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With the undeniable advance of automated vehicles and their gradual

integration in day-today urban traffic, many new technologies have been

developed that offer great potential for this emerging field of research.

However, testing automated vehicle technologies in real road traffic with

vulnerable road users (VRUs) is still a complicated and time consuming

procedure. The virtual development and evaluation of automated vehicles

using simulation tools offers a good opportunity to test new functions

efficiently. However, existing models prove to be insufficient in modeling the

interaction between autonomous vehicles and vulnerable road users such as

bicyclists and pedestrians. In this paper, an automated vehicle model for

microscopic traffic simulation tools is developed with the open-source

traffic simulation software Simulation of Urban Mobility (SUMO) and

evaluated in common traffic interaction scenarios with bicyclists. A

controller model is proposed using different path-finding algorithms from

the field of robotic and automated vehicle research, which covers all

important control levels of a self-driving vehicle. Finally, its performance is

compared to existing car-following and lane-changing models. Results

showcase that the autonomous vehicle model achieves either comparable

results or has a much steadier and more realistic driving behavior when

compared to existing driving models while interacting with bicyclists. The

whole source code developed over the course of this work is freely

accessible at: https://github.com/FlixFix/Kimarite.
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1 Introduction

Testing of autonomous vehicle functions in real-world scenarios with Vulnerable

Road Users (VRUs) such as bicyclists is a key stage on the way to developing fully

functioning autonomous vehicles. Recently, evaluating vehicle models in simulation and

virtual environments has become a very important intermediate step that reduces costs

and avoids potential safety critical situations during the development phase. Virtual tests

now include all the different components of a self-driving car. The different
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manufacturers partly rely on their own in-house simulations, but

there are already many open-source programs on the market,

some of which even support autonomous vehicle models, such as

CARLA, developed by (Dosovitskiy et al., 2017). Microscopic

traffic simulation tools such as Simulation of Urban Mobility

(SUMO) (Lopez et al., 2018), VISSIM (PTV AG, 2016), and

AIMSUN (Barceló and Casas, 2005), which are originally

developed for the simulation of vehicle flows in microscopic

traffic scenarios, still lack an interface to perform simulations

with mixed traffic volumes composed of VRUs and autonomous

vehicles. This paper proposes an autonomous vehicle model for

use in microscopic traffic simulation focusing on modeling

interactions with bicycle traffic. The proposed autonomous

vehicle architecture is based on the four most important

components of a self-driving car: Perception, Planning,

Control, and Communication. Most importantly, the model

integrates sensor models for the perception component that

identify nearby simulated users and makes use of path-finding

algorithms used predominately in the field of robotics and

autonomous vehicle research for accomplishing driving tasks

and interacting with bicycle traffic.

This paper is divided into three parts. At the beginning, the

state of the art of the individual autonomous vehicle components

is analyzed with regard to different functions of the model

developed. In addition, various research approaches, such as

the used path-finding algorithms, are examined. The developed

autonomous vehicle model is based on the different components

of a self-driving car: Perception, Planning, Control, and

Communication. In order to test the implemented control

logic and the interface with SUMO, four test scenarios where

the autonomous vehicle model has to perform common driving

tasks and interact with simulated bicyclists are developed, and the

behavior of the vehicle model is examined. The behavior of the

simulated bicycle agent in these scenarios is derived from the

behavior of real test subjects that took part in bicycle simulator

studies conducted at the Chair of Traffic Engineering and

Control at the Technical University of Munich (TUM).

Finally the performance and behavior of the autonomous

vehicle model is compared to the existing car-following

models (CFMs) and the lane changing models, which are

already part of the SUMO simulation software. The driving

behavior of the individual models is then assessed with key

traffic safety and performance parameters. The proposed

methodology is developed in the context of the @City Project,

which aims to develop new automated driving functions for

urban traffic scenarios.

2 Methods

2.1 Simulation environments

Since newly developed automated vehicle functions can only

be tested in combination with respective testing scenarios,

various companies and open-source projects have already

developed promising platforms for evaluations. For example,

with the NVIDIA Drive Constellation, NVIDIA provides an

open platform based on a virtual test fleet for the validation

of autonomous vehicles NVIDIA (2019). To evaluate the

individual models, the solution relies on the key elements of

simulation and the possibility of a subsequent replay allowing for

data evaluation and analysis. CARLA is a software simulator for

autonomous driving supporting development, training, and

validation of autonomous urban driving systems. It supports

different sensor specifications and environmental conditions

combined with three self-driving approaches: a classic

modular pipeline, an end-to-end model trained via imitation

learning, and an end-to-end model trained via reinforcement

FIGURE 1
(A) Bicycle simulator setup, (B) skeletal points extraction and depth field detection, (C) 3D simulator environment.
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learning (Dosovitskiy et al., 2017). It also offers an integration

with SUMO and VISSIM for simulating traffic flow. These

environments can be eventually integrated with physical

simulators that enable interconnected studies with real test

subjects assuming the role of a driver, pedestrian, or bicyclist.

In order to study the behavior of bicyclists in traffic, a bicycle

simulator is introduced Keler et al. (2018). The bicycle simulator

has the purpose of collecting trajectories of test subjects

experiencing traffic scenarios, interacting with other simulated

road users, and transport infrastructure. The bicycle simulator

consists of a physical bicycle fitted with speed and steering

sensors connected to a micro-controller, which sends the

measurements to a model (MATLAB Simulink) within the

driving simulation software DYNA4 from the company

TESIS, part of Vector Informatic GmbH. Microscopic traffic

simulation is handled by SUMO via a bridge module between

SUMO and DYNA4. The bicycle simulator setup is presented in

Figure 1 For increasing simulation accuracy and quality, the

development of high quality models is of utmost importance.

In microscopic traffic simulation software such as SUMO,

VISSIM, and AIMSUN Barceló and Casas (2005) that can be

coupled with simulators used for autonomous vehicle research

such as CARLA or DYNA4, motor traffic is modeled through

the implementation of car-following models that adapt the

agent’s behavior based on the position and speed of the

leading vehicle. The lateral movement is usually adapted

through a discrete lane choice model and in the case of

mixed traffic simulation through the resolution of a traffic

lane into sub-lanes or through non-lane-based behavior using

the maximum longitudinal time to collision (TTC) to choose

the lateral position along a lane Lopez et al. (2018); PTV AG

(2016); Fellendorf and Vortisch (2010); Semrau and Erdmann

(2016). Therefore, the integration of autonomous driving

functions in the existing models becomes a difficult and

time-consuming procedure, as it requires the adaptation of

existing model functions. Additionally, the motion of the

simulated agents remains confined by the resolution of the

traffic space into lanes and other simulator-specific

network elements, which in turn limits the simulation

accuracy for advanced autonomous driving functions,

especially in cases with interactions with other simulated

agents.

2.2 Basic autonomous agent model

In order to address the existing limitations identified in the

literature review executed in the process of this project, an

approach for modeling and studying autonomous vehicle and

bicycle interactions is proposed. The proposed autonomous agent

model relies on the four elements used in the development of

autonomous vehicles Perception, Planning, Control, and

Communication. In order to combine these controlling devices,

the agent is fitted with a main Controlling Unit, which is

responsible for connecting the various parts of the control in a

main control system taking care of when to use specific sub-

controllers. The main control loop is shown in Figure 2 given by

Algorithm 1. Its architecture is based on the general autonomous

vehicle control components described in the literature review and

the layout proposed in Kogan and Murray (2006), extending it to

work for implementation in a simulation software environment.

The model is implemented in SUMO using the Traffic Control

FIGURE 2
The developed Controlling Unit layout of the autonomous agent.
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Interface (TraCI) that provides users the ability to modify the

behavior of simulated objects and the simulation state in real-time

Wegener et al. (2008). Due to simplicity reasons, the autonomous

vehicle physics have been reduced to a one-dimensional context

neglecting lateral acceleration such as traversal velocity. This is

tolerable in comparison with other CFMs since they are generally

based on one-dimensional vehicle models.

Algorithm 1. The main control loop of the autonomous agent.

1 initialize()

2 while not arrived do

3 Perceptor.find_conflicting_agents();

4 PathPlanner.get_path() → path;

5 Controller.make_trajectory() → trajectory;

6 for i in range(0, len(trajectory)) do

7 Simulator.traci_step()

8 if check_for_arrival() then

9 plot_results();

10 arrived = True;

11 break;

12 end

13 Activator.conflict_agent_speed_changed();

14 if Activator.agent_finished_overtaking() then

15 break

16 end

17 if Activator.agent_passed_stopping_vehicle() then

18. break

19 end

20 Perceptor.plot_and_sensor_update();

21 Perceptor.find_conflicting_agents();

22 if Interpreter.is_enabled then

23 if Interpreter.check_for_conflict() then

24 break

25 end

26 if Interpreter.check_for_junction_control() then

27 break;

28 end

29 if Activator.acceleration_changed() then

30 break;

31 end

32 end

33 if Perceptor.junction_in_view() then

34 break;

35 end

36 if overtaking_enabled then

37 if Interpreter.check_for_overtaking() then

38 break;

39 end

40 end

41 end

42 end

2.3 Sensors and perceptor

The autonomous agent’s path planning relies on the

recognition of the lane borders along its route and the

detection of other simulated agents. To sense its environment,

the agent is fitted with a front camera model and a forward facing

LiDAR sensor model. In reality, autonomous vehicles are fitted

with many more perception hardware and sensors, however, this

work only serves as a proof of concept and limits the sensor setup

to a minimum in order to guarantee full functionality while

saving computing cost. It is however possible for future

applications to add additional sensors in different positions

across the vehicle model and assess its performance with

different sensor setups. To add the different sensors and

cameras to the model, a local coordinate system, based on the

agent’s back right corner is first defined.

The LiDAR is modeled as a collection of rays with a set length

joined to a sensor cone of a certain reach, coverage, and covering

angle. A higher coverage results in a greater number of rays

assigned to the sensor. To simulate the functionality of a radar,

the frequency of the agent’s sensor can also be set. For each

sensor ray, the intersection point with the closest road border is

calculated, set as the ray’s endpoint, and identified as a definite

road border data point. The algorithm principle is given by

Algorithm 2. During the time of active AV control, all this data

gathered by the LiDAR sensor is recorded by the Controlling

Unit’s Data Monitor (see Figure 2). In order to determine the

agent’s final path, the data points are labeled as either being on

the left or right border of the agent’s current driving lane.

Therefore, the data points are checked beginning with the

point closest to the agent and then moving along the data

points always finding the closest neighbor to the current

point. This procedure is repeated until the distance to the

closest neighbor exceeds the current lane width. Once this

criterion is met, the second closest, not-yet-labeled point to

the agent’s position is found and then processed as in the

previous step, again until the distance exceeds the lane width.

The high frequency of the sensor updates (given by the time step

in SUMO, or, if set, the sensor’s frequency) ensures sufficient

input for the path planning process, even though the evaluation

logic skips some data points. Figure 4 shows the described logic

showing color-coded outputs.

Algorithm 2. The Border Derivation Algorithm

1 border = list(closest_pt);

2 new_closest = None;

3 pt_to_remove = 0;

4 while sensor_data_pts is not empty do

5 min_dist = inf;

6 closest_pt = border[-1];

7 for i in range(0, len(sensor_data_pts)) do
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8 current_dist = dist(closest_pt, sensor_data_

pts[i]);

9 if current_dist < min_dist then

10 new_closest = sensor_data_pts[i] min_dist =

current_dist;

11 pt_to_remove = i;

12 end

13 if min_dist ≥ lane_width then

14 break;

15 end

16 border.append(new_closest);

17 sensor_data_pts.remove(pt_to_remove)

18 end

19 end

20 return border;

The Camera Sensor is modeled as a cone represented by a

polygon, basically determining the agent’s field of view. Every

object that falls within the field of view polygon will be

recognized by the agent and considered in the further

planning process. The camera’s specifications assume the

ability to recognize nearby intersections, as well as the

position, speed, and orientation at the current time step of

nearby agents falling inside the cone of view. The sensor layout

is presented in Figure 3 and a detailed example of the sensor

setup in operation in Figure 4.

The Perceptor proceeds to classify all detected agents

inside the field of view of the sensors so that the autonomous

agent can react to them in the appropriate order. The

classification developed in the course of this work is

based on the conflicting vehicle’s position and its

orientation. It groups the detected agents into the

following sets:

• Agents in View: all agents, which are currently inside the

field of view

• Aligned Agents: all agents facing the same direction as the

autonomous agent

• Oncoming Agents: all agents facing the opposite direction

as the autonomous agent

• Agents to Yield: all agents approaching the autonomous

agent from the right and, therefore, having the right of way,

e.g. at intersections

• Minor Agents: agents, which are in the field of view,

however, their role in the current traffic situation is rather

minor due to, for example, their distance from the

autonomous agent or because they are approaching from

the left and, therefore, must yield to the autonomous agent

In order to keep a certain flexibility in assigning the conflict

vehicle to a specific group, a deviation angle Δϕ is introduced, so

that vehicles traveling in the autonomous agent’s direction or in

a direction within a user specified interval will still be

considered an aligned agent. The same principle is used for

the other groups. All these sets are then sorted in an ascending

manner according to the conflicting agent’s distance to the

autonomous agent. The logic is presented in Figure 5 given by

Algorithm 3.

Algorithm 3. Get Agent Role Algorithm.

1 move_conflict_agent_to_origin();

2 rotate_conflict_agent_to_zero();

3 if conflict_angle < 0 then

4 conflict_angle += 2 *π;

//Takes care of negative angles

5 end

6 if eps ≤ conflict_angle ≤ π - eps then

7 if conflict_agent_left_of_av_agent then

8 conflict_role = minor;

9 end

10 else

11 conflict_role = yield;

12 end

13 end

14 else if π - eps ≤ conflict_angle ≤ π + eps then

15 conflict_role = oncoming;

16 end

17 else if π + eps ≤ conflict_angle < π - eps then

18 conflict_role = minor;

19 end

20 else

21 conflict_role = aligned;

22 end

2.4 Interpreter

The Interpreter can be seen as the autonomous agent’s

brain. After the Perceptor recorded the agent’s surrounding

area, the Interpreter assesses the current situation based on

the gathered input data. Figure 6 presents the decision tree of

the Interpreter, with the yellow arrow illustrating the

importance hierarchy of the various conflict checks. In

comparison to existing car following models, the

Interpreter also takes into account other simulated vehicles

that are not directly in a leading position compared to the

autonomous agent, as well as handling intersections and

overtaking maneuvers.

The first check performed by the controlling unit is for

imminent conflicts. The leading vehicle of the autonomous

agent will always be the critical vehicle to react to in every traffic

situation. Therefore, the check and ultimately the reaction to a

conflicting aligned vehicle (conflict meaning within a certain
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distance to the autonomous agent) always wins over any

decision made based on other conflicting vehicles. Obviously,

the control value affected by a leading vehicle is the

acceleration, or deceleration αego in case of a vehicle

traveling at a lower velocity than the autonomous agent. The

autonomous agent needs to always maintain a minimum gap

xmin to the leading vehicle and aims for the same speed as the

leading traffic participant. Since this paper focuses on the

interaction with bicyclists this is a viable speed target and

exceeding speed limits is not relevant (However, to address

speed limits, the autonomous agent model is also configurable

with a maximum speed limit). A re-planning of the

autonomous agent’s path will then take place whenever the

leading vehicle’s speed changes. Therefore, for the re-planning

step, one can assume αconflict = 0. This results in the autonomous

agent’s change of position based on time and its change in

velocity based on time specified by the following equations,

which are all based on the fundamental laws of movement given

in Gerlough and Huber (1975):

Δx t( ) � xconflict t( ) + vconflict t( ) p t − vego t( )pt − 1
2
p αego t( ) p t2

(1)
Δv t( ) � vconflict t( ) + vego t( ) p t − αego t( ) p t (2)

This equation system has a unique solution for the predicted

time gap tmingap it takes for the autonomous agent to reach the

minimum tolerable distance xmin−xconflict,i to the leading agent

and the respective acceleration αego,i given the current agent

states, resulting in the following set of equations for any given

time step i:

tmingap,i �
2p xmin − xconflict,i( )
vconflict,i − vego,i

(3)

aego,i � vconflict,i − vego,i
tmingap,i

(4)

In a second step, the check for an upcoming intersection

is performed. This control module adjusts the agent’s control

in the vicinity of intersections. In case of a nearby

intersection, the presence of an agent with right-of-way,

and the absence of a leading agent, the autonomous

agent’s acceleration or deceleration aego will be adjusted in

such a way that the time to arrival tego,arr is outside the time

interval defined by the arrival time of the conflicting agent

tconflict,arr and a user-defined safety time gap tsafety. Given a

nearby intersection and an agent with right-of-way, the

autonomous agent’s time to arrival tego,arr,i at any given

time step i can be calculated as follows:

tego,arr,i �
−vego,i ±

�������������������������������
v2ego,i + 2 p αego,i p xego,i − xintersection

∣∣∣∣ ∣∣∣∣( )√
αego,i

(5)

Assuming an acceleration aconflict = 0 for the conflicting agent

at the intersection, the arrival time of the agent to yield is:

tconflict,arr,i � xconflict,i − xintersection

∣∣∣∣ ∣∣∣∣
vconflict,i

(6)

Subsequently, an adjusted acceleration aego,i+1 for the

autonomous agent is necessary, if the following criterion is met:

tconflict,arr,i − tego,arr,i
∣∣∣∣ ∣∣∣∣≤ tsafety (7)

FIGURE 3
The sensor layout of the autonomous agent used in this work.
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If the autonomous agent’s predicted arrival time is prior to

the conflicting arrival time, the desired arrival time tdes,arr,i is

given by:

tdes,arr,i � tconflict,arr,i − tsafety (8)

Unless the autonomous agent’s predicted arrival time is later

than the conflicting arrival time, in which case it is given by:

tdes,arr,i � tconflict,arr,i + tsafety (9)

If the autonomous agent’s predicted arrival time is prior to the

conflict’s arrival time, an acceleration is necessary—or, in the case of

a later arrival time, a deceleration—which is calculated by:

aego,i+1 �
2 p xego,i − xintersection

∣∣∣∣ ∣∣∣∣( ) − vego,i p tdes,arr,i

t2des,arr,i
(10)

This logic allows for a continuous stream of traffic without

the necessity to stop at intersections possibly causing delays and

traffic jams in upstream traffic.

Finally the check for overtaking is performed. The

overtaking logic implemented in this work imitates the

driver’s behavior in a real traffic situation. Provided a

certain decision and sight distance to the leading vehicle

in order to evaluate the overtaking situation, the Interpreter

considers oncoming vehicles and upcoming intersections.

To guarantee a safe manoeuvre, the autonomous agent must

finish its overtaking with a safety gap xsafety,1 to the vehicle

to be overtaken and an additional safety gap xsafety,2 to

the oncoming vehicle, in order not to affect other traffic.

Further, the maneuver must be finished before reaching

a distance of xmin of any downstream intersection. First,

the time necessary for an overtaking maneuver tm is

calculated at the overtaking maneuver initiation time step

i = 0:

Δv � vego,0 − vconflict,0 (11)

tm �
Δv ±

������������������������������������������
Δv( )2+2 p aego p xego,0 − xconflict,0

∣∣∣∣ ∣∣∣∣( )+ xsafety,1+ Lego

√
−αego,max

(12)
The necessary distance for the overtaking move is derived

based on the time tm and the maximum acceleration of the

autonomous agent αego,max and given by the following

equation:

FIGURE 4
The visualisation of the sensor working principle including the projected trajectory. The thin red lines represent the LiDAR’s recognition rays,
with the thick red and green lines showing the derived left and right lane border and, ultimately, the proposed driving path given by the green
chevrons.
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xm � xego p tm + 1
2
p αego,max p t

2
m (13)

For the above stated safety reasons, the overtaking move will only

be initiated, if the following criterion is met:

Δx tm( )�! xego,0 − xoncoming,0

∣∣∣∣ ∣∣∣∣( ) + voncoming p tm − vego p t

−1
2
p αego,max p t

2
m (14)

In order to avoid unnecessary re-planning cycles, the

Interpreter is fitted with an additional upstream

Activator. The Activator tracks the agent’s acceleration αego,i−1
in the previous time step i, as well as the current critical conflict

vehicle, its speed vconflict,i−1, and the current traffic situation to be

handled. Based on these parameters, the Interpreter can be

switched off, so that the agent maintains its current driving

state until a certain threshold in the change of the environment

parameters is exceeded.

2.5 Path planner

The Path Planner’s task is to derive a path considering the

vehicle dynamic constraints based on the agent’s

surroundings such as intersections, obstacles, and most

importantly lane borders. In a first step, it is necessary to

derive the desired path from the start to the end position

within the given road network. This initial control is

equivalent to standard satellite navigation, which considers

the entire road network and returns the shortest path from

start to goal resulting in an ordered list of network nodes and

edges to be passed. Planning is based on an A* path finding

algorithm presented in Koubaa et al. (2018), which is an

extension of Dijkstra’s Algorithm, but achieves better

performance with respect to time.

While driving, the agent’s trajectory is calculated as the

center-line using the left and right lane borders, which are

recognized by the Perceptor, as reference. These functions

assume no obstacles for the current lane such as vehicles

parked along the side of the road. The path itself is a poly-line,

not yet containing specific controlling information such as

speed, time-based agent placement, or orientation. The actual

driving behavior will be derived subsequently by the

Controller.

In order to decouple the agent’s path from a lane—i.e., in

order to pass a stopping vehicle due to oncoming traffic—an

RRT* path planning algorithm with a subsequent Dubins

Paths optimization has been proposed. Although it is

possible to directly implement the agent’s motion

constraints within the RRT* planning, the resulting path

turns out very curvy (without optimization) and does not

produce a feasible solution to the problem. Besides, it makes

RRT* a lot more computationally expensive compared to

using simple straight edges. Therefore, an initial RRT*

motion planning without differential constraints is used in

order to explore the configuration space C for a set number of

iterations N or until a path to the target position zend (the end

of the intersection) is found. In a second step, the shortest

path from the agent’s position to the end of the intersection

is split at zmid in a 1:2 ratio, defined as the ratio of the number

of nodes along the target path from the middle node to the

target node and the number of nodes from the start node to

the middle node calculated as the nearest integer. This

results in two consecutive segments which are then

converted into two Dubins curves—comprising the actual

desired path—passing the obstructing vehicle LaValle

(2006). Despite the fact, that usually cloothoids are used

in traffic engineering, this paper uses Dubins curves instead

in order to provide a proof-of-concept while maintaining

implementation simplicity. However, cloothoids can easily

replace the current paths in further research. The minimum

turning radius used for the resulting Dubins curves rego,min

can be calculated, ignoring traversal jerk and maximum

cornering acceleration, based on the Ackermann steering

model and is dependent of the maximum steering

angle ϕego,max given by the following equations Lavacs

(2006):

FIGURE 5
The sorting principle of conflicting agents.
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rego,min � Lego

sin ϕego,max( ) (15)

Resulting in a maximum curvature of:

cego,max �
sin ϕego,max( )

Lego
(16)

The end result is shown in Figure 7. The Dubins paths

implementation used in this work is taken from Sakai et al.

(2018). A main advantage of the path planner is that the

proposed methodology enables lane-free motion of the

simulated autonomous agent in comparison to the existing

models used in SUMO, where the lateral movement of

vehicles is lane-based, typically simulated through discrete

lane choice models or through the resolution of a traffic lane

into sub-lanes Semrau and Erdmann (2016).

2.6 Controlling

After the current traffic situation has been evaluated by the

Interpreter and an appropriate path has been generated by the

Path Planner, the Controller is responsible for creating the

final trajectory for the upcoming time steps ti: ∈ [0, T]. It

consists of the actual positions xi(t) following the given path,

the respective orientation θi(t), and the anticipated speed vi(t).

The control logic is based on the acceleration determined by

the Interpreter for the current traffic situation and,

additionally, the engine’s limitations, such as the maximum

acceleration and speed. The evaluation points xi(t) and

orientations θi(t) are indicated by markers, which are

colour-coded based on the respective speed and can be

annotated by the velocity for better examination.

2.7 Comparison of the agent’s behavior to
the existing driving models

In order to assess the driving behavior of the autonomous

vehicle model in response to interactions with bicyclists, its

trajectory will be compared to some of the existing driving

models already implemented in SUMO. Therefore, in the

developed scenarios the AV was replaced by agents

controlled through SUMO using the following already

implemented CFMs:

FIGURE 6
The developed Controlling Unit logic of the autonomous agent.
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• The Car Following Model Wiedemann 99, 10-Parameter

version as implemented in SUMO (Lopez et al., 2018).

• The Krauss Model with some modifications, which is the

default model used in SUMO Krauss et al. (1997).

• The Intelligent Driver Model (IDM) Treiber and Kesting

(2013).

The CFMs are coupled with the SUMO sub-lane model

Semrau and Erdmann (2016). For the agents controlled by the

three models defined in SUMO, corresponding vehicle types

(vType) are created, which correspond in their properties to those

of the autonomous agent. Arbitrary scenarios can therefore be

simulated without using the autonomous vehicle control logic.

Since both the behavior of the autonomous agent and the agents

controlled by SUMO follow the default logic and the parameters

of the critical agent have not been changed, making the tests

deterministic, it was sufficient for the evaluation of the

autonomous vehicle model to run through each test scenario

only once. Further, this work is intended to develop a general

autonomous vehicle framework to be used for further research

and tests, so the proposed test scenarios only evaluate the basic

functions of an autonomous vehicle. The behavior of the different

agents is evaluated based on the scenario using key traffic

parameters such as the average speed, maximum acceleration,

maximum deceleration, waiting time, and time to collision Hou

et al. (2014). The TTC is a defined as:

TTC � |xego t( ) − xconflict t( )|
_xego t( ) − _xconflict t( ) (17)

The required time to collision TTCreq defined by the

minimum safety gap, the current speed and acceleration

TTCreq �
Δv ±

����������������������������������
Δv2 + 2 p αego,i − αconflict,i( ) p safety_gap

√
αego,i − αconflict,i

(18)
with

Δv � vego,i − vconflict,i (19)

Given the current speed, a maximum braking deceleration is

specified by SUMO Lopez et al. (2018):

αbrake � −7.5m/s2 (20)

The Time To Stop (TTS) is then a function of:

TTS � −vego
αbrake

(21)

2.7.1 The bicycle simulator dataset
In order to assess the proposed autonomous vehicle model

and compare its performance to existing models, trajectories

gathered using the bicycle simulator described in Keler et al.

(2018) are used. All the non-autonomous agents in this study are

controlled based on these trajectories and not by any specific

CFM. The bicyclist trajectories were gathered as part of a

previous bicycle simulator study with 30 participants per

scenario (This does not suffice for statistic significance,

however, it gives a good starting test for a initial model),

where test subjects were asked to perform common bicyclist

maneuvers in mixed traffic conditions with motor vehicles. Three

scenarios were examined for left turns, two scenarios for the

FIGURE 7
Intersection passing path planning results combining RRT*
with dubins path. The green path represents the path, chosen by
the RRT* algorithm. The purple curve then gives the optimsed
dubins path, whilst the white edges show the complete RRT*
output.
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crossing, and one scenario for right turns at an non-signalized

intersection. Additional scenarios included the test subjects

performing lane changing maneuvers along a road section and

crossing a roundabout. These scenarios were specifically chosen

in order to account for frequent urban traffic situations. The

speed limit on all streets was set to 30 km/h. For the purposes of

this work and to account for all the simulator data, the

autonomous agent’s control logic has been tested with an

average trajectory based on all thirty test subjects of each

specific scenario. This has the advantage that noise from the

orientation data points, which was quite common, could be

eliminated. A correct and especially continuous orientation is

very important, as the autonomous agent’s interpretation ability

relies on accurate agent orientation. Key scenarios are thoroughly

described in the next subsections.

2.7.2 Scenario 1—Simple following
The first scenario simulates a simple bicycle

following scenario without any turning or overtaking desire by

the involved agents. Both agents are simply moving along a

straight road segment without any other vehicles to yield to or

obstacles. When placed at their initial positions, the distance

between the autonomous agent and the bicyclist is 120m. This is

to ensure that the autonomous agent starts driving freely, not

being influenced by the critical agent, since it is not within the

field of view Figure 8A.

2.7.3 Scenario 2—Advanced following
The goal of scenario 2 is to examine the autonomous agent’s

behavior when interacting with a stopping leading critical

bicycle agent. Unlike the previous scenario, the bicycle agent

starts already within the autonomous agent’s field of view. Until

reaching the minimum gap, the autonomous agent simply

follows the leading critical agent until it comes to a stop. In

order to simulate more realistic driving behavior, additionally

to the safety gap, an absolute minimum gap is introduced,

which results in a final approach up to this distance when the

leading critical agent stops. For varying tests, the critical agent’s

stopping position as well as the anticipated stopping time can be

defined, which has been set to 10s in this example (see

Figure 8B).

2.7.4 Scenario 3—Junction passing
Scenario 3 requires the most advanced planning effort for

the autonomous agent’s driving behavior. The simulation

setup is again based on a leading bicyclist and an

additional intersecting agent traveling in the opposite

direction of the autonomous agent. However, the

bicyclist’s desire to make a left turn in combination with

the oncoming traffic leads to the critical agent stopping in

the middle of the intersection, which is a very common

scenario occurring at non-signalized intersections (see

Figure 8C). It is important to mention that the stopping

FIGURE 8
(A) Scenario 1- Simple Following, (B) scenario 2—Advanced Following, (C) scenario 3—Intersection Passing, (D) scenario 4—Overtaking.

Frontiers in Future Transportation frontiersin.org11

Rampf et al. 10.3389/ffutr.2022.894148

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.894148


of the preceding agent in both scenario 2 and scenario 3 was

modeled using a reference coordinate, which was chose to be

a fixed coordinate just before entering the intersecting lane

representing the typical location a left-turning vehicle or

cyclist would stop in order to let oncoming traffic pass.

When passing this reference coordinate, the simulation

causes the preceding agent to rather suddenly stop

without taking into account physical limits such as

realistic negative acceleration. As a result, the braking

acceleration of the preceding vehicle reaches very high

values as can be seen in Figure 9B and Figure 10B. Even

if the stopping behavior of the bicyclist is therefore

unrealistic, its implementation fulfills its purpose, since

the scenario task for the autonomous agent is to pass a

stationary obstacle at an intersection. The reason why and

how the obstacle stopped is not important to evaluate the

proposed autonomous agent model. The junction passing

itself is modeled using an RRT* algorithm excluding the

bicyclists extended by a certain safety distance from the

configuration space. The resulting path is optimized using

dubins paths and in the following split into two sections in a

1:2 ratio in order to guarantee smooth driving behavior. The

logic is shown in Algorithm 4.

Algorithm 4. Junction Vehicle Passing Algorithm.

1 InitializeRRT(Cf, Cb, zcurrent);

2 zend = RRTPlanning(N);

3 RenumberTargetPath(zend);

4 zmid = GetNodeByNumber(int(zend.nbr/3));

5 segment1 = DubinsPath(zcurrent, zmid, c = cego,max);

6 segment2 = DubinsPath(zmid, zend, c = cego,max);

7 path = Join(segment1, segment2);

8 return path

2.7.5 Scenario 4—Overtaking
Since in urban traffic situations, bicyclists and vehicles are

often travelling at different speeds, overtaking maneuvers are quite

common. A maximum overtaking speed and acceleration for the

autonomous agent have already been defined. The maximum

speed is extended to 15m/s and the maximum acceleration to

2m/s2 respectively. The scenario setup is presented in Figure 8D.

FIGURE 9
(A) Resulting speed profiles for scenario 2, (B) resulting acceleration and deceleration profiles for scenario 2, (C) showing the distance to the
leading agent for scenario 2, (D) showing the difference between the actual TTC and TTCreq defined by the given minimum safety distance to the
leading agent for scenario 2.
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FIGURE 10
(A) Resulting speed profiles for scenario 3, (B) resulting acceleration and deceleration profiles for scenario 3.

FIGURE 11
(A) Resulting speed profiles for scenario 1, (B) resulting acceleration and deceleration profiles for scenario 1, (C) showing the distance to the
leading agent for scenario 1, (D) showing the difference between the actual TTC and TTCreq defined by the given minimum safety distance to the
leading agent for scenario 1.
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3 Results

3.1 Testing setup

All tests were run under Windows 10 Pro N Version 1903

using SUMO build v1_3_1+0841-0db23d23c1 and a machine

with the following hardware specifications:

• Processor: Intel Core i7-6700K CPU @ 4.00GHz

• Memory: 16.0 GB

• GPU: GeForce GTX 1070 GPU @ 8 GB GDDR5

3.2 Scenario 1—Simple following

The main goal of the simple following scenario is to drive

as close to the desired minimum gap and to reach a

maximum average velocity throughout the simulation.

Results show that the autonomous vehicle model drove at

maximum average speed in comparison to the other CFMs

(see Figure 11A) while maintaining relatively low maximum

acceleration and deceleration values, indicating a smooth

driving (see Figure 11B). In fact, the other CFMs show high

deflections in acceleration especially when reaching a

shorter distance to the leading agent. Figure 11D shows

TTC−TTCreq for the different vehicle models, which

should be as close to zero as possible when reaching the

minimum allowed gap. The autonomous agent successfully

maintains a stable minimum distance to the

leading vehicle.The constant switch between positive and

negative acceleration, when reaching the minimum

gap is due to the agents controller

trying to adjust to the leading bicyclist’s slightly changing

speed.

FIGURE 12
The trajectories of the autonomous agent in comparison to the other car models scenario 3.
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3.3 Scenario 2—Advanced following

Figure 9A shows the leading critical agent stopping at around

28s, resulting in the autonomous agent reaching the absolute

minimum gap. The existing CFMs, although given the same

safety gap as the autonomous agent, do not drive as closely to the

minimum gap as possible, showing deviations almost twice the

defined value (see Figure 9B). However, the speeds are equally

accurate to the bicyclist’s speed for all the CFMs, shown in

Figure 9C.

When comparing the results of the autonomous agent to the

existing models it becomes clear, that, even though existing

models also perform a second approach upon the leading

vehicle’s stop, they do not drive closer to the critical agent

than the minimum safety gap, resulting in rather unrealistic

driving behavior. This ultimately leads to greater deviations of

TTC from TTCreq (See Figure 9D). A drop in the autonomous

agent’s TTC−TTCreq can also be found in Figure 9D. This is due

to the fact, that the autonomous agent has two safety gaps defined: A

minimum safety gap, when driving in a fluid traffic situation and

FIGURE 13
(A) Resulting speed profiles for scenario 4, (B) resulting acceleration and deceleration profiles for scenario 4.

FIGURE 14
Showing the duration of the different controlling steps during the simulation for scenarios 1, 2, and 4 against the time step duration threshold
within SUMO, which was chosen to be 0.1 s.
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and absolute safety gap, when approaching and ultimately stopping

behind a leading stopped traffic participant. The absolute safety gap,

however, leads to a violation of the minimum required time to

collision. After all, this does not lead to any dangerous situations and

mimics realistic driving behavior.

3.4 Scenario 3—Intersection passing

In this scenario, the stopping agent produces comparable

deflections to the agent’s acceleration in scenario 2. Its stopping

position is denoted by a red dot in Figure 10A. Unlike the other

SUMO models, after entering the intersection and reaching its

maximum tolerable stopping time, the autonomous agent begins a

right-hand side overtaking maneuver at the intersection. This

behavior is enabled by the path-planning module of the

autonomous agent, which enables lane-free movement, in

contrast to those of agents simulated by the simulation

software, whose movement is limited to the available lane

space. The simulation ends before the critical agent has fully

left the intersection, hence the SUMO models do not continue

their driving after they have come to a stop. Additionally as

observed in Figure 10C and Figure 12, the IDM model fails to

stop and passes through the simulated bicyclist. However, even the

other SUMO CFMs seem to struggle with this scenario, shown by

partly high deflections in their accelerations in Figure 10B.

Regarding the total waiting times of the various CFMs, the AV

model results in the lowest waiting time (2s), due to its ability to pass a

stopped agent in comparison toKrauss (15.5s) andWiedemann (9.7s).

Although resulting in the lowest waiting time of (0s), the IDM agent’s

behavior is not considered correct, as it leads to a collision with the

stopping critical agent. Another interesting observation is the

deflection in the Krauss agent’s speed in Figure 10A at around

32s, which shows that the CFM first interprets the obstacle as

negligible, but quickly after changes its decision and performs a

stop as well, resulting in strong braking.

3.5 Scenario 4—Overtaking

Since scenario 4 is also based on a straight road section, the

highest possible average speed within the permissible maximum

speed while reaching the target position as fast as possible is

desirable. Due to a lack of oncoming traffic, an overtaking

maneuver is the most logical consequence for the agents after

they have reached the leading critical agent. However, none of the

SUMOCFMs is capable of such amaneuver if it involves entering

the oncoming lane. Thus, the SUMO agents simply follow the

leading critical agent, maintaining a similar speed and safety

distance, as shown in Figures 13A,B. On the contrary, it is

possible for the autonomous agent to perform an overtaking

maneuver according to the proposed control logic, even when

using the opposite lane. This results in a great difference in the

autonomous agent’s trajectory in comparison to the other vehicle

models. Unlike the other scenarios, the CFMs perform fairly well

in regards to their acceleration, shown in Figure 13B, resulting in

FIGURE 15
Showing the duration of the different controlling steps during the simulation for scenario 3 against the time step duration threshold within
SUMO, which was chosen to be 0.1 s.
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a maximum deceleration of −2.9 m/s2, which is the defined

maximum braking deceleration for the SUMO agents not

leading to uncomfortable driving behavior.

4 Discussion

4.1 Limitations

The following design of a car following model primarily

assumes correct driving behavior of other road users. Scenarios in

which this behavior is violated or randomness, such as sensor

failure or unnatural bike-riding behavior, were not considered in

the concept design. Furthermore, individual modeling steps, such

as that of a stopping preceding vehicle, lead to partially

unrealistic driving behavior of the preceding vehicle due to

their implementation. This limitation was accepted, however,

in order to test certain functionalities of the developed car

following model. Since the underlying study was based on

bicyclists as interaction vehicles, such were also used as

control vehicles in the design of the car following model.

Nevertheless, all design concepts work with any type of

control vehicle. A further limitation regarding the

autonomous vehicle model is the simplification to a one-

dimensional driving model resulting in the neglection of

traversal jerk such as lateral acceleration, which becomes

particularly important in the context of the path optimization

used due to the Dubins curves. This leads to a simplified

cornering behavior throughout the conducted simulations.

Performance optimization was also not considered when

implementing the autonomous agent’s logic. Therefore, all

simulations were performed on a single machine, which led to

performance interference of the running simulation with the

autonomous agent calculations. However, looking at Figure 14

and Figure 15 show the duration of the control unit’s calculation

duration against the threshold of 0.1 s, which was the duration of

one simulation time step within SUMO. This illustrates that no

considerable input lag was introduced by the control logic apart

from the path planning in scenario 3, which should be improved

considering performance in further research.

4.2 Conclusion

In this work, an autonomous vehicle model based on current

state of the art in robotics and autonomous vehicle research was

presented and evaluated in the microscopic traffic simulation

software SUMO for modeling interactions with bicyclists. The

vehicle model features a navigation component, which connects

to the microscopic traffic simulation software SUMO through a

node edge representation and uses an A* path planning

algorithm to generate a path from the start to the target

destination, returning all the lanes and intersections along the

way. To account for more complex driving maneuvers in the

presence of bicyclists, such as overtaking and passing, the

autonomous agent is further fitted with an RRT* path

planner, which generates a path based on a given

configuration space (i.e., the intersection area) converting it to

a drivable trajectory based on dubins paths, given the limits

defined by the vehicle dynamics model. In a second step, an

example AV agent was assembled and tested in common traffic

simulation scenarios in SUMO. To evaluate the developed model,

the scenarios were also simulated with the autonomous agent

replaced by vehicles, that use the existing car following models

and the sub-lane model already implemented in SUMO. The

derived simulation data was compared to resulting speed and

acceleration profiles and to various key evaluation parameters

specifically related to the respective scenario.

Results show, that the profiles of the autonomous agent

match the profiles generated by the existing driving models

that are part of SUMO and that the autonomous agent was

able to drive much closer to the given thresholds than the agent

models defined in SUMO, leading to a more realistic driving

behavior, overall reduction in queuing times, and a potentially

higher traffic density throughout the network. Additionally, the

autonomous agent was able to perform overtaking maneuvers

due to the lane-free path planning approach through the

combined use of RRT* and dubins paths. Thus, it

outperformed the existing SUMO models in simulation

scenarios, where the former are limited by the lane-based

simulation approach and the junction model limitations in

handling such interactions. This is a significant improvement,

especially for modeling bicyclist interactions with autonomous

vehicles. Also, the autonomous vehicle model achieves

significantly more consistent acceleration and speed profiles

compared to the existing SUMO CFMs in the presence of a

bicyclist, which improves the simulation accuracy and quality.

The highly modular approach in the Controlling Unit’s

implementation allows for easy, uncoupled further research

regarding the different control components. It is also possible

for users to modify the proposed model components by

integrating existing methods and developing and testing their

own new methods for autonomous vehicle operation and

navigation in traffic environments. Given the stable driving in

the tested traffic scenarios, an evaluation of the behavior in more

complex scenarios, possibly with several conflict agents, would be

interesting. Regarding scenario generation, a coupling with

Alekszejenkó and Dobrowiecki (2019) seems possible. To

make use of the inter-vehicle and network communication,

the agent model could be tested in scenarios with several

autonomous agents communicating either with each or other

with nearby intersections. It would also be interesting to evaluate

overall network utilization taking into account autonomous,

non-autonomous vehicles, and bicycle traffic. Finally,

considering the results of the first two test scenarios, which

are mainly defined by the vehicle following behavior, it
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becomes clear that the vehicle model developed in this work

represents a realistic alternative to the CFMs already defined in

SUMO. In further research and development work, this logic

could therefore possibly be implemented directly in SUMO as a

new CFM called Kimarite. The whole source code developed over

the course of this work is freely accessible under: https://github.

com/FlixFix/Kimarite.
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