
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Engineering and Design

Enhanced computational design methods for large
industrial node-based shape optimization problems

Ihar Antonau

Vollständiger Abdruck der von der TUM School of Engineering and Design
der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Ingenieurwissenchaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr.-Ing. habil. Fabian Duddeck

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Kai-Uwe Bletzinger

2. Prof. Dr.-Ing. Fernass Daoud

3. Prof. Dr.-Ing. Axel Schumacher

Die Dissertation wurde am 17.01.2023 bei der Technischen Universität
München eingereicht und durch die TUM School of Engineering and Design
am 25.05.2023 angenommen.

Schriftenreihe des Lehrstuhls für Statik
TU München

Band 59

Ihar Antonau

Enhanced computational design methods for
large industrial node-based shape

optimization problems
Quasi-Newton relaxed gradient projection algorithm
and Vertex Morphing with adaptive filtering radius

München 2023

Veröffentlicht durch

Kai-Uwe Bletzinger
Lehrstuhl für Statik
Technische Universität München
Arcisstr. 21
80333 München

Telefon: +49(0)89 289 22422
Telefax: +49(0)89 289 22421
E-Mail: kub@tum.de
Internet: www.bgu.tum.de/st/startseite/

ISBN: 978-3-943683-71-4

© Lehrstuhl für Statik, TU München

Kurzfassung

In dieser Arbeit werden zwei Aspekte der knotenbasierten Formoptimierung be-
handelt. Das erste Thema betrifft die Entwicklung von mathematischen Algo-
rithmen für große Formoptimierungsprobleme mit technischen Einschränkun-
gen. Der zweite Aspekt betrifft die Modifizierung der Vertex-Morphing-
Methode, um ihre Nutzbarkeit, Robustheit und Flexibilität in praktischen
Anwendungen zu verbessern.

Die relaxierte Gradientenprojektionsmethode wird als guter mathematis-
cher Algorithmus für die knotenbasierte Formoptimierung vorgeschlagen. Der
Algorithmus basiert auf Rosens bekannter Gradientenprojektionsmethode und
bietet eine Lösung für das Zick-Zack-Problem. Der vorgestellte Algorithmus
ist problemunabhängig.

Darüber hinaus wird in dieser Arbeit die Möglichkeit untersucht, die
Barzilai-Borwein-Liniensuchtechnik anzuwenden, um die Stabilität und Ef-
fizienz des Optimierungsprozesses zu verbessern. Es werden mehrere Modifika-
tionen der ursprünglichen Methode vorgeschlagen, um die Methode für große
Formoptimierungsprobleme anzupassen. Zusätzlich wird die relaxierte Gra-
dientenprojektionsmethode mit der modifizierten Barzilai-Borwein-Methode
kombiniert, um große eingeschränkte Formoptimierungsprobleme zu lösen.

In dieser Arbeit wird der Einfluss der Größe des Filterradius in einem auf
der Vertex-Morphing-Methode basierenden Formoptimierungsprozess auf das
Endergebnis untersucht. In dieser Arbeit wird vorgeschlagen, einen adaptiven
Filterradius zu verwenden, der bei jeder Optimierungsiteration berechnet und
aktualisiert wird. Darüber hinaus können unterschiedliche Filterradien für
verschiedene Teile der Designoberfläche verwendet werden, verglichen mit
einem konservativen Radius in der ursprünglichen Methode.

Ein weiterer Schwerpunkt dieser Arbeit ist die Verwendung von Formop-
timierungsmethoden für additive Fertigungsanwendungen. In dieser Arbeit
werden zwei spezifische Fertigungseinschränkungen formuliert und untersucht:
Stapelbarkeit und Selbsttragfähigkeit.

Verschiedene Beispiele zur Formoptimierung demonstrieren die Leistungs-
fähigkeit der entwickelten Optimierungsverfahren.

Abstract

The thesis discusses two aspects of node-based shape optimization. The first
topic concerns the development of mathematical algorithms for large-scale
shape optimization with engineering constraints. The second one modifies the
Vertex morphing method to improve its usability, robustness, and flexibility
in practical applications.

The relaxed gradient projection method is proposed as a good mathematical
algorithm for node-based shape optimization. The algorithm is based on the
well-known Rosen’s gradient projection method and suggests a solution to
the zig-zagging problem. The presented algorithm is problem-independent.

Furthermore, this thesis studies the possibility of applying the Barzilai-
Borwein line search technique to enhance the stability and efficiency of the op-
timization process. Several modifications to the original method are proposed
to adapt the method for large shape optimization problems. Additionally, the
relaxed gradient projection method is combined with the modified Barzilai-
Borwein method to solve large constrained shape optimization problems.

In this work, the influence of the filtering radius size in shape optimization
workflow based on the Vertex Morphing method is studied. This thesis
suggests using an adaptive filtering radius size that is computed and updated
every optimization iteration. Additionally, different filtering radius sizes
can be applied for different parts of the design surface compared to one
conservative radius in the original method.

Another main focus of this work is the usage of shape optimization methods
for additive manufacturing applications. Two specific manufacturing con-
straints are formulated and studied in this work: stackability and self-support.

Various shape optimization examples demonstrate the performance of the
developed optimization techniques.

Acknowledgements

This thesis was written from 2018 to 2023 during my time as a researcher at
the Chair of Structural Analysis at the Technical University of Munich.

First of all, I would like to express my gratitude towards Prof. Dr.-Ing.
Kai-Uwe Bletzinger for providing the possibility to work in the field of shape
optimization. His interest and passion to structural optimization leads to a
great working environment.

I also want to thank Prof. Dr.-Ing. Fernass Daoud and Prof. Dr.-Ing. Axel
Schumacher for completing my board of examiners, as well as Prof. Dr.-Ing.
Fabian Duddeck for the organization. Their interest in my work is gratefully
acknowledged.

Thanks are also due to Dr.-Ing. Majid Hojjat for organizing our incredible
cooperation between our chair and BMW Group and his mentoring of my
work. I also wish to thank Dr.-Ing. Steffen Jahnke for his support.

Another thanks are directed at all my colleagues at the Chair of Structural
Analysis, Shape Module and BMW Group for the cooperation and pleasant
times. Thank you Armin Geiser, Andrew Brodie, David Schmölz, Reza Najian
Asl, Bastian Devresse for the close cooperation over the years. Thanks are
also due to Mr. Vignesh Manickavasagam Manian for his technical support in
my numerical experiments and long discussions on and off-topic. I also wish
to thank Prof. Dr.-Ing. Roland Wüchner for discussions and his support.

Finally, I want to thank my family and friends for their unconditional
support during my studies and life in Germany.

Ihar Antonau
Technische Universität München
January, 2023

Contents

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Overview . 3

1.3.1 Publication I . 3
1.3.2 Publication II . 3
1.3.3 Text part . 4

2 Shape optimization fundamentals 5
2.1 Shape evolution . 5
2.2 Design control field . 5
2.3 Design and control velocity 8
2.4 Design objective . 8
2.5 Shape derivative . 9

2.5.1 Surface driven volumetric problems 9
2.5.2 Surface optimization problems 10

2.6 Design gradients . 10
2.7 Relation between design controls and surface coordinates . . 11
2.8 Design controls as surface coordinates 11
2.9 Relation between updates in design control and surface coordi-

nates . 12
2.10 Temporal discretization . 12
2.11 Spatial discretization . 13

3 Adaptive Vertex Morphing 15
3.1 Vertex Morphing . 15
3.2 Two Roles of the filtering radius 15

3.2.1 Design variable . 15
3.2.2 Regularization . 16

3.3 Vertex Morphing with adaptive filtering radius size 17
3.4 Mesh independency . 18
3.5 Numerical examples with VM and AVM 18

3.5.1 Structural academic example 18

xiv Contents

3.6 Design process with AVM . 21

4 Optimization algorithms with Vertex Morphing 23
4.1 Engineering optimization problem formulation 23

4.1.1 Design variables . 24
4.1.2 Objective and constraint functions 24
4.1.3 Standard optimization problem 25

4.2 Shape optimization problem formulation with Vertex Morphing 26
4.2.1 Problem formulation 26
4.2.2 Independency of control field parameters 26
4.2.3 Design boundary formulation 26
4.2.4 Initial design . 27

4.3 Gradient-based optimization methods with Vertex Morphing 28
4.3.1 Steepest descent technique 28
4.3.2 Newton’s method . 29
4.3.3 Quasi-Newton methods 31
4.3.4 Gradient projection method 32

4.4 Relaxed gradient projection method 33
4.5 Globalization strategies . 34

4.5.1 Constant scaled step length 35
4.5.2 Backtracking techniques 35
4.5.3 Polynomial approximations 37
4.5.4 Barzilai-Borwein method 38

4.6 Convergence criteria . 38
4.6.1 The Karush-Kuhn-Tucker conditions 38
4.6.2 Maximum number of iterations 40
4.6.3 Absolute or Relative change in the objective function . 40
4.6.4 Averaged absolute improvement rate condition 41
4.6.5 Convergence criteria comparison example 41

5 Barzilai-Borwein method 43
5.1 Overview on the Barzilai-Borwein method 43
5.2 Original Barzilai-Borwein method 44
5.3 Quasi-Newton Barzilai-Borwein method 44

5.3.1 Comments to absolute operator 45
5.4 Analytical examples . 46

5.4.1 Raydan Function . 46
5.4.2 Generalized Rosenbrock Function 46
5.4.3 D-dimension QN-BB method 47
5.4.4 D-dimension QN-BB method with Vertex Morphing . 48

5.5 QN-BB-RGP method . 48
5.6 Academic Shape Optimization example 49

5.6.1 Case description . 49
5.6.2 Tested optimization algorithms 50
5.6.3 Results . 51

5.7 Large Shape Optimization Example 52
5.7.1 Structural optimization 52

5.7.1.1 Problem description 52

xiv

Contents xv

5.7.1.2 Applied methods 52
5.7.1.3 Results . 54

5.7.2 CFD-Based Shape Optimization 55
5.7.2.1 Problem description 55
5.7.2.2 Applied methods 56
5.7.2.3 Results . 56

6 Shape optimization in additive manufacturing application 59
6.1 Overview . 59
6.2 Stackabilization . 60

6.2.1 Packaging response . 61
6.3 Self-support (overhang-free) constraint 63

6.3.1 Identification of self-supporting nodes 63
6.3.1.1 Critical angle criterion 65
6.3.1.2 Distance criterion 65

6.3.2 Response function formulation 68
6.4 Numerical examples . 68

6.4.1 Stackabilization . 70
6.4.2 Overhang-free geometry 70
6.4.3 Combined example . 71

7 Conclusions and outlook 75
7.1 Vertex Morphing with adaptive filtering radius 75
7.2 Optimization Algorithm . 76

7.2.1 Relaxed gradient projection method 76
7.2.2 Barzilai-Borwein method 76

7.3 Shape Optimization for Additive Manufacturing 77

A Publication I 79

B Publication II 99

List of Figures 119

List of Tables 121

Bibliography 123

xv

Chapter 1

Introduction

1.1 Motivation

Design optimization has become a standard technology in the design opti-
mization cycle. It is applied in various fields of engineering, for example:
aerospace (Baumgärtner et al. [7], James et al. [35], and Schramm et al.
[52]), automotive (Bartz et al. [4] and Othmer [47]), additive manufacturing
(Ghantasala et al. [28], Langelaar [36], and Lianos et al. [38]), shipbuilding
(Müller et al. [43] and Stück et al. [54]). The main advantage of design
optimization is that it can replace an iterative design process to accelerate the
design cycle and obtain better results. Engineers can use design optimization
in an automated workflow to solve templated problems, but it doesn’t provide
a “push-button” solution for complex optimization problems. A designer’s
decisions are still needed to determine the specifications and initial design
and formulate the optimization problem. It requires expertise in both the
subject area and numerical optimization. One should decide the objective,
constraints, design parameters, etc. Different optimization methods may find
other optimal solutions or fail to converge. As a result, the optimization
problem formulation, correct parameterization, and optimization methods
directly influence the design’s success, so the designer must be able to use
the design optimization tools well.

Following the challenges mentioned above, the design tools, such as opti-
mization algorithms or parameterization strategies, must be simple to setup
to solve unknown problems. At the same time, the methods should be robust
and efficient to solve the optimization problem with reasonable computational
time and be able to work with strongly non-linear functions.

In previous work, the gradient projection method has been successfully
applied to solve constraint optimization problems with Vertex Morphing,
Baumgärtner [6], Ertl [17], Najian Asl [44], and Najian Asl et al. [45] with a
scaled constant step size. However, the method performance can be strongly
affected by the well-known zig-zagging behavior, Fletcher [20], while the
constraint enters and leaves the active set of the constraints in a course.

2 Chapter 1. Introduction

In this work, we propose the relaxed gradient projection method to avoid
zig-zagging by keeping constraints active in the critical zone close to the
constraint limit.

In the book by Martins et al. [41], the authors suggest using backtracking
line search methods based on the strong Wolfe’s condition. However, the
drawback of this solution is the implementation complexity because the
communication and data exchange between the physical solvers and the
optimizer happens a few times every iteration. Additionally, the computational
efficiency of the method is not guaranteed. In this work, we try to incorporate
the Barzilai-Borwein method, Barzilai et al. [5], with limited step length to
solve constrained shape optimization problems.

In this work, Vertex Morphing is used as a parameterization method to
parameterize the design space, which was introduced by Bletzinger [8] and
Hojjat et al. [33]. The filtering radius size plays a key role in Vertex Morphing
for the outcome results. The filtering radius size has two roles:

1. It controls the surface and meshes quality by filtering the sensitivities
and the shape updates.

2. It guides the optimizer to a certain local minimum with required shape
modes and smoothness.

In this work, I study the possibilities of separating these two roles of the
filtering radius. On the one side, to compute the filtering radius size that
is necessary for the filtering operation and it adjusts the radius sizes for
each node at every iteration. On the other side, the designer should be able
to locally set up the filtering radius size for each node to find desired local
optimums and better explore the design space.

The latest development of additive manufacturing (AM) and its usage in
small series production opens a prospective integration between numerical
design optimization tools and the manufacturing process. In contrast to
classical manufacturing methods, AM has drastically fewer restrictions on
the printed shapes and topologies, allowing the manufacture of complex
high-performing parts, designed by numerical optimization techniques.

My motivation for this work is to improve the existing methods to make
them easier for engineers in daily practice, avoiding additional parameters
which may strongly reduce the robustness and efficiency of the optimization
process.

1.2 Goals

Based on the aforementioned motivation, the research goals can be formulated
as follows:

1. Extend the Vertex Morphing method for daily practical usage in in-
dustrial applications. On the one side, the goal is to simplify the
parametrization setup by computing the required minimal radius size
to ensure that a generated design has a smooth design surface and a

2

1.3. Overview 3

good quality of the numerical mesh. On the other side, the localized
filter radius sizes can be chosen to explore the design space better.

2. Find or modify the optimization algorithms that can handle various
industrial, geometrical and physical response functions with minimal
user input. Ideally, the method should have suitable default parameters
with acceptable performance and accuracy in most cases.

3. Formulate the AM-specific constraint for shape optimization to improve
the manufacturability of the found solutions, and allow better integration
into the overall design process.

1.3 Overview

This paper-based dissertation is based on two published peer-reviewed research
papers, which are presented in Appendix A & B, and they are referred in the
text as Publication I and Publication II accordingly.

1.3.1 Publication I

Antonau, I., Hojjat, M. & Bletzinger, KU. Relaxed gradient projection
algorithm for constrained node-based shape optimization. Struct Multidisc
Optim 63, 1633–1651 (2021). https://doi.org/10.1007/s00158-020-02821-y

Contributions: Ihar Antonau developed and implemented the relaxed
gradient projection method to avoid zig-zagging behavior and solve shape op-
timization methods in the efficient way. Majid Hojjat and Kai-Uwe Bletzinger
supervised this study and reviewed the manuscript. All authors approved the
final version.

1.3.2 Publication II

Antonau, I., Warnakulasuriya, S., Bletzinger, KU., Bluhm, F. M., Hojjat, M.
& Wüchner, R. Latest developments in node-based shape optimization using
Vertex Morphing parameterization. Struct Multidisc Optim 65, 198 (2022).
https://doi.org/10.1007/s00158-022-03279-w

Contributions: Ihar Antonau developed the Vertex Morphing technique
with adaptive filtering radius sizes and applied the method to the industrial
example. Suneth Warnakulasuriya implemented the proposed method in
the open-source framework Kratos Multiphysics and he solved the academic
example. Fabio Michael Bluhm has done the Master thesis (“Adaptive filtering
for the Vertex Morphing technique in the context of a node-based shape
optimization”) under the supervision of Ihar Antonau. In the thesis, the
proposed ideas has been firstly applied to academic examples. Majid Hojjat,
Roland Wüchner and Kai-Uwe Bletzinger supervised this study and reviewed
the manuscript. All authors approved the final version.

3

4 Chapter 1. Introduction

1.3.3 Text part

The text part of the dissertation is structured as follows:

• Chapter 2 introduces basic definitions of shape optimization. The
Chapter discusses the mathematical foundation of the node-based pa-
rameterizations, where the filtering operator is based on the Euclidian
distances, e.g., Vertex Morphing.

• Chapter 3 introduces Vertex Morphing with adaptive filtering sizes. The
Chapter is based on Publication II. The Chapter discusses about the
influence of the filter radius sizes on the optimization outcome. The
academic structural optimization problem supports the Chapter.

• Chapter 4 formulates the shape optimization problem with Vertex
Morphing. The Chapter discusses the usability of the optimization algo-
rithms and their advantages and disadvantages in the Vertex Morphing
context.

• Chapter 5 is an unpublished work about the Barzilai-Borwein method.
The method is introduced in Publication II. The Chapter 5 shows the
studies of the method for structural and CFD-based shape optimization
problems with Vertex Morphing. The discussions are supported with
academic and industrial importance examples.

• Chapter 6 is an unpublished work about shape optimization for additive
manufacturing (AM) application. The two crucial AM-specific con-
straints are reviewed and formulated for node-based shape optimization.
First, the review of the stackabilization process using shape optimiza-
tion is shown, based on the previous work of my colleagues, Aditya
Lakshmi Ghantasala and Reza Najian Asl. In this work, stackability is
formulated as an objective function with a fixed stackable direction. The
second AM-specific constraint is the self-support constraint, which is
well-known in topology optimization. This work proposes a novel formu-
lation for node-based shape optimization based on two feasibility criteria:
critical angle and distance to supporting nodes. Both formulations are
supported with numerical examples of industrial importance.

Finally, the conclusions, discussions, possible future research and the open
questions are summarized for each goal in Conclusions.

4

Chapter 2

Shape optimization fundamentals

This section introduces the basic theory of shape optimization and follows
the definitions by Prof. Kai-Uwe Bletzinger, Bletzinger [9].

2.1 Shape evolution

The shape optimization follows the idea of a design evolution process that
depends on the pseudo time t. Pseudo time represents not more than the
sequence of shape changes, from initial to optimal shape, Fig. 2.1. Similarly,
the pseudo time is used in Computation Fluid Dynamics for steady-state
cases, where the flow converges from initial conditions to its steady solution
through pseudo time. Consequently, the design surface Γ and the volume
Ω(Γ) of a body are functions of t, where the initial state is related to time
t0. The material points are defined on the surface Γ using surface material
coordinate, [ξ]. The material coordinates are invariant of pseudo time t;
hence they always represent the same point or part of the design surface.
In Euclidean space, the position of a material point can be described by its
position vector x(ξ, t). Design trajectory is a trajectory, that a material point
travels in space through pseudo time t, and it connects the initial position
x0(ξ, 0) and the current one x(ξ, t). Two independent components define the
design trajectory: a design control field (or also called design variables) and
an optimization algorithm. The design control field determines “what” can be
changed and the optimization algorithm decides “how” to change.

2.2 Design control field

In optimization problems, design variables are the unknowns that have to be
found to minimize the objective function. In the context of shape optimization,
the unknown is the shape of the design surface, which is controlled via design
control field. The field can be understood as parameters that define the shape

6 Chapter 2. Shape optimization fundamentals

x(ξ1, t) x(ξ2, t)

initial volume Ω(t0)

actual volume Ω(t)

x(ξ3, t)

Design trajectory

surface coordinates ξ

ξ1 ξ2
ξ3

Γ(t0)

Γ(t)

Figure 2.1: Design evolution of the body

of a design trajectory, for instance, its curvature. Moreover, the positions of
the material points appear to be functions of the design control field:

x(ξ, t) = x(p(t)) (2.1)

The classification of the shape optimization problem depends on the design
control field choice. In Fig. 2.2, three classes of the parametrization are shown:
a) technical design optimization, b) CAD, and c) CAD-free or parameter-free
shape optimization. CAD and CAD-free can be classified as form finding.

a) p = [R1, R2]

R2

R1

b) p = [p0, p2, ..., p7]
p1

p4 p5

p6

p7p0

p2

p3

c) p = [x1, y1, ..., xn, yn]

x1, y1

x2, y2
x3, y3

xn, yn

Figure 2.2: Controlling ellipse shape with different design controls

Technical design optimization is characterized by a large number of con-
straints and small design freedom to modify the shape. It is often used in the
latest stages of the design cycle to “tune” the system’s performance. Typical
choices of design variables are diameters, lengths, angles, etc.

Form finding, in contrast, is a method to explore and find new before
unknown shapes. Consequently, these problems are characterized by a very
large, ideally an “infinite” number of degrees of freedom and few, often no
constraints. In CAD-based optimization problems, the CAD parameters are
used directly as the design control field, for instance, NURBS, Fig. 2.2b. In
CAD-free, the discretization of the design surface, e.g., nodes of the surface

6

2.2. Design control field 7

p(ξ1, t) p(ξ2, t)

initial control surface Γc(t0)

actual control surface Γc(t)

p(ξ3, t)

Control trajectory

surface coordinates ξ

ξ1 ξ2
ξ3

Γc(t0)

Γc(t)

Figure 2.3: Control field evolution of the design body

mesh, is used as the design control field. A particular case where the spatial
coordinates of the nodes are used as a design control field is called node-based
shape optimization problem.

In CAD-free based optimization problems, the position of the material
point appears to be functions of the design control field. In 3D space, it is as
follows:

x(ξ, t) = x(p(ξ, t) =


xx(px(ξ, t))

xy(py(ξ, t))

xz(pz(ξ, t))

(2.2)

An example of a good choice for p as px, py, pz for each spatial direction of
the position vector x. Alternatively, one can choose p in the normal direction
aligned to surface normal vector n(ξ, t). In general, the design control field
is an abstract field that controls the shape evolution and can be aligned to
any distinct "move" directions due to specific design problems. Importantly,
the design control field is always connected to material points on the actual
design surface, p(ξ, t). Consequently, each control parameter update ∆p can
be divided into two components: in the direction of the surface normal, pn,
and tangential to the normal, pt.

Fig. 2.3 represents the design control field as a control surface Γc, which
represents an abstract surface with a different set of material points. Control
trajectory is an analog of design trajectory, that shows the changes of the
design control parameter in control space. In practice, the control surface is
not required, and it isn’t calculated.

Remark. The control trajectory is an abstract path, which doesn’t show
the path of the material point. It is also important to understand, that the
design control parameter p is not the spatial coordinates of the material
points, where they are defined, but an abstract field of parameters. An
understandable example of such a control field can be curvatures at material

7

8 Chapter 2. Shape optimization fundamentals

point ξ. Additionally, the design control field can be extended via technical
parameters, for instance, scaling or rotation angles.

2.3 Design and control velocity

Design velocity is the change in time of the spatial position x of a material
point. The term velocity is adopted from theoretical mechanics, Savchuk
et al. [51], and it is described as the first derivative of the position vector
with respect to pseudo time:

v(ξ, t) =
dx

dt
=

dx

dp

dp

dt
(2.3)

The design velocity can be understood as the rate of boundary change
in time. The velocity vector is tangential to the design trajectory, Fig. 2.4.
In general, the design velocity is not aligned with the actual surface normal.
At the same time, only the normal component of the design velocity vector
changes the actual design boundary, while the tangential component moves the
material point along the body’s surface. In practice, the tangential component
plays a key part in conserving the quality of the discretized design surface as
the basis of the numerical analysis and optimization.

Γ(t0)

Γ(t)

v(ξ, t0)

v(ξ, t) = dx(ξ, t)/dt

Figure 2.4: Design velocity v

In a similar way, the control velocity is the change rate of the control design
field:

vc(ξ, t) =
dp

dt
(2.4)

The control velocity is computed directly by the optimization algorithm.

2.4 Design objective

Design objective function F is a function that defines the performance of
the system and allows us to quantify which design is better. The volumetric
objective, for instance, the mass of the body, as the volume integral, is:

8

2.5. Shape derivative 9

F (t) = F (p(t)) =

∫
Ω

fΩ(p(t))dΩ (2.5)

The surface design objective function, e.g., drag force of the body as the
surface integral of the aerodynamic forces at each material point:

F (t) = F (p(t)) =

∫
Γ

fΓ(p(t))dΓ (2.6)

where fΩ and fΓ are the design volume and surface density of the objective
function. It is important to note that the design objective function changes
in pseudo time due to the evolution of the design surface Γ. In general, the
objective function is invariant to time, e.g., the mass of the body doesn’t
change without design surface evolution.

2.5 Shape derivative

The time derivative of an objective function F in the context of shape opti-
mization is called shape derivative, and it is a sum of contributions induced
by surface and volume change. The change of volume is related to the
normal surface component of the design velocity v at the surface, and the
Gauss-Ostrogradsky theorem can be applied:

dF (t)

dt
=

d

dt

[∫
Ω(t)

fΩdΩ

]
=

∫
Ω(t)

(
∂fΩ
∂t

+
dfΩ
dx

v + fΩ div v

)
dΩ =∫

Ω(t)

∂fΩ
∂t

dΩ+

∫
Ω(t)

dfΩ
dx

vdΩ+

∫
Ω(t)

fΩv · ndΩ (2.7)

2.5.1 Surface driven volumetric problems

Considering a volumetric objective function, the design density fΩ is invariant
to time and to changes of the design surface. For example, in the mass
minimization problem, where the design density is the material density, it is
invariant to time, ∂fΩ

∂t
= 0, and it doesn’t change with respect to changes of

the design surface, dfΩ
dx

v = 0. The shape derivative holds:

dF (t)

dt
=

∫
Ω(t)

fΩ div vdΩ =

∫
Γ(t)

fΩ(v · n)dΓ =∫
Γ(t)

fΩ
dxn

dt
dΓ =

∫
Γ(t)

dfΓ
dxn

dxn

dt
dΓ (2.8)

Eq. 2.8 shows that changes in the volumetric objective function, e.g., mass,
are only induced by changes of the design surface in normal direction xn.

9

10 Chapter 2. Shape optimization fundamentals

2.5.2 Surface optimization problems

The surface objective function is modified through the changes in the design
surface Γ and the tangential growth across the surface edge Ψ (stretching).
Considering eq. 2.6, eq. 2.7 can be modified as:

dF (t)

dt
=

∫
Γ(t)

(
∂fΓ
∂t

+
dfΓ
dx

v + fΓ divΓv

)
dΓ =∫

Γ(t)

[
∂fΓ
∂t

+

(
∂fΓ
∂xn

+ fΓ divΓn

)
dxn

dt

]
dΓ +

∫
Ψ

fΓ(v · nΨ)dΨ (2.9)

where nΨ is the normalized normal vector on the surface edge Ψ, −divΓ

reflects the change of the curved surface area when it is modified in the normal
direction n, see Fig. 2.5. Similar to volume problems, the surface design
density fΓ is time-invariant, ∂fΓ/∂t = 0.

nΨ(ξ, t)

nΨ(ξ, t)

nΨ(ξ, t)

nΨ(ξ, t)

Γ(t0)
Γ(t)

Ψ(t)

Ψ(t)

Ψ(t)

Ψ(t)

Initial edge Ψ(t0)

n(ξ, t0)

v(ξ, t)

Figure 2.5: Surface optimization problem

It is possible to obtain the equivalent to eq. 2.5, if all design evolutions
are in surface normal direction,

∫
Ψ
fΓ(v · nΨ)dΨ = 0:

dF (t)

dt
=

∫
Γ(t)

(
∂fΓ
∂xn

+ fΓ divΓn

)
dxn

dt
dΓ =

∫
Γ(t)

dfΓ
dxn

dxn

dt
dΓ (2.10)

2.6 Design gradients

The optimizer modifies the design boundary Γ by varying the control field p.
The eq. 2.8 can be extended as follows:

dF (t)

dt
=

∫
Γ(t)

dfΓ
dxn

dxn

dt
dΓ =

∫
Γ(t)

dfΓ
dp

dp

dxn

dxn

dt
dΓ (2.11)

where dfΓ/dp and dfΓ/dxn are design and shape gradients of the objective
function F . Again, in the eq. 2.11, only the projected on the surface normals
shape gradients are considered. This information has to be calculated at each

10

2.7. Relation between design controls and surface coordinates 11

material point at every pseudo-time step. Consequently, if this information is
available, the gradient-based optimizers are applied to solve an optimization
problem. The difference between shape and design gradients is called filtering
error and it can be controlled by filtering intensity, Firl et al. [19].

2.7 Relation between design controls and surface
coordinates

In a general shape optimization problem, the relation between the design
control field and design surface can be formulated in continuous form as
follows:

x(ξ0) =

∫
Γ

A(ξ0,p)p(ξ)dΓ (2.12)

where A is a filtering operator that defines the relation between spatial
coordinates x and the design control parameter p. The name comes from the
fact that this operator is used to regularize the optimization problem and
helps to avoid final design solutions with rough and kinky design surfaces. In
some publications, it is also called a mapping operator because it is used to
map the shape derivatives from the design space to the design control space
as the design derivates, Najian Asl [44]. The operator A is also known as
shape Hessian.

2.8 Design controls as surface coordinates

In the shape optimization, where the design control field is represented as
spatial coordinates of the material point ξ, the relation between the spatial
coordinates x0 of the material point ξ0 can be formulated in continuous form
as follows:

x(ξ0) =

∫
Γ

A(d0)p(ξ)dΓ

d0 = ∥ξ0 − ξ∥
(2.13)

where d is Euclidian distance between two material points [ξ0], [ξ]. The
filtering operation A has a positive value inside a filtering radius and zero
elsewhere. The filter function A(dij) reflects the filtering effect between
material points i and j:

A(dij) =

{
A ≥ 0 : dij ≤ r;

A = 0 : elsewhere;

dij = ∥ξi − ξj∥∫
Γ

A(di)dΓ = 1

di = ∥ξi − ξ∥

(2.14)

11

12 Chapter 2. Shape optimization fundamentals

The derivative of the spatial coordinate x at the point ξi with respect to
design control p at the point ξj :

dx(ξi)

dp(ξj)
= A(dij) (2.15)

If the filter operator A is symmetric, then:

A(dij) = A(dji)

dx(ξi)

dp(ξj)
=

dx(ξj)

dp(ξi)

(2.16)

Remark. Eq. 2.14 can be extended to have variable radius: di,j ≤ ri,
where ri is a non-constant filter radius size at material point ξi.

2.9 Relation between updates in design control and
surface coordinates

Using eq.2.11 and eq. 2.13, design gradients at position ξ0 can be calculated:

dfΓ
dp(ξ0)

=

∫
Γ

dfΓ
dx(ξ)

A(d0)dΓ (2.17)

while the design velocity from eq. 2.3 can be found as follows:

v(ξ0) =
dx(ξ0)

dt
=

dx(ξ0)

dp

dp

dt
=

∫
Γ

A(d0)vc(ξ)dΓ (2.18)

where the vc is the control velocity found by the optimization algorithm based
on the design gradients dfΓ

dp
. As a result, the filter operation A is applied two

times:

1. Map shape gradients from design space onto control space: dfΓ
dp
← dfΓ

dx
.

This operation called backward mapping ;

2. Map control velocity from control space onto design space: vc(ξ)→ v(ξ).
This operation called forward mapping ;

2.10 Temporal discretization

In the field of applied physics and mathematics, the governing equations require
discretization in both space and time. In the case of a shape optimization
problem, the time is represented by pseudo time and, consequently, can
be simply discretized as optimization iterations (∆t = 1). This approach
conjugates well with iterative optimization algorithms that are usually applied
to solve optimization problems.

Shape update ∆x is a discrete analogue of the continuous design velocity :

x(i+1) = x(i) +∆x (2.19)

12

2.11. Spatial discretization 13

and design control update ∆p is the control velocity :

∆p = αs (2.20)

where s is a search direction and α is a step length.

2.11 Spatial discretization

Space discretization has to be applied to solve structural or CFD problems
using finite element (FE) methods. Consequently, it leads to the need to
discretize the structural geometry xT = [xx

1 , x
y
1 , x

z
1, ..., x

x
n, x

y
n, x

z
n] and design

control geometry pT = [px1 , p
y
1 , p

z
1, ..., p

x
n, p

y
n, p

z
n] by standard techniques. In

this context, as the design control geometry, we mean the same or different
discretization of the design surface, where the control nodes are conjugated
with the design control field. Eq. 2.13 appears to be as follows:

x = Ap (2.21)

where x and p are the vectors of spatial coordinates and control parameters
of the surface nodes, where the coordinates and control parameters in the
spatial x–, y– and z– directions of a node are arranged sequentially. A is a
filtering matrix with a size of n×m, where n is a size of vector x and m is size
of p. Hence, the size of the optimization problem in the classical definition
equals to a number of design variables, m. If n = m, the design control field
provides the largest design space.

Remark. In case the discretization of the control space is finer than the
surface mesh, the actual geometry won’t be able to represent the shape modes
generated by the control space and the optimizer.

In the same way, the relation between shape gradients and design gradients,
eq. 2.18 can be reformulated in a discrete form:

df

dp
=

df

dx

dx

dp
= AT df

dx
(2.22)

and the relation between shape update and design control update, 2.17:

∆x = A∆p (2.23)

The filtering operator A is applied two times: the first time for gradients
and a second time for shape update, identical to the continuous form. Filtering
operation doesn’t modify the original optimization problem and conserves the
change of the objective function in both spaces:

∇xf
T∆x = (A−T∇pf)

TA∆p = ∇pf
TA−1A∆p = ∇pf

T∆p (2.24)

13

Chapter 3

Adaptive Vertex Morphing

3.1 Vertex Morphing

Vertex Morphing is a successful method that has been introduced by Hojjat
et al. [33] and Bletzinger [8]. Furthermore, it has been successfully used for
various practical shape optimization applications, Baumgärtner et al. [7],
Geiser et al. [25], Geiser A. [26], Ghantasala et al. [28], and Najian Asl et al.
[45]. Further details and discussion about the filtering operation A and shape
optimization problems with Vertex Morphing are continued in Publication
II. Chapter 4 discusses the shape optimization workflow based on Vertex
Morphing with various optimization methods.

3.2 Two Roles of the filtering radius

The filtering radius size has two roles: regularization and design variable.
In the following section, we discuss both of them and their influence on the
outcome.

3.2.1 Design variable

In Vertex Morphing, the filtering radius is considered as a design variable
because the filtering radius changes the optimization results dramatically.
Fig. 3.1 (left) shows the influence of the filtering radius size on the design
gradients. On the left side, one can see the shape gradients of the drag force
on the ONERA M6 wing, computed by the SU2 solver. On the right side top,
there are various filtering radii sizes, which are compared with wing size. All
sizes are valid and generate usable designs. On the bottom right side of the
figure, there are obtained design gradients. By comparing the design gradients
obtained by different radius sizes, we can observe that with a larger filtering
size, the design gradients are smoother but more different compared to the raw
shape gradients. In contrast, with a smaller filtering radius size, the design
gradients are closer to the shape gradients. As a result, the filtering radius size

16 Chapter 3. Adaptive Vertex Morphing

r = 0.1 r = 0.3r = 0.2

Figure 3.1: Shape gradients (left) vs design gradients (right) w.r.t.
different filtering radius sizes.

“guides” an optimizer to a certain local minimum, where the design surface is
formed with shape updates with certain shape modes. If the optimization
problem is convex, the optimizer will always converge to the “true” minimum,
Hojjat [32] and Hojjat et al. [33].

3.2.2 Regularization

The second role of the filtering radius is to regularize the optimization problem.
As each node of the control mesh is considered to be a design parameter,
there are a large number of design solutions. However, a lot of them are noisy,
with non-smooth design surfaces and low-quality meshes. Such solutions are
considered as unusable or invalid. Therefore, Vertex Morphing applies filtering
operations on shape gradients and design updates to compute shape updates
that are considered as usable. The usable shape update is a shape update that
can be applied to the current numerical mesh without generating invalid cells,
self-penetrations, and kinks, and it reduces the objective function while the
constraints are satisfied for small shape changes.

Fig. 3.2 compares the generated meshes using different filtering radii. The
element size of the mesh is approximately 3 mm. For the radius size r = 2
mm, no filtering occurs; hence, the generated mesh is extremely noisy and
unpractical. If r = 6 mm, the computed shape update is smoother, but it is
still unusable because it generates a rough surface. If r = 18 mm, the shape
update is usable, and the generated mesh is smooth. Following Firl et al. [19]
and Hojjat [32], the filtering radius size has to cover at least four elements
to generate a usable shape update. The Publication II, Section 3, studies
the radius size effect on the surface smoothness. In the following Section, we
demonstrate and discuss such examples.

16

3.3. Vertex Morphing with adaptive filtering radius size 17

r = 2 mm

r = 6 mm

r = 18 mm
∇f

∆x mesh quality
Figure 3.2: Shape gradients (left) vs shape update and mesh quality

(right) w.r.t. different filtering radius sizes.

3.3 Vertex Morphing with adaptive filtering radius size

Publication II proposes Vertex Morphing with adaptive filtering radius (AVM
method). The idea is based on the Vertex Morphing practice to choose the
filtering radius based on the mesh size. The method suggests solutions for
three main challenges to choosing the size of the filtering radius in daily
practice:

1. A filtering radius size dramatically influences the optimization outcome.
Therefore, a user should choose it carefully. AVM provides the flexibility
to choose individual filtering radii for each node, hence, exploring the
design space with more freedom to find better solutions.

2. A priori, the “good” size of the filtering radius is unknown. If the radius is
too small, the filtering operation fails to generate smooth shape updates
and, as a result, produces high-frequency, noisy geometries. AVM adjusts
the filtering radius locally in the regions where the initial filtering radius

17

18 Chapter 3. Adaptive Vertex Morphing

gets too small to ensure that the generated shape updates are usable.
Consequently, the radius can be reduced if the local elements have been
compressed to conserve the design freedom through the optimization
process.

3. A designer may have difficulties choosing a “proper” filtering radius for
an unknown, new complex model. AVM can be used without any user
input by applying the computed radius field. Based on the obtained
results, the designer can adjust the radius sizes for the next design
iteration.

3.4 Mesh independency

An important property of any parameterization technique is mesh indepen-
dency, which can be understood as follows:

“The found optimal shape is independent of FE discretization and depends
only on the choice of the design variables.”

Firl et al. [19] in his works has shown that the FE-based parameterization
with the same filtering radii finds similar solutions with different FE meshes.
The original Vertex Morphing has the same property.

In contrast, AVM may find different solutions with different FE meshes.
However, AVM can be accepted as mesh-independent parameterization as
well because of its two properties:

1. If the radius field is fixed for a certain coarse mesh, and the radius field
is applied to a new refined mesh, and then the found solution is going
to be qualitatively the same as the solution on the coarse mesh.

2. If the radius field is computed based on a new FE mesh, AVM will
find a new solution due to a newly chosen set of the design variables,
p = A−1(r)x.

3.5 Numerical examples with VM and AVM

3.5.1 Structural academic example

A structural optimization problem is solved to demonstrate the flexibility and
robustness of the AVM method. The goal is to minimize the compliance of the
shell structure under the distributed load. Additionally, the design boundaries
are applied, which limits the motion of each surface node, (Chapter 4.2.3):

∆xk ≤ ∆xmax (3.1)

∆x =
∑
i

∆x(i) (3.2)

The size of the optimization problem is 15198 (3 times the number of
nodes). The number of geometrical constraints is 5066 (number of nodes).

18

3.5. Numerical examples with VM and AVM 19

Figure 3.3: Structural FE-model.

The structural analysis model is shown in Fig. 3.3. The distributed load Q
is applied in the middle of the structure. On both sides, fixed supports are
applied. The convergence criteria are:

j=i∑
j=i−5

f(x(k))− f(x(0))

f(x0)
≤ 1e−5 (3.3)

i ≤ 100 (3.4)

The numerical model has an initialy structured mesh with a very small
variation of the element sizes next to the surface edges. As a result, the
initial radius field is almost constant and equals 21 mm. Consequently, in our
numerical experiments with Vertex Morphing, the filtering radius r = 21 mm.

Case 1, maximum absolute update 4 mm.
The final results, obtained with AVM and VM r = 21 mm, represent

different local minimums with smooth design surfaces, Fig. 3.4. As the
absolute update is limited to 4 mm, there are no large deformations in the
surface mesh and elements. Consequently, the initial radius size is suitable
during the whole optimization process.

19

20 Chapter 3. Adaptive Vertex Morphing

Figure 3.4: Optimized shell structure: AVM (left) and VM, r = 21
mm (right). Maximum absolute update 4 mm.

Case 2: maximum absolute update 12 mm.

In contrast to Case 1, the final results with VM and maximum absolute
update 12 mm have kinks and a non-smooth design surface, Fig. 3.5 It
happens due to enlarged surface deformations and insufficient size of the
initial filtering radius. Fig. 3.6 shows the change in the radius field computed
by AVM. It can be seen that the radius field has changed dramatically for
the regions, where the larges shape changes acquire.

Case 3: AVM with custom radius size and maximum absolute
update 12 mm.

In this case, the custom radius size r = 60 mm is given on the top of
the plate to show the possibility of exploring new designs. In Fig. 3.7 the
obtained radius field is shown, and the final solution without high-frequency
shape modes is on the top of the structure.

In all shown cases, the optimizer finds different local minima with various
performances. However, there is no rule that performance is better in the
case of a smaller or bigger filtering radius; see Publication II, the airfoil
optimization. Typically, it changes from case to case. Hence, the designer
should explore the possibilities by changing the filtering radius globally and
locally.

20

3.6. Design process with AVM 21

Figure 3.5: Optimized shell structure: AVM (left) and VM, r = 21
mm (right). Maximum absolute update 12 mm.

3.6 Design process with AVM

One of the goals of developing the Adaptive Vertex Morphing is to improve
the general design workflow with Vertex Morphing. As it is mentioned above,
it can be challenging to choose the “right” filtering radius size for the new
model. With Adaptive Vertex Morphing, one can start the design process
without giving filtering radius size parameters. Based on the obtained results,
the designer can choose the regions where the radius should be increased.
However, reducing the radius is impossible because AVM computes the
smallest acceptable radius based on the local mesh size. If the radius size
must be smaller than the computed one, the designer must refine the FE
mesh in that region.

21

22 Chapter 3. Adaptive Vertex Morphing

Figure 3.6: Radius field computed by AVM: initial field (left), latest
field (right).

Figure 3.7: Optimized shell structure: AVM and custom radius r = 60
mm on top. Maximum absolute update 12 mm.

22

Chapter 4

Optimization algorithms with Vertex
Morphing

4.1 Engineering optimization problem formulation

The design optimization process requires the designer to interpret the goals
and design specifications into a mathematical model that can be solved using
numerical optimization methods. The challenge of these processes is that it
isn’t trivial to formulate an adequate optimization problem with a solution.
Unrealistic requirements cause the optimization to fail or cause it to converge
to a mathematical optimum that is unrealistic from an engineering point of
view.

Therefore, following Martins et al. [41], the formulation of the optimization
problems starts with the problem description. At this step, all the goals,
requirements, and a statement of the system are described. Secondly, all
available information, numerical and experimental data, physical aspects,
previous models, etc., are collected regarding the performance and behavior of
the designed model. The second step is important in the early stages because
it helps to understand the task better and formulate a good optimization
problem.

The third step defines the design variables that should be found during
the optimization process. The choice of the design variables defines the type
of optimization to be solved. In topology optimization, one should find the
optimal material distribution that can carry the load in a most efficient way.
In the size optimization, the engineering parameters are chosen, such as
cross-sections, cross-areas, angles of attacks, etc. In shape optimization, a
set of the typical design variables are CAD parameters or positions of the
surface nodes. Depending on the available data, for instance, the existence of
the initial models, or the stage of the design cycle, various types of structural
optimization are applied.

The optimization response functions are defined in the last two steps:
objective and constraints. The problem formulation process is summarized in

24 Chapter 4. Optimization algorithms with Vertex Morphing

Fig. 4.1. The three last steps are discussed in the following Sections.

Problem Description Gathering In-
formation

Define the de-
sign variables

Define the ob-
jective function

Define the
constraints

Figure 4.1: Optimization problem formulation

4.1.1 Design variables

The design variables are represented by the column vector x = [x1, x2, ..., xn]
and define a given design. Different vectors x define different designs. The
size of the vector determines the optimization problem’s dimensionality.

The design variables must be independent of each other or any other
parameter, and the optimization algorithm must independently control any
variable. It means that during the physical analysis of a given design, the
variables are the input parameters for the simulations, and they remain
constant during the simulation.

Example. In the size optimization of the wing, a wingspan (b) and a chord
(c) can be used as design variables. In the practice, an area (A = bc) and
an aspect ratio (AR = b2/S) are also preferred during the design process.
Variables A and AR can’t be added to the variables b and c because the
variables aren’t independent. Instead, any two design variables of four can
parameterize the optimization problem (4 variables, 2 dependencies).

There are two types of design variables: continuous and discrete. The
continuous variable is usually a real number that can continuously be any
value in a given range. In contrast, the discrete variable can take only specified
values.

Example. The previous example of the wing’s size optimization problems
is considered. The continuous set of the design variables, for instance, chord
(c) and wingspan (b) which can take any real value. The discrete variable
would be a set of specific wing models, for instance, [ONERA M5, ONERA
M6] with a fixed pairs [b,c].

4.1.2 Objective and constraint functions

An objective function is a quantity that determines if one design is better
than another one. In a standard format, the objective function has to be
minimized:

minimize : f(x) (4.1)

In some applications, the goal function has to be maximized. The equivalent
minimization problem can be formulated in two ways:

24

4.1. Engineering optimization problem formulation 25

maximize : f(x) = minimize : −f(x) (4.2)

or

maximize : f(x) = minimize : 1/f(x) (4.3)

Eq. 4.2 is preferred because f(x) = 0 is possible.
The constraints are classified as equality h(x = 0) and inequality g(x ≤ 0).

Every equality constraint can be formulated as a pair of inequality ones:

h(x) = 0 =

{
h(x) ≤ 0.0

h(x) ≥ 0.0
(4.4)

In literature, the design bound xl
i ≤ xi ≤ xu

i is classified as an additional
type, where xl is a lower boundary and xu – upper boundary. The design
variable xk is then called bounded. If the found optimum solution is x∗, then
the constraints can be classified as:

1. If g(x∗) = 0.0, the constraint is active;

2. If g(x∗) < 0.0, the constraint is non-active;

3. h(x∗) = 0.0, is always active;

The number of active constraints must be less or equal to the problem’s
dimensionality. The design point x, that satisfies all the given constraints, is
called feasible, otherwise – infeasible.

4.1.3 Standard optimization problem

The optimization problem statement is: “Minimize the objective function by
varying the design variables within their bounds such that all constraints are
satisfied”, Martins et al. [41]. The standard constrained optimization problem
can be formulated as follows:

minimize : f(x)

design variables : x

xl
i ≤ xi ≤ xu

i

s.t.:gj(x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh

(4.5)

where f is an objective function that has to be minimized by varying the
design parameters x, with design bounds xl and xu and such that the equality
hk and inequality constraints gj are satisfied. nh and ng are the numbers of
equality and inequality constraints respectively.

25

26 Chapter 4. Optimization algorithms with Vertex Morphing

4.2 Shape optimization problem formulation with
Vertex Morphing

4.2.1 Problem formulation

The formulation of a shape optimization problem with Vertex Morphing follows
the procedures in Fig. 4.1, where the design variables are already chosen.
Nevertheless, the engineer should adjust the parameterization technique to
have the desired outcome. In Vertex Morphing, the filtering radius size plays
a key role in adjusting the generated shape updates, Chapter 3.

Shape optimization problems with Vertex Morphing are based on the
standard definition 4.6, and it can be reformulated as follows:

minimize : f(x(p),u(p))

design variables : p

xl
i ≤ xi ≤ xu

i

s.t.:gj(x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh

(4.6)

where x are spatial coordinates of the design surface nodes, p is the control
design field, u are the state variables, xl and xu are the design bounds, hk

and gj are the equality and inequality constraints.

4.2.2 Independency of control field parameters

In Vertex Morphing, the design control field is considered as design variables.
The position of the node x is dependent on several control parameters p inside
the filtering radius size. In contrast, the control parameters are independent
of each other. The optimization algorithm can change each control param-
eter based on the design gradients information and the line search method.
Consequently, the position of the node x appears to be a sum of the control
parameter multiplied by influence weights:

∆xi =

∑
j Aij∆pj∑

j Aij
(4.7)

4.2.3 Design boundary formulation

In a standard problem formulation, eq. 4.6, the design boundary appears
to be a linear constraint that bounds the design variable directly. In Vertex
Morphing practice, it is convenient to apply design boundaries to the design
nodes and not to the control design parameters. As a result, the constraints
are non-linear functions anymore:

A−1
ij xl

i ≤ pj ≤ A−1
ij xu

i (4.8)

where, A−1 is an inverted filtering matrix that may be computationally
expansive to compute. To overcome this issue, we can reformulate the

26

4.2. Shape optimization problem formulation with Vertex Morphing 27

boundaries as a legal constraint by computing its value and shape gradients.
The constraint for node k restricting its motion in a normal direction is:

g(xk) = ∆xk · nk −∆xmax
k

∆xk =
∑
i

∆x
(i)
k

(4.9)

or restricting the absolute motion:

g(xk) = ∥∆xk∥ −∆xmax
k (4.10)

As a result, the number of newly formulated constraints is as large as the
number of restricted nodes. In order to simplify the optimization problem,
the aggregation techniques can be applied, Brelje et al. [10], Damigos et al.
[16], and Geiser et al. [25]. If the square-sum aggregation function is applied,
the aggregated design boundary constraint is:

g+(x(i)) =

{
g(x

(i)
k) : g(x

(i)
k) > 0.0

0 : elsewhere

∇g(x(i))square =
∑
k

2g+(x
(i)
k)∇g+(x(i)

k)

(4.11)

Alternatively, the max-value aggregation can be applied for the relaxed
gradient projection method, Publication II, Chapter 4.4.

4.2.4 Initial design

To solve a shape optimization problem iteratively, an initial or starting
point should be given. Most of the gradient-based optimization methods, for
instance, steepest descent, find a local optimum close to the starting point.
Hence, it is recommended to try different starting points to explore the design
space better.

In Vertex Morphing, the initial start is the initial geometry and its FE
model, which is used to solve the applied physical problem. Equivalently, the
initial geometry predefines the local minimum, which the optimizer would find.
For instance, in the full-car optimization example to improve the aerodynamic
efficiency, can be performed with or without various aerodynamic elements,
like rear spoiler. As a result, the outcome from optimization is a different car
models, which can be used for different scenarios, in the city or on the racing
track.

One should carefully choose the optimization methods and starting points
because some methods, like the interior penalty function method, Vanderplaats
[55], must have a feasible start.

27

28 Chapter 4. Optimization algorithms with Vertex Morphing

4.3 Gradient-based optimization methods with Vertex
Morphing

The optimization methods are typically classified based on the data that they
use to solve the optimization problem:

1. Function values → zero order methods. The well-known methods are
Genetic search, Particle swarm, Michalewicz et al. [42]. Usually, the
methods are efficient with a small number of design variables n ≤ 20.
These methods aren’t considered in this work.

2. Function gradients → first order methods. The methods are: Steepest
Descent, Conjugate Gradients, Gradient Projection, Sequential Linear
Programming (SLP), Sequential Quadratic Programming (SQP), Aug-
mented Lagrange Method, etc. In engineering problems, sensitivity
analysis is required to compute design gradients. Suppose a number
of design variables is larger than a number of objective functions. In
that case, the adjoint based sensitivity analysis is the most efficient
and the state of the art technique for gradient computation, Najian Asl
[44]. The first-order optimization methods are the most used ones for
engineering shape optimization problems with Vertex Morphing.

3. Second order information, the Hessian matrix → Newton methods.
These methods use second-order information to find a design update.
The Hessian is typically not available or expensive to compute in engi-
neering optimization. In this case, the method approximates the Hessian
matrix, and they are called the Quasi-Newton method. The well-known
algorithm is Broyden–Fletcher–Goldfarb–Shanno (BFGS).

In Vertex Morphing, the number of design variables is usually thousands
or millions. Therefore, gradient-based optimization methods are preferred.

4.3.1 Steepest descent technique

The most simple but at the same robust optimization technique to solve an
engineering optimization problem is the steepest descent. The search direction
is the negative objective gradient:

s = −∇f(x) (4.12)

and the design change is:
∆x(i) = α(i)s(i) (4.13)

where the α(i) step length can be found by different line search techniques or
approximation techniques. The new solution point is:

x(i+1) = x(i) +∆x(i) (4.14)

Algorithm 1 shows the workflow of the steepest descent method with Vertex
Morphing. The algorithm solves the optimization problem in the control design

28

4.3. Gradient-based optimization methods with Vertex Morphing 29

space, and the solution process isn’t any different from the standard problem
process. Additional necessary steps are forward and backward mapping.
During these steps, the shape gradients are mapped to design gradients, and
design update is mapped to shape update.

Algorithm 1: Steepest Descent method with Vertex Morphing
Start: x0, α, i← 0
while Optimality criteria are not met do

Compute filtering matrix: A;
∇f(p(i))← AT∇f(x(i));
s(i) ← −∇f(p(i)) ;

s(i) ← s(i)/
∥∥∥s(i)

∥∥∥;
Line Search finds: α(i);
∆p(i) ← α(i) ∗ s(i);
∆x(i) ← A∆p(i);
x(i+1) ← x(i) +∆x(i) ;
i← i+ 1;

The steepest descent has been successfully applied to solve unconstrained
optimization problems with Vertex Morphing, Baumgärtner [6], Ertl [17],
Hojjat [32], and Najian Asl [44]. It is often used with constant step size, where
the design surface is changed by a fixed amount of motion, say a couple of
mm every iteration.

4.3.2 Newton’s method

Newton’s method is the classical second-order method with various modifica-
tions to improve its efficiency. Here, we follow Vanderplaats [56] to introduce
the method. The method is derived from the second-order Taylor series
expansion:

f(x(i+1)) ≈ f(x(i)) +∇f(x(i))∆x(i) +
1

2
∆x(i),T [H(x(i))]∆x(i) (4.15)

where
∆x(i) = x(i+1) − x(i) (4.16)

Solving eq. 4.15 for the stationary condition leads to:

∆x(i) = −[H(x(i))]−1∇f(x(i)) (4.17)

Eq. 4.17 can be formulated using first-order update schema as:

∆x(i) = α(i)s(i) = −[H(x(i))]−1∇f(x(i)) (4.18)

29

30 Chapter 4. Optimization algorithms with Vertex Morphing

Considering α = 1, it gives:

s(i) = −[H(x(i))]−1∇f(x(i)) (4.19)

Inverting the Hessian matrix can be an expensive process for large H. Hence,
the linear system of equation is solved to find the search direction s that can
be used in a general one-dimensional search:

[H(x(i))]s(i) = −∇f(x(i)) (4.20)

In a quadratic optimization problem and α = 1, the Newton method
converges in one iteration. There are two common modifications to the
Newton methods to improve computational efficiency. The first improvement
is based on the assumption, that the Hessian doesn’t change strongly after
each iteration and it is not required to compute it every step. This assumption
allows saving the computational time, which is necessary to compute the
Hessian matrix. The second modification is to search in direction s, noting
that α = 1 should be an excellent first estimate for α(i).

The principal difficulty with Newton’s method is that the H matrix may
be singular, or at least non-positive, as required. The H matrix is singular if
the objective is linear in one or more design variables. If the objective function
is close to being linear in some variables, the computed search direction s may
become so ill-conditioned that the result won’t be valid. On the other hand,
the ill-conditioning of the H matrix can be used to identify an unbounded
solution.

If the H is not positive definite, the optimization problem is not convex.
The predicted design updates can be so large as to cause oscillation in the
solution. To avoid oscillations, one can apply the move boundaries, e.g., trust
region, to prevent unnecessary ill-conditioning and apply the properties of H
matrix only locally.

In engineering optimization, the computation of the H matrix is often a
challenging and computationally expansive task. If the Hessian is available,
it should be mapped onto the control space by applying the filtering matrix
two times:

Hp = H(p) = AH(x)AT (4.21)

Assuming that A and H is invertible, the design update is:

∆p = −[Hp]
−1∇pf = − [ATHxA]−1∇xfA (4.22)

and the shape update is:

∆x = A∆p = −A[AHxA
T]−1∇xfA =

−A[A−1H−1
x A−T]AT∇xf =

H−1
x ∇xf (4.23)

As a result, Newton’s method cancels the filtering effect of Vertex Morphing,
and it makes the method unpractical, Hojjat [32]. As a matter of fact, for the

30

4.3. Gradient-based optimization methods with Vertex Morphing 31

applications with Vertex Morphing, reported in the previous work, the authors
had made very good experience with simple steepest descent techniques using
the filter to converge to intentionally selected local minima.

4.3.3 Quasi-Newton methods

The main idea of the Quasi-Newton methods is to approximate the H matrix
by using the update strategy at every iteration based on the latest information:

H̃
(i+1)

= H̃
(i)

+∆H̃
(i)

(4.24)

where the update ∆H̃
(i)

is a function of the last two gradients. The initial
Hessian matrix is usually set to the identity matrix or scaled version of it,
H̃

(0)
= I. The eq. 4.19 is also valid for Quasi-Newton methods:

[H̃
(i)
]s(i) = −∇f(x(i)) (4.25)

The Quasi-Newton method’s most successful update schema is indepen-
dently developed by Broyden, Fletcher, Goldfarb, and Shanno, Broyden [11],
Fletcher [21], Goldfarb [29], and Shanno [53]. Omitting the derivations, the
Hessian matrix update is:

∆H̃
(i)

=
y(i)y(i),T

y(i),Td(i−1)
− H̃

(i)
d(i−1)d(i−1),T H̃

(i)

d(i−1),T H̃
(i)
d(i−1)

(4.26)

where y(i) = ∇f(x(i))−∇f(x(i−1)) and d(i−1) = x(i) −x(i−1). By using the
Sherman–Morrison-Woodbury formula, the inverted approximation of the
Hessian can be analytically found:

[∆H̃
(i)
]−1 = (I − σ(i)d(i−1)y(i),T)[H̃

(i)
]−1(I − σ(i)y(i)d(i−1), T)+

σ(i)d(i−1)d(i−1),T (4.27)

where

σ(i) =
1

y(i),T
(4.28)

In the case of Vertex Morphing, the approximated Hessian matrix should
be computed directly in the control space using smoothed design gradients.
In contrast to Newton’s method, the filtering effect is not canceled, and the
smooth shape updates are computed. With Quasi-Newton methods, the
design control update is a discrete field because the objective gradients are
multiplied with approximated Hessian matrix. Still, the shape update becomes
smooth after forward mapping. Algorithm 2 describes the Quasi-Newton
method’s workflow with Vertex Morphing.

31

32 Chapter 4. Optimization algorithms with Vertex Morphing

Algorithm 2: Quasi-Newton methods with Vertex Morphing
Start: x0, α, i← 0
while Optimality criteria are not met do

Compute filtering matrix: A;
∇f(p(i))← AT∇f(x(i));
Approximate inverse Hessian matrix: H−1

p(p
(i)) ;

s(i) ← −[H−1
p(p

(i))]∇f(p(i)) ;

s(i) ← s(i)/
∥∥∥s(i)

∥∥∥;
Line Search finds: α(i);
∆p(i) ← α(i) ∗ s(i);
∆x(i) ← A∆p(i);
x(i+1) ← x(i) +∆x(i) ;
i← i+ 1;

4.3.4 Gradient projection method

The feasible search direction methods deal directly with the nonlinearity of
the problem. One of these methods is the gradient projection method, Rosen
[49]. It can be seen as an extension of the steepest descent for constraint
optimization problems. With this method, we will first find a search direction
s and then move in this direction to update the x. Having determined a
search direction, the step length is found using line search techniques. The
emphasis is to find a search direction that improves the objective function
while maintaining a feasible design.

The found search direction s should satisfy two conditions: feasibility
and usability. The usability condition shows if the objective function can be
reduced in the search direction:

∇f(x)Ts ≤ 0.0 (4.29)

A direction is called feasible if, for some small move in that direction, the
active constraints will not be violated. That can be formulated as follows:

∇g(x)Ts ≤ 0.0 (4.30)

Observing these two conditions, the search direction finds the greatest ob-
jective function reduction if the eq. 4.29 is minimized, with eq. 4.29 is
equal to zero. The gradient projection method finds the search direction that
satisfies both conditions by projecting the steepest-descent search direction
onto the subspace tangent to the active constraints. Publication I introduces
the derivation of the formulas and discusses the common problems, such as
zig-zagging.

In node-based shape optimization with Vertex Morphing, the gradient
projection has been often used in the previous work, Baumgärtner [6], Ertl

32

4.4. Relaxed gradient projection method 33

[17], Najian Asl [44], and Najian Asl et al. [45]. Algorithm 3 describes the
optimization workflow of the method with Vertex Morphing. In contrast to
algorithm 1, the constraint’s gradients are also mapped to the control space,
but the general process is similar.

Algorithm 3: Gradient projection method with Vertex Morphing
Start: x0, α, i← 0
while Optimality criteria are not met do

Compute filtering matrix: A;
∇f(p(i))← AT∇f(x(i));
∇gj(p(i))← AT∇gj(x(i));
Build active constraint matrix: N ;
s(i) ← [I −N(NTN)−1NT]∇f(p(i)) ;

s(i) ← s(i)/
∥∥∥s(i)

∥∥∥;
Line Search finds: α(i);
∆p(i) ← α(i) ∗ s(i);
∆x(i) ← A∆p(i);
x(i+1) ← x(i) +∆x(i) ;
i← i+ 1;

4.4 Relaxed gradient projection method

Publication I introduces a relaxed gradient projection method. The method
is a modification of the classical Rosen’s gradient projection algorithm (Rosen
[49, 50]). The proposed algorithm can be classified as:

• First order. The method uses only the first-order information: response
functions values and gradients.

• Direct. In contrast to SUMT, the method solves the constraint problem
directly by finding feasible search directions and following active con-
straint boundaries. The optimization process can have a non-feasible
start.

• Active set method. The algorithm uses the technique to identify active
and non-active constraints at each optimization iteration.

• Feasible direction method. The algorithm tries to find a feasible direction
to avoid constraint violations. In contrast to the original method, the
proposed one doesn’t guarantee the usability of the search direction if
there is a highly violated constraint or a strongly infeasible start. The
usability condition, eq. 4.29, is not forced.

33

34 Chapter 4. Optimization algorithms with Vertex Morphing

In contrast to the original method, the relaxed gradient projection method
can define the transient stage between active and non-active constraint status,
where the constraint is considered active but with a relaxation coefficient.
Therefore, the relaxation and correction factors mildly control the projection
and correction components of the search direction. The proposed method
contains the buffer (critical) zone around the constraints limit value. As
a result, the algorithm is more stable with respect to zigzagging behavior
when it follows the design boundaries. The proposed method can activate
the constraint before the limit value is reached. It doesn’t require accurate
parameter setup, therefore, it is easier and more robust in daily practice.
The algorithm can efficiently solve optimization problems with engineering or
manufacturing constraints. The requirements for the constraint functions are:

• The response function should have well-defined values that define the
system’s performance to estimate the gap to the limit value or needed
correction.

• Due to the natural complexity of the manufacturing constraints, it may
be hard to define the function and its gradients mathematically. As a
result, the response may use normal vectors as functional gradients at the
nodes, which doesn’t satisfy the feasibility condition. The method can
solve problems with such constraints if the response value is well-defined.

4.5 Globalization strategies

Engineering problems require iterative methods to find minima based only on
the function values and gradients. To ensure convergence to an optimum, we
need a globalization strategy. Globalization enhances the optimization method,
that it converges from any starting point in the domain to a local minimum.
It can be understood as the method to globalize the local information at
the point to a domain’s region. Here, we don’t discuss the strategies to
find a global optimum, which is a different problem. The are two different
globalization strategies: trust-region and line search.

Line search techniques consist of three steps:

1. Compute a search direction about the current point.

2. Using line search techniques, find a step length along the search direction.

3. Move to the new point, and update all the values.

It also can be formulated as a 1D optimization problem, where the step length
is unknown. If the search direction s is found, the step length can be found
as:

min
α

: f(x+ αs) (4.31)

Hence, firstly, we find a search direction, and then we decide how far we
should move along it.

The trust-region strategy consists of three steps:

34

4.5. Globalization strategies 35

1. Create a model about the current point based on a Taylor series approx-
imation or surrogate model.

2. Solve the created model within the trust region to find a new point.

3. Move to the new point, update all the values and the size of the trust
region.

In contrast to line search, in the trust-region strategy, we simultaneously
solve for the search direction and the length. In literature, the line search
approaches are commonly used to solve nonlinear problems, and we focus on
line search in this section.

4.5.1 Constant scaled step length

In shape optimization problem with Vertex Morphing, the constant step size
has been used in various research works, Baumgärtner [6], Chen [13], Ertl [17],
Hojjat [32], and Najian Asl [44]. It attracts with its simplicity and robustness.
The scaled step size means:

α̃ =
α

∥s∥ (4.32)

where α is the desired size of the shape update, say 5 mm. The scaled step size
ensures that the shape update at each iteration remains constant throughout
the optimization process. The drawbacks of constant step size are:

1. Unknown. “Good” step size is unknown in the beginning and may be
difficult to guess.

2. Accuracy. The constant step size might be suitable at the beginning of
the optimization process, but not valid later. For instance, when several
non-linear constraints activate, the step length might be too large, but
using a smaller step size leads to more optimization iterations till the
same point.

3. Zig-zagging. When the optimizer gets close to the local minimum, it
may oscillate around it due to the fixed step size.

4.5.2 Backtracking techniques

In the work of Martins et al. [41], the authors recommend the backtracking
techniques as a robust and efficient method for engineering optimization
problems. The robustness is guaranteed by trying several step sizes until
the “good enough” is found. In their book, the authors introduce techniques
to find the step size most efficiently. In this work, we will present the main
formulas and ideas of the methods, omitting the derivations.

To simplify the formulas, we will use the notation:

ϕ(α) = f(x+ αs)

ϕ′(α) = ∇f(x+ αs)Ts
(4.33)

35

36 Chapter 4. Optimization algorithms with Vertex Morphing

where ϕ(α) is a value of the objective function f at the point x+ αs, ϕ′(α)
is a slope of the 1D function ϕ at the point x+ αs with respect to α.

The “good enough” step size can be described using the sufficient decrease
condition, also known as Armijo condition:

ϕ(α) = ϕ(0) + µ1αϕ
′(0) (4.34)

where µ1 is a constant, 0 < µ1 < 1. The quantity µ1αϕ
′(0) represents the

expected decrease of f for a given α. In practice, µ1 is typically several orders
of magnitude smaller than 1, for instance, µ1 = 1e−4. To satisfy the condition,
eq. 4.29, ϕ′(0) = ∇f(x)s < 0, while the s is always a descent direction, the
step size has to be positive, α > 0.

The simple backtracking algorithm tries the initial guess α0 and reduces it
by constant ρ < 1, till the Armijo condition is fulfilled. The typical value of
constant ρ = 0.5. There are two scenarios when the technique fails:

1. If the initial guess is too large, and the acceptable step is several orders
of magnitude lower, the backtracking techniques require a large number
of function evaluations.

2. If the initial guess is too low and it is accepted immediately. However,
the function’s slope is still negative, and the function can be further
reduced with a larger step size.

There are enhanced techniques that deal with these scenarios much more
efficiently. It seems to be an excellent solution to increase µ1 to prevent small
steps. Nevertheless, increasing µ1 also prevents accepting large steps that
results in a reasonable decrease because the term µ1αϕ

′(0) gets very large
and harder to satisfy. As a result, the method’s convergence may slow down,
because the large steps that provide reasonable decrease are desirable and
lead to faster convergence. Simultaneously, it would be nice to analyze the
initial step better to understand if it is too large or too small. A solution for
both issues is to compare the function’s slope at the candidate point with the
slope at the start point. The condition is called sufficient curvature condition
and can be formulated as follows:

|ϕ′(α)| ≤ µ2|ϕ′(0)| (4.35)

This condition requires that the magnitude of the slope at the candidate point
is lower than the magnitude of the slope at the starting point by a constant
0 < µ2 < 1. The condition can be understood as “flattening” of the slope at
the candidate point. If µ → 0, the condition requires an exact line search
solution. If µ2 → 1, we accept larger magnitudes of the slope. Typical values
for µ2 are in the range [0.1, 0.9], and the best value depends on the problem
and applied optimization method.

Combining the Armijo condition and sufficient curvature condition gives
the strong Wolfe conditions. To guarantee that there are steps that satisfy
the strong Wolfe conditions, the constants must be 0 < µ1 < µ2 < 1. The
line search techniques that find a step satisfying the strong Wolfe conditions
have two phases:

36

4.5. Globalization strategies 37

1. The bracketing phase finds boundaries of the interval where there is an
acceptable step size.

2. The pinpointing phase finds a step size that satisfies the strong Wolfe
conditions within the interval provided by the bracketing phase.

Overall, the bracketing algorithm increases the step size until it either finds
an interval that must contain a point satisfying the strong Wolfe conditions
or a point that already meets those conditions. In the pinpointing phase, the
polynomial approximation techniques are discussed in the following Section.

4.5.3 Polynomial approximations

A polynomial approximation is one of the most efficient techniques for finding
the minimum of the one-dimensional function, Vanderplaats [56]. Here, we
follow Martins et al. [41] to introduce the formulas to compute the polynomial
approximation for the line search problem.

The Polynomial approximation’s procedure is to evaluate the function
at several points, or derivatives of the function, and fit the approximated
polynomial to those known points. The third-order approximating polynomial
for line search is:

p(α) = a0 + a1α+ a2α
2 + a3α

3 (4.36)

where the coefficients a0, a1, a2, a3 are the unknowns, that have to be found.
The evaluated values and derivatives at the points give us the boundary
conditions to find the unknown coefficients. In the case of two-point quadratic
approximation:

p(α1) = a0 + a1α1 + a2α
2
1

p(α2) = a0 + a2α2 + a2α
2
2

p′(α1) = a1 + 2a2α1

a3 = 0

(4.37)

By solving this equation, we can find the coefficients for quadratic polynomials.
Once the coefficients are found, the minimum of the quadratic can be found
analytically by finding α∗, where p′(α∗) = 0. The solution is α∗ = −2a1/2a2

or it can be reformulated using the boundary conditions:

α∗ =
2α1[p(α2)− p(α1)] + p′(α1)(α

2
1 − α2

2)

2[p(α2)− p(α1) + p′(α1)(α1 − α2)]
(4.38)

If computing the gradients of the function at one more point α2 is inexpensive
or it is already evaluated, the cubic interpolation can be performed with
extended boundary conditions:

p(α1) = a0 + a1α1 + a2α
2
1 + a3α

3
1

p(α2) = a0 + a2α2 + a2α
2
2 + a3α

3
2

p′(α1) = a1 + 2a2α1 + 3a3α
2
1

p′(α2) = a1 + 2a2α2 + 3a3α
2
2

(4.39)

37

38 Chapter 4. Optimization algorithms with Vertex Morphing

Using these four equations, the unknown coefficients can be found. In contrast
to quadratic case, there are two solution α∗ which satisfy the stationary
condition p′(α∗) = a1 + 2a2α

∗ + 3a3α
∗2. However, only one solution is valid

to our problem, for which the curvature is positive, p′′(α∗) = 2a2 +6a3α
∗ > 0.

As a result, the minimum solution is:

α∗ = α2 − (α2 − α1)
p′(α2) + β2 − β1

p′(α2)− p′(α1) + 2β2
(4.40)

where
β1 = p′(α1) + p′(α2)− 3

p(α1)− p(α2)

α1 − α2

β2 = sign(α2 − α1)
√

β2
1 − p′(α1)p′(α2)

(4.41)

Note. The polynomial approximation is a very powerful tool. It can be
used for pinpointing phase of the line search algorithm to find a point that
satisfies the strong Wolfe conditions, as it is shown above. Additionally, the
polynomial approximation can be applied to solve the line search problem
4.31 directly as a line search technique.

The backtracking and polynomial approximation techniques generally share
the same drawback for large engineering problems. It is a necessity to run
the primal and adjoint analysis a few times in one optimization iteration. It
might be more efficient to perform several optimization iterations with small
steps rather than perform the line search process.

4.5.4 Barzilai-Borwein method

Barzilai-Borwein method is the approximation technique to estimate the step
length for the steepest descent algorithm, Barzilai et al. [5]. This method
attracts many researchers with its simplicity and superior performance in
various problems, Fletcher [23]. In the work of Raydan [48], the author
has used the Barzilai-Borwein method to estimate the initial step for the
backtracking algorithm. In Chapter 5, we study the method in the context of
node-based shape optimization and propose the modification for large-scale
problems.

4.6 Convergence criteria

A critical part of the overall process is determining when to stop the search.
The convergence or termination criteria have a major effect on efficiency
and reliability. This section introduces the mathematical definition of the
optimum point and several practical convergence criteria.

4.6.1 The Karush-Kuhn-Tucker conditions

The Kuhn-Tucker conditions are the necessary conditions for optimality.
Considering the constrained optimization problem, eq. 4.6. The Lagrangian

38

4.6. Convergence criteria 39

function, including both equality and inequality constraints, is then:

L(x,λ,) = f(x) +
∑
j

λjgj(x) +
∑
k

hk(x) (4.42)

Only active constraints can be considered at the optimum in the Lagrangian
function. The inequality constraint gj is active if gj = 0 and it is inactive if
gj < 0. In advance, it is unknown which constraints are active; therefore we
need to include all inequality constraints. To represent inequality constraints
in the Lagrangian, it can be defined as equality:

gj + s2j = 0.0 (4.43)

where sj is a new unknown associated with each inequality constraint called
a slack variable, Martins et al. [41]. Eq. 4.43 can only be satisfied when
gj ≤ 0. The importance of the squared slack variable is that it takes only
positive values and that when sj = 0, the corresponding constraint gj = 0,
and when sj ̸= 0, the corresponding constraint is nonactive gj ≤ 0. The
modified Lagrangian function is:

L(x,λ,) = f(x) +
∑
j

λj(gj(x) + s⊙ s) +
∑
k

hk(x) (4.44)

where ⊙ is a element-wise multiplication of s. To derive the first-order
optimality conditions, we need to find the stationary point of the Lagrangian
function:

∇xL = 0

∇λL = 0

∇sL = 0

(4.45)

Taking partial derivatives of the Lagrangian with respect to design variables,
we get:

∂L

∂xi
=

∂f

∂xi
+
∑
j

λj
∂gj
∂xi

+
∑
k

λk
∂hk

∂xi
= 0 (4.46)

with respect to Lagrange multipliers associated with equality constraints:

∂L

∂λk
= hk = 0 (4.47)

with respect to Lagrange multipliers associated with inequality constraints:

∂L

∂λj
= gj + s2j = 0 (4.48)

Finally, differentiating the Lagrangian with respect to the slack variables, we
get:

∂L

∂sj
= 2λjsj = 0 (4.49)

39

40 Chapter 4. Optimization algorithms with Vertex Morphing

which is called the complementary slackness condition. This condition insures
that for each inequality constraint, if sj = 0 then λj > 0, or if sj > 0 then
λj = 0. The complementary condition helps to distinguish between active and
nonactive inequality constraints. Unfortunately, the complementary slackness
condition leads to a combinatorial problem, and its complexity grows with the
number of inequality constraints. One can apply the active-set methods, such
as gradient projection to avoid using the slack variables. It constructs the set
of active constraints at every iteration and includes only active constraints to
the Lagrangian function.

The so-called Karush-Kuhn-Tucker (KKT) conditions can be summarized
as:

∇f + λj∇gj + λkgk = 0

hk = 0

gj + s2j = 0

λjsj = 0

λj ≥ 0

(4.50)

These first-order conditions are necessary but not sufficient. The second-
order conditions require that the Hessian of the Lagrangian must be positive
definite in all feasible directions s:

sTHLs > 0

∇hs = 0

∇gs ≤ 0

(4.51)

These conditions require positive definiteness in the intersection of the
nullspace of the equality constraint Jacobian with the feasibility cone of
the active inequality constraints, Martins et al. [41]. In the practical applica-
tion, the H l is usually not available, therefore, only first-order conditions are
checked, or more pragmatic criteria, are discussed in the following sections.

4.6.2 Maximum number of iterations

The simplest and most commonly used criteria to terminate when the current
optimization iteration count reaches the maximum value. This criterion
ensures that the optimization process isn’t going to process indefinitely, or
it helps to control the computational time better. This rule applies to any
iterative process, whether the optimization algorithm, solving a coupled
physical problem, or functional evaluation.

4.6.3 Absolute or Relative change in the objective function

The second termination condition which should be used is a check on the
optimization process. Here, two conditions can be used to identify if the
improvement of the objective function is slow enough to stop. First is to
compare the absolute value of f(x) on successive iterations:

40

4.6. Convergence criteria 41

|f(x(i))− f(x(i−1))| ≤ ϵA (4.52)

where ϵA is a specialized tolerance, which can be a constant, say ϵA = 1e−5,
or relative to the initial value, ϵA = 0.001f(x(0)). The other criterion is a
relative change, that checks the relative difference on successive iterations:

|f(x(i))− f(x(i−1))|
max[|f(x(i))|, 1e−5]

≤ ϵR (4.53)

This criteria ensures that the optimization process is stopped for large or
small values of f . If either criterion is satisfied, we define this as a convergence.
The requirements can be forced to be satisfied on several successive iterations
to avoid a situation when the improvement has slowed down for a couple of
iterations and speeds up in the following steps.

4.6.4 Averaged absolute improvement rate condition

In practice, the objective values may strongly oscillate due to a non-smooth
function, optimization algorithm, or line search technique. Therefore, we can
average the improvement rate from the last N iterations to smooth value
oscillations and obtain a more stable improvement rate measurement. For
instance, the averaged change of absolute rate for last N iterations is:

i−N+1∑
k

ϵk − ϵk−1

N
≤ ϵAai

ϵk =
f(xk)− f(x0)

f(x0)

(4.54)

where N is a number of last successive iterations, ϵk is an absolute change
rate. The number of averaged iterations N is constant, say N = 10. ϵAai is
the required average improvement rate for one iteration, say ϵAai = 0.001,
which is mean, in every iteration we need to improve at least 0.1% for absolute
improvement. In the case of the constraint optimization problem, if the
termination criterium is met, one should check the feasibility of the solution
point.

4.6.5 Convergence criteria comparison example

In this example, we optimize the simple shell with a point load to minimize
the max stress:

min
x

: f(x) = max
k

(σk) (4.55)

where σk is the von Mises stress in the element k. The function is discrete
because if the stress is minimized at one place, the maximum stress appears
at another place. It is a challenging function not only for the optimization
algorithm to minimize but also for the termination condition.

41

42 Chapter 4. Optimization algorithms with Vertex Morphing

0 10 20 30 40
iterations

9

10

11

12

13

14

15

16

17

va
lu

e

Objective

(a) Objective values

0 5 10 15 20 25 30 35 40
iterations

10 3

10 2

10 1

va
lu

e

Convergence criteria
Relative change
Absolute change
Aver. absolute change

(b) Convergence measures

Figure 4.2: Comparing the objective values evaluations vs convergence
measures

Figure 4.2 compares different convergence measures with respect to the
history of objective function values. The absolute and relative change is close
to each other, but both criteria have large oscillations, and it is impossible to
identify when the optimizer can’t further improve. In contrast, the averaged
change of absolute rate (N = 10) shows monotone behavior with small
oscillations.

42

Chapter 5

Barzilai-Borwein method

Publication II introduces the Quasi-Newton Barzilai-Borwein (QN-BB) method
and the combined relaxed gradient projection algorithm with the Quasi-
Newton Barzilai-Borwein method (QN-BB-RGP), but they are not well dis-
cussed. Therefore, this chapter shows unpublished studies of the BB, QN-BB,
and QN-BB-RGP methods with analytical and analysis-based examples.

5.1 Overview on the Barzilai-Borwein method

Constant step size is often used in practical applications due to its simplicity.
However, the good constant step size is an unknown a priori and may lead to
poor performance or higher computational cost. There are various methods
to calculate the exact or approximated step length. The method finds a
minimum of the objective function or sufficient reduction along the descent
search direction. The drawback of these methods is that efficiency improvement
is not guaranteed. For instance, Cauchy methods may require calculating the
Hessian matrix, which is not always available or very expensive to compute
(Zhou et al. [57]). Besides, Armijo’s backtracking schemes try several step
sizes until the acceptance criteria are satisfied (Ahookhosh et al. [1]). Martins
et al. [41] shows the usage of Armijo’s backtracking schemes with strong
Wolfe conditions as one of the successful practical methods. However, in
large optimization problems, additional functional evaluation may excessively
increase the computational cost of each optimization iteration.

On the other hand, the Barzilai-Borwein (BB) method (Barzilai et al. [5])
attracts many research groups because of its simplicity and surprising efficiency
in unconstrained optimization problems. The method’s main advantage is
that it doesn’t require any costly computational operations to approximate the
step size. The original work of Barzilai et al. [5] shows that the method has
R-superlinear convergence for 2D quadratic problems. The method performs
a way better in comparison to the “classical” steepest descent method with
exact line search (Cauchy [12]). In the work of Fletcher (Fletcher [23]), the
method has been compared to well-known Conjugated-Gradient methods

44 Chapter 5. Barzilai-Borwein method

(Fletcher et al. [22] and Golub et al. [30]). It has been shown that the
Conjugated-Gradient method works better for a large quadratic problem, but
both methods are a lot better than “classical” steepest descent. However, in
a non-quadratic example where the non-quadratic contribution is small, the
Barzilai-Borwein method outperforms the Conjugated-Gradient method and
Limited memory BFGS (Liu et al. [39]). In recent years, modified versions of
the method to solve unconstrained optimization problems have been proposed:
Adaptive Barzilai-Borwein method (Zhou et al. [57]), Stabilized Barzilai-
Borwein method (Oleg Burdakov [46]), accelerated Barzilai-Borwein method
(Huang et al. [34]).

There are limited results regarding using the Barzilai-Borwein method for
constrained problems in the literature. Dai et al. [15] and Raydan [48] have
applied the method for optimization problems with box constraints. The
common idea is to compute the design update based on the steepest direction
of the objective function and project it on the active set of constraints:

x(i+1) = P (x(i) − α(i)∇f(x(i))) (5.1)

In this work, we propose to use Barzilai-Borwein for constraint problems,
where the search direction is incorporated into the step size explicitly.

5.2 Original Barzilai-Borwein method

The Barzilai-Borwein (BB) method suggests a step size approximation using
current and previous sensitivity information. The Barzilai-Borwein method
computes a new step size as follows:

α(i) =
d(i−1),Td(i−1)

d(i−1),Ty(i)
(5.2)

or

α(i) =
y(i),Td(i−1)

y(i),Ty(i)
(5.3)

where y(i) = ∇f(x(i)) − ∇f(x(i−1)) is a change in the sensitivities of the
objective function and d(i−1) = x(i) − x(i−1) is the previous update of the
design variables. Therefore, if s(i) is a search direction at iteration i, the
design update is:

∆x(i) = α(i) · s(i) (5.4)

5.3 Quasi-Newton Barzilai-Borwein method

In contrast to the original method, the Quasi-Newton Barzilai-Borwein (QN-
BB) method independently computes each design variable’s step size. There-
fore, each design parameter has its step size based on the local sensitivity

44

5.3. Quasi-Newton Barzilai-Borwein method 45

information. The design update can be found as follows:

H(i) = [α
(i)
k] (5.5)

α
(i)
k = min

(
abs

[
y
(i),T
k d

(i−1)
k

y
(i),T
k y

(i)
k

]
, α

(i)
k,max

)
(5.6)

y
(i)
k = s

(i)
k − s

(i−1)
k (5.7)

∆x(i) = H(i) · s(i) (5.8)

where s(i) is a search direction computed by the optimization algorithm at
iteration i and α

(i)
k,max is a maximum allowed step size at design variable k.

To extend the QN-BB method to apply to constrained and unconstrained
problems, the y(i)

k = s
(i−1)
k −s(i)

k is based on the search direction s
(i)
k computed

by descent gradient method. If s(i)
k = −∇f(x(i)), eq. 5.8 transforms into the

original Barzilai-Borwein method, y(i) = ∇f(x(i))−∇f(x(i−1)).

5.3.1 Comments to absolute operator

Raydan [48] and Zhou et al. [57] have reported that the original Barzilai-
Borwein method might suggest a negative step length in non-quadratic prob-
lems. It also applies to structural (or CFD-based) optimization problems,
where the functions are typically highly non-linear. Grippo et al. [31] and
Raydan [48] suggests an additional condition to accept the step size:

f(x(i) + d(i)) ≤ max
max(i−M,1)≤j≤i

f(x(j))− γ∇f(x(i))Td (5.9)

where M is a nonnegative integer and γ is a small positive number. This
condition is a weaker form of the Armijo-Goldstein-Wolfe condition and it
allows to accept of any point if it improves sufficiently on the largest of the
M + 1 (or i if i ≤ M) most recent function values. The drawbacks of this
solution for simulation-based optimization problems are:

1. Implementation of the Armijo-type line search into the optimization
framework is not straightforward because it requires additional commu-
nication with physical solvers and data management.

2. The computation time of one optimization step can be dramatically in-
creased if the functional evaluation requires solving a complex numerical
model, for instance, non-linear FEM or CFD analysis.

3. The success of the proposed step size is not guaranteed; Hence, the
additional computational effort might lead to an inefficient process.

In our work, I apply the BB method to active-set constrained optimization
methods, where the activated constraints may strongly change the search
direction due to their contributions. In our work, we propose to use an
absolute operator to avoid non-positive α. As a result, the design update is
ensured to follow the proposed search direction and can’t be reversed.

45

46 Chapter 5. Barzilai-Borwein method

5.4 Analytical examples

Well-known unconstraint optimization problems are solved to demonstrate
the performance of the methods.

5.4.1 Raydan Function

If the deviation of the objective function from a quadratic function is insuffi-
cient, one can successfully use the original BB method. However, convergence
is not guaranteed. Raydan [48] has defined test problem referred to as Strictly
Convex 2 to demonstrate the phenomenon:

f(x) =

d∑
i=1

i

10
(exp(xi)− xi)

x0 = [1, 1, 1..., 1]

(5.10)

The Hessian matrix at x∗ is 1
10

diag(1, 2, ..., n) so that the condition number
is n. The Raydan function is a strictly convex function and has a positive
definite Hessian for all x. It has been verified that the original BB method
converges to the solution if n = 20 and it diverges if n = 30, Fletcher [23] and
Raydan [48]. In our results, depending on the choice of the initial step size,
the original BB method may converge or diverge. For instance, if α1 = 1.0
it diverges and with α1 = 0.97 it converges. The proposed QN-BB method
always converges in 8− 9 iterations almost independently of d and initial α1

because the Hessian matrix is strictly diagonal. The results are summarized
in Table 5.1 with α1 = 1e− 12.

Table 5.1: Raydan Function resutls

Problem dimension # Iterations, BB # Iterations, QN-BB
d = 20 40 8
d = 30 54 8
d = 106 550 9

5.4.2 Generalized Rosenbrock Function

The second test case for the methods is:

f(x) =

d−1∑
i=1

c(xi+1 − x2
i)

2 + (1− xi)
2

c = 100

x0 = [−1.2, 1,−1.2, 1, ...,−1.2, 1]

(5.11)

where f(x) is a well-known Rosenbrock function. It is a challenging optimiza-
tion test due to its narrow, highly curved valley, which makes it challenging
to minimize. The starting point is at x0. The convergence criterion is

46

5.4. Analytical examples 47

∥∇f∥ ≤ 1e−6. The initial step size has been fixed to α1 = 1e − 12. The
original BB method can’t solve this problem using both formulas eq. 5.2, 5.3.
With formula 5.3 at iteration 7, the suggested step size α < 0.0. The absolute
operator is considered to avoid a negative step length, and the solution is
found in 56 iterations. The method is referred to as “BB-abs”.

Table 5.2: Rosenbrock function resutls

Problem dimension # Iterations, BB-abs # Iterations, QN-BB
d = 2 56 18 817
d = 4 428 21 437
d = 10 15530 nan
d = 20 100 000+ 51 697
d = 40 100 000+ 79 128
d = 100 100 000+ 100 000+

Table 5.2 summarizes the results of both methods with respect to opti-
mization size d. For the problem dimension d = 2, the original BB method
converges a lot faster than the QN-BB method, and its performance is close
to Newton (24 iter.) and Quasi-Newton methods (36 iter.), Martins et al.
[41]. Still, the proposed QN-BB method is comparable with the Steepest De-
scent method (10662 iter.). As the problem dimension increases, the original
BB method solves the problem with a highly increased number of iterations
compared to QN-BB. For d = 20 it requires 100000+ iterations, while the
QN-BB method converges in 42985 iterations. Still, both methods are not
efficient in solving analytical problems compared to well-established methods,
for instance, the Global Barzilai-Borwein algorithm (1429 iter.), Raydan [48].

5.4.3 D-dimension QN-BB method

Motivated by the superior performance of the BB-abs method for the Rosen-
brock function with d < 20 and taking into account that the original BB
method has an R-linear convergence rate in quadratic problems for d = 2,
Fletcher [23], we have modified the QN-BB method:

s
(i)
k = [s

(i)
k , s

(i)
k+1, ..., s

(i)
k+m] (5.12)

d
(i)
k = [d

(i)
k , d

(i)
k+1, ..., d

(i)
k+m] (5.13)

where, to compute the step size for variable k, we use values from k and
k + 1 variables. The method is referred as d-2-QN-BB method (m = 2) and
d-4-QN-BB method (m = 4). The results are summarized in Table 5.3. The
d-2-QN-BB and d-4-QN-BB method shows a better performance compared to
QN-BB. The d-2-QN-BB method solves the problem faster only for d = 20,
but the advantage is small. The 3-d-QN-BB method can’t be applied for the
given dimensions.

47

48 Chapter 5. Barzilai-Borwein method

Table 5.3: Raydan Function resutls

Problem dimension # Iterations, d-2-QN-BB # Iterations, d-4-QN-BB
d = 20 11 17
d = 30 11 17
d = 106 11 17

Table 5.4: Rosenbrock function results

Problem dimension # Iterations, d-2-QN-BB # Iterations, d-4-QN-BB
d = 2 59 nan
d = 4 11 650 502
d = 10 11 862 nan
d = 20 13 641 14 043
d = 40 15 685 16 769
d = 100 22 700 24 947

5.4.4 D-dimension QN-BB method with Vertex Morphing

In the shape optimization with Vertex Morphing, the d-3-QN-BB method
is used, where the step length is computed for each node as a 3D problem,
based on its spatial directions [x-, y-, z,]. Hence, the s,d in eq. 5.5 appear to
be vectors [sx, sy, sz], [dx, dy, dz] at the node k.

5.5 QN-BB-RGP method

The Quasi-Newton relaxed gradient projection (QN-BB-RGP) method com-
bines the QN-BB and the RGP methods. Linear approximation of the
constraint functions is used to improve the constraint handling. In Figure 5.1,
the QN-BB-RGP method is shown, and the method’s workflow is following:

1. Compute response values at the current design state: f(x(i)), g(x(i));

2. Compute gradients of the objective function and active constraints:
∇f(x(i)), ∇g(x(i));

3. Find shape update ∆x(i):

a) Compute search direction s(i);

b) Compute shape update ∆x(i);
c) Compute linear approximation to response function for the com-

puted shape update: g̃(x(i+1)), h̃(x(i+1));

d) If g̃(x(i+1)) <= 0 and h̃(x(i+1)) = 0, then the feasible shape update
is found. The inner loop is converged;

e) If g̃(x(i+1)) > 0 and h̃(x(i+1))! = 0, then the feasible shape update
is not found. Update the buffer coefficients ω

(i)
j + = c and repeat

the inner loop process;

48

5.6. Academic Shape Optimization example 49

4. Save current ∆x(i), s(i);

5. Check if the optimization algorithm has converged. If not, go to Step 1.

The constant c = [0.01, 0.2] to increase the ω
(i)
j is based on the numerical

experiments, and it shows a good compromise between accuracy and cost. It
has no effect on ω

(i+1)
j .

Start

Given: 𝒙(𝟎), 𝒊 = 𝟎

𝒙(𝒊) = 𝒙(𝟎)

𝑭(𝒊) = 𝑭 𝒙(𝒊)

𝒈𝒋
(𝒊) = 𝒈𝒋 𝒙(𝒊)

𝒉𝒎
(𝒊) = 𝒉𝒋 𝒙(𝒊)

Inner Loop

𝒔(𝒊) = −𝑑𝑓 + 𝝎𝒓 ∗ Λ ∗ 𝑵 + 𝝎𝒄 ∗ 𝑵

𝑯𝒊𝒏𝒗
(𝒊) = 𝒅𝒊𝒂𝒈

𝟏

𝜶𝒌
(𝒊) ,

𝜶𝒌
(𝒊) =

𝑑(,-.)𝑦 ,

𝑑(,-.)𝑑(,-.)

∆𝒙(𝒊)= 𝑯𝒊𝒏𝒗
(𝒊) 𝒔(𝒊)

Linearizing Responses:
9𝒈𝒋
(𝒊/𝟏) = 𝒈𝒋

(𝒊) + ∆𝒙(𝒊) ∗ 𝛁𝒈𝒋
(𝒊)

;𝒉𝒎
(𝒊/𝟏) = 𝒉𝒎

(𝒊) + ∆𝒙(𝒊) ∗ 𝛁𝒉𝒎
(𝒊)

Start

9𝒈𝒋
(𝒊/𝟏) ≤ 0
;𝒉𝒎
(𝒊/𝟏) = 0

Update: 𝝎𝒋, 𝝎𝒎

Exit

yesno

𝒅(𝒊) = ∆𝒙(𝒊)
𝒙(𝒊/𝟏) = 𝒙(𝒊) + ∆𝒙𝒌

Converged &
feasible

Exit

yesno

Figure 5.1: Flow chart of the Quasi-Newton relaxed gradient projection
method

5.6 Academic Shape Optimization example

An academic structural optimization problem has been solved using different
optimization methods to show the efficiency, performance, and drawbacks of
the proposed methods compared to “classical” methods.

5.6.1 Case description

The model is represented by a solid hook model with height 237 mm and is
modeled with a linear elastic material with Young’s modulus E = 209.6 GPa
and a Poisson’s ratio ν = 0.29. The objective of the optimization problem is to
minimize the mass while the model has to stay feasible concerning constraints.
The initial compliance for two static load cases, where one load is applied at
the center (LC1: F = 32 kN) and the second one on the tip (LC2: F = 16
kN). The hook is supported at its top. Another geometrical constraint (GC1)
is represented by the packaging response with the curved packaging geometry
at the back side of the hook. The nodes and areas where the loads and
supports are applied are excluded from the design set, and it leads to 21351

49

50 Chapter 5. Barzilai-Borwein method

design variables (7117 number of design surface nodes). Vertex Morphing
with constant radius r = 25 mm is applied as a parametrization method. The
optimization process includes the structural analysis (StructuralMechanics
Application), the adjoint sensitivity analysis and optimizer (ShapeOptimization
Application), and the pseudo-elastic mesh motion for the internal nodes of
solid elements (MeshMoving Application). The case study and all related
implementations are done in the open-source software Kratos-Multiphysics
Dadvand et al. [14] and Ferrándiz et al. [18]. The optimization is stopped
after 30 iterations. The shape optimization benchmark is prepared by Mr.
Armin Geiser for the library of examples, Kratos-Multiphysics.

Figure 5.2: Solid Hook, structural optimization benchmark, Geiser
et al. [25]

The objective function “mass” and strain energy constraint functions are
smooth functions with stable design gradients during the optimization process.
In contrast, the packaging constraint with the square-sum aggregation has
a non-linear penalty behavior with highly changeable sensitivities because
the nodes consequently inter and leave an infeasible domain. Due to specific
geometry and discretization, this structural problem can be classified as a
small node-based problem.

5.6.2 Tested optimization algorithms

The following optimization algorithms and their modifications have been
implemented and tested:

50

5.6. Academic Shape Optimization example 51

1. Gradient Projection method, Rosen [49]. In our implementation, the
correction term is based on the constraint violation at the iteration
point x(i). The scaled constant step size is used α = 3.0 mm. It is
referred to as “GP”.

2. Relaxed gradient projection method, Antonau et al. [3]. The scaled
constant step size is used α = 3 mm. It is referred to as “RGP”.

3. Relaxed gradient projection method with the inner loop to check the
linear approximation of the constraint values. The scaled constant step
size is used α = 3 mm. It is referred to as “RGPnl”.

4. Relaxed gradient projection method with the inner loop to check the
linear approximation of the constraint values and Barzilai-Borwein,
eq.5.2. It is referred to as “RGPnl-BB1”.

5. Relaxed gradient projection method with the inner loop to check the
linear approximation of the constraint values and Barzilai-Borwein,
eq.5.3. It is referred to as “RGPnl-BB2”.

6. Relaxed gradient projection method with the inner loop to check the
linear approximation of the constraint values and Quasi-Newton Barzilai-
Borwein, eq.5.5. It is referred to as “QN-BB-RGP”.

5.6.3 Results

The optimization results of the Hook benchmark are summarized in Table 5.5.
It compares the improvements of the objective function, constraint violations,
and computational time obtained by the optimization methods. Fig. 5.3
shows the objective values, constraints values, and shape update size during
the optimization process.

Table 5.5: Hook benchmark results

Method h:mm:ss ∆f ∆ LC1 ∆ LC2 GC1
GP 0:08:09 −19.44% 0.2% 0.1% 645

RGP 0:08:11 −17.45% 0.04% −0.8% 347
RGPnl 0:08:35 −16.1% 0.09% −0.8% 5.12

RGPnl-BB1 0:09:49 −17.66% −0.01% −0.62% 0.995
RGPnl-BB2 0:10:24 −13.85% −0.14% −0.23% 0.31
QN-BB-RGP 0:11:10 −13.31% −0.01% −0.19% 0.005

Computational time. In all numerical optimization methods, the number
of structural analyses is the same, one per optimization iteration. Also, all
other processes, such as saving data, are identical in all runs. The difference
in the computational time is due to the chosen optimization algorithm. The
fastest methods are GP and RGP because they don’t have the inner loop to
check. RGPnl requires only 24 sec more to finish 30 optimization iterations
and find a feasible solution. QN-BB-RGP takes more time than the RGPnl-
BB methods because it requires more inner iterations to compute shape

51

52 Chapter 5. Barzilai-Borwein method

updates. However, the computation of the step size for each design variable
is a relatively inexpensive operation.

Objective function improvement. The GP method finds the best improve-
ment, but the solution is infeasible. As the GP method keeps decreasing the
mass, the constraint violations also increase. Hence, the GP method with
step size 3 mm diverges, and it can’t converge to a feasible local minimum.
RGPnl-BB1 finds the best feasible solution, which differs from QN-BB-RGP
and RGPnl-BB2. My hypothesis is that the RGPnl-BB1 converges to a
different local minimum because it chooses larger step sizes and converges to
the local minimum from the infeasible side. In contrast to GP, all RGP-based
runs show a non-smooth mass reduction in the first iterations until the buffer
zones are constructed. Then, as the buffer zone is adjusted, the amount of
the violations are reduced.

Constraint function violations. All methods found the final solutions that
are feasible with respect to strain energy constraints or have minor violations
up to 0.1%. The geometrical constraint is more challenging to satisfy due to
its penalty formulation. As a result, GP and RGP methods strongly violate
the GC1 constraint. Our results show, that the usage of linear approximation
dramatically improves the accuracy of the GC1 constraint. Adaptive step
size, BB or QN-BB, further reduces the violations of all constraints, stabilizes
the behavior, and precisely finds the local minimum.

5.7 Large Shape Optimization Example

Large shape optimization problems are solved to demonstrate the performance
of the proposed methods on the example of industrial importance. The
commercial solvers, Altair Optistruct (structural) and Siemens StarCCM
(CFD), have been used to do primal and adjoint simulations. The optimization
framework ShapeModule (BMW Group) is used as an optimizer where the
proposed methods are implemented.

5.7.1 Structural optimization

5.7.1.1 Problem description

The structural optimization problem is described in Publication I, Section
4.3. The problem has 144423 design variables (48141 surface nodes with
x-, y-, z- spatial directions), one objective function (mass), one physical
constraint (maximum displacement), and one aggregated packaging constraint
(see Section 6.2.1).

5.7.1.2 Applied methods

The optimization problem has been solved using three methods: RGP with
constant step size α = 0.5 mm, RGP with relaxed BB method, eq. 5.3
(including inner loop with linearized constraint values), and QN-BB-RGP
method. The relaxed BB method avoids large jumps in the step size (from

52

5.7. Large Shape Optimization Example 53

0 5 10 15 20 25 30
iterations

20

15

10

5

0

m
as

s,
[%

]

Objective, mass
GP
RGP
RGPnl
RGPnl-BB1
RGPnl-BB2
QN-BB-RGP

(a) mass

0 5 10 15 20 25 30
iterations

7300

7400

7500

7600

7700

7800

7900

N-
m

Constraint 1, Strain Energy #1
GP
RGP
RGPnl
RGPnl-BB1
RGPnl-BB2
QN-BB-RGP
Limit value

(b) Strain energy, load case 1

0 5 10 15 20 25 30
iterations

22500

23000

23500

24000

24500

25000

N-
m

Constraint 2, Strain Energy #2
GP
RGP
RGPnl
RGPnl-BB1
RGPnl-BB2
QN-BB-RGP
Limit value

(c) Strain energy, load case 2

0 5 10 15 20 25 30
iterations

0

200

400

600

800

1000

1200

1400
Constraint 3, packaging

GP
RGP
RGPnl
RGPnl-BB1
RGPnl-BB2
QN-BB-RGP
Limit value

(d) Packaging response

0 5 10 15 20 25 30
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

siz
e,

 [m
m

]

Shape Update Size
GP
RGP
RGPnl
RGPnl-BB1
RGPnl-BB2
QN-BB-RGP

(e) Shape update size

Figure 5.3: Hook benchmark, comparison of the optimization methods

lower boundary to upper), and it computes relaxed step size αr based on the
proposed and previous step length:

α(i)
r = 0.5α(i−1) + 0.5α(i) (5.14)

53

54 Chapter 5. Barzilai-Borwein method

5.7.1.3 Results

The optimization results are shown in Fig. 5.4. The QN-BB-RGP method has
found the best-performing feasible result with the least iterations. Similarly,
the BB-RGP method has increased the step size α up to 1.5 mm till the
maximum displacement constraint is non-active, iteration 7. Afterward, the
suggested step size is dramatically reduced. As a result, the RGP method
with constant step size has a better improvement rate until the maximum
displacement is violated. At iteration 35, when the maximum displacement
is satisfied, the BB method suggests increased step size, which leads to a
violation of the constraint. Due to mesh quality, the simulation has been
stopped at iteration 37.

0 10 20 30 40
iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
as

s,
[k

g]

Objective, mass
BB method
QNBB method
Const step size

0 10 20 30 40
iterations

0

1

2

3

4

5

6

di
st

an
ce

, [
m

m
]

Constraint 1, packaging
BB method
QNBB method
Const step size
Limit value

0 10 20 30 40
iterations

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

di
sp

la
ce

m
en

t,
[m

m
]

Constraint 2, maximum displacement
BB method
QNBB method
Const step size
Limit value

0 10 20 30 40
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

st
ep

 si
ze

 [m
m

]

Shape Update Size
BB method
QNBB method
Const step size

Figure 5.4: Optimization results

Fig. 5.5 compares the final shapes. From top to bottom, the methods
are RGP with constant step size, RGP with BB method, and QN-BB-RGP.
The solutions found by the RGP method with constant step size and the BB
method are similar to each other. In contrast, the QN-BB-RGP method finds
a different local minimum with a smaller mass. As a result, the proposed
solution has bigger holes and smaller cross-sections in the trusses.

54

5.7. Large Shape Optimization Example 55

Figure 5.5: Optimization results comparison: RGP (top), BB method
with RGP (middle), QN-BB-RGP (bottom)

5.7.2 CFD-Based Shape Optimization

5.7.2.1 Problem description

Publication II shows a large industrial CFD-based shape optimization problem
of the full car model. The goal of the optimization is to improve the efficiency
of the racing car BMW M4 GT4 aerodynamic package. The drag force is
used as an objective function. At the same time, the downforce is applied as
an inequality constraint referring to the initial value. The CFD model is well
described in Publication II, Chapter 6. The design surface is the rear wing
and front splitter, Fig. 5.6.

Figure 5.6: Design surface, marked with blue color

55

56 Chapter 5. Barzilai-Borwein method

5.7.2.2 Applied methods

The problem is solved using three strategies: RGP method with constant step
size α = 1 mm, RGP method with relaxed BB method “BB-RGP” (see eq.
5.14) and QN-BB-RGP method.

5.7.2.3 Results

The optimization results are shown in Fig. 5.7. The modified design surfaces
are compared from optimization iteration 10 in Fig 5.8. RGP reduces the
drag force by 1.91% and finds a feasible solution with respect to downforce.
BB-RGP suggests small step sizes because the response functions are highly
non-linear and the gradients change dramatically from iteration to iteration.
During the optimization process, BB-RGP has the slowest improvement rate,
and the constraint violations are comparable to the RGP run. QN-BB-RGP
method has found the best drag force reduction, 4, 03%, and it founds a
feasible solution. During the optimization process, the constraint violation
is more than 3%, which is corrected at the last optimization iterations. The
shape update size computed by QN-BB-RGP is in the range [0.42− 3.35] mm.

The BB-RGP run is done on a different HPC configuration compared to
other runs. As a result, there is a small deviation in the fluid solution. The
relative difference in the initial values is 0.16% for SCx and 0.19% for SCz.

0 5 10 15 20 25
iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Im
pr

ov
em

en
t [

%
]

Drag force
QN-BB-RGP method
BB-RGP method
RGP with const step

0 5 10 15 20 25
iterations

3

2

1

0

1

Vi
ol

at
io

ns
, [

%
]

Downforce
QN-BB-RGP method
BB-RGP method
RGP with const step
Limit value

0 5 10 15 20 25
iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

st
ep

 si
ze

 [m
m

]

Shape Update Size
QN-BB-RGP method
BB-RGP method
RGP with const step

Figure 5.7: Optimization results

56

5.7. Large Shape Optimization Example 57

(a) Front spliter

(b) Rear wing

Figure 5.8: Absolute update, optimization iteration 10. Left – RGP,
middle – BB-RGP, right – QN-BB-RGP

57

Chapter 6

Shape optimization in additive
manufacturing application

6.1 Overview

In modern engineering, numerical free-form optimization methods allow to find
new high-performance parts bringing the products to a new level. Typically,
these solutions have a complex geometry that is hard or expensive to manu-
facture with the “classical” manufacturing methods, such as stamping, casting,
hydroforming, etc. Alternatively, one may apply manufacturing constraints
that greatly limit the design space. In contrast to “classical” methods, additive
manufacturing (AM), reduces the geometric restrictions to a large extent and
allows the manufacturing of almost any topology. Additionally, AM efficiency
and fabrication cost are not very sensitive to geometric complexity. In AM,
the product is manufactured layer-by-layer by a wide range of techniques:
Fused Deposition Modeling (FDM)or Stereolithography (SLA) for plastic
printing, direct metal laser sintering (DMLS) or Laser Powder Bed Fusion
(LPBF) for metal printing, Fig. 6.1. As a result, AM can easily create parts
based on the freeform design of topology and shape optimization, Ghantasala
et al. [28] and Liu et al. [40].

Besides the before mentioned advantages, there are AM-specific limitations
to printed geometry. The most discussed one is that of self-supporting struc-
tures (overhang-free). If the geometry is not self-supported and additional
supporting structures are not applied, the printed part may break during the
printing process or have poor surface quality. Therefore, the support struc-
tures are used, which leads to additional material consumption and process
time to design the required support structures and to remove the support
structures and attachments from actual parts. According to Liu et al. [40],
the cost of the not self-supported geometry is increased by 40-70 % according
to their internal data.

Another AM-specific property of the geometry is stackability : the property
of how close the geometries can be packed one into another. The term

60 Chapter 6. Shape optimization in additive manufacturing application

(a) 3D printing machine (b) 3D printing process

(c) Internal working space (d) 3D printed parts

Figure 6.1: Additive manufacturing process, Laser Powder Bed
Fusion (LPBF). Source: [Successful industrial-
ization and digitalization of additive manufacturing,
https://www.press.bmwgroup.com]

stackabilization is firstly introduced by Li et al. [37], and it names the process
of improving the stackability of the geometry. The impact of the stackability
on the efficiency of additive manufacturing is evident: due to limited space
inside the printing area, Fig. 6.1c, it is possible to produce more parts during
one process. As a result, the average manufacturing time and cost per part
can be reduced. The first formulation of the stackabilization process for
node-based shape optimization with Vertex-Morphing is formulated by A.
Ghantasala and R. A. Najian, Ghantasala et al. [27].

6.2 Stackabilization

Stackibilization is a process to improve the stackability of the geometry in a
specific direction, Li et al. [37]. There are two key parameters to improve
stackability: the shape of the model and a stackable direction. In this work,
the main focus is to modify the shape of the initial geometry to improve
stackability in a given stackable direction d.

60

6.2. Stackabilization 61

Stackibilization starts with creating two copies of the geometries, left and
right, which are offset by the given distance a in the stackable direction d.
The next process is adjusting the packaging geometry’s position. Initially,
it serves to find an initial position of the packaging geometries, where they
touch the main geometry but don’t penetrate with a given tolerance. The
process to find new position of the packaging geometries is summarized in
Fig. 6.2 and it contains following steps:

1. Compute gi values of the nodal packaging response function, eq. 6.2.

2. Move the packaging geometry in the stackable direction d by small step
αs. Repeat it k times till the self-penetration is detected.

3. Compute gain in stackability ∆g as a traveled distance of the packaging
geometry till self-penetration is detected:

∆g = −αsk (6.1)

4. Compute packaging gradients ∇g, eq. 6.5.

The overall stackabilization process is summarized in Fig. 6.3. The
following section 6.2.1 describes the packaging response, that is used in Step
4.

6.2.1 Packaging response

Following Geiser et al. [25] and Najian Asl et al. [45] the packaging response
defines geometrical constraints to prevent a final design surface from pen-
etrating arbitrary packaging geometry by dividing the design space into a
feasible and infeasible domain. Fig. 6.4 shows a shape optimization problem
with discrete packaging geometry (gray box). The surface normals of the
packaging geometry point into the feasible domain. The nodal value of the
packaging response at the node i is a projection of the distance vector to the
closest packaging node onto the surface unit vector of that node:

gi = (cpi − xi)
Tncpi (6.2)

where xi and cpi are spatial coordinates of the node i and its closest node
on the packaging surface. gi is positive if node i is inside an infeasible node,
zero if it lies on the boundary, and negative if it is inside the feasible domain.
The nodal gradient of node i is the negative unit normal of the packaging’s
closest point at the position i and zero elsewhere:

∇gi = [0, ...− ncpi, ..., 0] (6.3)

The node-wise formulation of packaging response creates n geometrical
constraints for each node i, Allaire et al. [2]. One can use aggregation
techniques to reduce the number of constraints to aggregate nodal constraints
into a global one. It satisfies the nodal constraints globally and in a less
numerically expensive way. Allaire et al. [2], Brelje et al. [10], and Damigos

61

62 Chapter 6. Shape optimization in additive manufacturing application

Start

In: main and
pack. geo.

Comp. pack.
resp. left & right

Self-
penetration?

Comp. gradi-
ents pack. resp.

Move pack. geo.
in stack. dir.
d by step αs

Out: gain in
stack & gradients.

Stop

no

yes

Figure 6.2: Process to adjust the position of packaging geometries,
compute gain in stackability and packaging gradients

et al. [16] have previously applied aggregation formulations for geometric
constraints in shape optimization. One possibility to aggregate the nodal
constraints is to take the square sum of all nodal constraints that are infeasible
(g+i > 0):

g =

n∑
i=1

(g+i)2 (6.4)

where the gradient of the aggregated constraint is:

62

6.3. Self-support (overhang-free) constraint 63

Start

In: offset distance
a, stackable
direction d

Creating two
packaging geometry

Adjusting position
of pack. geo.

Stackability
improved?

Modify shape
of the main geo.

Out: final
main geometry

Stop

yes

no

Figure 6.3: Stackabilization process (pack. geo. – packaging geometry)

∇g = 2g+i ncpi (6.5)

6.3 Self-support (overhang-free) constraint

6.3.1 Identification of self-supporting nodes

There are two conditions to check if the node is self-supported:

1. Based on the critical angle condition;

63

64 Chapter 6. Shape optimization in additive manufacturing application

di

ncpi

xi

cpi

Infeasible domain

design surface x

Figure 6.4: Nodal packaging constraint. Feasible nodes are highlighted
in blue, infeasible – red

2. Based on the distance to supporting nodes.

The identification workflow of overhang-free nodes is summarized in Fig. 6.5.

Input:
Node i

αi ≤ αcrit,
nir < 0.0?

Output:
true

dij ≤ dcrit?

Output:
false

yes

no

yes

no

Figure 6.5: Process to determine if a node is self-supported

64

6.3. Self-support (overhang-free) constraint 65

6.3.1.1 Critical angle criterion

Following the ideas of Garaigordobil et al. [24], we compute the angle αi for
the node i, where the angle is between building direction r and tangential
vector ti. In contrast to topology optimization, the boundary is always defined
in shape optimization. Therefore, it is straightforward to compute the angle
αi and compare it to the critical angle αcrit. The criterion for node i to be
feasible is: {

αi ≤ αcrit

nir < 0.0
(6.6)

The criterion can be reformulated as in terms of the projection of the
normal vector ni onto the building direction r:

−nir − sinαcrit ≤ 0.0 (6.7)

where − sinαcrit is a size of the critical projection. Fig. 6.6a shows
the graphical representation of the eq. 6.6 and Fig. 6.6b – the eq. 6.7.
In Fig. 6.7, the feasible and infeasible nodes are shown for critical angles
αcrit = [10◦, 30◦, 45◦]. All the nodes where the projection of the normal vector
onto the building direction is lower than −0.5 are marked red (as infeasible
nodes). The number of infeasible nodes is reduced if the critical angle is
increased due to larger feasible normal vector orientations, Fig. 6.7. The
build direction is r = [0.56, 0.043, 0.83] in all comparison examples.

Base

building
direction r

ni

αcrit

αi

ti

(a) Angle and critical angle description

Base

[Π
2
− αcrit]

ncrit

ni

nj

nir < 0

r

− sinαcrit

njr > 0

(b) Normal vector projection

Figure 6.6: Self-support constraint, critical angle criteria. Infeasible
node is highlighted in red

6.3.1.2 Distance criterion

The second condition is applied to the infeasible nodes to check if they are
positioned close to the support structure. The condition can be formulated as

65

66 Chapter 6. Shape optimization in additive manufacturing application

Figure 6.7: Infeasible elements (red color) with respect to critical angle:
αcrit = 10◦, 30◦, 45◦ (from left to right)

a comparison of the distance between a node and the supporting node with
critical distance:

dij ≤ dcrit

dij = ∥xi − xj∥
(6.8)

where dij is an Euclidean distance between nodes i and j, xi and xj are
spatial coordinates of the nodes i and j respectively. The process to find the
supporting nodes is following:

1. Find neighbor nodes j around node i within radius r = dcrit;

2. Check if there is a node j that is feasible with respect to angle condition
(necessary condition), eq. 6.6. See Fig. 6.8a;

3. Check if the found node j can support node i, sufficient condition.

Step 1 fulfills the distance condition, eq. 6.8. Step 2 checks if there is
a candidate that can support the node i. In Fig. 6.8a the node i finds
a candidate j, while the node k has no candidates. Step 2 is a necessary
condition but not sufficient. In Fig. 6.8b, there is a critical case where node i
finds a candidate j which is above node i in the building direction. Hence,
node j can’t support node i because it isn’t built at this point. Therefore,
step 3 is introduced to verify the candidate j. There are two possible methods
to check:

1. Half-sphere method checks that the support-candidate is below the
supported node. In Fig. 6.8c the candidate j is valid for node k, but is
invalid for node i;

66

6.3. Self-support (overhang-free) constraint 67

2. Cone method checks that the support-candidate is inside the cone with
height dcrit and angle ϕ. This condition avoids support candidates from
“sides”. In Fig. 6.8d, the node j can support the node i, while the
nodes l and m don’t support nodes i or k, in contrast to the half-sphere
condition.

dcrit

i

k

j

dij

(a) Distance search in radius

i

k
j

(b) Failing example of radius search

i

k
j

(c) Search technique in a lower half-sphere

ϕ

i

ϕ

k

j

l

m

(d) Search in a cone

Figure 6.8: Support-node search strategies

67

68 Chapter 6. Shape optimization in additive manufacturing application

6.3.2 Response function formulation

The constraint is formulated as a penalty function where the possible value is
positive or zero. The value is defined as a sum of the square element normal
projection of the infeasible elements. An infeasible element is an element
where at least one node is considered infeasible. If the element is feasible, the
contribution to the sum is zero:

g =
∑
i

(g+i)2

g+i =

{
niri; if elemi is infeasible
0; if elemi is feasible

(6.9)

The derivative of the response function is computed using finite difference,
where the node’s spatial coordinates of the infeasible element are moved by a
small change, and the difference of the elemental value gi is computed:

∇gi = 2gi(x)
gi(x+ δ)− gi(x)

δ

∇g =
∑
i

∇gi
(6.10)

Fig. 6.9 shows the sensitivities computed using finite difference (left) and
a smooth shape update computed using the steepest descent algorithm and
Vertex Morphing. As a result, the shape update tries to change its angle with
respect to the building direction. Fig. 6.10 shows the computed shape update
(left) and the corrected geometry (right) to find an overhang-free shape for
the corner case. One can see that the fixed geometry has a more narrow base
(green boxes), and the upper position of the corner (blue box) is overhang-free
concerning critical angle and distance criteria.

6.4 Numerical examples

This section presents several numerical experiments to test the proposed AM-
specific responses. All simulations are done using the geometry for the fixture
of a soft-top attachment in the BMW i8 Roadster, Fig . 6.11a. The proposed
methods are implemented in the optimization framework ShapeModule (BMW
Group). Altair Optistruct ™ software is used to solve the numerical models’
structural primal and adjoint analysis. All optimization problems are solved
using adaptive Vertex Morphing parametrization and the Quasi-Newton
relaxed gradient projection method, which have been discussed in previous
chapters. The size of the optimization problems is 145326 (number of surface
nodes ×3). Fig. 6.11b shows the FE model, where the nodes with red-colored
are the design nodes that the optimizer can update. The blue nodes are
the non-design nodes. The Vertex Morphing with adaptive filtering radius,
Chapter 3 parametrization technique is applied without additional filtering
size settings. The QN-BB-RGP (Chapter 5) is used as an optimizer for

68

6.4. Numerical examples 69

(a) Raw sensitivities (b) Smooth shape update

Figure 6.9: Self-support constraint

(a) Gain in stackability (b) Constraints handling

Figure 6.10: Corner modification for overhang-free geometry: left
– shape update based on response gradients, right –
overhang-free corner (blue) and an initial geometry (trans-
parent gray)

69

70 Chapter 6. Shape optimization in additive manufacturing application

constrained and unconstrained problems. The convergence criteria are:

j=i∑
j=i−5

f(x(k))− f(x(0))

f(x0)
≤ 1e−5 (6.11)

i ≤ 200 (6.12)

(a) Photo of real part (b) Numerical model

Figure 6.11: Geometry of fixture for soft-top attachment. a) real part,
photo via BMW Group; b) Numerical model: red – design
parts, blue – non-design parts

6.4.1 Stackabilization

The aforementioned model is optimized to improve the stackability of the
geometry. The stackable direction d is [0.56, 0.043, 0.83] and it remains un-
changed during the whole optimization process. The update steps αs to move
the packaging geometry is set to 0.05 mm. Fig. 6.12 shows the stackability
improvement during optimization. After iteration 38, the optimizer can’t
improve the shape of the model to improve further because the bottom non-
design parts (See. Fig. 6.11b) get in contact with each other. The final shape
and the positions of the packaging geometries are shown in Fig. 6.13. The
shape changes are applied locally at the regions where initial geometries have
self-penetrations. Therefore, the final geometry is similar to the original one.
Still, the applied local changes allow improving the stackabilization by 40%
see Fig. 6.13.

6.4.2 Overhang-free geometry

In this section, the geometry is optimized to be overhang free for the building
direction r = [−0.18, 0.0, 0.46], the critical distance is dcrit = 2 mm, and the
searching angle is ϕ = 45◦. In graph 6.14, the response value minimization
is shown. The function is highly non-linear and has penalty behavior. As
a result, the reduction of the function can’t be ensured at every iteration.
Nevertheless, the optimizer can reduce the overhang-free response value by

70

6.4. Numerical examples 71

0 10 20 30 40
iterations

40

35

30

25

20

15

10

5

0

ob
je

ct
iv

e
[%

]

Stackability improvement
stackability

Figure 6.12: Stackabilization improvement through optimization itera-
tions

100%, which means that all infeasible nodes are corrected. In Fig. 6.15, the
final shape is compared to the initial one.

6.4.3 Combined example

In this section, the combined optimization problem is solved. The stackabiliza-
tion process is applied as an objective function, while the overhang response,
mass, and two compliance functions are added as constraints. The load is
applied at the top fixed zone in z- and y- directions, while the bottom part of
the geometry is fixed. The stackable direction is d = [0.56, 0.043, 0.83], the
building direction is r = [−1, 0, 1], the searching angle is ϕ = 45◦ and the
critical distance is dcrit = 2 mm.

Fig. 6.16 shows the improvement in the stackability function while the
constraints are satisfied. The starting design is infeasible with respect to the
self-support response function, which is corrected during the optimization
process. In the first steps, the optimizer reduces the self-support violation a
lot as the correction part for it is maximal. The constraint is first corrected
at the optimization iteration 18, but it violates in the next iterations. It
happens because the middle bar gets bent to improve stackability, and at the
same time, it becomes non-self-supported. The final result is an overhang-free
design. In Fig. 6.17, the final shape and packaging geometry positions are
shown. The corners/arches are lifted up similar to Fig. 6.10 to have supports
that are overhang-free, and they can support the corner/arches nodes as well.
Additional modifications close to the fixed zones reinforce the structure and
satisfy the required compliance.

71

72 Chapter 6. Shape optimization in additive manufacturing application

Figure 6.13: Final shape of the geometry. Blue –– main geometry,
orange –– packaging geometries, gray –– initial position
and shape of packaging geometries

0 20 40 60 80 100
iterations

100

80

60

40

20

0

ob
je

ct
iv

e
[%

]

Overhang-free improvement
overhang value

Figure 6.14: Reduction of the overhang response value during opti-
mization

72

6.4. Numerical examples 73

Figure 6.15: Overhang-free geometry. Transparent blue is the initial
shape, and gray – final shape

0 10 20 30 40 50 60 70
iterations

40

35

30

25

20

15

10

5

0

ob
je

ct
iv

e
[%

]

Stackability improvement
stackability

(a) Gain in stackability

0 10 20 30 40 50 60 70
iterations

0

20

40

60

80

100

co
ns

tra
in

ts
 [%

]

Constraints violations
complience 1
complience 2
mass
self-support
limit value

(b) Constraints handling

Figure 6.16: Optimization results

73

74 Chapter 6. Shape optimization in additive manufacturing application

Figure 6.17: Stackable and overhang-free geometry. Right: Blue ––
main geometry, orange –– packaging geometries; left:
transparent gray is initial shape, blue – final shape

74

Chapter 7

Conclusions and outlook

7.1 Vertex Morphing with adaptive filtering radius

Vertex Morphing with adaptive filtering radius extends the original Vertex
Morphing to improve its usability, flexibility, and robustness.

Usability. AVM computes the radius field based on the mesh size to ensure
the filtering properties and improve the surface quality. With the radius field,
AVM doesn’t need any user input regarding radius size to do optimization.
As a result, AVM is easy to be applied on a unknown complex model. It
also simplifies the automatization of the optimization process in the design
cycle. Chapter 6 shows the examples for additive manufacturing where AVM
is applied without user input.

Robustness. AVM updates the radius field every optimization iteration to
insure the filtering properties. Academic structural example from Chapter 3
demonstrates, that this property is not required in case of small shape changes
and its necessity if the large shape changes are required and allowed.

Flexibility. AVM allows to set of different filtering radii for every node;
consequently, it allows finding different local minima. As a result, a designer
can locally adjust the parametrization to explore the design space and find
various solutions, that are trusted, esthetically pleasant and satisfying man-
ufacturing criteria. Publication II shows the full-car optimization problem,
where the different sizes of the radius is applied and it allows to find good
shape modes for different parts of the car.

The smoothing algorithm of the AVM method is required for the radius
field to avoid jumps in the shape updates. Publication II studies the effect of
the smoothing algorithm on the final surface quality. Publication II provides
the practical values for the AVM parameters to achieve a good quality of the
results.

Outlook. In future research, one can extend the base to compute the
filtering radius size to use surface curvature or spatial derivatives of the shape
sensitivities, etc. Publication II shows the CFD-based examples, where AVM
doesn’t filter well the wrong sensitivities at the flow-separation points. The

76 Chapter 7. Conclusions and outlook

additional conditions on the mapped sensitivities may be found to avoid this
scenario. Additionally, the method can be extended to support non-matching
grids by mapping the radius fields from the control space onto the shape
surface to insure the conjugation of the shape updates across the meshes.

7.2 Optimization Algorithm

7.2.1 Relaxed gradient projection method

In Publication I, the relaxed gradient projection method is introduced. It
reduces the zig-zagging behavior of the constraints along the design boundaries
by keeping them active in the critical zone. As a result, the relaxed gradient
projection method can handle various physical, geometric, and manufacturing
constraints. Publication I demonstrates the structural optimization problems,
where RGP speeds up the objective function reduction by factor 1.7 compare
to the gradient projection method.

Chapter 5 shows the Hook benchmark, which is poorly solved by the RGP
method. The reason for high violations is a small projection compare to
correction part. The modified RGP method with inner loop, that checks the
linear approximation of the constraints improves the behavior and it is used
as a base for the Quasi-Newton method.

Outlook. The relaxed gradient projection algorithm has been used as a
default optimization algorithm in the ShapeModule optimization framework
(BMW Group) since 2019. It has been successfully applied to numerous
constrained shape optimization problems in different industrial applications
by engineers at BMW Group. In future research, one can better formulate
the inner loop and solve it in a more efficient way by following ideas of SLP
methods, Vanderplaats [55].

7.2.2 Barzilai-Borwein method

In this work, the possibility to apply the Barzilain-Borwein method for shape
optimization problems is studied. Our results show that the method is easy
to implement and performs well in engineering optimization problems. The
found issue of the method is, that it may compute a negative step length,
that is not acceptable. Therefore, we propose to apply an absolute operator
to the step size.

Furthermore, the Quasi-Newton Barzilai-Borwein method is introduced. It
provides the adaptive step size for each design variable based on the Barzilai-
Borwein formula. The Hook benchmark, Chapter 5 shows improvement in
the constraint handling and accuracy. It also offers the possibility of having
a local maximum step size for each design variable, which is important for
AVM parameterization. The CFD-based full car optimization problem shows
the “scaling” properties of the QN-BB method, where the front region with
smaller sensitivities has been strongly modified due to larger step sizes at
these nodes. As a result, the found solution is better compare to solutions,
which are found with the Barzilain-Borwein method and the constant step
size.

76

7.3. Shape Optimization for Additive Manufacturing 77

Outlook. In future research, one can study the QN-BB method’s weak
efficiency in small optimization problems. Our results show that it requires
more optimization iterations to converge compare to original method in small
analytical problems.

7.3 Shape Optimization for Additive Manufacturing

Two AM-specific constraints are discussed in this work. The stackabilization
process is overviewed and tested on the real-world numerical examples. The
process is based on the idea of sequential movement of the packaging geome-
tries in the stackable direction by a small constant amount. The process
is formulated as an objective function and it can be combined with various
constraints or objective functions.

The self-supported constraint is firstly formulated for node-based shape
optimization problems. The constraint identifies the infeasible nodes by two
conditions: well-known critical angle and new distance criteria. The distance
criteria use the cone-search strategy, where the critical angle and distance
are given as input. one can define the input parameters based on the real
printed parts examples, where unsupported parts are analyzed and classified
as acceptable or not. The input parameters have to be found for specific
manufacturing machines and materials. The self-support constraint can be
used as objective or constraint function and with any constraint or objective
functions.

Real world example. Fig. 7.1 shows the manufactured parts with
improved stackability by BMW Group. The parts have been designed using
the implementation in ShapeModule (BMW Group).

The self-support constraint still requires the verification of the model. The
real world experiments have to be done to compare the simulation results
and real world examples.

77

78 Chapter 7. Conclusions and outlook

Figure 7.1: 3D printed parts with improved stackability. Photo via
BMW Group

78

Appendix A

Publication I

https://doi.org/10.1007/s00158-020-02821-y

RESEARCH PAPER

Relaxed gradient projection algorithm for constrained node-based
shape optimization

Ihar Antonau1 ·Majid Hojjat2 · Kai-Uwe Bletzinger1

Received: 4 August 2020 / Revised: 13 November 2020 / Accepted: 9 December 2020
© The Author(s) 2021

Abstract
In node-based shape optimization, there are a vast amount of design parameters, and the objectives, as well as the physical
constraints, are non-linear in state and design. Robust optimization algorithms are required. The methods of feasible
directions are widely used in practical optimization problems and know to be quite robust. A subclass of these methods is the
gradient projection method. It is an active-set method, it can be used with equality and non-equality constraints, and it has
gained significant popularity for its intuitive implementation. One significant issue around efficiency is that the algorithm
may suffer from zigzagging behavior while it follows non-linear design boundaries. In this work, we propose a modification
to Rosen’s gradient projection algorithm. It includes the efficient techniques to damp the zigzagging behavior of the original
algorithm while following the non-linear design boundaries, thus improving the performance of the method.

Keywords Gradient-based constrained optimization · Shape optimization · Vertex Morphing ·
Rosen’s gradient projection algorithm · Node-based shape parametrization

1 Introduction

The aim of this paper is to propose a modified algorithm
for constrained node-based shape optimization. It has good
potential to improve the objective function by finding a
new design through the modification of the shape of the
initial model. In our paper, we are interested in iterative
optimization methods, where a continuous evolution of the
design produced. Shape optimization is successfully used
in many fields of application: aerospace engineering (Kroll
et al. 2007; Kenway et al. 2014; Palacios et al. 2012),
automotive industry (Najian Asl et al. 2017; Hojjat et al.
2014), structural mechanics (Chen et al. 2019; Haftka and

Responsible Editor: Ming Zhou

� Ihar Antonau
ihar.antonau@tum.de

1 Structural Analysis, Technical University Munich,
Munich, Germany

2 BMW Group, Munich, Germany

Grandhi 1986; Firl and Bletzinger 2012), fluid-structure
interaction (FSI) (Hojjat et al. 2010; Heners et al. 2017), etc.

General, constrained shape-optimization problems can
be formulated as follows:

minimize : f (x)

design variables : x

s.t.:gj (x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh (1)

where f (x) is the objective function, x is the vector
of design parameters, gj (x) are inequality constraints,
and hk(x) are equality constraints. An important step in
optimization is the choice of the design variables. In the
optimization of the shape (and topology), there are two
main types of shape parametrization: explicit and implicit.
Implicit parametrization can be presented, for instance, by
the free-form deformation (FFD) approach (Sieger et al.
2012) or a level-set method (Wang and Luo 2020; Luo et al.
2008). Alternatively, in the explicit parametrization, such
as Vertex Morphing (Bletzinger 2017; Hojjat et al. 2014)
or CAD-based parametrization (Xu et al. 2014; Agarwal
et al. 2018; Hardee et al. 1999), the representation of the
geometry is directly used as a design parameter field. In
this work, we are using Vertex Morphing parametrization.

Structural and Multidisciplinary Optimization (2021) 3: –165116336

/Published online: 10 2021February

I. Antonau et al.

The main advantage of the Vertex Morphing is no additional
optimization model is needed. The analysis model is
used directly, where the coordinates of the surface nodes
are the design parameters. Isogeometric parametrization
(Ummidivarapu and Voruganti 2017; Ummidivarapu et al.
2020) is a good alternative to the Vertex Morphing. Both
methods have similarities, and the difference is typically
in the number of design variables. Vertex Morphing uses
surface nodes of the FE model as a design parameters;
therefore, there is a large number of variables. That
allows us to find new unknown solutions by changing
the parametrization settings. On the other hand, with
Vertex Morphing, it is challenging to apply boundaries and
geometrical constraints to the design parameters (Najian Asl
et al. 2017). The interested reader can find more details
about Vertex Morphing and form-finding in Bletzinger
(2017), Baumgärtner et al. (2016), Hojjat et al. (2014).

Solving industrial problems is state of the art. The main
focuses groups researching shape optimization problems
are developing industrial applications, deriving sensitivity
analysis w.r.t shape design variables, and finding new
designs of the models. In most cases, they use well-
established optimization algorithms, such as steepest
descent, gradient projection, augmented Lagrangian, or
trust-region algorithms. Nonetheless, classical algorithms
may suffer from poor efficiency due to the specific
properties of the problems. For instance, the active-set
methods may suffer from the zigzagging phenomenon
(Fletcher 2013; Sun and Yuan 2006) because constraints
repeatedly enter and leave the active set. Therefore, it
results in slow convergence of the method (Gallagher and
Zienkiewicz 1977). Typical properties of the node-based
shape optimization problem are:

– A large number of design variables. In the Vertex
Morphing practice, the “usual” number is around
10e5 − 10e6. That makes solving the optimization
problem not straightforward;

– The objectives, as well as the physical constraints, are
non-linear in state and design;

– The sensitivity analysis for different objective or con-
straint functions cannot always be solved analytically;
thus, they are solved with a tolerance;

– The sensitivities of the different responses have to be
scaled due to the different physical units. Scaling may
mean that information regarding the size of the raw
sensitivities is lost;

– Calculation of the f (x), ∇f (x), g(x), ∇g(x) is com-
putationally expensive. Doing physical analysis may
take up ≈ 50–80% of the one optimization iterations
computational time;

– Algorithms such as gradient projection that require
extra calculations of the response functions to calculate

the correction step precisely (we discuss this in
the details in the Sections 2.1 and 2.2). This can
be numerically expensive or may require additional
assumptions and simplifications.

– Line search techniques can be numerically expensive
or non-accurate for highly non-linear functions. In
practice, a constant step size may be preferred.

In this work, we propose a relaxed gradient projection
method. The method is a modification of the classical
Rosen’s gradient projection algorithm (Rosen 1960, 1961).
In this context, “relaxed” means that constraints can be
in the transient stage between active and non-active.
The relaxation and correction factors mildly control
the relaxation and violation of the constraints. In the
proposed method, we introduce the buffer (critical) zone
to calculate the relaxation factor and the correction term
violated constraints. As a result, the algorithm has efficient
techniques to damp zigzagging behavior when it follows the
design boundaries and has stable performance.

The paper is structured as follows: First, the Rosen’s
gradient projection algorithm is reviewed as the reference
method. Then the proposed algorithm and its simplified
version are described. The next section describes the
numerical experiments and shows a detailed analysis of
the performance of the proposed and reference methods.
Finally, conclusions are drawn from the work.

2 Rosen’s gradient projection algorithm

This section describes the Rosen’s gradient projection
algorithm (GP), its advantages, and disadvantages in the
context of shape optimization problems. The method is used
as the reference algorithm in our studies.

2.1 Gradient projectionmethod

The gradient projection algorithm calculates feasible search
direction by projecting the steepest descent direction into
the tangent subspace to the active constraints. Detailed
description can be found in the article by Rosen (1960) and
Du et al. (1990). We will describe the way to calculate the
projected search direction for optimization problems with
linear constraints by following Haftka and Kamat (1990).
The problem can be formulated as follows:

minimize : f (x) =
∑

i

ωifi(x), where i = 1..nf

s.t. : gj (x) = ajx − bj <= 0, j = 1, ..., ng

hk(x) = akx − bk = 0, k = 1, ..., nh (2)

If we select only the r active constraints, we can define an n

by r matrix N , such that the columns of this matrix are the

1634

Relaxed gradient projection algorithm for constrained node-based shape optimization

gradients of active constraints. The basic assumption of the
gradient projection method is that x lies on the tangential
subspace to the boundary of the active constraints. If our
solutions x(i) and x(i+1) at the iteration i and i + 1 satisfy
the constraints, then the constraints can be rewritten as:

NT s = 0 (3)

where s is a search direction. If we want to project the
steepest descent direction −∇f on the tangent subspace of
the active set of constraints, we can redefine problem (2) as
follows:

minimize : sT ∇f

s.t. : NT s = 0,

and sT s = 1 (4)

where the second condition bounds the solution. The
Lagrangian function is:

L(s, λ, μ) = sT ∇f − sT Nλ − 2μ(sT s − 1) (5)

The condition for L to be stationary is

∂L

∂s
= ∇f − Nλ − 2μs = 0 (6)

We can find the Lagrangian multiplier λ by multiplying (6)
with NT and using condition from (3):

λ = (NT N)−1NT ∇f (7)

and the feasible search direction s:

s = 1

2μ
[I − N(NT N)−1NT]∇f (8)

In Najian Asl et al. (2017) and Haftka and Kamat (1990), the
authors observe that the factor 1

2μ does not play an important
role in the determination of search direction because it
scales the vector and does not change its direction. The final
search direction to minimize the objective function can be
changed with sign factor “-”.

To find the Lagrangian multiplier λ in (7), the linear
system of equation of size r × r needs to be solved.
Depending on the number of active constraints r and design
variables n, the constraint matrix N can be sparse and
large. The condition number of such a system can be large;
therefore, special attention should be paid to the choice of
an efficient and robust linear solver. The reader may refer
to Najian Asl et al. (2017) for more details on solving (7).
After finding the feasible search direction, new shape xi+1

can be found. A line-search can be used to find the step
size α(i) that sufficiently reduces the objective function or a
constant step size can be used. Design update can be found
as follows:

x(i+1) = x(i) + α(i)s (9)

2.2 Reduced gradient projection algorithm

Rosen’s work (1961) provides an extension to the gradient
projection algorithm to handle non-linear constraints. The
main idea is to calculate the correction (restoring) move
that can bring violated constraints back into the feasible
domain. To calculate the restoring move, we linearize the
constraint:

gj ≈ gj (x
(i)) + ∇gT

j (x̄(i) − x(i)) (10)

Using the linearized equation of the constraints, we can find
the correction move:

x(i+1) − x̃(i+1) = −N(NT N)−1ga

ga,j = gj (̃x
(i+1)) (11)

where x̃(i+1) is a new design after minimizing in the
tangential direction, (8), x(i+1) is the corrected design,
and ga is a vector which contains the violations of the
active constraints. Equation (11) is based on the linear
approximation and therefore should be repeated several
times, until ga is sufficiently small. In addition, the matrix
N should be re-evaluated for each point, which means
all physical solvers should be deployed again in order to
undertaken a sensitivity analysis for active constraints. In
the industrial case, the deployment of physical solvers can
be very time consuming. Hence, it can be computationally
expensive to calculate a correction move several times,
or even just once. To reduce computation cost, one can
use the violation of the constraint gj at the beginning of
the iteration, ga,j = gj (x

(i)). With this assumption, the
correction move might not bring the xi+1 back on the
design boundary. Therefore, in one or more optimization
iterations, the active constraint would become non-active
(gj (x

(i+1)) < 0). In this case, the algorithm would perform
a steepest descent step, like other feasible direction methods
(Vanderplaats 2007), and violate the constraint again in the
next iteration. That leads to zigzagging behavior of the
algorithm, and the reduction of its performance (Fletcher
2013; Sun and Yuan 2006).

2.3 Numerical example

Figure 1 gives the typical diagram with the zigzagging
behavior of the gradient projection algorithm with a
constant step size. After some initial iterations, the non-
linear design boundary is reached and overshot. On the next
iteration, the algorithm calculates the projected direction
and applies the correction move to bring the solution back

1635

I. Antonau et al.

Fig. 1 Zigzagging behavior of
GP method

to the feasible side. This leads to the zigzagging of the
objective and constraint values.

3 Relaxed gradient projection algorithm

To overcome issues with gradient projection methods in
our optimization problems, we introduce the proposed
method, a relaxed gradient projection algorithm (RGP).
It incorporates techniques for damping the zigzagging
behavior of the algorithm, while following non-linear active
constraints. This section describes the RGP method and its
simplified version (SRGP).

3.1 Buffer (critical) zone

The gradient projection algorithm has an issue with
switching on and off the constraint while following the
design boundary. To avoid switching, we introduce the
buffer (critical) zone. The buffer (critical) zone is the region
where the constraint is considered as active. Inside this
zone, we calculate the buffer coefficient ω(i)

j , which defines
how “strongly” the constraint should be considered. If the
constraint value has not reached the limit value, the ω

(i)
j

coefficient makes the constraint “weaker.” On the other
hand, if the constraint value is on the limit or has violated the
limit, the ω

(i)
j coefficient makes the constraint fully active. It

smoothly varies from zero to two, where “zero” means that
constraint is non-active, and “one” means that the constraint
value has reached its limit value. If the buffer coefficient
is more than one, the constraint is violated, and the
correction part should be applied. We use linear distribution
through the buffer zone for the buffer coefficient. Non-
linear distribution is non-applicable because the algorithm
varies the buffer coefficient in a non-linear way, and it

reduces the stability of the method. Based on the size of
buffer and its central position, one can calculate the buffer
coefficient ω(i)

j for inequality constraints (gj (xi) ≤ 0):

LBV
(i)
j = CBV

(i)
j − BS

(i)
j

ω
(i)
j = gj (x

(i)) − LBV
(i)
j

BS
(i)
j

(12)

or for equality constraints (hj (xi) = 0):

ω
(i)
j = 1 + abs[gj (x

(i)) − LV j]
BS

(i)
j

(13)

where LBV
(i)
j is a value “lower buffer value,” BS

(i)
j is a

value “buffer size,”CBV
(i)
j is a value “central buffer value,”

gj (x
(i)) is a constraint value, and LVj is a limit value. All

values are calculated for the jth constraint at the ith iteration.
With (12) and (13), CBVj and BSj should first be

defined. Initially, CBV
(i)
j can be set to be the same as the

corresponding constraint limit value. Finding suitable BS
(i)
j

requires the use of historical information. In the first step,
BSj can be initialized as some small value, for instance
1e−12 or 1% of the constraint limit value. Starting from the
second iteration, we can calculate the maximum change in
the constraint value Δg

(i)
j during the optimization process.

By the multiplying maximum change by the buffer size
factor BSF, we can estimate the BS

(i)
j :

BS
(i)
j = BSF · max

k
(Δgj (x

(k)))

Δg
(i)
j = abs(gj (x

(i)) − gj (x
(i−1))) (14)

In general, the buffer factor should be more than one
(BSF > 1.0) and can be changed during the optimization

1636

Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 2 Buffer zone around
constraint limit

process via the buffer adaptation functions. Initially, in our
examples, the buffer factor BSF is set to 2 because then the
algorithm has at least one optimization iteration inside the
buffer zone before the constraint value reaches its limit. To
sum up, the buffer zone controls the active set of constraints
through the constraint’s value. In Fig. 2, there is a graph to
demonstrate the typical buffer zone around the constraint
value.

3.2 Search direction

The RGP algorithm inherits from Rosen’s gradient projec-
tion algorithm the projection part of the feasible direction,
and can rotate it to the direction of the active constraints
gradients. The buffer coefficient ω

(i)
j is divided into two

components. The first part is relaxation, whereby the con-
straint is “relaxed” when it is in the feasible domain. The
ω

r,(i)
j relaxation coefficient is calculated as follows:

ω
r,(i)
j =

{
ω

(i)
j , if ω

(i)
j ≤ 1.0

1, if ω
(i)
j > 1.0

(15)

If the constraint is equality, the relaxation coefficient is
always equal to one, ω

r,(i)
j = 1.0. The second component,

the ω
c,(i)
j correction coefficient is:

ω
c,(i)
j =

⎧
⎪⎨

⎪⎩

BSFinit (ω
(i)
j − 1), if 1.0 < ω

(i)
j < ωmax

0, if ω
(i)
j ≤ 1.0

BSFinitω
max, if ω

(i)
j ≥ ωmax

(16)

where the factor BSFinit is the initial buffer size factor,
and ωmax is the maximum correction coefficient. If the
problem starts from an infeasible domain, the correction
coefficient can be very high and may cause numerical
issues. The ωmax = 2 limits the correction coefficient to
the values inside the buffer zone and can work in the most

cases. Nonetheless, if the problem starts well inside the
infeasible domain, the ωmax can be increased to a relatively
large value, for instance 10 or 100. If we combine the
relaxation and correction components, we can define the
search direction:

p(i) = −[I − Nωr,(i)(NT N)−1NT]∇f (i)

ŝ
(i) = p(i) − Nωc,(i)

s(i) = ŝ
(i)

||ŝ(i)||max

(17)

where ωr,(i) is an r by r diagonal matrix; ω
r,(i)
j is placed

in the main diagonal; ωc,(i) is a vector with size r , which
consist of ω

c,(i)
j buffer coefficients; and p(i) is the relaxed

projected direction. All vectors, ∇f (x(i)) and ∇gj (x
(i))

are scaled using max norm (∇f ← ∇f
||∇f ||max

, ∇gj ←
∇gj

||∇gj ||max
). The first equation in (17) calculates the relaxed

projected direction p(i), which is similar to the (8). The
ωr,(i) relaxation coefficient can be understood as a factor to
control how strongly the steepest direction should be turned
into the projected direction. The second equation in (17), the
correction equation, is different to the correction move from
(11). In contrast to the correction move (11), the correction
part rotates the projected direction to point towards the
feasible domain, instead of calculating the design update.
If the violation of the constraint is higher, the rotation is
more significant. If there are several violated constraints and
the ω

c,(i)
j correction coefficients are large, the final search

direction can have high norm. To avoid it, the third equation
normalizes (bounds) the search direction.

Figure 3 shows the possible search directions, calculated
using the RGPmethod. As it is shown, if the constraint value
is not inside the buffer zone (ω(i)

j = 0), the search direction

1637

I. Antonau et al.

Fig. 3 Possible search direction inside buffer zone, calculated using
RGP method

is the same as the steepest descent. If the ω
(i)
j = 1, the

search direction is the projection of the steepest direction
onto the tangential subspace of the active constraint (8). If
the ω

(i)
j > 1, the search direction is rotated towards the

feasible domain. The dark gray sector shows the search
directions, which can improve the objective functions.

3.3 Buffer adaptation functions

The performance of the proposed algorithm strongly
depends on the buffer size, because the buffer size is used
to calculate the feasible search direction. There is a chance
that the initial size and central position of the buffer zone
may become non-optimal during the optimization process.
Therefore, the algorithm requires functions in order to
correct the buffer size in two cases: the zigzagging behavior
around the constraint limits for the case where constraint
violation increases.

In the first case, if the zigzagging for the constraint is
detected, the buffer size factor is increased by the following
rule:

BSF
(i+1)
j = BSF

(i)
j + abs(ω

(i)
j − ω

(i−1)
j) · factor (18)

where factor is a positive number that scales the update
of the buffer size factor. In all numerical examples, factor
is set to one. With an increase in the buffer size factor
BSF

(i+1)
j , the buffer size BS

(i+1)
j is increased respectively.

If we calculate the constraint value gj (x
(i+1)) and its

respective correction coefficient ω
c,(i)
j using previous and

new buffer sizes BS
(i)
j , BS

(i+1)
j , it can be seen that the

correction coefficient ω
c,(i)
j is smaller with the new buffer

size factor than with the previous one. In contrast, the
relaxation coefficient ω

r,(i)
j is greater with the new buffer

size. Therefore, the value of the constraint will be changed
less from iteration to iteration. Alternatively, the buffer size
factor can be modified by various rules. For instance, buffer
size factor can be doubled, if zigzagging is detected.

The zigzagging behavior can be detected in different
ways. One of them is comparing n number of constraint
values with the constraint limit value. If the constraint
values are sequentially greater and lower than the limit
value, the zigzagging around limit is detected. Alternatively,
the sign of the result of the multiplication of the difference
in constraint values Δg

(i)
j at n previous iterations can be

checked. If we consider 4 previous iterations, the zigzagging
criteria is:
⎧
⎪⎨

⎪⎩

Δg
(i)
j · Δg

(i−1)
j < 0

Δg
(i−1)
j · Δg

(i−2)
j < 0

Δg
(i)
j = gj (x

(i)) − gj (x
(i−1))

(19)

Besides the zigzagging behavior, the constraint value can
move away from a limit value in the infeasible direction.
The condition to detect this in the case of inequality
constraints gj ≤ 0 is:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gj (x
(i)) > 0

gj (x
(i−1)) > 0

Δg
(i)
j ≥ 0

Δg
(i)
j = gj (x

(i)) − gj (x
(i−1))

(20)

To bring the design back into feasible domain, the algorithm
moves the buffer center in the direction of the feasible
domain. That makes the buffer zone non-symmetric around
the limit value and increases thew

(i)
j buffer coefficient. This

function can be understood as moving the real boundaries
deeper inside the feasible domain. The new buffer center
CBV can thus be found as:

CBV i+1
j = CBV i+1

j − (gj (x
(i−1)) − LV j) (21)

With similar schema (20, 21), the buffer center CBV can
be restored back to the limit value, in case the constraint
correction factor is too strong. In case of the equality
constraint, the condition (20) can be extended as follows:
⎧
⎪⎨

⎪⎩

hj (x
(i)) > 0

hj (x
(i−1)) > 0

Δh
(i)
j ≥ 0

or

⎧
⎪⎨

⎪⎩

hj (x
(i)) < 0

hj (x
(i−1)) < 0

Δh
(i)
j ≤ 0

(22)

Numerical example Figure 4 shows a typical diagram of the
smooth application of the active constraint with a constant
step size. In the first 3 iterations, the buffer zone was
adjusted to refer to the history of the constraint values.
In contrast to Rosen’s gradient projection, there is no
zigzagging behavior along the constraint limit and no jumps
in the objective function values.

3.4 Simplified relaxed gradient projection algorithm

In addition to the relaxed gradient projection method
from the previous section, there is a simplified version
of the proposed algorithm (SRGP). The SRGP method

1638

Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 4 Smooth adding constraint
into the active set using RGP
method

does not solve the linear system of equations (7). Instead,
it subtracts weighted constraint gradients from negative
objective gradient. The weights are calculated in the same
way as the buffer coefficient ω

(i)
j , (12). In case of a single

constraint, the feasible direction is:

s = −(1 − ω(i))∇f − ω(i)∇g (23)

where the ω
(i)
j is the buffer coefficient. In contrast to RGP

method, it differs in the range [0; 1] and can be calculated
as:

ω(i) = g(xi) − LBV

2 · BS
(24)

In the case of multiple constraints, the search direction can
be found as follows:

s = −(1 − ω(i))∇f − Nω(i),

ω(i) = max
j

(ω
(i)
j), or

ω(i) =
n∑

j

(ω
(i)
j)/n (25)

where ω(i) is a vector with size r , which consist of the buffer
coefficients ω

(i)
j . The weight ω(i) of the objective gradients

can be defined in several ways. It can be the maximum or
the average of the ω

(i)
j buffer coefficients.

The simplified relaxed gradient projection method uses
the same buffer zone (3.1) and buffer-adaptation functions
(Section 3.3) as the RGP method to damp the zigzagging.
Unlike the RGP method, SRGP does not calculate the
projection direction. Therefore, it cannot follow the linear
constraints. In general, the simplified method oscillates
constraint and objective values more, and requires more
iterations to damp the zigzagging behavior. The advantages
of the simplified method are the lack of the need to solve
the Lagrangian multipliers (7); that it can work with a large

number of constraints; and that it is easy to implement
in the optimization framework. All vectors, ∇f (x(i)) and
∇gj (x

(i)), are scaled using max norm. Figure 5 shows the
possible directions calculated via the SRGP method (light
gray sector). In contrast to the RGP method, the light gray
sector is larger and the direction, which is calculated when
the constraint value is on the limit (ω(i)

j = 0.5), points
towards the feasible domain. Above all, the simplified
relaxed gradient projection method can be effectively used
in different optimization problems.

Numerical example In Fig. 6, one can see the typical
diagram of the smoothing applied on the active constraint
with constant step size. In the first 3 iteration, the method
adjusts the buffer zone by referring to the history of the
constraint values, like in the RGP case. There is a small
violation of the constraint while following it. Therefore,
the buffer zone slightly changes through iterations. The
performance is similar to the RGP case in this simple
example.

Fig. 5 Possible search direction inside buffer zone, calculated by
SRGP method

1639

I. Antonau et al.

Fig. 6 Smooth adding constraint
into the active set with
simplified RGP method

3.5 Optimization algorithm

The Algorithm 1 “Relaxed Gradient Projection” is written as
the simplified pseudo-code to highlight important steps and to
show their order. An interested reader can see more details
in the provided python script (see additional materials).

4 Numerical examples

To demonstrate the performance of the proposed method,
several optimization problems are solved. The main focus
in the practical problems is to compare the gradient projec-
tion method with its modified “relaxed” version. Results of
the simplified relaxed gradient method are shown, but they
are not in the main focus of discussions. All methods are
implemented in the optimization framework “ShapeMod-
ule” (BMW Group). Altair OptistructTM software is used

to solve the structural primal and adjoint analysis of the
numerical models.

4.1 Analytical optimization problems

Solution of the test examples for nonlinear programming
codes from Hock and Schittkowski (1981) is solved.
Description, the reference solutions, and RGP solutions
are shown in Tables 1, 2, and 3. All problems are solved
with the constant step size. No scaling for the sensitivities
is used. The results show that the RGP method is not
efficient in solving analytical problems. The main reason
for that is a constant step size. After several iterations,
the parameter update is extremely low. Using line search
techniques can improve the performance of the method.
In practical cases, rather than accurately converging to
the minima, it is needed to find sufficient improvement.
For instance, in the Problem # 43, after 50 iterations,
all constraints are satisfied and the objective value is
f (x) = −42.75.

4.2 Structural optimization problem

Our first solved optimization problem is the typical mass
reduction of the model, while the compliance of the
model should satisfy the given limit value. The experiment
shows the difference in the performance of the gradient
projection and relaxed gradient projection when constraints
are activated during the optimization process.

Case description In Fig. 10, the geometry of the model
can be seen from 2 different sides. It is the fixture for
soft-top attachment in the BMW i8 Roadster. The blue
color indicates the parts of the model that are damped,
which means the optimization algorithm cannot move them.

1640

Relaxed gradient projection algorithm for constrained node-based shape optimization

Table 1 Example 1

Problem #2

Classification PBR-T1-2

Number of variables n = 2

Number of constraints m = 1

Objective function

f (x) = 100(x2 − x2
1)

2 + (1 − x1)
2

Constrained function

1.5 ≤ x2

Start

x0 = (−2, 1)

f (x0) = 909

Reference solution

x∗ = (2a cos(13 arccos(1/b)), 1.5)

a = (598/1200)0.5

b = 400a3

f (x∗) = 0.0504261879

RGP solution

x∗ = (1.22437007, 1.49999902)

f (x∗) = 0.05042600898328847

g(x∗) = 9.765624997548628e − 07

niter = 261

RGP settings

step size 5e − 4

Table 2 Example 2

Problem #22

Classification QQR-T1-6

Number of variables n = 2

Number of constraints m = 2

Objective function

f (x) = (x1 − 2)2 + (x2 − 1)2

Constrained function

−x1 − x2 + 2 ≥ 0

−x2
1 + x2 ≥ 0

Start

x0 = (2, 2)

f (x0) = 1

Reference solution

x∗ = (1.0, 1.0)

f (x∗) = 1.0

RGP solution

x∗ = (0.99999962, 1.00000126)

f (x∗) = 1.0000007616095747

g1(x
∗) = −8.769388442075865e − 07

g2(x
∗) = 2.0193504708387877e − 06

niter = 102

RGP settings

step size 5e − 2

The red parts are design variables. There is a transition
zone between blue and red parts, where the model can
be modified to maintain continuity between damped and
design parts. The optimization problem can be formulated
as follows:

minimize : mass(x)

s.t. : compliance1(x) ≤ compliance1(x
(0)) ∗ 1.1

compliance2(x) ≤ compliance2(x
(0)) ∗ 1.1 (26)

where mass(x) is the mass response function, x is a vector
of the design parameters, x(0) is the initial state, and
compliance1(x) and compliance2(x) are the compliance
responses according to the different load cases. The load
case 1 is applied in y-direction and load case 2 in z-direction.
Both loads are applied on the upper blue zone while the
bottom blue part of the FE model is fixed (Fig. 10a). In
the case of node-based parametrization, the surface nodes
are used as design variables. The size of the x is 145,326.
Our stopping criteria is a maximum number of iterations
(50). Further optimization steps are not useful, as the mesh
quality is not acceptable. The maximum shape update
magnitude is constant and equals 0.15 mm.

Optimization method settings Table 4 shows the settings
we have used for the methods. The correction coefficient
scales the restoring move (11) of the violated constraint. As
the shape update is limited, the coefficient helps to balance
the impact of the violated constraint with respect to other
responses to the final shape update. The parameters are
tuned in a way that violated constraints can be corrected
in one step. With smaller coefficients, the violations are
initially smaller, but after some iterations, method diverges
because it can not handle constraints anymore.

Results Figure 7 gives the graphs with the compared objec-
tive and constraint values through optimization iterations.
The gradient projection algorithm detects the violated con-
straint compliance2(x) at iteration 6, adds it to the active set
of the constraints, and applies the correction move to bring
the solution back into the feasible domain. At iteration, 7,
the solution is feasible, and the constraint is removed from
the active set of constraints. Hence, the algorithm does not
consider it. Therefore, the constraint value is again violated
in the next iteration. After this point, marked zigzagging
behavior can be seen for objective and constraint values.
In contrast, a relaxed gradient projected algorithm has no
zigzagging behavior after iteration 6 or 7. If we compare
constraint values precisely, in Fig. 7b, c, one can see that up
until iteration 4, both algorithms calculate the same shape
update because both methods perform the steepest descent
step. At iteration 5, the RGP method detects the constraint

1641

I. Antonau et al.

Table 3 Example 3

Problem #43

Classification QQR-T1-11

Number of variables n = 4

Number of constraints m = 3

Objective function

f (x) = x2
1 + x2

2 + 2x2
3 + x2

4

−5x1 − 5x2 − 21x3 + 7x4
Constrained function

8 − x2
1 − x2

2 − x2
3 − x2

4−
x1 + x2 − x3 + x4 ≥ 0

10 − x2
1 − 2x2

2 − x2
3 − 2x2

4

+x1 + x4 ≥ 0

5 − 2x2
1 − x2

2 − x2
3

−2x1 + x2 + x4 ≥ 0

Start

x0 = (0, 0, 0, 0)

f (x0) = 0

Reference solution

x∗ = (0.0, 1.0, 2.0, −1.0)

f (x∗) = −44

RGP solution

x∗ = (1.31159684e − 07, 1.0,

2.0, −9.99999586e − 01)

f (x∗) = −43.999999009762654

g1(x
∗) = 9.520910907445668e − 07

g2(x
∗) = 1.0000019930022122

g3(x
∗) = 1.9072899259953147e − 08

niter = 2766

RGP settings

step size 5e − 2

compliance2(x) as active and adds it to the active set of con-
straints with the relaxation coefficient. At iteration 9, RGP
adds constraint compliance1(x) in the same way. Therefore,
the RGP method smoothly and in advance adds constraints
to the active set. Still, both constraints were violated during
the optimization process, but the amount of the violation is

Table 4 Optimitation method settings

Gradient projection

Step size 0.15

Compliance constraint corr. coeff. 1.0

Compliance constraint corr. coeff. 1.0

RGP and SRGP

Step size 0.15

Buffer scale factor eq. (18) 1

Initial BSF 2.0

lower than in GP. For instance, after 20 iterations, the con-
straint compliance2(x) starts to zigzag around the limit, but
the RGP method is able to damp the oscillations by using
the adaptation function (21) (see Fig. 8). While constraint
compliance2(x) is oscillating, the objective function is still
improving with nearly the same speed as in the previous
iterations. With regard to the results, the objective func-
tion is improved faster using the RGP method compared to
GP (Fig. 9). During 5 − 50 optimization iterations, while
both optimization algorithms are traveling along the design
boundaries, the GP method is able to improve our objec-
tive function by 9.5% and RGP by 14.4%. Hence, the RGP
method improves the objective function 1.7 times faster
than GP in this case. SRGP method sees nearly the same
improvement of the objective function as RGP, but the oscil-
lations of the constraint value around the limits are greater.
In Fig. 10b, the comparison between initial and optimum
design (RGP method) can be seen.

In Fig. 11, there is a comparison in the shape updates
between GP and RGP methods. At iteration 1, both methods
perform the steepest descent step; therefore, the shape
updates are similar in both cases. The difference occurs at
iteration 5. The GP method does not detect the constraint
compliance2(x) and continues performing steepest descent
step. RGP already detects the constraint and calculates
“constrained” shape update. At iterations 6–8, the GP
method strongly modifies the shape updates: at iteration 6,
there is a shape update with a correction move, at iteration
7, there is the steepest descent update, and at iteration 8,
there is again a shape update with a correction move. The
behavior continues during the whole optimization process.
In contrast, the RGP method smoothly modifies the shape
updates during iterations 5–8 and beyond. The RGP method
tries to find the feasible search direction that will not
significantly oscillate the constraints. Therefore, there are
fewer oscillations compare to GP.

Figure 12 shows the difference in the final shapes. There
is no big difference between SRGP and RGP generated
shapes. The shape, generated by the GP method, has
less modification of the design due to problems with zig
zagging. All methods has similar pattern of the update,
therefore all of them converging to similar local optima. The
reason for that is that all methods are trying to follow similar
optimization path along the active sets of the constraints.
If there are no active constraints, all method use steepest
descent direction. If the initial design or the parametrization
will be changed, new final design can be found.

Conclusion The RGP method demonstrates good perfor-
mance in this case, compared to the GP method. It was able
to smoothly activate the constraints as they approached the
limit values. If the zigzagging of the constraint is detected,

1642

Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 7 GP vs RGP vs SRGP
method comparison. a Objective
values. b Constraint
compliance1(x) . c Constraint
compliance2(x)

1643

I. Antonau et al.

Fig. 8 RGP method, constraint
compliance2(x) with buffer
zone

the method is able to damp them, while the objective func-
tion keeps nearly the same ratio of improvement. The SRGP
method exhibits similar performance to the RGP method,
although the constraint violations are greater in number.

4.3 Structural optimization problemwith
geometrical constraint

In the second numerical example, the structural optimiza-
tion problemwith a geometrical constraint should be solved.
In practical cases, it is common to apply geometrical con-
straints because the designed part exists within a given space
so as not to collide with neighboring parts; therefore, the
shape boundaries should be fixed. Details of the packaging
constraint can be found in Najian Asl et al. (2017).

Case description The objective function is to reduce the
mass of the initial model with respect to two constraints:
the model should be inside a packaging box (geometrical
constraint) and the maximum displacement of any point
should be below the given limit. The problem can be defined
as follows:

minimize: mass(x)

s.t. di ≤ dcrit

xi ∈ V c (27)

where x is a vector of the design parameters, mass(x) is
a mass response, di is the displacement at the point i, and
V c is the packaging constraint. The initial configuration
can be seen in Fig. 13a, where the red zones are the
design nodes and the blue zones are damped and cannot
be moved. Figure 13b and c show which parts initially
violate the geometrical constraint and should be corrected

during the optimization process. The stopping criteria are
the maximum number of optimization iterations (100) or
the lack of sufficient improvement in the objective function
(less than 0.1% in the last 10 iterations). The maximum
shape update magnitude is constant and equals to 0.5 mm.

Optimization method settings Table 5 shows the settings
we have used for the methods. The correction coefficients
were tuned in a way that packaging constraint is less
dominant during the optimization process.

Results In Fig. 9, there is a comparison of the objective and
constraint values. Initial design is infeasible with respect to
packaging constraint; therefore, all methods perform their
first iterations to correct the packaging constraint. On graph
Fig. 9a, it can be seen that the RGP method improves the
objective function much faster than the other two methods.
In the case of SRGP, the method performs the “steepest
descent steps” in the direction of the violated geometrical
constraint (s = 0·∇f −1·N). The GPmethod has calculated
a correction move; hence, most of the shape update is
performed to correct the constraint rather than improve the
objective function. In the RGP method, the correction term
is limited by the correction coefficient ωmax = 2 (see
Section 3.2); therefore, the correction is not as high as for
the other, and the objective function is improved faster.
When the packaging constraint value is corrected, the speed
of objective improvement increases.

Figure 14d provides a comparison of the initial and final
design of the model. The initial design is in transparent
blue, and the optimized design is in white. Visible are the
zones where the mass was reduced and the zone where
the shape was modified to satisfy the packaging constraint.
All methods converged towards a similar optimized design,

1644

Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 9 GP vs RGP vs SRGP
methods compared. a Objective
values. b Constraint
compliance1(x). c Constraint
compliance2(x)

1645

I. Antonau et al.

Fig. 10 Optimization model.
a Geometry of the optimization
model, red design part, blue
damped part. b Initial design
(transparent blue), optimized
design (white) via RGP method

1646

Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 11 Comparison of the shape update (scaled), calculated by GP and RGP methods. a Iteration 1, RGP. b Iteration 1, GP. c Iteration 5, RGP. d
Iteration 5, GP. e Iteration 6, RGP. f Iteration 6, GP. g Iteration 7, RGP. h Iteration 7, GP. i Iteration 8, RGP. j Iteration 8, GP

1647

I. Antonau et al.

Fig. 12 Comparison of the optimized designs. Data filed shows absolute update in (mm). From left to right: GP, RGP, SRGP

(see Fig. 14a–c). The optimization process was stopped
by the convergence criteria because there was no more
sufficient improvement in the objective function, and the
constraints are satisfied within the given tolerance.

An important difference in performance between the
RGP method and others is that in this case the RGP method
is much more stable and is able to maintain its geometrical
constraint very accurately. There is a violation in the
maximum displacement constraint at the 28th iteration, but
the method is able to correct the constraint. In case of the
SRGP method, there are more oscillations of the constraint

values, but the violations are lower. The method was not as
efficient as RGP due to the initially slow improvement of the
objective. When the geometrical constraint was corrected,
the method performed well, and in a stable manner. The GP
method displayed similar issues with zigzagging as in the
previous examples. Nonetheless, the GP method finds the
solution with the same number of iterations as the SRGP
method. It is important to note that the computational time
for one iteration for each method is similar because there is
the same number of calls for analysis and they take up the
most time.

Fig. 13 Optimization model,
packaging constraint(light
purple). a Design model, red
design part, blue damped part. b
Geometrical constraint violation
of the initial design, upper side
(red). c Geometrical constraint
violation of the initial design,
lower side

1648

Relaxed gradient projection algorithm for constrained node-based shape optimization

Table 5 Optimitation method settings

Gradient projection
Step size 0.5
Maximum displacement constraint corr. coeff. 1.0
Packaging constraint corr. coeff. 0.05

RGP and SRGP
Step size 0.5
Buffer scale factor (18) 1
Initial BSF 2.0

4.4 Computational time

Table 6 shows the comparison of the computational
time needed to solve the optimization problem from the

Table 6 Computation time

Method GP RGP SRGP

Aver. time, 1 Iter, s 247 250 248

Full time, s 14326 10750 14136

Section 4.3. Intel Xeon(R) CPU E5-1650 v4 with 6 cores
was used in cooperation with 64 GiB RAM. 137 s is needed
to solve primal and adjoint solutions and less than 0.7 s to
find shape update with constant step size. Rest of the time is
needed to compute parametrization, mesh update, and save
the output files.

Fig. 14 Comparison of the
optimized designs. Data filed
shows absolute update in (mm).
a Gradient Projection method
method b Relaxed Gradient
Projection method c Simplied
Relaxed Gradient Projection
method d Initial design
(transparent blue), optimized
design (white) via RGP method

1649

I. Antonau et al.

5 Conclusions

In this paper, the relaxed gradient projection method is
introduced. The proposed modifications to Rosen’s gradient
projections show good speed up in the rate of the objective
improvement, and in avoiding marked zigzagging behavior.
The proposed method can activate the constraint in advance
before the limit value is reached, and it has techniques
to reduce the zigzagging behavior while following the
constraint boundaries. It does not require accurate parameter
set up; therefore, it is easier and stable in daily practice.
Further research can be done to find efficient line-search
techniques that can be efficiently used in the practical
applications, and computing more accurately the correction
part of the search direction. In conclusion, we see the
relaxed gradient projection algorithm as being one of the
group of feasible direction methods. We do not claim
that the proposed method is the best option for shape
optimization problems in general. The proposed algorithm
should be considered as a good alternative to other
successful optimization methods, such as inner-point (Chen
et al. 2019) or trust-region algorithms (Yuan 1999).

Supplementary Information The online version contains supplemen-
tary material available at 10.1007/s00158-020-02821-y.

Acknowledgments Open Access funding enabled and organized by
Projekt DEAL. The authors wish to thank the ShapeModule project
(BMW Group) for the support. Thanks are also due to S. Stahl M.Sc.
(Design for Additive Manufacturing, BMW Group) for providing
numerical models.

Funding This paper is based on a part of the research sponsored by
the BMW group.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The proposed method is implemented in
the optimization framework “ShapeModule” (BMW Group, shape-
module@bmw.de). The code has no public access, as well as shown
models. Following suggestions from Haftka et al. (2019), to improve
the replication of results, the proposed method is implemented
in the python script (see additional materials). The script has all
significant steps of the relaxed gradient projection method, and it
solves a constrained quadratic problem. In the script, all methods
have references to the corresponding equations. Additionally, the
constant parameter update and scaling of the sensitivities are applied.
An interested reader can contact the corresponding author for the
respective explanations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in

this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

Agarwal D, Robinson T, Armstrong C, Kapellos C (2018) Enhancing
cad-based shape optimisation by automatically updating the
cad model’s parameterisation. Struct Multidiscip Optim 59:11.
https://doi.org/10.1007/s00158-018-2152-7

Baumgärtner D, Viti A, Dumont A, Carrier G, Bletzinger K-U (2016)
Comparison and combination of experience-based parametrization
with vertex morphing in aerodynamic shape optimization of a
forward-swept wing aircraft 06. https://doi.org/10.2514/6.2016-
3368

Bletzinger K-U (2017) Shape optimization, pp 1–42. ISBN
9781119176817. https://doi.org/10.1002/9781119176817.ecm2109

Chen L, Bletzinger K-U, Geiser A, Wüchner R (2019) A modi-
fied search direction method for inequality constrained optimiza-
tion problems using the singular-value decomposition of nor-
malized response gradients. Struct Multidiscip Optim 06:1–19.
https://doi.org/10.1007/s00158-019-02320-9

Du D, Wu F, Zhang X (1990) On rosen’s gradient projection methods.
Ann Oper Res 24:9–28, 12. https://doi.org/10.1007/BF02216813

Firl M, Bletzinger K-U (2012) Shape optimization of thin walled struc-
tures governed by geometrically nonlinear mechanics. Comput
Methods Appl Mech Eng 237–240:107–117, 09. https://doi.org/
10.1016/j.cma.2012.05.016

Fletcher R (2013) General linearly constrained optimization, chap 11.
Wiley, New York, pp 259–276. https://doi.org/10.1002/97811187
23203.ch11. ISBN 9781118723203

Gallagher R, Zienkiewicz O (1977) Optimum structural design—
theory and applications 01

Haftka RT, Grandhi RV (1986) Structural shape optimization—a sur-
vey. Comput Methods Appl Mech Eng 57(1):91–106. https://doi.
org/10.1016/0045-7825(86)90072-1. ISSN 0045-7825

Haftka R, Kamat M (1990) Element of structural optimisation, vol 1
01. https://doi.org/10.1007/978-94-015-7862-2

Haftka RT, Zhou M, Queipo NV (2019) Replication of results. Struct
Multidiscip Optim 60(2):405–409. https://doi.org/10.1007/s00158-
019-02298-4. ISSN 1615-1488

Hardee E, Chang K-H, Tu J, Choi K, Grindeanu I, Yu X
(1999) A cad-based design parameterization for shape opti-
mization of elastic solids. Adv Eng Softw 30:185–199, 03.
https://doi.org/10.1016/S0965-9978(98)00065-9

Heners J, Radtke L, HinzeM, Düster A (2017) Adjoint shape optimiza-
tion for fluid-structure interaction of ducted flows. Comput Mech
61:259–276, 08. https://doi.org/10.1007/s00466-017-1465-5

Hock W, Schittkowski K (1981) Test examples for nonlinear program-
ming codes, vol 187. Springer, Berlin. https://doi.org/10.1007/
978-3-642-48320-2

Hojjat M, Stavropoulou E, Gallinger T, Israel U, Wüchner R,
Bletzinger K-U (2010) Fluid-structure interaction in the context of
shape optimization and computational wind engineering. 73: 351–
381, 09, Fluid Structure Interaction II, Springer, Berlin Heidelberg

Hojjat M, Stavropoulou E, Bletzinger K-U (2014) The vertex morph-
ing method for node-based shape optimization. Comput Methods
Appl Mech Eng 268:494–513, 01. https://doi.org/10.1016/j.cma.
2013.10.015

1650

Relaxed gradient projection algorithm for constrained node-based shape optimization

Kenway G, Kennedy G, Martins J (2014) Aerostructural optimization
of the common research model configuration, 06. ISBN 978-1-
62410-283-7. https://doi.org/10.2514/6.2014-3274

Kroll N, Gauger N, Brezillon J, Dwight R, Vollmer D, Becker K,
Barnewitz H, Schulz V, Hazra S (2007) Flow simulation and
shape optimization for aircraft design. J Comput Appl Math
203:397–411, 06. https://doi.org/10.1016/j.cam.2006.04.012

Luo Z, Wang M, Wang S, Wei P (2008) A level set-based parameteri-
zation method for structural shape and topology optimization. Int
J Numer Methods Eng 76:1–26, 10. https://doi.org/10.1002/nme.
2092

Najian Asl R, Shayegan S, Geiser A, Hojjat M, Bletzinger K-U (2017)
A consistent formulation for imposing packaging constraints in
shape optimization using vertex morphing parametrization. Struct
Multidiscip Optim 56:1–13, 10. https://doi.org/10.1007/s00158-
017-1819-9

Palacios F, Economon T, Alonso J (2012) Optimal shape design for
open rotor blades 06. https://doi.org/10.2514/6.2012-3018

Rosen J (1960) The gradient projection method for nonlinear
programming. Part i. Linear constraints. J Soc Ind Appl Math 8:03.
https://doi.org/10.1137/0108011

Rosen J (1961) The gradient projection method for nonlinear
programming: part ii. SIAM J Appl Math - SIAMAM 9:01

Sieger D, Menzel S, Botsch M (2012) A comprehensive comparison of
shape deformation methods in evolutionary design optimization

SunW, Yuan Y-X (2006) Optimization theory and methods. Nonlinear
Program 1:01. https://doi.org/10.1007/b106451

Ummidivarapu V, Voruganti H (2017) Shape optimisation of two-
dimensional structures using isogeometric analysis. Int J Eng Syst
Model Simul 9:169, 01. https://doi.org/10.1504/IJESMS.2017.
085080

Ummidivarapu V, Voruganti H, Khajah T, Bordas S (2020) Isogeo-
metric shape optimization of an acoustic horn using the teaching-
learning-based optimization (tlbo) algorithm. Comput Aided
Geom Des 80:101881, 05. https://doi.org/10.1016/j.cagd.2020.
101881

Vanderplaats G (2007) Multidiscipline design optimization. Vander-
plaats Research & Development Inc

WangM, Luo Z (2020) Shape and topology optimization for compliant
mechanisms using level set-based parameterization method,
pp 18–21, 05

Xu S, Jahn W, Mueller J-D (2014) Cad-based shape optimisation with
cfd using a discrete adjoint. Int J Numer Methods Fluids 74:01.
https://doi.org/10.1002/fld.3844

Yuan Y-X (1999) A review of trust region algorithms for optimization.
In: ICM99: proceedings of the fourth international congress on
industrial and applied mathematics 09

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1651

Appendix B

Publication II

Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:198
https://doi.org/10.1007/s00158-022-03279-w

RESEARCH PAPER

Latest developments in node‑based shape optimization using Vertex
Morphing parameterization

Ihar Antonau1  · Suneth Warnakulasuriya1 · Kai‑Uwe Bletzinger1 · Fabio Michael Bluhm2 · Majid Hojjat3 ·
Roland Wüchner4

Received: 26 February 2022 / Revised: 12 May 2022 / Accepted: 16 May 2022
© The Author(s) 2022

Abstract
The latest updates on the Vertex Morphing technique for large optimization problems are shown in this work. Discussions
about the challenges of node-based shape optimization in academic and industrial applications are included. The adaptive
Vertex Morphing technique is demonstrated, which is easy to use in practice and allows the full exploitation of the potential
of node-based shape optimization to find new designs in large-scale applications. We also show an efficient optimization
method to handle different physical responses with many geometrical constraints. A state-of-the-art example of industrial
importance supports the work.

Keywords  Gradient-based constrained optimization · Barzilai–Borwein method · Relaxed gradient projection method ·
Adaptive Vertex Morphing

1  Introduction

In many industrial applications, adjoint-based shape opti-
mization application with response functions, computed by
computational fluid dynamics (CFD) analysis, has become
an important analysis tool in the design process of the prod-
ucts (Papoutsis-Kiachagias and Giannakoglou 2014; Müller
et al. 2021). In shape optimization, the aim is to find an
optimal shape of the model regarding a physical quantity,
for instance, drag force.

The choice of the design parameters (parameterization)
plays a key role in successful results in realistic optimization

problems. There are different methods and strategies to
parameterize the design space of large problems. There are
two major groups of parameterization techniques: CAD and
CAD-free (or parameter-free) methods. CAD methods con-
trol the position of “many” surface points based on “few”
CAD parameters(Xu et al. 2014; Agarwal et al. 2018). In
contrast, CAD-free methods use the surface nodes directly as
the design parameters (Firl and Bletzinger 2012; Stück and
Rung 2013; Bletzinger 2017; L. A. G and Guillaume 2018).
CAD-free methods have difficulties attaining the final shape
without rough/noisy boundaries (Stück and Rung 2011). In
this regard, several techniques are proposed to increase the
regularity of the shape update (Stavropoulou et al. 2014;
Kröger and Rung 2015).

Vertex Morphing is a successful CAD-free technique
introduced by Hojjat et al. (2014) and Bletzinger (2014),
Bletzinger (2017). The main characteristics of the technique
are as follows:

1.	 The method uses the filtering operation to generate
smooth design updates and control the surface mesh
quality.

2.	 No extra optimization model is needed. The Finite Ele-
ment (FE) model is used directly. The Vertex Morphing
parameterization is easy to set up for complex models
and geometries, and it is a good alternative to well-

Responsible Editor: Kyriakos Giannakoglou

Topical Collection: Flow-driven Multiphysics
Guest Editors: J Alexandersen, C SAndreasen, K Giannakoglou,
K Maute, K Yaji

 *	 Ihar Antonau
	 ihar.antonau@tum.de

1	 Technical University of Munich, Munich, Germany
2	 RWTH Aachen University, Aachen, Germany
3	 BMW Group, Munich, Germany
4	 Institut für Statik und Dynamik, Technische Universität

Braunschweig, Braunschweig, Germany

	 I. Antonau et al.

1 3

 198   Page 2 of 19

known parameterization strategies (Baumgärtner et al.
2016);

3.	 The Vertex Morphing method can be successfully inte-
grated into the multi-disciplinary optimization frame-
work. An example of such implementation can be found
in Ghantasala et al. (2021), Baumgärtner (2020);

4.	 Vertex Morphing parameterization provides a rich
design space, allowing new solutions to be explored.
(Bletzinger 2017);

5.	 Different design constraints, such as symmetry, axis-
symmetry, or damped (non-design) zones, can be
consistently integrated into the parameterization. This
ensures the satisfaction of the given requirements with-
out using advanced constrained optimization algorithms
(Najian Asl 2019).

The main parameter to adjust Vertex Morphing is a fil-
ter radius (“filtering intensity”). It is an additional design
parameter to modify generated shape update modes and
define shape features of the initial geometry that will be
preserved. In the work of Hojjat et al. (2014), it has been
shown that the optimizer converges to different target local
optimums by adjusting the filtering radius. The role of the
filtering radius can be defined as follows:

1.	 The optimizer is driven to a certain local minimum by
choice of the filter radius;

2.	 The filter radius directly controls the final shape
(smoothness, wavelength);

3.	 All the initial features of the geometry which are smaller
than the filter radius are preserved;

4.	 A priori the “good” size of the filter radius is unknown;
5.	 During the optimization process, the large deformations

of the design surface can change the surface mesh size
dramatically. Therefore, the filter radius can become too
small concerning surface mesh size, and it will cover
only a few layers of the elements. As a result, the con-
sequential following shape updates are not smooth any-
more. In contrast, the filter radius may become too large
if the model shrinks. Hence, the big parts of the model
move as a rigid body.

The adaptive Vertex Morphing is proposed to address the
challenges mentioned above. The adaptive Vertex Morphing
method computes the smallest radius required for appropri-
ate filtering on each node. As a result, adaptive Vertex Mor-
phing can be used without any user’s input, or it can correct
the given user’s input. Additionally, in contrast to the initial
method, in adaptive Vertex Morphing, the user can provide
not only “global” radius size but also “local” sizes. In this
paper, CFD shape optimization problems are solved using
the adaptive Vertex Morphing technique.

Structural optimization problems with Vertex Morphing
parameterization require robust and efficient optimization
methods to handle many design variables and different phys-
ical and geometric constraints. Also, the efficient line search
strategy can improve the computation of descent improve-
ment of the objective function and keep the design feasible.
Typically, a structural optimization problem with Vertex
Morphing has the following properties:

1.	 A large number of design variables. The “usual” number
is 1e4 − 1e6 . Therefore, the sensitivities of the response
functions have to be computed using adjoint sensitivity
analysis (Najian Asl 2019);

2.	 For typical engineering optimization tasks, comput-
ing the response values of the objective and constraint
functions requires numerically expensive CFD (or struc-
tural) analysis. Therefore, optimization methods must be
robust and efficient to reduce the number of evaluations
of response values as much as possible;

3.	 The objective and constraints functions are typically
highly non-linear (Firl and Bletzinger 2012);

4.	 The sensitivities of the response functions have to be
scaled due to the different physical units (m, kg, N, etc.).
Therefore the information regarding the magnitude of
the raw sensitivities can be lost;

5.	 Due to a large number of design variables, geometric
constraints and design bounds lead to a large number
of constraints. An efficient aggregation method may be
required (Geiser et al. 2021);

6.	 Line search techniques can be numerically expensive or
non-accurate for highly non-linear functions. In practical
application, a constant step size may be preferred.

Generally, a constraint shape optimization problem is for-
mulated as follows:

where x represents design parameters that define the design
surface, ng and nh are numbers of inequality ( g(x) ≤ 0 ) and
equality ( h(x) = 0 ) constraints.

The algorithms that have been successfully used with
Vertex Morphing parameterization are gradient projection
(Najian Asl et al. 2017; Ertl 2020), the relaxed gradient pro-
jection (RGP) method (Antonau et al. 2021), and the modi-
fied search direction method (Chen et al. 2019; Chen 2021).
All methods are first-order direct optimization methods that

(1)

�������� ∶ f (x)

design variables ∶ x

subject to ∶

gj(x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 3 of 19  198

can find good search directions to improve the objective
functions and handle constraints.

In the mentioned works, a constant step size has been
used. However, the good step size is an unknown a priori
and may lead to poor performance or higher computational
cost. There are various methods to calculate the exact or
approximate step length to find a minimum of the objec-
tive function or sufficient reduction along the descent search
direction. For instance, Cauchy methods may require cal-
culating the Hessian matrix, which is not always available
or very expensive to compute (Zhou et al. 2006). Besides,
Armijo’s backtracking schemes try several step sizes until
the acceptance criteria are satisfied (Ahookhosh and Ghaderi
2017). In large CFD optimization problems, additional func-
tional evaluation may excessively increase the computational
cost of each optimization iteration.

On the other hand, the Barzilai–Borwein (BB) method
(Barzilai and Borwein 1988) attracts many research groups
because of its simplicity and surprising efficiency in uncon-
strained optimization problems. The method’s main advan-
tage is that it does not require any costly computational
operations to approximate the step size. There are various
modifications of the technique: Projected Barzilai–Borwein
method (Dai and Fletcher 2005), Adaptive Barzilai–Borwein
method (Zhou et al. 2006), Stabilized Barzilai–Borwein
method (Oleg Burdakov and Dai 2019), and accelerated
Barzilai–Borwein method (Huang et al. 2022).

The Quasi-Newton Barzilai–Borwein (QN–BB) method
is introduced in this work. In contrast to the original and
modified versions, the QN–BB method computes each
design variable’s step size independently. Therefore, each
design parameter has its step size based on the local sensitiv-
ity information. The QN–BB method has been coupled with
the relaxed gradient projection method (QN–BB–RGP). The
QN–BB–RGP algorithm uses a linear approximation of the
constraints to compute feasible design updates. It allows for
solving efficiently large optimization problems with local-
ized constraints. Additionally, in this work, the maximum-
value aggregation technique is introduced. It combines a
large number of nodal constraints into one, where each node
has an individual correction based on the nodal constraint
value. The QN–BB method was first time shown at Eccomas
Congress 2020 & 14th WCCM; the record of the presenta-
tion talk can be found under the link (https://​slide​slive.​com/​
38944​933).

The paper is structured as follows: First, the Vertex Mor-
phing method is reviewed, and the proposed adaptive Vertex
Morphing is introduced. Then the QN–BB–RGP method is
described with all its components: QN–BB, RGP, and the
max-value aggregation technique. The following sections
describe the academic and industrial optimization problems

and show a detailed analysis of the performance of the pro-
posed methods. Finally, conclusions are drawn from the
work.

2 � Vertex Morphing

Without appropriate regularization measures, node-based
shape optimization produces high-frequency, noisy geom-
etries. Therefore, one means of choice is to subject the raw
geometry to smoothing using filters. In the context of Ver-
tex Morphing, thus, the structural geometry x is indirectly
controlled by a control field s and a kernel or filter function
A, for example, on the surface � with surface coordinates
( �, �, �):

Vertex Morphing belongs to the direct filtering techniques
as opposed to the indirect ones, such as Sobolev smoothing
(Jameson 1988, 1995; Pironneau 1974), where the filter is
applied to the actual geometry x . There is great freedom
to choose kernel functions. For the choice of simple poly-
nomials on compact support (including a piecewise linear
hat function and splines), it is shown that Vertex Morphing
is identical to a generalized CAD-based approach with
indirectly defined spline base functions (Bletzinger 2017).
When taking the Gauss bell-shaped distribution function, the
technique has additional equivalent properties compared to
indirect smoothing (Stück and Rung 2011).

After discretization of the structural geome-
try x = [xx

1
, x

y

1
, xz

1
, ..., xx

n
, x

y
n, x

z
n
] and control function

s = [sx
1
, s

y

1
, sz

1
, ..., sx

m
, s

y
m, s

z
m
] by standard techniques as the

finite element method, Vertex Morphing appears as follows:

where x is the vector of coordinates of nodes where the spa-
tial coordinates in x− , y− , and z− direction of a node are
arranged sequentially. A is the filter operator matrix, and
s is the vector of discrete control field parameters, again
arranged sequentially. The most straightforward approach
is to add control parameters to every node, i.e., vertex, of
the finite element model, which motivates the term “Vertex
Morphing.”

The entries Aij of A reflect the filter effect as the interac-
tion between two different nodes i and j, their spatial position
vectors xi and xj , and their Euclidean distance |||xi − xj

||| . For
the case of the Gauss distribution as kernel and approximat-
ing integration by summation it holds:

(2)x(�0, �0, �0) = ∫�
A(� − �0, � − �0, � − �0)s(�, �, �)d� .

(3)x = As,

	 I. Antonau et al.

1 3

 198   Page 4 of 19

where

and r is the filter radius. Different from the initial version of
Vertex Morphing (Hojjat et al. 2014), the same filter opera-
tions are applied of any item assigned to a discrete node,
which are in particular each component of the spatial coor-
dinates. As a consequence, the entries Aij appear as scalar
matrices in A:

where I is an identity matrix 3 by 3. This technique is equiv-
alent to the finite element method interpolating every nodal
coordinate by the same shape function assigned to the indi-
vidual node. Consequently, Vertex Morphing simultaneously
controls the shape growth in normal surface direction and
the mesh adaptation tangential to the surface without further
considerations.

3 � Adaptive Vertex Morphing

This section introduces the AVM technique and its proper-
ties: computation of radius field, smoothing process, and
radius control by the user.

(4)
Aij =

F(xi, xj)

sum

sum =
∑
j

F(xi, xj)
,

(5)F(xi, xj) =

⎧
⎪⎨⎪⎩

exp
����(−

���xi − xj
���
2

∕2r2)
����
���xi − xj

��� < r

0.0
���xi − xj

��� ≥ r

(6)

Aij = Aij ∗ I

A =

⎡
⎢⎢⎣

A11 … An1

⋮ ⋱ ⋮
A1m … Anm

⎤⎥⎥⎦
,

3.1 � Radius field computation

The size of the radius plays a crucial role in the filtering pro-
cess. If the radius does not cover enough elements, the final
design may not be smooth and have kinks and poor quality
surface mesh. Even if we choose a suitable radius size for
the initial model, after n optimization iterations, the model
can be deformed dramatically, and the radius size becomes
inappropriate. Therefore, it is essential to check if the radius
has a proper size during optimization. The adaptive Vertex
Morphing computes the minimum required radius for every
node during the optimization process. Consequently, it can
adapt the radius size for each node to keep the filtering prop-
erty. The required radius for node k is computed based on the
distances to the neighboring nodes j as follows:

where dj =
‖‖‖xk − xj

‖‖‖ is a distance between node k and j. The
constant C can be understood as a number of element layers
the filtering includes. From various numerical experiments,
the good values for C are in the range [4, 10] (Firl et al.
2012; Hojjat et al. 2014; Stavropoulou et al. 2014).

Firl et al. (2012) show that any filtering introduces the
filtering error: the gap between the optimal shape and the
“true” optimum. The error disappears, when r → 0 . The
adaptive Vertex Morphing method allows finding the solu-
tion with the smallest possible radius for the given mesh.
Hence, it generates the smallest filtering error. Figure 1
shows the computed radii (radius field) by eq. (7) with C = 7
as a field, where the value refers to the filter radius at the
node.

(7)rk = C ⋅max
j
(dj),

Fig. 1   Individual radii for each
node of the mesh, orange—
radius of the big element,
blue—radius of the small
element

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 5 of 19  198

3.2 � Radius field smoothing process

In the above-computed radius field, the radii size at neigh-
boring nodes varies a lot because the plate has an unstruc-
tured mesh. As it is shown in Geiser (2017), the Vertex
Morphing generates a gap in the shape update on the bor-
der between two different radii. The proposed solution is to

have a smooth transition in space from one radius size to
another. The adaptive Vertex Morphing method smoothens
the computed radius field from eq. 7 so that the radii at the
neighboring nodes have similar radii (smooth transition). In
this work, an adaptive Vertex Morphing mapping operator
A with linear kernel function and local radius size has been
applied to smooth the radius field, Algorithm 1.

In the smoothing process, it is required to do multiple
filtering iterations because the initial radius field is discrete.
The number of smoothing iterations can vary for different
examples. Figure 2 compares the raw and smoothed radii
for different Niter numbers. The results can be summarized
as follows:

1.	 In case Niter = 0 , there is no smoothing of the radius
field, Fig. 2a, b;

2.	 In case Niter = 1 , the radius field is non-smooth in the
region with higher radius values, Fig. 2c;

3.	 In case Niter = [2, 10] , the radius field is smooth. If the
Niter number increases, the high radius values diffuse
into the regions with low radius values, Fig. 2d, e;

4.	 In case Niter = 100 , the radius field has very small
changes in the values [0.54, 0.6], almost a constant field,
Fig. 2f. If Niter → inf , the radius fields converges to a
constant field.

3.3 � Local and global radius control

In the initial and adaptive Vertex Morphing methods, the
filtering radius size is considered as an additional design
parameter that strongly affects the final shape. Minimal
required radii computed by the adaptive Vertex Morphing
method are not always the best choice. Due to manufactur-
ing limitations, weak performance, or unaesthetic design,
one may need to change the radius size to find a new design
in the next optimization process. The adaptive Vertex

Morphing technique allows setting a global or local mini-
mum radius. Hence, equation 7 is modified as follows:

where the rmin,k is a given minimal radius for a node k. Fig-
ure 3 shows how the “minimum radius” ( rmin,k = 0.3 ) modi-
fies the resulting radius field.

The modification in equation (8) extends the design fea-
tures of the adaptive Vertex Morphing method. On one side,
the adaptive Vertex Morphing method is straightforward to
use, and on the other side, it is very powerful and flexible
parameterization. The workflow with adaptive Vertex Mor-
phing parameterization with a new unknown model is as
follows:

1.	 Run the first cycle of the optimization using only the
computed radius field without any additional input for
the filter radius.

2.	 Based on the outcoming results from the first run, adjust
the sizes of the filtering radius in the regions where the
final shape modes are not suitable or lead to bad per-
forming design.

The adaptive Vertex Morphing method increases the mesh
dependency of the parameterization because if the finite ele-
ment model is discretized with a new mesh, the minimum
required radii will also change (see eq. 7). If the optimization
problem is convex, the final shape will always converge to
an unique solution, independent of the filter radius constant

(8)rk = max(C ⋅max
j
(dj), rmin,k),

	 I. Antonau et al.

1 3

 198   Page 6 of 19

or variable sizes. In contrast, if the optimization problem
is non-convex, the choice of the filter radius will guide the
optimizer to the different local optima; hence, the adaptive
Vertex Morphing method may find different local minima
for different discretizations. The interested reader is referred
to Firl et al. (2012), Hojjat et al. (2014) to peruse mesh-
independency in FE-based parameterizations.

3.4 � Simple 3D plate example

The 3D plate example is prepared to demonstrate the influ-
ence of the computed radius field on the design surface’s
quality. The discrete sensitivity field has been computed and
used as a sensitivity field on the plate geometry (Fig. 1). 10
optimization iterations of the steepest descent algorithm with

constant step size have been applied to find the deformed
plate. The sensitivity field is defined as follows:

where ni and Ai are the nodal normal and area, respectively.
The steepest descent shape update is computed as follows:

where A is an adaptive Vertex Morphing filtering matrix,
which is computed using the smoothed radius field.

In Figs. 4 and 5, the deformed plate is shown with
respect to different values of C and Niter . If Niter = [0, 1] ,
the radius field is non-smooth and the deformed plate has

(9)∇f (xi) = niAi,

(10)�x = A

(
�

||s| | s
)
,

Fig. 2   Radius field comparison
with respect to N

iter
 smoothing

iterations

(a) Raw radius field (b) Smoothed radius field,Niter = 0

(c) Smoothed radius field,Niter = 1 (d) Smoothed radius field, Niter = 2

(e) Smoothed radius field, Niter = 10 (f) Smoothed radius field, Niter = 100

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 7 of 19  198

rough surface with kinks. In contrast, if Niter ≥ 2 , the radius
field is smooth, and the deformed plate has a smooth sur-
face. These results correlate with the statements from Geiser
(2017). Similarly, if C < 4 , the filter radius size covers only
a few elements; hence the adaptive Vertex Morphing does
not compute smooth shape change.

4 � Quasi‑Newton relaxed gradient projection
method

This section introduces the Quasi-Newton Barzilai–Borwein
and Quasi-Newton relaxed gradient projection methods and
max-value aggregation techniques.

4.1 � Relaxed gradient projection method

The relaxed gradient projection method (RGP method) is a
modification of a well-known Rosen’s gradient projection

method (Rosen 1960, 1961). The main idea of the RGP
algorithm is to use information regarding the values of the
constraints from previous optimization iterations to compute
a buffer (critical) zone around the constraint boundary and
keep the constraint active if the value is inside the buffer
zone. For convenience, the basic formulas are presented
below. For more details, the reader should refer to Antonau
et al. (2021).

The buffer coefficient �(i)
j

 can be computed based on the
constraint value gj(x(i)) and the buffer size BS(i)

j
:

or for equality constraints ( hj(xi) = 0):

(11)
�
(i)

j
=

gj(x(i)) − LBV
(i)

j

BS
(i)

j

LBV
(i)

j
= CBV

(i)

j
− BS

(i)

j

Fig. 3   Comparison of radius
fields: left—original, right—
with minimum required radius,
( r

min,k = 0.3,N
iter

= 10,C = 7)

(a) Raw radius field

(b) Smoothed radius field

	 I. Antonau et al.

1 3

 198   Page 8 of 19

Fig. 4   Deformed plate with
respect to different N

iter
 num-

bers

Fig. 5   Deformed plate with
respect to different C constant

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 9 of 19  198

where LBV (i)
j

 (“lower buffer value”) is a lower boundary of
the buffer zone, BS(i)

j
 (“buffer size”) is a size of the buffer

zone, CBV (i)
j

 (“central buffer value”) is a value of buffer
zone’s center, and LVj is a constraint limit value. The buffer
size BS is based on constraints values from previous
iterations:

where BSF(i) can be adjusted by the buffer adaptation func-
tions (Antonau et al. 2021). The buffer coefficient can be
separated into two components: “relaxation” and “correc-
tion” coefficient. The first part, “relaxation,” is calculated
as follows:

If the constraint is equality, the relaxation coefficient is
always equal to one, �r,(i)

j
= 1.0 . The second component,

“correction,” �c,(i)
j

 is

where the factor BSF(0) = 2 is the initial buffer size factor,
and �max is the maximum correction coefficient. If the prob-
lem starts from an infeasible domain, the correction coef-
ficient can be very high and may cause numerical issues.
The �max = 2 limits the correction coefficient to the values
inside the buffer zone and works in most cases. The search
direction can be defined as follows:

The last equation scales the search direction using the max
norm and can be skipped if the line search method works
with an unscaled search direction. However, max scaling
is required in the practical optimization application, where
the shape can be changed by a certain amount (constant or
limited).

(12)�
(i)

j
= 1 +

abs[gj(x(i)) − LVj]

BS
(i)

j

,

(13)
BS

(i)

j
= BSF(i)

⋅max
k

(�gj(x
(k)))

�g
(i)

j
= abs(gj(x

(i)) − gj(x
(i−1)))

,

(14)𝜔
r,(i)

j
=

{
𝜔
(i)

j
, if 𝜔

(i)

j
≤ 1.0

1, if 𝜔
(i)

j
> 1.0

(15)𝜔
c,(i)

j
=

⎧
⎪⎨⎪⎩

BSF(0)(𝜔
(i)

j
− 1), if 1.0 < 𝜔

(i)

j
< 𝜔max

0, if 𝜔
(i)

j
≤ 1.0

BSF(0)(𝜔max − 1), if 𝜔
(i)

j
≥ 𝜔max

,

(16)

p(i) = −[I − N�r,(i)(NTN)−1NT]∇f (i)

ŝ(i) = p(i) − N�c,(i)

s(i) =
ŝ(i)

||ŝ(i)||max

4.2 � Barzilai–Borwein method

The Barzilai–Borwein method (BB method) suggests a step
size approximation using current and previous sensitivity
information. The Barzilai–Borwein method computes a new
step size as follows:

or

where y(i) = ∇f (x(i−1)) − ∇f (x(i)) is a change in the sensitivi-
ties of the objective function and d(i−1) = x(i) − x(i−1) is the
previous update of the design variables. Therefore, if s(i) is a
search direction at iteration i, the design update is

A modification to the original Barzilai–Borwein method is
introduced in this work, the Quasi-Newton Barzilai–Bor-
wein method (QN–BB). The main idea of our modification
is to compute the step size for each design variable instead of
one step size for the full search direction vector. The design
update can be found as follows:

where s(i) is a search direction computed by the relaxed gra-
dient projection method at iteration i and �(i)

k,max
 is a maxi-

mum allowed step size at node k. If s(i) is normalized by
equation (16), �(i)

k,max
= r

(i)

k
∕5.

4.3 � Quasi‑Newton relaxed gradient projection
method

The Quasi-Newton relaxed gradient projection method com-
bines the Quasi-Newton Barzilai–Borwein method and the
relaxed gradient projection method. Linear approximation of
the constraints is used to improve the constraint handling.
In Fig. 6, the Quasi-Newton relaxed gradient projection
method is shown. The QN–BB–RGP method is performed
as follows:

(17)�(i) =
y(i),Td(i−1)

y(i),Ty(i)

(18)�(i) =
d(i−1),Td(i−1)

d(i−1),Ty(i)
,

(19)�x(i) = �(i)
⋅ s(i)

(20)H(i) = [�
(i)

k
]

(21)�
(i)

k
= min

(
abs

[
y
(i),T

k
d
(i−1)

k

y
(i),T

k
y
(i)

k

]
, �

(i)

k,max

)

(22)�x(i) = H(i)
⋅ s(i) ,

	 I. Antonau et al.

1 3

 198   Page 10 of 19

1.	 Compute response values at the current design state:
f (x(i)) , g(x(i));

2.	 Compute gradients of the objective function and active
constraints: ∇f (x(i)) , ∇g(x(i));

3.	 Find shape update �x(i) :

(a)	 Compute search direction s(i) , eq. (16);
(b)	 Compute shape update �x(i) , eq. (20);
(c)	 Compute linear approximation to response func-

tion for the computed shape update: g̃(x(i+1)) ,
h̃(x(i+1));

(d)	 If g̃(x(i+1)) <= 0 and h̃(x(i+1)) = 0 , then the feasi-
ble shape update is found. The inner loop is con-
verged;

(e)	 If g̃(x(i+1)) > 0 and h̃(x(i+1))! = 0 , then the feasible
shape update is not found. Update the buffer coef-
ficients �(i)

j
+ = 0.02 and repeat the inner loop

process;

4.	 Save current �x(i) , s(i);
5.	 Check if the optimization algorithm has converged. If

not, go to Step 1.

The constant to increase the �(i)
j

 is based on the numerical
experiments, and it shows a good compromise between accu-
racy and cost. It has no effect on �(i+1)

j
.

4.4 � Maximum‑value constraint aggregation
technique

The RGP and QN–BB–RGP methods compute the buffer
coefficient based on the constraint value and buffer size
using equation (11). For the nodal constraints, the buffer
coefficients are computed for each node. For constraint
gj(x

(i)
k
) of node k at the optimization iteration i, the buffer

coefficient is computed as follows:

If ∇gj(x
(i)

k
) is a gradient vector of the constraint for node k,

the aggregated constraint can be formulated as follows:

Linear approximation to a constraint function at the new
design point x(i+1)

k
 is

If the approximated value g̃(x(i+1)
k

) > 0 , the QN–BB–RGP
method increases the w(i)

j,k
 to modify the computed search

direction s(i) , equation (16).

(23)w
(i)

j,k
=

gj(x
(i)

k
) − LBV

(i)

j

BS
(i)

j

(24)

gj(x
(i)) = max

k
(gj(x

(i)

k
))

∇g(x(i)) =
∑
k

w
(i)

j,k
⋅ ∇gj(x

(i)

k
)

w
(i)

j
= max

k
(w

(i)

j,k
)

.

(25)g̃(x
(i+1)

k
) = g(x

(i)

k
) + ∇gj(x

(i)

k
𝛥x(i)).

Fig. 6   Flowchart of the Quasi-Newton relaxed gradient projection method

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 11 of 19  198

5 � Academic experiment

This numerical investigation is designed to illustrate
the applicability of the methods above in a highly non-
linear shape optimization problem. Reynolds-averaged
Navier–Stokes (RANS) equations are used to solve for flow
variables in the fluid domain utilizing the k − � − sst two-
equation turbulence model. The reader is referred to War-
nakulasuriya (2021) for more information on the specific
implementations of the two-equations turbulence model in
a Finite Element (FE) context.

5.1 � Experimental set‑up

The fluid domain 𝛺 = (−24.5D, 24.5D) × (−16D, 16D) ⊂ R2
chosen after a domain size study is illustrated in Fig. 7,
where D = 0.1m . The inlet (i.e., �inlet ) is applied with a
constant velocity (i.e., uinlet ), and turbulence quantities
are determined using a turbulence intensity of 5% and a
turbulent mixing length of 45D. The Reynolds number is
Re = 10e5 . The outlet (i.e., �outlet ) is applied with a 0Pa
Dirichlet boundary condition for P, zero gradient boundary
conditions for variables u, k, �,� . The slip condition (i.e.,
�far ) is applied on the top and bottom slip boundary for
variable u, and all other variables are applied with a zero
gradient boundary condition. Linear-log law wall functions
developed by Launder and Spalding (1983) are used on the
aerofoil boundary (i.e., �s ) to accommodate a wide range of

meshes with y+ ∈ [0, 300] in the first element near the wall
boundary.

Figure 8 illustrates the overall mesh (refer to Fig. 8a)
and enlarged view of the same mesh near the initial aero-
foil geometry (refer fig. 8b) consisting of 20, 183 triangle
elements.

5.2 � Optimization procedure

Drag and lift forces are the interested scalar QOI in this
numerical experiment because the aerofoil’s usefulness
depends on having maximum lift with minimum drag force.
Equation (26) describes the optimization problem of interest.

where Jlift
(
w(sinitial), sinitial

)
= 0.89 in all experiments.

Gcentroid is computed by averaging all nodal coordinates
along the aerofoil boundary as illustrated in equation (27)
where N represents the number of nodes in �s . It is applied
to constrain aerofoil geometry to be present at the center of
� for all design iterations. AVM is used to smooth the noisy
sensitivity field on the aerofoil boundary, and QN–BB–RGP

(26)

min
s

Jdrag(w(s), s)

subjected to

R� = 0 ∀� ∈ {u, v,w, p, k,�}

Gcentroid(s) = 0

Jlift(w(s), s) − Jlift
(
w(sinitial), sinitial

) ≥ 0.0

,

Fig. 7   Aerofoil problem con-
figuration used in RANS in 2D

Fig. 8   Initial mesh for a 2D
aerofoil optimization problem

	 I. Antonau et al.

1 3

 198   Page 12 of 19

is used to obtain the next aerofoil boundary for the optimiza-
tion problem

where x�center
 is the center of �.

5.3 � Results

The results of the academic experiment are presented here-
after. The academic experiment is carried out with adaptive
Vertex Morphing (AVM) and different radius set-ups: adap-
tive radius ( C = 7 ), 20mm and 50mm . The QN–BB–RGP
algorithm is used in all experiments to solve the optimization
problems. The focus of this experiment is to show the impor-
tance of the filtering radius. All experiments have done 500
optimization iterations without further convergence criteria.

Figure 9 illustrates drag force variation with each design
iteration. The experiment with constant Vertex Morphing
radii of 50mm shows oscillations and does not depict an
overall improvement in the drag force reduction. How-
ever, the experiments with adaptive and 20mm radii show
improvement over the design iterations where 20mm radius
set-up finds the best performing design.

Geometric constraint variations with respect to optimi-
zation iterations are illustrated in Fig. 10. It depicts that all
the proposed designs satisfy the geometric constraint, which
enforces keeping the aerofoil design in the center of the fluid
domain.

However, the lift constraint as depicted in Fig. 11 shows
oscillating behavior, thus with constraint violations. The
QN–BB–RGP method cannot precisely predict the constraint
value of the non-linear constraints such as lift by using a
linear approximation. However, the QN–BB–RGP can cor-
rect the violated constraint values in all experiments. Hence,

(27)Gcentroid =

‖‖‖‖‖‖
1

N

N∑
i=1

(xcurrent,i − x�center
)

‖‖‖‖‖‖

2

2

,

there are improved feasible designs during the optimization
process. Table 1 summarizes the results of the experiments
and shows the performance of the last and the best-feasible
designs. Table 2 summarizes the computational time.

To further investigate the final design from each experi-
ment, Fig. 12 illustrates the velocity and pressure distribu-
tions of the optimized designs. It can be observed that the
experiments with adaptive and constant Vertex Morphing
radii of 20mm try to reduce the frontal area to reduce
drag force acting upon the aerofoil. The optimized design
obtained by the experiment with radii of 50mm does not
significantly reduce the frontal area, and it is due to restrict-
ing sensitivity information by having higher constant Vertex
Morphing radii. In all experiments, the final designs have
smooth boundaries. In the case of adaptive radius, the final
design has smaller local changes on the lower surface and
the trailing edge, see Fig. 12.

Figure 13 illustrates the effect of the filtering radii on the
generated shape update. At iteration 1, in all experiments,

Fig. 9   Drag force variation with optimization design iterations

Fig. 10   Geometric constraint variation with optimization design iter-
ations

Fig. 11   Lift constraint variation with optimization design iterations

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 13 of 19  198

the raw drag sensitivities are identical, as well as the steepest
descent step ( �x(1) = −�(1) ⋅ ∇f (1) ). It can be observed that
the radius of 20mm smoothens the non-accurate sensitivity
on the trailing edge (flow separation point) better than a
smaller (adaptive) radius ( 7mm at the point). Therefore, the
large filter helps to reduce the local error of the sensitivities
and generates shape update changes that modify the aerofoil
profile more “globally.” As a result, the optimizer finds a
better-performing design with a 20mm radius. In contrast,

Table 1   Optimization results
of the aerofoil, in red—best-
feasible designs

Radius setting Drag force Improvement [%] Lift force Violation [%] Iteration

Adaptive radius 2.007 −31.1% +0.964 +8.31% 500
Radius 20mm 1.407 −51.87% 0.849 −4.61% 500
Radius 20mm 1.416 −51.55% 0.894 +0.45% 491
Radius 50mm 3.09 +6.16% 0.726 −18.43% 500
Radius 50mm 2.809 −3.53% 0.982 +10.34% 176

Table 2   Computation time

Computation time
Aver. primal analysis 792.6 s
Aver adjoint analysis per response 30.3 s
Aver. time per optimization iteration 827 s
Aver. time to find �x 4.1 s
Overall optimization time 413526 s
CPU hours 1380

Fig. 12   Optimized aerofoil
design, on left—velocity [ms−1]
and on right—pressure [Pa]
distributions

	 I. Antonau et al.

1 3

 198   Page 14 of 19

the optimizer finds a weak design with a radius of 50mm due
to high filtering error. As it is discussed in Firl et al. (2012),
the filtering intensity is always a compromise between filter-
ing error and smoothing of sensitivity error.

6 � Large industrial example

An industrial CFD optimization problem is solved to demon-
strate the full potential and flexibility of the adaptive Vertex
Morphing technique and the robustness of the QN–BB–RGP
algorithm. The goal of the optimization is to reduce the drag
force of the BMW M4 GT4 car, while the downforce has to
be equal to or larger than an initial value. The example has
been prepared in cooperation with BMW Group, Motorsport
division. All methods above are implemented in the optimi-
zation framework “ShapeModule” (BMW Group). Siemens
STAR-CCM+TM software (Version 2020.2) is used to do
primal and sensitivity analysis of the numerical model.

6.1 � Problem description

Table 3 summarizes the properties of the CFD model/analy-
sis, optimization problem, and parameterization. All geo-
metrical constraints are aggregated into one, as shown in
Section 4.4. The details of the turbulence models, solvers,

Fig. 13   Drag sensitivities and
shape updates at the wing’s tip,
iteration 1

Table 3   Optimization problem description

Primal & Adjoint Analysis
Time integration Steady
Turbulence model K-Omega SST (Menter)
Adjoint Model Adjoint Frozen Turbulence
Mesh & Domain
Domain size 80 × 40 × 30 [m]
Number of cells 114,681,935
Smallest element size 4 [mm]
Element type hex dominant
Optimization Problem
Design variables position of the surface nodes:

[x, y, z]
Number of design Variables 1,950,141
Objective function drag force
Physical constraint type downforce
Number of physical constraints 1
Geometrical constraint type max shape update at node
Number of geometrical constraints 115,830
Parameterization
Part’s name Radius size [mm]
Overall Design Surface 30
Rear wing 50
Trunk lid 200

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 15 of 19  198

and adjoint analysis can be found in the documentation of
the Siemens STAR-CCM+TM.

Figure 14 shows the CFD model of the full car, where
the design surface is highlighted in blue. The car’s exterior
surface is chosen as a design surface: front flaps, front split-
ter, and rear wing. All these features have different physical
and mesh sizes. Hence, they require different radius sizes.
Figure 15 shows the radius field over the design surface and
Table 3 gives the radius sizes.

The CFD model is highly detailed, and it contains a lot
of non-design parts on the exterior surface and inside the
car as well. For instance, non-design parts are the door han-
dles, radiator, mirrors, lights, engine, suspension, gearbox,
etc. Therefore, the geometrical constraints are needed to
avoid the penetration between design and non-design parts.
Figure 16 shows the design surface, where the geometrical
constraints are applied.

6.2 � Results and discussions

The QN–BB–RGP method solves this problem successfully
without any parameter tuning of the optimization algorithm.
It is an important point because finding suitable parameters
is a very expensive and time-consuming process. The simu-
lation is run on a 12-node HPC cluster, where each node
has 2 x AMD 24-Core EPYC 7402 with 252 GB RAM. In
total, simulation takes 210 hours or 120960 CPUh. Figure 17
shows the response values change during the optimization
process. The optimization process is stopped by a maximum
number of iterations due to the time limit. From the results
given in Table 4, the most consuming operation is primal
and adjoint CFD analysis. Finding the search direction takes
around 1 hour, which is less than other operations: mesh
motion, file saving, etc. One inner iteration takes approxi-
mately 3 min, where computing the search direction takes

Fig. 14   Geometry of the CFD
model: design surface—blue,
non-design parts—light gray

Fig. 15   Radius field over the
design surface

Fig. 16   Geometrical constraint:
constrained zone—red, free
design surface—blue, non-
design parts—light gray

	 I. Antonau et al.

1 3

 198   Page 16 of 19

around 0.2 s, the shape update – 4.3 s, and mapping the
shape update takes the rest. Figure 17e shows the number
of iterations required to converge the inner loop. The most
needed number of iterations is at optimization iterations 3
when the geometric constraint gets active.

Figure 17b shows that the lift constraint is not active at
the final design. However, if the downforce constraint is not
included, the optimizer chooses another local optimum and
dramatically reduces the downforce. Figure 17c shows the
performance of the optimization algorithm to hold the geo-
metric constraint. As described in Section 4.3 and 4.4, the
geometric constraints are aggregated and accurately handled
during optimization. The design stays just in 0.04 mm dis-
tance from the limit value (limit value: 5 mm, max design
value: 4.96 mm), while the design update in the whole model
is up to 10 mm (see Fig. 19d).

The optimization results are shown in Figs. 18 and 19.
One can see that the most shape changes happened on the
rear wing, trunk lid, front flaps, and front splitter. The mid-
dle section of the rear wing, trunk lid, and frontal flaps has
been deformed to generate less drag. In contrast, side sec-
tions of the rear wing and front splitter generate more lift,

Fig. 17   Optimization results:
response function evaluations &
size of shape updates

Table 4   Computation time [hour]

Computation time [hour]
Aver. primal analysis 10
Aver adjoint analysis per response 2.5
Aver. time per optimization iteration 14.95
Aver. time to find �x 0.85
Other operations 1.6
Overall optimization time 210
CPU hours 120960

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 17 of 19  198

this explains why our final design has improved both aero-
dynamic characteristics. Suppose the design surface is not
so large and includes only the rear wing and front splitter,
in that case, the final results will not be so impressive, just
4% drag reduction (the results have been shown at ISSMO-
14th World Congress of Structural and Multidisciplinary
Optimization, “Quasi-Newton Relaxed Gradient Projection
method in large constrained node-based shape optimization
problems”).

In Figure 19d, one can see the difference on the final
shape update with different radii. The rear wing has a radius
of 5 mm, while the trunk lid is – 20 mm. The final shape of
the trunk lid is very smooth, and the wavelength of shape
change is large. In contrast, the shape change of the rear
wing is locally detailed, but it is smooth. Due to manufac-
turing limitations or unaesthetic design, one can change the
radii to find a new design in the next optimization process.

7 � Conclusions

Adaptive Vertex Morphing extends Vertex Morphing
parameterization to solve large-scale optimization problems
with local control on the final shape. It allows reasonable
control of the final form and finds various solutions. The
QN–BB–RGP method shows good potential as an accelera-
tion and stabilization technique for gradient descent methods
with many design variables and expensive response func-
tions. The proposed QN–BB–RGP method, in combination
with the maximum value aggregation technique, solves large
optimization problems with a huge amount of geometric
constraints. Linear approximation is not accurate for highly
non-linear constraints, but still, the method can handle such
constraints and find feasible solutions. In future work, modi-
fications of the Barzilai–Borwein method can be studied to
improve the QN–BB method, and adaptive Vertex Morphing
can be extended to solve multi-disciplinary optimization
problems with non-matching meshes.

Acknowledgements  The authors wish to thank the ShapeModule pro-
ject (BMW Group, München) for the support. Thanks are also due to
Mr. Vignesh Manickavasagam Manian (BMW Group) for technical
support. The authors acknowledge the support of colleagues Dr.-Ing.
Reza Najian Asl and Mr. Armin Geiser for their valuable insights.

Fig. 18   Optimization results: shape change on top & bottom view

Fig. 19   Optimization results:
optimized design—blue, initial
design—transparent yellow,
non-design parts—light gray

	 I. Antonau et al.

1 3

 198   Page 18 of 19

Funding  Open Access funding enabled and organized by
Projekt DEAL. This paper is partly based on research spon-
sored by the BMW group.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Replication of the results  The proposed methods are implemented in
the optimization framework “ShapeModule” (BMW Group, shape-
module@bmw.de) (no public access) and in the open-source package
Kratos Multiphysics (Dadvand et al. 2010). An interested reader can
try the Vertex Morphing implementation in the shape optimization
application of Kratos Multiphysics software.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Agarwal D, Robinson T, Armstrong C, Kapellos C (2018) Enhancing
cad-based shape optimisation by automatically updating the cad
model’s parameterisation. Struct Multidisc Optim 59:11. https://​
doi.​org/​10.​1007/​s00158-​018-​2152-7

Ahookhosh M, Ghaderi S (2017) On efficiency of nonmonotone arm-
ijo-type line searches. Appl Math Model 43:170–190. https://​doi.​
org/​10.​1016/j.​apm.​2016.​10.​055

Antonau I, Hojjat M, Bletzinger K-U (2021) Relaxed gradient projec-
tion algorithm for constrained node-based shape optimization.
Struct Multidisc Optim 64(4):1633–1651, 04 . https://​doi.​org/​10.​
1007/​s00158-​020-​02821-y

Barzilai J, Borwein J. M (1988) Two-point step size gradient methods.
IMA J Numer Anal 8(1):141–148, 01. ISSN 0272-4979. https://​
doi.​org/​10.​1093/​imanum/​8.1.​141

Baumgärtner D (2020) On the grid-based shape optimization of struc-
tures with internal flow and the feedback of shape changes into
a CAD model. Dissertation, Technische Universität München,
München

Baumgärtner D, Viti A, Dumont A, Carrier G, Bletzinger K-U (2016)
Comparison and combination of experience-based parametriza-
tion with vertex morphing in aerodynamic shape optimization
of a forward-swept wing aircraft 06. https://​doi.​org/​10.​2514/6.​
2016-​3368

Bletzinger K-U (2014) A consistent frame for sensitivity filtering and
the vertex assigned morphing of optimal shape. Struct Multidisc
Optim 49(6):873–895. https://​doi.​org/​10.​1007/​s00158-​013-​1031-5

Bletzinger K.-U (2017) Shape optimization, pp 1–42. ISBN
9781119176817. https://​doi.​org/​10.​1002/​97811​19176​817.​ecm21​
09

Chen L (2021) Gradient descent akin method. Dissertation, Technische
Universität München, München,

Chen L, Bletzinger K-U, Bletzinger A, Wüchner R (2019) A modified
search direction method for inequality constrained optimization
problems using the singular-value decomposition of normalized
response gradients. Struct Multidisc Optim. https://​doi.​org/​10.​
1007/​s00158-​019-​02320-9

Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment
for developing finite element codes for multi-disciplinary applica-
tions. Arch Comput Methods Eng 17(3):253–297. https://​doi.​org/​
10.​1007/​s11831-​010-​9045-2

Dai Y-H, Fletcher R (2005) Projected barzilai-borwein methods for
large-scale box-constrained quadratic programming. Numer Math
100(1):21–47. https://​doi.​org/​10.​1007/​s00211-​004-​0569-y

Ertl F-J (2020) Vertex Morphing for constrained shape optimization
of three-dimensional solid structures. Dissertation, Technische
Universität München, München,

Firl M, Bletzinger K-U (2012) Shape optimization of thin walled struc-
tures governed by geometrically nonlinear mechanics. Comput
Methods Appl Mech Eng 107–117(09):237–240. https://​doi.​org/​
10.​1016/j.​cma.​2012.​05.​016

Firl M, Wüchner R, Bletzinger K-U (2012) Regularization of shape
optimization problems using FE-based parametrization. Struct
Multidisc Optim 47(4):507–521. https://​doi.​org/​10.​1007/​
s00158-​012-​0843-z

L. A. G, Guillaume P (2018) Soft handle triggering: A cad-free param-
eterization tool for adjoint-based optimization methods. https://​
doi.​org/​10.​5281/​ZENODO.​18879​86

Geiser A, Antonau I, Bletzinger K.-U (2021) AGGREGATED FOR-
MULATION OF GEOMETRIC CONSTRAINTS FOR NODE-
BASED SHAPE OPTIMIZATION WITH VERTEX MOR-
PHING. In: 14th International Conference on Evolutionary and
Deterministic Methods for Design, Optimization and Control.
Institute of Structural Analysis and Antiseismic Research National
Technical University of Athens. https://​doi.​org/​10.​7712/​140121.​
7952.​18383

Geiser A B. K.-U, Wüchner R (2017) Variable filter radii for vertex
morphing based design of adaptive structures. In: Proceedings
of the 7th GACM Colloquium on Computational Mechanics for
Young Scientists from Academia and Industry

Ghantasala A, Asl RN, Geiser A, Brodie A, Papoutsis E, Bletz-
inger K-U (2021) Realization of a framework for simulation-
based large-scale shape optimization using vertex morphing. J
Optim Theory Appl 189(1):164–189. https://​doi.​org/​10.​1007/​
s10957-​021-​01826-x

Hojjat M, Stavropoulou E, Bletzinger K.-U (2014) The vertex mor-
phing method for node-based shape optimization. Comput Meth-
ods Appl Mech Eng 268:494–513, 01 https://​doi.​org/​10.​1016/j.​
cma.​2013.​10.​015

Huang Y, Dai Y-H, Liu X-W, Zhang H (2022) On the acceleration of
the barzilai-borwein method. Comput Optim Appl 81(3):717–740.
https://​doi.​org/​10.​1007/​s10589-​022-​00349-z

Jameson A (1988) Aerodynamic design via control theory. J Sci Com-
put 3(3):233–260. https://​doi.​org/​10.​1007/​bf010​61285

Jameson A (1995) Optimum aerodynamic design using CFD and con-
trol theory. In: 12th Computational Fluid Dynamics Conference.
American Institute of Aeronautics and Astronautics . https://​doi.​
org/​10.​2514/6.​1995-​1729

Kröger J, Rung T (2015) CAD-free hydrodynamic optimisation using
consistent kernel-based sensitivity filtering. Ship Technol Res
62(3):111–130. https://​doi.​org/​10.​1080/​09377​255.​2015.​11098​72

Launder B. E, Spalding D. B (1983) The numerical computation of
turbulent flows, pp 96–116, https://​doi.​org/​10.​1016/​B978-0-​08-​
030937-​8.​50016-7

Müller PM, Kühl N, Siebenborn M, Deckelnick K, Hinze M, Rung
T (2021) A novel p-harmonic descent approach applied to fluid

Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 19 of 19  198

dynamic shape optimization. Struct Multidisc Optim 64(6):3489–
3503. https://​doi.​org/​10.​1007/​s00158-​021-​03030-x

Najian Asl R (2019) Shape optimization and sensitivity analysis of
fluids, structures, and their interaction using Vertex Morphing
parametrization. Dissertation, Technische Universität München,
München,

Najian Asl R, Shayegan S, Geiser A, Hojjat M, Bletzinger K.-U (2017)
A consistent formulation for imposing packaging constraints in
shape optimization using vertex morphing parametrization. Struc-
tural and Multidisciplinary Optimization, 56: 1–13, 10 . https://​
doi.​org/​10.​1007/​s00158-​017-​1819-9

Oleg Burdakov N. H, Dai Yu-Hong (2019) Stabilized barzilai-borwein
method. J Comput Math 37(6): 916–936. https://​doi.​org/​10.​4208/​
jcm.​1911-​m2019-​0171

Papoutsis-Kiachagias EM, Giannakoglou KC (2014) Continuous
adjoint methods for turbulent flows, applied to shape and topol-
ogy optimization: Industrial applications. Arch Comput Methods
Eng 23(2):255–299. https://​doi.​org/​10.​1007/​s11831-​014-​9141-9

Pironneau O (1974) On optimum design in fluid mechanics. J Fluid
Mech 64(1):97–110. https://​doi.​org/​10.​1017/​s0022​11207​40020​23

Rosen J (1960) The gradient projection method for nonlinear program-
ming. part i. linear constraints. J Soci Ind Appl Math 8:03. https://​
doi.​org/​10.​1137/​01080​11

Rosen J (1961) The gradient projection method for nonlinear program-
ming: Part ii. Siam J Appl Math 9:01

Stavropoulou E, Hojjat M, Bletzinger K-U (2014) In-plane mesh regu-
larization for node-based shape optimization problems. Comput
Methods Appl Mech Eng 275:39–54. https://​doi.​org/​10.​1016/j.​
cma.​2014.​02.​013

Stück A, Rung T (2011) Adjoint RANS with filtered shape deriva-
tives for hydrodynamic optimisation. Comput Fluids 47(1):22–32.
https://​doi.​org/​10.​1016/j.​compf​luid.​2011.​01.​041

Stück A, Rung T (2013) Adjoint complement to viscous finite-vol-
ume pressure-correction methods. J Comput Phys 248:402–419.
https://​doi.​org/​10.​1016/j.​jcp.​2013.​01.​002

Warnakulasuriya S (2021) Development of Finite Element Based
Sensitivity Analysis and Goal Oriented Mesh Refinement Using
Adjoint Approach for Steady and Transient Flows. Dissertation,
Technische Universität München, München,

Xu S, Jahn W, Mueller J-D (2014) Cad-based shape optimisation with
cfd using a discrete adjoint. Int J Numer Methods Fluids 74:01.
https://​doi.​org/​10.​1002/​fld.​3844

Zhou B, Gao L, Dai Y-H (2006) Gradient methods with adaptive step-
sizes. Comput Optim Appl 35(1):69–86. https://​doi.​org/​10.​1007/​
s10589-​006-​6446-0

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

List of Figures

2.1 Design evolution of the body . 6
2.2 Controlling ellipse shape with different design controls 6
2.3 Control field evolution of the design body 7
2.4 Design velocity v . 8
2.5 Surface optimization problem . 10

3.1 Shape gradients (left) vs design gradients (right) w.r.t. different
filtering radius sizes. 16

3.2 Shape gradients (left) vs shape update and mesh quality (right)
w.r.t. different filtering radius sizes. 17

3.3 Structural FE-model. 19
3.4 Optimized shell structure: AVM (left) and VM, r = 21 mm (right).

Maximum absolute update 4 mm. 20
3.5 Optimized shell structure: AVM (left) and VM, r = 21 mm (right).

Maximum absolute update 12 mm. 21
3.6 Radius field computed by AVM: initial field (left), latest field (right). 22
3.7 Optimized shell structure: AVM and custom radius r = 60 mm

on top. Maximum absolute update 12 mm. 22

4.1 Optimization problem formulation 24
4.2 Comparing the objective values evaluations vs convergence measures 42

5.1 Flow chart of the Quasi-Newton relaxed gradient projection method 49
5.2 Solid Hook, structural optimization benchmark, Geiser et al. [25] 50
5.3 Hook benchmark, comparison of the optimization methods . . . 53
5.4 Optimization results . 54
5.5 Optimization results comparison: RGP (top), BB method with

RGP (middle), QN-BB-RGP (bottom) 55
5.6 Design surface, marked with blue color 55
5.7 Optimization results . 56
5.8 Absolute update, optimization iteration 10. Left – RGP, middle –

BB-RGP, right – QN-BB-RGP 57

6.1 Additive manufacturing process, Laser Powder Bed Fusion (LPBF).
Source: [Successful industrialization and digitalization of additive
manufacturing, https://www.press.bmwgroup.com] 60

120 List of Figures

6.2 Process to adjust the position of packaging geometries, compute
gain in stackability and packaging gradients 62

6.3 Stackabilization process (pack. geo. – packaging geometry) . . . 63
6.4 Nodal packaging constraint. Feasible nodes are highlighted in blue,

infeasible – red . 64
6.5 Process to determine if a node is self-supported 64
6.6 Self-support constraint, critical angle criteria. Infeasible node is

highlighted in red . 65
6.7 Infeasible elements (red color) with respect to critical angle: αcrit =

10◦, 30◦, 45◦ (from left to right) 66
6.8 Support-node search strategies 67
6.9 Self-support constraint . 69
6.10 Corner modification for overhang-free geometry: left – shape up-

date based on response gradients, right – overhang-free corner
(blue) and an initial geometry (transparent gray) 69

6.11 Geometry of fixture for soft-top attachment. a) real part, photo
via BMW Group; b) Numerical model: red – design parts, blue –
non-design parts . 70

6.12 Stackabilization improvement through optimization iterations . . 71
6.13 Final shape of the geometry. Blue –– main geometry, orange

–– packaging geometries, gray –– initial position and shape of
packaging geometries . 72

6.14 Reduction of the overhang response value during optimization . . 72
6.15 Overhang-free geometry. Transparent blue is the initial shape, and

gray – final shape . 73
6.16 Optimization results . 73
6.17 Stackable and overhang-free geometry. Right: Blue –– main ge-

ometry, orange –– packaging geometries; left: transparent gray is
initial shape, blue – final shape 74

7.1 3D printed parts with improved stackability. Photo via BMW Group 78

120

List of Tables

5.1 Raydan Function resutls . 46
5.2 Rosenbrock function resutls . 47
5.3 Raydan Function resutls . 48
5.4 Rosenbrock function results . 48
5.5 Hook benchmark results . 51

Bibliography

[1] M. Ahookhosh and S. Ghaderi. “On efficiency of nonmonotone
Armijo-type line searches”. In: Applied Mathematical Modelling 43
(Mar. 2017), pp. 170–190. doi: 10.1016/j.apm.2016.10.055.

[2] G. Allaire, F. Jouve, and G. Michailidis. “Thickness control in
structural optimization via a level set method”. In: Structural and
Multidisciplinary Optimization 53.6 (Apr. 2016), pp. 1349–1382. doi:
10.1007/s00158-016-1453-y.

[3] I. Antonau, M. Hojjat, and K.-U. Bletzinger. “Relaxed gradient
projection algorithm for constrained node-based shape optimization”.
In: Structural and Multidisciplinary Optimization 64.4 (Apr. 2021),
pp. 1633–1651. doi: 10.1007/s00158-020-02821-y.

[4] R. Bartz, T. Franke, S. Fiebig, and T. Vietor. “Density-based shape
optimization of 3D structures with mean curvature constraints”. In:
Structural and Multidisciplinary Optimization 65.1 (Dec. 2021). doi:
10.1007/s00158-021-03089-6.

[5] J. Barzilai and J. M. Borwein. “Two-Point Step Size Gradient
Methods”. In: IMA Journal of Numerical Analysis 8.1 (Jan. 1988),
pp. 141–148. doi: 10.1093/imanum/8.1.141. eprint:
http://oup.prod.sis.lan/imajna/article-
pdf/8/1/141/2402762/8-1-141.pdf.

[6] D. Baumgärtner. “On the grid-based shape optimization of structures
with internal flow and the feedback of shape changes into a CAD
model”. Dissertation. München: Technische Universität München,
2020.

[7] D. Baumgärtner, A. Viti, A. Dumont, G. Carrier, and K.-U. Bletzinger.
“Comparison and combination of experience-based parametrization
with Vertex Morphing in aerodynamic shape optimization of a
forward-swept wing aircraft”. In: June 2016. doi:
10.2514/6.2016-3368.

[8] K.-U. Bletzinger. “A consistent frame for sensitivity filtering and the
vertex assigned morphing of optimal shape”. In: Structural and
Multidisciplinary Optimization 49.6 (Jan. 2014), pp. 873–895. doi:
10.1007/s00158-013-1031-5.

124 Bibliography

[9] K.-U. Bletzinger. “Shape Optimization”. In: Encyclopedia of
Computational Mechanics Second Edition. 2017, pp. 1–42. isbn:
9781119176817. doi: 10.1002/9781119176817.ecm2109.

[10] B. J. Brelje, J. L. Anibal, A. Yildirim, C. A. Mader, and
J. R. R. A. Martins. “Flexible Formulation of Spatial Integration
Constraints in Aerodynamic Shape Optimization”. In: AIAA Journal
58.6 (June 2020), pp. 2571–2580. doi: 10.2514/1.j058366.

[11] C. G. Broyden. “The Convergence of a Class of Double-rank
Minimization Algorithms 1. General Considerations”. In: IMA Journal
of Applied Mathematics 6.1 (1970), pp. 76–90. doi:
10.1093/imamat/6.1.76.

[12] A. Cauchy. “Méthode générale pour la résolution des systéms
d’équations simultanées”. In: Comp. Rend. Sci. Paris 25 (1847),
pp. 536–538.

[13] L. Chen. “Gradient descent akin method”. Dissertation. München:
Technische Universität München, 2021.

[14] P. Dadvand, R. Rossi, and E. Oñate. “An Object-oriented Environment
for Developing Finite Element Codes for Multi-disciplinary
Applications”. In: Archives of Computational Methods in Engineering
17.3 (July 2010), pp. 253–297. doi: 10.1007/s11831-010-9045-2.

[15] Y.-H. Dai and R. Fletcher. “Projected Barzilai-Borwein methods for
large-scale box-constrained quadratic programming”. In: Numerische
Mathematik 100.1 (Feb. 2005), pp. 21–47. doi:
10.1007/s00211-004-0569-y.

[16] M. G. Damigos, E. M. Papoutsis-Kiachagias, and K. C. Giannakoglou.
“Adjoint variable-based shape optimization with bounding surface
constraints”. In: International Journal for Numerical Methods in
Fluids 93.3 (Sept. 2020), pp. 590–609. doi: 10.1002/fld.4900.

[17] F.-J. Ertl. “Vertex Morphing for constrained shape optimization of
three-dimensional solid structures”. Dissertation. München: Technische
Universität München, 2020.

[18] V. M. Ferrándiz et al. KratosMultiphysics/Kratos: Release 9.2. en.
2022. doi: 10.5281/ZENODO.3234644.

[19] M. Firl, R. Wüchner, and K.-U. Bletzinger. “Regularization of shape
optimization problems using FE-based parametrization”. In: Structural
and Multidisciplinary Optimization 47.4 (Sept. 2012), pp. 507–521.
doi: 10.1007/s00158-012-0843-z.

[20] R. Fletcher. “General Linearly Constrained Optimization”. In:
Practical Methods of Optimization. John Wiley & Sons, Ltd, 2013.
Chap. 11, pp. 259–276. isbn: 9781118723203. doi:
10.1002/9781118723203.ch11.

[21] R. Fletcher. “A new approach to variable metric algorithms”. In: The
Computer Journal 13.3 (Mar. 1970), pp. 317–322. doi:
10.1093/comjnl/13.3.317.

124

Bibliography 125

[22] R. Fletcher and C. M. Reeves. “Function minimization by conjugate
gradients”. In: Comput. J. 7 (1964), pp. 149–154.

[23] R. Fletcher. “On the Barzilai-Borwein Method”. In: Optimization and
Control with Applications. Ed. by L. Qi, K. Teo, and X. Yang. Boston,
MA: Springer US, 2005, pp. 235–256. isbn: 978-0-387-24255-2.

[24] A. Garaigordobil, R. Ansola, J. Santamarıéa, and I. F. de Bustos. “A
new overhang constraint for topology optimization of self-supporting
structures in additive manufacturing”. In: Structural and
Multidisciplinary Optimization 58.5 (May 2018), pp. 2003–2017. doi:
10.1007/s00158-018-2010-7.

[25] A. Geiser, I. Antonau, and K.-U. Bletzinger. “AGGREGATED
FORMULATION OF GEOMETRIC CONSTRAINTS FOR
NODE-BASED SHAPE OPTIMIZATION WITH VERTEX
MORPHING”. In: 14th International Conference on Evolutionary and
Deterministic Methods for Design, Optimization and Control. Institute
of Structural Analysis and Antiseismic Research National Technical
University of Athens, 2021. doi: 10.7712/140121.7952.18383.

[26] B. K.-U. Geiser A. Wüchner R. “Variable filter radii for Vertex
Morphing based design of adaptive structures”. In: Proceedings of the
7th GACM Colloquium on Computational Mechanics for Young
Scientists from Academia and Industry. 2017.

[27] A. Ghantasala, R. N. Asl, A. Geiser, A. Brodie, E. Papoutsis, and
K.-U. Bletzinger. “Realization of a Framework for Simulation-Based
Large-Scale Shape Optimization Using Vertex Morphing”. In: Journal
of Optimization Theory and Applications 189.1 (Mar. 2021),
pp. 164–189. doi: 10.1007/s10957-021-01826-x.

[28] A. Ghantasala, J. Diller, A. Geiser, D. Wenzler, D. Siebert,
C. Radlbeck, R. Wüchner, M. Mensinger, and K.-U. Bletzinger.
“Node-Based Shape Optimization and Mechanical Test Validation of
Complex Metal Components and Support Structures, Manufactured by
Laser Powder Bed Fusion”. In: July 2021, pp. 10–17. isbn:
978-3-030-80461-9. doi: 10.1007/978-3-030-80462-6{_}2.

[29] D. Goldfarb. “A family of variable-metric methods derived by
variational means”. In: Mathematics of Computation 24.109 (1970),
pp. 23–26. doi: 10.1090/s0025-5718-1970-0258249-6.

[30] G. H. Golub and C. F. V. Loan. Matrix Computations. 3rd Edition.
The Johns Hopkins Press, Baltimore, 1996.

[31] L. Grippo, F. Lampariello, and S. Lucidi. “A Nonmonotone Line
Search Technique for Newton’s Method”. In: SIAM Journal on
Numerical Analysis 23.4 (2022/11/10/ 1986), pp. 707–716.

[32] M. Hojjat. “Node-based parametrization for shape optimal design”.
Dissertation. Technische Universität München, 2015.

125

126 Bibliography

[33] M. Hojjat, E. Stavropoulou, and K.-U. Bletzinger. “The Vertex
Morphing method for node-based shape optimization”. In: Computer
Methods in Applied Mechanics and Engineering 268 (Jan. 2014),
pp. 494–513. doi: 10.1016/j.cma.2013.10.015.

[34] Y. Huang, Y.-H. Dai, X.-W. Liu, and H. Zhang. “On the acceleration
of the Barzilai–Borwein method”. In: Computational Optimization and
Applications 81.3 (Jan. 2022), pp. 717–740. doi:
10.1007/s10589-022-00349-z.

[35] K. A. James, G. J. Kennedy, and J. R. Martins. “Concurrent
aerostructural topology optimization of a wing box”. In: Computers
and Structures 134 (Apr. 2014), pp. 1–17. doi:
10.1016/j.compstruc.2013.12.007.

[36] M. Langelaar. “Topology optimization of 3D self-supporting structures
for additive manufacturing”. In: Additive Manufacturing 12 (Oct.
2016), pp. 60–70. doi: 10.1016/j.addma.2016.06.010.

[37] H. Li, I. Alhashim, H. Zhang, A. Shamir, and D. Cohen-Or.
“Stackabilization”. In: ACM Transactions on Graphics 31.6 (Nov.
2012), pp. 1–9. doi: 10.1145/2366145.2366177.

[38] A. K. Lianos, H. Bikas, and P. Stavropoulos. “A Shape Optimization
Method for Part Design Derived from the Buildability Restrictions of
the Directed Energy Deposition Additive Manufacturing Process”. In:
Designs 4.3 (July 2020), p. 19. doi: 10.3390/designs4030019.

[39] D. C. Liu and J. Nocedal. “On the limited memory BFGS method for
large scale optimization”. In: Mathematical Programming 45.1 (1989),
pp. 503–528. doi: 10.1007/BF01589116.

[40] J. Liu et al. “Current and future trends in topology optimization for
additive manufacturing”. In: Structural and Multidisciplinary
Optimization 57.6 (2018), pp. 2457–2483. doi:
10.1007/s00158-018-1994-3.

[41] J. R. R. A. Martins and A. Ning. Engineering Design Optimization.
Cambridge University Press, 2021. doi: 10.1017/9781108980647.

[42] Z. Michalewicz, R. Hinterding, and M. Michalewicz. “Evolutionary
Algorithms”. In: Fuzzy Evolutionary Computation. Ed. by W. Pedrycz.
Boston, MA: Springer US, 1997, pp. 3–31. isbn: 978-1-4615-6135-4.
doi: 10.1007/978-1-4615-6135-4_1.

[43] P. M. Müller, N. Kühl, M. Siebenborn, K. Deckelnick, M. Hinze, and
T. Rung. “A novel p-harmonic descent approach applied to fluid
dynamic shape optimization”. In: Structural and Multidisciplinary
Optimization 64.6 (Aug. 2021), pp. 3489–3503. doi:
10.1007/s00158-021-03030-x.

[44] R. Najian Asl. “Shape optimization and sensitivity analysis of fluids,
structures, and their interaction using Vertex Morphing
parametrization”. Dissertation. München: Technische Universität
München, 2019.

126

Bibliography 127

[45] R. Najian Asl, S. Shayegan, A. Geiser, M. Hojjat, and K.-U. Bletzinger.
“A consistent formulation for imposing packaging constraints in shape
optimization using Vertex Morphing parametrization”. In: Structural
and Multidisciplinary Optimization 56 (Oct. 2017), pp. 1–13. doi:
10.1007/s00158-017-1819-9.

[46] N. H. Oleg Burdakov Yu-Hong Dai. “Stabilized Barzilai-Borwein
Method”. In: Journal of Computational Mathematics 37.6 (June 2019),
pp. 916–936. doi: 10.4208/jcm.1911-m2019-0171.

[47] C. Othmer. “Adjoint methods for car aerodynamics”. In: Journal of
Mathematics in Industry 4.1 (2014), p. 6. doi:
10.1186/2190-5983-4-6.

[48] M. Raydan. “The Barzilai and Borwein Gradient Method for the Large
Scale Unconstrained Minimization Problem”. In: SIAM Journal on
Optimization 7 (Feb. 1997). doi: 10.1137/S1052623494266365.

[49] J. Rosen. “The gradient projection method for nonlinear programming:
Part II”. In: Siam Journal on Applied Mathematics - SIAMAM 9 (Jan.
1961).

[50] J. Rosen. “The Gradient Projection Method for Nonlinear
Programming. Part I. Linear Constraints”. In: Journal of The Society
for Industrial and Applied Mathematics 8 (Mar. 1960). doi:
10.1137/0108011.

[51] V. Savchuk, D. Medvedev, and O. Vjarvilskaja. Theoretical Mechanics.
Belarusian State University, 2016. isbn: 978-985-566-356-1.

[52] M. Schramm, B. Stoevesandt, and J. Peinke. “Optimization of Airfoils
Using the Adjoint Approach and the Influence of Adjoint Turbulent
Viscosity”. In: Computation 6.1 (Jan. 2018), p. 5. doi:
10.3390/computation6010005.

[53] D. F. Shanno. “Conditioning of quasi-Newton methods for function
minimization”. In: Mathematics of Computation 24.111 (1970),
pp. 647–656. doi: 10.1090/s0025-5718-1970-0274029-x.

[54] A. Stück and T. Rung. “Adjoint RANS with filtered shape derivatives
for hydrodynamic optimisation”. In: Computers & Fluids 47.1 (Aug.
2011), pp. 22–32. doi: 10.1016/j.compfluid.2011.01.041.

[55] G. Vanderplaats. Multidiscipline Design Optimization. Vanderplaats
Research & Development, Inc, 2007.

[56] G. Vanderplaats. “Very Large Scale Continuous and Discrete Variable
Optimization”. In: 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and
Astronautics, Aug. 2004. doi: 10.2514/6.2004-4458.

[57] B. Zhou, L. Gao, and Y.-H. Dai. “Gradient Methods with Adaptive
Step-Sizes”. In: Computational Optimization and Applications 35.1
(Mar. 2006), pp. 69–86. doi: 10.1007/s10589-006-6446-0.

127

Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten Ele-
menten und ein allgemeines Konzept zu ihrer Vermeidung, 2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimization
of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen - Mathe-
matische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-walled
Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmodelle
auf Basis des Kraftflusses als Anwendung plattformunabhängiger
Prozesskopplung, 2006.

7 Roland Wüchner, Mechanik und Numerik der Formfindung und
Fluid-Struktur-Interaktion von Membrantragwerken, 2006.

8 Florian Jurecka, Robust Design Optimization Based on Metamod-
eling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des En-
twurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Interaction of Wind and Mem-
brane Structures by Numerical Simulation, 2009.

Band Titel

11 Bin Yang, Modified Particle Swarm Optimizers and their Appli-
cation to Robust Design and Structural Optimization, 2009.

12 Michael Fleischer, Absicherung der virtuellen Prozesskette für
Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic Mem-
branes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke in
einer numerisch generierten atmosphärischen Grenzschicht, 2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures, 2010.

16 Thomas Gallinger, Effiziente Algorithmen zur partition-
ierten Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal Design of
Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerwerksstruk-
turen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und der
Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in Isoge-
ometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design and
Control of Piezoelectric and Lightweight Smart Structures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design and
Analysis for Tensile Structures, 2014.

Band Titel

23 Rupert Fisch, Code Verification of Partitioned FSI Environments
for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Problems
Including Fields and Signals, 2014.

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion - Sen-
sitivitätsanalyse für die Formoptimierung auf Grundlage des par-
titionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization for
shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for Shape
Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of Pres-
surized Bulkheads as Components of Aircraft Structures, 2015.

30 Armin Widhammer, Variation of Reference Strategy - Generation
of Optimized Cutting Patterns for Textile Fabrics, 2015.

31 Helmut Masching, Parameter Free Optimization of Shape Adaptive
Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Problems
in Geophysical Systems by Applying Finite Element Method and
Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment and
Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis of
Shell Structures, 2016.

Band Titel

35 Önay Can, Functional Adaptation with Hyperkinematics using
Natural Element Method: Application for Articular Cartilage,
2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear Struc-
tural Behavior in the Design, Analysis and Verification of Light-
weight Structures, 2017.

37 Michael Andre, Aeroelastic Modeling and Simulation for the As-
sessment of Wind Effects on a Parabolic Trough Solar Collector,
2018.

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled Struc-
tures on Multipatch Surfaces in Fluid-Structure Interaction, 2018.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD-Integrated
Shape Optimization in Fluid-Structure Interaction, 2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexible
Membrane Wind Turbine Blades, 2017.

41 Reza Najian Asl, Shape Optimization and Sensitivity Analysis of
Fluids, Structures, and their Interaction Using Vertex Morphing
Parametrization, 2019.

42 Ahmed Abodonya, Verification Methodology for Computational
Wind Engineering Prediction of Wind Loads on Structures, 2020.

43 Anna Maria Bauer, CAD-Integrated Isogeometric Analysis and
Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind- Struc-
ture Interaction of Slender Civil Engineering Structures Including
Vibration Mitigation Systems, 2020.

45 Franz-Josef Ertl, Vertex Morphing for constrained shape opti-
mization of three-dimensional solid structures, 2020.

Band Titel

46 Daniel Baumgärtner, On the grid-based shape optimization of
structures with internal flow and the feedback of shape changes
into a CAD model, 2020.

47 Mohamed Magdi Mohamed Mohamed Khalil, Combining Physics-
Based Models and Machine Learning for an Enhanced Structural
Health Monitoring, 2021.

48 Long Chen, Gradient descent akin method, 2021.

49 Aditya Ghantasala, Coupling Procedures for Fluid-Fluid and Fluid-
Structure Interaction Problems Based on Domain Decomposition
Methods, 2021.

50 Ann-Kathrin Goldbach, The CAD-integrated Design Cycle for
Structural Membranes, 2021.

51 Iñigo Pablo Lòpez Canalejo, A Finite-Element Transonic Poten-
tial Flow Solver with an Embedded Wake Approach for Aircraft
Conceptual Design, 2022

52 Mayu Sakuma, An Application of Multi-Fidelity Uncertainty
Quantification for Computational Wind Engineering, 2022.

53 Suneth Warnakulasuriya, Development of Methods for Finite
Element-Based Sensitivity Analysis and Goal-Directed Mesh Re-
finement Using the Adjoint Approach for Steady and Transient
Flows, 2022.

54 Klaus Bernd Sautter, Modeling and Simulation of Flexible Protec-
tive Structures by Coupling Particle and Finite Element Methods,
2022.

55 Efthymios Papoutsis, On the incorporation of industrial con-
straints in node-based optimization for car body design, 2023

56 Thomas Josef Oberbichler, A modular and efficient implementa-
tion of isogeometric analysis for the interactive CAD-integrated
design of lightweight structures. Dissertation, 2023

57 Tobias Christoph Teschemacher, CAD-integrated constitutive mod-
elling, analysis, and design of masonry structures. Dissertation,
2023

58 Shahrokh Shayegan, Enhanced Algorithms for Fluid-Structure
Interaction Simulations – Accurate Temporal Discretization and
Robust Convergence Acceleration, 2023

