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We study the asymptotics of the k-regular self-similar fragmentation pro-
cess. For α > 0 and an integer k ≥ 2, this is the Markov process (It )t≥0 in
which each It is a union of open subsets of [0,1), and independently each
subinterval of It of size u breaks into k equally sized pieces at rate uα . Let
k−mt and k−Mt be the respective sizes of the largest and smallest fragments
in It . By relating (It )t≥0 to a branching random walk, we find that there exist
explicit deterministic functions g(t) and h(t) such that |mt − g(t)| ≤ 1 and
|Mt − h(t)| ≤ 1 for all sufficiently large t . Furthermore, for each n, we study
the final time at which fragments of size k−n exist. In particular, by relating
our branching random walk to a certain point process, we show that, after
suitable rescaling, the laws of these times converge to a Gumbel distribution
as n → ∞.

1. Introduction. Eighty years ago, Kolmogorov [17] initiated the study of fragmentation
processes, stochastic processes modelling an object of unit mass that breaks apart as time
passes. While research in fragmentation processes continued into the latter half of the 20th
century [2, 7, 8, 13], it was not until pathbreaking work by Bertoin [4, 5] and Berestycki
[3] in the early 2000s that fragmentation processes were conceived in a unifying framework.
This framework formulates a fragmentation process in terms of a stochastic process (Yt )t≥0
taking values in the set

S :=
{
(s1, s2, s3, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}
,(1)

whose law is governed by a dislocation measure ν on the set S . For Yt = (y1(t), y2(t), . . .),
the components y1(t) ≥ y2(t) ≥ . . . of Yt correspond to the sizes of the fragments in the
process at time t listed in decreasing order.

In the setting where ν is finite, the homogeneous fragmentation processes first introduced
by Bertoin [4] have a simple description in terms of the dislocation measure: each fragment of
size u has an exponentially distributed lifetime with rate ν(S), and upon death is replaced by
a random collection of fragments of sizes us1 ≥ us2 ≥ · · · , where the sequence (s1, s2, . . .)

is distributed according to ν(·)/ν(S). In this context, homogeneous refers to the fact that
the rate at which each fragment breaks is independent of its size, and that the lifetimes and
dislocations of individual fragments are independent of the remainder of the system; see also
[18]. We remark that in general the measure ν need not be finite; indeed, infinite dislocation
measures may be used to describe the continuous ‘crumbling’ of fragments [4].

In the following, we will be interested in self-similar fragmentation processes, in which
fragments behave independently but the rate at which a fragment of size u breaks apart is
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proportional to uα for some α in R. Self-similar fragmentations were introduced by Filippov
[13], with their rigorous formulation in terms of general dislocation measures first appearing
in [5]. The real parameter α is a called the index of self-similarity, with α > 0 entailing that
larger fragments in the process break more quickly than smaller ones, and α < 0 entailing the
opposite.

Brennan and Durrett [7, 8] study the self-similar fragmentation process where, upon death,
a fragment of mass of size u splits into exactly two fragments of sizes V u and (1 − V )u,
where V is uniformly distributed on [0,1]. They show that at large times t the total number
of intervals in the process grows in the order t1/α for 0 < α < ∞. Goldschmidt and Haas [14,
15] look at the explosive case α < 0, in which after a finite amount of time the entire process
consists of dust so that there are no intervals of positive size. A work of particular relevance
is the article [6] of Bertoin, where it is shown that if y1(t) is the size of the largest fragment
in a self-similar fragmentation with α > 0, then

lim
t→∞

logy1(t)

log t
= − 1

α
almost surely.(2)

See also the recent work of Dadoun [9] for growth-fragmentation processes. While a panoply
of exotic dislocation mechanisms fall into the general apparatus of self-similar fragmentation
processes, in the present article we will concentrate our attention on the simplest possible
fragmentation mechanism:

DEFINITION 1.1. Fix an integer k ≥ 2. The k-regular self-similar fragmentation process
of index α ∈ R is the self-similar fragmentation process (It )t≥0 starting with the single in-
terval I0 := [0,1) in which an interval of size u ∈ (0,1] in It waits an exponential time with
mean u−α , and after this time breaks into k equally sized intervals.

Note that by listing the sizes of the intervals of (It )t≥0 in decreasing order, (It )t≥0 gives
rise to an S-valued process (Yt )t≥0. The dislocation measure associated with the k-regular
case belongs to a form of dislocation measures which Goldschmidt and Haas [15] call ‘geo-
metric’, in that fragment sizes always take the form of a geometric progression (rn : n ≥ 0)

for some r ∈ (0,1). Goldschmidt and Haas remark that geometric fragmentation processes
possess genuinely different properties from nongeometric fragmentations, and should not be
regarded as a degenerate special case. The reader is referred to [15], Section 8, for a discus-
sion, wherein various other relevant references may be found, for example, Athreya [2].

The relative simplicity of the mechanism means that we are endowed with a variety of
exact formulas associated with various functionals of the processes, most notably allowing
us to study an alternative representation for the process, where the fragments of sizes k−n

are viewed as the nth generation of a discrete k-ary tree. These exact formulas lead to sharp
statements about the asymptotics of the size of the smallest and largest fragments in the
process at large times.

In the remainder of the paper, we restrict our attention to the case α > 0. Before stating our
results in full in Section 2, we conclude the Introduction by giving the principal applications
of our main results, showing that we can characterise the sizes of both the largest and smallest
fragment at large times to a surprising degree of precision.

In the sequel for x ∈ R, we write �x� for the least integer greater than or equal to x, and
will denote by R+ the set of nonnegative real numbers [0,∞). Finally, let us introduce the
parameters

γ := log k and κ := 1

γα
.
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Our main result on the largest fragment is a considerable sharpening of Bertoin’s estimate (2),
stating that if k−mt is the size of the largest fragment at time t , then mt has very concentrated
behaviour.

THEOREM A. Let k−mt be the size of the largest fragment in the system at time t . Then
for most times t , mt is likely to be the smallest integer above

g(t) = κ
(
log t − log log t − log(γ κ)

)
.

More precisely, let μ1 := κ + 2/γ . Then there exists almost surely a t0 ∈ R+ such that for all
t ≥ t0 ⌈

g(t) − μ1
log log t

log t

⌉
≤ mt ≤

⌈
g(t) + μ1

log log t

log t

⌉
.

Roughly speaking, we have that for most values of t the quantities �g(t) − μ1 log log t/

log t� and �g(t) + μ1log log t/ log t� coincide. Hence, Theorem A guarantees that for such
t we have mt = �g(t)�. Occasionally an integer n separates g(t) − μ1log log t/ log t and
g(t) + μ1log log t/ log t ; it is in these time windows that mt has an opportunity to ‘jump’
from n to n + 1.

We now turn our attention to the size k−Mt of the smallest fragment. Here we find that for
large t , the law of the random variable Mt is also highly concentrated.

THEOREM B. Let k−Mt be the size of the smallest fragment in the system at time t . Then
for most times t , Mt is likely to be the smallest integer above

h(t) := κ

(
log t +

√
2γ log t − 1

2
log log t + c

)
,

where c := − 1
2κ

− logκ + γ − 1
2 log(2γ ) + 1 is a constant. More precisely, let μ2 := 2κ2/3.

Then there exists almost surely a t0 ∈ R+ such that for all t ≥ t0⌈
h(t) − μ2

1

log1/3 t

⌉
≤ Mt ≤

⌈
h(t) + μ2

1

log1/3 t

⌉
.

In words, Theorems A and B state that the logarithm of the sizes of all fragments in the
system at a large time t have the same first order approximation, which is of order (1 +
o(1))κ log t . For the largest fragment, we have a correction of order log log t , while we see
a correction of order

√
log t for the smallest fragment. Moreover, the largest and smallest

fragments are both with high probability pinpointed to specific integers.
The rest of the paper is organised as follows. In Section 2, we describe the representation of

the fragmentation process as a certain time-inhomogeneous branching random walk, which
is key to our proofs. We also give our main results on point process convergence (Theorem C
and Corollary 2.1) for the branching random walk, which explain why the sizes of the largest
and smallest fragment satisfy such a sharp concentration property. In Section 3, we study
weighted sums of exponential random variables and their relation to the q-Markov chain: the
increasing Markov chain on {0,1,2, . . .} which jumps from a site j to j + 1 at rate qj (in
our case, q = k−α). In Section 4, we prove our results on the largest fragments in the process.
The final two sections, Section 5 and Section 6, are dedicated to our work on the smallest
fragments in the process.
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2. The associated branching random walk. This section is dedicated to giving a com-
plete statement of our main results in their general form. Through the majority of the proofs
in the paper, we consider the fragments as vertices in a k-ary tree, where the offspring of
an interval are the k intervals it splits into. We study the time of the appearance of the frag-
ments using the fact that the fragmentation can be represented as a certain inhomogeneous
branching random walk which we shall now describe; see Figure 1.

2.1. Representation as BRW. We now explain the representation of the process in terms
of an expanding branching random walk, see [2]. For the k-regular self-similar fragmentation
of index α, we set

(3) q := k−α,

and note that q < 1 under our assumption α ∈ (0,∞). Let k−Xt be the size of the fragment
containing 0, in other words the fragment of the form [0, k−Xt ), present in the system at
time t . Then the process (Xt)t≥0 forms a Markov chain on {0,1,2, . . .} satisfying X0 = 0
and

lim
h↓0

1

h
P(Xt+h = j |Xt = i) =

{
λi if j = i + 1,

0 otherwise,

where λi = qi . For n ≥ 0, define the time of fragmentation of the fragment [0, k−n) into k

fragments of sizes k−(n+1) to be Sn := sup{t ≥ 0 : Xt = n}. It follows that {Xt = n} = {Sn >

t, Sn−1 ≤ t}, and that {Xt ≤ n} = {Sn > t}. Moreover, we may write

(4) Sn =
n∑

i=0

λ−1
i Wi,

where, for each i ∈ {0,1, . . . , n}, λ−1
i Wi is the amount of time Xt spends at the state i, and

hence Wi is a standard exponential random variable.
The same analysis can be carried through on every interval. The dependence structure in

the resulting system can be described using branching processes. Each interval breaks into
k pieces and thus we may consider each interval v of size k−n living for some time period
as a vertex v within the nth generation of a k-regular tree. Indeed, let Tn denote the set
of subintervals of the form [m/kn, (m + 1)/kn), m ∈ {0,1, . . . , kn − 1} so that Tn has kn

elements. Write T =⋃
n∈N Tn for the set of all subintervals that can appear in the system. For

v ∈ T, let k−|v| denote the size of v, in other words |v| = n for v ∈ Tn. Finally for intervals
v,w ∈ T let v ∧ w denote the smallest (in the sense of inclusion) element of T containing
v and w. Then v ∧ w is the most recent common ancestor of v and w. We will also write
v ≥ w whenever v ⊆ w. Letting S(v) denote the time at which an element v of Tn of size
k−n breaks into k pieces of sizes k−(n+1), we now see that the set {S(v) : v ∈ Tn} coincides
with the positions of the nth generation of a certain branching random walk in which the step
size distribution changes from generation to generation. The time of the first splitting is a
standard exponential random variable S([0,1)) = W([0,1)) and each particle in generation n

has exactly k children in generation n + 1. If w ∈ Tn+1 is a child of v ∈ Tn, then

S(w) = S(v) + q−|w|W(w),(5)

where W(w) is a standard exponential random variable which is independent of S(v). In fact,
the random variable q−|w|W(w) is equal to the length of time that the interval w exists in the
process until it splits. Since q < 1, this random walk gets slower and slower as n becomes
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FIG. 1. Visualization of a 2-regular self-similar fragmentation of index α, and the genealogical tree of its asso-
ciated branching random walk at some time t ≥ 0. All sites present in the tree at time t are marked in red. Note
that the i.i.d. standard exponential random variables (Wi)i∈N in the definition of S(v) for the site v must satisfy∑|v|

i=0 2αiWi ≤ t .

large. We will refer to S = (S(v))v∈T as the expanding branching random walk as proposed
in [2]. It is natural to consider for all v ∈ T the rescaled quantities

K(v) := q |v|S(v).

We will refer to (K(v))v∈T as the rescaled expanding branching random walk. The jumps in
the rescaled branching random walk have the simple description that if w is a child of v, then

K(w) = qK(v) + W(w);
that is, a particle inherits q times their parent’s position, plus a standard exponential. It is
easily seen that as n becomes large, for a typical v ∈ Tn, the sum K(v) has order 1. In fact,
the marginal law of each random variable K(v) for v ∈ Tn is equal in distribution to the
weighted sum

(6) Kn :=
n∑

i=0

qiWi,

where the Wi are i.i.d. standard exponential random variables. The collection {Kn}n∈N forms
a perpetuity sequence with almost sure limit

(7) K∞ :=
∞∑
i=0

qiWi,

being the solution to

(8) K∞ d= qK∞ + W, K∞ independent from W ,

where W is a standard exponential random variable. Random variables of this type were
studied in the literature [11, 21] with a heavy emphasis on the right tail behaviour P(K∞ > t)

as t → ∞. A careful and delicate analysis of the upper and lower tails of K∞ will play an
important role in our study of the asymptotics of the largest and smallest fragments of the
process.

We conclude this section on the representation with a branching random walk emphasizing
the scaling on which the process may be viewed. Indeed, consider the interval [0, k−n)—a
representative of the typical interval of size k−n—which exists for a random period of time
during the process. This random period of time is equal in law to[

q−(n−1)Kn−1, q
−(n−1)Kn−1 + q−nW

)
,
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where W is a standard exponential random variable and Kn is given by (6) (so that in partic-
ular, Kn has unit order when n is large). In particular, loosely speaking we have:

The times t for which the intervals of size k−n exist in the process are of order q−(1+o(1))n.

Inverting this relation gives:

The intervals of sizes k−n existing at a time t have the order n = (
1 + o(1)

)
κ log t,

where, as in the Introduction, κ = 1/ log(1/q). In particular, this discussion sketches the first
order scale on which the process lives: the typical interval at time t has size k−(1+o(1))κ log t =
t−1/α , where α > 0 is the index of self-similarity. Note that Theorem A and Theorem B state
that indeed, up to first order, every interval has this size.

2.2. Largest fragments in the process. Recall Theorem A in the Introduction, which
stated that if k−mt is the size of the largest fragment in the process at time t , then with
high probability for all large times t , mt is one of the integers neighbouring the quantity

κ log t − κ log log t − κ log(γ κ).

In fact, this is explained by a far more descriptive result, which we now elucidate from the
branching random walk perspective. Given an element v of Tn, for each 0 ≤ i ≤ n, let vi

be the unique ancestor of v in generation i, that is, in Ti . One key property of the process
(K(v))v∈T is that the majority of mass in each quantity K(v) is due to recent ancestors.
Indeed, we have the representation

K(v) =
|v|∑
i=0

q |v|−iW(vi),(9)

so that most of the mass in K(v) is due to recent ancestors of v: those terms q |v|−iW(vi)

where i is close to |v|. Intuitively, this implies that to a large extent, the random variables
(K(v) : v ∈ Tn) are asymptotically independent. We note for further reference that (9) implies
that for m < n, with vm denoting the ancestor of v in generation m,

K(v) = qn−mK(vm) + K̃n−m+1,(10)

where K̃n−m+1 is independent of K(vm) and has the same law as Kn−m+1 defined in (6).
Moreover, we show in Lemma 3.1 that the upper tails of the Kn take the form

P(Kn > s) = (
1 + o(1)

)
e−s/ϕn(q) for large s,

where

(11) ϕn(q) :=
n∏

j=1

(
1 − qj ), n ≥ 1, ϕ0(q) := 1.

In particular, the maximal elements of the collection (K(v))v∈Tn
behave a lot like the max-

imum of kn independent random variables with exponential tails: namely, like a Gumbel
random variable. We mention in passing that ϕn(q) is a decreasing function of n, and that as
n → ∞, ϕn(q) converges to the Euler function ϕ∞(q) :=∏∞

i=1(1 − qi), which takes strictly
positive values for q ∈ (0,1). This may be seen, for instance, from Eulers pentagonal number
theorem, see [1], or from the well-known fact that for 0 < ai < 1, we have �(1 − ai) > 0 if
and only if

∑
ai < ∞.

Let Nn be the point process on the real line given by

Nn = ∑
v∈Tn

δJ (v), J (v) := K(v) − γ |v|,(12)

where we recall that γ = log k. Our main result states that the elements of (J (v))v∈Tn
behave

like a Poisson point process on the real line.
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THEOREM C. As n → ∞, the point process Nn converges in distribution (in the sense
of vague convergence from [19]) to a Poisson point process with intensity measure

e−s ds/ϕ∞(q).(13)

Moreover, the neighbouring point processes are asymptotically independent, in the sense that
for any 
 ≥ 1, the vector of point processes (Nn, . . . ,Nn+
−1) converges in distribution to a
vector of 
 independent Poisson processes with intensity given in (13).

Let us now consider the large fragments. One immediate consequence of Theorem C is the
following result on the asymptotic behaviour of

(14) Kmax
n := max

{
K(v) : v ∈ Tn

}
and τn := Kmax

n − γ n = max
{
J (v) : v ∈ Tn

}
.

COROLLARY 2.1. Let τn be defined as in (14). Then, as n → ∞, τn converges in distri-
bution to a shifted Gumbel random variable, that is,

lim
n→∞P(τn ≤ s) = exp

(−e−s/ϕ∞(q)
)
.

Corollary 2.1 explains the concentration of the size of the largest fragment given in Theo-
rem A. Note that we may write

{mt ≤ n} = {
q−nKmax

n > t
}
.(15)

In particular, using the definition of τn in (14), we have

P(mt ≤ n) = P
(
τn > qnt − γ n

)
.(16)

Now, since τn converges in distribution, if qnt − γ n → ∞ for n → ∞, the probability on
the right-hand side of (16) goes to 0, and if qnt − γ n → −∞ for n → ∞, the probability on
the right-hand side of (16) goes to 1. In order to give a proof of the almost-sure statement
Theorem A we will need some uniform estimates for τn which we will develop in the sequel.
The full proof of Theorem A is given at the beginning of Section 4.

2.3. Smallest fragments in the process. We saw in Section 2.2 that the behaviour of the
largest fragments in the k-regular self-similar fragmentation process is intimately connected
with the largest values Kmax

n := maxv∈Tn
K(v) in the rescaling of the expanding branching

random walk. Analogously, it is the behaviour of the smallest value Kmin
n := minv∈Tn

K(v)

that ultimately dictates the asymptotics of the smallest fragments in the fragmentation pro-
cess. In this direction we have the following result.

THEOREM 2.2. Define Kmin
n := min{K(v) : v ∈ Tn} and define wn = wn(κ, γ ) by

(17) wn :=
√

2γ

κ
n − 1

2
logn − 1

2κ
− 1

2
logκ + 1 − 1

2
log(2γ ).

Then there exists almost surely an n0 in N such that for all n ≥ n0 we have

logKmin
n ∈

[
−wn − 1

n1/3 ,−wn + 1

n1/3

]
.

In Section 6 we prove Theorem 2.2, and thereafter use Theorem 2.2 to prove Theorem B.
One of the key tasks in proving Theorem 2.2 is a careful analysis of the s ↓ 0 asymptotics

of the left tails P(K∞ ≤ s) of the random variable K∞ given in (7). Indeed, we note that since
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Kn (defined in (6)) is stochastically dominated by K∞, and Kn is a sum of n+ 1 independent
exponentials, for any n we have

P(K∞ ≤ s) ≤ P(Kn ≤ s) ≤ C(q,n)sn+1

for some C(q,n) independent of s. In particular, as s ↓ 0, the probability P(K∞ < s) goes to
zero faster than any power of s. The following result, which we believe to be of independent
interest, gives a fine characterisation of these fast asymptotics.

THEOREM 2.3. There exists a constant Cq such that for all s ∈ (0,1/e2] and for all
n ≥ κ(log 1

s
+ log log 1

s
), including possibly n = ∞, we have

1

Cq

exp
(−Fq(s)

)≤ P(Kn ≤ s) ≤ Cq exp
(−Fq(s)

)
,(18)

where

Fq(s) := κ

2

(
log

1

s
+ log log

1

s
+ 1

2κ
+ logκ − 1

)2
+
(

1

2
+ κ

)
log log

1

s
.(19)

Theorem 2.3 is proven in Section 5. We remark that the restriction s ≤ 1/e2 ensures
log log 1

s
> 0. Let us also note from Theorem 2.3 that for fixed s, provided n is sufficiently

large compared to 1/s, the left tail P(Kn ≤ s) takes the same order as P(K∞ ≤ s).
That completes the section on statements of our main results. In the next section we begin

setting the foundations for proofs of these statements by looking at formulas surrounding
the random variables Kn and the associated Markov chains. Thereafter we provide a simple
lemma suitable for converting statements about the expanding branching random walk to
those about the fragmentation process.

3. Preliminaries on the rescaled expanding branching random walk. Throughout the
rest of this paper, C� ∈ (0,∞) is a constant which is not of particular interest, and which
may vary from line to line, but depends only on the set of parameters � ⊆ {q, p,k, t0} (with
parameters p and t0 yet to be defined). We stress that constants C� do not depend on n,m ∈N

and t > 0.

3.1. Transition probabilities of birth processes. Recall that k−Xt denotes the length of
the interval containing 0 present in the system at time t . As noted in Section 2.1 the moment
of the nth splitting of this interval, Sn = sup{t ≥ 0 : Xt = n} has an explicit representation,
see (4). Using (4) one can compute directly (see, for instance, Feller [12], I.13 Problem 12)
that

P(Sn ∈ dt) =
(

n∏
i=0

λi

)
n∑

j=0

e−λj t∏
0≤k≤n,k �=j (λk − λj )

dt,(20)

where λi = qi . Integrating both sides of (20), we obtain

P(Sn > t) =
(

n∏
i=0

λi

)
n∑

j=0

e−λj t

λj

∏
0≤k≤n,k �=j (λk − λj )

.(21)

Consider now calculating P(Xt = n) = P(Sn > t, Sn−1 ≤ t). We claim that

P(Xt = n) =
(

n−1∏
i=0

λi

)
n∑

j=0

e−λj t∏
0≤k≤n,k �=j (λk − λj )

.(22)
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The most natural way to prove (22) is by writing P(Xt = n) = P(Sn > t) − P(Sn−1 > t), and
then applying (21). However, there is a far slicker route, writing

P
(
Sn ∈ [t, t + h)

)= P(Xt ≤ n,Xt+h > n) = P(Xt = n,Xt+h = n + 1) + o(h).

Using the Markov property results in

P(Sn ∈ dt) = λnP(Xt = n)dt.(23)

In particular, by using (23) and (20), we immediately obtain (22). With a view towards tack-
ling the equations (20), (21) and (22) with λi = qi , recall the definition (11) of ϕn(q), and
note that for any 0 ≤ j ≤ n,∏

0≤k≤n,k �=j

(
qk − qj )= (−1)n−j qj (n−j/2−1/2)ϕj (q)ϕn−j (q).(24)

By replacing j with n − j , and using (24), (21) and λi = qi we have

P(Sn > t) =
n∑

j=0

(−1)j qj (j+1)/2

ϕj (q)ϕn−j (q)
exp

(−qn−j t
)
.

Recall that Kn is given in (6), and is equal in distribution to qnSn. Thus, we have

P(Kn > t) =
n∑

j=0

(−1)j qj (j+1)/2

ϕj (q)ϕn−j (q)
exp

(−q−j t
)
.(25)

By differentiating both sides of (25) with respect to t , we see that the density fn of Kn is
given by

fn(t) =
n∑

j=0

(−1)j qj (j−1)/2

ϕj (q)ϕn−j (q)
exp

(−q−j t
)
.(26)

From (6) it is plain that Kn ≤ Kn+1, and that almost surely, as n → ∞, the random variables
(Kn)n∈N converge to a finite limit K∞, which is given by (7). It is straightforward to verify,
using the monotone convergence theorem and (25), that

P(K∞ > t) = 1

ϕ∞(q)

∞∑
j=0

(−1)j qj (j+1)/2

ϕj (q)
exp

(−q−j t
)
.(27)

That the right-hand side of (27) is equal to 1 when t = 0 is a consequence of the identity
∞∑

j=0

ζ jqj (j+1)/2

ϕj (q)
=

∞∏
i=1

(
1 + qiζ

)
, ζ ∈ R,

which is a well known fact in q-combinatorics; see for instance Exercise 4 in Section I.2 of
Macdonald [20]. Using (27), we can control the second order term in the asymptotic expan-
sion of the right tail of K∞, which will be useful in the sequel.

LEMMA 3.1. For every t ≥ 0, we have the following tail and density bounds for Kn,
n ∈N∪ {0} ∪ {∞}: ∣∣∣∣P(Kn > t) − e−t

ϕn(q)

∣∣∣∣≤ Cqe
−t/q

and ∣∣∣∣fn(t) − e−t

ϕn(q)

∣∣∣∣≤ Cqe
−t/q .
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PROOF. Recall (25). We use the triangle inequality, and the facts that ϕj (q) is decreasing
in j , and that we have q < 1, to see that∣∣∣∣P(Kn > t) − e−t

ϕn(q)

∣∣∣∣=
∣∣∣∣∣

n∑
j=1

(−1)j qj (j+1)/2

ϕj (q)ϕn−j (q)
exp

(−q−j t
)∣∣∣∣∣

≤
n∑

j=1

qj

ϕn(q)2 exp(−t/q).

Now note that ϕn(q) ≥ ϕ∞(q), which gives the first claim. A similar argument yields the
second claim. �

We will also find occasion to use the crude bounds

fn(t) ≤ C′
qe

−t and P(Kn > t) ≤ C′
qe

−t , t ≥ 0,(28)

both of which are direct consequences of Lemma 3.1. Note that the latter bound can be
significantly improved, as we will see in Section 5 when proving Theorem 2.3.

3.2. From the branching random walk back to the fragmentation process. In this brief
section, we give a basic lemma for bounding values of increasing functions f : R+ → N in
terms of the times at which they jump. This allows us to convert the results on the rescaled
expanding branching random walk to statements about the fragmentation process, see Theo-
rem A and Theorem B. The proof follows from a standard computation and will therefore be
omitted.

LEMMA 3.2. Let t0 ∈ R+ and let n0 ∈ N. Suppose f : [t0,∞) → {n0, n0 +1, n0 +2, . . .}
is a surjective and nondecreasing right-continuous function. For each n ≥ n0 define

Tn := sup
{
t ≥ t0 : f (t) = n

}
to be the point in [t0,∞) at which f (t) jumps from n to n + 1. Suppose a, b : [n0,∞) →R+
are two strictly increasing continuous functions such that a(s), b(s) → ∞ with s → ∞, and
for each n ≥ n0

a(n) ≤ Tn ≤ b(n).

Then for all t ∈ [t0,∞) large enough, we have⌈
b−1(t)

⌉≤ f (t) ≤ ⌈
a−1(t)

⌉
where a−1 and b−1 are the respective inverse functions of a and b.

4. The rightmost particles in the rescaled expanding branching random walk. In
this section, we study the rightmost particles in the rescaled expanding branching random
walk, which are connected to the largest fragments in the fragmentation process. We begin in
Section 4.1 with a proof of Theorem A concerning the concentration in law of the size of the
largest fragment at large times. In the remainder of Section 4, we study point processes as-
sociated with the largest particles in the rescaled branching random walk, ultimately proving
Theorem C.
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4.1. Proof of Theorem A. We recall from Section 2 that we associate with the fragmen-
tation an expanding branching random walk {S(v) : v ∈ T}: the elements v in the nth gener-
ation Tn of T correspond to the intervals of size k−n, with S(v) denoting the time at which
the interval v fragments. In particular, the quantity

max
v∈Tn

S(v) = sup{t ≥ 0 : mt ≤ n}

is the last time at which there is an interval of size k−n in the process. We recall fur-
ther that K(v) := q |v|S(v) denotes the rescaling of the expanding BRW, and that τn :=
maxv∈Tn

K(v) − γ n. In particular, up to scaling and translation, the behaviour of τn dictates
that of the maximal fragment.

We now obtain upper bounds on both the upper and lower tails of τn. Considering first
the upper tail, by using the union bound to obtain the first inequality below, and then the tail
bound (28) on Kn to obtain the second, we have

P(τn > s) = P

(
max|v|=n

J (v) > s
)

≤ kn
P(Kn > s + γ n) ≤ Cqe

−s,

for all n ≥ 0 and s ∈ R. In particular, P(τn > 2 logn) ≤ Cq/n2 is summable in n, so that by
the Borel–Cantelli lemma

P(τn ≤ 2 logn for all but finitely many n) = 1.(29)

On the other hand, by the construction of the rescaled expanding branching random walk (see
(9)), max|v|=n J (v) stochastically dominates max1≤j≤kn(Wj − γ n), where W1, . . . ,Wkn are
i.i.d. standard exponential random variables. Hence,

P(τn < s) = P

(
max|v|=n

J (v) < s
)

≤ (
1 − P(W1 > s + γ n)

)kn ≤ exp
(−kn

P(W1 > s + γ n)
)

= exp
(−e−s).

In particular P(τn < − log(2 logn)) ≤ 1/n2 is summable in n, so that again by Borel–Cantelli
we have

P
(
τn ≥ − log(2 logn) for all but finitely many n

)= 1.(30)

To summarise, from (29) and (30) we have seen that almost surely

− log(2 logn) ≤ τn ≤ 2 logn for all but finitely many n.(31)

Let Tn := max|v|=n S(v) denote the last time at which there was an interval of size k−n, so
that Tn = q−n(τn + γ n). Rephrasing (31) we have, almost surely,

q−n(γ n − log(2 logn)
)≤ Tn ≤ q−n(γ n + 2 logn) for all but finitely many n.(32)

Note that by definition mt := sup{t ≥ 0 : Tn ≤ t}. Moreover, for a(x) := q−x(γ x −
log(2 logx)) and b(x) := q−x(γ x + 2 logx), we are in the setting of Lemma 3.2, so that
almost surely there exists a t0 ∈ R such that for all t ≥ t0,⌈

b−1(t)
⌉≤ mt ≤ ⌈

a−1(t)
⌉
.(33)

It remains to obtain explicit functions from b−1(t) and a−1(t). The reader is invited to verify
using the fact that 1

κ
:= log 1

q
that with g(t) as in the statement of Theorem A, we have

a−1(t) = g(t) + κ
log log t

log t
+ o

(
log log t

log t

)
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and

b−1(t) = g(t) +
(
κ − 2

γ

)
log log t

log t
+ o

(
log log t

log t

)
.

Setting μ1 = (κ + 2
γ
), for all sufficiently large t we have

g(t) − μ1
log log t

log t
≤ b−1(t) ≤ a−1(t) ≤ g(t) + μ1

log log t

log t
.(34)

In particular, combining (33) and (34) we see that there exists t1 such that for all t ≥ t1 we
have ⌈

g(t) − μ1
log log t

log t

⌉
≤ mt ≤

⌈
g(t) + μ1

log log t

log t

⌉
,

which is precisely the statement of Theorem A.

4.2. The rescaled point process. We define a sequence of point processes (Nn)n≥1 on the
real line as follows. The number of points Nn(A) lying in a Borel set A ⊆ R is given by

Nn(A) := ∑
v∈Tn

δJ (v)(A) = #
{
v ∈ Tn : J (v) ∈ A

}
,

where we recall from (12) that J (v) = K(v)−γ |v| for γ = logk. It follows from the linearity
of expectation and Lemma 3.1 that

E
[
Nn

([t,∞)
)]= kn

P(Kn > γn + t) = (
1 + o(1)

)
e−t /ϕ∞(q).

That is, as n grows, the point process Nn has a unit order number of particles in each com-
pact interval in terms of expectations. We will prove that the point process Nn converges in
distribution to a Poisson point process, denoted by N∞ and with intensity e−s ds/ϕ∞(q). In
fact, we will in the following establish a stronger statement.

THEOREM 4.1. Let 
 be a positive integer. Then as n → ∞, the 
-tuple (Nn, . . . ,

Nn+
−1) of point processes converge in distribution to a 
-tuple of i.i.d. Poisson point pro-
cesses on the real line with intensity measures e−s ds/ϕ∞(q).

Theorem 4.1 is simply a reformulation of Theorem C, which was stated in Section 2. In
order to prove Theorem 4.1, we will use a moment argument based on factorial measures,
which we now introduce using some definitions from the theory of point processes following
Section 4.3 of [19]. Given a point process Y = ∑

k δxk
on a set E, for every integer p ≥ 1

we may define a new point process Y [p] on Ep by letting Y [p](A) be the ordered p-tuples of
distinct points of Y in A ⊆ Ep . Given a measure λ on E, we define the pth factorial measure
λ[p] on Ep by setting

λ[p](A) = E
[
Y [p](A)

]
, A ⊆ Ep.

If Y is a Poisson point process on E with intensity measure λ, then the pth factorial measure
is simply given by the product measure λ⊗p on Ep [19]. The following technical lemma, the
proof of which we only outline based on existing literature, guarantees that convergence of
moments implies convergence in distribution to a Poisson process.

LEMMA 4.2. Suppose X is a Poisson process on E with nonatomic intensity measure λ.
Let (Xn)n≥1 be a sequence of point processes on a set E satisfying

lim
n→∞E

[
X[p]

n (A)
]= λ⊗p(A)

for every measurable subset A of Ep for which λ⊗p(A) is finite. Then Xn converges in dis-
tribution to X.
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PROOF. Using the fact that the limiting process is simple, that is, it assigns at most a unit
mass to each point, we use [16], Theorem 4.18, which asserts that it is sufficient to show that
the avoidance functions and intensity measures converge, that is, we have for any Borel set
A ⊆ R,

(35) P
(
Xn(A) = 0

)→ P
(
X∞(A) = 0

)
and E

[
Xn(A)

]→ E
[
X∞(A)

]
.

The factorial measures can be used to represent the avoidance function via [10], formula
5.4.10,

P
(
Y(A) = 0

)=
∞∑

p=0

(−1)p
λ[p](A(p))

p! , A(p) =
p∏

j=1

A,A ∈ E.

It follows that if limn→∞E[X[p]
n (A)] = λ⊗p(A) for every p, then (35) holds, establishing

convergence in distribution. �

Next, suppose Y := (Y0, . . . , Y
−1) is an 
-tuple of independent Poisson processes on
R, each with intensity e−s ds/ϕ∞(q). Then Y may as well be regarded as a single Pois-
son process on {0, . . . , 
 − 1} × R with intensity measure 1

ϕ∞(q)

∑
−1
i=0 δi ⊗ e−s ds. Let

p = (p0, . . . , p
−1) denote a collection of nonnegative integers and (ti,j : 0 ≤ i ≤ 
 − 1,1 ≤
j ≤ pi) be real numbers. Note that sets of the form

E(ti,j ) :=

−1∏
i=0

pi∏
j=1

{i} × [ti,j ,∞)

yield a π -system generating ({0, . . . , 
− 1}×R)| p|, where | p| := p0 +· · ·+p
−1. Using the
fact that

∫∞
ti,j

e−s ds/ϕ∞(q) = e−ti,j /ϕ∞(q), we have

(36)

E
[
Y[| p|](E(ti,j )

)]= E

[

−1∏
i=0

Y
[pi ]
i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]

=

−1∏
i=0

pi∏
j=1

e−ti,j /ϕ∞(q).

Here Y
[pi ]
i ([ti,1,∞) × · · · × [ti,pi

,∞)) denotes the number of pi-tuples (x1, . . . , xpi
) of dis-

tinct points of Yi for which xj ≥ ti,j for every 1 ≤ j ≤ pi .
In light of Lemma 4.2 and (36), in order to prove Theorem 4.1 it is sufficient to show that

for all nonnegative integers p0, . . . , p
−1, and all real numbers (ti,j : 0 ≤ i ≤ 
 − 1,1 ≤ j ≤
pi), we have

lim
n→∞E

[

−1∏
i=0

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]=

−1∏
i=0

pi∏
j=1

e−ti,j /ϕ∞(q),(37)

where, by the definition of Nn(A), for each 0 ≤ i ≤ 
 − 1, N
[pi ]
n+i ([ti,1,∞) × · · · × [ti,pi

,∞))

is the number of pi-tuples of elements (ui,1, . . . , ui,pi
) in generation n + i of the expanding

branching random walk for which J (ui,j ) > ti,j .
To this end, for p := (p0, . . . , p
−1), we define

(38) T
p
n := {

u := (ui,j : 0 ≤ i ≤ 
 − 1,1 ≤ j ≤ pi) : (ui,1, . . . , ui,pi
) ∈ Tn+i are distinct

}
.

From the linearity of expectation, we have

(39) E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]= ∑
u∈T p

n

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})
.
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We split the task of proving (37) over the next two sections, first dealing with the easier lower
bound, and then with the more difficult upper bound.

4.3. The lower bound in (37). This section is dedicated to proving the lower bound

lim inf
n→∞ E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]≥

−1∏
i=0

pi∏
j=1

e−ti,j /ϕ∞(q).(40)

We begin with a lemma estimating the cardinality of T p
n .

LEMMA 4.3. There is a constant C p ∈ (0,∞) depending on p = (p0, . . . , p
−1), but
independent of n, such that


−1∏
i=0

kpi(n+i) ≥ #T p
n ≥ (

1 − C pk−n) 
−1∏
i=0

kpi(n+i).

PROOF. Consider that

#T p
n =


−1∏
i=0

kn+i(kn+i − 1
) · · · (kn+i − pi + 1

)

=

−1∏
i=0

kpi(n+i)((1 − 1/kn+i) · · · (1 − (pi − 1)/kn+i)).
The upper bound is now trivial. The lower bound follows from noting that


−1∏
i=0

((
1 − 1/kn+i) · · · (1 − (pi − 1)/kn+i))≥ 1 −


−1∑
i=0

pi−1∑
j=1

j/kn+i ≥ 1 − k−n

−1∑
i=0

(
pi

2

)
,

so that we may take C p =∑
−1
i=0

(pi

2

)
. �

The following lemma is an FKG-type inequality for correlated events on the tree. Since
the proof is not related to the rest of our arguments, it will be given in the Appendix. (We
remark that our proof of Lemma 4.4 uses the upcoming equation (51); the derivation of this
equation is independent of the rest of the paper.)

LEMMA 4.4. For any n ∈ N, p = (p0, . . . , p
−1) and any tuple u := (ui,j : 0 ≤ i ≤

 − 1,1 ≤ j ≤ pi), we have

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≥

−1∏
i=0

pi∏
j=1

P
(
J (ui,j ) > ti,j

)
(41)

for any choice of real numbers (ti,j ).

With Lemma 4.4 at hand, we are now ready to prove the lower bound (40).

PROOF OF (40). By Lemma 3.1, recalling J (v) = K(v) − γ |v| from (12), we have for
all i, j that

P
(
J (ui,j ) > ti,j

)≥ e−ti,j−γ (n+i)

ϕn+i(q)

(
1 − Cqe

−(q−1−1)(γ n+t0)
)
,(42)
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where t0 := mini,j {ti,j } and Cq ∈ (0,∞) is some constant depending on q , but independent
of n and (ti,j ). Now, for a sufficiently large constant C p,q,t0 ∈ (0,∞) depending on q , t0
and p = (p0, . . . , p
−1), but again independent of n and (ti,j ), we have that by the Bernoulli
inequality for sufficiently large n,

(43)


−1∏
i=0

pi∏
j=1

(
1 − Cqe

−(q−1−1)(γ n+t0)
)= (

1 − Cqe
−(q−1−1)(γ n+t0)

)| p|

≥ 1 − Cq, p,t0e
−(q−1−1)γ n,

where | p| = p0 +p1 + · · ·+p
−1. Combining (41), (42) and (43), for any tuple (ui,j ) in T
p
n ,

we have

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≥ (
1 − Cq, p,t0e

−(q−1−1)γ n) 
−1∏
i=0

pi∏
j=1

e−ti,j−γ (n+i)/ϕn+i(q).

Plugging this in the probability summation formula (39), we obtain

E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]

≥ #T p
n

(
1 − Cq, p,t0e

−(q−1−1)γ n) 
−1∏
i=0

pi∏
j=1

e−ti,j−γ (n+i)/ϕn+i(q).

Now using the fact that γ = log k, and the lower bound in Lemma 4.3, we find that

#T p
n


−1∏
i=0

pi∏
j=1

e−γ (n+i) ≥ (
1 − C pk−n).

Combining the last two estimates we obtain

E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]

≥ (
1 − C pk−n)(1 − Cq, p,t0e

−(q−1−1)γ n) 
−1∏
i=0

pi∏
j=1

e−ti,j /ϕn+i(q).

Taking n → ∞ concludes the proof of (40). �

4.4. The hard direction in Theorem C: An overview. In this section, we work towards
proving the upper bound in (37). Namely, the goal is to show that

lim sup
n→∞

E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]≤

−1∏
i=0

pi∏
j=1

e−ti,j /ϕ∞(q).(44)

In light of the probability summation formula (39), to tackle the hard direction, we need to
obtain effective upper bounds on the exceedance probabilities

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

for tuples (ui,j : 0 ≤ i ≤ 
− 1,1 ≤ j ≤ pi) with ui,j ∈ T
p
n+i . We now overview the main idea

in proving an inequality of the form (44). Given integers 0 ≤ m ≤ n and a tuple u = (ui,j :
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0 ≤ i ≤ 
 − 1,1 ≤ j ≤ pi), we define the number 1 ≤ Pn−m(u) ≤ | p| = p0 + · · · + p
−1 by
setting

(45) Pn−m(u) := number of different ancestors in generation n − m of the vertices ui,j .

For a special choice of m which we give below, we distinguish between two different types
of tuples:

• We say a tuple u in T
p
n is distantly related (in generation n − m) if

Pn−m(u) = p0 + · · · + p
−1 = | p|.
We will see that provided m ≤ θn for some constant θ < 1, the overwhelming number of
tuples in T

p
n are distantly related as m and n become large. Since the bulk of particles

are of this form, we will require a fairly delicate m-dependent control on the exceedance
probabilities; see Lemma 4.5 below.

• For an integer ν < | p|, we say u in T
p
n is ν-closely related (in generation n − m) if

Pn−m(u) = ν.

We find that for such tuples, the exceedance probability P(
⋂
−1

i=0
⋂pi

j=1{J (ui,j ) > ti,j })
has a larger order than for distantly related tuples. However, it turns out that this order is
negligible when compared with the relative size of the number of closely related tuples.
Indeed, we show in Lemma 4.7 that the number of tuples u with Pn−m(u) = ν has the
order kνn, while Lemma 4.6 tells us that the associated exceedance probabilities are of
order o(k−νn).

The next two lemmas are the main results of this section, controlling respectively, the
exceedance probabilities associated with distantly and closely related tuples.

LEMMA 4.5. Let m ∈ N such that | p|qm−1 ≤ 1/2, and suppose that Pn−m(u) = | p|.
Then

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≤ (1 + εn,m)


−1∏
i=0

pi∏
j=1

(
e−γ (n+i)−ti,j /ϕ∞(q)

)
,(46)

for all real numbers ti,j , where

εn,m = C p,q,t0

(
e
− 1

q
γ n + qm)

for t0 := mini,j {ti,j }.

LEMMA 4.6. Let m ∈ N be sufficiently large so that 2| p|qm < 1/2. Let t0 := mini,j {ti,j }
for real numbers ti,j , and u in T

p
n be such that Pn−m(u) = ν < | p|. Then

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})= o
(
k−νn).

More specifically, there is a constant Cq,t0 ∈ (0,∞) such that

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≤ Cq,t0 exp
(−(θq + ν)γ n

)
,

where θq := min{ 1
q
,2 − q} − 1 > 0.
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The proofs of Lemma 4.5 and Lemma 4.6 are both lengthy, and we defer them to Sec-
tions 4.5 and 4.6, respectively. We now conclude this overview with the following short
lemma on the number of closely related tuples, which will be used in conjunction with
Lemma 4.5 and Lemma 4.6 to prove the upper bound (44).

LEMMA 4.7. Recall (38) and (45). We have the following bound on the number of ν-
closely related tuples in generation n − m:

#
{
u ∈ T

p
n : Pn−m(u) = ν

}≤ Ck,
, pknνk(| p|−ν)m.

PROOF. There are at most k(n−m)ν ways of choosing ν different ancestors in generation
n − m. Each individual in generation n − m has km+i descendents in generation n + i. Using
the crude bound that km+i ≤ km+
−1 whenever i ≤ 
 − 1, the number of ν-closely related
tuples in generation n − m is bounded from above by

k(n−m)ν · (km+
−1)| p| = Ck,
, pkνnk(| p|−ν)m,

where Ck,
, p := k| p|(
−1). �

We now show how Lemma 4.5, Lemma 4.6 and Lemma 4.7 are combined to obtain (44).

PROOF OF (44) ASSUMING LEMMA 4.5 AND LEMMA 4.6. By the probability summa-
tion formula (39), for any m we have

(47)

E

[

−1∏
i=0

pi∏
j=1

N
[pi ]
n+i

([ti,1,∞) × · · · × [ti,pi
,∞)

)]

= ∑
u:Pn−m(u)=| p|

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

+
| p|−1∑
ν=1

∑
u:Pn−m(u)=ν

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})
.

We begin by controlling the contribution from distantly related tuples. Since there are at most∏
−1
i=0 kpi(n+i) elements in T

p
n , using Lemma 4.5, we obtain

(48)

∑
u:Pn−m(u)=| p|

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

≤ (1 + εn,m)


−1∏
i=0

kpi(n+i)

−1∏
i=0

pi∏
j=1

e−γ (n+i)−ti,j

ϕ∞(q)

= (1 + εn,m)


−1∏
i=0

pi∏
j=1

e−ti,j

ϕ∞(q)

≤

−1∏
i=0

pi∏
j=1

(
e−ti,j /ϕ∞(q)

)+ εn,m

(
e−t0

ϕ∞(q)

)−| p|
,

where εn,m is as in the statement of Lemma 4.5, that is, εn,m = C p,q,t0(e
− 1

q
(γ n−t0) + qm),

and t0 = mini,j {ti,j }. We now control the contribution from closely related tuples. Indeed,
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combining Lemma 4.6 with Lemma 4.7, provided that 2| p|qm < 1/2, for each 1 ≤ ν ≤ | p| −
1, we have

(49)

∑
u:Pn−m(u)=ν

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≤ Ck,
, p,qk
nνk(| p|−ν)m exp(−θqγ n − νγ n)

≤ Ck,
, p,q exp
(
γ
((| p| − 1

)
m − θqn

))
.

Now for each n ∈ N, we set m := �θ̃qn�, where | p|θ̃q < θq , and send n → ∞. Now by using
the bounds (48) and (49) in (47), we obtain (44). �

This finishes the proof of the upper bound (44), and thereby completes the proof of Theo-
rem 4.1, respectively, Theorem C. It remains to prove Lemma 4.5 and Lemma 4.6, which we
do in the next two sections.

4.5. Bounding exceedance probabilities of distantly related tuples.

PROOF OF LEMMA 4.5. Let Pn−m(u) = | p|. For each i, j , let vi,j denote the ancestor
of ui,j in generation (n − m). Since Pn−m(u) = | p|, the sites vi,j are | p| distinct elements of
generation n − m. Now by construction, we have

(50)

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})= P

(

−1⋂
i=0

pi⋂
j=1

{
K(ui,j ) > ti,j + γ (n + i)

})

= P

(

−1⋂
i=0

pi⋂
j=1

{
qm+iK(vi,j ) + K

(i,j)
m+i > ti,j + γ (n + i)

})
,

where the variables {K(i,j)
m+i : 0 ≤ i ≤ 
 − 1,1 ≤ j ≤ pi} are independent, and each K

(i,j)
m+i is

distributed as Km+i .
Consider the following general fact. If for a finite indexing set E , (Ae)e∈E are identically

distributed (and possibly dependent) random variables with the same law as A, and (Be)e∈E
are (possibly dependent but) independent of (Ae)e∈E and A with any distributions, then we
have that

P

(⋂
e∈E

{Ae + Be > ce}
)

≤ P

(⋂
e∈E

{A + Be > ce}
)
.(51)

To see that (51) holds just note that

min
e∈E Ae + Be − ce ≤ Ae∗ + Be∗ − ce∗ d= A + min

e∈E Be − ce,

where e∗ is a (random) element of E for which Be∗ − ce∗ = mine∈E Be − ce. Using (51) in
(50) with Ai,j = K(vi,j ) and Bi,j = K

(i,j)
m+i+1, we may replace K(vi,j ) in (50) with a single

copy of Kn−m, so that we have the upper bound

(52)

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

≤ P

(

−1⋂
i=0

pi⋂
j=1

{
qm+iKn−m + K

(i,j)
m+i > ti,j + γ (n + i)

})
.
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Finally, using the fact that K∞ stochastically dominates Kn for each n ∈ N, as well as the
fact that qm+i ≤ qm, we may simplify several matters of indexing by extracting from (52) the
upper bound

(53)

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≤ P

(

−1⋂
i=0

pi⋂
j=1

{
qm+iK∞ + K(i,j)∞ > ti,j + γ (n + i)

})

= E

[

−1∏
i=0

pi∏
j=1

P
(
K(i,j)∞ > ti,j + γ (n + i) − qmK∞|K∞

)]
,

where K∞ and K
(i,j)∞ are independent copies of K∞, and the last equality above follows from

using the definition of conditional expectation. We now control the terms inside the product
in the expectation on the right-hand side of (53). Indeed, by Lemma 3.1 for each i, j we have

P
(
K(i,j)∞ > ti,j + γ (n + i) − qmK∞|K∞

)≤ e−(ti,j+γ (n+i)−qmK∞)

ϕ∞(q)

· (1 + Cqe
−(1/q−1)(t0+γ n−qmK∞)+),

where we recall t0 := mini,j {ti,j }, and for a real number x, we let x+ denote the maximum
of x and 0.

Now for every n ∈ N and every Cq ∈ (0,∞), there is a second constant Cq,n ∈
(0,∞) such that (1 + Cqw)n ≤ 1 + Cq,nw for all w ∈ [0,1]. In particular, setting w =
e−(1/q−1)(t0+γ n−qmK∞)+ we have

(54)


−1∏
i=0

pi∏
j=1

P
(
K(i,j)∞ > ti,j + γ (n + i) − qmK∞|K∞

)

≤ (
1 + C p,q,t0e

−(1/q−1)(γ n−qmK∞))e| p|qmK∞

−1∏
i=0

pi∏
j=1

(
e−ti,j−γ (n+i)/ϕ∞(q)

)
.

Plugging (54) into (53), we obtain

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

≤ (
E
[
e| p|qmK∞]+ C p,q,t0e

−(1/q−1)γ n
E
[
e(| p|qm+(1/q−1)qm)K∞])(55)

·

−1∏
i=0

pi∏
j=1

(
e−ti,j−γ (n+i)/ϕ∞(q)

)

≤ (
1 + C p,q,t0e

−(1/q−1)γ n)
E
[
e| p|qm−1K∞] 
−1∏

i=0

pi∏
j=1

(
e−ti,j−γ (n+i)/ϕ∞(q)

)
,(56)

where the final inequality above follows from the fact that both | p|qm and | p|qm + (1/q −
1)qm are bounded from above by | p|qm−1. Now by (28) there is a constant Cq ∈ (0,∞) such
that whenever θ ≤ 1/2, we have

E
[
eθK∞]≤ 1 + Cqθ.
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In particular, provided that m ∈ N is sufficiently large so that | p|qm−1 ≤ 1/2, using this
inequality in (55), we obtain

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})

≤ (
1 + C p,q,t0e

−(1/q−1)γ n)(1 + Cq | p|qm−1) 
−1∏
i=0

pi∏
j=1

(
e−ti,j−γ (n+i)/ϕ∞(q)

)

≤ (1 + εn,m)


−1∏
i=0

pi∏
j=1

(
e−ti,j−γ (n+i)/ϕ∞(q)

)
,

where εn,m = C p,q,t0(e
−(1/q−1)γ n + qm−1) for a sufficiently large C p,q,t0 ∈ (0,∞). �

4.6. Bounding exceedance probabilities of closely related tuples.

LEMMA 4.8. Let w and w′ be distinct elements in T = ⋃
n∈N Tn. Then there exists a

constant Cq ∈ (0,∞) such that for all L > 0,

P
(
K(w) > L,K

(
w′)> L

)≤ Cq exp(−λqL),

where λq := min{ 1
q
,2 − q}.

PROOF. Let v = w ∧ w′ be the most recent common ancestor of w and w′, so that v is
in generation n and w and w′ are in generations n + c and n + c′ respectively. Since w �= w′,
we have max{c, c′} ≥ 1. Without loss of generality, we can assume that c′ ≥ 1. Then, taking
into account (10),

P
(
K(w) > L,K

(
w′)> L

)= P
(
qcKn + K̃c > L,qc′

Kn + K̄c′ > L
)
,

where K̃c, K̄c′ and Kn are independent, and K̃c is distributed as Kc, K̄c′ is distributed as
Kc′ . Taking a rather generous bound using the facts that q ≤ 1, and that Kn is stochastically
dominated by K∞, we have

P
(
K(w) > L,K

(
w′)> L

)≤ P(K∞ + K̃∞ > L,qK∞ + K̄∞ > L),

where K∞, K̃∞ and K̄∞ are i.i.d., recalling (7). By conditioning on the value of K∞, we
have

P(K∞ + K̃∞ > L,qK∞ + K̄∞ > L) =
∫ ∞

0
f∞(s)P(K∞ > L − qs)P(K∞ > L − s)ds.

Due to (28) and Lemma 3.1, there is a constant Cq ∈ (0,∞) such that f∞(s) ≤ Cqe
−s and

P(K∞ > M) ≤ Cqe−M+ , and we obtain

P
(
K∞ + K ′∞ > L,qK∞ + K ′′∞ > L

)
≤ Cq

∫ ∞
0

exp
(−s − (L − qs)+ − (L − s)+

)
ds

≤ Cq

[∫ L

0
e−2L+qs ds +

∫ L/q

L
e−s−(L−qs) ds +

∫ ∞
L/q

e−s ds

]

≤ Cq exp
(
−min

{
1

q
,2 − q

}
L

)
for a sufficiently large constant Cq ∈ (0,∞). This proves the claim. �
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PROOF OF LEMMA 4.6. Let u = (ui,j : 0 ≤ i ≤ 
 − 1,1 ≤ j ≤ pi) be a ν-closely related
tuple in generation n − m. Since ν < p0 + · · · + p
−1, by the pigeonhole principle, there
exists an element v0 of generation n − m that has more than one descendent among the set
{ui,j : 0 ≤ i ≤ 
− 1,1 ≤ j ≤ pi}. Let (w,w′) be any two distinct members of the tuple u that
are descendants of v0. Let {v1, . . . , vν−1} be the other ν−1 ancestors of u in generation n−m,
and for each 1 ≤ i ≤ ν − 1, let wi be an element of u which has ancestor vi . Define integers
s, s′, s1, . . . , sν−1 ∈ {0,1, . . . , 
 − 1} to be the generations such that w ∈ Tn+s , w′ ∈ Tn+s′ ,
wi ∈ Tn+si . For t0 = min{ti,j }, we have the simple relation


−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

}⊆ {
J (w) > t0

}∩ {
J
(
w′)> t0

}∩
ν−1⋂
i=1

{
J (wi) > t0

}=: A0 ∩
ν−1⋂
i=1

Ai,

where A0 := {J (w) > t0} ∩ {J (w′) > t0} and Ai := {J (wi) > t0}. In particular, we have the
rather generous upper bound on the exceedance probability

P

(

−1⋂
i=0

pi⋂
j=1

{
J (ui,j ) > ti,j

})≤ P

(
A0 ∩

ν−1⋂
i=1

Ai

)
.(57)

For integers N , let FN := σ(J (v) : v ∈ Ti , i ≤ N). We note that the events A0, . . . ,Aν−1 are
conditionally independent given Fn−m, each Ai conditionally depending only on J (vi) =
K(vi) − γ |vi |. In particular,

P

(
A0 ∩

ν−1⋂
i=1

Ai

)
= E

[
P

(
A0 ∩

ν−1⋂
i=1

Ai |Fn−m

)]
= E

[
ν−1∏
i=0

ψi

(
K(vi)

)]
,(58)

where ψi(x) := P(Ai |K(vi) = x). We now obtain effective upper bounds on the functions
ψi(x), first looking at the case i ≥ 1, and then treating the i = 0 case separately.

For i ≥ 1, using the definition of (J (v))v∈T for the second equality below,

ψi(x) := P
(
J (wi) > t0|K(vi) = x

)
= P

(
K(wi) > t0 + γ (n + si)|K(vi) = x

)≤ P
(
K(wi) > L0|K(vi) = x

)
,

where L0 := t0 +γ n ≤ t0 +γ (n+ si). Now, continuing this calculation, we use the definition
of the rescaled expanding branching random walk (K(v))v∈T to obtain the equality below.
We take further generous bounds to obtain the following inequality in the second line below,
and then the tail bound Lemma 3.1 to obtain the inequality in the third line below, yielding

P
(
K(wi) > L0|K(vi) = x

)= P
(
qsi+mx + Ksi+m > L0

)
≤ P

(
K∞ > L0 − qmx

)≤ Cq exp
(−(L0 − qmx

)) 1

ϕ∞(q)
.

In summary, for each 1 ≤ i ≤ ν − 1 we have

ψi(x) ≤ Cq exp
(−(L − qmx

))
,(59)

where L = t0 + γ n − logϕ∞(q) > L0. We now turn to estimating ψ0(x) using Lemma 4.8.
Indeed, using Lemma 4.8 to obtain the inequality below we have, provided L0 > 0,

ψ0(x) = P
(
K(w) > L0,K

(
w′)> L0|K(v0) = x

)≤ Cq exp
(−λq

(
L0 − qmx

))
.(60)

Combining (57) with (58), and then using the bounds (59) and (60), we have

P

(⋂
i,j

{
J (ui,j ) > ti,j

})≤ Cqe−(ν−1+λq)L0E

[
exp

(
λqq

mK(v0) + qm
ν−1∑
i=1

K(vi)

)]
.



1194 P. DYSZEWSKI ET AL.

Let m ∈N be sufficiently large so that λqνqm < 2νqm < 1/2 holds. We have

E

[
exp

(
λqqmK(v0) + qm

ν−1∑
i=1

K(vi)

)]
≤ E

[
exp

(
1

2ν

ν−1∑
i=0

K(vi)

)]
≤ E

[
e

1
2 K∞]= Cq,

where we used the fact that exp( 1
n

∑n−1
i=0 ai) ≤ 1

n

∑n−1
i=0 exp(ai) for the second inequality. In

particular, we have

P

(⋂
i,j

{
J (ui,j ) > ti,j

})≤ Cqe
−(ν−1+λq)L0 .

Since L0 = t0 + γ n, the claim follows. �

5. Left tails for the geometric sum of exponentials. In this section, we work towards
proving Theorem 2.3. Before presenting the proof of Theorem 2.3, we will give two prelimi-
nary lemmas.

LEMMA 5.1. For all m ∈ N and s ≥ 0, we have

(61)
sm

m!q
−m(m−1)/2 exp

(
− sq−m

(q−1 − 1)m

)
≤ P(Km−1 ≤ s) ≤ sm

m!q
−m(m−1)/2.

PROOF. From the definition (6) of Km−1, we see that

P(Km−1 ≤ s) =
∫
R

m+
1{u0+u1+···um−1≤s}

m−1∏
i=0

q−i exp
(−q−iui

)
du0 du1 · · ·dum−1

holds for all s ≥ 0. The integral is taken over the s-scaled unit m-simplex of volume sm/m!,

s�m =
{
(u0, . . . , um−1) : ui ≥ 0,

m−1∑
i=0

ui ≤ s

}
.

In particular, we may write

P(Km−1 ≤ s) = sm

m!q
−m(m−1)/2

E

[
exp

(
−

m−1∑
i=0

q−iζi

)]
,

where (ζ0, . . . , ζm−1) is a random vector uniformly distributed on s�m. The upper bound
in (61) follows from the simple estimate E[exp(−s

∑m−1
i=0 q−iζi)] ≤ 1. To prove the lower

bound note that by Jensen’s inequality, we have

E

[
exp

(
−

m−1∑
i=0

q−iζi

)]
≥ exp

(
−E

[
m−1∑
i=0

q−iζi

])
.

The lower bound in (61) now follows from noting that, since E[ζi] = s/m for each i ∈
{0, . . . ,m − 1}, we have

E

[
m−1∑
i=0

q−iζi

]
= s

m

q−m − 1

q−1 − 1
≤ s

m

q−m

q−1 − 1
.

�

We emphasize that thanks to Lemma 5.1, it can be seen that whenever the quantity
sq−m

(q−1−1)m
is small, the quantity smq−m(m−1)/2/m! is a good estimate for P(Km−1 ≤ s). Our

proofs of both the upper and lower bounds in Theorem 2.3 will involve combining mono-
tonicity arguments—namely that for n ≥ m, Kn stochastically dominates Km—with taking
an optimal choice of m. For the latter, we have the following lemma, which identifies a critical
choice of m(s) so that smq−m(m−1)/2/m! has the order e−Fq(s).



SHARP CONCENTRATION FOR THE LARGEST AND SMALLEST FRAGMENT 1195

LEMMA 5.2. For each s ∈ (0,1/e2], letting m(s) be the smallest integer greater than
κ(log 1

s
+ log log 1

s
), we have

1

Cq

exp
(−Fq(s)

)≤ sm(s)q−m(s)(m(s)−1)/2/m(s)! ≤ Cq exp
(−Fq(s)

)
,

where Fq(s) is as in Theorem 2.3.

PROOF. Note that by using the Stirling bounds
√

2πmm+1/2e−m ≤ m! ≤ emm+1/2e−m,
as well as the definition q = e−1/κ , we have

1

C
exp

(
f (s,m)

)≤ smq−m(m−1)/2/m! ≤ C exp
(
f (s,m)

)
,

where for all x, y > 0

f (x, y) := y2

2κ
−
(

log
1

x
− 1 + 1

2κ

)
y − (y + 1/2) logy.(62)

Using the shorthand S := log 1
s
, by setting m(s) := κ(S + logS +δ(s)), where δ(s) ∈ (0,1/κ]

is such that m(s) is an integer, a calculation tells us that

f
(
s,m(s)

)= − κ

2

(
S + logS + δ(s)

)(
S + logS − δ(s) − 2 + 1

κ
+ 2 logκ + 2ε(s)

)
− 1

2
logS − 1

2
logκ − 1

2
ε(s),

where ε(s) := logm(s) − log(κS) = log(1 + logS+δ(s)
S

). Using the fact that log(1 + x) − x =
O(x2) as x → 0, we obtain(

S + logS + δ(s)
)
ε(s) = logS + r(q, s),

where r(q, s) is bounded in s ≤ 1/e2 for each q . In particular, by the last two displays, we
have

f
(
s,m(s)

)= − (1/2 + κ) logS

− κ

2

(
S + logS + δ(s)

)(
S + logS − δ(s) − 2 + 1

κ
+ 2 logκ

)
S + r ′(q, s),

where r ′(q, s) is uniformly bounded in s ≤ 1/e2. Using the identity (x + a)(x + b) = (x +
a+b

2 )2 − (a−b
2 )2, we obtain

f
(
s,m(s)

)= −
(

1

2
+ κ

)
logS − κ

2

(
S + logS + 1

2κ
+ logκ − 1

)2
+ r ′′(q, s)

for a r ′′(q, s) uniformly bounded in s ≤ 1/e2. This completes the proof. �

PROOF OF THEOREM 2.3. Let n ∈ N be such that n ≥ κ(log 1
s

+ log log 1
s
). Then by

construction, n is at least m(s) for all n sufficiently large. Hence, by stochastic domination,
we have

P(Kn−1 ≤ s) ≤ P(Km(s)−1 ≤ s).

It then follows from the upper bound in Lemma 5.1 and the upper bound in Lemma 5.2 that
for every s ≤ 1/e2,

P(Kn−1 ≤ s) ≤ P(Km(s)−1 ≤ s) ≤ Cqe−Fq(s),

completing the proof of the upper bound in (18).
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We now turn to proving the more difficult lower bound in (18). Since K∞ stochastically
dominates Kn−1 for every n ∈ N, it is sufficient to prove the lower bound for n = ∞. To this
end, with m(s) as in Lemma 5.2, iterating (8) m(s) times yields

K∞
(d)= Km(s)−1 + qm(s)K∞, Km(s)−1 independent from K∞.

Our strategy is as follows. For a carefully chosen ε(s) > 0, we use the bound

P(K∞ ≤ s) ≥ P
(
Km(s)−1 ≤ (

1 − ε(s)
)
s
)
P
(
qm(s)K∞ ≤ ε(s)s

)
.(63)

It transpires that the best choice of ε(s) to be taken is so that ε(s)sq−m(s) has unit order.
Indeed, with S = log 1

s
as above, set

ε(s) := 1/S.

Using again m(s) = κ(log 1
s
+ log log 1

s
+ δ(s)), a calculation tells us that

ε(s)sq−m(s) = eδ(s) ≥ 1

for every s, so that in particular

P
(
qm(s)K∞ ≤ ε(s)s

)= P
(
K∞ ≤ ε(s)sq−m(s))≥ P(K∞ ≤ 1) ≥ Cq.

Moreover, by (63) with ε(s) = 1/S, we have

P(K∞ ≤ s) ≥ CqP
(
Km(s)−1 ≤ (

1 − ε(s)
)
s
)
.(64)

By Lemma 5.1, we can write

P(Km−1 ≤ s) ≥ Cq exp
(
f (s,m) − g(s,m)

)
,(65)

where f (s,m) is given as in (62), and

g(s,m) := eκ−1ms

(q−1 − 1)m
.

Set w(s) := (1−ε(s))s and let m(s) = κ(S + logS +δ(s)) be defined as above. A calculation
yields

g
(
w(s),m(s)

)≤ eδ(s)

q−1 − 1
≤ Cq.

We now turn to computing f (w(s),m(s)). Again, a calculation similar to the one in the proof
of Lemma 5.2 tells us that

f
(
w(s),m(s)

)= Fq(s) + r(q, s)

where for each q , r(q, s) is bounded uniformly in s ≤ 1/e2. In particular, we see that the
difference between f (w(s),m(s)) and f (s,m(s)) is bounded. Using (65), we have that

P
(
Km(s)−1 ≤ w(s)

)≥ Cq exp
(−Fq(s)

)
,

and by (64)

P(K∞ ≤ s) ≥ Cq exp
(−Fq(s)

)
.

This completes the proof of the lower bound in (18). �
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6. The leftmost particles in the rescaled expanding branching random walk.

6.1. Three preliminary estimates. Recall the rescaled expanding branching random walk
(K(v))v∈T defined in Section 2. We now give three simple estimates on the random variables
(K(v))v∈T, which will be used in the proof of Theorem 2.2. Combined with the estimates on
the lower tails of K(v) from Theorem 2.3, this allows us to determine a sharp concentration of
the size of the smallest fragment in Theorem B. The following lemma gives an upper bound
on the joint tails of K(v) and K(w), which will be useful when w is close to v.

LEMMA 6.1. Let v,w ∈ Tn and suppose that |v ∧w| = n−m− 1 for some m ≥ 0. Then
for all x ≥ 0, we have that

P
(
K(v) ≤ x,K(w) ≤ x

)≤ P(Kn ≤ x)P(Km ≤ x).

PROOF. Recall the expanding branching random walk S = (S(x))x∈T defined in Sec-
tion 2. We have

P
(
S(v) ≤ t, S(w) ≤ t

)= P
(
S(v) ≤ t, S(v ∧ w) + S(w) − S(v ∧ w) ≤ t

)
≤ P

(
S(v) ≤ t, S(w) − S(v ∧ w) ≤ t

)
= P

(
S(v) ≤ t

)
P
(
S(w) − S(v ∧ w) ≤ t

)
.

Now use the fact that {qnS(v), qnS(w)} = {K(v),K(w)}, where we have qnS(v)
d= Kn as

well as that S(w) − S(v ∧ w)
d= q−(n−m)Sm

d= q−nKm, and conclude by substituting t =
q−nx. �

LEMMA 6.2. Let v,w ∈ Tn and suppose that |v ∧w| = n−m− 1 for some m ≥ 0. Then
for all s, x ≥ 0, we have

P
(
K(v) ≤ s,K(w) ≤ s

)≤ P(Kn ≤ s)
(
P
(
Kn ≤ s + qm+1x

)+ P(Kn−m−1 > x)
)
.

PROOF. Lemma 6.1 gives P(K(v) ≤ s,K(w) ≤ s) ≤ P(K(v) ≤ s)P(Km ≤ s). For a
pair of independent random variables (Km,Kn−m−1) as defined in (6), set K̃n := Km +
qm+1Kn−m−1. Note that we have

P(Km ≤ s) ≤ P(Km ≤ s,Kn−m−1 ≤ x) + P(Kn−m−1 > x)

≤ P
(
K̃n ≤ s + qm+1x

)+ P(Kn−m−1 > x)

for all x, s ≥ 0. Since K̃n has the same law as K(v), we conclude the proof. �

The following lemma provides an estimate for the probability that K(v) is contained in a
small interval.

LEMMA 6.3. For all s, z ≥ 0 and n ∈N, we have that

P
(
Kn ∈ [s, s + z])≤ zP

(
Kn−1 ≤ q−1(s + z)

)
.

PROOF. Consider the following general fact. If A is any nonnegative random variable and
W is an independent standard exponential random variable, then since the density function
of W is bounded above by one we have

P
(
A + W ∈ [s, s + z])≤ zP(A ≤ s + z).

The result in question follows from this general fact by noting that Kn
d= qKn−1 + W where

W is an independent standard exponential. �
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6.2. Second moment method. In order to prove Theorem 2.2, we will apply the second
moment method with respect to the following sum of indicator random variables:

Mn(s) = ∑
v∈Tn

I{K(v)≤s}.

We start with the following bound on the expectation of Mn(s). Define zn := zn(κ, γ ) as the
unique solution to the equation

(66) zn + log zn + 1

2κ
+ logκ − 1 =

√
2γ

κ
n.

It is easily verified that

(67) zn =
√

2γ

κ
n − 1

2
logn − 1

2κ
− 1

2
logκ + 1 − 1

2
log(2γ ) + O

(
logn√

n

)
.

LEMMA 6.4. With zn as in (66), for n ∈N define the quantities

(68) s−
n := exp

(−zn − z−1
n log2 zn

)
and s+

n := exp
(−zn + z−1

n log2 zn

)
Then

E
[
Mn

(
s−
n

)]= kn
P
(
Kn ≤ s−

n

)≤ 1

n2 and E
[
Mn

(
s+
n

)]= kn
P
(
Kn ≤ s+

n

)≥ n2

for all n ∈ N sufficiently large.

PROOF. By the definition of zn, we have that Fq(s) given in (19) satisfies

Fq

(
exp(−zn + yn)

)=
(

1

2
+ κ

)
log zn + κ

2

(√
2γ

κ
n + yn

)2
+ O(yn)

for all (yn)n∈N with limn→∞ yn = 0. Hence, using Theorem 2.3 and the fact that log2(zn) =
O(log2 n), we see that

log
(
kn
P
(
logKn ≤ −zn − z−1

n log2 zn

))≤ −1

2
logn − κ

2
log2 zn ≤ −2 logn

for all n large enough. Similarly, we apply Theorem 2.3 to obtain

log
(
kn
P
(
logKn ≥ −zn + z−1

n log2 zn

))≥ −1

2
logn + κ

2
log2 zn ≥ 2 logn

for all n large enough, which concludes the proof. �

We now have all tools to prove Theorem 2.2.

PROOF OF THEOREM 2.2. We begin by proving the slightly stronger statement that there
exists almost surely an n0 ∈ N such that for all n ≥ n0 we have

logKmin
n ∈ [−zn − z−1

n log2 zn,−zn + z−1
n log2 zn

]
.(69)

To this end, we see from Lemma 6.4 that for s−
n defined in (68)

P
(∃v ∈ Tn : logK(v) ≤ log s−

n

)= P
(
Mn

(
s−
n

)≥ 1
)≤ E

[
Mn

(
s−
n

)]≤ 1

n2 .

This gives the P-almost sure lower bound on logKmin
n in (69), that is, logKmin

n ≥ log s−
n al-

most surely for n ≥ 0 large enough. For the corresponding upper bound, we will now estimate
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Var(Mn(s)), where we set s = s+
n . Partitioning according to the generation of the most recent

common ancestor, we have that

Var
(
Mn(s)

)= ∑
v,w∈Tn

(
P
(
K(v) ≤ s,K(w) ≤ s

)− P
(
K(v) ≤ s

)
P
(
K(w) ≤ s

))
≤ E

[
Mn(s)

]
+

n−1∑
m=1

kn+m(
P
(
K(vm) ≤ s,K(wm) ≤ s

)− P
(
K(vm) ≤ s

)
P
(
K(wm) ≤ s

))
,

where vm,wm ∈ Tn are chosen for all m ≥ 1 such that the equality |vm ∧wm| = n−m holds.
Splitting the last sum at n/2, we have, using Lemma 6.1, that

n/2−1∑
m=1

kn+m
P
(
K(vm) ≤ s,K(wm) ≤ s

)≤
n/2−1∑
m=1

kn
P(Kn ≤ s)km

P(Km ≤ s)

= E
[
Mn(s)

] n/2−1∑
m=1

km
P(Km ≤ s).

Recall that zn is of order
√

n. Hence, since s−
m ≥ s+

n for all m ≤ n/2 when n is large enough,

we can use Lemma 6.4 to see that
∑n/2

m=0 km
P(Km ≤ s) is bounded above uniformly in n. For

the remaining terms, we apply Lemma 6.2 to get that

kn+m(
P
(
K(vm) ≤ s,K(wm) ≤ s

)− P
(
K(vm) ≤ s

)2)
≤ E

[
Mn(s)

]
km(

P
(
Kn ∈ [

s, s + qmx
])+ P(K∞ > x)

)
holds for all x ≥ 0. Let x = n2 and use Lemma 6.3 to obtain

n−1∑
m=n/2

km(
P
(
Kn ∈ [

s, s + qmn2]))≤ n2qn/2
n−1∑

m=n/2

km
P
(
Kn−1 ≤ q−12s

)
(70)

as s ≥ qn/2n2 for all n large enough by (67) and (68). Note that s = s+
n and n satisfy the

conditions in Theorem 2.3. Since

Fq

(
q−12s

)= κ

2

(
z2
n + zn log(zn)

)+ O(zn)

we get that

km(
P
(
Kn ∈ [

s, s + qmn2]))≤ q−n2/3

for all n large enough and m ≤ n. Plugging this estimate into the right-hand side in (70), we
obtain

n−1∑
m=n/2

km(
P
(
Kn ∈ [

s, s + qmn2]))≤ 1

for all n large enough.
Note that nkm

P(K∞ > n2) ≤ 1 holds for all m ≤ n with n sufficiently large by Lemma 3.1.
Hence, combining the previous observations, we obtain that

n−1∑
m=n/2

kn+m(
P
(
K(vm) ≤ s,K(wm) ≤ s

)− P(Kn ≤ s)2)≤ 2E
[
Mn(s)

]
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holds for all x ≥ 0 and all n large enough. Thus, we conclude that the variance Var(Mn(s
+
n ))

is of order at most E[Mn(s
+
n )]. Using the Paley–Zygmund inequality, we have, writing again

s = s+
n ,

P
(∃v ∈ Tn : logK(v) ≤ log s

)= P
(
Mn(s) > 0

)≥ E[Mn(s)
2]

E[Mn(s)]2 = 1 − Var(Mn(s))

E[Mn(s)]2 ≥ 1 − c

n2

for all n large enough, where we used Lemma 6.4 for the last inequality. Applying the Borel–
Cantelli lemma, this gives us the upper bound on logKmin

n in (69), that is, logKmin
n ≤ log s+

n

almost surely for n large enough.
We now obtain the statement in Theorem 2.2 from the stronger statement given in (69).

First we note that with wn as in the statement of Theorem 2.2, by (67) we have wn = zn +
O(

logn√
n

). In particular, since log2 zn

zn
= O(

log2 n√
n

) = o(n−1/3), we obtain that there exists almost
surely an n0 in N such that for all n ≥ n0 we have

logKmin
n ∈

[
−wn − 1

n1/3 ,−wn + 1

n1/3

]
which is precisely the statement of Theorem 2.2. �

6.3. Proof of Theorem B. We are now ready to use Theorem 2.2 to give a proof of The-
orem B.

PROOF OF THEOREM B USING THEOREM 2.2. Let k−Mt denote the size of the smallest
fragment in the process at time t . Let

Tn := sup{t ≥ 0 : Mt = n}
denote the last time at which the smallest fragment in the process has size k−n, that is, Tn

is the last time at which all fragments in the process have size k−n or larger. In particular,
based on our discussion in Section 2.1, Tn := minv∈Tn

S(v). Since Smin
n = q−nKmin

n , by The-
orem 2.2 there exists almost surely some n0 in N such that for all n ≥ n0

(71) exp
{

n

κ
− wn − 1

n1/3

}
≤ Tn ≤ exp

{
n

κ
− wn + 1

n1/3

}
,

where we made use of the fact that q−n = en/κ . Set c̃ := 1
2κ

+ 1
2 logκ − 1 + 1

2 log(2γ ) and
for σ ∈ {−1,+1} define

(72) pσ (x) := exp
{

x

κ
−
√

2γ

κ
x + log(x)/2 + c̃ + σx−1/3

}
.

Using the definition of wn given in the statement of Theorem 2.2, (71) reads as saying

p−1(n) ≤ Tn ≤ p+1(n)

for all n ≥ n0. In particular, we are in the setting of Lemma 3.2, so that there exists almost
surely a t0 in R+ such that for all t ≥ t0

(73)
⌈
p−1

+1(t)
⌉≤ Mt ≤ ⌈

p−1
−1(t)

⌉
.

Setting c := −c̃ − 1
2 logκ + γ , so that it agrees with the constant c given in Theorem B, a

brief calculation inverting (72) verifies that for σ ∈ {−1,+1}, we have

p−1
σ (t) = κ

(
log t +

√
2γ log t − 1

2
log log t + c − σ

(κ log t)1/3 + o

(
1

log1/3 t

))
.
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In particular, with h(t) and μ2 = 2κ2/3 as in the statement of Theorem B, for all t sufficiently
large

h(t) − μ2
1

log1/3 t
≤ p−1

+1(t) ≤ p−1
−1(t) ≤ h(t) + μ2

1

log1/3 t
.(74)

Combining (73) with (74), we have⌈
h(t) − μ2

1

log1/3 t

⌉
≤ Mt ≤

⌈
h(t) + μ2

1

log1/3 t

⌉
,

which is precisely the statement of Theorem B. �

APPENDIX

We provide here a proof of Lemma 4.4. We will (51) to control the behaviour of the
expanding branching random walk (S(v))v∈T (defined in (5)) by k independent copies of
itself. An iteration of this procedure will yield our claim.

PROOF OF LEMMA 4.4. For m > 0, denote Em = ⋃m
j=0 Tj and Em(w) = {v ∈ Em : w ≤

v} for w ∈ T =⋃
nTn. Using (51), we will first prove the following inequality:

(75) P

( ⋂
v∈Em

{
S(v) > tv

})≥ ∏
w∈Ek−1

P
(
S(w) > tw

) ∏
w∈Tk

P

( ⋂
v∈Em(w)

{
S(v) > tv

})
, k ≥ 0,

for any choice of real numbers tv , where v ∈ Em. We let P(
⋂

v∈Em(w){S(v) > tv}) = 1 when
Em(w) = ∅. Arguing inductively on k, first note that for k = 0 both sides of (75) are equal.
Take k > 0 and note that for w ∈ Tk and v ∈ Em(w) we have S(v) = S(w) + (S(v) − S(w)),
where S(w) is independent from (S(v) − S(w))v∈Em(w). Applying (51), we have that

(76)

P

( ⋂
v∈Em(w)

{
S(v) > tv

})= P

( ⋂
v∈Em(w)

{
S(v) − S(w) + S(w) > tv

})

≥ P

( ⋂
v∈Em(w)

{
S(v) − S(w) + Sv(w) > tv

})
,

where (Sv(w))v∈Em(w) are i.i.d. copies of S(w). The process (S(v)− S(w))v≥w is distributed
as (q−|w|(S(v) − S([0,1)))v∈T and therefore, conditionally on (Sv(w))v∈Em(w), we can in-
voke the branching property and get

(77)

P

( ⋂
v∈Em(w)

{
S(v) − S(w) + Sv(w) > tv

})

= P
(
S(w) > tw

) ∏
z∈Tk+1,z≥w

P

( ⋂
v∈Em(z)

{
S(v) − S(w) + Sv(w) > tv

})
.

Note that this is the exact place where we use the independence of Sv(w)’s. For each w ∈ Tk ,
the process (S(v)−S(w)+Sv(w))v>w is distributed as (S(v))v>w and thus for any z ∈ Tk+1,
z ≥ w

(78) P

( ⋂
v∈Em(z)

{
S(v) − S(w) + Sv(w) > tv

})= P

( ⋂
v∈Em(z)

{
S(v) > tv

})
.

If we now combine the induction hypothesis with (76), (77) and (78) we arrive at

P

( ⋂
v∈Em

{
S(v) > tv

})= ∏
w∈Ek

P
(
S(w) > tw

) ∏
z∈Tk+1

P

( ⋂
v∈Em(z)

{
S(v) > tv

})
.
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This concludes the proof of (75). If we take k > m, (75) reads

(79) P

( ⋂
v∈Em

{
S(v) > tv

})≥ ∏
v∈Em

P
(
S(v) > tv

)
.

The claim now follows by taking in (79), m = n − 
 − 1 and tv → −∞ if ui,j �= v for all
ui,j ∈ u, and tv = ti,j q

|v| − γ |v| if v = ui,j . �
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