attempts to sieve these feature vectors in the process of repeated
inter-domain and intro-domain transformation so that the style vector only em-
braces the low-level style changes, therefore, preserving the images’ content. The
evaluation illustrated the macro consistency of the generated images but also es-
tablished decreasing generative capacity of the model. Results obtained in a
setting with texture-less virtual scenes demonstrated mere changes in the colour
spectrum.

The final part attempted to address the trade-o↵ between consistency and gen-
erative abundance of produced imagery and to view the synthesis pipeline from
a di↵erent perspective. It proposed to replace extensive virtual environments
created by computer graphic artists with procedurally generated 3D scenes only
replicating its content and geometry but not textures and materials. It was
suggested to synthesize images directly from these scenes using intermediate rep-
resentation in the form of scene graphs. These synthetic scene graphs obtained
from procedurally generated scenes allow users to manipulate generated images
in a simple manner and create scenarios of interest. The proposed method re-
lied on the established scene graph processing mechanism but extended it to
an unsupervised synthetic-real setting. Additionally, it integrated spatial com-
ponents available in synthetic scenes at no extra cost. The proposed solution
demonstrates its e↵ectiveness in image generation and manipulation but leaves
the integrity of synthesized objects for future works.

8.2 Outlook

With the development of deep perception models and few-shot learning future
recognition systems will be able to handle the broader gap between domains.
This includes the gap stemming from simulation, temporal aspects, location or
sensor suite. Nevertheless, accessible data generation as an alternative to physical
data acquisition can still be advantageous given that future recognition models
make sense of it. Thus, the perception models and data synthesis will develop
in concert in the near future.

This work introduced several mechanisms for e↵ectively mitigating the domain
gap between synthetic and real data in the autonomous driving field. Throughout
the work, it employed generative adversarial network (GAN) framework due
to its good generative capabilities which allow the creation of realistic images
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based on their synthetic counterparts. Proposed methods helped maintain image
consistency during the adversarial translation.

Realism. Future research can further decrease the gap between generated
and real data so that they potentially can replace real data acquisition and
annotation. Recent advances in di↵usion models can indeed make it possible but
the process of generation needs to be more finely controllable, which can not even
require rendered input as a condition.

Democratization. Future research needs to address the accessibility of data
synthesis. Currently, the creation of virtual environments and rendering views
requires substantial investments. Recently di↵erential rendering and neural radi-
ance field (NeRF) made significant progress in this direction providing impressive
results in novel view synthesis. Thus, researchers need to focus e↵orts in this di-
rection, especially on aspects of manipulation of rendered scenes preferably in
automatic or randomized ways.

Safety. Improvement in the quality of data synthesis requires, though, to
guarantee that generated images do not introduce harmful artefacts. The ten-
dency of generative modelling to hallucinate things, especially in cases where
particular information is absent needs to be addressed so that it does not hurt
downstream tasks and road users as a result. In general, synthesis must regard
safety requirements more concretely.

Human. Whether direction demonstrates more fruitful results in data synthe-
sis humans remain part of this process in near future, therefore generation tooling
is required to establish an easy interface for manual configuration. In this case,
a human can cease a di↵erent role than an annotator or graphics artist, having
domain knowledge this role evolves more into the high-level design of training
scenarios.
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